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Abstract 
 
This work seeks to develop a high quality prognostic model for the CARE-HF data; 

see (Richardson et al. 2007). The CARE-HF trial was a major study into the effects of 

cardiac resynchronization. Cardiac resynchronization has been shown to reduce 

mortality in patients suffering heart failure due to electrical problems in the heart. The 

prognostic model presented in this work was motivated by the question as to which 

patient characteristics may modify the effect of cardiac resynchronization. This is a 

question of great importance to clinicians. Efforts are made to produce a high quality 

prognostic model in part through the application of methods to reduce the risk of 

over-fitting. One method discussed in this work is the strategy proposed by Frank 

Harrell Jr. The various aspects of Harrell’s approach are discussed. An attempt is 

made to extend Harrell’s strategy to frailty models. Key issues such as missing data 

and imputation, specification of the functional form of the model, and validation are 

examined in relation to the prognostic model for the CARE-HF data. Material is 

presented covering survival analysis, maximum likelihood methods, model selection 

criteria (AIC, BIC), specification of functional form (cubic splines and fractional 

polynomials) and validation methods (cross-validation, bootstrap methods). The 

concepts of over-fitting and optimism are examined. The author concludes that whilst 

Harrell’s strategy is valuable it is still quite possible to produce models that are over-

fitted. MDL (Minimum Description Length) is suggested as potentially useful 

methods by which statistical models can be obtained that have an in built resistance to 

over-fitting. The author also recommends that concepts such as over-fitting, optimism 

and model validation are introduced earlier in more elementary courses on statistical 

modelling. 
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sent work comprises in the main the development of a prognostic model for 

E-HF data (Richardson et al. 2007).  The CARE-HF trial is a landmark trial 

benefits of cardiac resynchronization therapy. Cardiac resynchronization 

has been shown to significantly reduce mortality in patients suffering heart 

ue to electrical abnormalities in the heart (Ellenbogen et al. 2005), (Cleland et 

). In the next chapter I shall describe in further detail the background and 

ment of this model. Briefly the model developed in (Richardson et al. 2007) 

identify possible treatment modifiers of cardiac resynchronization therapy 

nic. 2009). It is of great importance that those patient characteristics which 

dify the beneficial effects of cardiac resynchronisation are identified, i.e. 
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subgroups of patients are identified who may enjoy the most benefit from cardiac 

resynchronization therapy. My main aim is to produce a model that has been 

developed with the aim of minimising the risk of over-fitting and maximising its 

predictive power. This will entail amongst other techniques an application of an 

approach suggested by Frank Harrell Jr. I attempt later in this work to apply Harrell’s 

approach in fitting a frailty model, an issue which Harrell does not address. I also seek 

to identify some of the limitations of Harrell’s methods. My main objective is the 

development of a high quality prognostic model for what is an important real world 

application. The purpose of including some of the more theoretical material is to 

provide a framework in which I can understand issues that arise in developing a 

prognostic model. 

1.1.0 Prognostic Models 
I shall be concerned almost exclusively with prognostic models in this thesis. A 

prognostic model can be regarded as a tool by which a doctor can produce a prognosis 

for a patient. Prognosis from the Greek πρόγνωσις, can be defined as a doctor’s 

prediction of how a patient’s illness will develop and their chance of recovery. For 

example; given a patient’s age, weight, blood pressure, a doctor could determine what 

if any beneficial effect a patient might experience if he or she were to receive a 

particular treatment or therapy. For general discussion of prognostic models the reader 

is directed toward Abu’s paper (Abu & Lucas 2001). A prognostic model is a 

predictive tool; its purpose is to predict the level of increase in a beneficial effect, or 

the decrease in risk of some adverse event, for instance, death A prognostic model can 

assist a doctor in making clinical decisions, for example in trying to determine which 

patients might benefit from a particular treatment or therapy given that the treatment 
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is costly. The following papers provide excellent material on prognostic models 

(Wyatt & Altman 1995), (Moons et al. 2009) and (Royston et al. 2009).  

The decision as to whether a patient will be given a particular treatment may well be 

based upon evidence obtained through the application of a prognostic model. 

Therefore, the importance of being able produce a reliable and accurate model is 

immediately seen. A method by which it is possible to assess the predictive accuracy 

of the prognostic model is also required. What steps can be taken in order to maximise 

the chances of producing a good model? These questions have led researchers to 

formulate a number of approaches to the modelling process with the aim of obtaining 

a parsimonious model that does not suffer from over-fitting and has good predictive 

accuracy.  

1.2.0 Survival Analysis Background 
 
If a new drug or treatment has been developed an important question is how effective 

is the drug or the treatment? Evidence for the efficacy of a drug or treatment is 

gathered by setting up a clinical trial. A simple situation might be as follows: A 

sample of patients suffering from some disease or illness is obtained. Patients from 

this sample are then randomly allocated to one of two groups. The first group is called 

the treatment group; patients allocated to this group receive the drug or treatment. The 

second group is called the control group, patients allocated to this group do not 

receive the drug or treatment, they may for instance be given a placebo. A researcher 

might then consider how many patients died in the treatment group compared to the 

control group (or more positively how many patients did not die). In the simple 

situation described above a researcher might use logistic regression to estimate the 

probability of death, the model might include variables such as patients age, sex. Also 

if a variable indicating to which group the patient belonged was included in the 
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model, and was subsequently found to be statistically significant then this may 

provide evidence for a treatment effect, i.e. probability of a patient dying is dependent 

upon whether or not they have received the treatment. In the example above the 

outcome is a binary one, dead or alive. It might well be that a patient’s life is 

prolonged by taking the drug, but by how long? It might be a few months or it could 

be 20 years. In many clinical trials the question of the efficacy of a drug or treatment 

is addressed in terms of the time to event, i.e. how long until a patient dies or 

experiences the event of interest. In this case survival analysis is the appropriate 

method. A few words should be said on the matter of randomisation. One of the 

principal reasons for adopting randomisation when developing a prognostic model is 

to avoid biased estimates of treatment effects. In attempting to develop a prognostic 

model it is important that the treatment and control groups are balanced in terms of 

the distribution of variables that may be strong predictors of the outcome. 

Randomisation also reduces the risk of obtaining biased estimates of the treatment 

effect due to missing or unknown variables. It should be borne in mind that 

randomisation does not guarantee that estimates of treatment effects will be unbiased 

in all situations (Gail et al. 1984). I should like to point out however that 

randomisation can be considered as a controversial topic (Royall 1991). However R.A 

Fisher (Fisher 1966) argues that if we assume that a real treatment effect is absent, 

then the result from any experiment is due to chance alone. Fisher (Fisher 1966) 

provides a very clear argument to support of randomisation. I shall now review some 

of the fundamental ideas in Survival analysis, what follows is a standard derivation of 

the basic results. I make no claim whatsoever to have developed anything new. These 

are well known results attributable to others. Similar derivation may be found in any 

number of statistics textbooks, see Dobson’s textbook (Dobson 2002) for example.  
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1.3.0 The Modelling Process  
 
Harrell et al. (Harrell et al. 1996) identify the following as potential problems in the 

modelling process: 

 

• Violation of Assumptions 

•

 

statistical model the resea cher i ften compelled to make a number of 

simplifications and assumptions. Real world situations are often too complex to model 

without such simplifications and assump

 Omission of Important Predictors 

• Missing Data / Incorrect Imputation 

• Over-fitting 

 

Each of the above may lead to an ill-fitting prognostic model; predictions based on 

such a model will not be reliable. When attempting to fit any mathematical or 

r s o

tions. In fitting a prognostic model three 

basic assumptions shall be made; the first is a distributional assumption, the second an 

ssumption regarding functional form and the third an assumption about 

additivity.The prognostic models that I shall consider in this thesis are based on the 

Cox Proportional Hazards model (Cox 1959), (Cox 1964), (Cox 1972), of course 

prognostic models can be developed for other forms of Generalised Linear Models 

(GLM) see (Nelder & Wedderburn 2009), (Baker & Nelder 1978) and (Dobson 2002).  

In a linear model , the GLM extends the linear model to situations where 

e relationship between and  is not linear, this is achieved through the link 

a

xYE ~~)( β=
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function ()Lf , so that YEf L (( x~~)) β= . Prognostic models could for example be based 

1.4.0 Violation of Assumptions 

Although this thesis is concerned with over-fitting and optimism it is considerable 

im ic assumptions are examined as to their validity. For example with 

the Cox m del is the proportional hazards assumption valid?  Are assumptions about 

the function form of the model appropriate? Once a model has been obtained is it 

  

 

 

on other regression models, e.g. logistic.   
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over time, the effect of a covariate does not vary over time. The Cox proportional 
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pecifying an inappropriate form for .Estimates for the Cox model are obtained 
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model; however inclusion of 
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through partial likelihood (Cox 1972). If )(yh is specified for example 

))(logexp()( yvuyh e+=  then certain assumption t the distribution of the 

survival time Y have to be met, in this case Y  follow  the Weibull distribution. 

It may not be reasonable to assume proportional hazards. If the p n l hazards 

assumption is violated, it is possible to include a time dependent variable i

a time dependent variable leads to difficulties in 

assessing the validity of the model. Another strategy for dealing with non proportional
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hazards is to stratify the model based on the variable for with the proportional hazar

assumption is violated.  

 

Specifying an appropriate functional form for the model is important. The assumption 

of a simple relationship between Y and

ds 

1.4.2 Functional Form 

X  such as XY =  may not be appropriate. 

There may be a more complex relationship between Y  and X .  In this situation it is 

required to transform X , examples of typical transformations are )(log Xe , X . 

However the crucial point is that the model is linear in the parameters. The models 

errorXY ++= 110 ββ and odels i.e. the right 

hand side in both cases is a linear eters  

errorXY ++= 2ββ 110 are both linear m

combination of the param 0β  and 1β . In recent 

of work has been carried out in the study of cubic splines and their 

application to statistical models. There are instances when the fit of a model can be 

improved by using cubic splines in the sp

n tatistical 

and (Herndon & Harrell 1990). Another extremely interesting approach to 

transformations is that of the Fractional Polynomial (Royston & Altman 1994), 

(Royston Patrick et al. 1999) and (Royston & Sauerbrei 2004). The reader is 

encouraged to read Royston and Altman’s paper (Royston & Altman 1994), further 

useful material can be found in (Royston et al. 1999), (Royston & Sauerbrei 2004) 

l rea etail 

years a great deal 

ecification of the functional form. The 

following authors provide very useful material o  the use of cubic splines in s

modelling, (Wegman & Wright 1983), (Smith 1979), (Poirier 1979), (Royston 2000) 

and software for fitting fractional polynomials is documented in (Meier-Hirmer et al. 

2003). Both cubic splines and fractional polynomia s will be covered in g ter d

in Chapter 4.   
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1.4.3 Additivity 
For the Cox proportional hazards model the relationship 
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i

are said to be additive. In simple and multiple linear regression

assumption allows the interpretation of iβ  as t ange in due to a unit 

too restri e, it may well be that changes in the expected value of 

he ch )(YE

increase in iX  given that all the other sX '  are held constant without specifying at 

what value  the other sX '  are held constant. The assumption of additivity is perhaps 

ctiv ⎟⎟
⎠

⎞
⎜
⎝

⎛
)(
)(

0 yh
yh

e  

unit change in iX  are dependent on the values of one or several of the other 

⎜log 1 for a 

dependent variables. Relaxing the assumption of additivity requires that interaction 

rms be introduced into the model. 

dditivity assumption is violated, then clinically/biologically 

eaningful interaction terms should be included in the model. In  the simple model 

in

te

If it is found that the a

m

02132111 * ββββ +++= XXXXY , let X  be the patients age in years, 

2

21

modifies the effect of treatment. 

1

and indicate whether the patient has received treatment or not, then the 

term , represents an interaction term, the interaction term describes how age 

X

* XX
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1.5.0 Omission of Important Predictors and Missing Data 

1.5.1 Omission of Important Predictors  

The omission of important predictors can lead to an inaccurate model in the sense that 

estimates of treatment effect will be biased. It may be that some important predicto

of outcome is as yet unidentified, or it is a known predictor and has been omitte

some reason. Randomisation offers a way of reducing the risk of biased estimates for 

the treat

 

r 

d for 

ment effect when important predictors have been omitted for whatever reason.  

 

Missing data will have a bearing on the final model, distorted estimates of predictor 

variables may result from missing data. A variable that appears not to be statistically 

significant due to a high level of missing data, may in fact be of considerable 

predictive value. Missing data may categorised as being missing completely at 

random, missing at random, and missing not at random.  

It is important that the missing data mechanism is identified. For an introduction to 

some of the terminology used in connection with missing data see the website 

operated by LSHT (London School of Hygiene and Tropical Medicine 2008). Missing 

data and imputation will be discussed in Chapter 7. For the present, suffice it to say 

that once the nature of the missing data has been established steps can be taken to deal 

with this problem, i.e. the missing data is imputed. It is important that the correct 

imputation method is applied. Imputation is a complex problem, for a detailed 

treatment of developing prognostic models when missing data is present see (Marshall 

2007). 

 

 

1.5.2 Missing Data  
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1.6.0 Over-fitting and Optimism 
 
Over-fitting may be described in the following way.  In dealing with a binary 

outcome, for example dead or alive, it may be that interest is focused on predicti

deaths, the ratio of deaths/predictor degrees of freedom can be used to gauge the lev

of what is known as over-fitting. If the number of events of interest is small and a 

large number of independent variables are included it is likely that the model w

over-fitted. It will be found that independent variables are included in the model 

(deemed statistically significant) due to their being ’locally important predictor

validating the model it may be found that these independent variables are not 

significant. In over-fitting a model, noise and localized features in the data attain a 

spurious statistical significance and lead to biased m del. Considering predictive 

accuracy when over-fitting is present, this means that the predictive accuracy of 

model when validated on an external dataset will be seen to deteriorate. The 

predictive accuracy of the model using the data on which it was developed may be 

quite good; yet when the model is applied to a new (but similar) data set it is

that the predictive accuracy is poor in comparison, this is known as optimism or 

statistical optimism.  

1.7.0 Data Reduction and Shrinkage 
 
Data reduction can be described as a means of reducing in the number of independent 

variables that might be included during the modelling process (reduction of the 

dimensions of the data). If an attempt is made to fit a model with 70 variables to a 

data set of 50 patients, then the model will be severely over-fitted. By e loying data

reduction it may be possible to reduce the risk of over-fitting, a classical data 

reduction technique is principal components analysis, see Sharma (Sharma 1995). 

Empirical rules have been arrived at which can be applied to determine if data 

ng 

el 

ill be 

s’. On 

o

the 

 found 

mp  
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reduction should be used. One such rule for the Cox proportional hazards model is 

based on the ratio 
p

N E  (events per variable), where N   is the numbeE r of uncensored 

umber 

cluded in the model. If  

events, and p  is the predictor degrees of freedom, p can be thought of as the n

of independent variables in 10<
p

N

over-fitting, consequently we should look to performing data reduction, i.e. reduce th

numb r of independent variables that are included in the model, (Peduzzi et al.

provides background on events per variable rules. In a good model a linear 

relationship should be observed between the observed (i.e. new data) and predict

(i.e. predictions made using the original data) values, i.e. YY ˆ

E  there is some risk of 

e 

e  1996) 

ed 

=  (the line has a slope 

of and passes through the origin), departure from a slope of  indicates that 

ver-fitting has occurred. Over fitting is not the only cause o  a departure from the 

slope, for instance if assumptions relating to the error term in the model have 

been violated a departure from will be observed, for example term the error does not 

have a constant variance, the error terms are not independent. This departure from the 

o45 o45

o f

o45

o45 slope due to over-fitting is known as shrinkage, a measure of the shrinkage gives 

a measure of over-fitting. Van Houwelingen and le Cessie (Van Houwelingen & le 

Cessie 1990) have developed a heuristic estimator of shrinkage 2
ˆ

χ
χγ p−

=  , 
2

is the total model log likelihood ratio statistic used in testing for associations here 2χ

between X  and , it can be seen that as  the predictor degrees of freedom Y p

decreases so does γ̂ .  

 
Use of the entire data set in developing the model allows for the extraction of 

maximum information, as Harrell (Harrell et al. 1996) points out “data are too 

 - 14 -   



 

precious to waste”. Outliers or highly influential observations offer some clues about 

possible over-fitting. If for some X  there exist one or two extreme values, it may

that 

 be 

X appears as a significant predictor, these extreme values can lead to the 

le tion of spurious predicto lting in a model that has been over-fitted, the 

mo  

se c rs, resu

del is not general. After validation X  may be found to be not significant, the 

extrem drove’ the modelling process.  

1.8
 
Once a m

earlier that the predictiv

developed m

generally good (Altman & Royston 2000). The model must be validated using new 

data v

that per ed to perform well when 

app d t may appear to have been 

labo e f 

gen l

par f ter 6. Over the years many 

oth t

reliable

accurac

1.9.0 Harrell et al.’s Approach  
 
Harrell et al. (Harrell et al. 1996) have devised a systematic approach to fitting a 

prognostic model which may be summarised as follows: 

 

e values in a particular data set ’

.0 Validation  

odel has been obtained it should be validated using a new data set. I said 

e accuracy of the model for the data on which it was 

ay be quite good, however this is not sufficient to claim that the model is 

, e en if it is found that for the original data the model performs well. A model 

forms well on the original data set is not guarante

lie  to a new but similar set of patients. This poin

ur d somewhat, but it is crucial when fitting a model we have in mind the idea o

era isabilty. Bootstrapping, validation, calibration and discrimination (component 

ts o  predictive accuracy) will be discussed in Chap

er s atisticians have been engaged in research into the problem of producing 

 models that do not suffer from gross over-fitting and possess good predictive 

y. I shall now briefly outline some of this work   
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• Obtain an accurate and large sample of data. 

issing is 

te 

e 

 sample to 

m transfo . 

s. 

ab e. 

 backward stepdown variable selection. 

nt 

lifying 

• Formulate a sharp hypothesis. 

• Discard observations with missing Y, provided Y missing at random. 

• For missing X investigate factors related to missingness, if the number of 

observations   that would be excluded is small or variable that is m

unimportant, then exclude observations with missing values. Otherwise impu

missing X. 

• If the number of variables included in the model is large in comparison to th

number of events of interest, use data reduction. 

• Use the entire develop the model. 

• Check linearity assumptions and perfor rmations on Xs if required

• Check additivity assumptions, include clinically motivated interaction term

• Check for outliers or influential observations. 

• Check distributional assumptions, for Cox Proportional Hazards model, 

proportional hazards assumption, if violated include time dependent vari l

• Perform

• Variables obtained from stepdown procedure form the final model. 

• Validate model using the bootstrap. 

• If using stepwise variable selection, supply a Table showing how importa

predictors vary over the bootstrap samples. 

• Estimate shrinkage. 

1.10.0 Ambler, Brady and Royston’s work 
 
Ambler, Brady and Royston have investigated methods for estimating and simp
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full models (Ambler et al. 2002). In (Ambler et al. 2002) the authors aim to produce 

simplified models that retain their prognostic power. Based on simulation studies 

using two different data sets, Ambler et al state that the results of model 

mplification based on the stepdown variable selection, using maximum likelihood 

and penalised maximum likelihood depended upon whether or not all the independent 

variables (predictors) were influential. Harrell advocates limited variable selection 

based on the stepdown method. The stepdown method makes use of the idea of a 

prognostic index, if are independent variables then the prognostic index is 

a linear combination of , i.e. 

si

pXXX ..., 21

p21 ppXXX ..., XaXaXa +++ ...2211

ombina

. Regression of the 

linear c tion on the independent variables results in a perfect fit, 12 =R , if any 

of the independen 2R  will decrease. A simplified t variables are omitted, then 

mX  pro o bination formed by removing the 

which causes the smallest d e

gn stic index is defined as the linear com

ecreas  in 2R , this process is carried out until further 

removals of mX  would result in α<2R , where α  is a predefined value for 2R . 

Ambler et al suggest the Akaike Information Criteria (AIC) provides a good way of 

selecting a simplified model, the background to the AIC will be presented in C

5. ). In my review of Harrell’s approach I referred to events per variable, and ho

reducing p it is possible to avoid over-fitting. Models produced using a criterion such 

as 

hapter 

w by 

10<
N E

p
n as full m lexity or size of the model is 

. Ambler et al make a very 

 are know odels, the comp

determined by the number of events of interest in the data

important point; full models are liable to be very complex when we have data 

containing a large number of observations and a large number of possible predictor 

variables. Large and complex models have attached to them financial and practical 

drawbacks. This may be seen as a drawback to Harrell’s approach.  
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1.11.0 Van Houwelingen’s work 

Hans C. van Houwelingen describes methods fo
 

r determining the predictive accuracy 

evelops what he calls validation by calibration; he illustrates this method by the 

following example using simple linear regression: 

•  Fit , then  is the calibrated model. 

Van Houwelingen explains that his strategy is to compare a particular model with the 

new (validation) data set and not a new model obtained from the validation data set. 

From a theoretical perspective his method is appealing in its simple and clean 

approach. Van Houwelingen proposes a method whereby the Cox proportional 

hazards and the non-proportional hazards model may be calibrated (van Houwelingen 

2000).  

 

ing Harrell’s approach. 

of prognostic survival models; see (van Houwelingen 2000). Van Houwelingen 

d

•  Plot Y  against elXY mod  for new data. 

•  If YY ˆ=  appears to hold (points lie on o45  line through (0,0) ), then model is 

valid. 

•  If  YY ˆ= does not appear to hold (points do not lie on o45  line through 

• (0,0)), correct model by calibration. 

ˆ β′=

eYY ++= ˆβα YYcal
ˆˆˆ βα +=

1.12.0 Extension of Cox Proportional Hazards Model 

Initially I shall develop a prognostic survival model using Cox Proportional Hazards 

model, in a later Chapter I will look at how Cox Proportional Hazards model can be 

extended to deal with heterogeneous data through the use of frailty (Vaupel et al. 

1979). The frailty model is an interesting advance in modeling. Harrell et al’s 

approach as far as this author is aware does not address frailty. In Chapter 8 I attempt 

to fit a frailty model us
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1.13.0 Current Modelling Strategies 
 
Are issues such as over-fitting and specification of functional form for a prognostic 

model routinely addressed? Has the approach suggested by Harrell been widely 

adopted? I have carried out an informal survey of three journals; BMJ, JAMA and 

Circulation. Papers were selected from these journals based on the key words such as 

prognostic, survival, Cox model, and risk score. It appears that over-fitting is not 

routinely addressed. Where it might be appropriate specification of functional form 

using cubic splines or fractional polynomials is not widely adopted practice.    

 

 It is hoped that the reader may glean some practical guidance on how to employ 

Harrell et al’s approach, and perhaps become aware of some of the difficulties that 

can arise. If by reading this thesis the reader who may not be a statistical expert, 

acquires a better understanding of the important issues surrounding the development 

of a prognostic model then I would have accomplished a main objective. That 

 steps to ensure that the chances of over-fitting a model are 

onsider 

n 

Failure 

everyone should take

minimised is of course highly desirable.  However it may be worth trying to c

some of the natural and inherent limitations to the statistical method. There is no 

correct model, every model is an approximation; to quote G.E.P Box, "Essentially, all 

models are wrong, but some are useful.” (Box & Draper 1987). The whole question of 

generalizabilty is a complex one. Should we expect to achieve more general results i

the physical sciences? In the next Chapter I shall consider the development of a 

prognostic survival model for the Cardiac Resynchronization Therapy in Heart 

(CARE-HF) data set.  
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CHAPTER 2 THE CARE-HF STUDY 

 

7). T

ctors that 

 

2.0.0 Introd

• Ca

pat

• Wh

res

• To

• Isc

ind

car

• Sy  

as 

In this work

Resynchron

randomized

of follow-up

al. 200

fa

resynchroni

patients who

responders)

may determ

 

rdiac resynchronization therapy significantly reduces mortality in 

ients with heart failure 

at patient characteristics may modify the effects of cardiac 

ynchronization therapy? 

 investigate treatment modifiers a prognostic model is developed 

haemic aetiology, more severe MR, and increased NT-pro-BNP were all 

ependent predictors of an increased risk of death or unplanned 

diovascular hospitalization irrespective of randomised treatment (CRT)  

stolic blood pressure and Interventricular mechanical delay are identified

treatment modifiers 
ction 

hese attributes make it a valuable resource for the investigation of those 

predict the likelihood that a patient will or will not respond to cardiac 

t (non 

 

u

 a prognostic model was fitted to data obtained from the Cardiac 

isation in Heart Failure Trial (CARE-HF). CARE-HF is one of the largest 

 studies of cardiac resynchronization therapy (CRT), has a longer duration 

 than any other, and has a robust primary clinical endpoint (Richardson et 

sation therapy (CRT). Clinicians view CRT in the context of those 

 will derive benefit from CRT (responders) and those who will no

. If a patient is in receipt of CRT what characteristics of that individual 

ine the likelihood of them receiving benefit from the treatment? This leads

- 20 -   



 

us (Richardson et al. 2007) to consider treatment modifiers, i.e. those patient 

attributes that modify the effect of CRT. CRT is a treatment that aims to restore and 

improve cardiac function in patients who suffer electrical conduction problems in the

heart as a result of heart failure (Medtronic 2009). Heart failure is a common and

serious condition with a complex and varied pathophysiology (Cleland et al. 1999). A 

substantial minority of patients with heart failure due to left ventricular (LV) sys

dysfunction have prolonged QRS, QRS represents ventricular depolarisation and 

amongst these patients there is a high prevalence of cardiac dyssynchrony, which 

leads to a decline in cardiac efficiency through diverse mechanisms, see (Xiao et al. 

1993), (Daubert et al. 1999) and (Auricchio et al. 1999). For patients with heart 

failure due to cardiac dyssynchrony who have persistent moderate or severe 

symptoms despite standard pharmacological therapy, CRT improves cardiac functio

leading to an improvement in well-being and a reduction in morbidity and mortality, 

see (Abraham et al. 2002),(Bristow  et al. 2004),(Cleland et al. 2005) and (Freemantl

et al. 2006). 

 

 

tolic 

n 

e 

RT is delivered by means of a physical device akin to a pacemaker, see (Medtronic 

09). The aim of this analysis was to evaluate the relationship between prospectively 

defined clinical, echocardiographic and neurohormonal variables, collected at baseline 

uring the CARE-HF trial, on overall outcome in all patients and on the response to 

RT. 

 

The prognostic model presented in this work, is that developed by Richardson, 

Freemantle, Calvert, Cleland and Tavazzi (Richardson et al.  2007) based on 

Individual patient data collected during the CARE-HF trial. The design and results of 

the CARE-HF study have been reported previously (Cleland et al. 2005), (Cleland et 

C

20

d

C
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al. 2001). In brief, the CARE-HF trial enrolled 813 patients recruited from 82 centres 

cross Europe. Eligible patients were at least 18 years of age, had evidence of heart 

ilure for at least 6 weeks, and were in New York Heart Association class (NYHA) 

I or IV despite receipt of standard pharmacologic therapy, with a LV ejection 

action (EF) of < 35%, a LV end-diastolic dimension of ≥ 30 mm (indexed to height), 

nd a QRS interval of > 120 ms on the electrocardiogram. Patients with a QRS 

terval of 120–149 ms were required to meet two of three additional criteria for 

 of more than 140 ms, an interventricular 

 

 

 

 a 

 

a

fa

II

fr

a

in

dyssynchrony: an aortic pre-ejection delay

mechanical delay (IVMD) of > 40 ms, or delayed activation of the posterolateral LV

wall. The IVMD was calculated as the time difference between the onset of forward

flow in the LV (APET) and RV (PPET) outflow tracts: IVMD =APET – PPET (Ghio

et al. 2006). A total of 409 patients were randomized to CRT and medical therapy, 

whereas 404 received medical therapy alone (Richardson et al.  2007). The primary 

outcome was the time to death from any cause or an unplanned hospitalization for

major cardiovascular event. Patients were followed up for a mean of 29.4 months. 
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2.1.0 Developing the Prognostic Model 

A number of potentially important clinical, echocardiographic, and neurohormo

variables collected at baseline were specified a priori for evaluation in a prognostic 

model. These were mitral regurgitation (MR), en

 
nal 

d-systolic volume index, aetiology 

schaemic and non-ischaemic disease), EF, use of beta-blockers, age, QRS interval 

RS), supine systolic blood pressure (SBP), glomerular filtration rate, N-terminal 

ro-brain natriuretic peptide, as determined by Roche Assay (NT-pro-BNP), and 

 in 

 to death 

ox 

Hosmer 

ch 

(i

(Q

p

IVMD ,see (Talwar et al. 1999), (Pitzalis et al.. 2005), (Doust et al. 2005).  MR was 

defined as area of colour flow Doppler regurgitant jet divided by area of left atrium

systole, both in square centimetres. The primary composite outcome was time

from any cause, or an unplanned hospitalization for a major cardiovascular event. C

Proportional Hazards models were fitted to identify predictors of risk of death from 

any cause or an unplanned hospitalization for a major cardiovascular event (main 

effects) and to identify any predictors modified by cardiac resynchronization (

& Lemeshow 1992) and (Lee 1992) ,the SAS code for producing theses models is to 

be found in Appendix 1.0.0. The modelling strategy was based upon the approa

suggested by Harrell et al 1996, see Chapter 1 for an introductory discussion of 

Harrell's approach. In order to evaluate whether any of the variables had a non-linear 
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relationship with outcome, transformations of each variable using the natural 

logarithm and cubic spline were assessed (Herndon & Harrell 1990), (Wegman & 

Wright 1983), (Poirier 1979), (Smith 1979) and (Royston 2000) see Chapter 4 for a 

further discussion of cubic splines, SAS code used for fitting cubic splines is to be 

found in Appendix 1.0.0.  The Akaike Information Criterion (AIC) was used to 

determine the most appropriate transformation (Akaike 1974), see Chapter 5 for a 

more detailed discussion of the AIC. The validity of any transformations was furt

assessed by examining plots of the cumulative Martingale residuals versus the

transformed variable (Verweij et al. 1998), (Therneau & Grambsch 1990). The 

proportional hazards assumption was also assessed. Statistically significant variables

identified from univariate analyses (Table 2.2). 

 

 

 

All analyses were performed in SAS v 9.1 using the PHREG procedure and th

macro (Heinzl & Kaider 2006). The RCS macro was used to fit cubic splines with 

four knots, Herndon and Harrell (Herndon & Harrell 1990) suggest based on 

empirical studies, that 4 knots are sufficient to model most data, this point will be 

considered further in Chapter 4. For the continuous variables, with the knot positions

specified PHREG was then used to generate a model from which it was possib

determine whether the cubic spline was an appropriate transformation for the 

particular variable concerned. All analyses were undertaken according to the intent

to treat principle, i.e. the effect of a treatment is assessed based on the planned 

treatment rather than the actual treatment (ICH E9. 1999). In a clinical trial use of 

intention to treat principle allows for an unbiased estimate of the effect of a treatment 

her 

 

 

e RCS 

 

le to 

ion 

the 
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in situations where a number of patients may not adhere to the treatment programm

Alternative approaches are to e

them in the group the treatment group, this approach lead

e. 

xclude those patients who do not adhere or to include 

s to a biased estimate of the 

treatment effect (Montori & Guyatt 2001). To validate the final model two further 

teps were taken. First, a bootstrap revalidation process was used to estimate the 

ess (Har

library in the statistical package R was used to undertake this validation (Design 

Library Harrell Frank E. 2009a). Second, multiple imputation using the SAS 

procedures MI (SAS Institute. 2009), and MIANALYSE were employed to examine 

t must be 

a ed with identifying possible tre m  

 

presented in (Richardson et al. 2007) a  

odifiers where the prim

not claim that this approach is the right way. Those variables identified to be 

significantly (P< 0.05) associated with the primary composite outcome (time to death 

from any cause, or an unplanned hospitalization for a major cardiovascular event) 

were entered in a multivariable Cox Proportional Hazards model using a forward 

forward selection procedure was 0.05, meaning a variable has to be significant at the 

s

degree of over-fitting from the model fitting proc rell et al. 1996). The design 

the effect of missing data on the final model.  In (Richardson et al. 2007) i

stressed th t the authors were concern at ent modifiers

i.e. interactions with CRT. The approach to identifying possible treatment modifiers

nd this thesis are open to question and 

criticism. It can be argued that if there is a genuine interaction between CRT and 

another independent variable then this interaction will be identified using the 

conventional approach of first fitting main effects and then going on to fit interaction 

terms. The approach to identifying interaction terms adopted in this thesis had been 

employed in previous work and was suggested to myself as a way of dealing with fact 

that treatment m ary concern as opposed to main effects. I do 

stepwise selection to obtain the final model (Table 2.3). The entry criteria for the 
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0.05 level before it can enter the model. When using a forward selection method I 

start by fitting the Cox models )exp()( 0 ii Xyh ββ += , where i= (1,2…,m),  m is the 

number of independent variables, i.e. I have the models 

)exp()( 110 Xyh ββ += , )exp()( 220 Xyh ββ += ,…, )exp()( 0 mm Xyh ββ += . 

