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Zusammenfassung

Datenquellen wie das Internet der Dinge oder Cyber-physical Systems stellen enorme Mengen
an Echtzeitinformationen in Form von Ereignisstromen zur Verfiigung. Solche Ereignisstrome er-
moglichen die Entwicklung reaktiver Software Komponenten die als Bausteine einer neuen Genera-
tion von Systemen dienen. Unternehmen konnen beispielsweise neue Dienstleistungsangebote bere-
itstellen, die auf der Nutzung von Ereignisstromen basieren. Ebenso konnen bestehende Geschaft-
sprozesse durch die Integration von Echtzeitdaten in Form von Ereignisstromen optimiert werden.
Die Integration von Komponenten zur Ereignisstromverarbeitung in bestehende Anwendungsland-
schaften stellt jedoch eine grofde Herausforderung dar. Wahrend traditionelle Systemkomponenten
wie Services einem Abfrage-orientierten Interaktionsstil folgen (Request/Reply), sind Interaktio-
nen in Ereignis-basierten Systemen datengetrieben: Ereignisse treffen kontinuierlich ein — daher
die Bezeichnung Ereignisstrom — und fithren zum impliziten Aufruf von Anwendungslogik.

In reaktiven Systemen von morgen spielt die Integration beider Paradigmen eine tragende Rolle. Vo-
raussetzung hierfiir sind Abstraktionsmechanismen die Ereignisverarbeitung im Kontext komplexer
Systemlandschaften kapseln. In dieser Arbeit wird solch eine Abstraktion eingefiihrt: Ereignis-
stromverarbeitungseinheiten (Event Stream Processing Units, SPUs) sind ein Container Modell das
die Kapselung von Anwendungslogik zur Ereignisverarbeitung sowohl auf der technischen als auch
auf der Geschéftsprozessebene ermoglicht. Auf der technischen Ebene stellen SPUs eine servicedhn-
liche Abstraktion dar, die eine Entwicklung skalierbarer reaktiver Anwendungen vereinfacht. Auf der
Geschéftsprozessebene erlauben SPUs eine explizite Darstellung von Ereignisverarbeitung und des
damit einhergehenden reaktiven Verhaltens in Prozessen. SPU unterliegen einem Lebenszyklus und
werden implizit - bei der Ankunft der entsprechenden Ereignisse - oder explizit - auf Anfrage hin
- instanziiert. In Prozessmodellen ermoglicht die Kapselung von Ereignisverarbeitung in SPUs eine
direkte Abbildung von Prozessschritten auf IT Komponenten.

Ziel dieser Arbeit ist die umfassende Darstellung des SPU Container Modells. Zunéchst wird die
Struktur von SPU Containern dargestellt und die Ausfiihrungssemantik definiert. Da SPUs auf
ein Publish/Subscribe System zum Transport von Daten zuriickgreifen, spielen Quality of Service
Aspekte dieser Transportschicht eine zentrale Rolle und werden diskutiert. Des Weiteren sind in
Ereignis-basierten Systemen Ereignisproduzenten und -konsumenten logisch entkoppelt, d.h. Pro-
duzenten wissen nichts iiber potentielle Konsumenten und umgekehrt. Dies hat malfgeblichen
Einfluss auf den Softwareentwicklungsprozess und erfordert ein adaptiertes Vorgehensmodell. Im
Rahmen dieser Arbeit wird daher ein Verfahren zur Anforderungsanalyse vorgestellt das die Charak-
teristika Ereignis-basierter Systeme berticksichtigt.

SPUs konnen Ereignisverarbeitung auf der Abstraktionsebene geschéftsrelevanter Vorgiange kapseln
und ermoglichen somit eine nahtlose Integration in Geschéftsprozesse. Zur Darstellung von SPUs
in Prozessmodellen fiihrt diese Arbeit Erweiterungen der Prozessmodellierungssprachen BPMN und
Ereignis-gesteuerte Prozessketten (EPK) ein. Weiterhin wird ein Vorgehen beschrieben wie Prozess-
modelle, die SPUs enthalten, zur Ausfiihrung gebracht werden konnen.




Da das SPU Container Modell sprachunabhéngig ist, werden im Rahmen dieser Arbeit Eventlets
— eine Implementierung des SPU Container Modells basierend auf Java Enterprise Technologie —
vorgestellt. Eventlets werden von einer verteilten Middleware ausgefiihrt. Die Evaluation zeigt,
dass sie den Entwicklungsaufwand skalierbarer Anwendungen zur Ereignisverarbeitung erheblich
reduzieren. Da SPUs eine zusétzliche Abstraktionsebene darstellen, wird die Performanz analysiert:
Durchsatzmessungen bei der Verarbeitung von Ereignisstromen zeigen, dass Eventlets gegeniiber
traditionellen Ereignisverarbeitungsansidtzen konkurrenzfihig sind.

Abhingig vom Anwendungsszenario kann die Verarbeitung sensibler Daten durch SPUs notwendig
sein, z.B. die Verarbeitung von Patientendaten Gesundheitswesen. Daher wird im Rahmen dieser Ar-
beit die Anwendung kryptografischer Mechanismen zum Schutz der Privatsphire bei der Zustellung
von Ereignissen an SPUs skizziert. Weiterhin werden die damit einhergehenden Performanzeinbuf3en
quantifiziert.
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Abstract

Data sources like the Internet of Things or Cyber-physical Systems provide enormous amounts of
real-time information in form of streams of events. The use of such event streams enables reactive
software components as building blocks in a new generation of systems. Businesses, for example, can
benefit from the integration of event streams; new services can be provided to customers, or existing
business processes can be improved. The development of reactive systems and the integration with
existing application landscapes, however, is challenging. While traditional system components follow
a pull-based request/reply interaction style, event-based systems follow a push-based interaction
scheme; events arrive continuously and application logic is triggered implicitly.

To benefit from push-based and pull-based interactions together, an intuitive software abstraction
is necessary to integrate push-based application logic with existing systems. In this work we intro-
duce such an abstraction: we present Event Stream Processing Units (SPUs) — a container model
for the encapsulation of event-processing application logic at the technical layer as well as at the
business process layer. At the technical layer SPUs provide a service-like abstraction and simplify
the development of scalable reactive applications. At the business process layer SPUs make event
processing explicitly representable. SPUs have a managed lifecycle and are instantiated implicitly —
upon arrival of appropriate events — or explicitly upon request. At the business process layer SPUs
encapsulate application logic for event stream processing and enable a seamless transition between
process models, executable process representations, and components at the IT layer.

Throughout this work, we focus on different aspects of the SPU container model: we first intro-
duce the SPU container model and its execution semantics. Since SPUs rely on a publish/subscribe
system for event dissemination, we discuss quality of service requirements in the context of event
processing. SPUs rely on input in form of events; in event-based systems, however, event production
is logically decoupled, i.e., event producers are not aware of the event consumers. This influences
the system development process and requires an appropriate methodology. Fur this purpose we
present a requirements engineering approach that takes the specifics of event-based applications
into account.

The integration of events with business processes leads to new business opportunities. SPUs can
encapsulate event processing at the abstraction level of business functions and enable a seamless
integration with business processes. For this integration, we introduce extensions to the business
process modeling notations Business Process Model and Notation (BPMN) and Event-driven Process
Chains (EPCs) to model SPUs. We also present a model-to-execute workflow for SPU-containing
process models and implementation with business process modeling software.

The SPU container model itself is language-agnostic; thus, we present Eventlets as SPU implemen-
tation based on Java Enterprise technology. Eventlets are executed inside a distributed middleware
and follow a lifecycle. They reduce the development effort of scalable event processing applications
as we show in our evaluation. Since the SPU container model introduces an additional layer of




abstraction we analyze the overhead in terms of performance and show that Eventlets can compete
with traditional event processing approaches in terms of performance.

SPUs can be used to process sensitive data, e.g., in health care environments. Thus, privacy protec-
tion is an important requirement for certain use cases and we sketch the application of a privacy-
preserving event dissemination scheme to protect event consumers and producers from curious bro-
kers. We also quantify the resulting overhead introduced by a privacy-preserving brokering scheme
in an evaluation.

vi Abstract
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1 Introduction

Driven by the advances in information and communication technology, the amount of information
available in IT systems steadily increases. Data can be captured and accessed anytime and any-
where. For example, the omnipresence of mobile devices allows the realization of Cyber-physical
Systems (CPSs) or the Internet of Things (IoT). Each device can be a data source; the amount of
data providers increases. Further, data is collected in real-time. The challenge is the integration of
this data with existing IT systems: the data has to be transported from producers to interested con-
sumers. Consumers process the data, e.g., to improve business processes or to provide new services
to customers by integrating real-time information from a multitude of sources.

A common paradigm for the representation of information from sources like the IoT or CPSs, are
events and streams of events. The notion of a stream illustrates, that new events occur continuously
over time. In such Event-based Systems (EBSs), event producers do not necessarily know the event
consumers, or whether the events will be consumed at all. This independence is intrinsic to the
event-based approach [35]. The decoupling of event producers and consumers as well as the arrival
of an indefinite number of events over time requires an appropriate event dissemination mechanism.
Commonly, publish/subscribe (pub/sub) systems are used; they allow asynchronous communication
between fully decoupled participants. Event consumers specify their interest in events in form of
subscriptions. Optionally, event producers specify the type of events they may publish in advertise-
ments.

Pub/sub systems are often used as event dissemination mechanism in event stream processing appli-
cations, e.g., in Event-driven Architectures (EDAs) [47,109,117]. These applications receive streams
of events and implement reactive behavior, i.e., application logic is invoked implicitly upon arrival
of events. From a software engineering perspective, the development of event stream processing
applications still happens at a low abstraction level. The goal of this thesis is to raise this level of
abstraction by providing building blocks to encapsulate event stream processing application logic.
The demand for such a higher-level perspective on event processing was also identified as challenge
in the 2010 Dagstuhl seminar on event processing [48].

1.1 Problem Statement

Over the last years, event stream processing has become an established technology. Many vendors
provide complex event processing (CEP) engines and event dissemination is realized with message-
oriented middleware. However, the integration of event stream processing with large applications
is still at an early stage. There are no abstractions to event stream processing that encapsulate
event stream processing logic in manageable units that can be integrated with existing (enterprise)
applications.

The history of traditional databases systems is one example that illustrates the demand for such
encapsulation and abstraction mechanisms. In database management systems (DBMS), data is per-
sistently stored in tables; queries are used to pull data from tables for processing. With more complex




IT architectures and new demands in terms of scalability, usability, reusability, and manageability, ab-
straction layers were introduced to encapsulate DBMS queries in containers. Developers use these
containers as building blocks. For the use of a container, it is important what it does; how it is
implemented should be the concern of the container developers only. This separation of concerns
is essential to the development of complex applications. Two examples are the persisting of objects
and services of a service oriented architecture.

To make objects persistent, the data of object instances is stored in a database. The details are
often transparent to developers; they use objects as abstraction mechanism for entities. The same
holds for services: rather then writing a database query, developers rely on services that represent
business functions. Business functions, e.g., process credit card payment, describe functionality
in a declarative way, which facilitates software development. The general goal of abstraction and
encapsulation techniques and layers is a separation of concerns. Technical details, e.g., database
queries or objects, are implemented by dedicated developers. Other developers can rely on this
functionality and use the encapsulated application logic, like objects or services, as building blocks
in applications. Entities and entity interactions are in the foreground rather than low-level database
queries or object implementations.

Object-oriented programming and layers that encapsulate access to databases became essential.
However, in event stream processing, such abstraction layers are missing. Conceptually, event
stream processing should be encapsulated in containers that exhibit object- and service-like prop-
erties. In this work, we introduce Event Stream Processing Units (SPUs) as such an encapsulation
and abstraction mechanism as shown in Figure 1.1. SPUs add an abstraction layer to event stream
processing functionality that makes it manageable and intuitively usable in complex applications.
SPUs are containers with a managed lifecycle that do not aim to replace existing event processing
approaches. They allow a clear separation of concerns and hide details. Just like objects and services
have proven to be suitable building blocks that encapsulate logic, we pursue the same goal with SPUs
in event-based applications.

1.2 Motivating Example: Shipment Monitoring

An example application scenario for SPUs is the monitoring of shipments. When shipments contain
temperature-sensitive goods, a constant monitoring of the transport process is desirable to detect
problems as soon as possible. Avoiding the decay of goods is advantageous from the logistics provider
perspective as well as from the customer perspective.

For such a temperature monitoring application, the trucks are equipped with sensors that contin-
uously report the temperature: streams of temperature events are created [182]. With SPUs it is
possible to develop a shipment monitoring application in an intuitive way: an SPU encapsulates the
temperature monitoring logic for a shipment. At runtime an SPU instance is created for each ship-
ment. This SPU instance receives the temperature monitoring events associated with a particular
shipment and performs the shipment-monitoring task. This can involve looking up thresholds in a
database as well as calculating the average temperature throughout the transport. Such a monitoring
SPU can also be integrated in business processes so that the process flow changes in case of temper-
ature threshold violations. Further, the monitoring SPU has a managed lifecycle and is stopped as
soon as the shipment is delivered.

2 1 Introduction
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Figure 1.1: Event Stream Processing Units (SPUs) provide a service-like encapsulation of event
processing.

1.3 Contributions

In this thesis we introduce Event Stream Processing Units (SPUs) for the encapsulation of event
stream processing. We see SPUs as a software engineering concept, more specific, as a container
model. We developed SPUs in the context of enterprise applications to integrate and manage event
stream processing logic. The contributions are structured in three parts: the model part, the en-
terprise integration part, and the implementation part. In the model part, we introduce the SPU
container model. In the integration part, we present the integration of SPUs with business pro-
cesses and enterprise applications. In the implementation part, we present the architecture and an
evaluation of our SPU runtime environment.

SPU Container Model

We introduce SPUs as abstraction and encapsulation concept for event-stream processing. SPUs are
containers for event stream processing tasks; they encapsulate event stream processing in a generic
way that is well suitable for distributed setups and enables reuse in different contexts. SPUs demand
input event streams. The granularity of this input data, i.e., of the events, is an important aspect from
the software development perspective. The more fine granular the input events are, the better are
the chances that events can be reused in other contexts. We thus discuss requirements engineering
with respect to event streams and present tradeoffs between granularity and reusability. Since SPUs
rely on an event dissemination infrastructure that influences the Quality of Service (QoS) of the
whole system, we discuss event dissemination QoS with respect to event stream processing.

1.3 Contributions 3



The contributions in the model part are:

e The SPU container model that defines structure and execution semantics of SPUs as containers
for the encapsulation of event stream processing logic in manageable units;

* a requirements engineering methodology that takes event-based characteristics into account
and focuses on the tradeoff between reusability and event granularity; and

* quality of service aspects of the interface between the event dissemination infrastructure and
SPUs.

SPU Integration with Business Processes

SPUs can be used to build distributed stand-alone event stream processing applications. In addition,
the management and scalability capabilities of the SPU container model make SPUs well suitable for
the integration with (enterprise) applications. As the adoption of services in enterprise applications
shows, the encapsulation of functionality in manageable units is worthwhile. In enterprise architec-
tures, services implement business functions and the execution of whole business processes results
in service interactions at the IT layer. Like services encapsulate business logic in a request/reply
manner, SPUs encapsulate business logic invoked implicitly by the arrival of events. By this, SPUs
complement services and enable the integration of reactive behavior in business processes.

The contributions in the enterprise integration part are:
* Requirements for the integration of event stream processing with business processes;

e extensions to Event-driven Process Chains (EPCs) and Business Process Model and Notation
(BPMN) to support modeling of SPUs in abstract and technical business process models;

* a mapping of SPU-containing process models from the business process modeling to the busi-
ness process execution layer;

* a mapping from the business process execution layer to SPUs at the IT infrastructure layer; and

* an integration of our EPC and BPMN extensions in Software AG ARIS and in the Software AG
model-to-execute workflow.

SPU Implementation

SPUs rely on a runtime infrastructure for execution and management. Like services are executed
in a SOA, SPUs are executed by a dedicated middleware. An Enterprise Service Bus (ESB) is of-
ten used to enable an asynchronous and decoupled communication between services. Similarly, a
pub/sub system is a feasible infrastructure for event dissemination and provides a suitable founda-
tion for SPUs. Thus, our middleware is built on top of a pub/sub system and provides manageable
containers that represent SPUs. We refer to those containers as Event Applets, in short Eventlets;
Eventlets are the technical representation, or implementation, of the abstract SPU concept. Our
middleware is distributed and designed for scalability and elasticity, both being important aspects in
large-scale applications. We also address privacy and heterogeneity issues that arise in a pub/sub
event dissemination infrastructure.

4 1 Introduction



The contributions at the implementation layer are:
* Lifecycle-managed event applets, in short Eventlets, as an implementation for SPUs;

* aruntime infrastructure for Eventlets that supports stand-alone execution as well as execution
triggered by business process execution engines;

* a performance evaluation that shows the scalability benefits of Eventlets compared to native
Complex Event Processing (CEP) applications and Java Enterprise applications;

* a case study that shows the benefits of Eventlets in terms of simplified software development;

* the application of a privacy-preserving pub/sub scheme to Eventlets and the evaluation of its
performance; and

* the integration of an event transformation scheme to cope with heterogeneity issues in
pub/sub.

1.4 Related Activities and Publications

Research Projects

Parts of this thesis are inspired by research conducted in the BMBF project ADiWa' [156] (Alliance
Digital Product Flow) as well as in the BMBF Software-Cluster project EMERGENT? [76]. The goal
of ADiWa was the integration of events with business processes. Industrial partners and research
partners collaborated in different use cases where event processing was explored as technique to
enhance business processes in the short term. In ADiWa, event streams were not directly integrated
with business processes; only after the detection of complex events business functions are triggered
for compensation. The discussions with industrial partners in terms of integration of event stream
processing showed the demand for the seamless integration of event stream processing and moti-
vated the concepts in this thesis. QoS of the event dissemination infrastructure was investigated in
ADiWa as well. Since processes are influenced by events, a reliable event transport is required. Our
work in ADiWa is the foundation for the parts of this thesis related to QoS of the event dissemination
infrastructure.

One goal of the EMERGENT project is the integration of dynamic business processes across company
borders. Next to services, event-based components were identified as essential to develop new added
value processes. These demands in EMERGENT showed again the importance of mechanisms to
seamlessly integrate event stream processing with enterprise applications.

Research Collaborations

In the context of our research on QoS we are involved with the Standard Performance Evaluation
Corporation3 (SPEC). We have collaborated with two major vendors of open source message-oriented
middleware — Apache and JBoss. We have evaluated their JMS brokers* — ActiveMQ and HornetQ

www.adiwa.net
www.software-cluster.de

WWW.Spec.org
http://www.spec.org/jms2007/results/
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— using the jms2009-PS and SPECjms2007 benchmarks. The experience with Apache ActiveMQ and
JBoss HornetQ made us confident that a reliable and high-performance SPU middleware can be
based upon JMS.

Within the ADiWa and EMERGENT projects as well as within the context of Software Campus®
research projects we have established a cooperation with Software AG®. Software AG also sees a high
demand for the integration of event streams with enterprise software systems. As a possible solution
we presented the SPUs container model as well as our concept for the integration of event stream
processing with business processes by means of SPUs. We received good feedback and collaborated
for a proof-of-concept implementation of our SPU modeling approach in Software AG’s business
process management products.

In collaboration with Purdue University” we addressed security and heterogeneity issues in pub/sub
systems. The obtained results are used as starting point for the privacy-preserving pub/sub scheme
as well as for the event transformation approach we suggest for our Eventlet implementation.

Related Publications

In the following we present our previous work in the context of this thesis. The focus of this thesis
is the encapsulation and integration of event stream processing. The benefits and challenges regard-
ing the integration of event stream processing with enterprise applications and business processes
are discussed in [35, 37]; event stream processing is introduced as a paradigm to enable reactive
behavior. In this thesis we introduce SPUs as containers for such event stream processing. Our SPU
container model along with its implementation in form of Eventlets and the Eventlet middleware is
presented in [9]; this publication is the foundation for parts of Chapters 3, 6, and 7.

In Section 6.3 we suggest a privacy-preserving implementation of Eventlets. Our approach, along
with its evaluation in Section 7.2, is based upon work presented in [120,121]. The event trans-
formation approach (Section 6.4) that addresses heterogeneity issues in the context of Eventlets is
presented in [65,73,74].

The integration of event stream processing with business processes by means of SPUs is presented
in [10], where we focus on process modeling with BPMN. We extend this work in [11,98] by adding
support for the modeling of SPUs in EPCs. We also present an implementation for the modeling and
execution of SPU-containing process models. The work on the integration of event stream processing
with business processes is the foundation for Chapter 5.

We also conducted research in the area of performance evaluation of message-oriented middleware.
Our SPU execution environment builds on top of such message-oriented middleware, which is used
for event dissemination. We evaluated the performance of messaging infrastructures intensively.
Several results have been published: jms2009-PS, an extended version of the SPECjms2007 bench-
mark, is presented in [150-152]. Jms2009-PS focuses on pub/sub communication and is suitable to
evaluate middleware capabilities demanded by an SPU execution infrastructure. Jms2009-PS was
also adapted to evaluate pub/sub in middleware that implements the Advanced Message Queuing
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Protocol (AMQP) [7]; the results are presented in [14]. A workload specification that addresses
specifics of event-based systems is presented in [12]. Performance evaluation is one aspect in QoS
considerations for Event-based Systems. General QoS aspects within the context of Event-based Sys-
tems are discussed in [13,35]. This work is the foundation for Section 3.3, where QoS requirements
with respect to an SPU execution environment are discussed.

1.5 Structure and Terminology

Within our thesis we present abstractions for event stream processing at the conceptual layer, at
business process layer, and at the technical layer. We use distinct terminology at each layer for a
clear separation. At the conceptual layer we present our SPU container model for the encapsulation
of event stream processing application logic. SPUs are one type of event-based component. They
hold entity-centric event stream processing application logic; at runtime SPU instances are created
that receive and process entity-instance-centric sub streams of events. We then apply our SPU con-
tainer model to integrate event stream processing with business processes. At this business process
modeling layer we introduce Event Stream Processing Services (ESPSs) and Event Stream Processing
Tasks (ESPTs) that represent SPUs in EPCs and BPMN business process models. At the implemen-
tation layer we present Eventlets as the technical realization of SPUs. Eventlets implement SPU
runtime semantics. Eventlets can be used for stand-alone event stream processing applications as
well as in the context of business process execution where event stream processing is part of a larger
application scenario.

The thesis is structured as follows: in Chapter 2 we present background information. We introduce
event-based systems, pub/sub-based event dissemination, and event-processing techniques. We also
give an introduction to business process modeling and execution. In Chapter 3 we introduce our
SPU container model and its execution semantics. We discuss QoS aspects and show how SPUs can
be interconnected. In Chapter 4 we present our requirements engineering approach that focuses on
the tradeoff between event reusability and event granularity. Focus of Chapter 5 is the integration
of event stream processing with business processes by means of SPUs. We present requirements for
such an integration along with extensions to EPCs and BPMNs as well as an implementation. In
Chapter 6 we present Eventlets - our implementation of SPUs - and our distributed Eventlet middle-
ware. We discuss extensions to our Eventlet middleware to ensure privacy and to deal with event
heterogeneity. In Chapter 7 we present the evaluation of our approach. We show the performance
benefits achieved through our Eventlet middleware distribution automatisms as well as the simplifi-
cation in the development of distributed event stream processing applications. We also evaluate the
overhead introduced by privacy-preserving pub/sub techniques. Chapter 8 presents work related to
our concept of SPUs, to our requirements engineering approach, to the integration of event stream
processing with business processes as well as to our Eventlet implementation. We close our thesis
with a conclusion in Chapter 9 and the discussion of future work in Chapter 10.
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2 Background

In the following sections we introduce basic concepts in the area of Event-based Systems (EBSs).
We present different event processing paradigms and compare event-based interaction modes with
traditional interaction paradigms. We introduce publish/subscribe (pub/sub) as basic event dissem-
ination technique. We also discuss business process modeling and execution as foundation for the
integration of event stream processing with business processes.

2.1 Event-Based Systems

The event-based paradigm is well suited to integrate reactive behavior in applications. In a broad
definition, an event is a significant change in the state of the universe [46]. This makes two events
distinct even when time is the only thing that changes. In EBSs, events, i.e., relevant changes of state
are used as active source of information. Reifications of events are created by event producers and
sent to an event dissemination middleware, more specifically, to a pub/sub system. Event consumers
specify interest in events in form of subscriptions. The pub/sub system matches published events
with registered subscriptions and forwards events to interested event consumers. The event delivery
triggers the invocation of further application logic that performs the processing of the events (im-
plicit invocation). We use the term Event-based Component (EBC) to refer to components, which
consume events and implement application logic to achieve reactive behavior; part of an EBC is
the subscription, i.e., an EBC is an event consumer. EBCs can be stand-alone applications to fulfill
a dedicated event-based task, e.g., monitoring of temperature. EBCs can also be integrated with
existing applications and processes, e.g., with logistics processes, to add reactive behavior. An EBC
encapsulates event processing logically; the technical implementation can rely on distributed and
scalable event processing techniques.

In [33], Bruns and Dunkel analyze design principles for event processing systems and derive design
patterns and a reference architecture. They identify three layers: the event monitoring layer, the
event processing layer, and the event handling layer. Based upon this layer approach, Figure 2.1
gives a schematic overview of an EBS. In this context, EBCs are responsible for event processing as
well as for event handling, i.e., the integration with other application parts. EBCs can act as event
producers themselves and send events to the pub/sub system.

2.1.1 Event Dissemination with Publish/Subscribe

Pub/sub functionality is often provided by a dedicated message-oriented middleware. This middle-
ware runs on a single broker, or on an interconnected network of brokers; event producers and con-
sumers connect to this middleware. Event consumers register subscriptions in which they specify the
events of interest; subscriptions are filter expressions and typically expressed with a query-language
like syntax. Event producers send events to the middleware (publish); it is then the responsibility of
the pub/sub system to match events with issued subscriptions. Different mechanisms can be applied
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Figure 2.1: Components of an event-based system: Events are disseminated via publish/subscribe
and processed by event-based components.

to establish the matching between published event and issued subscriptions [110]. Depending on
the capabilities of the pub/sub system, the matching is performed on a per-connection basis, on a
per-event basis, or in a hybrid approach the combines aspects of both.

When the matching between events and subscriptions is performed per connection, event producers
provide metadata about the events they are going to publish, e.g., a producer will publish Champions
League soccer results. This information is typically part of the connection setup between event
producers and the pub/sub system. A subscription specifies the interest in a certain sort of events,
e.g., Champions League soccer results. This allows a static routing between event producers and
subscribers based upon the provided metadata. Examples for this type of pub/sub are channel-based
pub/sub or subject-based pub/sub systems [149]. In channel-based pub/sub producers send events
to a dedicated channel; subscribers register for events from this channel, e.g., Champions League
Results channel. In subject-based pub/sub producers specify the subject of the events they produce
whereas subjects are organized in hierarchies, e.g., Sports.Soccer.ChampionsLeague. Consumers
subscribe for subjects; subscriptions may contain wildcards, e.g., Sports.Soccer. *.

When the matching between events and subscriptions is performed per event, event producers do
not provide metadata about the events they will publish a priori. Subscriptions are specified on the
event content and the pub/sub system evaluates subscriptions against each event submitted to the
system. The matching of events with subscriptions is called content-based pub/sub [146]. Different
flavors of content-based pub/sub exist. The event content can be attribute/value (att/val) based or
XML-based [148]. Events can be split in header and body; in this case content-based subscriptions
specify a filter on content in the event header. For an att/val event, the subscription typically has a
SQL-like syntax, for XML events, the subscription uses XPath or XQuery.

Besides pure per-connection and per-event-based event routing, hybrid solutions exist. In type-based
pub/sub the producer specifies the type for each event; subscriptions specify interest in certain types
of events [119]. In type- & attribute-based pub/sub, subscriptions define the type of interest as well
as filters on additional event content, e.g., on attributes [63,119]. Topic-based pub/sub combines
hierarchical subjects and filters on event attributes [166]. Hybrid approaches are a tradeoff between
performance and flexibility; expressive subscriptions and flexibility at producer site are traded for a
fixed topic per connection. An overview of the different pub/sub mechanisms is given in Table 2.1; it
shows options that have to be set per connection and per event, as well as resulting subscriptions.
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Subject-based Publish/Subscribe

Per Connection: | subject := Sports.Soccer.ChampionsLeague
Per Event: | -
Subscription: | subject == Sports.Soccer.ChampionsLeague
Topic-based Pub/Sub
Per Connection: | topic := Sports.Soccer
Per Event: | league := ChampionsLeague
Subscription: | topic == Sports.Soccer & league == ChampionsLeague

Content-based Pub/Sub with Att/Val Events
Per Connection: | -
Per Event: | type := Sports; sports := Soccer; league := ChampionsLeague
Subscription: | type == Sports && sports == Soccer && league == ChampionsLeague

Table 2.1: Publish/Subscribe mechanisms.

The tradeoffs between the different pub/sub matching mechanisms are shown in Figure 2.2. Best
suited for event dissemination in EBSs is matching of publications and subscriptions on a per-event
basis: this requires less global knowledge, e.g., about subject hierarchies, supports loose coupling,
and allows a high flexibility. Producers decide per event about structure, type, and content. However,
matching on a per-event basis is expensive in terms of event dissemination: each event needs to be
inspected, evaluated against subscriptions, and routed to interested consumers.

loose Coupling tight
known Event Content unknown .
per-event per-connection
filtering high Flexibility low filtering
high Dissemination Effort low

Figure 2.2: Tradeoffs between per-connection and per-event matching.

So far, all pub/sub mechanisms require global system knowledge to some extent. Event producers
have to use common event types or have to be aware of the subject hierarchy of the pub/sub system.
Event consumers, for example, need knowledge about event attributes on which subscriptions can
be specified. This semantic coupling cannot be eliminated completely; as soon as two parties want to
exchange information, a common understanding has to be established. However, mechanisms exist
to relax the semantic coupling. In concept-based approaches, events and subscriptions are matched
semantically, e.g., temperature events in Celsius match subscriptions in Fahrenheit [50]. In [73], we
adapt this approach to characteristics of EBSs; we support event transformations inside the pub/sub
system to achieve semantic-aware matching. We show in Section 6.4 how this can be applied to
SPUs.
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2.1.2 Publish/Subscribe Middleware

Pub/sub is an established technology and supported by various research and production-strength
messaging platforms. In the industrial context, pub/sub is often a feature of Message-oriented Mid-
dleware (MOM); in addition to pub/sub, MOM typically supports queue-based communication. In
the context of MOM, the term message is used to refer to the data that is exchanged between clients.
Events are thus represented by messages at the technical MOM layer. The focus in industrial MOM
lies on reliability and integration aspects. Since MOM is an integral part in many productive large-
scale applications the availability of updates as well as advanced recovery and fail-over mechanisms
are essential features. Pub/sub systems in research typically implement advanced algorithms for the
matching of subscriptions with published events and focus on large distributed broker networks that
can process a high volume of events.

Production-strength Pub/Sub Systems

The de-facto industry standard for asynchronous messaging is the Java Message Service (JMS) [166]
where messages are exchanged via a JMS broker network. JMS brokers can be used stand-alone but
are also an integral part of the Java Enterprise environment [133]. JMS defines an API only. This
allows JMS applications the use of different broker implementations without modifications to the
source code; only broker-specific libraries have to be exchanged. Since internals of JMS brokers are
not specified, e.g., the wire level transport protocol, different broker implementations cannot inter-
operate seamlessly. However, some JMS brokers, e.g., JBoss HornetQ, support JMS bridges where a
broker connects as a consumer to another broker and re-distributes messages to its own clients. JMS
supports one-to-one (1:1) and one-to-many (1:n) communication. One-to-one communication is im-
plemented with queues; they decouple point-to-point communication between message producers
and consumers. One-to-many communication provides pub/sub functionality and is implemented
with topics. JMS provides basic content-based pub/sub capabilities via message properties. Message
properties are attribute-value pairs that reside in the message header. When issuing a subscription, a
consumer can use a SQL-like statement as a filter on message header attributes (message selector).
The JMS broker ensures that only messages with matching properties reach the consumer. Some
JMS brokers support more enhanced message selectors, e.g., AcitveMQ allows XPath expressions as
message selectors that are applied to the message payload supplied in XML.

Many JMS broker vendors support the configuration of networks of brokers. Broker networks are
formed to increase reliability as well as for scalability reasons. To increase reliability, fail-over mech-
anisms guarantee that broker failures do not result in message loss or downtime. For scalability
reasons, a broker network can be used to increase the messaging capacity. Producers and consumers
connect to different brokers; the broker network performs the messaging routing and ensures a re-
liable delivery. JMS also supports different Quality of Service (QoS) properties to control reliability
aspects of the message transport: persistence, durability, and transactional behavior can be config-
ured on a per-connection basis. Persistence controls whether messages are stored on disk prior to
delivery. In case of broker failures they can be replayed upon broker restart. Durability applies to
pub/sub only; it controls whether messages are cached in case of consumer failures. Without dura-
bility, consumers only receive messages during the time they are connected. With durability enabled,
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the broker buffers messages in case the consumer connection is interrupted; when the connection is
reestablished, the buffered messages are delivered. When transactional behavior is requested upon
connection setup, several messaging operations can be grouped and executed or rolled back as an
atomic unit of work. JMS is supported by a wide spectrum of products. The most popular open
source brokers are Apache ActiveMQ and JBoss HornetQ. Commercial products are, for example,
IBM WebSphere MQ, Oracle Weblogic, Software AG Terracotta Universal Messaging, and TIBCO
Enterprise Message Service. A detailed overview can be found in [149].

Besides JMS, a messaging standard with increasing importance is the Advanced Message Queuing
Protocol (AMQP). AMQP has its origin in the financial services industry. The motivation behind
AMQP is the need for interoperability between MOM vendors [99,172]. In contrast to JMS, which is
an API specification, AMQP is a wire-level protocol specification. It was standardized in 2012 by the
Organization for the Advancement of Structured Information Standards (OASIS) [7]. Since AMQP
is a wire level protocol, different broker implementations and applications developed with different
programming languages can interoperate. However, different protocol implementations can lead to
different APIs at the application layer. In this case switching from one AMQP broker implementa-
tion to another requires changes to the application code. In terms of messaging semantics, AMQP
provides a superset of the JMS semantics [131]; this allows the development of libraries that pro-
vide a JMS-conform API for AMQP products [14]. In the context of EBSs, a particular problem of
AMQP is the lag of a standardized format for content-based pub/sub. The AMQP standard focuses on
the transport layer and leaves the concrete implementation of pub/sub to the broker. Although the
AMQP standardization process started with a larger scope, the final AMQP 1.0 protocol specifications
does not contain messaging semantics definitions, e.g., subscription filter formats.

AMQP implementations are, for example, Red Hat Enterprise MRG, which is based upon the open
source implementation Apache Qpid. Other implementations are StormMQ and VMware RabbitMQ.
AMQP and JMS complement each other; AMQP ensures interoperability at the wire-level, JMS en-
sures interoperability at the application level. This relation is also reflected in current brokers:
ActiveMQ and Terracotta Universal Messaging support AMQP in their current releases; HornetQ
announced to implement AMQP support.

