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CON ESPECIALIDAD EN INGENIERÍA DE SISTEMAS
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Número de páginas: 65.

OBJECTIVES AND STUDY METHOD: There are two subjects in this thesis: “Lot produc-

tion size for a parallel machine scheduling problem with auxiliary equipment” and “Bus

holding for a simulated traffic network”. Although these two themes seem unrelated, the

main idea is the optimization of complex systems.

The “Lot production size for a parallel machine scheduling problem with auxiliary

equipment” deals with a manufacturing setting where sets of pieces form finished prod-

ucts. The aim is to maximize the profit of the finished products. Each piece may be

processed in more than one mold. Molds must be mounted on machines with their corre-

sponding installation setup times. The key point of our methodology is to solve the single

period lot-sizing decisions for the finished products together with the piece-mold and the

ix



ABSTRACT X

mold-machine assignments, relaxing the constraint that a single mold may not be used in

two machines at the same time.

For the “Bus holding for a simulated traffic network” we deal with One of the most

annoying problems in urban bus operations is bus bunching, which happens when two

or more buses arrive at a stop nose to tail. Bus bunching reflects an unreliable service

that affects transit operations by increasing passenger-waiting times. This work proposes

a linear mathematical programming model that establishes bus holding times at certain

stops along a transit corridor to avoid bus bunching. Our approach needs real-time input,

so we simulate a transit corridor and apply our mathematical model to the data generated.

Thus, the inherent variability of a transit system is considered by the simulation, while

the optimization model takes into account the key variables and constraints of the bus

operation.

CONTRIBUTIONS AND CONCLUSIONS: For the “Lot production size for a parallel ma-

chine scheduling problem with auxiliary equipment” the relaxation we propose able to

find solutions more efficiently, moreover our experimental results show that most of the

solutions verify that molds are non-overlapping even if they are installed on several ma-

chines. We propose an exact integer linear programming, a Relax&Fix heuristic, and

a multistart greedy algorithm to solve this problem. Experimental results on instances

based on real-world data show the efficiency of our approaches. The mathematical model

and the algorithm for the lot production size problem, showed in this research, can be used

for production planners to help in the scheduling of the manufacturing.

For the “Bus holding for a simulated traffic network” most of the literature considers

quadratic models that minimize passenger-waiting times, but they are harder to solve and

therefore difficult to operate by real-time systems. On the other hand, our methodology

reduces passenger-waiting times efficiently given our linear programming model, with the

characteristic of applying control intervals just every 5 minutes.

Firma de la directora:
Dra. Yasmı́n Á. Rı́os Solı́s



CHAPTER 1

INTRODUCTION

In this chapter we will give a short introduction of the subjects that we cover on this

dissertation. The first one is related to the “Lot production size for a parallel machine

scheduling problem with auxiliary equipment” that we describe in Section 1.1 while the

second subject is the “Bus holding for a simulated traffic network” that is presented in

Section 1.2. Although these two themes seem unrelated, the main idea is the optimization

of complex systems. Finally, in Section 1.3 we introduce the dissertation structure.

1.1 LOT PRODUCTION SIZE FOR A PARALLEL MACHINE

SCHEDULING PROBLEM WITH AUXILIARY EQUIPMENT

1.1.1 PROBLEM STATEMENT

The problem under study is inspired by a manufacturing company that produces plastic

products. Plastic injection systems use molds for shaping raw plastic into pieces that are

then assembled to form final products. Molds that produce a certain piece may have differ-

ent production rates, and each machine has its own production speed. The objective of the

company is to determine the lot-size of finished products by making an accurate assign-

1



CHAPTER 1. INTRODUCTION 2

ment of the production pieces to molds and molds to machines in order to manufacture

the finished products.

These products are composed by some pieces that are completely characterized by

their shape, color, and plastic type. Notice that some pieces are shared by more than one

product, while others are exclusive of a single one. Each mold may be different due to its

technical specifications; of particular relevance is the type and number of cavities. Even

though a mold may produce different pieces, once a piece is selected no other piece may

be produced with the same mold at the same time. Finally, the molds must be mounted on

machines. Note that not all molds may be installed on any machine.

In this problem we are only interested in finished products (those that the company

is able to sell). We only consider a single period, hence inventory is not taken into ac-

count. The demand for the plastic products is seldom fulfilled by the company. Thus, the

production capacity is expected to be fully used.

1.1.2 OBJECTIVES

To develop a methodology that helps the decision maker to find a better solution for this

problem in an efficient time. The main idea is to maximize the profits of the factory,

finding a combination of products to be made with the resources, machines and auxiliary

equipment, in the best possible manner.

1.1.3 HYPOTHESIS

The development of an operations research methodology will help decision maker to find

a solution in a more efficient way by finding better quality solutions that improve the

profits of the factory, while taking advantage of the the factory resources.
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1.1.4 SCIENTIFIC METHODOLOGY

The following methodology is used to achieve the objective previously proposed:

• Statement of the problem. This stage is to state the problem and define all the

peculiarities of the problem while delimiting its scope.

• Bibliography review. This stage is to find similar problems and different method-

ologies proposed to solve it.

• Mathematical formulation. In here we developed a integer programming model that

fits all the peculiarities of the problem to solve it.

• Experimentation for Mathematical formulation. In here we develop an instances

generator for the problem and use them to solve it with GAMS/CPLEX.

• Result analysis of the mathematical formulation. In this stage we analyze the effi-

ciency of the results of the mathematical model solved with GAMS/CPLEX.

• Heuristic implementation. Here we propose the use of a heuristic method to solve

the problem.

• Experimentation of heuristic alternatives. In this stage we implement different

heuristic methods to solve the problem.

• Result analysis for the different heuristic alternatives.

1.2 BUS HOLDING FOR A SIMULATED TRAFFIC NETWORK

1.2.1 PROBLEM STATEMENT

The study of complex bus operating systems is usually divided in two main areas, line

planning and real-time control. The line planning process involves strategic, tactical and
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operational decisions. Strategic problems relate to long-term network design decisions.

Tactical and operational decisions ultimately define the service offered to the public; for

example, frequency of buses, definition of stops, bus timetabling, vehicle scheduling,

driver scheduling, maintenance scheduling, among other problems. On the other hand,

real-time control tries to maintain the bus system operational along the day in order to

minimize passenger inconvenience.

Real-time control is hard because of the dynamics of the network or trattic situa-

tions. Although, bus frequency is planned for each stop in the network, changes in the

passenger flow, traffic or even in the timetabling, produce perturbations that alter fre-

quency plans and give rise to one of the most annoying problems in urban transportation

operations, the bus bunching problem that happens when two or more buses arrive at a stop

nose to tail, and it reflects an unreliable service that affects transit operations by increasing

passenger-waiting times.

On this work, we focus on providing solutions to the bus bunching problem by

maintaining congruent headways. Furthermore, we will show that maintaining congruent

headways implicitly reduces passenger-waiting times. A headway is a quality measure

given to the time difference between two consecutive buses. A bus line could have equally

distant headways or different ones for each pair of buses.

1.2.2 OBJECTIVES

Most of the works in the literature base their quality measure on the waiting times of

the passengers, or the variance between the departure times of the buses, which can be

modeled with quadratic functions that are harder to solve. Instead, by using a linear

programming model, our methodology returns optimal solutions at a fraction of the cost of

alternative approaches. Moreover, maintaining more stable headways reduces passenger-

waiting times in the lines, as our experimental results will demonstrate.
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1.2.3 HYPOTHESIS

The development of an efficient methodology to help regulate the transport lines to the

original planning will improve the experience offered to the transport end users.

1.2.4 SCIENTIFIC METHODOLOGY

• Statement of the problem. In this stage we present the problem and we will define

all its peculiarities and its scope.

• Bibliography review. Here we look for different approaches to resolve similar prob-

lems and we analyze the different proposals for solving and their analysis methods.

• Mathematical formulation. In this stage we propose a lineal programming model

that adjusts to all the peculiarities of the problem, to obtain an action plan to regulate

the transport line.

• Simulation approach. Here we propose a simulation, designed in ExtendSim, that

adjusts to the peculiarities of the problem.

• Experimentation. In this stage we use the simulation previously proposed to gen-

erate the different instances to be solved by the lineal programming modeled with

GUROBI.

• Result analysis. In here we will analyze the result obtained in the simulation imple-

menting the lineal programming model.

1.3 DISSERTATION STRUCTURE

In this section we describe the structure of this dissertation, which is divided into the two

main subjects as it is explained below.
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• Chapter 2, presents the research about the ”Lot production size for a parallel ma-

chine scheduling problem with auxiliary equipment”. Section 2.1 is the summary

of this subject while in Section 2.2 we show the description of the problem. In Sec-

tion 2.3 we present a new integer linear programming for the PPMM problem. Then,

in Section 2.4, we develop a Relax&Fix heuristic, while in Section 2.5 we solve the

problem with a multistart greedy algorithm. In Section 2.6 we show that our itera-

tive procedure is indeed efficient since the solutions obtained by the heuristic are of

high quality and have feasible mold scheduling solutions. Finally, in Section 2.7 we

conclude and point out further areas of research.

• Chapter 3 presents the research about the ”Linear Bus Holding Model for Real Time

Traffic Network Control”. In Section 3.1 we present a abstract for this research

while in Section 3.2 we describe the problem. A brief revision of the state of the art

is presented in Section 3.3. In Section 3.4, we present our new linear programming

model inspired in earliness and tardiness penalties of just-in- time scheduling prob-

lems, which determines the optimal holding times of the buses at the stops. Then,

Section 3.5 shows the efficiency of our model on a discrete event simulation of a

single corridor. Finally, Section 3.6 presents our conclusions, and discusses open

research questions that arise from this work.

• In Chapter 4 we present the general conclusions of this dissertation. We also talk

about the future work that emerged from this investigation.



CHAPTER 2

LOT PRODUCTION SIZE FOR A

PARALLEL MACHINE SCHEDULING

PROBLEM WITH AUXILIARY EQUIPMENT

This research produced the article:

Yasmı́n A. Rı́os-Solı́s, Miguel L. Morales-Marroquı́n, Marta Cabo, Edgar

Possani.“Lot production size for a parallel machine scheduling problem with

auxiliary equipment”. Submitted to Annals of Operations Research.