 

For each of these models once the p-value p for was determined, I can identify 

i

iX

candidate variables for inclusion in the model by considering all  whereX α<p , α  

being a prescribed significance level. If there are several iX  that satisfy α<p , then I 

select kX , where kX is the  iX  with the smallest p-value from amongst the 

candidate iX s. We then fit the models )exp()( 0 iikk XXyh βββ ++= , ki ≠ . From 

these models the iX that has the smallest p-value (denoted lX  ) is included i.e. I now

have )exp()( XXXyh

 

k0 iillk ββββ +++=   liki ≠≠ , . This process is repeated 

until there are no independent variables left. In the forward selection method a 

variable will remain in the model no matter what new variables are included. In the 

is refined in the following way. The p-value p of each independent variable that is 

forward stepwise selection procedure the fo

already included in the model is examined at each step. If  is greater

rward selection procedure described above 

p α  , then kX is 

rem odel. Also, if has been removed previously from the model it 

a  is less than 

oved from the m kX

y re-enter if p αm , but it may re-enter only once, it cannot enter more 

e. In forward stepwise selection I start by fitting the 

models

than twic

)exp()( 110 Xyh ββ += , )exp()( 220 Xyh ββ += ,…, )exp()( 0 mm Xyh ββ +=  

these models will under-fit the data. Harrell suggests that the ‘limited’ backward 

ion be employed; it is claimed that this method has advantages over the stepwise select
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forward stepwise selection, a comprehensive discussion on backward methods can be 

(Beale 1970) offers some interesting cr  of

Mantel’s arguments. In ba k rd stepw ction I star ith the fu

tter  po t. The choice between backward or forward 

n my v a matt  the idua earcher, ould

 considering the fact that all autom

s, including backward ds can be criticised as 

odels. Ira Berstein ha ethods as “data 

ch s”, (Ul  1997 l ough su sting 

ise ction (Harrell e 996 nts out t tepw

ver- g, and mme  v bles are ined 

e 

epwise selection method. This appears strange, variables that are not statistically 

ber of 

 does 

found in (Mantel 1970). Beale iticism  

c wa ise sele t w ll model, which 

it could be argued is a be  starting in

stepwise selection is i iew er for  indiv l res  it w  be 

misleading to dismiss forward selection without atic 

variable selection method metho

producing suspect m s described Stepwise m

driven variable selection s eme rich ), Harre l alth gge that a 

researcher perform stepw  sele t al. 1 ) poi hat s ise 

methods do not tackle o fittin reco nds that aria reta in the 

model irrespective of their p-values, as this leads to a model with better 

discriminatory power compared to a model produced solely on the basis of th

st

significant and might be regarded as being redundant are important in terms of the 

discriminatory power of the model (they may be clinically significant). Forward 

stepwise selection is useful in situations where I might wish to fit a large num

interactions. Which selection method is best? A definite answer to this question

not appear to exist. All variable selection procedures posses some defect, and so 

whichever method a researcher adopts he or she must carefully examine the final 

model and perform some type of validation. 
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2.2.0 Results 
The baseline characteristics of patients from the CARE-HF trial are shown in Table 
.1. 

 

Table 2.1 Baseline characteristics of patients total number in study N=813 

tes for Table 2.1 IQR (interquartile range). Mitral regurgitation defined as area of colour flow 
oppler regurgitant jet divided by area of left atrium in systole, both in square centimeters. 

These data are consistent with the patients having, on average, moderate to severe LV 

systolic dysfunction, dilatation and dyssynchron it a e, 

renal dysfunction. About 40% of patients had is art failu

i yses were used to ide y those variables that were 

s e to death from ause, or n

h vent) irre ive of tre o

       

2

 Control   Treatment   
 n median (IQR) n median  (IQR) 

Age (years) 403 66 (59–72) 409 67 (60–73) 
Aetiology (ischaemic Y/N) Y=153 

N=250 
  Y=186 

N=223 
  

Sys
(m

tolic blood pressure 
mHg) 

399 110 (100–
125) 

404 110 (100–
125) 

Glomerular filtration rate 
L/min/1.73m2) 

372 61 (46–73) 367 60 (46–73) 
(m
N-terminal pro-brain 

atriuretic peptide (pg/ml) 
370 1806 (719–

3949) 
362 1920 (744-

4288) n
Use of beta-blockers (Y/N) Y=288 

N=116 
  Y=298 

N=111 
  

QRS width (ms) 394 160 (152–
180) 

401 160 (152–
180) 

In
delay (m

terventricular mechanical 
s) 

370 50 (30–66) 365 49 (32–67) 

E
(m

nd-systolic volume index 
L/m2) 

376 117 (94–
147) 

356 121 (92–
151) 

Ejection fraction (≤ 35%) 378 25 (22–29) 367 25 (21–29) 
Mitral regurgitation 303 23 (11–34) 302 21 (12–33) 

 
No
D
 
 

y w h a low arteri l pressur and 

chaemic he re due to 

schaemia. Univariate anal ntif

ignificant predictors of outcome (tim any c an unplan ed 

ospitalization for a major cardiovascular e , spect atment all cation, 
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and those variables shown to predict response to CRT (indicated by the CRT * 

v .2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ariable interaction term) (Table 2
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 n Hazard ratio  95% CI  P-value 
     
Mitral regurgitation 605 2.14 1.68–2.71 0.0001  a  

CRT   1.85 0.59–5.08 0.2938 
CRT *  Mitral regurgitation  0.72 0.50–1.02 0.0670  a

 
 

 
   

Interventricular mechanical delay (ms) 735 0.99 0.99–1.00 0.0028 
CRT  0.92  0.62–1.36 0.6784 
CRT * Interventricular mechanical delay (ms)  0.99  0.99–1.00 0.0473 
 
 

 
   

End-systolic volume index (mL/m2) a 732 1.52  1.08–2.14 0.0175 
CRT    0.62 0.04–9.88 0.7354 
CRT * End-systolic volume index (mL/m2) a   1.00  0.5 –1.77 0. 78 6 99
 

   
 

 
Glomeruler filtration rate (ml/min/1.73 m2) 739 0.99  0.9 –0.99 0. 05 8 00
CRT    0.74 0.3  0.3964 8–1.48
CRT * Glomeruler filtration rate (ml/min/1.73  1.00 0.9  0.m2)  9–1.01 5811 
 
 

 
   

Systolic blood pressure (mmHg) 803 0.99 0.9  0.0011 8–1.00
CRT    0.14 0.0  0.3–0.63 0097 
CRT * Systolic blood pressure (mmHg)   1.01 1.0  0.0–1.03 0491 
 
 

 
   

Ejection fraction (%)a 745 0.38  0.2 6 0.2–0.6 0006 
CRT   0.38 0.0  0.2–5.44 4298 
CRT * Ejection fraction (%)a   1.24  0.5 –3.03 0. 41 1 63
 
 

 
   

 
N-terminal pro-brain natriuretic peptide (pg/m

732 
1.47 1.3  0.L) a  1–1.66 0001 

CRT     0.33 0.08–1.37 0.1275 
CRT *  

n natriuretic peptide (pg/mL) a  
 

1.08 0.91–1.29 0.3833 N-terminal pro-brai
 
 

 
   

Age (years) 813 1.02 1.01–1.04 0.0011 
CRT   0.87 0.21–3.6 0.8416 
CRT * Age (years)   1.00  0.97–1.02 0.6400 
 
 

 
   

schaemic (yes/no) 812 1.68 1.I 29–2.19 0.0001 
CRT    0.48 0.35–0.66 0.0001 
CRT * Ischaemic (yes/no)   1.49 0.99–2.26 0.0583 

Table 2.2 Potential predictors of risk: results of univariable analyses 

Notes for Table 2.2  

ce 
or absence of CRT. The term CRT * log(MR) is a treatment modifier, this means that the beneficial 

a = loge transformed, * denotes an interaction 
 

Mitral regurgitation represents the results of fitting single Cox Proportional Hazards model, a patient’s 
time to the primary event being assumed to be dependent on mitral regurgitation and also the presen
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effect of CRT may be reduced or increased depending on the patients level of mitral regurgitation. 

log(MR) > 0.05 so mitral regurgitation does not significantly change the benefit a patient may recei
from CRT.  
 
The most appropriate transformation of each variable is indicated (for example a 

logarithmic transformation led to the best model fit based on the AIC for MR). T

remaining variables (beta-blocker use and QRS width) were not significantly 

associated with outcome and did not predict response to CRT. Those variables 

identified to be significantly (P < 0.05) associated with the primary composite 

outcome, time to death from any cause, or an unplanned hospitalization for a major 

cardiovascular event were entered in a multivariable Cox Proportional Hazards model

(Table 2.3) 

 

 

 

Mitral regurgitation is a significant predictor of outcome, P < 0.0001, however, the P-value for CRT * 
ve 

he 

 

 

 

    

 
Transformati
on 

 Hazard 
ratio 

 95% 
CI 

 P-
value 

Significant Predictors of overall outcome     

Mitral regurgitation    Loge 1.71 
1.38–
2.12 0.0001 

N-terminal pro-braina natriuretic peptide 
(pg/ml)   Loge 1.31 

1.17–
1.47 0.0001 

Systolic blood pressure (mmHg)    Linear 0.99 
0.98–
1.00 0.0698 

Interventricular mechanical delay (ms)   Linear 1 
0.99–
1.01 0.7617 

Aetiology (ischaemic) (yes/no)    Factor  1.89 
1.45–
2.46 0.0001 

CRT (yes/no)  Factor   0.608 
0.47–
0.79 0.0003 

Predictors of response to CRT     

Systolic blood pressure (mmHg)*CRT Linea
1.00–

r 1.02 1.03 0.0183 
Interventricular mechanical delay 

Linear 0.99 
0.98–

(ms)*CRT 1.00  0.0084 
Table 2.3 Significant Predictors of outcome and response to CR

itral regurgitation and N-terminal pro-brain natriuretic peptid have been iden fied as statistically 
gnificant predictors of outcome. The terms CRT * SBP T * IVMD rep nt modifiers  

essure and in mechanic
 the beneficial effect of CRT. The P-values for CR  * S  CRT * I <

rventricular nical dela lly

T 
 
Notes  for Table 2.3  
M
si

e 
R

ti
reseand C

terven
of

response to CRT, i.e. both systolic blood pr tricular al delay may 
modify T BP and VMD are both  
0.05,indicating that systolic blood pressure and inte  mecha y are statistica  
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significant. Note that individually systolic blood pressure r interventricular mechanical delay are 
atistically significant, in other words they are not predictors o tcome. The P-value for CRT  

sion of the CRT f he model

nd incr d ro-BNP

ned planned l

ised treat  (CRT) (Hazard ratio (HR) 1.89, 

CI 1.38 to .12 a  1.31,  t

.47, respectively) and increasing SBP with a decreasing risk of an event (HR 0.99, 

I 0.98 to 1.00) (Figure 2.1A–E). Note, in igures 2.1A-E refer to median 

alues, for the combined data, i.e. the median for the treatment and control groups 

RT*Interventricular Mechanical Delay nd C ystolic r

le, orthogonalization 

nuous variables and re-coding of the a iables c t

raction terms. A Continuous aria

 no
st f ou is
relatively large (0.0347) due to the inclu  modi iers in t . 
 

 

Ischaemic aetiology, more severe MR, a ease  NT-p  were all 

independent predictors of time to death or unplan  or un  cardiovascu ar 

hospitalization irrespective of random ment

95% CI 1.45 to 2.46, HR 1.71, 95% 2 nd HR 95% CI 1.17 o 

1

95% C  F

v

combined. The prognostic model for the CARE-HF data includes two interaction 

terms C a RT*S Blood Pressu e. 

These interaction terms involve a continuous and a binary variab

of the conti  bin ry var an be of grea  help 

in interpreting inte  v ble X is transformed in the 

following way XX − , a binary variable - as 0.5 a l

iate analyses as in Tab  2.2 ntinuou a

T is much more stable across the univariate models compared with 

 

 

 

 

 

)0,1(I is re coded nd -0.5 . Tab e 2.2a 

presents the same univar le  but co s variables h ve 

been transformed as described above along with re-coding of binary variables. The 

hazard ratio for CR

those presented in Table 2.2   
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 n Hazard ratio  95% CI  P-value 
     
Mitral regurgitation a 605 1.807 1.511 - 2.610 <.0001 
CRT   0.692 0.541 - 0.883 0.0031 
CRT *  Mitral regurgitation a  0.716 0.501 - 1.024 0.0670 
 
 

 
   

Interventricular mechanical delay (ms) 735 0.989 0.985 - 0.992 <.0001 
CRT  0.632 0.507 - 0.787 <.0001 
CRT * Interventricular mechanical delay (ms)  0.992 0.985 - 1.00 0.0473 
 
 

 
   

End-systolic volume index (mL/m2) a 732 1.515  1.138 - 2.018 0.0044 
CRT    0.618  0.497 - 0.768 <.0001 
CRT * End-systolic volume index (mL/m2) a   0.999  0.564-1.771 0.9978 
 
 

 
   

Glomeruler filtration rate (ml/min/1.73 m2) 739 0.986 0.980 - 0.991 <.0001 
CRT    0.611 0.489 - 0.764 <.0001 
CRT * Glomeruler filtration rate (ml/min/1.73 m2)   0.997 0.986 - 1.008 0.5811 
 
 

 
   

Systolic blood pressure (mmHg) 803 0.993 0.987 - 1.00 0.0364 
CRT    0.631 0.513 - 0.775 <.0001 
CRT * Systolic blood pressure (mmHg)   1.013 1.00 - .025 0.0491  1
  

    
Ejection fraction (%)a 745 0.422 0.270 - 0.659 0.0002 
CRT   0.639 0.516 - 0.792 <.0001 
CRT * Ejection fraction (%)a   1.242 0.509 - 3.028 0.6341 
  

    
 
N-terminal pro-brain natriuretic peptide (pg/mL) a  

732 
1.534 1.403 - 1.676 <.0001 

CRT     0.593 0.470 - 0.750 <.0001 
CRT *  
N-terminal pro-brain natriuretic peptide (pg/mL) a  

 
1.082 0.906 - 1.292 0.3833 

 
 

 
   

Age (years) 813 1.021 1.011 - 1.032 <.0001 
CRT   0.621 0.506 - 0.763 <.0001 
CRT * Age (years)   0.995 0.974 - 1.016 0.6400 
 
 

 
   

Ischaemic (yes/no) 812 2.058 1.671 – 2.534 <.0001 
CRT    0.589 0.478 - 0.725 <.0001 
CRT * Ischaemic (yes/no)   1.494 0.986 – 2.263 0.0583 
 

Table 2.2a Results of Orthogonalization Potential predictors of risk: results of univariable analyses 
a = loge transformed, * denotes an interaction  
Notes for Table 2.2a  
Mitral regurgitation represents the results of fitting single Cox Proportional Hazards model, a patient’s 
time to the primary event being assumed to be dependent on mitral regurgitation and also the presence 
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or absence of CRT. The term CRT * log(MR) is a treatment modifier, this means that the beneficial 
effect of CRT may be reduced or increased depending on the patients level of mitral regurgitation. 
Mitral regurgitation is a significant predictor of outcome, P < 0.0001, however, the P-value for CRT * 
log(MR) > 0.05 so mitral regurgitation does not significantly change the benefit a patient may receive 
from CRT.  
 

 

 

 

(A) 
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(B) 

(C) 
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(D) 

 

 

 

 

(E) 
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(F) 

Figure 2.1 (A) Time to first primary event by systolic bl sure. (B) Time to first primary event 
by interventricular m elay. (C) Time to first ary event by aetio gy (ischae
Time to first primary by mitral regurgitation e to first prim ent by N- a
brain natriuret  Time to first pri  by Cardi nchronis
 

 

Only two variables, IVMD and SBP predicted response to CRT, with modest 

statistical precision (Figures

receive reduced benefit from CRT (HR 1.02, 95% CI 1.00–1.03), whereas those 

pa ar to benefit more from treatment (H

95%

 

ood pres
echanical d
 event 

prim
. (E) Tim

lo
ary ev

mia). (D) 
termin l pro-

ic peptide (pg/ml).(F) mary event ac Resy ation 

 2.2 and 2.3). Patients with increasing SBP appear to 

tients with more severe IVMD appe R 0.99, 

 CI 0.98–1.00). 

 

 

 

 

 

 

 

 

 



 

It is important that the validity of the proportional hazards assumption is assessed. 

option in PHREG is used to test the 

proportional hazards assumption for the e

 

The following SAS code shows how the ASSESS 

final mod l. 

ods graphics on; 
   proc progex3; phreg data=card.
      class Ischemic treat /desc; 
 tre ra ch s       model futime*primary(0)= at mit l_r Ro e supsy  IVMD   
Ischemic trsup trivm; 
      assess PH/  resample seed=7548; 
      run; 
ods graphics off; 
 
 

In the above code assess PH specifies that proportional hazards assumpti te

Tab pe sup  te opo  ha

produced by ESS uses the s o in & Y 9

From Table 2.4 there is some evidence that the proportional hazards assumption is 

ption. The non proportional hazards for CRT could be 

ealt with by fitting a model with a time dependent variable, this could be achieved by 

introducing the term CRT*loge (time) .The time dependent variable must be defined 

after the model statement in PHREG .The results of fitting this model are shown in 

Table 2.5. Since the main objective of the model presented in this thesis is to identify 

modifiers of CRT and not to determine the effect of CRT itself, it might be argued 

hat the non proportional hazards for CRT could be ignored and that the model 

resented in Table 2.3 would be adequate for the purposes of identifying modifiers of 

CRT. Another approach to accommodating non proportional hazards would be to 

develop a stratified model, the strata being the variable for which proportional hazards 

is violated. This approach is valid if the stratification is based on a variable which is 

not of primary interest.   

on are sted, 

le 2.4 shows the Kolmogorov ty remum st for pr rtional zards 

 ASSESS, ASS  method f Lin  (L , Wei ing 19 3). 

violated for CRT (p=0.0380). The remaining variables appear not to violate the 

proportional hazards assum

d

t

p
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Supremum Test for Proportional Hazards Assumption 

Variable Maximum 
Absolute 

Value 

Replications Seed p 

CRT 1.4477 1000 7548 0.0380 

Mitral regurgitation  0.9270 1000 7548 0.3620 

N-terminal pro-brain natriuretic peptide 
(pg/ml) 

0.7351 1000 7548 0.6200 

Systolic blood pressure (mmHg) 0.9699 1000 7548 0.2390 

Interventricular mechanical delay (ms) 0.8972 1000 7548 0.5110 

Aetiology (ischaemic Y/N) 0.9108 1000 7548 0.3930 

7548 0.9030 

Interventricular mechanical delay 
(ms)*CRT  

1.0169 1000 7548 0.3300 

Table 2.4 Tes gitation and N-
nal pro-brain natriure e re s

 

 

Systolic blood pressure (mmHg)*CRT  0.4964 1000 

 

t of Proportional Hazards (Note Mitral regur
termi tic peptid  (pg/ml) a  loge  tran formed) 
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 Parameter Standard Chi-
Estim o  

p Hazard
Ratio 

0.69621 0.58332 1.4245 0.2327 2.006 

i  0.54294 0.10870 24.9468 <.0001 1.721 

natriuretic peptide 
(pg/ml) 

0.27144 0.05912 21.0796 <.0001 1.312 

Systolic blood pressure (mmHg) -0.0002648 0.00369 0.0051 0.9428 1.000 

Interventricular mechanical delay (ms) -0.00528 0.00255 4.2932 0.0383 0.995 

Aetiology (ischaemic Y/N)i 0.62633 0.13515 21.4765 <.0001 1.871 

Systolic blood pressure (mmHg)*CRT 0.01723 0.00727 5.6161 0.0178 1.017 

Interventricular mechanical delay 
(ms)*CRT 

-0.01202 0.00497 5.8433 0.0156 0.988 

CRT*loge (time) -0.22803 0.10857 4.4116 0.0357 0.796 

able 2.5 Model with time dependent variable CRT*loge (time) (Note Mitral 
rain natriuretic peptide (pg/ml) are loge  

ansformed) 

 

 

 

 

 

ate Err r Square

CRT 

Mitral regurg tation

N-terminal pro-brain 

 

T
regurgitation and N-terminal pro-b
tr
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Figure 2.2 Time to first primary event by systolic blood pressure (mmHg) and cardiac 
resynchronization therapy. 

Number at risk Systolic Blood Pressure (SBP) 

 
 

 

SBP 1 Month 3 Months 6 Months 12 Months 
<117 (mmHg) without CRT 198 173 154 125 
<117 (mmHg) with CRT 193 179 166 141 
>117 (mmHg) without CRT 186 171 161 133 
>117 (mmHg) with CRT 191 181 167 147 
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Figure 2.3 Time to first primary event by interventricular mechanical delay (ms) and cardiac 

 

Number at risk Interventricular Mechanical Delay (IVMD) 

resynchronization therapy. 

IVMD 1 Month 3 Months 6 Months 12 Months
<49 ms without CRT 202 179 164 130 
<49 ms with CRT 213 194 179 145 
>49 ms without CRT 181 165 151 128 
>49 ms with CRT 176 169 159 147 
 

 

 

 

 

 - 42 -   



 

 - 43 -   

. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2.2.1 Discussion 

he CARE-HF trial demonstrated that CRT exerts a substantial reduction in 

morbidity and mortality with little evidence of heterogeneity in pre-defined subgroups 

(Cleland et al. 2005). This more detailed analysis provides evidence that IVMD and 

to a lesser extent SBP predict a patients’ response to CRT. These finding must be 

treated with a degree of caution as the model is exploratory and the interactions 

between CRT and either IVMD or SBP were not strong. However, the observed 

teraction between IVMD and the effects of CRT are consistent with the view that 

cise physiological marker of cardiac dyssynchrony, the problem 

refore 

 

 

 

 
T

in

IVMD is a more pre

that CRT is designed to treat, than any other variable analysed. IVMD could the

potentially be used as an inclusion criterion in future randomized controlled trials 

examining the effects of CRT in patient populations not included in CARE-HF, such

as patients with less severe symptoms or with shorter QRS intervals. Whether IVMD

should now be used in preference or in addition to QRS duration to identify whether a 

patient should receive CRT is a matter for the individual clinician to decide and for 

future research. It is of great importance to note that IVMD is the best predictor of 

response to CRT in a population having large volumes, low EF, and broad QRS. We 

cannot state that IVMD is a better predictor of response to CRT in other populations 

(Ghio et al. 2004). 

 

Patients recruited to the study had severe heart failure (NYHA class III–IV) and 

therefore had an inherently high risk of experiencing the primary outcome during the 

study follow-up (which ranged from 18 to 44.7 months). The hazard functions from 

the model are based upon prediction of event rates across the maximum follow-up
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from the study, which had reached 55% in the control group a mean 29.4 months of 

follow-up. In order to estimate the absolute risk of an event with changing SBP and 

IVMD, the remaining clinical predictors were held constant. It is important to not

that since these are also strong clinical predictors of outcome changing these val

from the median has a large impact on the estimates of absolute risk. For example, 

a non-ischaemic patient not receiving CRT with a SBP of 117 mmHg, use of lower 

interquartile range values for mitral regurgitation and NT-pro-BNP results in an 

estimate of absolute risk of approximately 0.84, an absolute reduction of around 13%

The plasma concentration of NT-pro-BNP was a strong predictor of clinical o

Other competing measures of ventricular dysfunction were eliminated from the 

multivariable model. CRT reduces the severity of mitral regurgitation and plasma 

concentrations of NT-pro-BNP, and CRT has substantial clinical benefits in a broad 

range of patients with evidence of cardiac dyssynchrony, poor LV systolic fu

and persistent symptoms despite pharmacological therapy. This analysis provides 

further evidence that a measure of cardiac dyssynchrony rather than the QRS interval 

on the ECG is currently the best marker of dyssynchrony. However, the predicted 

benefits from the model indicate that CRT appears worthwhile across the range o

patients included in the CARE-HF trial. In the next chapter we will consider the 

function form of the model, and how the correct form can be specified by use of cubic 

splines or fractional polynomials.  

e 

ues 

in 

. 

utcome. 

nction, 

f 
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CHAPTER 3 RISK ESTIMATION 

 

 

 
he purpose
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and rational

example it m

doctor can d
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receiving tr

 

lative and absolute risk  

k score produced using the prognostic model for the CARE-HF data

k score calculators for the CARE-HF data are presented 
 of a prognostic model is to aid clinical decision making (Wyatt & 

5). A prognostic model can enable a doctor to assess risk for an individual 

gnostic models can be used by a doctor to assist in making an informed 

tment a patient should or should not receive. For 

 

pond 

might 

rmine 

patient suffering a 

? When considering risk for an individual patient the term absolute risk is 

f instead of individual patients groups of patients are considered e.g. 

uction 

 choice as to what trea

ay be that several treatments are available, by using a prognostic model a 

etermine the treatment that will offer maximum benefit to the patient. 

ents may be very costly and unfortunately due to financial constraints it

ssary to target resources at those patients who are most likely to res

 a particular treatment regime. Bodies such as NICE (NICE 2009) 

gnostic model in targeting resources. A doctor often needs to dete

gwick 2001) that a patient will experience some event of interest. For 

en a patient’ age, weight, blood pressure and  the fact that the patient is 

eatment for a heart condition, what is the chance of the 
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patients receiving treatment versus those not receiving treatment, male versus female 

patients; then the term relative risk is employed. Relative risk is a comparison of the 

risk of some event of interest occurring in two groups of patients. The fact that a 

odel will be used in the ‘real’ world to guide a clinician in making 

important decisions emphasises the need for good quality models. Also the model 

needs to be available in a form that is easily used by a clinician to calculate risk. The 

an as a risk score calculator. A 

risk score calculator is an implementation of the prognostic model in software form. 

e EuroScore (Euroscore Website) calculator is an example of a risk score 

calculator. I have produced two simple risk score calculators using the prognostic 

tem at a GP’s surgery, or if installed on a laptop computer or hand held 

device could be used in a bedside prognosis in a hospital ward or a patient’s home. 

Figure 3.1 below shows the risk score calculator produced by the present author 

running on Microsoft Windows XP. The calculator was written using Visual Basic 

For Applications (VBA) and is embedded in a Microsoft Excel workbook. Figure 3.2 

shows the risk score calculator running on GNU/Linux, this version of the calculator 

was written using Gambas (Benoît Minisini Website 2009) a free software equivalent 

to Visual Basic and is a standalone program. 

 

prognostic m

prognostic model can be made available to the clinici

Th

model for the CARE-HF data (Richardson et al. 2007). The calculators allow the 

clinician to quickly and easily calculate a risk score for an individual patient. The risk 

score gives a measure of how likely a patient is to die from any cause or be 

hospitalised due to a major cardiovascular event. The calculators could be used on a 

computer sys
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Fi re 3.1 Risk Score Calculator developed by the author running on Microsoft Windows XP gu

 

Figure 3.2 Risk Score Calculator developed by the author running on GNU/Linux  
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3.1.0 Calculation of risk scores 

Once a prognostic model has been developed it is possible to determine both absolu

and relative risks. Also the prognostic model can be used to generate a risk score, this 

risk score is the linear predictor kk xx

 
te 

βββη +++= ...110 . For the CARE-HF model 

the risk score does not include 0β .To illustrate how these estimates of risk are 

obtained I shall use the prognostic model developed for the CARE-HF data 

(Richardson et al.  2007). 

The coefficients of the final model can be used to generate a risk score for an 

individual patient. A quick and convenient way of estimating risk for an individual 

patient is to substitute patient characteristics in the Cox Proportional Hazards model. 

An example showing how the risks score is calculated as follows: 

Risk score for patient with mitral regurgitation of 38.1, NT-pro-BNP of 2858 pg/ml, 

systolic blood pressure of 100 mmHg, IVMD of 13.8 ms, ischaemic, and in receipt of 

CRT would be calculated as follows: 

Risk Score 

IVMDSBPBNPproNTMR ee 0055.00001.0)(log2717.0)(log5379.0 −−−−+=  

CRTIVMDCRTSBPCRTischaemic 4978.0)*(0131.0)*(0172.06340.0 −−++  

So for the patient above we would have Risk Score  

)9.498.13(0055.0())117100(0001.0()43.7)2858((log2717.0)94.2)1.38((log5379.0 −×+−×−−+−= ee

  

4978.0())9.498.13(5.0(0131.0))117100(5.0(0172.0)5.06340.0( 48.0)5.0×−−×−−×+×+
 

Figure 3.3 shows a plot of the risk score versus the probability of experiencin

primary event. By using the predict option in PHREG the survivor function estimate s

g the 

 

=
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can be obtained, a new data set containing the risk score and the probability of 

experiencing the primary event (1-s) before the end of the follow up period can then 

be created.  

