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Abstract

Provable security refers to the ability to give rigorous mathematical proofs
towards the security of a cryptographic construction; in some sense one of
the best possible security guarantees one can attain. These proofs are most
often given through so-called reductions to a simpler construction or to some
well-studied number-theoretic assumption. This thesis deals with two aspects
of such reductions.

First, since a reduction may be difficult to obtain, many reductions for
widely-used signature and encryption schemes are conducted in a model that
idealizes some underlying building block of the scheme, for example by replacing
a hash function with a truly random function. With these reductions in idealized
models, it is difficult to compare requirements of cryptographic schemes because
the idealization introduces all desired properties simultaneously and it is
inexplicit which ones are used and to what extent. This complicates practical
considerations when choosing from multiple candidate constructions for the
same task.

We develop a novel mechanism to relate schemes proven in idealized models.
In this thesis, we present a reductionist paradigm that allows meaningful
comparisons of constructions in idealized models with respect to the idealized
part. Some of the idealized constructions considered here are the well-known
compression-function constructions from blockciphers by Preneel, Govaerts,
and Vandewalle (PGV; CRYPTO, 1993), and the twin ElGamal encryption
scheme by Cash, Kiltz, and Shoup (Journal of Cryptology, 2009). Our main
results show that the random oracle of the twin ElGamal encryption scheme
reduces to the random oracle of the regular ElGamal encryption scheme, the
PGV constructions fall into two groups, and the so-called double-block-length
constructions reduce to one of the PGV constructions with respect to their
ideal cipher.

We can thus conclude that the PGV constructions are essentially equivalent
within their respective groups and that double-block-length constructions are
strictly superior, not only because of their increased key length. Similarly,
the regular ElGamal scheme can be replaced by the twin ElGamal scheme
(keeping in mind the reduction’s tightness), even though the proofs are in an
idealized model. These latter results greatly help designers and implementers
of practical cryptographic constructions to select the better of two (or more)
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x Abstract

seemingly equivalent options. Ideal-model reducibility as a comparison tool is
applicable to any two constructions whose proof is in an idealized model.

The second aspect of reductions we study in this thesis relates to the absence
of reductions. Sometimes, insurmountable obstacles in finding a reduction
result in a proof that reductions of some kind cannot exists at all. In that
case, it is particularly important to carefully understand what the non-existent
reductions look like—since, perhaps, a slightly different reduction is feasible.

We develop means that allow us to better understand existing reductions
in the literature. This thesis presents a new framework, akin to the one by
Reingold, Trevisan, and Vadhan (TCC, 2004), for classifying reductions in a
more fine-grained and more systematic way.

The new framework clarifies the role of efficiency of adversaries and primi-
tives within reductions, covers meta-reduction separations, and provides new
insights on the power of relativizing reductions. Consequently, a classification
within the new framework clearly points out avenues to circumvent existing im-
possibility results and enables an assessment of their strength. The generality
of the framework permits classification of a large body of existing reductions,
but it is easily extensible to include further properties.



Zusammenfassung

Beweisbare Sicherheit kryptographischer Konstruktionen bezieht sich auf die
Möglichkeit, einen rigorosen mathematischen Sicherheitsbeweis zu führen; in
gewisser Hinsicht eine der bestmöglichen erreichbaren Sicherheitsgarantien.
Diese Beweise sind meist sogenannte Reduktionen auf eine einfachere Kon-
struktion oder auf eine gut verstandene zahlentheoretische Annahme. In dieser
Dissertation studieren wir zwei Aspekte solcher Reduktionen.

Als ersten Aspekt behandeln wir sogenannte Idealisierungen. Vielen Reduk-
tionen für weit verbreitete Signatur- und Verschlüsselungsverfahren liegt ein
Modell zugrunde, das Teile der vom Verfahren verwendeten Bausteine ide-
alisiert, beispielsweise in Form einer echt zufälligen Funktion anstelle einer
Hashfunktion. Bei derartigen Reduktionen in idealisierten Modellen ist es
dann schwierig, Konstruktionen sinnvoll bezüglich ihrer Anforderungen zu ver-
gleichen, weil die idealisierten Bausteine einen Vergleich „verfälschen“. Diese
Verfälschung entsteht dadurch, dass die Idealisierung sämtliche Sicherheit-
seigenschaften auf einmal einbringt und nicht unmittelbar klar ist, welche
davon genutzt werden und in welchem Umfang.
Diese Dissertation präsentiert ein Reduktionsparadigma, welches sinnvolle
Vergleiche von Konstruktionen in idealisierten Modellen bezüglich der ideal-
isierten Bausteine erlaubt. Zu den hier betrachteten Konstruktionen gehören
insbesondere die Kompressionsfunktionen aus Blockciphern nach Preneel, Go-
vaerts und Vandewalle (PGV; CRYPTO, 1993) und das „twin ElGamal“-
Verschlüsselungsverfahren von Cash, Kiltz und Shoup (Journal of Cryptology,
2009). Unsere Resultate zeigen, dass sich das Random-Oracle des „twin
ElGamal“-Verschlüsselungsverfahrens auf das Random-Oracle des regulären
ElGamal-Verschlüsselungsverfahrens reduzieren lässt, die PGV-Funktionen in
zwei Gruppen fallen und diverse Kompressionsfunktionen mit doppelter Block-
länge auf eine der PGV-Funktionen bezüglich des Ideal-Ciphers reduzierbar
sind.
Folglich lässt sich feststellen, dass die PGV-Konstruktionen im Wesentlichen
äquivalent innerhalb der jeweiligen Gruppe sind und dass Konstruktionen
mit doppelter Blocklänge tatsächlich mehr Sicherheit bieten – nicht nur we-
gen der erhöhten Blocklänge. Ebenso kann anstelle des regulären ElGamal-
Verschlüsselungsverfahrens das „twin ElGamal“-Verschlüsselungsverfahren ver-
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xii Zusammenfassung

wendet werden (unter Beachtung der Straffheit der Reduktion), obwohl die
jeweiligen Beweise in einem idealisierten Modell geführt werden. Diese Re-
sultate helfen Entwicklern praktischer kryptographischer Lösungen, unter
mehreren scheinbar äquivalenten Optionen eine gut informierte Auswahl zu
treffen. Reduzierbarkeit in idealisierten Modellen findet darüber hinaus grund-
sätzlich dort Anwendung, wo zwei Konstruktionen, deren Beweis in einem
idealisierten Modell erfolgt, miteinander verglichen werden sollen.

Der zweite in dieser Dissertation beleuchtete Aspekt von Reduktionen bezieht
sich auf nicht vorhandene Reduktionen. Manchmal ist es nicht möglich, einen
Reduktionsbeweis zu führen, sondern zu zeigen, dass eine bestimmte Art von
Reduktion gar nicht existieren kann. In solchen Fällen ist es wichtig, die Art
der nichtexistenten Reduktionen genau zu verstehen, da möglicherweise leicht
abgeänderte Varianten doch existieren könnten.
Wir entwickeln Hilfsmittel, die uns ein besseres Verständnis von in der Lit-
eratur existierenden Reduktionen geben. Diese Dissertation präsentiert ein
Framework, ähnlich zu dem von Reingold, Trevisan und Vadhan (TCC, 2004),
um Reduktionen feingranularer und systematischer zu klassifizieren.
Das neue Framework verbessert unser Verständnis über die Einordnung von
Effizienz bei Angreifern und Primitiven innerhalb von Reduktionen, deckt
Meta-Reduktionen ab und liefert neue Erkenntnisse über relativierende Reduk-
tionen. Konsequenterweise zeigt eine Klassifikation einer Reduktion in dem
vorgestellten Framework neue Richtungen auf, negative Resultate zu umgehen
und ermöglicht es, die relative Stärke solcher negativer Resultate besser zu
beurteilen. Die Allgemeinheit des Frameworks erlaubt die Erfassung einer
Vielzahl existierender Reduktionen; gleichzeitig ist es jedoch auch aufgrund
des systematischen Aufbaus einfach erweiterbar.
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Chapter 1
Introduction

“Is it secure?” is the essential question in the field of IT security and cryp-
tography. Modern cryptography approaches this question with the concept
of provable security: working within a precisely defined mathematical model,
we seek to find rigorous proofs—or guarantees—that the object in question
indeed achieves security in that model. This paradigm allows us to avoid
inherent flaws in the basic design of the object without having to rely purely
on intuition, which is highly prone to deception. Needless to say, provable
security is the only accepted strategy towards answering the opening question
whenever cryptanalysis or information-theoretic arguments are not applicable,
at least in, but not limited to, the cryptographic community.

Reductions. Provable security typically starts out with a conditional propo-
sition of the form “if A, then B,” where A stands for the security of a well-
understood primitive A, and B captures the idea that some newly-constructed
object B is secure. This common structure of propositions induces a common
way of proving them. Technically, the vast majority of cryptographic proofs
show either the contrapositive (“if not B, then not A”) or a contradiction (“A
and not B,” where the eventually derived contradiction is often “A and not
A”). More concretely, when proving that we can build some secure object B
from a secure primitive A, we usually describe a method to turn any alleged
attack on B into an attack on A; thus, given the attack on B, we conclude that
“not A.” The constructive nature of this proof technique leads to a desirable
side effect. Either A is true and we get a secure object B, or A is false and any
attack on B leads to a concrete method to “break” A—and if A corresponds
to some presumably computationally hard problem like, say, factoring, then
the method will help to solve this problem. This method is commonly called a
reduction.

Despite being part of virtually any work in the field, fully understanding
reductions, as an object of study themselves, is far from trivial. To appreciate
this, consider for a moment the absence of a reduction. An important aspect
of cryptography is to study the relationship between different objects in order
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2 Chapter 1. Introduction

to determine if some construction can be based, at all, on some primitive.
Being unable to find a reduction is a first indicator that this question may
entail a negative answer. Indeed, proving that it is impossible to securely
build certain constructions from some primitive, i.e., proving a separation, is a
popular theme among theoreticians. The term “impossibility” is a misnomer,
though: usually, one merely shows that certain classes of reductions cannot
exist. This is a much more restricted statement than showing that no secure
construction from that primitive exists whatsoever. There may thus be other
types of reductions, or even entirely arbitrary proof techniques, with different
properties that do indeed exist (of course, this is less likely the more reductions
are being ruled out—especially if that means a new technique needs to be
discovered first). Separations are hence an important reason why we should
carefully examine the exact properties of a reduction.

Unfortunately, we currently lack a good language to concisely and explicitly
communicate those intricacies. In their highly-cited paper, Reingold, Trevisan,
and Vadhan (RTV, [RTV04]) laid out some of the basic foundations by distin-
guishing essentially three types of reductions. For each type, they investigate
how the reduction algorithm interacts with the alleged attacker against the
newly constructed object B, and how these types are related among each other.
The main focus in their classification is on the varying degree of black boxness,
that is, how much information about the attacker against construction B can
the reduction algorithm access. On one end of the spectrum, the reduction can
only communicate with the attacker through a fixed input/output interface
without being able to look “into the box”; hence the term black box. On the
other end of the spectrum, the reduction gets a full description of the attacker,
for example in terms of its underlying program code.

The RTV framework is, however, rather coarse. As an example, consider
the types of reductions that are ruled out by the increasingly popular meta-
reduction separation technique. There, the reduction algorithm treats the
attacker against construction B as a black box, but can potentially make use
of the program code of the primitive whose security is captured by A. For
this type of reduction, the RTV framework does not offer a good match. In
order to classify this reduction, one is forced to go for a type that is close to
the non-black-box end of the spectrum. Thus, the tempting assertion that
this type is ruled out by a meta reduction is incorrect, because the type of
reduction, in fact, encompasses a much broader class of reductions. It is hence
tedious to specify which reductions are ruled out by a meta reduction result,
and consequently, it tends to be omitted. That, in turn, makes it easy to
misunderstand the entire result.

Apart from these coarseness issues, the binary distinction between black-
box and non-black-box use itself seems unrefined. Technically, a reduction
that uses information such as the success probability of an alleged attacker
(as it is the case in the hardcore-predicate reduction presented in [Gol04] due
to Rackoff [Gol04, §2.7.1], for example) is not completely black box any more.
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On the other hand, such use of the success probability appears to be a much
milder requirement than taking advantage of, say, the code of the adversary.
Again, there is currently no established succinct language to convey this.

Idealized models. Occasionally, however, the community at large fails to
find neither a proof nor a counterexample for constructions that are widely
used in practice. The popular OAEP encryption padding [BR94] (part of
PKCS #1) is a prominent example. In these cases, researchers sometimes
resort to a heuristic involving an idealized model, where the world is augmented
by an (unrealistically) ideal version of some primitive that the construction
relies on, in order to make a proof go through. This idealization takes the form
of an oracle answering queries according to a specific distribution, but does
not reveal its inner workings. A critical consequence of this latter property is
that it enables a very liberal reduction during which the reduction algorithm
can learn all the queries to the ideal primitive and even set answers (within
the rules determined by the distribution).

Not surprisingly, such idealized primitives are considered to be very powerful
and controversial [CGH98, KL08, KM07a]. They can neither be implemented
efficiently, nor is there any real-world justification for the liberty that a re-
duction algorithm obtains. Yet, it is unclear how powerful they are exactly
and what that means in practice, when the idealized primitive is eventually
instantiated by a real-world implementation like AES or SHA-3. An artificial
cryptosystem based on an abstract hash function H could, for example, check
if H(0) = SHA-3(0) and then, and only then, behave trivially insecure. Clearly,
this equality does not hold with overwhelming probability if H is ideal, i.e., a
random function—but it will always hold when H is instantiated with SHA-3.
Indeed, in some sense there is no guarantee at all: we know schemes that are
secure in an ideal model, but become insecure with any real implementation.
Canetti et al. [CGH98] established this result by giving artificial examples and
Nielsen [Nie02] identified with non-committing encryption the first natural
task where the methodology fails.

The uncertainty regarding the power of idealized primitives has another
troubling aspect: directly comparing two constructions that both use the same
idealized primitive can be very difficult. In particular, consider first the case
where both constructions look very similar in the idealized model. If it is
unclear how much power either construction draws from the idealized primitive,
then the level of security may be very different once the indealized primitive is
instantiated by the same implementation. Prominent concrete examples for
such a situation are the various so-called PGV compression functions based
on blockciphers [PGV93, BRSS10], which result from various ways to wire
a blockcipher and XOR gates. Orthogonally to the case where two or more
constructions seem similar, consider that one construction is (provably) strictly
better than another one in all respects. When instantiated with one particular
implementation, it could turn out that the seemingly superior construction is
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actually weaker because it relies more heavily on certain security properties
of the primitive. This problem is illustrated best by two versions of hashed
ElGamal encryption schemes. Cash, Kiltz, and Shoup [CKS09] improve over
the standard hashed ElGamal encryption scheme by weakening the assumption
on which the scheme’s security is based on. Here, a rigorous declaration that
their improvement is strictly better seems problematic at first as both schemes
enjoy a proof in an idealized model.

In a somewhat extreme case, one construction could be completely unin-
stantiable or it may be much harder to do so. Put differently, any comparison
in the aforementioned settings is blurred by the idealized primitive. For a
practitioner it is thus far from obvious which construction to prefer for an
implementation, but even on a theoretical level it would be much more de-
sirable to have sound comparisons. Notwithstanding these drawbacks, it is
noteworthy that proofs in idealized models do have value. First, it means that
a potential attack does have to exploit the inner structure of the instantiation
of the idealized primitive. Second, a proof in this model is arguably better
than no proof at all, as it provides a basic sanity check for the construction in
question.

Contributions of this Thesis In this thesis, we address the aforementioned
issues, dealing with the latter ones first.

In Chapter 3, we apply the classical reductionist approach in a novel way.
Reducing schemes to each other with respect to an idealized primitive allows us
to make sound comparisons on what the requirements on the idealized primitive
are. We demonstrate this by revisiting the compression functions initially
studied by Preneel, Govaerts, and Vandewalle (PGV, [PGV93]) which serve as
building blocks for many hash-function designs. Although we know that 12
of the functions provide optimal security in the ideal-cipher model [BRSS10],
little is known about the relationships among these designs. Our treatment
shows that the functions partition into two groups of size six where any function
immediately reduces to any other function with respect to the cipher within that
group. Moreover, we explore the reducibility of three more complex compression
function designs based on a cipher using doubled key lengths [LM92, Hir06].
Here we rule out the existence of a broad class of transformations and thereby
establish that these designs impose fewer requirements on the blockcipher than
the PGV functions when instantiated.

Continuing with our reductionist methodology, we next turn to random
oracles in Chapter 4. The classical hashed ElGamal encryption scheme can
be proven secure against chosen-ciphertext attacks under the strong Diffie–
Hellman (DH) assumption in the random-oracle model. An improved variant
of this scheme by Cash, Kiltz, and Shoup [CKS09] is only slightly less efficient
but relaxes the assumption to the ordinary DH assumption. We formally show
that this relaxation is indeed not at the expense of increased requirements from
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the random oracle; a possibility that was so far not excluded by the existing
work (and, to the best of our knowledge, not considered in any prior work).
Thus, apart from the slight overhead, one can safely choose the improved
variant for practical considerations. We furthermore discuss several other
reducibility results among various signature schemes towards the end of this
chapter. These results are interesting insofar as they allow us to argue about
the relative instantiability among those schemes.

Chapter 5 finally deals with the taxonomy of cryptographic reductions in
general. We present a comprehensive, systematic framework and notation that
enables capturing a wide range of different types of reductions. In particular,
the framework offers a notion that corresponds accurately to those reductions
ruled out by meta reductions. We relate all notions introduced in this chapter
to each other by showing implications or providing separating counterexamples.
For situations where a binary classification into black-box and non-black-box
usage is difficult (e.g., [GL89]), we propose a unified view to reflect this via
parametrization. Moreover, we map out dimensions that were previously not—
or only implicitly—explored, such as the distinction between efficient/inefficient
adversaries and primitives, which eventually leads to a better understanding
of the power of relativizing reductions. Due to its systematic design, the
framework can be easily extended to further dimensions in order to include
more properties of reductions.





Chapter 2
Notation and Definitions

In this chapter, we set the basic notation used throughout the thesis. Readers
who are already familiar with cryptographic literature may wish to advance to
the next chapter.

General notation. We write x ← y for assigning value y to variable x.
We write x←$ X for sampling x from (finite) set X uniformly at random. If
A is a probabilistic algorithm we write y ←$ A(x1, . . . , xn) for the action of
running A on inputs x1, . . . , xn with coins chosen uniformly at random, and
assigning the result to y. We use “|” for string concatenation, denote the
bit-wise complement of x ∈ {0, 1}? by x. We set [n] := {1, . . . , n}. We say
ε(λ) is negligible if |ε(λ)| ∈ λ−ω(1). The modifier “ppt” stands for probabilistic
polynomial time.

Oracle access and black boxes. If A is an algorithm, we write AO to
indicate that A has “oracle access” to O, where O may be another algorithm,
a function, or a distribution. Oracle access usually means that O is a black
box: algorithm A may query O adaptively with chosen inputs x1, . . . , xn, but
learns no information about O besides the outputs of O(x1), . . . , O(xn). In
particular, algorithm A does not learn how O is implemented, let alone its
(possibly non-existing) code.

All this assumes that A does not “depend” on O in the sense that there is
a different version of A for each O. In that case, oracle O is no longer a black
box for A, of course, because A is then fully aware of what it is dealing with.
We indicate this somewhat unusual situation clearly. The formal meaning of
the term “black box” in varying degrees is the subject matter of Chapter 5.

Idealized models. The two idealized models we encounter in this thesis are
the random-oracle model and the ideal-cipher model. Both models share the
same underlying concept. We consider a large set of functionally correct objects
and make a probabilistic security statement that involves the uniform choice
of one object from the set. More concretely, in the random-oracle model, we
randomly sample a function from the set of all admissible functions. Similarly,

7
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in the ideal-cipher model, we sample from the set of all keyed block ciphers.
All parties involved in a game that models some security property have (oracle)
access to the sampled object and the probability space is augmented by the
sampling process of the object. These models are considered ideal, due to
the complete absence of any structure and they enjoy in some sense the “best
possible security” regarding the sampled object.



Chapter 3
Ideal-Cipher Reducibility

In this first chapter of the thesis, we investigate several compression functions
in terms of their relative strengths. All function designs are known to enjoy
various security properties in the ideal-cipher model, yet it is unclear which
ones to prefer in a practical construction. We show reducibility or irreducibility
with respect to the underlying ideal cipher for the so-called PGV compression
functions as well as major double-block-length (DBL) compression function
designs.

In the following Section 3.1, we recall some facts about the PGV and
DBL designs and lay out our reducibility approach. After introducing some
chapter-specific notation in Section 3.2, we go on to separate the PGV functions
into two groups in Section 3.3. We then relate the DBL constructions one to
another and to the PGV functions in Section 3.4. Finally, in Section 3.5, we
discuss some concluding remarks and identify avenues for further research.

This work was presented at EUROCRYPT 2013 [BFFS13].

3.1 Introduction

The design of hash functions (or compression functions) from blockciphers has
been considered very early in modern cryptography. Preneel, Govaerts, and
Vandewalle [PGV93] initiated a systematic study of designing a compression
function F : {0, 1}n × {0, 1}n → {0, 1}n out of a blockcipher E : {0, 1}n ×
{0, 1}n → {0, 1}n by analyzing all 64 possible ways to combine the relevant
inputs and outputs using xors only. Preneel et al. conjectured only 12 out
of these 64 PGV constructions to have certain security properties, including
the well-known constructions of Matyas–Meyer–Oseas (MMO) and Davies–
Meyer (DM). The idea continues to influence hash-function design till today.
Indeed, one of the former five final candidates in the SHA-3 competition,
Skein [FLS+08], explicitly refers to this design methodology, and other former
candidates like Grøstl [GKM+11] are based on similar principles.

9
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The conjecture about the 12 secure PGV variants was later shown to
be true in the ideal-cipher model (ICM) by Black et al. [BRS02, BRSS10].
Roughly speaking, Black et al. show that assuming E implements a random
blockcipher, the 12 secure PGV compression functions achieve optimal security
of Θ(q2 · 2−n) for collision resistance and Θ(q · 2−n) for preimage resistance,
where q is the number of queries to the ideal cipher (and its inverse). Black et
al. also discuss 8 further variants which, if used in a hash-iteration mode, attain
optimal collision resistance and suboptimal preimage resistance of Θ(q2 · 2−n).
The remaining 44 PGV versions are insecure and of no relevance here.

Idealized models. As pointed out by Black et al. [BRSS10], security proofs
for the PGV schemes in the ICM should be treated with care. Such results
indicate that, in order to break the security of the PGV scheme, one would need
to take advantage of structural properties of the blockcipher. Yet blockciphers
such as AES, or the Threefish blockcipher used in Skein, clearly display a
structure which is far from an ideal object. For instance, IDEA seems quite
unsuitable to base a compression function on [WPS+12], while for AES recent
related-key attacks [BK09, BKN09] cast some shadow on its suitability for
this purpose. Indeed, Khovratovich [Kho10, Corollary 2] states unambiguously
that “AES-256 in the Davies–Meyer hashing mode leads to an insecure hash
function,” but remarks that it is not known how to attack, for instance, double-
block-length constructions. Moreover, it is currently still unknown how to
exploit these weaknesses in AES-256 to break the standard collision or preimage
security of any AES-instantiated PGV compression function. Consequently it
may well be that AES makes some of the 12 PGV constructions secure, whereas
others turn out to be insecure, despite a proof in the ICM. Unfortunately, it is
very hard to make any security claims about specific PGV constructions with
respect to a “real” blockcipher, or to even determine exactly the necessary
requirements on the blockcipher for different PGV constructions to be secure.

Recently, a similar issue for the random-oracle model, where a mono-
lithic idealized hash function is used, has been addressed by Baecher and
Fischlin [BF11] via the so-called random-oracle reducibility. We will explore
random-oracle reducibility in greater detail in Chapter 4 of this thesis, but give
a brief overview here as we will first work with a simplified notion throughout
this chapter. The idea is to relate the idealized hash functions in different
(primarily public-key) schemes, allowing to conclude that the requirements on
the hash function in one scheme are weaker than those in the other scheme.
That is, Baecher and Fischlin consider two cryptographic schemes A and B
with related security games in the random-oracle model. They define that the
random oracle in scheme B reduces to the one in scheme A, if any instantiation
H of the random oracle, possibly through an efficient hash function or again by
an oracle-based solution, which makes scheme A secure, also makes scheme B
secure. As such, the requirements on the hash function for scheme B are weaker
than those for the one in scheme A. To be precise, Baecher and Fischlin allow
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an efficient but deterministic and stateless transformation TH for instantiating
the random oracle in scheme B, to account for, say, different input or output
sizes of the hash functions in the schemes. Using such transformations they
are able to relate the random oracles in some public-key encryption schemes,
including some ElGamal-type schemes.

Our results for the PGV constructions. We apply the idea of oracle
reducibility to the ideal-cipher model and the PGV constructions. Take any
two of the 12 PGV constructions, PGVi and PGVj , which are secure in the
ICM. The goal is to show that any blockcipher (ideal or not) which makes
PGVi secure, also makes PGVj secure. Here, security may refer to different
games such as standard notion for collision resistance, preimage resistance,
or everywhere preimage resistance [RS04], or more elaborate notions such
as preimage awareness [DRS09]. One could even ask the same question for
indifferentiability from random functions [MRH04], but the PGV constructions,
as pointed out in [CDMP05, KM07b], do not achieve this level of security. This,
and other points discussed within the body, motivates why we chose the oracle
reducibility notion of [BF11] rather than the indifferentiability reducibility
notion in [MRH04].

Our first result divides the 12 secure PGV constructions into two groups G1
and G2 of size 6, where within each group the ideal cipher in each construction
reduces to the ideal cipher in any other construction (with respect to collision
resistance, [everywhere] preimage resistance, and preimage awareness). We
sometimes call these the PGV1-group and the PGV2-group respectively: these
two functions are representatives of their respective groups. Across different
groups, however, and for any of the security games, our results change. Starting
with the ideal cipher, we can derive a blockcipher which makes all schemes in one
group secure, whereas any scheme in the other group becomes insecure under
this blockcipher. This separates the PGV1-group and the PGV2-group in terms
of direct ideal-cipher reducibility. In direct reducibility we use the blockcipher
in question without any modifications in another construction. This was one
of the reasons to investigate different PGV constructions in the first place. For
free reductions allowing arbitrary transformations T of the blockcipher, we
show that the PGV constructions can be seen as transformations of each other,
and under suitable T all 12 PGV constructions reduce to each other.

Preneel et al. [PGV93] already discussed equivalence classes from an attack
perspective. Our work reaffirms these classes and puts them on a solid theoret-
ical foundation. Dividing the 12 constructions into two groups allows us to say
that, within each group, one can use a blockcipher in a construction under the
same qualitative assumptions on the blockcipher; only across the groups this
becomes invalid. In other words, the sets (or more formally, distributions) of
“good” blockciphers for the groups are not equal, albeit they clearly share the
ideal cipher as a common member making both groups simultaneously secure.
We note that our results are also quantitatively tight in the sense that the



12 Chapter 3. Ideal-Cipher Reducibility

blockciphers within a group are proven to be tightly reducible to each other in
terms of the number of queries, running times, and success probabilities.

PGV and double-block-length hashing. Double-block-length (DBL)
hash or compression functions aim at surpassing the 2n/2 upper bound for colli-
sion resistance of the PGV constructions by using two “PGV-like” constructions
in parallel, doubling the output length. There are three major such compression
functions, namely, Tandem-DM (TDM, [LM92]), Abreast-DM (ADM, [LM92]),
and Hirose’s construction (HDM, [Hir06]). Several results underline the op-
timality of collision-resistance [Hir06, LK11, LSS11] and preimage-resistance
bounds [AFK+11] for these functions in the ICM.

Continuing with ideal-cipher reducibility, we establish a connection between
the basic PGV constructions and the double-block-length compression functions.
Since all the DBL constructions have a “PGV1-part” (with twice the key size)
built in, it follows that any collision for any of the DBL functions immediately
yields a collision for PGV1 built from a blockcipher with 2n-bit key. In other
words, the ideal cipher in the DBL constructions directly reduces to the one in
double-key PGV1. We also prove that there is a free reduction to single-key
PGV1 from this double-key variant, thereby relating DBL functions to PGV1
for free transformations. It follows, via a free reduction to PGV1 and a free
reduction from PGV1 to PGV2, that DBL functions reduce to PGV2 for free
transformations. An analogous result also applies to the everywhere preimage-
resistance game, but, somewhat curiously, we show such a result cannot hold
for the (standard) preimage-resistance game.