Another wire-level protocol is the Simple Text Oriented Messaging Protocol (STOMP) [163]. It is
designed for simplicity and implements only a subset of JMS and AMQP messaging semantics. Many
MOM brokers support STOMP, e.g., ActiveMQ. STOMP is mainly used in scripting languages, e.g.,
Perl and Python, to connect with MOM. It lacks behind the QoS capabilities of JMS and AMQP.

A messaging protocol that originates from real-time systems is the Data Distribution Service (DDS)
[128]; it was standardized by the Object Management Group (OMG) in 2007. The DDS standard
comprises a wire-level protocol as well as an API and a messaging semantics specification. DDS
supports a fine-grained adjustment of QoS properties, e.g., bandwidth limitations and transport pri-
orities for messages. DDS implementations are, for example, OpenDDS and PrismTech OpenSplice.
Although DDS is a powerful messaging standard, the importance in enterprise applications is minor
compared to JMS and AMQP.

In the area of web services, WS-Eventing [180] and WS-Notification [126] specify pub/sub com-
munication between services. Services issue subscriptions and are notified when desired events
are published. A comparison of WS-Eventing and WS-Notification with, amongst others, JMS is
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presented in [91]; the convergence of both standards is discussed in [51]. In WS-Notification, sub-
scribers can specify content-based filters as XPath expressions on the message content. Events are
encoded as SOAP messages; this results in a large overhead in terms of message size and computa-
tional effort compared to JMS and AMQP.

Research Pub/Sub Systems

Pub/sub systems are also addressed in current research. While the above introduced pub/sub stan-
dards and protocols are designed for and used in productive systems, pub/sub systems in research
are meant to evaluate new concepts and features. Research pub/sub systems are often distributed
and support content-based pub/sub [8]; they are commonly referred to as Distributed Event-based
Systems (DEBSs) [119]. Distribution is an important property to be able to cope with a high vol-
ume of events. With the spread of mobile devices, events are produced and received anywhere;
this makes some sort of distributed middleware indispensable for future applications. DEBSs enable
scalable pub/sub-based event dissemination. DEBSs consist of a network of brokers; the brokers
are interconnected and form a topology. Event producers and subscribers connect to so called edge
brokers. Events are then routed through the broker network from event producers to interested
subscribers. The challenge in DEBSs is the avoidance of sending events to all brokers (flooding).
To achieve this, subscriptions are merged and the resulting filters are moved as close to the event
publishers as possible. This is shown in Figure 2.3; the filter for general sports events can be moved
close to the event producer to reduce traffic. Parts of the filter that cannot be merged remain on
the brokers close to the subscribers. To apply subscription merging and to be able to move filter
expressions close to event producers efficiently, advertisements are often a prerequisite. With ad-
vertisements, producers inform the broker network about the event types they are going to publish.
This allows an intelligent placement of merged subscription filters rather than flooding subscriptions

Bundesliga
Subscriber

or events through the broker network.

Broker,

Broker, League ==
Bundesliga

Sport == Soccer

Broker;

League ==
ChampionsLeague

Broker Network

ChampionsLeague
Subscriber

Figure 2.3: Subscription merging in distributed publish/subscribe systems.

Research prototypes of DEBSs are, amongst others, Hermes [140], PADRES [71], Rebecca [72],
JEDI [54], and SIENA [40]. Prominent research topics include routing [68] and filtering mechanisms
[67] in DEBSs; depending on the applied routing scheme, for example, performance is traded for
false positives or false negatives in the pub/sub process. Further, the support of transactions is an
important property for DEBSs in the context of enterprise applications [106]. An overview of DEBSs
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that addresses, amongst others, routing, filtering and transactions is given in [36] and [141]. Some
DEBSs mechanisms, e.g., sophisticated routing, are well understood in research. However, they are
only rudimentarily implemented in production-strength pub/sub systems like JMS brokers.

2.1.3 Event Processing

EBCs issue subscriptions and receive matching events as input for further event processing. We
distinguish between the processing of single events and the processing of streams of events. The
processing of single events is stateless, i.e., each event is seen distinctly. The processing of event
streams is stateful, i.e., an event can influence the processing of following events.

Processing of Single Events

In many use cases, EBCs react to single events only: in graphical user interfaces, for example, a
single click event triggers application logic. In business processes single events, e.g., exceptions,
trigger exception-handling procedures. Single events are used to decouple components and realize
asynchronous and implicit invocations. This decoupling can happen at the technical layer as well
as at the logical layer. At the technical layer, single events replace, e.g., remote procedure calls. In
this case, however, the caller must still know the callee. A pure event-based interaction at the logical
level does not assume such explicit knowledge about communication partners. In software artifacts
this general approach is implemented by the observer pattern [78].

Processing of Event Streams

Besides reacting to single events, EBCs can perform processing of streams of events. An EBC receives
events according to its subscription; these events arrive continuously as they are produced. The
processing of event streams can be categorized in two main areas: event composition and pattern
detection, and continuous queries over event streams [55]. An example for event composition and
pattern detection is detecting fire based upon temperature and smoke events; the fire event can be
seen as a complex event derived from base events. A continuous query, for example, can be used
to calculate the average temperature over a continuously changing set of temperature events. EBCs
can also implement event enrichment and transformations. Received events are enriched with addi-
tional information and published again. Received events can also be transformed and republished in
another representation. Enrichment and transformation can be stateless as well as well as stateful.

Examples for EBCs that perform composition and pattern detection are event condition action
(ECA) rules [43,58]. Upon a certain event, an action is triggered whereas this triggering event
can be a composite event. Event composition and pattern detection are also an integral part
of Event-driven Architectures (EDAs) [117] and in Event-driven Service-oriented Architectures
(ED-SOAs) [69, 70, 75,105]. Components subscribe or register for certain events or event pat-
terns and perform operations upon event arrival; events are used to trigger implicit invocations.
Traditionally, the term Complex Event Processing (CEP) referred to event composition and pattern
detection, while the processing of continuous queries is the application domain of Data Stream
Management Systems (DSMSs). Meanwhile, both areas converge and the term CEP is often used
generically to refer to both application domains. Also, many CEP engines, e.g., Esper or Software AG
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Apama, support both, event composition and pattern detection, as well as continuous queries. CEP
and data stream processing can be seen as complementary [42]. They have in common that they
both operate on streams of events.

Event composition and pattern detection are based upon the correlation of events. Event pattern
detection is the basis for event composition: when certain events have been detected, a newly com-
posed event can be generated based upon the source events. The semantics of pattern detection
depend on the underlying event algebra and consumption modes [43]. With recent consumption
mode, for example, only the newest event instance of a certain event type is used as initiator for a
pattern detection. With chronicle consumption mode the oldest event instance is kept as initiator; it
is discarded after a successful composition. For the composition of events, point- or interval-based
composition semantics can be applied [2]. With point-based composition semantics, a timestamp is
assigned to the composite event, for example, the arrival time of the last event used to complete the
pattern match. With interval-based composition semantics, a time interval is assigned to the compos-
ite event, for example starting with the arrival of the first event of the pattern and ending with the
arrival of the last event in the pattern. Since event composition and pattern detection are applied to
continuously changing streams of events, the detection of event patterns can be restricted to a time
window in which events are considered valid. Further, the exact order of events that constitute a
pattern can be relevant or irrelevant.

Continuous queries over event streams are similar to database queries; they are often specified in a
SQL-like query language. An event stream is the equivalent to a relation in a database; single events
correspond to tuples. Events arrive continuously; some relational operators, however, rely on a finite
set of tuples [83]. A nested loop join, for example, is blocking when applied to an indefinite stream
of events; a cross joins requires keeping all arriving events in memory. To address these issues,
continuous queries are defined on so called windows. A window specifies the set of events to which
a query is applied. Window definitions include information about the window size as well as about
the window movement. Common window size definitions are based upon time or upon the number
of events inside a window. A time-based window, for example, contains all events, which arrived
within the last hour. A size-based window, for example, contains the last 100 events. The window
movement can be sliding or tumbling; a time-based sliding window moves continuously as the time
proceeds, a size-based sliding window moves with the arrival of each new event. Wile events are
discarded continuously in sliding windows, the event set in tumbling windows changes when the
defined size or time limit is hit. A size-based tumbling window, for example, moves on as soon as a
defined number of new events have arrived. A time-based tumbling window, for example, moves on
after a certain amount of time.

Event pattern detection, event composition, and continuous queries are supported by a variety of
research and industrial software solutions. Event composition and event pattern detection, for ex-
ample, have their origins in active databases where data changes or external events trigger appli-
cation logic [57,138,139,177]. Outside of Database Management Systems (DBMSs), business rule
engines, e.g., JBoss Drools Expert, operate at the enterprise integration layer and support ECA rules.
Event pattern detection, event composition, and continuous queries altogether are supported by CEP
engines, e.g., research prototypes like Cayuga [29] or SASE [181] as well as production-strength
CEP systems like Esper or Software AG Apama. A comprehensive survey on stream processing and
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CEP along with a classification according to a unified processing model is presented in [55]. CEP as
a programming paradigm became popular around the year 2000 [108]; also, the first commercial
products were available at this time. Current research in the area of event stream processing focuses
on scalability and performance issues.

Convergence of Event Processing and Pub/Sub

In our model of EBSs we distinguish between the event dissemination and event processing part. This
logical separation is not necessarily found at the implementation layer. While systems in production
environments often follow this schema, many research systems integrate event processing with the
event dissemination infrastructure.

In productive systems that use event-processing technology, stateful operations on event streams
are separated from the event dissemination. Events from various application components are con-
solidated and used as input for the EBCs, e.g., CEP engines. In a typical application, components
report events using, for example, a JMS-based MOM. A CEP engine like Esper subscribes for events
using JMS. This separation of concerns (event dissemination and event processing) in productive
environments has been proven beneficial. It simplifies the component management: the pub/sub in-
frastructure and the event-processing infrastructure can be operated and maintained independently.
Due to this loose coupling, event dissemination and event processing solutions of different ven-
dors can be combined and replaced separately. However, in terms of QoS, event dissemination
and event processing are interdependent. Without a sufficient event rate from the pub/sub infras-
tructure, for example, a CEP engine cannot guarantee a certain throughput. Thus, Service-level
Agreements (SLAs) are necessary for the integration of event dissemination and event processing in
enterprise applications.

In many DEBSs, pub/sub and event processing converge. Event pattern detection and filtering are
moved close to the sources of events. The evaluation of continuous queries and the detection of pat-
terns can be performed by broker nodes inside the network so that traffic is minimized. Although this
distributed setup brings scalability and performance benefits, it does go at the expense of manage-
ability. The more monolithic a software system is, the less flexible it is with respect to management
and maintenance [23, 82].

2.1.4 Event-based Interaction

EBSs can be stand-alone applications, e.g., for traffic management or health monitoring [89, 158].
Event-based functionality can also be integrated with existing applications, e.g., with enterprise
software systems, to add reactive behavior [76]. The integration of event-based functionality reflects
an additional mode of interaction that complements existing approaches. Figure 2.4 shows the
different interaction modes between participants, e.g., components, in software systems [36].

Consumer-driven interaction is common in enterprise applications. During the execution of a busi-
ness process, for example, application logic is invoked explicitly to fulfill a certain task, e.g., to
process a credit card payment. In cases where the exact application component that delivers
functionality, e.g., a service, is known, a direct request/reply interaction applies. In cases where
only the demanded functionality is known but not the concrete software component that provides
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Request/Reply Anonymous Request/Reply
(e.g., direct service (e.g., service request via
Known invocation) enterprise service bus) Unknown
Counterpart Counterpart
Messaging Event-based
(e.g., email) (e.g., publish/subscribe)

Producer-driven Interaction

Figure 2.4: Interaction modes in distributed systems (based upon [36]).

this functionality, anonymous request/reply applies, e.g., lookup of a service in a service registry.
Producer-driven interaction allows the implementation of reactive behavior. Functionality is not in-
voked explicitly upon demand but implicitly when available data arrives. When a data producer
knows which functionality should be triggered, the counterpart is known (messaging interaction).
In event-based scenarios, the reactions to events are unknown from the event producer perspective;
event producers just publish events.

Reactive behavior is a natural interaction mode with the environment. Humans, for example, act
or react depending on the current circumstances; they start a conversation actively (act) but react
in dangerous situations. Applied to software systems, this means that active and reactive behavior
should be combined to allow comprehensive integration with the environment. The foundations
for the implementation of such reactive behavior are event-based interactions [47,109, 169]. They
complement request-oriented interactions in software systems as shown in Figure 2.5. Many com-
ponents in software systems follow the pull-paradigm. They operate on persistent data and execute
functionality upon explicit invocation. To achieve reactive behavior, data needs to be integrated in a
push-based manner, like in the form of event streams. This shifts invocation to the event producers
and makes it implicit. Event producers publish events; EBCs issue subscription and implement the
implicitly invoked application logic.

Reactive Applications Push/Pull Integration
Implicit Invocation Explicit Invocation Application Logic
Publish/subscribe | Request/reply Data Source
Events: Database:
Streams of Data Persistent Data

Push-based Pull-based

Figure 2.5: Combination of pull- and push-based interactions to realize reactive applications.
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For the integration of push- and pull-based components, encapsulation of event processing appli-
cation logic at the right abstraction level is a key factor for good system manageability and main-
tainability [23,31]. Our Event Stream Processing Unit (SPU) container model provides such an
abstraction for event stream processing. It allows the integration of push-based and pull-based func-
tionality, for example in the context of business process execution as we will show in Chapter 5.

2.2 Business Process Modeling and Execution

Business process modeling and execution is widely adopted in enterprises. Processes are modeled by
business experts and translated into executable workflow representations. They are executed inside
IT infrastructures, e.g., Service-oriented Architectures (SOAs) and workflow management systems.
With the adoption of the Internet of Things (IoT) and Cyber-physical Systems (CPSs), huge amounts
of information become available that reflect the state of the real world. The integration of this up-to-
date information with business processes gives enterprises the opportunity to implement reactivity,
e.g., by monitoring their business in near real-time. This allows quick reactions on unforeseen sit-
uations as well as offering new services to customers, e.g., monitoring of environmental conditions
during transport of goods and handling exceeded thresholds.

Business process models describe workflows in companies in a standardized way. They document
established business procedures with the goal of making complex company structures manageable.
This encompasses the business perspective as well as the IT perspective. For the modeling and
execution of processes, an appropriate level of abstraction is crucial to hide irrelevant details to the
process modeler. Building blocks for business process modeling, business process execution, and IT
infrastructure should encapsulate business functions in a self-contained way, e.g., like services in a
SOA [137]. The business process model describes interactions between these building blocks.

Two common notations for modeling business processes are the Business Process Model and Nota-
tion (BPMN) [130] and Event-driven Process Chains (EPCs) [96]. EPCs are well suited for abstract
business models; BPMN allows the modeling of business processes from a more technical perspec-
tive.

Throughout this thesis, the acronym BPMN refers to the current version 2.0 of the BPMN standard
if not stated otherwise. While BPMN 1.0 was mainly concerned with the graphical process represen-
tation, the BPMN 2.0 standard also includes execution semantics. Thus, BPMN 2.0 can be used as a
replacement for process execution languages like Business Process Execution Language (BPEL) [127]
or XML Process Definition Language (XPDL) [179]. Currently, however, BPEL is still of major im-
portance and used as technical representation of service orchestrations; the BPMN standard also
provides a mapping to BPEL.

2.2.1 Business Process Modeling with BPMN

BPMN defines three model types: collaborations, choreographies, and processes. The BPMN stan-
dard uses a patient-doctor relationship as example [130]:

¢ Collaboration: A collaboration describes the interactions between different business entities
from an entity-centric point of view. A patient (business entity A) tells his or her symptoms to
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a doctor (business entity B). The doctor issues a prescription to the patient, which can be used
to get medicine. Both collaborate for the overall goal of health treatment.

* Process: A process is a step-wise description of an overall workflow, e.g., a health treatment
process starts with the registration of a patient and ends with a successful treatment.

* Choreography: A choreography models the input to/output from participants (patient, doctor)
required in each process step, e.g., the register symptoms process step requires input from the
patient.

In the following, we concentrate on process models, as they are the basis of our integration of event
stream processing with business processes. BPMN processes describe workflows (human-centric)
and orchestrations (service-centric) as interactions between tasks; an example process is shown in
Figure 2.6. Several task types (represented by rectangles) are supported by BPMN:

* Send and receive tasks send/receive messages to/from others tasks;
* User tasks are executed by humans, typically supported by a workflow system:;
* Manual tasks require non-automated user interaction;

* Business rule tasks trigger the evaluation of a business rule to check compliance of process
data;

» Service tasks are mapped to service calls; and

* Script tasks perform operations on the data directly inside the process execution engine.

—

Order
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| N
8 Approved
Quotation Approve
Handling Order

) E—

)

Review
Order
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Figure 2.6: Sample BPMN process (Source: [129]).

BPMN does also specify events for asynchronous inter and intra process communication. Besides
start and end events, a task can send/receive message events, exception events, signal events, and
compensation events. Timer events can be used to trigger tasks periodically. Further, BPMN process
models support the notion of sub processes to simplify the illustration of large processes. Process
models can also contain pools and lanes to group tasks with respect to business entities whereas each
entity can account for multiple tasks.

2.2.2 Business Process Execution

The implementation of business processes in enterprises involves three layers: the modeling layer,
the execution layer, and the IT infrastructure layer (see Figure 2.7). During design time, business
experts create models from an abstract business perspective, e.g., using EPCs [96,170] or BPMN.
These models are then refined into technical process models, e.g., using BPMN. The models are then
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transformed into executable workflows represented in, e.g., BPEL. Typically, the workflow execution
requires IT support, which is provided by a SOA and workflow management systems.

BPM Transition Process Examples of Abstraction
low coherence high coherence
v Q—D—@—D—Q Model Accounting Billing by Credit
-E (e.g., BPMN 1/2, EPC) (Invoice & Billing) Card
<
2 { }
§
St parontrimetinis  Executable Workflow | Invoke Invoice | Invoke Billing
jSservice nane- wns:Billing”/> (e.g., BPMN 2.0, BPEL) Serv!ce and Billing by C_red/t Card
</process> Service Service
V)
s <
5 Billing Service Billing by
& g I”frggtgucEt;;S (different methods); | Credit Card
‘9 ! Invoice Service Service

Figure 2.7: Transition steps between process modeling, process execution, and IT infrastructure layer.

The model-to-execution workflow is an integral part of the overall Business Process Management
(BPM) cycle [1]. The transition process, however, from a business process model to, e.g., SOA
service interactions is not trivial and requires expertise from the business perspective as well as from
the IT perspective. To enable the seamless implementation of modeled processes, the abstraction of
business functions should have the same granularity at each layer; a coherent abstraction across the
layers minimizes the transition effort [3,134]. The example in Figure 2.7 illustrates this: the low
coherence case requires a refinement with each transition step (a single BPMN task maps to multiple
services) while the high coherence case allows a one-to-one transition between the business function
representations available at each layer (e.g., BPMN tasks, BPEL invocations, and SOA services).

Technical representations of business process models are used as input for process execution engines
like JBoss jBPM, Activiti, or the Software AG webMethods BPMS. In BPMN, processes begin triggered
by start events. The control flow proceeds from this start event to tasks, gateways, or signal elements.
When the control flow reaches a task, the task is activated; it then executes and completes. BPMN
uses the notion of tokens that are passed to tasks and that move on after completion. Different
gateway types exist to influence the control flow: the control flow can move on in parallel to different
tasks as shown in Figure 2.6 (several tokens are created) or move on a certain path depending on
specified conditions. With their activation, the different task types of a process model need to be
executed by an IT infrastructure. Process execution engines manage the control flow and coordinate
the interactions with IT systems that provide the functionality to execute tasks. Two dominant task
types in this setting are service tasks and human tasks. Service tasks are typically mapped to SOA
service calls and human tasks are mapped to a workflow engine. Executable process representations
provide constructs to specify these mappings. A service task, for example, requires the specification
of the service endpoint along with the input data and output data.

To allow a high coherence between the business process modeling layer, the execution layer, and the
IT infrastructure layer, our SPU container model provides a suitable encapsulation mechanism. SPUs
allow the integration of event stream processing logic with high coherence across the layers.

2.2 Business Process Modeling and Execution 21






3 Event Stream Processing Units

To cope with the increasing complexity of modern software systems, software engineers developed
several programming paradigms and abstractions over the past decades. These abstractions map
real-world concepts to software concepts. For example, Object-oriented Programming (OOP) maps
real-world entities (e.g., rooms, persons, or invoices, etc.) to software entities [93]. The require-
ment for scalable and distributed infrastructures led to further abstractions like service-oriented
architectures (SOA). SOAs are based on the abstraction primitive of services. A service encapsulates
a well-defined functionality and can be invoked by an explicit request. Services are managed by a
middleware infrastructure that provides for naming, locating, invoking, and persisting of services.

The pervasive use of mobile devices and sensors makes the event-based approach an indispensable
software development paradigm. This has led to a new generation of sense and response systems
[45]. Patient monitoring, smart home environments as well as traffic management systems are
typical applications that use an Event-driven Architecture (EDA) [52, 86,89]. These Event-based
Systems (EBSs) lack a crisp equivalent of the notion of a service. Services encapsulate application
logic and are an abstraction mechanism for developers to simplify the realization of distributed
and scalable infrastructures. In this chapter, we present a comparable abstraction mechanism for
event stream processing. We introduce Event Stream Processing Units (SPUs) as containers for event
stream processing application logic. SPUs are the necessary building blocks for modern reactive
applications. They are designed with respect to the push-based nature of event streams. They
encapsulate event stream processing in an entity-centric way and enable distributed and scalable
event stream processing applications.

Our SPU container model relies upon a pub/sub infrastructure for event dissemination; we introduce
the notion of an event bus as pub/sub communication layer. Quality of Service (QoS) is essential
for the integration of SPUs with other components; we thus discuss QoS in the context of event
dissemination and event processing. We further present a use case for event stream processing with
a network of SPUs.

3.1 Event Bus

The pub/sub system is the communication layer in EBSs [132]; it is responsible for the event dissem-
ination. We refer to this communication layer as event bus. Our approach of SPUs does build on top
of this communication layer. The concept of SPUs is agnostic to the concrete implementation and
technical details of the pub/sub provider; we only require a general pub/sub interface to be exposed.
In the following we define such a generic interface to a pub/sub system as foundation for SPUs.

As introduced in Section 2.1.1, a subscription defines a filter for events of interest. For SPUs we
assume that this filter is specified upon the content of events. The filter is stateless, i.e., it can be
applied to events independently to determine whether they meet the filter conditions. No additional
knowledge other than the filter and the event is necessary for this evaluation. Subscriptions are the
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basic mechanism for SPUs to express their interest in events. The publication of an event results in a
notification as reification of the event inside the pub/sub system. The pub/sub system evaluates filter
conditions specified in subscriptions against notifications to determine whether a certain notification
matches a subscription. As counterpart of subscriptions, event publishers can specify advertisements.
An advertisement specifies the types of events to expect from a publisher. Advertisements are not
required for SPUs, however they allow plausibility checks, i.e., when an SPU issues a subscription it
can be checked whether events of the demanded type are already provided by publishers.

Pub/sub-based event dissemination requires common knowledge between event producers and sub-
scribers about the content and the structure of events; even content-based subscription must be
specified in accordance to the event payload. This problem is generic to distributed systems; it is
especially problematic in EBSs since producers and consumers are decoupled conceptually and se-
mantically. One solution is an implicit definition of event types, i.e., events are self-describing [132].
Another solution are transformation approaches inside the middleware; rather than sharing knowl-
edge between all event producers and subscribers, producers and subscribers need to establish a
common knowledge with an intermediate party only. In Section 6.4 we will present an application
of our middleware-based transformation approach, presented in [73], with respect to SPUs.

Common Publish/Subscribe API

SPUs rely on a generic API for pub/sub [141]. Event publishers send events to the pub/sub system
using the publish method. No further data other than the event is required so that producers do
not require additional knowledge. Prior to publishing events, producers can advertise the type of
events they will later publish; this is optional in the context of SPUs, however required by numerous
pub/sub systems:

advertise(EventType t);

Publishing events of advertised types is now possible asynchronously without the need for further
parameter exchange with the pub/sub system:

publish(Event e); // Event e is of type t

Interested consumers subscribe for events by specifying a filter on the event content:

subscribe(Filter f);

The pub/sub system evaluates the subscription filter f against the published events e. Upon a match,
the event e is delivered to the interested subscribers, i.e., a method at the subscriber is called that
handles the incoming events:

onEvent (Event e); // Method is called upon arrival of Event e that
matches filter f

The above introduced generic pub/sub methods can be mapped to existing pub/sub systems. We
developed a translation layer for the Java Message Service (JMS) (see Section 6.2) to implement
these generic pub/sub calls. Other productive and research pub/sub systems support these basic
constructs accordingly.
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3.2 SPUs as Containers for Generic Event-driven Tasks

The goal of an abstraction mechanism is to provide an intuitively understandable way to group
functionality. For services, this is business functions, i.e., a service encapsulates functionality that
can be understood from the business perspective. Domain experts without in-depth IT knowledge
should be able to understand what a service does. We follow the same goal with SPUs. SPUs
are containers for generic reactive application logic referred to as generic tasks. Typically, such a
task represents functionality associated with a certain entity type, e.g., a shipment. Further, this
functionality relies on input in the form of streams of events from a pub/sub system. A single
SPU instance receives the event stream associated with a certain entity instance, e.g., events for a
particular shipment.

As introduced in our shipment monitoring use case in Section 1.2, SPUs can be used to encapsu-
late shipment monitoring application logic in an entity-instance-centric way, i.e., an SPU instance
is responsible for the monitoring of a certain shipment. The shipment monitoring application logic
applies to each shipment; it is thus generic with respect to the entity type shipment. Figure 3.1(a)
shows that such a generic task, like shipment monitoring, is defined by actions that are applied to
different entity instances. For each individual entity instance, a task instance is maintained; actions
are generic and automatically applied per entity instance. Figure 3.1(b) shows this for our example
of shipment monitoring.

H Instantiation {} H Instantiation {}
Shipment _Shi_pment JJJ
| Generic Task | | Task Instance Monitoring Monitoringspipments2

\ N
! N \I ‘| : [ ‘I 1 ‘I : :
1 1

! Event Type H ' Event Instance |} :: i | Monitoring Events H i Temp: 23°C H :E
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' | Entity Type i ' | Entity Instance | :E E Shipment | i Shipment: 42 | | :E
1 Ty ' L Ty
H Actions Y ! Report Temperature Threshold Violation L
N SN ____. . - 7 N II"

(a) Abstract View (b) Example

Figure 3.1: Generic task model: Abstract view (a) and shipment monitoring example (b). In (b), an
SPU instance exists per shipment.

In addition to the shipment-monitoring scenario introduced in Section 1.2, we introduce a traffic con-
trol system and a health monitoring scenario to illustrate further applications of our SPU container
model.

Scenario: Traffic Control System

Managing the increasing volume of traffic in large cities is a challenging task. To avoid gridlock and
to share infrastructure-costs for highways or tunnels, cities rely on toll systems to charge vehicles
entering certain areas. Vehicles are registered when they enter or exit certain zones and cities often
have different rates for different areas, times or kinds of traffic. An IT system for traffic management
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has to keep track of each car, its status, and location. Norway’s AutoPASS system, for example,
handles more than 2.1 million entities across Norway'.

The process of toll collection consists of a dynamic sensing part and a standardized processing part:
Cars have to be detected and tracked (sensing), toll rates and billing information have to be cor-
related with the detected movements (processing). These toll systems are often realized as Cyber-
physical System (CPS) for the sensing and a Service-oriented Architecture (SOA) for the processing
part. Vehicles are continuously detected at checkpoints throughout the city. The detections are
represented by event streams, which are then used for toll processing.

While traditional event stream processing techniques can handle high volumes of events, they lack
an intuitive abstraction mechanism designed for scalability on the architectural level that enables
easy integration with SOAs. With SPUs however, this integration is intuitive and the resulting ap-
plication is inherently scalable; SPU instances represent vehicles and can be assigned to arbitrary
machines for execution. The application logic is the same for each vehicle: detection events have to
be recorded and toll has to be calculated. This generic task can be modeled with an SPU as shown in
Figure 3.1. For each vehicle crossing the city limits an SPU instance is created automatically. During
the instantiation further information, such as the toll category for the corresponding license plate,
is retrieved by a SOA service invocation. Each SPU instance receives all detection events for its cor-
responding vehicle only. When a vehicle leaves the city the associated SPU instance performs the
billing by invoking the invoice service and shuts itself down.

The traffic control task is generic and is instantiated per car that is detected. The events of interest
are position events of cars. As soon as a car leaves the city, i.e., the position indicates that the car is
outside the city boundaries, an invoice is created to request the payment of toll.

Scenario: Health Monitoring

Continuous health monitoring of patients is another use case for sense and response applications.
Today’s sensor technology allows equipping persons with multiple lightweight sensors to collect
health data, e.g., heartbeat rate or blood pressure [157]. Smartphones can then be used to collect
these sensor data for long term analyses or to detect critical situations. One challenge is now the
task of integrating the patients’ monitoring system with the IT systems inside a hospital. Here, SPUs
can help to improve the workflow inside hospitals but also to increase patient safety.

SPUs in a hospital contain patient centric application logic, with patients being the entities of interest
inside a hospital. A typical scenario is a new patient entering the hospital. When this patient is
equipped with the above-mentioned monitoring system the smartphone can now be used to forward
all sensor data: the data is enriched with a unique patient ID and forwarded to the hospital event
dissemination infrastructure. An SPU middleware now creates an SPU instance for each patient
that is new inside the hospital. This SPU instance can perform patient monitoring by evaluating
the events received from the patient’s sensors. But also more complex functionality is possible: at
creation of an SPU instance the patient database of the hospital can be queried to retrieve additional
information and to trigger further administrative tasks. In general, tasks that are generic for all
patients can be encapsulated into an SPU which is then automatically instantiated per patient. An
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Figure 3.2: Event Stream Processing Units (SPUs) operate on entity-centric event streams; an entity-
centric event stream can consist of different event types.

SPU instance can be seen as event-driven application dedicated to a patient, e.g., to monitor a
patient, to archive sensor data, or to interact with legacy hospital systems. Since SPU instances are
stateful and run independently, a runtime configuration, e.g., adjusting sensor threshold values, can
be realized easily.

3.2.1 SPUs as Abstraction to Event Stream Processing

SPUs add a layer of abstraction on top of existing event stream processing approaches. They allow
specifying event stream processing application logic on a generic basis. Rather than specifying event
stream processing for multiple entity types (coarse grain) or per entity instance (fine grain), SPUs
allow event stream processing to be specified per entity type. This follows the OOP paradigm where
objects reflect entities. The encapsulation of event stream processing is shown in Figure 3.2: Events
of different types and different entity instances are published to the event bus. SPU instances now
subscribe for all events related to a single instance and perform entity-instance centric event stream
processing; the creation of SPU instances and the SPU instance specific subscriptions are managed
by a middleware.

The abstraction step from entity instance-centric to entity type-centric event stream processing re-
quires concepts that address the push-based specifics of EBSs. As described in Section 2.1.1, EBSs in
general, and event stream processing in particular, rely on a pub/sub system for event dissemination.
A generic interface to pub/sub is the foundation for SPUs. Further, event-based execution semantics,
i.e., implicit instantiation as well as implicit completion strategies need to be supported by SPUs.

3.2.2 SPU Instantiation and Completion Strategies

In pull-based environments, e.g., traditional SOAs, interactions are triggered explicitly; they are
consumer-driven. Services, for example, are invoked explicitly (see Section 2.1.4). In push-based
environments, interactions are triggered implicitly; they are producer-driven. Event stream process-
ing is triggered by the arrival of events; SPUs, as container model suited for the push-based approach,
need to support such implicitly-triggered interactions.
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SPUs contain entity-centric application logic. At runtime, SPU instances have to be created for the
processing of entity-instance related events. In typical OOP, this instantiation is explicit (creation of
an object). However, the push-based nature of event streams allows implicit instantiation as well.
Thus, SPUs support explicitly-triggered as well as implicitly-triggered instantiation. The same holds
for the completion of event-driven tasks implemented with SPUs. Since an event-based interaction
does not follow a request/reply scheme (events can arrive continuously), the completion of event
stream processing needs to be triggered. The completion can either be triggered externally or inter-
nally. We refer to externally triggered completion as explicit completion; an SPU instance is stopped
explicitly, e.g., via an external command. Completion of an SPU can also be triggered internally,
from inside the SPU itself; we refer this as implicit completion.

Explicit and Implicit Instantiation

SPUs can be instantiated explicitly, i.e., the instantiation is controlled externally. In the example of
a shipment monitoring SPU, SPU instances are created explicitly for each shipment by an external
controller, e.g., an SPU instance is created for monitoring of Shipment No. 42. In the case of explicit
instantiation the existence of events for a certain entity instance, e.g., for Shipment No. 42, is not a
prerequisite. An SPU might be instantiated although no events are available for processing yet.

When SPUs are instantiated implicitly the instantiation is triggered based upon arriving events. The
instantiation condition is specified as part of the SPU; no external trigger for the instantiation is
required. An SPU instance is created, for example, as soon as events for a certain entity instance,
e.g., for Shipment No. 42, arrive. An SPU runtime environment ensures, that only one SPU instance
is created per entity instance. Conceptually, an SPU can also be instantiated based upon complex
events, e.g., by a derived event that confirms that Shipment No. 42 has left the logistics hub. A
corresponding SPU instance is then created and receives all monitoring events for this particular
shipment.

Explicit and Implicit Completion

Explicit completion follows the same semantics as explicit instantiation. Active SPU instances can
be shut down via external commands, e.g., a command triggering the shutdown of the SPU instance
that monitors Shipment No. 42. This shutdown is independent of the events arriving for a certain
entity instance.

The implicit completion of an SPU instance is triggered from inside the SPU instance. It can be based
upon a condition that is evaluated continuously. Examples are timeouts or dedicated events, e.g.,
when no new events arrive for Shipment No. 42 before the timeout.

3.2.3 SPU Definition and Structure

SPUs encapsulate event stream processing application logic with the goal of simplifying development
and integration of event stream processing components.
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<SPU Name>
SPU Metadata
ValidityExpression: <Validity period of SPU>
ConstantExpression: <Precondition for event handling>

InstantiationExpression: <Distinction criteria between SPU instances>

<SPU Instance ID> SPU Runtime Code

onInstantiation(InstantiationValue iv) {
// Code executed upon creation of SPU instance

}

onRemove () {
// Code executed upon removal of SPU instance

}

onExpiration() {
// Code executed upon end of validity violation

}

onEvent (Event e) {
// Code executed upon event arrival

}

Figure 3.3: Structure of an Event Stream Processing Unit (SPU) with partitioning in runtime code and
metadata required for the instantiation.

Definition: Event Stream Processing Units (SPUs)

Event Stream Processing Units (SPUs) are containers for generic event-driven tasks. They hold
application logic with respect to entity types; an SPU instance is created for the processing of entity-
instance-centric streams of events. Instantiation and completion of SPUs can be triggered implicitly
or explicitly. SPUs have a managed lifecycle.

SPUs hold application logic that applies to entity types. At runtime, SPU instances process events
related to certain entity instances; thus, SPU instances have to issue subscription dynamically upon
their creation.

