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Abstract

This work seeks to develop a high quality prognostic model for the CARE-HF data;
see (Richardson et al. 2007). The CARE-HF trial was a major study into the effects of
cardiac resynchronization. Cardiac resynchronization has been shown to reduce
mortality in patients suffering heart failure due to electrical problems in the heart. The
prognostic model presented in this work was motivated by the question as to which
patient characteristics may modify the effect of cardiac resynchronization. This is a
question of great importance to clinicians. Efforts are made to produce a high quality
prognostic model in part through the application of methods to reduce the risk of
over-fitting. One method discussed in this work is the strategy proposed by Frank
Harrell Jr. The various aspects of Harrell’s approach are discussed. An attempt is
made to extend Harrell’s strategy to frailty models. Key issues such as missing data
and imputation, specification of the functional form of the model, and validation are
examined in relation to the prognostic model for the CARE-HF data. Material is
presented covering survival analysis, maximum likelihood methods, model selection
criteria (AIC, BIC), specification of functional form (cubic splines and fractional
polynomials) and validation methods (cross-validation, bootstrap methods). The
concepts of over-fitting and optimism are examined. The author concludes that whilst
Harrell’s strategy is valuable it is still quite possible to produce models that are over-
fitted. MDL (Minimum Description Length) is suggested as potentially useful
methods by which statistical models can be obtained that have an in built resistance to
over-fitting. The author also recommends that concepts such as over-fitting, optimism
and model validation are introduced earlier in more elementary courses on statistical

modelling.
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CHAPTER 1 INTRODUCTION

e Purpose of this work to develop a high quality prognostic model for the CARE-
HF data

e A good prognostic model depends upon specifying an appropriate functional
form

e Quality of a prognostic models depend upon important predictors not being
omitted

e A poor prognostic model will result if depends there is a large amount of
missing data

e Over-fitting leads to poor prognostic models

e Prognostic models should be validated

1.0.0 Introduction

This present work comprises in the main the development of a prognostic model for
the CARE-HF data (Richardson et al. 2007). The CARE-HF trial is a landmark trial
into the benefits of cardiac resynchronization therapy. Cardiac resynchronization
therapy has been shown to significantly reduce mortality in patients suffering heart
failure due to electrical abnormalities in the heart (Ellenbogen et al. 2005), (Cleland et
al. 2001). In the next chapter I shall describe in further detail the background and
development of this model. Briefly the model developed in (Richardson et al. 2007)
aims to identify possible treatment modifiers of cardiac resynchronization therapy
(Medtronic. 2009). It is of great importance that those patient characteristics which

may modify the beneficial effects of cardiac resynchronisation are identified, i.e.



subgroups of patients are identified who may enjoy the most benefit from cardiac
resynchronization therapy. My main aim is to produce a model that has been
developed with the aim of minimising the risk of over-fitting and maximising its
predictive power. This will entail amongst other techniques an application of an
approach suggested by Frank Harrell Jr. I attempt later in this work to apply Harrell’s
approach in fitting a frailty model, an issue which Harrell does not address. I also seek
to identify some of the limitations of Harrell’s methods. My main objective is the
development of a high quality prognostic model for what is an important real world
application. The purpose of including some of the more theoretical material is to
provide a framework in which I can understand issues that arise in developing a
prognostic model.

1.1.0 Prognostic Models

I shall be concerned almost exclusively with prognostic models in this thesis. A
prognostic model can be regarded as a tool by which a doctor can produce a prognosis
for a patient. Prognosis from the Greek npoyvmaic, can be defined as a doctor’s
prediction of how a patient’s illness will develop and their chance of recovery. For
example; given a patient’s age, weight, blood pressure, a doctor could determine what
if any beneficial effect a patient might experience if he or she were to receive a
particular treatment or therapy. For general discussion of prognostic models the reader
is directed toward Abu’s paper (Abu & Lucas 2001). A prognostic model is a
predictive tool; its purpose is to predict the level of increase in a beneficial effect, or
the decrease in risk of some adverse event, for instance, death A prognostic model can
assist a doctor in making clinical decisions, for example in trying to determine which

patients might benefit from a particular treatment or therapy given that the treatment



is costly. The following papers provide excellent material on prognostic models
(Wyatt & Altman 1995), (Moons et al. 2009) and (Royston et al. 2009).

The decision as to whether a patient will be given a particular treatment may well be
based upon evidence obtained through the application of a prognostic model.
Therefore, the importance of being able produce a reliable and accurate model is
immediately seen. A method by which it is possible to assess the predictive accuracy
of the prognostic model is also required. What steps can be taken in order to maximise
the chances of producing a good model? These questions have led researchers to
formulate a number of approaches to the modelling process with the aim of obtaining
a parsimonious model that does not suffer from over-fitting and has good predictive

accuracy.

1.2.0 Survival Analysis Background

If a new drug or treatment has been developed an important question is how effective
is the drug or the treatment? Evidence for the efficacy of a drug or treatment is
gathered by setting up a clinical trial. A simple situation might be as follows: A
sample of patients suffering from some disease or illness is obtained. Patients from
this sample are then randomly allocated to one of two groups. The first group is called
the treatment group; patients allocated to this group receive the drug or treatment. The
second group is called the control group, patients allocated to this group do not
receive the drug or treatment, they may for instance be given a placebo. A researcher
might then consider how many patients died in the treatment group compared to the
control group (or more positively how many patients did not die). In the simple
situation described above a researcher might use logistic regression to estimate the
probability of death, the model might include variables such as patients age, sex. Also

if a variable indicating to which group the patient belonged was included in the
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model, and was subsequently found to be statistically significant then this may
provide evidence for a treatment effect, i.e. probability of a patient dying is dependent
upon whether or not they have received the treatment. In the example above the
outcome is a binary one, dead or alive. It might well be that a patient’s life is
prolonged by taking the drug, but by how long? It might be a few months or it could
be 20 years. In many clinical trials the question of the efficacy of a drug or treatment
is addressed in terms of the time to event, i.e. how long until a patient dies or
experiences the event of interest. In this case survival analysis is the appropriate
method. A few words should be said on the matter of randomisation. One of the
principal reasons for adopting randomisation when developing a prognostic model is
to avoid biased estimates of treatment effects. In attempting to develop a prognostic
model it is important that the treatment and control groups are balanced in terms of
the distribution of variables that may be strong predictors of the outcome.
Randomisation also reduces the risk of obtaining biased estimates of the treatment
effect due to missing or unknown variables. It should be borne in mind that
randomisation does not guarantee that estimates of treatment effects will be unbiased
in all situations (Gail et al. 1984). I should like to point out however that
randomisation can be considered as a controversial topic (Royall 1991). However R.A
Fisher (Fisher 1966) argues that if we assume that a real treatment effect is absent,
then the result from any experiment is due to chance alone. Fisher (Fisher 1966)
provides a very clear argument to support of randomisation. I shall now review some
of the fundamental ideas in Survival analysis, what follows is a standard derivation of
the basic results. I make no claim whatsoever to have developed anything new. These
are well known results attributable to others. Similar derivation may be found in any

number of statistics textbooks, see Dobson’s textbook (Dobson 2002) for example.



Let Y > 0 be the survival time or time to failure (or some event).
Then P(Y < y) = F(y) = joy f(u)du, alsoP(Y > y) = 1— F(y) = S(y).

S(y)is the survivor function. The probability per unit time of failure occurring in the

interval (y,y+ dy) given survival up-to time Y is given by the hazard functionh(y).

P(y<Y<y+d|Y2>y)
o

h(y) = Limo‘y»o

Now we have P(y <Y <y+&) = [ f(wdu = F(y+&) - F().

Note thatP(y <Y < y+8y) =P([y <Y < y + Y] &[Y = y]).

The conditional probability P(y <Y <y+dy|Y > y) can be expressed as

PAysY <y+d]&[Y 2yD) Fy+d)-F)
P(Y 2y) S(Y)

This gives

PysSY<y+dyIY2y) . F+H)-Fy _fy)
xN—0 N—0 .
¥ S(y)dy S(Y)

h(y) = Lim

-fly)

Differentiating log, S(y) we getiloge S(y) = =-h(y).
dy S(y)

du

It follows that— J.Oy h(u)du =log, S(y), giVingefL i S(y).



J.Oy h(u)du = H(y) is the cumulative hazard function.

The exponential distribution is a sensible candidate for the distribution of Y .

So f(y) :&_&y:yz 0,0 >0,E(Y) :%yvar(Y) :%_
Then F(y) = [/ “du=1-¢ %, 1-F(y)=5(y) =e .

Using diyloge S(y) =-h(y)we geth(y) =8, using '[Oyh(u)du =H(y) to

obtainH(y) = &y.

For the exponential distribution consider Y as depending on some variables X, X,.,...
Then E(Y)= /X say, but@ >0, so we use E(Y) = e’ﬁi, ie 0=e”.

Writingh(y) = efX = g2/ , let x; be an indicator variable, Xx; = 0 denote absence,

X; =l denote presence of some exposure.

hl(y) — eﬂj
hy (Y)

is the hazard ratio.

In general models of the formh, (y) = h, (y)e/;7 are known as proportional hazards
models. For the proportional hazards model

y y % %
H, () = | b (wdu = ["hy (e du = H, (y)e”

Taking logs gives

log, H,(y) =log, H,(y)+ BX =log, Hy(Y)+ > B.; .



Considering the indicator variable X; we can writelog, H,(y) =log, H,(y) + 3;, the
natural logarithms of the cumulative hazard functions differ by the constant ;. For

proportional hazards a plot of log,(Y),log, H,(y) and log,(y),log, H,(y) on the same

set of axis should show parallel lines.

Certain subject may survive beyond the duration of the study, these cases are said to
be censored. With censored cases we cannot have full knowledge regarding survival
time; all we can say is that the subject survived up to the end of the study. The subject
may well experience failure the day after the study ended, or 2 months later. Let
Yi»Y,,--» Y be the survival time for the uncensored cases, and let y,,,,..., ¥, be the

survival times for the censored cases. Further let ¢, =1for the uncensored cases and

¢; = 0for the censored cases, then the likelihood function L is given by

L=TT f(y)” s(y)'™ .

The log likelihood log, (L) is given by
log, (L) = iéi log, (f(y;)+(1-gi)log.(S(y;))-

Both L and In(L) depend on the parameters of the distribution y and on ﬁ)? ,thisis a
parametric model. In(L) can be maximised using the Newton-Raphson method. In the
Cox Proportional Hazards model f(y)and S(y)are not completely defined, in this

case the model is described as being non-parametric (distribution of y not specified)



1.3.0 The Modelling Process

Harrell et al. (Harrell et al. 1996) identify the following as potential problems in the

modelling process:

e Violation of Assumptions
e Omission of Important Predictors
e Missing Data / Incorrect Imputation

e Over-fitting

Each of the above may lead to an ill-fitting prognostic model; predictions based on
such a model will not be reliable. When attempting to fit any mathematical or
statistical model the researcher is often compelled to make a number of
simplifications and assumptions. Real world situations are often too complex to model
without such simplifications and assumptions. In fitting a prognostic model three
basic assumptions shall be made; the first is a distributional assumption, the second an
assumption regarding functional form and the third an assumption about
additivity.The prognostic models that I shall consider in this thesis are based on the
Cox Proportional Hazards model (Cox 1959), (Cox 1964), (Cox 1972), of course
prognostic models can be developed for other forms of Generalised Linear Models

(GLM) see (Nelder & Wedderburn 2009), (Baker & Nelder 1978) and (Dobson 2002).

In a linear model E(Y) = EY , the GLM extends the linear model to situations where

the relationship between E(Y)and ﬂN’i is not linear, this is achieved through the link



function f, (), sothat f (E(Y))= ﬁ)? . Prognostic models could for example be based

on other regression models, e.g. logistic.

1.4.0 Violation of Assumptions

Although this thesis is concerned with over-fitting and optimism it is considerable
importance that basic assumptions are examined as to their validity. For example with
the Cox model is the proportional hazards assumption valid? Are assumptions about
the function form of the model appropriate? Once a model has been obtained is it

clinically plausible?

1.4.1 Proportional Hazards

h(y[X%)
h,(Y|X,)

Under the proportional hazards assumption the hazard ratio is a constant

over time, the effect of a covariate does not vary over time. The Cox proportional

hazards model makes no assumptions about the form ofh(y)and is described as semi-

parametric, this is an advantage of the Cox model in that it is possible to avoid

specifying an inappropriate form for h(y).Estimates for the Cox model are obtained
through partial likelihood (Cox 1972). If h(y) s specified for example
h(y) = exp(u +Vvlog,(y)) then certain assumptions about the distribution of the

survival time Y have to be met, in this case Y follows the Weibull distribution.

It may not be reasonable to assume proportional hazards. If the proportional hazards
assumption is violated, it is possible to include a time dependent variable in the
model; however inclusion of a time dependent variable leads to difficulties in

assessing the validity of the model. Another strategy for dealing with non proportional



hazards is to stratify the model based on the variable for with the proportional hazards

assumption is violated.

1.4.2 Functional Form

Specifying an appropriate functional form for the model is important. The assumption
of a simple relationship between Y and X such as Y = X may not be appropriate.

There may be a more complex relationship between Y and X . In this situation it is
required to transform X , examples of typical transformations are log, (X), VX
However the crucial point is that the model is linear in the parameters. The models
Y=2.,+p5X,+errorand Y = S, + f, Xl2 +error are both linear models i.e. the right
hand side in both cases is a linear combination of the parameters /3, and f,. In recent

years a great deal of work has been carried out in the study of cubic splines and their
application to statistical models. There are instances when the fit of a model can be
improved by using cubic splines in the specification of the functional form. The
following authors provide very useful material on the use of cubic splines in statistical
modelling, (Wegman & Wright 1983), (Smith 1979), (Poirier 1979), (Royston 2000)
and (Herndon & Harrell 1990). Another extremely interesting approach to
transformations is that of the Fractional Polynomial (Royston & Altman 1994),
(Royston Patrick et al. 1999) and (Royston & Sauerbrei 2004). The reader is
encouraged to read Royston and Altman’s paper (Royston & Altman 1994), further
useful material can be found in (Royston et al. 1999), (Royston & Sauerbrei 2004)
and software for fitting fractional polynomials is documented in (Meier-Hirmer et al.
2003). Both cubic splines and fractional polynomials will be covered in greater detail

in Chapter 4.
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1.4.3 Additivity
For the Cox proportional hazards model the relationship

h
loge[h1 8//))} =B X, + B, X, +...4+8 X, could be treated as a multiple regression
0

h (y)
hy (Y)

model then the change in the expected value of loge( J due to a unit change in

the independent variable X, (holding all other X's constant) is the same regardless

of the values (levels) of the other independent variables, if this is assumed the effects
are said to be additive. In simple and multiple linear regression it is the additivity

assumption allows the interpretation of S, as the change in E(Y) due to a unit
increase in X; given that all the other X's are held constant without specifying at

what value the other X's are held constant. The assumption of additivity is perhaps

h
too restrictive, it may well be that changes in the expected value of log, { hl Eyij for a
o (Y

unit change in X; are dependent on the values of one or several of the other

independent variables. Relaxing the assumption of additivity requires that interaction
terms be introduced into the model.
If it is found that the additivity assumption is violated, then clinically/biologically

meaningful interaction terms should be included in the model. In the simple model
Y =8 X,+6,X,+5,X, *X,+p,,let X, be the patients age in years,

and X, indicate whether the patient has received treatment or not, then the

term X, * X, , represents an interaction term, the interaction term describes how age

modifies the effect of treatment.

-11 -



1.5.0 Omission of Important Predictors and Missing Data

1.5.1 Omission of Important Predictors

The omission of important predictors can lead to an inaccurate model in the sense that
estimates of treatment effect will be biased. It may be that some important predictor
of outcome is as yet unidentified, or it is a known predictor and has been omitted for
some reason. Randomisation offers a way of reducing the risk of biased estimates for

the treatment effect when important predictors have been omitted for whatever reason.

1.5.2 Missing Data

Missing data will have a bearing on the final model, distorted estimates of predictor
variables may result from missing data. A variable that appears not to be statistically
significant due to a high level of missing data, may in fact be of considerable
predictive value. Missing data may categorised as being missing completely at
random, missing at random, and missing not at random.

It is important that the missing data mechanism is identified. For an introduction to
some of the terminology used in connection with missing data see the website
operated by LSHT (London School of Hygiene and Tropical Medicine 2008). Missing
data and imputation will be discussed in Chapter 7. For the present, suffice it to say
that once the nature of the missing data has been established steps can be taken to deal
with this problem, i.e. the missing data is imputed. It is important that the correct
imputation method is applied. Imputation is a complex problem, for a detailed
treatment of developing prognostic models when missing data is present see (Marshall

2007).

-12 -



1.6.0 Over-fitting and Optimism

Over-fitting may be described in the following way. In dealing with a binary
outcome, for example dead or alive, it may be that interest is focused on predicting
deaths, the ratio of deaths/predictor degrees of freedom can be used to gauge the level
of what is known as over-fitting. If the number of events of interest is small and a
large number of independent variables are included it is likely that the model will be
over-fitted. It will be found that independent variables are included in the model
(deemed statistically significant) due to their being ’locally important predictors’. On
validating the model it may be found that these independent variables are not
significant. In over-fitting a model, noise and localized features in the data attain a
spurious statistical significance and lead to biased model. Considering predictive
accuracy when over-fitting is present, this means that the predictive accuracy of the
model when validated on an external dataset will be seen to deteriorate. The
predictive accuracy of the model using the data on which it was developed may be
quite good; yet when the model is applied to a new (but similar) data set it is found
that the predictive accuracy is poor in comparison, this is known as optimism or

statistical optimism.

1.7.0 Data Reduction and Shrinkage

Data reduction can be described as a means of reducing in the number of independent
variables that might be included during the modelling process (reduction of the
dimensions of the data). If an attempt is made to fit a model with 70 variables to a
data set of 50 patients, then the model will be severely over-fitted. By employing data
reduction it may be possible to reduce the risk of over-fitting, a classical data
reduction technique is principal components analysis, see Sharma (Sharma 1995).

Empirical rules have been arrived at which can be applied to determine if data
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reduction should be used. One such rule for the Cox proportional hazards model is

. N : .
based on the ratio —= (events per variable), where N is the number of uncensored
P
events, and p is the predictor degrees of freedom, p can be thought of as the number

of independent variables included in the model. If Ne <10 there is some risk of

P
over-fitting, consequently we should look to performing data reduction, i.e. reduce the
number of independent variables that are included in the model, (Peduzzi et al. 1996)
provides background on events per variable rules. In a good model a linear
relationship should be observed between the observed (i.e. new data) and predicted
(i.e. predictions made using the original data) values, i.e. Y =Y (the line has a slope
of 45°and passes through the origin), departure from a slope of 45° indicates that
over-fitting has occurred. Over fitting is not the only cause of a departure from the
45° slope, for instance if assumptions relating to the error term in the model have
been violated a departure from will be observed, for example term the error does not
have a constant variance, the error terms are not independent. This departure from the
45° slope due to over-fitting is known as shrinkage, a measure of the shrinkage gives

a measure of over-fitting. Van Houwelingen and le Cessie (Van Houwelingen & le

2
Cessie 1990) have developed a heuristic estimator of shrinkage 7 = Z4 5 P ,

V4

here 7 is the total model log likelihood ratio statistic used in testing for associations
between X and Y , it can be seen that as p the predictor degrees of freedom

decreases so does 7 .

Use of the entire data set in developing the model allows for the extraction of

maximum information, as Harrell (Harrell et al. 1996) points out “data are too
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precious to waste”. Outliers or highly influential observations offer some clues about
possible over-fitting. If for some X there exist one or two extreme values, it may be
that X appears as a significant predictor, these extreme values can lead to the
selection of spurious predictors, resulting in a model that has been over-fitted, the
model is not general. After validation X may be found to be not significant, the

extreme values in a particular data set *drove’ the modelling process.

1.8.0 Validation

Once a model has been obtained it should be validated using a new data set. I said
earlier that the predictive accuracy of the model for the data on which it was
developed may be quite good, however this is not sufficient to claim that the model is
generally good (Altman & Royston 2000). The model must be validated using new
data, even if it is found that for the original data the model performs well. A model
that performs well on the original data set is not guaranteed to perform well when
applied to a new but similar set of patients. This point may appear to have been
laboured somewhat, but it is crucial when fitting a model we have in mind the idea of
generalisabilty. Bootstrapping, validation, calibration and discrimination (component
parts of predictive accuracy) will be discussed in Chapter 6. Over the years many
other statisticians have been engaged in research into the problem of producing
reliable models that do not suffer from gross over-fitting and possess good predictive

accuracy. I shall now briefly outline some of this work

1.9.0 Harrell et al.’s Approach

Harrell et al. (Harrell et al. 1996) have devised a systematic approach to fitting a

prognostic model which may be summarised as follows:
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e Obtain an accurate and large sample of data.

e Formulate a sharp hypothesis.

e Discard observations with missing Y, provided Y missing at random.

e For missing X investigate factors related to missingness, if the number of
observations that would be excluded is small or variable that is missing is
unimportant, then exclude observations with missing values. Otherwise impute
missing X.

e If the number of variables included in the model is large in comparison to the
number of events of interest, use data reduction.

e Use the entire sample to develop the model.

e Check linearity assumptions and perform transformations on Xs if required.

e Check additivity assumptions, include clinically motivated interaction terms.

e Check for outliers or influential observations.

e Check distributional assumptions, for Cox Proportional Hazards model,
proportional hazards assumption, if violated include time dependent variable.

e Perform backward stepdown variable selection.

e Variables obtained from stepdown procedure form the final model.

e Validate model using the bootstrap.

e If using stepwise variable selection, supply a Table showing how important
predictors vary over the bootstrap samples.

e Estimate shrinkage.

1.10.0 Ambler, Brady and Royston’s work

Ambler, Brady and Royston have investigated methods for estimating and simplifying
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full models (Ambler et al. 2002). In (Ambler et al. 2002) the authors aim to produce
simplified models that retain their prognostic power. Based on simulation studies
using two different data sets, Ambler et al state that the results of model
simplification based on the stepdown variable selection, using maximum likelihood
and penalised maximum likelihood depended upon whether or not all the independent
variables (predictors) were influential. Harrell advocates limited variable selection
based on the stepdown method. The stepdown method makes use of the idea of a

prognostic index, if X, X,...X jare independent variables then the prognostic index is
a linear combination of X, X,..X ,i.e. a X, +a,X, +..+a,X . Regression of the

linear combination on the independent variables results in a perfect fit, R* =1, if any
of the independent variables are omitted, then R* will decrease. A simplified

prognostic index is defined as the linear combination formed by removing the X

which causes the smallest decrease in R?, this process is carried out until further

removals of X, would result in R* < &, where « is a predefined value for R®.

Ambler et al suggest the Akaike Information Criteria (AIC) provides a good way of
selecting a simplified model, the background to the AIC will be presented in Chapter
5.). In my review of Harrell’s approach I referred to events per variable, and how by

reducing p it is possible to avoid over-fitting. Models produced using a criterion such

as Ne <10 are known as full models, the complexity or size of the model is

p
determined by the number of events of interest in the data. Ambler et al make a very
important point; full models are liable to be very complex when we have data
containing a large number of observations and a large number of possible predictor
variables. Large and complex models have attached to them financial and practical

drawbacks. This may be seen as a drawback to Harrell’s approach.
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1.11.0 Van Houwelingen’s work

Hans C. van Houwelingen describes methods for determining the predictive accuracy
of prognostic survival models; see (van Houwelingen 2000). Van Houwelingen
develops what he calls validation by calibration; he illustrates this method by the

following example using simple linear regression:

e PlotY against Y =X B for new data.

model

IfY=Y appears to hold (points lie on 45° line through (0,0) ), then model is

valid.

If Y =Y does not appear to hold (points do not lie on 45° line through

(0,0)), correct model by calibration.

Fit Y =a + Y +e, then You=0+ N is the calibrated model.

Van Houwelingen explains that his strategy is to compare a particular model with the
new (validation) data set and not a new model obtained from the validation data set.
From a theoretical perspective his method is appealing in its simple and clean
approach. Van Houwelingen proposes a method whereby the Cox proportional
hazards and the non-proportional hazards model may be calibrated (van Houwelingen

2000).

1.12.0 Extension of Cox Proportional Hazards Model

Initially I shall develop a prognostic survival model using Cox Proportional Hazards
model, in a later Chapter I will look at how Cox Proportional Hazards model can be
extended to deal with heterogeneous data through the use of frailty (Vaupel et al.
1979). The frailty model is an interesting advance in modeling. Harrell et al’s
approach as far as this author is aware does not address frailty. In Chapter 8 I attempt

to fit a frailty model using Harrell’s approach.
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1.13.0 Current Modelling Strategies

Are issues such as over-fitting and specification of functional form for a prognostic
model routinely addressed? Has the approach suggested by Harrell been widely
adopted? I have carried out an informal survey of three journals; BMJ, JAMA and
Circulation. Papers were selected from these journals based on the key words such as
prognostic, survival, Cox model, and risk score. It appears that over-fitting is not
routinely addressed. Where it might be appropriate specification of functional form

using cubic splines or fractional polynomials is not widely adopted practice.

It is hoped that the reader may glean some practical guidance on how to employ
Harrell et al’s approach, and perhaps become aware of some of the difficulties that
can arise. If by reading this thesis the reader who may not be a statistical expert,
acquires a better understanding of the important issues surrounding the development
of a prognostic model then I would have accomplished a main objective. That
everyone should take steps to ensure that the chances of over-fitting a model are
minimised is of course highly desirable. However it may be worth trying to consider
some of the natural and inherent limitations to the statistical method. There is no
correct model, every model is an approximation; to quote G.E.P Box, "Essentially, all
models are wrong, but some are useful.” (Box & Draper 1987). The whole question of
generalizabilty is a complex one. Should we expect to achieve more general results in
the physical sciences? In the next Chapter I shall consider the development of a
prognostic survival model for the Cardiac Resynchronization Therapy in Heart Failure

(CARE-HF) data set.
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CHAPTER 2 THE CARE-HF STUDY

e (ardiac resynchronization therapy significantly reduces mortality in
patients with heart failure

e What patient characteristics may modify the effects of cardiac
resynchronization therapy?

e To investigate treatment modifiers a prognostic model is developed

e Ischaemic aetiology, more severe MR, and increased NT-pro-BNP were all
independent predictors of an increased risk of death or unplanned
cardiovascular hospitalization irrespective of randomised treatment (CRT)

e Systolic blood pressure and Interventricular mechanical delay are identified

as treatment modifiers

2.0.0 Introduction

In this work a prognostic model was fitted to data obtained from the Cardiac
Resynchronisation in Heart Failure Trial (CARE-HF). CARE-HF is one of the largest
randomized studies of cardiac resynchronization therapy (CRT), has a longer duration
of follow-up than any other, and has a robust primary clinical endpoint (Richardson et
al. 2007). These attributes make it a valuable resource for the investigation of those
factors that predict the likelihood that a patient will or will not respond to cardiac
resynchronisation therapy (CRT). Clinicians view CRT in the context of those
patients who will derive benefit from CRT (responders) and those who will not (non
responders). If a patient is in receipt of CRT what characteristics of that individual

may determine the likelihood of them receiving benefit from the treatment? This leads
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us (Richardson et al. 2007) to consider treatment modifiers, i.e. those patient
attributes that modify the effect of CRT. CRT is a treatment that aims to restore and
improve cardiac function in patients who suffer electrical conduction problems in the
heart as a result of heart failure (Medtronic 2009). Heart failure is a common and
serious condition with a complex and varied pathophysiology (Cleland et al. 1999). A
substantial minority of patients with heart failure due to left ventricular (LV) systolic
dysfunction have prolonged QRS, QRS represents ventricular depolarisation and
amongst these patients there is a high prevalence of cardiac dyssynchrony, which
leads to a decline in cardiac efficiency through diverse mechanisms, see (Xiao et al.
1993), (Daubert et al. 1999) and (Auricchio et al. 1999). For patients with heart
failure due to cardiac dyssynchrony who have persistent moderate or severe
symptoms despite standard pharmacological therapy, CRT improves cardiac function
leading to an improvement in well-being and a reduction in morbidity and mortality,
see (Abraham et al. 2002),(Bristow et al. 2004),(Cleland et al. 2005) and (Freemantle
et al. 2006).

CRT is delivered by means of a physical device akin to a pacemaker, see (Medtronic
2009). The aim of this analysis was to evaluate the relationship between prospectively
defined clinical, echocardiographic and neurohormonal variables, collected at baseline
during the CARE-HF trial, on overall outcome in all patients and on the response to

CRT.