 

igure 3.3 Risk score vs. probability of primary event before end of follow-up period.  F
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Figure 3.4 Histogram of risk scor ients re end - riod. 

 and the absolute risk 

e for pat befo  of follow up pe
 
 
 

3.2.0 Estimation of absolute risk 
 

stimates of the survival function E )(tS )(1 tS−   

ere produced using the SAS procedure PHREG . Estimation of absolute 

sk using real patient data provides clinically relevant estimates of risk. Risk 

stimates were derived on the basis of the maximum follow-up in the CARE-HF 

udy, which was 44.7 months, although including censorship patients were only 

 any cause or an unplanned 

w

ri

e

st

followed for on average 29.4 months. Thus predicted event rates are considerably 

higher than those actually observed in the trial. The effect of SBP and IVMD on the 

absolute risk of a patient experiencing death from
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hosp nd absence of CRT 

or is  3.1 and 3.2, respectively. In both 

exam eld constant at the 

 in Tables 3.1 

othogonalization . The estimated absolute risk of experiencing 

se for a non-ischaemic 

dataset) on medical 

Table 3.1). Treatment of 

0.44. The presence of 

sk of experiencing event decreased with 

with a decrease in risk, the statistical interaction between SBP and CRT is associated 

with a small increase in risk. The absolute risk for a patient with IVMD of 49 ms vs. a 

patient with IVMD of 66 ms in the presence and absence of ischaemia and CRT is 

shown in Table 3.2. Increasing the IVMD from 49 to 66 ms leads to an increase in the 

absolute risk of experiencing an event, this result contradicts what would be expected 

 

 the survival 

experiencing a primary outcome event may seem surprisingly high in some cases 

(absolute risk of 0.99 as shown in Tables 3.1 and 3.2). However, patients recruited to 

w-up 

italization for a major cardiovascular event in the presence a

chaemic heart disease are shown in Tables

ples, mitral regurgitation, NT-pro-BNP, and IVMD were h

median values (see Table 3.3) the values NT-pro-BNP and IVMD given

and 3.2 are those after 

death or an unplanned hospitalization for cardiovascular cau

patient with a SBP of 117 mmHg (the median for the whole 

therapy (but not CRT) was 0.62 over the entire trial duration (

such a patient with CRT reduces the estimated absolute risk to 

ischaemia led to an increase in absolute risk to 0.67 and 0.84 in the presence and 

absence of CRT, respectively. The absolute ri

increasing SBP, this is due to the fact that although increased SBP alone is associated 

from the model given that the coefficient for IVMD is –ve. From figure 2.3 it appears

that increasing IVMD does diminish risk, however at around 1050 days

curves for patients not in receipt of CRT start to cross. The patients considered in 

Tables 3.1 and 3.2  had survived beyond 1050 days. . The estimated absolute risk of 

the study had severe heart failure (NYHA class III–IV) and therefore had an 

inherently high risk of experiencing the primary outcome during the study follo
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(which ranged from 18 to 44.7 months). The hazard functions from the model are 

based upon prediction of event rates across the maximum follow-up from the study, 

which had reached 55% in the control group in mean 29.4 months of follow-up. In 

order to estimate the absolute risk of an event with changing SBP and IVMD, the 

atient Pressure (mmHg) 
Aetiology 
(Ischaemic) 

Cardiac 
Resynchronisation 
Therapy Absolute Risk 

1 -0.49 No Yes 0.44 
2 -0.49 No No 0.62 

-0.49 Yes Yes 0.67 
Yes No 0.84 
No Yes 0.48 

.5 No No 0.58 

.5 Yes Yes 0.71 
0.81 

ures (117–
130 mmHg) with and without cardiac resynchronisation therapy and in the presence and absence of 

chaemic heart disease. 

 

1 0.1 No Yes 0.44 
 

3 0.1 Yes Yes 0.67 
84 

5 17.44 No Yes 0.38 
63 
59 
85 

echanical 
delay (49–66 ms) with and without cardiac resynchronis rapy and in the presence and absence 

 

remaining clinical predictors were held constant. It is important to note that since 

these are also strong clinical predictors of outcome changing these values from the 

median has a large impact on the estimates of absolute risk. 

Systolic Blood 
P

3 
4 -0.49 

.5 5 12
6 12
7 12
8 12.5 Yes No 

  

Table 3.1 Estimated absolute risk of an event for patients with different systolic blood press

is
 

 
 
 

Patient 
Interventricular Mechanical 
Delay (ms) 

Aetiology 
(Ischaemic) 

Cardiac 
Resynchronisation 
Therapy 

Absolute 
Risk 

2 0.1 No No 0.62

4 0.1 Yes No 0.

6 17.44 No No 0.
7 17.44 Yes Yes 0.
8 17.44 Yes No 0.

 
 
Table 3.2 Estimated absolute risk of an event for patients with varying interventricular m

ation the
of ischaemia . 
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Table 3.3 Baseline characteristics of the patients,total number in study 813, IQR, interquartile range. a 

Mitral regurgitation defined as area of colour flow Doppler regurgitant jet divided by area of left atrium 
in systole, both in square centimetre. 
 

 

 

 

 

3.3.0 Obtaining Estimates of Absolute Risk  
 
It is worth commenting on what is involved in producing estimates of absolute risk 

using PHREG.  The following steps are needed  

       

 

 

 Control   Treatment   
 n median (IQR) n median  (IQR) 

Age (years) 403 66 (59–72) 409 67 (60–73) 
Aetiology (ischaemic Y/N) Y=153 

N=250 
  Y=186 

N=223 
  

Systolic blood pressure 
(mmHg) 

399 110 (100–
125) 

404 110 (100–
125) 

Glomerular filtration rate 
(mL/min/1.73m2) 

372 61 (46–73) 367 60 (46–73) 

N-terminal pro-brain 
natriuretic peptide (pg/ml) 

370 1806 (719–
3949) 

362 1920 (744-
4288) 

Use of beta-blockers (Y/N) Y=288 
N=116 

  Y=298 
N=111 

  

QRS width (ms) 394 160 (152–
180) 

401 160 (152–
180) 

Interventricular mechanical 
delay (ms) 

370 50 (30–66) 365 49 (32–67) 

End-systolic volume index 
(mL/m2) 

376 117 (94–
147) 

356 121 (92–
151) 

Ejection fraction (≤ 35%) 378 25 (22–29) 367 25 (21–29) 
Mitral regurgitation 303 23 (11–34) 302 21 (12–33) 
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1. Create a dataset containing a subset of example patients 

2. Run PHREG with the baseline option 

3. Create a dataset containing the absolute risk estimates 

Step 1 can be accomplished using for example the following SAS code 

data card.mrisks; 
     input lmit lroc supsys IVMD ischemic trsup trivm treat; 
     datalines; 
 0.14 0.70 -0.49 0.100 0.5 -0.245 0.05 0.5 
      0.14 0.70 12.5 0.100 0.5 6.25 0.05 0.5 
      0.14 0.70 -0.49 0.100 -0.5 -0.24 0.05 0.5 
      0.14 0.70 12.5 0.100 -0.5 6.25 0.05 0.5 
      0.14 0.70 -0.49 0.100 0.5 0.245 -0.05 -0.5 
      0.14 0.70 12.5 0.100 0.5 -6.25 -0.05 -0.5 
      0.14 0.70 -0.49 0.100 -0.5 0.245 -0.05 -0.5 
      0.14 0.70 12.5 0.100 -0.5 -6.25 -0.05 -0.5 
; 

These patients have, lmit= (Mitral regurgitation) lroc= (N-terminal pro-brain 

natriuretic peptide), and Interventricular mechanical delay all held constant (set to the 

median) . Systolic blood pressure blood pressure is allowed to vary, as is aetiology 

(ischaemic), I compare the treatment and control groups. Step 2 is illustrated with the 

following code snippet  

Here I specify the names of the input variables and then construct a data set 

containing the example patients.  

elog elog

proc phreg data=card.valmod; 
  model futime*primary(0)=lmit lroc supsys IVMD ischemic trsup 
trivm treat/RL;  
  baseline covariates=card.mrisks out=card.PredFin  
survival=S/nomean;  
run; 

 based on the Cox proportional 

odel. The survival time for each patient is assumed to follow its own hazard 

function )  , exp()()( 0 βii Xyhyh = , where is an arbitrary and unspecified 

 
PHREG performs analysis of time to event data

hazards m

( yhi )~~

baseline hazard function. The survivor function )iXyS can be written as 

)

)(0 yh

~,(

~~exp(
0 )( βiXyS , where ∫=

y

duhyS 00 ))(exp)( . − u
0

(
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The BASELINE option in PHREG results in a new SAS data set that contains 

baseline function estimates for the variables listed in the SAS data set 

card.mrisks. In the above SA o e the  survivor function )(tS  is estimated by the 

Breslow estimator (Breslow 1972) which is based on the empirical cumulative haz

function, alternatively the product limit estimator can be used (Kalbfleisch & Prentice 

1980). 

S c d

ard 

I can specify an out put dataset which will contain these estimates, (out=card.Predfin). 

The survival=S option means that I will obtain an estimate of the survivor function 

)(tS . Finally a dataset ontaining the estimates of absolute risk can be generated 

using the following SAS code 

 c

 
 
 
data card.absrisk; 
     set card.PredFin; 
  rsk=1-s;   
run; 
quit; 

Here the estimate of )(tS  contained in the dataset PredFin is used to generate the 

estimate of absolute risk (rsk=1-s) which is contained in the dataset absrisk. 

 

3.4.0 Which Measure of Risk Should Be Used? 
 
A patient w iting in hospital for an operation would naturally want to kn hat 

the benefit of undergoing surgery, he or sh uch would 

(Chao et al.. 2003) discusses the issue of whether reporting relative risk reduction, 

absolute risk  reduction, absolute survival benefit, or number needed to treat had an 

effect on a individuals decision to recommend that their mother undergo 

a ow w is 

e would want to know by how m

their risk (in the extreme case) of dying, be reduced . When considering a measure of 

risk reduction is there a benefit to using one measure as opposed to another? Chao 
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chemotherapy (a hypothetical situation). Chao et al. found that the way in which risk 

reduction was presented does have a bearing on such a decision. They found that 

when an individual was presented with a relative risk reduction they were more lik

to choose chemotherapy. Which measure of risk reduction to presen

ely 

t is seemingly 

ependent on the patient’s understanding of terms such absolute and relative risk. 

ow one best presents risk to a patient is a very difficult question, I honestly do not 

elieve that I can supply a definite answer to this question 

d

H

b
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CHAPTER 4 CUBIC NAL POLYNOMIALS 

 

developing 

motivated b

between the

 SPLINES AND FRACTIO

 

4.0.0 Introd

In this chap

al world cre

anner.  A 

f mortality

lines to m

ardiac surg

m

o

sp

c

• Ap

fra

 

roo

• Mo

• Re

 

plication of transformations such as the natural logar

ctional polynomials  

ithm or the square

t to the independent variables may lead to improved model fit 

re complex relationships can be modelled using cubic splines or 

stricted  cubic spline applied to CARE-HF data 
a statistical model. The use of cubic splines and fractional polynomials is 

y consideration of the adequacy of the functional form of the relati

 dependent variable 

uction 

ter I will look at the use of cubic splines and fractional polynomials in 

onship 

and the independent variableY X . Unfortunately the 

onfronts us with situations where   is not related to Y X  in a simple 

good example of this is the relationship between body mass index and risk 

 for cardiac surgery see (Pagano et al. 2009). Pagano et al use cubic 

odel the relationship between body mass index and risk of mortality for 

ery, see figure 4.1.  

 

Cubic Spline (Dark Curve)  

Confidence Curves 
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Figure 4.1 Non-linear (cubic spline) relation risk of mortality for 

 

It might be assumed for instance that a simple linear relationship cmxy +

ship between body mass index and 
cardiac surgery. Adapted from (Pagano et al. 2009). 

= is 

appropriate, but the data then leads the researcher to formulate a more complex 

model. One factor that will determine how ll a model fits the data is the function

form of the relationship between Y  and

 we al 

X . In developing a model, the researc

may make use of transformations of the independent variables in order to improve the 

fit, a typical example of such a transformation would be to consider my = log

Amongst the other standard transformations are

her 

e + . cx

x ,
x
1  .  It can be argued that it is 

natural to assume a linear relationship; if this proves not to be adequate then one 

might then consider taking the natural logari  or the square root. Once the sim

een applie hen use of the cubic spline or fractional 

e ‘best’ functional form may b lex 

sily obtained through analytic means, in this case n ical methods are 

thm ple 

transformations have b d t  

polynomial should be considered.  Th e quite comp

and not ea umer

used to approximate the relationship between  Y  and X .  One such method is the 

e of the basic theory relating to cubic splines. 

 
Before computer aided drawing software was available Engineers and Draughtsmen 

relied on a thin flexible rod called a spline. The spline was used to construct a curve 

awing board, and a 

n nd 

  points. 

In mathematical terms, a spline is an approximation of a curve. A spline is an example 

of polynomial interpolation, or more correctly piecewise polynomial interpolation. 

Interpolation is the process of approximating some function for , where  is in 

cubic spline. I shall now look at som

through a series of points. The spline was anchored to the dr

umber of weights were attached to the spline. The weights could then be moved a

so the spline could be adjusted to obtain the best fit curve through the specified

)(xf x x
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the interv  of 

t )()( 11 nxfpxfxp

al ),( 0 nxx .  In polynomial interpolation we aim to find a polynomial (xp

degree n or less, such tha )(,...,),()( 00 nxxfxp

)

 )(=== . In the 

 is used instead of  and   instead of .The polynomial 

 is known as an interpolation polynomial.  There are various approaches to 

ial interpolation, for example Lagrange interpolation, 

pline interpolation. It may be helpful to look at the 

Lagrange method (Box 1) in order to appreciate the general principles of interpolation 

and also to identify possible problems. In my discussion of Lagrange interpolation 

and splines I follow the derivations and notation found in Kreyszig (Kreyszig 1993), 

 

 

 

 

 

 

 

literature )(xpn )(xp nf )( nxf

)(xpn

polynom Newton’s Divided 

Difference interpolation, and S

note an excellent explanation of splines can be found in Kreyszig’s book.  
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Box 1 Lagrange Interpolation 

Lagrange interpolation uses the following approach. 

Assuming we have (),,( 1100 nn fxfx  (the point is known as a node) then we can , fx ),( ii fx),),...(

approximate the analytic function )(xf by  )()( fxLfxLp 11001 +=  , where 
10

1( xxL −
0 )

xx
x
−

=  and 

01
1 xx −

0)(
xx

xL
−

= . Notice that at 0xx = , 1)(0 =xL  and 0)(1 =xL , similarly at  1xx = , 1)(1 =xL  

and (0 xL e ha  001 , xxfp0) = , so w ve ==  and 111 , xxfp == . This leads to the linear Lagrange 

polynomial 1
01

0
01 )(

x
f

xx
xp

−
+

−
=  an example of linear nterpolation. Quadratic 

10

1 f
x
xxxx −−

, this  i is

interpolation would require fxfxfx , this leads us to the second degree Lagrange ),(),,(),,( 221100

2211002 )()()()( fxLfxLfxLxp ++= , polynomial

e
))((

))(()(
2010

21
0 xxxx

xxxxxL
−−
−−

= ,
))((

))((
)(

2101

20
1 xxxx

xxxx
xL

−−
−−

= ,
))((

))((
)(

1202

10
2 xxxx

xxxx
xL

−−
−−

=wher  . 

The general Lagrange interpolation polynomial is . It can be shown that  ∑=
n

kkn fxLxp
0

)()( )(xnε the 

error in approximating  by  is given by)(xf  )(xpn  
)!1(

)())...()((
)1(

10 +
−−−

+

n
tfxxxxxx

n

n , where 

nxtx ≤≤0 . We might argue that given  
)!1(

)())...()(()( 10 +
−−−=

n
tfxxxxxxx nnε , then as 

)1( +n

n becomes large  )(xnε  becomes small, i.e. the greater the degree of )(xp  the better the interpolation. Sadly n

this is not the case in general, there are functions f  for which )(xp  exhibits large oscillations between the n

nodes, this is an example of Runge’s phenomenon (Runge 1901). 
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4.1.0 Cubic Splines 

In trying to approximate some function )(xf  by a single a single polynomial it is n

uncommon to encounter problems of numerical stability ( )(xpn  exhibits large 

oscillations between the nodes). Splines offer a way of approximating )(xf  that can 

 
ot 

to a reasonable extent avoid problems of numerical instab  Spline in tion 

nomial interpolation. If  is defined on the 

ility. terpola

can be defined as piecewise poly )(xf

interval [a,b], then the interval [a,b] is split so that bxxxxa n =<<<<= ....210 . It 

can be seen that each subinterval ],[ 1+jj xx has a common endpoint, these endpoints 

are called nodes, in most statistical literature nodes are referred to as knots, I shall 

follow suit and use the term  in my discussion of splines.  A 

olynomial is required such that 0 nn xgxfxgf

 knot throughout

)(xg )()(),...,()( 0x ==p , also it is 

  

lines, a cubic spline 

f [a,b]). A   

 is a polynomial of not more than degree 3.  

Now by defi

by 

required that at the knots  can be differentiated several times, such a )(xg  is

called a spline. I shall concentrate on cubic sp

[a,b] is a continuous function and has continuous first and second derivatives, 

(continuous in [a,b] and all subintervals o lso for each subinterval of [a,b]

nition )(xg  is such that for each subinterval in [a,b], )(xg  must be given 

)  where )() jjj xfp =  , )()( 11 ++

)(xg

)(xg  defined on 

)(xg

(xp j (x = jjj xfxp  and jjj kxp =′ )( , 

11 )( ++ =′ jjj kxp . The degree of  )(xp j  must not be greater than 3. 

It can be seen that by replacing x by jx  and 1+jx  in )(xp j , where )(xp j  is given by 

)](21[)()()](21[)()()( 2222 −−−+−+−= xxcxxcxfcxxcxfxp  111 +++ jjjjjjjj

               (1) 

jjj xx

)()())(( 1
22

1
2

1
2

+++ −−+−−+ jjjjjjjj xxxxckxxxxck  
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and 
jj

=
+1

1 , results are obtained that satisfy the definition for a cubic splin

Taking the second derivative to get 

11 24)(6)(6)( ++ −−+−=′′ jjjjjjjjjj kckcxfcxfcxp  (2) 

11
22

1 42)(6)(6)( +++ ++−=′′ jjjjjjjjjj kckcxfcxfcxp  (3) 

From the fact that )(xg  has continuous second derivatives 

)()( xpxp ′′=′′  for 1,...,1

j xx
c

−
e.  

−

22

−= nj  (4)  1 jjjj

Using  in the expressions for 1−j )( jj xp ′′  and )( 1+′′ jj xp  , the following result is 

obtained 

2 )))()(())()(((3)(2 1111111 jjjjjjjjjjjjj xfxfcxfxfckckcckc −+−=+++ +−−+−−− (5) 

The above result is a system of  1

2

−n  equations; the system has the unique solutio

11 ,..., −nkk , note that 11 ,..., −nkk  is )(xg

n  

′  at the knots. Assuming that the knots are 

equally spaced, say by a distance h , and writing  nxxxx ,...,,, 210  

as nhxxhxxhxxx n +=+=+= 002010 ,...,2,, . Also
hxx jj

11

1 −+

Hence

c j == . 

, can 

now be written as 

)))()(())()(((3)(2 1
2

1
2

11111 jjjjjjjjjjjj xfxfcxfxfckckcckc −+−=+++ +−−+−−− j

)(3
−=+4 1111 −++− + jjjjj ff

h
kkk  for 1,...,1 −= nj  (6) 

Writing 210 ()( jjjjjjjj xxaaxp += king at 32 )()() xaxxax −+−+−  and then by loo

the Taylor series for )(xp j  to get  

jjj fxpa == )(0  

3
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jjjj kxpa =′= )(1    

)2(13
2
1

2h
)( 112 jjjjjjj kk

h
ffxpa +−−=′′= ++)(

)(1)(21 )(
6 12133 jjjjjjj kk

h
ff

h
xpa ++−=′′′= ++  

ombining the results directly above with (6) allows numerical values for the 

properties of splines are discussed. 

 

Box 2 Splines and Elastic Energy 

 S a

C

coefficients of  to be determined and hence . In Box 2 some further useful )(xp j )(xg

 

plines possess an extremely interesting and useful property. For the spline )(xg ,  )() afg ( ′=′  

and  Now using integration by parts )()( bfbg ′=′ .

∫∫∫ −==′′−′′′′
a

a
aa

dx
dx

vuvdx
dx

udxxgxfxg ][))()(((  

b
b

bb dv) du

0))()()(())]()( ′−′′′′−′−′′′′=
b

b dxxgxfxgxgxfg )(([ =∫
a

ax  

Therefore 

b

dxxgdxxfxg 2))(()()(  (8) ∫ ∫ ′′=′′′′
b

a a

Now considering dxxgxf∫ ′′−′′ 2)]()([ ,  

b

a

dxxgdxxdxxxf
aa
∫ ∫∫ =′′−′′ ()]()([ gxfdxxfg

a a
∫ ′′+′′′′−′′ 222 )())(2)( , using (8) to get 

b b bb

dxxgdxxfdxxgxf
b b

b

a

′′−′′=′′−′′ 222 )()()]()([
a a∫ ∫∫  (9)  

The right hand side of (9) is , therefore 0≥

∫∫
a

b

a

 (10)  ′′≥′′
b

dxxgdxxf 22 )()(
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I mentioned earlier that a spline as used by an Engineer or Draughtsman is a thin flexible rod. For )(xg , )(xg ′′  is an 

approximation of the curvature of )(xg . Treating  as a thin beam or rod we can say that the  of )(xg  curvature )(xg ′′

)(xg  is proportional the bending moment of the rod, also is proportional to elastic energy stored in the beam ∫ ′′
b

a

dxxg 2)(

(Horn K.P. 1983). If the conditions  0)( =′′ ag  and 0)( =′′ bg are imposed on a cubic spline, then we have what is 

known as a natural or restricted cubic splin operty  is a minimum. When  e. The natural spline possesses the pr  ∫ ′′
b

a

dxxg 2)(

)(xf is approximated using the natural spline )(xg  , the approximation is one that minimises elastic energy.   

 

 

 

 

by Wegman and Wright (Wegman & Wright 1983). The background m

4.2.0 Cubic Splines in a Statistical Context 

I shall now consider the use of splines in statistics. I shall make recourse to the paper 

aterial I have 

looked at so far concerning splines is what one would find in any useful textbook on 

Engineering Mathematics, I have not addressed the use of splines in statistical work. 

The data used in an engineering application of splines is different from the data that 

might be used in a biostatistical application f splines. Engineering data would tend to 

be less noisy, Wegman and Wright (We  Wright 1983) state: 

“More to the point, it is desirable in a statistical framework to create a type of spline 

that could pass near, in some sense, to the data but not be constrained to interpolate 

exactly” 

o

gman &

Wegman and Wright point out that in a statistical context fitting a spline goes beyond 

solving a linear system of equations, we have to consider a ‘genuine optimization 

routine’. Wegman and Wright identify three ways of fitting smoothing splines, viz 
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penalised least squares, 100 percent confidence intervals and regression splines. I 

make extensive use of Wegman and Wright’s paper (Wegman & Wright 1983). I shall 

now examine in some detail the three methods as described by Wegman and Wright.

 

∑ ∫+− jj dxxLfyxf
1

1

0

22 ))(())(( λ , subject to mWf

 

4.2.1 Penalised Least Squares 

Using the notation in (Wegman & Wright 1983) for penalised least squares consider 

the solution to the following optimisation problem  

Minimise  

n

∈  (11) 

 

It is assumed that 1...0 21 <<<<< nxxx  and 0>λ  is a fixed parameter, (11) is 

2 m

note).It  can be seen that the integral that appears in (11) is similar to ∫ ′′
b

a

dxxg 2)( , 

what is known as an objective function. The set of functions  on  such that 

,  is absolutely continuous and is in  is denoted by (see 

f ]1,0[

fD j 1−≤ mj fD m L W

 L

is a differential operator,  , where D  denotes differentiation, so with 

)(xLf is  equivalent to 

mDL = 2DL = , 

2

2 )(xfd .  The term ∫ 2))(( dxxLfλ  is known as a penalty term, 
dx

it penalises lack of smoothness. I need oothing, when I 

ooth data I am attempting to fit a curve to the data that picks up important general 

features, but leaves out fine grained local detail i.e. leaves out the noise. If 

1

0

to introduce the idea of sm

sm

λ  is 

allowed to get very close to 0, then there is no smoothing, if λ  is allowed to become 

extremely large, in fact let ∞→λ , then I have infinite smoothing. As 0→λ   then 

 becomes an interpolating spline, as)(xf ∞→λ , then  becomes a least squares )(xf
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estimate. Informally I could describe a smoothing spline as a way of fitting a curve to 

a dataset with the aim of striking a balance between the interpolation spline which 

will fit the data to a very high degree and the least squares approach which may n

is important to distinguish between an interpolation spline and a smoothing spline, the 

interpolation spline would be the thing to use if I were int

ot. It 

erested in mathematically 

describing the shape of curved component in engineering, for example the curve of a 

heel arch on a car.  In the context of statistical modelling I might argue that the 

smoothing spline would be an appropriate tool, as in this case we are concerned with 

general overall patterns and relationships, and not with fine grained detail. I could 

express these points in terms of over-fitting and under-fitting, the interpolation spline 

will over-fit, the least squares estimate may lead to under-fitting. What can I say about 

the smoothing spline in regard to over-fitting and under-fitting? As Wegman and 

Wright point out the choice of 

w

λ  is of paramount importance, as the sample size 

increases thenλ  should be decreased. Wahba and Wold (Wahba & Wold 1975) 

develop a method for selectingλ using cross-validation. Wahba and Wold use the 

following criteria to selectλ : 

( )Using Wahba and Wold’s notation minimise ⎥
⎦

⎤⎡

=

n

j

2

1

minimise the average mean square error. Note  is a spline the observed 

⎢
⎣

−∑ jjn xgxg
n

E 2
, )()(

2
1

λ , i.e. 

data. The quantity 

)(, jn xg λ )( jxg

( ) ⎥⎤⎢
⎡

−∑ jjn xgxg
n

2
, )()(

2
1

λ  regarded as a function of 
⎦⎣ =

n

j

2

1
λ is known 

as the cross-validation function, by introducing )(λw  (a weighting function) into the 

expression for the cross-validation function, the generalised cross-validation function 

is obtained, i.e. 
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( ) ⎥
⎤

⎢
⎡

−∑
n

wxgxg
2

2 )()()(1 λ . 
⎦⎣ =

 matrices, the estimate of 

j
jjnn 1

,2 λ

It can be shown that this function can be represented using

λ obtained from the generalised cross-validation function is the best one to use in the 

 

g spline 

penalised least squares method.  

4.2.2 100 Percent Confidence Interval Method 
 
The second method for fitting smoothing splines discussed by Wegman and Wright is

100 percent confidence intervals. In (Wegman & Wright 1983) an interpolatin

is considered as the solution to an optimisation problem. Using the notation in 

(Wegman & Wright 1983) the interpolating spline )(xs  is the solution to: 

Minimise ∫
∞

∞−
dxxfL 2))((( , subject to ),(2 ∞−∞∈ LfD j , mj ,...,1,0=  and ii yxf =)( ,

ni ,...,2,1= . (12) . 

2

 

 is a set of measurable integrable square functions. (NoteL  2L same as  , i.e. 2

Lesbague space.  Square integrable  means 

L

∫
2

tive 

2 , for the 100 percent 

nfidence interval method  the objective function is the same as for the penalised 

f over interval (a,b) is finite) 

Here ∫
∞

dxxfL 2))(((  is the objective function. The interpolation spline )(xs  is a 

polynomial of degree 12 −m .It was seen that for penalised least squares the objec

∞−

function contained a least squares term ∑ jj yxf
1

))(( −
n

co

least squares case but the interpolating constraints are relaxed. For the 100 percent 

confidence interval method according to (Wegman & Wright 1983) I have the 

optimisation problem: 

Minimise ∫
∞

dxxfL 2))((( , subject to iiim tfWf βα ≤≤∈ )(, , i n,...,2,1=  
∞−
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From a statistical point of view the 100 percent confidence interval method can be 

understood in terms of the model iii xfy ε+= )( , ni ,...,2,1= . Assuming that  is iε

i..i.d on ],[ 21 ee− , then because 1ei −>ε  , )(1 iiii xfyey =−>+ ε . Because 2ei <ε ,  

)(xfyey =−<− 2 iii ε , so ),(y 12 eye iii +−  is a 100 percent confidence interval. As 

4.2.3 Regression Splines 

Wegman and Write point out the 100 percent confidence interval method is an 

example of the Generalized Hermite-Birkoff interpolation problem (Schoenberg 

1966). 

 
In (Wegman & Wright 1983) the penalised least squares and 100 percent confidence 

oothing splines are presented as optimization problems, 

 want to minimise curvature.  Regression splines can be regarded in the manner that I 

n 

interval methods for fitting sm

I

first introduced the idea of a spline, a continuous piecewise polynomial of degree m . 

Regression splines require that I determine several free parameters. I do not have 

assume that the knots are co-incident with the sx'  , I can choose the number and 

position of the knots. I can of course choose the degree of the spline. Also I ca

determine the free coefficients in the spline, there are 1++ Nm  free coefficients, 

there are continuity conditions placed on the first 1−m derivati

aining after these conditions have been met. Using 

ves of the spline,

free coefficients are those rem the 

notation in (Wegman & Wright 1983) consider the model  

 the 

. (13) 

21 n

iii xsy ε+)= ∆ ( , ni ,...,2,1=

In )(xs  the symbol ∆ denotes a mesh of knots, },.{∆ .. ζζζ <<<=∆ , where iζ  is 

degree (13) can be 

written as +−+ jxxy )( εζββ  (14) 

a knot. With N knots, and 1+N  polynomial segments of  m ,

∑∑∑
= =

+
=

N

k

m

j
ikikj

m

j
i

1 00
0= j

ij
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Note that in (14) the term ix −(  a

− at

 j
k +)ζ is written using Heaviside notation, th t is 

)()( atuatu −=− +  if 0) >u  and (( 0) =− +  if )atu 0( ≤− atu . 

he big advantage of (14) is that I can use ordinary least squares regression to obtain 

kj

T

estimates for the coefficientsβ . I said earlier that the knots do not have to be co-

incident with the , Wegman and Wright draw  attention to  Wold’s (Wold 1974) 

recommendation that knots should be located at data points. Wold (Wold 1974) also 

ore 

ent knots I have in effect defined the interval 

sx'

recommends that I use as few knots as possible, the more knots that are used the m

complex the model, i.e. I have to estimate more parameters. Also a large number of 

knots may lead to over-fitting. I must exercise caution when choosing the location of 

the knots, in selecting two adjac

],[ 1+ii ζζ , it might be that within this interval there are points for which the cur

passing through the points ),( yx  has a minimum or a maximum, or has a point of 

inflexion. If I wish to use cubic splines this is not a problem provided there are not 

multiple maximum and minimum points, and there are not multiple points of 

inflexion. Wold (Wold 1974) notes that if this is the case then we could not employ 

cubic spline. A cubic polynomial can have both a maximum and a minimum, and a 

single point of inflexion, but not multiple maximum and minimum points, and not 

multiple points of inflexion.  According to Wold (Wold 1974), maximum and 

minimum points should be located at the centre of the interval. Points of inflexion 

should be located close to the knots. A common choice for m  in (14) is 3, givin

cubic spline. The cubic spline is popular because it allows researchers to tack

range of data sets where a polynomial model is appropriate, the cubic spline avoids 

the overheads for splines of larger degree. Harrell (Herndon & Harrell 1990), (H

et al. 1996) advocates the use of cubic splines, specifically the restricted cubi

In (Herndon & Harrell 1990) the main focus is on the use of the restricted cubic spline

ve 

a 

g a 

le a good 

arrell 

c spline. 
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in connection to the hazard function, Harrell finds that the restricted cubic spline can 

be used to model data where the hazard function may be one of several different 

apes. In (Herndon & Harrell 1 90) data from various distributions where 

considered. Earlier it was said that if the conditions 0)(

sh 9

=′′ ag  and 0)( =′′ bg  are 

imposed on a cubic spline, a restricted cubic spline is obtained. When trying to m

survival data the researcher should be aware that the cubic spline may present 

problems. Stone and K

odel 

oo (Stone & Koo 1986) have found that for points beyond the 

first and last knots the cubic s y

cubic spline does not exhibit strange behavi nd last 

k The restricted cub

4.2.4 Splines applied to the CARE-HF data 

The literature on the use of splines in statistics is considerable and large portion is of a 

high level of mathematical sophistication. I have confined myself to a discussion of 

some of the basic points. If I want to follow the advice of authors and researchers 

such a Harrell and adopt the use of splines in modelling how easily is this 

ented in a nu

-

ne to 

0

l fit a 

pline ma  exhibit strange behaviour. The restricted 

nots . ic spline is linear at points close to the first and last knots.  

our at points beyond the first a

 

accomplished? Cubic splines have been implem mber of statistical 

software packages. For SAS the RCS macro (Heinzl & Kaider 1997), (Heinzl & 

Kaider 2006) is available, for GNU R and S Plus Harrell’s Design (Design Library 

Harrell Frank E. 2009b) package provides the restricted cubic spline in a form which 

is easily used in a Cox Proportional Hazards model.  