2.1 ABSTRACT

We study a manufacturing setting where sets of pieces form finished products, each piece

has a set of molds that can be used to make it, and molds must be mounted on machines

with their corresponding installation setup times. The aim is to maximize the profit of

the finished products. The key point of our methodology is to solve the single period

lot-sizing decisions for the finished products together with the piece-mold assignments

and the mold-machine ones, but without the mold overlapping constraints on different

machines. We propose an exact integer linear programming, a Relax&Fix heuristic, and

7
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a multistart greedy algorithm to solve this problem. Experimental results on instances

based on real-world data show the efficiency of our approaches and exhibit that most of

the solutions verify that molds are non-overlapping even if they are installed on several

machines.

2.2 INTRODUCTION

The problem we study in this paper is inspired by a manufacturing company that pro-

duces plastic products. Plastic injection systems molds are used for shaping raw plastic

into pieces that are then assembled to form final products. Molds that produce a certain

piece may have different production rates (or different cavities), and each machine has its

own production speed. The objective of the company is to determine the lot-size of fin-

ished products by making an accurate assignment of the production pieces to molds and

machines to manufacture the finished products. We name this problem the Product-Piece-

Mold-Machine problem (the PPMM problem for short).

Figure 2.1 illustrates most of the characteristics of the PPMM problem. The first col-

umn shows the finished products (male doll, female doll, and robot). These products are

composed by some of the pieces in the second column of the figure. A piece is completely

characterized by its shape, color, and plastic type. An edge between a product and a piece

indicates that this piece is needed for assembling this product. Notice that some pieces

such as the arms, are needed to assemble the male and the female dolls. Some other pieces

such as the dress of the female doll, are exclusive of a single product. Edges between a

piece and a mold (second to third column) indicate that this piece can be manufactured

with that mold. Each mold may be different due to technical specifications (material and

number of cavities). Even though a mold may produce different pieces, once a piece is se-

lected no other piece may be produced with this same mold at the same time. That is, the

first mold can produce either faces or arms at each time. Finally, the last column represent

the machines where the molds are installed. Note that not all molds may be installed on

any machine.



CHAPTER 2. LOT PRODUCTION SIZE FOR A PARALLEL MACHINE SCHEDULING PROBLEM WITH AUXILIARY EQUIPMENT9

Finished  
products

Pieces
Molds

Machines

Figure 2.1: Scheme of the PPMM problem: sets of pieces form finished products, each

piece has a set of molds that can be used to make it, and molds are mounted on a certain

number of machines
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When the production of a specific type of piece on some machine is finished, there

are two possible decisions: to process the next piece with the same mold, or to remove

the mold from this machine. In the first case, a small preparation time may arise. This

setup time between the production of two pieces may be a color or a plastic change. In

the other case, if another mold is going to be installed on this machine, its installation

and removal incur in a mold-setup time that is larger than the piece setup time. Molds are

usually heavy and need to be moved by cranes in order to be installed on the machines.

Therefore, a large amount of time is used for their installation, preparation, and removal

(two hours on average for the plastic injection molds).

In Figure 2.2 a feasible solution of the PPMM system is represented. On Machine 1

the first mold installed is Mold 1 that first produces Piece 1 and then Piece 6 with a setup

time between these two pieces. After that, a larger setup time is incurred when changing

to Mold 2 on the same machine. Notice that Mold 1 is also used on Machine 2 but not

at the same time. The key point of our approach is that in the PPMM problem we drop

the constraints that guarantee that a mold is not used on more than one machine at a time.

With this modification we obtain a more tractable problem that has in most of the cases

a feasible scheduling of the molds as shown in Section 2.6. Note that a piece may be

produced at the same time in two different machines using different molds as Piece 2 in

Mold 4 on Machine 2, and in Mold 3 on Machine 3.

In the PPMM environment the company can only sell finished products. That is, we

are considering a two-level lot-sizing problem that corresponds to an assembly structure.

The demand of the plastic finished products is seldom fulfilled by the company. Thus,

the production capacity is expected to be fully used. In this PPMM setting, only a single

period is considered, that is, no inventory is allowed.

In the literature, scheduling problems often consider sequence dependent setup times

between the processing of different types of jobs (here, molds) as in PPMM. Most of these

works consider the single machine case (Eren, 2007; Sourd, 2006; Stecco et al., 2008).

Studies that deal with the parallel machine case and sequence dependent setup times, for
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Machine 1

Machine 2

Machine 3
Time

0
available

time

Mold 1

Mold 1

Mold 3

Mold 4

Mold 2

6 31

8

4 5 9

mold-setup
 time2

2

mold-setup
 time

Figure 2.2: Gantt chart of the PPMM production

example Weng et al. (2001), do not consider the additional complexity added by using

auxiliary equipment such as the molds in our PPMM problem. A recurrent idea it to base

the scheduling methodologies on scheduling families of jobs (Chen y Powell, 2003; Haase

y Kimms, 2000; Li et al., 2005; Vilı́m, 2006). Marinelli et al. (2007) propose heuristics for

the integrated lot-sizing and scheduling problems. Again, none of these models consider

auxiliary production equipment.

In a classical approach to solve the PPMM problem, first the lot-sizing problem

would be solved and then the mold-machine and piece-mold assignments would be tack-

led (Quadt y Kuhn, 2008; Gicquel et al., 2008). Some other works integrate the batch

sizing and scheduling problems for a single machine (Chrétienne et al., 2011; Hazır y

Kedad-Sidhoum, 2012). In Ibarra-Rojas et al. (2011), the authors propose a decomposi-

tion approach for a problem similar to the PPMM problem except that they do not consider

that the pieces must form finished products. In Section 2.3 we show that the structure of

our integer linear programming is drastically different from theirs because we consider

finished products. So neither their model nor their iterated local search heuristic can be

easily adapted to the PPMM problem, to the best of our knowledge.
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The PPMM problem is innovative in three ways. The first one is that we do not

make assumptions about the auxiliary equipment such as unique machine assignments as

it is done in Lin et al. (2002), Ibarra-Rojas et al. (2010), and in Chacón Mondragón et

al. (2012). When molds are forced to be installed in only one machine this implies sub-

optimal solutions since it does not consider the possibility of processing pieces with a spe-

cific mold on different machines, which is a feasible solution and often occurs in real-life

systems. The second innovation is to consider that finished products must be assembled

before selling them. Indeed, to the best of our knowledge, this two-level lot-sizing and

scheduling of processes that require auxiliary equipment is new. The last innovation is re-

lated to the batch production of the pieces which has not been considered in Ibarra-Rojas

et al. (2011) nor in Ibarra-Rojas et al. (2010).

We use the structure of our proposed mathematical model for the PPMM problem

to obtain a Relax&Fix heuristic to solve it. Indeed, this type of heuristic has already

yield interesting results in the literature (Dillenberger et al., 1994; Beraldi et al., 2008;

Escudero y Salmeron, 2005). In our work it will consist of making continuous relaxation

of the variables that set the size of the final products and the number of pieces to be made.

Thus, only the mold-machine assignment variables are left as integer and their obtained

values are considered as fixed in the original model. This heuristic is fast and accurate

but it cannot tackle larger and more realistic instances of the PPMM problem. Thus, we

develop a multistart greedy algorithm (MGA) for obtaining feasible high quality solutions.

In Section 2.3 we present a new integer linear programming for the PPMM problem.

Then, in Section 2.4, we develop a Relax&Fix heuristic for the PPMM problem while

in Section 2.5 we solve the PPMM problem with the multistart greedy algorithm. In

Section 2.6 we show that our iterative procedure for solving the PPMM problem is indeed

efficient since the solutions obtained by the MGA are of high quality and have feasible

mold scheduling solutions. Finally, in Section 2.7 we conclude and point out further areas

of research for this problem.
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2.3 INTEGER LINEAR PROGRAMMING FORMULATION

In this section we formulate the PPMM problem as an integer linear programming model.

This mathematical structure will be helpful for designing the Relax&Fix heuristic of Sec-

tion 2.4 and the MGA that is presented in Section 2.5.

First, let us suppose that a mold is installed twice on the same machine. Then, a so-

lution that reduces the mold-setup times is the one that merges these two occurrences into

one. This grouping idea is consistent with the way that companies make their production

and has been reported to yield positive results (Chen y Wu, 2006).

Let Finish be the set of the finished products, Pieces the set of all pieces, Molds the

set of all available molds, and finally Machs the set of all parallel machines. Each finished

product f has a profit of c f per item and a demand of d f . Finished product f ∈ Finish

is composed by a set Pieces( f ) of pieces. A finished product may need more that one

piece type to be assembled. Therefore, n f
p corresponds to the number of pieces p needed

to assemble product f (e.g. 2 pieces “eye” for a finished product “doll”). Each piece

p ∈ Pieces can be produced with molds of type Molds(p). For manufacturing a piece p,

a mold m ∈Molds(p) has cavpm cavities. Notice that a given piece can be produced by

different molds, then |Molds(p)| is usually more than one. A mold m can be installed on

a set of machines Machs(m). Each machine k has an available time for production equal

to machTimek. Manufacturing a batch of piece p produced with mold m ∈ Molds(p)

that is installed on machine k ∈Machs(m) takes batchTimepmk time. The parameters itmk

represent the installation and removal time of mold m on machine k ∈ Machs(m). The

small preparation time between the execution of two different pieces on a single mold

(color or a plastic change) are included in the processing time of the pieces.

Main decisions are about the amount to produce of each product f , lotSize f . From

these variables we can deduce auxiliary variables X f
p that correspond to the number of

pieces p manufactured to assemble product f . These two types of decisions are related

to one another but notice that the price only depends on the number lotSize f of finished
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product f that is manufactured.

To formulate an ILP for the PPMM problem we also need three other sets of vari-

ables. Let variable timepmk correspond to the amount of time dedicated by machine k to

produce piece p with mold m. With integer variable numBatchpmk we count the number

of batches made by mold m to produce piece p on machine k. Binary variable Ymk is equal

to 1 if mold m is installed on machine k, and 0 otherwise. Additionally, let M be a very

large number that will force variables Ymk to be 1 when mold m is mounted on machine k.

