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Application of stable isotope analysis to differentiate shrimp
extracted by industrial fishing or produced through
aquaculture practices
Julián Gamboa-Delgado, César Molina-Poveda, Daniel Enrique Godínez-Siordia,
David Villarreal-Cavazos, Denis Ricque-Marie, and Lucía Elizabeth Cruz-Suárez

Abstract: Carbon and nitrogen stable isotope values were determined in Pacific white shrimp (Litopenaeus vannamei) with the
objective of discriminating animals produced through aquaculture practices from those extracted from the wild. Farmed
animals were collected at semi-intensive shrimp farms in Mexico and Ecuador. Fisheries-derived shrimps were caught in
different fishing areas representing two estuarine systems and four open sea locations in Mexico and Ecuador. Carbon and
nitrogen stable isotope values (�13CVPDB and �15NAIR) allowed clear differentiation of wild from farmed animals. �13CVPDB and
�15NAIR values in shrimps collected in the open sea were isotopically enriched (−16.99‰ and 11.57‰), indicating that these
organisms belong to higher trophic levels than farmed animals. �13CVPDB and �15NAIR values of farmed animals (−19.72‰ and
7.85‰, respectively) partially overlapped with values measured in animals collected in estuaries (−18.46‰ and 5.38‰, respec-
tively). Canonical discriminant analysis showed that when used separately and in conjunction, �13CVPDB and �15NAIR values were
powerful discriminatory variables and demonstrate the viability of isotopic evaluations to distinguish wild-caught shrimps from
aquaculture shrimps. Methodological improvements will define a verification tool to support shrimp traceability protocols.

Résumé : Les valeurs d’isotopes stables du carbone et de l’azote ont été déterminées pour des crevettes à pattes blanches
(Litopenaeus vannamei) du Pacifique dans le but de distinguer les animaux issus de pratiques aquacoles d’animaux issus du milieu
naturel. Des animaux d’élevage ont été prélevés dans des installations de culture semi-intensive de crevettes au Mexique et en
Équateur. Les crevettes issues de la pêche ont été prises dans différentes zones de pêche représentant deux systèmes estuariens
et quatre emplacements en mer libre au Mexique et en Équateur. Les valeurs d’isotopes stables du carbone et de l’azote (�13CVPDB

et �15NAIR) ont permis de distinguer clairement les animaux sauvages des animaux d’élevage. Les valeurs de �13CVPDB et �15NAIR

des crevettes prélevées en mer libre étaient enrichies (−16,99 ‰ et 11,57 ‰), ce qui indique que ces organismes occupent des
niveaux trophiques plus élevés que les animaux d’élevage. Les valeurs de �13CVPDB et �15NAIR des animaux d’élevage (−19,72 ‰ et
7,85 ‰, respectivement) chevauchent partiellement les valeurs mesurées pour les animaux prélevés dans des estuaires (−18,46 ‰
et 5,38 ‰, respectivement). L’analyse canonique discriminante a démontré que, utilisées séparément et ensemble, les valeurs de
�13CVPDB et �15NAIR constituent des variables discriminantes puissantes. Elle démontre également l’utilité des évaluations isoto-
piques pour distinguer les crevettes prises en milieu naturel des crevettes d’élevage. Des améliorations méthodologiques
définiront un outil de vérification pour appuyer les protocoles de traçabilité des crevettes. [Traduit par la Rédaction]

Introduction
The expanding commercialization of products derived from

fisheries and aquaculture have generated the need to authenti-
cate the production method of several products. New strict legis-
lations have required that seafood products display information
related to the origin and production method of aquatic organisms
traded in specific regions (EC 2001). On the other hand, shrimp
exports must comply with information concerning traceability of
fisheries and aquaculture products (EC 2002). The fraudulent mis-
description of food contents on product labels is a widespread
problem in which products from different animal products are
packed and sold, but correspond to different species than those
indicated on the labels (Woolfe and Primrose 2004). Similarly,
batches of farmed seafood (including shrimp) have been deliber-

ately mislabelled as wild-caught seafood and vice versa, in order to
avoid sanctions, wild-caught seafood has been mislabelled as
farmed during fishing ban periods (COFEMER 2013; Jacquet and
Pauly 2008; NOAA 2011). In view of this situation, steps are being
taken to implement additional survey and control protocols for
the seafood industry. For example, in Mexico, the Secretariat of
Agriculture, Livestock, Rural Development, Fisheries and Food
(SAGARPA) has recently proposed a Mexican Official Standard
(NOM-047-PESC-2012) to define procedures aimed to implement a
paper-based traceability system that allows identifying farmed
and wild shrimp (COFEMER 2013). Although careful traceability of
products through the seafood production chain leads to effective
assessment of production method, the application of analytical
methods to validate product authenticity assists in verifying the
traceability process and helps detecting deliberate mislabelling

Received 6 January 2014. Accepted 9 June 2014.