I shall now look at a simple example of using the RCS macro to fit a cubic spli

the CARE-HF data (Richardson et al. 2 07). The aim of this example is to 

demonstrate basic usage of the RCS macro and to illustrate a simple and practical 

approach to the issue of functional form for a model. In the this example I shal

Cox Proportional Hazards model with systolic blood pressure and CRT as 
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independent variables, however I shall include a cubic spline representation of 

systolic blood pressure in the model. The following SAS code is an exam le of how 

use the RCS macro to fit a cubic spline: 

 

p I 

 
%RCS( 
  TITLE=%STR(CAREHF),  
  DATA=LATESTEX,DIRDATA=%STR(C:\Documents and 
Settings\richarmz.ADF.000\Desktop\prog_card_dat\), 
  PROGRAM=%STR(C:\Documents and 
Settings\richarmz.ADF.000\Desktop\prog_card_dat\rcs\sbpspline.sas), 
  TIME=futime,STATUS=primary, 
  COV1=supsys,WHAT1=0,KNOTS1=105 117 130 165, 
  COV2=treat 
  ); 

The reader is directed to (Heinz e, l & Kaider 1997) for an explanation of the RCS cod

however it might be helpful to comment here on the above code. The line beginning 

with the keyword DATA is where I specify the name and location of a SAS dataset, in 

this example the dataset is called LATESTEX. The line beginning with the keyword 

PROGRAM allows me to specify the name and location of the SAS program 

sbpspline.sas. TIME and STATUS refer to survival time and censoring respectively. 

On the line beginning COV1 I specify supsys (systolic blood pressure), if set to 1 

WHAT1 allows modelling of time by covariate interaction with the cubic spline. The 

knots for the cubic spline are specified using KNOTS1, I have knots at 105, 117, 130, 

165.   COV2 specifies that the next independent variable in the model is treat (CRT). 

NB the above code will not produce any output in terms of analysis. The fitting of the 

cubic spline is performed by running the SAS program sbpspline.sas, this program 

calls PROC PHREG, PROC  IML and PROC GPLOT.  On running sbpspline.sas I 

obtain output from PHREG and GPLOT . Below is an extract of the output from 

PHREG. 

 
                            Analysis of Maximum Likelihood Estimates 
 

                                   The PHREG Procedure  
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                 Parameter   Standard                         Hazard  95% Hazard Ratio 
   Parameter DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio Confidence Limi
 
   Supsys     1

ts  

   -0.01492    0.00697     4.5829     0.0323    0.985    0.972    0.999  
   __1_1      1  0.0000110  0.0000212     0.2678     0.6048    1.000    1.000    1.000 
 __1_2      1 -0.0000172  0.0000532     0.1047     0.7462    1.000    1.000    1.000 

eat      1   -0.47246    0.10505    20.2258     <.0001    0.623    0.507    0.766  

ctor of time to 

ath or unplanned hospitalisation as is whether or not a patient has received cardiac 

 In the parameter column of the output __1_1 and __1_2 

fer to the cubic spline representation of systolic blood pressure, neither are 

atistically significant. From this I would conclude that a cubic spline representation 

 systolic blood pressure does not represent an improvement in functional form over 

e assumed linear form, this is reflected in the linear hypotheses testing results.   

  
   tr
 
 
                               Linear Hypotheses Testing Results 
 
                                            Wald 
                           Label      Chi-Square      DF    Pr > ChiSq 
 
                           EFFECT1        9.7550       3        0.0208 
                           NONLIN1        2.0941       2        0.351 

It can be seen that systolic blood pressure (supsys) is a significant predi

de

resynchronisation (treat).

re

st

of

th

 
Figure 4.2 The restricted cubic spline (the red curve) approximation for the log hazard ra

ressure

tio as a 

function of systolic blood p . 
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The figure above shows the restricted cubic spline (the red curve) appro

two curves that cross, this is not the case. At the middle of the spline the two 

confidence curves are very close together. Using the notation and derivation from

(Heinzl & Kaider 1997) the restricted cubic spline is given by 

∑

ximation for 

the log hazard ratio as a function of systolic blood pressure (supsys). The blue dotted 

curves represent the confidence curves, at first glance one might think that there are 

 

−

=
jj r of knots, let the knots be ++=

2

1

)()(
k

j

uCuuC θββ  , where k is the numbe

kttt ,..., 21 . Also  

10

)(
)()()()(

)()( 113 −++−
+

−−
+

−−
−−= jkkjkk

jj

tttutttu
tuuC  . 

1 2

estimates for 1

) 1

3

1

3

−− −− kkkk tttt

In the output from PHREG__1_1 and __1_2 refer to  uC  and uC  respectively, 

(

)( )(

θ  and 2θ  are 0.0000110 and -0.0000172.   

Again using the notation and derivation in (Heinzl & Kaider 1997) for a fixed value 

0u the estimated cubic function )(ˆ
0uC can be written as 00

ˆ)(ˆ UuC β ′= , where 

)ˆ,...,ˆ,ˆ,ˆ(ˆ
2110 ′= −kθθβββ  and t

k uCuCuU ))(),...,(,,1( 020100 −= . If V is the sample 

 then a covariance matrix for β̂ α−1  confidence interval for )(ˆ
0uC  is given by 

2
1

000 )(ˆ VUUU ′±′ γβ  , 2
1, αχγ −= p  is the α−1  quantile of 2χ with p degrees of freedom 

(Heinzl & Kaider 1997). To understand why the two confidence curves are very close 

together at the middle of the spline, note that 2
1

000 )(ˆ VUUU ′−′ γβ  and 

2
1

000 0

distance between the confidence curves increases as 0u moves further from the mean.

)( VUU ′+ γ ean, i.e. the 

   

ˆ U′β will increase in size as u moves further from the m
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Further material on the use of splines in statistics is to be found in (Smith 197

(Poirier 1979).  I now consider fractional polynomials.  

9) and 

4.3.0 Fractional Polynomials 

The cubic spline is one example of using polynomials to model data. Another 

approach is that of fractional polynomials, see (Royston Patrick et al. 1999), (Royston 

& Altman 1994), (Stocken D.D. et al. 2008), (Royston & Sauerbrei 2004) and (Meier-

s continuous 

orical variable. 

is the researcher 

ay encounter problems. If I have not pre-specified how I intend to form the groups, 

that is the location of the cut-points or group boundaries, I can end up with highly 

ata driven’ results. Also in moving from continuous to categorical data I introduce 

mps’ when a group boundary or cut point is crossed, for example if I where 

odelling the probability of some event occurring as a function of age, the  

p, perhaps quite substantially when a cut 

odel of the situation?   Altman and Royston 

at dichotomising variables leads to loss of 

wer and an increased risk of false positive results.  

 view of this, there is an argument for preserving continuous data. As shown earlier 

cubic splines can be used to model the relationship between the dependent variable 

 

Hirmer et al. 2003). In epidemiological and biostatistical application

variables such as age are often split into groups to form a new categ

This makes analysis easy perform and interpret; however in doing th

m

‘d

‘ju

m

probability of the event occurring will jum

point is crossed. Is this a realistic m

(Altman & Royston 2006) state th

information, reduced statistical po

In

Y and the independent variable X when the relationship is not a simple linear one. 

 & Altman 

94) allows the researcher to ider a number of possible functional forms for the 

ationship between and

The fractional polynomial developed by Royston and Altman (Royston

19 cons

rel  Y X . In (Royston & Altman 1994) the fractional polynomial 

is defined as follows 
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∑
=

0 +=
m

j

p jXpX
1

)(),;( ξξξφ , where 0>X and ),...,(jm 1 mppp = is a vector of powers 

with mpp << ...1 and ),...,,( 10 mξξξξ = a vector of coefficients, both p and ξ are real

valued. Also jj pp

 

XX =)( if 0≠jp , XX e
p j log)( = if 0=jp ; the Box-Tidwell 

Transformation.  

 

Royston and Altman give what they say is their full and most concise definition as 

follows 

∑=
=

jjm XHpX ),;( ξξφ , where for 
m

j

p j

0

)( mj ,...,1=  and XXH =  if  , 

 if . In (Royston & Altman 1994) the authors state 

at for given values of  and 

)( p
j )( j  1−≠ jj pp

)(log)( 1 XHXH ejj −=  1−= jj pp

 m pth the fractional polynomial given in the form above 

an be regarded for the purpose of model development as a linear predictor. The best 

alues for and 

c

 m pv need to be determined, in (Royston & Altman 1994) the authors 

uggest that for most practical situations s )},3max(,...,2,1,5.0,0,5.0,1,2{ mp −−−= is 

he degree of the fractional polynomial   is determined on an informal 

provement in model fit is observed. It can be 

seen that fractional polynomials obtained using 

contains the straight line case, the natural log, 

ial is flexible in the sense that it allows me to 

ould view the fractional polynomial as a 

ed method for applying transformations. The fractional polynomial allows 

oduce a model with a sensible functional form. In regard to model fit Royston 

nd Altman assume that maximum likelihood is used. Based on a given  the best 

vector of powers is the one from the model with the greatest likelihood or the 

madequate. T

basis a priori or until no appreciable im

)},3max(,...,2,1,5.0,0,5.0,1,2{ mp −−−=

the square root. The fractional polynom

fit many of the ‘standard’ models. I c

generalis

me to pr

m

p~

a
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smallest deviance D . In (Royston & Altman 1994) the authors use the quantity 

)ˆ,(),( pmDpmD − which is distributed (asymptotically) 2χ with m  degrees of 

freedom , p̂ is the full maximum likelihood estimate of p . This quantity may b

to assess the adequacy of a conventional polynomial versus a fractional polynomial 

the same degree. Another quantity which is defined in (Royston & Altman 1994) as 

the gain ),()1,1(),( pmDDpmGG −== uses the deviance of the straight line mode

)1,1(D as a reference against which to compare other models.  Unlike the deviance a 

e used 

of 

l 

 a better f ef s so far of a 

ial we are dealing with a single independent variable, it is possible 

to extend the definition of a fractional polynomial to include several independent 

ented i AS via the %mfp8 macro 

hall 

ials 

trates 

large value for the gain is an indication of it. In the d inition

fractional polynom

variables 

Multivariable fractional polynomials are implem n S

(MFP 2009).The %mfp8 macro has been ported to GNU R as the mfp library . I s

now look at an example using the mfp library in GNU R to fit fractional polynom

to the CARE-HF data (Richardson et al. 2007).  The following R code demons

basic usage of the mfp library: 

setwd("C:/Documents and 
Settings/richarmz.ADF.000/Desktop/phd_chapters") 
dd<-read.Table(file="latest_ex2.csv",header=T,sep=",") 
attach(dd) 
library(mfp) 
f<-
mfp(Surv(futime,primary)~fp(Roche)+fp(mitral_r)+fp(Supsys)+Ischaemic+
treat,select=0.05,verbose=TRUE,family=cox,data=dd) 
 

 

here I am fitting a Cox Proportional Hazards model which incorporates fractional 

polynomials for N-terminal pro-brain natriuretic peptide (Roche), Mitral regurgitation 

(mitral_r), and Systolic blood pressure (Supsys). An extract of the GNU R output is 

shown below: 
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          df.initial select alpha df.final power1 power2 

mitral_r           4   0.05  0.05        4     -2      2 

Ischaemic          1   0.05  0.05        1      1      . 

treat              1   0.05  0.05        1      1      . 

Roche              4   0.05  0.05        2      0      . 

Supsys             4   0.05  0.05        0      .      . 

 

 

 

 

 

 

 

 

Transformations of covariates: 

                                         formula 

Roche                         log((Roche/10000)) 

mitral_r  I((mitral_r/10)^-2)+I((mitral_r/10)^2) 

Supsys                                      <NA> 

Ischaemic                              Ischaemic 

treat                                      treat 

minal pro-brain natriuretic peptide (Roche) has been selected. 

is result is in accord with the findings in (Richardson et al. 2007), i.e. on 

The mfp function selects the best fitting fractional polynomial. The natural log 

transformation of N-ter

Th

comparing the AIC for two Cox Proportional Hazards models of the form 

CRTCRTXX ++ )*(  and CRTCRTXX ee ++ )*(loglog  is was found that for N-

terminal pro-brain natriuretic peptide the model that used the natural logarithm 

transform result in a smaller AIC. For mitral regurgitation (mitral_r) a fractional 
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polynomial of the form 
22

1010 ⎠
⎞

⎝
⎛

⎠
⎞

⎝
⎛

− xx
21 ⎟⎜+⎟⎜ cc has been selected. The coefficients  and 1c

2c  can be obtained in GNU R , they are -30.6 and 0.000169 respectively. In 

(Richardson et al. 2007) the logarithmic transformation applied to mitral regurgitation 

was found to improve model fit. The transformation selected on the basis of a 

statistically significant difference in the AICs for models of the form 

 and CRTCRTXX ++ )*( CRTCRTXX ee ++ )*(loglog , may well be different 

from those obtained by using mfp in the wa onstrated. For Systolic blood 

pressure (supsys) has been om  (Richardson et al. 2007) 

systolic bloo  (systolic blood 

pressure*CRT) was found to be statistically ing with interaction 

term  such as 

(supsys*CRT) in mfp, i.e. I canno tion term. Instead I 

would create a new variable, for example supt=(supsys*CRT). After doing this it is 

possible to include the inte  

 

y just dem

itted from the ‘final’ model, in

d pressure was included because the interaction term

 significant. Deal

s in mfp involves setting up a new variable, I cannot use a term

t explicitly write an interac

raction term using in the following code in GNU R:

f2<-

mfp(Surv(futime,primary)~fp(Supsys)+supt+treat,select=0.05,verbose=TR

UE,family=cox,data=dd) 

 

If the above code is run then the resu with those found in lts are in agreement 

(Richardson et al. ed, also 2007), systolic blood pressure (supsys) is left un-transform

the hazard ratios and p-values for systolic blood pressure, CRT (treat) and the 

interaction term are as reported in Table 2 of (Richardson et al. 2007) (these models 

where produced using PHREG in SAS). Similarly for mitral regurgitation if a new 
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variable is set up for the interaction with CRT, then mfp reports that the best 

fractional polynomial for mitral regurgitation is the natural logarithm. 

A question can be raised in regard to the attempt at fitting a fractional polynomial to 

supt=(supsys*CRT) i.e. including fp(supt)in the model statement above. Is this 

valid or would it be better to use another method of fitting the model? If a fractional 

polynomial is fitted for the interaction term the following output is obtained: 

       df.initial select alpha df.final power1 power2 

Supsys          4   0.05  0.05        1      1      . 

treat           1   0.05  0.05        1      1      . 

supt            4   0.05  0.05        2      3      . 

 

 

 

 

 

 

Transformations of covariates: 

                   formula 

Supsys   I((Supsys/100)^1) 

supt   I(((supt+1)/100)^3) 

treat                treat 

 

               coef exp(coef)  se(coef)      z        p 

Supsys.1 -1.466e-02    0.9854 3.950e-03 -3.711 2.06e-04 

treat.1  -1.118e+00    0.3270 2.513e-01 -4.449 8.63e-06 

supt.1    3.759e-07    1.0000 1.332e-07  2.822 4.77e-03 
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Here the interaction term supt itself has undergone a non-linear transformation, I 

cannot interpret the transformed interaction term in an obvious way , the main effect 

Supsys is untransformed whereas supt is now a cubic term. The p-values for systolic 

blood pressure, CRT (treat) and the interaction term are smaller than those reported in 

Table 2 of (Richardson et al. 2007). It would be better to establish the fractional 

polynomial for the main effect first and then fit a model that uses the transformed (or 

un-transformed) variable for both the main effect and the interaction term. If in the 

xample models below e Z is a binary variable and is some transformation then 

when using mfp  model 4 produces the same results as model 2 using PHREG, 

whereas model 3 using mfp produces different results to model 2 using PHREG. 

 

 

 

 

 

 

Example Models 

1. 

            

()f

ZZXX ++ )*(  

2. ZZXfXf ++ )*)(()(  

3. ZZXfXf ++ )*()(  

4. ZZXXf ++ )*()(  
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For instance in GNU o  Proportional Hazards m

with the transformed variables obtained from mfp. Ischaemic and treat (CRT) re

un-transformed of course. It should be re

 R I could use coxph to fit the C x odel 

main 

membered that when using fractional 

olynomials the independent variables are assumed to be positive. If the preceding 

mial for interventricular mechanical delay 

roduces warnings concerning th

 

 

th

 

l 

plines 

n e. 

e 

 the 

p

code is run, but this time a fractional polyno

is included then mfp p e failure of the algorithm to 

converge. By default mfp should shift and scale variables to avoid numerical 

problems if negative values are present, as is the case for interventricular mechanical

delay.  I have noted that interventricular mechanical delay is indeed shifted and 

scaled, yet the warnings from mfp persist, this is the case even if manual shifting and

scaling is employed.  

4.4.0 Splines versus Fractional Polynomials   
 
Is it better to use splines or fractional polynomials in statistical modelling? Both 

me ods have very appealing aspects. The fractional polynomial is elegant and 

compact; we can see that the standard transformations are continued with the 

definition of a fractional polynomial. Does the piecewise nature of the spline afford an

advantage over the fractional polynomial?  Royston and Altman criticise conventiona

polynomials as often not providing a particularly good fit. In their view cubic s

are considered to be too computationally intensive, and not amenable to easy 

interpretation. Also splines are not implemented in standard regressio  softwar

Splines do not provide equations that can be easily used for prediction. Royston and 

Altman made these remarks back in 1994, from a computational perspective things 

have moved on, the software is now available and fast processors now make it quite 

feasible to fit cubic splines routinely. Royston and Altman also suggest that th

concept of splines is difficult to explain to a ‘non-expert’ user. I take the view that
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GNU R p

analysis using fractional polynomials is vital, when first encountered fractional 

p etermine 

 degree of strange behaviour 

near endpoints as that of conventional polynomials. This issue is of great interest to 

 numerical stability of cubic sp c  

to fractional polynomials would be a useful area for future research.  If appropriate a 

more simple approach such as fitting a quadratic or a cubic term should not be 

odel can be a lo

p  

method

r good reasons can be 

 model th sier to interp splines.  

I would suggest that categorising continuous variables if done sensibly is a perfectly 

   

I have talked about specifying the functional form for a model, but so far I have not 

discussed a means of selecting between different models. For example if I wish to 

establish whether using the natural log transformation has any benefit, I need to 

compare the model using the transformation with the model without the 

tr were to see an improvement in the fit of the model using the 

ort of the %mfp8 macro produces output that is easier to interpret than that 

produced in the SAS version. This is a matter of personal taste, but clear reporting of 

olynomials can be somewhat confusing, at first it can be a little difficult to d

what exactly the best polynomial is. In (Royston & Altman 1994) the authors state 

that fractional polynomials tend not to display the same

the present author, investigation of the lines ompared

abandoned, this approach avoids the need for additional macros and there is no doubt 

that the resulting m t easier to interpret. I would recommend that 

sim le transformations such as these are applied before recourse to more complex

s. Dichotomising continuous variables is widely used in medical and 

epidemiological applications. Although as discussed earlie

supplied to avoid dichotomising continuous variables, however this approach does 

result in a at is ea ret than one which includes say cubic 

reasonable approach.  

ansformation. If I 
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transformation, then I would consider the transformation beneficial. Here I am 

presented with the proble el selection.  In the next chapter Im of mod  consider the use 

of the AIC (Akaike Information Criteria) as a model selection tool. 
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CHAPTER 5 MODEL FIT, LIKELIHOOD, THE AIC 

 
 

 Introd
 
 In the previ

The functio

variables or

 

• Th

• A 

mo

• Th  

mo

• Th

• I

• AI

SA

• AI

dim

A

NL

5.0.0

example wo

chapter the 

selecting the

likelihood t

based upon 

 

e AIC is a penalised log likelihood model selection criterion. 

modified AIC is required for small samples or where the number of 

del parameters is large relative to the sample size. 

ere are issues with the AIC regarding estimation of the order of the ‘true’

del. The AIC posits a ‘true’ model of infinite order. 

e BIC posits a ‘true’ model of small dimension, the BIC is said to be 

C and ants implemented for mixed models in SAS via GLMMIX, 

C and BIC implemented for models with time dependent covariates in 

S via PHREG. 

C for frailty models, further investigation may be required  

ension consistent. 

vari

MIXED and MIXED. 
uction 

ous chapter the question of the functional form of a model was discussed. 

nal form will have an effect on how well a model fits the data. For 

e nat l hm of one o

 fitting a cubic spline lead to an improvement in the fit of a model. In this 

a

 

uld taking th ura logarit r more of the independent 

idea of model fit is investigated in more gener l terms, the idea of 

 ‘best’ model is considered. I now review some standard topics in 

heory. I shall concentrate on the idea of likelihood and selection criteria 

the concept of maximising the likelihood. I wish to make it absolutely
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clear that all of the mathematical derivations in this chapter are of known resu

attributable to others, 

lts 

and similar derivations may be found in a number of classic 

xts. A very comprehensive treatment of likelihood theory can be found in Pawitan’s 

book (Pawitan 2001). The graphical figures in this chapter where produced by myself 

sing simulated data in GNU R (R Foundation for Statistical Computing 2009). 

 

 
tical m delling. R.A Fisher (F

(Fisher 1934a) and (Fisher 1934b) formulated the idea of likelihood as a middle 

gro e an d frequentist camps. A basic distinction between the 

Bayesian and frequentist approach can be made with reference to the meaning of 

statements such as the probability of observing a HEAD with a fair coin is 0.5. The 

uentist would insist that the value 0.5 is only meaning

the coin where to be tossed a second time the Bayesian would be quite happy to say 

he 

ay that t

he 

a s 

and r ability. With likelihood methods the 

sing ‘pure’ 

obability. If I toss a coin 5 times and observe the sequence HEADS, TAILS, 

te

u

5.1.0 Likelihood 

Likelihood plays a central role in statis o isher 1932), 

und b tween the Bayesi  an

freq ful as a long run measure. If 

that that his or her degree of belief that the coin would show a HEAD was 0.5. T

frequentist would s his value is only meaningful in the long run. Note a 

Bayesian would also accept the idea of a probability being a long run measure. T

important point so far as a discussion of likelihood is concerned is that both B yesian

 frequentists make inferences based on p ob

likelihood function is used to make inferences, inference is not made u

pr

HEADS, HEADS, TAILS, then the probability of observing this sequence is 

)1()1( ppppp −×××−×  or 435 2 ppp −+ , w

EADS and 1-p is the probability of observing TAILS. If 

here p is the probability of observing 

X denotes the number of H
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heads we observe then in the example above 435 2)5;3( pppnXP −+=== . 

435 2)5;3( pppnXP −+===  is called the likelihood function, denoted by L  

.What value of p makes the sequence HEADS, TAILS, HEADS, HEADS, TAILS 

most likely? 

 

 
Figure 5.1 Likelihood Function versus Probability 

against s that the 

likelihood is function is a maximu

 
In figure 5.1 a plot of p show

m for 6.0

435 2)5;3( pppnXP −+===

=p , this value of p for which the 

likelihood function is a maximum is know aximum likelihood estima

(MLE). I know that for a fair coin

n as a m te 

5.0=p , from figure 5.1 I see that for  the 5.0=p
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sequence HEADS, TAILS, HEADS, HEADS, TAILS is less likely to be observed.  If 

I were to toss the coin say 1000 times and observed around 500 HEADS , then a plot 

 likelihood function against p would show that the likelihood function is a 

m  . In the coin tossing example above if I believed  p to be 0.01, 

then I obtain a likelihood of , if I believed p to be 0.6, then I obtain a 

likelihood of   0.03456. Likelihood can be said to provide a measure of belief. The 

l  principle states  information about a sample is contained within 

ovide evidence to support or contradict 

our belief, if I believe a coin to be fair (i.e. p=0.5) then if for example I obtained a 

y belief, if I estim

0.5 then I have evidence to support my belief. Population parameters such as p are 

generally denoted by

of the

aximum for p 5.0=

7108.9 −×

like ihood that all the

the likelihood function. The MLE can also pr

MLE of p = 0.89, I have evidence contrary to m ate p to be close to 

θ , in the following treatment of likelihood theory I will confine 

myself to the single parame

concern of this thesis (fitting a Cox model) requires a multi parameter formulation of 

likelihood theory. For discrete data we can write 

ter case, however the type of problem which is the 

. Continuous data 

 

)()( xXPL ==θ

presents a problem, I cannot talk about the probability of a continuous variable being

exactly equal to a particular value, e.g. )( xXP =  is not meaningful. However I ca

talk about the probability of a continuous variable lying with an interval 

n 

)
22
aa ,( xx +−  around x. If the interval )

22
aa ,( xx +−  is small then 

∫
+

−

2

2

a
x

ax

= );()( dxxfL θθ , where  is the probability density function (p.d.f). It is );( θxf

∫
+

=

2

);()(

ax

dxxfL θθ  by );(
−

2

ax

θxaf , where a  is very small, this possible to approximate 

 - 88 -   



 

approxim ta is precise. If I now consider 1  and 2 , where 

1X  and 2X  are identically independently di ted (i.i.d) then 

ation is valid only if the da

stribu

X X

);();()(
2

2

1

1

θθ xafdxxfL == ∫ 1

1

θ

ax

ax

+

−

 and );();( 2

2

2

θθ xafdxxf =∫  I may combine 

these likelihoods to give );();()()()( 2121

)(2

2

2

θL

ax

ax

=

+

−

θθθθθ xafxafLLL == . For discrete data I 

have )()()( 2211 xXPxXPL ===θ . For continuous data I notice the presenc of te he 

constant a in the expressions for )(θL , the constant a can in fact be omitted from the 

ressions forexp  )(θL , this can be justified by using the following argument. Consider 

the model );( θxf  , (note a p.d.f can be described as a model), further  consider the 

likelihood with different values for θ  , 1θ  and 2θ . I wish to compare )( 1θL  and 

)( 2θL , let the likelihood ratio (Note I shall discuss the likelihood ratio in greater 

detail later in this chapter) b
L

=
)(

1

2θ , then )( 1L )(θ
θL  and )( 2θL  are only meaningf

to a constant multiplier, we have )()( 12

ul up 

θθ bLL =  , so if I were to consider multiples of

)( 1

 

θL , )( 1θaL is only meaningful for a up to b. In view of this I may write 

);();()(
2
ax

ax

+

−
2

θθ xfdxxf ≈= ∫ and for combined 

21

θL

likelihoods )()()( 21 );();( θθθθθ xfxfLLL == .  In general I have 

∏ ==
n

i

xXPL )()(θ  discrete case ii

∏=
n

ixfL )()(θ  continuous case 
i
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It is mathematically more convenient to work with the natural logarithm of the 

likelihood function, i.e. log ))(( θL . So I have for the discrete case 

ixXP  

tinuous case 

 

Often interest is focused on obtaining a point estimate of some population parameter, 

ean 

e

))((log∑ =
n

i
ie

And for the con

))((log∑
n

ie xf  
i

e.g. the sample m x as estimate of the population mean, or as an estimate of 

lation varianc . The MLE offers another way of obtaining a point estimate, 

s where the data may not 

deal of information, and where there is a degree of uncertainty. The 

om earlier represents a situation where I have a small amount of data, 

the fact that conclusions I make about this data will be quite uncertain.  

ise

2s

e 2σpopu

but it is of great importance that attention be paid to the general shape of the 

likelihood function. Likelihood is a valuable tool in situation

provide a great 

coin example fr

I cannot ignore 

I wish to maxim  )(θL  or )(log θLe  i.e. I want to find θ  such that 

0)(log =
∂ θLe∂θ

. I said earlier that it is important to consider the overall shape of the 

likelihood function, if for example I have obtained a MLE of θ , θ̂ , how certain  am I 

stimate ofthat θ̂  is the ‘best’ e  θ ? This question can be answered by looking at the 

re of the likelihood function.curvatu  θ . If   is a solution of θθ ˆ= 0)(log =
∂
∂ θ
θ

Le , 

then  0)(log2

2

<=
∂

− θθ ˆ∂
θ

Le , also if )(log2

2

θθ ˆ
θ

=
∂
∂

− Le is large then )(log θLe  has

a tight or sharp peak, this is interpreted as meaning that there is less uncertainty in
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regard to my estimate of θ . If )ˆ(log
2

θθ2θ
=

∂
∂

− L  is small, then )(loge θL  will no

have a sharp peak, this means that there are a number of values of θ̂  that are quite

close to the solution of

e t 

 

0)(log =
∂ θLe . Put simply I am uncertain as to what 

numerical value of  θ̂  maximises )(log

∂θ

θLe . The quantity 0)ˆ(log
2

<=2∂
∂

− θθ
θ

Le

known as the observed Fisher information (as th ple size increase then the Fishe

informatio

 is 

e sam r 

n increas . There are m ces when a solu ed form 

solution) of

es) any instan tion (a clos

  0)(log =
∂
∂ θ
θ

Le  is not possible, in such cases I am obliged to use 

umerical methods to obtain an approximate solution. Taking the Taylor series of n

)(log θL about θ̂    I havee

)(log
2

ˆ
)(log)()(log)(log 2

22

θ̂)(ˆˆˆ
θ

θθθ
θ

θθθθ LLLL eeee ∂
∂−∂

+
∂

−+≈   

The above is a quadratic approximation of )(log θLe , in order to make the expression 

a little more com act denote p )(log θ
θ

Le∂
∂  by )(θCS  and )(log2

2

θ
θ

Le∂
∂ )(θ−  by I

then I have 

F , 

 )ˆ()ˆ(log)(log θθθθ −+≈ LL ee )ˆ(θCS -
2

)( θθ − )ˆ(θIF .   

If a quadratic approximation is a good fit for )(log

ˆ 2

θL  then )(log θL  is said to be e e

regular. For regular log likelihood function   and θ̂ )(θI

repres

F  can be used to 

ent )(log θLe .  The following example may help clarify some of the ideas 

 a i.i.d sample from a normal distribution with discussed above. Let nxxxx ,...,,, 321 be

 - 91 -   



 

2

parameters 2,σθ . I have

2

2
)(

2
1);( σ

θ

σπ
θ

−
−

=
ix

i exf . 

Also );()...;();()( 21 θθθθ nxfxfxfL = , hence it is seen that 

∑−= i
e

x
n 2

)(
lo) , and 

−n

e L
1

2

22
1(log

σ
θ

σπ
θ g 2

1)(
)(

σ

θ∑ −
n

ix

The Fisher Information 

θ =CS  .  

)(θIF  = 2σ
n , also

n

2

)ˆvar( σθ = , hence var())(( IF . The 

connection can be seen between the Fisher Information and the variance of , i.e. the 

connection between curvature (measure of uncertainty) of the likelihood function and 

the variance of . Fisher Information is of fundamental importance in likelihood 

formation theor  relevant to the discussion of the 

A nformation C

 

5.2.0 Likelihood Ratio 

Given a dataset it is possible to fit any number of models, amongst these models some 

. A method of com h e models is 

required in order that the ‘best’ one is selected. I can compare two models by 

)ˆ1 θθ =−

theory, in a later section I shall some of the basic ideas in what is known as 

In y. Information theory is highly

 θ̂

θ̂

kaike I riteria. 