The value of M can be bounded by

machTimek− itmk

batchTimepmk

for each piece p, mold m, and machine k. We can now state the ILP as follows:

max ∑
f∈Finish

c f lotSize f (2.1)

s.t. lotSize f ≤ d f f ∈ Finish (2.2)

lotSize f ≤ min
p∈Pieces( f )

⌊
X f

p

n f
p

⌋
f ∈ Finish (2.3)

numBatchpmk =

⌊
timepmk

batchTimepmk

⌋
p ∈ Pieces,m ∈Molds(p),

k ∈Machs(m) (2.4)

numBatchpmk ≤MYmk p ∈ Pieces,m ∈Molds(p),

k ∈Machs(m) (2.5)

∑
f∈Finish

X f
p = ∑

m∈Molds(p)
cavpm ∑

k∈Machs(m)

numBatchpmk p ∈ Pieces (2.6)

∑
m∈Molds

(
itmkYmk + ∑

p∈Pieces
timepmk

)
≤ machTimek k ∈Machs (2.7)

lotSize f ,X f
p ,numBatchpmk ∈ Z+ f ∈ Finish, p ∈ Pieces( f ),

m ∈Molds(p),k ∈Machs(m)

timepmk ∈ R+,Ymk ∈ {0,1} f ∈ Finish, p ∈ Pieces( f ),

m ∈Molds(p),k ∈Machs(m)

Objective function (2.1) maximizes the profit of selling the finished products. Notice
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that the aim is not to satisfy the demand as it is rarely fulfilled. Therefore, constraints (2.2)

related to the demand are not often active. The limiting constraints are (2.3) that bound

the number of finished products by the minimum number of pieces available to assemble

complete products. Constraints (2.4) determine the number of batches numBatchpmk that

correspond to the total time spent by mold m on machine k to produce piece p divided

by the time required to produce a batch of piece p. Constraints (2.5) require Ymk to be 1

when mold m is mounted on machine k, this happens whenever a batch of any piece p is

produced with that machine and that mold assignment. Indeed, the maximum number of

batches of piece p that could be made with mold m on machine k would correspond to

the situation where the only mold installed on machine k is m during all the time horizon.

Constraints (2.6) compute the total amount of pieces p as the number of batches of the

molds that produce this piece times the number of cavities of the molds. Each machine

k can only be used machTimek of time. This time is consumed by the installation times

of the molds on this machine plus the amount of time used by the molds to produce the

pieces and this is reflected in constraints (2.7).

A solution of the PPMM problem indicates the mold-machine assignments together

with the time that a mold is used on each machine (including its setup time). In the

scheduling terminology, one would say that the jobs (corresponding to the time that molds

are used on each machine) are assigned to the machines. Although the PPMM problem

does not give the starting (or completion) times of the jobs, with the following property we

enable a set of solutions of the PPMM problem that will have an unfeasible scheduling. In

particular, for any mold m ∈Molds, an upper bound on the maximum time that this mold

can be used (setups plus execution times) is equal to the maximum available machine

time.

PROPERTY 2.1. A solution of the PPMM problem that has a feasible mold scheduling on

the machines satisfies the following sufficient condition:

∑
k∈Machs

(
itmkYmk + ∑

p∈Pieces
timepmk

)
≤max

k
machTimek m ∈Molds. (2.8)

By Property 2.1, we can add constraints (2.8) to the ILP of the PPMM problem
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to reduce the number of solutions that will have an unfeasible mold scheduling on the

machines, that is, solutions that have mold overlapping. This is the key point of our study

since we are not including all the variables and constraints that would enable solutions

without mold overlapping. By relaxing the problem we can obtain solutions that are most

of the times free of mold overlapping and easier to obtain. Nevertheless, the PPMM

problem is hard to solve as stated by the following theorem.

THEOREM 2.2. The PPMM problem belongs to the NP-hard complexity class.

Proof. The decision version of this problem is clearly in NP. The rest of the proof is

by restriction since the structure of constraints (2.7) is similar the one of the Multiple

Knapsack problem (Martello y Toth, 1990; Chekuri y Khanna, 2005) that is NP-hard.

Consider an instance of the PPMM problem such that one mold can make only one type

of piece and each product is made by only one piece, then we have an instance that is

identical to the Multiple Knapsack problem.

The alternative of introducing in the PPMM model the constraints that guarantee

that there would be no mold overlapping, that is, that the molds have a feasible schedul-

ing on the parallel machines, implies a quadratically constrained integer model that has no

convex continuous relaxation. These quadratic models are usually harder to solve. For our

case study, some preliminary experimental results yield non-global solutions of poor qual-

ity when solving the quadratic model even when applying convexification reformulation

methods as the ones of Plateau y Rios-Solis (2010).

In Section 2.6 we show that solving the PPMM’s problem ILP by an integer linear

solver is not efficient for real size instances. Therefore, we propose a Relax&Fix heuristic

in Section 2.4 and a greedy randomized adaptive search procedure in Section 2.5 that are

based on the ILP model of the PPMM problem.
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2.4 RELAX&FIX HEURISTIC

The integration of lot sizing and scheduling decisions generally results in difficult prob-

lems. Even if we only consider a single period in this study, the structure of ILP developed

for the PPMM problem suggests that a simple but effective Relax& Fix heuristic could be

used (Beraldi et al., 2008; Escudero y Salmeron, 2005).

In this procedure, we make a continuous relaxation of the variables that set the size

of the final products, lotSize f , the number of pieces to be made, X f
p , and the number of

batch production cycles numBatchpmk. Thus, only the mold-machine assignment variables

Ymk are left as integer. Let ILP’ be the resulting relaxed model. After solving ILP’ with

a branch-and-bound algorithm up to optimality, we have the values of the continuous

relaxed variables numBatch′pmk. Then, the Relax&Fix heuristic solves the original ILP

but this time, variables numBatchpmk are fixed to bnumBatch′pmkc.

Different combinations of this Relax&Fix procedure were tested but only this one

yielded interesting results that will be shown in Section 2.6. Nevertheless, large instances

could not be solved by this Relax&Fix heuristic so in the next section we present a multi-

start greedy algorithm to solve them.

2.5 MGA: MULTISTART GREEDY ALGORITHM FOR THE

PPMM PROBLEM

To solve the PPMM problem, we propose a multistart greedy algorithm procedure, MGA

(Cormen, 2009; Resende y Ribeiro, 2014). In the structure of the PPMM model we can

notice that for the same amount of finished products, there can be many different piece-

mold-machine assignments. Moreover, we did some preliminary experimentation with

classical scheduling local searches (with insertion, removal, swap operators applied to the

set of pieces and/or machines) and it did not yield high quality solutions in reasonable
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time. Therefore, our MGA focuses on a local search defined on the finished products, that

is, on variables lotSize f rather than on the pieces or the mold-machine assignments.

The procedure of the MGA for the PPMM problem is described in Algorithm 1.

Each MGA iteration consists of two phases, a construction phase based on a greedy func-

tion in which a solution is produced, and a local search phase, in which a local optimum

in the neighborhood of the constructed solution is sought.

Before presenting the MGA, we need to specify the information contained in a so-

lution s of the PPMM problem:

• The amount of finished products: lotSize = {lotSize f | f ∈ Finish}.

• The number of pieces that are made for each finished product: X = {X f
p | f ∈

Finish, p ∈ Pieces( f )}.

• The time that each mold spends on each machine to produce a certain piece: time =

{timepmk|p ∈ Pieces,m ∈ Molds(p),k ∈ Machs(m)}. From these values we can

compute the remaining time that a machine or a mold has left for production.

• The values of the binary variables Y = {Ymk|m ∈ Molds,k ∈ Machs(m)} that are

equal to 1 if mold m is installed on machine k, and 0 otherwise.

Summarizing, s = (lotSize,X, time,Y).

The MGA starts with the trivial solution s∗ = (lotSize = 0,X = 0, time = 0,Y =

0) and with ordered list UnFinish consisting of the products f that have not yet been

processed. Each product has the following probability to be drawn from the list:

c f(
∑p∈Pieces( f ) n f

p

)(
∑ f ′∈UnFinish ∑p∈Pieces( f ′) n f ′

p

) , (2.9)

which takes into account the price of the finished product with respect to the number of

pieces that it needs to be assembled. Notice that the second term of the denominator is a

normalization with respect to the other products in UnFinish, in order to have a probabil-

ity. In this manner, finished products that yield a higher benefit and that need fewer pieces
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Algorithm 1 MGA: Multistart Greedy Algorithm for the PPMM problem
1: s∗ = (lotSize = 0,X = 0, time = 0,Y = 0), populate list UnFinish

2: while stop criterion not reached do

3: s = (lotSize = 0,X = 0, time = 0,Y = 0)

4: while UnFinish 6= /0 do

5: f ∗ drawn from UnFinish, p∗ drawn from ordered set Pieces( f ∗)

6: lotsize f ∗ =min
{

d f ∗,UB f ∗
p∗

}
is the upper bound of the product f ∗ to be produced

7: if lotsize f ∗ = 0 then

8: UnFinish =UnFinish\{ f ∗}

9: else

10: ∆ = 1,Flag = 0

11: while Pieces( f ∗) 6= /0 or Flag 6= 1 do

12: compute X f ∗
p∗k =maxm∈Mold(p)

k∈Mach(m)

⌊
cavpmk(min(machTimek,moldTimem)−itmk(1−Ymk))

n f∗
p ·batchTimepmk

⌋
∀k

13: if X f ∗
p∗k = 0 for all k then

14: if lotsize f ∗∆ ≤ 1 then Flag = 1, remove f ∗ from UnFinish , erase f ∗

from s

15: else reduce ∆, restore s

16: else

17: X f ∗
p∗ = min{maxk X f ∗

p∗k, lotsize f ∗n f ∗
p −X f ∗

p }

18: update in s: X f ∗
p = X f ∗

p +X f ∗
p∗ , time, and Y

19: if lotsize f ∗∆n f ∗
p∗−X f ∗

p∗ = 0 then remove p∗ from Pieces( f ∗)

20: end if

21: end while

22: end if

23: end while

24: if s has a better objective function that s∗ then s∗ = s

25: end while
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to be assembled have the highest probability to be processed. Other criteria were tested

but they did not show as good performance in the quality of the final solution than this

simpler one.

Each iteration performs the following procedure (see Algorithm 1). In 5 we draw a

finished product f ∗ from UnFinish with respect to the probability previously established

by (2.9). For f ∗ we order set Pieces( f ∗) in no-ascending order with respect to the fol-

lowing equation that determines the mold-machine assignment that would produce more

pieces p without taking into account other mold-machines assignments:

UB f ∗
p = max

m∈Mold(p)
k∈Mach(m)

⌊
cavpmk(min(machTimek,moldTimem)− itmk(1−Ymk))

n f ∗
p ·batchTimepmk

⌋
. (2.10)

Thus, the most constraining piece p∗ (the bottleneck piece) is the first in Pieces( f ∗). This

bottleneck piece is the one that will bound the lot size of f ∗ which corresponds to verifying

constraints (2.2) and (2.3) of the ILP. If this bound is equal to zero then finished product

f ∗ cannot be manufactured and it is removed from UnFinish (step 8). Otherwise, we start

a simple local search algorithm to find the amount of product lotsize f ∗ that makes s a

feasible solution (steps 10-19). This local search initializes with ∆ = 1 so the local search

will try to arrange the pieces of f ∗ in order to make lotsize f ∗ . If it fails, that is, there is

no feasible solutions that can be found, then ∆ will be reduced thus the algorithm will

make less than lotsize f ∗ . In step 11, we determine the amount of piece p∗ that could be

made on each one of the machines. If there is no machine that can handle p∗ we have two

cases. The first one is that we have reduced so much the lot size that it is less than one.