When it comes to free reducibility from PGV to DBL functions, we present
irreducibility results for the collision-resistance and [everywhere] preimage-
resistance games. We achieve this by making use of an interesting relationship
to (lower bounds for) hash combiners [Her05, HKN+05, Pie08]. Namely, if
one can turn a collision (or preimage) for, say, PGV1 into one for a DBL
compression function, then we can think of PGV1, which has n-bit digests, as a
sort of robust hash combiner for the DBL function (which has 2n-bit outputs).
However, known lower bounds for hash combiners [Pie08] tell us that such
a combiner—with tight bounds and being black box—cannot exist, and this
transfers to ideal-cipher reducibility. More in detail, by combining Pietrzak’s
techniques [Pie08] with a lower bound on generic collision finders by Bellare
and Kohno [BK04] on compression functions, we confirm the irreducibility
result formally for the simple case of black-box reductions making only a
single call to the PGV collision-finder oracle (as also discussed in [Pie08]). In
summary, not only do the DBL functions provide stronger guarantees in terms
of quantitative security (as well as efficiency and output length), but they also
provably rely on qualitatively weaker assumptions on the blockcipher for the
collision-resistance and everywhere preimage-resistance games.

Finally, we demonstrate that for none of the aforementioned DBL con-
structions the ideal cipher directly reduces to the one in either of the other
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schemes. That is, starting with the ideal cipher, for each target DBL function
we construct a blockcipher which renders it insecure but preserves collision
resistance for the other two functions. We are not aware of an analogous result
for free reductions, but can exclude transformations which are involutions.

Practical implications. Our results show that there is “no clear winner”
among the PGV constructions in the sense that one construction always relies
on weaker assumptions about the blockcipher than the other ones and should
be therefore preferred in practice. This depends on the blockcipher in question.
As expressed above, settling this for a specific blockcipher may be tedious,
though. Nonetheless, our results do show that DBL constructions are superior
in this regard, and that one may switch between PGV constructions of the
same group in order to match other practical stipulations.

3.2 Notation

Blockciphers. A blockcipher with key length k and block length n is a set
of permutations and their inverses on {0, 1}n indexed by a key in {0, 1}k. This
set can therefore be thought of as a pair of functions

E : {0, 1}k × {0, 1}n → {0, 1}n and E−1 : {0, 1}k × {0, 1}n → {0, 1}n.

We denote the set of all such blockciphers by Block(k, n). A blockcipher is
efficient if the above functions can be implemented by a ppt Turing machine.

Ideal and idealized (block)ciphers. An idealized (block)cipher with
key length k and block length n is a distribution E on Block(k, n). We often
consider an E-idealized model of computation where all parties are given oracle
access to a blockcipher chosen according to E . The ideal-cipher (model) is
the E-idealized model where E is the uniform distribution on Block(k, n). We
denote the set of all idealized ciphers with key length k and block length n
(i.e., the set of all distributions on Block(k, n)) by Ideal(k, n). Below, when
saying that one has oracle access to an idealized cipher E it is understood that
a blockcipher is sampled according to E and that one gets oracle access to this
blockcipher.

Compression functions. A compression function is a function mapping
{0, 1}l to {0, 1}m where m < l. We are primarily interested in compression
functions which are built from a blockcipher. In this case we write FE,E−1 :
{0, 1}l → {0, 1}m. A compression function is often considered in an idealized
model where its oracles are sampled according to an idealized cipher E .

Security notions for compression functions

We now recall a number of fundamental security properties associated with
blockcipher-based hashing.
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Definition 1 (Everywhere preimage and collision resistance [RS04]). Let
FE,E−1 : {0, 1}l → {0, 1}m be a compression function with oracle access to a
blockcipher in Block(k, n). Let E denote an idealized cipher on Block(k, n). The
preimage- (resp., everywhere preimage-, resp., collision-) resistance advantage
of an adversary A in the E-idealized model against FE,E−1 are defined by

Advpre
F,E(A) := Pr

[
FE,E−1(X ′) = Y : (E,E−1)←$ E ; X ←$ {0, 1}l;

Y ← FE,E−1(X); X ′ ←$ AE,E−1(Y )

]
,

Advepre
F,E (A) := Pr

[
FE,E−1(X) = Y :

(E,E−1)←$ E ; (Y, st)←$ A1;
X ←$ AE,E−1

2 (st)

]
,

Advcoll
F,E(A) := Pr

[
X0 6= X1 ∧
FE,E−1(X0) = FE,E−1(X1) : (E,E−1)←$ E ;

(X0, X1)←$ AE,E−1

]
.

For the set Sq of all adversaries which make at most q queries (E queries
plus E−1 queries) we define

Advpre
F,E(q) := max

A∈Sq

{
Advpre

F,E(A)
}
,

and similarly for the everywhere preimage-resistance and collision-resistance
games. We note that although a compression function cannot be collision
resistant nor everywhere preimage resistance with respect to a fixed blockcipher,
reducibility arguments still apply [Rog06].

Some of our results also hold for “more advanced” properties of hash or
compression functions like preimage awareness [DRS09]. If so, we mention
this briefly. Roughly speaking, preimage awareness [DRS09] states that any
adversary which comes up with an image Z for a compression function, already
knows a preimage X for it. This is formalized though the existence of an
extractor algorithm X which can recover the value X from Z and the list α of
previous queries to E and E−1.

Definition 2 (Preimage awareness [DRS09]). Let FE,E−1 : {0, 1}l → {0, 1}m
be a compression function with oracle access to a blockcipher in Block(k, n).
Let E denote an idealized cipher on Block(k, n). The preimage awareness
advantage of an adversary A with respect to the deterministic extractor X in
the E-idealized model against FE,E−1 is defined by

Advpra
F,E,X (A) := Pr

[
Exppra

F,E,X (A) = 1
]
,

where Exppra
F,E,X (A) is shown in Figure 3.1.

Dodis et al. [DRS09] show that the 12 optimally secure PGV construc-
tions are preimage aware in the ideal-cipher model. Vice versa, preimage
awareness (for compressing functions) has been shown to imply collision resis-
tance, and help in proving indifferentiability from a random oracle in certain
constructions [DRS09].
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Exppra
F,E,X (A):

(E,E−1)←$ E
X ←$ AE,E−1,Ex

Z ← FE,E−1(X)
return (X 6= V[Z]
∧ Q[Z] = 1)

oracle E(K,X):

Y ← E(K,X)
α← α|(K,X, Y )
return Y

oracle E−1(K,Y ):

X ← E−1(K,Y )
α← α|(K,X, Y )
return X

oracle Ex(Z):

Q[Z]← 1
V[Z]← X (Z,α)
return V[Z]

Figure 3.1: Experiment defining preimage awareness.

Reducibility

In order to define what it means for an idealized cipher to reduce to another,
we begin with a semantics for security games similar to that in [BR06]. We
capture the three security properties above by our notion, but can also extend
the framework to cover a larger class of security games, such as complex multi-
stage games and simulation-based notions. In the simpler case, we will consider
a game between a challenger or a game Game and a sequence A1,A2, . . . of
admissible adversaries (e.g., those which run in polynomial time). When the
game terminates by outputting 1, this is deemed a success for the adversary (in
that instance of the game). To determine the overall success of the adversaries,
we then measure the success probability with respect to threshold t (e.g., 0 for
computational games, or 1

2 for decisional games). We present our formalism
in the concrete setting. However, our definitions can be easily extended to
the asymptotic setting by letting the game, its parameters, and adversaries to
depend on a security parameter.

Definition 3 (Secure E-idealized games). An E-idealized game consists of an
oracle Turing machine Game (also called the challenger) with access to an
idealized cipher E and n adversary oracles, a threshold t ∈ [0, 1], and a set S
of n-tuples of admissible adversaries. The game terminates by outputting a bit.
The advantage of adversaries A1, . . . ,An against Game is defined as

AdvGame
E (A1, . . . ,An) :=

∣∣∣∣Pr
[
GameE,E−1,AE,E−1

1 ,...,AE,E−1
n = 1

]
− t
∣∣∣∣ ,

where the probability is taken over the coins of Game, A1, . . . ,An, and the
choice of the cipher (E,E−1)←$ E. For bounds ε ∈ [0, 1] and T, q ∈ N we say
Game is (q, T, ε)-secure if

∀(A1, . . . ,An) ∈ S : AdvGame
E (A1, . . . ,An) ≤ ε

and Game together with any set of admissible adversaries runs in time at most
T (counting adversary runs as unit cost) and makes at most q queries to the
sample of the idealized cipher, including those of the adversaries.
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For example, the above notion captures everywhere preimage resistance by
having A1 terminate by outputting (Y, st) with no access to the blockcipher,
and AE,E−1

2 (st) return some X; the challenger then outputs 1 if and only if
FE,E−1(X) = Y . Note that in particular, the construction F is usurped, together
with the everywhere preimage experiment, in the general notation Game. We
also note that with the above syntax we can combine multiple games into one
by having a “master” adversary A first send a label to the challenger deciding
which subgame to play and then invoking the corresponding parties and game.
Note also that as in [BF11] we assume that an idealized cipher can be given
as an entirely ideal object, as a non-ideal object through a full description of
an efficient Turing machine given as input to the parties, or a mixture thereof.
Ideal-cipher transformations. A transformation of ideal ciphers is an ora-
cle function T which maps a blockcipher from Block(k, n) to another blockcipher
in Block(k′, n′). Typically, we will only be interested in efficient transforma-
tions i.e., those which can be implemented by efficient oracle Turing machines
in the E-idealized model, written TE,E−1 . Note that the requirement of T being
a function implies that, algorithmically, the oracle Turing machine is deter-
ministic and stateless. We discuss this restriction shortly after the definition.
Below we envision the (single) transformation T to work in different modes
Enc,Dec to provide the corresponding interfaces for a blockcipher (E′,E′−1).
Slightly abusing notation, we simply write T and T−1 for the corresponding
interfaces E′ and E′−1 (instead of TE,E−1

Enc for E′ and TE,E−1

Dec for E′−1). The
transformation is written as

E′(K,M) := TE,E−1(K,M) and E′−1(K,M) := T−1E,E−1
(K,M).

Any transformation T also induces a mapping from Ideal(k, n) to Ideal(k′, n′).
When E is sampled according to E , then T induces an idealized cipher E ′ ∈
Ideal(k′, n′) which we occasionally denote by TE .

We are now ready to define idealized-cipher reducibility.

Definition 4 (Ideal-cipher reducibility). Let Game1 and Game2 be two idealized
games relying on blockciphers in Block(k, n) and Block(k′, n′) respectively. We
say the idealized cipher in Game2 reduces to the idealized cipher in Game1,
if for any E1 ∈ Ideal(k, n) there is a deterministic, stateless, and efficient
transformation T : Block(k, n)→ Block(k′, n′) such that if

∀(A1,1, . . . ,A1,n1) ∈ S1 : AdvGame1
E1

(A1,1, . . . ,A1,n1) ≤ ε1,

whenever Game1 runs in time at most t1 and makes at most q1 queries to the
block cipher sampled according to E1, then setting E2 := TE1, we have that

∀(A2,1, . . . ,A2,n2) ∈ S2 : AdvGame2
E2

(A2,1, . . . ,A2,n2) ≤ ε2,

where Game runs in time at most t2 and makes at most q2 queries to the
blockcipher sampled according to E2. In this case we say the reduction is
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(q1/q2, T, t1/t2, ε1/ε2)-tight, where T is an upper bound on the number of
queries that T places to its oracle per invocation. When k = k′, n = n′, and T
is the identity transformation, we say the reduction is direct; else it is called
free.

Definitional choices. Throughout this chapter, our focus is on reducibility
among blockcipher-based hash functions. In this setting, there are often
no assumptions beyond the idealized cipher being chosen from a certain
distribution. In this case, the strict, strong, and weak reducibility notions
as discussed in [BF11] and later in Chapter 3 all collapse to the one given
above. Of particular interest to us are two types of transformations. First,
free transformations which can be arbitrary, and second the identity/dummy
transformation which does not change the cipher. This latter type of direct
reducibility asks if any idealized cipher making one construction secure makes
the other secure too. The former type, however, apart from appropriately
modifying the syntactical aspects of the blockcipher (such as the key or the
block size), asks if the model for which one primitive is secure can be reduced
to the model for which the other is secure.

As mentioned earlier, the requirement of stateless transformations is neces-
sary. Indeed, if we were to allow stateful transformations, it would be possible
to construct particular contrived transformations that trivialize our notion, in
the sense that some ideal-cipher construction always reduces to another one.
To get a sense of the problem, consider arbitrary constructions A and B which
are secure in the ideal-cipher model. Let T denote the stateful transformation
which ignores its oracles E, E−1 and (efficiently) implements an ideal cipher
via lazy sampling. Since B using T is then clearly secure, construction B
is—as per Definition 4—reducible to construction A, despite the arbitrary
choice of the two constructions. This relies on the statefulness of T in order
to implement the lazy sampling procedure. Thus, in order to rule out such
trivial cases, we insist that transformations be stateless. This may seem overly
restrictive at first glance, but, in fact, is easily justified because blockciphers
are inherently stateless entities.

Relationship with indifferentiability. Ideal-cipher reducibility can be
seen in relation with reducibility of systems in the indifferentiability frame-
work [MRH04]. In this framework one says system U reduces to system V
if there is a deterministic B such that for all cryptosystems C we have that
C(B(V)) is at least as secure as C(U). Viewing C as a security game, indiffer-
entiability reducibility can be seen as oracle reducibility with respect to all
single-stage games simultaneously. In contrast, we are concerned with a set of
fixed games. In fact this restriction is hard to avoid, as the PGV compression
functions themselves do not behave like a random function given access to E
and E−1; see [CDMP05, KM07b]. Also, as demonstrated in [RSS11], the origi-
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1 2 3 4

5 6 7 8

9 10 11 12

Figure 3.2: The 12 optimally secure PGV constructions PGVE
i for i ∈ [12]. A triangle

denotes the location of the key input. When used in an iteration mode, the top input
is a message block and the left input is the chaining value.

nal indifferentiability framework does not cover arbitrary multi-stage security
games well, whereas we can easily cast them in our framework.

3.3 Reducibility among the PGV Functions

We start by recalling the blockcipher-based constructions of hash functions by
Preneel et al. [PGV93, BRSS10]. The PGV compression functions rely on a
blockcipher E : {0, 1}n × {0, 1}n → {0, 1}n, and map {0, 1}2n to {0, 1}n:

PGVE
i : {0, 1}2n → {0, 1}n for E : {0, 1}n × {0, 1}n → {0, 1}n.

There are 64 basic combinations to build such a compression function, of
which 12 were first believed [PGV93] (under category “X” or “FP”) and later
actually proven to be secure [BRSS10] (under category “group-1”). We denote
these secure compression functions by PGV1, . . . ,PGV12 and adopt the s-index
of [BRSS10, Figure 2]; they are depicted in Figure 3.2. It is worthwhile
mentioning that PGV1 is also known as Matyas–Meyer–Oseas (MMO), PGV2
as Miyaguchi–Preneel, and PGV5 as Davies–Meyer (DM). The PGV1 and PGV5
functions can be instantiated with a blockcipher whose key length and message
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length are not equal. The remaining functions, however, do not natively
support this feature but they can be generalized such that they do [Sta09].

For i ∈ [12] and q ≥ 0, the security bounds for uniform E according
to [BRS02, Sta09, BRSS10] are

Advcoll
PGVi,E(q) ≤

q2

2n , Advpre
PGVi,E(q) ≤

2q
2n , and Advepre

PGVi,E(q) ≤
2q
2n .

These bounds also hold when the key length and block length are not equal.
Furthermore, for uniform E , there exist adversaries A, B, and C making q
queries to their E and E−1 oracles in total such that [BRSS10]

Advcoll
PGVi,E(A) ≥ 1

8e
q2 + 1

2n , Advpre
PGVi,E(B) ≥ q + 1

2n+1 ,

and Advepre
PGVi,E(C) ≥

q + 1
2n+1 .

(We introduced the “plus one” terms in order to compactly capture the zero-
query special case.) As we will show in the two following theorems, when it
comes to ideal-cipher reducibility, the 12 secure PGV constructions can be
further partitioned into two subgroups as follows, which we call the PGV1-group
and PGV2-group, respectively.

G1 := {PGV1,PGV4,PGV5,PGV8,PGV9,PGV12}
G2 := {PGV2,PGV3,PGV6,PGV7,PGV10,PGV11}

The PGV1 and PGV2 functions will be representative of their respective
groups.

The following proposition shows that, within a group, the compression
functions are ideal-cipher reducible to each other in a direct and tight way (i.e.,
with the identity transformation and preserving the security bounds). It is
worth pointing out that Preneel et al. [PGV93] already discussed equivalence
classes from an attack perspective. Present work reaffirms these classes and
puts them on a solid theoretical foundation. As noted before, we cannot
hope that any PGV compression function construction is indifferentiable from
random (given access to E and E−1), so we do not cover this property here; we
can, however, include the notion of preimage awareness [DRS09] to the games
which are preserved.

Proposition 1. Any two PGV constructions in G1 (resp., in G2) directly and
(1, 1, 1, 1)-tightly reduce the idealized cipher to each other for the [everywhere]
preimage-resistance, collision-resistance, and preimage-awareness games.

Proof. This is straightforward for [everywhere] preimage resistance and col-
lision resistance. To see this, observe that there is a syntactical one-to-one
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correspondence with respect to the inputs within any two functions in each
group. Relabeling variables immediately turns any collision (or preimage) for
one function into one for the other function. For the sake of concreteness, we
consider the collision-resistance ideal-cipher reducibility from PGVE5 to PGVE1
where for any (E,E−1) sampled according to E we have

PGVE
1 (K,M) := E(K,M)⊕M and PGVE

5 (K,M) := E(M,K)⊕K.

Assume towards contradiction that there is an adversary which outputs a PGVE
5

collision (X,Y ) 6= (X ′, Y ′) for this E. Turn this collision into (Y,X) 6= (Y ′, X ′),
and output it as a PGVE

1 collision. It is clear that

PGVE
1 (Y,X) = E(Y,X)⊕X = E(Y ′, X ′)⊕X ′ = PGVE

1 (Y ′, X ′) ,

where the inner equality holds whenever the alleged PGVE
5 adversary succeeds.

Since this holds for any E the claim also follows in particular for any distribution
E on such blockciphers.

For preimage resistance of the same compression functions, the reduction
would again simply turn a preimage (X,Y ) into (Y,X).

As for preimage awareness, if an adversary A5 against PGVE
5 is able to

break preimage awareness by outputting (X,Y ), we could easily turn this into
an adversary A1 against PGVE

1 by returning (Y,X). Any extractor X1 refuting
a successful attack of A1 could be, vice versa, turned into an extractor X5
against A5 by swapping the components of X1’s outputs.

Note that since we can combine the individual games into one, we can
conclude that any blockcipher making a scheme from one group secure for
all games simultaneously, would also make any other scheme in the group
simultaneously secure. Also, the above equivalence still holds for PGV1 and
PGV5 in case they work with a blockcipher with different key and message
length.

The next theorem separates the two groups with respect to the collision-
resistance and [everywhere] preimage-resistance games.

Theorem 1. No PGV construction in G1 (resp., in G2) directly reduces to any
PGV construction in G2 (resp., in G1) for any of the collision-resistance and
[everywhere] preimage-resistance games.

For collision resistance and preimage resistance we assume the ideal cipher,
whereas for everywhere preimage resistance we only need the minimal property
that there exists some blockcipher making the schemes in one group secure, in
order to achieve the separation.

Proof. Take PGV1 and PGV2 as the representatives of their respective groups.
Since all the constructions directly reduce to each other within their group, it
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suffices to separate these two constructions; by transitivity a reduction between
any other combination would otherwise contradict the fact that PGV1 and
PGV2 have been separated. Recall that

PGVE
1 (K,M) := E(K,M)⊕M and PGVE

2 (K,M) := E(K,M)⊕M ⊕K.

Collision resistance. We first show that the compression functions PGV1
and PGV2 do not reduce to each other with respect to collision resistance. In
order to prove this, take the ideal cipher E (with the uniform distribution),
which is known to make PGV2 secure for collision resistance, and let (K0,M0)
and (K1,M1) be from {0, 1}2n with K0 6= K1. We show how to transform any
blockcipher E in Block(n, n) (the support of E) into a new cipher Ẽ such that
the induced distribution Ẽ on such blockciphers still makes PGV2 secure, but
for which (K0,M0) and (K1,M1) form a trivial collision under PGV1 for any
Ẽ sampled from Ẽ .

Now for a given blockcipher E and arbitrary (component-wise distinct)
points (K0,M0) and (K1,M1), define

C ′1 := E(K0,M0)⊕M0 ⊕M1, M ′1 := E−1(K1, C
′
1), C1 := E(K1,M1),

and let Ẽ be the blockcipher identical to E, apart from changing the function
value for M1 under key K1 to C ′1, and redirecting the former’s preimage M ′1
under key K1 to C1:

Ẽ(K,M) :=


C ′1 if (K,M) = (K1,M1);
C1 if (K,M) = (K1,M

′
1);

E(K,M) otherwise.

Ẽ−1(K,C) :=


M1 if (K,C) = (K1, C

′
1);

M ′1 if (K,C) = (K1, C1);
E−1(K,C) otherwise.

By inspection, Ẽ is again a blockcipher with inverse Ẽ−1. Finding a collision
for PGV1 with respect to any Ẽ chosen from a tweaked distribution as above is
easy since

PGVẼ
1 (K0,M0) = Ẽ(K0,M0)⊕M0 = E(K0,M0)⊕M0 = C ′1 ⊕M1 =

= Ẽ(K1,M1)⊕M1 = PGVẼ
1 (K1,M1).

For the analysis of the collision resistance of PGVẼ
2 where E is ideal, we

recall the prototype PGV proof from [BRSS10]. This proof concentrates on
the probability that an adversary creates its first collision on the ith query and
subsequently uses a union bound to combine these stepwise probabilities. For
this proof all that is needed (to bound the probability of a success at step i) is
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(a) that the ith query corresponds to a single compression function evaluation
that (over the randomness of the query’s answer) is uniformly distributed over
a set of size at least 2n − i, and (b) that the adversary only knows at most
i compression function evaluations prior to making query i. When using Ẽ
instead of a sample E from the ideal cipher, we need to take into account that
we have introduced a dependency among the points (K0,M0), (K1,M1), and
(K1,M

′
1). We do this by giving these three queries for free to the adversary

at the beginning of the collision-finding game. If these three points do not
cause a collision among themselves, then the original proof goes through as
from that moment onwards, (a) Ẽ is identically distributed to the ideal cipher
E and (b) the free queries just resulted in three extra compression function
evaluations.

For the tweaked points, we look at the
(3
2
)

= 3 possible colliding pairs. Let
C0 := E(K0,M0).

1. The first case is:

PGVẼ
2 (K0,M0) = PGVẼ

2 (K1,M1)
⇐⇒ C0 ⊕M0 ⊕K0 = C ′1 ⊕M1 ⊕K1

⇐⇒ K0 = K1,

which happens with probability 0 since K0 6= K1.

2. The second case is:

PGVẼ
2 (K0,M0) = PGVẼ

2 (K1,M
′
1)⇐⇒ C0 ⊕M0 ⊕K0 = C1 ⊕M ′1 ⊕K1.

Adding C1 ⊕K1 to both sides and enciphering with E under K1 we get
that the equation is equivalent to

E(K1, C0 ⊕K0 ⊕ C1 ⊕K1 ⊕M0) = E(K0,M0)⊕M0 ⊕M1.

Since K0 6= K1 it is clear that the probability of equality is 1/2n as the
values of the E on the two sides of the equation are independently and
uniformly distributed.

3. The third case is:

PGVẼ
2 (K1,M1) = PGVẼ

2 (K1,M
′
1)⇐⇒ C ′1 ⊕M1 ⊕K1 = C1 ⊕M ′1 ⊕K1,

which after rearranging as in the previous case becomes equivalent to

E(K1, C0 ⊕ C1 ⊕M0) = E(K0,M0)⊕M0 ⊕M1.

Once again, since K0 6= K1, we have that the probability of a collision is
1/2n.
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This proves that the idealized cipher Ẽ makes PGV2 collision resistant.
For the converse separation, start with the ideal blockcipher E ′, which

makes PGV1 secure. For any E′ in the support of E ′ consider the blockcipher E
with E(K,M) = E′(K,M)⊕K and E−1(K,C) = E′−1(K,C ⊕K). Since

PGVE
2 (K,M) = E(K,M)⊕K ⊕M = E′(K,M)⊕M = PGVE′

1 (K,M)

this distribution E on blockciphers E now makes PGV2 secure. Furthermore,
E itself is again the uniform distribution on all blockciphers. Run the same
transformation from E to Ẽ as above, such that PGVẼ

2 remains secure, whereas
PGVẼ

1 is easy to break. Apply now once more the idea of adding the key to
the cipher’s output and define Ẽ′ through

Ẽ′(K,M) = Ẽ(K,M)⊕K, and Ẽ′−1(K,C) = Ẽ−1(K,C ⊕K),

such that again

PGVẼ′
2 (K,M) = PGVẼ

1 (K,M), and PGVẼ
2 (K,M) = PGVẼ′

1 (K,M).

We conclude that the distribution on blockciphers Ẽ′ now makes PGV1 collision
resistant, but any blockcipher allows to find collisions for PGV2 easily. This
proves the separation in the other direction.

Everywhere preimage resistance. For everywhere preimage resistance it
is convenient to start with an arbitrary (not necessarily ideal) distribution
on blockciphers E which makes PGV1 secure. We tweak every such E to Ẽ by
setting

Ẽ(K,M) :=
{
M ⊕K if K = E(0n, 0n);
E(K,M) otherwise.

Ẽ−1(K,C) :=
{
C ⊕K if K = E(0n, 0n);
E−1(K,C) otherwise.

Obviously Ẽ together with Ẽ−1 constitute a blockcipher.
First observe that we can assume E(0n, 0n) 6= 0n, or else any adversary

pair outputting 0n in the first stage and (0n, 0n) in the second stage would
refute everywhere preimage resistance for PGVE

1 . Hence, the probability that
E(0n, 0n) = 0n must be negligible, and from now on we condition on this event
not happening. We can now show that PGVẼ

2 is not secure. For this, let A1(1n)
output 0n, and let AẼ,Ẽ−1

2 (0n) return (K,M) := (Ẽ(0n, 0n), 0n). Then, since
Ẽ(0n, 0n) = E(0n, 0n) by assumption about E(0n, 0n) 6= 0n, we conclude that

PGVẼ
2 (K,M) = Ẽ(K,M)⊕K ⊕M

= Ẽ(E(0n, 0n), 0n)⊕ Ẽ(0n, 0n)
= (Ẽ(0n, 0n)⊕ 0n)⊕ Ẽ(0n, 0n)
= 0n.
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Hence, the adversary pair always finds an image/preimage pair with a single
query to Ẽ.

Next we show that any pair (A1,A2) against PGV1 for Ẽ can be immediately
turned into a pair against PGV1 for E. Assume that A1(1n) returns some
(Y, st), and that AẼ,Ẽ−1

2 (Y, st) finds (K,M) such that PGVẼ
1 (K,M) = Y . There

are two cases: If K = E(0n, 0n), then letting the second adversary AE,E−1

2 (now
against E) return (0n, 0n) would yield a preimage of Y under PGVE

1 , because
then

Y = PGVẼ
1 (K,M) = M ⊕ E(0n, 0n)⊕M = E(0n, 0n) = PGVE

1 (0n, 0n).

In the other case, i.e., when K 6= E(0n, 0n), it is clear that (K,M) is also a
preimage under PGVE

1 . Hence, either case must be negligible, and PGVẼ
1 must

be secure.
For the converse separation, as in the case of collision resistance, we apply

the technique of adding the key once to the innermost blockcipher, and another
time to the outer blockcipher. This leads to a separating example for PGV2
from PGV1 for the everywhere preimage-resistance game.

Preimage resistance. Finally we treat the case of preimage resistance.
Given a blockcipher E sampled from the uniform distribution, we let MK,0 :=
E−1(K, 0n), CK,0 := E(K, 0n) for each key K, and define a tweaked blockci-
pher Ẽ as follows.

Ẽ(K,M) :=


0n if M = 0n;
CK,0 if M = MK,0;
E(K,M) otherwise.

Ẽ−1(K,C) :=


0n if C = 0n;
MK,0 if C = CK,0;
E−1(K,C) otherwise.

Note that PGVẼ
2 (K, 0n) = 0n⊕0n⊕K = K. Hence, any adversary which on

input Y outputs (Y, 0n) succeeds with probability 1 in the preimage-resistance
game for PGVẼ

2 . It remains to show that PGVẼ
1 is preimage resistant. An

adversary cannot succeed by outputting a pair (K, 0n) since PGVẼ
1 (K, 0n) = 0n,

which would arise as a challenge value with only a negligible probability.
Similarly, the challenge digest will originate from (K,MK,0) for some K with
probability 2−n only. Hence any preimage-resistance adversary must either
attack PGV1 with respect to the original cipher E (which we know to be secure)
or recover a preimage using the second branch of Ẽ, i.e., output a preimage
(K,MK,0) for

PGVẼ
1 (K,MK,0) = CK,0 ⊕MK,0 = E(K, 0n)⊕ E−1(K, 0n)
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for some K. Since E is sampled from the ideal cipher, the two summands
are uniformly and independently distributed for each K (unless K is queried).
Thus, for a given target digest, any attacker will only have a negligible success
probability to recover a preimage of this form.