 

may fit the data quite well, others not so well paring t es

),(
),(

yL
yL

b

a

µ
µ

 examining the likelihood ratio .Note aµ  refers to turated model the full or sa  

 and fm bµ  to some model . bm
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0
),(
),(

log =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
yL
yL

b

f
e µ

µ
 suggests that  is a good fit. bm1

),(
),( yL

b

f ≈
yL µ

µ
 or  So 

Let )),((log)),((log
),(

log yLyL
yL

befe
f

e µµς −=⎟⎟
⎞

⎜⎜
⎛

= , large values of 
),( yL bµ

µ

⎠⎝
ς  indicate 

that  is a poor fit to the data. The quantity bm ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
),(
),(

log2
yL
yL

b

f
e µ

µ
is known

 ote y

 as the 

deviance, and is usually den d b ),( µyD . It is important to remember that when 

using the deviance to assess goodness of fit circumstances can easily arise that render 

the deviance useless as a means of gauging this. If we want to compare two nested 

models  and  we examine the change in the deviance 1m 2m

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

),(
),(

log2
),(
),(

log2
),(
),(

log2),(),(
1

2

21
21 yL

yL
yL
yL

yL
yL

yDyD e
f

e
f

e µ
µ

µ
µ

µ
µ

µµ  

he deviance follows the  distribution with 2χ 21 dfdf − degrees of freedom. T

  

With nested models I use the deviance to assess whether a term is significant or not, 

for example I may want to compare the model XXcY 2211 ββ ++=  with odel the m

11 XcY β+= . I might be interested in whether  is significant or not, I look at the 

change in the deviance d

2X

ue to the inclusion/exclusion of . Note it should be 

remembered that for each of the models in the above example the deviance is a 

comparison of the fitted model to the full model. 

I must bear in mind that when comparing nested models I am assuming that 

2X

φ  the 

eter is equal to 1, if this is not the case then dispersion param ),(),( 21 µµ yDyD − is 

not meaningful. In situations where 1≠φ I use what is known as the scaled 

deviance
φ

µµ ),(),( 21 yDyD − . 
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Some discussion of  φ  is worthwhile, to understand the dispersion parameter I need

 
I now review some standard results relating to the Exponential Family of 

Distributions (Dobs  useful section on this topic. A distribution 

 to 

consider the Exponential family of distributions.  

5.3.0 The Exponential family of distributions 

on 2002) contains a

belongs to the exponential family if it is possible to write );( θxf  in the 

form , where are all known functions. Let 

and , then I may write . For example consider the 

n

)()()()( θθ bxaevxu bavu ,,, )()( xgexu =  

)()( θθ hev = )()()()();( θθθ bxahxgexf ++=

Poisson distributio
!

);(
x
exf

x θθθ
−

= , );( θxf  can be written .  

inition

))!(log)(log( xx eee −−θθ

By def 1, then );( =∫
β

α

θ dxxf 0);( =∫
α

θ
θ

dxxf
d

β

and 0);( =∫
β

α

θ
θ

dxxf
d
d . d

0);(2

2

=∫
β

α

θ
θ

dxxf
d
dUsing the same approach I find that . 

w in general  so No  )()()()();( θθθ bxahxgexf ++= ))()()()(;();( θθθθ
θ

hxabxfxf
d
d ′+′= . 

Using 0);( =∫
β

α

θ
θ

dxxf
d
d , I get  which can be 

written as

0))()()()(;( =′+′∫ dxhxabxf
β

α

θθθ

0)()]([)( =′+′ θθ hxaEb , or 
)(
)()]([

θ
θ

b
hxaE
′
′−

= . 

I have ]))()()(()()()()[;();( 2
2

2

θθθθθθ
θ

hbxahxabxfxf
d
d ′+′+′′+′′= , 

22
2

22 )])([)(())((
)(b ⎟
⎠

⎜
⎝ θ

)()())(())()()(( xaExabhxabhbxa −′=⎟
⎞

⎜
⎛

′
′

+′=′+′ θθθθθ  . Also 

])])([)(())(()()()()[;();( 22
2

2

xaExabhxabxfxf
d
d

−′+′′+′′= θθθθθ
θ

, this leads to 
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∫ =′+′′+′′ θ [( aE=
β

α

θθθ
θ

0)](var[))(()()]());( 2
2

2

xabhxbxf
d
d . 

2))((
)()]([)()](var[

θ
θθ

b
hxaEbxa

′
′′−′′−

= , but
)(
)()]([

θ
θ

b
hxaE
′
′−

=So , so I get 

 

3))(( θ
)()()()()](var[ θθθθ

b′
hbhbxa
′′′−′′′

= .  

gReturning to the Poisson distribution I have )lo (θeb = , b is what is known as a 

natural parameter. Now 2

2

)()]([
db
dhxaE

db
d θθ′−= , be=θ , therefore 

behx ()]( θ′−= te aE
db
d )[ and so I may wri θ

θ
==xaEd ([1

′−
be

dbh
)]

)(
, but from the 

I must have fact that be=θ bexaE
db
d

=)]([ , therefore 1
)(

1
=

′− θh
. In fact

)(
1
θh′−

 is 

eterthe dispersion param φ , for the Poisson distribution I have 1=φ . In general I 

have ][)var( XE
b

X
∂
∂

= φ . The dispersion parameter is of great importance in that it 

allows for a more flexible relations tween the mean and the variance. Certain 

distributions have limitations as far as statistical modelling is concerned; this is due to 

the relationship between the mean and the variance. For the binomial distribution I 

have  

hip be

np=µ  and , I see that the mean and variance are related. When 

ial distribution I can encounter the following problem. 

e ata exhibits a larger degree of variability than that assumed from the Binomial 

ution. The converse situation can also occur, the data is found to have a smaller 

degree of variability than that expected from the Binomial distribution.   In these 

situations I have over dispersion and under dispersion. The Exponential Dispersion 

npq=2σ

modelling data using Binom

Th  d

distrib
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model φ
φφθθ

φθ
),()(

),;(
xVUx

exf
++

=

under dispersion. The dispersion param

allows me to circumvent the problem of over or 

eter φ  is an unknown scale parameter, earlier 

it was stated that in general ][)var( XE
b

X
∂
∂

= φ , this indicates that statistical variance 

is closely related to the concept of scale. For instance the normal distribution is 

described in terms of two parameters, a location and a scale parameter. The location 

parameter corresponds to the mean µ and the scale parameter to the variance .  

.4.0 Information Theory 

a. Information theory may be 

athematical study of methods and limits for data communication.  In 

948 Claude Shannon (Shannon 1948) an American Mathematician and Electrical 

ngineer published a paper which may be regarded as laying the foundation of 

scinating area of study; 

und material on informati

sing the Akaike Information Criteria (Akaike 1974), and 

deed the general problem of accessing model fit. 

5.4.1 Information and Entropy 
 
Again I consider a simple coin t sing experiment; assuming I have a fair coin, and 

times, I observe the sequence  

2σ

5
 
Likelihood is connected to Information theory, as will be seen later the likelihood 

function appears in the Akaike Information Criteri

defined as the m

1

E

modern information theory. Information theory is a rich and fa

statisticians owe a great deal to the work of electrical engineers and mathematicians 

such as Shannon. As indicated earlier some backgro on 

theory is useful in discus

in

os

that I toss the coin say eight times. A typical outcome would be the sequence  

1 0 1 0 0 1 0 0, where 1 denotes HEADS. Now suppose I toss the coin another eight 
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0 0 0 0 1 0 1 1. I repeat this operation a number of times, I build up a set of sequences 

such as those shown below: 

1 0 1 0 0 1 0 0 

0 0 0 0 1 0 1 1 

0 0 1 0 1 1 0 0 

0 0 0 0 1 1 0 1 

Etc. 

Now consider a similar experiment but this time I use a biased coin, let P(HEADS) 

1 1 1 1 1 1 1 1 

 1 1 1 

The

each sequence displays a degree of variety or variation, whereas those for the biased 

coin are identical. If these sequences were used to convey information then those 

1 1 1 0 0 1 1 0 

0 0 0 0 1 1 0 1 

1 0 1 1 0 0 0 1 

0 0 0 0 1 0 1 0 

=0.99. Then I might obtain the following set of sequences: 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

Etc. 

 obvious difference between these two sets of sequences is that for the fair coin 
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generated by using a fair coin would allow us to present ‘r

fair coin I am less certain that a HEAD will appear, but I have greater information. 

coin I am almost certain that a HEAD will appear, but there is a 

icher’ patterns. With the 

With the biased 

drastic reduction in the amount of information. Uncertainty and information can be 

measured by what is known as entropy.  For a random variable X  aving n possiblh e 

outcomes the Shannon information entropy  is given by 

Again using the example of a coin, figure 5.2 below is a plot of 

)(XH ∑−
n

ibi xpxp
1

)(log)( . 

)(XH  versus 

probability of getting HEADS. 

 

Fi e 5.2 Shannon information entropy versus Probability. 
 

gur

 - 98 -   



 

It can be seen that , i.e. for s quenc

sent. In situation whe e I am less certain o

the outcome, I find greater inform

 )(XH  is 0 for P(HEADS)=0 and P(HEADS)=1 e es 

such as 0 0 0 0 0 0 0 0 and 1 1 1 1 1 1 1 1 the Shannon information entropy is 0, 

sequences such as these are easily predicted. In situations where I am certain of the 

outcome I find very little information is pre r f 

ation is present. In the coin example if 

P(HEADS)=0.5, then is at a maximum. With a fair coin I obtain sequences 

such as 1 0 1 0 0 1 0 0 which is less predictable and so contains more information.  

For the benefit of the interested reader additional material on entropy and statistical 

physics is presented in Box 1, Material on entropy and comparing probability 

i resented in Box 2. I include this material because I believe it may 

provide an interesting historical background to the origins of quantities such as the 

AIC. 

Box 1 Entropy and Statistical Physics 
 
For the benefit of the interested reader we shall now look at the connection between Shannon informa y  

)(XH

distribut ons is p

tion entrop

and entropy as defined in statistical physics. I shall consider some standard results from thermodynamics. One the 

se  Ludwig Boltzmann see (Boltzmann 1872) and (Cercignani minal papers in statistical physics was written by

2007). An excellent treatment o ot cycle f statistical physics can be found in (Blundell & Blundell 2006). For a Carn

we have  

ll T
T

Q
Q ee = , wher and are the heat entering and leaving the system respectively, and  and  are the e eQ lQ eT  lT

temperatures of two heat reservoirs between the system, note . Lele TT > t rvQ∆  be the heat entering the system 

at each point, then 0=+∑
l

l

e

e

cycle

rv

TTT
, we may write this in the form of an integral 

)(−
=

∆ QQQ

∫ = 0
T

dQrv . Given that ∫ = 0
T

dQrv , then ∫
β

α

rv  is independent of the path, we may express 
T

dQ
T

dQrv  as 

an exact differential,
T

dQ
dS rv= , S is defined to be the entropy. The first law of thermodynamics may be stated 
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in the form dWdQdu += . We may write TdSdQ =  and pdVdW −= , so pdVTdSdu −= . Also 

using total derivatives we have  

dV
V
UdS

S
UdU ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= , hence 
S
UT
∂
∂

=  and 
V
U
∂
∂

−p = y definition temp  T is given. B  erature

by 
dE

d e )(log1 Ω
TkB

 is th ostates associated with a particular macrostate. By =  where Ω e number of micr

combining 
dE

d
Tk

e )(log1 Ω
=  and 

SB

UT
∂
∂

= , we can obtain an expression for S as follows: 

Rearranging 
dE

d
TkB

)(log1 Ω
 gives e=

Be kd
dET

)(log Ω
 . So we have=

Be kd
dE

S
U

)(log Ω∂
=

∂
 , 

hence 
dE

kdS Be )(log Ω
=

∂
. 

U∂

Integrating we obtain )(log Ω= eBkS , this is the Boltzman expression for entropy.  

Let a system have an number of equally likely states , then the entropy S is )(log  However it obN obeB Nk .

may be that each of the tates comprises of a number of microstates, which may be extremely difficult to obN  s

observe or measure, the total entropy mt SSS += , wher  is the entropy connected with the microstates. e mS

Let a system have N equally likely microstates, if theses microstates are arranged into groups (macrostates) with 

iN   microstates contained within the ith macrostate, then NN
i

i =∑ . The probability iP that the system 

occupies the ith macrostates is given by 
N
N

P i
i = . Now mt SSS −= , S is the measurable entropy. We 

have )(log NkS eBt = , and the entropy of the microstates within the ith macrostate is )(log ieBi NkS = . 

 We cannot measure mS  the entropy connected with being in any different microstate. However we can 

access mS , through the relationship )( im SES = , (note here E denotes the expected value), so 

)(log)( ieiBim NPkSES ∑== . From mt SSS −=  we see
i

 that 

∑−= iBeB PkNkS lo)(log
i

ie N )(g , th  written as is expression may

∑∑ −=∑ −
i

ieeiB NNPk ))(log)((log  or ⎟
⎠

⎞
⎜
⎝

⎛

i
ieiB

i i
eiB PPk

N
Pk )(loglog .  ⎟⎜ N
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∑−= PPkS )(log  (The Shannon entropy), we see here the similarity in functional form of the Shanno
i

ieiB n 

entropy and the Shannon information entropy ∑−=
n

ibi xpxpXH
1

)(log)()( . 

 

 

 

Box 2 Entropy and the Comparison of Probability Distributions 

We notice that in the expression for both the Shannon entropy and the Shannon information entropy we are dealing 

 

 

 

 

w p.d.f by x  ith one probability distribution, let us assume this is the true distribution and denote the )(p  . Let us 

consider some other ution with p.d.f )(xq . An important question would be how different is distrib

)(xq from )(xp ? The expression 

∑∑ −−=⎟
⎠

⎞
⎜
⎝

⎛
−

i i

i xpxpxqxpk
xq

xpk )(log)()(log)(
)(

log)(  can be writ⎟⎜ ieiiee xp )(
ten as 

i
iBiB

)])([log)]([log( xpExqEk ieieB −− .  

he quantity [log( qE )])([log)](T xqEx ieie −  provides us with a measure of the ‘difference’ or 

distance between )(xq and )(xp . If  )(xq  is close to the true distribution )(xp  then 

)])  will be small. ([log)] E−([log( xpxqE ieie

 We can describe 

∑∑ −−=⎟⎟⎜⎜− ieiieiB
i

eiB xpxpxqxpk
xp
xq

xpk )(log)()(log)(
)(
)(

log)(  the generalised 
⎠

⎞

⎝

⎛

ii i

 as

Boltzmann entro y , denoted GB  (Chakrabarti & Chakrabarty 2006) .  The quantity  p  

)])([log)]([log( xqExpE ieie −  is of particular importance in statistics as it relates closely to the 

Kullback Leibler distance, denoted  KL, see (Kullback  & Leibler 1951), (Bozdogan 1987) and (Nariaki  1978). 

For a discrete random variable we have KL given by∑ ⎟⎟
⎞

⎜⎜
⎛

i i

i
ei

xp
xp

)(
log)( , we see that xcept fo

⎠⎝ xq )(
 e r the 

constant . For a continuous random variable we have KL given Bk , GBKL −=
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∫ ∫∫ −=⎟⎟
⎠

⎞

⎝

⎛ β

α

β

α

β

α xq
xp
)(
)(

by ⎜⎜ dxxqxpdxxpxpdxxp eee )(log)()(log)(log)( .  The first term in the 

previous expression is the Shannon entropy which is constant, the second term  is ∫−
β

α

dxxqxp e )(log)(

known as the cross entropy. The cross entropy gives us a measure of the distance between )(xp  and )(xq . 

Viewing KL as a measure of the distance between the true distribution  and to minimise the )(xp )(xq , we need 

cross entropy. 

The following example may elp us to see what the KL is about. Let the true distribution  of)(xp  X h be the 

standard normal distribution.  So 2

2
1)(

x

exp
−

=
π

. 

Let 
2

2

2
)(

2
1)( σ

µ

σπ

−
−

=
x

exq , then using ∫
∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dx

xq
xpxp e )(
)(log)(  we have 

dxxedxeKL ee ∫∫ −+−=
222

)2(log)2(log 2
2

2

22

πσπ
πσπ x xx ∞

∞−

−
∞

∞−

− −
2

1)(1 22µ
. 

dxxxeKL
x

ee ∫
∞

∞−

⎟⎜ −+−= 2πσπWe may write,  
−

⎟
⎠

⎞
⎜
⎝

⎛ −
22

)(
2
1)2(log)2(log

2

2

22

σ
µ

π
. 

So 

dxxxxeKL
x

ee ∫
∞

∞− ⎠⎝ 222 2

2

σπ

−

⎟⎟
⎞

⎜⎜
⎛

−
+−

+−=
21)2(log)2(log

222
2 µµπσπ . 

Also the integral in the above expression can be written 

∫ ∫ ∫∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

−+− dxxedxexdxedxxe
xxxx
22

2

2
2

2
2

2

222

2222222 ππσπσπσ
−−−− 22 111111 µµ

 

This may be written as 

 ∫∫ ∫
∞

∞−

−
∞

∞−

∞

∞−

−−
+−⎟

⎞
⎜
⎛ − dxexdxedxxe

xxx
2

2
222

222

11111 µµ
 . 

⎠⎝ 222 222222 πσπσπσ
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Using the fact that for a continuous random variable µσ )( xxp , we may ∫ −=
β

α

222

write ∫ +=
β

α

µσ 222)( dxxxp , we know that X follows the standard normal distribution, so 

∫
∞

∞−

−
= 1

2
1 22

2

dxxe
x

π
. Also ∫

∞

∞−

−
= 0

2
1 2

2

xdxe
x

π
and by definition 

∫
∞

∞−

−1
=1

2
2

2

dxe
x

π
, so ∫

∞

∞−

− 22 1 µµ
= 2

2
2 222

2

σπσ
dxe

x

.  

Thus  

2

22
222

22
1

2
1

22
1

2
1

2
1

2
1

22

µµ
π

µ
π

+−=+−⎟
⎠
⎞

⎜
⎝
⎛ − ∫ ∫

∞

∞−

∞

∞−

−−
xdxedxxe

xx

. 2222 σσσσσ

So  ⎟⎟
⎞

⎜⎜
⎛

−
+

−=−++−= 11
2
1)(log

2
1

22
1)2(log)2(log 222 σ

µσ
σ
µ

σ
πσπ eeeKL  

⎠⎝

22

As a rule we of course do not know what the true distribution is. If the true distribution was for example the 

normal distribution with mean tµ  and variance t
2σ , and we have )(xq as above, then 

⎟
⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛

tt
e 22

2

2

2 )(
2
1

2
1

σ
µµ

σ
σ

σ
σ

t⎟+−+⎟⎜= tKL 1log . We s at KL is expressed in terms of ⎜ t ee here th µ  

and t
2σ . 

We can make the following remarks about KL: 

 0≥KL   and if )()( xqxp ≠ then );();( pqKLqpKL ≠  i.e. KL is not symmetric.  

The first result can be obtained as follows: 

Let 
)(xp

u = . 
)(xq

 Jensen’s inequality states 

][log)](log[ uEuE ee −≥−  , where u is a convex function. 

So we have 

]
)()( xpxp ⎠⎝

)([log])(log[ xqExqE ee −≥⎟⎟
⎞

⎜⎜
⎛

−  

Therefore 
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⎟
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
xp
xq

xp
xq

ee )(
)(

)(
)( β

α

β

α

⎜ ⎟⎜−≥⎟⎜− ∫∫ dxxpdxxp )(log)(log  

But 1)()(
=⎟

⎠

⎞
⎜
⎝

⎛
∫ dxxpxqβ

α

. 
)( ⎟⎜ xp

So 0)(
)(
)(log ≥⎟⎟
⎞

⎜⎜
⎛

−∫ dxxp
xp
xq

e  
⎠⎝

β

α

Hence 

0)(
)(
)( ⎞⎛ xpβ

log ≥⎟⎟
⎠

⎜⎜
⎝

∫ dxxp
xqe  

α

Now ∫ ⎟⎟
⎠

⎜⎜
⎝

=
α

dxxp
xq

KL e )(
)(

log , so 
⎞⎛β xp )(

0≥KL . 

We can show );();( pqKLqpKL ≠ as follows: 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

β

α

dxxp
xq
xpqpKL e )(
)( ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

β

α

dxxq
xp
xqpqKL e )(

)(
)(log);()(log);(  and , so 

∫ ∫−= dxxpxqdxxpxp ee )()(log)()(log  
β

α

β

α

qpKL );(

∫ ∫
β

α

β

α
ee −= dxxqxpdxxqxqpqKL )()(log)()(log);(  

);( pqpKL  if and only if ∫ ∫=
β

α

β

α

dxxqxqdxxpxp )()(log)()(log . (); KLq = ee

 

There is a significant drawback to KL, bserve it. KL relies on us knowing the true distribution. As we cannot o

stated earlier KL is expressed in terms of the parameters of the true distribution which are unknown. We need then 

to consider how we might obtain an estimate of KL from the data. 
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5.4.2 Estimating theKullback Leibler distance by the AIC 

hen fitting models to a dataset I desire the model which maximises the likelihood 

r the log likelihood). That is, I want to maximise . I could 

lso look at maximising 

 
W

))((log)(log ∑=
n

i
iee xfL θ(o

a

n

xf

n
L

n

i
ie

e
∑

=
))((log

)(log θ
.  

 
For a large enough dataset 

)](([log
))((log

XfE
n

xf
e

n

i
ie

=
∑

. 

 So in maximising the likelihood I maximise  (note f() is the model that 

I am trying to fit).  In my discussion of the Kullback Leibler (KL) distance I noted 

that I aim to minimise the cross entropy (and L) i.e. minimise 

 or maximise .  

KL can be estimated by

)](([log XfE e

 so minimise K

)]([log)(log)( xqEdxxqxp ee −=− ∫
β

α

)]([log)(log)( xqEdxxqxp ee =∫
β

α

n

xf
dxxpxp

n

i
ie

e

∑
∫ −

))((log
)(log)(

β

α

eans that KL can be estim

. I said earlier that the 

Shannon entropy is constant; this m ated by 

n

xf
n

i
ie∑

−
))((log

 

I can make the following important statements.   

1 Maximising the likelihood is equivalent to minimising KL, i.e. maximising 

 is equivalent to minimising KL. )](([log XfE e
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2 In fitting models to a dataset I seek the model that maximises  . 

n practical situations I would maximise  where  is a MLE of the 

paramete

)](([log XfE e

 I )]ˆ;([log θXfE e θ̂

rθ , (note  and θ̂ θ  could of course be vectors). It is tempting to think that I 

can use , the maximised log likelihood, to estimate 

, but this quantity is biased. For instance if I have nested models; the 

est number of parameters will always give the largest value 

. Similarly this problem with bias means that estimating KL by 

∑
n

i
ie xf )ˆ);((log θ

)]ˆ;([log θXfE e

model with the larg

for∑
n

i
ie xf )ˆ);((log θ

n

xf
n

i
ie

−  leads to a distorted estimate of KL.  

thod can be used to obtain an estimate of standard error in the 

following way. Let  

∑ ))((log

There are several ways to tackle the problem of obtaining an unbiased estimate 

of , one example is The Jackknife method (Miller 1974). For example )]ˆ;([log θXfE e

the jackknife me

ijx ≠ be the sample mean of  based on the sample with the ith  

observation deleted. Let ()x  be the average of ijx ≠ .Then [ ]2
1

2

1
() )(1∑

= n

the jackknife estimate of the standard error.  

Another method is the Akaike Information Criteria (AIC).  I shall alter slightly the 

th

model. The AIC is an unbiased estimate of kke XfnE θ , therefore I wish to 

≠ −
−n

j
ij xxn  is 

notation and use )];([log kke XfE θ , this is to remind me that I am considering the k  

model from a number of possible models. The AIC is given by 

∑ +−=
n

pxfkAIC 2)ˆ;(log2)( θ , where p is the number of parameters in the 

ˆ

i
kike

)]ˆ;([log2−
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find the model that minimises the AIC. I shall now look at how the AIC is deriv

from the derivation described in chapter 13 of Pawitan’s bo

ed; 

ok (Pawitan 2001). Given 

kthe model ,(k xf  , I have . Let the solution of )θ ∑=
n

i
kikeke xfL );(log)(log θθ

0)];([log =ke XfE θ be kSθ , estimate kSθ  by , (kθ̂ kSθ  and  are vectors).  Now 

define 

kθ̂

⎟
⎟

⎠

⎞

⎜
⎝
⎟
⎠

⎜
⎝ ∂ k

k θ
⎜

′∂
⎟⎜≡

k

kkekke Xf
EJ

θ

θ ),(  and 
⎛ ∂⎞⎛ ∂ Xf θ log),(log

′∂∂

∂
−=

kk

ke
k

Xf
EI

θθ

θ ),(log2

. I 

w need to make us  o lt  (Note ).()]ˆ()ˆ([ 1−≈−′− kkkSkkkSk IJtrInE θθθθ A′  ill e f the resu

denotes the transpose of a matrix, and tr is the trace of a matrix, i.e. the sum of the 

elements in the main diagonal).  The Taylor series for xfL );(log)(log θθ  

  

∑=
n

i
kikeke

about kθ̂  is

...)ˆ(
)(log1ˆ)ˆ(logˆ

*2

′∂∂
∂

∂
∂

k

k

k

LL
θ

θ
θ

θ
)ˆ(

2
)()(log)log +−′−+−+= kk

k

e
kkkk

ke
keke LL θθ

θ
θθθθθθ

, where 

(

kkkk θθθθ ˆ* −≤− . 

For large samples kpr θθ →ˆ  , so  obk 0
)(log

=⎟
⎟

⎜
⎜

∂
∂ ke L

E
θ

θ .  I now have the 
ˆ

⎠

⎞

⎝

⎛

k

approximation )ˆ(
)(log

)ˆ(
2
1)ˆ(log)(log

*2

kk
kk

ke
kkkeke

L
LL θθ

θθ
θ

θθθθ −
′∂∂

∂′−+= .   

Again appealing to large samples results I have  

k
kkkk ⎠⎝

ke
prob I

Xf
E −=⎟⎟

⎞
⎜⎜
⎛

′∂∂
∂

′∂∂ θθ
θ

θθ
);(log2

, which gives  ke L
→

∂ θ )(log1 *2

n
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ke nI

L
→

′∂∂
∂

θθ
θ )(log *2

.  
kk
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I may now write )ˆ()ˆ(1)ˆ(log)(log InLL θθθθθθ −′−+= , so with ksk2 kkkkkkeke θθ =  

and using )()] kkkSkkkSk IJtrInE θθθθ  ,I have ˆ()ˆ([ 1−≈−′−

)(1)ˆ(log)(g 1
kkkekse IJtrLL −−≈ θθ . Therefore 

2
lo

)(
2

)]([log)]([log kkkekse IJtrLELE −≈ θθ . Using the fact that 1ˆ 1−

)];([log)(log1 fEL θ → kseprobkse X
n

θ , I arrive at the approximation  

)(
2

)]ˆ([log)];[log 1
kkkekse IJtrLEXfnE −−≈ θθ . The Taylor series for 

)];([log XfE

1(

ke θ  about ksθ  is 

...)(
)];([log
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2

)()];([log
*2

′∂∂
′−+−

∂
+

kk
kskksk

k
kse XfE

θθ
θθθθ

θ
θ

I then obtain the approximation 

1)];([log
+−

∂∂
ksk

kekse XfEXfE
θθ

θθ

)()(
2
1)];([log)];([log kskkkskkseke IXfEXfE θθθθθθ −′−−≈ . 

Setting kk θθ ˆ=  I get 

)(
2
1)];([log)]]ˆ;([log[)]ˆ;([log kekke XfEEXfE = θθ 1

kkkse IJtr
n

XfE −−≈ θ . 

On combining )(
2

)]ˆ([log)];([log 1
kkkekse IJtrLEXfnE −−≈ θθ  and 1

)(
2
1ˆˆ 1

n
−

)()]ˆ([log)]ˆ;([log 1
kkkeke IJtrLEXfnE −−≈ θθ . From the last result I can say th

)()ˆ(log 1
kkke IJtrL −−θ  is an unbiased estimator of )]ˆ;([log ke XfnE θ . The AIC is 

based on the assumption that J

)];([log)]];([log[)];([log kkksekekke IJtrXfEXfEEXfE −≈= θθθ , I get  

at  

kk I=  , this means tha  is approximately 

 parameters in the model, i.e. . So I have 

t )( 1
kk IJtr −

equal to the number of pIJtr kk ≈− )( 1
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pL ke −)ˆ(log θ  is an unbiased estimator of , hence 

ke 2)(log2)( +−= θ  is an unbiased estimator of . The 

AIC is an estimator of   (Bozdogan 1987). The first term in the AIC formula 

gives a m  model is to the data. The AIC penalises 

model complexity throu , I said earlier that when fitting models I look for the 

model that gives the sm e for the AIC, as a model becomes more complex p 

increases and so the AIC increases. It should be noted that single values of the AIC 

are not of use to me odel, I must look at changes in the AIC. For example 

I might exam e AIC when a new term is introduced into a model. 

A simple example might be to consider the models

)]ˆ;([log ke XfnE θ

pLk ˆAIC )]ˆ;([log2 ke XfnE θ−

][2 KLE

easure of how bad a fit a particular

gh p 

allest valu

 in fitting a m

ine the changes in th

110 Xββ +   and 22110 XX βββ ++ , 

let  be the AIC for the first model, and  be the AIC for the second model. 

past there has been some interesting discussion 

 

this approximation is not correct, then the AIC will not give an unbiased estimate 

of XfnE θ− . Concern has been expressed over the question of the 

 

eans of 

estimating the true order of the model. This last issue is of interest in that it relates to 

possible over-fitting or under-fitting. Bozdogan (Bozdogan 1987) argues that 

1AIC 2AIC

Then I look at AICAIC − . In the 21

concerning the term 2p in the AIC formula. Questions have been raised regarding the

adequacy of penalisation as implemented in the AIC (Bozdogan 1987). Put simply is 

2 a big enough multiplier?  The AIC hinges on the approximation pIJtr − )( 1 , if 

ke

consistency of the estimate of model order (k) obtained through minimising the AIC. 

As the sample size increases the order of the best model obtained by using the AIC 

will increase, however it may not be close to the order of the ‘true’ model. As far as

the AIC is concerned the true model could be of infinite order. It is important to note 

that the AIC can be used to select the best fitting model but not as a m

kk ≈

)]ˆ;([log2
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‘consistency is an asymptotic property and any real problem has a finite sample size 

ely important remark to the effect that consistency 

ood 

ure 

5.5.0 Extending the AIC 

The AIC in the form that I have considered is for want of a better description the 

‘classical’ form. With some effort I can see the connection between the AIC and KL. 

The ‘classical’ form of the AIC has some limitations. In this present work one of my 

AIC as a mo ce 

e 2)ˆ(o +θ , what 

n’. Bozdogan also makes an extrem

supposes that there is a ‘true’ model order.  I would argue that the AIC is a very g

model selection tool; it is attractive due to its relationship to the fundamental meas

KL. 