In this case we remove the product f ∗ from UnFinish, remove also all information of f ∗

in s and search for another product. Else, we have to reduce the amount of lot size of f ∗

by reducing ∆, and we delete from s all the information related to f ∗ and give p∗ a higher

priority in Pieces( f ∗). In the case where there is at least one machine where piece p∗ can

be produced (step 17), we choose the mold-machine pair that can produce more of it and

we update this assignment in s. Notice that a piece p∗ can have several mold-machine

assignments in s. If all the pieces p∗ to produce f ∗ have been made, we remove p∗ from

Pieces( f ∗). Finally, in step 24 we update the best solution s∗ if the current solution s has
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a better objective function value.

With respect to the local search, given s, a neighbor of this solution is obtained by

decreasing its correspondent value of lotsize f ∗ by the proportion ∆. The neighborhood

Neigh(s) of s is composed by all of its neighbors. Notice that any neighbors of s (even

itself) may not have feasible piece-mold-machine assignments since the execution time of

the pieces that make the fixed number of final products may be larger than the available

time of the machines. Therefore, this simple local search will generate a suite of neighbors

until it finds a feasible one.

THEOREM 2.3. The MGA for the PPMM problem has a complexity of

O(maxi di|Finish||Molds||Machs||Pieces|2).

Proof. The more time consuming step is the while loop of the local search (step11).

Indeed, for each finished product and for each piece of the product, step 15 can be

done, in the worst case, until the demand of the finished product is 0 (∆ would re-

duce lotsize f ∗ one by one). Moreover, restating the current solution in this step takes

O(|Pieces||Molds||Machs|) which gives the stated complexity of the PPMM’s MGA.

With the MGA for the PPMM problem we have obtained a solution where the size

of the finished products to be manufactured is set together with the piece-mold-machine

assignments. Nevertheless, this solution may not have a feasible scheduling since two

molds could be used by two different machines at the same time. We must check that this

solution is feasible (we could use the feasibility scheduling algorithm of Ibarra-Rojas et

al. (2011)). If the solution is not feasible, we run the MGA again but restrict the mold-

machine assignments of the current solution to obtain a new one. This procedure could in

theory be exponential but in practice the MGA obtains in most cases a feasible solution

for the PPMM problem in one iteration as it will be shown in the next section.
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2.6 EXPERIMENTAL RESULTS

In this section we empirically evaluate the efficiency of the ILP, the Relax&Fix heuristic,

and the MGA to solve the PPMM problem.

We generated a set of 150 instances based on observed data from a real plastic injec-

tion company. The size of an instance is determined by the number of finished products,

pieces, molds, and machines. We denote the specific instance by means of a 4-tuple:

(|Finish|, |Pieces|, |Molds|, |Machs|). The difficulty of an instance not only resides on

its size but also on the number of finished products that need a specific piece, the num-

ber of molds that can make each piece, and the number of machines where a mold can

be installed. We name these compatibility factors as: δFinish−Pieces, δPieces−Molds, and

δMolds−Machs, respectively. More precisely, a compatibility of δPieces−Molds=25% means

that each piece has a probability of being made by at most 25% of the molds. In Ibarra-

Rojas et al. (2011) the authors show that the difficulty of an instance does not reside on

the δPieces−Molds and δMolds−Machs compatibility factors, so we fix them close to the real

observed compatibility, that is, δPieces−Molds = 15% and δMolds−Machs = 60%. Neverthe-

less, in this work we show that the Finish-Piece compatibility factor is a vital component

in determining the difficulty of an instance. Therefore, we establish three different com-

patibility factors for δFinish−Pieces: 25%, 50%, and 100%. The observed compatibility

factor in the company between Finish and Pieces is around 25%. A δFinish−Pieces = 100%

would mean that all pieces are needed by all the finished products but probably in different

quantities. Note that the instances from Ibarra-Rojas et al. (2011) do not consider finished

products so we cannot compare our algorithms with theirs.

In Figure 2.3 is illustrated a small instance with 5 finished products (|Finish| = 5),

50 pieces (|Pieces| = 50), 30 molds (|Molds| = 30), and 5 machines (|Machs| = 5). The

compatibility between the different sets for this instance is as follows: δFinish−Pieces =

25%, δPieces−Molds = 15%, and δMold−Machs = 60%.

The instances are classified with respect to their size into T1 (5,50,30,5), T2
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Figure 2.3: Instance of size (5,50,30,5): 5 types of finished products, 50 pieces that

conform the finished products, 30 molds to make the pieces and 5 machines to install

the molds. The compatibility factors are δFinish−Pieces = 25%, δPieces−Molds = 15%, and

δMold−Machs = 60%

(10,120,80,20), T3 (20,200,120,25), T4 (30,350,200,50), and T5 (50,450,250,75). In-

stances T3 and T4, correspond to the observed setting faced by the company we have

been collaborating with. For each size we randomly generate 30 different instances. The

first 10 instances of each size have a compatibility factor δFinish−Pieces of 25%, the second

ones of 50%, and last ones of 100%. Our instance generator was coded in C++ and guar-

antees that for all instances, each finished product has at least one piece, each piece must

belong to at least one finished product, each piece can be produced by at least one mold,

each mold produces at least one piece, each mold can be mounted on at least one machine,

and finally, on each machine at least one mold can be installed. All the instances can be

found in the Online Resource.
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For the rest of the instance parameters we used the observed values of the company

we are basing our study on. The number of pieces p needed by finished product f , n f
p,

is randomly selected between 1, 2 or 3 pieces. The demand of the finished products

d f ∈ [1000,18000]. The mold-setup times needed for installing and uninstalling a mold m

on machine k, itmk, are between 90 and 138 minutes. Indeed, recall that the molds must be

moved by cranes. The number of cavities of mold m for piece p, cavpm ∈ [4,17]. The time

needed for a batch of a certain piece depends on the type of machine, mold, and material

used (plastic in our case of study). We set the time taken for producing a batch of piece

p with mold m on machine k, batchTimepmk as either 1 or 2 minutes. All machines work

24 hours a day, therefore the time available for each machine k is machTimek = 1440

minutes. This research does not take into account maintenance times or plant shutdowns.

Finally, the price of a finished product c f corresponds to the sum of the estimated value

of its pieces that is between [5,10]1.

We will compare three algorithms that were executed on a PC with Intel Core i7-

4790K Processor, 8M Cache, up to 4.40 GHz, and 8 GB of RAM:

B&B: CPLEX 12.6 linear solver. We used the default settings except for the optimality

gap which we set to 0. B&B(1h) indicates that the stop criterion is of one hour while

B&B(5m) indicates that it is of 5 minutes.

Relax&Fix: heuristic proposed in Section 2.4 implemented in CPLEX 12.6. We also

used the default settings except for the optimality gap which we set to 0. Re-

lax&Fix(1h) has a stop criterion of one hour for ILP’ (the relaxed model) and ILP

(the one with the fixed variables) while Relax&Fix(5m) has it of 5 minutes for both

ILP’ and ILP.

MGA: multistart greedy algorithm described in Section 2.5, coded in C++. The stopping

criterion for the MGA is when there is no improvement of the value of the solution

1 Another set of instances where the number of pieces needed by finished product is between [1,5] and

where the price of the final products is independent from the number of pieces, has been tested and is

commented later.
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after 20 iterations. The acceptance criterion is to have a solution with a better value

of the objective function. After preliminary experimentation, we have set ∆ = 0.99

reduce at each iteration the lot-size of the chosen product.

Table 2.1 shows the results of solving the PPMM problem with algorithms B&B,

Relax&Fix, and MGA. Each row is the average of 10 different instances. In the first col-

umn we state the size of the instance. For example, T1-25 corresponds to an instance of

the set T1 with δFinish−Pieces = 25%.The second and third columns correspond to the aver-

age Gap calculated as: (best integer solution - best dual relaxation)/ best integer solution,

and the average time in seconds for the B&B(1h) algorithm. The rest of the columns are

analogous than the previous ones but for Relax&Fix(1h), B&B(5m), Relax&Fix(5m), and

the MGA. The Gap for the MGA is computed as: (solution MGA - best dual relaxation

of B&B or Relax&Fix)/best dual relaxation of B&B or Relax&Fix. For the T4 and T5

sets, neither the B&B nor the Relax&Fix algorithms were able to solve any of the in-

stances (“–” in Table 2.1), they could not even compute the first linear relaxation of the

B&B. Therefore, in the MGA we could not compute the Gap for these instances. Notice

that CPLEX checks before each call of the optimizer if the time limit is reached, hence

sometimes the time limit is exceeded by some seconds in our experiments.