Applying the transformation which reduces G1 to G2 to the cipher Ẽ we
obtain an idealized cipher under which PGV1 is not preimage resistant but
PGV1 is.

Proposition 2. Any two PGV constructions PGVi and PGVj for i, j ∈ [12]
(1, 1, 1, 1)-tightly reduce the idealized cipher to each other for the [everywhere]
preimage-resistance and collision-resistance games (under free transforma-
tions).

To prove this, we first show that there is a transformation such that there
is an inter-group reduction, i.e., PGV2 ∈ G2 reduces to PGV1 ∈ G1 and vice
versa—indeed, we will use the same transformation for either direction. By
transitivity we then obtain a reduction for any two constructions through
Proposition 1, where we may view the identity transformation as a special case
of an arbitrary one.

Proof. Consider PGV1 and PGV2. We claim that for the transformation defined
through

TE(K,M) := E(K,M)⊕K and T−1E−1
(K,C) := E−1(K,C ⊕K),

the security of PGVT
2

E reduces to PGVE
1 . This is because both compression

functions are identical for any E, implying that the idealized cipher TE reduces
to the idealized cipher E . This can be easily done vice versa, too, for the same
transformation, noting that applying T twice is the identity transformation.
Observe that TE is indeed a permutation for any fixed key K; the statement
now trivially follows.

This concludes the treatment of the relations among the PGV functions.

3.4 Double-Block-Length Hashing and PGV
We now widen our scope to the double-block-length compression function
designs, comparing them to the PGV functions and one to another.

Reducibility from DBL to PGV

We study the relation between three prominent double-block-length hash
function constructions in the literature, namely, Hirose-DM [Hir04, Hir06],
Abreast-DM [LM92, LK11], and Tandem-DM [LM92, LSS11, FGL09a], and the
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Figure 3.3: The three double-block-length compression functions. The hollow circle in
Abreast-DM denotes bitwise complement.

PGV constructions. All the DBL compression functions under consideration
here map 3n-bit inputs to 2n-bit outputs, and rely on a blockcipher with 2n-bit
keys and n-bit block. More precisely, these constructions are of the form

FE : {0, 1}3n → {0, 1}2n where E : {0, 1}2n × {0, 1}n → {0, 1}n.

We denote the Hirose-DM for a constant c ∈ {0, 1}n \ {0n}, the Abreast-
DM, and the Tandem-DM compression functions by HDMc, ADM, and TDM,
respectively. These functions are defined as follows (see Figure 3.3 for pictorial
representations).

HDME
c (A1, A2, A3) := (E(A1|A2, A3)⊕A3,E(A1|A2, A3 ⊕ c)⊕A3 ⊕ c)

ADME(A1, A2, A3) :=
(
E(A2|A3, A1)⊕A1,E(A3|A1, A2)⊕A2

)
TDME(A1, A2, A3) := (E(A2|A3, A1)⊕A1,E(A3|E(A2|A3, A1), A2)⊕A2)

The following proposition shows that collisions (resp., somewhere preimages)
in the double-block-length functions directly lead to collisions (resp., somewhere
preimages) for the double-key versions of PGV1 and PGV5 functions; this shows
that the DBL functions reduce to the PGV functions.

Proposition 3. The idealized ciphers in HDMc, for any c ∈ {0, 1}n \ {0n},
ADM, and TDM compression functions directly and (1, 1, 1, 1)-tightly reduce
to those in the (double-key versions of the) PGV1 and PGV5 functions for the
everywhere preimage-resistance and collision-resistance games.

Proof. We only treat the case of PGV1 as reducibility to PGV5 is proved
similarly. Note that the first component of any of the DBL constructions
is a PGV1 value (up to relabeling of the variables). This means that any
adversary breaking the collision resistance of, say, HDMc can be used to break
the collision resistance of PGV1. A similar argument applies to the everywhere
preimage-resistance game. We take the output of a first-stage adversary which
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returns an image value for HDMc and pass its first component out as the
candidate image point for PGV1. When the second stage of the adversary
outputs a preimage, we also use it as our own guess.

Note that despite the tightness of the reduction, a blockcipher that makes
the schemes PGV1 and PGV5 ideally secure is not guaranteed to make the
double-block-length compression functions secure beyond the implied single-
length security bound.

Curiously, the above argument fails for the preimage-resistance game as we
cannot extend a challenge value for PGV1 to a full challenge value for a DBL
construction. Indeed, we prove in the next theorem that there is no direct
reduction with respect to preimage resistance.

Proposition 4. The idealized cipher in none of the DBL constructions directly
reduces to the idealized cipher in PGV1 (and hence neither to the one in PGV5)
for the (standard) preimage-resistance game.

Direct ideal-cipher reducibility to the other PGV constructions is not
syntactically possible as only the PGV1 and PGV5 constructions can be natively
instantiated with a double-block-length blockcipher. Note that the above
proposition leaves open the (im)possibility of free reductions from DBL to
PGV, which we consider an interesting open problem.

Proof. Let us start with separating HDM1n (we briefly discuss how to extend
the separation to HDMc for other nonzero values of c at the end). Recall that
there is a natural embedding of {0, 1}n−1 in GF(2n−1) where field addition
corresponds to computing exclusive-or, and field multiplication is performed
modulo a fixed irreducible polynomial. For an α ∈ GF(2n−1)\{0, 1}, we define
a distribution on Block(2n, n) by picking a cipher E←$ Block(n/2−1, n/2−1),
ignoring the key, and essentially enciphering either the left or the right half
of the input block, depending on the most significant bit of the input. That
is, we parse the input M as m1|M1|m2|M2, where mi are bits and Mi are of
length n/2− 1, and set

Ẽ(K,m1|M1|m2|M2) :=
{

0|E(0n/2−1,M1)|m2|(αM2) if m1 = 0;
1|E(0n/2−1,M2)|m2|(αM1) otherwise.

Ẽ−1(K, c1|C1|c2|C2) :=
{

0|E−1(0n/2−1, C1)|c2|(α−1C2) if c1 = 0;
1|(α−1C2)|c2|E−1(0n/2−1, C1) otherwise.

It is not too difficult to check that Ẽ and Ẽ−1 as above define a blockcipher.
To see that HDM1n is not preimage resistant with respect to the distribution
on such Ẽ, note that with probability 1/4 in the preimage-resistance game we
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have that m1 = m2 = 0, in which case

HDMẼ
1n(A1, A2, 0|M1|0|M2) =

(
0|(E(0n/2−1,M1)⊕M1)|0|(αM2 ⊕M2),

1|(E(0n/2−1,M2)⊕M1)|1|(αM1 ⊕M2)
)
.

Now given a preimage-resistance challenge value as shown above, we can recover
M2 from the second part of the first component, (α+ 1)M2. Note that here
we use that α 6= 1 and thus α+ 1 6= 0 over the field of characteristic 2. Then
using M2 and the second part of the second component we can also recover
M1. The tuple (0n, 0n, 0|M1|0|M2) is a valid preimage (note that A1 and A2
do not affect the value of the compression function).

It remains to show that PGVẼ
1 for such distributed blockciphers Ẽ is preimage

resistant. Note that

PGVẼ
1 (K,m1|M1|m2|M2) :=

{
0|(E0(M1)⊕M1)|0|(αM2 ⊕M2) if m1 = 0;
0|(E0(M2)⊕M1)|0|(αM1 ⊕M2) otherwise,

where E0(M) is a shorthand for E(0n/2−1,M). For preimage resistance, observe
that the K and m2 inputs and the 0s in the output can be discarded (cf. [Sta08,
Lemma 3]), so for the preimage resistance of PGVẼ

1 we can instead regard the
two functions

FE
0 (M1|M2) := (E(0n/2−1,M1)⊕M1)|(αM2 ⊕M2),

FE
1 (M1|M2) := (E(0n/2−1,M2)⊕M1)|(αM1 ⊕M2).

Using techniques similar to those from [BRSS10, Section 10], one can prove
that for either function the uniform distribution for (M1|M2) together with
the uniform distribution E for E, induce a close to uniform distribution over
the possible challenge digests. Consequently, if both FE

0 and FE
1 are everywhere

preimage resistant, then PGVE
1 is preimage resistant (as the adversary against

PGVE
1 needs to find a preimage of a randomly selected digest under either

FE
0 or FE

1 ). For the preimage resistance of FE
0 it suffices to observe that

M1 7→ E(0n/2−1,M1)⊕M1 is well known to be everywhere preimage resistant
(e.g., [Sta09, Theorem 6]) as appending (αM2⊕M2) does not affect the security
(it is independent of M1). To prove that FE

1 is also preimage resistant, we start
by considering the auxiliary compression function

FE(M) := E(0k,M)⊕ (α−1 ·M) for α 6= 0.

This function is preimage resistant for an ideally distributed E (which follows
from [Sta09, Theorem 6]). We now show that any preimage-resistance adver-
sary A against FE

1 can be used to break the preimage resistance of FE. Given
a challenge value Z for FE, choose Y2 ←$ {0, 1}n/2−1, set Y1 := Z ⊕ Y2, and
run A(0|Y1, 0|αY2). By a simple code expansion, the challenge value (Y1, αY2)
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can be seen as being generated by choosing a random (K,M2) and computing
(E(0k,M2) ⊕ M1, αM1 ⊕ M2) where M1 := α−1M2 ⊕ Y2. Note that M1 is
uniformly distributed and is independent of (K,M2). Hence when A returns a
successful preimage (M1,M2), the second component, M2, would be a valid
preimage for Z.

We briefly discuss how to extend the above argument to HDMc for other
nonzero values of c. To this end, we need to ensure that adding c in the second
component has the same effect of flipping the first bit of the input as above.
We do this by first noting the position, ic, of the most significant nonzero bit
of c. Instead of differentiating the two branches of the cipher based on m1 we
do this by inspecting mic and leak this bit accordingly. The remaining bits
are then used to form what was M1 and M2 before.

We now give an idealized cipher separating the preimage resistance of
ADM from that of PGV1. For any blockcipher in Block(n/2, n/2), define the
function fE(X) := E(0n/2, X) ⊕ X. It is straightforward to show that this
function is one way in the presence of E and E−1 oracles sampled uniformly
from Block(n/2, n/2). With notation as in the previous example, and denoting
the most significant bit of K by K[0], based on fE we define the following
blockcipher.

Ẽ(K11|K12|K21|K22,M1|M2) :=
{

(fE(K12)⊕M1)|αM2 if K11[0] = 0;
(fE(K22)⊕M1)|αM2 if K11[0] = 1.

Ẽ−1(K11|K12|K21|K22, C1|C2) :=
{

(fE(K12)⊕ C1)|α−1C2 if K11[0] = 0;
(fE(K22)⊕ C1)|α−1C2 if K11[0] = 1.

Observe that Ẽ and Ẽ−1 as above define a permutation for each key and hence
constitute a blockcipher. Let us now look at ADMẼ values conditioned on
the event that A21[0] = 0 ∧A31[0] = 1 which occurs with probability 1/4 for
randomly chosen A2 and A3:

ADMẼ(A11|A12, A21|A22, A31|A32) =
(
fE(A22)|(αA12 ⊕A12),

fE(A12)⊕ 1n/2|(αA22 ⊕A22)
)
.

Clearly ADMẼ is not preimage resistant in this case as all the values on
which the compression depends can be read off from the digest value. More
specifically, given such a value in the preimage-resistance game, the point
(0n/2|A12, 0n/2|A22, 0n) is a valid preimage. To see that PGVẼ

1 is preimage
resistant for such blockciphers (over the choice of E) observe that any successful
preimage-resistance adversary can be immediately used to invert fE, which we
have discussed is one way in the ideal-cipher model.
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Finally, it turns out that the above blockcipher also separates the preimage
resistance of TDM from that of PGV1: whenever A21[0] = 0 and A31[0] = 1
(which happens, again, with probability 1/4 in the preimage game) we have
that

TDMẼ(A11|A12, A21|A22, A31|A32) =
(
fE(A22)|(αA12 ⊕A12),

fE(αA12)|(αA22 ⊕A22)
)
,

from which a preimage value can be readily computed since α is public. For
the sake of concreteness, a preimage is given by (0n/2|A12, 0n/2|A22, 0n). The
fact that the distribution of blockciphers Ẽ preserves preimage resistance for
PGV1 has been shown before, concluding the proof.

We next show that under free transformations a double-block-length in-
stantiation of PGV1 reduces to a single-block-length instantiation of PGV1. By
the transitivity of reductions we obtain reducibility of the idealized cipher in
the DBL constructions to that in any of the PGV constructions.

Proposition 5. The idealized cipher in PGV1 instantiated with an ideal-
ized cipher in Ideal(2n, n) (2, 2, 1, 1)-tightly reduces to the one in PGV1 when
instantiated with an idealized cipher in Ideal(n, n) for the everywhere preimage-
resistance and collision-resistance games.

Proof. We define the required transformation as follows.

TE,E−1(K1|K2,M) := E(E(K1,K2)⊕K2,M)

T−1E,E−1
(K1|K2, C) := E−1(E(K1,K2)⊕K2, C)

Note that the above transformed blockcipher, when used in PGV1 with twice
the key length, yields a fixed-length Merkle–Damgård (MD) iteration using a
random initialization vector of PGV1 for cipher E (with single key length):

PGVTE
1 (K1|K2,M) = PGVE

1 (PGVE
1 (K1,K2),M).

As shown in, say [ANPS07], this MD chaining preserves both collision resistance
and everywhere preimage resistance of PGVE

1 (but requires two blockcipher
calls per evaluation). This proves the proposition.

Remark. Although Merkle–Damgård chaining does not in general preserve
the preimage resistance of the underlying compression function, there exist
more sophisticated chaining schemes, such as ROX [ANPS07], which do so. If
such chaining rules are used to compress the keys in the proposition above, we
also obtain reducibility for the preimage-resistance game.
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Separations among the DBL compression functions

We now investigate direct reducibility among the DBL compression functions,
as well as reducibility between PGV1 and DBL functions. We focus on collision
resistance, but similar techniques (for separations) may be applicable to the
other security games. For this game, there are twelve relations to be considered,
three of which have already been settled by Proposition 3. We study the
remaining relations by providing separations among all the possible pairs.
In doing so, we give blockciphers E such that one of the DBL constructions
(and hence by Proposition 3 the PGV1 function, too) admits a trivial collision,
whereas the other two constructions are simultaneously secure.

We start with the HDMc compression function where c 6= 0n. Let E be a
blockcipher. Define a modified blockcipher Ẽ as follows.

Mc := E−1(0n|0n,E(0n|0n, 0n)⊕ c), C0 := E(0n|0n, 0n), Cc := E(0n|0n, c).

Ẽ(K1|K2,M) :=


C0 ⊕ c if (K1|K2,M) = (0n|0n, c);
Cc if (K1|K2,M) = (0n|0n,Mc);
E(K1|K2,M) otherwise.

Ẽ−1(K1|K2, C) :=


c if (K1|K2, C) = (0n|0n, C0 ⊕ c);
Mc if (K1|K2, C) = (0n|0n, Cc);
E−1(K1|K2, C) otherwise.

Note that Ẽ and Ẽ−1 above define a blockcipher and we have c 6= 0n. Hence,

HDMẼ
c (0n, 0n, 0n) = (Ẽ(0n|0n, 0n)⊕ 0n, Ẽ(0n|0n, c)⊕ c)

= (C0, C0 ⊕ c⊕ c)
= (C0, C0),

HDMẼ
c (0n, 0n, c) = (Ẽ(0n|0n, c)⊕ c, Ẽ(0n|0n, 0n)⊕ 0n)

= (C0 ⊕ c⊕ c, C0)
= (C0, C0).

and the pair ((0n, 0n, 0n), (0n, 0n, c)) thus constitutes a non-trivial collision for
HDMẼ

c . However, the next lemma shows that ADM and TDM remain collision
resistant for this cipher.

Lemma 1. Let Ẽ be a blockcipher as above with a distribution according to
(E,E−1)←$ Block(2n, n). Then ADMẼ and TDMẼ are both collision resistant.

Proof. We consider ADM where we first recall the existing proof of collision
resistance in the ideal-cipher model by Lee and Kwon [LK11]. We will argue
that with only minor modifications, their proof goes through also for the
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almost-ideal cipher Ẽ. The original proof relies on the observation that queries
to the blockcipher can be grouped into cycles by taking into account how they
can be used to evaluate the ADM compression function. Suppose an adversary
wants to evaluate ADME(A1, A2, A3). This requires the queries E(A2|A3, A1)
and E(A3|A1, A2) to be made. Here the second query is intended for the
evaluation of the lower half of Fig. 3.3(b), but it could also be used in the
upper half, as part of the evaluation of ADME(A2, A3, A1). In that case, the
lower-half query would be E(A1|A2, A3). Now this query could also be used
in the upper half, leading to lower-half query E(A2|A3, A1). It might seem
that this could go on for a while, but after E(A3|A1, A2) and E(A1|A2, A3), the
next query in this sequence is E(A2|A3, A1) which we already saw at the very
beginning. Thus after at most six steps the cycle is complete; moreover, when
distinct, the six blockcipher queries within a cycle uniquely determine six ADM
compression function evaluation and they are not used for any other ADM
evaluations. This observation is used in the proof by limiting a collision-finding
adversary to querying full cycles only: whenever he makes a query, he will
get the remaining queries in the cycle for free. For this modified adversary,
Lee and Kwon subsequently bound both the probability of finding a collision
within a single cycle and the probability of finding a collision between cycles.

For the analysis of the collision resistance of ADMẼ (where E is ideal)
we need to take into account possible interdependencies among (0n|0n, 0n),
(0n|0n, c), or (0n|0n,Mc). As in our modified PGV proof of Proposition 1, we
will give these three queries for free to the adversary, but in line with the
Lee–Kwon proof, we will then have to give the full cycles of these points for
free as well. For concreteness, these cycles are of the form

{(0n|0n, x), (0n|x, 1n), (x|1n, 1n), (1n|1n, x), (1n|x, 0n), (x|0n, 0n)}

where x ∈ {0n, c,Mc}. It is not always the case that the three choices for x
lead to distinct cycles, but this is not an issue. Once we have established that
these initial free queries do not cause a collision, the Lee–Kwon proof kicks in
(where the free cycles only affect the number of queries made so far).

To ease bounding the probability of a collision due to the free cycles, we
will give the corresponding queries for free in a particular order, starting with
Ẽ(0n|0n, 0n) and Ẽ(0n|0n, 1n). Potentially both these points are affected by
our tweaking (if 1n ∈ {c,Mc}), but these two queries only lead to a single
compression function evaluation, which is insufficient to find a collision. For
the remaining four queries in this cycle it is easy to check that the key will
be distinct from 0n|0n, so the outcomes will be as for the ideal cipher. When
made in order, the third query leads to one additional compression function
evaluation; the probability (over the randomness of the answer of the third
query) that this is the same as the already known ADM(0n, 0n, 0n) is 2−n. The
probability the fourth query leads to a success is at most 2

2n (as there are now
two targets to aim for and the key is fresh), the fifth query at most 3

2n−1 (as
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the key has been used once before) and the sixth query at most 2·4
2n (as it adds

two compression function evaluations). For the second cycle, first give query
Ẽ(0n|0n, c) for free (if c = 1n, move straight to the next cycle). This query on
its own cannot add a compression function evaluation, thus it cannot lead to a
collision. The remaining queries in the cycle all use non-(0n|0n) keys so with
similar arguments as for the first cycle, the probability of creating a collision
is bounded by 6

2n ,
7

2n ,
8

2n−2 ,
9

2n , and
20
2n respectively. For the third cycle, start

with Ẽ(0n|0n,Mc) (if Mc ∈ {1n, c} this query has already been made at a point
where it could not have caused a collision and we are already done). Again,
as single query in a cycle it cannot lead to a collision; and all the remaining
queries in the cycles each have probability at most 32

2n of creating a collision.
Taking a union bound leads to a probability of at most 150

2n−2 of the free cycles
leading to a collision in ADMẼ, which is negligible. This concludes the proof
that ADMẼ is collision resistant.

For the analysis of TDMẼ we recall the proof by Lee et al. [LSS11]. In
fact, they give two proofs: a short, elegant, and tight one and a second, more
tedious and less tight one (in the full version only). As we are not interested
in tightness at this point, we will use the second proof as our starting point,
as it is easier to adapt for our purposes (in particular, it does not modify
the adversary). The proof introduces various auxiliary events that bound the
number of certain “bad” configurations, and proceeds by showing that (a) the
probability of a collision being found when these auxiliary events do not occur
is small, and (b) the probability of these auxiliary events occurring is small.

When we move from the ideal cipher to Ẽ, we will give the three queries
for which we created an interdependency for free to the adversary. This can
have any of three effects: (a) it increases the probability of a collision when the
“bad” events do not occur; (b) it increases the probability of the “bad” events;
or (c) it directly leads to a collision. By inspection, it can be seen that even
in the worst case, the three free queries can only lead to a fixed number of
additional bad configurations. Thus by changing the bound on the number of
bad configurations, this case is taken care of. For (a) the probability increases
slightly due to the changed bound on the bad events, but otherwise nothing of
note changes. This leaves the investigation of (c). However, it is impossible
that just the queries (0n|0n, 0n), (0n|0n, c), and (0n|0n,Mc) already lead to a
collision, as jointly they determine at most one full TDM compression function
evaluation. For neither (0n|0n, c) nor for (0n|0n,Mc) it is possible to occur on
the lower half of Fig.3.3(c) (since the corresponding upper-part query would
have a key distinct from 0n|0n as both c 6= 0 andMc 6= 0). Moreover, (0n|0n, 0n)
can occur on the lower half, but it would only match with Ẽ−1(0n|0n, 0n). This
could correspond to either of the free three queries (with very low probability),
but never to several. Thus with some modifications (affecting tightness), the
full Lee et al. proof goes through also for TDMẼ.
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Theorem 2. Let c ∈ {0, 1}n \ {0n}. Then among the compression functions
HDMc, ADM, and TDM neither one directly reduces the idealized cipher in
either one of the other two functions for the collision-resistance game.

Proof. Let us start by separating Abreast-DM from the other two DBL com-
pression functions. For a blockcipher E, define the modified blockcipher Ẽ as
follows.

M1 := E−1(1n|0n,E(0n|1n, 0n)⊕ 1n), C0 := E(0n|1n, 0n),

C1 := E(1n|0n, 1n).

Ẽ(K1|K2,M) :=


C0 ⊕ 1n if (K1|K2,M) = (1n|0n, 1n);
C1 if (K1|K2,M) = (1n|0n,M1);
E(K1|K2,M) otherwise.

Ẽ−1(K1|K2, C) :=


1n if (K1|K2, C) = (1n|0n, C0 ⊕ 1n);
M1 if (K1|K2, C) = (1n|0n, C1);
E−1(K1|K2, C) otherwise.

Note that Ẽ and Ẽ−1 as above define a blockcipher. We have

ADMẼ(0n, 0n, 1n) = (Ẽ(0n|1n, 0n)⊕ 0n, Ẽ(1n|0n, 1n)⊕ 0n) = (C0, C0 ⊕ 1n),

ADMẼ(1n, 1n, 0n) = (Ẽ(1n|0n, 1n)⊕ 1n, Ẽ(0n|1n, 0n)⊕ 1n)
= (C0 ⊕ 1n ⊕ 1n, C0 ⊕ 1n) = (C0, C0 ⊕ 1n).

Hence the pair ((0n, 0n, 1n), (1n, 1n, 0n)) constitutes a collision for ADM with
respect to Ẽ. Using a case analysis as in Lemma 1, it is possible to prove that
for Ẽ a blockcipher as above, with (E,E−1)←$ Block(2n, n), the TDMẼ and
HDMẼ

1n compression functions are both collision resistant.

We now turn to Tandem-DM. Let E be a blockcipher. For this separation
it is easier to derive the separation by tweaking the cipher at two points. This
is due to the nested call that the TDM compression function places to E. Set

M0 := E−1(0n|0n, 0n), M1 := E−1(1n|1n, 1n), C0 := E(0n|0n, 0n),

and C1 := E(1n|1n, 1n).
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B

T
R

A

DBL

E
Figure 3.4: The proof of Theorem 3 is
essentially a meta reduction (A) simu-
lating an adversary B for the reduction
R. Queries by the meta reduction to E
are transformed via T and possibly pro-
grammed by the reduction R.

Now define a modified blockcipher Ẽ as follows.

Ẽ(K1|K2,M) :=



0n if (K1|K2,M) = (0n|0n, 0n);
1n if (K1|K2,M) = (1n|1n, 1n);
C0 if (K1|K2,M) = (0n|0n,M0);
C1 if (K1|K2,M) = (1n|1n,M1);
E(K1|K2,M) otherwise.

Ẽ−1(K1|K2, C) :=



0n if (K1|K2, C) = (0n|0n, 0n);
1n if (K1|K2, C) = (1n|1n, 1n);
M0 if (K1|K2, C) = (0n|0n, C0);
M1 if (K1|K2, C) = (1n|1n, C1);
E−1(K1|K2, C) otherwise.

Note that Ẽ and Ẽ−1 as above define a blockcipher. We have

TDMẼ(0n, 0n, 0n) = (Ẽ(0n|0n, 0n)⊕ 0n, Ẽ(0n|0n, 0n)⊕ 0n)
= (0n ⊕ 0n, 0n ⊕ 0n) = (0n, 0n),

TDMẼ(1n, 1n, 1n) = (Ẽ(1n|1n, 1n)⊕ 1n, Ẽ(1n|1n, 1n)⊕ 1n)
= (1n ⊕ 1n, 1n ⊕ 1n) = (0n, 0n).

Hence the pair ((0n, 0n, 0n), (1n, 1n, 1n)) constitutes a collision for TDM with
respect to Ẽ. Using a case analysis as in Lemma 1, it is possible to prove that
for Ẽ a blockcipher as above, with (E,E−1)←$ Block(2n, n), the HDMẼ

1n and
ADMẼ compression functions are both collision resistant.

As a corollary of the above results we get that there is no direct reduction
from PGV to any of the DBL compression functions: otherwise we also obtain
direct reducibility to any other DBL compression function via Theorem 3,
which we have shown to be impossible in the above theorem. In the next
section we will extend this irreducibility result to free reductions.

Irreducibility of PGV to DBL

We now turn our attention to the converse of Propositions 3 and 5: can one
convert any idealized cipher which makes a DBL construction secure to one
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which makes a PGV construction secure? We show strong evidence towards
the impossibility of such a reduction. To this end, we restrict the class of
reductions under the construction to black-box ones [RTV04]. Such a reduction
is a pair of oracle Turing machines (T,R). Both machines have access to a
blockcipher, T is a transformation which provides an idealized cipher, and
R is a reduction which given oracle access to an algorithm B breaking the
security of a PGV construction when instantiated with TE, breaks the security
of a DBL construction with respect to E (for random E). As it will become
apparent from the proof of the theorem, the type of reductions that we actually
rule out allow both the transformation and the reduction to depend on the
blockcipher and hence, in the terminology of [RTV04], the class of reductions
that we rule out lies somewhere in between fully-black-box and ∀∃semi-black-
box reductions. More concisely, this class is captured as an NBN reduction
in the CAP taxonomy of Chapter 5. Jumping ahead, the meaning is that the
Construction may make non-black-box use of primitive, and that the reduction
makes black-box use of the Adversary resp. non-black-box use of the Primitive.

We make two further simplifications on the structure of the reduction.
First we assume that R queries its break oracle B once. We call this a
single-query reduction. Second, we require the reduction to succeed with a
constant probability whenever B is successful. Now, the intuition behind the
impossibility of the existence of such a reduction follows that for lower bounds
on the output size of hash combiners [Pie08]. The underlying idea is that the
collision-resistance security of any of the DBL constructions is beyond that of
the PGV constructions. More precisely, around Θ(2n) queries are needed to
break the collision resistance of any of the DBL constructions with noticeable
probability, whereas this bound is only Θ(2n/2) for the PGV constructions.
To derive a contradiction, we may simulate the break algorithm B for the
reduction with only Θ(2n/2) queries, and the reduction will translate this
collision efficiently to a DBL construction collision, which contradicts the Θ(2n)
collision-resistance bound.

We are now ready to state our irreducibility theorem. Since we are dealing
with an impossibility result, for the sake of clarity of the presentation we
present the theorem in asymptotic language.