The prognostic model presented in this work, is that developed by Richardson,
Freemantle, Calvert, Cleland and Tavazzi (Richardson et al. 2007) based on
Individual patient data collected during the CARE-HF trial. The design and results of

the CARE-HF study have been reported previously (Cleland et al. 2005), (Cleland et
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al. 2001). In brief, the CARE-HF trial enrolled 813 patients recruited from 82 centres
across Europe. Eligible patients were at least 18 years of age, had evidence of heart
failure for at least 6 weeks, and were in New York Heart Association class (NYHA)
III or IV despite receipt of standard pharmacologic therapy, with a LV ejection
fraction (EF) of <35%, a LV end-diastolic dimension of > 30 mm (indexed to height),
and a QRS interval of > 120 ms on the electrocardiogram. Patients with a QRS
interval of 120—-149 ms were required to meet two of three additional criteria for
dyssynchrony: an aortic pre-ejection delay of more than 140 ms, an interventricular
mechanical delay (IVMD) of > 40 ms, or delayed activation of the posterolateral LV
wall. The IVMD was calculated as the time difference between the onset of forward
flow in the LV (APET) and RV (PPET) outflow tracts: IVMD =APET — PPET (Ghio
et al. 2006). A total of 409 patients were randomized to CRT and medical therapy,
whereas 404 received medical therapy alone (Richardson et al. 2007). The primary
outcome was the time to death from any cause or an unplanned hospitalization for a

major cardiovascular event. Patients were followed up for a mean of 29.4 months.
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2.1.0 Developing the Prognostic Model

A number of potentially important clinical, echocardiographic, and neurohormonal
variables collected at baseline were specified a priori for evaluation in a prognostic
model. These were mitral regurgitation (MR), end-systolic volume index, aetiology
(ischaemic and non-ischaemic disease), EF, use of beta-blockers, age, QRS interval
(QRS), supine systolic blood pressure (SBP), glomerular filtration rate, N-terminal
pro-brain natriuretic peptide, as determined by Roche Assay (NT-pro-BNP), and
IVMD ,see (Talwar et al. 1999), (Pitzalis et al.. 2005), (Doust et al. 2005). MR was
defined as area of colour flow Doppler regurgitant jet divided by area of left atrium in
systole, both in square centimetres. The primary composite outcome was time to death
from any cause, or an unplanned hospitalization for a major cardiovascular event. Cox
Proportional Hazards models were fitted to identify predictors of risk of death from
any cause or an unplanned hospitalization for a major cardiovascular event (main
effects) and to identify any predictors modified by cardiac resynchronization (Hosmer
& Lemeshow 1992) and (Lee 1992) ,the SAS code for producing theses models is to
be found in Appendix 1.0.0. The modelling strategy was based upon the approach
suggested by Harrell et al 1996, see Chapter 1 for an introductory discussion of

Harrell's approach. In order to evaluate whether any of the variables had a non-linear
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relationship with outcome, transformations of each variable using the natural
logarithm and cubic spline were assessed (Herndon & Harrell 1990), (Wegman &
Wright 1983), (Poirier 1979), (Smith 1979) and (Royston 2000) see Chapter 4 for a
further discussion of cubic splines, SAS code used for fitting cubic splines is to be
found in Appendix 1.0.0. The Akaike Information Criterion (AIC) was used to
determine the most appropriate transformation (Akaike 1974), see Chapter 5 for a
more detailed discussion of the AIC. The validity of any transformations was further
assessed by examining plots of the cumulative Martingale residuals versus the
transformed variable (Verweij et al. 1998), (Therneau & Grambsch 1990). The
proportional hazards assumption was also assessed. Statistically significant variables

identified from univariate analyses (Table 2.2).

All analyses were performed in SAS v 9.1 using the PHREG procedure and the RCS
macro (Heinzl & Kaider 2006). The RCS macro was used to fit cubic splines with
four knots, Herndon and Harrell (Herndon & Harrell 1990) suggest based on
empirical studies, that 4 knots are sufficient to model most data, this point will be
considered further in Chapter 4. For the continuous variables, with the knot positions
specified PHREG was then used to generate a model from which it was possible to
determine whether the cubic spline was an appropriate transformation for the
particular variable concerned. All analyses were undertaken according to the intention
to treat principle, i.e. the effect of a treatment is assessed based on the planned
treatment rather than the actual treatment (ICH E9. 1999). In a clinical trial use of the

intention to treat principle allows for an unbiased estimate of the effect of a treatment
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in situations where a number of patients may not adhere to the treatment programme.
Alternative approaches are to exclude those patients who do not adhere or to include
them in the group the treatment group, this approach leads to a biased estimate of the
treatment effect (Montori & Guyatt 2001). To validate the final model two further
steps were taken. First, a bootstrap revalidation process was used to estimate the
degree of over-fitting from the model fitting process (Harrell et al. 1996). The design
library in the statistical package R was used to undertake this validation (Design
Library Harrell Frank E. 2009a). Second, multiple imputation using the SAS
procedures MI (SAS Institute. 2009), and MIANALYSE were employed to examine
the effect of missing data on the final model. In (Richardson et al. 2007) it must be
stressed that the authors were concerned with identifying possible treatment modifiers
i.e. interactions with CRT. The approach to identifying possible treatment modifiers
presented in (Richardson et al. 2007) and this thesis are open to question and
criticism. It can be argued that if there is a genuine interaction between CRT and
another independent variable then this interaction will be identified using the
conventional approach of first fitting main effects and then going on to fit interaction
terms. The approach to identifying interaction terms adopted in this thesis had been
employed in previous work and was suggested to myself as a way of dealing with fact
that treatment modifiers where the primary concern as opposed to main effects. I do
not claim that this approach is the right way. Those variables identified to be
significantly (P< 0.05) associated with the primary composite outcome (time to death
from any cause, or an unplanned hospitalization for a major cardiovascular event)
were entered in a multivariable Cox Proportional Hazards model using a forward
stepwise selection to obtain the final model (Table 2.3). The entry criteria for the

forward selection procedure was 0.05, meaning a variable has to be significant at the
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0.05 level before it can enter the model. When using a forward selection method I

start by fitting the Cox models h(y) = exp(S, + 5, X;) , where i=(1,2...,m), m is the

number of independent variables, i.e. I have the models

h(y) = exp(B, + £, X)) .h(Y) = exp(By + B, X,) ... h(Y) = exp(By + X)) -

For each of these models once the p-value p for X; was determined, I can identify
candidate variables for inclusion in the model by considering all X; where p<a, a
being a prescribed significance level. If there are several X, that satisfy p < &, then [
select X, , where X, is the X, with the smallest p-value from amongst the

candidate X, s. We then fit the models h(y) = exp(S5, + S X, + £, X,), i #Kk. From
these models the X, that has the smallest p-value (denoted X, ) is included i.e. I now
have h(y)=exp(f, + B X + 5, X, + B, X,) i=Kk,i=]I.This process is repeated

until there are no independent variables left. In the forward selection method a
variable will remain in the model no matter what new variables are included. In the
forward stepwise selection procedure the forward selection procedure described above
is refined in the following way. The p-value p of each independent variable that is

already included in the model is examined at each step. If p is greater , then X, is
removed from the model. Also, if X, has been removed previously from the model it

may re-enter if p is less than o, but it may re-enter only once, it cannot enter more

than twice. In forward stepwise selection I start by fitting the

models h(y) = eXp(ﬁo +ﬂlxl)’ h(y) = eXp(ﬂo +ﬂ2X2) seees h(y) = eXp(ﬂo +ﬂmxm)

these models will under-fit the data. Harrell suggests that the ‘limited’ backward

stepwise selection be employed; it is claimed that this method has advantages over the
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forward stepwise selection, a comprehensive discussion on backward methods can be
found in (Mantel 1970). Beale (Beale 1970) offers some interesting criticism of
Mantel’s arguments. In backward stepwise selection I start with the full model, which
it could be argued is a better starting point. The choice between backward or forward
stepwise selection is in my view a matter for the individual researcher, it would be
misleading to dismiss forward selection without considering the fact that all automatic
variable selection methods, including backward methods can be criticised as
producing suspect models. Ira Berstein has described Stepwise methods as “data
driven variable selection schemes”, (Ulrich 1997), Harrell although suggesting that a
researcher perform stepwise selection (Harrell et al. 1996) points out that stepwise
methods do not tackle over-fitting, and recommends that variables are retained in the
model irrespective of their p-values, as this leads to a model with better
discriminatory power compared to a model produced solely on the basis of the
stepwise selection method. This appears strange, variables that are not statistically
significant and might be regarded as being redundant are important in terms of the
discriminatory power of the model (they may be clinically significant). Forward
stepwise selection is useful in situations where I might wish to fit a large number of
interactions. Which selection method is best? A definite answer to this question does
not appear to exist. All variable selection procedures posses some defect, and so
whichever method a researcher adopts he or she must carefully examine the final

model and perform some type of validation.
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2.2.0 Results

The baseline characteristics of patients from the CARE-HF trial are shown in Table

2.1.

Control Treatment

n median | (IQR) n median | (IQR)
Age (years) 403 66 (59-72) | 409 67 (60-73)
Aetiology (ischaemic Y/N) Y=153 Y=186

N=250 N=223
Systolic blood pressure 399 110 (100— 404 110 (100-
(mmHg) 125) 125)
Glomerular filtration rate 372 61 46-73) | 367 60 (46-73)
(mL/min/1.73m?)
N-terminal pro-brain 370 1806 (719— 362 1920 (744-
natriuretic peptide (pg/ml) 3949) 4288)
Use of beta-blockers (Y/N) Y=288 Y=298

N=116 N=111
QRS width (ms) 394 160 (152- 401 160 (152—

180) 180)

Interventricular mechanical | 370 50 (30-66) | 365 49 (32-67)
delay (ms)
End-systolic volume index 376 117 (94— 356 121 (92—
(mL/m?) 147) 151)
Ejection fraction (< 35%) 378 25 (22-29) | 367 25 (21-29)
Mitral regurgitation 303 23 (11-34) | 302 21 (12-33)

Table 2.1 Baseline characteristics of patients total number in study N=813

Notes for Table 2.1 IQR (interquartile range). Mitral regurgitation defined as area of colour flow
Doppler regurgitant jet divided by area of left atrium in systole, both in square centimeters.

These data are consistent with the patients having, on average, moderate to severe LV

systolic dysfunction, dilatation and dyssynchrony with a low arterial pressure, and

renal dysfunction. About 40% of patients had ischaemic heart failure due to

ischaemia. Univariate analyses were used to identify those variables that were

significant predictors of outcome (time to death from any cause, or an unplanned

hospitalization for a major cardiovascular event), irrespective of treatment allocation,
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and those variables shown to predict response to CRT (indicated by the CRT *

variable interaction term) (Table 2.2).
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n Hazard ratio | 95% CI P-value
Mitral regurgitation * 605 | 2.14 1.68-2.71 | 0.0001
CRT 1.85 0.59-5.08 | 0.2938
CRT * Mitral regurgitation” 0.72 0.50-1.02 | 0.0670
Interventricular mechanical delay (ms) 7351 0.99 0.99-1.00 | 0.0028
CRT 0.92 0.62-1.36 | 0.6784
CRT * Interventricular mechanical delay (ms) 0.99 0.99-1.00 | 0.0473
End-systolic volume index (mL/m2)* 732 | 1.52 1.08-2.14 | 0.0175
CRT 0.62 0.04-9.88 | 0.7354
CRT * End-systolic volume index (mL/m2)?* 1.00 0.56-1.77 | 0.9978
Glomeruler filtration rate (ml/min/1.73 m2) 7391 0.99 0.98-0.99 | 0.0005
CRT 0.74 0.38-1.48 | 0.3964
CRT * Glomeruler filtration rate (ml/min/1.73 m2) 1.00 0.99-1.01 | 0.5811
Systolic blood pressure (mmHg) 803 | 0.99 0.98-1.00 | 0.0011
CRT 0.14 0.03-0.63 | 0.0097
CRT * Systolic blood pressure (mmHg) 1.01 1.00-1.03 | 0.0491
Ejection fraction (%)” 745 1 0.38 0.22-0.66 | 0.0006
CRT 0.38 0.02-5.44 | 0.4298
CRT * Ejection fraction (%)* 1.24 0.51-3.03 | 0.6341
732

N-terminal pro-brain natriuretic peptide (pg/mL)* 1.47 1.31-1.66 | 0.0001
CRT 0.33 0.08-1.37 | 0.1275
CRT *

N-terminal pro-brain natriuretic peptide (pg/mL)* 1.08 0.91-1.29 | 0.3833
Age (years) 813 ] 1.02 1.01-1.04 | 0.0011
CRT 0.87 0.21-3.6 0.8416
CRT * Age (years) 1.00 0.97-1.02 | 0.6400
Ischaemic (yes/no) 812 | 1.68 1.29-2.19 | 0.0001
CRT 0.48 0.35-0.66 | 0.0001
CRT * Ischaemic (yes/no) 1.49 0.99-2.26 | 0.0583

Table 2.2 Potential predictors of risk: results of univariable analyses

a = log, transformed, * denotes an interaction

Notes for Table 2.2

Mitral regurgitation represents the results of fitting single Cox Proportional Hazards model, a patient’s
time to the primary event being assumed to be dependent on mitral regurgitation and also the presence
or absence of CRT. The term CRT * log(MR) is a treatment modifier, this means that the beneficial
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effect of CRT may be reduced or increased depending on the patients level of mitral regurgitation.
Mitral regurgitation is a significant predictor of outcome, P < 0.0001, however, the P-value for CRT *
log(MR) > 0.05 so mitral regurgitation does not significantly change the benefit a patient may receive
from CRT.

The most appropriate transformation of each variable is indicated (for example a
logarithmic transformation led to the best model fit based on the AIC for MR). The
remaining variables (beta-blocker use and QRS width) were not significantly
associated with outcome and did not predict response to CRT. Those variables
identified to be significantly (P < 0.05) associated with the primary composite
outcome, time to death from any cause, or an unplanned hospitalization for a major
cardiovascular event were entered in a multivariable Cox Proportional Hazards model

(Table 2.3)

Transformati | Hazard 95% P-
on ratio CI value
Significant Predictors of overall outcome
1.38-
Mitral regurgitation Log, 1.71 2.12 0.0001
N-terminal pro-braina natriuretic peptide 1.17-
(pg/ml) Log. 1.31 1.47 0.0001
0.98-
Systolic blood pressure (mmHg) Linear 0.99 1.00 0.0698
0.99-
Interventricular mechanical delay (ms) Linear 1 1.01 0.7617
1.45-
Actiology (ischaemic) (yes/no) Factor 1.89 2.46 0.0001
0.47-
CRT (yes/no) Factor 0.608 0.79 0.0003
Predictors of response to CRT
1.00-
Systolic blood pressure (mmHg)*CRT Linear 1.02 1.03 0.0183
Interventricular mechanical delay 0.98-
(ms)*CRT Linear 0.99 1.00 0.0084

Table 2.3 Significant Predictors of outcome and response to CRT

Notes for Table 2.3

Mitral regurgitation and N-terminal pro-brain natriuretic peptide have been identified as statistically
significant predictors of outcome. The terms CRT * SBP and CRT * IVMD represent modifiers of
response to CRT, i.e. both systolic blood pressure and interventricular mechanical delay may
modify the beneficial effect of CRT. The P-values for CRT * SBP and CRT * IVMD are both <
0.05,indicating that systolic blood pressure and interventricular mechanical delay are statistically
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significant. Note that individually systolic blood pressure nor interventricular mechanical delay are
statistically significant, in other words they are not predictors of outcome. The P-value for CRT is
relatively large (0.0347) due to the inclusion of the CRT modifiers in the model.

Ischaemic aetiology, more severe MR, and increased NT-pro-BNP were all
independent predictors of time to death or unplanned or unplanned cardiovascular
hospitalization irrespective of randomised treatment (CRT) (Hazard ratio (HR) 1.89,
95% CI 1.45 to 2.46, HR 1.71, 95% CI 1.38 to 2.12 and HR 1.31, 95% CI 1.17 to
1.47, respectively) and increasing SBP with a decreasing risk of an event (HR 0.99,
95% CI1 0.98 to 1.00) (Figure 2.1A-E). Note, in Figures 2.1A-E refer to median
values, for the combined data, i.e. the median for the treatment and control groups
combined. The prognostic model for the CARE-HF data includes two interaction
terms CRT*Interventricular Mechanical Delay and CRT*Systolic Blood Pressure.
These interaction terms involve a continuous and a binary variable, orthogonalization
of the continuous variables and re-coding of the binary variables can be of great help

in interpreting interaction terms. A Continuous variable X is transformed in the
following way X — X , a binary variable 1(1,0) is re-coded as 0.5 and -0.5 . Table 2.2a

presents the same univariate analyses as in Table 2.2 but continuous variables have
been transformed as described above along with re-coding of binary variables. The
hazard ratio for CRT is much more stable across the univariate models compared with

those presented in Table 2.2
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n Hazard ratio | 95% CI P-value
Mitral regurgitation* 605 | 1.807 1.511-2.610 | <.0001
CRT 0.692 0.541 -0.883 | 0.0031
CRT * Mitral regurgitation® 0.716 0.501 - 1.024 | 0.0670
Interventricular mechanical delay (ms) 7351 0.989 0.985-0.992 | <.0001
CRT 0.632 0.507 - 0.787 | <.0001
CRT * Interventricular mechanical delay (ms) 0.992 0.985-1.00 0.0473
End-systolic volume index (mL/m2)* 732 | 1.515 1.138-2.018 | 0.0044
CRT 0.618 0.497 - 0.768 | <.0001
CRT * End-systolic volume index (mL/m2)* 0.999 0.564-1.771 | 0.9978
Glomeruler filtration rate (ml/min/1.73 m2) 739 1 0.986 0.980 - 0.991 | <.0001
CRT 0.611 0.489 - 0.764 | <.0001
CRT * Glomeruler filtration rate (ml/min/1.73 m2) 0.997 0.986 - 1.008 | 0.5811
Systolic blood pressure (mmHg) 803 | 0.993 0.987-1.00 | 0.0364
CRT 0.631 0.513-0.775 | <.0001
CRT * Systolic blood pressure (mmHg) 1.013 1.00 - 1.025 0.0491
Ejection fraction (%)* 745 | 0.422 0.270 - 0.659 | 0.0002
CRT 0.639 0.516-0.792 | <.0001
CRT * Ejection fraction (%)* 1.242 0.509 - 3.028 | 0.6341
732

N-terminal pro-brain natriuretic peptide (pg/mL)* 1.534 1.403 -1.676 | <.0001
CRT 0.593 0.470 - 0.750 | <.0001
CRT *

N-terminal pro-brain natriuretic peptide (pg/mL)* 1.082 0.906 - 1.292 | 0.3833
Age (years) 813 | 1.021 1.011 - 1.032 | <.0001
CRT 0.621 0.506 - 0.763 | <.0001
CRT * Age (years) 0.995 0.974 -1.016 | 0.6400
Ischaemic (yes/no) 812 | 2.058 1.671 —2.534 | <.0001
CRT 0.589 0.478 - 0.725 | <.0001
CRT * Ischaemic (yes/no) 1.494 0.986 —2.263 | 0.0583

Table 2.2a Results of Orthogonalization Potential predictors of risk: results of univariable analyses

a = log, transformed, * denotes an interaction
Notes for Table 2.2a

Mitral regurgitation represents the results of fitting single Cox Proportional Hazards model, a patient’s
time to the primary event being assumed to be dependent on mitral regurgitation and also the presence
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or absence of CRT. The term CRT * log(MR) is a treatment modifier, this means that the beneficial
effect of CRT may be reduced or increased depending on the patients level of mitral regurgitation.
Mitral regurgitation is a significant predictor of outcome, P < 0.0001, however, the P-value for CRT *
log(MR) > 0.05 so mitral regurgitation does not significantly change the benefit a patient may receive
from CRT.
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Figure 2.1 (A) Time to first primary event by systolic blood pressure. (B) Time to first primary event
by interventricular mechanical delay. (C) Time to first primary event by aetiology (ischaemia). (D)
Time to first primary event by mitral regurgitation. (E) Time to first primary event by N-terminal pro-
brain natriuretic peptide (pg/ml).(F) Time to first primary event by Cardiac Resynchronisation

Only two variables, IVMD and SBP predicted response to CRT, with modest
statistical precision (Figures 2.2 and 2.3). Patients with increasing SBP appear to
receive reduced benefit from CRT (HR 1.02, 95% CI 1.00-1.03), whereas those

patients with more severe [IVMD appear to benefit more from treatment (HR 0.99,

95% CI 0.98-1.00).
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It is important that the validity of the proportional hazards assumption is assessed.
The following SAS code shows how the ASSESS option in PHREG is used to test the

proportional hazards assumption for the final model.

ods graphics on;
proc phreg data=card.progex3;
class Ischemic treat /desc;
model futime*primary(0)= treat mitral_r Roche supsys IVMD
Ischemic trsup trivm;
assess PH/ resample seed=7548;
run;
ods graphics off;

In the above code assess PH specifies that proportional hazards assumption are tested,
Table 2.4 shows the Kolmogorov type supremum test for proportional hazards
produced by ASSESS, ASSESS uses the methods of Lin (Lin, Wei & Ying 1993).
From Table 2.4 there is some evidence that the proportional hazards assumption is
violated for CRT (p=0.0380). The remaining variables appear not to violate the
proportional hazards assumption. The non proportional hazards for CRT could be
dealt with by fitting a model with a time dependent variable, this could be achieved by
introducing the term CRT*log, (time) .The time dependent variable must be defined
after the model statement in PHREG .The results of fitting this model are shown in
Table 2.5. Since the main objective of the model presented in this thesis is to identify
modifiers of CRT and not to determine the effect of CRT itself, it might be argued
that the non proportional hazards for CRT could be ignored and that the model
presented in Table 2.3 would be adequate for the purposes of identifying modifiers of
CRT. Another approach to accommodating non proportional hazards would be to
develop a stratified model, the strata being the variable for which proportional hazards
is violated. This approach is valid if the stratification is based on a variable which is

not of primary interest.
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Supremum Test for Proportional Hazards Assumption

Variable Maximum Replications Seed
Absolute
Value
CRT 1.4477 1000 7548
Mitral regurgitation 0.9270 1000 7548
N-terminal pro-brain natriuretic peptide 0.7351 1000 7548
(pg/ml)
Systolic blood pressure (mmHg) 0.9699 1000 7548
Interventricular mechanical delay (ms) 0.8972 1000 7548
Acetiology (ischaemic Y/N) 0.9108 1000 7548
Systolic blood pressure (mmHg)*CRT 0.4964 1000 7548
Interventricular mechanical delay 1.0169 1000 7548
(ms)*CRT

Table 2.4 Test of Proportional Hazards (Note Mitral regurgitation and N-
terminal pro-brain natriuretic peptide (pg/ml) are log. transformed)
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CRT
Mitral regurgitation

N-terminal pro-brain natriuretic peptide
(pg/ml)

Systolic blood pressure (mmHg)
Interventricular mechanical delay (ms)
Aetiology (ischaemic Y/N)i
Systolic blood pressure (mmHg)*CRT

Interventricular mechanical delay
(ms)*CRT

CRT*log, (time)

Parameter
Estimate

0.69621

0.54294

0.27144

-0.0002648

-0.00528

0.62633

0.01723

-0.01202

-0.22803

Standard
Error

0.58332

0.10870

0.05912

0.00369

0.00255

0.13515

0.00727

0.00497

0.10857

Chi-
Square

1.4245
24.9468

21.0796

0.0051
4.2932
21.4765
5.6161

5.8433

44116

P

0.2327

<.0001

<.0001

0.9428

0.0383

<.0001

0.0178

0.0156

0.0357

Table 2.5 Model with time dependent variable CRT*log, (time) (Note Mitral

regurgitation and N-terminal pro-brain natriuretic peptide (pg/ml) are log,

transformed)
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Figure 2.2 Time to first primary event by systolic blood pressure (mmHg) and cardiac
resynchronization therapy.
Number at risk Systolic Blood Pressure (SBP)
SBP 1 Month | 3 Months | 6 Months | 12 Months
<117 (mmHg) without CRT | 198 173 154 125
<117 (mmHg) with CRT 193 179 166 141
>117 (mmHg) without CRT | 186 171 161 133
>117 (mmHg) with CRT 191 181 167 147
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Figure 2.3 Time to first primary event by interventricular mechanical delay (ms) and cardiac
resynchronization therapy.

Number at risk Interventricular Mechanical Delay (IVMD)
IVMD 1 Month | 3 Months | 6 Months | 12 Months
<49 ms without CRT | 202 179 164 130
<49 ms with CRT 213 194 179 145
>49 ms without CRT | 181 165 151 128
>49 ms with CRT 176 169 159 147
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2.2.1 Discussion

The CARE-HF trial demonstrated that CRT exerts a substantial reduction in
morbidity and mortality with little evidence of heterogeneity in pre-defined subgroups
(Cleland et al. 2005). This more detailed analysis provides evidence that IVMD and
to a lesser extent SBP predict a patients’ response to CRT. These finding must be
treated with a degree of caution as the model is exploratory and the interactions
between CRT and either IVMD or SBP were not strong. However, the observed
interaction between IVMD and the effects of CRT are consistent with the view that
IVMD is a more precise physiological marker of cardiac dyssynchrony, the problem
that CRT is designed to treat, than any other variable analysed. IVMD could therefore
potentially be used as an inclusion criterion in future randomized controlled trials
examining the effects of CRT in patient populations not included in CARE-HF, such
as patients with less severe symptoms or with shorter QRS intervals. Whether IVMD
should now be used in preference or in addition to QRS duration to identify whether a
patient should receive CRT is a matter for the individual clinician to decide and for
future research. It is of great importance to note that IVMD is the best predictor of
response to CRT in a population having large volumes, low EF, and broad QRS. We
cannot state that IVMD is a better predictor of response to CRT in other populations

(Ghio et al. 2004).

Patients recruited to the study had severe heart failure (NYHA class III-1V) and
therefore had an inherently high risk of experiencing the primary outcome during the
study follow-up (which ranged from 18 to 44.7 months). The hazard functions from

the model are based upon prediction of event rates across the maximum follow-up
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from the study, which had reached 55% in the control group a mean 29.4 months of
follow-up. In order to estimate the absolute risk of an event with changing SBP and
IVMD, the remaining clinical predictors were held constant. It is important to note
that since these are also strong clinical predictors of outcome changing these values
from the median has a large impact on the estimates of absolute risk. For example, in
a non-ischaemic patient not receiving CRT with a SBP of 117 mmHg, use of lower
interquartile range values for mitral regurgitation and NT-pro-BNP results in an
estimate of absolute risk of approximately 0.84, an absolute reduction of around 13%.
The plasma concentration of NT-pro-BNP was a strong predictor of clinical outcome.
Other competing measures of ventricular dysfunction were eliminated from the
multivariable model. CRT reduces the severity of mitral regurgitation and plasma
concentrations of NT-pro-BNP, and CRT has substantial clinical benefits in a broad
range of patients with evidence of cardiac dyssynchrony, poor LV systolic function,
and persistent symptoms despite pharmacological therapy. This analysis provides
further evidence that a measure of cardiac dyssynchrony rather than the QRS interval
on the ECG is currently the best marker of dyssynchrony. However, the predicted
benefits from the model indicate that CRT appears worthwhile across the range of
patients included in the CARE-HF trial. In the next chapter we will consider the
function form of the model, and how the correct form can be specified by use of cubic

splines or fractional polynomials.
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CHAPTER 3 RISK ESTIMATION

e Relative and absolute risk
e Risk score produced using the prognostic model for the CARE-HF data

e Risk score calculators for the CARE-HF data are presented

3.0.0 Introduction

The purpose of a prognostic model is to aid clinical decision making (Wyatt &
Altman 1995). A prognostic model can enable a doctor to assess risk for an individual
patient. Prognostic models can be used by a doctor to assist in making an informed
and rational choice as to what treatment a patient should or should not receive. For
example it may be that several treatments are available, by using a prognostic model a
doctor can determine the treatment that will offer maximum benefit to the patient.
Some treatments may be very costly and unfortunately due to financial constraints it
may be necessary to target resources at those patients who are most likely to respond
positively to a particular treatment regime. Bodies such as NICE (NICE 2009) might
rely on a prognostic model in targeting resources. A doctor often needs to determine
the risk (Sedgwick 2001) that a patient will experience some event of interest. For
instance given a patient’ age, weight, blood pressure and the fact that the patient is
receiving treatment for a heart condition, what is the chance of the patient suffering a
heart attack? When considering risk for an individual patient the term absolute risk is

employed. If instead of individual patients groups of patients are considered e.g.
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patients receiving treatment versus those not receiving treatment, male versus female
patients; then the term relative risk is employed. Relative risk is a comparison of the
risk of some event of interest occurring in two groups of patients. The fact that a
prognostic model will be used in the ‘real’ world to guide a clinician in making
important decisions emphasises the need for good quality models. Also the model
needs to be available in a form that is easily used by a clinician to calculate risk. The
prognostic model can be made available to the clinician as a risk score calculator. A
risk score calculator is an implementation of the prognostic model in software form.
The EuroScore (Euroscore Website) calculator is an example of a risk score
calculator. I have produced two simple risk score calculators using the prognostic
model for the CARE-HF data (Richardson et al. 2007). The calculators allow the
clinician to quickly and easily calculate a risk score for an individual patient. The risk
score gives a measure of how likely a patient is to die from any cause or be
hospitalised due to a major cardiovascular event. The calculators could be used on a
computer system at a GP’s surgery, or if installed on a laptop computer or hand held
device could be used in a bedside prognosis in a hospital ward or a patient’s home.
Figure 3.1 below shows the risk score calculator produced by the present author
running on Microsoft Windows XP. The calculator was written using Visual Basic
For Applications (VBA) and is embedded in a Microsoft Excel workbook. Figure 3.2
shows the risk score calculator running on GNU/Linux, this version of the calculator
was written using Gambas (Benoit Minisini Website 2009) a free software equivalent

to Visual Basic and is a standalone program.
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Risk Score Calculator,

Mitral requrgitation

N-terminal pro-brain natriuretic peptide {pafml)

Systalic blood pressure (mmHg)

Interventricular mechanical delay (ms)

Aetiolagy (ischaemic)

Cardiac Resychronisation

Risk Score

381

2855

100
13.8

Mo -

2,93

x]

Figure 3.1 Risk Score Calculator developed by the author running on Microsoft Windows XP

Mitral requrgitation

N-terminal pro-brain natriuretic peptide (pg/ml)

Systolic blood pressure (mmHg)

Interventricular mechanical delay (ms)

Aetiology (ischasmic)

Cardiac Resynchronisation

Calculate Score |

[38.1

285

8

100

{138

HOl

yes

Risk Score

2929246540661

Figure 3.2 Risk Score Calculator developed by the author running on GNU/Linux
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3.1.0 Calculation of risk scores

Once a prognostic model has been developed it is possible to determine both absolute
and relative risks. Also the prognostic model can be used to generate a risk score, this

risk score is the linear predictorn = B, + B,X, +...+ B, X, . For the CARE-HF model
the risk score does not include f,.To illustrate how these estimates of risk are

obtained I shall use the prognostic model developed for the CARE-HF data
(Richardson et al. 2007).