Paper handled by Associate Editor Bronwyn Gillanders.

J. Gamboa-Delgado, D. Villarreal-Cavazos, D. Ricque-Marie, and L.E. Cruz-Suárez. Programa Maricultura, Departamento de Ecología, Facultad de
Ciencias Biológicas, Universidad Autónoma de Nuevo León, A.P. F-67, San Nicolás de los Garza, Nuevo León, México C.P. 66451.
C. Molina-Poveda. GISIS S.A. km 6.5 vía Duran-Tambo, Duran, Ecuador.
D.E. Godínez-Siordia. Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Centro Universitario de la Costa Sur, Universidad
de Guadalajara, Gómez Farías 82, San Patricio-Melaque, Jalisco, México C.P. 48980.
Corresponding author: Julián Gamboa-Delgado (e-mail: julian.gamboad@uanl.mx and jgam97@yahoo.com).

1520

Can. J. Fish. Aquat. Sci. 71: 1520–1528 (2014) dx.doi.org/10.1139/cjfas-2014-0005 Published at www.nrcresearchpress.com/cjfas on 17 June 2014.

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

N
IV

 G
U

E
L

PH
 o

n 
10

/0
8/

14
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Academico Digital UANL

https://core.ac.uk/display/76602274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:julian.gamboad@uanl.mx
mailto:jgam97@yahoo.com
http://dx.doi.org/10.1139/cjfas-2014-0005


(Vinci et al. 2013). On the other hand, issues derived from other
environmental concerns (e.g., failure to implement turtle ex-
cluder devices in shrimp trawlers) have led to shrimp import
prohibitions (USDS 2010) that only apply to open-sea-caught
shrimp, but not to farmed shrimp or shrimp extracted from estu-
aries through artisanal fishing.

The Pacific white shrimp (Litopenaeus vannamei) is the dominant
marine species produced through aquaculture practices, and
farm production has surpassed production derived from wild
catches. In the Western Hemisphere, semi-intensive shrimp
farming is the current predominant shrimp production method
(CONAPESCA 2010; Stern and Sonnenholzner 2011). As shrimp rep-
resents one of the most important commercialized commodities
for Mexico (184 123 tonnes (t) of shrimp produced in 2011;
CONAPESCA 2012) and Ecuador (208 872 t of exported shrimp in
2012, representing $1.2 billion USD; CNA 2012), positive effects
such as assisting in the certification of production method and
discouraging illegal fishing are expected from shrimp traceability
and verification protocols. Discriminating seafood derived either
from fisheries or aquaculture can be achieved by identifying and
measuring a specific tracer (Moretti et al. 2003). The relatively new
science of food forensics (Primrose et al. 2010) is employing a
range of developing isotopic techniques that have allowed detect-
ing adulterated and counterfeit food and pharmaceutical prod-
ucts (Kropf et al. 2010; Felton et al. 2011). In food authenticity
studies, carbon, nitrogen, oxygen, and (or) hydrogen are the ele-
ments more frequently analyzed in a specific sample to determine
their isotopic proportions (e.g., 13C/12C). The isotopic signature of a
plant or animal reflects the isotopic profile of its surrounding
environment (available nutrients, soil and water characteristics).
Hence, studies applying stable isotopes have been conducted on
different organisms to elucidate production method and geo-
graphical origin (Kropf et al. 2010; Peterson and Fry 1987). The
nitrogen isotope value of a wild animal can indicate its trophic
position, as animal consumers have a tendency to accumulate
the heavier isotopes through a discriminating effect of the dif-
ferent enzymatic pathways preferentially incorporating the
heavier isotopes, while the lighter isotopic forms are excreted
(Martínez del Rio and Wolf 2005; Minagawa and Wada 1984). Farmed
organisms are influenced by different environmental factors, stock-
ing densities and feeding regimes as compared with wild animals
(Arechavala-Lopez et al. 2013). The diet of wild animals might expe-
rience strong seasonal variations in composition and availability of
trophic elements. Such trophic elements occupy higher trophic po-
sitions than the dietary items available and (or) supplied to farmed
organisms. Such dietary attributes frequently confer specific isotopic
values to wild and farmed animals. As these isotopic differences are
substantial and influenced by diet and (or) trophic level, they have
been previously employed to distinguish the production method of
European seabass (Dicentrarchus labrax), seabream (Sparus aurata), and
Atlantic salmon (Salmo salar) (Bell et al. 2007; Dempson and Power
2004; Moreno-Rojas et al. 2007; Serrano et al. 2007). Animals growing
in aquaculture systems operating under semi-intensive and inten-
sive rearing conditions derive major proportions of nutrients from
the supplied feed, which modifies the animal’s isotopic profiles
(Nunes et al. 1997; Gamboa-Delgado 2014). In this context, the present
study examined the use of dual stable isotope analysis as a tentative
tool to authenticate samples of Mexican and Ecuadorian shrimp un-
der the hypothesis that the isotopic values of semi-intensively
farmed shrimp are influenced by the isotopic signatures of the for-
mulated diets and the pond’s natural productivity. Therefore,
farmed animals will show significantly different isotopic signatures
as compared with isotopic values present in wild animals caught by
industrial fishing on the open sea.