 

main concerns is the problem of over-fitting. An important question is, if I use the 

del selection tool am I liable to over-fit models?  In certain circumstan

the answer to this question is yes.  Using the formula AIC l g2−= pL

happens if p large is compared to the sample size? In this case I wi l fl ind that models 

e m of the AIC are prone to over-fitting. To overcome the s lected using this for

problem of over-fitting when the sample size n is small compared to p , I have to 

consider a corrected version of the AIC. This corrected AIC is denoted cAIC , and is 

given by the formula  

1
)1(22ˆ(log2 )

−−
+

+−=
pppLAIC θ , see (Nariaki 1978) a

1995). It is seen that as AICAICc , it is suggested that cAIC  be used as 

opposed to AIC in situations where 

+
pnec nd (Hurvich & Tsai 

∞→n , →

40<
n ,see (Burnham & Anderson 2004). Can

use the AIC in situations where I might want it a mixed model, a model with tim

dependent covariates or a frailty model? I shall now consider these three cases. 

p
 I 

 to f e 

 - 110 -   



 

5.5.1 Mixed odels 

I make reference to mixed mo els in Cha ter 8, briefly the model 

kjjjk XY )( 10

 M
 

d p

βαζβ +++=  is known as a mixed model. The m del contains fixed 

and random effects, j

o

ς  is a random intercept and jα  is a random slope. Random 

effects are handled in the same way as the fixed effects, so that I have 

j

)(2)ˆ(log2 je ppLAIC ++−= θ  and 

jpp +  

parameters in the model ( p fixed and  random  be a vector, this gives  p ). Let θ̂

1)(
)1)((2

)(2)ˆ(log2
−+−

+++
+++−=

j

jj

ppn
pppp

ppLAIC θ .  Earlier I mentioned the jec

 total 

 and CAIC are implemented in a 

number of statistical software packages. For example in the SAS procedures MIXED 

and related quantities are implemented: 

problem of the consistency of the AIC, a consistent form of the AIC is 

)1)((log)ˆ(log2 ++−= npLCAIC ee θ , see (Bozdogan 1987). Again with pp +

number of parameters, I have )1))((log()ˆ(log2 +++−= nppLCAIC θ . In terms 

j

eje

of actually fitting a mixed model, the AIC, cAIC

and GLMMIX various forms of the AIC 

dlAIC 22 +−=  

)1(
22 * −−

+−=
dn

dnlAICC  
*

whe

(log2 Ll e−=  

)(loglog22 ndlHQIC ee+−=  

ndlBIC elog2 +−=  

)1(log2 ++−= ndlCAIC e  

re 

θ̂ )
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In t  

likeliho m likelihood) in fitting a model. 

The

(Schwarz 1978), Burnham (Burnham & Anderson 2004) contains a most interesting 

disc to 

information theory. In deriving the BIC unlike the AIC, it is not assumed that the 

mo

Buckla land te that the BIC is consistent in terms of the 

dim e rue’ model is of 

sma  is prone to select models that are under-

fitte f ould we do better to 

use r 

to use t

might h

dimension. Buckland et al. (Buckland et al. 1997) make some very astute remarks in 

regard to the question of whether it is better to use the AIC or the BIC.  I would say 

that there is no grave disadvantage in using the AIC, however the issues raised in 

Buckland et al. are thought provoking and I would find further investigation of this 

question fascinating. 

 

When using the AIC to gauge the fit of a mixed model the researcher should exercise 

some degree of caution. Vaida and Blanchard (Vaida & Blanchard 2005) consider 

clustered data, they show that the AIC in its classical form leads to rather strange 

results when applied for example to repeated measures. They develop a conditional 

AIC. Vaida and Blanchard consider an exam

he above formulae jppd += .  The MIXED procedure uses restricted maximum

od (sometimes known as residual maximu

 BIC (Bayesian Information Criterion) was developed by Schwarz in 1978 

ussion on the BIC, as Burham points out the BIC unlike the AIC is not related 

del used in the derivation is the ‘true’ model.  

nd et al. (Buck  et al. 1997) sta

ensions of the best models selected; the BIC assumes that th  ‘t

ll dimension. For small samples the BIC

d. Taking this into consideration, in regard to over- itting w

 the BIC rather than the AIC? This question is not at all straightforward, whethe

he BIC or the AIC depends upon the dimensions of the ‘true’ model. The BIC 

ave advantages over the AIC if the underlying ‘true’ model is of low 

ple using repeated measures, see (Vaida 
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& Blanchard 2005), the data consists of six , they 

use

mo ured 

ove

mode ly  e 

AIC in its classical form when applied to mixed models leads to misleading results 

because the penalty term is not appropriate for the mixed model situation (penalty 

term is too large). Consequently they develop a form of the AIC with an adjusted 

pen  a riate o

the 

an 

to e

the

5.5.2 Time Dependent Covariates  
 
Wh al Hazards model, it is 

often assumed that covariates do not change with time. A covariate is taken as 

t. The Cox Proportional Hazards model 

t 

5.5.3 Frailty Models 

measurements taken on ten patients

 the nlme package in GNU R to produce a mixed model and a linear regression 

del. On comparing the AIC they find that the linear regression model is favo

r the mixed model, this they point out is strange given that the linear regression 

l has 21 parameters and the mixed model 6. Essential  their argument is that th

alty term pprop  for use in devel ping a mixed model. It should be noted that 

nlme package has been superseded by lmer4. SAS’s PROC MIXED implements 

appropriate form of the AIC (Fernandez 2007). It is advisable that researchers try 

stablish which form of the AIC is implemented in the particular software package 

y happen to be using. 

en analysing survival data with say the Cox Proportion

remaining constant up to the event of interes

can be extended by considering covariates that change with time, time dependent 

covariates. The SAS procedure PHREG allows one to fit a model with time dependen

covariates. PHREG reports the AIC and BIC (note the BIC is reported as SBC, 

Schwarz Bayesian Criterion). 
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Do Ha et al. (Do Ha et al. 2007) develop an AIC for a set of frailty models, (the 

models need not be nested). The AIC  D  is based on conditional 

likelihood and an extended restricted likelihood. They define two AICs as follows: 

AIC

d rando cts and ty param h

 (dispersion parameters in the frailty 

distribution). In (Do Ha et al. 2007) the authors state that for a Cox Proportional 

odel  is the AIC as used in the SAS procedure PHREG. For a 

d  the SAS procedure MIXED. The 

to railty term  may be a better selection 

on han .  The work of Do Ha et al. is certainly very interesting; as far 

 Ha et al. 2007) have not been implemented 

as software. Further investigation of the results presented by Do Ha et al. would be 

well worth pursuing. In the next chapter will I shall further consider over-fitting and 

ine Harrell’s C and discuss the issue of validation techniques. 

 

 

 

 proposed by o Ha et al

*** 2)( pDDAIC +=  D

TddT )( pT 2** +=  

)( *DAIC  deals with fixed an m effe frail eters, w ilst 

)( *TAIC deals only with the frailty parametersd

Hazards m )( *DAIC

linear mixed model )( *
dTAIC  is the AIC as use in

s )( *
dTAICauthors also suggest that in regard  f

)( *DAICcriteri  t

as I am aware the AICs developed in (Do

model optimism, exam
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CHAPTER 6 OVER-FITTING, OPTIMISM AND VALIDATION 

the model to

redictive p

 

 

• Wh  

po

• Ov

• Ov

• Pro

 

6.0.0 Introd
 
I have made

could define

to produce m

does not jus

fine-grained

significant i

general ove

optimistic p

p

difference i

predictive p

predicted va

by Somer’s 

 

en trying to develop a prognostic model including a large number of

tential predictor variables may lead to over-fitting 

er-fitted models are biased in regard to predictive power 

er-fitted models are poor prognostic tools 

o  sh vgnostic m dels ould be alidated 
e to

.If over-fitting is present then on applying 

 a new but similar data set I would see a change (deterioration) in the 

ower of the model when used to predict on the new data set. This 

 described in terms of optimism. I can gauge the 

ers 1962). Harrell (Harrell et al. 1996) defines optimism in terms 

uction 

 referenc  over-fitting numerous times in the preceding chapters. I 

 over-fitting to be the tendency in certain statistical modelling procedures 

odels that include substantial noise, that is I end up with a model that 

t describe the general patterns in a data set, but includes a deal of local 

 detail. Over-fitting leads to models that include variables that are 

n the sense that they model local detail, they may not be significant as 

rall predictors. A model that has been over-fitted is biased in terms of how 

redictions based on this model 

n predictive power can be

ower of a model by measuring the agreement between the observed and 

lues of the dependent variable. One way of measuring such agreement is 

D (Som
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of the difference in two values of Somer’s D. It may be worthwhile looking at 

6.1.0 Somer’s D 

 The population value of Somer’s D is defined as follows

Somer’s D and some related measures. 

XX

XYD
τ
τ

=

where )]sgn()[sgn( jijiXY YYXXE

XY , 

−−=τ , for all ji, , XYτ  is Kendall’s aτ  (Kendall 

1938).  

The sgn function is defined as follows: 

<x  , 0,0)sgn( == xx , 0,1)sgn( >= xx0,1)sgn( −=x . 

 

 

X  and are sampled jointly from a bivariate distribution.  

endall’s

Y

 aτ  gives a measure of concordance, the  and are said to be sX ' sY 'K

concordant if the bigger of the sX '  is associated with the bigger of the sY ' . Somer’s 

D is the regression coefficient of )sgn( ji XX − with respect to )sgn( ji YY − . Both 

Kendall’s aτ  and Somer’s D can be applied to survival data, X  or Y or both could be

censored. If I have indicator variables U andV , where values of 1 indicate that the

event of interest has occurred and values of 0 indicate censoring, then Somer’s D for 

 

 

survival data can be defined as 
UXUX

UXVY
,,,

,,, τ
YUXD ,,τ V,= .  

6.1.2 Harrell’s C 
 
Harrell (Harrell et al. 1996) has defined the quantity 12,,1, −= CD SYX , where it is 

assumed that X  is a continuous variable.C  is known as Harrell’s C . I can interpret 

Harrell’s C  as measuring how well X  predicts survival. Harrell’s C  is defined as 
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“the proportion of all usable patient pairs in which the predictions and outcomes 

concordant” (Harrell et al. 1996). For a binary dependent variable C is “the pro

of all pairs of patients, one with and one without the disea

are 

portion 

se, in which the patient 

ell et al. 1996). 

r predictive power 

s the problem of possible over-fitting by examining values of Somer’s 

ine predictive 

ower o  model over these data sets. This leads to the idea of validation methods.  

6.2.0 Validation Methods 

model is known as model validation.  

number of data sets that are similar but different to the data set used to develop the 

known as data splitting, see (Picard & 

approaches in a little more detail. 

having the disease had a higher predicted probability of disease.” (Harr

Harrell’s C  takes on values from 0.5 to 1.0, 0.5 indicating poo

(poor level of agreement between predicted and observed sY ' ) and 1.0 indicating 

very good predictive power (high level of agreement between predicted and 

observed sY ' ). Somer’s D can take on values from -1 to 1.  

Assuming then that I have arrived at my final model, I could use Somer’s D or 

Harrell’s C  to obtain some measure of the predictive power of the model. However, I 

will not addres

D or Harrell’s C  for the original data set alone. Ideally to assess over-fitting I need to 

fit the model to a number of different but similar data sets and exam

p f the

 
The formal procedure for determining the predictive power or accuracy of the final 

I have said that in order to assess over-fitting I need to fit the ‘final’ model to a 

model. How do I obtain these data sets? I could reserve some of our original data and 

use it to test the model, or I could try to ‘build’ some data. The first approach is 

involve the use of the bootstrap (Efron & Gong 1983). I shall now consider these two 

Berk 1990). The second approach could 
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6.2.1 Data Splitting   

The idea of splitting up the original data set into a portion on which to develop the 

model (the training sample) and a portion for validation seems quite reasonable. S

how is the data split up? This question is not trivial and Picard and Berk (Picard &

Berk 1990) draw attention to the problem which may result if the data is split in an 

arbitrary way. I may end up with n

 

o 

 

ot enough data to develop the model, or conversely, 

 I reserve a large portion of the data for development, I may not have sufficient data 

r validation.  A formal criterion for partitioning the data would be desirable, but it is 

often the case that the mathematical expressions for these criteria are intractable. 

Picard & Berk 1990) suggest that between 

if

fo

4
1  to 

2
1Picard and Berk (  of the data 

should be reserved for validation.  

validation (Stone 1974). With cross-validation I have multiple models (a model per 

split), if I have split the original data set  times, I have   training samples and 

 arises 

If I have a large data set I could consider repeated data splitting, this is called cross-

validation samples. I develop and validate the k  models and then ‘average’ the 

results, i.e. I could obtain averages for regression coefficients and Somer’s D. Data 

splitting and cross-validation tend to produce highly variable estimates. In data 

splitting I might see notable variation in, say, the estimate of regression coefficients 

dependent on how I split the original data. In cross-validation the same problem

due to the multiple training and validation samples used. In both data splitting and 

cross-validation the accuracy of the estimates is highly variable.  A way of 

overcoming this problem is to use the bootstrap.   

k k k  
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.2.2 The Bootstrap 
 
The bootstrap (Efron 1979) was devised by Bradley Efron as  extension of the 

jackknife (Miller 1974), (Efron & Stein 1981), (Efron 2000). fron described the 

bootstrap as “a muscularized big brother to the Quenoille-Tukey jackknife” (Efron 

2000).  The bootstrap method is described as follows. 

Suppose I have a data se . 

I can form the bootstrap sample by drawing at random and with replacement from 

original data set. The bootstrap sample is usually written in th orm  , 

f the original data set. A typical bootstrap sample from 

 

1 n

 now from another bootstrap sample and obtain the bootstrap replicate using this 

sample. I repeat this process 

6

an

E

t },...,{ 1021 xxx

**
2

*
1 ,..., nXXXe f

where n is the size o

},...,{ 1021 xxx  might be },,,,,,,,,{ 42811025733 xxxxxxxxxx . I may for example want to

obtain an estimate of the true standard error for some quantity or statistic, let this 

quantity beθ̂ . 

 I use the bootstrap sample to obtain *θ̂  the bootstrap replication ofθ̂ . 

 *θ̂  is often written as ),...,(ˆˆ **** XXXθθ = .  2

B times where B is a large number. I now have B  

2
1

1

2.**ˆ(⎢
⎡∑

B

θ
bootstrap replicates . As *θ̂ ∞→B  the quantity 

)1( ⎥
⎦

⎢
⎣

−B
tends toward B

)ˆ

⎥

⎥
⎥
⎤

⎢

⎢
−

=b

b θ
σ̂

the bootstrap estimate of the standard error ofθ̂ , where

 

B

b∑≡
*

.*
ˆ

ˆ θ
θ .  One extremely 

important feature of the bootstrap is that I do not have to know what distribution the 

original data comes from. The true standard error ofθ̂ , )(Fσ , depends upon  knowing 
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what distribution the original data comes from, the bootstrap allows me to estimate  

)(Fσ  by means of Bσ̂ . The bootstrap estimate of )(Fσ , Bσ̂  depends upon the 

empirical distribution F̂ , so I can write )ˆ(ˆ FB σσ =  . The empirical distribution F̂  

assigns equal probabili  (probabilityty  mass
n
1

bootstrap can be applied to quite complicated statistics with ease. I described B  as a 

large number, values of B  do not have to be huge, values of 200 or 300 can 

) to each x  in the original data set.  The 

ce 

good estimates. An excellent discussion of the bootstrap and jackknife can be found in 

fron & Gong 19 bootstrap is an ethod, as are data 

splitting and cross-validation; a portion of the original data set is used to validate the 

final model. A more rigorous validation procedure would involve entirely new data 

variety of reasons, for instance financial constraints, data collection may take a long 

Harrell (Harrell et al. 1996) recommends the bootstrap as a method of internal 

validation; the estimates of the predictive accuracy of a model produced by the 

splitting and cross-validation all of the data is used to develop the model. I now 

 described by Harrell in (Harrell et al. 1996).  

produ

(E 83). The  internal validation m

sets, this may not be a practical approach, it might be difficult to obtain new data for a 

time. 

bootstrap are virtually unbiased. One major benefit of the bootstrap is that unlike data 

consider a validation procedure as

6.3.0 Harrell’s validation procedure   

   
In (Harrell et al. 1996) Harrell lists the following steps needed in order to assess the 

internal validity of a model. These steps are given in Box 1 exactly as they appear in 

(Harrell et al. 1996). 
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Box 1 Harrell’s Validation Steps 

1. Develop the model using all n subjects and whatever stepwise testing is 

deemed necessary. Let appD  denote the apparent D from this model, i.e., 

the rank correlation computed on the same sample used to derive the fit. 

2. Generate a sample of size n with replacement from the original sample 

(for both predictors and the response). 

3. Fit the full or possibly stepwise model, using the same stopping rule as 

was used to derive appD . 

4. Compute the apparent D for this model on the bootstrap sample with 

replacement. Call it bootD . 

5. ‘Freeze’ this reduced model, and evaluate its performance on the original 

dataset. Let origD  denote the D. 

6. The optimism in the fit from the bootstrap sample is origboot DD − . 

7. Repeat steps 2 to 6 100-200 times. 

8. Average the optimism estimates to arrive atO . 

9. The bootstrap corrected performance of the original stepwise model is 

OD − . This difference is a nearly unbiased estimate of the expected app

value of the external predictive discrimination of the process which 

generated . In other words appD ODapp −  is an honest estimate of the 

internal validity, penalizing for over-fitting.  
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Initially in Harrell’s procedure the model M is developed using all of the origina

data, and Somer’s D is recorded. In the next step I generate a bootstrap sample by 

drawing at random and with replacement from the original data. Next I fit a model 

*
1M to this bootstrap sample, and record Somer’s D, i.e. bootD . Now obtain the

Somer’s D for *M  using the original data, i.e. D . The optimism is defined to

origboot
*
1 origboot

l 

 

 

, here the optimism refe . If 

1 orig

be DD − rs to M DD −  is < 5% this can 

be interpreted as meaning that the original model M is consistent in its 

performance, I do not see a degradation in predictive power when the original 

model is applied to the  bootstrap data set. Although   origboot DD −  refers to 1M  , 

I can say that the p

*

erformance of  on the or ast comparable to *
1M iginal data is at le

that of M , i.e. I infer that M  and *
1M  are the same model. In step 7 of Harrell’s 

sprocedure I now run through step  2 to 6 B times to obtain **
2

*
1 ,...,, BMMM  and 

the associated bootD  and  whichorigD ,  is denoted *
bD  and orig

bD* . The quantity  

B

DD
O

B

b

orig
bb∑

=  is the average optim
−

= 1

**

ism, OD −  gives a good estimapp ate of 

l validity of the model, with  acting as rm for over-fitting, 

er-fitting. It is important to 

remember that a single value of Somer’s D gives a measure of predictive power 

for a model, the difference in two values of Somer’s D measures optimism or 

over-fitting. Harrell has implemented the validation procedure described in steps 1 

to 7 in the Design library (Design Library Harrell Frank E. 2009b), (Design 

Library Harrell Frank E. 2009a).  

the interna O  a penalty te

large values forO  mean I incur a high penalty for ov

 - 122 -   



 

     6.4.0 Validating the CARE-HF Model 

I shall look at an example of validating a model (the CARE-
 

HF model) using Harrell’s 

ation does not deal with optimism of the model fitting 

rocess, but from the final model alone. The model developed for the CARE-HF data 

has been described in Chapter 2, I will use GNU R and the Design library to validate 

the final model for the CARE-HF data. The variables in the final model for the 

CARE-HF data are shown in Table 6.1  

 

 

 

 Transformation  Hazard ratio  95% CI  P-value 

procedure. Note here the valid

p

Predicto u   rs of overall o tcome   

Mitral regurgitation    Log 1.71 1.38–2.12 0.0001 e

N-terminal pro-brain natriuretic peptide (pg/ml)  Loge 1.31 1.17–1.47 0.0001 

Systolic blood pressure (mmHg)    Linear 0.99 0.98–1.00 0.0698 

Interventricular mechanical delay (ms)   Linear 1 0.99–1.01 0.7617 

Aetiology (ischaemic) (yes/no)    Factor  1.89 1.45–2.46 0.0001 

CRT (ye 0.15 0.03–0.87 0.0347 s/no)  Factor   

Predictors of response to CRT     

Systolic blood pressure (mmHg)*CRT Linear 1.02 1.00–1.03 0.0183 

Interventricular mechanical delay (ms)*CRT Linear 0.99 0.98–1.00  0.0084 
Table 6.1 Predictors of outcome and response to CRT 

 

Let us denote the variables in Table 1 as follows: 

loge(Mitral regurgitation) 1x     

Systolic blood pressure 3x  

Aetiology (ischaemic) x
CRT 
Systolic blood pressure*CRT 
Interventricular mechanical delay*CRT 64 * xx  

loge(N-terminal pro-brain natriuretic peptide)  

Interventricular mechanical delay 
 

I will denote the primary event as and the time to as .  

To perform validation in GNU R using the Design library I use the following R code 

2x  

4x  

5

6x  

63 * xx  

p p t
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>setwd("C:/location of data file”) 

>dd<-read.Table(file="myfile.csv",header=T,sep=",") 

>attach(dd) 

>vl<-validate(f,B=200,dxy=T,pr=T) 

 

I first load the Design library. Next we set the working directory and then read in t

data file. I now make the data fr

>library(Design) 

>f<-cph(formula=Surv(t,p)~x1+x2+(x4*x6)+(x3*x6)+x5,x=T,y=Y,surv=T) 

he 

ame dd available through attach(). Next I fit the Cox 

Proportional Hazards model, justification for fitting the proportional hazards model 

violates this assumption is  discussed in 

t 

even though there is some evidence that CRT 

Chapter 2. f stores the result of the model fitting. Finally I validate the model using 

200 bootstrap samples, dxy=T means that I want to use Somer’s D, pr=T means prin

results for each of the 200 repetitions. The results of the validation procedure are 

shown in Table 6.2. 

 

       

 index.orig training test optimism index.corrected n 

Dxy -0.4090 -0.4198 -0.3982 -0.0216 -0.3874 200 
Table 6.2 Validation of Final CARE-HF model Using Harrell’s Design Library in GNU R 

In Table 6.2 Somer’s D (Dxy) is presented Dxy is the rank correlation between the 

predicted log hazard and the observed survival times. This is why we have the –ve 

values in Table 6.2, = -0.41, the index corrected value for Somer’s D (-0.3874) is a 

s 

approximately 2% in the values of Somer’s D between the original data and the ‘new’ 

 appD

better estimate of the predictive power of the model, i.e. how well the model perform

as a prognostic tool in the future.  In terms of optimism I can interpret the value of -

0.0216 from Table 6.2 as meaning that on average there is a difference of 

data, so if the model where to be applied to a new set of patient data I would expect a 
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loss of predictive power of around 2%. As a rule of thumb an optimism of less than

5% is acceptable.  

6.5.0 What Motivates Validation? 
 

Discrimination 

Generalisabilty: 

Reproducibility 

 

 

The phrase predictive power is broad description of the positive attributes that should 

be considered in regard to a prognostic model. Predictive power comprises two 

fundamental parts: 

1. Accuracy     

2. Generalisabilty 

In (Justice et al. 1999) Justice defines accuracy as “The degree to which predicted 

outcomes match observed outcomes.” Generalisabilty is defined as “Ability of a 

prognostic system to provide accurate predictions in a new sample of patients.” 

(Justice et al. 1999). The aim of model validation is to assess whether the model is 

accurate and generalisable.  Both accuracy and generalisabilty can be further broken 

down into the following parts: 

Accuracy: 

Calibration 

 
Transportability 

 

hen considering accuracy, a calibration error occurs if the predicted probability of 

some event of interest is too high or too low. A discrimination error occurs if given 

that a patient has been assigned a risk score, they are incorrectly ranked on the basis 

 

 W
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of individual risk. If patients are grouped based on their risk score, then the group 

comprising patients with a high score should have a high event rate, if a patient with

low risk score was allocated to the group with the high event rate, then a 

discrimination error has occurred. Similarly when considering generalisabilty, 

reproducibility refers to the accuracy of the prognostic model when applied to patien

who were not in the original dataset used to develop the model, but are from the sam

population. If the prognostic model is accurate for patients from a similar but not 

identical population, or is accurate for data collected using methods that are different 

than those used to collect the original data; then the model can be said to possess 

reproducibility. It may appear that model validation is confined to assessing th

validity of a model purely in statistical terms. Altman and Royston (Altman & 

Royston 2000) pose two questions of great importance:  

 a 

ts 

e 

e 

. With the available factors, is the model the best that can be found? 

an and 

ly validated model is one which passes all appropriate statistical 

hecks, including goodness-of-fit on the original data set and unbiased prediction on a 

new data set. 

. A clinically validated model is one which performs satisfactorily on a new data set 

ccording to context-dependent statistical criteria laid down for it. 

 

I would concur with the view that e y t h between clinically and 

statistically validated models. In regard to Harrell’s approach I believe that there is a 

 1

 2. Does the model predict accurately enough for its purpose? 

The above questions lead the authors of (Altman & Royston 2000) to suggest that 

validation be considered from both a statistical and a medical perspective. Altm

Royston (Altman & Royston 2000) supply the following definitions: 

1. A statistical

c

2

a

 it is n cessar  to dis inguis
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potential danger that to lose sigh  i a  c l validation, Harrell’s 

approach appears to concentrate on st istical alidation. Researchers may be lulled 

into thinking that the validation m s s  H l are sufficient to 

produce a clinically useful prognostic model. s Altman and Royston point out, if the 

prognostic information is inheren ak  t  valid model as defined 

in (Altman & Royston 2000) may be of limite  use fr m a clinical perspective. The 

r r is strongly encouraged to t (  of 

model generalisation is of great intere the present autho ow far it is possible to 

produce general models is not cle  l a l to be general lies 

ultimately in the nature of the mathem tical techniques used in model fitting. It is 

perhaps not un-reasonable to que n bilty. Generalisabilty 

whilst desirable may be attainable to only a limited extent. I feel that this should be 

considered when carrying out statistical m

model with good predictive power and ease of interpreta ay well be that 

predictive power comes at the expen sibility will 

.6.0 Summary  

Validation is an important aspect of statistical modelling. Once I have obtained the 

‘final’ model it is not enough to be content if this model fits the original data set well.  

s the performance of the model over new data, that is perform 

xternal validation. If it is not practical to perform external validation then I should 

a idat t c a tting, cross-validation or 

t of the mport nce of linica

at  v

ethod sugge ted by arrel

A

tly we , then a statis ically

d o

eade consul Altman & Royston 2000). The problem

st to r, h

ar, and the fai ure of  mode

a

stion a xiety over generalisa

odelling. Clinicians want a prognostic 

tion; it m

se of ease of interpretation. This pos

be discussed in the final chapter. 
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Ideally I need to asses
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pply some internal val ion me hod su h as d ta spli
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b rm x o nal validation I see 

d tion in the predictive pow e e I need to identify possible 

reasons, for example over- (o e g pecification of the functional 

f he model. Another b on for poor performance of a model is 

m  the original se i sing data then this will 

influence the final model. de a ethods of imputing missing 

d ter. Th e ld s as to whether it is clinically 

plausible; this is entirely se  f e  o istical validity.

ootstrap methods.  If after perfo ing e ternal r inter

eteriora er of th  mod l then 

fitting r und r-fittin ) miss

orm of t  possi le reas

issing data. If  data t has s gnificant mis

I consi r missing dat  and m

ata in the next chap e mod l shou  be as essed 

parate rom th  issue f stat
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CHAPTER 7 MISSING DATA AND IMPUTATION 
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ssing can lead to a poor prognostic model 

pes of mis  da

rrect imputation m

putation should be used with caution 

sing ta MCAR, MAR and MNAR

ssing data dealt with by imputation  

odel is crucial 
 

uction 

et contain riab for v a n e d  

y not be r ble, a l  

 number of missing values, estimates of the 

oefficients could be distorted. In developing the prognostic model for the 

tudy (Richardson et al. 2007) it was found that mitral regurgitation was a 

ctor of the primary outcome. However mitral regurgitation was seen to 

g values (208 values were missing). Missing data may have a marked 

the variables that appear in the ‘final’ model. A variable may attain a 

tistical significance due to missing values.  

eat the problem of missing data? This depends upon the reason for why 

issing. Under certain circumstances the missing data will not lead to 

na i te t e, and efforts must be undertaken 

e issue of m  d n o ould be to remove cases where I 

 level of miss t ha onsisting of the 

, and I  y  ry least squares regression of 

 

 

s va les  which alues re missing the a mod l fitte  to

elia  missing data may lead to bi sed resu ts. For example I 

w for variables with a large

ts. Unfortu tely th s is of n not he cas

issing ata. O e appr ach w

ing da a. If I d a data set c

21, xx  wished to carr  out a ordina
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y against x  and 2x , b1 u nd number of missing values, then I 

ethod may lead to inflated 

n  ern ppro ou ply the missing values. In the 

imputation, the process of 

pplying ‘fill in’ the missing values can be computationally intensive. 

N at o  a  makes imputation practical. An 

i tant question I mu id w h  missing? I shall now look at 

different types of missing data. 

7  

 a group of patients have some measurement taken e.g. lung function, it is possible 

at some measurements may be missing due to failure of the measuring device or 

achine. In this situation I would assume that device or machine failure is a random 

event, the probability of missing data would be described as m g com y a

d be described as 

issing completely at random are if for example someone was unable to complete a 

uestionnaire due to common illness. Participants in a clinical study may move away 

om the area, they might die due to reasons unrelated to those specified within the 

udy.  

If the probability of mis

bserved variables then the missing data is said to be missing at random (MAR). If 

e probability of missing data for a particular variable depends on other observed 

ariables and unobserved variables then data is said to be missing not at random 

( NA A R d M e n alled the missingness 

t I fou  that 1  had ax  large 

might remove the pairs ),( , where  is missing. This m1xy 1x

varia ce and bias. The mod  a ach w ld be to sup

past the missing data problem tended to be ignored, 

su  or ing 

owadays the comput ional p wer is vailable that

mpor st cons er is hy is t e data

.1.0 Types of Missing Data 
 
If

th

m

issin pletel t 

random (MCAR). Other examples of situations where data woul

m

q

fr

st

  

sing data for a particular variable depends upon other 

o

th

v

M R). MC R MA  an NAR ar  what is ofte  c
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mechanism, see (Buck 1960) and (Zhang 2003). If the missing data mechanism is 

CAR or MAR then the missing data is said to be ignorable, the missingness 

m ee e le r the missing data is MNAR the 

m gness is said to be o  atic of the missing data 

m . I need to d n  t a

that the data is not missing comp  en I should attempt to apply some 

988a) has developed a test based on the Chi squared distribution. However it is not 

ossible to conclusively prove the data are MCAR. There is no test for the MAR 

assumption. For a detailed discussion of issue missing data and prognostic models see 

(Marshall 2007)  

 

7.2.0 Dealing with Missing Data 
 
There are numerous methods for dealing with missing data; I have mentioned one 

approach already, simply delete the missing data. It can be argued that this approach 

is not particularly satisfactory; as potentially useful information is being discarded 

(put another way, the sample size is reduced). I shall consider some of the methods 

available that allow missing data to be imputed. A very simple way of imputing data 

is to use the mean, missing values are replaced with the sample mean. For example in 

the CARE-HF  data the variable mitral regurgitation has 208 missing values, if I 

impute these missing values by using the sample mean = 23.79 of the 605 non 

missing values for mitral regurgitation, then the sample mean for mitral regurgitation 

(n=813) with imputation = 23.79. Here I see that imputation using the sample mean 

has made no difference in the estimate of mean mitral regurgitation. What I do find 

however is that the standard deviations change, the standard deviation of the 605 non-

M

echanism does not n d to b model d, if howeve

ssin  non-ig nrable and is the most problem

echanisms etermi e why he dat  is missing, and once I have established 

letely at random, th

suitable imputation method.  It is possible to test the MCAR assumption, Little (Little 

1

p
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missing values = 14.94, whereas the standard deviation for the imputed data (n=813) 

= 12.88. This reduction in standard deviation 

to the fact that I have increased the sample size from 605 to 813, but I have seen no 

difference in the estimate for mean mitral regurgitation. However if I were to use the 

sample median, I have the sample median for the 605 non-missing values = 21.81 and 

the sample median for the imputed data = 23.79. Another possible approach is to 

impute the missing data by using some regression technique; I predict the missing 

values using the regression model. If I were to use ordinary least squares regression I 

am in effect doing the same thing as with using the sample mean, I am still confronted 

ith the problem of producing a reduced standard deviation (or standard error) due to 

 gained any new information, i.e. I will 

is misleading in the sense that it is due 

w

the increased sample size, but I will not gave

not see an appreciable difference in the estimate of some population parameter based 

on the imputed data.  