The coefficients of the final model can be used to generate a risk score for an
individual patient. A quick and convenient way of estimating risk for an individual
patient is to substitute patient characteristics in the Cox Proportional Hazards model.
An example showing how the risks score is calculated as follows:

Risk score for patient with mitral regurgitation of 38.1, NT-pro-BNP of 2858 pg/ml,
systolic blood pressure of 100 mmHg, IVMD of 13.8 ms, ischaemic, and in receipt of
CRT would be calculated as follows:

Risk Score

=0.53791og, (MR) +0.2717 log, (NT — pro— BNP) — 0.0001SBP — 0.0055IVMD
+0.6340ischaemic +0.0172(CRT *SBP) — 0.0131(CRT * IVMD) — 0.4978CRT

So for the patient above we would have Risk Score

=0.5379(log, (38.1) — 2.94) + 0.2717(log, (2858) — 7.43) — (0.0001 x (100 — 117)) + (0.0055 x (13.8 — 49.9)

+(0.6340% 0.5) +0.0172(0.5x (100 —117)) — 0.0131(0.5 x (13.8 — 49.9)) — (0.4978 x 0.5) = 0.48

Figure 3.3 shows a plot of the risk score versus the probability of experiencing the

primary event. By using the predict option in PHREG the survivor function estimate s
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can be obtained, a new data set containing the risk score and the probability of

experiencing the primary event (1-s) before the end of the follow up period can then

be created.
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Figure 3.3 Risk score vs. probability of primary event before end of follow-up period.
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Figure 3.4 Histogram of risk score for patients before end of follow-up period.

3.2.0 Estimation of absolute risk

Estimates of the survival function S(t) and the absolute risk 1— S(t)

were produced using the SAS procedure PHREG . Estimation of absolute

risk using real patient data provides clinically relevant estimates of risk. Risk
estimates were derived on the basis of the maximum follow-up in the CARE-HF
study, which was 44.7 months, although including censorship patients were only
followed for on average 29.4 months. Thus predicted event rates are considerably
higher than those actually observed in the trial. The effect of SBP and IVMD on the

absolute risk of a patient experiencing death from any cause or an unplanned
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hospitalization for a major cardiovascular event in the presence and absence of CRT
or ischaemic heart disease are shown in Tables 3.1 and 3.2, respectively. In both
examples, mitral regurgitation, NT-pro-BNP, and IVMD were held constant at the
median values (see Table 3.3) the values NT-pro-BNP and IVMD given in Tables 3.1
and 3.2 are those after othogonalization . The estimated absolute risk of experiencing
death or an unplanned hospitalization for cardiovascular cause for a non-ischaemic
patient with a SBP of 117 mmHg (the median for the whole dataset) on medical
therapy (but not CRT) was 0.62 over the entire trial duration (Table 3.1). Treatment of
such a patient with CRT reduces the estimated absolute risk to 0.44. The presence of
ischaemia led to an increase in absolute risk to 0.67 and 0.84 in the presence and
absence of CRT, respectively. The absolute risk of experiencing event decreased with
increasing SBP, this is due to the fact that although increased SBP alone is associated
with a decrease in risk, the statistical interaction between SBP and CRT is associated
with a small increase in risk. The absolute risk for a patient with IVMD of 49 ms vs. a
patient with IVMD of 66 ms in the presence and absence of ischaemia and CRT is
shown in Table 3.2. Increasing the IVMD from 49 to 66 ms leads to an increase in the
absolute risk of experiencing an event, this result contradicts what would be expected
from the model given that the coefficient for IVMD is —ve. From figure 2.3 it appears
that increasing IVMD does diminish risk, however at around 1050 days the survival
curves for patients not in receipt of CRT start to cross. The patients considered in
Tables 3.1 and 3.2 had survived beyond 1050 days. . The estimated absolute risk of
experiencing a primary outcome event may seem surprisingly high in some cases
(absolute risk of 0.99 as shown in Tables 3.1 and 3.2). However, patients recruited to
the study had severe heart failure (NYHA class III-IV) and therefore had an

inherently high risk of experiencing the primary outcome during the study follow-up
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(which ranged from 18 to 44.7 months). The hazard functions from the model are

based upon prediction of event rates across the maximum follow-up from the study,

which had reached 55% in the control group in mean 29.4 months of follow-up. In

order to estimate the absolute risk of an event with changing SBP and IVMD, the

remaining clinical predictors were held constant. It is important to note that since

these are also strong clinical predictors of outcome changing these values from the

median has a large impact on the estimates of absolute risk.

Systolic Blood
Patient  Pressure (mmHg)
-0.49
-0.49
-0.49
-0.49
12.5
12.5
12.5
12.5

OO L WD —

Actiology
(Ischaemic)

No
No
Yes
Yes
No
No
Yes
Yes

Cardiac

Resynchronisation

Therapy Absolute Risk

Yes 0.44
No 0.62
Yes 0.67
No 0.84
Yes 0.48
No 0.58
Yes 0.71
No 0.81

Table 3.1 Estimated absolute risk of an event for patients with different systolic blood pressures (117—
130 mmHg) with and without cardiac resynchronisation therapy and in the presence and absence of

ischaemic heart disease.

Interventricular Mechanical

Patient  Delay (ms)

0NN L AW~

0.1
0.1
0.1
0.1
17.44
17.44
17.44
17.44

Actiology
(Ischaemic)
No

No

Yes

Yes

No

No

Yes

Yes

Cardiac

Resynchronisation Absolute
Therapy Risk

Yes 0.44
No 0.62
Yes 0.67
No 0.84
Yes 0.38
No 0.63
Yes 0.59
No 0.85

Table 3.2 Estimated absolute risk of an event for patients with varying interventricular mechanical
delay (49—-66 ms) with and without cardiac resynchronisation therapy and in the presence and absence

of ischaemia .
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Control Treatment

n median | (IQR) n median | (IQR)
Age (years) 403 66 (59-72) | 409 67 (60-73)
Acetiology (ischaemic Y/N) Y=153 Y=186

N=250 N=223
Systolic blood pressure 399 110 (100— 404 110 (100-
(mmHg) 125) 125)
Glomerular filtration rate 372 61 (46-73) | 367 60 (46-73)
(mL/min/1.73m?)
N-terminal pro-brain 370 1806 (719— 362 1920 (744-
natriuretic peptide (pg/ml) 3949) 4288)
Use of beta-blockers (Y/N) Y=288 Y=298

N=116 N=111
QRS width (ms) 394 160 (152- 401 160 (152—

180) 180)

Interventricular mechanical | 370 50 (30-66) | 365 49 (32-67)
delay (ms)
End-systolic volume index 376 117 94— 356 121 (92—
(mL/m?) 147) 151)
Ejection fraction (< 35%) 378 25 (22-29) | 367 25 (21-29)
Mitral regurgitation 303 23 (11-34) | 302 21 (12-33)

Table 3.3 Baseline characteristics of the patients,total number in study 813, IQR, interquartile range. *
Mitral regurgitation defined as area of colour flow Doppler regurgitant jet divided by area of left atrium
in systole, both in square centimetre.

3.3.0 Obtaining Estimates of Absolute Risk

It is worth commenting on what is involved in producing estimates of absolute risk

using PHREG. The following steps are needed
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1. Create a dataset containing a subset of example patients
2. Run PHREG with the baseline option
3. Create a dataset containing the absolute risk estimates

Step 1 can be accomplished using for example the following SAS code

data card.mrisks;
input Imit lroc supsys IVMD ischemic trsup trivm treat;
datalines;

0.14 0.70 -0.49 0.100 0.5 -0.245 0.05 0.5
0.14 0.70 12.5 0.100 0.5 6.25 0.05 0.5

0.14 0.70 -0.49 0.100 -0.5 -0.24 0.05 0.5
0.14 0.70 12.5 0.100 -0.5 6.25 0.05 0.5
0.14 0.70 -0.49 0.100 0.5 0.245 -0.05 -0.5
0.14 0.70 12.5 0.100 0.5 -6.25 -0.05 -0.5
0.14 0.70 -0.49 0.100 -0.5 0.245 -0.05 -0.5
0.14 0.70 12.5 0.100 -0.5 -6.25 -0.05 -0.5

Here I specify the names of the input variables and then construct a data set

containing the example patients.

These patients have, Imit=log, (Mitral regurgitation) Iroc= log, (N-terminal pro-brain

natriuretic peptide), and Interventricular mechanical delay all held constant (set to the
median) . Systolic blood pressure blood pressure is allowed to vary, as is aetiology
(ischaemic), I compare the treatment and control groups. Step 2 is illustrated with the

following code snippet

proc phreg data=card.valmod;

model futime*primary(0)=Imit Iroc supsys IVMD ischemic trsup
trivm treat/RL;

baseline covariates=card.mrisks out=card.PredFin
survival=S/nomean;
run;

PHREG performs analysis of time to event data based on the Cox proportional

hazards model. The survival time for each patient is assumed to follow its own hazard

function h.(y) , h,(y)=h,(y) exp(X : ﬁ ), where h,(y)is an arbitrary and unspecified

baseline hazard function. The survivor function S(y, )?i ) can be written as

~ ~ y
S, (V)™ ) where S, (y) = exp(—j h, (U)du).
0
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The BASELINE option in PHREG results in a new SAS data set that contains
baseline function estimates for the variables listed in the SAS data set

card.mrisks. In the above SAS code the survivor function S(t) is estimated by the

Breslow estimator (Breslow 1972) which is based on the empirical cumulative hazard
function, alternatively the product limit estimator can be used (Kalbfleisch & Prentice
1980).

I can specify an out put dataset which will contain these estimates, (out=card.Predfin).
The survival=S option means that I will obtain an estimate of the survivor function

S(t). Finally a dataset containing the estimates of absolute risk can be generated

using the following SAS code

data card.absrisk;
set card.PredFin;
rsk=1-s;
run;
quit;

Here the estimate of S(t) contained in the dataset PredFin is used to generate the

estimate of absolute risk (rsk=1-s) which is contained in the dataset absrisk.

3.4.0 Which Measure of Risk Should Be Used?

A patient waiting in hospital for an operation would naturally want to know what is
the benefit of undergoing surgery, he or she would want to know by how much would
their risk (in the extreme case) of dying, be reduced . When considering a measure of
risk reduction is there a benefit to using one measure as opposed to another? Chao
(Chao et al.. 2003) discusses the issue of whether reporting relative risk reduction,
absolute risk reduction, absolute survival benefit, or number needed to treat had an

effect on a individuals decision to recommend that their mother undergo
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chemotherapy (a hypothetical situation). Chao et al. found that the way in which risk
reduction was presented does have a bearing on such a decision. They found that
when an individual was presented with a relative risk reduction they were more likely
to choose chemotherapy. Which measure of risk reduction to present is seemingly
dependent on the patient’s understanding of terms such absolute and relative risk.
How one best presents risk to a patient is a very difficult question, I honestly do not

believe that I can supply a definite answer to this question
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CHAPTER 4 CUBIC SPLINES AND FRACTIONAL POLYNOMIALS

e Application of transformations such as the natural logarithm or the square
root to the independent variables may lead to improved model fit

e More complex relationships can be modelled using cubic splines or
fractional polynomials

e Restricted cubic spline applied to CARE-HF data

4.0.0 Introduction

In this chapter I will look at the use of cubic splines and fractional polynomials in
developing a statistical model. The use of cubic splines and fractional polynomials is
motivated by consideration of the adequacy of the functional form of the relationship
between the dependent variable Y and the independent variable X . Unfortunately the
real world confronts us with situations where Y is not related to X in a simple
manner. A good example of this is the relationship between body mass index and risk
of mortality for cardiac surgery see (Pagano et al. 2009). Pagano et al use cubic
splines to model the relationship between body mass index and risk of mortality for

cardiac surgery, see figure 4.1.

Y Cubic Spline (Dark Curve)

=
=3}

Confidence Curves

log Relative Hazard
o jan)
[ s

10 20 30 40 50 60
Body Mass Index (kg/m?)
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Figure 4.1 Non-linear (cubic spline) relationship between body mass index and risk of mortality for
cardiac surgery. Adapted from (Pagano et al. 2009).

It might be assumed for instance that a simple linear relationship y = mX+Cis

appropriate, but the data then leads the researcher to formulate a more complex
model. One factor that will determine how well a model fits the data is the functional
form of the relationship between Y and X . In developing a model, the researcher
may make use of transformations of the independent variables in order to improve the

fit, a typical example of such a transformation would be to consider y = mlog, X+cC.

. 1 .
Amongst the other standard transformations are Jx ,— . It can be argued that it is
X

natural to assume a linear relationship; if this proves not to be adequate then one
might then consider taking the natural logarithm or the square root. Once the simple
transformations have been applied then use of the cubic spline or fractional
polynomial should be considered. The ‘best’ functional form may be quite complex
and not easily obtained through analytic means, in this case numerical methods are
used to approximate the relationship between Y and X . One such method is the

cubic spline. I shall now look at some of the basic theory relating to cubic splines.

Before computer aided drawing software was available Engineers and Draughtsmen
relied on a thin flexible rod called a spline. The spline was used to construct a curve
through a series of points. The spline was anchored to the drawing board, and a
number of weights were attached to the spline. The weights could then be moved and
so the spline could be adjusted to obtain the best fit curve through the specified points.
In mathematical terms, a spline is an approximation of a curve. A spline is an example
of polynomial interpolation, or more correctly piecewise polynomial interpolation.

Interpolation is the process of approximating some function f(x) for X, where X is in
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the interval (X,, X, ). In polynomial interpolation we aim to find a polynomial p(x) of
degree nor less, such that p(x,) = f(X,), p(X,) = f(X,)),..., p(X,) = f(x,). In the
literature p,(X) is used instead of p(x) and f instead of f(X,).The polynomial

P, (X) is known as an interpolation polynomial. There are various approaches to

polynomial interpolation, for example Lagrange interpolation, Newton’s Divided
Difference interpolation, and Spline interpolation. It may be helpful to look at the
Lagrange method (Box 1) in order to appreciate the general principles of interpolation
and also to identify possible problems. In my discussion of Lagrange interpolation
and splines I follow the derivations and notation found in Kreyszig (Kreyszig 1993),

note an excellent explanation of splines can be found in Kreyszig’s book.
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Box 1 Lagrange Interpolation

Lagrange interpolation uses the following approach.

Assuming we have (X0 , fo), (X1 , f1 ),...(Xn , fn) (the point (Xi , fi ) is known as a node) then we can

X=X
Xy =X

approximate the analytic function f (X) by p, = L0 (X) fo + Ll (X) f1 , Where L0 x) = and

X=X,
X =X,

L, (X) = . Notice thatat X = X, LO(X) =1 and LI(X) =0, similarly at X = X, LI(X) =1

and Ly(X) =0,s0owehave P, = fo , X=X, and P, = fl , X = X, . This leads to the linear Lagrange

X=X X=X,
polynomial (X) = fo + f 1 » this is an example of linear interpolation. Quadratic
Xo — X X, =X,

interpolation would require (X0 , fo ), (X1 , f1 ), (X2 5 fz ) , this leads us to the second degree Lagrange
polynomial pz(x) = LO(X) fo + L1 (X) f1 + L2 (X) fz,

(X_X1)(X_X2)

’ (X_Xo)(x_xz) Lz(X)Z (X—XO)(X—XI)
(Xo - X )(Xo - Xz)

where L, (X) = (Xl _ )(0)()(1 - X2) ' (Xz - Xo)(xz - Xl) ‘

LI(X) =

n
The general Lagrange interpolation polynomial is [, (X) = Z Lk (X) fk . It can be shown that & (X) the

0
f (n+1) (t)
error in approximating f (X) by P, (X) is given by (X — Xo )(X— X )ee(X— X, )W , where
n+1):
f (n+1) (t)
X, <1 < X, . We might argue that given &, (X)=(x—- Xo (X — XI)...(X - X, )W , then as
n+1):

N becomes large &, (X) becomes small, i.e. the greater the degree of P, (X) the better the interpolation. Sadly

this is not the case in general, there are functions f for which P, (X) exhibits large oscillations between the

nodes, this is an example of Runge’s phenomenon (Runge 1901).
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4.1.0 Cubic Splines

In trying to approximate some function f(x) by a single a single polynomial it is not
uncommon to encounter problems of numerical stability ( p,(X) exhibits large
oscillations between the nodes). Splines offer a way of approximating f(X) that can

to a reasonable extent avoid problems of numerical instability. Spline interpolation

can be defined as piecewise polynomial interpolation. If f(X) is defined on the
interval [a,b], then the interval [a,b] is split so that a =X, < X, <X, <...<X, =b.It
can be seen that each subinterval [X;, X;,, ]has a common endpoint, these endpoints

are called nodes, in most statistical literature nodes are referred to as knots, I shall
follow suit and use the term knot throughout in my discussion of splines. A
polynomial g(x)is required such that f (X,) = g(X,),.... f (X,) = 9(X,), also it is
required that at the knots g(x) can be differentiated several times, such a g(x) is
called a spline. I shall concentrate on cubic splines, a cubic spline g(x) defined on

[a,b] is a continuous function and has continuous first and second derivatives,
(continuous in [a,b] and all subintervals of [a,b]). Also for each subinterval of [a,b]

g(x) is a polynomial of not more than degree 3.

Now by definition g(x) is such that for each subinterval in [a,b], g(X) must be given
by p;(x) where p;(x;) = F(x;) , P;(x;,) = f(x;,) and pj(x;)=k;,

P (X;.,) =k;, . The degree of p;(X) must not be greater than 3.

It can be seen that by replacing Xby x; and X;,, in p;(X), where p;(X) is given by
P; () = f (X)) (X —X;,)*[1+2¢; (X — X))+ F(X;,,)C; (X—X;)*[1-2¢;(X—X;,,)]

+K,CT(X=X))(X=X},)? + K, 0T (X=X,)? (X —X;,,) (1)
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1 : : .. . .
and ¢; = ————, results are obtained that satisfy the definition for a cubic spline.

Xja —X;

Taking the second derivative to get

pi(x;)=—-6C; f(x;)+6c] f(x,,)—4ck; —2¢c Kk, (2)

pi(X;,) =6C; f(x;)—6c] f(x;,)+2ck; +4ck., (3)

From the fact that g(x) has continuous second derivatives

pi(X;)=pj(x;) for j=1..n-1(4)
Using j—1 in the expressions for p{(x;) and pj(X;,,) , the following result is
obtained

ik, +2(c +cpk; +ck;, =3, (F(x)— F(x_ )+ci(F(x,) - Fx)NEG)
The above result is a system of Nn—1 equations; the system has the unique solution

K,,....K,_, , note that k,,....k,_, is g'(x) at the knots. Assuming that the knots are

12025 Npp»

equally spaced, say by a distance h, and writing X,, X, X, ..., X,,

as Xy, X, =X, +h, X, =X, +2h,....x, =X, +nh. Alsoc; =——=

Hence

ik, +2(c +ck; +ck;, =3, (F(x)— F(x))+ci(f(x;,,)— (X)), can
3

now be written as k;_, +4k; +k;,, =F(fj+l —f,) forj=1,.,n-1(6)

Writing p;(X)=a;, +a;,(X—X;)+a,(X- XJ-)2 +a;(x- Xj)3 and then by looking at
the Taylor series for p;(X) to get

a;, = p(x;) = fj

-63 -



a;, = pj(x;) =k,
1, 3 1

aj2 :Epj(Xj):h_Z(fjH - fj)_ﬁ(kjﬂ +2k])
1 n 2 1

aj3 :gpj(xj):h_S(fj - fj+1)+h—2(kj+] +kj)

Combining the results directly above with (6) allows numerical values for the

coefficients of p;(X) to be determined and hence g(X) . In Box 2 some further useful

properties of splines are discussed.

Box 2 Splines and Elastic Energy

Splines possess an extremely interesting and useful property. For the spline { (X) ., 0 '(a) =f '(a)

and J ,(b) =f ,(b) . Now using integration by parts

b b b
jg "()(f"(x) - g"(x))dx = ju %dx =[uv]’ — jvj—‘;dx
b
=[g"C0(F' () =g'CNL: — [ 9"CO(F'(0) - g'(x))dx =0
b b
Therefore j g9"(x) f"(x)dx = j (g"(x))>dx @®)

[£7()—g" ()] dx.

Now considering

D C— T

b b b b
j[ f7(x) — g"(x)]2dx = j f7(x)*dx -2 j f"(x)g"(x)dx + j 9"(X)%dX ., using ®) to get

P b b
JTif700-g"eoPdx= [ £00*dx— [ g"(0°dx o

a

The right hand side of (9) is = 0 , therefore

b b
_[ f"(x)*dx > _[g "(x)*dX (10)
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I mentioned earlier that a spline as used by an Engineer or Draughtsman is a thin flexible rod. For {J (X) , 0 "(X) is an

approximation of the curvature of { (X) . Treating ( ( X) as a thin beam or rod we can say that the curvature (J ”(X) of

b
2
g (X) is proportional the bending moment of the rod, also J. g "(X) dX is proportional to elastic energy stored in the beam

a
(Horn K.P. 1983). If the conditions {J ”(a) =0 and g "(b) = () are imposed on a cubic spline, then we have what is

b
2
known as a natural or restricted cubic spline. The natural spline possesses the property j g ”(X) dX is a minimum. When

a

f (X) is approximated using the natural spline (J (X) , the approximation is one that minimises elastic energy.

4.2.0 Cubic Splines in a Statistical Context

I shall now consider the use of splines in statistics. I shall make recourse to the paper
by Wegman and Wright (Wegman & Wright 1983). The background material I have
looked at so far concerning splines is what one would find in any useful textbook on
Engineering Mathematics, | have not addressed the use of splines in statistical work.
The data used in an engineering application of splines is different from the data that
might be used in a biostatistical application of splines. Engineering data would tend to
be less noisy, Wegman and Wright (Wegman & Wright 1983) state:

“More to the point, it is desirable in a statistical framework to create a type of spline
that could pass near, in some sense, to the data but not be constrained to interpolate
exactly”

Wegman and Wright point out that in a statistical context fitting a spline goes beyond
solving a linear system of equations, we have to consider a ‘genuine optimization

routine’. Wegman and Wright identify three ways of fitting smoothing splines, viz
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penalised least squares, 100 percent confidence intervals and regression splines. I
make extensive use of Wegman and Wright’s paper (Wegman & Wright 1983). I shall

now examine in some detail the three methods as described by Wegman and Wright.

4.2.1 Penalised Least Squares

Using the notation in (Wegman & Wright 1983) for penalised least squares consider
the solution to the following optimisation problem

Minimise

Zn:(f(xj)— y;) +/1j(Lf(x))2dx, subject to f eW_ (11)

It is assumed that 0 < X, <X, <...<X, <1 and 4 >0 is a fixed parameter, (11) is
what is known as an objective function. The set of functions f on [0,1] such that

D'f, j<m-1 is absolutely continuous and D™ f is in L, is denoted by W_ (see
b

note).It can be seen that the integral that appears in (11) is similar to I g"(x)%dx, L
a

is a differential operator, L =D™, where D denotes differentiation, so with L = D?,

d*f(x)
X2

1
Lf (x) is equivalent to . The term /II (Lf (x))*dx is known as a penalty term,
0

it penalises lack of smoothness. I need to introduce the idea of smoothing, when I
smooth data I am attempting to fit a curve to the data that picks up important general
features, but leaves out fine grained local detail i.e. leaves out the noise. If 4 is
allowed to get very close to 0, then there is no smoothing, if 4 is allowed to become
extremely large, in fact let 4 — oo, then I have infinite smoothing. As 4 — 0 then

f (X) becomes an interpolating spline, as 4 — oo, then f(X) becomes a least squares
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estimate. Informally I could describe a smoothing spline as a way of fitting a curve to
a dataset with the aim of striking a balance between the interpolation spline which
will fit the data to a very high degree and the least squares approach which may not. It
is important to distinguish between an interpolation spline and a smoothing spline, the
interpolation spline would be the thing to use if I were interested in mathematically
describing the shape of curved component in engineering, for example the curve of a
wheel arch on a car. In the context of statistical modelling I might argue that the
smoothing spline would be an appropriate tool, as in this case we are concerned with
general overall patterns and relationships, and not with fine grained detail. I could
express these points in terms of over-fitting and under-fitting, the interpolation spline
will over-fit, the least squares estimate may lead to under-fitting. What can I say about
the smoothing spline in regard to over-fitting and under-fitting? As Wegman and
Wright point out the choice of A is of paramount importance, as the sample size
increases then A should be decreased. Wahba and Wold (Wahba & Wold 1975)
develop a method for selecting A using cross-validation. Wahba and Wold use the
following criteria to select A :

. . . 1 & .
Using Wahba and Wold’s notation minimise E[z—Z(gn (X)) —a(x ))2 , 1.e.
n .

i=1
minimise the average mean square error. Note g, ;(X;) is a spline g(X;)the observed

2n
data. The quantity %Z(gn, 2 (%)= 9(X; ))2} regarded as a function of A is known

i=1
as the cross-validation function, by introducing W(A1) (a weighting function) into the

expression for the cross-validation function, the generalised cross-validation function

1s obtained, i.e.
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[izzn(gn,l(xn— g(x,-))zwu)]

2n 43
It can be shown that this function can be represented using matrices, the estimate of

A obtained from the generalised cross-validation function is the best one to use in the

penalised least squares method.

4.2.2 100 Percent Confidence Interval Method

The second method for fitting smoothing splines discussed by Wegman and Wright is
100 percent confidence intervals. In (Wegman & Wright 1983) an interpolating spline
is considered as the solution to an optimisation problem. Using the notation in

(Wegman & Wright 1983) the interpolating spline s(x) is the solution to:

Minimise J‘i(L(f(X))de, subjectto D' f e L, (~0,0), j=01,...,m and f(x,)=y,,
i=12,..,n.(12).

L, is a set of measurable integrable square functions. (Note L,same as L , i.e.

Lesbague space. Square integrable means j | f |2 over interval (a,b) is finite)
Here f (L(f(x))*dx is the objective function. The interpolation spline s(X) is a
polynomial of degree 2m —1.It was seen that for penalised least squares the objective

function contained a least squares term Z( f(x;)-vy; )*, for the 100 percent
1

confidence interval method the objective function is the same as for the penalised
least squares case but the interpolating constraints are relaxed. For the 100 percent
confidence interval method according to (Wegman & Wright 1983) I have the

optimisation problem:

Minimise r (L(f(x))*dx, subjectto f W, < f(t)< B, i=12,..n
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From a statistical point of view the 100 percent confidence interval method can be

understood in terms of the model y, = f(X,)+¢;, i =12,...,n. Assuming that ¢; is
i.idon [—€,,€,], then because & >—€, , y, +€ >V, —& = f(X;).Because ¢, <e,,
Y, —€, <Y, —¢& = f(X),s0 (y,—e,,y; +€) is a 100 percent confidence interval. As

Wegman and Write point out the 100 percent confidence interval method is an
example of the Generalized Hermite-Birkoff interpolation problem (Schoenberg

1966).