Material and methods

Study areas and sample collection
Wild and farmed individuals of Pacific white shrimp were col-

lected at different locations in Mexico and Ecuador. As shown in
Fig. 1, wild shrimp (estuary and open sea) were collected in the
Pacific Ocean. In Ecuador, wild shrimp were obtained off the coast
of Esmeraldas Province (Southeast Pacific, FAO fishing area 87),
while in Mexico, wild shrimp were representative of an area span-
ning through the states of Sinaloa and Nayarit (Eastern Central
Pacific, FAO fishing area 77). Two batches of shrimps from open
sea were obtained from fishermen. Animals were caught approx-
imately 25 miles (1 mile = 1.609 km) off the coast of Nayarit and
33 miles off the coast of Sinaloa. An additional batch of wild
shrimp (Litopenaeus setiferus) was collected in the Gulf of Mexico,
approximately 42 miles off the coast of Tamaulipas (Western Cen-
tral Atlantic, FAO fishing area 31). In Mexico, estuarine shrimps
were collected from three different locations of the northern area
of a coastal lagoon complex (Marismas Nacionales) located be-
tween the states of Sinaloa and Nayarit, while in Ecuador, shrimp
were sampled in a mangrove system in the Esmeraldas Province.
Farmed animals (Table 1) were obtained from nine shrimp ponds
belonging to five farms operating at semi-intensive production
levels (ponds receiving inorganic fertilizers, stocked with shrimp
densities from 11 to 30 individuals·m−2, and supplied with formu-
lated feeds having 28% to 35% crude protein). In Ecuador, farmed
animals were collected in a semi-intensively managed farm in
La Tola, Esmeraldas Province. Farmed Mexican shrimp batches
were collected in four semi-intensive farms located on the Pacific
seaboard (Sonora and Jalisco states) and on the Gulf of Mexico
seaboard (inland semi-intensive farm, Veracruz state). Additional
sampling was conducted in one intensively managed farm pro-
ducing L. vannamei at high stocking densities (50 individuals·m−2)
under low salinity water conditions (1 g·L−1, Colima state). All wild
shrimp samples caught on open sea were represented by adult
individuals, and some female shrimps showed advanced ovarian
development. Most samples of farmed shrimp consisted of juve-
niles and subadult individuals (Table 1). Species confirmation was
assisted by identification keys (Pérez-Farfante 1988).

Sample pretreatment and stable isotope analysis
Sampled shrimp were transported under cold or freezing con-

ditions and once in the laboratory were weighed and dissected.
The exoskeletons, hind gut, and gonads (if present) were removed,
and samples of abdominal muscle tissue were obtained by cutting
triangular sections from the ventral side of the second abdominal
segment. Dissected muscle tissue samples were rinsed in distilled
water and dried in a convection oven (60 °C). Samples were man-
ually ground to a fine powder and were not lipid-extracted, as
shrimp muscle contains low lipid levels. Bodin et al. (2007) dem-
onstrated that �13CVPDB and �15NAIR values in muscle tissue of
decapod crustaceans experience minimal changes after solvent
treatment; therefore, the use of untreated muscle samples for
isotopic analysis has been recommended (Stenroth et al. 2006).
Samples of ground muscle tissue (900 to 1100 �g) were individu-
ally packed in tin cups (Elemental Microanalysis Ltd., UK) and
organized in 96-well microplates. Ten samples of farmed shrimp
were selected from each batch, while up to 21 samples were analyzed
for batches of wild-caught shrimp, as a higher isotopic variability was
expected in wild animals. This higher isotopic variability in wild
specimens is conferred by the higher number of trophic elements
available in the natural environments in comparison with the food
sources available for farmed shrimps. Samples were analyzed at the
Stable Isotope Facility of the University of California (Davis, Califor-
nia, USA) using a PDZ Europa ANCA-GSL elemental analyzer inter-
faced to a PDZ Europa 20–20 isotope ratio mass spectrometer (IRMS,
Sercon Ltd., Cheshire, UK). Samples were combusted at 1000 °C in a
reactor packed with chromium oxide and silver–copper oxide.

Gamboa-Delgado et al. 1521
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Following combustion, oxides were removed and helium-carried
products flowed through water and CO2 traps (the latter for N anal-
ysis). N2 and CO2 were separated on a Carbosieve GC column before
entering the IRMS. Repeated measurements of sample-interspersed
internal calibration standards (nylon, bovine liver, and glutamic
acid) indicated that instrument precision (standard deviation, SD)
was 0.09‰ for �15NAIR and 0.13‰ for �13CVPDB values. Enriched
L-glutamic acid (USGS-41, �15NAIR = 47.60‰, �13CVPDB = 37.62‰) was
used as international standard to calibrate internal standards. �13C
values for international standards are expressed with respect to the
NBS19-LSVEC scale (USGS 2014). Isotopic values of samples are ex-
pressed in delta notation (�), which is defined as per mil (‰) devia-
tions from the �15N and �13C values of the isotopic standard reference
materials (atmospheric nitrogen and Viena Pee Dee Belemnite
(VPDB), respectively).