In this section, we introduce the SPU container model from a conceptual perspective. We present
the technical and implementation perspective in Chapter 6. The container model describes the
structure of SPUs relevant to developers. The technical and implementation perspective presents
the middleware necessary to execute, distribute, and manage SPUs. To support implicit instantiation
and completion, SPUs contain dedicated metadata that specifies when to create and shutdown SPU
instances. Further, SPUs follow a certain structure to allow lifecycle management. The basic structure
and methods are shown in Figure 3.3; we distinguish between SPU metadata and SPU runtime code.
SPUs are identified by a unique name. Further, to identify SPU instances at runtime, an ID per
instance is assigned by the middleware. In the following we describe the SPU metadata and runtime
code.
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SPU Metadata

The SPU metadata is shared amongst all SPU instances. It defines the event stream, which arrives
at each SPU instance, i.e., it partitions an event stream with respect to entity instances. The SPU
metadata is required for the instantiation and management of SPUs by a runtime environment. The
metadata consists of three parts, the:

* Constant expression;
* Instantiation expression; and
* Validity expression.

Based upon constant and instantiation expressions, subscriptions are derived dynamically as filters
for entity-instance-centric events.

Constant Expression

The event bus provides asynchronous communication in EBSs. It transports event notifications from
different event producers to interested subscribers. An SPU might be interested only in certain types
of events; the constant expression is a precondition to identify events relevant for an SPU and all its
instances. The constant expression can be seen as a filter applied at subscription level; if an event
does not match, no further processing is required. We chose the term constant to indicate that the
resulting subscription is equal for all SPU instances.

When events are represented with XML, an example for a constant expression in the style of XPath
is: /event/type[. = positionEvent]; this expression enforces that all events arriving at SPU
instances are position events. When events are represented with attribute/value (att/val) pairs,
an example for the constant expression is: (eventType == positionEvent) AND (sensorType ==
A); this expression enforces that all events arriving at SPU instances are position events originating
from sensor type A.

Instantiation Expression

The instantiation expression specifies the distinction criterion between SPU instances. Each SPU
instance receives a sub stream of events associated with a certain entity instance. The partitioning
into sub streams is based upon grouping attributes; an event sub stream corresponds to a certain
grouping attribute value. A grouping attribute is, for example, a shipment ID. At runtime, each SPU
instance issues a subscription for certain grouping attribute values, e.g., a subscription to events with
Shipment ID No. 42.

When events are represented with XML, an example for an instantiation expression in the style of
XPath is: /event/shipmentID; based upon this instantiation expression, SPU instances are created
for specific shipments. The instantiation expression along with a specific instantiation value, e.g.,
Shipment No. 42, allows SPU instances to derive an entity-instance-centric subscription, i.e., a sub-
scription for events of Shipment No. 42. For att/val-based events, the basic instantiation expression
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contains the name of a single attribute suitable for grouping, e.g., shipment ID. In addition, instan-
tiation expressions can specify an attribute set, e.g., when a shipment ID is not unique. An example
is (shipmentID;truckID). In case a shipment ID is only unique in combination with a truck ID,
this instantiation expression ensures that SPU instances are created for each unique combination of
shipment ID and truck ID attribute values, e.g., Shipment No. 42 in Truck No. 37.

Validity Expression

In EBSs event producers and event subscribers are decoupled and do not follow request/reply se-
mantics. Thus, the validity expression specifies a condition for implicit completion. The validity
expression is evaluated continuously throughout the life span of SPU instances. Examples for valid-
ity expressions are:

» Timeout: Events may arrive continuously; however, the arrival of events may also end abruptly
without prior notification. A timeout occurs when no events arrive for a certain time interval;

* Event rate insufficient: The number of events per time interval is too low;
* Expiration time/date: SPU expires at a certain point in time; and

» Expiration event: Expiration is triggered by a dedicated event, e.g., when an event producer
leaves the system.

SPU Runtime Code

Along with the metadata, an SPU has to implement four methods: onInstantiation, onRemove,
onExpiration, and onEvent. These methods contain the application logic for the SPU lifecycle
management and for the handling of incoming events.

onlnstantiation Method

The onInstantiation method contains the code, which is executed when an SPU instance is cre-
ated. There is no need to write any instantiation code; whether it is needed depends on the use
case and the demanded SPU functionality. An example for instantiation code is opening a database
connection to retrieve additional data, e.g., the temperature threshold value for a certain shipment,
or registering a complex event processing query with a Complex Event Processing (CEP) engine.

onRemove Method

The onRemove method is executed when an SPU instance is completed - either implicitly or explicitly.
It is responsible for a clean shutdown with respect to the SPU application logic. Examples are the
shutdown of connections to external components, or persisting data for later reuse.

3.2 SPUs as Containers for Generic Event-driven Tasks 31



onExpiration Method

Part of the SPU metadata is the validity expression. If an SPU instance expires according to this
expression, the onExpiration method is executed. The methods can be used by developers to react
appropriately to expirations.

onEvent Method

The core functionality of an SPU is represented by the event processing application logic. The first
step for event processing is the handling of incoming events; the corresponding code is located in
the onEvent method. It is called upon the arrival of events that match the issued subscription.

3.2.4 SPU Execution Semantics

The metadata of SPUs determines the events each SPU instance receives at runtime. When an SPU
instance is created (implicitly or explicitly), it issues a subscription to receive events related to one
entity instance. In this section we formally describe the underlying SPU execution semantics. For
this, we assume events represented with att/val pairs and values to be either strings or integers.
We introduce event types in our system model and define the relation between events and SPU
instances.

Events e are sets of att/val pairs where an attribute a is identified by its name n. Attribute values v
are either STRING or INT values:

a:={(n,v) | n:=STRING A (v :=STRINGV v := INT)} (3.1)

For better readability we introduce the notation a.n for the name of an attribute a and a.v for the
value of an attribute a.

an:={n|la=(n,v)} (3.2)
av:={v|a=(n,v)} (3.3)

Each event e is of a certain type t. A type ¢ is defined as set of attribute names a.n:

.n} (3.4

t :={a;.n,...,q;

An event e of type t, short e[t], contains all att/val pairs defined in type t:

e[t] :=={a|Vi:a;.net} (3.5)

We refer to an attribute of an event e[t] as e[t].a:

e[t].a:={alaece[t]} (3.6)
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SPUs implement entity-type-centric event stream processing. The events that belong to an entity
can be of different types, e.g., when the entity is a shipment, events can be position events and
temperature events. These events of different types have to be groupable, i.e., they need to have
attributes in common to derive their associated SPU instance. For example, position and temperature
events can both contain an attribute that holds the shipment number. The candidate attributes &bt
for a grouping across event types t;, ..., t; are defined as follows:

8tit; ={a.n|Vk:tg €ty,....,tjAan € t;} (3.7)

The instantiation expression now defines the attribute names to partition the event stream into SPU
instance centric sub streams of events. In case of multiple event types, these attributes must be

present in all events, i.e., they must be part of the grouping set &bty The instantiation expression

v

¢ . of an SPU v is a set of attribute names a.n:

J

$ t

iseees

SZ,...,tj :={a.n|ane gti’m’tj} (3.8
In the basic case, the instantiation expression is a single attribute name, e.g., shipment ID. However,
instantiation expressions consisting of multiple attributes are possible. This is similar to primary
keys in databases; these can also consist of multiple fields to make a unique identifier. For example,
when shipment IDs are only unique in combination with truck IDs, the instantiation expression
contains the attributes shipment ID and truck ID. At runtime, SPU instances I are created based

upon the instantiation expression s; In case of a single instantiation attribute, a specific SPU

..,fj °

instance receives all events that have the same instantiation attribute value val. In case of multiple

instantiation attributes this holds analogously; an SPU instance I[s{ , ][val] receives all the events
[ERREL

where the values val of the attributes in the instantiation attribute set are identical:

val :={a|a.n€s;

iseees

o 3.9
I[sfi’m’tj][val] ={e [t |Vt €ty tiA

e,[tr].a 2 val} (3.10)

SPU instances I[s; , ][val] exist for all instantiation attribute values. Each SPU instance receives
[EXELS]

the events according to the partitioning specified by the instantiation expressions; |, :
[ERELS]

1lval] | e;[t;].a 2 val (3.11)

Vi:e[t;]l.ae SZ,...,tj — Ell[sfi’

-
The above presented execution semantics focus on the instantiation expression. The constant expres-
sion is part of an SPU as well. In the context of the formal model, the constant expression defines
conditions on arbitrary attribute values. Events are only delivered to SPU instances when the de-
fined conditions match with the event. The subscription an SPU instance issues at its creation can
be derived based on the formally described executions semantics. One SPU instance exists for each
value of the instantiation attribute, respectively for each value combination in case of multiple in-
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stantiation attributes. This requires a dynamically derived subscription for each SPU instance based
upon the constant expression, the instantiation expression, and the values of attributes specified in
the instantiation expression.

The subscription filter starts with the constant expression as static part. It then contains an equal-
ity check based upon the attributes specified in the instantiation expression: each SPU instance
subscribes to events corresponding to a unique value of the attribute specified in the instantiation
expression. In case of multiple attributes in the instantiation expression, each SPU instance sub-
scribes to events corresponding to a unique value set of the attributes specified in the instantiation
expression. With implicit instantiation, the runtime environment ensures that an SPU instance is cre-
ated upon demand, i.e., when new entity-centric events are published. With explicit instantiation,
a value set of the attributes specified in the instantiation expression needs to be specified manually
upon instantiation, e.g., it is known that a monitoring SPU for Shipment No. 42 should be created.
We illustrate this using the introduced shipment-monitoring scenario; we assume att/val events with
the following attributes: eventType, shipmentType, shipmentID, truckID, temperature. The
constant expression specifies the interest in temperature events for transport of food or drugs:

1 (eventType == temperatureEvent) AND

2 (shipmentType == food OR shipmentType == drugs)
The instantiation expression specifies that the event stream per shipment is defined uniquely by a
truck ID in combination with a shipment ID:

1 (truckID; shipmentID)

The derived subscription filter for an SPU instance that processes events for a shipment with ID 42
inside of a truck with ID 37 is:

1 (eventType == temperatureEvent) AND

2 (shipmentType == food OR shipmentType == drugs) AND
3 (shipmentID == 42) AND

4 (truckID == 37)

Upon creation of an SPU instance, this filter is used to subscribe for events. Lines 1 and 2 are the
static part of the subscription that is equal for all SPU instances; lines 3 and 4 are the dynamic part
of the subscription that differs between SPU instances.

Besides the subscription derived based upon constant and instantiation expression an SPU runtime
environment might issue subscriptions to receive events specified as expiration event within the
validity expression. The derivation of such a subscription depends on the realization of validity
expression support in an runtime environment implementation.

3.3 Quality of Service Considerations

SPUs - as an abstraction concept for event stream processing - are reactive building blocks in software
systems. In this context, QoS is an important aspect to ensure proper functionality. QoS with respect
to SPUs, however, is complex to define and to guarantee. Thus we discuss QoS properties for SPUs
in the following sections.
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Like services interact with, e.g., a service registry and an enterprise service bus, SPUs rely on a
pub/sub system for event dissemination. Thus, QoS of SPUs depends on multiple system com-
ponents. A schematic view on the different layers of QoS in an SPU infrastructure is shown in
Figure 3.4. Events are published by producers where QoS and Quality of Information (Qol) influ-
ence the QoS of the overall system. QoS at this layer is for example the event rate at which producers
publish events. Qol is related to the data itself, e.g., determined by the accuracy of sensors.

QUALITY ASPECT SYSTEM COMPONENTS
| EDA QoS | | Event-driven Architecture with Event-based Components
Stream Processing Subscribe Publish
QoS Event Stream
(e.g., Throughput, Processing Units
Accuracy)
lSubscribe lPuinsh
Pub/Sub QoS . .
(e.6., Latency, Reliability) Publish/Subscribe System (Event Bus)

TPuinsh TPuinsh TPuinsh TPuinsh

Producer QoS &
Quality of Information

Event Producer

=

<

Wireless Sensor Nodes

L cee
(e.g., Accuracy of Sensors, =

Event Rate) RFID Reader

Smartphones Other Producers

Figure 3.4: Quality of service and quality of information in event-based systems depend on event
production, on event dissemination, and on event processing.

The next layer is the event dissemination infrastructure, in our case a pub/sub system. The pub/sub
system is essential to disseminate event notifications in an asynchronous and decoupled way. SPUs
subscribe to events and a single event notification can trigger or change the execution of application
logic. It is thus necessary to make SPUs, and event consuming and producing components in general,
aware of the QoS of the underlying notification mechanisms. Different QoS properties are adopted
in current notification middleware, e.g., in JMS brokers [150], in the data dissemination service
(DDS) [128], or in research pub/sub systems [22]:

* Persistence: The pub/sub middleware takes extra care to ensure that no event notifications are
lost in case of a server crash by buffering them on persistent storage.

* Delivery Mode: The delivery mode determines whether events are delivered at least once, at
most once, or exactly once.

* Durability: With non-durable subscriptions a subscriber will only receive notifications that are
published while he is active. With durable subscriptions, notifications are buffered in case
subscribers temporarily disconnect.

* Transactions: A pub/sub session can be transactional or non-transactional. A transaction is a
set of publish or event arrival handling operations that is executed as an atomic unit of work.

* Order: When order of event notifications is guaranteed, the middleware ensures that notifica-
tions arrive in the order they were published.
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* Performance: The fraction of event notifications that can be handled by the middleware within
time limits (throughput and latency).

e Security: Guarantees by the middleware to ensure confidentiality, privacy, and integrity of
notifications.

These QoS parameters apply to Message-oriented Middleware (MOM) in general. In our work,
we focus on pub/sub communication. Thus, the QoS properties are discussed under event-based
specifics typical to our scenarios:

* Persistence and Reliability: In some scenarios persistence or reliable event delivery is not re-
quired due to the transient nature of events. Temperature readings or position events, for
example, might only be relevant when delivered timely. Other scenarios might require guaran-
teed event delivery.

* Durability: As for persistence, durability needs depend on the use case. Usually, clients can
specify whether they want to issue a durable subscription. This might be relevant for mobile
subscribers, e.g., when SPU instances run on mobile devices where links are not stable. With
durable subscriptions, events eventually arrive until the connection is intentionally closed.

* Transactions: In contrast to traditional messaging scenarios with complex interaction patterns,
e.g., presented in [153], many events in event-based applications are self contained and inde-
pendent of each other. Thus, event bus transaction support does not span across producers and
consumers or multiple messages; transactions are rather used to ensures a reliable delivery of
single events between brokers and producers/consumers.

* Order: Depending on the use case, event-bus-enforced order guarantees might not be necessary.
When events contain a time stamp and no strict order guarantees are required, SPU instances
can establish an event order or detect out of order events; however, due to time synchronization
issues in distributed systems, this is only a best effort approach without strict guarantees.

* Performance: Throughput and latency are typically QoS parameters that cannot be config-
ured dynamically; they rather depend on the overall hardware/software setup. The goal is
to maximize throughput and minimize latency while guaranteeing, e.g., notification durabil-
ity. Performance correlates inversely with persistence and reliability; the less persistence and
reliability is needed, the higher is the performance.

* Security: When notifications contain sensible data, the event bus must ensure that event pro-
ducers/consumers are authorized to send/receive notifications. At the same time, the event
bus itself might not be fully trusted so that notification content must be kept secret while being
routed from publishers to subscribers.

Event consumers, like SPUs, should be able to specify different EBS-specific QoS policies for persis-
tence and durability depending on their needs. While persistence addresses broker failures, dura-
bility addresses event consumer failures, e.g., due to bad connectivity. We suggest four policies as
enhancements to QoS properties in current MOM:

* Full: All events require persistence/durability;

* Recent: Only the most recent event is relevant and requires persistence/durability;
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* Change: Only events where values (besides time) change require persistence/durability; and
* No: No persistence/durability requirements.

These policies can be specified as additional subscription parameter, i.e., the pub/sub API is extended
with QoS properties:

1 subscribe(Filter f, QoSpolicy p);

An additional QoS property is security. Security is orthogonal to persistence and durability; security
demands can apply to each of the above policies. When security mechanisms are supported by the
event bus, an SPU has to provide identity information with its subscription. This ensures that only
verified subscribers receive notifications. Often, this involves a key exchange procedure and requires
multiple steps.

While SPUs rely on the QoS and Qol provided by event producers and the event bus, they are also
data and functionality providers themselves. Thus, other system components in the overall event-
driven architecture rely on QoS provided by SPUs. QoS aspects of SPUs are related to event stream
processing QoS and QoS in SOAs. From QoS properties in event stream processing [42] and in
SOAs [25], the following properties are the most relevant in the context of SPUs:

* Latency: The time between the arrival of an event at an SPU instance and a resulting action
(response time).

e Throughput: The number of events per time an SPU instance is able to process.
* Capacity: The number of SPU instances that can be active in parallel.
* Cost: The computational cost of an SPU instance.

* Accuracy: Event stream processing inside of SPUs can be responsible to detect patterns or to
evaluate queries on streaming data. Accuracy refers to the number of false positives/negatives
in such an event stream processing task.

* Availability: SPU instances might be unavailable due to, e.g., connectivity issues. Availability
specifies the percentage of time an SPU instance processes events as expected.

As in SOAs, QoS in the context of SPUs result in the specification of Service-level Agreements (SLAs).
SLAs describe the QoS properties SPUs provide. Ideally, SLAs are specified in a standardized and
machine readable way. This allows to automatically assess the QoS of the overall system. SLAs are
especially important when components interact and depend on each other [75]. When one SPU
guarantees a high availability but relies on input data from the event bus or another SPU with low
availability, it cannot hold its guarantees by design.

SPU instances are containers for application logic; the SPU container model defines automatisms
for pub/sub and lifecycle management. The application logic as such can be based upon complex
software systems and QoS properties depend also on the libraries used inside of SPUs. Thus, man-
aging SLA interdependencies is a complex topic. Since SPUs are a service-like container model, SLA
concepts originating from the service world can be adapted and applied to SPUs.
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Monitoring and Benchmarking

In the context of QoS, monitoring and benchmarking are important aspects. Monitoring is performed
at runtime while a system is productive. Benchmarking is performed to assess the system behavior
under controlled conditions; typically, a standardized workload is used. Based upon benchmarking
and the behavior of the system under test, SLAs are defined. During productive use, monitoring
mechanisms are used to identify bottlenecks and to check compliance with specified SLAs. Bench-
marking and monitoring in SPU environments encompasses the event bus as well as the event stream
processing inside SPUs. Lightweight monitoring approaches for (distributed) pub/sub systems exist,
e.g., the ASIA system, which performs in-network aggregation of data to minimize the monitoring
overhead [77] . Monitoring of SPU instances can be performed by an SPU runtime environment that
aggregates data from SPU instances. For this, SPU instances have to implement monitoring capabil-
ities and, e.g., provide information about throughput. The overall system utilization is out of scope
of single SPU instances; thus, decisions about distribution of SPUs, e.g., for load balancing purposes,
are left to the runtime environment.

Benchmarking of SPU environments involves benchmarking of the pub/sub infrastructure as well
as benchmarking the event stream processing in SPUs as such. Benchmarking of pub/sub systems
is addressed in existing work [150,153]. However, most workloads are not designed to address
the specifics of event-based systems, e.g., frequent renewal of subscriptions. In [12] we present a
workload definition that is tailored to event-based specifics. The focus lies on:

* Independent Participants: Event producers and consumers should be logically decoupled. Event
producers do not know which SPU instances will receive their events. Thus, events should be
self-contained.

* Dynamic Environment: Subscriptions should not be static but rather be renewed and changed
over time. This reflects SPU instances that are created or shut down over time.

In addition to the pure pub/sub messaging, application logic inside SPU instances is part of the
benchmarking process. This requires the workload to define entity-centric event streams and tasks
that are applied per entity instance. Real-time shipment tracking and monitoring are such candidates
with shipments and vehicles being entities for which SPU instances are created. Since SPUs are event
stream processing components, benchmarking can be based upon work on standardized event stream
processing benchmarks, which define queries and metrics on event streams [15,114]. The overall
benchmark then integrates a pub/sub workload and an event stream processing workload.

3.4 Network of SPUs

SPU instances consume events, but can also act as event publishers. This enables building SPU
networks where SPU instances react on the output of other SPU instances. SPU networks can be
used for event enrichment in case entity-centric events are not readily supplied by event producers.
An example in the context of a shipment-monitoring scenario is shown in Figure 3.5. The goal is to
implement a temperature monitoring of shipments based upon SPUs, i.e., one shipment monitoring
SPU instance is created for each shipment. Different shipments can have different temperature
thresholds; the shipment-specific threshold is retrieved from a database upon the creation of an SPU
instance, i.e., in the onInstantiation Method.
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vehicleTempEvent

Attribute Value
type vehicleTempEvent
vehiclelD 42
temperature | 35°C

Subscription:
(type == vehicleTempEvent) AND
(vehicleID == 42)

createShipmentEvents

SPU Metadata

ConstantExpression: type == vehicleTempEvent
InstantiationExpression: vehicleID

<InstancelD: 42> SPU Runtime Code

onInstantiation() {
shipments[] := shipmentsLookup (this.getID);}

onEvent (Event e) {
for each shipment in shipments[] {
publish (new Event (“shipmentTempEvent”,
shipment.id,

e.temperature)); }}
shipmentTempEvent shipmentTempEvent
Attribute Value Attribute Value
type shipmentTempEvent type shipmentTempEvent
shipmentID 4243 shipmentID 4445
temperature | 35°C temperature | 35°C

N4

monitorShipment |

ConstantExpression: type ==
shipmentTempEvent
InstantiationExpression: shipmentID

<InstancelD: 4243>

onEvent (Event e) {...} |

Figure 3.5: Event Stream Processing Units (SPUs) can be used for event enrichment; their output is
used as input by further SPUs.
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We assume that shipments are transported by vehicles that are equipped with temperature monitor-
ing equipment and a GPS receiver. All fleet vehicles send events that contain the vehicle ID and the
current temperature value continuously. These events are not sufficient for a per-shipment monitor-
ing and per-shipment events have to be derived. This can be realized with SPUs: an SPU instance for
each vehicle is created that derives and publishes the required per-shipment events. The creation of
those createShipmentEvents SPU instances can be automated by implicit instantiation strategies,
i.e., an SPU instance per vehicle ID is created. The main application logic for deriving per-shipment
events is implemented in the onInstantiation and onEvent methods of the createShipmentEvents
SPU. The list of shipments that is transported in a vehicle is retrieved at creation of the SPU instance;
in Figure 3.5 the SPU instance for Vehicle No. 42 is shown and the list of shipments is retrieved
at instantiation. Details of the shipmentsLookup method, e.g., the initialization of a database con-
nection, are omitted for brevity. For each vehicleTempEvent that arrives at the SPU instance, the
onEvent method is called. The onEvent method publishes one event per shipment that contains
the temperature value. The resulting stream of shipmentTempEvent events is the source for the
monitorShipment SPU of which one instance is created per shipment ID.

The advantages of generating derived events with SPUs are the entity-centric abstraction that is
applied as well as the inherent distribution capabilities of this approach. Entity-centric abstraction
in the presented example means that SPU instances are created for vehicles and for shipments. This
follows the OOP paradigm; the direct abstraction of real-world entities fosters an easy understanding
of the overall system architecture and functionality. The inherent distribution capabilities of SPUs
allow the distribution of SPU instances across different nodes. Since each SPU instance is self-
contained and issues its own subscriptions, it can be run on an arbitrary node. Depending on the
use case, a high-performance and scalable pub/sub infrastructure is necessary to avoid bottlenecks
at the event dissemination layer.

3.5 Instantiation based upon Complex Conditions

The SPU instantiation strategies introduced in Sections 3.2.3 and 3.2.4 refer to the contents of sin-
gle events only, i.e., stateless evaluation of event content is sufficient. Instantiation is based upon
attribute values; an SPU instance is created for each unique set of instantiation attribute values.
However, more complex and stateful constant and instantiation expressions are conceptually possi-
ble, e.g., event pattern detection. In the following we discuss the applicability of such complex event
processing expressions for the creation of SPU instances.

Complex Constant Expression

A non-complex constant expression is applied as filter by all SPU instances; it is a precondition to
filter out irrelevant events. Following this semantics, a complex constant expression is treated as a
filter and must evaluate to true or false. However, it cannot be evaluated independently per-event
anymore. One possibility for the evaluation of complex constant expressions is the creation of SPU
instances when the complex constant condition is met, e.g., when a certain event pattern is detected.
The instantiation expression can refer to a single attribute or an attribute set as usual. A use case is
the creation of SPU instances for shipment monitoring only after a truck has left the logistics hub, i.e.,
after an event has been seen that notifies about a truck leaving. In this case the constant expression
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is a one-time barrier, i.e., once the leaving of a truck has been detected, the condition is fulfilled and
SPU instance creation is performed. The constant expression can also be seen as a multi-time barrier,
i.e., before each SPU instance creation the condition specified in the constant condition has to be
fulfilled.

Complex Instantiation Expression

Instantiation is possible based upon event pattern detection as well as based upon the results of a
query defined on the event stream. The instantiation is then based upon the result of the specified
query; one SPU instance is created for each distinct result value. However, the challenge is the
specification of the SPU instance specific subscription; this subscription has to encompass the com-
plex instantiation expression as well as a filter for a particular result of the instantiation expression
that corresponds to the SPU instance. An example is the creation of SPU instances based upon the
detection of event patterns. An event pattern detection rule can look as follows:

1 Event, — Eventg — *

Event A has to be followed by event B; Event B is followed by an arbitrary event. Matching event
sequences are for example:

1 Event, — Eventg — Eventy
2 Eventy, — Eventy — Eventy
3 Eventy, — Eventy — Event,

When an event pattern detection rule is used as instantiation expression, the distinction criterion
for the different SPU instances must be identified. In the above example, the last event in the
sequence can be used as such an SPU instance identifier. This would result in the creation of three
SPU instances that derive their subscription, in this case a pattern detection rule, based upon the
instantiation pattern:

1 SPUy_p_x: subscribe("Event, — Eventy — Eventy") ;
2 SPU,_p_y: subscribe("Event, — Eventg — Eventy");
3 SPU,_p_5: subscribe("Eventy,— Eventgz — Event;") ;

Which events an SPU instance actually receives when issuing such a subscription depends on the
pattern detection engine. The SPU,_p_x might receive events A, B, and X each time a pattern
match is detected. It might also receive only the last event of the matching sequence, or just a
general notification that the pattern has matched. The different options depend on the applied event
consumption policy; preferably, different options should be configurable.

The use of complex constant and/or complex instantiation conditions is not readily compatible with
the conceptual idea of our SPUs container model as entity-type-centric encapsulation mechanism for
event stream processing application logic. In the above introduced pattern detection example, the
generic pattern A — B — * (complex instantiation expression) corresponds with the notion of an
entity type, a concrete match of this pattern, e.g., A — B — X correspondent with the notion of an
entity instance.
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The support of complex constant and complex instantiation expressions depends on CEP functional-
ity. For expression evaluation an external CEP engine can be used, or a pub/sub system with support
for complex subscription expressions.

3.6 Summary

In this chapter we introduce the SPU container model. SPUs have a simple structure and do not
introduce a new language. They provide an encapsulation mechanism for event stream processing
application logic on top of a pub/sub system. The developer only has to provide three expressions
to identify to which events an SPU applies and what its validity is. This allows implicit/explicit in-
stantiation/completion of SPU instances. Further, developers implement four methods to achieve
reactive functionality and SPU lifecycle management. This makes SPUs suitable containers for
entity-type-centric event stream processing application logic and provides a clear separation be-
tween subscription logic and application logic. Different SPUs can be interconnected to perform
distributed event stream processing; we illustrate this in the context of our shipment-monitoring
scenario to derive demanded events. The instantiation of SPUs can be based upon complex events,
e.g., event patterns. We show how complex constant and complex instantiation expressions can be
integrated with our container model; however, they obstruct an intuitive understanding of event
stream processing with SPU since the clear relation between SPU instances and entity instances dis-
solves. We also discuss QoS in the context of SPUs as building blocks in software systems. Different
QoS properties determine the processing of event streams inside of SPUs; important is the interface
between pub/sub system and SPUs, for which we suggest different QoS policies.
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4 Requirements Engineering in EBSs

Event-based components, like Event Stream Processing Units (SPUs), rely on the availability of
events. Since event production and consumption is decoupled in Event-based Systems (EBSs), the
challenge is to decide upon which events to produce. Research in the event-based field mainly
addresses systems consuming events, systems producing events, and systems transporting events. A
holistic view that addresses the interdependencies between event production and event consumption
from a requirements engineering perspective is an open topic of research. Luckham, for example,
assumes events are readily availably [109]; although this is true conceptually, e.g., in news feeds
from the Internet, a certain effort is necessary to integrate those events with an event-based applica-
tion. Chandy recognizes that future potential of events and long deployment cycles have to be taken
into consideration [47]; however, no detailed approach is discussed. Thus, we analyze requirements
engineering for event-based applications and present an approach to assess event production in the
context of enterprise applications.

Requirements engineering is a structured approach to support the construction of IT systems. Goal
is the development of a system that fits well with demands. A top-down approach can be applied to
achieve this [147]. The requirements engineering process starts with the definition of a goal [171];
from such a goal definition, system specification and design is derived. Scenario analysis on basis
of use cases can also be applied for requirements engineering [111]. In general, problem-oriented
requirements (goals, use cases) are matched with solution specifications to derive the overall system
design [60]. During this process, decision support methods are applied to find the optimal design
with respect to, e.g., usability, performance, security, and modularity [145].

At an abstract level, the development of event-based application logic is not different from the de-
velopment of traditional software components; the implementation of reactive behavior is required
to address a goal or a use case. At the technical layer, however, an event-based system architecture
exhibits different specifics than pull-based components such as services. In pull-based components,
functionality is requested explicitly. Input data is sent to a component as part of a request. Event-
based interactions are push-based; functionality is triggered implicitly upon arrival of events. Event
production and consumption are decoupled logically; the event producers are not aware of potential
event consumers that provide functionality. This fundamental difference influences the requirements
engineering process: the production of events has to be addressed explicitly.

In the following we present a top-down requirements engineering principle; we start with identi-
fication of top level events required by an event-based application component. For each of those
events, we evaluate whether a derivation based upon more fine-grained events is beneficial. We
illustrate this approach with a use case study; we then formalize the approach an present a generic
requirements engineering methodology.
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4.1 Event Detection and Publication

In EBSs, event consumers express their demands with subscriptions. A pub/sub system delivers
matching events that are published by arbitrary producers. The problem that arises is to decide
upon which events to detect and to publish. Better sensors, for example, are more expensive but
can detect more types of events. These additional event types might be useful in future event-based
applications. Since the deployment cycle of sensors can be long, the deployment costs rather than
the hardware costs might dominate the overall costs. Thus, the potential for later use of not yet
needed event types has to be taken into consideration throughout the requirements engineering
process. Better sensors that produce more types of events can be worth the investment when further
deployment cycles can be avoided [47].

Event-based
Application
Components

Non-Simple
Event
__________________________________________ Publishers
Simple
Event
Publishers

Events

Figure 4.1: Events can be detected directly by simple publishers, or by non-simple publishers that
perform event processing.

To address the specifics of event-based interactions in requirements engineering, we introduce an
abstract description of event sources and sinks as shown in Figure 4.1. The lowest level depicts the
real world. Situations in the real world can be described with events that represent state or incidents.
An event that describes state is, for example, a temperature measurement or the current stock price.
An event that describes an incident is, for example, the arrival of a truck or a stock acquisition no-
tification. Events can either be physically observable (temperature, truck), or virtual inside systems
(stock quotation, stock acquisition). We also distinguish between base events and derivable events.
Derivable events are events that can be detected by processing base events. Examples are shown in
Table 4.1.

Physical Virtual
Base | Temperature; RFID Reading Stock Quote; Website Access
Derivable Fire; Shipment Delivery 5% Stock Price Drop; Website Attack

Table 4.1: Event source taxonomy.

44 4 Requirements Engineering in EBSs



We introduce the distinction between physical/virtual base/derivable events to quantify the impli-
cations of event detection granularity for the overall requirements engineering process. Figure 4.2
abstractly shows events in a granularity spectrum. The derivable event D, can be detected by pro-
cessing base events B; and B,. From another perspective a base event might be derived itself from
yet other base events, as it is shown for B,/Dy. Throughout a requirements engineering process,
the granularity at which to detect events has to be specified. The influence of granularity on reuse
applies not only to events but is rather general to software engineering [143]. Detecting many fine-
grain events will increase the reuse opportunities for single events but introduces additional effort
at development, deployment, and runtime. Detecting events too coarse grain limits the potential for
reuse opportunities of events; a coarse-grain event is often very specific to a certain use case.

Granularity Spectrum

coarse
»

»

B B, B, B, B, D

Figure 4.2: Different granularities of derivable (D) and base (B) events: A derivable event can be
derived from base events.

At event detection we distinguish between simple event publishers and non-simple event publishers as
shown in Figure 4.1. This distinction allows deriving characteristics that support the requirements
engineering process. Real world events can be detected and published by multiple publishers, but
they do not have to be detected at all. Further, base and derivable events can be detected by either
simple or non-simple publishers. Simple event publishers do not rely on any input events for event
detection. Non-simple publishers detect events by means of event processing, e.g., pattern detection;
they rely on input from other publishers. Event-based application components can subscribe to
events published by either simple or non-simple publishers. Simple event publishers are, for example,
sensors; non-simple publishers are, for example, Complex Event Processing (CEP) engines.

Simple and non-simple publishers can be different parts of a single event detection application; the
distinction is rather conceptually within the scope of our requirements engineering process. One
and the same event can be detected by a simple or by a non-simple event publisher. Detecting the
arrival of a train, for example, might be performed by a dedicated sensor that generates this event
(simple publisher). It might also be detected by correlating data from multiple sensors. This requires
a non-simple publisher that correlates base events; these base events have to be published by simple
publishers before. Another example is fire detection: a fire can be detected by a single sensor (simple
publisher) that measures temperature, detects smoke, and then publishes an event that indicates the
presence of a fire. The reasoning is encapsulated in a black box without the possibility to access
the base events (temperature and smoke level). Fire detection can also be performed by a non-
simple publisher; it requires temperature and smoke level events produced by simple publishers as
input. It then performs the reasoning and publishes a fire event in case of exceeded thresholds for
temperature and smoke. When fire detection is performed by a non-simple publisher the required
base events might be used in different applications, e.g., to implement a temperature control.
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4.2 Requirements Engineering Case Study

To illustrate the process of requirements engineering for event-based applications, we present a case
study where we discuss the alternatives for the detection of events. We identify event types required
in three related scenarios and discuss implementation possibilities with simple and non-simple event
publishers. The overall setting for the scenario is a logistics provider; in this context we analyze
an order-to-delivery process of temperature-sensitive goods (OD-TEMP), a fleet management application
(FM), and an order-to-delivery process with real-time monitoring of environmental conditions (OD-
ENV). These three scenarios require different top-level events:

* Order-to-delivery of Temperature-sensitive Goods (OD-TEMP):

Incoming Order Event

Shipment Ready Event

Shipment Dispatched Event

Shipment Delivered Event

Temperature Violation Event
* Fleet Management (FM):
— Capacity Event
— Truck Mileage Event
* Order-to-delivery with Real-time Monitoring of Environmental Conditions (OD-ENV):

— Environmental Data Event

4.2.1 Order-to-Delivery Process for Temperature-Sensitive Goods

An order-to-delivery process of temperature-sensitive goods (OD-TEMP) is, for example, required
in the supply chain of supermarkets. Supermarkets order products, which are then delivered by
a logistics provider. The arrival is acknowledged and completes a process instance. We assume
that temperature threshold violations are detected at delivery; potentially spoiled goods are then
disposed. The OD-TEMP process is defined based upon different events. These events are either
base events or derivable events and can be detected by simple or non-simple event publishers. Event
detection is performed, for example, by RFID readers or wireless sensor nodes, but also via user
interfaces through which employees report of events.