4.2.3 Regression Splines

In (Wegman & Wright 1983) the penalised least squares and 100 percent confidence
interval methods for fitting smoothing splines are presented as optimization problems,
I want to minimise curvature. Regression splines can be regarded in the manner that I
first introduced the idea of a spline, a continuous piecewise polynomial of degree m.
Regression splines require that I determine several free parameters. I do not have
assume that the knots are co-incident with the X's , I can choose the number and
position of the knots. I can of course choose the degree of the spline. Also I can
determine the free coefficients in the spline, there are m+ N +1 free coefficients,
there are continuity conditions placed on the first m—1 derivatives of the spline, the
free coefficients are those remaining after these conditions have been met. Using the
notation in (Wegman & Wright 1983) consider the model

Y, =S,(X)+¢&,i=12,..n.(13)
In s, (X) the symbol A denotes a mesh of knots, A ={J, < ¢, <,...< ¢}, where ¢, is

a knot. With N knots, and N +1 polynomial segments of degree m (13) can be

m N m
written as Y, = > By X + DD B (X =< ))& (14)
j=0

k=1 j=0
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Note that in (14) the term (X, — £, ) is written using Heaviside notation, that is
utt—a), =u(t-a) ifut—-a)>0 and u(t—-a), =0 if u(t—a)<0.
The big advantage of (14) is that I can use ordinary least squares regression to obtain

estimates for the coefficients f,; . I said earlier that the knots do not have to be co-

incident with the X's, Wegman and Wright draw attention to Wold’s (Wold 1974)
recommendation that knots should be located at data points. Wold (Wold 1974) also
recommends that I use as few knots as possible, the more knots that are used the more
complex the model, i.e. I have to estimate more parameters. Also a large number of
knots may lead to over-fitting. I must exercise caution when choosing the location of
the knots, in selecting two adjacent knots I have in effect defined the interval

[{;,<., ], it might be that within this interval there are points for which the curve
passing through the points (X, y) has a minimum or a maximum, or has a point of

inflexion. If I wish to use cubic splines this is not a problem provided there are not
multiple maximum and minimum points, and there are not multiple points of
inflexion. Wold (Wold 1974) notes that if this is the case then we could not employ a
cubic spline. A cubic polynomial can have both a maximum and a minimum, and a
single point of inflexion, but not multiple maximum and minimum points, and not
multiple points of inflexion. According to Wold (Wold 1974), maximum and
minimum points should be located at the centre of the interval. Points of inflexion
should be located close to the knots. A common choice for m in (14) is 3, giving a
cubic spline. The cubic spline is popular because it allows researchers to tackle a good
range of data sets where a polynomial model is appropriate, the cubic spline avoids
the overheads for splines of larger degree. Harrell (Herndon & Harrell 1990), (Harrell
et al. 1996) advocates the use of cubic splines, specifically the restricted cubic spline.

In (Herndon & Harrell 1990) the main focus is on the use of the restricted cubic spline
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in connection to the hazard function, Harrell finds that the restricted cubic spline can
be used to model data where the hazard function may be one of several different
shapes. In (Herndon & Harrell 1990) data from various distributions where

considered. Earlier it was said that if the conditions g”"(a) =0 andg"(b) =0 are

imposed on a cubic spline, a restricted cubic spline is obtained. When trying to model
survival data the researcher should be aware that the cubic spline may present
problems. Stone and Koo (Stone & Koo 1986) have found that for points beyond the
first and last knots the cubic spline may exhibit strange behaviour. The restricted
cubic spline does not exhibit strange behaviour at points beyond the first and last

knots .The restricted cubic spline is linear at points close to the first and last knots.

4.2.4 Splines applied to the CARE-HF data

The literature on the use of splines in statistics is considerable and large portion is of a
high level of mathematical sophistication. I have confined myself to a discussion of
some of the basic points. If I want to follow the advice of authors and researchers
such a Harrell and adopt the use of splines in modelling how easily is this
accomplished? Cubic splines have been implemented in a number of statistical
software packages. For SAS the RCS macro (Heinzl & Kaider 1997), (Heinzl &
Kaider 2006) is available, for GNU R and S-Plus Harrell’s Design (Design Library
Harrell Frank E. 2009b) package provides the restricted cubic spline in a form which
is easily used in a Cox Proportional Hazards model.

I shall now look at a simple example of using the RCS macro to fit a cubic spline to
the CARE-HF data (Richardson et al. 2007). The aim of this example is to
demonstrate basic usage of the RCS macro and to illustrate a simple and practical
approach to the issue of functional form for a model. In the this example I shall fit a

Cox Proportional Hazards model with systolic blood pressure and CRT as
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independent variables, however I shall include a cubic spline representation of
systolic blood pressure in the model. The following SAS code is an example of how I

use the RCS macro to fit a cubic spline:

%RCS(

TITLE=%STR(CAREHF),

DATA=LATESTEX,DIRDATA=%STR(C:\Documents and
Settings\richarmz.ADF.000\Desktop\prog card_dat\),

PROGRAM=%STR(C:\Documents and
Settings\richarmz.ADF.000\Desktop\prog _card_dat\rcs\sbpspline.sas),

TIME=futime,STATUS=primary,

COV1=supsys,WHAT1=0,KNOTS1=105 117 130 165,

COvV2=treat

E
The reader is directed to (Heinzl & Kaider 1997) for an explanation of the RCS code,
however it might be helpful to comment here on the above code. The line beginning
with the keyword DATA is where I specify the name and location of a SAS dataset, in
this example the dataset is called LATESTEX. The line beginning with the keyword
PROGRAM allows me to specify the name and location of the SAS program
sbpspline.sas. TIME and STATUS refer to survival time and censoring respectively.
On the line beginning COV1 I specify supsys (systolic blood pressure), if set to 1
WHATI allows modelling of time by covariate interaction with the cubic spline. The
knots for the cubic spline are specified using KNOTSI, I have knots at 105, 117, 130,
165. COV2 specifies that the next independent variable in the model is treat (CRT).
NB the above code will not produce any output in terms of analysis. The fitting of the
cubic spline is performed by running the SAS program sbpspline.sas, this program
calls PROC PHREG, PROC IML and PROC GPLOT. On running sbpspline.sas I
obtain output from PHREG and GPLOT . Below is an extract of the output from

PHREG.

The PHREG Procedure

Analysis of Maximum Likelihood Estimates
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Parameter DF

Supsys
1.1
12
treat

Parameter
Estimate

-0.01492
0.0000110
-0.0000172
-0.47246

Standard

Error Chi-Square
0.00697 4.5829
0.0000212 0.2678
0.0000532 0.1047

0.10505 20.2258

Linear Hypotheses

Wald
Label Chi-Square
EFFECT1 9.7550
NONLINA 2.0941

Pr > ChiSq

0.0323
0.6048
0.7462
<.0001

Hazard 95% Hazard Ratio
Ratio Confidence Limits

0.985 0.972
1.000 1.000
1.000 1.000
0.623 0.507

Testing Results

DF

Pr > ChiSq

0.0208
0.351

0.999
1.000
1.000
0.766

It can be seen that systolic blood pressure (supsys) is a significant predictor of time to

death or unplanned hospitalisation as is whether or not a patient has received cardiac

resynchronisation (treat). In the parameter column of the output 1 ITand 1 2

refer to the cubic spline representation of systolic blood pressure, neither are

statistically significant. From this I would conclude that a cubic spline representation

of systolic blood pressure does not represent an improvement in functional form over

the assumed linear form, this is reflected in the linear hypotheses testing results.

LOG HAZARD RATIO

CAREHF

supsys

0.7

0.6 4

055

0.4 4

0.3

024

0.1+

0.0 4

011

024

034

0.4 4

ns

061

100

Figure 4.2 The restricted cubic spline (the red curve) approximation for the log hazard ratio as a

SUPSYS

function of systolic blood pressure.
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The figure above shows the restricted cubic spline (the red curve) approximation for
the log hazard ratio as a function of systolic blood pressure (supsys). The blue dotted
curves represent the confidence curves, at first glance one might think that there are
two curves that cross, this is not the case. At the middle of the spline the two
confidence curves are very close together. Using the notation and derivation from

(Heinzl & Kaider 1997) the restricted cubic spline is given by

k-2
Cu)y=p4,+pu+ ZﬁjCj (u) , where k is the number of knots, let the knots be

i=1

u-t,):(, -1) N (u-t)3 (@, -t)

t,t,,..t..Also C (u)=(Uu-t,)’ -
o “ : : (tk _tk—l) (tk _tk—l)

In the output from PHREG 1 land 1 2referto C,(u) and C,(u) respectively,
estimates for 6, and @, are 0.0000110 and -0.0000172.

Again using the notation and derivation in (Heinzl & Kaider 1997) for a fixed value
U, the estimated cubic function é(uo) can be written as é(uo) = U o » Where

B=B,.p.6...0._,) and U, = (1,u,,C,(U,).....C,_,(U,))" . If V is the sample

covariance matrix for ,@ then a 1 —a confidence interval for é(uo) is given by

1

AU , T (U VU 0)5 , V= ;(;m is thel —a quantile of y*with p degrees of freedom
(Heinzl & Kaider 1997). To understand why the two confidence curves are very close

1
together at the middle of the spline, note that AU, —(U/VU,)? and

1
LU, +(MJVU,)? will increase in size as U, moves further from the mean, i.e. the

distance between the confidence curves increases as U, moves further from the mean.
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Further material on the use of splines in statistics is to be found in (Smith 1979) and

(Poirier 1979). I now consider fractional polynomials.

4.3.0 Fractional Polynomials

The cubic spline is one example of using polynomials to model data. Another
approach is that of fractional polynomials, see (Royston Patrick et al. 1999), (Royston
& Altman 1994), (Stocken D.D. et al. 2008), (Royston & Sauerbrei 2004) and (Meier-
Hirmer et al. 2003). In epidemiological and biostatistical applications continuous
variables such as age are often split into groups to form a new categorical variable.
This makes analysis easy perform and interpret; however in doing this the researcher
may encounter problems. If I have not pre-specified how I intend to form the groups,
that is the location of the cut-points or group boundaries, I can end up with highly
‘data driven’ results. Also in moving from continuous to categorical data I introduce
‘jumps’ when a group boundary or cut point is crossed, for example if [ where
modelling the probability of some event occurring as a function of age, the
probability of the event occurring will jump, perhaps quite substantially when a cut
point is crossed. Is this a realistic model of the situation? Altman and Royston
(Altman & Royston 2006) state that dichotomising variables leads to loss of
information, reduced statistical power and an increased risk of false positive results.
In view of this, there is an argument for preserving continuous data. As shown earlier
cubic splines can be used to model the relationship between the dependent variable

Y and the independent variable X when the relationship is not a simple linear one.
The fractional polynomial developed by Royston and Altman (Royston & Altman
1994) allows the researcher to consider a number of possible functional forms for the
relationship between Y and X . In (Royston & Altman 1994) the fractional polynomial

is defined as follows
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¢, (X;&,p)=¢, +Z§jX(p"),where X >0and p=(p,,..., P,)1s a vector of powers

i=1

with p, <..< p,and & =(&,,S,....,&, ) a vector of coefficients, both p and ¢ are real
valued. Also X ™’ = X "ifp, =0, X'"’ =log, X if p, = 0; the Box-Tidwell

Transformation.

Royston and Altman give what they say is their full and most concise definition as

follows

G (X3E,p) =D & H X" where for j=1,..,m and H,(X)=X""if p, = p,, ,

i=0
H;(X)=H,  (log, X) if p; = p;,.In (Royston & Altman 1994) the authors state

that for given values of m and p the fractional polynomial given in the form above

can be regarded for the purpose of model development as a linear predictor. The best
values for mand p need to be determined, in (Royston & Altman 1994) the authors
suggest that for most practical situations p = {-2,—-1,-0.5,0,0.5,1,2,..., max(3,m)} is
adequate. The degree of the fractional polynomial m is determined on an informal
basis a priori or until no appreciable improvement in model fit is observed. It can be
seen that fractional polynomials obtained using

p ={-2,-1,-0.5,0,0.5,1,2,..., max(3,m)} contains the straight line case, the natural log,
the square root. The fractional polynomial is flexible in the sense that it allows me to
fit many of the ‘standard’ models. I could view the fractional polynomial as a
generalised method for applying transformations. The fractional polynomial allows
me to produce a model with a sensible functional form. In regard to model fit Royston
and Altman assume that maximum likelihood is used. Based on a given m the best

vector of powers P is the one from the model with the greatest likelihood or the
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smallest deviance D . In (Royston & Altman 1994) the authors use the quantity
D(m, p) — D(m, p) which is distributed (asymptotically) > withm degrees of
freedom , P is the full maximum likelihood estimate of p . This quantity may be used

to assess the adequacy of a conventional polynomial versus a fractional polynomial of
the same degree. Another quantity which is defined in (Royston & Altman 1994) as

the gain G =G(m, p) = D(1,1) — D(m, p) uses the deviance of the straight line model
D(1,1) as a reference against which to compare other models. Unlike the deviance a

large value for the gain is an indication of a better fit. In the definitions so far of a
fractional polynomial we are dealing with a single independent variable, it is possible
to extend the definition of a fractional polynomial to include several independent
variables

Multivariable fractional polynomials are implemented in SAS via the %m{p8 macro
(MFP 2009).The %mfp8 macro has been ported to GNU R as the mfp library . I shall
now look at an example using the mfp library in GNU R to fit fractional polynomials
to the CARE-HF data (Richardson et al. 2007). The following R code demonstrates

basic usage of the mfp library:

setwd(*'C:/Documents and
Settings/richarmz.ADF.000/Desktop/phd_chapters')

attach(dd)

lLibrary(mfp)

f<-

mFp(Surv(Ffutime,primary)~fp(Roche)+Ffp(mitral _r)+fp(Supsys)+Ischaemic+
treat,select=0.05,verbose=TRUE, fami ly=cox,data=dd)

here I am fitting a Cox Proportional Hazards model which incorporates fractional
polynomials for N-terminal pro-brain natriuretic peptide (Roche), Mitral regurgitation
(mitral_r), and Systolic blood pressure (Supsys). An extract of the GNU R output is

shown below:
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df.initial select alpha df.final powerl power?2

mitral_r 4 0.05 0.05 4 -2 2
Ischaemic 1 0.05 0.05 1 1

treat 1 0.05 0.05 1 1

Roche 4 0.05 0.05 2 0

Supsys 4 0.05 0.05 0

Transformations of covariates:
formula
Roche log((Roches/10000))

mitral_r 1((nitral_r/710)"-2)+1((nitral_r/10)"2)

Supsys <NA>
Ischaemic Ischaemic
treat treat

The mfp function selects the best fitting fractional polynomial. The natural log
transformation of N-terminal pro-brain natriuretic peptide (Roche) has been selected.
This result is in accord with the findings in (Richardson et al. 2007), i.e. on
comparing the AIC for two Cox Proportional Hazards models of the form

X + (X *CRT)+CRT and log, X + (log, X *CRT)+CRT is was found that for N-

terminal pro-brain natriuretic peptide the model that used the natural logarithm

transform result in a smaller AIC. For mitral regurgitation (mitral r) a fractional
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-2 2
polynomial of the form ¢, (%j +¢, (%} has been selected. The coefficients ¢, and

C, can be obtained in GNU R, they are -30.6 and 0.000169 respectively. In

(Richardson et al. 2007) the logarithmic transformation applied to mitral regurgitation
was found to improve model fit. The transformation selected on the basis of a
statistically significant difference in the AICs for models of the form

X +(X*CRT)+CRT and log, X +(log, X *CRT)+CRT , may well be different

from those obtained by using mfp in the way just demonstrated. For Systolic blood
pressure (supsys) has been omitted from the ‘final’ model, in (Richardson et al. 2007)
systolic blood pressure was included because the interaction term (systolic blood
pressure*CRT) was found to be statistically significant. Dealing with interaction
terms in mfp involves setting up a new variable, I cannot use a term such as
(supsys*CRT) in mfp, i.e. I cannot explicitly write an interaction term. Instead |
would create a new variable, for example supt=(supsys*CRT). After doing this it is

possible to include the interaction term using in the following code in GNU R:

f2<-
mFp(Surv(Ffutime,primary)~fp(Supsys)+supt+treat,select=0.05,verbose=TR

UE, fami ly=cox,data=dd)

If the above code is run then the results are in agreement with those found in
(Richardson et al. 2007), systolic blood pressure (supsys) is left un-transformed, also
the hazard ratios and p-values for systolic blood pressure, CRT (treat) and the
interaction term are as reported in Table 2 of (Richardson et al. 2007) (these models

where produced using PHREG in SAS). Similarly for mitral regurgitation if a new
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variable is set up for the interaction with CRT, then mfp reports that the best
fractional polynomial for mitral regurgitation is the natural logarithm.

A question can be raised in regard to the attempt at fitting a fractional polynomial to
supt=(supsys*CRT) i.e. including fp(supt)in the model statement above. Is this
valid or would it be better to use another method of fitting the model? If a fractional

polynomial is fitted for the interaction term the following output is obtained:

df.initial select alpha df.final powerl power?2

Supsys 4 0.05 0.05 1 1
treat 1 0.05 0.05 1 1
supt 4 0.05 0.05 2 3

Transformations of covariates:
formula

Supsys 1((Supsys/100)™1)

supt 1(((supt+1)/100)"3)

treat treat

coef exp(coef) se(coef) z p
Supsys.1l -1.466e-02 0.9854 3.950e-03 -3.711 2.06e-04
treat.1 -1.118e+00 0.3270 2.513e-01 -4.449 8.63e-06

supt.1 3.759e-07 1.0000 1.332e-07 2.822 4.77e-03
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Here the interaction term supt itself has undergone a non-linear transformation, I
cannot interpret the transformed interaction term in an obvious way , the main effect
Supsys is untransformed whereas supt is now a cubic term. The p-values for systolic
blood pressure, CRT (treat) and the interaction term are smaller than those reported in
Table 2 of (Richardson et al. 2007). It would be better to establish the fractional
polynomial for the main effect first and then fit a model that uses the transformed (or
un-transformed) variable for both the main effect and the interaction term. If in the

example models below Z is a binary variable and f () is some transformation then

when using mfp model 4 produces the same results as model 2 using PHREG,

whereas model 3 using mfp produces different results to model 2 using PHREG.

Example Models
I. X+(X*2)+Z
2. FX)+(F(X)*2)+Z
3. F(X)+T(X*2)+Z

4, F(X)+(X*Z2)+Z
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For instance in GNU R I could use coxph to fit the Cox Proportional Hazards model
with the transformed variables obtained from mfp. Ischaemic and treat (CRT) remain
un-transformed of course. It should be remembered that when using fractional
polynomials the independent variables are assumed to be positive. If the preceding
code is run, but this time a fractional polynomial for interventricular mechanical delay
is included then mfp produces warnings concerning the failure of the algorithm to
converge. By default mfp should shift and scale variables to avoid numerical
problems if negative values are present, as is the case for interventricular mechanical
delay. I have noted that interventricular mechanical delay is indeed shifted and
scaled, yet the warnings from mfp persist, this is the case even if manual shifting and

scaling is employed.

4.4.0 Splines versus Fractional Polynomials

Is it better to use splines or fractional polynomials in statistical modelling? Both
methods have very appealing aspects. The fractional polynomial is elegant and
compact; we can see that the standard transformations are continued with the
definition of a fractional polynomial. Does the piecewise nature of the spline afford an
advantage over the fractional polynomial? Royston and Altman criticise conventional
polynomials as often not providing a particularly good fit. In their view cubic splines
are considered to be too computationally intensive, and not amenable to easy
interpretation. Also splines are not implemented in standard regression software.
Splines do not provide equations that can be easily used for prediction. Royston and
Altman made these remarks back in 1994, from a computational perspective things
have moved on, the software is now available and fast processors now make it quite
feasible to fit cubic splines routinely. Royston and Altman also suggest that the

concept of splines is difficult to explain to a ‘non-expert’ user. I take the view that the
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GNU R port of the %mfp8 macro produces output that is easier to interpret than that
produced in the SAS version. This is a matter of personal taste, but clear reporting of
analysis using fractional polynomials is vital, when first encountered fractional
polynomials can be somewhat confusing, at first it can be a little difficult to determine
what exactly the best polynomial is. In (Royston & Altman 1994) the authors state
that fractional polynomials tend not to display the same degree of strange behaviour
near endpoints as that of conventional polynomials. This issue is of great interest to
the present author, investigation of the numerical stability of cubic splines compared
to fractional polynomials would be a useful area for future research. If appropriate a
more simple approach such as fitting a quadratic or a cubic term should not be
abandoned, this approach avoids the need for additional macros and there is no doubt
that the resulting model can be a lot easier to interpret. I would recommend that
simple transformations such as these are applied before recourse to more complex
methods. Dichotomising continuous variables is widely used in medical and
epidemiological applications. Although as discussed earlier good reasons can be
supplied to avoid dichotomising continuous variables, however this approach does
result in a model that is easier to interpret than one which includes say cubic splines.
I would suggest that categorising continuous variables if done sensibly is a perfectly

reasonable approach.

I have talked about specifying the functional form for a model, but so far I have not
discussed a means of selecting between different models. For example if I wish to
establish whether using the natural log transformation has any benefit, I need to
compare the model using the transformation with the model without the

transformation. If [ were to see an improvement in the fit of the model using the

-83 -



transformation, then I would consider the transformation beneficial. Here I am
presented with the problem of model selection. In the next chapter I consider the use

of the AIC (Akaike Information Criteria) as a model selection tool.
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CHAPTER 5 MODEL FIT, LIKELIHOOD, THE AIC

e The AIC is a penalised log likelihood model selection criterion.

e A modified AIC is required for small samples or where the number of
model parameters is large relative to the sample size.

e There are issues with the AIC regarding estimation of the order of the ‘true’
model. The AIC posits a ‘true’ model of infinite order.

e The BIC posits a ‘true’ model of small dimension, the BIC is said to be
dimension consistent.

e AIC and variants implemented for mixed models in SAS via GLMMIX,
NLMIXED and MIXED.

e AIC and BIC implemented for models with time dependent covariates in
SAS via PHREG.

e AIC for frailty models, further investigation may be required

5.0.0 Introduction

In the previous chapter the question of the functional form of a model was discussed.
The functional form will have an effect on how well a model fits the data. For
example would taking the natural logarithm of one or more of the independent
variables or fitting a cubic spline lead to an improvement in the fit of a model. In this
chapter the idea of model fit is investigated in more general terms, the idea of
selecting the ‘best’ model is considered. I now review some standard topics in
likelihood theory. I shall concentrate on the idea of likelihood and selection criteria

based upon the concept of maximising the likelihood. I wish to make it absolutely
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clear that all of the mathematical derivations in this chapter are of known results
attributable to others, and similar derivations may be found in a number of classic
texts. A very comprehensive treatment of likelihood theory can be found in Pawitan’s
book (Pawitan 2001). The graphical figures in this chapter where produced by myself

using simulated data in GNU R (R Foundation for Statistical Computing 2009).

5.1.0 Likelihood

Likelihood plays a central role in statistical modelling. R.A Fisher (Fisher 1932),
(Fisher 1934a) and (Fisher 1934b) formulated the idea of likelihood as a middle
ground between the Bayesian and frequentist camps. A basic distinction between the
Bayesian and frequentist approach can be made with reference to the meaning of
statements such as the probability of observing a HEAD with a fair coin is 0.5. The
frequentist would insist that the value 0.5 is only meaningful as a long run measure. If
the coin where to be tossed a second time the Bayesian would be quite happy to say
that that his or her degree of belief that the coin would show a HEAD was 0.5. The
frequentist would say that this value is only meaningful in the long run. Note a
Bayesian would also accept the idea of a probability being a long run measure. The
important point so far as a discussion of likelihood is concerned is that both Bayesians
and frequentists make inferences based on probability. With likelihood methods the
likelihood function is used to make inferences, inference is not made using ‘pure’
probability. If I toss a coin 5 times and observe the sequence HEADS, TAILS,
HEADS, HEADS, TAILS, then the probability of observing this sequence is
px(1-—p)xpx px(1—p) or p°+p’ —2p*, where p is the probability of observing

HEADS and 1-p is the probability of observing TAILS. If X denotes the number of
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heads we observe then in the example above P(X =3;n=5)=p’ + p’ —2p*.

P(X =3;n=5)=p’ + p’ —2p* is called the likelihood function, denoted by L

.What value of p makes the sequence HEADS, TAILS, HEADS, HEADS, TAILS

most likely?

Likelihood Function
0000 0005 0010 0015 0020 0025 0030 0035

| | | | | |
0.0 0z 0.4 0B 03 1.0

Frobabilty p

Figure 5.1 Likelihood Function versus Probability
In figure 5.1 a plot of P(X =3;n=5)= p’ + p’ —2p*against p shows that the
likelihood is function is a maximum for p = 0.6, this value of p for which the

likelihood function is a maximum is known as a maximum likelihood estimate

(MLE). I know that for a fair coin p = 0.5, from figure 5.1 I see that for p =0.5 the
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sequence HEADS, TAILS, HEADS, HEADS, TAILS is less likely to be observed. If
I were to toss the coin say 1000 times and observed around 500 HEADS , then a plot
of the likelihood function against p would show that the likelihood function is a

maximum for p = 0.5 . In the coin tossing example above if I believed p to be 0.01,

then I obtain a likelihood of 9.8 x107", if I believed p to be 0.6, then I obtain a
likelihood of 0.03456. Likelihood can be said to provide a measure of belief. The
likelihood principle states that all the information about a sample is contained within
the likelihood function. The MLE can also provide evidence to support or contradict
our belief, if I believe a coin to be fair (i.e. p=0.5) then if for example I obtained a
MLE of p = 0.89, I have evidence contrary to my belief, if I estimate p to be close to
0.5 then I have evidence to support my belief. Population parameters such as p are
generally denoted by @, in the following treatment of likelihood theory I will confine
myself to the single parameter case, however the type of problem which is the
concern of this thesis (fitting a Cox model) requires a multi parameter formulation of

likelihood theory. For discrete data we can write L(0) = P(X = X) . Continuous data

presents a problem, I cannot talk about the probability of a continuous variable being

exactly equal to a particular value, e.g. P(X = Xx) is not meaningful. However I can

talk about the probability of a continuous variable lying with an interval

(X— %, X + %) around X. If the interval (X — %, X+ %) is small then

x+%
L) = J. f(x;0)dx, where f(x;0) is the probability density function (p.d.f). It is

x—2
2

a

X+—

2
possible to approximate L(8) = j- f(x;@)dx by af (x;0), where a is very small, this

X—2=
2
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approximation is valid only if the data is precise. If I now consider X, and X, , where
X, and X, are identically independently distributed (i.i.d) then

xl+% x2+g
L, (6) = j f(x;0)dx = af (x,;60) and L,(0) = j f (x;0)dx = af (x,;0) 1 may combine

X —— Xp——
1 2
2

these likelihoods to give L(€) = L,(0)L, (€)= af (x,;#)af (X,;0). For discrete data I
have L(€) =P(X, =x,)P(X, =X,). For continuous data I notice the presence of the
constant a in the expressions for L(#), the constant a can in fact be omitted from the
expressions for L(#), this can be justified by using the following argument. Consider
the model f(x;0) , (note a p.d.f can be described as a model), further consider the
likelihood with different values for 8 , 6, and 6, . I wish to compare L(6,) and

L(8,), let the likelihood ratio (Note I shall discuss the likelihood ratio in greater

L
detail later in this chapter) % =Db, then L(6,) and L(6,) are only meaningful up

1

to a constant multiplier, we have L(6,)=bL(#,) , so if I were to consider multiples of
L(6,), aL(6,)is only meaningful for a up to b. In view of this I may write

"l
L) = '[ f(x;0)dx ~ f(x;6) and for combined

2
likelihoods L(8) = L, ()L, (6) = f(X,;0) f(X,;0) . In general I have

L(@) = H P(X, =X,) discrete case

L) = H f(x;) continuous case
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It is mathematically more convenient to work with the natural logarithm of the

likelihood function, i.e. log,(L(&)). So I have for the discrete case

Zloge(P(Xi =X;))
And for the continuous case

3 log, (F(x,)

Often interest is focused on obtaining a point estimate of some population parameter,
e.g. the sample mean X as estimate of the population mean, or s as an estimate of
population variance o° . The MLE offers another way of obtaining a point estimate,
but it is of great importance that attention be paid to the general shape of the
likelihood function. Likelihood is a valuable tool in situations where the data may not
provide a great deal of information, and where there is a degree of uncertainty. The
coin example from earlier represents a situation where I have a small amount of data,
I cannot ignore the fact that conclusions I make about this data will be quite uncertain.

I wish to maximise L(6) or log, L(8) i.e. I want to find & such that
%loge L(6) = 0. I said earlier that it is important to consider the overall shape of the

likelihood function, if for example I have obtained a MLE of &, é, how certain am I

that @ is the ‘best’ estimate of 6?2 This question can be answered by looking at the

curvature of the likelihood function. 8. If @ = @ is a solution of %loge L#)=0,

2 2

then _86710&; L@ = é) <0, also if — 0

02

log, L(0 = é) is large then log, L(€) has

a tight or sharp peak, this is interpreted as meaning that there is less uncertainty in
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2

log, L(0 = ) is small, then log, L(6) will not

regard to my estimate of 4. If — Y
have a sharp peak, this means that there are a number of values of 0 that are quite

close to the solution of 8_649 log, L(8) = 0. Put simply I am uncertain as to what

2

numerical value of @ maximises log, L(@) . The quantity — log, L(0 = é) <0 is

02
known as the observed Fisher information (as the sample size increase then the Fisher
information increases). There are many instances when a solution (a closed form

solution) of %loge L(8) =0 is not possible, in such cases I am obliged to use

numerical methods to obtain an approximate solution. Taking the Taylor series of

log, L(6) about 6 1have

C )k

92

log, L(6)

log, L(6) = log, L(é)+(9—é)%loge L(6) +

The above is a quadratic approximation of log, L(€), in order to make the expression

2

a little more compact denote %loge L(8) by S.(0) and — log, L(0) by F,(6),

02
then I have

(0-6)

log, L(0) ~log, L(9)+(0—0) Sc(§) - F.9).