Statistical analysis
The isotopic signatures of the different shrimp samples were

grouped according to environment and country. For each shrimp
batch, linear regressions were used to examine relationships be-
tween �13CVPDB and �15NAIR values and shrimp mass. The effect of
location or environment on �13CVPDB and �15NAIR values of muscle
tissue was analyzed by one-way ANOVA after normal distribution

and data homoscedasticity was verified. Tukey pairwise compari-
sons were used to detect values differing significantly at a level of
significance of p < 0.01. A canonical discriminant analysis (CDA)
was performed to determine the classification power of the vari-
ables �13CVPDB and �15NAIR to categorize shrimp samples collected
from the different environments. The CDA standardizes values
after applying discriminant functions and provides an indicator
of how well the grouped variables are separated. CDA was applied
using data from individual countries and isotopes and also con-
sidering both isotopic values for the three sampled environments,
and finally CDA was run only with data from farmed and open
ocean shrimp. Wilk’s lambda indicated the magnitude at which
variables �13CVPDB and �15NAIR contributed in discriminating be-
tween groups (environment or production method). All tests were
conducted using SPSS 17.0 software (SPSS Inc.).

Results

Isotopic variability in shrimp samples
The isotopic variability in shrimp muscle tissue samples was

different among groups representing different environments
(Figs. 2a, 2b, and 3a). In general, �13CVPDB values showed higher
variability than �15NAIR values. Farmed animals showed lower

Fig. 1. Maps of Mexico and Ecuador showing the locations where shrimp batches were collected to validate production method by means of
dual stable isotope analysis. All samples were represented by the species L. vannamei, with the exception of wild shrimp (L. setiferus) sampled in
the Gulf of Mexico.
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nitrogen isotopic variability than wild organisms, although two
batches of farmed shrimp presented high �13CVPDB variability. The
latter observation was comparable to �13CVPDB variability ob-
served in animals sampled in estuaries (Table 2). Two batches of
shrimp caught in open sea also presented a high variability in
�13CVPDB values, while �15NAIR values were narrower.

Carbon and nitrogen isotope values in wild and farmed
shrimps

The distribution pattern of isotopic values was very similar for
animals sampled in Ecuador and Mexico (Figs. 2a and 2b; Table 2).
Shrimp size was not significantly correlated to carbon or nitrogen
stable isotope values in any of the batches (R2 ranged from 0.07 to
0.16). The higher correlation values between �15NAIR values and
size were observed in shrimps caught in open sea. Overall isotopic
values in sampled animals ranged from –21.96‰ to –14.93‰ for
�13CVPDB values and from 2.89‰ to 16.79‰ for �15NAIR values.
Mean �13CVPDB and �15NAIR values in animals extracted from open
sea in both countries were –16.99‰ and 11.57‰, respectively.
Such values were significantly different (p < 0.001) to �13CVPDB
and �15NAIR values measured in shrimps collected in estuaries
(–18.46‰ and 5.38‰, respectively). Isotopic signatures of shrimps
caught in open sea were also significantly different to �13CVPDB
and �15NAIR values measured in farmed animals in both countries
(–19.72‰ and 7.85‰, respectively). In general, shrimp collected in
open sea were, on average, isotopically enriched by 3.28‰ for
�13CVPDB and by 4.11‰ for �15NAIR when compared with mean
isotopic values observed in farmed animals. Figure 3a summarizes
the mean isotopic values of shrimp batches collected in the three
different environments in both countries.

Discriminant analysis and classification of origin of shrimp
samples

The CDA individually applied to countries and isotopic values
indicated that �15NAIR values were more reliable classification pa-
rameters, as 84%–93% of the cross-validated groups were correctly
classified (Table 3). In contrast, �13CVPDB values classified less
shrimp in their respective environments (74%–76%). However, us-
ing both isotopic values of shrimps as discriminant factors, results
from CDA indicated a clear separation between semi-intensively
farmed animals and shrimp caught on the open sea in Ecuador
and Mexico (Fig. 3b). When the CDA was applied to only classify
farmed shrimp and wild-caught shrimp (industrial fishing), 99% of

the shrimp were correctly classified. 100% of the shrimps caught at
open sea (n = 82) were correctly classified, while only one farmed
individual was classified as wild (Table 4). Wilk’s lambda values
were small (0.19 for �13CVPDB values (F[1,135] = 548, p < 0.001) and 0.51
for �15NAIR values (F[1,135] = 130, p < 0.001)), thus indicating the
significance of the independent variables to the discriminant
function. After incorporating estuary shrimps into the CDA, re-
sults indicated that 87% of all cases were correctly classified when
including the three environments in the analysis (Table 4). 100% of
the shrimps caught at open sea (n = 82) were correctly classified,
while 5 out of 50 farmed shrimp were misclassified as collected
from estuaries. Eighteen out of 45 individuals sampled from estu-
aries were classified as farmed. The latter misclassifications were
accounted to the isotopic overlap of both �13CVPDB and �15NAIR
values in farmed animals and shrimps collected in estuaries (Fig. 3a).