Incoming Order Event

Supermarkets place orders for goods using an Enterprise Resource Planning (ERP) system. This
incoming order is considered a virtual event; it is materialized only inside the system. The event is
also considered to be a base event that cannot be derived based upon other events.

* Simple Publisher: The event is detected by a simple publisher that interfaces with the ERP
system and publishes the event.
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Shipment Ready Event

When the ordered goods are prepared and ready for delivery, the shipment ready event is triggered
by the person responsible for shipment assembly. The shipment ready event is coarse grain and
contains virtual as well as physical information. Physically, the shipment needs to be in place for
loading; virtually, the shipment must be registered appropriately with the ERP system to trigger the
transport. The event is potentially derivable from base events. It can thus be published by a simple
publisher as well as by a non-simple publisher.

* Simple Publisher: When treated as simple event, the shipment ready event is triggered by
an employee that acknowledges a successful shipment assembly and positioning for loading.
From the IT perspective, this requires a user interface, e.g., integrated in the ERP system, to
trigger the event upon user interaction.

* Non-Simple Publisher: To derive the shipment ready event, different base events have to
be combined. First, the assembly of the shipment needs to be tracked, e.g., by RFID scans
that produce RFID scan events. Once all shipment parts are in place, it must be ensured that
the shipment is properly registered with the ERP system and scheduled for pickup (shipment
assembled event). This check can be automated to some extent; nevertheless, a final check by
an employee is desirable (final check event). Next, the shipment ready event can be published.
The overall effort for deriving the shipment ready event is comparatively high when no base
events are readily available. An RFID infrastructure has to be deployed and a user interface to
confirm the final shipment assembly is required.

Shipment Dispatched Event

When a shipment leaves the logistics hub, the shipment dispatched event indicates this next step in
the order-to-delivery process. The shipment dispatched event is associated with the truck leaving
the logistics hub and is thus a physical event. It is also derivable and can be published by a simple
as well as by a non-simple publisher.

* Simple Publisher: The shipment dispatched event can be triggered explicitly when the truck
driver confirms that he leaves the logistics hub. For this, the publisher component has to
integrate knowledge about shipments loaded in the truck, i.e., it needs to interface with the
ERP system to raise the event for each shipment as soon as the driver indicates the departure.

* Non-Simple Publisher: The shipment dispatched event can be derived using data about ship-
ments loaded in trucks correlated with truck position changes. This requires trucks equipped
with position tracking hardware that publishes position events. The logic of event correlation
is similar to the simple publisher; the position events have to be correlated with data about
shipments in the truck. Information about shipments in the truck can be derived, e.g., from
RFID shipment scan events that are raised while the truck is loaded.
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Shipment Delivered Event

A shipment delivered event is triggered when the shipment arrives at the customer. This is a physical
base event. It is not reasonable to mark this event derivable since the delivery has to be acknowl-
edged by customers with a signature anyway; this acknowledgment corresponds with the shipment
delivered event. Since we categorize the shipment delivered event as base event, the detection is
performed by a simple publisher.

* Simple Publisher: Typically, customers acknowledge the receipt of a shipment by signing on
a mobile device. The simple publisher for the shipment delivered event is integrated with the
software on that device. The event is published when the signature is entered.

Temperature Violation Event

When temperature-sensitive goods arrive at the customer it must be guaranteed that a certain tem-
perature threshold was not exceeded. In case the temperature threshold was violated during trans-
port, temperature violation events are published to trigger the handling of temperature violation, e.g.,
disposing the affected goods. Temperature violation events are physical derivable events. Thus, a
simple or non-simple publisher can be used for detection.

* Simple Publisher: Temperature violation events can be detected using irreversible tempera-
ture labels. These labels contain no circuits and indicate temperature violations in an analog
way without a timestamp associated; a chemical reaction is triggered at a certain temperature
level. When a shipment arrives at a customer the temperature label is checked. A temperature
violation is reported by the driver and entered into the system manually.

* Non-Simple Publisher: Temperature violation events can be derived automatically when tem-
perature events are available. When trucks are equipped with sensors for temperature monitor-
ing, a non-simple publisher takes the temperature monitoring events as input and correlates
them with temperature thresholds for shipments. This mechanism also allows temperature
violations to be detected faster and to be reported to the driver promptly.

4.2.2 Fleet Management

Vehicles of a logistics provider need to be managed. This involves, e.g., bookkeeping of mileage,
capacity utilization, and keeping track of damages. We consider a fleet management application to
track mileage and capacity utilization. Such a fleet management application is built upon different
events.

Capacity Event

To monitor and optimize the utilization of trucks, capacity utilization of the trucks needs to be
tracked. Capacity events inform about the free capacity of a truck when it leaves the logistics hub.
Capacity events are physical derivable events that can be published by simple or non-simple publish-
ers.

48 4 Requirements Engineering in EBSs



* Simple Publisher: Capacity utilization can be determined and reported manually, e.g., by the
driver before a truck leaves the logistics hub. The associated publisher component provides a
user interface to enter this data and then publishes the event.

* Non-Simple Publisher: The capacity utilization of a truck can also be derived based upon
shipment dispatched events correlated with data about the truck. This requires information
about shipment sizes and truck capacities. Given this is available, no manual report of free
capacity is necessary. In addition, free capacity information is updated with the delivery of
shipments. This is an opportunity to reuse free capacity in the short term.

Truck Mileage Event

The mileage is an important indicator to schedule maintenance of vehicles. Mileage events are
physical derivable events published by simple or non-simple publishers.

* Simple Publisher: The mileage can be reported by the driver. A simple publisher provides
a user interface for the driver who reports the mileage at fixed intervals. Another possibility
is a direct interface with the truck’s on-board unit. The on-board unit keeps track of vehi-
cle data and a simple publisher component can be developed to gather and report this data
automatically.

* Non-Simple Publisher: The mileage can also be derived by processing vehicle position events.
By correlating those events the mileage can be calculated automatically and no involvement of
an employee is necessary.

4.2.3 Order-to-Delivery Process with Monitoring of Environmental Conditions

As future field of business, the logistics provider might offer the delivery of goods that require au-
ditable tracking of environmental conditions, e.g., fine granular data about temperature and humid-
ity throughout the transport. The overall process is similar to the delivery of temperature-sensitive
goods, however with more complex monitoring requirements. Core of this new process are time
stamped environmental data events.

Environmental Data Event

To provide auditable environmental monitoring, vehicles must be equipped with appropriate sensors
that record environmental data continuously. These environmental data events are physical derivable
events detected by either simple or non-simple publishers.

e Simple Publisher: Environmental data events contain temperature and humidity data; the
data is recorded per truck at fixed intervals. It is sufficient to provide the data offline for
analysis after the delivery of shipments. However, it is also possible to make the data available
in real-time; this requires a more complex sensor and event publisher setup and generates
additional cost.

* Non-Simple Publisher: Environmental data events can be derived based upon temperature
events and humidity events that originate from different sensors.
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4.2.4 Cost Assessment

Given the described event-based scenarios the next step is to decide upon the realization and imple-
mentation details, i.e., to decide upon which events to detect with simple and non-simple publishers.
For this, costs are assigned to the events identified in the scenarios; this is shown in Table 4.2. Costs
are estimated for the implementation of simple publishers and non-simple publishers. The cost esti-
mates for non-simple publishers assume that base events are available, i.e., the costs for base events
have to be summed up for the overall assessment. Table 4.2 also lists the base events required by
non-simple publishers.

ID | Event | Simple Cost | Non-Simple Cost | Required Events
1 | Incoming Order 10 - -
2 | Shipment Ready 10 15 3,4,5
3 | Shipment Assembled 10 - -
4 | RFID Scan 100 - -
5 | Final Check 10 - -
6 | Shipment Dispatched 10 15 4,7
7 | Vehicle Position 100 - -
8 | Shipment Delivered 10 - -
9 | Temperature Violation 25 5 10 or 15
10 | Temperature Measurement 100 - -
11 | Capacity Report 15 10 6
12 | Truck Mileage 10 5 7
13 | Environmental Data 100 5 10,14 or 15
14 | Humidity Measurement 100 - -
15 | Temp/Humidity Measurement 110 - -

Table 4.2: Use case: List of events and dependencies.

To implement scenarios OD-TEMB FM, and OD-ENV, events 1, 2, 6, 8,9, 11, 12, and 13 are required
(bold in Table 4.2). The decision whether to use simple or non-simple publishers for these events
(where possible) is an optimization problem. The costs for different realization strategies can be
estimated and compared. In our scenario, the costs for using simple publishers only are 190. When
non-simple publishers are used for events 9 and 13, the overall costs sum up to 185 (with event 15
detected by a simple publisher). Thus, deploying combined sensors for temperature and humidity
measurement is beneficial in this situation. However, the biggest challenge is to estimate the poten-
tial use of events for not yet know scenarios. In our case study, the demand for temperature events
in the OD-TEMP as well as in the OD-ENV use case makes the separate detection of temperature and
humidity events beneficial; without the OD-ENV use case the cost assessment would not speak for
the use of any non-simple publisher. Further, it is important to consider potential future use cases,
e.g., providing real-time monitoring data to customers. When sensors for temperature and humidity
measurement are deployed that support transmitting of data in real-time, such a service can be re-
alized easily. In case of offline sensors, the demand for real-time data would require the deployment
of new sensors.
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4.3 Implementation Effort and Reuse Potential of Event Publishers

We now analyze development effort and reuse opportunities for event detection with simple and
non-simple publishers from a generic perspective. We present the formalized approach, which we
implicitly applied in our use case study. We distinguish between hardware components, e.g., sensor
nodes, and software components, e.g., stock tick data providers. We compare simple and non-simple
publishers with respect to physical and virtual base and derivable events.

Hardware Development and Deployment Effort

Table 4.3 shows the effort for the deployment and development of event detection hardware. The
effort is the same for base and for derivable events given that the detection complexity, e.g., sensor
complexity, is comparable. The effort for non-simple publishers depends on already available events.
For each base event required by a non-simple publisher, a simple publisher has to be developed and
deployed first. When all required base events are already published, the effort is low; when the
base event notifications are missing, the respective simple publishers have to be deployed first which
results in a high effort.

PHysicAL DERIVABLE EVENT
high effort
depends on availability of base events

PuysicaL Base EVENT
high effort

n.a.

SIMPLE PUBLISHER
NoN-SiMPLE PUBLISHER

Table 4.3: Hardware development and deployment effort.

Software Development and Deployment Effort

Simple publishers that produce physical events read sensor state and generate the event notifications
based upon that data. Simple publishers that produce virtual events need to interface with existing
systems that are not necessarily designed to emit events; publishers need to aggregate data that is
the foundation for virtual events. Thus, the software development effort when publishing virtual
events is higher (see Table 4.4). To detect derivable events (physical or virtual) with non-simple
publishers, publishers have to perform event processing to some extent. The development effort of
this processing logic is high compared to the detection of base events.

PuysicaL BASE EVENT | PHYSIcAL DERIVABLE EVENT

SIMPLE PUBLISHER

low effort

low effort

NoN-SIMPLE PUBLISHER

n.a.

high effort

VIRTUAL BASE EVENT

VIRTUAL DERIVABLE EVENT

SIMPLE PUBLISHER

medium effort

medium effort

NoON-SIMPLE PUBLISHER

n.a.

high effort

Table 4.4: Software development and deployment effort.

4.3 Implementation Effort and Reuse Potential of Event Publishers
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Hardware Reuse Potential

The potential for hardware reuse is low for derivable events that are detected by simple publishers
(see Table 4.5). Dedicated hardware needs to be deployed to detect events that could also be de-
tected by applying event processing techniques to base events. When derivable events are detected
by non-simple publishers, fine-grain base events are used. This increases the reuse potential; some
or all base events may be used to derive different high-level events.

PHysicAL BASE EVENT | PHYSICAL DERIVABLE EVENT
SIMPLE PUBLISHER high potential low potential
NON-SIMPLE PUBLISHER n.a. high potential

Table 4.5: Hardware reuse potential.

Software Reuse Potential

The low reuse potential of hardware in case of derivable events detected by simple publishers carries
over to the reuse potential of software (see Table 4.6). The application logic to detect derivable
events with simple publishers is designed for a certain purpose and there is a high chance that
it needs to be adapted to fit the demands of other applications. The reuse potential of the simple
publisher detection logic for virtual events is higher than for simple publishers of physical events; the
code is not tightly coupled with a certain hardware, e.g., a wireless sensor node, and best practices
in software engineering enable code reuse. The reuse potential of non-simple publishers that detect
derivable events is higher compared to the reuse potential of simple publishers. Some parts of the
code can be generic, e.g., functions for event correlation, and can be reused when developing other
non-simple publishers. This is also the main concept of CEP engines: rules to derive events are
specified in a query language rather than implemented manually.

PHysicAL BASe EVENT | PHYSICAL DERIVABLE EVENT
SimpLE PuBLISHER | medium potential low potential
NoON-SiMPLE PUBLISHER n.a. medium potential

VIRTUAL BASE EVENT | VIRTUAL DERIVABLE EVENT
SIMPLE PUBLISHER high potential low potential
NON-SIMPLE PUBLISHER n.a. high potential

Table 4.6: Software reuse potential.

4.4 Requirements Engineering Process

Based upon the qualitative considerations presented in Section 4.3 we present a quantitative ap-
proach to trade off event detection with simple publishers against event detection with non-simple
publishers. This decision depends on the costs for event detection hardware and software, on the
deployment effort, as well as on the reuse potential of events. However, especially the reuse poten-
tial is difficult to quantify without knowledge of future demands. An advantage of the event-based
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approach — the decoupling between event producers and consumers — becomes a challenge in the
context of requirements engineering.

The reuse potential of events increases the more fine granular they are. Thus, the requirements
engineering process should assess different possibilities for the detection of events, i.e., for derivable
events the detection with simple and non-simple publishers should be considered. Figure 4.3 shows
a cost estimation process for event-based applications. First, the events required at the application
level are identified. It is then checked for each event whether it can be derived from other events; the
required base events are then determined. As shown in Figure 4.2, these events can be derivable as
well and the process step is executed repeatedly. During this recursive event identification process,
the dependencies between derivable events and base events are tracked, i.e., for each derivable event
the required base events are recorded. The identification of base events should be stopped when the
detection overhead obviously exceeds the reuse potential, e.g., when hardware for event detection is
far too costly to be deployed at large scale. The next step in our requirements engineering approach
is the estimation of costs for the detection of events. This step is twofold for derivable events:
derivable events can be detected by a simple or non-simple publisher and costs can be estimated for
either option. Cost estimations are based upon the hardware acquisition and deployment costs as
well as on the software development and deployment costs. It has to be taken into account that costs
consist of a static part that occurs once (initial development and deployment costs) and a dynamic
part with reoccurring expenses (maintenance costs). The cost estimates for non-simple publishers
do not contain the costs for the required base events but only costs for event processing required for
the event derivation process. Costs of base events are taken into consideration during the final cost
assessment.

Identify
required
events

Application

descriptions

Event yes Identify
derivable? base events
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Figure 4.3: Requirements engineering process to assess costs of implementation alternatives.
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The estimation process results in a list of event types along with properties for each event as shown
in Table 4.2:

Event ID to reference each event;

An indicator to mark events as required at the application layer;

* Cost estimate for detection with simple publisher;

* Cost estimate for detection with non-simple publisher (if applicable);
* Events required as input for non-simple publisher.

Based upon the estimated costs, the use of simple or non-simple publishers can be compared for
each event type. When a non-simple publisher is used, the costs for the detection of the required
base events have to be added to the overall costs. When base events are reused, these costs only
count once. During the cost assessment process the costs for different scenarios can be compared.
As a result, a decision for each event type is made whether to detect it with a simple or a non-simple
publisher. This also includes a list of base events that needs to be detected as source for non-simple
publishers. It should be noted that multiple alternative implementations (with different costs) for
non-simple publishers are possible, i.e., non-simple publishers that publish the same derived events
but require different events as input.

The process of assessing implementation alternatives for event detection based upon cost estimates is
only part of the requirements engineering process. Further, functional and non-functional properties
that are not necessarily included in the estimated costs should be considered as well:

* While the reuse potential for fine-grained events is high, the overhead for event processing
increases. Multiple fine-grained events have to be published to allow the derivation of a high-
level event. This increases the network traffic, the latency, and the demand for computational
resources. This has to be taken into account in the requirements engineering process. When,
for example, high performance is demanded by an application, the costs for simple and non-
simple publishers should be adapted accordingly.

* An important factor in event-based applications is the simple reuse of events; an application
component interested in events simply issues a subscription; different consumers do not inter-
fere. However, this easy access to events is also challenging: when developing and deploying
event publishers, the potential for future use should be estimated as well. Especially in the
context of event detection hardware, e.g., sensors, the deployment costs can be significantly
higher than hardware costs. It might be advisable to invest in more powerful hardware but
saving future deployment costs. Thus, visions should be developed for future event-based ap-
plications so that reuse potential for events as well as the upcoming need for certain event
types can be taken into consideration.

4.5 Summary

The requirements engineering process presented in this chapter supports decisions regarding the
granularity of event detection in event-based applications. The process starts with the identifica-
tion of required top-level events; it enables the assessment of implementation alternatives for event
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publishers. Simple or non-simple event publishers can be used for event detection. This results in
different costs and reuse potential. The more fine granular event detection is, the higher are the
chances for reuse; however, the higher are also the costs. Further, it is important to incorporate the
potential for future use of events.

Various mechanisms exist to guide software engineering decisions [145]. Our process is a basic
approach without a detailed cost estimation guideline. However, the basic tradeoffs have been illus-
trated; they are independent of a concrete cost model. Our approach proceeds top-down, starting
from top-level events. In addition, it can be beneficial to look at event detection bottom up to identify
future use cases: based upon potentially available events, use cases can be derived. Thus, identifying
detectable events bottom up might influence the top-down requirements engineering process.
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5 SPU Integration with Business Processes

The Internet of Things and Cyber-physical Systems provide enormous amounts of real-time data in
form of streams of events. Businesses can benefit from the integration of this real-world data; new
services can be provided to customers, or existing business processes can be improved. Events are
a well-known concept in business processes. However, there is no appropriate abstraction mecha-
nism to encapsulate event stream processing in units that represent business functions in a coherent
manner across the process modeling, process execution, and IT infrastructure layer.

In this chapter we apply the Event Stream Processing Unit (SPU) model to integrate event stream pro-
cessing with business process modeling and execution. The encapsulation of event stream processing
logic in SPUs enables a seamless transition between process models, executable process representa-
tions, and components at the IT layer. SPUs are a generic concept not limited to a specific modeling
notation and we introduce Business Process Model and Notation (BPMN) and Event-driven Process
Chain (EPC) extensions to model SPUs. BPMN is the newer modeling notations — BPMN 1.0 has
been introduced in 2004 [38], BPMN 2.0 in 2011 [130] — and supports modeling from the abstract
business perspective as well as from the technical perspective. EPCs — introduced in 1992 [96] —
focus on abstract process models from the business perspective; they are common in industry due
to their earlier availability. EPC models are transformed into a technical process representation for
execution, for example in a BPMN model. Thus, our BPMN extensions are also the foundation for
EPC model execution and we present a mapping between SPUs in EPCs and SPUs in BPMN.

In the following we derive requirements for the integration of event streams with business processes.
We investigate the applicability of BPMN and EPCs for modeling event stream processing. We intro-
duce Event Stream Processing Tasks (ESPTs) as BPMN 2.0 extension to model SPUs at the technical
process layer. We introduce Event Stream Processing Services (ESPSs) as an extension to EPCs to
model SPUs at the abstract business layer. Our integration of SPUs with BPMN and EPCs includes
a transformation approach: we present a mapping of SPU-containing process models from EPCs to
BPMN and from BPMN to the Business Process Execution Language (BPEL). We also show how SPUs
in process models are linked to the IT infrastructure layer. We present the implementation of our
EPC and BPMN extensions in Software AG ARIS and we sketch the model-to-execute workflow that
brings SPU-containing business process models to execution. We illustrate our approach using the
previously introduced logistics process as running example.

Scenario

The processing of an order consists of multiple process steps: an order is received, the invoice for
the order is prepared and the payment is processed. With SPUs, data generated during the physical
transport can now be integrated with this process. An event stream that provides monitoring data
related to the shipment can be used to detect, e.g., temperature threshold violations. An SPU can
represent such a monitoring task and integrate it at the business process modeling, business process
execution, and IT infrastructure layer. A shipment monitoring SPU is instantiated with the shipment
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of an order. The SPU completes after delivery. Throughout this section, we illustrate our approach on
the basis of such a monitoring SPU.

5.1 Event Stream Integration Requirements

While single events are a well known and established concept in business processes [130,170], event
stream processing lacks an appropriate abstraction for the seamless integration across the process
modeling, process execution, and IT infrastructure layer. In collaboration with Software AG we
applied SPUs as such an integration concept for event stream processing. SPUs provide a service-
like abstraction to encapsulate event stream processing logic at the abstraction level of business
functions. They hide implementation details and are suitable building blocks for the integration of
event stream processing with business processes. With the encapsulation of event stream processing
in SPUs a high coherence between the different layers is achieved; as discussed in Section 2.2 this
supports a seamless transition between model, executable workflow, and IT infrastructure [3,134].

We analyze business process modeling, business process execution, and the IT infrastructure, and
derive requirements for SPUs at the modeling, execution, and IT infrastructure layer. We address
the decoupled nature of event-based systems and provide process modelers with an appropriate
representation of SPUs that can be mapped to executable workflow representations and the IT in-
frastructure seamlessly. SPUs encapsulate event stream processing logic at the abstraction level of
business functions and hide implementation details. At the IT layer, SPUs are manageable compo-
nents that are conceptually equivalent to services in a SOA. SPUs contain, for example, Complex
Event Processing (CEP) functionality.

5.1.1 Business Process Modeling Layer

Process models are typically created by business experts that have a good knowledge about the
company structure and established workflows. These process models describe interactions between
business functions [137]. For a clear separation of concerns between the business perspective and
the IT perspective, it is necessary to encapsulate event stream processing logic. This encapsulation
is provided with SPUs that hide technical details at the modeling layer. SPUs are the abstract repre-
sentation of business functions that process event streams. SPUs require at least one event stream
as input and may output event streams or single events. An important characteristic of SPUs is the
demand for continuous processing of event streams; rather than in single request/reply interactions,
SPUs process new events as they arrive, e.g., a shipment monitoring SPU receives new monitoring
data continuously.

Requirements

For the integration of event streams, the modeling notation has to provide elements or patterns to
express SPUs (R;) [48]. While the actual event-processing functionality is encapsulated inside SPUs,
event streams — as they represent a core data asset — should be accessible by the modeler [116].
Further, integrating event streams during modeling simplifies the transition to an executable work-
flow [21]. Thus, the modeling notation has to provide means to express event streams as input/output
to/from SPUs (R,). Finally, the modeling notation must allow SPUs to run continuously and in parallel
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to other tasks (R3). This includes appropriate execution semantics adapted to event-based characteristics
(R4) [64]. These requirements are structured in Table 5.1.

R, | Model notation support for SPUs

R, | Model notation support for event streams

R; | Continuous and parallel execution of SPUs

R, | Event-based-compliant SPU completion semantics

Table 5.1: Requirements at business process modeling layer.

5.1.2 Workflow Execution Layer

The execution of business process models requires a transition from the, often graphical, model
notation to a formal process representation. The interactions between the different process tasks
are formalized in a workflow description, e.g., using BPEL. This workflow description contains, e.g.,
service invocations and defines the input data for services. Like traditional business process tasks
can be mapped to human tasks or service invocations, ESPTs need to be mapped from the model to
the IT infrastructure. Important is the definition of input data, so that the workflow is executable
automatically.

Requirements

To support SPUs at the workflow execution layer, the execution notation has to support the instan-
tiation of the SPU containers provided by the IT infrastructure (Rs) [9]. It further needs means to
define streams of events as input and output of SPUs (Rg). The instantiation and completion of SPUs
needs to be configurable with respect to event-based characteristics (R;) [64]. These requirements are
structured in Table 5.2.

R5 | SPU instantiation support
Re | Support input/output to/from SPUs in form of event streams
R, | Control over SPU instantiation and completion behavior

Table 5.2: Requirements at workflow execution layer.

5.1.3 IT Infrastructure Layer

The IT infrastructure holds the technical representations of SPUs. It is responsible for the execution of
the encapsulated event stream processing logic when demanded throughout a workflow. In contrast
to SOA services, SPUs follow the event-based paradigm. Services are invoked explicitly, while SPUs
react to events. Services encapsulate business functions in a pull manner (reply is requested) while
SPUs encapsulate reactive business functions that are defined on events pushed into the system.
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Requirements

The IT infrastructure has to provide a runtime environment for SPUs that respects event-based char-
acteristics, e.g., implicit instantiation (Rg) [64]. It must provide containers for SPUs that represent
business functions (Ry) [48]. Just like services, these SPU containers must be manageable and capable
of receiving the required data in form of event streams (R,,) [136]. The requirements are structured
in Table 5.3.

Rg | Runtime environment for SPUs
Ry | SPU container model
R, | Support for SPU management

Table 5.3: Requirements at IT infrastructure layer.

5.2 Event Stream Processing Units in Business Processes

In this section, we present our approach for a seamless integration of event streams with business
processes. Our solution addresses the identified requirements and spans the three business process
implementation layers. It provides a coherent encapsulation of event stream processing logic in
components that constitute business functions. To support SPUs at the business process modeling,
business process execution, and IT infrastructure layer, we suggest mechanisms at each layer.

At the modeling layer, we introduce Event Stream Processing Tasks (ESPTs) to represent SPUs in
BPMN process models; we introduce Event Stream Processing Services (ESPSs) to represent SPUs in
EPCs. At the IT infrastructure layer, Eventlets are the implementation of SPUs. The execution layer
is responsible for the mapping between ESPTs and Eventlets. This is shown in Figure 5.1: like
services are the basic building blocks of a SOA, SPUs are the basic building blocks of an Event-driven
Architecture (EDA). At the execution layer, service tasks in a model are mapped to, e.g., web services.
Equally, ESPTs are mapped to Eventlets.

| Reactive Business Processes (BPMN) |

BPMN | Reactive Workflow (BPEL, BPMN) |
Event Stream
Processing Task

BPMN
Service Task

EDA SOA
l SPU, ... SPU, Service, ... Service,
Eventlet Web Service
Push-based Pull-based
(subscribe) (request/reply)
Event Streams Database:
Persistent Data

Figure 5.1: The execution of SPU-containing BPMN process models requires a mapping from the
modeling layer to technical components on the pull- and push-side.

We apply an additional transformation step for the execution of EPC models. We introduce a mapping
of ESPSs in EPCs to ESPTs in BPMN; this is shown in Figure 5.2. The nomenclature of an EPC
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Figure 5.2: The execution of SPU-containing EPC process models requires an additional transition
from the abstract EPC model to a technical BPMN model.

functions supported by an ESPSs is EPC-specific; it describes the function type as we will detail in the
following sections.

5.2.1 Modeling Layer

Different business perspectives need to be incorporated during business process modeling. Business
analysts provide knowledge about processes from an abstract business perspective. The resulting
process models are then refined iteratively, e.g., by process engineers, and evolved to more technical
process representations. EPCs, for example, follow a strict scheme with business events followed
by functions. They are widely adopted in industry and well suited for the abstract modeling from
the business perspective [115]. BPMN is a newer and more powerful process modeling notation.
It supports abstract as well as technical process models and is typically more compact than EPCs.
Both notations can be combined to support a holistic BP modeling process. This is, for example,
the case in Software AG’s model-to-execute process: EPCs are used for abstract, business-oriented
models; BPMN is used for technical process models. A model transformation process is specified for
the transition between EPCs and BPMN.

The integration of SPUs with BPMN and EPCs requires extensions to the modeling notations that ad-
dress the characteristics derived from the streaming nature of event data. SPUs exhibit the following
specific properties that cannot be expressed completely with existing BPMN and EPC elements:

* Execution semantics: After the instantiation, SPUs can run indefinitely; events arrive and are
processed continuously, e.g., temperature measurements during the shipment transport. The
completion semantics differ from service-like request/reply interactions where the reply trig-
gers the process control flow to proceed. In contrast, completion of SPUs has to be triggered -
either implicitly or explicitly. In either case, the completion indicates a clean shutdown. Implicit
completion requires the specification of a condition that determines when the SPU should com-
plete; this condition is evaluated internally by SPU instances. Examples are a timeout in case
no new events arrive, the detection of a certain event pattern, or a dedicated event, e.g., a ship-
ment delivered event. Explicit completion triggers the completion of an SPU externally. When
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a process reaches a point where the processing of an event stream is not required anymore the
shutdown of an SPU is triggered, e.g., when the shipment arrival has been confirmed.

» Signaling: The continuous processing inside of SPUs requires support to trigger concurrent
actions, e.g., triggering exception handling in case of a temperature threshold violation without
stopping the shipment monitoring SPU.

* Event stream input and output: The inputs for SPUs are event streams. An event stream is speci-
fied by a subscription to future events, e.g., temperature measurements for a certain shipment.
The output is specified by an advertisement that describes the events producible by an SPU.

SPU Integration with BPMIN

BPMN is widely adopted in industry and has a broad tool support. From a technological perspective,
processes can be modeled in different granularities with BPMN. From a semantical perspective, the
single building blocks (BPMN tasks) of a process model should reflect business functions and hide
technical details. Our extensions to BPMN are shown in Figure 5.3. We define Event Stream Specifica-
tions (ESSs) that reflect input data and output data in form of event streams. Further, we introduce
Event Stream Processing Tasks (ESPTs) to model SPUs.

Input Event Output Event Implicit Completion Explicit Completion
Stream Stream Completion ;
[EYAN AN % Event Stream Condition % Event Stream {%fté/gna/
Processing Task Processing Task j“
AR AR

Figure 5.3: Extensions to BPMIN: Event Stream Specifications (ESSs) and Event Stream Processing
Tasks (ESPTs).

Definition: Event Stream Specification

In BPMN an Event Stream Specification (ESS) (— R,) references a stream of events and their
parameters. ESSs can be used as input and output of ESPTs. An ESS used as input determines
the subscription an ESPT has to issue. An ESS used as output determines the advertisement that

describes the event output stream of an ESPT.

Definition: Event Stream Processing Task

In BPMN an SPU is modeled as Event Stream Processing Task (ESPT) (— R,,R3,R4). An ESPT
requires at least one ESS as input. It may have output ESSs. When the control flow reaches an ESPT,
it is activated with the specified ESS as input. The transition from the active state to the completing
state (see BPMN task lifecycle [130, p. 428]) is triggered implicitly or explicitly (— Rs).

The implicit completion of an ESPT is realized with a modified conditional sequence flow; the con-
dition determines when the ESPT completes. The explicit completion is realized with a dedicated
signal. It is attached as non-interrupting signal to the boundary of the ESPT. Upon completion, ei-
ther implicitly or explicitly, the ESPT stops processing, performs a clean shutdown, and passes on
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the control flow, i.e., no additional token is created at catching the shutdown signal. To trigger con-
current actions, ESPTs can activate outgoing sequence flow elements while remaining in the active
state. Non-interrupting conditional events can be attached to the boundary of an ESPT to indicate a
conditional activation of sequence flow elements. An ESPT can be modeled with combined explicit
and implicit completion.

Related BPMN Concepts

Events are part of the BPMN specification. However, events in BPMN are meant to affect the control
flow in a process [130, p. 233]. Events modeled as ESS do not exhibit this property; they are rather
a source of business relevant information that is exploited within the process. Due to these different
semantics, events in the sense of the BPMN standard are not appropriate to model SPUs.

From the task types contained in the BPMN standard, service tasks, business rule tasks, loop service
tasks, and multiple instance service tasks share properties with SPUs. However, the modeling of
SPUs with those existing BPMN task types is not feasible:

* Service Tasks are containers for business functions, that are implemented as SOA services. The
execution semantics for service tasks state, that data input is assigned to the service task upon
invocation; upon completion output data is available. For SPUs, this separation is not feasible;
input data is arriving continuously and output data can be available during task execution in
form of output streams. Therefore, service tasks are no appropriate representation for SPUs.

* In Business Rule Tasks, event stream processing can be used to check conformance with business
rules. However, event stream processing supports a wider application spectrum than confor-
mance checking, e.g., real-time shipment tracking. Further, output in form of event streams is
not part of business rule tasks; their purpose is to signal business rule evaluation results.

* Loop Service Tasks perform operations until a certain stop condition is met. However, the whole
loop task is executed repeatedly, i.e., a repeated service call. This repeated execution of a
business function depicts a different level of abstraction compared to continuous processing
inside an SPU; SPUs perform continuous processing to complete a single business function.
To use loop tasks for event stream processing, the process model would have to define the
handling of single events rather than the handling of event streams. This conflicts with the
abstraction paradigm of business functions and degrades coherence across the layers.

* Multiple Instance Service Tasks allow the execution of a task in parallel, i.e., parallel service
calls. However, like loop tasks, this would require one task per event which conflicts with the
intention to encapsulate business functions in tasks. In addition, the number of task instances
executed in parallel is static and determined at the beginning of the task. This is not suitable
for event processing since the number of events is not known a priori.

In general, BPMN tasks have no support for triggered completion required in event processing. In
addition, event streams cannot be represented as input to and output from tasks. Thus, we extend
BPMN with ESPTs. ESPTs support implicit and explicit completion, an essential part of SPU execution
semantics. Further, we introduce ESSs as input to and output from ESPTs in the form of event
streams.
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Figure 5.4: Shipment monitoring SPU that is stopped explicitly. The data input/output of the service
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Figure 5.5: Shipment monitoring SPU that is stopped implicitly. The data input/output of the service
tasks omitted.

Example: Modeling Shipment Monitoring with BPMN

To illustrate the application of our BPMN extensions, we model the monitoring of environmental
conditions in the order process introduced at the beginning of Chapter 5. Figures 5.4 and 5.5 show
two variants with different completion strategies. The shipment monitoring is an SPU that receives
monitoring events as input stream. This shipment monitoring SPU is modeled as an ESPT in BPMN;
the monitoring events are assigned as an input ESS. Attached at the boundary of the monitoring task
is a conditional event. The outgoing control flow indicates a violation of environmental conditions,
e.g., temperature threshold exceeded. The message event at the end of this control flow path can
activate a task or trigger a different process for handling the exception.

In Figure 5.4, the shipment monitoring is modeled with explicit completion semantics. As soon as
the shipment has arrived, the monitoring is not required anymore. Thus, the monitoring task com-
pletion is triggered by sending the stop signal. In Figure 5.5, the shipment monitoring is modeled
with implicit completion semantics. This requires the definition of a completion condition. In our
example, we specify the shipment arrival: when the location of the shipment matches the destina-
tion address, the monitoring is completed. Other implicit completion conditions could be dedicated
arrival events, e.g., arrival scans of shipment barcodes, or timeouts, e.g., no new monitoring events
for the shipment arrive. The condition needs to be evaluated inside the SPU, thus support for dif-
ferent condition types depends on the technical infrastructure that executes SPUs. The modeling of
data flow between ESPTs is shown in Figure 5.6. The shipment monitoring SPU outputs a stream
of events that indicate exceeded temperature thresholds. The report threshold violation SPU receives
these events and implements the reporting, e.g., by sending an email in case temperature thresh-
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Figure 5.6: Interacting SPUs: Output from monitoring SPU is used as input for reporting SPU. The
SPUs have different completion strategies.
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Figure 5.7: ESPT with implicit and explicit completion: Upon cancelation of an order the ship-
ment monitoring is completed explicitly; upon shipment arrival, monitoring completes
implicitly.

olds were exceeded multiple times. Completion of the reporting SPU is triggered explicitly after the
confirmation of arrival of the shipment. The monitoring SPU completes implicitly.