If a quadratic approximation is a good fit for log, L(#) then log, L(6) is said to be

regular. For regular log likelihood function € and F, (€) can be used to
representlog, L(8). The following example may help clarify some of the ideas

discussed above. Let X/, X,, X;.,...,X, be a 1.1.d sample from a normal distribution with
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_(Xi—‘g’)2
e 207

parameters #,c . I have f(x;0)=
\N2mo

AlsoL(0) = f(x;0)T(X,;0)...T(X,;0), hence it is seen that

n 2 i(xi _0)
! X =0 nd S, ()=

\2ro - ZI: 26° o’ .

2

The Fisher Information F, () le , also var(f) = UT , hence (F, (6))™' = var(d) . The
o

log, L(8) =nlog,

connection can be seen between the Fisher Information and the variance of é, 1.e. the

connection between curvature (measure of uncertainty) of the likelihood function and

the variance of &. Fisher Information is of fundamental importance in likelihood
theory, in a later section I shall some of the basic ideas in what is known as
Information theory. Information theory is highly relevant to the discussion of the

Akaike Information Criteria.

5.2.0 Likelihood Ratio

Given a dataset it is possible to fit any number of models, amongst these models some
may fit the data quite well, others not so well. A method of comparing these models is

required in order that the ‘best’ one is selected. I can compare two models by

L4, Y)

examining the likelihood ratio L )
HysY

.Note y, refers to the full or saturated model

m, and g, to some model m, .
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L(u;.Y)
o ~

~1 or log
L(25,Y)

[L(:uf’y)

= 0 suggests that m, is a good fit.
L4ty y)J "

L(u,Y)

Letg = loge[ L(n.y)
b

J =log,(L(x;,Y)) —log,(L(x,,Y)), large values of ¢ indicate

L(#,Y)

thatm, is a poor fit to the data. The quantity 210ge[
L (s, )

]is known as the

deviance, and is usually denoted by D(y, x) . It is important to remember that when

using the deviance to assess goodness of fit circumstances can easily arise that render
the deviance useless as a means of gauging this. If we want to compare two nested

models M, and m, we examine the change in the deviance

~ 3 I—(,Ufay) _ L(:uf’y) _ M
PO, 4) D(y’ﬂz)_ﬂog{'-(ﬂpy)] 2loge(L(ﬂz,y)J_zloge(L(ul,y)]

The deviance follows the y* distribution with df, —df, degrees of freedom.

With nested models I use the deviance to assess whether a term is significant or not,
for example I may want to compare the model Y =c+ 5, X, + 3, X, with the model
Y =c+ f,X,. I might be interested in whether X, is significant or not, I look at the
change in the deviance due to the inclusion/exclusion of X, . Note it should be

remembered that for each of the models in the above example the deviance is a
comparison of the fitted model to the full model.

I must bear in mind that when comparing nested models I am assuming that ¢ the
dispersion parameter is equal to 1, if this is not the case then D(Yy, x,) — D(y, ,)1s

not meaningful. In situations where ¢ # 11 use what is known as the scaled

deVlance D(yoll’ll) - D(y’ﬂZ) )

¢
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Some discussion of ¢ is worthwhile, to understand the dispersion parameter I need to

consider the Exponential family of distributions.

5.3.0 The Exponential family of distributions

I now review some standard results relating to the Exponential Family of
Distributions (Dobson 2002) contains a useful section on this topic. A distribution

belongs to the exponential family if it is possible to write f(x;#) in the
formu(x)v(8)e*™*?  where u,v,a,bare all known functions. Let u(x) = e?®

andv(0) = e"?, then I may write f (x;8) = 9@+ "Eor example consider the

6*e™’

Poisson distribution f (X;6) = , T(X;0) can be written e *'°%(?)70loe )

B B B
By definition j f (x;0)dx =1, then % j f (x;0)dx = 0 and j % f(x;0)dx =0.

d2
dg?

B
Using the same approach I find that j f(x;0)dx=0.
Now in general f(x;8) =9 *"(@+at0b) g4 ;—9 f(x;0) = f(x;0)(b'(&)a(x)+h'(H)).

B B
Using j dd_e f(x:0)dx =0, get j f (x:0)(0'(8)a(x) + h'(6))dx = 0 which can be

written asb’'(@)E[a(x)]+ h'(8) =0, or E[a(X)]= ﬂ
b'(6)
I have d; f(x;0) = f(x;0)[b"(@)a(x)+h"(0) + (a(x)b'(8) + h'(8))*],

WO _ oz :
b’(&)j = (b'(0))" (a(x)— E[a(x)])" . Also

(@a(x)b'(0) +h'(9))” = (b'(9))2[a(x) +

d2
de’

f(x;0) = f(x;0)[b"(@)a(x)+h"(0)+(b'(8))*(a(x)— E[a(x)])*], this leads to
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2

B 42
j d” (x;0) = b"(@)E[a(x)] + h"(8) + (b'(8))? var[a(x)] = 0.

-b"(9)E[a(x)]-h"(6) but E[a()] = - h'(6) sol get

So Var[a(X)] = (br(e))2 b'(e)

b"(O)h'(6) —b'(O)h"(8)
(b))’ '

var[a(X)] =

Returning to the Poisson distribution I haveb = log, (8), b is what is known as a

d’o

me ,0 =e", therefore

natural parameter. Now% E[a(x)]=-h"(0)

% E[a(x)] = —h’(8)e" and so I may write - h{(H) % E[a(x)] =e° = @, but from the
fact that @ = eI must have a4 E[a(x)] = e°, therefore =1. In fact is
db -h'(6) -h'(6)

the dispersion parameter ¢, for the Poisson distribution [ have¢ = 1. In general |

have var(X) = ¢% E[X]. The dispersion parameter is of great importance in that it

allows for a more flexible relationship between the mean and the variance. Certain
distributions have limitations as far as statistical modelling is concerned; this is due to
the relationship between the mean and the variance. For the binomial distribution I
have x=np ando’ =npq, I see that the mean and variance are related. When
modelling data using Binomial distribution I can encounter the following problem.
The data exhibits a larger degree of variability than that assumed from the Binomial
distribution. The converse situation can also occur, the data is found to have a smaller
degree of variability than that expected from the Binomial distribution. In these

situations I have over dispersion and under dispersion. The Exponential Dispersion
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X0+U (0)+¢V (X,4)
model f(x;0,9)=¢e / allows me to circumvent the problem of over or

under dispersion. The dispersion parameter ¢ is an unknown scale parameter, earlier

it was stated that in general var(X) = ¢% E[ X1, this indicates that statistical variance

is closely related to the concept of scale. For instance the normal distribution is

described in terms of two parameters, a location and a scale parameter. The location

parameter corresponds to the mean u and the scale parameter to the variance s’ .

5.4.0 Information Theory

Likelihood is connected to Information theory, as will be seen later the likelihood
function appears in the Akaike Information Criteria. Information theory may be
defined as the mathematical study of methods and limits for data communication. In
1948 Claude Shannon (Shannon 1948) an American Mathematician and Electrical
Engineer published a paper which may be regarded as laying the foundation of
modern information theory. Information theory is a rich and fascinating area of study;
statisticians owe a great deal to the work of electrical engineers and mathematicians
such as Shannon. As indicated earlier some background material on information
theory is useful in discussing the Akaike Information Criteria (Akaike 1974), and

indeed the general problem of accessing model fit.

5.4.1 Information and Entropy

Again I consider a simple coin tossing experiment; assuming I have a fair coin, and
that I toss the coin say eight times. A typical outcome would be the sequence
10100100, where 1 denotes HEADS. Now suppose I toss the coin another eight

times, I observe the sequence
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0000101 1.Irepeat this operation a number of times, I build up a set of sequences
such as those shown below:

10100100

00001011

11100110

00001101

10110001

00001010

00101100

00001101

Etc.

Now consider a similar experiment but this time I use a biased coin, let P(HEADS)
=0.99. Then I might obtain the following set of sequences:

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

Etc.

The obvious difference between these two sets of sequences is that for the fair coin
each sequence displays a degree of variety or variation, whereas those for the biased

coin are identical. If these sequences were used to convey information then those
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generated by using a fair coin would allow us to present ‘richer’ patterns. With the
fair coin I am less certain that a HEAD will appear, but I have greater information.
With the biased coin I am almost certain that a HEAD will appear, but there is a

drastic reduction in the amount of information. Uncertainty and information can be

measured by what is known as entropy. For a random variable X having n possible

outcomes the Shannon information entropy H(X) is given by — Z p(x;)log, p(X;).
1

Again using the example of a coin, figure 5.2 below is a plot of H(X) versus

probability of getting HEADS.

o |
-
|
=]
© |

— O

=

I
= |
=
o~
=

| | | | | |
0.0 02 04 0.6 0.8 1.0

Frobability

Figure 5.2 Shannon information entropy versus Probability.

-08 -



It can be seen that H(X) is 0 for P(HEADS)=0 and P(HEADS)=1, i.e. for sequences

suchas00000000and 11111111 the Shannon information entropy is 0,
sequences such as these are easily predicted. In situations where I am certain of the
outcome I find very little information is present. In situation where I am less certain of
the outcome, I find greater information is present. In the coin example if

P(HEADS)=0.5, then H(X)is at a maximum. With a fair coin I obtain sequences

suchas 1 0100100 which is less predictable and so contains more information.

For the benefit of the interested reader additional material on entropy and statistical
physics is presented in Box 1, Material on entropy and comparing probability
distributions is presented in Box 2. I include this material because I believe it may
provide an interesting historical background to the origins of quantities such as the

AIC.

Box 1 Entropy and Statistical Physics

For the benefit of the interested reader we shall now look at the connection between Shannon information entropy
and entropy as defined in statistical physics. I shall consider some standard results from thermodynamics. One the
seminal papers in statistical physics was written by Ludwig Boltzmann see (Boltzmann 1872) and (Cercignani

2007). An excellent treatment of statistical physics can be found in (Blundell & Blundell 2006). For a Carnot cycle

we have
Q—e = T—e , where Qe and Ql are the heat entering and leaving the system respectively, and Te and Tl are the
| |

temperatures of two heat reservoirs between the system, note Te > Tl . Let AQN be the heat entering the system

A —
at each point, then z& = & + & =0, we may write this in the form of an integral
cycle T Te T|
d d A d
§% = 0. Given that §% =0, then .[ L is independent of the path, we may express Qrv as

a

dQI‘V

an exact differential, dsS = , S is defined to be the entropy. The first law of thermodynamics may be stated
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in the form du = dQ + dW . We may write dQ =TdS anddW = —pdV ,sodu =TdS — pdV . Also

using total derivatives we have

du = (des + (dev ,hence T = Q and P = —Q . By definition temperature T is given
0S oV 0S oV
1 dlog,(Q)
y = where €2 is the number of microstates associated with a particular macrostate. By
kgT dE
.1 dlog, () ou . .
combining = and T = ——, we can obtain an expression for S as follows:
kgT dE
. 1 dlog, () dE ouU dE
Rearranging = gives | = ——————— . So we have = ,
KT dE d log, (Q)k, 8S  dlog, (Q)K,
oS dlog, (Q)ky
hence — =——""——"".
oU dE

Integrating we obtain S = kB loge (Q) , this is the Boltzman expression for entropy.
Let a system have an number of equally likely states N ob » then the entropy S is kB log o (N ob ) . However it
may be that each of the N ob States comprises of a number of microstates, which may be extremely difficult to

observe or measure, the total entropy St =S+ Sm ,where S_ is the entropy connected with the microstates.

m

Let a system have N equally likely microstates, if theses microstates are arranged into groups (macrostates) with

Ni microstates contained within the ith macrostate, then Z Ni =N . The probability PI that the system
i

occupies the ith macrostates is given by P| =—1 .Now S = St — Sm , S is the measurable entropy. We

have St = kB log e (N ) , and the entropy of the microstates within the ith macrostate is Si = kB log e (N i ) .
We cannot measure Sm the entropy connected with being in any different microstate. However we can

access Sm , through the relationship Sm = E(Si ) , (note here E denotes the expected value), so

Sm = E(Si) :Z kBPi loge(Ni).From S = St —Sm we see that

S= kB IOgE(N) _ZkBPi loge(Ni),this expression may written as

Ko X P (08, (N) ~log, (N )) or ks 2P, log,| - | = ks P log. (P).
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S = —kB z P| loge (P| ) (The Shannon entropy), we see here the similarity in functional form of the Shannon

n
entropy and the Shannon information entropy H (X) = —Z p(X;) logb p(X;).
1

Box 2 Entropy and the Comparison of Probability Distributions

We notice that in the expression for both the Shannon entropy and the Shannon information entropy we are dealing

with one probability distribution, let us assume this is the true distribution and denote the p.d.f by p(x) . Letus
consider some other distribution with p.d.f C{(X) . An important question would be how different is

g(X) from P(X) ? The expression

—kg z p; (x)log, % = _kBZ p; (X)log, 0; (X) — p;(X)log, P;(X) can be written as

— kg (E[log, ;9] - E[log, p; (0)]).
The quantity ( E [log ¢ Oi (X)] -E [10g e O (X)]) provides us with a measure of the ‘difference’ or

distance between (|(X) and P(X).If Q(X) is close to the true distribution P(X) then

(Eflog, g;(x)] - E[log, p;(X)]) will be small.

We can describe

—kqg Z p, (x)log, % = —kBZ P, (X)log, ;(X) — p;(X)log, P;(X) as the generalised

Boltzmann entropy , denoted GB (Chakrabarti & Chakrabarty 2006) . The quantity
(E[loge P; (X)] - E[loge q; (X)]) is of particular importance in statistics as it relates closely to the

Kullback Leibler distance, denoted KL, see (Kullback & Leibler 1951), (Bozdogan 1987) and (Nariaki 1978).

. . . i)
For a discrete random variable we have KL given by Z P; (X) loge —— |, we see that except for the
i q; (X)
constant kB s KL = —GB . For a continuous random variable we have KL given
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B
by jp(x)loge[p( )]dx jp(x)loge p(x)dx — jp(x)loge q(X)dX . The first term in the
o a(x)

previous expression is the Shannon entropy which is constant, the second term — .[ p(x)log e C](X)dX is

a

known as the cross entropy. The cross entropy gives us a measure of the distance between P(X) and q(X) .

Viewing KL as a measure of the distance between the true distribution P(X) and J(X) , we need to minimise the
cross entropy.

The following example may help us to see what the KL is about. Let the true distribution p( X) of X be the

X

standard normal distribution. So P(X) = ——=¢€ 2.

Y

)

1 : T p(X)
Let (X) = ——€ 29 thenu X)lo dX we hav
e Q( ) . en smg.[op( ) g, (q(X)J ¢ have

Tl (x— )’ A
KL:loge(«/27z0')—loge(«/27r)+Jﬂe 2 20_";) dX—JEe 2 de.

0 x _ ) 2
We may write, KL=10ge(«/272'o')—10ge(4/27z-)+ g 2 (X—u) —X?jdX.

e (%

So

20

KL = log, (v270) - log, (J_)+j—e 2(% X—Zjdx.

Also the integral in the above expression can be written

0
207 _0_-[0

This may be written as

o) X2

e 2dx——J‘—e 2 x2dx

1
02 A 2 N2

2 ®© X2

X w x 1
e 2xzdx—i e 2xdx+-H [——e 2dx.
(20‘ jj.\/ o’ J; 20° '[\1271

—0
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Using the fact that for a continuous random variable O 2 = j p(X)X2 — U : , We may

write'[ p( X)deX =0’ + ,u2 , we know that X follows the standard normal distribution, so

a

I—e 2 X dX =1.Also J e 2 XdX 0 and by definition

2

I—e de_l so j—e ZdX—'u

207

Thus

/,[2 1 1 /12

ﬂ o0
e 2x i e 2xdx+ = ——+
(20‘ )J.\/ o’ -[0 20 20° 2 207

2
So KL = log, (270~ log, W2m) + ——= + 2~ L _1og,(0) - L 1+ﬂ 1
20 2 2\ o’

20

As arule we of course do not know what the true distribution is. If the true distribution was for example the

o . . 2
normal distribution with mean //; and variance O "t , and we have C{(X) as above, then

1 O'2t 1 (72 -
KL = —loge — |tTZl —F — 1+ ('ut 2'u) . We see here that KL is expressed in terms of £/,
2 o} 2{ o Ot

and 0%t
We can make the following remarks about KL:
KL>0 andif P(X) # q(X) then KL(P;q) = KL(Q; p) i.e. KL is not symmetric.

The first result can be obtained as follows:

X

Let U= &

p(X)

Jensen’s inequality states

E[- loge (w]=- loge E[uU] , where u is a convex function.

So we have

oo | 9D ) ax)
E[ loge[p(x)J]Z log, E[ p(x)]

Therefore

- 103 -




B B
[- loge{wj p(X)dx > —log, [j( a( )) (x)de
. p(X) a
B
a(x) _
But j (—p(x)jp(x)dx =1.

a

B
q(x)
So l— loge(mj p(X)dX >0

Hence

B
_[ ( P( )J p(x)dx >0

B
Now KL = [log, [SE ))jp(x)dx "

KL>0.

We can show KL(P; ) = KL(Q; p) as follows:

KL(p;q) = jlog{g(( ))j (X)dx and KL(Q; p) = Jloge[p(( ))J (X)dx, so
B B

KL(p;@) = [log, p(x)p(x)dx— [log, q(x) p(x)dx
B B

KL(q; p) = [ log, 0)a(x)dx— [ log, p(x)q(x)dx

5 A
KL(p;q) = KL(Q; p) ifand only if jloge P(X) p(x)dx = jloge a(x)g(xydx.

There is a significant drawback to KL, we cannot observe it. KL relies on us knowing the true distribution. As
stated earlier KL is expressed in terms of the parameters of the true distribution which are unknown. We need then

to consider how we might obtain an estimate of KL from the data.
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5.4.2 Estimating theKullback Leibler distance by the AIC

When fitting models to a dataset I desire the model which maximises the likelihood

(or the log likelihood). That is, I want to maximise log, L(60) = Z:loge (f(x;)).Icould

also look at maximising

S log, ((x)

log, L(0)
n n

For a large enough dataset

> log, ( (%)

- = Eflog, (f(X)].

So in maximising the likelihood I maximise E[log,(f(X)] (note f() is the model that

I am trying to fit). In my discussion of the Kullback Leibler (KL) distance I noted

that I aim to minimise the cross entropy (and so minimise KL) i.e. minimise

B B
- j p(x)log, q(x)dx = —E[log, q(X)] or maximise j p(x)log, q(x)dx = E[log, q(x)].

, > log, (%))
KL can be estimated byj p(x)log, p(x)dx —— . I said earlier that the
n

Shannon entropy is constant; this means that KL can be estimated by

> log, ( (%)

n
I can make the following important statements.
1 Maximising the likelihood is equivalent to minimising KL, i.e. maximising

E[log, (f(X)] is equivalent to minimising KL.
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2 In fitting models to a dataset I seek the model that maximises E[log, (f(X)].
In practical situations I would maximise E[log, f(X; é)] where 6 is a MLE of the

parameter &, (note 6 and 6 could of course be vectors). It is tempting to think that I
can use Zr.]lloge (f(x); 0) , the maximised log likelihood, to estimate

E[log, f(X; é)] , but this quantity is biased. For instance if I have nested models; the
model with the largest number of parameters will always give the largest value
fori log, (f(x); é) . Similarly this problem with bias means that estimating KL by

> log. (f(x))

n

leads to a distorted estimate of KL.

There are several ways to tackle the problem of obtaining an unbiased estimate
of E[log, f(X; é)] , one example is The Jackknife method (Miller 1974). For example

the jackknife method can be used to obtain an estimate of standard error in the

following way. Let X, be the sample mean of based on the sample with the ith

. -n-1 _ o L
observation deleted. Let X, be the average ofX;; .Then [ ZT(X - X())2 |2 is
j=1

j#i

the jackknife estimate of the standard error.

Another method is the Akaike Information Criteria (AIC). I shall alter slightly the
notation and use E[log, f, (X; ék )], this is to remind me that I am considering the k™"

model from a number of possible models. The AIC is given by

AIC(k) = —22 log, f, (X ;ék )+2p, where pisthe number of parameters in the

model. The AIC is an unbiased estimate of —2nE[log, f, (X; ék )], therefore I wish to
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find the model that minimises the AIC. I shall now look at how the AIC is derived;

from the derivation described in chapter 13 of Pawitan’s book (Pawitan 2001). Given

the model f,(X,6,) ,1have log, L(6,) = Z:loge f, (X;;6,) . Let the solution of

E[log, f(X;6,)]=0be 6, estimate 6,; by ék , (0,5 and ék are vectors). Now

0’ log, f (X,0
deﬁne ‘]k = E[aloge fk(xaek)][aloge fk('xaek)} and Ik - _E Oge ( k) I

00, 20, 20,00,
will need to make use of the result E[n(é’k —0s)'1, (ék 0, )]~tr(J, 1, 7). (Note A’

denotes the transpose of a matrix, and tr is the trace of a matrix, i.e. the sum of the

elements in the main diagonal). The Taylor series for log, L(6,) = Z:loge f . (X;6,)

about ék 1s

dlog, L(6,)

k

0% log, L(O"¢) .

R .1 .
log, L(6,) =log, L(6,)+ (2 _ek)_'_a(ek -6, 06,00, @ —0)+...

A

 where |0, -6, <6, -6

dlog, L(6,)

For large samples ék —> oo &k >80 E
00,

J =0. I now have the

,0% log, L(67¢) A

. . 1 .
approximationlog, L(6,)=1og. L(6, )+—(6, -6 6, -6).
pPp g. L) g. L(6,) 2( k W) 06,00, (0, W)

Again appealing to large samples results I have

2 * 2 .
107 log, L(6 «) orob E(a log, f(X,QK)J =—I,, which gives

n 06,00, 06,00,

0% log, L(8"¢)

- -nl, .
96,00, prob Tk
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I may now write log, L(6,) = log, L(6, )+ % n@, —0)'1,(6, —6,), so with 6, =6,
and using E[N(6, —6s)'1, (6, —0,)]=tr(3 1, ") I have

log, L(6,,) =~ log, L(6A’k)—%tr(\lk | ). Therefore

E[log, L(6,,)] = E[log, L(6A’k )]— %tr(\]k I ). Using the fact that
lloge L(0s) = v Ellog, f(X;6,)], L arrive at the approximation
n

nE[log, f(X;6,,)]~ E[log, L(ék )] —%tr(\]kl %) . The Taylor series for
E[log, f(X;6,)] about 6, is
Ellog, f(X;6)]

00,
I then obtain the approximation

’E[log, f(X;0%)]
06,00,

0 1 , 0
E[loge f(xaeks)]—'_ (ek _eks)+§(9k _gks) (ek _eks)+"'

1 '
E[log, f(X;6,)]~ E[log, f(X;Hks)]_E(Gk -0)1,.(6, —6) -
Setting 6, = ék I get
Eflog, f, (X;6,)]=E[E[log, f(X;0,)]]~ E[log, f(X;@kS)]—%tr(Jkllk).

On combining nE[log, f(X;6,)]~ E[log, L(d, )]—%tr(\]k I ') and

Ellog, f,(X;0,)]=E[E[log, f(X;0,)]]~ E[log, f<x;eks)]—21—ntr(akl“k),Iget

nE[log, f (X;«9Ak )] = E[log, L(HAk )]—tr(J,17'v). From the last result I can say that
log, L(6,)—tr(J,17') is an unbiased estimator of nE[log, f (X;6,)]. The AIC is
based on the assumption that J, =1, , this means that tr(J, | ') is approximately

equal to the number of parameters in the model, i.e. tr(J, 1 '«) = p. So I have
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log, L(6A?k )— p is an unbiased estimator of nE[log, f(X; ék )], hence

AIC(k) =—2log, L(6A?k )+2p is an unbiased estimator of —2nE[log, f (X;6A?k )]. The
AIC is an estimator of 2E[KL] (Bozdogan 1987). The first term in the AIC formula
gives a measure of how bad a fit a particular model is to the data. The AIC penalises
model complexity through p , I said earlier that when fitting models I look for the
model that gives the smallest value for the AIC, as a model becomes more complex p
increases and so the AIC increases. It should be noted that single values of the AIC
are not of use to me in fitting a model, I must look at changes in the AIC. For example
I might examine the changes in the AIC when a new term is introduced into a model.

A simple example might be to consider the models g, + 5, X, and g, + B, X, + 3, X,,
let AIC, be the AIC for the first model, and AIC, be the AIC for the second model.

Then I look at AIC, — AIC, . In the past there has been some interesting discussion
concerning the term 2p in the AIC formula. Questions have been raised regarding the
adequacy of penalisation as implemented in the AIC (Bozdogan 1987). Put simply is
2 a big enough multiplier? The AIC hinges on the approximationtr(J, | <) = p, if
this approximation is not correct, then the AIC will not give an unbiased estimate

of —2nE[log, f(X; ék )]. Concern has been expressed over the question of the

consistency of the estimate of model order (k) obtained through minimising the AIC.
As the sample size increases the order of the best model obtained by using the AIC
will increase, however it may not be close to the order of the ‘true’ model. As far as
the AIC is concerned the true model could be of infinite order. It is important to note
that the AIC can be used to select the best fitting model but not as a means of
estimating the true order of the model. This last issue is of interest in that it relates to

possible over-fitting or under-fitting. Bozdogan (Bozdogan 1987) argues that
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‘consistency is an asymptotic property and any real problem has a finite sample size

n’. Bozdogan also makes an extremely important remark to the effect that consistency
supposes that there is a ‘true’ model order. I would argue that the AIC is a very good
model selection tool; it is attractive due to its relationship to the fundamental measure

KL.

5.5.0 Extending the AIC

The AIC in the form that I have considered is for want of a better description the
‘classical’ form. With some effort I can see the connection between the AIC and KL.
The ‘classical’ form of the AIC has some limitations. In this present work one of my
main concerns is the problem of over-fitting. An important question is, if I use the

AIC as a model selection tool am I liable to over-fit models? In certain circumstance
the answer to this question is yes. Using the formula AIC = -2log, L(é) +2p, what
happens if p large is compared to the sample size? In this case I will find that models

selected using this form of the AIC are prone to over-fitting. To overcome the

problem of over-fitting when the sample size n is small compared to p, I have to
consider a corrected version of the AIC. This corrected AIC is denoted AIC_, and is

given by the formula

AIC, = 2log, L(d)+2p+ &”1) , see (Nariaki 1978) and (Hurvich & Tsai
n — —
1995). It is seen that asn — oo, AIC_ — AIC, it is suggested that AIC_ be used as

opposed to AIC in situations where n < 40 ,see (Burnham & Anderson 2004). Can I
p

use the AIC in situations where I might want to fit a mixed model, a model with time

dependent covariates or a frailty model? I shall now consider these three cases.
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5.5.1 Mixed Models

I make reference to mixed models in Chapter 8, briefly the model

Yi =By +&; +(a; + B)X, is known as a mixed model. The model contains fixed
and random effects, ¢; is a random intercept and «; is a random slope. Random

effects are handled in the same way as the fixed effects, so that [ have p + p;

parameters in the model ( p fixed and p; random). Let 0 be a vector, this gives
AIC =-2log, L(d)+2(p + p;) and

2(p+p)(p+Pp;+D)
n—-(p+p;)-1

AIC, =-2log, L(é) +2(p+p;)+ . Earlier I mentioned the

problem of the consistency of the AIC, a consistent form of the AIC is

CAIC =-2log, L(é) + p((log, n) +1), see (Bozdogan 1987). Again with p + p; total
number of parameters, I have CAIC = -2log, L(é) +(p+ p;)((log,n)+1). In terms

of actually fitting a mixed model, the AIC, AIC_ and CAIC are implemented in a

number of statistical software packages. For example in the SAS procedures MIXED
and GLMMIX various forms of the AIC and related quantities are implemented:

AlIC=-21+2d

*

2dn
(n" —d-1)

AICC =2l +
HQIC = -2l +2d log, (log, n)
BIC =-2l+dlog,n

CAIC =-2l +d(log, n+1)

where

| = —2log, L(0)
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In the above formulaed = p + p;. The MIXED procedure uses restricted maximum

likelihood (sometimes known as residual maximum likelihood) in fitting a model.
The BIC (Bayesian Information Criterion) was developed by Schwarz in 1978
(Schwarz 1978), Burnham (Burnham & Anderson 2004) contains a most interesting
discussion on the BIC, as Burham points out the BIC unlike the AIC is not related to
information theory. In deriving the BIC unlike the AIC, it is not assumed that the
model used in the derivation is the ‘true’ model.

Buckland et al. (Buckland et al. 1997) state that the BIC is consistent in terms of the
dimensions of the best models selected; the BIC assumes that the ‘true’ model is of
small dimension. For small samples the BIC is prone to select models that are under-
fitted. Taking this into consideration, in regard to over-fitting would we do better to
use the BIC rather than the AIC? This question is not at all straightforward, whether
to use the BIC or the AIC depends upon the dimensions of the ‘true’ model. The BIC
might have advantages over the AIC if the underlying ‘true’ model is of low
dimension. Buckland et al. (Buckland et al. 1997) make some very astute remarks in
regard to the question of whether it is better to use the AIC or the BIC. I would say
that there is no grave disadvantage in using the AIC, however the issues raised in
Buckland et al. are thought provoking and I would find further investigation of this

question fascinating.