Discussion

Isotopic variability in shrimp samples from farms and wild
environments

The use of untreated muscle tissue for the isotopic analysis of
crustaceans has been previously recommended (Stenroth et al.
2006), as it can be obtained through straightforward sampling
procedures, and the carbon and nitrogen isotope values of abdom-
inal muscle tissue represent well the isotopic values of whole
shrimp bodies (Gamboa-Delgado et al. 2011). The variability in
�13CVPDB and �15NAIR values in individuals belonging to wild envi-
ronments was higher than that observed for farmed organisms.
The wider range of isotopic values reflects the higher availability
of trophic items available for wild shrimps in comparison with
farmed animals.

The isotopic values of animal consumers are mainly affected by
growth and metabolic turnover. In larval and juvenile organisms,
isotopic changes are mainly due to growth; hence, the ingestion
and assimilation of nutrients have a direct and fast influence on
the isotopic composition of growing tissue. Penaeid shrimps are
highly mobile organisms and change their feeding habits as a
function of the available trophic items in their feeding niches.
Despite these fast trophic changes, previous studies conducted in
laboratory have demonstrated that shrimps rapidly achieve isoto-
pic equilibrium with their diets and reflect the isotopic value of
the available preys or feeding items over a period of 2–3 weeks (Fry
and Arnold 1982; Gamboa-Delgado et al. 2011). In the present
study, the observed poor correlation (R2 ranged from 0.07 to 0.16)
between individual shrimp mass and isotopic values of samples of

Table 2. Carbon and nitrogen isotope values of farmed and wild-
caught Pacific white shrimp (L. vannamei) collected in Mexico and Ec-
uador (mean ± SD).

Environment �13CVPDB (‰) �15NAIR (‰) n

Ecuador
Open sea −16.60±0.90c 9.76±0.55c 21
Estuary −18.32±1.02b 4.25±0.84a 15
Semi-intensively farmed −19.86±0.84a 6.02±0.17b 10

Mexico
Open sea −17.14±0.44d 12.19±2.24c 61
Estuarya −18.59±1.22c 5.88±1.37a 30
Semi-intensively farmed −19.69±0.92b 8.32±0.81b 45
Intensively farmed −21.56±0.32a 8.69±0.22b 8

Note: Different letters indicate significant differences for that particular
country and column at a level of significance of p < 0.01. Statistical parameters
for environment comparison are as follows:

Ecuador �13CVPDB values, F[2,43] = 43.9, mean standard error (MSE) = 0.86,
p < 0.001.
Ecuador �15NAIR values, F[2,43] = 370.7, MSE = 0.37, p < 0.001.
Mexico �13CVPDB values, F[3,140] = 147.0, MSE = 0.55, p < 0.001.
Mexico �15NAIR values, F[3,140] = 108.7, MSE = 2.78, p < 0.001.
aMean values for three estuarine locations.

Table 1. Type of environment, sampled locations, and mass range (g)
of shrimps collected to authenticate production method by means of
dual stable isotope analysis.

Country and environment Location
Mass
range (g)

Ecuador
Open sea FAO fishing area 87 Pacific Ocean 49–91
Semi-intensive farm La Tola, Esmeraldas 15–21
Estuary La Tola, Esmeraldas 4–8

Mexico
Open sea FAO fishing area 77

(two locations)
Pacific Ocean 43–61

18–30
Open sea FAO fishing area 31 Gulf of Mexico 36–60
Semi-intensive farm Tenacatita, Jalisco 2–4
Semi-intensive farm Bahía de Kino, Sonora 17–26
Semi-intensive farm

(five ponds sampled)
San Rafael, Sonora 5–16

Semi-intensive farm Alvarado,Veracruz 6–12
Low-salinity, intensively

managed farm
Tecuanillo, Colima 9–14

Estuarine system
(three locations)

Marismas Nacionales,
Sinaloa

2–8
6–11
5–12

Gamboa-Delgado et al. 1523
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the same wild origin indicate that animals having different sizes
were probably feeding on similar trophic elements.