Table 7.1 briefly describes some of the common imputation methods 

Method Comments 
Simple Mean Imputation, uses sa
missing values  

mple mean to impute Easy to perform, but may lead to distorted relationship between 
variable that has undergone imputation and other variables in dataset 

Regression Imputation, use a regression model to 
generate missing values 

Distribution of variable that has undergone imputation may be 
distorted, correlation with variable not included in the regression model 

egr im ted may be suspect. If the r ession model is not appropriate then pu
values are suspect. 

Random Regression Imputation, as above but a random 
he imputed value ge
. Random term can

normal distribution 

Works well with categorical and continuous variables, again depends 
ionterm is added to t nerated by the 

regression model  be drawn from a 
upon appropriate regress  model. 

Hot Deck Imputation, imputed value is selected at Method uses ‘real’ values, i.e. value is present in the data set.  
random from the non-missing cases 
Predictive Mean, a hot deck method that employs a etho  the regression method 
regression model 

M d is slightly more robust than

Last Value Carried Forward Last known values carried forward to supply the missing data 
Table 7.1 Imputation Methods 

 

I shall now briefly review the basic ideas for the imputation methods that are 

implemented in SAS and GNU R. In SAS PROC MI (SAS Proc MI 2009) allows me 

to perform what is known as multiple imputation, see (Zhang 2003), (Rubin 1976), 

(Rubin 1996) and (Schafer & Olsen1998). The imputed data can then be analysed 
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using PROC MIANALYZE (SAS Proc Mianlyze 2009). In GNU R, Harrell’s Design 

(Design Library Harrell Frank E. 2009b) library used in conjunction with Harrell’s 

Hmisc library (Hmisc Library Harrell Frank E. 2009) allows me to perform 

imputation using the transcan and impute functions.  

7.3.0 Multiple Imputation  
 
So far my discussion of imputation has focused on trying to ‘fill in’ missing values for 

some variable, for each missing value of X I supply a single imputed value. Multiple 

imputation (Zhang 2003), (Rubin 1976), (Rubin 1996) does not supply a single 

imputed value, instead a set of possible values are considered. In multiple imputation 

I randomly sample from the existing data to generate this set of possible values.  More 

:  

l. 

noted problem with 

rtificially’ reduced standard deviation, multiple imputation overcomes the problem 

of reduced standard deviations or standard errors of estimates. 

The imputation model is of fundamental importance, if I take the most simple case 

where the data set consists of one continuous variable , then an example imputation 

model might be , the normal distribution model. If I have a data set 

, then I might use the 

multivariate normal model

formally multiple imputation can be described as follows

1. Create k complete data sets by filling in all missing values k times, by 

drawing k  times from the imputation mode

2. Analyse the k  complete data sets, these data sets are regarded as real data. 

3. Combine the results of the analysis of the k  complete data sets to form the 

repeated or multiple imputation inference. 

Earlier I looked at imputation using the sample mean, I 

 

‘a

1X

),(~ 2
1 σµNX

that consisted of the continuous variables pXXXX ,...,, 321

),(~ ΣmNX , where X is the vector 
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),...,,( 321 pXXXX and is a vector of means and m Σ is the variance covariance 

matrix. For a mixture of binary and continuous variables I might use the conditional 

Gaussian (Horton & Kleinman 2009). In ble to specify a 

‘customised’ imputation model, for exam

PROC MI it is possi

ple I could specify that 21 XX = . I must 

consider that if I have specified a particular imputation m

were to perform an analysis using the data set after I performe putation, 

there is a risk that this person may try fit a model different to that of m putation 

model, for instance . It is advisable to use as many variables as possible 

when performing m putation.  For multiple imputation maximum likelihood 

estimates of param d by using the EM algorithm (Dempster et al. 

In GNU R the transcan function which is found in Harrell’s Hmisc library performs 

both transformation and imputation for a variable. Results of applying the transcan 

 

 

n and 

n 

ee ler and has 

ndergone a sign change. The p-value for IVMD has decreased from 0.75900 to 

odel, then if someone else 

d multiple im

y im

431 XXX =

ultiple im

eters are obtaine

1977), (Gaetan & Yao 2003).   

7.3.1 Imputation using Design and Hmisc 
 

and impute functions to the CARE-HF data are shown in Tables 7.2 to 7.8. Tables 7.9

and 7.10 present validation results for the final CARE-HF model with and without 

imputation. By default transcan uses single predicted expected value imputation, this

is the case for the imputation performed here, it is possible to perform multiple 

imputation using transcan. If I want to perform multiple imputation using Desig  

Hmisc then the aregImpute function is a better choice; the results of performing 

multiple imputation using aregImpute are shown in Table 7.11. The main objective 

for the CARE-HF model was to determine possible treatment modifiers (interactio

terms). For IVMD it is s n that for the imputed data coefficient is smal

u
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0.06000, the interaction term IVMD*CRT is no longer statistically significant, this 

in h p

to identify possible treatment modifiers 

nd not to produce a definitive prognostic tool, the treatment modifiers that were 

remained so, irrespective of the imputation method. The significance of CRT and the 

putation was performed or 

not. I would suggest that whilst this could be explained by missing data the fact that 

in the fashion described in Chapter 2 may have a considerable effect. I would 

recommend that orthogonalization should be carried out in situations where 

Where there is an appreciable level of missing data I would suggest that imputation 

ed, I would justify this based on the marked differences in the 

results  for the model with and without imputation. However I would consider this in 

conjunction with orthogonalization  

interaction term was borderline significant using the original data. Using imputed data 

the variable CRT is no longer significant, the p-value for systolic blood pressure has 

increased from 0.06959 to 0.34500, the interaction systolic blood pressure*CRT is no 

longer significant. Imputation has resulted in reductions in the coefficients for the 

variables mitral regurgitation, NT-pro-BNP and Ischaemia, all of these three variables 

rema ighly significant. If I perform im utation using agreImpute then the 

interaction term systolic blood pressure*CRT is no longer significant, however the 

interaction term IVMD*CRT is just about significant at the 5% level. To reiterate, the 

main objective of the CARE-HF model was 

a

originally identified were admittedly weak. However it is interesting to note the 

effects of using different imputation methods, I see that the strong predictors have 

interaction terms differ notably dependent on whether im

continuous variable had not been orthogonalization and binary variables not re-coded 

interactions between continuous and categorical variables are to be investigated.  

should be perform
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7.4.0 Summary  
 

e should be aware that imputation is not without its dangers. Choosing an 

o

 

imputation is that it has its origins in the problem of missing data in surveys, it has 

been suggested that this might be a limitation in terms of the efficiency of multiple 

sian multiple imputati y not 

3 wou  

pute function employs 

predictive mean matching. Predictive mean matching is an example of what is known 

as Hot Deck imputation (Altmayer 2009), Hot Deck imputation is one of the earliest 

imputation methods. Also in view of Nielsen’s arguments (Nielsen 2003) an 

investigation of the methods used in Harrell’s transcan and impute functions may be 

useful as Bayesian methods are an option for these functions.  

 

Imputation is not a simple matter; a careful approach is needed when applying it. The 

ating to imputation i

one; even the basic definitions of MCAR, MAR and MNAR can be somewhat 

u red. In the next cha

W

appropriate imputation model is crucial; if this imputation model is n t appropriate 

then subsequent analysis will be flawed. One important point in regard to multiple

imputation. Nielsen (Nielsen 2003) argues that Baye on ma

be efficient. For further discussion of some of the criticisms levelled at multiple 

imputation the reader is directed toward (Nielsen 2003) and (Rubin 200 ). I ld

consider an investigation of predictive mean matching, see (Little Roderick 1988b) 

and (Heitjan & Little 1991), a useful exercise, Harrell’s aregIm

literature rel s mathematically complex. The topic is a difficult 

conf sing when first encounte pter I will look at the idea of the 

frailty model. 
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 coef se(coef) z p 

 

Mitral Regurgitation a              0.7590 0.1220 6.2000 0.0000 

CRT 0.6140 0.5840 1.0500 0.2930 

Mitral Regurgitation a *CRT          -0.3350 0.1820 -1.8300 0.0666 

     

EVSI a 0.4162 0.1750 2.3761 0.0175 

CRT -0.4752 1.4120 -0.3366 0.7360 

ESVI a*CRT -0.0013 0.2920 -0.0044 0.9965 

     

Ischaemic 0.5220 0.1350 3.8800 0.0001 

CRT -0.7310 0.1580 -4.6200 0.0000 

Ischaemic*CRT 0.4010 0.2120 1.8900 0.0584 

     

Ejection Fraction a -0.9730 0.2840 -3.4280 0.0006 

CRT -1.1470 1.4470 -0.7930 0.4280 

Ejection Fraction a *CRT 0.2180 0.4550 0.4790 0.6320 

     

Age 0.0237 0.0073 3.2620 0.0011 

CRT -0.1452 0.7284 -0.1990 0.8420 

Age*CRT -0.0051 0.0108 -0.4690 0.6390 

     

Systolic Blood Pressure -0.0130 0.0040 -3.2600 0.0011 

CRT -1.9373 0.7484 -2.5900 0.0096 

Systolic Blood Pressure*CRT 0.0126 0.0064 1.9700 0.0489 

     

Glomerular Filtration Rate -0.0129 0.0037 -3.5070 0.0005 

CRT -0.2967 0.3495 -0.8490 0.3960 

Glomerular Filtration Rate*CRT -0.0032 0.0057 -0.5520 0.5810 

     

NT-pro-BNP a 0.3887 0.0589 6.5990 0.0000 

CRT -1.1054 0.7271 -1.5200 0.1280 

NT-pro-BNP a*CRT 0.0785 0.0905 0.8670 0.3860 

     

IVMD -0.0077 0.0026 -2.9950 0.0028 

CRT -0.0827 0.1985 -0.4160 0.6770 

IVMD*CRT -0.0077 0.0039 -1.9840 0.0473 
a
T

 = log transformed, * denotes an interaction 
able 7.2 Univariate Models For Each Potential Predictor (without imputation) 
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 z p coef se(coef) 

Mitral Regurgitation a              0.5299 0.0833 6.3639 0.0000 

CR 6 0.3947 -0.0092 0.9930 T -0.003

Mitral Regurgitation a *CRT          -0.1692 0.1253 -1.3506 0.1770 

     

EVSI 0.4225 0.1610 2.6228 0.0087 a

CR -0.0703 1.1980 -0.0587 0.9530 T 

ESVI *CRT -0.0807 0.2480 -0.3252 0.7450 a

     

Ischaemic 1350 3.8800 0.0001 0.5220 0.

CRT -0.7310 0.1580 -4.6200 0.0000 

Ischaemic*CRT 0.4010 0.2120 1.8900 0.0583 

     

Ejection Fraction a -0.9110 0.2490 -3.6630 0.0003 

CRT -1.3420 1.1680 -1.1490 0.2510 

Ejection Fraction a *CRT 0.2730 0.3670 0.7430 0.4580 

     

Age 0.0237 0.0073 3.2620 0.0011 

CRT -0.1452 0.7284 -0.1990 0.8420 

Age*CRT -0.0051 0.0108 -0.4690 0.6388 

     

Systolic Blood Pressure -0.0125 0.0040 -3.1600 0.0016 

CRT -1.6131 0.7302 -2.2100 0.0272 

Systolic Blood Pressure*CRT 0.0099 0.0062 1.5800 0.1130 

     

Glomerular Filtration Rate -0.0146 0.0035 -4.1500 0.0000 

CRT -0.3004 0.3237 -0.9280 0.3530 

Glomerular Filtration Rate*CRT -0.0032 0.0055 -0.5940 0.5520 

     

NT-pro-BNP a 0.3741 0.0564 6.6300 0.0000 

CRT -0.4602 0.6637 -0.6930 0.4880 

NT-pro-BNP a*CRT -0.0104 0.0832 -0.1250 0.9000 

     

IVMD -0.0058 0.0021 -2.7300 0.0064 

CRT -0.2558 0.1676 -1.5300 0.1270 

IVMD*CRT -0.0046 0.0031 -1.4800 0.1400 
a = log transformed, * denotes an interaction 
Table 7.3 Univariate Models For Each Potential Predictor (with imputation) 
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Imputed 

 

 

 

Mitral Regurgitation a            Obs Events Model L.R. d.f. P Score Score P R2 

 605 289 66.8400 3.0000 0.0000 67.4200 0.0000 0.1100 N 

 813 383 86.3100 3.0000 0.0000 82.5700 0.0000 0.1000 Y 

          

EVSI a 732 349 28.9300 3.0000 0.0000 29.4700 0.0000 0.0400 N 

 813 383 30.4900 3.0000 0.0000 31.3700 0.0000 0.0400 Y 

          

Ischaemic 812 383 67.8300 3.0000 0.0000 65.9500 0.0000 0.0800 N 

 813 383 67.8100 3.0000 0.0000 65.9200 0.0000 0.0800 Y 

          

Ejection Fraction a 745 357 33.4800 3.0000 0.0000 35.4000 0.0000 0.0400 N 

 813 383 38.4900 3.0000 0.0000 41.1300 0.0000 0.0500 Y 

          

Age 813 383 36.8700 3.0000 0.0000 37.7300 0.0000 0.0400 N 

 813 383 36.8700 3.0000 0.0000 37.7300 0.0000 0.0400 Y 

          

Systolic Blood Pressure 803 378 31.8900 3.0000 0.0000 34.0500 0.0000 0.0400 N 

 813 383 30.9900 3.0000 0.0000 32.9200 0.0000 0.0400 Y 

          

Glomerular Filtration Rate 739 338 45.9800 3.0000 0.0000 43.8600 0.0000 0.0600 N 

 813 383 59.2000 3.0000 0.0000 56.1100 0.0000 0.0700 Y 

          

NT-pro-BNP a 732 346 109.3300 3.0000 0.0000 105.0800 0.0000 0.1400 N 

 813 383 102.2200 3.0000 0.0000 101.0200 0.0000 0.1200 Y 

          

IVMD 735 346 52.3500 3.0000 0.0000 49.2400 0.0000 0.0700 N 

 813 383 45.9500 3.0000 0.0000 45.1000 0.0000 0.0600 Y 
a = log transformed 
Table 7.4 Fit Statistics for Univariate Models  
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 coef se(coef) z p 

Mitral Regurgitation a            0.5381 0.1088 4.9470 0.0000 

IVMD 0.0010 0.0034 0.3070 0.7590 

CRT -1.8753 0.8876 -2.1130 0.0346 

Systolic Blood Pressure -0.0087 0.0048 -1.8150 0.0695 

NT-pro-BNP a 0.2720 0.0591 4.6010 0.0000 

Ischaemic 0.6345 0.1349 4.7050 0.0000 

IVMD*CRT -0.0131 0.0050 -2.6390 0.0083 

Systolic Blood Pressure*CRT 0.0172 0.0073 2.3600 0.0183 
a = log transformed 
Table 7.5 Coefficients For Final Model (without imputation) 
 
 

Obs Events Model L.R. d.f. P Score Score P R2 

526 249 130.1900 8.0000 0.0000 121.0200 0.0000 0.2200 
Table 7.6 Fit Statistics For Final Model (without imputation) 
 
 

 coef se(coef) z p 

Mitral Regurgitation a            0.3131 0.0800 4.1100 0.0000 

IVMD -0.0046 0.0025 -1.8810 0.0600 

CRT -1.1993 0.7073 -1.6960 0.0900 

Systolic Blood Pressure  -0.0035 0.0038 -0.9440 0.3450 

NT-pro-BNP a 0.2362 0.0513 4.6070 0.0000 

Ischaemic  0.5280 0.1094 4.8260 0.0000 

IVMD*CRT  -0.0057 0.0034 -1.6550 0.0979 

Systolic Blood Pressure*CRT  0.0075 0.0058 1.2950 0.1950 
Table 7.7 Coefficients For Final Model (with imputation) 
 
 
 
 
 
 

Obs Events Model L.R. d.f. P Score Score P R2 

813 383 174.7200 8.0000 0.0000 165.3600 0.0000 0.1900 
Table 7.8 Fit Statistics For Final Model (with imputation) 
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 index.orig training test optimism index.corrected n 

 

 

Dxy -0.4090 -0.4233 -0.3984 -0.0249 -0.3841 200 
Table 7.9 Validation Results For Final Model (without imputation) 

 
 

 
 
 
 

 index.orig training test optimism index.corrected n 

Dxy -0.3919 -0.3984 -0.3855 -0.0130 -0.3789 200 
Table 7.10 Validation Results For Final Model (with imputation) 

coef se(coef) z p 

 
 
 

 

Mitral Regurgitation a            0.3799 0.0868 4.3800 0.0000 

IVMD -0.0046 0.0028 -1.6500 0.0984 

CRT -0.9963 0.7288 -1.3700 0.1720 

Systolic Blood Pressure -0.0046 0.0038 -1.2100 0.2280 

NT-pro-BNP a 0.2939 0.0471 6.2400 0.0000 

Ischaemic 0.5539 0.1094 5.0600 0.0000 

IVMD*CRT -0.0085 0.0043 -2.0000 0.0455 

Systolic Blood Pressure*CRT 0.0070 0.0059 1.1900 0.2350 
a = log transformed 

able 7.11 Coefficients For Final Model (with multiple imputation (5 imputations)) T
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Chapter 8 Frailty Models 
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Figure 8.1 measurement on 5 hypothetical patients differing slopes 

e figure 8.1 above illustrates a hypothetical situation for five patients on whom ten 

easurements , it appears that the intercept 

e  , but that the slop e  patient to patient. I need to 

 varying slopes. Assuming that the 

Th

kXm Y have been taken at different times

for each pati nt is the same e vari s from

develop a model that takes into account the

variation in the slopes is random, the model  incorporates the kjjk XY )( 10 βαβ ++=

random slopes through the term jα  .The term jα  is known as a random effect. 
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Figure 8.2 measurements on 5 hypothetical patients, differing slopes and intercepts 

e figure 8.2 shows a situation where both the intercept and the slope vary from 

atient to patient, again I need to incorporate the varying slope and intercept into the 

( 10

Th

p

model. The model Y kjjjk X)βαζβ +++= now c s itional random 

effect 

ontain  an add

jζ  , the random intercept; such a model is known as a mixed model. It is 

important to point out that I am not interested in obtaining numerical estimates for 

jα and jζ , I am concerned with whether or not their inclusion improves the model fit. 

I could consider a situation in which I have data on a number of patients who have 

ent at several different hospitals or clinics, for each patient I would 

have a repeated measure  taken at time , also let indicate at which of the 

hospitals or clinics the patient received their treatment. I might find that the slope, 

intercept or both vary depending upon which of the hospitals or clinics the patient 

attended. In this case the model should include 

received treatm

jkY kX mC m  

jα  and/or jζ , random effects for the 

intercept and slope. 
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8.1.0 Frailty 
 
The idea of frailty is another way of incorporating random effects and heterogeneity 

into a model for time to event data (survival model). In most biomedical and 

epidemiological applications the time to event data is assumed to be homogeneous, in 

reality there may be sources of unobserved heterogeneity within the data. For 

example, if x~  is a vector of independent variables (co-variants), it is quite possible 

tha , some powerful predictor of , is missing for whatever reason. It is not 

practical to include all possible covariates, such as when the number of events within 

a particular stratum is very small, or it may be that the particular co-variate has yet to 

be identified.  

 

In a clinical trial, one important potential source of heterogeneity is the treatment 

centre. Section 3.2 of ICH E9 (ICH E9. 1999), (ICH HARMONISED TRIPARTITE 

GUIDELINE 1998) which addresses multicentre trials, places great emphasis on a 

proper treatment of centre effects and states: 

“Up to this point the discussion of multicentre trials has been based on the use of 

fixed effect models. Mixed models may also be used to explore the heterogeneity of 

the treatment effect. These models consider centre and treatment-by-centre effects to 

be random, and are especially relevant when the number of sites is large.” Use of 

frailty models would seem to be in accord with the guidelines laid down in ICH E9 

although at present their use is not advocated. 

 

Taking the proportional hazards model

t unobX Y

xeyhyh
~~

01 )()( β=

unob

, the hazard for each subject 

will be different and determined by . How can I include unobserved co-variates X
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in the proportional hazards model? The answer lies in the idea of frailty. Frailty could 

be described as accident proneness, or in terms of the force of mortality upon a certain 

subject (force of mortality is the hazard function ).  

 

Vaupel (Vaupel et al. 1979) defines frailty in the following way, let 

)( yh

),,( zyxiµ  be the 

force of mortality for an individual in population group , at exact age , at time 

with frailty , then 

i x y  

z
z
z

zyx
zyx

i

i

′
=

′,,(
),,(

µ
µ

 

Now  describes a ’standard individual’, so we get1=′z )1,,(),,(1 yxzzyx iµµ = . An 

individual with a frailty of 3 is 3 times as likely to die or exp  

interest as the standard individual. Following Vaupel’s no

erience the event of

tation I write 

),,( zyxiµ as )(zµ , )1,,( yxiµ  as )1(µ orµ . So I have µµ zz =)( . I could apply this 

idea to the proportional hazards model to arrive at )~~exp(
)(
),(

0

1 xz
y
zy

β
µ
µ

=

)

. Rearranging 

the above formula gives . The above is an example of a 

univariable frailty m odel is an extension of Cox Proportional 

Hazards model . The fra nt of the random effects model for 

time to event data. It m  is a random variable, also I must have 

, this dictates the choice of distribution for .  

 

Typical choices for the distribution of z include the Gamma 

distribution

~~exp()(),( 01 xzyzy βµµ =

odel; this frailty m

ilty model is the equivale

ust remembered that z

0≥z z

)(
),(

1

ϕ
λλ

λϕϕ

Γ
=

−− zezzf .Where λ  is scale parameter, ϕ  is a shape parameter 

and )(λΓ is the Gamma function . The Gamma distribution is a ∫
∞

−−=Γ
0

1)( dueu uλλ
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logical choice for the distribution of ; as  is non-negative this makes the Gamma 

distribution a sensible choice. Vaupel (Vaupel et al. 1979) states that frailty was 

assumed to follow the Gamma distribution because the distribution is “analytically 

tractable and readily computable”. The Gamma distribution is flexible in the sense 

that, as

z z

 ϕ  varies, the distribution can take on different shapes. Also in Vaupel 

(Vaupel l. 1979) describes two convenient mathematical results that arise from the 

assumption that frailty follows the Gamma distribution. I see that if , then the 

hazard for an individual will be reduced, and if , then the hazard is increased.  

 

The important point is that, in the frailty model, the hazard for an individual is 

determined by both observed and unobserved factors. The following papers (Wienke 

2003), (Manton et al. 1986), (Hougaard 1991), (Hougaard 1984) and (Perperoglou et 

al. 2007) are highly informative and contain m terial detailing the motivation and 

development of frailty models along with discus on on the issue of the distribution of 

the frailty. Including frailty in a prognostic su odel seems to be a very natural 

and highly appealing thing to do.  

 

In recent years, faster CPUs have meant that so  of the previous difficulties (relating 

to numerical methods) encountered when tr models have been 

overcome. Consequently, it is now quite possi it a frailty model in situations 

where previously this may have been difficult and we no longer have to simply ignore 

centre effects.   

 

et a

1<z

1>z

a
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8.2.0 Fitting a Frailty Model to the CARE-HF data 
 
 
I shall now proceed to fit a univariable gamma frailty model to the CARE HF data 

(Richardson et al. 2007) whilst at the same time applying elements of Harrell et al.’s 

(1996) approach. Earlier the following covariates where identified as being potential 

predictors of outcome and response to CRT: 

 
• Mitral Regurgitation (MR) 

• Interventricular Mechanical Delay (IVMD) 

• End-systolic volume index (ESVI) 

• Glomerular Filtration Rate (GFR) 

• Systolic Blood Pressure (SBP) 

• Ejection Fraction (EF) 

• N-terminal pro-brain natriuretic peptide (NT-pro-BNP) 

• Age 

• Aetiology  (Ischaemic)  

 
As before I start by fitting a proportional hazards model for each of the potential 

predictors identified above (univariable analysis), using Mitral Regurgitation as an 

example we would fit the model CRTCRTMRMR ++ )*(  where  is an 

interaction term. We assume also that the transformations applied in C re 

still used, so we would consider

CRTMR*

hapter 3 a

CRTCRTMRMR ee ++ )*)((log)(log .  Now in 

addition I shall include a frailty term, the frailty term is assumed to follow the gamma 

distribution; this extended Cox Proportional Hazards model is a gamma frailty model. 
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For the CARE-HF study the treatment centre that each patient attended was recorded 

in the form of the variable SiteNum (site number), for the CARE-HF study there were 

82 centres across Europe. Centre effects are modeled using the idea of grouped frailty, 

for example patients who received treatment at the same hospital would be regarded 

as sharing a common frailty. Centre effects are of interest due varying clinical skills, 

case-mix, technology, funding and so on. I shall model site number as a grouped 

frailty term, i.e. each treatment centre represents a group of patients; frailty can be 

also be modeled at an individual level, an individual patient characteristic could be 

treated as a frailty term.   

 

Univariate models are produced for each of the other potential predictors; I then 

include significant (5% level) covariates and interaction terms from these univariable 

models as candidates in the final model. The models were fitted using coxph (R 

survival package Terry Therneau 2009) from the recommended base survival package 

in GNU R version 2.7.2 (R Foundation for Statistical Computing 2009). In Tables 

8.1-8.9, coefficients are presented for each of the univariable models. Note that, with 

coxph, automated stepdown or stepwise selection is not possible. Table 8.11 shows 

the final conventional Cox Proportional Hazards model presented in (Richardson et 

al. 2007) (see Chapter 2 for a full discussion of this model). 

 

The final frailty model shown in Table 8.10 is obtained in the following way: all co-

variates that are statistically significant (5% level) in the univariable analysis are 

considered as candidates for inclusion in the final model; a non-stepwise backward 

selection procedure is then applied resulting in the final (frailty) model. It can be seen 

from Table 8.10 that SiteNum is not significant; this suggests that the conventional 
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Cox Proportional Hazards model may be adequate, i.e. the data not observed to be 

heterogeneous with respect to treatment centre. However it can be argued that even if 

the frailty term is not statistically significant, it should be retained, i.e. we adopt the 

frailty model. The overheads in terms of model complexity and computational 

resources are not so great that we would abandon the frailty model in favour of the 

conventional Cox Proportional Hazards model. It may in fact be natural and 

appropriate as far as the design of a model is concerned to include a frailty term.  

 

Comparing Tables 8.10 and 8.11 it is seen that the final models are similar. The 

likelihood ratio test for the frailty model gives a slightly larger value than that for the 

Cox Proportional Hazards model, however this result is not statistically significant. 

The confidence interval and p-values produced for both models are consistent. If 

heterogeneity had been present in the data, and I was to fit a conventional Cox 

Proportional Hazards model I am liable to obtain confidence intervals that are too 

narrow and p-values that are too small. The frailty models I have considered are 

relatively simple, for example I have not attempted to fit a frailty model where some 

of the co-variates required transformation via cubic splines or fractional polynomials. 

Validation of the frailty model presented in Table 8.10 was not performed as both  

Therneau’s survival package  and Harrell’s Design package do not have the facility to 

validate frailty models. This is a drawback I hope that at some point in the future it 

will be possible to routinely validate frailty models in GNU R. As far as I am aware 

the situation is no different in SAS, in fact it is rather difficult to even produce frailty 

models easily and efficiently in SAS.    
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8.2.1 Tables 8.1-8.9 Univariable Frailty Models For Each Potential Predictor 
(without imputation) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Likelihood ratio test = 67.9 on 3.49 df,   p<0.0001 
a = log transformed, * denotes an interaction 
Table 8.1 Univariate Analysis Mitral Regurgitation (MR) n=605 (208 observations deleted due to 
missingness) 
 
 

 
 
 
 
 

Likelihood ratio test = 62 on 17.0 df,   p<0.0001 
a = log transformed, * denotes an interaction 
Table 8.2 Univariate Analysis End-systolic volume index (ESVI) n=732 (81 observations deleted due 
to missingness) 
 
 
 

 Hazard Ratio CI lower 95 % CI upper 95 % p 
Mitral Regurgitation a              2.1300 1.6820 2.7200 p<0.0001 
CRT 1.8450 0.5870 5.8000 0.2900 
frailty(SiteNum)                              0.2400 
Mitral Regurgitation a *CRT   0.7160 0.5010 1.0200 0.0670 

 Hazard Ratio CI lower 95 % CI upper 95 % p 
EVSI a 1.5250 1.0715 2.1700 0.0190 
CRT 0.5490 0.0326 9.2200 0.6800 
frailty(SiteNum)         0.1600 
ESVI a*CRT 1.0220 0.5701 1.8300 0.9400 
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 Hazard Ratio CI lower 95 % CI upper 95 % p 
Ischaemic 1.7070 1.3030 2.2360 p<0.0001 
CRT 0.4770 0.3490 0.6520 p<0.0001 
frailty(SiteNum)         0.1900 
Ischaemic*CRT 1.4980 0.9850 2.2780 0.0590 
Likelihood ratio test = 97.6 on 15.7 df,   p<0.0001 
* denotes an interaction 
Table 8.3 Univariate Analysis Aetiology (Ischaemic) n=812 (1 observation deleted due to missingness) 
 
 
 
 Hazard Ratio CI lower 95 % CI upper 95 % p 
Ejection Fraction a 0.3820 0.2176 0.6700 0.0008 
CRT 0.3310 0.0191 5.7300 0.4500 
frailty(SiteNum)                        0.3200 
Ejection Fraction a *CRT 1.2260 0.5001 3.0000 0.6600 
Likelihood ratio test = 45.2 on 8.3 df,   p<0.0001 
a = log transformed, * denotes an interaction 
Table 8.4 Univariate Analysis Ejection Fraction (EF) n=745 (68 observations deleted due to 
missingness) 
 
 
 
 Hazard Ratio CI lower 95 % CI upper 95 % p 
Age 1.0240 1.0090 1.0400 0.0014 
CRT 0.8500 0.2030 3.5600 0.8200 
frailty(SiteNum)         0.3400 
Age*CRT 0.9950 0.9740 1.0200 0.6600 
Likelihood ratio test = 45.9 on 7.09 df,   p<0.0001 
a = log transformed, * denotes an interaction 
Table 8.5 Univariate Analysis Age n= 813  
 
 
 
 Hazard Ratio CI lower 95 % CI upper 95 % p 
Systolic Blood Pressure 0.9870 0.9795 0.9950 0.0012 
CRT 0.1440 0.0332 0.6260 0.0098 
frailty(SiteNum)       0.2900 
Systolic Blood Pressure*CRT 1.0130 1.0000 1.0250 0.0490 
Likelihood ratio test = 36.2 on 4.77 df,   p<0.0001 
a = log transformed, * denotes an interaction 
Table 8.6 Univariate Analysis Systolic Blood Pressure (SBP) n=803 (10 observations deleted due to 
missingness) 
 
 
 
 Hazard Ratio CI lower 95 % CI upper 95 % p 
Glomerular Filtration Rate 0.9870 0.9800 0.9940 p<0.0001 
CRT 0.7420 0.3740 1.4730 0.3900 
frailty(SiteNum)       0.2500 
Glomerular Filtration Rate*CRT 0.9970 0.9860 1.0080 0.5800 
Likelihood ratio test = 47.1 on 3.52 df,   p<0.0001 
a = log transformed, * denotes an interaction 
Table 8.7 Univariate Analysis Glomerular Filtration Rate (GFR) n=739 (74 observations deleted due to 
missingness) 
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 Hazard Ratio CI lower 95 % CI upper 95 % p 
NT-pro-BNP a 1.4750 1.3142 1.6600 p<0.0001 
CRT 0.3310 0.0796 1.3800 0.1300 
frailty(SiteNum)       0.8900 
NT-pro-BNP a*CRT 1.0820 0.9058 1.2900 0.3900 
Likelihood ratio test = 109 on 3 df,   p<0.0001 
a = log transformed, * denotes an interaction 
Table 8.8 Univariate Analysis N-terminal pro-brain natriuretic peptide (NT-pro-BNP) n=732 (81 
observations deleted due to missingness) 
 
 
 
 
 Hazard Ratio CI lower 95 % CI upper 95 % p 
IVMD 0.9920 0.9870 0.9970 0.0023 
CRT 0.9250 0.6240 1.3690 0.7000 
frailty(SiteNum)       0.2000 
IVMD*CRT 0.9920 0.9840 1.0000 0.0400 
Likelihood ratio test = 77.5 on 13.6 df,   p<0.0001 
a = log transformed, * denotes an interaction 
Table 8.9 Univariate Analysis Interventricular Mechanical Delay (IVMD) n=735 (78 observations 
deleted due to missingness) 
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 Hazard Ratio CI lower 95 % CI upper 95 % p 
Mitral Regurgitation a              1.7160 1.3857 2.1240 p<0.001 
IVMD 1.0010 0.9944 1.0080 0.7700 
CRT 0.1510 0.0265 0.8670 0.0340 
frailty(SiteNum)       0.2700 
Systolic Blood Pressure 0.9914 0.9821 1.0007   0.0720 
NT-pro-BNP a 1.3140 1.1699 1.4759 p<0.001 
Ischaemic 1.8887 1.4491 2.4618 p<0.001 
IVMD*CRT             0.9870               0.9774               0.9966  0.0084 
Systolic Blood Pressure*CRT 1.0174 1.0030 1.0321   0.0180 
Likelihood ratio test = 133 on 9.07 df,   p<0.0001 
a = log transformed, * denotes an interaction 
Table 8.10 Final model n=526 (287 observations deleted due to missingness) 
 
 
 
 
 
 Hazard Ratio CI lower 95 % CI upper 95 % p 
Mitral Regurgitation a              1.7128 1.3839 2.1199 p<0.001 
IVMD 1.0010 0.9945 1.0080 0.7600 
CRT 0.1533 0.0269 0.8733 0.0350 
Systolic Blood Pressure 0.9914 0.9821 1.0010 0.0700 
NT-pro-BNP a 1.3126 1.1690 1.4739 p<0.001 
Ischaemic 1.8868 1.4486 2.4576 P<0.001 
IVMD*CRT 0.9870 0.9774 0.9966 0.0083 
Systolic Blood Pressure*CRT 1.0173 1.0029 1.0320 0.0180 
Likelihood ratio test = 130 on 8 df,   p<0.0001 
a = log transformed, * denotes an interaction 
Table 8.11 Final (non frailty) model  
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CHAPTER 9 CONCLUSION 
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troduction 

ork I have been concerned with producing a good quality prognostic model 

ARE-HF data (Richardson et al. 2007). The prognostic model developed for 

E-HF data represents a significant real world example of a prognostic model, 

 aware that the model has been made use of in practice. The prognostic model 

ARE-HF data indicates that all patients are likely to benefit from cardiac 

ronisation therapy, i.e. the treatment modifiers identified in the model are 

ne way of validating the model developed for the CARE-HF data would be to 

to new data. Apart from the COMPANION study (Bristow et al. 2004) there 

en no investigations comparable to the CARE-HF study. Unfortunately 

al patient data from the COMPANION study although requested has not been 

ailable. It is unlikely that further investigation of CRT will be undertaken as 

it has been established. The difficulties and problems encountered when 

g this model are likely to be experienced by other researchers when they 

forts to deal issues such as functional form, over-fitting, optimism and 

n. In producing the model for the CARE-HF data I found that when one 



 

attempts to employ a strategy such as the one suggested by Harrell and colleagues 

(Harrell et al. 1996) one ends up having to consider the fundamental problem of 

model fitting. The topic of model selection is a deep one; I have great admiration for 

the skill and insight displayed by researchers into this problem.   