When using the AIC to gauge the fit of a mixed model the researcher should exercise
some degree of caution. Vaida and Blanchard (Vaida & Blanchard 2005) consider
clustered data, they show that the AIC in its classical form leads to rather strange
results when applied for example to repeated measures. They develop a conditional

AIC. Vaida and Blanchard consider an example using repeated measures, see (Vaida
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& Blanchard 2005), the data consists of six measurements taken on ten patients, they
use the nlme package in GNU R to produce a mixed model and a linear regression
model. On comparing the AIC they find that the linear regression model is favoured
over the mixed model, this they point out is strange given that the linear regression
model has 21 parameters and the mixed model 6. Essentially their argument is that the
AIC in its classical form when applied to mixed models leads to misleading results
because the penalty term is not appropriate for the mixed model situation (penalty
term is too large). Consequently they develop a form of the AIC with an adjusted
penalty term appropriate for use in developing a mixed model. It should be noted that
the nlme package has been superseded by Imer4. SAS’s PROC MIXED implements
an appropriate form of the AIC (Fernandez 2007). It is advisable that researchers try
to establish which form of the AIC is implemented in the particular software package

they happen to be using.

5.5.2 Time Dependent Covariates

When analysing survival data with say the Cox Proportional Hazards model, it is
often assumed that covariates do not change with time. A covariate is taken as
remaining constant up to the event of interest. The Cox Proportional Hazards model
can be extended by considering covariates that change with time, time dependent
covariates. The SAS procedure PHREG allows one to fit a model with time dependent
covariates. PHREG reports the AIC and BIC (note the BIC is reported as SBC,

Schwarz Bayesian Criterion).

5.5.3 Frailty Models
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Do Ha et al. (Do Ha et al. 2007) develop an AIC for a set of frailty models, (the
models need not be nested). The AIC proposed by Do Ha et al is based on conditional

likelihood and an extended restricted likelihood. They define two AICs as follows:
AIC(D")=D"+2p,

AIC(T,)=T, +2p;

AIC(D") deals with fixed and random effects and frailty parameters, whilst
AIC(T,) deals only with the frailty parameters (dispersion parameters in the frailty

distribution). In (Do Ha et al. 2007) the authors state that for a Cox Proportional

Hazards model AIC(D") is the AIC as used in the SAS procedure PHREG. For a
linear mixed model AIC(T,) is the AIC as used in the SAS procedure MIXED. The
authors also suggest that in regard to frailty terms AIC(T, ) may be a better selection

criterion than AIC(D"). The work of Do Ha et al. is certainly very interesting; as far

as | am aware the AICs developed in (Do Ha et al. 2007) have not been implemented
as software. Further investigation of the results presented by Do Ha et al. would be
well worth pursuing. In the next chapter will I shall further consider over-fitting and

model optimism, examine Harrell’s C and discuss the issue of validation techniques.
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CHAPTER 6 OVER-FITTING, OPTIMISM AND VALIDATION

e When trying to develop a prognostic model including a large number of
potential predictor variables may lead to over-fitting

e Over-fitted models are biased in regard to predictive power

e Over-fitted models are poor prognostic tools

e Prognostic models should be validated

6.0.0 Introduction

I have made reference to over-fitting numerous times in the preceding chapters. |
could define over-fitting to be the tendency in certain statistical modelling procedures
to produce models that include substantial noise, that is I end up with a model that
does not just describe the general patterns in a data set, but includes a deal of local
fine-grained detail. Over-fitting leads to models that include variables that are
significant in the sense that they model local detail, they may not be significant as
general overall predictors. A model that has been over-fitted is biased in terms of how
optimistic predictions based on this model .If over-fitting is present then on applying
the model to a new but similar data set I would see a change (deterioration) in the
predictive power of the model when used to predict on the new data set. This
difference in predictive power can be described in terms of optimism. I can gauge the
predictive power of a model by measuring the agreement between the observed and
predicted values of the dependent variable. One way of measuring such agreement is

by Somer’s D (Somers 1962). Harrell (Harrell et al. 1996) defines optimism in terms
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of the difference in two values of Somer’s D. It may be worthwhile looking at

Somer’s D and some related measures.

6.1.0 Somer’s D

The population value of Somer’s D is defined as follows D,, = Txr. ,

where 7, = E[sgn(X; — X,)sgn(Y; —Y,)], forall i, j, 7y, is Kendall’s 7, (Kendall

1938).
The sgn function is defined as follows:

sgn(X) =—-1,x<0 , sgn(x) =0,x=0,sgn(X)=1,x>0.

X and Y are sampled jointly from a bivariate distribution.

Kendall’s 7, gives a measure of concordance, the X's and Y's are said to be
concordant if the bigger of the X'sS is associated with the bigger of theY's . Somer’s
D is the regression coefficient of sgn(X; — X ;) with respect tosgn(Y; —Y;). Both
Kendall’s 7, and Somer’s D can be applied to survival data, X or Y or both could be

censored. If I have indicator variables U andV , where values of 1 indicate that the

event of interest has occurred and values of 0 indicate censoring, then Somer’s D for

Txuyy

survival data can be defined as D, , , =
XU, XU

6.1.2 Harrell’s C
Harrell (Harrell et al. 1996) has defined the quantity D, ,, ¢ = 2C —1, where it is

assumed that X is a continuous variable.C is known as Harrell’s C . I can interpret

Harrell’s C as measuring how well X predicts survival. Harrell’s C is defined as
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“the proportion of all usable patient pairs in which the predictions and outcomes are
concordant” (Harrell et al. 1996). For a binary dependent variable C is “the proportion
of all pairs of patients, one with and one without the disease, in which the patient
having the disease had a higher predicted probability of disease.” (Harrell et al. 1996).
Harrell’s C takes on values from 0.5 to 1.0, 0.5 indicating poor predictive power
(poor level of agreement between predicted and observed Y's ) and 1.0 indicating
very good predictive power (high level of agreement between predicted and
observedY's). Somer’s D can take on values from -1 to 1.

Assuming then that I have arrived at my final model, I could use Somer’s D or
Harrell’s C to obtain some measure of the predictive power of the model. However, |
will not address the problem of possible over-fitting by examining values of Somer’s
D or Harrell’s C for the original data set alone. Ideally to assess over-fitting I need to
fit the model to a number of different but similar data sets and examine predictive

power of the model over these data sets. This leads to the idea of validation methods.

6.2.0 Validation Methods

The formal procedure for determining the predictive power or accuracy of the final
model is known as model validation.

I have said that in order to assess over-fitting I need to fit the ‘final’ model to a
number of data sets that are similar but different to the data set used to develop the
model. How do I obtain these data sets? I could reserve some of our original data and
use it to test the model, or I could try to ‘build’ some data. The first approach is
known as data splitting, see (Picard & Berk 1990). The second approach could
involve the use of the bootstrap (Efron & Gong 1983). I shall now consider these two

approaches in a little more detail.
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6.2.1 Data Splitting

The idea of splitting up the original data set into a portion on which to develop the
model (the training sample) and a portion for validation seems quite reasonable. So
how is the data split up? This question is not trivial and Picard and Berk (Picard &
Berk 1990) draw attention to the problem which may result if the data is split in an
arbitrary way. I may end up with not enough data to develop the model, or conversely,
if [ reserve a large portion of the data for development, I may not have sufficient data
for validation. A formal criterion for partitioning the data would be desirable, but it is

often the case that the mathematical expressions for these criteria are intractable.

Picard and Berk (Picard & Berk 1990) suggest that between % to % of the data

should be reserved for validation.

If I have a large data set I could consider repeated data splitting, this is called cross-
validation (Stone 1974). With cross-validation I have multiple models (a model per
split), if T have split the original data set k times, I have K training samples and k
validation samples. I develop and validate the k models and then ‘average’ the
results, i.e. I could obtain averages for regression coefficients and Somer’s D. Data
splitting and cross-validation tend to produce highly variable estimates. In data
splitting I might see notable variation in, say, the estimate of regression coefficients
dependent on how I split the original data. In cross-validation the same problem arises
due to the multiple training and validation samples used. In both data splitting and
cross-validation the accuracy of the estimates is highly variable. A way of

overcoming this problem is to use the bootstrap.
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6.2.2 The Bootstrap

The bootstrap (Efron 1979) was devised by Bradley Efron as an extension of the
jackknife (Miller 1974), (Efron & Stein 1981), (Efron 2000). Efron described the
bootstrap as “a muscularized big brother to the Quenoille-Tukey jackknife” (Efron
2000). The bootstrap method is described as follows.

Suppose I have a data set{X,, X,,...X,, } -

I can form the bootstrap sample by drawing at random and with replacement from
original data set. The bootstrap sample is usually written in the form X, X;,...X ",
where nis the size of the original data set. A typical bootstrap sample from

{X5 X,y ,...X;o } might be {X;, X5, X5, X5, X,, X, X, Xg» X5, X, } . | may for example want to
obtain an estimate of the true standard error for some quantity or statistic, let this
quantity be 0.

I use the bootstrap sample to obtain " the bootstrap replication of 6.

A

6" is often written as 6" = 6A?(X1*, X3, X0,
now from another bootstrap sample and obtain the bootstrap replicate using this
sample. I repeat this process B times where B is a large number. I now have B
1
B A Ak E
2(0 b 0 .)2

b=1

bootstrap replicates 9". As B> the quantity tends toward &

(B-1)

*b

D>

2

the bootstrap estimate of the standard error of 0, where 0" =

B One extremely

important feature of the bootstrap is that I do not have to know what distribution the

original data comes from. The true standard error of 6, o(F), depends upon knowing
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what distribution the original data comes from, the bootstrap allows me to estimate

o(F) by means of 6. The bootstrap estimate of o(F), 65 depends upon the

empirical distribution F , so I can write Gy = o(F) . The empirical distribution F
assigns equal probability (probability massl) to each X in the original data set. The
n

bootstrap can be applied to quite complicated statistics with ease. I described B as a
large number, values of B do not have to be huge, values of 200 or 300 can produce
good estimates. An excellent discussion of the bootstrap and jackknife can be found in
(Efron & Gong 1983). The bootstrap is an internal validation method, as are data
splitting and cross-validation; a portion of the original data set is used to validate the
final model. A more rigorous validation procedure would involve entirely new data
sets, this may not be a practical approach, it might be difficult to obtain new data for a
variety of reasons, for instance financial constraints, data collection may take a long
time.

Harrell (Harrell et al. 1996) recommends the bootstrap as a method of internal
validation; the estimates of the predictive accuracy of a model produced by the
bootstrap are virtually unbiased. One major benefit of the bootstrap is that unlike data
splitting and cross-validation all of the data is used to develop the model. I now

consider a validation procedure as described by Harrell in (Harrell et al. 1996).

6.3.0 Harrell’s validation procedure

In (Harrell et al. 1996) Harrell lists the following steps needed in order to assess the
internal validity of a model. These steps are given in Box 1 exactly as they appear in

(Harrell et al. 1996).
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Box 1 Harrell’s Validation Steps

1.

Develop the model using all n subjects and whatever stepwise testing is

deemed necessary. Let D, denote the apparent D from this model, i.e.,

the rank correlation computed on the same sample used to derive the fit.
Generate a sample of size n with replacement from the original sample
(for both predictors and the response).

Fit the full or possibly stepwise model, using the same stopping rule as

was used to deriveD, .

Compute the apparent D for this model on the bootstrap sample with

replacement. Call it D

boot *
‘Freeze’ this reduced model, and evaluate its performance on the original

dataset. Let D_. denote the D.

orig

The optimism in the fit from the bootstrap sampleisD, , — D

orig *
Repeat steps 2 to 6 100-200 times.
Average the optimism estimates to arrive atO.

The bootstrap corrected performance of the original stepwise model is

D.,, —O. This difference is a nearly unbiased estimate of the expected

value of the external predictive discrimination of the process which

generated D, . In other words D,,, —O is an honest estimate of the

|

internal validity, penalizing for over-fitting.
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Initially in Harrell’s procedure the model M is developed using all of the original
data, and Somer’s D is recorded. In the next step I generate a bootstrap sample by

drawing at random and with replacement from the original data. Next I fit a model

M to this bootstrap sample, and record Somer’s D, i.e. D, . Now obtain the

boot *

Somer’s D for M, using the original data, i.e. D, . The optimism is defined to

orig

be D D,i, » here the optimism refers to M| . If Dy, — D, is < 5% this can

boot — “orig » orig
be interpreted as meaning that the original model M is consistent in its

performance, I do not see a degradation in predictive power when the original
-D

model is applied to the bootstrap data set. Although D refersto M|,

boot orig

I can say that the performance of M| on the original data is at least comparable to
that of M , i.e. I infer that M and M, are the same model. In step 7 of Harrell’s
procedure I now run through steps 2 to 6 B times to obtain M, ,M,...,M and

the associated D, and D, , which is denoted D, and D,°". The quantity

boot orig *

B
* *orig
2.D: - D
_ b=l

O is the average optimism, D,,, —O gives a good estimate of

the internal validity of the model, with O acting as a penalty term for over-fitting,
large values forO mean I incur a high penalty for over-fitting. It is important to
remember that a single value of Somer’s D gives a measure of predictive power
for a model, the difference in two values of Somer’s D measures optimism or
over-fitting. Harrell has implemented the validation procedure described in steps 1
to 7 in the Design library (Design Library Harrell Frank E. 2009b), (Design

Library Harrell Frank E. 2009a).

-122 -



6.4.0 Validating the CARE-HF Model

I shall look at an example of validating a model (the CARE-HF model) using Harrell’s
procedure. Note here the validation does not deal with optimism of the model fitting
process, but from the final model alone. The model developed for the CARE-HF data
has been described in Chapter 2, I will use GNU R and the Design library to validate
the final model for the CARE-HF data. The variables in the final model for the

CARE-HF data are shown in Table 6.1

Transformation | Hazard ratio | 95% CI P-value
Predictors of overall outcome
Mitral regurgitation Log. 1.71 1.38-2.12 0.0001
N-terminal pro-brain natriuretic peptide (pg/ml) | Log. 131 1.17-1.47 0.0001
Systolic blood pressure (mmHg) Linear 0.99 0.98-1.00 0.0698
Interventricular mechanical delay (ms) Linear 1 0.99-1.01 0.7617
Actiology (ischaemic) (yes/no) Factor 1.89 1.45-2.46 0.0001
CRT (yes/no) Factor 0.15 0.03-0.87 0.0347
Predictors of response to CRT
Systolic blood pressure (mmHg)*CRT Linear 1.02 1.00-1.03 0.0183
Interventricular mechanical delay (ms)*CRT Linear 0.99 0.98-1.00 0.0084

Table 6.1 Predictors of outcome and response to CRT

Let us denote the variables in Table 1 as follows:

log.(Mitral regurgitation) X,

loge(N-terminal pro-brain natriuretic peptide) X,
Systolic blood pressure X,

Interventricular mechanical delay X,

Aetiology (ischaemic) X

CRT X,

Systolic blood pressure*CRT X, * X,
Interventricular mechanical delay*CRT X, * X,

I will denote the primary event as p and the time to p ast.

To perform validation in GNU R using the Design library I use the following R code
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>library(Design)

>setwd(*'C:/location of data file™)
>dd<-read.Table(File="myfile.csv", 6 header=T,sep="",")

>attach(dd)

>F<-cph(Fformula=Surv(t, p)~xX1+x2+(X4*x6)+(x3*x6)+x5,x=T,y=Y,surv=T)
>vi<-validate(f,B=200,dxy=T,pr=T)

I first load the Design library. Next we set the working directory and then read in the
data file. I now make the data frame dd available through attach(). Next I fit the Cox
Proportional Hazards model, justification for fitting the proportional hazards model
even though there is some evidence that CRT violates this assumption is discussed in
Chapter 2. f stores the result of the model fitting. Finally I validate the model using
200 bootstrap samples, dxy=T means that I want to use Somer’s D, pr=T means print

results for each of the 200 repetitions. The results of the validation procedure are

shown in Table 6.2.
index.orig [ training | test optimism | index.corrected | n
Dxy -0.4090 [ -0.4198 | -0.3982 -0.0216 -0.3874 | 200

Table 6.2 Validation of Final CARE-HF model Using Harrell’s Design Library in GNU R

In Table 6.2 Somer’s D (Dxy) is presented Dxy is the rank correlation between the
predicted log hazard and the observed survival times. This is why we have the —ve

values in Table 6.2, D,,, =-0.41, the index corrected value for Somer’s D (-0.3874) is a

better estimate of the predictive power of the model, i.e. how well the model performs
as a prognostic tool in the future. In terms of optimism I can interpret the value of -
0.0216 from Table 6.2 as meaning that on average there is a difference of
approximately 2% in the values of Somer’s D between the original data and the ‘new’

data, so if the model where to be applied to a new set of patient data I would expect a
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loss of predictive power of around 2%. As a rule of thumb an optimism of less than

5% is acceptable.

6.5.0 What Motivates Validation?

The phrase predictive power is broad description of the positive attributes that should
be considered in regard to a prognostic model. Predictive power comprises two
fundamental parts:

1. Accuracy

2. Generalisabilty
In (Justice et al. 1999) Justice defines accuracy as “The degree to which predicted
outcomes match observed outcomes.” Generalisabilty is defined as “Ability of a
prognostic system to provide accurate predictions in a new sample of patients.”
(Justice et al. 1999). The aim of model validation is to assess whether the model is
accurate and generalisable. Both accuracy and generalisabilty can be further broken
down into the following parts:

Accuracy:

Calibration

Discrimination
Generalisabilty:
Reproducibility

Transportability

When considering accuracy, a calibration error occurs if the predicted probability of

some event of interest is too high or too low. A discrimination error occurs if given

that a patient has been assigned a risk score, they are incorrectly ranked on the basis

- 125 -



of individual risk. If patients are grouped based on their risk score, then the group
comprising patients with a high score should have a high event rate, if a patient with a
low risk score was allocated to the group with the high event rate, then a
discrimination error has occurred. Similarly when considering generalisabilty,
reproducibility refers to the accuracy of the prognostic model when applied to patients
who were not in the original dataset used to develop the model, but are from the same
population. If the prognostic model is accurate for patients from a similar but not
identical population, or is accurate for data collected using methods that are different
than those used to collect the original data; then the model can be said to possess
reproducibility. It may appear that model validation is confined to assessing the
validity of a model purely in statistical terms. Altman and Royston (Altman &
Royston 2000) pose two questions of great importance:

1. With the available factors, is the model the best that can be found?

2. Does the model predict accurately enough for its purpose?
The above questions lead the authors of (Altman & Royston 2000) to suggest that
validation be considered from both a statistical and a medical perspective. Altman and
Royston (Altman & Royston 2000) supply the following definitions:

1. A statistically validated model is one which passes all appropriate statistical
checks, including goodness-of-fit on the original data set and unbiased prediction on a
new data set.
2. A clinically validated model is one which performs satisfactorily on a new data set

according to context-dependent statistical criteria laid down for it.

I would concur with the view that it is necessary to distinguish between clinically and

statistically validated models. In regard to Harrell’s approach I believe that there is a
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potential danger that to lose sight of the importance of clinical validation, Harrell’s
approach appears to concentrate on statistical validation. Researchers may be lulled
into thinking that the validation methods suggested by Harrell are sufficient to
produce a clinically useful prognostic model. As Altman and Royston point out, if the
prognostic information is inherently weak, then a statistically valid model as defined
in (Altman & Royston 2000) may be of limited use from a clinical perspective. The
reader is strongly encouraged to consult (Altman & Royston 2000). The problem of
model generalisation is of great interest to the present author, how far it is possible to
produce general models is not clear, and the failure of a model to be general lies
ultimately in the nature of the mathematical techniques used in model fitting. It is
perhaps not un-reasonable to question anxiety over generalisabilty. Generalisabilty
whilst desirable may be attainable to only a limited extent. I feel that this should be
considered when carrying out statistical modelling. Clinicians want a prognostic
model with good predictive power and ease of interpretation; it may well be that
predictive power comes at the expense of ease of interpretation. This possibility will

be discussed in the final chapter.

6.6.0 Summary

Validation is an important aspect of statistical modelling. Once I have obtained the
‘final” model it is not enough to be content if this model fits the original data set well.
Ideally I need to assess the performance of the model over new data, that is perform
external validation. If it is not practical to perform external validation then I should

apply some internal validation method such as data splitting, cross-validation or
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bootstrap methods. If after performing external or internal validation I see
deterioration in the predictive power of the model then I need to identify possible
reasons, for example over-fitting (or under-fitting) misspecification of the functional
form of the model. Another possible reason for poor performance of a model is
missing data. If the original data set has significant missing data then this will
influence the final model. I consider missing data and methods of imputing missing
data in the next chapter. The model should be assessed as to whether it is clinically

plausible; this is entirely separate from the issue of statistical validity.
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CHAPTER 7 MISSING DATA AND IMPUTATION

e Missing can lead to a poor prognostic model

e Types of missing data MCAR, MAR and MNAR
e Missing data dealt with by imputation

e Correct imputation model is crucial

e Imputation should be used with caution

7.0.0 Introduction

If the data set contains variables for which values are missing then a model fitted to
this data may not be reliable, missing data may lead to biased results. For example |
could see how for variables with a large number of missing values, estimates of the
regression coefficients could be distorted. In developing the prognostic model for the
CARE-HF study (Richardson et al. 2007) it was found that mitral regurgitation was a
strong predictor of the primary outcome. However mitral regurgitation was seen to
have missing values (208 values were missing). Missing data may have a marked
effect upon the variables that appear in the ‘final’ model. A variable may attain a
spurious statistical significance due to missing values.

How do I treat the problem of missing data? This depends upon the reason for why
the data is missing. Under certain circumstances the missing data will not lead to
biased results. Unfortunately this is often not the case, and efforts must be undertaken
to address the issue of missing data. One approach would be to remove cases where [
have a high level of missing data. If I had a data set consisting of the

variables Y, X, X, , and I wished to carry out a ordinary least squares regression of
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y against X; and X, , but I found that X, had a large number of missing values, then I
might remove the pairs (Y, X, ), where X, is missing. This method may lead to inflated

variance and bias. The modern approach would be to supply the missing values. In the
past the missing data problem tended to be ignored, imputation, the process of
supplying or ‘filling in’ the missing values can be computationally intensive.
Nowadays the computational power is available that makes imputation practical. An
important question I must consider is why is the data missing? I shall now look at

different types of missing data.

7.1.0 Types of Missing Data

If a group of patients have some measurement taken e.g. lung function, it is possible
that some measurements may be missing due to failure of the measuring device or
machine. In this situation I would assume that device or machine failure is a random
event, the probability of missing data would be described as missing completely at
random (MCAR). Other examples of situations where data would be described as
missing completely at random are if for example someone was unable to complete a
questionnaire due to common illness. Participants in a clinical study may move away
from the area, they might die due to reasons unrelated to those specified within the

study.

If the probability of missing data for a particular variable depends upon other
observed variables then the missing data is said to be missing at random (MAR). If
the probability of missing data for a particular variable depends on other observed
variables and unobserved variables then data is said to be missing not at random

(MNAR). MCAR MAR and MNAR are what is often called the missingness
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mechanism, see (Buck 1960) and (Zhang 2003). If the missing data mechanism is
MCAR or MAR then the missing data is said to be ignorable, the missingness
mechanism does not need to be modelled, if however the missing data is MNAR the
mssingness is said to be non-igonrable and is the most problematic of the missing data
mechanisms. I need to determine why the data is missing, and once I have established
that the data is not missing completely at random, then I should attempt to apply some
suitable imputation method. It is possible to test the MCAR assumption, Little (Little
1988a) has developed a test based on the Chi squared distribution. However it is not
possible to conclusively prove the data are MCAR. There is no test for the MAR
assumption. For a detailed discussion of issue missing data and prognostic models see

(Marshall 2007)

7.2.0 Dealing with Missing Data

There are numerous methods for dealing with missing data; I have mentioned one
approach already, simply delete the missing data. It can be argued that this approach
is not particularly satisfactory; as potentially useful information is being discarded
(put another way, the sample size is reduced). I shall consider some of the methods
available that allow missing data to be imputed. A very simple way of imputing data
is to use the mean, missing values are replaced with the sample mean. For example in
the CARE-HF data the variable mitral regurgitation has 208 missing values, if I
impute these missing values by using the sample mean = 23.79 of the 605 non
missing values for mitral regurgitation, then the sample mean for mitral regurgitation
(n=813) with imputation = 23.79. Here I see that imputation using the sample mean
has made no difference in the estimate of mean mitral regurgitation. What I do find

however is that the standard deviations change, the standard deviation of the 605 non-
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missing values = 14.94, whereas the standard deviation for the imputed data (n=813)
= 12.88. This reduction in standard deviation is misleading in the sense that it is due
to the fact that I have increased the sample size from 605 to 813, but I have seen no
difference in the estimate for mean mitral regurgitation. However if I were to use the
sample median, I have the sample median for the 605 non-missing values = 21.81 and
the sample median for the imputed data = 23.79. Another possible approach is to
impute the missing data by using some regression technique; I predict the missing
values using the regression model. If I were to use ordinary least squares regression |
am in effect doing the same thing as with using the sample mean, I am still confronted
with the problem of producing a reduced standard deviation (or standard error) due to
the increased sample size, but I will not gave gained any new information, i.e. I will
not see an appreciable difference in the estimate of some population parameter based
on the imputed data.

Table 7.1 briefly describes some of the common imputation methods

Method Comments

Simple Mean Imputation, uses sample mean to impute Easy to perform, but may lead to distorted relationship between
missing values variable that has undergone imputation and other variables in dataset
Regression Imputation, use a regression model to Distribution of variable that has undergone imputation may be

generate missing values distorted, correlation with variable not included in the regression model

may be suspect. If the regression model is not appropriate then imputed
values are suspect.

Random Regression Imputation, as above but a random Works well with categorical and continuous variables, again depends
term is added to the imputed value generated by the upon appropriate regression model.
regression model. Random term can be drawn from a
normal distribution

Hot Deck Imputation, imputed value is selected at Method uses ‘real’ values, i.e. value is present in the data set.
random from the non-missing cases

Predictive Mean, a hot deck method that employs a Method is slightly more robust than the regression method
regression model

Last Value Carried Forward Last known values carried forward to supply the missing data

Table 7.1 Imputation Methods

I shall now briefly review the basic ideas for the imputation methods that are
implemented in SAS and GNU R. In SAS PROC MI (SAS Proc MI 2009) allows me
to perform what is known as multiple imputation, see (Zhang 2003), (Rubin 1976),

(Rubin 1996) and (Schafer & Olsen1998). The imputed data can then be analysed
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using PROC MIANALYZE (SAS Proc Mianlyze 2009). In GNU R, Harrell’s Design
(Design Library Harrell Frank E. 2009b) library used in conjunction with Harrell’s
Hmisc library (Hmisc Library Harrell Frank E. 2009) allows me to perform

imputation using the transcan and impute functions.

7.3.0 Multiple Imputation

So far my discussion of imputation has focused on trying to ‘fill in’ missing values for
some variable, for each missing value of X I supply a single imputed value. Multiple
imputation (Zhang 2003), (Rubin 1976), (Rubin 1996) does not supply a single
imputed value, instead a set of possible values are considered. In multiple imputation
I randomly sample from the existing data to generate this set of possible values. More
formally multiple imputation can be described as follows:
1. Create k complete data sets by filling in all missing values K times, by
drawing K times from the imputation model.
2. Analyse the k complete data sets, these data sets are regarded as real data.
3. Combine the results of the analysis of the K complete data sets to form the
repeated or multiple imputation inference.
Earlier I looked at imputation using the sample mean, I noted problem with
‘artificially’ reduced standard deviation, multiple imputation overcomes the problem
of reduced standard deviations or standard errors of estimates.
The imputation model is of fundamental importance, if I take the most simple case

where the data set consists of one continuous variable X, then an example imputation
model might be X, ~ N(u,o”), the normal distribution model. If T have a data set
that consisted of the continuous variables X, X, X,,...X , then I might use the

multivariate normal model X ~ N(m,X), where X is the vector
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(X, X,, X5,...X ;) and mis a vector of means and X is the variance covariance

matrix. For a mixture of binary and continuous variables I might use the conditional
Gaussian (Horton & Kleinman 2009). In PROC MI it is possible to specify a

‘customised’ imputation model, for example I could specify that X, = X,. I must

consider that if I have specified a particular imputation model, then if someone else
were to perform an analysis using the data set after I performed multiple imputation,
there is a risk that this person may try fit a model different to that of my imputation

model, for instance X, = XX, . It is advisable to use as many variables as possible

when performing multiple imputation. For multiple imputation maximum likelihood
estimates of parameters are obtained by using the EM algorithm (Dempster et al.

1977), (Gaetan & Yao 2003).