Theorem 3. There is no single-query fully-black-box ideal-cipher reduction
from any of the PGV constructions to any of the DBL constructions for
the collision-resistance and [everywhere] preimage-resistance games as long
as the reduction is tight: when the number of queries, run times, and suc-
cess probabilities are parametrized by a security parameter, the reduction is
(O(1),O(1),O(1),O(1))-tight.

Let us first recall the precise concrete security bounds for the DBL construc-
tions. We set N := 2n and E to be the uniform distribution on Block(2n, n)
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throughout. The bounds for Hirose-DM are

Advcoll
HDMc,E(q) ≤

2q2

(N − 2q)2 + 2q
N − 2q ,

Advpre
HDMc,E(q) ≤

8q
N2 + 8q

N(N − 2) , Advepre
HDM,E(q) ≤

8q
N2 + 8q

N(N − 2) ,

where the collision-resistance bound holds for 2q < N and is from [FGL09b],
and the [everywhere] preimage-resistance bounds are from [AFK+11] and are
valid for any number of queries.

For Abreast-DM, when q < N/6, we have [LK11]

Advcoll
ADM,E(q) ≤

q

(N − 6q) + 18q2

(N − 6q)2 ,

Advpre
ADM,E(q) ≤

6q
(N − 6q)2 , Advepre

ADM,E(q) ≤
6q

(N − 6q)2 .

Finally, for Tandem-DM we have for any 1 ≤ α ≤ 2q < N

Advcoll
TDM,E(q) ≤ 2N

( 2eq
α(N − 2q)

)α
+ 4qα
N − 2q + 4q

N − 2q ;

for any 1 ≤ α ≤ q < N

Advpre
TDM,E(q) ≤

16α
N

+ 8q
N2(N − 2) + 2

( 2eq
αN

)α
+ 4q
αN

+ q

N2(N − q) ;

for any 1 ≤ α ≤ q < N

Advepre
TDM,E(q) ≤

16α
N

+ 8q
N2(N − 2) + 2

( 2eq
αN

)α
+ 4q
αN

+ q

N2(N − q) + 1
N

;

where the collision-resistance bound is from [LSS11], and the [everywhere]
preimage-resistance bound is taken from [AFK+11].

Proof. We only need to consider the reducibility of one of the PGV construc-
tions as they reduce to each other via free transformations by Propositions 1
and 2.

Collision resistance. We start by treating the collision-resistance game.
Let DBLE be a DBL construction with (E,E−1) sampled from the ideal cipher
E . Suppose we have a fully-black-box reduction (T,R) where R succeeds in
outputting a collision for DBLE with constant probability εcoll whenever it is
provided with a collision for PGVTE

1 from B. From R we construct an algorithm
A which runs the reduction, simulates B, and breaks the collision resistance of
DBLE with a probability exceeding its best security bound. This leads to a
contradiction if the number of queries that A makes is within the range for
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which the bound applies. We show this is indeed the case as long as R does
not place “too many” queries.

We derive A by letting it simulate a PGV collision-finder B for the reduction
as follows. The reduction has access to blockcipher oracles E,E−1 against which
A also plays, but the reduction may nonetheless decide to provide T and B
with simulated oracles Ẽ, Ẽ−1. Hence, we consider an adversary AE,E−1 against
DBLE which runs

RBTẼ,Ẽ−1
,T−1Ẽ,Ẽ−1

,E,E−1

and answers R’s queries to E and E−1 using its own oracles. The reduction’s
single query to the (black-box) adversarial interface B is answered as follows.
A computes qA values of PGV1 (for a qA to be determined later on) with
respect to TẼ,Ẽ−1 . To this end, A needs to run T and answer its blockcipher
queries. Note that the reduction R may be programming the blockcipher and
A cannot simply answer T’s queries by forwarding them to its own oracles.
Algorithm A handles these queries through R. Figure 3.4 summarizes this
setup schematically.

Assuming the reduction places at most qE queries to E or E−1 for each
blockcipher query of T, and that T places at most qT queries to its oracles for
each evaluation, we get that A makes a total of at most qE · qT · qA queries to
E or E−1 at this stage. Once the qA values are computed, if A finds a collision,
it returns it. Else it returns a pair of random distinct points. Algorithm
A resumes R as before, and terminates by outputting whatever R outputs.
Assuming that R places at most qR queries to E or E−1 (in addition to those
for handling T’s queries), we have that algorithm A makes a total of at most
qTot := qR + qE · qT · qA queries to E or E−1 during its run.

Using the results of Bellare and Kohno that the lower bound for the generic
on the collision resistance of a compression function can only increase if the
function is not “balanced” [BK04], we know that for any given blockcipher
E′, the lower bound on the success probability of the attack on the collision
resistance of PGVE′

1 (as given in Section 3.3) applies. Hence independently of
the specification of T we have

Advcoll
DBL,E(qTot) ≥Advcoll

DBL,E(A)

= Pr
[
A finds a DBLE collision

]
≥Pr

[
R finds a DBLE coll.

∣∣∣∣A finds a PGVTE,E−1

1 coll.
]
·

Pr
[
A finds a PGVTE,E−1

1 coll.
]

≥εcoll ·
1
8e
q2
A + 1
N

.

Let us now consider the above inequality for Hirose-DM. In order to simplify
the analysis we use the simpler 6q/N upper bound for the collision-resistance
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advantage when q ≤ N/4. Setting ε := εcoll/(6 · 8e), we get

ε · q
2
A + 1
N

≤ qR + qE · qT · qA
N

,

which implies

qA ≤
1
2ε

(
qEqT +

√
q2

Eq
2
T + 4εqR − 4ε2

)
≤ 1
ε

(qEqT +√εqR) .

We obtain the desired contradiction if qA can be chosen so that it is larger
than the upper bound given above while ensuring that the total number of
queries falls within the range for which the collision-resistance bound holds,
i.e., when qTot ≤ N/4. In order to show that these constraints can be met, we
need to have that

1
ε

(qEqT +√εqR) + 1 ≤ qA ≤
N/4− qR
qEqT

.

This is the case if
q4 + q2√2εq + εq2 + εq ≤ εN/4,

where q := max{qR, qE, qT}. Whenever q ≤ c · 4√εcollN , for a constant c ≈ 6.75,
one can always pick a qA such that it meets the above constraints. Hence
reductions satisfying this inequality for q (e.g., those which are tight) are ruled
out.

The collision-resistance irreducibility proofs for Abreast-DM and Tandem-
DM are similar to that for Hirose-DM. The main difference is that we arrive
at different constraints for qA.

For Abreast-DM, we may simplify the collision-resistance bound to 8q/N
when q ≤ N/12. Setting ε := εcoll/(8 · 8e) we get

ε · q
2
A + 1
N

≤ qR + qE · qT · qA
N

.

This inequality is identical to that derived for Hirose-DM (except that the
constant ε has a different value), and the rest of the analysis follows that for
Hirose-DM.

For Tandem-DM we set α = 3. This ensures that the collision-resistance
bound grows more slowly than q2/N . (Note that this is not the case when
α ≤ 2.) With this choice of α (and noting that e < 3) we obtain the simpler
bound

Advcoll
TDM,E(q) ≤

16Nq3

(N − 2q)3 + 16q
N − 2q ≤

128q3

N2 + 32q
N
≤ 40q

N
,

where the penultimate and final inequalities holds for q ≤ N/4 and q ≤
√
N/4

respectively. Setting ε := εcoll/(40 · 8e) we get

ε · q
2
A + 1
N

≤ qR + qE · qT · qA
N

.
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Continuing with the analysis as in Hirose-DM we finally arrive at

q4 + q2√2εq + εq2 + εq ≤ ε
√
N/4,

where q := max{qR, qE, qT} as before. Therefore reductions for which q ≤
c · 8
√
ε2collN , for some constant c, are ruled out.

[Everywhere] preimage resistance. The intuition behind the proofs for
the [everywhere] preimage-resistance games for HDM, ADM, and TDM are as in
the collision-resistance games. The proof will utilize theorems analogous to that
of Bellare and Kohno [BK04] for the [everywhere] preimage-resistance game.
Algorithm A in the analysis is modified to output a random domain point if it
does not find a preimage among its qA queries. Therefore, the lower bound
corresponding to the success probability of A against PGV1 for the [everywhere]
preimage-resistance game, independently of T, is εpre(qA + 1)/(2N). We now
treat each DBL compression function.

For Hirose-DM we use the simplified 32q/N2 bound for [everywhere] preim-
age resistance when N ≥ 3. (This can be derived from the more precise bound
given in Section 3.4.) Setting ε := εpre/(2 · 32) we get

ε · qA + 1
N

≤ qR + qE · qT · qA
N2 .

It is enough to consider this inequality for qA = 0. In this case we get that
qR ≥ εN , and since εpre (and hence ε) is a constant, the reduction must be
placing a large number of queries, and cannot be tight. The analysis for the
everywhere preimage-resistance game is identical.

For Abreast-DM we simplify the [everywhere] preimage-resistance bound
to 24q/N2 for q ≤ N/12. Setting ε := εpre/(2 · 24) we get

ε · qA + 1
N

≤ qR + qE · qT · qA
N2 .

Once again, for qA = 0 we must have that qR ≥ εN , and the reduction cannot
be tight. Everywhere preimage resistance is treated identically.

For Tandem-DM we treat the everywhere preimage-resistance game as the
advantage bound for this game is higher than that for the preimage-resistance
advantage by 1/N . We set α = 2 +√q so that the advantage bound grows
more slowly than q/N . (Note that a constant value for α is not sufficient to
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ensure this condition.) We have

Advepre
TDM,E(q) ≤

16(2 +√q) + 1
N

+ 4q
N(2 +√q)

+ 2
(

62q2

N2(2 +√q)2

)(
6q

N(2 +√q)

)√q
+ q

N2(N − q) + 8q
N2(N − 2)

≤
20√q
N

+ 72q
N2 + 2q

N3 + 24q
N3 + 33

N
for q ≤ N/2 and N ≥ 3

≤
151√q
N

for q ≥ 3.

Setting ε := εpre/(2 · 151) we finally arrive at

ε · qA + 1
N

≤
√
qR + qE · qT · qA

N
, which implies qA ≤

1
ε2

(qEqT + ε
√
qR).

The rest of the analysis is similar to Hirose-DM: applying the bound on the
total number of queries for which the above inequality holds we obtain

q4 + εq2√q + ε2q2 + ε2q ≤ ε2N/2,

where q := max{qR, qE, qT} as before. As a result reductions for which q ≤
c · 4
√
ε2preN , for some constant c, are ruled out.

Finally, we identify two open questions in the vicinity of Theorem 3. First,
it is conceivable that the techniques of [Pie08] can be leveraged to derive a
more general theorem which rules out reductions that call the break oracle
multiple times. Furthermore, one might also be able to extended the result
to arbitrary games for two given constructions, as long as a lower bound on
the success probability of an attack on the security of the first construction is
noticeably higher than an upper bound on the security of the second.

3.5 Conclusions and Open Problems
We summarize our reducibility results in Figure 3.5 and refer to the caption
for details. One important observation from these results is that we do not
have one single “Y” column, i.e., a compression function which reduces to all
of the other ones—or, equivalently, a compression function which is secure if
any of the others is secure. This would be a clear winner in the sense that it is
the safest choice for practice.

For the “n” entries of Table 3.5(b) we can show that there is a separation for
a large class of potential transformation functions. More specifically, we show
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G1 G2 TDM HDMc ADM

G1
Y
1
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1

Y
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Y
3

Y
3

G2
N
1

Y
1 – – –

TDM N
2 – Y N

2
N
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N
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(a) Results for the identity transforma-
tion.

G1 G2 TDM HDMc ADM

G1
Y
→

Y
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Y
→

Y
→

Y
→

G2
Y
2

Y
→

Y
?

Y
?

Y
?

TDM N
3

N
3 Y n

2
n
2

HDMc
N
3

N
3

n
2 Y n

2

ADM N
3

N
3

n
2

n
2 Y

(b) Results for arbitrary transforma-
tions.

Figure 3.5: Summary of our reducibility results for collision resistance. A “Y” or “N”
in a cell means that any cipher which makes the compression function corresponding
to the row collision-resistant also makes the compression function corresponding to
the column collision-resistant. A “–” in direct reductions indicates a syntax mismatch.
The number below an entry indicates the theorem/proposition supporting the claim.
An arrow “→” means that the result is implied by the left table. Reductions on the
diagonal of TDM, HDMc, and ADM trivially follow by self-reductions. Note that for
arbitrary transformations each cell might be using different transformations. The star
symbol “?” denotes reducibility by transitivity. An “n” is a separation for a restricted
class of transformations; see Section 3.5.

that there is no surjective transformation T to reduce, say, ADM to HDM1n ,
as long as the transformation also preserves HDM-security “backwards.” Here,
surjectivity means that TE varies over all possible blockciphers if E runs through
all blockciphers, and backward security preservation means that E is secure
for HDM if TE is. Transformations which are covered by this include, for
example, those of the form TE

π1,π2(K1|K2,M) = π2(E(K1|K2, π1(M))) for fixed
involutions π1, π2 over {0, 1}n, or more generally, any transformation which is
its own inverse (over Block(2n, n)). An example of a surjective transformation
which is not backward secure for PGV1 is TE(K,M) = E(K,M)⊕K, because
it maps PGV1 for TE to PGV2 for E, and we know that there are idealized
ciphers making PGV2 secure but PGV1 insecure.

The argument is as follows. Assume that there exists such a T. Then for
any blockcipher E which makes HDM secure, the blockcipher TE makes ADM
secure. However, we also know that there is a blockcipher E? such that E?
gives rise to a collision-resistant HDME?

1n but renders ADME? collision tractable
(see Theorem 2). Now define E to be any blockcipher in the preimage of E?
under T (such an E exists as T is surjective). The transformation now maps
E to E?, which means that it fails to provide security for ADM. Furthermore,
E makes HDME

1n collision resistant by assumption about backward security.
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This, however, contradicts the requirement of reducibility from ADM to HDM,
because E makes HDM secure but TE is insecure for ADM.

Open problems. Recall that we showed that one can transform a good
blockcipher E (or rather distribution E) for the PGV1-group into a good one
TE for the PGV2-group. We also presented a transformation in the opposite
direction. Ideally, though, one would be interested in a single transformation
T which, given E making a PGV construction secure, turns it into TE which
simultaneously makes both the PGV1-group and the PGV2-group secure. Such
a transformation would be of interest because incorporating it into the compres-
sion function would result in a construction that relies on a weaker assumption
than either just PGV1 or PGV2. Consequently, it would provide a handle to
strengthen existing schemes (in a provable way). Note that such a result would
not contradict the separation of direct reducibility between the PGV1-group
and the PGV2-group, because simultaneous security looks for a (transformed)
cipher in the intersection of good (distributions over) blockciphers for both
groups. This intersection is clearly non-empty because it contains the ideal
cipher; the question to address here is how hard it is to hit a distribution when
starting with the minimal security assumption that (a potentially non-ideal)
E is good for at least one PGV construction. We remark our technique of
separating the DBL constructions from PGV1 does not seem to apply here, as
the simultaneous security bound for PGV1 and PGV2 is Θ(q2/2n). However,
surjective, backward-secure transformations are still ruled out according to the
same argument as in the HDM vs. ADM case.

Another direction of research left open here is the existence of reductions
among two compression functions for different games. For example, one might
ask whether the collision resistance of one construction for a blockcipher gives
preimage resistance in another (or perhaps the same) construction with the
same cipher. In particular, using Simon’s result [Sim98] one might be able
to demonstrate the impossibility of reducing collision resistance to preimage
resistance for any of the PGV constructions.

Finally, let us emphasize that all results in this work apply directly to
compression functions. Needless to say, in practice compression functions are
iterated in order to hash arbitrary lengths of data. This could extend the set
of E that provide security, potentially changing the scope for transformations
between constructions. We leave the question of the existence of reductions
among iterated hash functions as an interesting open problem.





Chapter 4
Random-Oracle Reducibility

In this chapter, we apply our idealized-model-reduction approach to the case
of the random-oracle model. We demonstrate how to use this technique to
argue that one scheme is strictly better than another scheme even though
both schemes rely on the random oracle to an unknown extent. Unlike in the
previous chapter, we focus here more carefully on the security assumptions
involved in either scheme.

After an informal general discussion in Section 4.1, we define several flavors
of random-oracle reducibility in Section 4.2. We relate these reducibility
notions in Section 4.3 and establish a hierarchy amongst them. Our primary
application example appears in Section 4.4, where we reduce the twin ElGamal
encryption scheme to the regular ElGamal encryption scheme, showing that the
former scheme is indeed superior. In Section 4.5 we present further reducibility
results concerning various signature schemes in the random-oracle model.

This work appeared at CRYPTO 2011 [BF11].

4.1 Introduction
Suppose you have a cryptographic scheme A which can be shown to be secure
in the random-oracle model [BR93] under some assumption A, say, the RSA
assumption. Assume furthermore that someone presents to you a scheme B
for the same purpose which is also secure in the random-oracle model, but now
under the potentially weaker assumption B like factoring. Clearly, if it was not
for the random oracle, and scheme B would also improve over A in other relevant
aspects like efficiency, then scheme B should be preferred. Unfortunately, the
random-oracle model introduces some undesirable uncertainty when simply
following the strategy of picking the scheme with the weaker assumption.

Formally, proofs in the random-oracle model (ROM) all rely on equally-
powerful random hash functions, but very often the exact requirements for the
hash functions to conduct a security proof for a scheme remain unclear. This is
all the more true since the random oracle in some schemes is uninstantiable in
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the sense that no efficient hash function can securely replace the random oracle
[CGH98]. For our example of schemes A and B above this means that scheme
B may rely on a weaker assumption B, but the actual requirements on the hash
function may be much stronger than the ones for A. In the extreme, the hash
function in scheme B may be uninstantiable, whereas the hash function for
A may rely on a very mild cryptographic assumption like collision resistance
(albeit no proof has been found for this so far).

A natural approach to overcome the problem would be to determine the
exact requirements on the hash function and to show that scheme B also relies
on weaker assumptions for the hash function than scheme A. However, pinning
down these properties of random oracles is often tedious and does not yield the
desired result, especially since one would also need to show that the properties
are necessary. One example is the hash function properties for OAEP, where
Boldyreva and Fischlin [BF05, BF06] and later Kiltz et al. [KOS10] gave
necessary and, for much weaker security notions than IND-CCA, sufficient
conditions on the hash function (in combination with further assumption
about the underlying trapdoor permutation). None of these results, however,
shows the desired kind of strong security. To complement these results, Kiltz
and Pietrzak [KP09] claimed that for arbitrary trapdoor permutations the
hash function in OAEP cannot be instantiated securely to derive IND-CCA
security. The latter result is not known to be applicable to specific trapdoor
permutations like RSA, though.

Yet another approach by Bellare, Hoang, and Keelveedhi [BHK13] sug-
gests an additional abstraction layer called universal computational extractors
(UCEs). Their idea is essentially to introduce standard-model assumptions
that suffice to construct various schemes. In principal, one could use this
technique to compare two schemes: whenever a single UCE-type assumption
makes both schemes simultaneously secure, any hash function satisfying this
assumption will also provide security for both schemes. However, it may still
be that one of the two schemes actually only requires a milder assumption.
Conversely, a UCE assumption that specifically targets one construction, the
approach taken in newer versions of [BHK13], is very close to determining the
exact requirements on the hash function—which one could have done in the
first place. Arguably the most interesting case occurs when two UCE-type
assumptions for two corresponding schemes form a strict subset relation and
the assumptions are respectively both sufficient and necessary. There, one
can make the desired assertion that one scheme requires less power than the
other one with respect to the random oracle. It is also noteworthy that there
is currently only one actual standard-model UCE instantiation (a variant of
correlated-input hashing; [BM14]) of the applications put forward in [BHK13],
albeit under very strong assumptions.

Random-oracle reducibility. The strategy we suggest here is based on
the classical reductionist approach to relate cryptographic assumptions: show
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that any hash function H, ranging from efficient instantiations to random
oracles, which makes scheme A secure under assumptions A also makes scheme
B secure under assumptions B. We saw the usefulness of this approach earlier
in Chapter 3 when we applied it to the ideal-cipher model. Since we compared
very similar constructions there, were able to show direct reducibility in some
cases. Technically, this seems to be too optimistic for hash functions in different
schemes, because they often cannot be used unchanged but rely on different
domains, ranges, etc. We thus allow again for a “structural” transformation
TH of H for scheme B, possibly depending on the specific hash function. There
are three possibilities to relate the hash functions in the schemes:

Definition 5 (Random-oracle reducibility, informally). Let A and B be some
sets of assumptions. A random oracle in scheme B strictly resp. strongly
resp. weakly reduces to the random oracle in scheme A if for every hash
function H there exists a transformation T such that

(strictly)
AH secure under A =⇒ scheme BTH secure under B,

(strongly)

AH secure under A =⇒
{

scheme BTH secure under A ∪ B
and BTH′ secure under B for some H′,

(weakly)
AH secure under A =⇒ scheme BTH secure under A ∪ B.

Several details are hidden in this informal definition, of course, e.g., what
a “secure” scheme is, which properties the transformation must satisfy, or how
cryptographic assumptions of hash function instantiations are dealt with. We
fill in these details in the formal definition and keep it informal for now. We
note, however, that the formal definition covers any type of hash function,
i.e., both oracle-based ones, as well as keyed hash functions with succinct
descriptions, or mixtures thereof. In particular, the security of scheme B in
the strong case may only be known for a random oracle H′.

In contrast to ideal-cipher reducibility in Chapter 3, we will potentially
have to deal with different assumptions A and B on either cryptographic
scheme. This was not needed for the ideal-cipher constructions since they
are qualitatively “simpler” and comparatively lower-level constructions. As
such, there are typically no further assumptions on these schemes, i.e., they
correspond to the special case where A = B = ∅. One could, of course, consider
Definition 5 for the ideal-cipher model as well, when dealing with cryptographic
schemes in the ideal-cipher model that require further assumptions.

For identical assumptions A = B, or even if A ⊆ B, all three notions of
Definition 5 coincide. The difference can be best explained for the case B ( A,
i.e., that the assumptions A are strictly stronger than B. The strict notion
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can in this case be put informally as saying “scheme B is strictly superior
to scheme A in regard of the assumptions, even for the hash function.” The
strong and presumably more accessible approach can be described as “scheme
B is at least as good as scheme A in regard of the assumptions, but potentially
superior.” The weak case says that “scheme B is at least as good as scheme A.”
In terms of security assumptions it seems that the strict and strong versions are
the interesting ones (hence the names); the weak version does not provide any
potential improvement concerning the assumption. We note that in the strong
case often a security proof for scheme B in the random-oracle model can be
given without assuming security of A. We merely introduced the dependency
via the prerequisite of the implication to make the notions comparable.

As a first sanity check, note how previous uninstantiability results relate
to either kind of definition. If the hash-function security of B can be (weakly,
strongly, or strictly) reduced to the hash-function security of A, and B turns
out to be uninstantiable, then this also follows for scheme A (else TH would be a
valid instantiation for B). In this regard the reduction approach also allows to
extend uninstantiability results without directly showing the ineffectiveness of
efficient hash functions. Vice versa, any new result about secure instantiations
of A would immediately transfer to B. Also, uninstantiability immediately
implies that there are schemes A (allowing efficient instantiations) and B (being
uninstantiable) such that the random oracle for B does not (even weakly)
reduce to the one for scheme A. Indeed, we saw such irreducibility results in
Chapter 3 before, although they did not necessarily imply uninstantiability.

Example: hashed ElGamal encryption. To show that the strong ap-
proach is applicable and the definition non-trivial we discuss the case of hashed
ElGamal encryption [ABR01] and its chosen-ciphertext security proof under
the strong Diffie–Hellman (DH) assumption in the random-oracle model [CS03].
Here, the strong DH assumption says that computing DH keys is infeasible
even if given (restricted) access to a decisional DH oracle. Cash, Kiltz, and
Shoup [CKS09] present a variant which can be shown to be CCA secure under
the (regular) DH assumption in the random-oracle model. This is a clear
example of two schemes where the variant seems to improve over the original
one in terms of assumption, but where this conclusion is technically not known
to be sound because of the random-oracle model.

The original hashed ElGamal encryption scheme encrypts a message under
public key X = gx as (Y, c), where Y = gy and c = Enc(k,m) for the hashed
Diffie–Hellman key k = H(Y,Xy) and the symmetric encryption scheme Enc.
The variant in [CKS09] instead computes two related ephemeral Diffie–Hellman
keys from public keys X0 = gx0 and X1 = gx1 , and derives a ciphertext (Y, c)
for Y = gy and c = Enc(k,m) for k = H(Y,Xy

0 , X
y
1 ). We show (for a slight

derivate of the scheme in [CKS09]) that the random oracles can be strongly
reduced to the one of hashed ElGamal. Ciphertexts in our variant are defined
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as

(Y, c, k1), where Y = gy, c = Enc(k0,m) for k0 = H(Y,Xy
0 ), k1 = H(Y,Xy

1 ),

i.e., we split the hashing into two evaluations, one for each public-key part,
and use the second key as a kind of confirmation that the first key is computed
correctly. We can view this as the transformation

TH(Y,Z0, Z1) = H(Y,Z0)|H(Y, Z1)

and where we use a special symmetric encryption scheme where the key part
k1 is output in clear.

We then prove that IND-CCA security for hashed ElGamal implies security
of (our variant) of the twin DH scheme for any hash function H for the same
assumptions that the hashed ElGamal is secure for. We also show that our
variant is secure in the random-oracle model assuming only the assumptions
given in [CKS09]. It follows that the random oracle in our scheme is strongly
reducible to the one of hashed ElGamal.

Note that yet another hashed ElGamal scheme, related to the original
scheme, has been shown to be uninstantiable [BBP04]. The scheme differs in
two important aspects from our scheme, though. First, their hashed ElGamal
encryption does not use randomness and is thus deterministic. Second, the
security notion considered in [BBP04] is IND-CCA preservation which gives
the adversary simultaneously access to the algorithms of the public-key scheme
and the symmetric scheme involving secret keys. In contrast, we use the
standard notion of IND-CCA security for the hybrid (public-key) scheme.

We note that the security reduction for our variant to the underlying
primitives like the Diffie–Hellman problem for random oracle H′ is looser than
the one in [CKS09] in terms of concrete bounds, but since both proofs are
in the random-oracle model, concrete bounds must be taken with a grain
of salt anyway. At the same time, our scheme relates the random oracle to
the one in the original scheme. Of course, concreteness of security bounds is
another important aspect, besides efficiency, when considering random-oracle
reducibility. In principle, it could be incorporated as an explicit requirement
in the notion, as we did in Chapter 3. We relinquish to do so here, because
both aspects, tightness and efficiency, depend to some extend on the individual
willingness to pay for the additional security guarantees through the random-
oracle reducibility.

Reductions for signature schemes. We give further examples of the appli-
cability of random-oracle reducibility by considering common signature schemes
like Guillou–Quisquater [GQ88] or PSS [BR96] and showing that the random
oracle of a probabilistic version of FDH [Cor00] (full-domain hash) reduces to
the random oracles in these schemes. However, note that FDH signatures are
only known to be uninstantiable in special cases according to [DOP05, DHT11]
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for plain hash evaluations over the message (i.e., no randomness). The first
result only applies to random trapdoor permutations (i.e., the result is not
known to apply to RSA), and the second more recent result holds when RSA
is treated as a black-box group. Perhaps surprisingly, a recent result [HSW14]
based on indistinguishability obfuscation actually shows instantiability of deter-
ministic FDH signatures, where the hash function undergoes a non-black-box
transformation. Any progress in terms of (un)instantiability of FDH signa-
tures to our probabilistic case would immediately allow to conclude that the
Guillou–Quisquater signature scheme and the PSS scheme are (un)instantiable.
This would somehow extend the uninstantiability result of Goldwasser and
Kalai [GK03] about general (and somewhat contrived) Fiat–Shamir schemes
to the “more natural” species.

We discuss another random-oracle reduction of (probabilistic) BLS signa-
tures [BLS04] to the Schnorr signature scheme [Sch91]. In this case, however,
we need a non-standard assumption to make the reduction work. Namely,
we need the knowledge-of-exponent assumption KEA1 [HT98, BP04] which
roughly says that, when complementing a value X to a Diffie–Hellman tuple
(X,Y,DH(X,Y )), one must know the discrete logarithm y of Y . Additionally,
we require that this assumption hold even if one can get additional Schnorr
signatures under the key X. For the random oracles this means that, if our
version of the BLS scheme is uninstantiable, then so is the Schnorr signature
scheme, or the augmented KEA1 assumption is false.

Some words of caution. Just as reductions between number-theoretic
assumptions merely relate problems like factoring and RSA, but do not touch
the question if RSA is really hard, a reduction for random oracles does not
mean that scheme B, in and of itself, is secure (under assumptions B) or that
the hash function can be securely instantiated. The reduction only says that
scheme B can be made as secure as scheme A in regard of the hash function.
Since we do not put any formal prerequisite about the security of scheme A,
which may thus be insecure, the reduction could potentially be trivial.