ESPTs can also be modeled with implicit and explicit completion in parallel as shown in Figure 5.7.
The implicit completion is the default case: the monitoring stops as soon as the shipment has reached
its destination. In addition, an explicit completion is modeled: when a customer cancels the order,
shipment monitoring becomes obsolete. In this simplified version of the process, the monitoring
would end anyway since the process ends after the cancelation; however, in more complex scenarios
more process steps follow the cancelation. The output of ESPTs can also affect process execution as
shown in Figure 5.8. When an environmental condition violation is detected the shipment monitor-
ing is stopped. After completion of the shipment monitoring ESPT, discarding of goods is triggered
and the customer decides upon cancelation of the order. In this case a reimbursement is triggered
via a compensation event.
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SPU Integration with EPCs

EPCs are a notation for Computation Independent Models (CIMs), a concept in model driven archi-
tectures [118]. CIMs, also referred to as business or domain models, are created from a business
viewpoint and contain only few technical details. EPCs became popular as process modeling nota-
tion for SAP R/3 as well as notation in the context of ARIS (Architecture of Integrated Information
Systems) [155]. ARIS is an approach for holistic business process modeling and management of en-
terprise information systems. EPCs consist of functions (e.g., confirm order) preceded and followed
by business events (e.g., order arrived and order confirmed). Event stream processing can be mod-
eled as such EPC functions; an EPC function refers to an SPU. In ARIS, EPC functions are supported
by services with attached capabilities, e.g., an order confirmation service has the capability to send
out confirmations [162]. To model SPUs in EPCs we specify an appropriate supporting service type
for EPC functions that represents event stream processing. This involves extensions to EPCs on the
basis of service type objects with capabilities.

Details of a service type object are modeled in a service allocation diagram; it describes a service
from an abstract point of view. In the service allocation diagram arbitrary objects are connected
to the service type object via associations. Connected objects are, for example, descriptions of the
organization (organizational unit, responsible person) or data objects used as input or as output of
the service.

We introduce Event Stream Processing Services (ESPSs) to support EPC functions that represent event
stream processing. ESPSs are a distinct service category based upon service type objects [162]; they
are represented with a custom symbol type (see Figure 5.9, center). We introduce Event Stream
Specifications (ESSs) that reflect input data and output data in form of event streams. We adapt
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a cluster model object to represent these event streams (see Figure 5.9, left). The Event Stream
Processing Unit type is used to refer to the technical realization of SPUs (see Figure 5.9, right).

. An Event Stream .
e paa el

Figure 5.9: Extensions to EPCs: Event Stream Specification (ESS), Event Stream Processing Service
(ESPS), and Event Stream Processing Unit Type.

An Event Stream . An Event Stream
Processing Service 4 Processing Unit type

A

Definition: Event Stream Specification

In EPCs an Event Stream Specification (ESS) (— R,) references a stream of events. An ESS is a
subtype of an abstract business object. The object type can be used as input or as output of functions,
ESPSs, or Event Stream Processing Unit types. The attached connection type specifies whether the
ESS is input to or output from other objects. An ESS used as input determines the subscription an
ESPS has to issue. An ESS used as output determines the advertisement that describes the event

output stream of an ESPS.

Definition: Event Stream Processing Service

A function in an EPC that refers to an SPU is supported by an Event Stream Processing Service
(ESPS) (— Ry,R3,R,). An ESPS requires at least one ESS as input. It may have output ESSs.
When the control flow reaches a function supported by an ESPS, this ESPS is activated with the
specified ESS as input. The completion of the ESPS is triggered implicitly or explicitly (— Rs).

Implicit and explicit completion of ESPSs is expressed with different instantiation capabilities: Start
Processing with Completion Condition and Start Processing. Explicit completion is also expressed
as a distinct capability of the ESPS. Upon completion, either implicitly or explicitly, the ESPS stops
processing, performs a clean shutdown, and passes on the control flow. To trigger concurrent actions,
ESPSs can send events; this is modeled as a loop. An ESPS can be modeled with combined explicit
and implicit completion. An ESPS has an associated Event Stream Processing Unit type: it provides
the link to technical process model representations. The Service Allocation Diagram for an ESPS is
shown in Figure 5.10.

Related EPC Concepts

Events are integral notation elements in EPCs. In contrast to BPMN, where events are optional,
EPCs require a strict sequence of events followed by functions. Events in EPCs, however, depict
process state and define the process control flow. As in our BPMN model extensions, event streams
represented by Event Stream Specifications (ESSs) have different semantics; they represent data
input/output to/from functions. Thus, regular EPC events are not a suitable representation for event
streams as data source for event stream processing.
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Figure 5.10: A Service Allocation diagram provides the abstract configuration of an Event Stream
Processing Service.

Business activities are represented by EPC functions. The EPC specification does not contain different
function types comparable to BPMN task types. Rather, EPC functions are supported by service types,
which detail the execution of functions. These function-supporting service types have to be specified
explicitly. Modeling tools, like Software AG ARIS, contain a repository of service types; a service type
that represents event stream processing, however, is not provided and thus specified above. Since
we rely on BPMN for the execution of EPCs, our event stream processing service type encompasses
ESPT execution semantics.

In EPCs functions can be triggered via events. But in contrast to BPMN, where events can be attached
to the border of activities, events in EPCs must be placed in front of or after functions. Thus, we use
a loop to model the sending of events; such events can then trigger further functions.

Example: Modeling Shipment Monitoring with EPCs

To illustrate the application of our EPC extensions, we model the monitoring of environmental con-
ditions in the order process introduced in the beginning of this chapter with EPCs. An SPU is used to
process an event stream that contains environmental data events, e.g., temperature measurements.
Figure 5.11 shows the service allocation diagram for the ESPS that represents this shipment mon-
itoring SPU. The shipment monitoring ESPS requires shipment-monitoring events as input; it has
capabilities to initialize the SPU with implicit and explicit completion.

Figure 5.12 shows the EPC process model with implicit completion of the SPU. The monitor shipment
function receives shipment-monitoring events as input event stream. The function is supported by
the monitor shipment ESPS (see Figure 5.11); it uses a capability of the ESPS to initialize an SPU with
an implicit completion condition. The implicit completion condition is assigned to the connection
between the EPC function and the ESPS start processing with completion condition capability. Implicit
completion is triggered when the shipment arrives at its destination address.
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To report an environmental condition violation, the SPU is followed by an XOR operator: the process
control flow triggers the environmental condition violation event and directly returns to the moni-
toring function. This control flow loop is instantaneous so that the SPU continues processing; the
event stream processing is not interrupted at the technical layer. This SPU-specific loop pattern is
used to model asynchronous messaging in EPCs as required in event stream processing scenarios.
The completion of the SPU is triggered as soon as the completion condition is fulfilled, i.e., when the
shipment reaches its destination. With completion of the SPU, the control flow moves on to the XOR
operator and results in the shipment arrived event, which completes the process.

Figure 5.13 shows the order process with explicit completion of the SPU. The monitor shipment
function is supported by the ESPS capability for initialization with explicit completion. An additional
process step is added after the arrival confirmation to trigger the explicit completion. The complete
shipment monitoring function uses the end processing capability of the shipment monitoring ESPS to
trigger the completion of the shipment monitoring.

It is also possible to model SPUs with implicit and explicit completion in parallel. The monitor
shipment function shown in Figure 5.12 is then combined with the complete shipment function
shown in Figure 5.13.

Transformation from EPC to BPMN

EPCs are used for abstract process models from a business perspective; processes are modeled at
the CIM layer. For the execution of processes a technical process representation is required that
correlates with an executable process representation.

Since BPMN is a suitable notation for such technical models, EPC models can be transformed to
BPMN in order to support automated process execution. This also requires a transformation of SPUs.
Since SPUs are independent of a concrete modeling notation a mapping of SPUs in EPCs to SPUs in
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Figure 5.14: Mapping of SPUs between EPC and BPMN

BPMN is possible. The transformation from EPCs to BPMN can also be partly automated. This is, for
example, supported by the Software AG ARIS business process platform.

Theoretical approaches for a mapping from EPCs to BPMN are given in [90]. The basic concept is
the transformation of EPC functions into a BPMN tasks. EPC events are disregarded as long as they
are not decision conditions for connectors. Operators, organizational elements, and data objects are
directly transformed into their BPMN representations. In ARIS, for example, functions supported by
a screen object are mapped to BPMN user tasks; functions assigned with an organizational object
only are mapped to manual tasks. Analogously, we define the mapping from EPC functions that are
supported by ESPSs to ESPTs in BPMN as shown in Figure 5.14.

An EPC function that is supported by an ESPS with implicit completion is mapped to an ESPT with
implicit completion, i.e., the completion condition assigned to the connection between the EPC func-
tion and the capability is mapped to the outgoing sequence flow of the ESPT (<, in Figure 5.14). An
EPC function that is supported by an ESPS with explicit completion is represented by an ESPT with
explicit completion; the completion is triggered by an SPU intermediate boundary non-interrupting
signal event (< in Figure 5.14). This event is triggered by the SPU signal intermediate throwing
event, which is the BPMN representation for the explicit completion capability used by an EPC func-
tion (<. in Figure 5.14). ESPTs in BPMN allow non-interrupting conditional events to be attached
to the boundary of an ESPT for a conditional triggering of subsequent actions. In EPCs this is mod-
eled with an event loop enclosing solely the event stream processing function (<, in Figure 5.14).
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The function supported by an ESPS is not completed in this case; the control flow directly returns.
The outgoing EPC event is consumed elsewhere and triggers concurrent functions.

Event streams in EPCs are mapped to their corresponding elements in BPMN: an EPC input ESS
(is input for association) is mapped to the BPMN input ESS; an EPC output ESS (has as output
association) is mapped to the BPMN output ESS. In EPCs the distinction between input and output
event stream is based on the type of the association connection, in BPMN individual elements for
both cases exist.

5.2.2 Workflow Execution Layer

The execution of business processes by an IT infrastructure requires a transition from the technical
process model to an executable process format. The BPMN 2.0 standard itself specifies such exe-
cution semantics; the standard also provides examples for the mapping between BPMN and BPEL.
Independent of the concrete technical representation format, the goal is to bridge the semantic gap
between the technical model notation and interfaces of IT components so that the process can be ex-
ecuted automatically. The transition from a technical process model towards an executable process
representation requires adding additional technical details.

For different task types and control flow components, execution languages provide executable rep-
resentations. When the mapping of graphical process task and process control flow elements is
complete and all necessary data is specified, the process execution engine is able to execute in-
stances of the process. Each instance reflects a concrete business transaction, e.g., processing of
Order No. 42. For each process instance, the execution engine orchestrates the different tasks,
passes on task input and output data, and evaluates conditions specified in the control flow. Exam-
ples are the execution of BPMN service tasks and human tasks: a service task can be executed by
calling a web service. For this, the execution engine needs the service address as well as the input
data to send to a service and the format of the expected output data from this service. For the exe-
cution of human tasks, process execution engines typically provide a front end to perform the work
necessary to complete the task.

At the execution layer we define the technical details that allow ESPTs to be mapped to IT compo-
nents. The mapping mechanism has to take into consideration that events arrive indefinitely and
are not known when the control flow reaches an ESPT. Thus, the data input must be specified as
a subscription for desired events that arrive during the execution period of an ESPT. During process
execution, this subscription has to partition the event stream in process instance specific sub streams:
when a process instance is created for a certain business task, e.g., processing of Order No. 42, the
event stream has to be partitioned in sub streams of events relevant for the different order process
instances. This requires events to hold an attribute that allows an association with a process instance.
Monitoring events contain, for example, a shipment ID. This is shown in Figure 5.15: a monitoring
task must be active for each process instance. This task instance has to receive all monitoring events
for the shipment that is handled in this process instance. Given that each event carries a shipment ID,
each monitoring task instance can issue a subscription for the appropriate events using the shipment
ID as filter. When the process instance ID correlates with the shipment ID, the subscription can also
be derived by the process execution engine on the basis of the process instance ID.
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Figure 5.15: Process execution: Event Stream Processing Tasks (ESPTs) receive entity-centric sub
streams of events.

The subscription parameters are essential for the instantiation of an ESPT. Like the input data passed
on to a service during a service call, the subscription is part of the input data during an ESPT instan-
tiation. Further, when the ESPT is modeled with an implicit completion, the completion condition
is part of the input data required for the instantiation. As for ESPT completion, different ESPT in-
stantiation strategies are possible. The push-based nature of stream processing allows an implicit
creation of ESPT instances upon the arrival of appropriate events. In addition, ESPT instances can
also be created explicitly by the process execution engine. When switching from explicit to implicit
instantiation, the responsibility of instantiation moves from the process execution engine to the IT in-
frastructure. Implicit instantiation is useful when the moment of instantiation cannot be determined
by the execution engine. It is also the more natural approach with respect to the characteristics of
event streams; application logic is executed as soon as appropriate events are available. We support
both instantiation schemes to allow for a high flexibility (— Rg). Independent of the instantiation
scheme, a subscription does not guarantee the availability of events, e.g., that events for Shipment
No. 42 are published. Explicitly instantiated ESPTs can use a timeout to detect such an absence
of events. With implicit instantiation, ESPT instances are not created in this case; the execution
environment can detect and report this.

ESPT Instantiation

The execution of a business process leads to process instances that may run in parallel. Each ESPT in
the model has corresponding ESPT instances that are created during process execution. Each ESPT
instance processes the event streams relevant for a particular process instance (see Figure 5.15). The
process execution engine can create an ESPT instance explicitly during the execution of a process
instance. The subscription parameters required for the explicit instantiation must be derived per
process instance; they define the sub stream of events that has to be processed by a particular ESPT
instance, e.g., monitoring events for Shipment No. 42. The explicit instantiation is specified as
follows (— R¢,R7,Rg):

1 EsptInstantiate(EsptName, EventStreamFilter, SubStreamAttribute,

2 SubStreamId [, CompletionCondition])
For the monitoring example, the explicit instantiation of a monitoring task for Shipment No. 42
without and with completion condition is:

1 EsptInstantiate(MonitorShipment, MonitoringEvent,
2 ShipmentId, 42)
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1 EsptInstantiate(MonitorShipment, MonitoringEvent,
2 ShipmentId, 42, destination.equals(location))

An ESPT is referenced by name: EsptName, e.g., MonitorShipment. The subscription parameter has
three parts: First, a general filter for events of interest that applies to all instances of an ESPT is spec-
ified as EventStreamFilter, e.g., monitoring events. Second, the SubStreamAttribute defines the
part of the event data that partitions the event stream with respect to ESPT instances, e.g., the ship-
ment ID; both are static expressions and derived based upon the ESS used in the model. Third, the
SubStreamId defines the concrete event sub stream for which an ESPT instance should be created,
e.g., Shipment No. 42. The SubStreamId is dynamic and derived per process instance by the execu-
tion engine at run time, e.g., based on the process instance ID. The optional CompletionCondition
can be specified for implicit completion, e.g., defining a time out.

With implicit instantiation, the process execution engine only registers a static subscription pattern
for an ESPT once, e.g., with the registration of the process. Since events arise in a push-style manner,
the IT infrastructure is able to create ESPT instances implicitly at run time. The implicit instantiation
is specified as follows (— R¢,R7,Rg):

1 EsptRegister (EsptName, EventStreamFilter,
2 SubStreamAttribute [, CompletionCondition])

For the shipment monitoring example, the ESPT registration is:

1 EsptRegister (MonitorShipment, MonitoringEvent, ShipmentId)

In contrast to explicit instantiation, the execution engine is not responsible for the dynamic subscrip-
tion part anymore. Rather, the IT infrastructure ensures, that an ESPT instance is created for each
distinct value of the SubStreamAttribute, e.g., for each shipment ID.

Upon implicit instantiation, the creation of ESPT instances is not synchronized with the control flow
of the process execution. ESPT instances are created based upon the availability of events, i.e., as
soon as events for a certain entity instance are available the corresponding ESPT instance is created.
The availability of events for Shipment No. 42, for example, results directly in the creation of an
ESPT instance that processes these events. This happens independently of the control flow of the
process execution. In cases where this behavior is not desired, a synchronization step has to be
performed between the beginning of the actual event processing and the control flow of the process
execution. Two cases have to be taken into consideration: First, the process control flow reaches an
ESPT and no ESPT instance has been created yet. Second, an ESPT instance is created although the
control flow has not reached the ESPT.

In the first case, the process execution blocks and proceeds after the completion of an ESPT instance;
this behavior is equivalent to the execution semantics of, e.g., service tasks. However, the process
execution engine has no control over the instantiation and thus relies on the IT infrastructure. In the
second case, the already created ESPT instance has to wait for the control flow of the process exe-
cution engine. This can be achieved by implementing a lock after the creation of an ESPT instance;
this lock is released upon a dedicated signal from the process execution engine. Since a dedicated
signal from the process execution engine is required, the explicit creation of ESPT instances is an
alternative in such cases.
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ESPT Completion

For the explicit completion of an ESPT instance, the process execution engine has to advise the IT
infrastructure to perform a shutdown of particular ESPT instances, e.g., the shipment monitoring of
Shipment No. 42. The completion command is specified as follows (— Rg):

1 EsptComplete(EsptName, SubStreamId)

The SubStreamId identifies the ESPT instance that should be completed. In the monitoring example
for Shipment No. 42, the following completion command is issued after the arrival confirmation task
(cf. Figure 5.4):

1 EsptComplete (MonitorShipment, 42)

We distinguish between the control commands to manage ESPTs and the ESPT execution semantics.
The control commands to register, instantiate, and complete ESPTs follow a request/reply pattern.
Thus, our integration approach of event streams with business processes can be mapped to web ser-
vice invocations. Web service invocation capabilities are part of most process execution engines so
that ESPTs can be registered, instantiated, or completed; the ESPT name as well as further subscrip-
tion and completion parameters are specified as variables in the service invocation. In addition to
service invocation mechanisms, it might be necessary to implement a back channel for control flow
purposes. Implicitly completing ESPT instances might have to notify the process execution engine
about completion. This is the case when the control flow waits for a completion of an ESPT, e.g.,
when an ESPT is used before a BPMN AND-Join.

ESPTs with Output ESSs

ESSs used as output of ESPTs can be mapped to advertisements. Advertisements inform the IT
infrastructure about the event types published by event producers; they allow the validation of sub-
scriptions, i.e., whether events are potentially available for an issued subscription. The validation of
subscriptions allows the identification of inconsistencies between demand and availability of event
streams upon registration of ESPTs. Subscription validation by the process execution engine is only
applicable when advertisements are mandatory for all publishers. In this case subscriptions are only
valid when they are specified on event content, e.g., attributes, that is advertised by at least one
publisher. In case not all event publishers are part of business process models, validating subscrip-
tions against advertisements inside the process execution engine is not feasible; then only the IT
infrastructure has a holistic view of event types, has to perform subscription validation, and informs
the process execution engine.

The event types for the advertisements are derived from output ESSs and included as additional
parameter at the instantiation or registration of ESPTs:

1 EsptInstantiate(EsptName, EventStreamFilter, SubStreamAttribute,
2 SubStreamId [, CompletionCondition] [, PublishedEventType])

1 EsptRegister(EsptName, EventStreamFilter,
2 SubStreamAttribute [, CompletionCondition] [, PublishedEventType
D
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A shipment monitoring SPU with implicit completion that outputs threshold exceeded events (cf. Fig-
ure 5.6) is then registered as follows:

1 EsptRegister (MonitorShipment, MonitoringEvent, ShipmentId,
2 destination.equals(location), ThresholdExceededEvent)

When the report threshold violation SPU is registered, the IT infrastructure knows that the demanded
ThresholdExceededEvent type is available:

1 EsptRegister (ReportExceededThreshold, ThresholdExceededEvent,
2 ShipmentId)

ESPT Mapping in BPEL

Business process models that contain ESPTs can be mapped to BPEL. However, the BPEL standard
[127] does not support all concepts required for a complete mapping of the different instantiation
and completion strategies. ESPTs with explicit instantiation and explicit completion can be mapped
to standard BPEL: the explicit instantiation is realized as web service call. The return from this call
is blocked by the IT infrastructure until the ESPT instance is explicitly stopped by an EsptComplete
service invocation. Explicit instantiation and completion in BPEL are as follows:

1 <invoke partnerLink="EsptWebService" operation="EsptInstantiate"
2 inputVariable="explicitInstantiateParams"
3 outputVariable="completed" />

1 <invoke partnerLink="EsptWebService" operation="EsptComplete"
2 inputVariable="explicitCompletionParams"/>

With implicit instantiation, single ESPT instances are transparent to the process execution engine.
The registration of ESPTs has to be performed once with the registration of a process; the ESPT
instances are then created automatically. The BPEL standard does not support hooks for service
invocation upon the registration of new processes. Thus, a BPEL execution engine has to be extended
with these capabilities to support implicit instantiation of ESPTs. The hook for execution at process
registration can be part of the BPEL code itself; when a new process is registered and checked, this
part of the process is executed only once:

1 <atRegistration><invoke partnerLink="EsptWebService" operation=
2 "EsptRegister" inputVariable="implicitInstantiateParams"/>
3 </atRegistration>

When an ESPT is invoked implicitly, there is no BPEL web service invocation in each process instance.
Thus, a blocking service invocation cannot be used to interrupt the control flow until completion of
an ESPT instance. Rather, the process execution engine has to be notified externally about the
completion of an ESPT instance so that the control flow can proceed. Extensions to BPEL engines to
react on such external triggers have been proposed, e.g., in [97] and [95]. The ESPT can be mapped
to a barrier that is released when the ESPT instance signals its completion.

76 5 SPU Integration with Business Processes



5.2.3 IT Infrastructure Layer

A major goal for BPM is the seamless execution of business process models inside an IT infrastructure
with minimal transition effort. Business functions are mapped to human tasks or service tasks.
These tasks are executed by a process execution engine; human tasks are executed with a workflow
management system, service tasks are mapped to services inside a SOA.

<SPU Name>

SPU Metadata
CompletionCondition: <Validity of SPU>
EventStreamfFilter: <Precondition for event handling >
SubStreamAttribute: <Distinction criteria between SPU instances>
<SPU Instance ID> SPU Runtime Code
onInstantiation (subStreamId id) { ... }
onRemove () { ... }
onCompletion() { ... }
onEvent (Event e) { ... }

Figure 5.16: SPU structure: SPU metadata and SPU runtime methods.

For event stream processing, SPUs are a suitable model to represent ESPTs at the IT infrastructure
layer. SPUs encapsulate event stream processing logic with respect to a certain entity, e.g., shipments
(— Ry9). An SPU instance subscribes to events of a certain entity instance, e.g., Shipment No. 42
(— R;;). Figure 5.16 shows the SPU structure; we adapted the nomenclature to the specific use
case of event stream integration with business processes. The grouping attribute to define the sub
stream of events associated with a certain entity instance is specified as Sub Stream Attribute! in
the SPU metadata, e.g., the shipment ID. Further, the metadata holds the Completion Condition?,
e.g., a timeout, as well as the Event Stream Filter® as a general subscription filter applied by all SPU
instances, e.g., monitoring event. SPU instances are created implicitly or explicitly (— Rg). With
implicit instantiation the middleware ensures that an SPU instance is active for each distinct value
of the sub stream attribute, e.g., for each shipment in transport. With explicit instantiation, SPU
instances are created manually by specifying a concrete sub stream attribute value, e.g., Shipment
No. 42. The completion of SPU instances is triggered implicitly by the completion condition, or
explicitly by a command (— Ry). SPU instances run in a distributed setting and have a managed
lifecycle; application logic can be executed upon instantiation, removal, completion, and upon event
arrival (— Ry;). The runtime environment for SPUs, which we present in Chapter 6, provides a web
service interface and supports the commands introduced in Section 5.2.2. This allows the execution
of SPUs by business process execution engines.

5.3 Implementation

We implemented SPU modeling capabilities for EPCs and BPMN in Software AG’s ARIS platform.
ARIS is a business process platform for business process analysis, enterprise architecture, and gov-

Referred to as Instantiation Expression in the generic SPU model in Section 3.2.3.
Referred to as Validity Expression in the generic SPU model in Section 3.2.3.

3 Referred to as Constant Expression in the generic SPU model in Section 3.2.3.
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ernance, risk & compliance. ARIS supports modeling of processes with EPCs as well as with BPMN.
For our implementation we used ARIS Design Server 9.0 and the ARIS Architect 9.0. To support
SPU modeling in EPCs and BPMN within ARIS, we added new notation element symbol types and
connection attributes for EPCs (see Figure 5.9) and BPMN (see Figure 5.3) to the configuration of
the ARIS server; the ARIS server acts as central repository for process models and process model
components.

For EPCs we added symbol types for:
* a cluster/data model object (derived from cluster symbol type) to model ESSs;
* a service type object (derived from business service symbol type) to model ESPSs; and

* an application system type object (derived from software service symbol type) to model the
technical representation of ESPSs.

For BPMN we added symbol types for:
* two cluster/data model types (derived from data input/output symbol types) to model ESSs;
* a function type object (derived from service task symbol type) to model ESPTs; and

* two event object types (derived from signal intermediate event symbol type) to model SPU
signal intermediate events (throwing and non-interrupting) required for explicit completion.

Further, we added an attribute type and an attribute type symbol for BPMN to model the condition
for implicit completion.

With the added symbol types, attribute symbol types, and attribute types it is possible to model
SPUs and event streams in EPC and BPMN diagrams. All new modeling elements are usable in
different diagram types as the symbols they are derived from. They can be used, for example,
in application system type diagrams, all types of EPCs, function allocation diagrams, and service
allocation diagrams.

Process Model Execution

One goal of BPM is to enable the automated execution of business process models. In Section 2.2.2
we introduce the different layers in such a model-to-execute (M2E) process and show that a high
coherence across the process modeling layer, the process execution layer, and IT infrastructure layer
is necessary. Our approach of SPUs is a mechanism to encapsulate event stream processing to achieve
such a high coherence and to provide the foundation for M2E.

Our extensions to EPCs allow business experts to create abstract business process models that contain
SPUs; our extensions to BPMN along with the proposed EPC-to-BPMN mapping allow the transfor-
mation of abstract EPC models to technical BPMN models. These BPMN models are further refined
during the M2E process and brought to execution. The execution as such is detailed in Section 5.2.2
where the mapping between ESPTs and service invocations is presented.

We are working with Software AG on the implementation of M2E mechanisms that support SPUs. In
the following we illustrate the M2E workflow and show how SPU integration is achieved. Our M2E
approach is based upon the Software AG ARIS, CentraSite and webMethods product suites. Business
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process analysis and process modeling is supported by the ARIS Architect; it provides an integrated
platform where process models are created and governed collaboratively. At the beginning of the
M2E workflow EPC process models are created with the ARIS Architect; these models reflect an
abstract business perspective. In the next step a transformation process is applied; abstract EPC
process models are mapped into a logical process model represented with BPMN. In ongoing work
we are working on the customization of the ARIS model transformation framework, which performs
the EPC-to-BPMN mapping. We are integrating the mapping of ESPSs in EPCs to ESPTs in BPMN.
This allows a partly automated transformation from EPC models with ESPSs to BPMN models.

After the transformation the resulting BPMN model needs to be refined by a process engineer. This
involves the adaptation to technical concepts and restrictions, e.g., adapting events for inter and
intra process communication and error handling scenarios. Finally, changed process elements are
linked to the related elements in the original EPC model using the process alignment capability of
ARIS. This allows a synchronization of the process between abstract and technical layer; refinements
in the EPC model are applied - if possible automatically - to the BPMN model and vice versa.

The next step in the M2E workflow is the transition from a technical model in ARIS to an exe-
cutable process representation that is deployed to a process execution system. For SPUs this involves
linking the Eventlet middleware via its web service interface to ESPTs of the BPMN model (see Sec-
tion 5.2.2). In Software AG’s M2E the executable process is created with the Software AG Designer.
Process developers import the technical process model from ARIS in the Software AG Designer. In
the Designer the process is represented as a technical BPMN diagram and technical implementations
are mapped to process steps. This is supported by the Software AG CentraSite service repository: the
web service interface of our Eventlet middleware is registered with CentraSite. This allows an easy
assignment of the Eventlet service (including invocation parameters) to ESPTs in the model. Cur-
rently, only explicit instantiation and completion of SPUs is supported. Implicit instantiation would
require a service invocation at process registration, implicit completion would require a feedback
mechanism from the Eventlet middleware to the process execution environment.

Processes are synchronized between the webMethods platform and the ARIS platform. Changes
to technical processes are propagated to the abstract process models and vice versa. During this
round tripping, approval steps ensure that processes at the IT level and at the business level remain
synchronized. The executable process model is deployed to the webMethods Integration Server
where the individual process steps are executed by the different components of the webMethods
BPMS; SPUs are executed by the Eventlet middleware controlled by web service invocations from
webMethods BPMS.

5.4 Summary

In collaboration with Software AG, we identified the need to integrate event streams with business
process modeling and execution. Rather than single events, event streams are considered as business
relevant units in this context. We developed a generic integration at the process modeling, the
process execution, and the IT infrastructure layer. We use SPUs as abstraction mechanism for event
stream processing and specify BPMN and EPC process modeling notation extensions that reflect
SPUs. Like services, SPUs can be used to encapsulate business functions with event streams as
business relevant data source; this allows intuitive modeling from the business perspective. We take
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semantics of event processing into account and support implicit as well as explicit instantiation and
completion strategies. The abstraction paradigm of SPUs leads to a high coherence across the layers.
This minimizes the transition overhead from the graphical model notation, to the executable process
description, to the IT infrastructure. Our approach is a clear separation of concerns; ESPTs and
ESPSs are declarative, the (imperative) application logic resides solely at the technical layer inside
SPUs. With our approach, widely adopted event stream processing techniques, like CEB can be
encapsulated; this makes event stream processing available coherently across the business process
modeling, the business process execution, and the IT infrastructure layer.
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6 Eventlets: An Implementation of SPUs

Event Stream Processing Units (SPUs), as containers for event stream processing logic, require a
runtime infrastructure for execution. We introduce the structure and runtime semantics of SPUs in
Section 3.2. The core of our model is support for implicit and explicit instantiation and completion.
In this chapter we describe our middleware that implements the SPU concept and provides a runtime
infrastructure for SPU instance creation and execution. We refer to the technical representation of
an SPU as Eventlet - short for event applet. We make this distinction to indicate that our Eventlet
middleware is one possible technical representation of the SPU container model; like web services
are one possibility to implement a Service-oriented Architecture (SOA), Eventlets are one realization
of the SPU container model.

We first introduce the architecture of our Eventlet middleware; this involves the different compo-
nents required to implement the runtime semantics of SPUs. We then present our Java Enterprise
based implementation in detail. In previous work, we identified that data heterogeneity is a chal-
lenge with respect to event-based systems; to overcome this issue we show how our transforma-
tion approach presented in [73, 74] is applicable for Eventlets. We also discuss security aspects of
Eventlets and apply our privacy preserving pub/sub approach presented in [120,121] to Eventlets.

Our Eventlet middleware supports implicit and explicit creation and completion of Eventlet in-
stances. This involves a dynamic derivation of subscriptions based upon constant and instantiation
expressions. Eventlet instances are manageable and follow a certain lifecycle; the Event middle-
ware architecture is designed for scalability: Eventlet instances can be distributed across multiple
machines.

6.1 Eventlet Middleware Architecture

Our Eventlet middleware is the runtime infrastructure for Eventlets which act as containers for event
stream processing application logic. Developers implement Eventlet Prototypes that follow the struc-
ture of an SPU. Eventlet prototypes contain generic event stream processing application logic along
with metadata required for the creation of entity-instance specific Eventlet instances. Eventlet proto-
types are registered with the middleware, which creates an Eventlet monitor for each prototype. The
Eventlet monitor is responsible for the creation and management of Eventlet instances. The Eventlet
middleware functionality is transparent to the developer who only has to register Eventlet proto-
types. We first introduce the different components of the Eventlet middleware and then describe the
runtime behavior.
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6.1.1 Eventlet Middleware Components

The Eventlet middleware architecture along with relations amongst their components is depicted in
Figure 6.1. It consists of three layers:

* Control layer;
* Instantiation layer; and
* Runtime layer.

The control layer contains components that expose an interface to interact with the Eventlet mid-
dleware. At the instantiation layer Eventlet monitors are responsible for the creation of Eventlet
instances from registered prototypes. Eventlet instances are then executed at the runtime layer
where the actual event stream processing is performed. The components are described in more
detail in the following.

Control 1:1
Layer Eventlet Manager Eventlet Repository
5 5
Instantiation . 1:1
Layer Eventlet Monitor ' Eventlet Prototype m
= - ('<D
.. . 3
3 3 -
w
Runtime S
Layer Eventlet Instance

Figure 6.1: Eventlet middleware components: Eventlet instance are created and controlled by Event-
let monitors.

Event Bus

The event bus plays a crucial role in the conceptual design of an Eventlet middleware. It is the
core mechanism to transport events from event producers to Eventlet instances. As described in
Section 3.1 the event bus follows the pub/sub paradigm to decouple all components [132]. Pub/sub
systems support different subscription mechanisms as described in Section 2.1.1. To implement
the SPU container model, a content-based subscription mechanism is the best fit since the constant
and instantiation expressions of SPUs are defined on event content. However, the Eventlet mid-
dleware can be adapted to support subscription mechanisms that do not provide full content-based
capabilities.

Eventlet Manager

The Eventlet manager is the main component of our Eventlet middleware. It provides an interface to
the user for the registration and management of Eventlet prototypes. It also provides an interface to
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external applications; for the use of Eventlets with business process execution engines, the Eventlet
manager provides a web service interface.

Eventlet Monitor

Eventlet monitors are responsible for monitoring events and instantiating new Eventlets; they ensure
that the required execution semantics of SPUs are fulfilled. For this, one Eventlet monitor is associ-
ated with each Eventlet prototype. Eventlet monitors implement implicit and explicit instantiation
of Eventlets as specified in Section 3.2.

Eventlet Prototype

Eventlet prototypes are the implementation of SPUs. They are containers for entity-instance-centric
event stream processing logic and follow the structure presented in Section 3.2.3: Eventlet proto-
types contain meta data required for the creation of Eventlet instances (constant expression, instan-
tiation expression, and validity expression) as well as runtime code to implement the actual event
stream processing; this encompasses at least the implementation of the onEvent method.

Eventlet Repository

The Eventlet repository is a middleware component to hold Eventlet prototypes and their metadata.
The repository allows the Eventlet manager to create Eventlet monitors and Eventlet instances on
different nodes. The repository can be replicated for scalability.