In Table 2.1 we can observe that only for the T1 instances, the B&B(1h) yield the

best results with respect to the Gap. Then, for T2 and T3 it is the Relax&Fix(1h) procedure

that gives the best results for the Gap. For all of the instances the best results with respect

to the time correspond of course to the MGA which is the only procedure that solves

the T4 and T5 instances. When the compatibility factor δFinish−Pieces is equal to 100% it

implies that all the finished products need all the pieces (the number of each type piece

needed may differ). Therefore, we have a complete Finish-Pieces subgraph leading to

a high number of decision variables. It is interesting to notice that the instances with

δFinish−Pieces = 100% are not always the hardest instances for the exact procedures B&B

and Relax&Fix. Indeed, some symmetries may arise in these cases and are easily excluded

by the branch-and-bound procedures. An important aspect of the MGA is that the quality

of the solutions is maintained even if we increase the size of the instances. The MGA
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Table 2.1: Results of solving the generated instances with algorithms B&B(1h), Re-

lax&Fix(1h), B&B(5m), Relax&Fix(5m), and the MGA

B&B(1h) Relax&Fix(1h) B&B(5m) Relax&Fix(5m) MGA

Inst. Gap Time Gap Time Gap Time Gap Time Gap Time

T1-25 0.01 2041.3 0.76 2.1 0.03 242.9 0.76 2.1 17.94 0.05

T1-50 0.08 2784.2 0.43 1.8 0.12 241.3 0.43 1.8 20.64 0.05

T1-100 0.17 3329.4 0.51 4 0.21 300.4 0.51 4 23.71 0.07

T2-25 4.47 3670.7 3.53 3614.6 6.71 300.6 3.96 301.8 21.34 0.72

T2-50 4.52 3651.8 3.08 3615.3 14.61 300.8 4.35 301.9 21.92 0.99

T2-100 4.04 3686.5 2.29 3659.6 6.51 300.7 4.1 302 19.21 1.42

T3-25 9.16 3601.5 5.31 3608.8 46.61 302 14.81 310.6 26.64 2.06

T3-50 7.36 3601.3 4.93 3608 53.19 302.1 44.93 337.7 26.63 3.07

T3-100 10.31 3734.6 5.87 3678.7 19.17 302.2 7.60 313.7 24.83 4.74

T4-25 – – – – – – – – – 15.84

T4-50 – – – – – – – – – 24.09

T4-100 – – – – – – – – – 41.13

T5-25 – – – – – – – – – 53.03

T5-50 – – – – – – – – – 90.86

T5-100 – – – – – – – – – 156.72
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rapidly converges to a local optimum that is not easy to escape from even with a drastic

random perturbation. So, giving more execution time to the MGA does not increases its

quality. Notice that there are some set of instances where the Gap of the MGA is better

than the Relax&Fix(5m) and the B&B(5min) like the T3-50 of T3-25 instances.

We executed another set of instances where the number of pieces needed by finished

product is between [1,5]. The aim was first to determine if this was a key component of the

difficulty of the instance but the experimental results showed that this was not a sensible

parameter. The fact that the prices of the final products are independent from the number

of pieces gives rise to slightly easy to solve instances since all the algorithms easily detect

the products with higher price and less pieces and favor their production.

A major insight into the problem obtained from our research is the fact that most of

the solutions obtained by our methodologies do not need the extra constraints to avoid a

mold overlapping. As mentioned before, once the B&B , Relax&Fix or the MGA obtain

a solution, we must check if this solution has a feasible scheduling of the molds. In 99%

of the instances, the solutions have a feasible scheduling of the molds on the machines,

that is, there is no mold overlapping. Only one instance of T2 with δFinish−Pieces = 25%

did not have a feasible scheduling of the molds when solved with the MGA. Therefore,

we executed the MGA a second time, but this time we prohibited the mold that showed

more overlapping to be installed in more that two machines. This time the MGA solution

had a feasible scheduling with a solution of equal value of the objective function.

2.6.1 CALIBRATION OF THE MGA

There are two main parameters in the MGA: the number of iterations without improve-

ment (stop criterion), and the ∆ parameter that reduces the amount of product that can be

made at each iteration (step 15 of Algorithm 1). Regarding the number of iterations, we

fixed it to 20 since most of the instances behave as the ones presented in Figure 2.4 where

the compatibility factor is δFinish−Pieces = 100%. In the abscissa axis we have the number
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of iterations while in the ordinate one we present the Gap (using the best dual solution of

the B&B). Notice that the inflection point for all the curves has already appeared before

the 20-th iteration.

Figure 2.4: Gap versus iterations for the MGA algorithm for T1-T4 instances with

δFinish−Pieces = 100%

A similar analysis was made for ∆. Our experiments showed that ∆= 0.99 generates

the best solutions without requiring too much computational resources. On the one hand,

when ∆ is smaller than 0.99, then the MGA can miss some high quality solutions. On the

other hand, the number of iterations that the algorithm performs when ∆ = 0.99 does not

drastically increase the execution times.

An obvious question is: What happens if the B&B is given more time? In Fig-

ure 2.5 we show the Gap versus time in hours for one instance of each set T1-T3 with

δFinish−Pieces = 100% (Gap % in the Y axis and hours in the X one). We can notice that

the inflection point is between one and four hours for most of the instances.
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Figure 2.5: Gap versus time in hours for the B&B algorithm for the T1-T3 instances with

δFinish−Pieces = 100%

2.7 CONCLUSIONS

The Product-Pieces-Mold-Machine problem is about the manufacturing of a set of pieces

that assemble finished products, each piece has a set of molds that can be used to make

it, molds can be assigned to a certain number of machines and, setup times arise each

time a new mold is installed on a machine. The aim of this problem is to determine the

single period lot production size of each finished product, the piece-mold and the mold-

machine assignments such to maximize the benefits of selling the finished products. The

key point of our method is that we have dropped the constraints that guarantee a feasible

scheduling of the molds on the machines. Without these constraints, our mathematical

model becomes linear and from its structure we can derive a a Relax&Fix heuristic and a

multistart greedy algorithm.

Experimental results on generated instances show the efficiency of our approach for

different sizes of the instances of the problem and validate that 99% of the instances verify

the mold scheduling constraints in a natural way.

There are obvious research lines to pursue. The first one is the consideration of sev-
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eral periods as most of the lot-sizing problems deal with. The structure of the multiperiod

PPMM problem is different from the one proposed here so new models and methods

should be developed. Another future research leads to include batching sizes of the pro-

duction to consider a more efficient way of assembly of the finished products. Indeed, in a

manufacturing enterprise, the assemble line must reduce its idle times. Another research

line deals with the fact that the more time a mold is used the least the quality of the pieces

that it is producing. Here, questions about the ideal time for replacing the molds arise and

make the problem have several objective functions.

The PPMM problem and the methodology we have proposed here has already been

tested in some plastic injection enterprises. Its value has resided in the minimization of

the time the planner had to use to make a production plan and in the ability to make

strategic decisions and corroborate them with this model: What happens when one or

more machines are added? What if we buy an extension to a mold so it can be used in

other machines?
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BUS HOLDING FOR A SIMULATED

TRAFFIC NETWORK

This research produced the following book chapter:

Hernández-Landa, L. G., Morales-Marroquı́n, M. L., Nigenda, R. S., Rı́os-

Solı́s, Y. Á. (2015). Linear Bus Holding Model for Real-Time Traffic Net-

work Control. In Applied Simulation and Optimization (pp. 303-319). Springer

International Publishing.

3.1 ABSTRACT

One of the most annoying problems in urban bus operations is bus bunching, which hap-

pens when two or more buses arrive at a stop nose to tail. Bus bunching reflects an unre-

liable service that affects transit operations by increasing passenger-waiting times. This

work proposes a linear mathematical programming model that establishes bus holding

times at certain stops along a transit corridor to avoid bus bunching. Our approach needs

real-time input, so we simulate a transit corridor and apply our mathematical model to the

data generated. Thus, the inherent variability of a transit system is considered by the sim-

ulation, while the optimization model takes into account the key variables and constraints

31
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of the bus operation. Our methodology reduces overall passenger-waiting times efficiently

given our linear programming model, with the characteristic of applying control intervals

just every 5 minutes.

3.2 INTRODUCTION AND PROBLEM DESCRIPTION

The study of complex bus operating systems is usually divided in two main areas, line

planning and real-time control (Ceder, 2007; Desaulniers y Hickman, 2007). The line

planning process involves strategic, tactical, and operational decisions. Strategic problems

relate to long-term network design decisions. Tactical and operational decisions ultimately

define the service offered to the public; for example, frequency of buses, definition of

stops, bus timetabling, vehicle scheduling, driver scheduling, maintenance scheduling,

among other problems.

Real-time control tries to maintain the bus system operational along the day in order

to minimize passenger inconvenience caused by the inherent stochastic dynamics of the

network or traffic situations (Desaulniers y Hickman, 2007). Although, bus frequency is

planned for each stop in the network, changes in the passenger flow, traffic, or even in the

timetabling, produce perturbations that give rise to one of the most annoying problems

in urban transportation operations, the bus bunching problem (BBP) that happens when

two or more buses arrive at a stop nose to tail. BBP is one of the most common customer

complaints in today’s networks since it reflects an unreliable service that affects transit

operations by increasing passenger-waiting times.

In Figure 3.1, we show the causes of bus bunching for a single bus line with three

trips, that have the following timetable: 8:00, 8:15, and 8:30. For the four graphs, time

is represented by the x-axis, while the first two stops are represented by the y-axis. The

first graph shows how the planning should look like if everything were deterministic. We

can see that the lines of the three trips are parallel, so the time differences between them

(called headways) are of exactly 15 minutes. The second graph shows the perturbations
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Figure 3.1: Causes of bus bunching (modified from Ceder (2007)).

that arise when a traffic delay hits the second trip between the depot and the first stop. The

doted lines are the planned schedules, while the plain lines are the real executed delayed

plans. Since the 8:15 bus takes longer to arrive to stop 1, then there are more passenger

waiting to board it. When the bus that departed at 8:30 arrives at stop 1 many of the

passengers that should have board it, already boarded the 8:15 bus. Then, these two buses

will bunch close to stop 2. Graph three represents bunching situations when the departure

time of a trip is moved earlier. Similarly to the second case, there will be less passengers

at stop 1 so the bus will go faster and catch the 8:15 bus around stop 2. Finally, the fourth

graph considers the case of passenger overflow. This graph shows that since there are

extra passengers at stop 1 so the dwell time of the second bus at that stop will be longer.

In other words, the second bus is taking passengers that would be normally assigned to

the third bus. By the time the second and third bus arrives at stop 2, they are generating a

bus bunching situation.

In this work, we provide solutions to the bus bunching problem by maintaining

congruent headways. Furthermore, we will show that maintaining congruent headways

implicitly reduces passenger-waiting times. As mentioned, the headway is a quality mea-

sure given to the time difference between two consecutive buses. A bus line could have

equally distant headways or different ones for each pair of buses Ceder (2001); Ibarra-

Rojas y Rios-Solis (2012); Ibarra-Rojas et al. (2014). We say that headways are congruent

if the real-time differences between buses are nearly identical to the originally planned.

Headway congruence does not necessarily comply with planned timetables. Indeed, the

time when a bus arrives at a stop may not be the planned one, but if the distance to his
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predecessor is almost the planned headway, then it will be a congruent headway. Con-

gruent headways reflect a reliable service especially for the cases when timetables are

not intended for the public so the users only know estimated headways for the lines as in

Monterrey, Mexico, and many Latino-American cities.