However, as for relating number-theoretic assumptions, where the stronger
assumption is usually accompanied by some hardness analysis, scheme A
typically comes with some form of security guarantee. Often, this is at least
a security proof in the random-oracle model, or sometimes for a relaxation
thereof like non-programmable random oracles [Nie02, FLR+10], traceable
random oracles [NYWO09], or leaky random oracles [YMO08]. The advantage
of our approach is that it follows immediately that B can also be shown secure
under the corresponding assumption about the hash function.

One caveat is that the transformed hash function TH, unlike random oracles,
obeys some structure, as the “split” evaluation in our ElGamal example. Hence,
when instantiated with some efficient hash function h, scheme B could become
insecure for the transformed hash function Th, despite the reduction and a
proof that TH makes B secure for random oracle H. Noteworthy, at the same
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time B could be secure when instantiated with h directly, instead of going
through the transformation T! We observe, however, that this is an inherent
limitation of the random-oracle model: it solely provides a heuristic which does
not allow to conclude security under concrete instantiations. Our approach at
least gives some confidence in the choice of the hash function in the sense that
the security is at least as good as the one of another, hopefully well-examined
scheme.

4.2 Defining Random-Oracle Reducibility

Hash functions. We consider families H of hash functions H where it is
understood that H is (not necessarily efficiently) samplable from H according
to a security parameter λ. It is thus also clear that a hash function H may have
a restricted input or output length, depending on λ. We write H←$ H(1λ) for
the sampling. For example, to model a random oracle we let H(1λ) be the
family of all functions with the specified domain and range and the sampling
picks a random function from this set. In the sequel we usually simply identify
the hash function H(·) with its description H itself. We assume that hash
functions are deterministic in the sense that, once a hash function has been
sampled, its behavior is fixed. A hash-function family may rely on some
cryptographic assumptions H; in case of random oracles no assumption H is
necessary as the sampling of a random function already provides all desirable
security properties.

Given a hash function H for a scheme A, we assume that each party or
algorithm gets oracle access to H. Furthermore, the hash function H may
include a public description part which is then also given to all parties and
algorithms as additional input. This public part may be for example the full
description of H, or only parts thereof, e.g., if H is a hybrid between a random
oracle and a keyed hash function. A hash-function family is efficient if it
follows the usual notion of an efficient keyed hash function, i.e., the sampling is
efficient, a sampled function H is efficiently computable and entirely described
through a public part.
Transformations. A hash function H used in a cryptographic scheme A may
not be immediately applicable to another scheme B for the mere fact that the
domain and range do not fit. We therefore “slot in” a transformation algorithm
T, such that scheme B then uses the hash function TH (with the semantic that
any algorithm or party gets public descriptions of TH as additional input). We
write TH for the corresponding hash-function family (described by sampling
H←$ H(1λ) and evaluating TH). Ideally, the transformation should only make
structural modifications (like adapting the domain and range) and should be
deterministic.

We required that transformations for ideal-cipher reducibility in Chapter 3
be stateless and we will require the same for random-oracle reducibility. In
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addition to preventing lazy sampling (which is applicable to random oracles
as well), this also prevents the following trivialization. Suppose scheme B is
instantiable for some hash-function family H. Construct the transformation T
which ignores its oracle and instead initially samples a function H′ ←$ H and
answers subsequent queries according to H′. Again, scheme B remains secure
and reduces to any scheme A. Here, we used statefulness to remember the
choice of the hash function in order to provide consistent answers.

One can nonetheless allow for rather general transformations, possibly even
considering transformations which themselves rely on assumptions T.

Security of schemes. We consider security of schemes to be defined via a
general notion of games, like we did in Chapter 3. In this chapter, we use a
slightly simplified asymptotic version of the previous definition. This will make
the presentation more compact and allows us to focus on the new aspect of this
chapter, namely the computational assumptions of the schemes we consider.

As we can subsume several games like the ones for blindness and unforge-
ability for blind signature schemes into a single game, with corresponding sub
games for which the adversary initially decides to mount the attack against, we
consider a single game G only, as before. In contrast to the previous definition,
we will, however, deal only with one adversary and make an asymptotic state-
ment. We let AdvG

H(A) denote the advantage of adversary A playing game G
where the game samples a hash function H from H, i.e., the adversary’s success
probability of winning the game. This makes AdvG

H an implicit part of G.
Here, in decisional games the advantage usually denotes the adversary’s success
probability minus the trivial guessing probability of 1/2, and in computational
games the advantage is usually the adversary’s probability of computing a
solution.

We envision security assumptions A for a scheme A as a set of elementary
properties such as unforgeability of an underlying MAC or number-theoretic
assumptions like the hardness of factoring. We can then apply common
set operations and relations to assumptions in a well-defined way, e.g., A ∪
B comprises all assumptions stated in A and B, and B ⊆ A means that
assumptions in B hold if A holds. This approach is too applicable for the hash
function assumptions H and possibly the transformation assumptions T. We
also assume that assumptions are “opt-in”, i.e., need to be specified in the
set, or else the assumption does not hold. Formally we can define this by
considering a universe U of assumptions and say that any assumption in U \A
is false.

Note that we keep the formal specifications of games and assumptions at a
minimal level. This is possible as we later demand random-oracle reducibility
with respect to specific games and assumptions. It is thus up to the reduction
statement to consider “reasonable” games and assumptions. We only need
very limited syntactical requirements here and can, for example, even allow
conflicting assumptions in A ∪ B (in which case, however, the claims usually
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become trivial).

Definition 6 (Game-based security). Let A denote a cryptographic scheme
using a hash family H and G an associated security game. Scheme A is called
(G,H)-secure under assumptions A for hash family H relying on assumptions
H if for any efficient adversary A we have that AdvG

A,H(A) is negligible in the
security parameter, where the probability is over all random choices of the game
(including the choice of the hash function), the algorithms, and the adversary.

As an example, consider the IND-CCA security game for an encryption
scheme A (in the random-oracle model), in which the game G proceeds in
stages where A in the first phase receives a public key (in case of an asymmetric
scheme) and gets access to a decryption oracle plus the random oracle, then
outputs a pair of equal-length messages m0,m1 to receive a single challenge
ciphertext ofmb for secret random bit b, and finally continues asking decryption
queries except for the challenge ciphertext. The adversary wins if correctly
predicts b, and the advantage of the adversary is the probability for a correct
prediction minus 1/2. In the notation above an IND-CCA-secure encryption
scheme relying on some cryptographic assumption A is (G,H)-secure under A
for random oracle H.
Random-oracle reducibility. As explained in the introduction, we intro-
duce weak, strong, and strict notions of random-oracle reducibility:

Definition 7 (Random-oracle reducibility). Let A be a cryptographic scheme
with security game A and assumptions A, and let B be a cryptographic scheme
with game B and assumptions B. Then the random oracle in scheme B (strictly
resp. strongly resp. weakly) reduces to the random oracle in scheme A if for
every hash-function family H relying on assumptions H there exists a stateless
transformation T such that if scheme A is (A,H)-secure under A, . . .

(strict)
. . . then scheme B is (B,TH)-secure under B.

(strong)
. . . then scheme B is (B,TH)-secure under A ∪ B and

scheme B is (B,TH′)-secure under B for some H′ relying on H′.
(weak)

. . . then scheme B is (B,TH)-secure under A ∪ B.

We say that (B,B,H,B) is (weakly or strongly or strictly) random-oracle
reducible to (A,A,H,A). It is polynomial-time (weakly or strongly or strictly)
random-oracle reducible if it is random-oracle reducible via (deterministic)
stateless polynomial-time transformations T for any hash-function family H.

We occasionally simply say that B is random-oracle reducible (RO reducible)
to A if the games and assumptions are clear from the context.

Some remarks about the definition and variations follow:
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strict strong weak
Proposition 6 Proposition 6

Proposition 8Proposition 7

Figure 4.1: Relations between reducibility notions.

• The above does not rule out trivial examples where scheme B actually
relies on stronger assumptions B than scheme A, e.g., if A is a subset
of B. As explained in the introduction, the most interesting examples
seem to be the ones where assumptions B are weaker than A or at least
incomparable. Occasionally, however, one may be interested in a scheme
B which requires stronger assumptions B but which is more efficient (or
has other desirable properties).

• For strong reducibility, the second condition of the implication includes
a second hash function family H′ that may rely on assumptions H′. This
can be thought of as a hint that scheme B is potentially better with
respect to assumptions than A. In particular, if one is willing to “trade”
the scheme’s assumptions B \A for assumptions on the hash function H′.

• We can devise stronger notions concerning the order of quantification for
our reducibility notion. Above, the transformation can depend on the
specific hash-function family H, and thus possibly specific properties of
H. One could alternatively demand that the transformation needs to be
universal in the sense that it works for any H.

• The above definition assumes that transformation T does not rely on
additional assumptions. More generally, one could specify assumptions
T and say that scheme B is secure under assumptions B′ = B ∪ T.

• According to our syntax, the adversary B in game GB with the trans-
formed random oracle would get access to TH, but not H itself. This can
be easily patched by letting the transformation T give direct access to H
through a special query mode.

4.3 Basic Results

Relating the reducibility notions. We first show that strict reducibility
implies strong reducibility which implies weak reducibility. Figure 4.1 depicts
all relationships between the notions.

Proposition 6 (Strict⇒ strong⇒ weak reducibility). Let A be a cryptographic
scheme with security game A and assumptions A, and let B be a cryptographic
schemes with game B and assumptions B. If the random oracle in scheme B
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strictly reduces to the random oracle in scheme A, then it also strongly reduces
to it. If it strongly reduces to it, then it also weakly reduces to it.

Proof. Consider first the implication from strict to strong. If A cannot be
secure for any hash-function family then the claim is trivially true. Hence,
assume that A is secure under A for a hash-function family H with assumption
H. Then it follows straightforwardly from the definition that B is also secure
under A∪B ⊇ B by the assumption about strict reducibility. Furthermore, the
hash-function family H which makes A secure under A also makes B secure
under B, again by the strict reducibility.

The claim that any strong reducibility implies weak reducibility follows
straightforwardly from the definition.

We next discuss a scheme which supports a strong reduction, but not a
strict one. Note that for A ⊆ B this claim would be trivial because then the
notions coincide. Instead, our separation example even holds for B ( A.

Proposition 7 (Strong 6⇒ strict reducibility). There exists schemes A, B for
games A, B and assumptions A, B such that B ( A, and the random oracle of
B strongly reduces to the one of scheme A, but not strictly.

Proof. Let scheme A run two copies of Lamport’s one-time signature scheme
[Lam79], one based on an alleged one-way function f , and the other one by
using the given hash function (oracle). Verification checks if both signatures
are valid. Let A be the standard unforgeability game for one-time signature
schemes, and let A be the assumption that an underlying function f is really
one way. Let B and B be the same scheme and game, but let B be the empty
set.

Consider the hash-function family H which samples trivial functions H :
{0, 1}∗ → {0} only and where H is empty. Then scheme A is still unforgeable
if f is one way, independently of the H part of the signature. In contrast, B
would be insecure under B and for the trivial hash-function family, because, by
assumption about the “minimalist” approach for the set B, the function f is
not one way then. Hence, the random oracle in B cannot be strictly reduced
to the one in A.

Finally, note that for a hash-function family H′ which is one way the
signature scheme B becomes secure even under B, because any forger would
need to forge the one-time signature scheme for the hash function. At the same
time, for any hash-function family scheme B is secure under A ∪ B. These two
properties show that the random oracle in B strongly reduces to the one in
A.

For the next separation we further need to exclude contrived examples
where the hash function assumptions H “makes up” for assumptions in A \ B
to make scheme B secure. We say that H is non-interfering with A and B iff
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H∩(A\B) = ∅. In this case we say that the random oracle in scheme B reduces
to the one in scheme A under non-interfering hash assumptions if reducibility
holds for all hash function families H with non-interfering assumption H.

Proposition 8 (Weak 6⇒ strong reducibility). There exists schemes A, B for
games A, B and assumptions A, B such that B ( A, and the random oracle of
B weakly reduces to the one of scheme A, but not strongly for non-interfering
hash functions.

Proof. Consider again Lamport’s one-time signature scheme as scheme A,
relying on a one-way function f (whose one-wayness is postulated in A). The
scheme ignores the hash function. Let B be again the unforgeability game for
one-time signature schemes. Let B the same scheme with the same security
game, but let B be empty.

Any hash function makes both schemes secure under assumptions A ∪ B
such that the (irrelevant) random oracle of B weakly reduces to the one of A.
Since B cannot be secure assuming only B, because the hash function cannot
include the assumption about the one-wayness of f by the non-interference,
the scheme cannot strongly reduce the random oracle.

Uninstantiability implications. In this section we briefly show fundamen-
tal results about (un)instantiable random oracles. We define uninstantiability
with respect to a very loose requirement on the assumptions, leaving it up to
the reduction statement to consider only “standard” cryptographic assumptions
in A and B.

Definition 8 (Uninstantiability). Let A be (A,H)-secure under assumptions
A for random oracle H. Then the random oracle is uninstantiable for A and
A if for any efficient hash-function family H with assumption H the scheme A
is not (A,H)-secure under assumptions A.

Proposition 9 (B uninstantiable ⇒ A uninstantiable). Assume that scheme
B with game B and assumptions B is (strictly resp. strongly resp. weakly)
polynomial-time RO-reducible to scheme A for A and (true) assumptions A.
If B is uninstantiable for B under B (for strict reductions) resp. A ∪ B (for
strong or weak reduction), then so is A for A and assumptions A.

Proof. First consider strict reductions. Assume that there exists an instan-
tiation for the hash function in scheme A using assumption H, making it
(A,H)-secure under A. Then the hash function described by sampling H←$ H
and setting TH yields an efficient and (B,TH)-secure instantiation for scheme
B under B, because T is computable (deterministically) in polynomial time.
This, however, contradicts the uninstantiability for B with respect to B and B.
For strong and weak reductions the claim follows accordingly for assumptions
A ∪ B.
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Given the uninstantiability notion we next note that there are schemes for
which the random oracles are not (even weakly) reducible to each other:

Proposition 10 (Impossibility of reducibility). There exists schemes A, B
for games A, B and (true) assumptions A, B such that the random oracle of B
does not support a weak or strong or strict polynomial-time reduction to the
one of scheme A, even though B is secure in the random-oracle model.

Proof. Basically, we use an instantiable scheme A and an uninstantiable version
B of it, following uninstantiability ideas from Maurer et al. [MRH04], to derive
the result.

Let A be again the Lamport one-time signature scheme based on a one-way
function f , where A is the standard unforgeability game for one-time signature
schemes, and assumption A testifies to the one-wayness of f . The scheme
ignores the hash function. Let B be the slightly modified scheme A which
inherits the same signing algorithm but where verification, given the hash
function H, checks if the message m encodes a hash function; if so, it picks a
random element (from a superpolynomial space) and checks that H(x) = m(x)
and in this case accepts. Else it runs the regular verification algorithm. The
game and assumption remain unchanged.

It is easy to see that for any efficient hash-function family H the original
scheme A is secure, whereas scheme B can be easily broken by creating the
description m(·) = TH(·) as a forgery. Furthermore, for random oracle H
the scheme B is also secure, because for a random x the probability that a
verification value x matches any of the at most polynomial hash-oracle queries
of an attacker, which is necessary to have m(x) = H(x), is negligible.

4.4 Example: Hashed ElGamal

In this section we show that the hash function in (a variant) the Twin Diffie–
Hellman encryption scheme is RO reducible to the hash function in hashed
ElGamal. We remark that we are not aware if the original twin DH scheme
allows the same reduction.

Hashed ElGamal. We first review the classical hashed ElGamal encryption
scheme as presented in [ABR01]. This scheme, denoted by A = (KGenA,EncA,
DecA) is based on the Diffie–Hellman problem and uses a hash function H and
a symmetric cipher (Enc,Dec). Specifically:

Construction 1 (Hashed ElGamal encryption scheme). The hashed ElGamal
encryption scheme A = (KGenA,EncA,DecA) in the ROM is defined as follows:
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KGenA(λ):
pick (G, g, q)
x← Zq; X ← gx

sk← x; pk← (G, g, q,X)
return (sk, pk)

EncA(pk,m):
(G, g, q,X)← pk
y ← Zq; Y ← gy

Z ← Xy; k ← H(Y,Z)
c← Enck(m)
return (Y, c)

DecA(sk, Y, c):
Z ← Y sk

k ← H(Y,Z)
m← Deck(c)
return m

Assuming that the symmetric cipher is secure against single-challenge
chosen-ciphertext attacks and that the strong Diffie–Hellman assumption holds
(where the adversary has access to a restricted DH decisional oracle), Cramer
and Shoup prove in [CS03] that scheme A is secure against chosen-ciphertext
attacks if H is a random oracle. The milder ordinary DH assumption is not
known to be sufficient to prove CCA security, since the attacker obtains a
decision oracle through the decryption oracle here, such that some information
about the key may be leaked.

Twin DH scheme. Subsequently, Cash et al. [CKS09] introduce the so-
called strong twin DH assumption which holds if and only if the regular DH
assumption holds. Their corresponding DH problems are equally hard but the
twin case includes access to a decision oracle. This enables a clean security
proof for a variant of the hashed ElGamal scheme, because the decryption
oracle is not more powerful than the decision oracle in the strong twin DH
case. Thus, the twin ElGamal scheme allows for milder number-theoretic
assumptions while preserving CCA security.

However, the random oracle in the twin ElGamal scheme is used slightly
differently than in the original scheme: its domain is the set of group element
triples, as opposed to tuples in the original scheme. While this is unproblematic
in the ROM for hash functions H : {0, 1}∗ → {0, 1}λ with arbitrary input length,
the implications for other security properties for instantiations are less clear.
For example, it may be that the twin Diffie–Hellman scheme demands stronger
properties from the hash function. We show via our notion of RO reducibility
that this is not the case, at least for our slight variation:

Construction 2 (Twin Diffie–Hellman encryption scheme). The twin DH
encryption scheme B = (KGenB,EncB,DecB) in the ROM is defined as follows:

KGenB(λ):
pick (G, g, q)
x0 ← Zq; X0 ← gx0

x1 ← Zq; X1 ← gx1

sk← (x0, x1)
pk← (G, g, q,X0, X1)
return (sk,pk)

EncB(pk,m):
(G, g, q,X0, X1)← pk
y ← Zq; Y ← gy

Z0 ← Xy
0 ; Z1 ← Xy

1
k0|k1 ← H(Y, Z0, Z1)
c← Enck0(m)
return (Y, c, k1)

DecB(sk, Y, c, k′1):
(x0, x1)← sk
Z0 ← Y x0

Z1 ← Y x1

k0|k1 ← H(Y,Z0, Z1)
m← Deck0(c)
if k′1 6= k1
m← ⊥

return m
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Towards showing random-oracle reducibility, we can view the transforma-
tion TH : G3 → {0, 1}2λ of the hash function H : G2 → {0, 1}λ as follows:

TH(Y,Z0, Z1) = H(Y,Z0)|H(Y, Z1).

Splitting the actual encryption of the message into an encryption for one key
half and where we output the other half in clear can then be seen as a special
encryption scheme (with double-length keys). In this regard, our version of the
twin Diffie–Hellman scheme reduces the random oracle to the hash function of
the hashed ElGamal scheme.

RO reducibility. We first show that our twin DH scheme weakly reduces
the random oracle to the one of the hashed ElGamal scheme for IND-CCA
security, i.e., assuming the strong DH assumption. We discuss afterward that
the scheme is also secure in the random-oracle model assuming the regular DH
assumption, implying that the reducibility is also strong:

Theorem 4. Consider the hashed ElGamal encryption scheme for the IND-
CCA security game and the assumptions A that the symmetric encryption
scheme is IND-CCA secure and the strong DH assumption holds. Then the
twin DH encryption scheme B with the IND-CCA security game and the
assumptions B that the symmetric encryption scheme is IND-CCA secure and
that the DH assumption holds, is strongly RO reducible to the hashed ElGamal
encryption scheme via

TH(Y,Z0, Z1) = H(Y,Z0)|H(Y, Z1).

The proof follows from the following two propositions (11 and 12).

Proposition 11. Under the assumptions as in Theorem 4 the twin DH en-
cryption scheme is weakly RO reducible to the hashed ElGamal encryption
scheme.

Proof. Assume towards contradiction that there exists an algorithm B breaking
the CCA-security of B. We then describe an adversary A that breaks the
CCA-security of A. This adversary essentially simulates the “second key half”
of the scheme by itself. Figure 4.2 summarizes its operation.

Description of the reduction. To initialize, the simulation adversary A
on input (G, g, q,X0) = (G, g, q, gx0) chooses the other half of the secret key
x1 ←$ Zq and calculates the corresponding public key X1 ← gx1 . Adversary
A next runs adversary B with input (G, g, q, (X0, X1)) and answers B’s oracle
queries as follows:

• First, A translates any hash query H(A,B,C) from B into two queries
to A’s own hash oracle. More precisely, A answers an (A,B,C) query
with (H(A,B),H(A,C)) = TH(A,B,C).
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Algorithm AH,Dec,Ch(G, g, q,X0):
x1 ←$ Zq; X1 ← gx1

b← BTH,SimDec,SimCh(G, g, q, (X0, X1))
return b

Oracle SimDec(Y, c, k1):
if k1 6= H(Y, Y x1)
return ⊥

return Dec(Y, c)

Oracle SimCh(m0,m1):
(Y, c)← Ch(m0,m1)
k1 ← H(Y, Y x1)
return (Y, c, k1)

Figure 4.2: The reduction algorithm of Proposition 11

• In order to answer B’s challenge query (m0,m1), the adversary submits
(m0,m1) to his own challenge oracle and parses the corresponding cipher-
text answer as (Y, c). It remains to compute the extra value by re-using
the randomness Y obtained from the oracle. Adversary A thus computes
k1 = H(Y, Y x1) = H(Y,Xy

1 ) and finally returns the ciphertext (Y, c, k1)
to B.

• On a decryption query (Y, c, k1) of B, adversary A first checks if (Y, c)
corresponds to the value in the challenge ciphertext, or if k1 6= H(Y, Y x1).
If so, then A immediately returns ⊥. Else A asks its own decryption
oracle for the decryption m of (Y, c). To answer the query, it then returns
m.

• Note also that we can grant B direct access to the H oracle. Adversary
A would simply forward this query and hand back the answer.

When B eventually outputs a guess b then A outputs the same bit.

Analysis. The simulation is perfect in the following sense: B cannot submit
a ciphertext (Y, c, k∗1) to the decryption oracle (after receiving the challenge
ciphertext (Y, c, k1)) for k∗1 6= k1 which would decrypt correctly. Hence, A
can reject such ciphertexts immediately and therefore only submits “cleaned”
ciphertexts to its decryption oracle which have never appeared before. Hence,
A, too, represents a successful attacker on the hashed ElGamal scheme if B is
one for the twin DH scheme. Moreover, the advantages of both algorithms in
their corresponding IND-CCA game are identical.

What about inconsistent hash values?. If one recalls the security proof
of the hashed ElGamal scheme in the random-oracle model [CS03], then the
reduction to the IND-CCA security of the symmetric encryption scheme checks
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whether the (external) queries to the hash function correspond to the DH tuple
in the challenge ciphertext. In this case the usage of a given encryption oracle
with an independent key (which does not necessarily match the “correct” hash
value) would be inconsistent. It is the strong DH assumption which implies
that such inconsistencies are unlikely to be detected by the adversary against
the symmetric encryption scheme. The problem of consistent hash queries,
however, is not of our concern in the reduction above. We merely build an
adversary A against the hashed ElGamal scheme out of an adversary B against
the twin DH scheme. The problem, and especially in light of possible proofs
without random oracles, has to be taken care of by the security proof for the
hashed ElGamal scheme.

To complete the proof for a strong reduction we finally show that our
version is secure in the random-oracle model:

Proposition 12. The twin DH encryption scheme B with the assumptions B
that the symmetric encryption scheme is IND-CCA secure and that the DH
assumption holds, is IND-CCA secure in the random-oracle model.

Proof. The proof is slightly more involved than the one in [CKS09], owned
to the fact that the random oracle H(X,Z0, Z1) in [CKS09] ties together the
twin DH tuples and that this property is required for the twin DH oracle. In
contrast, in our scheme the pairs (X,Z0) and (X,Z1) are only loosely connected
through H. We show that this loose connection can be made a strong one
with two simulations of the adversary. By re-randomizing the instance for the
second of the two runs, the reduction will be able to recover not only one, but
both of the group elements for the twin DH solution.

In a first step we can “normalize” an adversary A against IND-CCA of
our twin DH scheme. First, we may assume that A never makes a hash query
twice. Second, we can assume that A never submits a tuple (Yi, ci, ki) to
the decryption oracle before receiving the challenge ciphertext (Y, c, k) where
Yi = Y . This decreases the adversary’s success probability by a negligible
amount D/q for the polynomial number D of A’s decryption queries. (Recall
that q is the exponential group order.) Third, we can assume that adversary
A never submits a decryption request (Yi, ci, ki) without having queried the
hash function about (Yi, Y x1

i ) for Yi 6= Y before. The loss is at most D · 2−λ
for this. Fourth, we assume that the adversary never submits (Yi, ci, ki) to the
decryption oracle where Yi = Y but ki 6= k; for such a query is never valid.
Fifth, we assume that X0 6= X1 which happens with probability 1− 1/q.

Taming hash queries. Consider a normalized adversary A against our twin
DH scheme. We assume that A in addition to TH also has direct access to
the random oracle H : G2 → {0, 1}∗. In fact, we assume from now on that all
algorithms, including the adversary and the scheme’s algorithms, never call
TH, but use H to simulate TH with two queries. Define the following event
HashQuery that, during the IND-CCA attack, A at some point asks a query
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(Y,Z) to H such that Y appears in the challenge ciphertext, and Z = Y x0 or
Z = Y x1 for the public-key entries X0 = gx0 and X1 = gx1 .

We show that the probability ε(λ) of event HashQuery must be negligible.
Assume toward contradiction that this was not the case. We then show how
to break the the twin DH problem (and thus the DH problem) via algorithm
B. Algorithm B receives a group description (G, g, q) and values Y,X0, X1 as
input. It can also query a twin DH oracle about values (ga, B0, B1) which
outputs 1 iff B0 = Xa

0 and B1 = Xa
1 . The values X0, X1 serve as the public

key presented to A, and Y will be placed in the challenge ciphertext.
Algorithm B runs A’s attack by using the input data as the public key,

and simulating the random oracle and decryption queries as follows:

• B will maintain a list L of tuples of the form (A,B, k) or (dh, A,Xb, k)
where the former type corresponds to direct hash queries of A and the
latter type to implicit hash queries. Initially, B sets L := {(dh, Y,X0, k0),
(dh, Y,X1, k1)} for random values k0, k1 for the hash values to compute
the challenge ciphertext (note that Y is already known at the outset).

• Whenever A makes a hash query (A,B) algorithm B first searches for an
entry (A,C, k) in L such that (A,B,C) or (A,C,B) forms a correct twin
DH tuple (under X0, X1). Since X0 6= X1 only one case can happen. If
found, and there exists an entry (dh, A,X0, k) in L for the case (A,B,C)
resp. (dh, A,X1, k) for the case (A,C,B), then replace this entry by
(A,B, k) in L. In any other case, pick k at random and store (A,B, k)
in L. Return k.

• If A makes a decryption request (Yi, ci, ki) then check whether Yi = Y
or not. In case Yi = Y look up the entry (dh, Y,X0, k0) in L and use k0
to decrypt ci. (Note that, by assumption, k1 must be correct.) Suppose
Yi 6= Y . Then, since the adversary is normalized, there must be an
entry (Yi, Z1, k1) in L already, caused by a hash query, where Z1 = Y x1

i .
(There cannot exist another entry (Yi, Z1, k

′
1) for k′1 6= k1 as hash queries

never repeat.) Given (Yi, Z1, k1) check for an entry (Yi, Z0, k0) such that
(Yi, Z0, Z1) forms a valid twin DH tuple for X0, X1. If such an entry
exist then use k0 to decrypt ci. If no such entry exist, check for a tuple
(dh, Yi, X0, k0) in L and use k0 to decrypt. Else, pick a new value k0,
store (dh, Yi, X0, k0) in L, and use k0 to decrypt. Return the decrypted
message.

To prepare the challenge ciphertext B uses the previously chosen values k0, k1
placed in L, also picks one of the two messages m0,m1 at random, and returns
(Y,Enc(k0,mb), k1).