Under farming conditions, shrimp derive their nutrients from
the pond’s natural productivity and from the formulated feeds. It
has been demonstrated that shrimp exert a strong foraging pres-
sure on the natural biota, and therefore nutrients from the artifi-
cial feeds are incorporated at even higher proportions towards
the last weeks of the farming period (Cam et al. 1991). Differences
in the availability of dietary elements can partially explain the
higher isotopic variability (�13CVPDB and �15NAIR) observed in wild
shrimps as compared with farmed shrimps. In studies conducted

on fish, Bell et al. (2007) reported higher variability of �13CVPDB
values in lipids of European seabass (D. labrax), while Busetto et al.
(2008) reported higher isotopic variability (two- to sixfold) in muscle
tissue of wild turbot (Scophthalmus maximus, cited as Psetta maxima) as
compared with farmed animals. The lower isotopic variability ob-
served in farmed animals can be attributed to the constant availabil-
ity of formulated feed for these individuals. Although the isotopic
values of formulated feed also change because of formulation and
leaching of nutrients, values are still more constant than the isotopic
values of the natural biota available to farmed shrimps, which pres-
ents natural ecological successions (Gamboa-Delgado 2014).

Fig. 2. Carbon and nitrogen isotope values in muscle tissue of shrimps collected from the open sea, estuaries, and semi-intensively managed
shrimp farms in (a) Ecuador and (b) Mexico. Inverted triangles correspond to organisms sampled at a low salinity, intensively managed shrimp farm.

1524 Can. J. Fish. Aquat. Sci. Vol. 71, 2014
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Fig. 3. (a) Carbon and nitrogen stable isotope values (means ± SD) of Mexican and Ecuadorian shrimps collected in the open sea, estuaries,
and semi-intensive farms. The inverted triangle symbol corresponds to shrimps collected at a low salinity, intensively managed shrimp farm
in Mexico. (b) Discriminant analysis for authentication of shrimp production method based on carbon and nitrogen stable isotope values in
muscle tissue of shrimps collected from the open sea, estuaries, and semi-intensively managed shrimp farms. Centroids represent means of
standardized group values.
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Isotopic enrichment and depletion in shrimp samples
The isotopic enrichment has been defined as a process by which

the relative abundance of the isotopes of a given element is al-
tered, thus producing a new isotopic ratio that has been enriched
in one particular isotope. Animal consumers have a tendency to
accumulate the heavier isotopes, and this effect produces an iso-
topic difference between diet and consumer (isotopic discrimina-
tion factor). In field studies, the nitrogen isotope value of a wild
animal can indicate its trophic position, but under controlled
farming conditions, the flows of nutrients (and isotopes) are sig-
nificantly modified. These changes are caused by the presence of
different trophic elements in the available pond biota, the use of
isotopically depleted ingredients in the supplied formulated diets,
and the recycling of nutrients (diet detritus, shrimp moults, and
feces) occurring in the relatively closed systems. Dietary ingredients
such as terrestrial plant meals and rendered products imprint differ-
ent isotopic values to farmed organisms (usually lower). The isotopic
enrichment (in relation to farmed animals) observed in shrimp col-
lected on the open sea (�13CVPDB = +3.28‰ and �15NAIR = +4.11‰)
reflects the higher trophic niche they occupy in the natural ecosys-
tems. On the other hand, the isotopic depletion in tissues of farmed
animals is also evident in the present study, and it can be partially

attributed to the use of formulated feeds. To increase feed stability
and replace a proportion of expensive animal-derived proteins, aqua-
culture feeds are frequently formulated with varying dietary levels of
plant meals. These plant meals are mostly derived from terres-
trial plants having C3 photosynthesis and are less enriched in
13C (mean �13CVPDB = –29‰) as compared with C4 plants (mean
�13CVPDB = –13‰) (Ehleringer and Cerling 2001; Moreno-Rojas
et al. 2007). C3 plants are also less enriched when compared
with several marine-derived ingredients such as fish meal
(�13CVPDB = –17‰). For example, some shrimp feeds used in Mex-
ico have �13CVPDB values ranging from –23.6‰ to –22.3‰ and
�15NAIR values ranging from 5.8‰ to 9.7‰. The �13CVPDB values of
feed are thus transferred to the farmed organisms, hence causing
contrasting �13CVPDB values (more isotopically depleted) as com-
pared with those observed in tissue of wild animals.

Carbon and nitrogen isotope values in shrimps from
different environments

Juvenile and adult shrimp are highly mobile organisms and
they occupy different ecological niches and varying trophic levels
during their life cycle. Stomach content analysis and relatively
enriched somatic isotopic values indicate that adult shrimp shift
their feeding habits from omnivory to more pronounced carni-
vorous habits as shrimps migrate from the estuarine environ-
ments to the open sea (Schwamborn and Criales 2000). In a study
conducted on open sea shrimp, Moncreiff and Sullivan (2001)
reported isotopically enriched �13CVPDB and �15NAIR values for
shrimp species caught in the Gulf of Mexico (Farfantepenaeus aztecus:
�13CVPDB = –17.7‰ and �15NAIR = 11.0‰; Farfantepenaeus duorarum:
�13CVPDB = –16.5‰ and �15NAIR = 11.2‰; Litopenaeus setiferus: �13CVPDB =
–19.6‰ and �15NAIR = 11.4‰). These values are very similar to iso-
topic values measured in the present study in shrimps caught in
the Pacific and Atlantic oceans. In contrast with shrimps in adult
stage living in the open sea, postlarval shrimps in estuaries derive
high proportions of their dietary carbon and nitrogen from epi-
phytes and benthic microalgae (Gleason 1986). Results from the

Table 3. Environment classification of cross-validated results of mus-
cle tissue samples of shrimps collected in Ecuador and Mexico on the
basis of the discriminant functions calculated from carbon and ni-
trogen stable isotope values.