Our methodology interleaves optimization and real-time data retrieving to maintain

congruent headways and solve BBP along the day. During the optimization phase, a linear

programming model is built and solved to exactly determine the holding times of the

buses at the stops in order to maintain congruent headways. The real-time data retrieving

phase indicates, at every interval of time, the positions of the buses along a single corridor

where only one line operates on a given frequency. In Figure 3.2, we can observe how

optimization and real-time data retrieving interleave. Real-time (or simulated) data are

acquired from the bus corridor to obtain the distance between each bus and its last visited

stop, together with the number of passengers waiting at each stop. Then, these data are

used to populate our linear programming model, which yields the optimal holding times

for each bus in the corridor.

Most of the works in the literature base their quality measure on the waiting times

of the passengers, or the variance between the departure times of the buses at the stops,

which are generally modeled with quadratic functions that are harder to solve and there-

fore difficult to operate by real-time systems. By using a linear objective function that

minimizes the penalties arising when headways are not congruent, our methodology re-

turns optimal solutions in short time. One of the main contribution of this work is that by

maintaining congruent headways, we implicitly reduce the overall passenger waiting and

travel times, as our experimental results will demonstrate.

The rest of this chapter is structured as follows. A brief revision of the state of the

art is presented in Section 3.3. In Section 3.4, we present our new linear programming

model inspired in earliness and tardiness penalties of just-in-time scheduling problems,

which determines the optimal holding times of the buses at the stops. Then, Section 3.5

shows the efficiency of our model on a discrete event simulation of a single corridor.
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Figure 3.2: Framework for interleaving optimization (BBP LP modeling) and real-time

data retrieving (or simulation).

Finally, Section 3.6 presents our conclusions, and discusses open research questions that

arise from this work.

3.3 STATE OF THE ART RESEARCH IN REAL-TIME BUS

OPERATIONS

Most of the literature related to real-time bus operations deals with models that have non-

linear objective functions. Therefore, the holding times that each bus most be held at the

stations are approximations. Work by Zhao et al. (2003) minimizes the average waiting

cost of passengers, including both off-bus and on-bus costs that are non-linear, when there

is no capacity imposed to the buses. Eberlein et al. (2001) minimize the variance be-

tween the departure times, which is a quadratic function, and therefore propose heuristic

solutions. Sun y Hickman (2008) propose a convex quadratic programming problem to

minimize the variance between the departure times. A closer work to ours is proposed
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by Ding y Chien (2001), since they consider the minimization of the total variance of

headways between buses in all stops.

Daganzo (2009) and Daganzo y Pilachowski (2011) propose adaptive control sche-

mes aiming to provide quasi-regular headways, while maintaining as high commercial

speed as possible. In Daganzo y Pilachowski (2011) the authors continuously adjust bus

cruising speed based on a cooperative two way based approach that considers the head-

ways of the previous and posterior buses. Bartholdi III y Eisenstein (2012) abandon the

idea of any a priori target headway, allowing headways to dynamically self-equalize by

implementing a simple holding rule at a control point. It is worth noting that the aim of

the previously mentioned studies is to maintain equally headways so they do not consider

timetables where the headways may be different for each pair of buses and they are not

apt for situations when the buses reach their capacities.

Our work deals with capacity on the vehicles as Zolfaghari et al. (2004) do, where

the authors minimize the waiting time of passengers at every stop by taking into account

the variance between the departure times. These authors propose heuristics to circum-

vent the complexity of the proposed model. Puong y Wilson (2008) propose a non-linear

mixed-integer linear programming for a real-time disruption response model with empha-

sis on the train holding strategy. In Delgado et al. (2009) and Delgado et al. (2012) the

aim is to minimize the total waiting times experienced by passengers in the system using

a quadratic model.

Our work aims at maintaining congruent headways considering capacity on the ve-

hicles, and in doing so, we expect to reduce passenger-waiting times in the bus corridors.

We improve the work of Delgado et al. (2012) by reducing the number of variables in the

model and the number of times the model is used in real-time scenarios, obtaining exact

solutions for the holding times. Moreover, in order to reduce the waiting times of the pas-

sengers we bound the holding times of the buses. Another advantage of our proposal is

that it adapts easily to the cases where the headways are equal or different during different

planning horizons along the day.
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3.4 METHODOLOGY AND APPROACH

As mentioned earlier, the core of our methodology consists on interleaving optimization

and real-time data retrieving of the bus lines in a rolling horizon planning. The opti-

mization phase of our approach builds and solves efficiently a linear model to maintain

congruent headways along the bus line. Our model is used every given time interval1 to

decide how long the buses should be held at the bus stops. Our model requires a real-time

data estimation of the state of the system to operate. Such data is provided by the real-time

retrieving phase, which in our case of study it is supported via simulation. The simulation

of the system provides data related to position of the buses, number of passengers aboard

of each bus, and the number of passengers waiting at the stops to build our model.

More precisely, the Bus Bunching Problem, BBP, consists of K buses, each with its

own capacity and speed that serve all S stops of a single bus corridor. We can see in Figure

3.3 that each bus k leaves the depot according to an established timetable, serving stops 1

to S before coming back to the depot where all remaining passengers must alight. Notice

that overtaking is not permitted. For the optimization phase, we consider that travel times

between stops, and λs (passengers arrival rate per minute) are deterministic during the

period of interest. Moreover, each stop has a dwell time function depending linearly on

the number of passengers that board (boardT minutes per passenger).

The characteristics of the line are as following. Parameter capk corresponds to the

capacity of bus k, dists is the distance in meters between stops s and s− 1, speedks is

the operating speed in meters per minute of bus k between stops s and s− 1 while the

bus is moving, and ODkss′ is the fraction of passengers boarding bus k at stop s whose

destination is stop s′ (for all s < s′). The headway between buses k and k− 1 in this line

must be between the interval [minHeadk,maxHeadk] to be considered congruent, which

is specified as an input parameter for our model.

1The time interval is a parameter in our model, that could be specified by the control unit of the bus

company.
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Figure 3.3: Transit bus line model: each bus k leaves the depot according to an estab-

lished timetable, serving stops 1 to S before coming back to the depot where all remaining

passengers must alight.

At time t0, instant when the holding decisions are needed, we assume that we have

the following state of the transit corridor:

• d0
k distance between bus k and its last visited stop at time t0. If the bus is still at a

stop, then d0
k = 0.

• s(k) indicates the last stop that bus k has visited at time t0. If bus k is at stop s′, then

s(k) = s′− 1. In Figure 3.3, s(2) = 3 and s(3) = 1, and to simplify the notation,

s(K) = 0, but s(1)+2 = S+1.

• c0
s is the number of passengers waiting at stop s at time t0.

Decision variables of our model are the holding times for each bus k at control point

s, denoted by hks. There are auxiliary variables that depend on hks like the departure times

of bus k at stop s that is denoted as tdks. If the departure times at stop s of buses k and

k− 1 is between [minHeadk,maxHeadk], then we consider that they are complying with

the established headways. Nevertheless, if this difference of departure times is outside this

interval, then we use the concepts of earliness and tardiness that is frequent in just-in-time

scheduling theory (Rios-Solis y Sourd, 2008; Rios-Solis, 2008; Sourd y Kedad-Sidhoum,
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2003; Rı́os-Mercado y Rı́os-Solı́s, 2012). The earliness of the headway between buses k

and k− 1 at stop s is defined as Eks = max(minHeadk− (tdks− tdk−1s),0) which can be

linearized as follows:

Eks ≥ minHeadk− (tdks− tdk−1s), k = 2, . . . ,K,s = s(k)+1, . . . ,S (3.1)

Eks ≥ 0, k = 2, . . . ,K,s = s(k)+1, . . . ,S. (3.2)

While the tardiness of the headway is Tks = max((tdks− tdk−1s)−maxHeadk,0) which is

equivalent to

Tks ≥ (tdks− tdk−1s)−maxHeadk, k = 2, . . . ,K,s = s(k)+1, . . . ,S (3.3)

Tks ≥ 0, k = 2, . . . ,K,s = s(k)+1, . . . ,S. (3.4)

Then, the objective function of BBH is the minimization of the sum of all early and tardy

headways:

min
K

∑
k=2

S

∑
s=s(k)+1

ψEks + εTks, (3.5)

where ψ and ε are linear penalization for the earliness and the tardiness, respectively,

subject to constraints (3.1)-(3.4). Additionally,

The departure times of each bus k at each stop s are defined with two different set

of restrictions. The first one is the case where the bus k at time t0 is between stops s(k)

and s(k)+1 (in Figure 3.3 this case would apply for bus 2 that is between stops 3 and 4).

Here, the departure time of k at s(k)+1 is the time that needs the bus to arrive to the stop,

plus the dwelling time dwellks(k)+1 (that will be computed later) plus the time the model

decides that this bus will hold. This situation is reflected by constraints (3.6). The second

case is similar but considers that the bus has not yet reached stop s−1 (constraints (3.7)).

Restrictions (3.8) impose a limit of maxHold to each holding time to guarantee a certain

traveling time quality of the passengers.

tdks(k)+1 = t0 +
dists(k)−d0

k

speedks(k)
+dwellks(k)+1 +hks(k)+1, k ∈ K (3.6)

tdks = tdks−1 +
dists−1

speedks−1
+dwellks +hks, k ∈ K,s = s(k)+2, . . . ,S−1. (3.7)
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hks ≤ maxHold, k ∈ K \{1},s = s(k)+1, . . . ,s(k−1). (3.8)

From the state variables of the system, we can compute the total number of passen-

gers that will be at stop s when bus k will reach this stop, denoted as passks in (3.9) and

(3.10), as the number of passengers who are actually in the stop plus the ones that will

arrive. The number of passengers that will be in bus k at stop s is equal to the passengers

that want board bus k, passks, minus the proportion of the passengers that left the bus

before stop s (restrictions (3.11)). This manner, we can compute the dwell times of bus

k at s (restrictions (3.12)). Notice that alighting and friction between the passengers that

stay inside the bus could be easily included in the last restriction set.

passks = c0
s +λs(tdks− t0), k ∈ K,s = s(k)+1, . . . ,s(k−1) (3.9)

pass1s = c0
s +λs(td1s− tdKs), s = s(K)+1, . . . ,S (3.10)

passBusks = min

(
s−1

∑
i=1

passki

(
1−

s−1

∑
j=i+1

ODki j

)
,capk

)
,

k ∈ K,s = s(k)+1, . . . ,S (3.11)

dwellks = passBusksboardT, k ∈ K,s = s(k)+1, . . . ,S. (3.12)

The following restrictions are the different cases that need to be considered in order

to avoid bus overtaking:

tdks− tdk−1s ≥ 0, k ∈ K \{1},s = s(k−1)+1, . . . ,S (3.13)

td1s− tdKs ≥ 0, s = s(k)+1, . . . ,s(1) (3.14)

tdk−1s− tdks ≥ 0, k ∈ K \{1},s = s(k)+1, . . . ,s(k−1). (3.15)

The LP for BBP is then

min ∑
K
k=2 ∑

S
s=s(k)+1 ψEks + εTks

s.t. (3.1)− (3.4)

(3.6)− (3.15)

Eks,Tks,hks ≥ 0, k ∈ K,s ∈ S.
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Notice that all variables are required to be positive but not integer, so LP can be

solved by the simplex method or by a polynomial barrier algorithm. Indeed, main vari-

ables hks represent a time interval so we can consider them as continuous variables. One

of the main advantage of LP, besides the fast computational times, is that we could use lin-

ear programming sensitivity analysis. Nevertheless, the holding times that are going to be

transmitted to the drivers at the bus stations should be seconds or in minutes. Therefore,

the model would contain integer variables making it an integer linear programming that

can be solved in a exact manner by a branch-and-bound algorithm. Preliminary results

showed no drastic increment of the computing times when bus holding variables hks are

integer.