Once A finishes, algorithm B records all entries (A,B) in L with A = Y and
now reruns the above procedure, with the same group but for re-randomized
data Y ′ = Y s, X ′0 := Xsa

a , X ′1 := X
s1−a
1−a for random s, s0, s1 ←$ Z∗q and random
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bit a. Every other random choice is based on fresh randomness. Any query
(A,B,C) to the twin DH oracle in this second run is first transformed into
(A,B1/s0 , C1/s1) for a = 0 resp. (A,C1/s0 , B1/s1) for a = 1. At the end, B
transforms all pairs (A′, B′) in the list L of the second run by computing
((A′)1/s, (B′)1/s0) and ((A′)1/s, (B′)1/s1), effectively doubling the number of
pairs. Sieve to keep only those with first element Y . Run on all combinations
of the two (sieved) lists by the twin DH oracle to find a solution (Y,Z0, Z1) to
the twin DH problem.

Analysis. The maintenance of the hash list L provides a more fine-grained
implementation of how a random oracle would behave: since any decryption
query for Yi 6= Y must already contain a corresponding entry (Yi, Y x1

i , k1) by
assumption, we can check via the twin DH oracle if we already have a matching
entry (Yi, Z0, k0). If not, we generate a fresh random string and store the
implicit representation (dh, Yi, X0, k0) in L, and will later carefully check if a
hash query for Y x0

i is made (in which case we update the entry in L and re-use
the value k0).

As for B’s success probability, we call a group (G, g, q) good if A’s success
probability conditioned on this group exceeds ε/2. By an averaging argument
a group is good with probability at least ε/2. Hence, given such a good group,
and the fact that B provides a perfect simulation, B obtains a valid entry
(Y, Y x0) or (Y, Y x1) with probability at least ε/2 in the first run. The same
applies in the second run where the re-randomization is correctly undone for
each twin DH oracle query. With probability 1/2 algorithm B then obtains
matching values (Y, Y x0) and (Y, Y x1) because the order bit a in the second run
is information-theoretically hidden from A. Overall, and neglecting the minor
loss due to normalization of A, algorithm B thus solves the twin DH problem
with probability at least ε3/16. By assumption this is still non-negligible.

Final reduction to CCA security of symmetric scheme. Given that
we can assume that A never asks the hash function about (Y, Y x0), it is now
straightforward to show that a significant advantage in predicting the challenge
bit must result in a security break of the underlying symmetric cipher. We
merely sketch this step. We construct an adversary B from A, where B plays
an IND-CCA game against the symmetric cipher, and simulates A’s attack
with the help of the secret keys x0, x1 and using lazy sampling to simulate
the random oracle (with the only exception that it “virtually puts” the key of
the external encryption and decryption oracles as the hash value H(Y, Y x0)).
Given the challenge ciphertext (Y, c, k) created by picking y at random, setting
Y = gy and calling the encryption oracle about A’s choice m0,m1 to receive c,
any subsequent decryption query (Y, c′, k) for c′ 6= c is answered by calling the
external decryption oracle (which is admissible since c′ 6= c). Any query for
Y ′ 6= Y can be answered by B itself. Algorithm B then uses A’s final output
to predict the challenge bit for the symmetric scheme.
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4.5 Reductions among Signature Schemes
In this section we briefly outline a few more applications of our notion. Specifi-
cally, we give three relations among signature schemes including a probabilistic
version of FDH which we reduce to the Guillou–Quisquater (GQ) signature
scheme [GQ88] and to the PSS signature scheme [BR96], respectively, and
finally a reduction from Schnorr signatures [Sch91] to a (probabilistic version
of) BLS signatures [BLS04].

GQ ⇒ pFDH. We first consider the RSA-based Guillou–Quisquater identi-
fication scheme and its derived signature scheme via the Fiat-Shamir heuristic
[GQ88]. For public key pk = (X,N, e) and secret key x with X = xe mod N
the signer computes a signature as (R, y) for random R = re mod N , and
where y = rcx mod N for c = H(pk, R,m). A probabilistic full-domain
hash (FDH) RSA signature scheme with signatures of the form (R, σ) for
σ = (H(pk, R,m))d mod N is (strictly) random oracle reducible to the afore-
mentioned Guillou–Quisquater scheme via the transformation

TH(pk, R,m) = RH(pk,R,m)X mod N

for any type of forgery attack under the RSA assumption. The reason is that
any Guillou–Quisquater signature for H can be seen as a FDH signature for
TH : {0, 1}∗ → Z∗N , and any successful forgery for the FDH scheme for TH is
vice versa a valid forgery for the Guillou–Quisquater scheme.

PSS ⇒ pFDH. The reduction of another probabilistic version of FDH to
the PSS signature scheme is similar to the GQ case. Consider FDH signatures
(TH(r,m))d mod N for the PSS-encoding TH(r,m) = str2int(0|w|r∗|H2(w))
for w = H0(r,m) and r∗ ⊕ r = H1(w). Here, H0,H1,H2 are hash functions
derived from H as in the PSS scheme. Then any successful attack on FDH
with hash function TH easily yields a forgery against PSS with hash function
H. Hence, PSS allows a strict random-oracle reduction to the probabilistic
version of FDH under the RSA assumption for any type of forgery attack.

BLS ⇒ Schnorr. Consider a probabilistic version of the BLS signature
scheme [BLS04], where signatures are of the form σ = (R,H(R,X,m)x) for
randomness R, message m, private key x and public key X = gx. Verification
is performed analogously to the original scheme via a pairing computation.
We argue that the Schnorr signature scheme (recall that a signature there
is of the form σ = (c, r + cx mod q) for public key X = gx, R = gr, and
c = H(R,m)) is (strictly) random oracle reducible to the BLS version via the
transformation TH(R,X,m) = RXH(R,m). This holds assuming the discrete
logarithm assumption and under an augmented version of the KEA1 assump-
tion [HT98, BP04] which states that, for any adversary A which for input a



4.5. Reductions among Signature Schemes 65

description of the group, g,X, and with access to a Schnorr signing oracle
under key X and a hash function oracle, outputs a pair (Y, Y x), there exists
an adversary A′ which, on the same input and with access to the same oracles,
outputs y with Xy = Y x. The probability that A succeeds, but A′ does not,
must be negligible for all A.

Suppose now that there exists some successful adversary B against our
version of BLS. Construct adversary A against the Schnorr scheme as follows.
Whenever B makes some query m, adversary A forwards this query to its
own signing oracle. It uses the answer (c, y) to calculate h = Xy, computes
R = gyX−c (such that H(R,m) = c) and finally answers B’s query with (R, h).
This simulates a correct signature since B expects R and TH(R,X,m)x =
(RXH(R,m))x = (gy)x = Xy = h. It remains to construct a Schnorr forgery
from B’s forgery, denoted by (m∗, R∗, Z∗). To this end we note that, under the
augmented KEA1 assumption, for A (running B as a subroutine) outputting
Y ∗ = TH(R∗, X,m∗) and Z∗ = (Y ∗)x for the valid forgery (m∗, R∗, Z∗), there
must exist an adversary A′ returning y∗ with Z∗ = Xy∗ . This must be true with
non-negligible probability, because A succeeds with non-negligible probability,
and otherwise the augmented KEA1 assumption would be false. Hence, there
exists an adversary which creates a valid forgery (m∗,H(R∗,m∗), y∗) for the
Schnorr scheme with non-negligible probability.





Chapter 5
Notions of

Cryptographic Reductions

In this final chapter of the thesis, we study the prevalent proof technique used
in almost any result in cryptography. We propose an extensive framework that
permits more fine-grained classifications of reductions and covers a wider range
of reductions than the approach by Reingold, Vadhan, and Trevisan [RTV04].

We first discuss the necessary background in Section 5.1 and then introduce
our new framework in Section 5.2. Section 5.3 puts the framework in action
by classifying two well-known reductions. In Section 5.4, we examine the
relations of the different notions within the framework before we add efficiency
considerations to the picture (in Section 5.5). We then consider parametrized
reductions in Section 5.6 that allow for shades of gray between two notions.
Finally, Section 5.7 briefly illustrates how one can capture meta reductions in
our framework.

This work was presented at ASIACRYPT 2013 [BBF13].

5.1 Introduction

A fundamental question in cryptography refers to the possibility of constructing
one primitive from another one. For some important primitives like one-way
functions, pseudorandom generators, pseudorandom functions, and signature
schemes we know that one can be built from the other one [HILL99, GGM86,
Rom90]. For other primitives, however, there are results separating primi-
tives like key agreement or collision-resistant hash functions from one-way
functions [IR89, Sim98].

Separations between cryptographic primitives usually refer to a special kind
of reductions called black-box reductions. These reductions from a primitive P
to another primitive Q treat the underlying primitive Q and/or the adversary
as a black box. Reingold, Trevisan, and Vadhan [RTV04] (“RTV”) suggested
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a taxonomy for such reductions which can be divided roughly into three
categories:

Fully-black-box reductions. A fully-black-box reduction S is an efficient
algorithm that transforms any (even inefficient) adversary A, breaking
any instance Gf of primitive P, into an algorithm SA,f breaking the
instance f of Q. Here, the reduction treats both the adversary as well as
the primitive as a black box, and G is the (black-box) construction out
of f .

Semi-black-box reductions. In a semi-black-box reduction, for any instance
Gf of P , if an efficient adversary Af breaks Gf , then there is an algorithm
Sf breaking the instance f of Q. Here, Sf can be tailor-made for A and
f .

Weakly-black-box reductions. In a weakly-black-box reduction, for any
instance Gf of P, if an efficient adversary A (now without access to f)
breaks Gf , then there is an algorithm Sf breaking the instance f of Q.

RTV indicate that the notion of weakly-black-box reductions is close to free
reductions (with no restrictions), such that separation results for this type of
reduction are presumably hard to find. They discuss further notions like “∀∃
versions” of the above definitions, where the construction G does not make
black-box use of f but may depend arbitrarily on f , and relativizing reductions
where security of the primitives should hold relative to any oracle. We discuss
these notions later in more detail.

Black-Box Separation Techniques

Known black-box separations usually obey the following two-oracle approach:
to separate P from Q, one oracle essentially makes any instance of P insecure,
whereas the other oracle implements an instance of Q. It follows that one
cannot build (in a black-box way) P out of Q. For example, Impagliazzo
and Rudich [IR89] separate key agreement from one-way permutations by
using a PSPACE-complete oracle to break any key agreement, and a random-
permutation oracle to realize the one-way permutation. This type of separation
rules out any reduction proof that remains true in the presence of an arbitrary
oracle (i.e., it rules out relativizing reductions). In the key-agreement case,
this also rules out semi-black-box-reductions via an embedding of the PSPACE-
complete oracle into the black-box primitive [RTV04].

Later, Hsiao and Reyzin [HR04] consider simplified separations for fully-
black-box reductions. Roughly speaking, they move the breaking oracle into
the adversary such that the reduction can only access this oracle through the
adversary (instead of directly, as in [IR89]). Because this makes separations
often much more elegant, this technique has been applied successfully for many
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other primitives, e.g., [DOP05, HHRS07, KP09, HH09, BCFW09, FLR+10,
MP12, LOZ12, BH13].

Interestingly, there has been another type of separations based on so-called
meta-reduction techniques, originally exploited by Boneh and Venkatene-
san [BV98], but the general concept can be traced back even further to [GMR84].
Subsequently, these techniques are used in many other places [Cor02, PV06,
HRS09, FS10, Pas11, GW11, DHT12, Seu12, FF13]. Such meta reductions
take an alleged reduction from P to Q and show how to use such a reduction to
break the primitive P directly, simulating the adversary for the reduction usu-
ally via rewinding techniques. It turns out that meta reductions are somewhat
dual to the above notions for black-box reductions. They usually work against
reductions which use the adversary only in a black-box way (for this adversary
is merely simulated), whereas the reduction often receives the description of
the primitive f . This notion then escapes the treatment in [RTV04].

An interesting side effect when the reduction is given the description of f
is that then the separation technique still applies to concrete problems like
RSA or discrete logarithms, and to constructions which use zero-knowledge
proofs relative to f . Such zero-knowledge proofs often rely on Karp reductions
of f to an NP-complete language and therefore on the description of f . That
means, when restricted to black-box use, these constructions do not work in
general, although some of them can still be rescued by augmenting the setup
through a zero-knowledge oracle which allows to prove statements relative to f
(see [BKSY11]). We also remark that in some cases, such as Barak’s ingenious
result about non-black-box zero-knowledge and related results [Bar01, BP12],
the security relies on the code of the adversary instead, though.

Results in this Chapter

The purpose of this chapter is to complement the notions of fully-, semi-, and
weakly-black-box reductions. We also introduce a more fine-grained view on
the involved algorithms, such as the distinction between efficient and non-
efficient adversaries, or the question in how far the framework can deal with
the reduction having partial knowledge about the adversary. We also formalize
meta reductions in the new framework and thus enable classification of this type
of separation results. We then give a comprehensive picture of the relationship
of all reduction types. Next we discuss these results in more detail.

As explained above, we extend the classification of black-box reductions to
other types, like meta reductions relying on black-box access to the adversary
but allowing to depend on the primitive’s representation. This, interestingly,
also affects the question of efficiency of the involved algorithms. That is, we
believe that reductions for inefficient and efficient adversaries and primitives
should in general not be resumed under a single paradigm, if efficiently com-
putable primitives like one-way functions are concerned. For this class, classical
separations techniques such as the embedding of the adversarially exploited
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PSPACE-complete oracle into the primitive do not work anymore. Hence, in
this case, one would need to additionally rely on a complexity assumption, such
as for example in the work by Pass et al. [PTV11]. To testify the importance
of the distinction between efficient and inefficient adversaries in black-box
reductions, we show for example that black-box use of efficient adversaries is
equivalent to non-black-box use, for constructions and reductions which are
non–black box for the primitive. Another example where the non-black-box
use of the primitive turned out to be crucial is in the work by Mahmoody
and Pass [MP12], where they build non-interactive commitments from non-
black-box one-way functions, whereas constructions out of black-box one-way
functions provably fail.

Another issue we address is the question in how far information about the
adversary available to the reduction may be considered as covered by black-box
notions. Technically speaking, the running time of an efficient fully-black-box
reduction must not depend on the adversary’s running time, and thus, for
example, not on the number of queries the adversary makes to the primitive.
Since there is usually no universal, a priori bound for all adversaries on the
number of queries, one would then need a non-standard cost model for the
adversary’s queries to the reduction. (For example, by discounting the time of
any computation that is triggered by such a query—that would introduce other
problems, though.) We overcome this dilemma by allowing the reduction’s
running time (or other parameters) to depend on adversarial parameters, such
as the number of queries the adversary makes when attacking primitive P . We
call this a parameter-dependent reduction.

We can go even one step further and give the reduction the adversarial
parameters as input. This is necessary, for example, to allow the reduction
to depend on the adversary’s success probability, but otherwise treating the
adversary as a black box. A well-known example of such an “almost” fully-
black-box reduction is the security proof of the Goldreich–Levin hardcore
predicate [GL89], attributed to Rackoff in [Gol04]. This reduction depends on
the adversary’s success probability for a majority decision, but does not rely
on any specifics of the adversary nor the function to be inverted itself. We call
such reductions parameter aware.

We note that it is up to the designer of the reduction or separation to
precisely specify the parameters. Such parametrized black-box reductions
potentially allow authors to counteract the idea behind black-box reductions by
placing the adversary’s code in the parameters and thus making the reduction
fully depend on the adversary again (via a universal Turing machine). But
we believe that such trivial cases can be easily detected if the dependency is
signalized clearly, just as a trivial reduction of a cryptographic protocol to
its own security. So far, however, literature seems to be often less explicit on
which parameters the reduction is based upon, and if the reduction should
really count as black box. Stating reductions clearly as parametrized black-box
reductions should make this more prominent.
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In summary, we thus provide a more comprehensive and fine-grained view
on both black-box constructions and separations, allowing to identify and
relate separations more clearly. In our view, two important results are that
we can place relativizing reductions between non-black-box constructions for
inefficient and for efficient adversaries, and that for efficient adversaries the
question of the reduction having black-box access to the adversary, or allowing
full dependency on the adversary, is irrelevant. This holds as long as the
construction and reduction itself make non-black-box use of the primitive.
From a technical point of view, one of the interesting results is that any
reduction from the indistinguishability of hardcore bits to one-wayness, such
as in the Goldreich–Levin case [GL89], must depend on the adversary’s success
probability (and thus needs to be parametrized).

5.2 Notions of Reducibility

Since we augment the basic notions of the original RTV framework in various
directions, we find it useful to use a different terminology for the reduction
types. Instead of referring the original prefixes fully, semi, weakly, and their ∀∃
variants, we use a more descriptive three-character “CAP” notation with words
from the language {B,N}3. ‘B’ in the first position (the C-position) refers to
the fact that the Construction is black box, in the second A-position that the
Adversary is treated as a black box by the reduction, and in the third P-position
the Primitive is treated as a black box by the reduction. Accordingly, an entry
‘N’ stands for a non-black-box use. From each combination of constraints, we
then derive the order of quantification to obtain the actual definitions.

This derivation is essentially a topological ordering for a given set of partial
order constraints. If, for example, the construction uses the primitive as a
black box, then this translates into the constraint “there exists a construction
G . . . for all primitives f ,” or, more succinctly, the ordering relation ∃G ≺ ∀f .
Combining all three resulting relations of the CAP notation into an topolog-
ical ordering then gives the desired definition that respects all constraints
simultaneously.

Hence, a fully-black-box reduction in the RTV framework corresponds to a
BBB reduction in our notation, and a ∀∃-fully-black-box reduction is an NBB
reduction in our sense. The CAP notation will later turn out to be handy when
showing implications from an XYZ reduction to an X̂ŶẐ reduction, whenever
X̂ŶẐ is pointwise at most as large as XYZ (with N being smaller than B). It
also allows to see immediately that the RTV framework only covers a fraction
of all 8 possibilities for the CAP choices (although the NNB type is actually
not meaningful, as we discuss later), and that we fill in the missing types BBN,
as often ruled out by meta reductions, and the BNB type where the primitive
but not the adversary is treated as a black-box.

Extending the RTV framework in another dimension, we differentiate
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Figure 5.1: Notions of reductions and their re-
lations in the original RTV framework. Dashed
arrows indicate equivalence for a restricted class
of reductions. free reduction

∀∃-weakly

weakly

∀∃-semi

semi

relativizing

fully

further based on the (in)efficiency of the primitives and adversaries. We append
the suffix ‘a’ to denote an efficiency requirement on the adversary, i.e., a BBBa
reduction only works for all probabilistic polynomial-time (PPT) adversaries
A, while a BBB reduction is a fully-black-box reduction that transforms any
adversary A into an adversary against another primitive. Likewise, we use ‘p’
to indicate that we restrict primitives to those which are efficiently computable;
the suffix ‘ap’ naturally combines both restrictions.

Overview

At the top of the RTV hierarchy there are fully-black-box reductions—or, BBB
reductions in our CAP terminology. These BBB reductions from a primitive
P to a primitive Q are a pair (G,S) consisting of a construction G and a
reduction algorithm S. Both treat the primitive in a black-box way and the
reduction treats the adversary in a black-box way. So, for all adversaries A
and all instantiations f of the primitive Q, we have that, if the adversary Af
breaks Gf , then the reduction SA,f with black-box access to the adversary
A and f breaks the implementation f . As a consequence, the existence of
primitive Q implies the existence of the primitive P.

The RTV framework discusses several variants and relaxations of fully-
black-box reductions, called semi, weakly, and relativizing reductions (see
Figure 5.1). For semi-black-box reductions (aka. BNN reductions) S can
depend on both, the description of the adversary A and on the instantiation
f , and only the construction is black box. For weakly-black-box reductions
(which are also of the BNN type), the adversary is additionally restricted to
be efficient and does not get access oracle to the primitive (but may depend
on it). Lastly, there is a relativizing reduction between the primitives P and
Q, if for all oracles, the primitive P exists relative to an oracle whenever Q
exists relative to this oracle.

We augment the RTV framework by new classes which represent, among
others, reductions that are ruled out by certain meta reductions. That is,
we first introduce the notion of BBN reductions where S has to work for all
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(black-box) adversaries, but may depend on the code of f . The other case,
where S is universal for all black-box f but may depend on A, is called a
BNB reduction. In both cases the initial ‘B’ indicates that the construction
still makes black-box calls to the primitive. We remark that semi-black-box
and weakly-black-box reductions are of the same BNN type in our notation
as they only differ in regard to the adversary’s access to f . As pointed out
in [RTV04] weakly-black-box reductions are close to free reductions, and black-
box separations are presumably only possible at the semi level or above. In
a sense, our CAP model only captures these levels above, and other types
like free or relativizing (or weakly) reductions are special. For the sake of
completeness, we symbolically denote (but do not define) weakly reductions
wXNN and remark that they essentially correspond to the weakly type of
RTV. Note that weakly-black-box reductions are called mildly-black-box in
some versions of [RTV04].

The RTV framework also considers the type of construction (black box
vs. non–black box) and uses the prefix ∀∃ to indicate that construction G does
not need to be universal for all f but can, instead, depend on the description
of f . In our CAP terminology this “flips” the initial ‘B’ to an ‘N’. By this, we
get 8 combinations, of which 7 are reasonable. The notion of NNB reduction is
not meaningful, because we are restricted by the following dependencies: the
construction may depend on the primitive, the reduction may depend on the
adversary, and the reduction should be universal for the primitive. Thus, there
is only one way to order the quantifiers (∀A∃S∀f∃G) which does not seem to
be a reasonable notion of security, because the construction can now depend
on the adversary (and if it does not, we are in the other cases).

We furthermore note that the notion of an NBB reduction is debatable,
because it relies on a universal reduction which works for arbitrary constructions.
That is, the order of quantifiers is ∃S∀f∃G∀A. But since there may indeed be
such reductions, say, a trivial reduction from a primitive to itself, we do not
exclude this type of reduction here.

Definitions of Reductions

We next provide full definitions of BBB (a.k.a. fully-black-box) reductions,
BNB and BBN reductions; one can derive the remaining definitions similarly.

A primitive Q = (FQ,RQ) is represented as a set FQ of random variables,
corresponding to the set of implementations, and a relation RQ that describes
the security of the primitive as tuples of random variables, i.e., a random
variable A is said to break an instantiation f ∈ FQ, if and only if (f,A) ∈ RQ.
Following [RTV04], we say that a primitive exists if there is a polynomial-
time computable instantiation f ∈ FQ such that no polynomial-time random
variable breaks the primitive. Indeed, [RTV04] demand that primitive sets FQ
are non-empty, and we impose the same restriction.
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For efficient primitives or adversaries we stipulate that the random variable
is efficiently computable in the underlying machine model which, unless men-
tioned differently, is assumed to be Turing machines; the results remain valid
for other computational models like circuit families. Considering security as a
general relation allows to cover various (if not all) notions of security: games
such as CMA-UNF for unforgeability of signature schemes, simulation-based
notions such as implementing a UC commitment functionality, and even less
common notions such as distributional one-way functions. In Section 5.3 we
define as examples the DDH assumption (cast as a primitive) and the indistin-
guishability of the ElGamal encryption scheme. We also review the reduction
from the ElGamal encryption to the DDH assumption and identify its type
according to our terminology. Note that a “black-boxness” consideration in
this particular setting is indeed meaningful, because the DDH assumption
can hold in a variety of group distributions and the concrete procedures that
sample from these group distributions can be abstracted away. We also discuss
another example of weak one-way functions (and the construction of strong
one-way functions [Yao82]) to highlight that the type of reduction hinges on
the exact formulation of the underlying primitive: the construction and the
reduction is then either of the NBN type or of the BBB kind.

We stress that the distinction between the mathematical object describing
the adversary as a random variable, and its implementation through, say, a
Turing machine is important here; else one can find counter examples to im-
plications among black-box reduction types proven in [RTV04]. The problem
is, roughly, that the relation may simply be secure because it syntactically
excludes all oracle Turing machines Af . We note that Reingold et al. [RTV04]
indeed define the relations for adversarial machines. Technically, only interpret-
ing such adversaries as abstract objects sustains the implications in [RTV04],
but a more relaxed interpretation in the above sense is not too far fetched.
However, for sake of convenience, we too often refer to Af by the machine
implementing it, even when considering the mathematical random process for
relations RQ. In this case it is understood that we actually mean the abstract
random variable instead. The same holds for the constructions of the form
Gf and the first component of the security relations. An alternative approach
would be to rely on machines, but to formally introduce semantical relations.
These relations roughly require that, for any algorithm A in RQ, any oracle
machine Af with the same output behavior is also in RQ.

We now turn to the actual definitions. Many (but not all) reductions
in cryptography fall into the class of so-called fully-black-box reductions, a
very restrictive notion, where the reduction algorithm is only provided with
black-box access to the primitive and the adversary. Throughout the chapter,
if there is a XYZ reduction from primitive P to a primitive Q, we notate this
as P ↪→ Q XYZ reduction. Note that the correctness requirement is the same
for all definitions. Therefore, the shorthand notation towards the end of each
definition covers the security requirement only.
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Definition 9 (P ↪→ Q BBB or fully-black-box reduction). There exists a fully-
black-box (or BBB) reduction from a primitive P = (FP ,RP) to a primitive
Q = (FQ,RQ) if there exist probabilistic polynomial-time oracle algorithms G
and S such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .

Security. For every implementation f ∈ FQ and every machine A, if (Gf ,Af )
∈ RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∃PPTS ∀f ∈ FQ ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

Definition 10 (P ↪→ Q BNB reduction). There exists a BNB reduction from
a primitive P = (FP ,RP) to a primitive Q = (FQ,RQ) if there exists a
probabilistic polynomial-time oracle machine G such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .

Security. For every machine A, there is a probabilistic polynomial-time oracle
algorithm S such that: for every implementation f ∈ FQ, if (Gf ,Af ) ∈
RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∀A ∃PPTS ∀f ∈ FQ ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

Definition 11 (P ↪→ Q BBN reduction). There exists a BBN reduction from
a primitive P = (FP ,RP) to a primitive Q = (FQ,RQ) if there exists a
probabilistic polynomial-time oracle machine G such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .

Security. For every implementation f ∈ FQ, there is a probabilistic polynom-
ial-time oracle algorithm S such that for every machine A, if (Gf ,A) ∈
RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∀f ∈ FQ ∃PPTS ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

Note that we always grant S black-box access to f and A, as they may not
be efficiently computable so that the probabilistic polynomial-time reduction
algorithm S cannot efficiently simulate them, even if it knows the code of
f , respectively, of A. For a compact summary of the quantification for all
definitions, see Figure 5.2; the written-out definitions omitted above follow
from the table.
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Name Quantification
BBB ∃PPTG ∃PPTS ∀f ∈ FQ ∀A
BNB ∃PPTG ∀A ∃PPTS ∀f ∈ FQ
BBN ∃PPTG ∀f ∈ FQ ∃PPTS ∀A
BNN ∃PPTG ∀f ∈ FQ ∀A ∃PPTS
NBB ∃PPTS ∀f ∈ FQ ∃PPTG ∀A
NBN ∀f ∈ FQ ∃PPTG ∃PPTS ∀A
NNN ∀f ∈ FQ ∃PPTG ∀A ∃PPTS

Figure 5.2: The quantification of the security statement follows immediately from the
CAP notation.

Efficient versus Inefficient Algorithms

Reductions usually run the original adversary as a subroutine. However, in
many cases, the reduction does not use the code of the original adversary,
but instead only transforms the adversary’s inputs and outputs. Thus, one
might consider the reduction algorithm as having black-box access to the
adversary only. An efficient reduction can then also be given black-box access
to an inefficient adversary, and, maybe surprisingly, most reductions even work
for inefficient adversaries. Imagine, for example, the case that one extracts a
forgery against a signature scheme from a successful intrusion attack against an
authenticated channel. Then, the extraction usually still works for inefficient
adversaries. On the other hand, (unconditional) impossibility results often
require the reduction algorithm to be able to deal with inefficient adversaries.

When designing a fine-grained framework for notions of reducibility, one
thus needs to decide whether one considers efficient or inefficient adversaries.
Reingold et al. [RTV04] defined their most restrictive notion of reductions, the
fully-black-box reductions, for inefficient adversaries. In contrast, their notion
of a semi-black-box reduction treats only efficient adversaries thus making it
easier to find such a reduction. Surprisingly, even for such a weak notion, they
were able to give impossibility results. The reason is that they used inefficient
primitives, which allow to embed arbitrary oracles so that they could make
use of two-oracle separation techniques. Hence, the efficiency question does
not only apply to adversaries, but also to the primitives (and, consequently, to
the combination of both). We postpone the treatment of the case of primitives
for now and refer the reader to Section 5.5.

We now define the efficient adversary analogues of the notions of reduction
introduced earlier. Note that we still give the reduction S oracle access to the
adversary A in all notions, even though the latter can be dropped for all cases
where S depends on A in a non-black-box way. In these cases, a probabilistic
polynomial-time reduction S can simulate the now likewise efficient adversarial
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algorithm A. For consistency, though, we keep the A oracles in the definitions.
To distinguish the two cases of efficient and inefficient adversaries, denote by
BBBa reduction a reduction only dealing with efficient adversaries.