6.1.2 Runtime Behavior

At runtime, the different Eventlet middleware components interact to provide a suitable runtime en-
vironment for Eventlet instances. The runtime behavior can be partitioned in several steps as shown
in Figure 6.2. After starting up the Eventlet manager, the Eventlet middleware accepts requests.
Developers implement an Eventlet prototype corresponding to the structure shown in Figure 3.3
(Step 1). This prototype is then registered with the Eventlet middleware (Step 2). Upon registration
of the prototype, the Eventlet manager stores the prototype in the repository (Step 3) and triggers
the creation of an Eventlet monitor associated with the Eventlet prototype (Step 4). This Eventlet
monitor is then responsible to create Eventlet instances. Depending on the instantiation strategy the
Eventlet monitor behavior differs; with implicit instantiation the Eventlet monitor triggers the cre-
ation of Eventlet instances actively, with explicit instantiation it waits for external commands. In the
following we describe Steps 4, 5, and 6 in more detail; these steps depict the core functionality of the
Eventlet middleware. We use our shipment monitoring example and describe a shipment monitoring
Eventlet to illustrate the runtime behavior of our middleware.

Example: Shipment Monitoring Eventlet

With our SPU model, the task of shipment monitoring is encapsulated in an entity-type-centric way.
The required metadata needs to be provided by developers. An Eventlet prototype that implements
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Figure 6.2: Eventlet development and deployment workflow; after deployment, Eventlet monitors
continuously watch the event stream and trigger Eventlet instantiations.

a monitoring task has to specify a constant expression, an instantiation expression, as well as a
validity expression. For the monitoring of a shipment, the Eventlet prototype metadata can be as
follows (assuming events in att/val representation):

1 constantExpression := "type == monitoringEvent";
2 instantiationExpression := "shipmentID";
3 validityExpression := "timeout(120sec)";

When an Eventlet prototype with this metadata is registered with the Eventlet middleware and an
implicit instantiation strategy is applied, the middleware ensures that an Eventlet instance is created
for each shipment of which monitoring events are published.

Eventlet Monitor Operation

Eventlet instances execute the application logic specified in the Eventlet prototype. Each Eventlet
instance subscribes to events associated with a certain entity instance and provides a container with
local state that encapsulates application logic. As specified in the SPU model, the creation of Eventlet
instances can be triggered implicitly or explicitly (cf. Section 3.2.2).

Implicit instantiation ensures that Eventlet instances are created automatically as soon as events of
a particular type are published. For this, an Eventlet monitor subscribes to all events that match
the constant expression of the associated Eventlet prototype. This Eventlet monitor is created upon
registration of an Eventlet prototype with the Eventlet Manager. The Eventlet monitor issues a
subscription derived from the constant expression of the Eventlet prototype. The constant expres-
sion specifies the event stream of interest for which Eventlet instances have to be created. The
subscription operation is as follows:

1 subscribe(constantExpression);

For the monitoring example, the subscription is:

1 subscribe("type == monitoringEvent");
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With this subscription the Eventlet monitor receives all events for which an Eventlet instance is active
or needs to be created. For incoming events, the Eventlet monitor evaluates the instantiation expres-
sion: when no Eventlet instance exists for a specific instantiation value set, the Eventlet monitor
triggers the instantiation. This is shown in Algorithm 1: the instantiation expression of the Eventlet
prototype is applied to each event that arrives at the associated Eventlet monitor. The resulting set
of attribute values is used as input for a lookup to check whether this instantiation value set has
already been observed before. If this is the case, an Eventlet instance is already active and processes
the events. If this is not the case, the creation of an Eventlet instance is triggered and the retrieved
instantiation value set is used as input parameter. The instantiation value set is also added to a list
so that further lookups for this instantiation value set succeed and no new Eventlet instances are
created.

Data: list activeEventletInstances that contains instantiation value sets
Data: events e matching constant expression
while events arrive do
retrieve attribute values instVal by applying instantiation expression to arriving event e;
if instVal is not in list activeEventletInstances then
create Eventlet instance with instVal as instantiation parameter;
add instVal to activeEventletInstances list;
end
end
Algorithm 1: Eventlet monitor for implicit instantiation

In our example of an Eventlet for shipment monitoring, the instantiation expression specifies
the shipmentID. An Eventlet monitor for implicit instantiation checks for each event of type
monitoringEvents (as specified in the constant expression) whether the value of the attribute
shipmentID is already contained in the list of active Eventlet instances. If not, the Eventlet monitor
triggers an instantiation. A more complex instantiation expression might specify the shipmentID in
combination with the truckID as identifier for an entity instance specific event stream. In this case
the Eventlet monitor checks whether the conjunction of both attribute values is already contained in
the list of active instances, e.g., whether 42;37, which stands for Shipment No. 42 and Truck No.
37, is present.

With explicit instantiation the full control of instantiation is left to the users, i.e., the creation of
Eventlet instances must be requested explicitly. This is applicable in scenarios where external knowl-
edge about the entity instances for which event stream processing should happen is available, e.g.,
knowledge about shipments currently in transport. Explicit instantiation is also helpful for debug-
ging purposes to manually test the implementation of Eventlet prototypes. For explicit instantiation
the instantiation set values for which an Eventlet instance should be created have to be provided ex-
ternally. An instantiation request is then sent to the Eventlet middleware, e.g., to create an Eventlet
instance for the monitoring of Shipment No. 42. As for implicit instantiation, an Eventlet monitor
is responsible for the explicit instantiation of Eventlets. The creation of the Eventlet monitor is also
triggered with the registration of an Eventlet prototype. However, in case of explicit instantiation
the Eventlet monitor does not issue a constant expression based subscription to monitor the event
stream. The Eventlet monitor only keeps track of active Eventlet instances; this allows the Eventlet
monitor to prevent the creation of duplicate Eventlet instances, i.e., of multiple instances that per-
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form event stream processing for events of the same entity instance. The explicit instantiation logic
is shown in Algorithm 2.

Data: list activeEventletInstances that contains instantiation value sets
Data: instantiation request with instantiation value set instVal
if instVal is not in list activeEventletInstances then
create Eventlet instance with instVal as instantiation parameter;
add instVal to activeEventletInstances list;
end
Algorithm 2: Eventlet monitor for supervised explicit instantiation

Eventlet monitors are also involved in the completion process of Eventlet instances. When Eventlet
instances complete, the Eventlet monitor is informed about this completion to update the list of
active Eventlet instances. There are two options: marking the instantiation value set as inactive
or removing it from the list. When the instantiation value set of a completed Eventlet instance
is removed from the list, an Eventlet instance for the processing of this instantiation value set is
created at the next occurrence. For example, the Eventlet instance for monitoring Shipment No. 42
completes due to a timeout. The Eventlet monitor then removes Shipment No. 42 from its list of
active Eventlet instances; the next time an event of Shipment No. 42 arrives, a new Eventlet instance
is created. When an instantiation value set is marked as inactive, further occurrences of events for
this instantiation value set do not trigger the instantiation of an Eventlet, i.e., although events of
Shipment No. 42 arrive, the inactive marked instantiation value 42 prevents the creation of a new
Eventlet instance.

The explicit completion of Eventlet instances is handled by the Eventlet monitor. The Eventlet mon-
itor receives the request for shutdown of a particular Eventlet instance identified by its instantiation
value set, e.g., shutdown request for the Eventlet instance that performs monitoring of Shipment No.
42. As for implicit completion, there are the options to mark the instantiation value set as inactive,
to prevent re-instantiation, or to remove the instantiation value set from the list of active instances.
The Eventlet monitor then shuts down the Eventlet instance.

Eventlet Instance Creation

The creation of Eventlet instances is triggered by Eventlet monitors. The Eventlet monitor uses the
Eventlet prototype as blueprint and creates an instance for the processing of entity-instance-centric
events identified by an instantiation value set. The Eventlet monitor creates the Eventlet instance and
uses this instantiation value set as parameter. In combination with the Eventlet prototype metadata
an Eventlet instance is now able to issue its subscription. It combines the constant expression, the
instantiation expression, and the instantiation value set into a single filter expression to receive
events related to a single entity instance (cf. Section 3.2.4):

1 subscribe(constantExpression AND (instantiationExpression EQUALS
instantiationValueSet));
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For the monitoring example with shipmentID as instantiation expression and an instantiation value
of 42 (Shipment ID) this results in:

1 subscribe("type == monitoringEvent" AND "shipmentID == 42");

The more complex instantiation value set 42;37 (Shipment No. 42, Truck No. 37), results in the
following subscription that is issued at the creation of the Eventlet instance:

1 subscribe("type == monitoringEvent" AND ("shipmentID == 42" AND
truckID == 37"));

Prior to issuing the subscription, the (optional) onInstantiation method is invoked. In this method,
initialization of components required for the event stream processing can be performed. After the
subscription is issued the onEvent method is invoked asynchronously at incoming events; by post-
poning the subscription until the onInstantiation method has been completed, it is ensured that
the Eventlet instance is prepared for the processing of arriving events. Mechanisms for the handling
of events that arrive during this instantiation process are discussed in the context of future research
in Section 10.2.

Each Eventlet instance is autonomous, i.e., there is no direct connection with the Eventlet monitor. At
the technical layer Eventlet instances establish their own connections with the event bus and receive
events according to their subscription. The Eventlet monitor has knowledge about active Eventlet
instances and can control them; the event stream processing as such is independent of the Eventlet
monitor. This is illustrated in the runtime view shown in Figure 6.3: Eventlet instances created by
the Eventlet monitors run within the Eventlet runtime environment. This environment for Eventlet
instances provides functionalities for Eventlet instance monitoring and management. The runtime
environment is also responsible to distribute Eventlet instances across multiple machines.

Event Bus

Eventlet
X X Manager |-
H EventletMonitor, EventletMonitor, s
Eventlet
Repository S
Eventlet |-
| Runtime |-
Instance, ; Instance,, I_._ Environ- |-

ment

Figure 6.3: Eventlet middleware runtime view: Eventlet monitors know the Eventlet instances they
are responsible for. Eventlet instances have dedicated connections to the event bus.
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Eventlet Instance Expiration

Each Eventlet instance evaluates its validity expression during runtime to decide whether the validity
condition is violated. This evaluation happens transparently, i.e., it does not have to be implemented
explicitly. Depending on the actual validity expression, the evaluation is, for example, triggered by
a timer or by an incoming event. The support for different kinds of validity expressions requires an
according implementation within the Eventlet middleware. In case of a validity condition violation
the onExpiration method is called to handle the expiration. It is possible to resume the normal
mode of operation of the Eventlet instances by resetting the expiration. In case of a timeout, for
example, the timer is reset. Since Eventlet instances are stateful, it is possible to keep track of
validity expression violation and react, for example, only when a timeout occurs repeatedly. The
validity expression is also the mechanism to realize an implicit completion of Eventlet instances. It is
applied in our approach for the integration of event stream processing with business processes: the
completion condition specified in the process models results in a validity expression of an Eventlet
prototype (see Section 5.2.3).

Eventlet Instance Lifecycle

Eventlet instances follow a lifecycle as shown in Figure 6.4. Derived from its Eventlet prototype,
the lifecycle of an Eventlet instance begins with its instantiation triggered by the Eventlet monitor.
During the initialization the subscription filter is derived and the onInstantiation method is called.
With the completion of the initialization, the subscription is issued and the Eventlet instance is in
the active state. Events arriving while the Eventlet is in the active state trigger the onEvent method
and events are processed. An Eventlet instance in active state can be paused, can expire, or can be
removed. When paused, the Eventlet instance does not receive new events, i.e., the subscription is
suspended. Meanwhile, the Eventlet instance remains active and keeps state. When resumed, the
subscription is reissued. As described above, the violation of the validity expression leads to the
invocation of the onExpiration method and brings an Eventlet instance to the expired state. The
normal operation can then be resumed, the Eventlet instance can be removed or paused depending
on the use case. When an Eventlet instance is removed, all state is lost. Prior to removal, the
onRemove method is invoked, for example, to persist data. Upon removal the instantiation value set
of an Eventlet instance can be marked as inactive; in this case no Eventlet instance is created for this
particular instantiation value set although matching events are observed at a later point in time. The
default behavior is a removal where the instantiation value set is also removed from the Eventlet
monitor’s list of active instances; this allows the repeated creation of Eventlet instances for the same
instantiation value sets.

6.2 Eventlet Middleware Implementation

We developed a distributed Eventlet middleware following the architecture presented in Section 6.1.
Our middleware is implemented in Java and builds on top of a pub/sub system. We provide an
adapter layer for pub/sub interactions to enable the integration of different pub/sub middleware;
adapters provide the basic pub/sub API (cf. Section 3.1) to the components of the Eventlet mid-
dleware. The communication between the distributed components of the middleware, i.e., Eventlet
instances and Eventlet monitors, is decoupled and asynchronous; this fosters scalability.
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Figure 6.4: Eventlet life cycle states: After instantiation an active Eventlet instances can expire or it
can be paused or removed.

JMS Pub/Sub Adapter

We implemented an adapter to use Java Message Service (JMS) brokers as event bus. JMS is the
de-facto industry standard for asynchronous messaging; messages are exchanged via a JMS broker
network, e.g., IBM WebSphere MQ or Apache ActiveMQ (cf. Section 2.1.2). Our JMS adapter handles
the connection setup and provides an abstraction for event types. Our adapter layer supports att/val
pairs as well as XML as representation for events. Figure 6.5 shows a temperature event in both
representations. Att/val events as well as XML events are mapped to corresponding JMS objects
inside the adapter. XML events are represented as JMS text messages where the message body
contains the XML source. Att/val events are represented with JMS message properties, i.e., the JMS
header is used to store the data. Att/val events can be used with arbitrary JMS brokers; XML events
require support for subscriptions specified on the XML content.

event
<event> )
<type>monitoringEvent</type> Attribute Value
<shipmentID>42</shipmentID > type monitoringEvent
<temp>20</temp> shipmentID 42
</event>
temp 20
XML Representation Att/Val Representation

Figure 6.5: Event representation

All JMS brokers support topic-based pub/sub with filtering on message header attribute values via
so called message selectors. In addition, some brokers support XML events, e.g., Apache ActiveMQ.
The syntax of subscription filters — in form of JMS message selectors — differs for att/val events
and XML events. For att/val events the subscription filters are specified as standard JMS message
selectors in a SQL-like syntax; for XML the filters are specified in XPath. This results in different
formats for instantiation and constant expressions depending on the underlying infrastructure. With
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JMS brokers that support both event representations, Eventlet prototypes defined on att/val filter
expressions or XPath filter expressions can exist in parallel. However, event producers have to take
care about the format of published events. For events to be usable by att/val Eventlets as well as
by XML Eventlets, published events have to contain both: the att/val representation (in the event
header) and the XML representation (in the event body). In our implementation we use a single
topic as event bus; all event producers publish events to this topic, all consumers (Eventlet monitors
and Eventlet instances) subscribe to this topic using dynamically derived message selectors.

We trade more elaborated content-based subscription capabilities of alternative pub/sub systems,
e.g., filter subsumption, for the use of JMS. JMS has the advantage of being a standardized industry-
strength API that allows the use of well-tested JMS brokers. JMS is also the technology used in many
Enterprise Service Buses (ESBs); Apache ServiceMix, for example, uses ActiveMQ as ESB. Thus, the
use of JMS enables the reuse of already deployed enterprise application technology by our Eventlet
middleware.

Middleware Inter-Component Communication

The Eventlet middleware is designed for scalability as Eventlet monitors and Eventlet instances can
run distributed across multiple machines. To achieve this distribution, queue- and topic-based inter-
component communication is integrated in the middleware. Just like the event bus transports events
from producers to consumers, the Eventlet middleware uses a command bus for asynchronous and
decoupled communication between the components. This command bus is a set of JMS queues
and topics to which the different components subscribe using message selectors. To start Eventlet
monitors and Eventlet prototype instances on different servers, the Eventlet Monitor Server and
Eventlet Instance Server are started on each machine participating in the middleware system. These
servers form the Eventlet manager and connect to the command bus. In the current implementation,
queues deliver commands round-robin to all connected servers. Two queues exist, one to trigger the
creation of Eventlet monitors, a second to trigger the creation of Eventlet instances. The distributed
architecture is shown in Figure 6.6. With our command dissemination infrastructure, components
can be addressed at different granularity levels. It is possible to send commands to:

* a specific Eventlet instance;

 all Eventlet instances, monitors, and instance servers;

 all Eventlet monitors;

* all active Eventlet instances, not only to instances of a certain Eventlet prototype;
* a specific Eventlet monitor; and

* all Eventlet instances of a prototype.

The creation of Eventlet monitor instances and Eventlet instances is triggered via commands sent to
dispatch queues to which Eventlet monitor servers and Eventlet instance servers subscribe:

* Eventlet monitor dispatch command: This command is sent at the registration of an Eventlet
prototype. After the prototype is stored in the repository, an arbitrary Eventlet monitor server
can react to this command and create the Eventlet monitor instance.
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Figure 6.6: The Eventlet middleware is distributed across machines: Eventlet Monitor Servers and
Eventlet Instance Servers receive commands and trigger the creation of Eventlet monitors
and Eventlet instances.

* Eventlet dispatch commands: Eventlet monitors send Eventlet dispatch commands to trigger the
creation of Eventlet instances. The commands are received by Eventlet instance servers, which
then access the repository to create Eventlet instances that may run on different nodes.

The middleware also supports three different Eventlet management commands to control the lifecy-
cle of Eventlet instances (cf. Figure 6.4) and Eventlet monitors:

* Pause: Pause commands pause Eventlet instances; instances remain active and keep state but
do not receive events anymore and the validity check is disabled. Although Eventlet instances
keep state, this state becomes obsolete as events are missed; the handling of potentially oc-
curring inconsistencies depends on the use case. Pause commands sent to an Eventlet monitor
prevent the creation of new Eventlet instances. The state of already created Eventlet instances
remains unchanged.

* Resume: Resume commands reactivate paused Eventlet instances and monitors.

* Remove: Remove commands sent to Eventlet instances trigger the onRemove method call and
stop the instance. Depending on the configuration, removed Eventlet instances are recreated
or not when the Eventlet monitor is still active and matching events arrive again. Removing an
Eventlet monitor causes all associated Eventlet instances to be removed as well.

Eventlet Prototype Implementation

In our middleware Eventlet prototypes are represented by Java classes. An Eventlet prototype inher-
its functionality from its superclass; the superclass contains methods to evaluate the constant and
instantiation expressions as well as code to connect the Eventlet instances to the pub/sub system.
The superclass further implements a message listener interface to react on incoming messages. All of
this is transparent to the Eventlet developer who only needs to implement the four core methods and
to provide the appropriate constant and instantiation expressions as described in Section 3.2.3.
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Listing 6.1 shows a sample Eventlet prototype for the monitoring of shipments. It reacts on att/val
events of type monitoringEvent (cf. Listing 6.1, Line 3), as shown in Figure 6.5. A new Eventlet
instance is created for each shipment (cf. Listing 6.1, Line 4). Upon instantiation, a shipment-
depending temperature threshold is retrieved and used to check for temperature violations. The
Eventlet prototype also specifies a timeout (cf. Listing 6.1, Line 5). The code in Listing 6.1 is a
fully functional Eventlet prototype and no additional code is needed to allow its registration with the
Eventlet middleware. However, more application logic has to be added to implement the threshold
lookup upon instantiation. Since an Eventlet prototype is a Java class, it can use all Java constructs
and integrate external libraries. The implementation of Eventlet prototypes as Java classes allows
Eventlet instances to keep state. In this context it is important to note that the onEvent method is
invoked asynchronously so that synchronization is required, for example to access variables.

Listing 6.1: Sample Eventlet prototype for shipment monitoring with att/val events.

1 |public class ShipmentMonitoring extends TimeoutEventlet {

2 // Eventlet prototype meta data

3 public static String constantExpression = "(type='monitoringEvent’)";

4 public static String instantiationExpression = "shipmentID";

5 public static long validityExpression = 120000;

6

7 // Constructor (auto generated)

8 public ShipmentMonitoring(String eventletName, String instantiationValue)
{

9 super (eventletName, instantiationValue, constantExpression,

instantiationExpression, validityExpression); }
10
11 // Eventlet prototype runtime code
12 public int tempThreshold;

13

14 @Override

15 public void onEvent(Event e) {

16 int temp = e.getVal("temperature");

17 if (temp > tempThreshold) raiseAlert();

18 super.onEvent (e);

19 }

20

21 @Override

22 public void onInstantiation() {

23 // Retrieve temperature threshold for shipment
24 tempThreshhold=thresholdLookup(this.getInstantiationValue());
25 }

26

27 @Override

28 public void onExpiration() { }

29 @Override

30 public void onRemove() { }

31 |}
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The Eventlet meta data for an XML variant of the shipment monitoring Eventlet prototype is shown
in Listing 6.2. Constant and instantiation expression are XPath expressions; the event data is now
retrieved as string (cf. Listing 6.2, Line 9) which contains the XML.

Listing 6.2: Sample Eventlet prototype for shipment monitoring with XML events.

1 |public class ShipmentMonitoring extends EventletXml {
2 // Eventlet prototype meta data

3 public static String constantExpression =

4 "/event/type[. = 'monitoringEvent’]";

5 public static String instantiationExpression = "/event/shipmentId";
6

7 // Eventlet prototype runtime code

8 @Override

9 public void onEvent(Event e) {

10 String xmlPayload = e.getPayload();

11 }

12 |}

Eventlet Prototype Instantiation

Upon the registration of a new Eventlet prototype a command is sent to the Eventlet monitor dispatch
queue. The Eventlet monitor server retrieving this command creates the Eventlet monitor. To allow
all Eventlet monitor code to be generic, we use Java Reflection to identify Eventlet prototype classes
and create new instances. Adding a new Eventlet prototype thus does not require code modifications;
the Eventlet is identified by a string, which is used to find the respective class and constructor. The
command to create an Eventlet monitor for the shipment monitoring Eventlet prototype is shown in
Listing 6.3:

Listing 6.3: Monitoring Eventlet registration with implicit instantiation.

1 | commandConnection.sendToEventletMonitorDispatchQueue (
2 new EventletMonitorDispatchCommand (
3 "de.tudarmstadt.dvs.eventlets.repository.ShipmentMonitoring"));

To create Eventlet instances, either implicitly or explicitly, a command is sent to the Eventlet dispatch
queue. This command contains the Eventlet name as well as the concrete instantiation value. For
the creation of a shipment monitoring Eventlet for Shipment No. 42 the command is shown in
Listing 6.4:

Listing 6.4: Explicit instantiation of monitoring Eventlet.

1 | commandConnection.sendToEventletDispatchQueue (
2 new EventletDispatchCommand (

3 "de.tudarmstadt.dvs.eventlets.repository.ShipmentMonitoring", "42"));

The Eventlet instance server receiving this command then instantiates the corresponding Eventlet.
Active Eventlet instance servers receive dispatch commands round-robin. A physical machine can
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start multiple Eventlet instance servers to implement load balancing. To improve locality of compo-
nents the round-robin distribution can be replaced by other mechanisms so that routing algorithms
of an underlying broker network can work more efficiently.

A newly created Eventlet instance knows which value triggered its instantiation; thus, it can derive
its subscription for events associated with an entity instance. Depending on the type of validity
condition, a parallel task is started with the creation of an Eventlet instance. In case the validity
condition specifies a timeout, this is periodically checked. The onExpiration method is invoked
when the validity expression is violated.

6.2.1 Eventlet Middleware Interfaces

As shown in Figure 6.7 our Eventlet middleware provides different interfaces for registering and
controlling Eventlets. With the native client, the registration of Eventlet prototypes and the explicit
instantiation of Eventlets is directly integrated into the middleware. The middleware is responsi-
ble for the construction of command objects and for establishing a connection with the command
bus. The JMS interface gives external applications the possibility to send commands directly to the
Eventlet middleware command bus. In this case, the connection to the command bus has to be es-
tablished manually. Further, Eventlet middleware libraries have to be included into the application
class path so that the required command objects can be created. For the integration of event stream
processing with business processes we developed an Eventlet middleware interface to support Event
Stream Processing Task (ESPT) execution. The implementation of ESPTs in business processes can be
realized with Eventlets; a shipment monitoring ESPT, for example, corresponds to a shipment mon-
itoring Eventlet. The semantics of ESPT execution (cf. Section 5.2.2) are supported by the Eventlet
middleware. The EsptInstantiate and EsptRegister invocations provide the Eventlet middleware
with the metadata to explicitly or implicitly create Eventlet instances. The Eventlet prototype asso-
ciated with an ESPT is identified via the EsptName. The Sub Stream Attribute is the name of an
event attribute, e.g., shipmentID. For XML events, Event Stream Filter and Sub Stream Attribute are
specified as XPath expressions on the event content. We added a web service interface to the Eventlet
Manager to support the automated execution of ESPTs by process execution engines; the interface
accepts service invocations as described in Section 5.2.2 and uses the internal command bus to start
or stop Eventlet Monitors and Eventlet instances. The web service interface is implemented as Java
Enterprise application.

6.3 Privacy Concept

SPUs process entity-centric streams of events. In this context, privacy can become an important issue.
While the monitoring of shipments might not involve the processing of highly sensitive data, an SPU
for patient monitoring in hospitals (cf. Section 3.2) certainly deals with confidential event streams.
Thus, the data transport from event sources to event consumers, i.e., to SPUs, must be confidential.
SPUs rely on a pub/sub system; our Eventlet middleware, for example, uses JMS. However, the
principle of pub/sub systems contradicts the demand for privacy. Event producers publish events
and brokers match events with subscriptions following a one-to-many communication scheme. This
decoupled information exchange requires brokers to have access to the event data to be able to
perform the matching with subscriptions [174].
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Figure 6.7: The Eventlet middleware provided a web service interface for the integration with busi-
ness process execution environments.

While at a small scale a trusted broker network can be a feasible solution to ensure privacy, trusted
large-scale broker networks are hard to implement. Broker networks may encompass brokers op-
erated by different companies and at different locations without a central control authority. Thus,
approaches have been developed that allow privacy-preserving pub/sub communication with an un-
trusted broker network [123,160]. In these systems brokers can route events without access to the
event content.

In [123], the Paillier homomorphic encryption scheme [135] is used to enable the evaluation of
blinded subscriptions against blinded event attributes. This enables routing of events through a
network of untrusted brokers and ensures confidentiality of subscriptions and events. However,
each subscriber needs to contact a Trusted Third Party (TTP) for the subscription blinding process.
In [120,121] we enhance the approach presented in [123]. We improve performance and adapt the
encryption scheme to minimize the contact with a TTP. This allows the application of our approach
in domains with high subscription dynamics, i.e., frequently changing subscriptions or frequent new
subscriptions. Our Eventlet middleware is such an application domain: the creation of each new
Eventlet instance involves issuing a subscription. Especially in use cases where many Eventlet in-
stances are active and the instances have short life cycles, a TTP contact upon each subscription is
not feasible anymore.

In the following we apply our privacy-preserving pub/sub approach to the Eventlet middleware. We
implemented our privacy-preserving pub/sub solution in the Apache ActiveMQ JMS broker. Since
our Eventlet middleware is implemented on top of JMS, the privacy-enhanced broker integration
does not require the adaption of interfaces.

Privacy-preserving Publish/Subscribe

Figure 6.8 shows our privacy-preserving pub/sub scheme. It relies on the homomorphic properties
of the Paillier encryption, i.e., computations performed on encrypted data correspond with compu-
tations on unencrypted data. In our context, these homomorphic properties allow the comparison of
encrypted values whereas the comparison result also applies to the unencrypted data. Our scheme
distinguishes between privacy-preserving routing of events, i.e., matching subscriptions with events,
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and a payload encryption. To perform routing decisions, a decryption of events is not required: only
the event consumers require access to the actual unencrypted data. For the matching of events and
subscriptions, homomorphic properties of the encrypted data are sufficient. A homomorphic en-
cryption scheme allows brokers to compare encrypted values and to make correct routing decisions
without having knowledge about the unencrypted data. This observation is the foundation for our
privacy-preserving pub/sub scheme with minimal TTP contact. We use a so called blinding opera-
tion: blinding is a one-way randomized encryption that preserves homomorphic properties. Brokers
can compare blinded values and make routing decisions depending on the comparison result; our
encryption scheme ensures, that the comparison result also holds for the unencrypted data. The
blinding operation is also randomizing, i.e., blinding the same value twice leads to different blinded
values whereas the homomorphic properties still hold. This prevents brokers from learning from the
distribution of encrypted values. Our trust model is as follows: we assume brokers to be honest but
curious, i.e., brokers follow the pub/sub protocol, but are not trusted for confidentiality of publica-
tions and subscriptions. They also may collude with subscribers. We assume that the TTP is fully
trusted. We assume that publishers keep the secrets they receive from a TTP confidential and follow
blinding protocol; periodical re-authentication with a TTP can be used to ensure privacy in case of
malicious publishers. Subscribers are not trusted in our scheme.

Notificati
Subscription otification
type := monitoring,
type==monitoring AND shipmentID := 42,
shipmentID==42 temperature := 23

Blinding &
@ Encryption

type := BLINDED(monitoring),
shipmentID := BLINDED(42)

Blinding

ENCRYPTED(type := monitoring,
shipmentID := 42,
temperature := 23)

Matching procedure in broker
type: EVAL(BLINDED(monitoring)==BLINDED(monitoring)) v/ f )
shipmentID: EVAL(BLINDED(42)==BLINDED(42)) v
Discard header and
deliver payload

Figure 6.8: The privacy-preserving pub/sub scheme requires blinding of subscriptions and corre-
sponding event attributes; further, a separate payload encryption is applied.

type==BLINDED(monitoring)
AND shipmentID==BLINDED(42)

Payload Header

Prior to privacy-preserving pub/sub operations, publishers, subscribers, and brokers contact a TTP
to retrieve parameters required for the blinding and encryption as well as for the comparison and
decryption operations. As shown in Figure 6.8, a subscriber constructs a filter expression (subscrip-
tion) and then blinds the attribute values. This subscription is then used to register with a broker.
On the event publisher side, an initial TTP contact is also prerequisite for the subsequent publishing
of events. The next step is blinding as well as encrypting the event data. The portion of the event
data that can be part of subscription expressions needs to be blinded. In a content-based pub/sub
system with att/val events this can involve all event attributes. Blinding is a one-way operation and
subscribers cannot gain access to the plain event data from blinded values. Thus, a separate payload
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encryption has to be applied. In our system, an attribute-based group key management scheme, as
presented in [122], is used.

The event with a blinded and an encrypted portion is sent to the broker where the matching between
registered subscriptions and the event content is performed. The comparison between blinded values
requires a multiplication in modulo arithmetic with the parameters received from the TTP. The result
of this multiplication tells whether there is a greater or equal than or a less than relation between
two values. An equality check is not supported directly; rather, subscribers have to split an equality
check in two comparisons. The equality check value == 42, for example, is split in (value >= 42)
AND (value < (42+1)) by the subscriber. On the one side, this introduces computational overhead,
on the other side, malicious brokers cannot distinguish between range and equality filter expressions
anymore. Depending on the outcome of the comparison inside the broker, the broker can perform
routing operations and forward events to interested subscribers.

Besides a computational overhead, our privacy-preserving pub/sub scheme also influences scalability
properties of pub/sub systems. The whole set of filter subsumption mechanisms cannot be applied
anymore: two subscriptions (value > 5) and (value > 7) cannot be subsumed to (value > 7)
and pushed close to the event source since brokers are not able to see values in plain text. Still
working, however, is splitting of subscriptions. The subscription (valuel > 5) AND (value2 > 7),
for example, can be split and the first part (valuel > 5) can be moved to a broker close to the event
source. This does not reduce the overall computational effort, but reduces network utilization since
events are filtered early.

The blinding operation is applied to attribute values; attribute names used in subscriptions and
publications are not affected and remain in plain text. To prevent attackers from learning from
attribute names, meaningless attribute names can be used, e.g., valuel. It is also possible to apply a
hash function to the attribute name; however, this allows dictionary attacks to retrieve the attribute
name. In either case - with meaningless or with hashed attribute names - subscribers and publishers
have to possess shared knowledge about attribute names and attribute semantics; this is intrinsic to
the pub/sub approach.

To secure event data and allow decryption at event consumer site, a separate payload encryption
scheme has to be applied. This is independent from the blinding mechanism to achieve privacy-
preserving pub/sub functionality. In [120,121] we use an attribute-based group key management
scheme (AB-GKM) [122] for payload encryption. AB-GKM is an enhanced broadcast group key man-
agement (BGKM) scheme, presented, e.g., in [24,49]. In BGKM subscribers receive an initial secret
from a TTP; during operation, data is broadcast that - in combination with the initial secret - can
be decrypted. For all broadcast data, publishers can decide which subset of registered subscribers
should be able to decrypt data; no additional TTP involvement is required in this step. AB-GKM ex-
tends BGKM with attribute-based access control policies (ACP): a subscriber ACP is a set of attribute
conditions that has to be fulfilled in order to gain access to the data. Publishers decide which access
control attribute values an event has and, by this, determine which subscribers can decrypt the data.
A possible ACP is, for example, ((priority == normal) AND (type == temperatureEvents)) OR
(priority == high); with this ACP a subscriber can decrypt temperature events with normal pri-
ority as well as all high priority events. Publishers specify priority and event type and determine
implicitly which subscribers are able to decrypt the event.
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Privacy-preserving Pub/Sub Integration in Eventlet Middleware

Figure 6.9 shows the integration of our privacy-preserving pub/sub scheme with our Eventlet mid-
dleware. Event publishers act independently of our middleware; they contact a TTP and are then
able to blind attribute values and to encrypt payload. At subscriber site, two components of our
middleware issue subscriptions: Eventlet monitors and Eventlet instances. Eventlet monitors contact
the TTP; they are then able to blind subscriptions. Eventlet monitors for implicit instantiation issue
subscriptions built from the constant expression. Subsequently, Eventlet instances issue subscriptions
built from the constant expression as well as from an instantiation value set (see Section 6.1.2).

Crypto Crypto

Parameters Parameters
Trusted Third Party (TTP) < >

A
A4

Eventlet Monitor Event Publisher

BLIND(constantExpression)
BLIND(instantiationValueSet)

4
N

Eventlet instance: | sypscribe Publish Blinded Header
subscription > Broker Network |[&—————"—-—--ommmmoeeee
assembly Encrypted Payload

Figure 6.9: Integration of privacy-preserving pub/sub with the Eventlet middleware.

We identified three alternative approaches for the blinding of the subscription values of Eventlet
instances:

1. Eventlet monitors share cryptographic parameters with Eventlet instances;

2. Eventlet monitors perform blinding of subscriptions themselves and forward blinded values at
Eventlet instance creation; and

3. Upon creation, Eventlet instances contact a TTP to receive the secrets required for the blinding
operation.

When the cryptographic parameters are shared by an Eventlet Monitor, Eventlet instances can blind,
and thus issue, arbitrary subscriptions. When subscriptions are blinded by the Eventlet monitor, it
acts as trusted authority and control component for all Eventlet instances. In this case Eventlet in-
stances cannot issue arbitrary subscriptions on their own, they rely on blinding operations performed
by the Eventlet monitor. Shifting the blinding operations from the Eventlet monitor to the Eventlet
instances removes load from Eventlet monitors and increases scalability. At the same time, Eventlet
instances have to be fully trusted since they can issue arbitrary subscriptions. When Eventlet in-
stances have to contact a TTP before issuing a subscription, the TTP has to handle many requests.
Especially in cases with high Eventlet instantiation dynamics, this is not suitable anymore. This bot-
tleneck initially motivated the development of our encryption scheme where arbitrary subscriptions
can be blinded after an initial TTP contact.