Our model improves and differs the model of Delgado et al. (2012) in the following

aspects.

• Our objective function is linear so we can obtain optimal solutions for our model.

• The departure times of the buses are according to their established headway or

timetable. Only perturbations that arise along the trip are taken into account.

• We only take into account the possible holding times of a bus from its actual position

up to the depot instead of consider the holding times for all stops. This reduces the

number of variables and makes the problem more realistic.

• We bound the amount of time that a bus can be held at a stop.

• We may have different headways for every pair of buses. This way, recent syn-

chronization timetables can be benefited by our approach and dealing with different

planning periods (e.g., rush hour, night time) is natural.

• We do not need to call the model every time a bus arrives at a stop, we can do it each

fixed interval of time. This fact is more realistic for a bus company. In our case of

study, the company retrieves data of the buses every two minutes.
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3.5 EXPERIMENTAL RESULTS

The BBP LP model described in the previous section needs data to be populated. Data can

be retrieved through the use of monitoring technologies like Global Positioning Systems

(GPS) and Automatic Vehicle Location systems (AVL) in real-time during the execution

of the bus corridor. However, to study the impact of our model under different scenarios

in the traffic corridor we consider a discrete event simulation.

The single corridor is simulated using the discrete event and stochastic simulator

ExtendSim AT version 9.0 (Krahl, 2009; Diamond et al., 2010). The simulator triggers an

event every fixed amount of time, in which the positions of the buses and their loads, and

the passengers waiting at the stops, together with their traveling destinations, are updated.

Our BBP LP model uses deterministic functions to forecast demands and travel

times. Nevertheless, we use stochastic processes in the simulation to reflect a real sys-

tem. We use a single corridor of 10 kilometers with 30 stops and one depot uniformly

distributed like in Delgado et al. (2012). There are only 30 stretches, since the last stop

is merged with the depot. Travel times of the buses between each pair of stops are dis-

tributed as Lognormal with a mean of 0.77 minutes and variance of 0.4 (Hickman, 2001;

Zhao et al., 2003). At each stop, passengers arrive randomly using a Poisson distribution

with rate equal to one (Jolliffe y Hutchinson, 1975). The mean of the distributions are the

parameters used by our model.

When passengers arrive at a bus stop, a destination is assigned to them. Passen-

gers wait in line to board the bus in a first-in/first-out manner. Boarding and alighting

times of passengers is set to 2.5 and 1.5 seconds respectively, since all buses have two

doors, one for boarding and one for alighting. If passengers cannot enter a bus because

it reached its capacity, they will wait in the stop until the next bus with free space ar-

rives. This waiting time is denoted as Wf irst . The headway time windows are set to

[minHeadk,maxHeadk] = [0.3,0.46] minutes for all the buses. Remark that these time

windows are easily adjustable for the cases where there are different periods along the day,

https://www.extendsim.com/
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and for the synchronization timetables that favor transfers. We can measure the waiting

and travel times of the passengers and the buses in the simulation since we have modeled

these structures as individual agents.

We use a fleet of 60 buses with a maximum capacity of 100 passengers per bus.

Every fixed amount of time interval, we determine the actions that should be followed by

creating the BBP LP model in Java, and solving it with the linear package of Gurobi 5.6.

The solution generated contains the holding times for all the buses for all the future stops

up to the depot. If after a time interval a new solution is generated, then the holding times

are updated using a rolling horizon scheme.

Even if we base our scenarios on the ones generated by Delgado et al. (2012), there

is not a fair comparison since our methodologies consider different assumptions. Never-

theless, we can observe that our approach indeed improves the overall waiting and travel

times of the passengers.

The scenarios for the simulation are divided in two parts: time interval scenarios

and the parameters setting scenarios; and they are described in the next subsections.

3.5.1 TIME INTERVAL SCENARIOS

The aim of the time interval scenarios is to determine the optimal policy for controlling

when new holding times must be computed and given to the system.

In our case of study for the city of Monterrey, México, the bus company updates

every two minutes the positions and all the related data of the buses in the transit corridor.

Following this policy, Table 3.1 shows the time interval scenarios in which we test our

approach. The first column in Table 3.1 identifies the scenarios while the second column

sets the time intervals (in minutes) in which our BBP LP model is constructed and solved

to introduce the resulting holding times to the system. We vary these control values from

2 to 10 minutes. Scenario T I0 does not have any control, and we use it as a baseline

http://www.gurobi.com/
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to compare the performance of our BBP LP model. The third column is an indicator if

restriction (3.8) is applied; that is, if the holding times are bounded. For these scenarios,

we set the earliness and the tardiness penalties ψ = ε = 1. The fourth column, Wf irst ,

corresponds to the total average waiting time (in minutes) of a passenger to board a bus.

The fifth column (Travel) represents the total average travel time of passengers in minutes,

while the column Pass indicates the average number of passengers in the system during

the simulation time. Last two columns indicate the normalized waiting and travel times of

each passenger.

Table 3.1: Time interval scenarios with earliness and tardiness penalties ψ = ε = 1.

Scen Control maxHold Wf irst Travel Pass Wf irst / Travel/

(min) (min) (min) (min) Pass Pass

T I0 X X 1798.0 12035.8 1713.3 1.0 7.0

T I1 2 X 1115.88 17045.40 1703.1 0.66 10.01

T I2 5 X 1136.92 18256.20 1746.2 0.65 10.45

T I3 7 X 1222.66 18907.13 1705.8 0.72 11.08

T I4 10 X 1362.68 18652.68 1708.5 0.80 10.92

T I5 2 0.38 1219.52 13112.15 1721.4 0.71 7.62

T I6 5 0.38 1330.89 13171.48 1737.4 0.77 7.58

T I7 7 0.38 1463.25 12851.01 1725.6 0.85 7.45

T I8 10 0.38 1424.52 12450.34 1697.7 0.84 7.33

Ten simulation runs were executed for every scenario, each of them corresponding

to one hour of bus operations. Each run has the same initial conditions initialized with

random numbers. At the beginning of the simulation the buses are placed evenly spaced

along the corridor. For each simulation run, we let the system to evolve freely for five

minutes before making any holding. Indeed, five minutes is enough to observe several bus

bunching situations to arise.

We observe an increase in the passenger riding time, and potentially operation costs

because of the introduction of holding times in the corridor. This behavior is expected,
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and in concordance with other works (Furth y Muller, 2007). Nevertheless, the passenger-

waiting times for the first bus are always reduced, which in fact it is what we wanted to

show in first place. Indeed, by controlling the headway we can also control the passenger-

waiting times, without the need of using a quadratic objective function in the model.

We can also observe that the best passenger-waiting times are for the cases where the

holding controls are applied every 2 to 5 minutes, and without the bounds on the holding

times. However, the bounds on the holding times induce a reduction on the travel times,

which is an important asset. Figure 3.4 shows the differences in performance when the

control (3.8) (maxHold) is applied. It shows the percentage of increase on the passenger-

waiting times when bounds are applied and the percentage of increase on the travel times

when they are not applied. As mentioned, we observe that even if there is an increase

on the passenger waiting times when the holding times are bounded, the benefit on the

passenger travel times is considerable. Then, maintaining congruent headways reduces

the overall travel time of passenger along the whole network.

For a bus company, the less the traffic controller has to give holding orders to the

system (i.e., to the bus drivers), the better. Therefore, from Table 3.1 and Figure 3.4, we

conclude that the best policy is to consider bounds on the holding times, and apply the

controls to the system every 5 minutes, like in the T I6 scenarios.

In Figure 3.5, we show two histograms of the length of the holding times (x-axis in

minutes) for the time interval scenarios with earliness and tardiness penalties ψ = ε = 1,

and a control of 5 minutes with and without bounds on the holding times. On the y-axis,

we have the frequency the BBP LP model is called for all the simulations of class T I6.

Notice that not all of the holding times are applied, since the rolling horizon may modify

several of them. The case when there are limits on the holding times shows that the model

either chooses to apply the holding times close to these limits, or not to apply them at all.

This is an implicit benefit for the users, and for the traffic controller.

The aim of the BBP model is to reduce bus bunching by maintaining congruent

headways. To graphically show that this behavior is being improved by our model, we
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Figure 3.4: Decrease on the waiting times and increase of the travel times for the time

interval scenarios with earliness and tardiness penalties ψ = ε = 1 and applying bound to

holding time.

present Figures 3.6-3.9 for the scenarios with bounds on the holding times. The x-axes in

these graphs correspond to time (in minutes), while the y-axes represent stops. Each line

in these graphs represents a bus that departs from the depot and cruises all the bus stops.

Recall from Section 3.2 (see Figure 3.1) that in the ideal case, we would have parallel

lines. Figure 3.6 displays the case without control and shows that the simulation makes

an stochastic scenario. Here the bus bunching problem is notorious, since there are white
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Figure 3.5: Holding times histogram without bounds (left histogram) and with bounds

(right histogram) for the time interval scenarios with earliness and tardiness penalties

ψ = ε = 1, and a control of 5 minutes.

gaps between the lines. Figures 3.7, 3.8, 3.9, have time interval controls of 2, 5, and

7 minutes, respectively. We can observe that with 2 and 5 minutes controls the BBP is

reduced, while for control intervals of 7 minutes the BBP appears again.