Definition 12 (P ↪→ Q BBBa reduction for efficient adversaries). There exists
a BBBa reduction from a primitive P = (FP ,RP) to a primitive Q = (FQ,RQ)
if there exist probabilistic polynomial-time oracle machines G and S such that:
Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .
Security. For every implementation f ∈ FQ and every probabilistic polynomial-
time machine A, if (Gf ,A) ∈ RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∃PPTS ∀f ∈ FQ ∀PPTA ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

We omit the enumeration of the other XYZa definitions. Again, the
definitions for the remaining types of reductions are readily derived with the
help of Figure 5.2.

5.3 Warm Up: Working with CAP

In order to get accustomed to our notation, we now model two well-understood
cryptographic tasks and their reductions within our framework.

ElGamal encryption based on the DDH Assumption

We first consider the reduction from the indistinguishability of ElGamal encryp-
tion to the DDH problem. It is well known [TY98] that the DDH assumption,
basically stating that (g, ga, gb, gab) is indistinguishable from (g, ga, gb, gc), is
equivalent to the indistinguishability of the ElGamal encryption, with cipher-
texts (gr,pkr ·m).

The primitives. One way to capture the DDH assumption as a primitive
Q = (FQ,RQ) according to our terminology is to let the set FQ consist
of random variables f that output a random group instance whose size is
determined by the security parameter input. The relation RQ, on input a pair
(f,A) of a instance and an adversary, generates such a group with generator g
through f , picks a random bit d and random elements a, b, c in the range of
the group’s order. It then runs the adversary A on a DDH tuple (g, ga, gb, gab)
if d = 0, or on a random tuple (g, ga, gb, gc) in case of d = 1. The adversary A
is in the relation if it can predict d with non-negligible advantage over 1

2 .
Note that the above is just one way to capture the DDH assumption

and that there may be others. The choice may also influence the type of
reduction we obtain, underlining once more the importance of specifying the
primitives clearly. Our choice here matches the idea of the one-way function
case, where the functional part provides the core functionality of the primitive,
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i.e., allowing the evaluation of the primitive, and the relation part defines
its security property. More generally, we can model any falsifiable hardness
assumptions (in the sense of [GW11]) analogously, letting the relation take on
the role of the challenger in the (possibly interactive) security game with the
adversary.

The second primitive, namely P = (FP ,RP), represents any IND-CPA
secure encryption scheme. Here, the set FP contains all triples of algorithms
(KGen,Enc,Dec) satisfying the correctness property of a public key encryption
scheme. Accordingly, we define RP by saying that (G,S) ∈ RP if and only if S
wins the IND-CPA distinguishing game for G with non-negligible probability.

The (c)onstruction. We can construct P from Q in the obvious way. That
is, we may specify an ElGamal construction Gf that uses black-box access
to f ∈ FQ (as specified above) to obtain a description of a random group.
Using this description, the construction performs operations on the group in
order to implement the algorithms of the ElGamal scheme. The construction
is black box with respect to the “DDH primitive,” matching the intuition that
for any group (distribution), we obtain an encryption scheme whose security
is directly related to the hardness of the DDH assumption in the underlying
group (distribution).

The reduction – (a)dversary. Let us briefly recall the interaction between
the reduction S and the adversary A in order to see that S uses A only in
a black-box way. The reduction obtains a group description and a challenge
triple (ga, gb, gc) as input from the DDH game. Then, it runs the adversary
oracle on the public key ga and embeds the DDH challenge into the challenge
ciphertext during the simulation of the IND-CPA game, i.e., it calculates
C ← (gb, gc ·md) for a randomly chosen bit d and returns C to the adversary.
Finally, the reduction outputs 1 if and only if the adversary’s output d′ matches
d. Hence, the reduction only uses the adversary as an oracle.

The reduction – (p)rimitive. Here, the same discussion as for the con-
struction applies—the primitive is treated as a black box; the reduction merely
performs group operations on the group that is generated by the primitive
oracle. This matches the intuition that the reduction works for an arbitrary
group (distribution).

In conclusion we hence have a BBB reduction in this case.

Amplification of One-Way Functions

As a second example, let us consider the primitive Q = (FQ,RQ) describing
weak one-way functions, i.e., functions f for which there exists a function ε(n)
bounded away non-negligibly from 1, such that for any PPT adversary A we
have

Pr
[
A(1n, f(x))→ x′ ∈ f−1(x)

]
≤ ε(n) + negl(n).
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7 8 Figure 5.3: The relations among the basic CAP

notions form a cube. Arrows indicate an im-
plication (via Theorem 5). All implications
are strict; the number/citation on the arrow
indicates the theorem supporting the strictness
claim. The NNB notion is shown for complete-
ness only.

The relation RQ associates to each f ∈ FQ a function ε as above, and contains
a pair (f,A) if A’s inversion probability exceeds ε(n) non-negligibly.

The concatenation construction which evaluates f for Θ(n/ε(n)) indepen-
dent inputs yields a (strong) one-way function [Yao82]. Note that in the
construction, the number of function evaluations depends on the specific pa-
rameter ε of the weak one-way function. Since the reduction only makes
black-box use of the adversary but also relies on ε, the transformation is thus
an NBN reduction in our terminology.

However, if we change the viewpoint slightly, and define the primitive
Qε = (FQε ,RQε) to contain all functions for some global bound ε, i.e., such
that RQε consists of all pairs (f,A) with f ∈ FQε and where A’s inversion
probability is non-negligibly larger than ε(n), then we obtain a BBB reduction
for the concatenation construction (and its reduction) based on the same global
ε. This shows that the type of reduction critically depends on the definition of
the primitive.

5.4 Relations Amongst the Definitions
Naturally, the next question is how the definitions are related. We first note
that a number of implications among the reductions is immediately clear
by simply shifting quantifiers, that is, if we have a for-all quantifier, then
there is certainly an existential version of the reduction in question. The next
proposition states this formally, we omit the proof because it is only syntactical.

Theorem 5. Let XYZ and X̂ŶẐ be two types of CAP reductions such that
X̂ŶẐ ≤ XYZ point-wise (where N ≤ B) and let P and Q be two primitives. If
there is a P ↪→ Q XYZ reduction, then there is a P ↪→ Q X̂ŶẐ reduction. Also,
if there is a P ↪→ Q XYZa reduction, then there is a P ↪→ Q X̂ŶẐa reduction.

In the remainder of this section, we prove via means of counterexamples that
for all notions for inefficient adversaries, all the above implications are, indeed,
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strict; see Figure 5.3. These separations are split into a number of interesting
observations. For example, we prove that the Goldreich–Levin hardcore bit
reduction [GL89] has to depend on the success probability of the adversary
(Theorem 6). Moreover, we show that the construction of one-way functions out
of weak one-way functions ([Yao82, GIL+90]) needs to depend on the weakness
parameter of the weak one-way function (Theorem 7). RTV conjecture that
there is no inherent restriction in treating the adversary as a black box. Jumping
ahead, Theorem 9 in the next section partially confirms this conjecture, for
efficient adversaries. For notions of inefficient adversaries, however, non-
black-box use of the adversary is a promising approach to overcome existing
impossibility results, as Theorem 8 shows. Namely, we prove that for inefficient
adversaries, BNB reductions do not imply BBB reductions, and BNN reductions
do not imply BBN reductions. For both separations, we will consider a
reduction that has to depend on the adversary in a non-black-box way, namely
the Goldreich–Levin hardcore bit reduction [GL89].

Theorem 6. There are primitives P and Q such that there is an P ↪→ Q
BNB reduction, but no BBB reduction. For the same two primitives, there is
a P ↪→ Q BNN reduction, but no BBN reduction, as well as a P ↪→ Q NNN
reduction, but no NBN reduction.

Proof. We will prove that there are two primitives such that there is an BNB
reduction and thus, by Theorem 5 also a BNN and a NNN reduction. We will
then prove that for the same two primitives, there is no NBN reduction and
therefore (again according to Theorem 5) neither a BBN, nor a BBB reduction.
The common element here is, of course, that for a reduction between the
primitives, the reduction needs to depend on the adversary in a non-black-box
way. We will see that the Goldreich–Levin hardcore bit construction has this
property.

We define primitives Q and P both as random oracles for length-doubling
functions with different interfaces/security games/security relations. In short,
Q is the game for one-wayness of a random oracle, and P is the game for the
prediction of the Goldreich–Levin hardcore bit. For security parameter λ, the
input length to the functions is λ. To break Q, the adversary is given f(x) for
a random x and may query the random oracle. The adversary is successful if
it determines x′ with f(x′) = f(x) with non-negligible probability. To break
P , an adversary is given f(x) for a random x and a random string r of length
|x|. That is, Gf is the primitive which samples x, r and outputs f(x) and r.
The adversary wins if it can determine the inner product 〈x, r〉 over Z2 with a
non-negligible advantage over 1

2 .
The Goldreich–Levin reduction [GL89] now proves that if there is a suc-

cessful adversary A against P then we can invert the one-way function. As the
reduction highly depends on the success probability of the adversary A but is
black box with respect to the implementation of the one-way function, and
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as, likewise, the hardcore-bit construction is black box, the Goldreich–Levin
reduction is a BNB reduction.

If we can prove that the dependence of the reduction on the adversary’s
success probability is necessary, then we know that there is no NBN reduction
from P to Q. However, as our primitives are random oracles, this follows by
a simple information-theoretic argument, namely, if the reduction asks the
adversary, say, p times while the adversary’s success probability is less than,
say, λ

4p , then, on average, the reduction can extract at most p · λ4p = λ
4 bits of

information from the adversary. Using Hoeffding’s bound, we obtain that the
adversary gives a correct response at most λ

2 times, which is not enough to
compute a preimage of length λ. We now state this argument formally.

Let p(λ) ≥ λ2 be an upper bound on the running time of the reduction S,
then S queries A at most p(λ) times. We will now construct an (inefficient)
adversary A that has non-negligible winning advantage against P, and yet,
S only breaks the one-wayness of Q with negligible probability when given
access to A. Let ε(λ) := λ

4p(λ) . On input (f(x), r), the adversary A returns a
random bit with probability 1− ε. With probability ε, the adversary computes
the smallest x′ such that f(x) = f(x′) and returns 〈x′, r〉. Note that with
overwhelming probability, for a random x, there is no second preimage for
f(x) under f , as it is a length-doubling random function: recall that f is a
random function, hence the probability for a second preimage for any image
is 1− (1− 2−2n)2n ≤ 2−n (using Bernoulli’s inequality). Thus, the adversary
A’s success probability is negligibly close to 1

2 + ε, and the adversary therefore
breaks primitive P.

We now prove that with overwhelming probability, the adversary does
not decide to return the correct answer more than λ

2 times. Towards this
goal, consider the Chernoff–Hoeffding bound for independent Bernoulli random
variables Xi that all have mean µ, and let 0 ≤ δ ≤ 1 be a parameter,

Pr
[
n∑
i=1

Xi > (1 + δ)nµ
]
≤ e−

nµδ2

3 .

We set Xi = 0, if the adversary decides to return a random bit on the ith
query and Xi = 1, if the adversary decides to return the correct answer. Then,
µ equals ε(λ) = λ

4p(λ) . We set n := p(λ) as the upper bound on the number
of queries made by the reduction. Set δ := 1, then the probability that the
adversary decides to return the correct answer more than λ

2 times is negligible,
i.e.:

Pr

p(λ)∑
i=1

Xi >
λ

2

 = Pr

p(λ)∑
i=1

Xi > (1 + 1)p(λ) λ
4p(λ)

 ≤ e−p(λ) λ
4p(λ)

12

3 = e−
λ
12 .

We conclude that the probability that the adversary decides to return a correct
answer (and not a random reply) more than λ

2 times when being invoked p(n)
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times, is negligible. As a thought experiment, we can thus replace the (stateless)
adversary A by a stateful adversary A′ which draws a set of λ2 random indices
between 1 and p(n) in the beginning. Then, whenever the index is in this set,
the adversary computes the smallest x′ such that f(x) = f(x′) and returns
〈x′, r〉. Else, the adversary returns a random response. Moreover, we can have
A′ to return some additional information indicating the reply’s correctness,
namely 0, if it outputs a random bit, and 1, if it returns the actual bit 〈x′, r〉.
This adversary is actually “more helpful” to the reduction than the original
one, because the reduction knows which bits are correct and which bits are
random. In a next step, since the other answers of A′ are all random bits, we
can replace A′ by the adversary A′′ who can only be queried λ

2 times and who
always returns 〈x′, r〉 on input (f(x), r), where x′ is the smallest element such
that f(x) = f(x′). (Note that any query on some input (f(x̃), r) where x̃ 6= x
is not helpful to the reduction since f is a random function.)

It remains to prove that no efficient reduction can invert f on a random
input when being allowed λ

2 queries to A′′. Towards this goal, we consider the
random oracle via lazy sampling.

Before making a query to A′′, the reduction’s probability of finding a
preimage of its input y = f(x) in a single query is roughly 2−|y| + 2−|x| =
2−2λ + 2−λ, i.e., the probability that y is sampled as the answer plus the
probability, that the reduction queries the real preimage x. After learning the
inner product of x with some value r, the preimage space for x is divided into
two halves, so that the reduction’s success probability increases to 2−2λ+2 ·2−λ
per query, which is still negligible. Repeating this process λ

2 times yields a
success probability of roughly 2−2λ + 2λ/2 · 2−λ which is still negligible.

For the following theorem, we interpret the results of Lin, Trevisan, and
Wee [LTW05] and Yao [Yao82] as an instance of our framework. Namely,
Yao [Yao82] shows how to construct strong one-way functions out of weak one-
way functions via an NBN reduction, while Lin, Trevisan, and Wee [LTW05]
show that any such construction has to depend on the weakness parameter
of the weak one-way function. In other words, one cannot have any BYZ
reduction between these two primitives.

Theorem 7. There exists primitives P and Q such that for all YZ ∈ {BN,BNa,
NN,NNa}, there is a P ↪→ Q NYZ reduction but there is no P ↪→ Q BYZ
reduction.

Proof. For completeness, we now review the construction by Yao [Yao82] and
also give a simple impossibility in the spirit of Lin, Trevisan and Wee [LTW05]
to explain why one cannot build strong one-way functions out of weak one-way
functions via a BYZ reduction.
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Recall that a one-way function is a function that is hard to invert on a
random input, i.e., for all efficient adversaries A we have

Pr
[
A(1n, f(x))→ x′ ∈ f−1(x)

]
≤ negl(n).

A weak one-way function is a function that is one-way on a certain fraction on
its input domain. In other words, a weak one-way function is secure if there is
a function ε(n) bounded away non-negligibly from 1, such that for any efficient
adversary A the inverting probability is essentially at most ε(n). Formally,

Pr
[
A(1n, f(x))→ x′ ∈ f−1(x)

]
≤ ε(n) + negl(n).

Yao [Yao82] proved that any weak one-way function can be transformed into a
one-way function via concatenation, i.e., if f is a weak one-way function with
parameter ε(n), then for k := n ·

⌈
1
ε(n)

⌉
, one has that

Gf (x1|...|xk) := f(x1)|...|f(xk), where |xi| = n,

is a one-way function. The reason is, that with overwhelming probability, for
a random x = x1|...|xk at least one of the xi lies in the hard ε-fraction of the
weak one-way function f . This is a non-black-box construction, as we use the
parameter ε to construct G. Note that, depending on f and G, the adversary
A now expects inputs of a certain format and thus, Yao’s reduction is only
black-box with respect to the adversary, but not with respect to the function
f . Thus, it is an NBN reduction. By Theorem 5, it is also an NNN reduction,
and due to Theorem 10, these reductions also work when restricted to efficient
adversaries.

We now give some intuition why the dependence on ε is necessary. Consider
towards contradiction Yao’s concatenation operator construction, where the
number of queries k that the construction makes to f does not depend on
the parameter ε(n) which determines the degree of one-wayness of the weak
one-way function f . Assume that the concatenation construction is the above
construction for some value k = n · nc with c > 1 (the proof holds in particular
for any k for which n · nc is an upper bound). Then, set ε(n) := n−2c and let
f be a length-preserving function that behaves like a random oracle on an ε(n)
fraction of its inputs, and let f return the all-zero string otherwise. Formally,
let R be a length-preserving random oracle, and define

f(xi) :=
{
R(xi) if 〈xi〉 < ε(|xi|)2|xi| ;
0|xi| otherwise.

Here, 〈xi〉 denotes the value of xi when xi is interpreted as a natural num-
ber. Let A be the adversary that on input (1n, y) returns a random value
x←$ {0, 1}|y|. We prove that A has a noticeable winning probability against
Gf . Towards this goal, we show that with noticeable probability over x, the
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construction returns the all-zero string, i.e., Gf (x) = 0|x|. If the challenge
value is the all-zero string and if the adversary picks a preimage of an all-zero
string, then the adversary is successful. As we will show, both events happen
with noticeable probability and as both events are independent (the adversary
ignores its input challenge), the overall success probability of the adversary is
noticeable, too.

Recall that k = n · nc. For a random x = x1|...|xk, we have that the
probability that Gf (x) = 0|x|, i.e., that for all i, it holds that 〈xi〉 ≥ ε(|xi|)2|xi|
is lower bounded by

Pr
xi

[
Gf (x) = 0|x|

]
≥ (1− ε(n))k

≥ (1− n−2c)n·nc

≥ 1− n−2c · n · nc (5.1)
≥ 1− n−(c−1) (5.2)
≥ 7

8 ,

where (5.1) follows from the Bernoulli inequality, stating that (1 + z)r ≥ 1 + rz
for r ≥ 0 and z ≥ −1 and (5.2) holds for sufficiently large security parameters
n. We see that the probability that Gf (x) = 0|x| for a random x is greater
than 7

8 , and so is the probability that the adversary’s challenge is the all-zero
string. Likewise, the probability that A returns a preimage of an all-zero
string is greater than 7

8 . As both events are independent, the probability that
both events happen is greater than 7

8 ·
7
8 and thus, A has a noticeable success

probability against Gf . This concludes that any construction using k = n · nc
(independent of ε) must be insecure.

For general constructions, we refer the reader to Lin, Trevisan, and
Wee [LTW05]. Note that they do not only show that the dependence on
ε is necessary, they also prove quantitative lower bounds on the number of
queries that the construction needs to make.

Theorem 8. For X ∈ {N,B}, there exist primitives P and Q such that there
is a P ↪→ Q XBN reduction, a P ↪→ Q XBNa reduction, a BNN reduction and
BNNa reduction but such that there is no P ↪→ Q XBB/XBBa/BNB/BNBa
reduction.

Proof. As in previous proofs, we will show two separations via a single separa-
tion, namely, we define two primitives P and Q such that there is a P ↪→ Q
BBN reduction (and thus an P ↪→ Q NBN reduction via Theorem 5, as well as
an NBNa reduction and a BBNa reduction), but no P ↪→ Q NBBa reduction
(and thus no BBBa/BBB/NBBa reduction). We will then show the case
BNB/BNBa versus BBN/BBNa separately.

For the primitive P, we consider a trivial primitive, namely the constant
zero function, denoted fz. The pair (fz,A) is in RP for all adversaries A. For
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Figure 5.4: Introducing efficient adversaries unfolds another dimension with similar
relations. The dashed arrows designate (strict) implications.

the primitive Q, we consider the two random variables f0 and f1 that take as
input a string. The random variable fb returns 1, if the first bit of the input
string is b, and 0, else. We define (fb,A) ∈ RQ if and only if A on input ⊥
queries b|x to the primitive with probability 1 for b ∈ {0, 1} and x ∈ {0, 1}∗.
In the BBNa reduction, the reduction S may depend on the primitive Q and
ignores the given adversary A. If the primitive Q is instantiated by f0, then
the reduction S constantly returns 0. If the primitive Q is instantiated by f1,
then the reduction S constantly returns 1. Thus, there is a BBN reduction. In
contrast, there is no NBBa reduction, as we can consider the adversary A that
does nothing (and is still successful by definition) and then, S = SA cannot
return both, 0 and 1 with probability 1. Thus, S fails for at least one of the
two primitives f0, f1 ∈ FQ, which concludes the proof.

By inspection, the given reduction is also a BNN/BNNa reduction, and
the impossibility considerations also apply to BNN/BNNa reductions.

5.5 Adding Efficiency

Once we consider efficient adversaries, the picture of Figure 5.3 grows by
one dimension; Figure 5.4 illustrates the result. Interestingly, some of the
implications of Theorem 5 are not strict when one is concerned with reductions
for efficient adversaries. Maybe surprisingly, NNNa reductions and NBNa
reductions are, indeed, equivalent. Note that this means that knowledge of the
code of the adversary does not lend additional power to the reduction:
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Theorem 9 (Equivalence of NNNa and NBNa). For all primitives P and Q,
there is a P ↪→ Q NBNa reduction if and only if there is a P ↪→ Q NNNa
reduction.

Proof. Using straightforward logical deductions like in Theorem 5, it follows
that NBNa-reductions imply NNNa reductions. For the converse direction,
assume that we have two primitives P and Q such that there is a P ↪→ Q
NNNa reduction. We now have to show that there also is a P ↪→ Q NBNa
reduction, that is, we have to give a reduction algorithm S that depends on f
in a non-black-box way, and yet S depends on A only in a black-box way. We
proceed by case distinction over f .

Case I: Suppose f ∈ FQ such that for all constructions G, the primitive
Gf is a secure implementation of P, i.e., for all polynomial-time adversaries
A it holds that (Gf ,Af ) /∈ RP . Then, proving the existence of a reduction
satisfying the implication (Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ is trivial, as the
premise of the implication is never satisfied.

Case II: For any f ∈ FQ outside the class described in Case I, we know
that there exists a PPT construction G such that for all A there is a reduction
algorithm S that satisfies (Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ, and such an
efficient A with (Gf ,Af ) ∈ RP exists. For any such f , we now fix a unique
adversary Af , say, by taking the random variable Af with the shortest descrip-
tion according to a particular encoding, such that it satisfies (Gf ,Aff ) ∈ RP .
For such an Af let S be a probabilistic polynomial-time reduction making
black-box use of Af such that (f,SAf ,f ) ∈ RQ. Consider the oracle algorithm
Sff that has the same behavior as SAf ,f , but it incorporates Af and only has
an oracle for f . The algorithm Sff

• only depends on f ,

• satisfies (Sff , f) ∈ RQ, and

• is implementable in probabilistic polynomial time, as S and Af are both
polynomial time algorithms.

Thus, regardless of construction G, we showed that for all f there is an efficient
reduction S such that (SA,f , f) ∈ RQ, namely by choosing Sf = Sff . Thus,
we also know that for all f , there is a reduction S such that for all A, if
(A, Gf ) ∈ RP then (SA,f , f) ∈ RQ. If now, we add an adversary oracle A
that is used by S (here, we require that the relation be machine independent),
we also obtain that (SA,f , f) ∈ RQ. And thus, there is a P ↪→ Q NBNa
reduction.

We now show that, while a reduction for inefficient adversaries always
implies a reduction for efficient adversaries of the same type, the converse is
not true in general.
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Theorem 10. For each XYZ ∈ {BBB,BNB,BBN,NBB,BNN,NBN,NNN},
there are primitives P and Q such that there is a P ↪→ Q XYZa reduction, but
no P ↪→ Q XYZ reduction.

Proof. For the primitive P we consider a trivial primitive, namely the constant
all-zero function, denoted fz. Let L be an EXPTIME-complete problem. The
pair (fz,A) is in the relationRP if and only if the adversary A is a deterministic
function that decides L. Let FQ also consist of the set that only contains the
all-zero function fz. The relation RQ is empty. Observe that, for efficient
adversaries, the primitive P is secure because EXPTIME strictly contains the
complexity class P [HS65]. Thus, there is a trivial reduction since the premise
of the implication

(Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ

is never satisfied for any efficient adversary A. Hence, for all XYZ ∈
{BBB,BNB,BBN,NBB,BNN,NBN,NNN}, there is a P ↪→ Q XYZa reduc-
tion. In contrast, inefficient adversaries can break the primitive P, while, as
RQ is empty, no reduction S can break RQ, even oracle A. Thus, for all
XYZ ∈ {BBB,BNB,BBN,NBB,BNN,NBN,NNN}, there is no P ↪→ Q XYZ
reduction.

Relativizing Reductions

In complexity theory as in cryptography, most reductions relativize in the
presence of oracles. A reduction relativizes, if it remains true in the presence of
arbitrary oracles. More concretely, if a (secure instantiation of the) primitive
P can be built from a (secure instantiation of the) primitive Q, then the
construction still works, if additionally, all parties get access to, say, a random
oracle. We say that there is a relativizing reduction from P to Q, if for all
oracles Π, the primitive P exists relative to Π, whenever Q exists relative to
Π. Often, separation results rule out such reductions.

Definition 13 (Relativizing reduction). There exists a relativizing reduction
from a primitive P to a primitive Q, if for all oracles Π, the primitive P exists
relative to Π whenever Q exists relative to Π. A primitive P is said to exist
relative to Π if there is an f ∈ FP which has an efficient implementation when
having access to the oracle Π such that there is no probabilistic polynomial-time
algorithm A with (f,AΠ,f ) ∈ RP .

We remark that, since we define security relations over random variables
and not their implementations, it is understood that the implementation of
f may actually depend on Π, too. According to Reingold et al. [RTV04],
relativizing reductions are a relatively restrictive notion of reducibility that
they place between BBB reductions and NNNa reductions. Jumping ahead,
we note this is due their treatment of (in-)efficient adversaries: they require
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BBB reductions to also work for inefficient adversaries A, and so do we. In
contrast, for NNNa reductions, Reingold et al. allow the reduction algorithm to
fail for inefficient adversaries A. As we can show, all notions of reducibility for
inefficient adversaries, including NNN reductions, imply relativizing reductions,
i.e., we can place relativizing reductions between NNN and NNNa reductions
showing that, in fact, the notion is very liberal compared to notions of reduc-
tions that treat inefficient adversaries. In contrast, for efficient adversaries,
relativizing reductions imply NNNa and (the equivalent) NBNa reductions and
are incomparable to all stronger notions that treat efficient adversaries.

We now prove that relativizing reductions are implied by NNN reductions
for inefficient adversaries. The proof is inspired by Reingold et al. [RTV04]
who show that BBB reductions imply relativizing reductions.

Theorem 11. If there is a P ↪→ Q NNN reduction, then there is a relativizing
reduction from P to Q.

Proof. Assume there is an NNN reduction between two primitives P and Q
and assume towards contradiction that there is an oracle Π such that Q exists
relative to this oracle, but P does not. Let f ∈ FQ be an instantiation of
Q that is efficiently computable by an algorithm that has oracle access to
Π and such that f is secure against all efficient oracle machines S, i.e., for
all probabilistic polynomial-time machines S, one has (f,SΠ,f ) /∈ RQ. By
assumption of a P ↪→ Q NNN reduction, there exists a PPT oracle algorithm
G for f , such that for all (possibly unbounded) adversaries A there is a PPT
reduction algorithm S such that (Gf ,Af ) ∈ RP implies (f,SA,f ) ∈ RQ. Now,
Gf is efficiently computable relative to the oracle Π, because G is PPT and f
is efficiently computable relative to Π. Since P does not exist relative to Π,
there is an efficient adversary A such that (Gf ,AΠ) ∈ RP , i.e., by considering
that the relations are defined over random variables, setting A′ := AΠ one also
has (Gf ,A′f ) ∈ RP . Thus, the NNN reduction gives an efficient reduction
S such that (f,SA′,f ) ∈ RQ. As S is PPT and as f and A′ are efficiently
computable relative to oracle Π, one has that SA′,f is efficiently computable
relative to Π. Thus, f is not “Q secure” against all efficient oracle machines
with oracle access to Π, yielding a contradiction.

This proves that for inefficient adversaries, relativizing reductions are
implied by NNN reductions, the most liberal notion of reductions for inefficient
adversaries. Conversely, for efficient adversaries, relativizing reductions imply
NNNa and NBNa reductions, but they are not implied by any of the stronger
notions. We adapt the proof due to Reingold et al. for the following theorem.

Theorem 12. If there is a relativizing reduction from P to Q, then there is a
P ↪→ Q NNNa reduction, and a P ↪→ Q NBNa reduction.

Proof. Suppose we have a relativizing reduction from P to Q and consider any
f ∈ FQ. Then, one of the following two cases holds. Either there is a PPT
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algorithm S such that (f,Sf ) ∈ RQ, i.e., breaking Q. Define a machine G
that computes an arbitrary (possibly insecure) implementation of P. Then,
we have an NNNa/NBNa reduction using G and S. In the other case, such S
does not exist and we know that Q exists relative to the oracle computing f .
Hence, P exists relative to f as well via the relativizing reduction, implying
that no efficient algorithm Af breaks P . Thus, the security premises of NNNa
and NBNa reductions are not satisfied and therefore they exist.