As the blinding of subscriptions, the decryption of the event payload by Eventlet monitors and Event-
let instances requires secrets obtained from a TTP. Best privacy protection is achieved by an explicit
TTP contact of each Eventlet instance where the Eventlet instance specific subscription is used as
access policy, e.g., (type == monitoringEvent) AND (shipmentID == 42). This guarantees that
no other Eventlet instance is able to decrypt data. An Eventlet monitor for implicit subscription,
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however, needs to be able to decrypt all event data that matches the constant expression and the
instantiation expression since it has to trigger the creation of Eventlet instances when demanded.
An additional level of security can be added by an Eventlet monitor specific event payload encryp-
tion. Event publishers then perform a blinding of attributes for the subscription matching, they
encrypt attributes identified via the instantiation expression by Eventlet monitors, and they encrypt
the complete event for the final recipients. Due to the pub/sub scheme, events arriving at Eventlet
monitors fulfill the constant expression. An Eventlet monitor is then able to decrypt only the instan-
tiation values to decide upon the creation of new Eventlet instances. Eventlet instances register with
their instantiation value set with a TTP and are subsequently able to decrypt the payload of events
associated with this instantiation value set, e.g., events for Shipment No. 42.

As for the blinding operation, a TTP contact of each Eventlet instance is often not feasible. Alter-
natively, secrets can be shared between an Eventlet monitor and its associated Eventlet instances.
This allows Eventlet instances the decryption of all events that match the constant expression of the
Eventlet monitor. This becomes a security issue when attackers manage to inject malicious Eventlet
instances: these instances may subscribe to all events and will then be able to decrypt all events
related to an Eventlet monitor, e.g., a malicious Eventlet instance can decrypt monitoring events for
all shipments rather than monitoring events for a single shipment only.

The above presented realization alternatives of our privacy-preserving pub/sub scheme show the
tradeoff between performance & scalability and the level of privacy & security. For best privacy and
security, each component instance of our middleware retrieves its own secrets from a TTP; in highly
dynamic scenarios, however, the TTP becomes a bottleneck. For best performance and scalability
Eventlet monitors share secrets with all Eventlet instances. In either case, however, the privacy of
event data against the brokers is assured since brokers are not able learn anything about the events
they are routing.

In general, adding privacy-preserving techniques to a pub/sub system introduces an overhead due to
the cryptographic operations. This decreases throughput and increases computational effort. To
quantify the overhead, we present a performance evaluation of our privacy-preserving pub/sub
scheme in Section 7.2.

6.4 Transformation Concept

The subscriptions issued by Eventlet monitors and Eventlet instances are specified to match content
of events. This, however, requires knowledge about the structure and semantics of events. For att/val
events, the attribute names as well as the semantics of attribute values need to be known, i.e., sub-
scribers and publishers have to share knowledge. On the one hand, event-based interaction has the
advantage of anonymous one-to-many communication (publishers do not know about consumers);
on the other hand, consumers require knowledge about event structure and semantics. When events
are consumed by multiple subscribers — a desirable behavior in Event-based Systems (EBSs) — estab-
lishing this common knowledge base is cumbersome: with n producers and m consumers n times m
knowledge exchanges are necessary. To address this heterogeneity effect in EBSs, we introduced a
middleware-based transformation approach for events [65, 73, 74]. We use the term context to refer
to a common understanding of event structure and semantics between producers and consumers.
Event producers and consumers that share the same context are able to understand each other. An
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example for context is the unit system used for attribute values in events. Some publishers might
use the imperial system while others use a metric system. With our approach it is possible to medi-
ate between these different contexts, i.e., it allows events produced in one context to be consumed
by subscribers that reside in a different context. We achieve this by introducing rules that specify
the transformation of events from one context to another, e.g., the conversion from imperial system
to metric system. Our approach is generic and can be applied to arbitrary pub/sub systems; our
reference implementation is JMS-based and realized with Apache ActiveMQ. In the following we
illustrate how our transformation approach can be applied to Eventlets.

In our Eventlet middleware, Eventlet monitors as well as Eventlet instances issue subscriptions based
upon constant and instantiation expressions. The constant and instantiation expressions are specified
by developers as part of the Eventlet metadata (associated with Eventlet prototypes). The constant
and instantiation expressions require knowledge about event structure and semantics. Developers
need to know the attribute names as well as meaning of attribute values in order to write Eventlet
prototypes. In our shipment monitoring example, developers need to know that there is an attribute
named shipmentID that holds a unique shipment identifier. Developers also need to know the name
of the attribute that holds the reported temperature as well as the unit system the temperature is
reported in. Given this scenario, the following two cases illustrate the demand for a mediation layer
that transforms events:

* A shipment might be transported by different vehicles through various regions. Most likely,
different hardware is deployed in different vehicles, e.g., temperature sensors of different ven-
dors where temperature events have different formats or even report temperature in different
unit systems, e.g., in Celsius or in Fahrenheit. An Eventlet instance that monitors a certain
shipment requires a unified view on these different types of events, i.e., all events that arrive
at an Eventlet instance must use unified attribute names and follow the same attribute value
semantics.

* Different Eventlet prototypes might also reside in different contexts. One Eventlet prototype
might require temperature events in Fahrenheit while another Eventlet prototype might require
temperature events in Celsius. Both Eventlet prototypes, however, should consume events
published by the same producers and benefit from the one-to-many interaction principle of
pub/sub.

Our transformation approach provides the flexibility to fulfill such demands. As shown in Figure 6.10
we add a layer to the pub/sub middleware, which performs event transformations and allows seam-
less communication between participants that reside in different contexts. Each participant in this
setting specifies a set of transformation rules that describe the transformation from one context into
another context. In theory, this does not necessarily reduce the complexity of event transformations,
i.e., when each participant specifies a transformation from its context to all other contexts, the com-
plexity remains at n x m. To reduce this complexity, we introduce the concept of a root context. The
root context is a specific event type with known structure and semantics. At least one participant
should reside in this root context to avoid unnecessary transformations. All other participants spec-
ify transformation rules with respect to this root context, i.e., how events have to be transformed
from the participants’ context to the root context. Our system also supports multiple root contexts,
i.e., for one event category (e.g., temperature measurements) the root context is defined by one
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participant, for another event category (e.g., position events) the root context is defined by another
participant.
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Figure 6.10: Integration of context transformation with Eventlets: Eventlet monitors and their asso-
ciated Eventlet instances can reside in different contexts.

Listing 6.5 shows a sample context definition for our shipment monitoring example. When tempera-
ture measurement events are, for example, published within the United States (us) context, Eventlet
monitors and Eventlet instances residing in a European (eu) context need to specify a transforma-
tion. Our context definition consists of three blocks: type definitions, mappings, and transformation
rules. The type definitions are the basis for the application of transformation rules; type definitions
define the structure of events and specify the events to which the context transformation should
be applied. Mappings are necessary to define the event type that results from the application of
the transformation; mappings also define a direction: transformations are applied to incoming or
outgoing events. Finally, the rules themselves specify the transformation in detail; transformation
rules refer to functions that perform the transformation, e.g., toCelsius. The toIdentity function
explicitly states that this part of an event should not be transformed; this can be necessary in case
transformations for the super type of an event, e.g., com.logistics.eu, are part of the context def-
inition. The expression MonitoringEvent.shipmentData refers to a subtype (set of attributes) that
holds, e.g., the shipmentld. At runtime, incoming monitoring events are transformed according to
the specified context definition. Next, subscriptions are evaluated against the transformed event,
i.e., subscriptions refer to attribute names and attribute value semantics of the subscriber’s contexts.
In case of a match, the event is forwarded to the next broker node or the final recipient.

Listing 6.5: Context definition.

1 | <types>

2 com.logistics.eu.MonitoringEvent

3 com.logistics.eu.MonitoringEvent.shipmentData

4 | </types>

5 | <mappings>

6 <mapping from="com.logistics.us.MonitoringEvent"

7 to="com.logistics.eu.MonitoringEvent" direction="outgoing" />
8 | </mappings>

9 |<rules>

10 <rule pattern="MonitoringEvent.temperature" function="toCelsius" />
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11 <rule pattern="MonitoringEvent.shipmentData" function="toIdentity" />
12 |</rules>

Our transformation approach supports transformation rules with different nesting levels (cf. lines 10
and 11 in Listing 6.5). Patterns can also reference complete (sub)types (Listing 6.5, line 11) or spe-
cific attributes (Listing 6.5, line 10). In [65, 74] we discuss the resulting conflicts at transformation
rule resolution and introduce priorities for rule application based upon precedence. We also present
the formal language model underlying our transformation approach. Our transformation approach
can be integrated with the Eventlet middleware: Context definitions can be specified as part of the
Eventlet metadata. Upon the registration of an Eventlet prototype with the Eventlet middleware, the
context definition is deployed. During the deployment it is checked whether the necessary functions,
e.g., toCelsius, are supported by the transformation layer of the pub/sub system. If the desired
function is not yet available, this is reported to the developer for further consideration.

We implemented our transformation approach as plugin in Apache ActiveMQ. Applications, like our
Eventlet middleware, that are based upon JMS, can be adapted easily to support transformations;
we extended the JMS API with methods to register context definitions and to set the context. These
methods have to be invoked at JMS connection setup. Our implementation generates code from
context definitions; this code is applied to events by the middleware. Since in EBSs event producers
and consumers can dynamically join and leave the system our transformation approach allows dy-
namic modification of contexts, i.e., when a new producer joins the system it can specify its context
based upon already registered context definitions. Further, the performance of the pub/sub system is
crucial in EBS. Our middleware-based transformation approach adds an overhead to the middleware
rather than to publishers and subscribers. This is the downside of the reduced complexity achieved
with a central transformation authority via root contexts. However, our evaluations in [73,74] show
that the performance loss is acceptable while the reduction of complexity is significant.

6.5 Summary

In this chapter we introduce Eventlets — our implementation of the SPU container model. Eventlets
are executed and managed by a distributed Eventlet middleware. The implicit instantiation of
Eventlets is triggered by Eventlet monitors. Eventlet instances dynamically issue entity instance
centric subscriptions, e.g., for events that belong to a certain shipment. Eventlet instances follow
a lifecycle and run as autonomous units. The implementation of our Eventlet middleware is Java-
based. We rely on JMS for the pub/sub functionality; JMS is an industry-strength messaging standard
often used in enterprise applications. Thus, our Eventlet middleware integrates well with existing
enterprise application landscapes.

In addition to our Eventlet middleware architecture and implementation, we discuss heterogeneity
and privacy issues of pub/sub systems in the context of Eventlets. Since events are disseminated via
a broker network, the protection of privacy is challenging. We present the application of our privacy-
preserving pub/sub scheme to address the privacy demands in pub/sub communication. Further,
heterogeneity is an issue in pub/sub systems; event publishers and subscribers have to agree on
common semantics to be able to exchange events. We address this by applying an event transfor-
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mation approach to Eventlets; Eventlet monitors and Eventlet instances can specify transformations
that convert events between different structural representations and semantic contexts.
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7 Evaluation

Eventlets, as presented in Chapter 6, are an implementation of our Event Stream Processing Unit
(SPU) container model that allows the encapsulation of event stream processing application logic.
In this chapter we present an evaluation of Eventlets. In Section 7.1, we show performance and soft-
ware engineering benefits due to Eventlets. We evaluate aspects of our Eventlet approach and show
that the use of Eventlets is beneficial from the software development perspective; Eventlets provide
automatisms to build scalable and distributed event stream processing applications by introducing
an abstraction layer. We show that the influence of this additional layer is small while development
of event stream processing applications is significantly simplified. In Section 7.2 we evaluate aspects
of our privacy-preserving pub/sub scheme introduced in Section 6.3. Since our Eventlet middleware
relies on a pub/sub infrastructure, we analyze the influence of our encryption scheme on pub/sub
performance.

7.1 Scalability Benefits with Eventlets

Our concept of SPUs — and its implementation with Eventlets — encapsulates event stream processing
application logic in manageable units. The Eventlet middleware provides automatism for deploy-
ment and management of these units. This entity-type-centric encapsulation is beneficial for sys-
tem scalability and system development. The management and deployment automatisms (implicit
instantiation and completion of Eventlet instances) simplify the development of event-based appli-
cations. The component-based middleware architecture allows the distribution of Eventlet instances
and Eventlet monitors. In this section we quantify the scalability benefits of Eventlets as well as the
advantages from a software engineering perspective.

7.1.1 Setup and Scenarios

We evaluated our system in a Complex Event Processing (CEP) setup. We used the Esper CEP engine
and show the benefits of Eventlets when used in combination with Esper. For reference, we also
implement a CEP solution purely based upon Eventlets (without Esper). For comparison with another
component-based software model, we also implemented our solution with Java Enterprise on the
basis of Java Beans.

In our evaluation we show:

* The scalability limitations of traditional CEP applications and that the distribution provided by
Eventlets is necessary for scalable event stream processing;

* That the overhead introduced by the Eventlet middleware compared to a traditional CEP solu-
tion is small; and

e That the programming model of Eventlets simplifies the development of distributed event
stream processing components.
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For our evaluation we used Apache ActiveMQ 5.5.1 as Java Message Service (JMS) broker. We used
a distributed test environment with three machines that were connected via a 1 GBit network as
shown in Figure 7.1. One machine was used to generate the workload, i.e., to send events to the
JMS broker. To reproduce a realistic distributed setup, ActiveMQ ran on a dedicated machine. The
third machine was used to execute the actual event processing tasks; it was host for the Eventlet
middleware, for the Esper CEP engine, as well as for the Java application server.

1GBit | ActiveMQ Host i 1GBit
2 x4-Core Intel Xeon 2.33 GHz

i 16 GB RAM, 6x146GB SAS RAID 10
i Windows 2008 Server 64bit

! Event Generator ;
i Sun Sparc Enterprise T5120 Server

: | Eventlet/Esper Host E
! 8-Core T21.2 GHz

! IBM x3850 Server
: 4 x 2-Core Intel Xeon 3.5 GHz :
1 32 GB RAM, 2x146GB SAS RAID 0 : 116 GB, 6x76GB SAS RAID 10 :

Solaris 10 10/08 SPARC ; Debian Linux 2.6.32 ;

Figure 7.1: Test environment.

We implemented a typical event stream processing application where event processing components
receive events via a broker. Events of multiple types and sources are sent to the event bus, which is
realized as a JMS topic. Depending on the event type and a threshold defined on the value of one
event attribute, a counter variable is increased. We evaluated scenarios with events represented in
XML as well as with events consisting of att/val pairs. The XML schema for the XML events is shown
in Listing 7.1. Each event contains a type identifier (type), a source identifier (id), and a random
value (value). For XML events, we added the type identifier as well as the source identifier as
message header attributes so that standard JMS message selectors could be used; the XML code was
added as body to a JMS text message. This avoided that the message broker became the bottleneck
early: evaluating standard JMS message selectors is less complex than evaluating XPath selectors for
events.

Listing 7.1: Structure of events used in Evaluation.

1 |<?xml version="1.0" encoding="UTF-8"7?7>

2 |<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
3 <xsd:element name="event">

4 <xsd:complexType>

5 <xsd:sequence>

6 <xsd:element name="type" type="xsd:string"/>
7 <xsd:element name="id" type="xsd:integer"/>

8 <xsd:element name="value" type="xsd:double"/>
9 </xsd:sequence>

10 </xsd:complexType>

11 </xsd:element>

12 |</xsd:schema>

In our evaluation event producers generate two different types of events and emulate 20 different
sources. The event stream processing task is counting the number of events per source where the
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value is below/above a type-depending threshold. This comparatively simple task allowed the sys-
tematic evaluation of architectural aspects of our Eventlet approach. Rather than evaluating the
event processing as such, we focus on scalability and distribution aspects of our container model.
A lightweight event processing part ensures that computational resources become saturated due
to architectural scalability effects rather than by event processing application logic. This allowed
the identification of bottlenecks depending on the system design. We implemented the test case
application in four ways:

1. Purely with Eventlets,

2. via CEP queries with Esper (Scenarios Esper A to E),

3. with Eventlets that use Esper (Scenario Eventlet-Esper), and

4. with Java Enterprise Message-driven Beans (MDBs) that use Esper (Scenario Esper-Beans).

The pure Eventlets implementation uses the source identifier as instantiation expression; each Event-
let instance only receives events with a certain source value and counts events corresponding to given
thresholds. The comparability of this variant with the Esper variants is limited since the event pro-
cessing is implemented manually rather than via a CEP engine. All other implementations use the
Esper CEP engine to perform the chosen event processing task.

Esper Scenarios A to E

Our implementation on the basis of Esper requires two CEP queries (one for each event type) that
count events with respect to a given threshold. The query output is grouped by source identifier.
The Esper scenarios A to E follow the common implementation approach for stand-alone CEP ap-
plications: Producers send events to a messaging middleware; a CEP engine acts as consumer and
subscribes for events. In scenarios Esper A to C a single Esper instance was used and one query per
type was registered; the query for one type is shown in Listing 7.2.

Listing 7.2: CEP query used in our evaluation.

1 | SELECT id, count(*) FROM EvalEvent WHERE (type=’TypeA’ AND value>0.5) GROUP
BY id OUTPUT ALL every 10 seconds

In Esper scenarios D, E, Eventlet-Esper, and Esper Beans one query per source ID was used, i.e., a
total of 20 Esper instances were active with two queries registered per instance. In the Esper-Beans
implementation we encapsulate the registration of CEP queries with Esper in message-driven Java
Enterprise beans. Such an implementation is suitable for integration in enterprise environments
where easy component deployment and lifecycle management is important. The most interesting
implementation within the scope of this work is the Eventlet-Esper scenario where we utilize the
distribution and deployment capabilities of Eventlets to implement a scalable CEP solution with
Esper. In contrast, in the Esper scenarios A to E scalability mechanisms were implemented and
configured manually. We varied the number of Esper instances and JMS connection primitives to
evaluate scalability.

We implemented different JMS connection strategies. These different strategies depict different
levels of distribution controlled via the number of JMS connection primitive objects: JMS connections
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Scenario CF | Esper Instances | Listeners per CF
Esper A 1 1 1
Esper B 1 1 20
Esper C 20 1 1
Esper D 1 20 20
Esper E 20 20 1
Eventlet | 20 | - | 1
Eventlet-Esper | 20 | 20 | 1
Esper-Beans | AS | 20 | AS

Table 7.1: Evaluation scenarios: Esper and Eventlet scenarios differ in the number of used Esper
instances and JMS connection primitives. CF: JMS Connection Factories; Listener: JMS
Message Listener; AS: Determined by Application Server.

are provided by connection factory objects. An application that requires a certain amount of JMS
connections can request multiple connections from a single connection factory or create multiple
connection factories and request fewer connections per connection factory. The same holds for
JMS message listeners that handle incoming messages. We varied the number of Esper instances,
the number of JMS connection factories, and the number of JMS message listeners per connection
factory to cover different ranges of distribution as shown in Table 7.1.

With respect to the number of connection primitives and Esper intances the Eventlet-Esper and Esper
E scenario are equal. The Eventlet-Esper implementation, however, benefits from the distribution
and subscription automatisms provided by the Eventlet middleware, as we will show with a code
analysis. In the Esper-Bean scenario the connection primitives are managed by the ActiveMQ-to-
GlassFish resource connector and are not disclosed to developers. In the distributed Esper scenarios
C and E subscription filters are used to receive only events relevant for particular query instances,
i.e., a query receives only events containing a certain source identifier. This is shown in Listing 7.3.

Listing 7.3: JMS message selector to filter events by source identifier.

1 | jmsContext.getSession().createConsumer (jmsContext.getDestination(),
2 |"Cid = 3”7 ) AND ((C type = 'TypeA’ ) OR ( type = 'TypeB’ ))");

Eventlet-Esper Scenario

In the Eventlet-Esper scenario we used Eventlets to realize distributed event processing with Esper.
With the creation of a new Eventlet instance an Esper instance is created and the Eventlet instance
passes events on to the Esper instance. Parts of the implementation are shown in Listing 7.4: the
constant and instantiation expression specify that one Eventlet should be created per source identi-
fier. In the onInstantiation method of the Eventlet the CEP engine is set up and CEP queries are
registered. Within each active Eventlet instance the onEvent method is then responsible to parse the
XML event payload and pass it on to the Esper instance.
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Listing 7.4: Implementation of event processing with Esper on the basis of Eventlets.

1 |public class EsperEventlet extends Eventlet {

2 // Eventlet meta data

3 | public static String constantExpression =

4 "(type = 'TypeA’) OR (type = ’'TypeB’)";

5 public static String instantiationExpression = "id";
6 // Esper instance

7 | public EPServiceProvider esper;

8 // Setup of CEP engine

9 public void onInstantiation() {

10 // XML Event Registration with Esper instance

11 URL schema = this.getClass().getClassLoader().getResource("event.xsd");
12 ..

13 esper.addEventType ("EvalEvent", testEvent);

14

15 // Registration of CEP queries

16 esper.createEPL("select id, count(*) from EvalEvent where (type=’TypeA’

and value > 0.5) output all every 10 seconds");
17 e
18 }
19
20 // Pass events to CEP engine
21 | public void onEvent(Event e) {

22 // Parse payload and build XML tree

23 InputSource source = new InputSource(new StringReader(e.getPayload()));

24 DocumentBuilderFactory builderFactory = DocumentBuilderFactory.
newInstance () ;

25 // Send it to ESPER

26 Document doc = builderFactory.newDocumentBuilder () .parse(source);

27 engine.getEPRuntime () .sendEvent (doc); 1}

28 |}

Esper-Beans Scenarios

In the Esper-Beans scenario one Message-driven Bean (MDB) is created for each event source and
deployed to a GlassFish 3.1.2 application server. Each bean creates an Esper instance and forwards
received events to it. A JMS message selector is specified statically for each bean; the resulting
subscription is issued upon registration of the bean with the application server. Our scenario requires
the implementation of 20 MDBs: one bean for each distinct source identifier value as shown in
Listing 7.5 for source identifier 3. The demand for state requires a singleton pattern, i.e., the MDB
pool size is one. This ensures that events of one source are processed by a single bean instance only.
The encapsulation of CEP functionality in a MDB is similar to the encapsulation inside an Eventlet.
However, MDBs are not designed for issuing dynamic subscriptions at runtime; the source identifier
needs to be hardcoded.
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Listing 7.5: Static configuration part of message-driven bean.

1 |@MessageDriven(activationConfig = {
2 @ActivationConfigProperty(propertyName = "messageSelector",
3 propertyValue = "((type = ’'TypeA’) OR (type = ’TypeB’)) AND id = ’'3’")}

7.1.2 Throughput Measurement Results

We use CPU utilization of the Eventlet/Esper host as the performance indicator for our comparison.
On the one hand CPU utilization allows quantifying the overhead of Eventlets. On the other hand
scalability across multiple cores is an indicator for good overall distribution capabilities. The latency
in our scenario is dominated by the network and message broker; both are not changed in the
different scenarios so that we concentrate on CPU measurements here. To determine the limits of
the different implementations we increased the event rate up to the point where ActiveMQ flow
control throttled down the event producers, indicating that the consumers are saturated. The results
of our tests are shown in Figure 7.2.

XML Event Processing: Esper and Eventlet Comparison
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Figure 7.2: CPU utilization of XML event processing realized with Esper and Eventlets.

The Esper scenarios A,B, and D show that a single JMS connection factory is a bottleneck. In these
three scenarios the event rate was throttled by the consumer to about 2000 events per second. The
CPU is the limiting factor here: since we have eight CPU cores, a utilization of around 10 percent
indicates that a single CPU core is saturated, e.g., due to not parallelized methods. This limits event
arrival and triggers throttling mechanisms in the broker. In scenario Esper C multiple connection
factories are used: a higher CPU utilization and event rate are reached but throttling keeps the event
rate at about 4000 events per second making the single CEP instance the bottleneck. In the fully
distributed scenario Esper E, an Esper instance for each event source identifier is created and registers
for the relevant events using JMS message selectors. This is the implementation nearest to Eventlets
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since each Eventlet instance has its own connection factory and subscription. Our evaluation shows
that only the distributed setups can process a high volume of events. Even on a single multi-core
machine multiple connection primitives are required for scalability across CPU cores.

Our test case can be realized without a CEP engine. The resulting pure Eventlet scenario reaches
the highest event rate in our evaluation. Since no external CEP library is included, we gain perfor-
mance due to reduced complexity. However, often it is not reasonable to abstain from the use of a
CEP engine. From a software engineering perspective it is desirable to apply a container model in
these cases and encapsulate application logic to foster manageability and scalability. This led to our
Eventlet-Esper and Esper-Beans scenarios. The evaluation shows that the Esper-Beans scenario does
not perform well compared to the other approaches. It suffers from the complex interplay between
application server and message-oriented middleware. The CEP use case does not allow for using
large bean pools so that scalability mechanisms of Java Enterprise cannot be applied efficiently. The
Eventlet-Esper results show that this scenario is only slightly slower than the dedicated distributed
implementation Esper E. This performance loss is introduced by the Eventlet middleware, which
adds an additional layer of abstraction to provide the introduced functionality. We think this perfor-
mance loss is acceptable given the ease of development — which we will quantify in Section 7.1.3 —
and the integrated mechanisms for distribution with Eventlets.

Att/Val Event Processing: Esper and Eventlet Comparison
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Figure 7.3: CPU utilization of att/val event processing realized with Esper and Eventlets.

In addition to the XML implementation we implemented the basic Esper A scenario as well as the
fully distributed Esper E, Eventlet, and Eventlet-Esper evaluation scenarios using att/val events. This
avoids computational intensive parsing of XML event payload and leads to higher event rates. The
corresponding results are shown in Figure 7.3. As in the XML implementation, the event rate in the
centralized Esper scenario A is limited by a single CPU core; since the processing of att/val events
is more efficient than XML processing, an event rate of about 10,000 events per second is reached.
The distributed scenarios Esper E, Eventlet, and Eventlet-Esper provide better scalability and reach
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about 20,000 events per second. At this rate the broker system reached its limit and throttled event
producers. As in the XML event processing evaluation, the pure Eventlet implementation has the
lowest CPU demand per event. Eventlet-Esper, our implementation with Eventlets that control Esper,
has a slightly higher CPU demand. Interestingly, the Esper scenario E has the highest CPU demand.
This is also observable in the XML evaluation (Figure 7.2) for a CPU utilizations below 10 percent.
This can be caused by the JMS event consumption logic in the pure Esper implementation, which
might introduce a higher overhead compared to the event consumption logic in Eventlets. At the
same time, however, this event consumption logic enables a slightly higher event rate before the
broker is saturated. It also has to be noted that the overall CPU utilization remains below 25 percent
in all cases; this shows that our Eventlet approach does not introduce a significant overhead in
scenarios with a high rate of att/val events.

7.1.3 Simplified Software Development with Eventlets

The SPU container model, and its implementation in form of Eventlets, introduces an abstraction
layer to event stream processing. The purpose of this additional layer is the simplification of the
development of distributed event stream processing applications; it provides modularization and a
separation of concerns. An additional layer in the software stack introduces an overhead; this loss
in performance is traded for software engineering and scalability benefits. Our performance evalu-
ation shows, that the decrease in performance is rather small compared to a dedicatedly developed
distributed event stream processing application. This means that Eventlets are well suited for the
encapsulation of event stream processing logic in entity-type-centric units from a performance per-
spective. In this section we show the advantages in terms of software engineering. Eventlets reduces
the amount of code programmers have to write to implement distributed event stream processing
applications. We analyzed the code of our fully distributed Esper E and Esper-Beans scenario. We
compared it with the Eventlet-Esper implementation and counted core application logic code; this ex-
cludes code that is automatically generated by modern IDEs, i.e., class headers, exception detection,
bean configurations, and constructors, as well as comments, logging, and debugging output. We do
not include the pure Eventlets scenario since it implements only part of the Esper functionality. The
results are shown in Table 7.2; the Esper E and Esper-Beans implementations have significantly more
lines of code than the Eventlet-Esper approach. Further, only two classes are needed for the imple-
mentation of Eventlet-Esper. This reduces the complexity of software maintenance tasks compared
to Esper E and Esper-Beans.

In contrast to Eventlet-Esper and Esper-Beans the distribution across multiple machines has to be
implemented manually in the Esper E scenario. The Esper-Bean scenario uses the Java Enterprise
ecosystem, which provides for lifecycle management and distribution. However, since Enterprise
Java Beans are not the natural fit to encapsulate event stream processing logic, code has to be
adapted in each of the 20 MDBs. This code is referred to as specific while generic code remains
unchanged and is reused. The savings with Esper distributed by means of Eventlets are mainly due
to the automated dynamic subscription handling and integrated event handling provided by the
Eventlet middleware. Eventlets scale to an arbitrary number of distinct source identifiers without
the need for source code modification.
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Scenario: EVENTLET-ESPER

Component | Lines of Code
Eventlet Prototype App. Logic 20

Eventlet Prototype Meta Data

Eventlet Registration 1

CEP Queries, Result Handling 18

Total: 2 Classes | 41

Scenario: EspeEr E

Component | Lines of Code
Main Class App. Logic 39

Event Listener 10
Distributed Instantiation (JMS-based) 61

CEP Queries, Result Handling 18

Total: 3 Classes | 128

Scenario: ESPER-BEANS

Component | Lines of Code

App. logic shared amongst all beans (generic) | 19

Bean-specific App. logic 120 (6 lines per bean; 20 beans)
CEP Queries, Result Handling 18

Total: 21 Classes | 157

Table 7.2: Lines of code comparison of the different implementations used for the evaluation.

7.2 Privacy Preserving Pub/Sub Evaluation

In Section 6.3 we introduced a privacy concept for Eventlets; it relies on a pub/sub infrastructure
that performs matching of blinded and encrypted events and subscriptions. The blinding of subscrip-
tions is performed by Eventlet middleware components (Eventlet monitors or Eventlet instances).
The matching of events against subscriptions is task of the pub/sub middleware. The matching on
encrypted data comes at the cost of an increased computational effort. To quantify this overhead
we performed an evaluation: we extended Apache ActiveMQ with our proposed mechanisms for
privacy-preserving pub/sub. We extended the subscription matching of ActiveMQ to support match-
ing on blinded message selector attributes in subscriptions. Consumers can issue new subscriptions
and register them with the same message listener as the old subscription. The consumers can blind
these new subscriptions without interaction with producers or a TTR We evaluated our implemen-
tation and compared it with pub/sub communication without blinding. We did not evaluate the
payload encryption as it is evaluated elsewhere [124,159].

7.2.1 Test Environment and Setup

The test environment is shown in Figure 7.4. We used a distributed setup with two event-generating
clients connected to a host running our extended ActiveMQ broker. We started multiple publisher
and subscriber threads per machine. When resources of Generator Client I were insufficient, the
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second client was used as support. The CPU utilization is plotted accumulatively: at an utilization of
approximately 0.35 Generator Client I is fully utilized and Generator Client II is used in addition.

| Generator Client | | ActiveMQ Broker | Generator Client Il

i 2 x4-Core Intel Xeon 2.33 GHz 1 1GBit © |BM x3850 Server i 1GBit: Sun Fire X4440 x64 Server

§ 16 GB RAM, 6x146GB SAS RAID 10 —%— 4 x 2-Core Intel Xeon 3.5 GHz —@ 4 x 4-Core Opteron 8356 2.3 GHz
i Windows 2008 Server 64bit i 16 GB, 6x76GB SAS RAID 10 i 64 GB RAM, 8x146 GB RAID 10

: Debian Linux 2.6.32 E Debian Linux 2.6.32

Figure 7.4: Test environment.

In our test case the message selectors used by subscribers required an equality check on an
event header attribute (message property). For unencrypted matching the following selector
scheme was used: bigIntPropl = <Random Big Integer>. Since our blinding scheme does
not allow direct equality checks the following semantically equivalent selector scheme was used
for blinded messages: bigIntPropl > Blinded(<Random Big Integer>-1) AND bigIntPropl <
Blinded(<Random Big Integer>+1). We chose an equality check since this is a common case in the
context of Eventlets: an Eventlet instance subscribes for events of a certain entity instance which is,
for example, identified by an ID. It is also the worst case for blinded subscriptions. Publishers have to
perform two blinding operations per message, subscribers have to perform two blinding operations
per subscription, and brokers have to perform two matching calculations per event. A simple greater
than or less than comparison requires half the operations and reduces the overhead compared to
unencrypted matching.

We used random numbers as event payload and to construct subscription filters. The supported
domain size for encrypted properties was 100 bits. Inside the broker a matching check was performed
for each message. We measured throughput, CPU utilization, and latency for unencrypted messages
(plain) and for blinded events with encryption key lengths of 32, 512, 1024, and 2048 bit. We
evaluated three scenarios:

* CONSTANT: Constant number of publishers and subscribers per test. Between tests the number
of publishers and subscribers was increased resulting in an increased message rate.

* DYNAMIC: Subscribers leave and join the system at a certain rate to simulate context changes
and user churn. In the low dynamics scenario, 2 subscribers leave and join per second. In the
high dynamics scenario 20 subscribers leave and join per second. The joins and leaves add
additional load to a static configuration with a constant rate of subscribers and consumers.

* COMPLEXITY: Subscribers use different message selector lengths. They subscribe with a dis-
junction of equality checks for up to 6 attribute values. Such a subscription pattern is common,
for example, to receive messages of certain types only; messages contain a type attribute which
is used for filtering.

7.2.2 Evaluation Results

Figures 7.5(a), 7.5(b), and 7.6 show the results for the CONSTANT scenario. The CPU utilization at
broker and client increases with the message rate as well as with the blinding key length. An increase
in latency for blinding scenarios was below measurement variance at low loads. With increasing CPU
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utilization on broker and clients, the latency increases and shows the typical rapid increase when the
systems reach their limit. With a key length of 1024 bit, which can be assumed to be secure, about
1200 messages per second can be handled by the broker. To produce this load, two generator
machines are necessary. However, the utilization of the client is only secondary since producers and
consumers (Eventlet monitors and Eventlet instances) are typically spread across many machines.
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Figure 7.5: Results CONSTANT Scenario: CPU utilization for different message rates and blinding
strengths

Figures 7.7(a) and 7.7(b) show the CPU demand for the DYNAMIC scenario. Issuing a new subscrip-
tion requires blinding subscription values on client side. This overhead of blinding new subscriptions
is quantified in this evaluation. The CPU demand is shown as CPU time per message in seconds. Dur-
ing the experiments we measured message rate and CPU utilization for the Static, Low -, and High
Dynamics configuration. To allow a direct comparison independent of the overall message rate, we
show the CPU time per message. The results show that the additional overhead of joining subscribers
is not the factor that dominates CPU demand at the broker. Further, the increase occurs independent
of blinding, i.e., also in the plain text case. This shows that the overhead of joining is inherent to the
broker. On the client side CPU demand increases by about one third in the High Dynamics config-
uration compared to the Static configuration. No observable difference in the ratio of this increase
can be found between the blinded and plain configurations. This shows that the CPU demand of

subscription operations is not dominated by blinding operations.

The results for the COMPLEXITY scenario are shown in Figure 7.8; we also use the CPU time per
message as metric. For unencrypted subscriptions an increase in CPU time is not observable. For
blinded subscriptions the CPU time per message of the broker increases slightly with increasing
complexity. The CPU time on the client side increases faster since for each message all attributes have
to be blinded, but the broker does not necessarily evaluate the whole message selector. Since the
message selector is a disjunction of equality checks a matching subexpression makes the evaluation
of other subexpressions obsolete. The steeper increase in client CPU utilization from filter length
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4 to 5 was caused by the activation of the second generator client. The second generator client
was necessary to keep the publication rate up. The CPU utilization on this second machine includes
basic operating system and Java virtual machine operations, which occur as a one-time effect in the
results.
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Figure 7.8: Results COMPLEXITY scenario: CPU time required for message dispatch with different
message selector lengths.