7.3.1 Imputation using Design and Hmisc

In GNU R the transcan function which is found in Harrell’s Hmisc library performs
both transformation and imputation for a variable. Results of applying the transcan
and impute functions to the CARE-HF data are shown in Tables 7.2 to 7.8. Tables 7.9
and 7.10 present validation results for the final CARE-HF model with and without
imputation. By default transcan uses single predicted expected value imputation, this
is the case for the imputation performed here, it is possible to perform multiple
imputation using transcan. If [ want to perform multiple imputation using Design and
Hmisc then the areglmpute function is a better choice; the results of performing
multiple imputation using areglmpute are shown in Table 7.11. The main objective
for the CARE-HF model was to determine possible treatment modifiers (interaction
terms). For IVMD it is seen that for the imputed data coefficient is smaller and has

undergone a sign change. The p-value for IVMD has decreased from 0.75900 to
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0.06000, the interaction term IVMD*CRT is no longer statistically significant, this
interaction term was borderline significant using the original data. Using imputed data
the variable CRT is no longer significant, the p-value for systolic blood pressure has
increased from 0.06959 to 0.34500, the interaction systolic blood pressure*CRT is no
longer significant. Imputation has resulted in reductions in the coefficients for the
variables mitral regurgitation, NT-pro-BNP and Ischaemia, all of these three variables
remain highly significant. If I perform imputation using agreImpute then the
interaction term systolic blood pressure*CRT is no longer significant, however the
interaction term IVMD*CRT is just about significant at the 5% level. To reiterate, the
main objective of the CARE-HF model was to identify possible treatment modifiers
and not to produce a definitive prognostic tool, the treatment modifiers that were
originally identified were admittedly weak. However it is interesting to note the
effects of using different imputation methods, I see that the strong predictors have
remained so, irrespective of the imputation method. The significance of CRT and the
interaction terms differ notably dependent on whether imputation was performed or
not. I would suggest that whilst this could be explained by missing data the fact that
continuous variable had not been orthogonalization and binary variables not re-coded
in the fashion described in Chapter 2 may have a considerable effect. I would
recommend that orthogonalization should be carried out in situations where
interactions between continuous and categorical variables are to be investigated.
Where there is an appreciable level of missing data I would suggest that imputation
should be performed, I would justify this based on the marked differences in the
results for the model with and without imputation. However I would consider this in

conjunction with orthogonalization
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7.4.0 Summary

We should be aware that imputation is not without its dangers. Choosing an
appropriate imputation model is crucial; if this imputation model is not appropriate
then subsequent analysis will be flawed. One important point in regard to multiple
imputation is that it has its origins in the problem of missing data in surveys, it has
been suggested that this might be a limitation in terms of the efficiency of multiple
imputation. Nielsen (Nielsen 2003) argues that Bayesian multiple imputation may not
be efficient. For further discussion of some of the criticisms levelled at multiple
imputation the reader is directed toward (Nielsen 2003) and (Rubin 2003). I would
consider an investigation of predictive mean matching, see (Little Roderick 1988b)
and (Heitjan & Little 1991), a useful exercise, Harrell’s areglmpute function employs
predictive mean matching. Predictive mean matching is an example of what is known
as Hot Deck imputation (Altmayer 2009), Hot Deck imputation is one of the earliest
imputation methods. Also in view of Nielsen’s arguments (Nielsen 2003) an
investigation of the methods used in Harrell’s transcan and impute functions may be

useful as Bayesian methods are an option for these functions.

Imputation is not a simple matter; a careful approach is needed when applying it. The
literature relating to imputation is mathematically complex. The topic is a difficult
one; even the basic definitions of MCAR, MAR and MNAR can be somewhat
confusing when first encountered. In the next chapter I will look at the idea of the

frailty model.
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coef se(coef) | z p
Mitral Regurgitation * 0.7590 0.1220 | 6.2000 | 0.0000
CRT 0.6140 0.5840 [ 1.0500 | 0.2930
Mitral Regurgitation * *CRT -0.3350 0.1820 | -1.8300 | 0.0666
EVSI* 0.4162 0.1750 [ 2.3761 | 0.0175
CRT -0.4752 1.4120 | -0.3366 [ 0.7360
ESVI **CRT -0.0013 0.2920 [ -0.0044 | 0.9965
Ischaemic 0.5220 0.1350 [ 3.8800 | 0.0001
CRT -0.7310 0.1580 [ -4.6200 | 0.0000
Ischaemic*CRT 0.4010 0.2120 1.8900 | 0.0584
Ejection Fraction * -0.9730 0.2840 | -3.4280 | 0.0006
CRT -1.1470 1.4470 | -0.7930 [ 0.4280
Ejection Fraction * *CRT 0.2180 0.4550 | 0.4790 | 0.6320
Age 0.0237 0.0073 [ 3.2620 | 0.0011
CRT -0.1452 0.7284 [ -0.1990 | 0.8420
Age*CRT -0.0051 0.0108 [ -0.4690 | 0.6390
Systolic Blood Pressure -0.0130 0.0040 | -3.2600 | 0.0011
CRT -1.9373 0.7484 | -2.5900 | 0.0096
Systolic Blood Pressure*CRT 0.0126 0.0064 1.9700 | 0.0489
Glomerular Filtration Rate -0.0129 0.0037 | -3.5070 | 0.0005
CRT -0.2967 0.3495 [ -0.8490 | 0.3960
Glomerular Filtration Rate*CRT -0.0032 0.0057 | -0.5520 | 0.5810
NT-pro-BNP * 0.3887 0.0589 [ 6.5990 | 0.0000
CRT -1.1054 [ 0.7271 [ -1.5200 | 0.1280
NT-pro-BNP **CRT 0.0785 0.0905 | 0.8670 | 0.3860
IVMD -0.0077 0.0026 [ -2.9950 | 0.0028
CRT -0.0827 0.1985 [ -0.4160 | 0.6770
IVMD*CRT -0.0077 0.0039 | -1.9840 | 0.0473

a = log transformed, * denotes an interaction
Table 7.2 Univariate Models For Each Potential Predictor (without imputation)
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coef se(coef) | z p
Mitral Regurgitation * 0.5299 0.0833 | 6.3639 | 0.0000
CRT -0.0036 0.3947 | -0.0092 | 0.9930
Mitral Regurgitation * *CRT -0.1692 0.1253 | -1.3506 | 0.1770
EVSI® 0.4225 0.1610 | 2.6228 | 0.0087
CRT -0.0703 1.1980 | -0.0587 | 0.9530
ESVI **CRT -0.0807 0.2480 | -0.3252 | 0.7450
Ischaemic 0.5220 0.1350 | 3.8800 | 0.0001
CRT -0.7310 0.1580 | -4.6200 | 0.0000
Ischaemic*CRT 0.4010 0.2120 1.8900 | 0.0583
Ejection Fraction * -0.9110 0.2490 | -3.6630 | 0.0003
CRT -1.3420 1.1680 | -1.1490 | 0.2510
Ejection Fraction * *CRT 0.2730 0.3670 | 0.7430 | 0.4580
Age 0.0237 0.0073 | 3.2620 | 0.0011
CRT -0.1452 0.7284 | -0.1990 | 0.8420
Age*CRT -0.0051 0.0108 | -0.4690 | 0.6388
Systolic Blood Pressure -0.0125 0.0040 | -3.1600 | 0.0016
CRT -1.6131 0.7302 | -2.2100 | 0.0272
Systolic Blood Pressure*CRT 0.0099 0.0062 1.5800 | 0.1130
Glomerular Filtration Rate -0.0146 0.0035 | -4.1500 | 0.0000
CRT -0.3004 0.3237 | -0.9280 | 0.3530
Glomerular Filtration Rate*CRT | -0.0032 0.0055 | -0.5940 | 0.5520
NT-pro-BNP * 0.3741 0.0564 | 6.6300 | 0.0000
CRT -0.4602 0.6637 | -0.6930 | 0.4880
NT-pro-BNP **CRT -0.0104 0.0832 | -0.1250 | 0.9000
IVMD -0.0058 0.0021 | -2.7300 | 0.0064
CRT -0.2558 0.1676 | -1.5300 | 0.1270
IVMD*CRT -0.0046 0.0031 | -1.4800 | 0.1400

a = log transformed, * denotes an interaction
Table 7.3 Univariate Models For Each Potential Predictor (with imputation)
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Mitral Regurgitation * Obs | Events | Model L.R. | d.f. P Score Score P | R2 Imputed
605 289 66.8400 | 3.0000 | 0.0000 67.4200 0.0000 | 0.1100 | N
813 383 86.3100 | 3.0000 | 0.0000 82.5700 0.0000 | 0.1000 | Y
EVSI® 732 349 28.9300 [ 3.0000 [ 0.0000 | 29.4700 0.0000 | 0.0400 | N
813 383 30.4900 | 3.0000 | 0.0000 31.3700 0.0000 | 0.0400 | Y
Ischaemic 812 383 67.8300 | 3.0000 | 0.0000 65.9500 0.0000 | 0.0800 | N
813 383 67.8100 | 3.0000 | 0.0000 65.9200 0.0000 | 0.0800 | Y
Ejection Fraction * 745 357 33.4800 | 3.0000 | 0.0000 35.4000 0.0000 | 0.0400 | N
813 383 38.4900 | 3.0000 | 0.0000 | 41.1300 0.0000 | 0.0500 | Y
Age 813 383 36.8700 | 3.0000 | 0.0000 37.7300 0.0000 | 0.0400 | N
813 383 36.8700 | 3.0000 | 0.0000 37.7300 0.0000 | 0.0400 | Y
Systolic Blood Pressure 803 378 31.8900 | 3.0000 | 0.0000 34.0500 0.0000 | 0.0400 | N
813 383 30.9900 | 3.0000 | 0.0000 32.9200 0.0000 | 0.0400 | Y
Glomerular Filtration Rate | 739 338 45.9800 [ 3.0000 [ 0.0000 | 43.8600 0.0000 | 0.0600 | N
813 383 59.2000 | 3.0000 | 0.0000 56.1100 0.0000 | 0.0700 | Y
NT-pro-BNP * 732 346 109.3300 | 3.0000 [ 0.0000 | 105.0800 0.0000 | 0.1400 | N
813 383 102.2200 | 3.0000 [ 0.0000 | 101.0200 0.0000 | 0.1200 | Y
IVMD 735 346 52.3500 | 3.0000 | 0.0000 | 49.2400 0.0000 | 0.0700 | N
813 383 45.9500 [ 3.0000 [ 0.0000 | 45.1000 0.0000 | 0.0600 | Y

a = log transformed

Table 7.4 Fit Statistics for Univariate Models
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coef se(coef) | z p
Mitral Regurgitation * 0.5381 0.1088 | 4.9470 | 0.0000
IVMD 0.0010 | 0.0034 | 0.3070 | 0.7590
CRT -1.8753 0.8876 | -2.1130 | 0.0346
Systolic Blood Pressure -0.0087 0.0048 | -1.8150 | 0.0695
NT-pro-BNP * 0.2720 | 0.0591 | 4.6010 { 0.0000
Ischaemic 0.6345 0.1349 [ 4.7050 | 0.0000
IVMD*CRT -0.0131 0.0050 [ -2.6390 | 0.0083
Systolic Blood Pressure*CRT | 0.0172 0.0073 | 2.3600 | 0.0183

a = log transformed

Table 7.5 Coefficients For Final Model (without imputation)

Obs [ Events | Model L.R. | d.f. P Score Score P | R2
526 249 130.1900 [ 8.0000 [ 0.0000 [ 121.0200 [ 0.0000 [ 0.2200
Table 7.6 Fit Statistics For Final Model (without imputation)
coef se(coef) | z p
Mitral Regurgitation * 0.3131 0.0800 | 4.1100 | 0.0000
IVMD -0.0046 [ 0.0025 | -1.8810 | 0.0600
CRT -1.1993 [ 0.7073 | -1.6960 [ 0.0900
Systolic Blood Pressure -0.0035 0.0038 | -0.9440 | 0.3450
NT-pro-BNP * 0.2362 0.0513 4.6070 | 0.0000
Ischaemic 0.5280 | 0.1094 | 4.8260 [ 0.0000
IVMD*CRT -0.0057 [ 0.0034 | -1.6550 | 0.0979
Systolic Blood Pressure*CRT | 0.0075 0.0058 1.2950 | 0.1950
Table 7.7 Coefficients For Final Model (with imputation)
Obs Events Model L.R. d.f. P Score Score P R2
813 383 174.7200 8.0000 0.0000 165.3600 0.0000 0.1900

Table 7.8 Fit Statistics For Final Model (with imputation)
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index.orig [ training | test optimism | index.corrected | n

Dxy -0.4090 | -0.4233 | -0.3984 |  -0.0249 -0.3841 | 200
Table 7.9 Validation Results For Final Model (without imputation)

index.orig | training | test optimism | index.corrected | n

Dxy -0.3919 -0.3984 [ -0.3855 -0.0130 -0.3789 | 200
Table 7.10 Validation Results For Final Model (with imputation)

coef se(coef) | z p
Mitral Regurgitation * 0.3799 0.0868 | 4.3800 | 0.0000
IVMD -0.0046 [ 0.0028 | -1.6500 | 0.0984
CRT -0.9963 0.7288 [ -1.3700 | 0.1720
Systolic Blood Pressure -0.0046 0.0038 | -1.2100 | 0.2280
NT-pro-BNP * 0.2939 | 0.0471 | 6.2400 [ 0.0000
Ischaemic 0.5539 | 0.1094 | 5.0600 { 0.0000
IVMD*CRT -0.0085 0.0043 [ -2.0000 | 0.0455
Systolic Blood Pressure*CRT | 0.0070 0.0059 1.1900 | 0.2350

a = log transformed
Table 7.11 Coefficients For Final Model (with multiple imputation (5 imputations))
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Chapter 8 Frailty Models

e Individual and group heterogeneity modelled by random effects

e For time to event data the equivalent of the random effects model is the
frailty model

e The frailty model is an extension of the proportional hazards model

e After fitting a frailty model to the CARE-HF data it is found that the

conventional proportional hazards model is adequate

8.0.0 Introduction

A natural extension of the prognostic model developed for the CARE-HF data (see
chapter 2) would be to consider a frailty model. For the CARE-HF data information
was recorded on treatment centre. To help understand the idea of a frailty model it
might be helpful to first look at the possibly more familiar random effects model. In

the regression model

Y =B, + B X, +¢&,where Y, is a measurement on the j" subject (patient) at
time X, , and where& ~ N(0,5°) the population parameters 3,and 3, are estimated,
the intercept and slope of the line, to obtain \fjk = ,80 + ,5’1 XorY, = ,5’0 + ,Bl X, +e&,

where & ~ N(0,5°) . I have repeated measures on each subject; also I have treated the

data as being homogeneous in the sense that the slope and intercept are the same for

each subject. What if the data are not homogeneous?
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Five Patients, Differing Slopes
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Figure 8.1 measurement on 5 hypothetical patients differing slopes

The figure 8.1 above illustrates a hypothetical situation for five patients on whom ten

measurements Y have been taken at different times X, , it appears that the intercept

for each patient is the same, but that the slope varies from patient to patient. I need to
develop a model that takes into account the varying slopes. Assuming that the

variation in the slopes is random, the model Y, = S, + (a; + B,) X, incorporates the

random slopes through the term «; .The term «; is known as a random effect.
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Five Patients, Differing Slopes, Differing Intercepts
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Figure 8.2 measurements on 5 hypothetical patients, differing slopes and intercepts

The figure 8.2 shows a situation where both the intercept and the slope vary from
patient to patient, again I need to incorporate the varying slope and intercept into the

model. The model Y, = B, + ¢ +(a; + B,) X, now contains an additional random
effect ¢'; , the random intercept; such a model is known as a mixed model. It is

important to point out that I am not interested in obtaining numerical estimates for

a;and¢;, I am concerned with whether or not their inclusion improves the model fit.

I could consider a situation in which I have data on a number of patients who have
received treatment at several different hospitals or clinics, for each patient I would

have a repeated measure Y, taken at time X, , also let C, indicate at which of the m

hospitals or clinics the patient received their treatment. I might find that the slope,
intercept or both vary depending upon which of the hospitals or clinics the patient

attended. In this case the model should include «; and/or¢’;, random effects for the

intercept and slope.
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8.1.0 Frailty

The idea of frailty is another way of incorporating random effects and heterogeneity
into a model for time to event data (survival model). In most biomedical and
epidemiological applications the time to event data is assumed to be homogeneous, in
reality there may be sources of unobserved heterogeneity within the data. For
example, if X is a vector of independent variables (co-variants), it is quite possible

that X some powerful predictor of Y , is missing for whatever reason. It is not

unob >
practical to include all possible covariates, such as when the number of events within
a particular stratum is very small, or it may be that the particular co-variate has yet to

be identified.

In a clinical trial, one important potential source of heterogeneity is the treatment
centre. Section 3.2 of ICH E9 (ICH E9. 1999), (ICH HARMONISED TRIPARTITE
GUIDELINE 1998) which addresses multicentre trials, places great emphasis on a
proper treatment of centre effects and states:

“Up to this point the discussion of multicentre trials has been based on the use of
fixed effect models. Mixed models may also be used to explore the heterogeneity of
the treatment effect. These models consider centre and treatment-by-centre effects to
be random, and are especially relevant when the number of sites is large.” Use of
frailty models would seem to be in accord with the guidelines laid down in ICH E9

although at present their use is not advocated.

Taking the proportional hazards model h, (y) = h, (y)e/?i , the hazard for each subject

will be different and determined by X How can I include unobserved co-variates

unob *
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in the proportional hazards model? The answer lies in the idea of frailty. Frailty could
be described as accident proneness, or in terms of the force of mortality upon a certain

subject (force of mortality is the hazard functionh(y)).

Vaupel (Vaupel et al. 1979) defines frailty in the following way, let 4 (X, Y, z) be the

force of mortality for an individual in population group i, at exact age X, at time y

ﬂi (Xa ya Z) :i
w(xy,z" 7

with frailty z, then
Now z' =1 describes a ’standard individual’, so we get £, (X, Y,Z) = Zx;(X,Y,1) . An
individual with a frailty of 3 is 3 times as likely to die or experience the event of
interest as the standard individual. Following Vaupel’s notation I write

M (X, Y,2)as u(z), p;(X,Y,1) as p(l)or i . So I have u(z) = zu . I could apply this

Z ~
idea to the proportional hazards model to arrive atM = zexp(fX) . Rearranging

Ho
the above formula gives (Y, 2) = 1, (Y)z exp(ﬁi) . The above is an example of a

univariable frailty model; this frailty model is an extension of Cox Proportional
Hazards model . The frailty model is the equivalent of the random effects model for
time to event data. It must remembered that z is a random variable, also I must have

Z > 0, this dictates the choice of distribution forz .

Typical choices for the distribution of z include the Gamma

o 277 %7 : :
distribution f (z,4) = T .Where A is scale parameter, ¢ is a shape parameter
@

and I'(1) is the Gamma function I'(1) = .[ u*"'e™du. The Gamma distribution is a
0
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logical choice for the distribution ofz ; as z is non-negative this makes the Gamma
distribution a sensible choice. Vaupel (Vaupel et al. 1979) states that frailty was
assumed to follow the Gamma distribution because the distribution is “analytically
tractable and readily computable”. The Gamma distribution is flexible in the sense

that, as ¢ varies, the distribution can take on different shapes. Also in Vaupel

(Vaupel et al. 1979) describes two convenient mathematical results that arise from the
assumption that frailty follows the Gamma distribution. I see that ifz < 1, then the

hazard for an individual will be reduced, and ifz > 1, then the hazard is increased.

The important point is that, in the frailty model, the hazard for an individual is
determined by both observed and unobserved factors. The following papers (Wienke
2003), (Manton et al. 1986), (Hougaard 1991), (Hougaard 1984) and (Perperoglou et
al. 2007) are highly informative and contain material detailing the motivation and
development of frailty models along with discussion on the issue of the distribution of
the frailty. Including frailty in a prognostic survival model seems to be a very natural

and highly appealing thing to do.

In recent years, faster CPUs have meant that some of the previous difficulties (relating
to numerical methods) encountered when trying to fit frailty models have been
overcome. Consequently, it is now quite possible to fit a frailty model in situations
where previously this may have been difficult and we no longer have to simply ignore

centre effects.
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8.2.0 Fitting a Frailty Model to the CARE-HF data

I shall now proceed to fit a univariable gamma frailty model to the CARE HF data
(Richardson et al. 2007) whilst at the same time applying elements of Harrell et al.’s
(1996) approach. Earlier the following covariates where identified as being potential

predictors of outcome and response to CRT:

Mitral Regurgitation (MR)

e Interventricular Mechanical Delay (IVMD)

e End-systolic volume index (ESVI)

e Glomerular Filtration Rate (GFR)

e Systolic Blood Pressure (SBP)

e Ejection Fraction (EF)

e N-terminal pro-brain natriuretic peptide (NT-pro-BNP)
o Age

e Aectiology (Ischaemic)

As before I start by fitting a proportional hazards model for each of the potential
predictors identified above (univariable analysis), using Mitral Regurgitation as an

example we would fit the model MR + (MR *CRT )+ CRT where MR*CRT is an

interaction term. We assume also that the transformations applied in Chapter 3 are

still used, so we would consider log, (MR) + (log, (MR) * CRT )+ CRT . Now in

addition I shall include a frailty term, the frailty term is assumed to follow the gamma

distribution; this extended Cox Proportional Hazards model is a gamma frailty model.
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For the CARE-HF study the treatment centre that each patient attended was recorded
in the form of the variable SiteNum (site number), for the CARE-HF study there were
82 centres across Europe. Centre effects are modeled using the idea of grouped frailty,
for example patients who received treatment at the same hospital would be regarded
as sharing a common frailty. Centre effects are of interest due varying clinical skills,
case-mix, technology, funding and so on. I shall model site number as a grouped
frailty term, i.e. each treatment centre represents a group of patients; frailty can be
also be modeled at an individual level, an individual patient characteristic could be

treated as a frailty term.

Univariate models are produced for each of the other potential predictors; I then
include significant (5% level) covariates and interaction terms from these univariable
models as candidates in the final model. The models were fitted using coxph (R
survival package Terry Therneau 2009) from the recommended base survival package
in GNU R version 2.7.2 (R Foundation for Statistical Computing 2009). In Tables
8.1-8.9, coefficients are presented for each of the univariable models. Note that, with
coxph, automated stepdown or stepwise selection is not possible. Table 8.11 shows
the final conventional Cox Proportional Hazards model presented in (Richardson et

al. 2007) (see Chapter 2 for a full discussion of this model).

The final frailty model shown in Table 8.10 is obtained in the following way: all co-
variates that are statistically significant (5% level) in the univariable analysis are
considered as candidates for inclusion in the final model; a non-stepwise backward
selection procedure is then applied resulting in the final (frailty) model. It can be seen

from Table 8.10 that SiteNum is not significant; this suggests that the conventional
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Cox Proportional Hazards model may be adequate, i.e. the data not observed to be
heterogeneous with respect to treatment centre. However it can be argued that even if
the frailty term is not statistically significant, it should be retained, i.e. we adopt the
frailty model. The overheads in terms of model complexity and computational
resources are not so great that we would abandon the frailty model in favour of the
conventional Cox Proportional Hazards model. It may in fact be natural and

appropriate as far as the design of a model is concerned to include a frailty term.

Comparing Tables 8.10 and 8.11 it is seen that the final models are similar. The
likelihood ratio test for the frailty model gives a slightly larger value than that for the
Cox Proportional Hazards model, however this result is not statistically significant.
The confidence interval and p-values produced for both models are consistent. If
heterogeneity had been present in the data, and I was to fit a conventional Cox
Proportional Hazards model I am liable to obtain confidence intervals that are too
narrow and p-values that are too small. The frailty models I have considered are
relatively simple, for example I have not attempted to fit a frailty model where some
of the co-variates required transformation via cubic splines or fractional polynomials.
Validation of the frailty model presented in Table 8.10 was not performed as both
Therneau’s survival package and Harrell’s Design package do not have the facility to
validate frailty models. This is a drawback I hope that at some point in the future it
will be possible to routinely validate frailty models in GNU R. As far as I am aware
the situation is no different in SAS, in fact it is rather difficult to even produce frailty

models easily and efficiently in SAS.
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8.2.1 Tables 8.1-8.9 Univariable Frailty Models For Each Potential Predictor

(without imputation)

Hazard Ratio | CIlower 95 % | Clupper95% | p
Mitral Regurgitation * 2.1300 1.6820 2.7200 | p<0.0001
CRT 1.8450 0.5870 5.8000 0.2900
frailty(SiteNum) 0.2400
Mitral Regurgitation * *CRT 0.7160 0.5010 1.0200 0.0670
Likelihood ratio test = 67.9 on 3.49 df, p<0.0001

a = log transformed, * denotes an interaction

Table 8.1 Univariate Analysis Mitral Regurgitation (MR) n=605 (208 observations deleted due to

missingness)

Hazard Ratio | CIlower 95 % | Clupper 95 % | p
EVSI® 1.5250 1.0715 2.1700 | 0.0190
CRT 0.5490 0.0326 9.2200 | 0.6800
frailty(SiteNum) 0.1600
ESVI **CRT 1.0220 0.5701 1.8300 | 0.9400

Likelihood ratio test = 62 on 17.0 df, p<0.0001

a = log transformed, * denotes an interaction
Table 8.2 Univariate Analysis End-systolic volume index (ESVI) n=732 (81 observations deleted due

to missingness)
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Hazard Ratio | Cllower 95 % | Clupper95% | p
Ischaemic 1.7070 1.3030 2.2360 | p<0.0001
CRT 0.4770 0.3490 0.6520 | p<0.0001
frailty(SiteNum) 0.1900
Ischaemic*CRT 1.4980 0.9850 2.2780 0.0590

Likelihood ratio test = 97.6 on 15.7 df, p<0.0001
* denotes an interaction

Table 8.3 Univariate Analysis Aetiology (Ischaemic) n=812 (1 observation deleted due to missingness)

Hazard Ratio | CIlower 95 % | Clupper95% | p
Ejection Fraction * 0.3820 0.2176 0.6700 | 0.0008
CRT 0.3310 0.0191 5.7300 | 0.4500
frailty(SiteNum) 0.3200
Ejection Fraction * *CRT 1.2260 0.5001 3.0000 | 0.6600

Likelihood ratio test =45.2 on 8.3 df, p<0.0001

a = log transformed, * denotes an interaction
Table 8.4 Univariate Analysis Ejection Fraction (EF) n=745 (68 observations deleted due to

missingness)

Hazard Ratio | CIlower 95 % | Clupper95% | p
Age 1.0240 1.0090 1.0400 | 0.0014
CRT 0.8500 0.2030 3.5600 | 0.8200
frailty(SiteNum) 0.3400
Age*CRT 0.9950 0.9740 1.0200 | 0.6600

Likelihood ratio test =45.9 on 7.09 df, p<0.0001

a = log transformed, * denotes an interaction

Table 8.5 Univariate Analysis Age n= 813

Hazard Ratio | Cllower 95 % | Clupper95 % | p
Systolic Blood Pressure 0.9870 0.9795 0.9950 | 0.0012
CRT 0.1440 0.0332 0.6260 | 0.0098
frailty(SiteNum) 0.2900
Systolic Blood Pressure*CRT 1.0130 1.0000 1.0250 | 0.0490

Likelihood ratio test = 36.2 on 4.77 df, p<0.0001

a = log transformed, * denotes an interaction
Table 8.6 Univariate Analysis Systolic Blood Pressure (SBP) n=803 (10 observations deleted due to

missingness)

Hazard Ratio | CIlower 95 % | Clupper95% | p
Glomerular Filtration Rate 0.9870 0.9800 0.9940 | p<0.0001
CRT 0.7420 0.3740 1.4730 0.3900
frailty(SiteNum) 0.2500
Glomerular Filtration Rate*CRT 0.9970 0.9860 1.0080 0.5800

Likelihood ratio test =47.1 on 3.52 df, p<0.0001
a = log transformed, * denotes an interaction

Table 8.7 Univariate Analysis Glomerular Filtration Rate (GFR) n=739 (74 observations deleted due to

missingness)
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Hazard Ratio

Cl lower 95 % | Clupper95% | p
NT-pro-BNP * 1.4750 1.3142 1.6600 | p<0.0001
CRT 0.3310 0.0796 1.3800 0.1300
frailty(SiteNum) 0.8900
NT-pro-BNP “*CRT 1.0820 0.9058 1.2900 0.3900

Likelihood ratio test = 109 on 3 df, p<0.0001
a = log transformed, * denotes an interaction

Table 8.8 Univariate Analysis N-terminal pro-brain natriuretic peptide (NT-pro-BNP) n=732 (81

observations deleted due to missingness)

Hazard Ratio | CIlower 95 % | Clupper95% | p
IVMD 0.9920 0.9870 0.9970 | 0.0023
CRT 0.9250 0.6240 1.3690 | 0.7000
frailty(SiteNum) 0.2000
IVMD*CRT 0.9920 0.9840 1.0000 | 0.0400

Likelihood ratio test = 77.5 on 13.6 df, p<0.0001
a = log transformed, * denotes an interaction

Table 8.9 Univariate Analysis Interventricular Mechanical Delay (IVMD) n=735 (78 observations

deleted due to missingness)
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Hazard Ratio | CIlower 95 % | Clupper95% | p
Mitral Regurgitation * 1.7160 1.3857 2.1240 | p<0.001
IVMD 1.0010 0.9944 1.0080 0.7700
CRT 0.1510 0.0265 0.8670 0.0340
frailty(SiteNum) 0.2700
Systolic Blood Pressure 0.9914 0.9821 1.0007 0.0720
NT-pro-BNP * 1.3140 1.1699 1.4759 | p<0.001
Ischaemic 1.8887 1.4491 24618 | p<0.001
IVMD*CRT 0.9870 0.9774 0.9966 0.0084
Systolic Blood Pressure*CRT 1.0174 1.0030 1.0321 0.0180

Likelihood ratio test = 133 on 9.07 df, p<0.0001
a = log transformed, * denotes an interaction
Table 8.10 Final model n=526 (287 observations deleted due to missingness)

Hazard Ratio | CIlower 95 % | Clupper95% | p
Mitral Regurgitation * 1.7128 1.3839 2.1199 | p<0.001
IVMD 1.0010 0.9945 1.0080 0.7600
CRT 0.1533 0.0269 0.8733 0.0350
Systolic Blood Pressure 0.9914 0.9821 1.0010 0.0700
NT-pro-BNP * 1.3126 1.1690 1.4739 | p<0.001
Ischaemic 1.8868 1.4486 2.4576 | P<0.001
IVMD*CRT 0.9870 0.9774 0.9966 0.0083
Systolic Blood Pressure*CRT 1.0173 1.0029 1.0320 0.0180

Likelihood ratio test = 130 on 8 df, p<0.0001
a = log transformed, * denotes an interaction
Table 8.11 Final (non frailty) model
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CHAPTER 9 CONCLUSION

e Model selection is a complex problem

e Quality of prognostic models related to limitations in methodology

e Techniques such as MDA may offer possible alternative approaches

e Ideas such as over-fitting, optimism should be introduced in elementary
courses on statistical modelling

e More user friendly software might help researchers to produce better models

9.0.0 Introduction

In this work I have been concerned with producing a good quality prognostic model
for the CARE-HF data (Richardson et al. 2007). The prognostic model developed for
the CARE-HF data represents a significant real world example of a prognostic model,
I am not aware that the model has been made use of in practice. The prognostic model
for the CARE-HF data indicates that all patients are likely to benefit from cardiac
resynchronisation therapy, i.e. the treatment modifiers identified in the model are
weak. One way of validating the model developed for the CARE-HF data would be to
apply it to new data. Apart from the COMPANION study (Bristow et al. 2004) there
have been no investigations comparable to the CARE-HF study. Unfortunately
individual patient data from the COMPANION study although requested has not been
made available. It is unlikely that further investigation of CRT will be undertaken as
its benefit has been established. The difficulties and problems encountered when
producing this model are likely to be experienced by other researchers when they
make efforts to deal issues such as functional form, over-fitting, optimism and

validation. In producing the model for the CARE-HF data I found that when one
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attempts to employ a strategy such as the one suggested by Harrell and colleagues
(Harrell et al. 1996) one ends up having to consider the fundamental problem of
model fitting. The topic of model selection is a deep one; I have great admiration for
the skill and insight displayed by researchers into this problem.