Predicted environment
classification

Country, isotope Environment Open sea Estuary Farmed Total

Ecuador, carbona

Cross-validated
count

Open sea 20 1 0 21
Estuary 4 8 3 15
Farmed 0 4 6 10

Cross-validated
percentage

Open sea 95.2 4.8 0 100
Estuary 26.7 53.3 20.0 100
Farmed 0 40.0 60.0 100

Ecuador, nitrogenb

Cross-validated
count

Open sea 21 0 0 21
Estuary 0 12 3 15
Farmed 0 0 10 10

Cross-validated
percentage

Open sea 100 0 0 100
Estuary 0 80.0 20.0 100
Farmed 0 0 100 100

Mexico, carbonc

Cross-validated
count

Open sea 61 0 0 61
Estuary 10 4 16 30
Farmed 1 5 39 45

Cross-validated
percentage

Open sea 100 0 0 100
Estuary 33.3 13.3 53.3 100
Farmed 2.2 11.1 86.7 100

Mexico, nitrogend

Cross-validated
count

Open sea 56 0 5 61
Estuary 0 18 12 30
Farmed 0 5 40 45

Cross-validated
percentage

Open sea 91.8 0 8.2 100
Estuary 0 60.0 40.0 100
Farmed 0 11.1 88.9 100

Note: Cross-validation is done only for those cases in the analysis. In cross-
validation, each case is classified by the functions derived from all cases other
than that case. Isotopic values of intensively farmed shrimp were not included
in the analysis. Percentages of cross-validated grouped cases correctly classified
are shown below.

a73.9%. Wilk’s lambda = 0.32, F[2,42] = 43.95, p < 0.001.
b93.5%. Wilk’s lambda = 0.05, F[2,42] = 370.70, p < 0.001.
c76.5%. Wilk’s lambda = 0.30, F[2,133] = 150.99, p < 0.001.
d83.8%. Wilk’s lambda = 0.30, F[2,133] = 155.49, p < 0.001.

Table 4. Classification of cross-validated results of muscle tissue sam-
ples of shrimps collected in different environments in Ecuador and
Mexico on the basis of the discriminant functions calculated from
carbon and nitrogen stable isotope values.

Predicted environment
classification

Environment Open sea Estuary Farmed Total

Not including estuarya

Cross-validated
count

Open sea 82 NA 0 82
Farmed 1 NA 54 55

Cross-validated
percentage

Open sea 100 NA 0 100
Farmed 1.8 NA 98.2 100

Including estuaryb

Cross-validated
count

Open sea 82 0 0 82
Estuary 0 27 18 45
Farmed 0 5 50 55

Cross-validated
percentage

Open sea 100 0 0 100
Estuary 0 60.0 40.0 100
Farmed 0 9.1 90.9 100

Note: Cross-validation is done only for those cases in the analysis. In cross-
validation, each case is classified by the functions derived from all cases other
than that case. NA, not applicable.

a99.3% of cases were correctly classified when CDA was applied to farmed and
open sea shrimp. �13CVPDB values, Wilk’s lambda = 0.19, F[1,135] = 548.40, p < 0.001.
�15NAIR values, Wilk’s lambda = 0.50, F[1,135] = 130.39, p < 0.001.