I have come to an appreciation of the complexity surrounding the problem of 

developing a good prognostic model. This work it is hoped has served as an 

accessible guide to some of the main methods that feature in the process of fitting a 

prognostic model, (or a model in general). Implementing an approach such as 

Harrell’s is not a trivial task. I believe that I have identified some important 

limitations in Harrell’s strategy. I shall now present a brief summary of the material 

covered in the course of this work and indicate important points that have arisen.  

9.1.0 Summary of Main Topics 
 
Chapter 1 contained an introductory discussion a definition of a prognostic model was 

ver-fitting was introduced along with the idea of optimism. In 

Chapter 2 the prognostic model developed for the CARE-HF data was described and 

discussed.  The development of this model was in itself a substantial piece of work. 

Absolute risk estimates and risk score where discussed in chapter 3, I presented a risk 

score calculator based on the prognostic model for the CARE-HF data. The problem 

of functional form was investigated in chapter 4. Use of cubic splines and fractional 

polynomials was discussed. In chapter 5 model fit was considered, the AIC was 

described in some detail. Over-fitting and optimism were discussed in further detail in 

chapter 6. Validation methods were also considered. Missing data and imputation 

were discussed in chapter 7. Chapter 8 introduced the idea of a frailty model.  

This work has provided me with a great many questions and future areas of 

investigation. In chapter 1 of this work I stated that the whole question of 

given, the problem of o
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generalizabilty is a complex one. The following questions were then asked. Should we 

expect to achieve more general results in the physical sciences? Do biomedical 

applications present us with special problems? The answer to both of these questions 

is probably no. Over-fitting is a problem for researchers working in the fields of 

Physics, Astronomy and other physical sciences. Over-fitting is also a problem in 

Ecological, Economic and Financial models (Ginzburg & Jensen 2004). The 

prognostic model described in chapter 2 of this work prompts me to consider a 

practical question that researchers may have to consider in regard to choice of 

software. An implementation of Harrell’s design library does exist for SAS; however 

this is an old version, development is focused on the S-Plus and R versions. Given 

that SAS is a widely used system an up-to-date and user friendly version for SAS 

would be of great value. There may be many researchers who for a variety of reasons 

may not be able to adopt R or S-Plus. Hmisc also seems to suffer from a lack of up-to-

date versions that could easily be installed on a recent version of SAS.   

In the discussion of cubic splines in chapter 4 it might be useful to reflect on Harrell’s 

use of the restricted cubic spline (Harrell et al. 1996), (Herndon & Harrell 1990). 

What clinical/biological evidence there is to support this particular choice for the 

functional form of the model? Use of cubic splines may improve the fit of the model 

(on the original data), and when considering model validation goodness of fit is a 

basic criterion. As Altman and Royston point out in (Altman & Royston 2000) a 

statistically valid model may be clinically invalid. A choice of functional form that 

improves model fit and so leads to a statistically valid model, may not lead to a 

clinically valid model. The biological plausibility of the model is a matter for the 

medical expert to consider. Harrell’s strategy has been central element of many of the 

discussions in the work, what general remarks would I make about Harrell et al.’s 
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approach? I am of the view that adopting Harrell’s recommendations for avoiding 

over-fitting should certainly be included as part of the process of fitting a prognostic 

model. Harrell encourages inter-disciplinary collaboration, clinicians should be 

consulted by the statistician throughout the modelling process, this is vital if the 

model is to be a sensible.  Harrell’s approach allows the researcher to determine if 

there is a risk of over-fitting by use of the inequality 10<
p

N E . The extent of over-

fitting is gauged via an estimation of the optimism. What in built mechanism exists 

within Harrell’s approach that will minimise the risk of over-fitting? This question 

could be answered by noting that model selection based on the AIC or BIC is 

implemented as part of Harrell’s software. However using Harrell’s approach it is still 

quite easy to produce a model that is over-fitted. In chapter 8 of this work frailty 

 that it does not 

cant omission.  What alternative 

t enable the researcher to produce reliable and 

t I have found to offer 

s to model fitting. In no way do I mean to suggest 

er fruitful areas 

for fu

 

 

models were considered, one of the limitations of Harrell’s approach is

encompass frailty models. I believe this to be a signifi

approach could be adopted that migh

accurate prognostics models? I will now outline some areas tha

potentially useful alternative method

that they are better than the strategy devised by Harrell, but may off

rther investigation. 
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9.2.0 Alternative Modelling Techniques 

could be 

ere 

odelling that could offer better results in 

thmic Modelling  

t e that the 

 a model the better. This is on the surface a quite 

reasonable assumption, as the number of variables is in some way equated to 

‘information’. The more variables we have in the model, the better the description of 

reality provided by the model. It can be difficult for someone to appreciate the 

concept of parsimo

 a model, but 

t be clearly elucidated.  It might be argued that if 

 a parsimonious 

to difficulty with over-fitting. The conventional 

istic for a model, one 

a 

. There is an alternative view of 

parsimony; it could be argued that by seeking to produce a model based on Occam’s 

razor unrealistic restrictions have been imposed. Real world situations such as those 

echanisms; therefore the model may be 

 
Throughout this work the modelling techniques discussed have been what 

described as traditional, i.e. the Cox proportional hazards model. Are th

alternatives to the traditional approaches to m

regard to the problem of over-fitting? 

9.2.1 Data Modelling and Algori
 

 uncommon for a researcher new to statistical modelling to assumIt is no

more variables that are included in

ny in statistical modelling. In some introductory courses on 

statistics the idea of parsimony is mentioned as an important feature of

the reason for its importance may no

researchers new to statistical modelling do not appreciate the idea of

model they may be likely to get in

view is that parsimony is a necessary and desirable character

would expect a simple parsimonious model to be more easily interpreted than 

complex model containing a large number of variables

presented in medicine involve complex m

ex ely complex. Breiman argues in (Breiman 2001) that instead trem of aiming to 
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minimise the dimension of a model it should be increased. Breiman propounds the 

acy is concerned the best model is the most 

on.    

Breiman describes two approaches toward statistical

 

• Data Modelling 

ic Modelling 

stochastic model, conventional techniques 

ression, Cox regression are examples of data 

rithmic 

g s chas c mo el; ins  a black box approach 

is adopted. The independent variables 

idea that so far as predictive accur

complex one; in fact so complex that it may defy interpretati

 
 modelling 

• Algorithm

 

Data modelling supposes the existence of a 

such as linear regression, logistic reg

modelling. The data is used to estimate the parameters in the model. Algo

modelling does suppose some existin to ti d tead

X of the data model are considered as inputs to 

rates the dependent 

(s) . The aim of data modelling is to find some function  that will 

l network, or a support 

vector. Algorithmic modelling is not based on the principle of parsimony; Breiman 

 demands a more complex prediction method, i.e. a 

rithmic models 

els. There is with the algorithmic 

lling the problem of interpretability of the resulting model. If the 

odel is so complex as to be beyond interpretation what good is this to a clinician? 

ble to acquire useful information the independent 

nformation and 

 model is easy to interpret but provides no 

a black box which contains the unknown mechanism that gene

variable  Y )(xf

predict y . The function )(xf  is an algorithm such as a neura

argues that predictive accuracy

more complex model; further Breiman (Breiman 2001) states that algo

can provide better predictive accuracy than data mod

approach to mode

m

Breiman argues that it is still possi

and the dependent variables. A distinction is made between i

interpretability, it might be that a simple
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‘real’ information about e relation hip betwe n th  independent and dependent 

r too simple a picture. I 

ely interesting. 

nces would there be a genuine benefit in using an Algorithmic 

ping a prognostic model as opposed to the ‘traditional’ data 

r an advantage in so far as a reduced 

is concerned?  Are Algorithmic models inherently less prone to 

fitting? Is it possible with an Algorithmic model to build into it a mathematical 

‘resistance’ to over-fitting?  Neural networks are certainly prone to over-fitting 

vector machines (Mierswa 2007). The present 

iques.  

r-

 in the theory 

ic complexity and information theory. In the MDL context a statistical 

model is considered as a description of the data, model selection is then based on the 

idea of choosing the smallest description. If a data set possesses regularity then it is 

possible to compress the data. By compress is meant the idea that the data can be 

described using less symbols or characters than would be needed to provide a literal 

description.  The size of the description depends upon the detecting regularity within 

the data, the more regularity that the data exhibits the smaller the description, i.e. the 

smaller the model. The process of finding patterns or regularity within a data set is 

known as learning the data. Hansen and Yu (Hansen & Yu 2003) point out a major 

deficiency in model selection based on maximum likelihood, i.e. that the largest 

th s e e

variables, I can picture the model, but it is the wrong picture, o

find Breiman’s arguments extrem

In certain circumsta

approach in develo

modelling approach? Do Algorithmic models offe

risk of over-fitting 

over-

(Lawrence et al. 1997) as are support 

author would very much like to pursue an investigation of Algorithmic modelling 

techniques and compare them against comparable data modelling techn

9.3.0 MDL  
 
An exciting approach to model selection which may overcome the problem of ove

fitting is MDL (the Minimum Description Length). MDL has its origins

of algorithm
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model is the preferred choice. In chapter 5 of this work the AIC was discussed as a 

model selection tool, the AIC introduced a penalty term in order to correct the 

maximum likelihood model selection process.  Hansen and Yu (Hansen & Yu 2003) 

state that the AIC performs well as a model selection tool if the underlying model is 

known to be of infinite dimension, but we do not generally have this information. 

MDL is proposed as a model selection method that is independent of the underlying 

model, and so is described as an adaptive method. The claim that MDL automatically 

protects against over-fitting (Rissanen 1978) can also be made for the AIC (due to the 

penalty term), the fact that MDL does not require the assumption of some underlying 

‘true’ model is highly attractive feature. In the same way MDL may have benefits 

ompression is a fundamental idea in MDL methods, there is a relationship between 

equality (Kraft 1949)) this leads to the idea that MDL methods search for a model 

 also 

lated to cross validation (Rissanen 1978). MDL unlike the Algorithmic modelling 

 a 

parsimonious model. The present author considers MDL as a potentially serious 

alternative to Harrell’s approach. A comparison of models produced using MDL 

methods against those produced using Harrell’s approach would be a most interesting 

project. The automatic protection against over-fitting afforded by MDL is of 

considerable benefit. With Harrell’s approach the onus is to a greater extent on the 

 

rmed the impression that MDL may represent a more cohesive approach than 

over the BIC, in the sense that the BIC performs well if the underlying model is of 

finite dimension, again for the BIC a ‘true’ underlying model is assumed. Data 

c

data compression and probability (this relationship can be expressed through Kraft’s 

in

with good predictive power on new unseen data (Rissanen 1978).  MDL is

re

discussed by Breiman (Breiman 2001) is based on Occam’s razor, and so aims at

researcher so far as taking steps to reduce the risk of over-fitting is concerned. I have

fo
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Harrell’s.  The following material provides useful information MDL methods 

(Rissanen 1986), (Rissanen 1987), (Grunwald 2004) and (Hansen & Yu 2001) 

 

9.4.0 Recommendations 
 

9.4.1 Statistical Training And Accessible Literature 
 
I believe that for Harrell’s approach to be widely and routinely adopted the key issues 

of over-fitting and optimism need to be explained in a way that is intelligible to the 

troductory courses on statistical modelling should cover the topics of over-fitting 

It 

ppears that the issues of over-fitting, optimism and model validation come back to 

is all about. Harrell el al’s modelling strategy as described in (Harrell et al. 

e developed.  

isc, the RCS macro and the MFP macro can be rather daunting. I 

wkward to 

ates cubic splines, fractional polynomials, imputation and validation methods 

would be of considerable value. Harrell’s software does indeed combine cubic splines 

 

non-technical expert at the point when they begin learning about statistics. 

In

and optimism as a matter of routine and in tandem with modules on regression. 

a

haunt researchers some while after they have learnt what a Cox proportional Hazards 

model 

1996) can be hard to follow and understand, a clearer exposition aimed at the non-

atistician could bst

9.4.2 User friendly software 
 
Software such as Hm

can imagine that even fairly computer literate researchers might find them a

use. Efforts to develop a more user friendly integrated modelling package that 

incorpor
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imputation and validation methods; however there are instances when the software 

proves to be awkward or limited. 

 

9.4.3 Investigation of MDA Methods 
 
An investigation of MDA methods applied to prognostic models would be in my 

opinion a useful piece of work. I intend to investigate further the theoretical and 

simulation studies relating to the AIC and BIC in conjunction with material on MDA 

methods. This will be done with a view to clarifying what advantages MDA may 

present as a model selection tool. 

9.4.4 Frailty Models 
 
Further investigation of frailty models is also an area that I intend to explore. The 

survival package in GNU R offers the facility to fit frailty models; model fit is 

007); I 

would be interested attempting to implement this form of the AIC in software. 

Application of MDA methods to frailty models is of considerable interest to me.

reported via the likelihood ratio test. A form of the AIC for the frailty model as 

discussed in Chapter 5 has been proposed by Do Ha et al. (Do Ha et al. 2
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Appendices 

Appendix 1.0.0 SAS CODE 
 
 

 

proc univariate data=card.prognostic; 
    var mitral_r IVMD ESVI GRF QRS supsys supdia BSA HeartRate 
a4cLVEjectionFraction Roche Age; 
run; 
data card.progex; 
   set card.prognostic;  
   if mitral_r ^= '.' and mitral_r < 11. then mitral_grp=1; 
   if mitral_r ^= '.' and (mitral_r >= 11 and mitral_r < 22) then 
mitral_grp=2; 
   if mitral_r ^= '.' and (mitral_r >=22 and mitral_r < 34) then 
mitral_grp=3; 
   if mitral_r ^= '.' and mitral_r >= 34 then mitral_grp=4; 
   trmit=treat*mitral_r; 
   lmit=log(mitral_r); 
   trlmit=treat*lmit; 
   pmit=1/(sqrt(mitral_r)); 
   tpmit=treat*pmit; 
   tanmit=tan(mitral_r); 
   if IVMD ^= '.' and IVMD < 31 then IVMD_grp=1; 
   if IVMD ^= '.' and (IVMD >= 31 and IVMD < 49) then IVMD_grp=2; 
   if IVMD ^= '.' and (IVMD >=49 and IVMD < 67) then IVMD_grp=3; 
   if IVMD ^= '.' and IVMD >= 67 then IVMD_grp=4; 
   trivm=treat*IVMD; 
   ShIVMD=IVMD+60; 
   lShIVMD=log(ShIVMD); 
   trlShIVMD=treat*lShIVMD; 
    
   if ESVI ^= '.' and ESVI < 93 then ESVI_grp=1; 
   if ESVI ^= '.' and (ESVI >= 93 and ESVI < 119) then ESVI_grp=2; 
   if ESVI ^= '.' and (ESVI >=119 and ESVI < 149) then ESVI_grp=3; 
   if ESVI ^= '.' and ESVI >= 149 then ESVI_grp=4; 
   tresv=treat*ESVI; 
   lesv=log(ESVI); 
   trlesv=treat*lesv; 
   if GRF ^= '.' and GRF < 46 then GRF_grp =1; 
   if GRF ^= '.' and (GRF >= 46 and GRF < 60) then GRF_grp =2; 
   if GRF ^= '.' and (GRF >= 60 and GRF < 73) then GRF_grp =3; 
   if GRF ^= '.' and GRF >= 73 then GRF_grp=4; 
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   trgrf=treat*GRF; 
   lgrf=log(GRF); 
   trlgrf=treat*lgrf; 
   if QRS ^='.' and QRS < 152 then QRS_grp =1; 
   if QRS ^='.' and (QRS >= 152 and QRS < 160) then QRS_grp =2; 
   if QRS ^='.' and (QRS >= 160 and QRS < 180) then QRS_grp =3; 
   if QRS ^='.' and QRS >= 180 then QRS_grp=4; 
   trqrs=treat*QRS; 
   lqrs=log(QRS); 
   trlqrs=treat*lqrs; 
   if supsys ^='.' and supsys < 105 then supsys_grp =1; 
   if supsys ^='.' and (supsys >= 105 and supsys < 117) then 
supsys_grp =2; 
   if supsys ^='.' and (supsys >= 117 and supsys < 130) then 
supsys_grp =3; 
   if supsys ^='.' and supsys >= 130 then supsys_grp=4; 
   trsup=treat*supsys; 
   lsup=log(supsys); 
   trlsup=treat*lsup; 
   if supdia ^='.' and supdia < 60 then supdia_grp =1; 
   if supdia ^='.' and (supdia >= 60 and supdia < 70) then supdia_grp 
=2; 
   if supdia ^='.' and (supdia >= 70 and supdia < 80) then supdia_grp 
=3; 
   if supdia ^='.' and supdia >= 80 then supdia_grp=4; 
   trdia=treat*supdia; 
   ldia=log(supdia); 
   trldia=treat*ldia; 
   if BSA ^='.' and BSA < 1.73 then BSA_grp=1; 
   if BSA ^='.' and (BSA >= 1.73 and BSA < 1.88) then BSA_grp=2; 
   if BSA ^='.' and (BSA >= 1.88 and BSA < 2.01) then BSA_grp=3; 
   if BSA ^='.' and BSA >=2.01 then BSA_grp=4; 
   trbsa=treat*BSA; 
   lbsa=log(BSA); 
   trlbsa=treat*lbsa; 
   if HeartRate ^='.' and HeartRate < 60 then HeartRate_grp=1; 
   if HeartRate ^='.' and (HeartRate >= 60 and HeartRate < 69) then 
HeartRate_grp=2; 
   if HeartRate ^='.' and (HeartRate >= 69 and HeartRate < 78) then 
HeartRate_grp=3; 
   if HeartRate ^='.' and HeartRate >=78 then HeartRate_grp=4; 
   trhea=treat*HeartRate; 
   lhea=log(HeartRate); 
   trlhea=treat*lhea;  
   if a4cLVEjectionFraction ^= '.' and a4cLVEjectionFraction < 22 
then EF_grp =1; 
   if a4cLVEjectionFraction ^= '.' and (a4cLVEjectionFraction >= 22 
and a4cLVEjectionFraction < 25) then EF_grp =2; 
   if a4cLVEjectionFraction ^= '.' and (a4cLVEjectionFraction >= 25 
and a4cLVEjectionFraction < 29) then EF_grp =3; 
   if a4cLVEjectionFraction ^= '.' and a4cLVEjectionFraction >= 29 
then EF_grp=4; 
   tra4c=treat*a4cLVEjectionFraction; 
   la4c=log(a4cLVEjectionFraction); 
   trla4c=treat*la4c; 
   if Roche ^='.' and Roche < 744 then Roche_grp =1; 
   if Roche ^='.' and (Roche >= 744 and Roche < 1814) then Roche_grp 
=2; 
   if Roche ^='.' and (Roche >= 1814 and Roche < 4198) then Roche_grp 
=3; 
   if Roche ^='.' and Roche >= 4198 then Roche_grp=4; 
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   trroc=treat*Roche; 
   lroc=log(Roche); 
   trlroc=treat*lroc; 
   if Age ^= '.' and Age < 59 then Age_grp =1; 
   if Age ^= '.' and (Age >= 59 and Age < 66) then Age_grp =2; 
   if Age ^= '.' and (Age >= 66 and Age < 72) then Age_grp =3; 
   if Age ^= '.' and Age >= 72 then Age_grp=4; 
   trage=treat*Age; 
   lage=log(Age);   
   trlage=treat*lage; 
run; 
quit; 
  
proc phreg data=card.progex; 
     title 'phreg treat treat*mitral_r futime';  
     model futime*primary(0)=treat mitral_r trmit /RL; 
run; 
quit; 
 
proc phreg data=card.progex; 
     title 'phreg treat treat*log(mitral_r) futime'; 
  model futime*primary(0)=treat lmit trlmit /RL; 
run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(Mital_r Spline), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\mitral.sas), 
   TIME=futime, status=primary, 
   COV1=mitral_r,WHAT1=0,KNOTS1=11 22 34 66,  
   COV2=trmit,WHAT2=0,KNOTS2=11 22 34 66, 
   COV3=treat 
);  
 
proc phreg data=card.progex; 
     title 'phreg treat treat*IVMD futime';  
     model futime*primary(0)=treat IVMD trivm /RL; 
run; 
quit; 
proc phreg data=card.progex; 
     title 'phreg treat treat*log(IVMD)futime'; 
  model futime*primary(0)=treat lShIVMD trlShIVMD /RL; 
run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(IVMD Spline), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\IVMD.sas), 
   TIME=futime, status=primary, 
   COV1=IVMD,WHAT1=0,KNOTS1=31 49 67 115,  
   COV2=trivm,WHAT2=0,KNOTS2=31 49 67 115, 
   COV3=treat 
);  
proc phreg data=card.progex; 
     title 'phreg treat treat*ESVI futime';  
     model futime*primary(0)=treat ESVI tresv /RL; 
run; 
quit; 
proc phreg data=card.progex; 
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     title 'phreg treat treat*log(ESVI) futime'; 
  model futime*primary(0)=treat lesv trlesv /RL; 
run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(ESVI Spline), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\ESVI.sas), 
   TIME=futime, status=primary, 
   COV1=ESVI,WHAT1=0,KNOTS1=93 119 149 295,  
   COV2=tresv,WHAT2=0,KNOTS2=93 119 149 295, 
   COV3=treat 
);  
proc phreg data=card.progex; 
     title 'phreg treat treat*GRF futime';  
     model futime*primary(0)=treat GRF trgrf /RL; 
run; 
quit; 
proc phreg data=card.progex; 
     title 'phreg treat treat*log(GRF) futime'; 
  model futime*primary(0)=treat lgrf trlgrf /RL; 
run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(GRF Spline), 
 DATA  =progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\GRF.sas), 
   TIME=futime, status=primary, 
   COV1=GRF,WHAT1=0,KNOTS1=46 60 73 125,  
   COV2=trgrf,WHAT2=0,KNOTS2=46 60 73 125, 
   COV3=treat 
);  
proc phreg data=card.progex; 
     title 'phreg treat treat*QRS futime';  
     model futime*primary(0)=treat QRS trqrs /RL; 
run; 
quit; 
proc phreg data=card.progex; 
     title 'phreg treat treat*log(QRS) futime'; 
  model futime*primary(0)=treat lqrs trlqrs /RL; 
run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(QRS Spline), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\QRS.sas), 
   TIME=futime, status=primary, 
   COV1=QRS,WHAT1=0,KNOTS1=152 160 180 218,  
   COV2=trqrs,WHAT2=0,KNOTS2=152 160 180 218, 
   COV3=treat 
);  
proc phreg data=card.progex; 
     title 'phreg treat treat*supsys futime';  
     model futime*primary(0)=treat supsys trsup /RL; 
run; 
quit; 
proc phreg data=card.progex; 
     title 'phreg treat treat*log(supsys) futime'; 
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  model futime*primary(0)=treat lsup trlsup /RL; 
run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(Supsys Spline), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\Supsys.sas), 
   TIME=futime, status=primary, 
   COV1=supsys,WHAT1=0,KNOTS1=105 117 130 165,  
   COV2=trsup,WHAT2=0,KNOTS2=105 117 130 165, 
   COV3=treat 
);  
proc phreg data=card.progex; 
     title 'phreg treat treat*BSA futime';  
     model futime*primary(0)=treat BSA trbsa /RL; 
run; 
quit; 
proc phreg data=card.progex; 
     title 'phreg treat treat*log(BSA) futime'; 
  model futime*primary(0)=treat lbsa trlbsa /RL; 
run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(BSA Spline), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\BSA.sas), 
   TIME=futime, status=primary, 
   COV1=BSA,WHAT1=0,KNOTS1=1.73 1.88 2.01 2.38,  
   COV2=trbsa,WHAT2=0,KNOTS2=1.73 1.88 2.01 2.38, 
   COV3=treat 
);  
proc phreg data=card.progex; 
     title 'phreg treat treat*HeartRate futime';  
     model futime*primary(0)=treat HeartRate trhea /RL; 
run; 
quit; 
proc phreg data=card.progex; 
     title 'phreg treat treat*log(HeartRate) futime'; 
  model futime*primary(0)=treat lhea trlhea /RL; 
run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(HeartRate Spline), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\HeartRate.sas), 
   TIME=futime, status=primary, 
   COV1=HeartRate,WHAT1=0,KNOTS1=60 69 78 105,  
   COV2=trhea,WHAT2=0,KNOTS2=60 69 78 105, 
   COV3=treat 
);  
proc phreg data=card.progex; 
     title 'phreg treat treat*a4cLVEjectionFraction futime';  
     model futime*primary(0)=treat a4cLVEjectionFraction tra4c /RL; 
run; 
quit; 
proc phreg data=card.progex; 
     title 'phreg treat treat*log(a4cLVEjectionFraction) futime'; 
  model futime*primary(0)=treat la4c trla4c /RL; 
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run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(a4cLVEjectionFraction Spline), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\a4c.sas), 
   TIME=futime, status=primary, 
   COV1=a4cLVEjectionFraction,WHAT1=0,KNOTS1=22 25 29 43,  
   COV2=tra4c,WHAT2=0,KNOTS2=22 25 29 43, 
   COV3=treat 
);  
proc phreg data=card.progex; 
     title 'phreg treat treat*Roche futime';  
     model futime*primary(0)=treat Roche trroc /RL; 
run; 
quit; 
proc phreg data=card.progex; 
     title 'phreg treat treat*log(Roche)futime'; 
  model futime*primary(0)=treat lroc trlroc /RL; 
run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(Roche Spline), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\Roche.sas), 
   TIME=futime, status=primary, 
   COV1=Roche,WHAT1=0,KNOTS1=744 1814 4198 26132,  
   COV2=trroc,WHAT2=0,KNOTS2=744 1814 4198 26132, 
   COV3=treat 
);  
proc phreg data=card.progex; 
     title 'phreg treat treat*Age futime';  
     model futime*primary(0)=treat Age trage /RL; 
run; 
quit; 
proc phreg data=card.progex; 
     title 'phreg treat treat*log(Age) futime'; 
  model futime*primary(0)=treat lage trlage /RL; 
run; 
quit; 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(Age Spline), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\Age.sas), 
   TIME=futime, status=primary, 
   COV1=Age,WHAT1=0,KNOTS1=59 66 72 84,  
   COV2=trage,WHAT2=0,KNOTS2=59 66 72 84, 
   COV3=treat 
);  
quit; 
 
 
%INC 'C:\splines\rcs.mac'; 
%RCS( 
   TITLE=%STR(Card Sync), 
   DATA=progex, DIRDATA=%STR(C:\prog_card_dat), 
   PROGRAM=%STR(C:\prog_card_dat\card_splines\All_sig.sas), 
   TIME=futime, status=primary, 
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   COV1=supsys,WHAT1=0,KNOTS1=105 117 130 165,  
   COV2=trsup,WHAT2=0,KNOTS2=105 117 130 165, 
   COV3=BSA,WHAT3=0,KNOTS3=1.73 1.88 2.01 2.38, 
   COV4=trbsa,WHAT4=0,KNOTS4=1.73 1.88 2.01 2.38, 
   COV5=mitral_r, 
   COV6=trmit, 
   COV7=IVMD, 
   COV8=trivm, 
   COV9=lroc, 
   COV10=ESVI, 
   COV11=GRF, 
   COV12=HeartRate, 
   COV13=a4cLVEjectionFraction, 
   COV14=Age, 
   COV15=QRS, 
   COV16=treat 
    
 
);  
               
Code for Final Model  
   
proc phreg data=card.progex3; 
      
  class Ischemic treat /desc; 
  model futime*primary(0)= treat mitral_r IVMD ESVI GRF supsys 
a4cLVEjectionFraction Roche Age Ischemic trsup trivm /RL 
selection=forward slentry=0.5  details; 
  
run; 
proc phreg data=card.progex3; 
      
  class Ischemic treat /desc; 
  model futime*primary(0)= treat mitral_r Roche supsys IVMD 
Ischemic trsup trivm  /RL details; 
     baseline covariates=card.progex3 out=card.PrScore2  
survival=S/nomean; 
run; 
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