I have come to an appreciation of the complexity surrounding the problem of
developing a good prognostic model. This work it is hoped has served as an
accessible guide to some of the main methods that feature in the process of fitting a
prognostic model, (or a model in general). Implementing an approach such as
Harrell’s is not a trivial task. I believe that I have identified some important
limitations in Harrell’s strategy. I shall now present a brief summary of the material

covered in the course of this work and indicate important points that have arisen.

9.1.0 Summary of Main Topics

Chapter 1 contained an introductory discussion a definition of a prognostic model was
given, the problem of over-fitting was introduced along with the idea of optimism. In
Chapter 2 the prognostic model developed for the CARE-HF data was described and
discussed. The development of this model was in itself a substantial piece of work.
Absolute risk estimates and risk score where discussed in chapter 3, I presented a risk
score calculator based on the prognostic model for the CARE-HF data. The problem
of functional form was investigated in chapter 4. Use of cubic splines and fractional
polynomials was discussed. In chapter 5 model fit was considered, the AIC was
described in some detail. Over-fitting and optimism were discussed in further detail in
chapter 6. Validation methods were also considered. Missing data and imputation
were discussed in chapter 7. Chapter 8 introduced the idea of a frailty model.

This work has provided me with a great many questions and future areas of

investigation. In chapter 1 of this work I stated that the whole question of
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generalizabilty is a complex one. The following questions were then asked. Should we
expect to achieve more general results in the physical sciences? Do biomedical
applications present us with special problems? The answer to both of these questions
is probably no. Over-fitting is a problem for researchers working in the fields of
Physics, Astronomy and other physical sciences. Over-fitting is also a problem in
Ecological, Economic and Financial models (Ginzburg & Jensen 2004). The
prognostic model described in chapter 2 of this work prompts me to consider a
practical question that researchers may have to consider in regard to choice of
software. An implementation of Harrell’s design library does exist for SAS; however
this is an old version, development is focused on the S-Plus and R versions. Given
that SAS is a widely used system an up-to-date and user friendly version for SAS
would be of great value. There may be many researchers who for a variety of reasons
may not be able to adopt R or S-Plus. Hmisc also seems to suffer from a lack of up-to-
date versions that could easily be installed on a recent version of SAS.

In the discussion of cubic splines in chapter 4 it might be useful to reflect on Harrell’s
use of the restricted cubic spline (Harrell et al. 1996), (Herndon & Harrell 1990).
What clinical/biological evidence there is to support this particular choice for the
functional form of the model? Use of cubic splines may improve the fit of the model
(on the original data), and when considering model validation goodness of fit is a
basic criterion. As Altman and Royston point out in (Altman & Royston 2000) a
statistically valid model may be clinically invalid. A choice of functional form that
improves model fit and so leads to a statistically valid model, may not lead to a
clinically valid model. The biological plausibility of the model is a matter for the
medical expert to consider. Harrell’s strategy has been central element of many of the

discussions in the work, what general remarks would I make about Harrell et al.’s
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approach? I am of the view that adopting Harrell’s recommendations for avoiding
over-fitting should certainly be included as part of the process of fitting a prognostic
model. Harrell encourages inter-disciplinary collaboration, clinicians should be
consulted by the statistician throughout the modelling process, this is vital if the

model is to be a sensible. Harrell’s approach allows the researcher to determine if

. . . .. N
there is a risk of over-fitting by use of the inequality—= < 10. The extent of over-
P

fitting is gauged via an estimation of the optimism. What in built mechanism exists
within Harrell’s approach that will minimise the risk of over-fitting? This question
could be answered by noting that model selection based on the AIC or BIC is
implemented as part of Harrell’s software. However using Harrell’s approach it is still
quite easy to produce a model that is over-fitted. In chapter 8 of this work frailty
models were considered, one of the limitations of Harrell’s approach is that it does not
encompass frailty models. I believe this to be a significant omission. What alternative
approach could be adopted that might enable the researcher to produce reliable and
accurate prognostics models? I will now outline some areas that I have found to offer
potentially useful alternative methods to model fitting. In no way do I mean to suggest
that they are better than the strategy devised by Harrell, but may offer fruitful areas

for further investigation.
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9.2.0 Alternative Modelling Techniques

Throughout this work the modelling techniques discussed have been what could be
described as traditional, i.e. the Cox proportional hazards model. Are there
alternatives to the traditional approaches to modelling that could offer better results in

regard to the problem of over-fitting?

9.2.1 Data Modelling and Algorithmic Modelling

It is not uncommon for a researcher new to statistical modelling to assume that the
more variables that are included in a model the better. This is on the surface a quite
reasonable assumption, as the number of variables is in some way equated to
‘information’. The more variables we have in the model, the better the description of
reality provided by the model. It can be difficult for someone to appreciate the
concept of parsimony in statistical modelling. In some introductory courses on
statistics the idea of parsimony is mentioned as an important feature of a model, but
the reason for its importance may not be clearly elucidated. It might be argued that if
researchers new to statistical modelling do not appreciate the idea of a parsimonious
model they may be likely to get into difficulty with over-fitting. The conventional
view is that parsimony is a necessary and desirable characteristic for a model, one
would expect a simple parsimonious model to be more easily interpreted than a
complex model containing a large number of variables. There is an alternative view of
parsimony; it could be argued that by seeking to produce a model based on Occam’s
razor unrealistic restrictions have been imposed. Real world situations such as those
presented in medicine involve complex mechanisms; therefore the model may be

extremely complex. Breiman argues in (Breiman 2001) that instead of aiming to
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minimise the dimension of a model it should be increased. Breiman propounds the
idea that so far as predictive accuracy is concerned the best model is the most

complex one; in fact so complex that it may defy interpretation.

Breiman describes two approaches toward statistical modelling

e Data Modelling

e Algorithmic Modelling

Data modelling supposes the existence of a stochastic model, conventional techniques
such as linear regression, logistic regression, Cox regression are examples of data
modelling. The data is used to estimate the parameters in the model. Algorithmic
modelling does suppose some existing stochastic model; instead a black box approach
is adopted. The independent variables X of the data model are considered as inputs to
a black box which contains the unknown mechanism that generates the dependent

variable(s) Y . The aim of data modelling is to find some function f(x) that will
predict y . The function f(X) is an algorithm such as a neural network, or a support

vector. Algorithmic modelling is not based on the principle of parsimony; Breiman
argues that predictive accuracy demands a more complex prediction method, i.e. a
more complex model; further Breiman (Breiman 2001) states that algorithmic models
can provide better predictive accuracy than data models. There is with the algorithmic
approach to modelling the problem of interpretability of the resulting model. If the
model is so complex as to be beyond interpretation what good is this to a clinician?
Breiman argues that it is still possible to acquire useful information the independent
and the dependent variables. A distinction is made between information and

interpretability, it might be that a simple model is easy to interpret but provides no
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‘real’” information about the relationship between the independent and dependent
variables, I can picture the model, but it is the wrong picture, or too simple a picture. |
find Breiman’s arguments extremely interesting.

In certain circumstances would there be a genuine benefit in using an Algorithmic
approach in developing a prognostic model as opposed to the ‘traditional’ data
modelling approach? Do Algorithmic models offer an advantage in so far as a reduced
risk of over-fitting is concerned? Are Algorithmic models inherently less prone to
over-fitting? Is it possible with an Algorithmic model to build into it a mathematical
‘resistance’ to over-fitting? Neural networks are certainly prone to over-fitting
(Lawrence et al. 1997) as are support vector machines (Mierswa 2007). The present
author would very much like to pursue an investigation of Algorithmic modelling

techniques and compare them against comparable data modelling techniques.

9.3.0 MDL

An exciting approach to model selection which may overcome the problem of over-
fitting is MDL (the Minimum Description Length). MDL has its origins in the theory
of algorithmic complexity and information theory. In the MDL context a statistical
model is considered as a description of the data, model selection is then based on the
idea of choosing the smallest description. If a data set possesses regularity then it is
possible to compress the data. By compress is meant the idea that the data can be
described using less symbols or characters than would be needed to provide a literal
description. The size of the description depends upon the detecting regularity within
the data, the more regularity that the data exhibits the smaller the description, i.e. the
smaller the model. The process of finding patterns or regularity within a data set is
known as learning the data. Hansen and Yu (Hansen & Yu 2003) point out a major

deficiency in model selection based on maximum likelihood, i.e. that the largest
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model is the preferred choice. In chapter 5 of this work the AIC was discussed as a
model selection tool, the AIC introduced a penalty term in order to correct the
maximum likelihood model selection process. Hansen and Yu (Hansen & Yu 2003)
state that the AIC performs well as a model selection tool if the underlying model is
known to be of infinite dimension, but we do not generally have this information.
MDL is proposed as a model selection method that is independent of the underlying
model, and so is described as an adaptive method. The claim that MDL automatically
protects against over-fitting (Rissanen 1978) can also be made for the AIC (due to the
penalty term), the fact that MDL does not require the assumption of some underlying
‘true’ model is highly attractive feature. In the same way MDL may have benefits
over the BIC, in the sense that the BIC performs well if the underlying model is of
finite dimension, again for the BIC a ‘true’ underlying model is assumed. Data
compression is a fundamental idea in MDL methods, there is a relationship between
data compression and probability (this relationship can be expressed through Kraft’s
inequality (Kraft 1949)) this leads to the idea that MDL methods search for a model
with good predictive power on new unseen data (Rissanen 1978). MDL is also
related to cross validation (Rissanen 1978). MDL unlike the Algorithmic modelling
discussed by Breiman (Breiman 2001) is based on Occam’s razor, and so aims at a
parsimonious model. The present author considers MDL as a potentially serious
alternative to Harrell’s approach. A comparison of models produced using MDL
methods against those produced using Harrell’s approach would be a most interesting
project. The automatic protection against over-fitting afforded by MDL is of
considerable benefit. With Harrell’s approach the onus is to a greater extent on the
researcher so far as taking steps to reduce the risk of over-fitting is concerned. I have

formed the impression that MDL may represent a more cohesive approach than
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Harrell’s. The following material provides useful information MDL methods

(Rissanen 1986), (Rissanen 1987), (Grunwald 2004) and (Hansen & Yu 2001)

9.4.0 Recommendations

9.4.1 Statistical Training And Accessible Literature

I believe that for Harrell’s approach to be widely and routinely adopted the key issues
of over-fitting and optimism need to be explained in a way that is intelligible to the
non-technical expert at the point when they begin learning about statistics.
Introductory courses on statistical modelling should cover the topics of over-fitting
and optimism as a matter of routine and in tandem with modules on regression. It
appears that the issues of over-fitting, optimism and model validation come back to
haunt researchers some while after they have learnt what a Cox proportional Hazards
model is all about. Harrell el al’s modelling strategy as described in (Harrell et al.
1996) can be hard to follow and understand, a clearer exposition aimed at the non-

statistician could be developed.

9.4.2 User friendly software

Software such as Hmisc, the RCS macro and the MFP macro can be rather daunting. I
can imagine that even fairly computer literate researchers might find them awkward to
use. Efforts to develop a more user friendly integrated modelling package that

incorporates cubic splines, fractional polynomials, imputation and validation methods

would be of considerable value. Harrell’s software does indeed combine cubic splines
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imputation and validation methods; however there are instances when the software

proves to be awkward or limited.

9.4.3 Investigation of MDA Methods

An investigation of MDA methods applied to prognostic models would be in my
opinion a useful piece of work. I intend to investigate further the theoretical and
simulation studies relating to the AIC and BIC in conjunction with material on MDA
methods. This will be done with a view to clarifying what advantages MDA may

present as a model selection tool.

9.4.4 Frailty Models

Further investigation of frailty models is also an area that I intend to explore. The
survival package in GNU R offers the facility to fit frailty models; model fit is
reported via the likelihood ratio test. A form of the AIC for the frailty model as
discussed in Chapter 5 has been proposed by Do Ha et al. (Do Ha et al. 2007); 1
would be interested attempting to implement this form of the AIC in software.

Application of MDA methods to frailty models is of considerable interest to me.
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Appendices

Appendix 1.0.0 SAS CODE

proc univariate data=card.prognostic;
var mitral_r IVMD ESVI GRF QRS supsys supdia BSA HeartRate
adcLVEjectionFraction Roche Age;
run;
data card.progex;
set card.prognostic;
if mitral_r = "_" and mitral_r < 11. then mitral _grp=1;
if mitral_r ~= "_" and (mitral_r >= 11 and mitral_r < 22) then
mitral_grp=2;
if mitral_r = "_" and (mitral_r >=22 and mitral_r < 34) then
mitral_grp=3;
if mitral_r = "_" and mitral_r >= 34 then mitral _grp=4;
trmit=treat*mitral_r;
Imit=log(mitral_r);
trimit=treat*Imit;
pmit=1/(sqrt(mitral_r));
tpmit=treat*pmit;
tanmit=tan(mitral_r);
if IVMD = "_" and IVMD < 31 then IVMD_grp=1;
if IVMD = "_" and (IVMD >= 31 and IVMD < 49) then IVMD_grp=2;
if IVMD ~= "_" and (IVMD >=49 and IVMD < 67) then 1VMD_grp=3;
if IVWD ~= "_" and IVMD >= 67 then IVMD_grp=4;
trivm=treat*1VMD;
Sh1VMD=1VMD+60;
ISh1VMD=1log(Sh1VMD);
triShivMD=treat*ISh1VMD;

if ESVI ~= "_" and ESVI < 93 then ESVI_grp=1;

if ESVI ~= "_" and (ESVI >= 93 and ESVI < 119) then ESVI_grp=2;
if ESVI ~= "_" and (ESVI >=119 and ESVI < 149) then ESVI_grp=3;
if ESVI ~= "_" and ESVI >= 149 then ESVI_grp=4;
tresv=treat*ESVI;

lesv=log(ESVI);

trlesv=treat*lesv;

if GRF ~= "." and GRF < 46 then GRF_grp =1;

if GRF ~= "_" and (GRF >= 46 and GRF < 60) then GRF_grp =2;

if GRF ~= "_" and (GRF >= 60 and GRF < 73) then GRF_grp =3;

if GRF A= "_" and GRF >= 73 then GRF_grp=4;

- 165 -



trgrf=treat*GRF;

Igrf=1og(GRF);

trigrf=treat*Igrf;

iT QRS ~="_" and QRS < 152 then QRS _grp =1;

iT QRS ~="_" and (QRS >= 152 and QRS < 160) then QRS_grp =2;

if QRS ~="_" and (QRS >= 160 and QRS < 180) then QRS grp =3;

if QRS ~="_" and QRS >= 180 then QRS grp=4;

trgrs=treat*QRS;

Igrs=1og(QRS);

trigrs=treat*lqgrs;

if supsys ~="_" and supsys < 105 then supsys grp =1;

if supsys *="_" and (supsys >= 105 and supsys < 117) then
supsys_grp =2;

it supsys "=".
supsys_grp =3;

if supsys ~="_" and supsys >= 130 then supsys_grp=4;

trsup=treat*supsys;

Isup=log(supsys);

trisup=treat*lsup;

if supdia ~="_" and supdia < 60 then supdia_grp =1;

if supdia *="_" and (supdia >= 60 and supdia < 70) then supdia grp

and (supsys >= 117 and supsys < 130) then

if supdia "="_"

and (supdia >= 70 and supdia < 80) then supdia_grp
if supdia ~="_" and supdia >= 80 then supdia _grp=4;

trdia=treat*supdia;

Idia=log(supdia);

tridia=treat*ldia;

iT BSA ~="_" and BSA < 1.73 then BSA grp=1;

ifT BSA ~="_" and (BSA >= 1.73 and BSA < 1.88) then BSA_grp=2;

if BSA ~="_" and (BSA >= 1.88 and BSA < 2.01) then BSA grp=3;

if BSA ~="_" and BSA >=2.01 then BSA grp=4;

trbsa=treat*BSA;

Ibsa=1og(BSA);

tribsa=treat*lbsa;

if HeartRate ~="_" and HeartRate < 60 then HeartRate grp=1;

if HeartRate »="_" and (HeartRate >= 60 and HeartRate < 69) then
HeartRate_grp=2;

if HeartRate ~="_" and (HeartRate >= 69 and HeartRate < 78) then
HeartRate_grp=3;

if HeartRate ~="_" and HeartRate >=78 then HeartRate_ grp=4;

trhea=treat*HeartRate;

lhea=log(HeartRate);

trlhea=treat*lhea;

if ad4cLVEjectionFraction = "_" and a4cLVEjectionFraction < 22
then EF_grp =1;

ifT adcLVEjectionFraction ™= "_" and (ad4cLVEjectionFraction >= 22
and a4cLVEjectionFraction < 25) then EF_grp =2;

iT adcLVEjectionFraction ~= "_." and (a4cLVEjectionFraction >= 25
and a4cLVEjectionFraction < 29) then EF_grp =3;

if adcLVEjectionFraction = "_" and a4cLVEjectionFraction >= 29
then EF_grp=4;

tradc=treat*a4cLVEjectionFraction;

la4c=log(ad4cLVEjectionFraction);

trladc=treat*la4c;

if Roche ~="_" and Roche < 744 then Roche grp =1;

if Roche ~="_" and (Roche >= 744 and Roche < 1814) then Roche_grp
:2;

if Roche ="_" and (Roche >= 1814 and Roche < 4198) then Roche grp
=3;

if Roche ~="_" and Roche >= 4198 then Roche _grp=4;
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trroc=treat*Roche;
Iroc=log(Roche);
trilroc=treat*lroc;
if Age ~= "." and Age < 59 then Age grp =1;
if Age = "_." and (Age >= 59 and Age < 66) then Age grp
if Age = "." and (Age >= 66 and Age < 72) then Age grp
if Age = "." and Age >= 72 then Age grp=4;
trage=treat*Age;
lage=log(Age);
trlage=treat*lage;
run;
quit;

proc phreg data=card.progex;

title "phreg treat treat*mitral_r futime-®;

model futime*primary(0)=treat mitral_r trmit /RL;
run;
quit;

proc phreg data=card.progex;
title "phreg treat treat*log(mitral_r) futime®;
model futime*primary(0)=treat Imit trimit /RL;
run;
quit;
%INC "C:\splines\rcs.mac";
%RCS(
TITLE=%STR(Mital_r Spline),
DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\mitral .sas),
TIME=futime, status=primary,
COVl=mitral_r,WHAT1=0,KNOTS1=11 22 34 66,
cov2=trmit,WHAT2=0,KNOTS2=11 22 34 66,
COV3=treat

);

proc phreg data=card.progex;
title "phreg treat treat*1VMD futime-;
model futime*primary(0)=treat IVMD trivm /RL;
run;
quit;
proc phreg data=card.progex;
title "phreg treat treat*log(IvVMD)futime”®;
model futime*primary(0)=treat IShIVMD triIShiIVMD /RL;
run;
quit;
%INC "C:\splines\rcs.mac";
%RCS(
TITLE=%STR(IVMD Spline),
DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\IVMD.sas),
TIME=futime, status=primary,
COV1=IVMD,WHAT1=0,KNOTS1=31 49 67 115,
cov2=trivm,WHAT2=0,KNOTS2=31 49 67 115,
COV3=treat
):
proc phreg data=card.progex;
title "phreg treat treat*ESVI futime-;
model futime*primary(0)=treat ESVI tresv /RL;
run;
quit;
proc phreg data=card.progex;

- 167 -

:2;
=3;



title "phreg treat treat*log(ESVI) futime”;
model futime*primary(0)=treat lesv trlesv /RL;

run;
quit;
%INC "C:\splines\rcs.mac";
%RCS (

)

TITLE=%STR(ESVI Spline),

DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\ESVI.sas),
TIME=futime, status=primary,

COV1=ESVI ,WHAT1=0,KNOTS1=93 119 149 295,
COv2=tresv,WHAT2=0,KNOTS2=93 119 149 295,

COV3=treat

proc phreg data=card.progex;

title "phreg treat treat*GRF futime®;
model futime*primary(0)=treat GRF trgrf /RL;

run;
quit;
proc phreg data=card.progex;

title "phreg treat treat*log(GRF) futime-®;
model futime*primary(0)=treat Igrf trigrf /RL;

run;
quit;
%INC "C:\splines\rcs.mac";
%RCS (

)

TITLE=%STR(GRF Spline),

DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\GRF.sas),
TIME=futime, status=primary,
COV1=GRF,WHAT1=0,KNOTS1=46 60 73 125,
covz2=trgrf,WHAT2=0,KNOTS2=46 60 73 125,

COV3=treat

proc phreg data=card.progex;

title "phreg treat treat*QRS futime®;
model futime*primary(0)=treat QRS trqgrs /RL;

run;
quit;
proc phreg data=card.progex;

title "phreg treat treat*log(QRS) futime-®;
model futime*primary(0)=treat Igrs trlgrs /RL;

run;
quit;
%INC "C:\splines\rcs.mac";
%RCS (

)

TITLE=%STR(QRS Spline),

DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\QRS.sas),
TIME=futime, status=primary,
COV1=QRS,WHAT1=0,KNOTS1=152 160 180 218,
cov2=trgrs,WHAT2=0,KNOTS2=152 160 180 218,
COV3=treat

proc phreg data=card.progex;

title "phreg treat treat*supsys futime®;
model futime*primary(0)=treat supsys trsup /RL;

run;
quit;
proc phreg data=card.progex;

title "phreg treat treat*log(supsys) futime®;
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model futime*primary(0)=treat Isup trlsup /RL;
run;
quit;
%INC "C:\splines\rcs.mac";
%RCS (
TITLE=%STR(Supsys Spline),
DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\Supsys.sas),
TIME=futime, status=primary,
COV1=supsys,WHAT1=0,KNOTS1=105 117 130 165,
COv2=trsup,WHAT2=0,KNOTS2=105 117 130 165,
COV3=treat
)
proc phreg data=card.progex;
title "phreg treat treat*BSA futime®;
model futime*primary(0)=treat BSA trbsa /RL;
run;
quit;
proc phreg data=card.progex;
title "phreg treat treat*log(BSA) futime-®;
model futime*primary(0)=treat lbsa trlbsa /RL;
run;
quit;
%INC "C:\splines\rcs.mac";
%RCS (
TITLE=%STR(BSA Spline),
DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\BSA.sas),
TIME=futime, status=primary,
COV1=BSA,WHAT1=0,KNOTS1=1.73 1.88 2.01 2.38,
COvV2=trbsa,WHAT2=0,KNOTS2=1.73 1.88 2.01 2.38,
COV3=treat
)
proc phreg data=card.progex;
title "phreg treat treat*HeartRate futime-;
model futime*primary(0)=treat HeartRate trhea /RL;
run;
quit;
proc phreg data=card.progex;
title "phreg treat treat*log(HeartRate) futime®;
model futime*primary(0)=treat lhea trlhea /RL;
run;
quit;
%INC "C:\splines\rcs.mac";
%RCS (
TITLE=%STR(HeartRate Spline),
DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\HeartRate.sas),
TIME=futime, status=primary,
COVl1=HeartRate,WHAT1=0,KNOTS1=60 69 78 105,
Cov2=trhea,WHAT2=0,KNOTS2=60 69 78 105,
COV3=treat
)
proc phreg data=card.progex;
title "phreg treat treat*ad4clLVEjectionFraction futime®;
model futime*primary(0)=treat ad4cLVEjectionFraction trad4c /RL;
run;
quit;
proc phreg data=card.progex;
title "phreg treat treat*log(a4cLVEjectionFraction) futime-®;
model futime*primary(0)=treat lad4c trladc /RL;
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run;

quit;

%INC "C:\splines\rcs.mac";
%RCS (

)

TITLE=%STR(a4cLVEjectionFraction Spline),

DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\a4c.sas),
TIME=futime, status=primary,
COVl1l=a4cLVEjectionFraction,WHAT1=0,KNOTS1=22 25 29 43,
COV2=tradc,WHAT2=0,KNOTS2=22 25 29 43,

COV3=treat

proc phreg data=card.progex;

title "phreg treat treat*Roche futime-®;
model futime*primary(0)=treat Roche trroc /RL;

run;
quit;
proc phreg data=card.progex;

title "phreg treat treat*log(Roche)futime”;
model futime*primary(0)=treat lroc trlroc /RL;

run;

quit;

%INC "C:\splines\rcs.mac";
%RCS (

)

TITLE=%STR(Roche Spline),

DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\Roche.sas),
TIME=futime, status=primary,

COV1=Roche ,WHAT1=0,KNOTS1=744 1814 4198 26132,
Cov2=trroc,WHAT2=0,KNOTS2=744 1814 4198 26132,
COV3=treat

proc phreg data=card.progex;

title "phreg treat treat*Age futime®;
model futime*primary(0)=treat Age trage /RL;

run;
quit;
proc phreg data=card.progex;

title "phreg treat treat*log(Age) futime-®;
model futime*primary(0)=treat lage trlage /RL;

run;

quit;

%INC "C:\splines\rcs.mac";
%RCS (

)

TITLE=%STR(Age Spline),

DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\Age.sas),
TIME=futime, status=primary,
COV1=Age,WHAT1=0,KNOTS1=59 66 72 84,
COvV2=trage,WHAT2=0,KNOTS2=59 66 72 84,

COV3=treat

quit;

%INC "C:\splines\rcs.mac";
%RCS (

TITLE=%STR(Card Sync),

DATA=progex, DIRDATA=%STR(C:\prog_card_dat),
PROGRAM=%STR(C:\prog_card_dat\card_splines\All_sig.sas),
TIME=futime, status=primary,
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COVl=supsys,WHAT1=0,KNOTS1=105 117 130 165,
cov2=trsup,WHAT2=0,KNOTS2=105 117 130 165,
COV3=BSA,WHAT3=0,KNOTS3=1.73 1.88 2.01 2.38,
COV4=trbsa,WHAT4=0,KNOTS4=1.73 1.88 2.01 2.38,
covs=mitral_r,

cove=trmit,

COV7=IVMD,

cov8=trivm,

Covo=lroc,

COV10=ESVI,

COV11=GRF,

COV12=HeartRate,
COV13=a4dcLVEjectionFraction,

COV14=Age,

COV15=QRS,

COvVi6e=treat

)
Code for Final Model
proc phreg data=card.progex3;

class Ischemic treat /desc;

model futime*primary(0)= treat mitral_r IVMD ESVI GRF supsys
a4cLVEjectionFraction Roche Age Ischemic trsup trivm /RL
selection=forward slentry=0.5 details;

run;
proc phreg data=card.progex3;

class Ischemic treat /desc;
model futime*primary(0)= treat mitral_r Roche supsys IVMD
Ischemic trsup trivm /RL details;
baseline covariates=card.progex3 out=card.PrScore2
survival=S/nomean;
run;
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