Overall the evaluation shows that the overhead in terms of CPU utilization of privacy preserving
pub/sub is well observable. We also monitored network and memory utilization during the test
runs; both were no limiting factors for performance. Thus, the throughput was limited by CPU
processing power and privacy preserving pub/sub will benefit from modern multi-core systems with
high processing power. It is further possible to extend our scheme and implementation to multiple
brokers to build a scalable and secure pub/sub infrastructure. We think the throughput requirements
of many applications can then be fulfilled and communication can be secured efficiently by our
scheme.

7.3 Summary

The evaluation of our Eventlet middleware shows the advantages with respect to the development
of scalable event stream processing applications. Although Eventlets add a layer of abstraction, the
performance decrease in direct comparison with a manual implementation is acceptable. Eventlets
have the advantages of inherent scalability and ease of software development. We show the ne-
cessity of a distributed setup to achieve a high throughput; the required distribution mechanisms
are provided by the Eventlet middleware. We also show that the development is simplified with
Eventlets; the functionality provided by the Eventlet middleware and the underlying SPU container
model significantly reduce the amount of code developers must write.

Further, an important aspect when processing streams of events are privacy concerns, e.g., in health
care applications. We thus present the integration of a privacy-preserving pub/sub scheme with
Eventlets. To quantify the overhead of privacy-preserving pub/sub we performed an evaluation.
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Although the computational overhead is quite significant, it is acceptable in scenarios with sensitive
data. Since the cryptographic operations are CPU intensive, modern multi-core CPUs can be used to
overcome throughput limitations due to limited computational resources.
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8 Related Work

Event processing has become a popular topic and research in many areas addresses challenges related
to event processing in different contexts [32,89]. The focus in our work is on development and inte-
gration aspects of event stream processing components. With Event Stream Processing Units (SPUs)
we introduce a container model to encapsulate event stream processing in manageable units. SPUs
rely on a pub/sub infrastructure for event dissemination. At the conceptual layer, we introduce the
SPU container model and present an integration of event-stream processing with business processes
by means of SPUs. We also present a requirements engineering approach for event-based systems.
At the technical layer, we present and evaluate the Eventlet middleware including privacy and data
integration mechanisms. In this chapter we present work related to:

* the conceptual model of SPUs,
* requirements engineering for event-based systems,
* the integration of event stream processing with business processes, and

¢ the technical realization of our Eventlet middleware.

8.1 Work Related to the SPU Container Model

SPUs share properties with traditional component models [176] as well as with service models [176].
Both, components and services pursue the goal of simplifying application development by introduc-
ing modularization and abstraction. Both are important aspect in the evolution process of soft-
ware [23]. According to Weinrich and Sametinger [176], standardized interfaces, as well as stan-
dardized interoperability and execution semantics are the core of component models. This enables
the reuse and combination of components into larger applications. SPUs also have a standardized
interface and clearly defined execution semantics. SPUs share the loose coupling mechanisms with
services [176]: SPU instances are created dynamically and support an implicit invocation scheme.
Since SPUs show service as well as software component properties we use the more generic term
container to categorize SPUs and point out the modularization aspect.

At the conceptual level, SPUs complement Service-oriented Architecture (SOA) services as build-
ing blocks for push-based architectures. SOA services encapsulate generic actions with respect
to entities and allow for dynamic integration of system components. However, the approach in
SOA is pull-based; an application that requires functionality invokes the respective service and
waits for the reply. In next-generation SOA the idea of events is integrated to realize reactive
services [70, 75, 105]. In Event-driven Service-oriented Architectures (ED-SOAs) [102] and Event-
driven Architectures (EDAs) [117,169], events trigger the invocation of business relevant function-
ality. In an ED-SOA a service can be invoked by events. In an EDA complex event processing
techniques process real-time data and produce events that are consumed by an ED-SOA. An ED-SOA
still builds upon services originally designed for request/reply style interaction. With SPUs, we com-
bine ED-SOA aspects and EDA aspects in single containers. We believe that thinking in terms of
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generic event-driven tasks is the more natural approach to event-based applications. While a task
is something that should happen actively, a service exhibits passive behavior and responds upon
request. As result, SPUs follow an implicit invocation scheme while services are invoked explicitly.

In [125], Nastic et al. present a programming model to simplify the development of Internet of
Things (IoT) applications in cloud environments. They introduce an abstraction to specify generic
tasks that apply to sets of devices. The abstraction concept is similar to the SPU container model but
focuses on controlling devices rather than on processing streams of events.

SPUs are also related to mobile software agents [103]. In agent-based systems software components
(agents) fulfill tasks autonomously. For example, Bromuri et al. present an approach with distributed
agents reacting on events [30]. In their system agents are autonomous proactive components using
events to coordinate the overall workflow across all agents. When comparing agent-based systems
with SPUs, a single software agent instance is similar to an SPU instance. The SPU concept however
is different from agent-based systems; SPU instantiation is event-driven and dynamic depending on
the actual events. SPUs are not designed as autonomous units. They rely on a middleware for
instantiation and management.

SPUs, along with the concepts and systems discussed before, are language-agnostic. Language-
specific approaches integrate event-processing capabilities into programming languages and enable
reactive programming. Events are either integrated in existing languages or dedicated reactive lan-
guages are used [154]. In EventJava [66], for example, distributed event correlation is seamlessly
integrated with methods. In EScala [81], events can be used in an aspect-oriented way in the
source code. These extensions make events first class citizens in programming languages and pro-
vide event-based functionality without integrating, e.g., Complex Event Processing (CEP) engines.
Dedicated reactive programming languages, e.g., AmbientTalk/R [107], make event processing im-
plicitly available. Pub/sub, for example, is used for event dissemination but happens transparently
to the programmer who accesses events like other variables. SPUs are also related to active ob-
jects [34] like the actor model [4]. Actors are programs that react to incoming events, perform
operations depending on the received events, produce outgoing events, and may create further ac-
tors. The control flow is solely specified by reactions on events. Examples of actor languages are the
Act3 actor language [5] and Scala actors [85].

Compared to SPUs the conceptual goal of language-specific and active-object-based approaches dif-
fers. In these approaches events are integral parts of the program code and determine control flow.
The focus of SPUs, however, is a data-centric encapsulation of application logic: data in form of
event streams is specified as input to containers for application logic where the processing of this
data takes place. For this purpose SPUs are designed to be independent from a certain programming
language and help to express event-based reactive functionality abstractly. Desired SPU behavior can
be expressed using standard programming languages without modifications.

8.2 Related Work to Requirements Engineering in Event-based Systems

Modern information systems underlie frequent changes and often follow a modular architecture. The
reuse of single components, however, is hard [79]. An important factor that influences the reuse is
the granularity of components [20]. Granularity demands in Event-based Systems (EBSs) determine
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the types of events that need to be detected to fulfill certain application demands. With event
processing techniques, like event composition, high-level events can be derived from fine granular
base events.

The deployment of event detecting components is often a long-term and cost-intensive process, e.g.,
deployment of wireless sensor nodes at many vehicles. This characteristic of event-based systems
requires taking reusability aspects into account during application development: An appropriate
requirements engineering process is needed to identify the level of granularity at which events should
be detected and published.

The loose coupling in event-based systems makes requirements engineering challenging; loosely
coupled components do not necessarily know each other, i.e., a component does not know potential
consumers of its output. Goal-based requirements engineering approaches, e.g., Tropos [41] and
KAOS [56], are well suited for such dynamic environments. In goal-based requirements engineering
the goals an application has to fulfill are specified, e.g., support of a certain use case. The system
architecture is then derived to fulfill the specified goals.

The process of deriving a system design from goals can lead to implementation and design alter-
natives. In [6], Ali et al. present a goal-based requirements engineering approach where different
non-functional requirements can be taken into account to evaluate different implementation possi-
bilities.

In our approach presented in Chapter 4 we present a goal-based requirements engineering approach
that also takes different implementation alternatives into account and weights them. While the
approaches in [6, 41, 56] are generic, our approach is described from a practical perspective with
focus on the event-based domain. We start with the identification of required events, i.e., the goal is
that the demanded events are available. We then weigh different alternatives of the event detection
layer with focus on reusability potential; with a change in the granularity of event detection the
event reuse potential increases and more (potential) goals can be fulfilled.

In [94], Jureta et al. build upon goal-based requirements engineering and add, amongst others,
Quality of Service (QoS). QoS-aware requirements engineering is relevant for event-based systems
as well, as discussed in Section 3.3. It adds another dimension to our approach and should be
considered in future work.

8.3 Related Work to Event Processing in Business Processes

The integration of event stream processing with business processes covers three layers: the process
modeling layer, the process execution layer, and the IT infrastructure layer. At each layer events and
event processing is addressed in research. In [100], Krumeich et al. categorize related research and
identify use cases for event processing in the context of business processes. Amongst others, event
processing is used to enable flexible process adaption, to monitor cross-organizational processes, to
integrate IoT data sources, and to check compliance.

Events are part of various business process modeling notations like Business Process Model and No-
tation (BPMN) and Event-driven Process Chains (EPCs) [96, 130, 170]; they trigger functions (in
EPCs) or tasks (in BPMN) and influence the process control flow. Event processing is often applied
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to monitor process execution. Events can be detected by a process execution engine and depict, for
example, activation/completion of activities or sending/receiving of messages; events can also be de-
fined implicitly based upon object state changes, e.g., changes in data records [87,88]. Based upon
such events, control flow deviations in single process instances can be detected [175]; it is also pos-
sible to check conformance in cross-organizational processes based upon message exchanges [17].
In contrast, our approach focuses on event processing as part of single process instances. The incor-
poration of (complex) events leads to more reactive and dynamic processes. This is a core concept
in EDAs [44,117] or ED-SOA [105]. However, event streams do not have explicit representations
in BPMN or EPCs. Currently, event streams have to be modeled explicitly as multiple events, e.g.,
using loops that process events. Such explicit modeling of complex events and event processing is
for example presented in [18, 26,61, 178]. In [39,167], BPMN is extended to allow modeling of
tasks implemented with wireless sensor networks; these extensions share some aspects with event
stream processing, but do not support the full semantics of implicit/explicit instantiation/comple-
tion. In [26], Biornstad et al. discuss different alternatives for the integration of event streams with
processes: the consumption of events can be modeled explicitly (process-driven) as loop in the pro-
cess where events are pulled from a source regularly. The integration of events can also be in a push
style and source-driven; this is the approach we follow with SPUs.

Process models are often created by business experts without detailed knowledge about technical
details of event processing. Further, to make models intuitively understandable, modelers should
use as few elements as possible with self-explaining activity labels [115]. Thus, activities should rep-
resent business functions. Services are a successful abstraction mechanism to support this. Services
represent business functions and exhibit a data input/output interface [137]. Process models do
not (and should not) contain the application logic of a service; this is left to service developers who
can use more appropriate modeling notations to describe the technical details. Thus, our approach
confers basic service concepts [59] to event stream processing and introduces SPUs as an appropri-
ate abstraction. We concentrate on control flow oriented business process models represented with
BPMN and EPCs. However, the SPU concept is also applicable to alternative approaches for managing
business operations and processes, e.g., the Guard-Stage-Milestone (GSM) approach, which allows
a more declarative modeling of business activities [92]. In GSM, SPUs can be represented by stages.
Instantiation is modeled as guards: a stage is activated when an event stream becomes available
(implicit instantiation guard) or when an event triggers the start of event stream processing (explicit
instantiation guard). Completion is modeled as milestones: an implicit completion milestone holds
the SPU completion condition; and explicit completion milestone waits for an event published by
other stages.

At the process execution layer, Barros et al. [18] evaluate service interaction pattern support in BPMN
and Business Process Execution Language (BPEL); many patterns cannot be realized with BPMN or
BPEL due to inappropriate event support, e.g., consumption policies. We thus encapsulate event
stream processing functionality in Event Stream Processing Tasks (ESPTs) and provide an interface
in our Eventlet middleware to control the execution of ESPTs; the event stream processing as such,
e.g., event consumption, is then transparent to the process execution language.

Juric [95] presents extensions to BPEL that allow service invocations by events. In [84], Spiess
et al. encapsulate event sources as services. Both approaches do not address event streams as
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input/output to/from components; rather than a stream of events, single events are understood as
business relevant.

At the technical layer of process execution, event streams are well known. CEP is supported by a
variety of tools, e.g., the Esper CEP engine, Software AG Apama, or IBM InfoSphere Streams. CEP
is also part of business process execution environments like JBoss jBPM/Drools. In [101], business
process modeling techniques are used to express CEP queries. Event stream processing is integrated
bottom-up; CEP queries and rules are specified at the technical layer. In contrast, our approach
is top-down and business entity centric event streams are visible as input/output of ESPTs at the
modeling layer. Event streams can be as business relevant as, e.g., input/output data of services.
Thus, like service task input/output is explicit in models, event streams are explicit at the modeling
layer in our approach.

The event stream processing application logic inside Eventlets can be simple rules, CEP queries, or
complex event processing networks as described in [62]. Our middleware instantiates Eventlets for
each entity instance, e.g., one CEP query is issued per shipment. This encapsulation of event stream
processing logic is related to design by units described in [168]. It improves scalability and fosters
elasticity.

8.4 Related Work to Eventlets

Work related to Eventlets (as implementation of the SPU concept) addresses implementation aspects
of event processing. Architectures and models for push-based reactive software systems in general
have been addressed in previous work; in [53] the authors present a survey where distributed event-
based architectures are described from different points of view. In [27], Blanco et al. introduce a
meta-model for distributed event-based systems based on a peer-to-peer system. Their system shares
the idea of reactive components with Eventlets. However, they do not introduce a high level of
abstraction with a generic view on tasks.

According to the taxonomy of distributed event-based systems presented in [113], our Eventlet mid-
dleware implements an implicit event model. It hides subscription details from developers who only
specify filters on the event content in Eventlet prototypes. The Eventlet middleware as such builds on
top of a mediator/broker network with “functionally equivalent” brokers. Our Eventlet middleware
is also a “distributed service with separated multiple middleware”, i.e., Eventlet instances can run on
different machines and consume events from a distributed broker network.

A comparison of Eventlets with the software component models presented in [104] shows that
Eventlets share technical properties with Enterprise Java Beans (EJBs), especially Message-driven
Beans (MDBs). However, EJBs are not the best fit for scalable event stream processing in terms of
performance and ease of development as we show in our evaluation (cf. Section 7.1). In EJBs,
messages were introduced as asynchronous inter-component communication mechanism and MDBs
statically define their subscriptions at compile time. Eventlets, in contrast, issue subscriptions dy-
namically at runtime depending on the event stream.

Event-condition-action (ECA) rules are another mechanism to implement reactive applications [43,
58]. With dynamic ECA rule replication and generic rules it is possible to generalize the action
part of ECA rules and implement SPU-like semantics: for each SPU instance a corresponding ECA

8.4 Related Work to Eventlets 123



rule would be required with a condition that filters entity instance specific events. The action part
is then identical for all rules. However, this requires management components for rule replication
and interpretation of generic expressions. In addition to pure reactive behavior expressed with ECA
rules, Eventlets provide mechanisms for lifecycle management. Upon instantiation and removal of
Eventlet instances additional application logic can be integrated and the validity of Eventlet instances
is specified explicitly and checked at runtime.

Another area of related research is complex event processing. CEP engines, like Esper or IBM InfoS-
phere Streams, are typically integrated into an event-based infrastructure by connecting them to the
event bus (see Section 2.1.3). SPUs can implement CEP functionality on their own as application
logic. SPUs can also integrate existing CEP solutions when required: upon instantiation of an SPU a
CEP query can be issued, as shown in our evaluation (see Section 7.1). With the integration of SPUs
and CEB generic complex event queries can be realized in a distributed way.

SPUs build on top of a pub/sub system with content-based pub/sub capabilities. Pub/sub systems as
such can also provide event processing functionality, e.g., for event composition [16]. Subscription
filter expressions are then more expressive and contain CEP query elements. This can be used to
implement SPUs that are instantiated based upon complex conditions as described in Section 3.5.
In general, SPUs decouple event processing from the pub/sub layer; this allows a loose coupling
and is advantageous in terms of scalability [142]. In addition to this loose coupling, SPUs can be
instantiated implicitly; this form of implicit invocation further simplifies the development of event
processing applications [80].

In Sections 6.3 and 6.4 we discuss privacy and data integration aspects in the Eventlet middleware.
Privacy demands in pub/sub systems have been identified by Chenxi et al. in [174] and addressed
by researchers. In [144], for example, Raiciu et al. present a privacy-preserving brokering scheme;
in contrast to the scheme we applied for Eventlets, false positives may occur and events are delivered
to wrong subscribers. The privacy-preserving brokering scheme presented by Srivatsa et al. in [161]
requires a TTP contact for each subscription; we avoid such a contact upon resubscription for better
scalability.

In event-based systems participants are loosely coupled and interact anonymously; this requires data
integration approaches tailored to such environments [50]. On the one side of the spectrum, self-
describing approaches can be applied where semantical information is attached to each event [28].
On the other side an ontology can be specified a priori and transformation rules can be derived
based upon this ontology [164,173]. The approach we suggest for Eventlets lies in between: with the
specification of transformation rules at subscription an ontology is specified implicitly and semantical
description is kept apart from the event data itself.

8.5 Summary

The event-based paradigm is widely addressed by researchers. In many application domains event-
based technologies are applied to implement reactive behavior. One major field in event-based
research is related to event stream processing; this is the area of our work. Characteristic to event
stream processing is that sets of homogeneous events (streams) are considered. For the dissemi-
nation of such event streams pub/sub technologies are appropriate. The use of event streams in
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business applications complements the traditional request/reply interaction scheme in SOAs and
allows for reactive applications that integrate real-world information. Adapted requirements engi-
neering approaches are required to take this new type of data into account since event production
and consumption is decoupled. Existing integration concepts of the event-based approach with the
business layer (business process modeling and execution) focus on single events rather than on event
streams; our approach provides an integration concept for event streams. Overall, a lot of related
research addresses specific technological challenges. We focus on a model to simplify the integra-
tion of event stream processing with applications; this model depends upon many aspects of the
research at the technological level. The better the underlying event processing techniques are, the
more opportunities exist to leverage the information provided in form of events.
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9 Conclusion

In today’s world the pervasive use of mobile devices and sensors provides real-time information of
small granularity in form of event streams. In addition, events occur at a large scale in many software
systems, e.g., postings in social networks or stock price notifications. These event streams reflect the
state of the real world and foster reactive behavior in software systems. Patient monitoring, smart
home environments, as well as traffic management systems are typical examples [52, 86, 89]. In
contrast to the traditional handling of data, event streams provide information in a push-based man-
ner with a complete decoupling between event producers and consumers. Thus, mechanisms like
pub/sub and implicit invocation are essential to process these event streams efficiently. However,
integrating such event stream processing in existing application landscapes and business processes is
challenging: scalability, modularity, reusability, and manageability are important properties. To fos-
ter these properties, application logic needs to be encapsulated and requirements engineering needs
to be aware of event streams. In this work we present an appropriate encapsulation and require-
ments engineering concept for general-purpose event stream processing tasks. With our concept of
Event Stream Processing Units (SPUs) we provide appropriate building blocks in form of a container
model: SPUs are suitable for developing stand alone scalable event stream processing applications
as well as for the integration of event stream processing in the enterprise application context, i.e.,
in business process modeling and business process execution. Our event-stream-aware requirements
engineering process enables reusability assessment early in the development process.

SPUs, as introduced in Section 3.2, provide an intuitive abstraction to encapsulate event stream
processing in a generic way. SPUs have a managed lifecycle and can be instantiated implicitly and
explicitly. Since events arrive continuously, a request/reply interaction mode is not applicable. Event
processing is a continuous operation and the completion of SPUs needs to be triggered; this can
happen implicitly or explicitly. For instantiation and completion, SPUs require meta data in form
of constant and instantiation expression; based upon those expressions, subscriptions for single SPU
instances are derived, e.g., a subscription for a specific shipment. With explicit instantiation the value
set that uniquely identifies the event stream associated with a specific entity instance is provided
externally. With implicit instantiation the SPU execution environment ensures that for each distinct
instantiation value set, e.g., for each shipment ID, an SPU instance is created. For implicit completion
a validity expression needs to be specified; this expression is evaluated internally by the SPU. When
the expression evaluates to true, the SPU completion can be triggered. SPUs implement methods
required for lifecycle management: onInstantiation, onRemove, and onExpiration. Application
logic associated with the creation and removal of SPU instances as well as with implicit completion
is located in these methods. The onEvent method is called each time an event arrives and is the
toehold for SPU-internal event dispatch.

With the distinction between meta data and runtime code, SPUs provide a clear separation between
subscription logic and application logic. In addition, SPUs do not introduce a new programming
language; they rather provide an abstraction layer on top of a pub/sub system. Automatisms for
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connection management, i.e., dynamic creation of subscriptions, and distribution allow an object-
oriented development process for scalable event stream processing applications.

Since SPUs rely on a pub/sub system, the Quality of Service (QoS) of the underlying event dissem-
ination infrastructure is crucial for the QoS provided by SPUs. We introduce various QoS aspects
related to the interface between the pub/sub system and SPUs in Section 3.3. SPUs, as event con-
sumers, depend on the performance of the pub/sub systems as well as on its reliability properties.
Further, scalability is an important aspect to guarantee a certain QoS under different loads. We show
how SPUs can interact to realize a scalable event stream processing application (see Section 3.4).
Since event streams are partitioned into entity instance specific sub streams, SPUs have inherent
distribution capabilities. SPU instances run independently of each other and can be deployed in a
distributed setting. In terms of enterprise application integration SPUs are a push-based equivalent
to services: services are the foundation for SOAs, while SPUs are the foundation for EDAs. Just like
services are integrated in a service-oriented architecture to model workflows in a function-centric
way [105], SPUs can be integrated in an event-based infrastructure to implement complex reactive
functionality.

With Eventlets, we present an implementation of the SPU container model on the basis of Java (see
Chapter 6). Like web services are a technology to implement services, Eventlets are a technology
to implement SPUs. Eventlets are represented by Java objects that inherit functionality for lifecy-
cle management and implicit/explicit instantiation/completion. We provide an adapter for the Java
Message Service (JMS) as pub/sub middleware and support XML as well as att/val-based events.
Our Eventlet middleware is capable of distributing Eventlet instances across multiple machines. We
also show how a privacy concept can be integrated with our middleware to ensure confidentiality
of event producers and consumers. To handle heterogeneity we show the application of our event
transformation approach located inside the middleware. In our evaluation we quantify the benefits
of Eventlets in terms of scalability and simplified software engineering (see Section 7.1). We show
that the inherent distribution capabilities of SPUs, respectively Eventlets, are required for scalable
event stream processing applications. The modular design of the Eventlet infrastructure enables
distribution across multiple nodes. Our evaluation shows that this distribution is necessary for scal-
able event-based applications. We further determine the performance overhead of encapsulating a
traditional distributed CEP application by means of Eventlets. Compared to a manual implementa-
tion of a distributed event stream processing application the overhead introduced by the Eventlet
middleware is negligible given those advantages in term of system development and management.
We also quantified the overhead for applying privacy-preserving encryption techniques to Eventlets;
depending on the use case the performance decrease is acceptable given the gained privacy (see
Section 7.2).

The encapsulation of application logic is also a prerequisite for the integration of event stream pro-
cessing with business processes management and enterprise architectures. The goal of business
processes management is the structured description of business activities. This is achieved by iden-
tifying business operations and their interdependencies; the resulting business process models are
a stepwise representation of business cases. Single business operations or business functions are
self-contained units with defined input, output, and semantics. SPUs can represent such business
functions; their properties make them suitable building blocks for the integration of event stream
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processing with business processes (see Section 5.1). At the abstract layer, SPUs are integrated into
business process models where they act as abstract representation of event stream processing. We
present extensions of Event-driven Process Chains (EPCs) and Business Process Model and Nota-
tion (BPMN) to include SPUs in process models. After processes have been modeled, the next step
is an automated execution. Processes modeled with EPCs need to be mapped to technical process
representations in BPMN as shown in Section 5.2.1. Afterwards, SPUs are brought to execution (see
Section 5.2.2). Implicit and explicit instantiation/completion semantics are represented in an ex-
ecutable workflow representation. During execution, our Eventlet middleware interfaces with the
process execution environment and acts as runtime environment for SPUs, which are implemented
as Eventlets (see Section 5.2.3). We implemented the modeling and transformation of SPU-including
process models with Software AG products to show the applicability in industrial applications (see
Section 5.3).

From the enterprise architecture perspective, SPUs are a push-based equivalent to services. Tradi-
tional services are not the natural environment for event stream processing application logic; current
enterprise architectures are not designed to support event stream specific execution semantics like
implicit instantiation and completion as well as asynchronous and concurrent reactions. We thus
introduce SPUs as a software concept to map the real world concept of generic event-driven tasks
seamlessly. With SPUs it becomes possible to think event-based from the very beginning of appli-
cation development rather than adding event-based capabilities to a pull-based system architecture.
SPUs are not meant to replace SOA services, but to enable reactive functionality in scenarios for
which SOA is not a natural fit [112].

One of the main characteristics of event-based systems is that event production is decoupled from
event consumption (see Section 2.1.4). Further, the reuse of events, i.e., a high fan out during
pub/sub event dissemination, is desirable. This needs to be taken into consideration throughout
the development process of event-based applications; this development process starts with the re-
quirements engineering. Since it cannot be assumed that demanded events are already present, the
question of availability of events is an essential part in the requirements engineering process. In our
SPU container model, for example, we demand entity-instance-centric events that allow an object-
like view for the development. Availability of demanded events along with a high reuse potential
are addressed in our requirements engineering approach for event-based systems (see Chapter 4).
First, required events are identified (see Section 4.4). Our methodology then allows the comparison
of alternative event generation approaches based upon the reuse potential. We distinguish between
derivable events and base events (see Section 4.1). Derivable events can be generated with CEP
mechanisms, e.g., event composition. They also can be detected directly, e.g., with specialized sen-
sors. Our approach discusses the different alternatives; with costs assigned to the different event
production alternatives, different solutions can be compared. Generally, the more fine grain events
are, the higher are the chances for reuse in other contexts. However, detecting many fine grain
events to compose a required events results in increased effort and costs.

Although our approach helps to decide upon which events to detect directly and which events to
compose, the major problem is the estimation of the potential for future reuse of events. Imple-
menting an event detection and composition infrastructure based upon many base events with only
one consumer for the composed events is not efficient. An essential part in the development process
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of event generating components is thus the identification of potential use cases that require events.
Only then event generation can be optimized for reusability and costs can be saved. For example,
long and cost intensive deployment cycles of event detecting hardware can be avoided by deploying
hardware with more capabilities in first place even though all capabilities are not yet needed.

Summarizing our work, we simplify the development of scalable and distributed event stream pro-
cessing applications by means of the SPU container model. We present Eventlets, an implementation
of our SPU container model, along with a distributed middleware. We address the specifics of Event-
based Systems (EBSs) development in our requirements engineering approach: we foster the reuse
of events in arbitrary event-based components, e.g., in different SPUs. We further integrate event
stream processing with business process modeling and execution. We introduce extensions to EPCs
and BPMN and describe the model-to-execute workflow that brings SPU-containing business process
models to execution.
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10 Future Research

Future research related to Event Stream Processing Units (SPUs) has two directions: research re-
lated to the conceptual model of SPUs and research related to technical aspects of SPU execution.
Future research at the conceptual layer addresses interaction and integration aspects of SPUs and
the requirements engineering methodology. Future research directions at the technical layer address
the SPU implementation and runtime infrastructure, i.e., Eventlets and the Eventlet middleware, as
well as the execution of SPUs in the context of business processes.

10.1 Conceputal Layer

SPU Interaction and Integration Concepts

Like services and object-oriented programming, SPUs are an abstraction that enhances the develop-
ment of event stream processing software systems. The conceptual foundation — our SPU container
model - is suitable to modularize event stream processing application logic. However, it is not ad-
visable to apply the SPU concept to each event stream processing scenario. In use cases where an
entity-instance-centric partitioning of event streams is not feasible, different concepts have to be ap-
plied. Monitoring a shipment, for example, is well suited for implementation with SPUs since event
processing is entity instance centric, i.e., the application logic can be defined on a per-shipment ba-
sis. Calculating the average delivery time over all shipments, in contrast, can be implemented with a
single Complex Event Processing (CEP) query; an implementation with SPUs would result in a single
SPU instance since the task is not entity instance centric. In terms of future research such design de-
cisions are an area of interest. Event stream processing applications can be analyzed to identify tasks
that can be expressed by entity instance centric application logic. A categorization and grouping of
such tasks can then be used to derive a design guideline with typical patterns where to use SPUs to
encapsulate event stream processing application logic.

Our approach for integrating event stream processing with business processes by means of SPUs is
also an area for future research. SPUs in general and Event Stream Processing Services (ESPSs) and
Event Stream Processing Tasks (ESPTs) in particular depict tools that enable modeling event stream
processing in business processes. Developing a comprehensive understanding and description of the
resulting execution semantics, however, is challenging. SPUs issue subscriptions; but successfully
issued subscriptions do not guarantee that demanded events are published. Further, business process
models can describe complex situations, which require, for example, transactional behavior. In such
cases SPUs require compensation functionality to support rollbacks although event producers and
consumers are logically decoupled.

SPUs enable the combination of push- and pull-based interactions within business processes. Thus,
the interplay of push- and pull-based components in the context of large and complex processes is
a topic of further investigation. The analysis of SPU interaction and integration patterns can result
in generic patterns, e.g., comparable to service interaction patterns [19]. In cross-organizational
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processes aspects like data integration and quality of service at the IT infrastructure layer require
novel solutions. At the business process modeling layer, meta-model extensions that describe SPUs
are necessary to provide a basis for interoperability.

Novel Requirements Engineering Approaches

Our approach of requirements engineering for event-based applications can be used in traditional
software development processes where an assessment of requirements is the first development step,
e.g., software development that follows the V-Model. Future research can address the applicability
of our approach in the context of agile software development. Since requirements engineering is
an iterative process in agile methods, e.g., in Scrum where the product backlog can be extended
throughout the development process, an a priori assessment of demanded events and possible reuse
potential is challenging. It could be evaluated under which circumstances agile methods can or
cannot be applied to develop event-based applications. The deployment of sensor hardware, for
example, can be a time consuming process and might not fit well with the short development-to-
feedback cycles applied in agile methods. In case events sources are already present, however, agile
methods might be well suited for the development of event-based applications.

10.2 Technical Layer

Eventlets and Eventlet Middleware

With Eventlets and the Eventlet middleware we present an implementation of SPUs. Our Eventlet
middleware is designed to run in a distributed setting; Eventlet instances are self-contained and
receive events independently. An issue that originates from the distributed design and that can be
addressed in future research is a guaranteed lossless Eventlet instantiation process, i.e., no events
are lost during the creation and subscription process of an Eventlet instance. When an Eventlet
monitor triggers the creation of an Eventlet instance, time elapses until the newly created Eventlet
instance receives events. However, use cases might exist where it needs to be guaranteed that
events occurring during this instantiation process are not lost. One way to achieve this is early
explicit instantiation of Eventlets; Eventlet instances are created prior to the occurrence of events
associated with the Eventlet instance, e.g., a shipment monitoring Eventlet instance is created before
the shipment is assembled. However, explicit instantiation is not always feasible since external
knowledge about (expected) events might not be available, e.g., which cars enter a city and need
to be tracked for toll processing. Thus, implicit instantiation is based upon implicit invocation. To
ensure a lossless Eventlet instance creation process with implicit instantiation, events need to be
cached. One possibility is the implementation of caching inside the Eventlet monitor. Upon receiving
the event that triggers the creation of an Eventlet instance, consecutive events associated with this
instance are cached by the Eventlet monitor. As soon as the Eventlet instance is ready to process
events, a handover procedure is initiated and cached events are replayed to the Eventlet instance. As
soon as the replay of events is in sync with the currently arriving events, the Eventlet monitor stops
caching.

Another possibility for guaranteed loss-less instantiation is implementing caching capabilities at the
pub/sub layer and to allow subscriptions to the past. With such a pub/sub system the Eventlet
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monitors record the timestamp of the event that triggers the creation of an Eventlet instance. The
Eventlet instance then issues a subscription for events back to this timestamp. The pub/sub system
then replays old events and handles the handover between archived events and current events. This
happens transparently to subscribers like Eventlet instances.

Event caching mechanisms are also the basis for migration of Eventlet instances. Currently, Eventlet
instances are bound to the network node of their creation. However, Eventlet instances could be
moved between nodes; this is especially applicable in cloud infrastructures to enable an efficient
scaling (up and down). Eventlet instances are then moved between virtual machines as the demand
of computational resources increases/decreases. To reduce network traffic, Eventlet instances can
be moved to their corresponding Eventlet monitor, or close (in terms of network topology) to the
producers of events. An event caching mechanism is required to bridge the time of state migra-
tion. Event consumption needs to be stopped and the current state of the Eventlet instance needs
to be transferred to an Eventlet instance located at another node. Mechanisms required for Event-
let instance migration can also act as a foundation for failover strategies; when the crash of an
Eventlet instance is detected, events could be cached and handed over to a newly created Eventlet
instance. Similar concepts exist in Service-oriented Architectures (SOAs), e.g., service continuation
mechanisms [165].

Future research might also address large-scale deployments of the Eventlet middleware. In large-
scale deployments, Eventlet monitors may become a bottleneck: an Eventlet monitor receives all
events corresponding to its constant expression, i.e., all events for which an Eventlet instance should
exist. This 1:n relationship between Eventlet monitors and their associated Eventlet instances might
limit the overall performance. One possibility to overcome this issue is breaking the 1:n relationship
and using multiple Eventlet monitors to trigger the creation of Eventlet instances. Such a load
balancing can be realized by splitting Eventlet monitor subscriptions. In the shipment monitoring use
case, for example, the range of shipment IDs can be split and sub ranges can be assigned to different
Eventlet monitors. Each of these monitors adds the according filter parameters to its subscription,
e.g., shipment ID between 0 and 999. With such filters an Eventlet monitor is then only responsible
for the instantiation of Eventlets in the filter range. However, additional knowledge is required to
implement this load balancing strategy: the range of shipment IDs and the distribution across this
range needs to be known.

Further, scalable pub/sub systems are also required for large-scale deployments of the Eventlet mid-
dleware. Additional adapters to integrate distributed pub/sub systems with sophisticated routing
mechanisms can be added to our middleware to ensure that the event dissemination does not be-
come a bottleneck.

Business Process Modeling and Execution

In the context of executing SPU-containing process models, the automated model transformation
process can be optimized to support a seamless model-to-execute workflow. Currently, manual re-
finements are necessary during the transition from an abstract to an executable process model rep-
resentation. To reduce the effort in the manual refinement process, a validity check component can
be integrated in the modeling and transformation process to support the creation of well-executable
models. Such a validity checker ensures that abstract process models follow certain rules so that the
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executable process is well formed. Examples for such rules are checking explicitly instantiated SPUs

for corresponding stop signals on all control flow paths or whether signals emitted from SPUs are
caught and handled.
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