Figure 3.10 shows two histograms that have in their x-axes the round time of a bus

trip. An aspect that we noticed from Table 3.1 is that the travel times increase with the

BBP model. This is obvious because the BBP model introduces holding times for the

buses in the corridor. Nevertheless, Figure 3.10 shows that the standard deviation when

BBP is applied every five minutes (right histogram) is reduced with respect to the case

where no controls are used (left hand side histogram).

3.5.2 PARAMETER SETTING SCENARIOS

Our next set of experiments modify the earliness ψ and tardiness ε parameters of the BBP

LP objective function to observe the impact they have in the passenger-waiting times and
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Figure 3.9: Transit with control every 7 min.

travel time. We can see this set of experiments in Table 3.2. The first column in the table

identifies the scenarios. Ten simulation runs were considered per scenario. The second

column represents the values of the earliness parameter, while the third one corresponds to

the tardiness one. The column “Board” denotes the average time (in seconds) a passenger

takes to board a bus, while maxHold stands for the time (in minutes) that the holding

times are bounded. This table shows the percentage of reduction in passenger waiting
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Figure 3.10: Histogram of travel cycle without control (left) and with control interval of 5

minutes (right).

times (Wf irst), and the percentage of increase on the travel times (Travel). Finally, the last

column represents the addition of the last two values. Indeed, if there is a reduction on

this last column, the percentage would be negative.

An interesting observation from these results is that if we reduce the earliness pa-

rameter, we obtain the best results with respect to the passenger-waiting and travel times.

Moreover, the BBP LP model yields better results when the holding times are limited by

0.19 minutes, which is also a quality asset for the user.

An statistical analysis confirms the observations from Table 3.2. The most influen-

tial parameters are the earliness penalty and the maxHold limit. In Table 3.3, we show a

linear regression of the parameters studied in this section. The first column is the parame-

ter, the second one corresponds to the “Estimate”, the third is the standard error, the fourth

stands for to the t value, and the fifth one is the significance.
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Table 3.2: Improve of the behavior of waiting time and travel time managing parameters.

Board maxHold Wf irst Travel Wf irst +Travel

Scen ψ ε (sec) (min) % reduction % increase % increase

P1 0 1 1.25 0.19 19% -2% -4%

P2 0 1 1.25 0.38 22% 1% -2%

P3 0 1 2.5 0.19 22% -4% -6%

P4 0 1 2.5 0.38 25% -1% -4%

P5 0.5 1 1.25 0.19 34% 10% 4%

P6 0.5 1 1.25 0.38 55% 39% 27%

P7 0.5 1 2.5 0.19 37% 11% 5%

P8 0.5 1 2.5 0.38 56% 41% 28%

P9 1 0 1.25 0.19 40% 11% 5%

P10 1 0 1.25 0.38 59% 42% 29%

P11 1 0 2.5 0.19 44% 12% 5%

P12 1 0 2.5 0.38 63% 48% 34%

P13 1 0.5 1.25 0.19 36% 10% 4%

P14 1 0.5 1.25 0.38 54% 41% 28%

P15 1 0.5 2.5 0.19 39% 11% 5%

P16 1 0.5 2.5 0.38 57% 40% 27%

P17 1 1 1.25 0.19 39% 11% 5%

P18 1 1 1.25 0.38 48% 27% 17%

P19 1 1 2.5 0.19 39% 56% 43%

P20 1 1 2.5 0.38 57% 50% 36%
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Estimate Std. Error t value Pr(> |t|)

(Intercept) 1.0314 0.0928 11.11 0.0000

ψ -0.2234 0.0489 -4.57 0.0004

ε 0.0273 0.0489 0.56 0.5848

Board -0.0845 0.0646 -1.31 0.2106

maxHold -0.2956 0.0646 -4.57 0.0004

Table 3.3: Linear regression on the main parameters of the BBP model.

3.6 CONCLUDING REMARKS

In this paper, we presented a methodology based on interleaving optimization and real-

time retrieving data to maintain congruent headways in a bus corridor with the aim of

solving one of the most annoying problems in public transit networks, the Bus Bunching

Problem (BBP).

During the optimization phase of our approach, a linear programming model is built

and solved to determine the optimal holding times of the buses at the stops to avoid bus

bunching. Our model requires real-time data of the state of the system to operate. Such

data is provided by the real-time retrieving phase of our approach, which in our case is

supported via simulation. The simulation phase of the system provides data related to

positions of the buses, number of passengers in the buses, current bus capacities, and

number of passengers waiting at the stops to build our model.

One of main the advantages of considering simulation in our methodology is the

evaluation of multiple parameters to assess the impact of them in our BBP linear pro-

gramming model. Therefore, we presented a comprehensive evaluation of such param-

eters, and found that applying holding controls just every 5 minutes, and bounds on the

holding times reduce not only bus bunching frequency but also passenger-waiting times.

We also discussed that most of the works in the literature minimize passenger wait-

ing times, or the variance in the departure times of the buses using quadratic optimization
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functions, which are more complex to solve. Instead, the linear programming model of our

approach makes it suitable for returning optimal solutions efficiently and for interleaving

the optimization and real-time retrieving data phases in real-time scenarios.

Although, we observe an increase in the travel time of passengers given the intro-

duction of holding times for the buses in the corridor, our approach performs better (i.e.,

less passenger-waiting time and acceptable travel time) than no introducing any control

into the system. Part of our future work will consider the introduction of other actions

into our models to reduce the travel time of the passengers in the corridor and lower oper-

ational costs. Particularly, we believe that the introduction of bus overtaking actions (i.e.,

skipping stops) will balance the total time a passenger spends into the system.



CHAPTER 4

CONCLUSIONS

In this chapter we discuss the general conclusions of the main subjects covered in this

dissertation. We also present the main contributions made in the subjects covered along

this work, and lastly we present the future work yielded from this research.

4.1 CONCLUSIONS FOR

PRODUCT-PIECES-MOLD-MACHINE PROBLEM

As mentioned, the Product-Pieces-Mold-Machine problem is about the manufacturing of

a set of pieces that assemble finished products, each piece has a set of molds that can

be used to make it, molds can be assigned to a certain number of machines and, setup

times arise each time a new mold is installed on a machine. The aim of this problem is to

determine the single period lot production size of each finished product, the piece-mold

and the mold-machine assignments such to maximize the benefits of selling the finished

products. The key point of our method is that we have dropped the constraints that guar-

antee a feasible scheduling of the molds on the machines. Without these constraints, our

mathematical model becomes linear and from its structure we can derive a a Relax&Fix

heuristic and a multistart greedy algorithm.

53
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4.2 CONCLUSIONS FOR BUS HOLDING FOR A

SIMULATED TRAFFIC NETWORK

As stated in Section 3.6, we presented a methodology based on interleaving optimization

and real-time retrieving data to maintain congruent headways in a bus corridor with the

aim of solving one of the most annoying problems in public transit networks, the Bus

Bunching Problem (BBP).

During the optimization phase of our approach, a linear programming model is built

and solved to determine the optimal holding times of the buses at the stops to avoid bus

bunching. Our model requires real-time data of the state of the system to operate. Such

data is provided by the real-time retrieving phase of our approach, which in our case is

supported via simulation. The simulation phase of the system provides data related to

positions of the buses, number of passengers in the buses, current bus capacities, and

number of passengers waiting at the stops to build our model.

One of main the advantages of considering simulation in our methodology is the

evaluation of multiple parameters to assess the impact of them in our BBP linear pro-

gramming model. Therefore, we presented a comprehensive evaluation of such param-

eters, and found that applying holding controls just every 5 minutes, and bounds on the

holding times reduce not only bus bunching frequency but also passenger-waiting times.

We also discussed that most of the works in the literature minimize passenger wait-

ing times, or the variance in the departure times of the buses using quadratic optimization

functions, which are more complex to solve. Instead, the linear programming model of our

approach makes it suitable for returning optimal solutions efficiently and for interleaving

the optimization and real-time retrieving data phases in real-time scenarios.

Although, we observe an increase in the travel time of passengers given the intro-

duction of holding times for the buses in the corridor, our approach performs better (i.e.,

less passenger-waiting time and acceptable travel time) than no introducing any control
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into the system. Part of our future work will consider the introduction of other actions

into our models to reduce the travel time of the passengers in the corridor and lower oper-

ational costs. Particularly, we believe that the introduction of bus overtaking actions (i.e.,

skipping stops) will balance the total time a passenger spends into the system.

4.3 FUTURE WORK

In this section we mention the future work derived from the two main subjects covered in

this dissertation.

4.3.1 FUTURE WORK DERIVED FROM THE

PRODUCT-PIECES-MOLD-MACHINE PROBLEM

There are several lines of investigation pending to consider in regard with the Product-

Pieces-Mold-Machine problem. The first one is the consideration of the amount of lifts

and cranes due that they are a limited resource, so it will be interesting to include them

as part of the problem. The above will increase the problem complexity and probably the

separation of the two stages of lot sizing and mold-machine scheduling could not be fea-

sible anymore as the original problem so new separation methods have to be researched.

A second line of investigation is to see what will happen if we consider several

periods. The Product-Pieces-Mold-Machine multiperiod problem will have a different

structure and a new integer programming model in addition with new solution alternatives

like heuristic methods will have to be adapted to this new version of the problem.

The make span is another issue to deal with if the factory already has its production

and their main objective is to decrease the time in which these products are going to be

produced.

Lastly, it is also important to consider what could happen in a changing environment,
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for example, when a machine brakes down, a mold is in maintenance, or an urgent order

arrives, and how we could adapt our methodology to these changing environments.

4.3.2 FUTURE WORK THE BUS HOLDING FOR A SIMULATED TRAFFIC

NETWORK

We are currently working in the research of the bus bunching problem for a problem that

has several branches used in one line. This generates a greater amount of randomness in

the quantity of passengers as well as their distribution along the line.

We also have to consider that the urban transport systems could have different events

which could trigger greater bus-bunching.

Other line of investigation is a lineal programming model that tries to decrease total

the travel time of the passengers.

Another important goal of the urban transport system is to rapidly estimate the

origin-destination tables in the bus operation models.
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BIBLIOGRAPHY 64

QUADT, D. y H. KUHN (2008), �Capacitated lot-sizing with extensions: a review�, 4OR,
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Tesis:

LOT PRODUCTION SIZE PROBLEM AND SIMULATION OF URBAN

TRANSPORT

I was born on Thursday, March 11, 1982 at 17:30 pm in the city of Monterrey,
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