b87.4% of cross-validated grouped cases were correctly classified when CDA
was applied to farmed, estuary, and open sea shrimp. �13CVPDB values, Wilk’s
lambda = 0.32, F[2,179] = 185.28, p < 0.001. �15NAIR values, Wilk’s lambda = 0.31,
F[2,179] = 191.59, p < 0.001.
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present study indicate that mean isotopic values of shrimps col-
lected in estuaries in Mexico and Ecuador were very consistent
(�13CVPDB = –19.87‰ to –18.59‰ and �15NAIR = 5.88‰ to 6.02‰).
Estuary shrimps collected in Mexico represented three different
sampling locations in a coastal lagoon complex. The relatively
depleted isotopic values measured are also characteristic of the
feeding items available to shrimps in estuarine habitats, mud
flats, and sand flats of areas surrounded by mangrove forests
(Macia 2004; Primavera 1996). Chong et al. (2001) applied isotopic
techniques to estimate the contribution of mangrove detritus to
the growth of shrimp in estuaries, which was estimated to be as
high as 84%. More recently, Gatune et al. (2012) demonstrated that
mangrove detritus and the biofilm growing on it are important
dietary sources to shrimps. The isotopic values of the latter
sources are very different to the isotopic signatures of the trophic
sources available to animals in the open sea. Moreover, Abrantes
and Sheaves (2010) reported that estuary-dwelling animals obtain
a significant proportion of nutrients from allochthonous sources
such as terrestrial-derived feeding items (also isotopically distinct)
that are transported to the estuaries by rivers. Farmed shrimp
derive their nutrients from the pond’s natural productivity and
from the supplied formulated feeds. Many shrimp farms are lo-
cated near estuaries and mangrove areas and actually pump
seawater from these systems, hence explaining some isotopic sim-
ilarities in the natural biota representative of both environments.
In Mexico, most shrimp farms apply protocols to stimulate the
natural production by using inorganic fertilizers. The inorganic
fertilizers are isotopically depleted and might also imprint lower
isotopic signatures to the primary producers in shrimp ponds
as compared with those in the natural ecosystems.

Shrimps extracted from the natural environment (estuaries and
open ocean) showed higher isotopic variability, and their mean
�13CVPDB and �15NAIR values were statistically different than those
of farmed animals. In both countries, �15NAIR values were more
accurate than �13CVPDB values in differentiating the environment
shrimp were collected from. The latter observation highlights the
fact that �15NAIR values of wild shrimp (open sea) represent well
their higher trophic position when compared with estuary and
farmed shrimp. However, when CDA analysis incorporated both
isotopic values as discriminant factors and was applied only to
farmed and open sea shrimp, �13CVPDB values offered higher dis-
criminating power between these two groups. In contrast, when
estuary shrimps were incorporated into the CDA, the classifica-
tion accuracy decreased because of the overlap of isotopic values
between shrimps collected in estuaries and semi-intensively
farmed animals. Every semi-intensive shrimp pond has its own
specific characteristics, and the natural communities developing
in it can drastically vary; however, as shrimp farming systems
intensify, higher proportions of dietary nitrogen and carbon are
derived from the formulated feeds. This is due to the cumulative
effect of the grazing activity occurring at higher animals densi-
ties, thus counteracting the establishment of natural biota popu-
lations. Such changes in the availability of trophic elements for
shrimp imply that �13CVPDB and �15NAIR values in animals reared
under intensive and hyperintensive conditions (recirculating
aquaculture systems) will reflect the isotopic values of formulated
feed at a higher magnitude than semi-intensively farmed animals,
thus positioning these animals even farther from the isotopic
values of animals caught on the open sea. This effect is adverted
by the 13C-depleted values of shrimps (�13CVPDB = –21.6‰) sampled
at the farm operating under intensive stocking conditions and
allows forecasting a more sensitive discrimination of farmed and
wild shrimps when applying isotopic techniques. The isotopic values
of intensively farmed shrimps strongly reflected the �13CVPDB values
of the supplied commercial feed (–22.3‰), hence widening the dif-
ference when compared with animals caught on the open sea. The
application of isotopic analysis has clearly allowed discriminating
wild from farmed individuals of several species of marine fish

(Bell et al. 2007; Dempson and Power 2004; Moreno-Rojas et al.
2007; Serrano et al. 2007), and to our knowledge, this is the first
study applying isotopic methodologies to discriminate the pro-
duction method of a crustacean species.

Future studies
The increasing availability of commercial analytical services

offering affordable isotope analysis forecasts further studies on
the traceability of different marine products. Penaeid shrimps
are characterized by complex life cycles and dramatic trophic
changes. A limited amount of information is currently available
on the diet-elicited isotopic changes occurring during larval, post-
larval, juvenile, and adult shrimp stages. Future studies will indi-
cate how different isotopic values correlate with feeding habits
and shrimp mass and thus will assist in better defining isotopic
signatures characteristic of wild and farmed shrimps.

This preliminary study demonstrated that samples from farmed
shrimp or wild-caught in the open sea can be clearly identified by
measuring the isotopic values of carbon and nitrogen in shrimp
abdominal muscle tissue. Additional sampling will assist in defin-
ing confidence intervals for the isotopic signatures of fisheries-
derived shrimp and semi-intensively farmed shrimp. Improvements
to the present methodology might aid to implement a verification
scheme to support shrimp traceability and to detect deliberate
mislabeling of farmed and wild animals. As the overlap of isotopic
values can occur in groups from different origins, the application
of additional techniques such as the analysis of the isotopic ratio
of other elements might allow distinguishing shrimp batches hav-
ing closely grouped carbon and nitrogen isotopic signatures. In
the present study, nitrogen isotope values were reliable indicators
of trophic position, and in conjunction with carbon isotope values
a further separation was observed between groups of shrimp
caught in the open sea and farmed shrimp.
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