Theorem 13. For XYZ ∈ {BBB,NBB,BBN,BNB,BNN,NBN,NNN}, there
are primitives P and Q such that there is a P ↪→ Q XYZa reduction for
efficient adversaries, but no relativizing reduction.

Proof. We show that BBBa reductions do not imply relativizing reductions;
as BBBa reductions imply the “lower level” reductions, the other cases follow.
We use the same approach as for Theorem 10.

Let Q be the primitive that contains the constant all-zero function fz.
We define the relation RP such that P is trivially secure against all efficient
adversaries, namely, let L be an EXPTIME-complete language, then (fz,A) is
in RP if A is a deterministic function and decides L. As the complexity class
P is strictly contained in EXPTIME, no efficient adversary can break P . Let Q
also be the primitive that contains the constant all-zero function fz, but with a
different relation, namely RQ is empty. In particular, no adversary can break
Q. Hence, there is a trivial P ↪→ Q BBBa reduction, because the premise of
the implication

(Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ
is never satisfied for efficient adversaries and the implication is thus trivially
true. In contrast, there is no relativizing reduction between the two primitives.
That is, assume, we add an oracle that decides the EXPTIME-complete language
L, then relative to this oracle, there are suddenly efficient adversaries that
break P . However, as RQ is still empty, there cannot be a reduction S in this
oracle world, giving us a contradiction.

Reingold et al. note that BNNa reductions for efficient adversaries and
relativizing reductions are often equivalent. In particular, they prove that if
a primitive Q allows any oracle Π to be embedded into it, then a P ↪→ Q
BNNa reduction implies a P ↪→ Q relativizing reduction. However, efficient
primitives Q such as one-way functions (as opposed to random oracles, for
example), are not known to satisfy this property. We discuss this issue in more
detail in the following section about efficient primitives.

Efficient Primitives versus Inefficient Primitives

A reduction for efficient primitives is a reduction that only works if f ∈ FQ is
efficiently implementable, i.e., in probabilistic polynomial time. If we make
this distinction then, according to Figure 5.3, we unfold yet another dimension
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(analogously to the case of efficient adversaries). As we discuss below, our results
for non-efficient primitives hold in this “parallel universe” of efficient primitives
as well, and between the two universes there are straightforward implications
and separations (as in the case of efficient and inefficient adversaries).

Technically, one derives the efficient primitive version XYZp of an XYZ
reduction by replacing all universal quantifiers over primitives f in FQ by
universal quantifiers that are restricted to efficiently implementable f in FQ.
More concretely, we replace ∀f ∈ FQ by the term ∀PPTf ∈ FQ. For example,
the notion of a BBBp reduction then reads as follows:

Definition 14 (P ↪→ Q BBBp or fully-black-box reduction for efficient
primitives). There exists a fully-black-box (or BBBp) reduction for efficient
primitives from P = (FP ,RP) to Q = (FQ,RQ) if there exist probabilistic
polynomial-time oracle algorithms G and S such that:

Correctness. For every polynomial-time computable function f ∈ FQ, it
holds that Gf ∈ FP .

Security. For every polynomial-time computable function f ∈ FQ and every
machine A, if (Gf ,A) ∈ RP , then (f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∃PPTS ∀PPTf ∈ FQ ∀A ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

In the same manner, for any XYZ reduction, we can define the correspond-
ing XYZp reduction. Similarly, one can transform all reduction types XYZa
for efficient adversaries into reduction types XYZap for efficient adversaries
and efficient primitives. For example, the notion of a BBBap reduction is as
follows:

Definition 15 (P ↪→ Q BBBap Reduction). There exists a fully-black-box
(or BBBap) reduction for efficient adversaries and efficient primitives from
P = (FP ,RP) to Q = (FQ,RQ) if there exist probabilistic polynomial-time
oracle algorithms G and S such that:

Correctness. For every polynomial-time computable function f ∈ FQ, it
holds that Gf ∈ FP .

Security. For every polynomial-time computable function f ∈ FQ and ev-
ery probabilistic polynomial-time machine A, if (Gf ,A) ∈ RP , then
(f,SA,f ) ∈ RQ, i.e.,

∃PPTG ∃PPTS ∀PPTf ∈ FQ ∀PPTA ((Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ).

We will now review the separations proved so far in light of this new
dimension. Basically, all relations that hold for XYZ reductions and XYZa
reductions, also hold for XYZp and XYZap reductions, except for the relation
to relativizing reductions as we will see below in Theorem 15. Firstly, the
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proof of Theorem 9, showing equivalence of black-box access and non-black-
box access to the efficient adversary, works for all classes of primitives and
in particular for efficiently implementable ones. We conclude that there is
an NNNap reduction from P to Q if and only if there is a P ↪→ Q NNNap
reduction. For Theorem 10, separating reductions for the cases of efficient
resp. inefficient adversaries, we observe that the primitive there, the constant all-
zero function, is efficiently implementable. The proof hence also shows that for
all XYZ ∈ {BBB,BNB,BBN,NBB,BNN,NBN,NNN}, there are primitives
P and Q such that there is a P ↪→ Q XYZap-reduction, but no P ↪→ Q XYZp
reduction. Note that this observation neither separates XYZ reductions
from XYZp reductions, nor does it separate XYZa reductions from XYZap-
reduction. These two classes of separations will be taken care of by Theorem 14.

Similarly to the constant all-zero-function case, all results that rely on
random oracles carry through, as random oracles are efficiently computable.
That is, Theorem 6, that uses a special class of weak one-way functions
implemented as one-way oracles, still holds and shows that there are primitives
P and Q such that there is an P ↪→ Q BNBp reduction, but no BBBp reduction.
The same theorem establishes that for the same two primitives, there is a
P ↪→ Q BNNp reduction, but no BBNp reduction, and there is a P ↪→ Q
NNNp reduction, but no NBNp reduction. Moreover, as Theorem 7 also relies
on random oracles only, we conclude that there are primitives P and Q such
that for all YZ ∈ {BB,BBa,NN,NNa}, there is a P ↪→ Q NYZp-reduction,
but there is neither a P ↪→ Q BYZp-reduction, nor a P ↪→ Q BBNp reduction,
nor a P ↪→ Q BBNap reduction. Finally, Theorem 8 only uses the efficiently
implementable constant all-zero function, and thus, the proof of Theorem 8
also establishes that for X ∈ {N,B} there exist primitives P and Q such
that there is a P ↪→ Q XBNp reduction, a P ↪→ Q XBNap reduction, a
BNNp reduction and BNNap reduction but such that there is no P ↪→ Q
XBBp/XBBap/BNBp/BNBap reduction.

We now prove an analogue to Theorem 10, to separate reductions for
arbitrary reductions from reductions for efficient primitives.

Theorem 14. For each XYZ ∈ {BBB,BNB,BBN,NBB,BNN,NBN,NNN},
if BPP 6= EXPTIME, then there are primitives P and Q such that there is a
P ↪→ Q XYZp reduction, a P ↪→ Q XYZap reduction, but neither a P ↪→ Q
XYZa reduction, nor a P ↪→ Q XYZ reduction.

Proof. In the proof of Theorem 10 we made the primitive Q unbreakable.
Thus, a reduction can only exist if one of the universal quantifiers ∀A or ∀f
quantifies over the empty set. We can use the same technique here, but this
time we swap the role of the adversary and the role of the function f . Let L
be an EXPTIME-complete language, and let f be the characteristic function
for L. Now, let Q = (FQ,RQ) be defined through the singleton function set
FQ = {f} and the empty relation RQ = ∅. Let P be the primitive where FP
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only contains the constant all-zero function, denoted by fz, and where all PPT
adversaries A break this function, i.e., RP := {(fz,A) : A is PPT}. Then, let
G be the construction that ignores its oracle and constantly returns 0. Thus,
for any f ∈ FQ the construction Gf implements the all-zero function.

Now, any universal PPT reduction algorithm S implements a P ↪→ Q
XYZp reduction, a P ↪→ Q XYZap reduction, as the quantifier ∀PPTf ∈ FQ
quantifies over the empty set, since BPP 6= EXPTIME. On the other hand, no
pair of a construction G and a reduction algorithm S (depending on f and A)
will implement a P ↪→ Q XYZa reduction or a P ↪→ Q XYZ reduction. This
is because the premise of the implication

(Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ

can be easily satisfied, as Gf implements the all-zero function and a PPT
adversary A breaks it. On the other hand, the conclusion is impossible to
achieve since RQ is empty.

As mentioned before, the original RTV paper required that FP contain
at least one efficiently computable primitive. Thus, we have to slightly adapt
our proof to work also in their setting. To do so, we add the constant all-zero
function fz to FQ, i.e., FQ := {f, fz} and define RQ := RP , i.e., for f , there
is still no adversary that breaks f . Then, the same analysis applies.

Note that the proof of Theorem 10 also shows the stronger statement that
there are primitives P and Q such that there is a P ↪→ Q XYZp reduction, a
P ↪→ Q XYZ reduction, but neither a P ↪→ Q XYZa reduction, nor a P ↪→ Q
XYZap reduction. This is, because all considered primitives in the proof of
Theorem 10 are efficiently computable, namely the constant all-zero function.

As in the case of efficient adversaries, XYZp reductions are not strong
enough to imply relativizing reductions.

Theorem 15. There exists primitives P and Q such that there is an P ↪→ Q
XYZp reduction, but no relativizing reduction.

Proof. Consider the primitives P and Q designed in the previous proof. We
saw that there is an P ↪→ Q XYZp reduction. We will show that there is no
relativizing reduction from P to Q by proving that, relative to an oracle Π
that implements the characteristic function of an EXPTIME-complete problem,
the primitive Q exists, while the primitive P does not. First note that f is
efficiently computable relative to an EXPTIME-complete oracle. Moreover, by
definition of RQ, there is no adversary A such that (f,A) is in RQ and thus, f
is efficiently computable relative to the EXPTIME-complete oracle and cannot
be broken even by an adversary that is given access to the oracle. We showed
that f exists relative to Π. On the other hand, Q does not exist relative to any
oracle as the constant all-zero adversary A always breaks all implementations
in PQ, as RP = {(fz,A) : A is PPT}.
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Theorem 12 shows that relativizing reductions imply NNNa reductions and
thus, they also imply NNNap reductions. However, it is not clear whether they
equally imply NNNp reductions. Theorem 12 considers a (possibly inefficient)
implementation f of FQ as an oracle and argues that, relative to this oracle,
the primitive FP exists, i.e., there is an efficient oracle algorithm G such that
Gf implements P and cannot be broken by an adversary that has access to
f . When switching the roles of the function f and the adversary A, then this
argument does not carry over, as the construction G does not get access to
the adversary A.

Note that the separation in Theorem 15 tells us that the use of efficient
primitives is a possible way to bypass the important class of oracle separations
with inefficient oracles. Nevertheless, it might also be interesting to explore
the converse direction, i.e., whether relativizing reductions imply any type of
XYZp reduction or not.

5.6 Parametrized Black-Box Reductions

Many reductions in cryptography commonly classified as “black box” technically
do not fall in this class, as a black-box reduction algorithm must not have any
information about the adversary beyond the input/output behavior, except
for the sole guarantee that it breaks security with non-negligible probability.
Strictly speaking, this excludes information such as running time, number of
queries, or the actual success probability of a given adversary. This prompts
the question of what the “natural” notion of a black-box reduction should
be. Not surprisingly, the answer is a matter of taste, just like the question
whether fully black box or semi black box is the “right” notion of a black-box
reduction. As in the case of different notions of black-box reductions, we
can nonetheless give a technically profound, and yet easy-to-use notion of
parametrized black-box reductions (of any type). Before going into the details
we first consider some motivating examples of dependencies on parameters of
the adversary.

Parameter-Aware and Parameter-Dependent Reductions

Let us reduce unforgeability of a MAC scheme to its own unforgeability, i.e.,
the reduction algorithm S merely relays queries and answers between the
unforgeability game and the adversary A. Although the reduction algorithm
is trivial, its running time depends on the adversary’s behavior. Namely, the
running time of the reduction is polynomial in the security parameter and
the number of queries placed by the adversary. Hence the running time of S
actually depends on A, while the code of the strictly polynomial-time algorithm
S should be universal for all A, thus allowing only an a priori limited number
of interactions with the adversary.
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Another example is the well-known Goldreich–Levin hardcore-bit reduc-
tion [GL89], in the version attributed to Rackoff [Gol04]. Recall that the
reduction algorithm receives some input f(x) and has access to an adversary
that predicts a hardcore bit with some non-trivial advantage ε(n). The re-
duction then uses amplification techniques by asking the adversary on many
different input strings and thereby yields a preimage of f(x) with non-negligible
probability. As the amplification step heavily depends on ε(n), the reduction
is not universal anymore; it changes with different values of ε(n). Moreover,
the running time of the reduction depends on 1/ε(n) or, more precisely, on
some polynomial p(n) with 1/p(n) > 1/ε(n). Other than that, the reduction
treats both the adversary and the primitive as black boxes.

The MAC example above shows that we sometimes want to allow the
reduction, especially its running time, to depend on adversarial parameters
such as its number of queries. In the second example the reduction needs (one
of) the parameters as explicit input. We call the latter (black-box) reductions
parameter aware, and the former parameter dependent. In fact, we make
parameter-aware reductions strictly stronger by also making the reduction’s
running time depend on the input parameters.

The difference between the two notions is roughly that, in the parameter-
aware case the reduction receives some auxiliary information about the adver-
sary which may not be even known by the adversary itself (like the success
probability), akin to non-uniform advice. In the parameter-dependent case
the reduction only has sufficient time to run the adversary without violating
prematurely fixed bounds on the running time. As another example one may
consider knowledge extractors in proofs of knowledge [BG92] which run in
expected polynomial time related to the prover’s success probability to convince
the verifier. This knowledge extractor can be oblivious about the actual success
bound, and yet the running time depends on it. Remarkably, in order to prune
the expected polynomial time by standard techniques to make the algorithm
run in strict polynomial time, one needs to know the success probability and
obtains a parameter-aware algorithm.

To simplify, we only define the two cases for BBB reductions and refrain
from distinguishing between different parameters (for inputs resp. for running
time dependency). We formalize this by having a function par mapping
adversaries A to a function parA which, in turn, maps the security parameter
to the desired parameters like the number of queries (to simplify, we include
again the security parameter in these parameters). As such, when saying below
that the reduction runs in polynomial time in parA it should be understood
as saying that the running time of the reduction is polynomial in the output
length of parA for the security parameter. This usually assumes some unitary
encoding of the parameters. In the parameter-aware case we simply give the
reduction the transformed input parA instead and write S(parA).

Definition 16 (Parameter-aware and parameter-dependent BBB reduction).
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There exists a parameter-aware BBB reduction from a primitive P = (FP ,RP)
to a primitive Q = (FQ,RQ) with respect to par, if there exist probabilistic
polynomial-time oracle machines G and S such that:

Correctness. For every f ∈ FQ, it holds that Gf ∈ FP .

Security. For every implementation f ∈ FQ and every machine A, if (Gf ,A)
∈ RP , then we have (f,SA,f (parA) ∈ RQ), i.e.,

∃PPTG ∃PPTS ∀f ∈ FQ ∀A
(
(Gf ,Af ) ∈ RP ⇒ (f,SA,f (parA)) ∈ RQ

)
,

where algorithm S runs in polynomial-time in its input and parA. There is a
parameter-dependent BBB reduction if the above holds if input parA is not
given to S (but the running time may still depend on parA).

Although we state parametrized reductions in a rather general way, various
standard choices for par are conceivable. In the light of the examples above,
reasonable choices could be parameter functions that map descriptions of
adversaries and the security parameter to the number of queries they make
(parq), to (the inverse of) their success probability (parε), or to their running
time (part). This usually requires a refinement of the formalization of primitives
to some form of games, e.g., to be able to specify the number of queries of the
adversary. Consequently, this allows us to capture many known “black-box”
reductions in the literature as BBB reductions with explicit parameters. At
the same time, however, we get a very strict notion of a black-box reduction
by letting parA = ⊥. In fact, this recovers Definition 9 and corresponds to our
view on black-box reductions so far. We note that our definition leaves open
whether the adversary actually knows a description of the function parA itself
or not.

Finally, let us stress that we could also “parametrize” the other black-box
objects, i.e., give the construction some hint about the black-box primitive
such as its computation time, or hand the reduction further information
about the primitive’s parameters. We refrain from doing this formally as it
is straightforward from the definition above and since, unlike in the case of
adversarial parameters, we are not aware of “natural” examples for such cases.

Relationships

We note that parametrized black-box reductions and separations rely critically
on the specific parameters. In particular, some of our separations consider
reductions that are required to depend on, say, the success probability of the
adversary, as in the case of the Goldreich–Levin hardcore bit (see Theorem 6).
This separation does not carry over to the parametrized case. In contrast,
separations for efficient/inefficient adversaries as well as the theorems on
relativized reductions still apply.
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Figure 5.5: Parametrization makes shades of
gray accessible (in the case of BYZ reductions).
Parametrized counterparts of each type partly
descend towards the corresponding NYZ reduc-
tion with full dependency on the construction.
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More pictorially, one can imagine parametrized black-box reductions in light
of Figure 5.3 as descending from the BYZ plane for black-box constructions
towards the NYZ plane, where the construction can completely depend on
the primitive—see Figure 5.5. The parameters and the distinction between
awareness and dependency determines how far one descends. Analogously,
parametrization for BBB reductions means that one descends from the top
node BBB to BNB (also in the case of efficient adversaries). As such, it is clear
that implications along edge paths remain valid, e.g., a parametrized NBN
reduction still implies a NNN reduction.

The case of NBB reductions, however, shows that parametrization cannot
fully bridge the gap to NNB reductions. As explained before, the latter type
with quantification ∀A∃S∀f∃G does not seem to be meaningful, because the
construction G would now depend on the adversary A. Parametrization of
NBB reductions (with quantification ∃S∀f∃G∀A) still makes sense, though,
because the dependency of S on the adversary is only through the running time
or the input. Put differently, the parametrization allows for the “admissible
non-black-boxness” for the NBB type of reduction.

Parameter Awareness and Parameter Dependency

Concerning the relationship of the two types of parametrized reductions we
note that parameter awareness is not more powerful than parameter-dependent
reductions, in the case that one can compute parA in time depending on
the parameters. For sake of concreteness, we discuss this for the number of
adversarial queries, showing that the two notions are equivalent in this case,
except for the cases where the reduction cannot depend on the construction.
This equivalence, of course, only makes sense for security relations in which
there is a game between the adversary and the primitive in which the adversary
actually poses queries. We call a relation RP challenger based if there is
an efficient algorithm CA,G

f and a relation RCP such that (Gf ,A) ∈ RP iff
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(Gf , CA,Gf ) ∈ RCP . In this case we denote by parq the number of oracle calls of
C to A (as a function of the security parameter). Note that this number now
includes the first invocation of the adversary, but can essentially be thought
of the number of queries A poses to the security game. We also assume that
C simply makes additional queries if the adversary stops early, such that the
number of oracle calls remains identical for all runs.

Proposition 13. Let P = (FP ,RP) be a primitive with a challenger-based
relation RP . For any parameter-aware P ↪→ Q XYZ reduction (of type XYZ /∈
{NNB,NBB}) with respect to parq there is also parameter-dependent P ↪→ Q
XYZ reduction of the same type XYZ. (This holds also for XYZa reductions.)

Proof. Consider a parameter-aware reduction S of some admissible type, and
let the C be the algorithm implementing the guaranteed challenger game for
RP . Then we build a parameter-dependent reduction S ′ as follows. Reduction
S ′ first runs C with the adversary oracle once against Gf , simulating oracle Gf
for C with the help of (possibly black-box access to) f . It counts the number
of queries parq the challenger (resp. the adversary) makes. Note that S ′ only
needs O(parq) steps for simulating the black-box adversary oracle, even if given
A as a black box. Also, S ′ requires for the simulation to be able to depend
on the running time of Gf , which it indeed does for the admissible reduction
types. Finally, once S ′ has received parq it can simply invoke S for additional
input parq.

It is now conceivable that, if one cannot compute parA (given that one
can run in time depending on parA), then parameter-aware reductions should
be more powerful. This, however, presumes some notion of unpredictability
which, in turn, stipulates some form of verifiability of correct outputs. As
mentioned before, even the adversary itself may not be able to verify such
outputs, e.g., think of its own success probability. This adds an additional
layer of dependency of parameters, which is beyond our scope here.

5.7 Meta Reductions

In this last section, we define meta reductions within our augmented CAP
framework and prove that if there exists a meta reduction from a P ↪→ Q
reduction to the primitive Q, then there is no reduction from P to Q, provided
that Q exists. More generally, if there exists a meta reduction from a P ↪→ Q
reduction to a primitive N , then there is no reduction from P to Q, provided
that N exists, i.e., there is an efficient implementation of N such that no
efficient adversary breaks it. We now rephrase meta reductions for all notions
introduced in the previous section. Below we usually put the statement in
terms of reductions and meta reduction of the same CAP type. It is clear that
a meta reduction of the XYZ type, ruling out reductions of the XYZ type,
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also exclude all higher-level (i.e., “more black-box”) reductions of type X̂ŶẐ
≥ XYZ. Such higher-level reductions imply a reduction of the type XYZ and
would thus contradict the impossibility result.

Meta Reductions for BYZ Reductions

Definition 17 ((P ↪→ Q BBB) ↪→ N fully-black-box meta reduction). For
primitives P, Q and N , a probabilistic polynomial-time algorithm M is a
(P ↪→ Q BBB) ↪→ N meta reduction from a P ↪→ Q BBB reduction to N , if
the following holds for all g ∈ FN :

Reduction implies Insecurity. If P BBB reduces to Q via a construction
G and a reduction algorithm S, then there is a PPT M such that one
has (g,Mg) ∈ RN .

∀g ∈ FN ∀PPTG ∀PPTS ∃f ∈ FQ ∃A ∃PPTM[(
(Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ

)
(5.3)

⇒ (g,Mg) ∈ RN
]

(5.4)

To construct a (P ↪→ Q BBB) ↪→ Qmeta reduction, one usually instantiates
f via g and picks an (possibly inefficient) adversary A that breaks Gf . The
efficient reduction algorithm S will turn A into a successful adversary against
f = g. Thus, the meta reduction M aims at simulating A efficiently for
S. For this purpose, the meta reductions rewinds the reduction, e.g., to
extract a signature from the reduction that simulates a signing oracle—the
extracted signature can then be presented as a genuine fresh signature to a
rewound version of the reduction S. (We hide the details under the rug; indeed,
the actual analysis is usually more complicated, see [FS10] for an example.)
Consider the order of quantifiers in the above definition: the meta reduction
may use non-black-box information about g and S such as the running time
of S or its success probability. This definition is as liberal as possible on the
meta reduction while preserving its ultimate goal: if a reduction (G,S) exists
and a meta reduction, then clearly, the primitive Q cannot exist.

Theorem 16. If N exists and if there is a (P ↪→ Q BBB) ↪→ N (a.k.a.
fully-black-box) meta reduction, then there is no P ↪→ Q BBB reduction.

Corollary 1. If there is a (P ↪→ Q BBB) ↪→ Q (a.k.a. fully-black-box) meta
reduction, then a secure instantiation of P cannot be based on the existence of
Q via a P ↪→ Q BBB reduction.

Proof of Theorem 16. Assume that there is a P ↪→ Q reduction and a (P ↪→ Q
BBB) ↪→ N meta reduction. To derive a contradiction, we show that N cannot
exist. Let g ∈ FN be arbitrary but fixed. As there is a P ↪→ Q BBB reduction,
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let (G,S) be a pair of a probabilistic polynomial-time construction G and
a probabilistic polynomial-time reduction S such that for all f and A, if
(Gf ,Af ) ∈ RP , then (f,SA,f ) ∈ RQ. Moreover, for (G,S), let M be the
meta reduction together with the corresponding f and A granted by the meta
reduction property. As the condition (Gf ,Af ) ∈ RP ⇒ (f,SA,f ) ∈ RQ is
satisfied for all f and A, we have that the meta reductionM breaks g, formally
(g,Mg) ∈ RN . Note that Mg is efficiently computable if and only if g is
efficiently computable. As the analysis holds for all g ∈ FN , we derive that
all efficiently computable instantiations of N can be broken by an efficient
adversary.

Note that all introduced notions for meta reductions easily translate into
meta reductions for efficient adversaries by only quantifying over efficient A.
The remaining types of meta reductions follow analogously, we omit an explicit
presentation here.

Examples of Meta Reductions

Meta reductions have been used for the first time (albeit not explicitly under
this name) in the work of Boneh and Venkatesan [BV98] to study the relation
between breaking RSA and factoring. Their result says that there is no
(straight-line respectively algebraic) reduction from breaking RSA to factoring
since such a reduction would immediately yield an efficient algorithm for
factoring. Since they consider concrete problem instantiations, neither of
the primitives is black box. In order to look at this result in terms of meta
reductions, it is instructive to view the RSA oracle as the adversary and the
reduction as a generic straight-line program-evaluation machine for the actual
reduction’s output that handles embedded RSA oracle calls within the program
by forwarding them to the adversary. This makes the adversarial access black
box and results in a NBN type meta reduction.

Bresson et al. [BMV08] discuss separations amongst so-called one-more
problems where an adversary may query an oracle for solutions on n instances
but needs to provide eventually n+ 1 instance/solution pairs in order to be
successful. The results indicate that solving such problems on n instances
does not reduce to the case of solving the same problem on n − 1 instances
(using fresh randomness). Again, the adversary and the primitive for the
n-instance problem is treated in a black-box manner by the reduction. One
may argue that the construction is black box as well since the problem can
be constructed for an arbitrary number of instances solely by given access to
oracles for generating and verifying one instance. Hence, this is an example
for a BBB meta reduction. We note that all the reductions in this work come
with certain restrictions though and meta reductions appear both as black-box
and non-black-box—in the case of algebraic reductions—flavors.



100 Chapter 5. Notions of Cryptographic Reductions

The work of Haitner et al. [HRS09] uses meta reductions to show that
witness hiding of certain proof systems cannot be based on either a specific
hardness assumption or, separately, on any implementation of a primitive.
These two variants precisely reflect the difference how the primitive is treated
within the reduction and the construction. The latter case indicates a BBB
meta reduction. For specific assumptions, the reduction may depend on the
primitive and the authors call this a weakly-black-box reduction which shall
not be confused with the weakly terminology of [RTV04]. In our framework
this type of reduction classifies as a NBN meta reduction.

Fischlin and Schröder [FS10] prove the impossibility of basing blind signa-
tures on a non-interactive standard assumption using a meta reduction. Here,
the construction may be non black box, the adversary is treated as a black
box, but the reduction is not restricted to black-box access to the primitive.
This classifies as a NBN meta reduction.

Finally, the work by Pass [Pas11] presents a powerful framework to show
that a certain type of argument system cannot be based on certain standard
assumptions. By restating several interesting constructions as an argument
system, it follows that these constructions cannot be based on standard as-
sumptions either. More specifically, these constructions include the Schnorr
identification scheme, the adaptive selective decommitment problem, one-more
inversion assumptions, and unique blind signatures (generalizing the afore-
mentioned result). Again, the underlying technique of this framework is a
meta reduction. These results hold whenever the adversary in the reduction is
treated as a black box but allows arbitrary constructions, which, in particular,
may be non–black box. Since the reduction may depend on the standard
assumptions as well, this type of meta reduction is considered a NBN meta
reduction in our terminology.



Chapter 6
Conclusions

In this thesis, we addressed two issues which are strongly related to crypto-
graphic reductions.

First, we provided a novel tool allowing us to compare cryptographic
constructions that are provably secure in idealized models such as the random-
oracle model. We defined two flavors of this tool (Chapter 4 and Chapter 3,
respectively); one focusing on concrete security and the other one explicitly
dealing with the underlying assumptions of the constructions. We applied
this tool to the blockcipher-based compression functions due to Preneel, Gov-
aerts, and Vandewalle [PGV93] and more advanced designs, as well as to two
closely-related ElGamal-type encryption schemes. Our results showed that the
compression functions can be categorized into two equivalent groups and the
ElGamal-type encryption schemes are essentially interchangeable with respect
to the requirements on the hash function they rely on.

In Chapter 5, we attacked the lack of both an adequate classification of
cryptographic reductions and a concise language to communicate these classifi-
cations. We devised a framework that captures a broad range of cryptographic
reductions and mapped out their relationships. In comparison with a previous
approach by Reingold, Trevisan, and Vadhan [RTV04], we were able to include
an overlooked type of reduction that is typically ruled out by so-called meta
reductions. Moreover, we distinguished more rigorously between efficient and
inefficient adversaries/primitives and could thus provide a more comprehensive
view on the landscape of cryptographic reductions. Lastly, our framework
exhibits a clean modular structure and that allows for easy extensibility.
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