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Abstract
New molecular imaging technologies, in particular optical ones, are increasingly used 
to understand the complexity and heterogeneity of cardiovascular diseases. While 
‘omic’ approaches can provide us with comprehensive ‘snapshots’ of biomarkers, ima-
ging studies can be used to understand the spatiotemporal activity of these markers 
in vivo. Imaging has also advanced clinically, and will ultimately allow us to determine 
disease activity and therapy response. In addition, newer developments will likely 
have an impact on our understanding of biology at the systems level, promote earlier 
clinical diagnosis and accelerate drug development.

Nuevas técnicas moleculares de imagen cardiovascular 

Resumen
Nuevas tecnologías de imagen molecular, en particular las denominadas ópticas, están 
siendo usadas con mayor frecuencia para entender lo complejo y heterogéneo de las 
enfermedades cardiovasculares. Por un lado el acercamiento “proteómico” nos provee 
imágenes completas e “instantáneas” de biomarcadores de un padecimiento, y los es-
tudios de imagen pueden ser usados para entender la actividad en el espacio y tiempo 
de estos marcadores in vivo. Las imágenes también han avanzado clínicamente, lo que 
finalmente nos permitirá determinar la actividad de un padecimiento y su respuesta 
al tratamiento. Además, los nuevos desarrollos probablemente tendrán un impacto en 
nuestra comprensión de la biología de estos sistemas, promoviendo el desarrollo de 
métodos de diagnostico temprano y poder acelerar el desarrollo de drogas.
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Introduction
Prevention and early detection are increasingly impor-
tant components of clinical cardiovascular care, because 
preventive strategies can save lives and are more cost 
effective. To implement these strategies, sensitive, spe-
cific and molecular-based imaging tools are needed that 
allow timely and specific diagnosis and risk stratification. 
A number of emerging molecular imaging techniques 
promise to achieve these goals, based on technological 
advances of equipment and the development of new ima-
ging probes. Biomarkers of disease severity include in-
flammation, thrombosis, apoptosis, necrosis, remodeling, 
and angiogenesis, all common to diverse diseases such as  
atherosclerosis, myocardial infarction, heart failure, and 
stroke.  

Several recent reviews have described molecular ima-
ging of cardiovascular disease.1-6 This review aims to com-
plement and update with a focus on emerging imaging 
strategies that show the greatest promise and those likely 
to be rapidly translated into clinical practice.  

Preclinical advances
A wide array of cardiovascular molecular imaging applica-
tions is about to emerge from preclinical advances. Novel 
agents have been developed that report on specific mo-
lecular targets, increasing the sensitivity and specificity 
of existing imaging modalities (Table 1). The keys to a 
successful reporter in this regard are twofold. One aspect 
must be a sensitive detection mechanism, while the other 
is targeting the desired biologic process via affinity ligand 
binding or reporter activation. Successful agents often 
harness amplification strategies such as chemical ones 

(increased relaxivity of magnetic nanoparticles, fluores-
cence dequenching) or biological ones (cellular trapping, 
pretargeting). Advances in nanotechnology now allow for 
the attachment of multiple ligands for heightened affi-
nity, as well as multiple reporters per nanoparticle. In 
the cardiovascular imaging arena, the most commonly 
used detection platforms are magnetic resonance ima-
ging (MRI), computed tomography (CT), positron emis-
sion tomography (PET), single photon emission computed 
tomography (SPECT), and fluorescence imaging such as 
fluorescence molecular tomography (FMT) and catheter 
based sensors (fluorescence, optical coherence tomogra-
phy -OCT-).

Magnetic resonance imaging
Magnetic resonance imaging does not involve ionizing radia- 
tion, and provides good anatomic detail with outstanding 
tissue contrast. It allows for relative quantification of tar-
gets and is a very versatile technology. It uses inherent 
amplification mechanisms, since not the reporter itself, 
but rather its interaction with many surrounding protons 
is detected. Molecular MRI relies on 2 major classes of 
agents: T1-type probes that contain paramagnetic gadoli-
nium (Gd) chelates, and T2 -type magnetic nanoparticles.  
While the latter mostly decrease the proton signal in T2 
weighted sequences, newer approaches are being explo-
red to overcome the disadvantage of signal decay, such as 
bright iron techniques.7, 8 Clinical molecular MRI has also 
been successful: for instance, a fibrin sensing gadolinium 
chelate was used to image vascular thrombotic compli-
cations9 (Figure 1).  Here, the relative abundance of the 
imaging target affords sufficient sensitivity. Other appro-

Table 1.  Selected Targeted Cardiovascular Molecular Imaging Agents

Biologic Process Target Agent Modality

Atherosclerosis

Macrophages

Proteases
VCAM-1

MLP’s
MPO-Gd
N1177

64Cu-TNP
18F-CLIO

Prosense, MMPsense
VINP-28

MRI
MRI
CT

Pet. MRI, Optical
Pet. MRI, Optical

Optical
MRI, Optical

Thrombosis Fibrin EP-2104R MRI

Myocardial Infarction
Apoptosis
Factor XIII

Macrophages

AnxCLIO
FXIII-111In

CLIO-VT680

MRI, Optical
SPECT

MRI, Optical

MNP: Magnetic nanoparticles; MPO: Myeloperoxidase; Gd: Gadolinium; CLIO: Cross-linked iron oxide; VCAM-1: Vascular cell adhesion molecule-1; 
VINP-28: VCAM-1 internalizing nanoparticle-28. 



Siegel C et al178

based contrast agents for vascular imaging in renally-im-
paired patients where there is concern for NSF.12 

Magnetic nanoparticles
The high relaxivity of magnetic nanoparticles make them 
a promising platform for molecular MRI.  Here, the pro-
pensity of these particles to be taken up by innate im-
mune phagocytes13 is exploited. This allows for effective 
targeting and high contrast, particularly in the imaging 
of inflammatory cells in conditions such as atherosclero-
sis,14, 15 infarction,16, 17 and transplant rejection.18, 19 Howe-
ver, large amounts of nanoparticles are often required 
to target macrophages (> 5 mg Fe/kg).  For example, 
Korosoglou et al 2008 were able to identify macrophage 
laden atherosclerotic plaques in rabbits with the use of 
monocrystalline iron-oxide nanoparticles (MION-47) and 
an MRI method known as inversion recovery with ON-
resonant water suppression (IRON)-MRI (Figure 3). One 
limitation of this study was the use of a total iron dose 
of 500 µmol Fe/kg, equivalent to a dose of 13 mg Fe/kg, 
well above the recommended dose of the FDA.7 However, 
superparamagnetic nanoparticles have been used for cli-
nical imaging of cancer metastasis20 and in patients with 
atherosclerotic lesions in the carotid arteries.21,22 

A variety of preclinical studies have explored the ver-
satility of nanoparticles for targeted imaging by attaching 
affinity ligands to the shell of nanoparticles.15, 23 The size, 
physical properties, attachment of affinity ligands, and 
conjugation to fluorochromes are all characteristics of 
an expanding library of nanoparticles that allow for cus-
tomization of these particles to specific clinical needs. 
For example, the cross-linked, aminated surface of the 
magnetic nanoparticle CLIO-47 allows for the attachment 
of fluorochromes, and thus the potential for MR-optical 
imaging with magneto-fluorescent nanoparticles (MFNPs). 
The MNFP conjugate CLIO-VT680 has been used for ma-
crophage targeting, quantification of cellular distribu-
tion on MFNP’s, and MR sensing of inflammation in mouse 
atheromata.14 MR-optical imaging has also been used in 
the targeting of apoptotic processes, using annexin as an 
affinity ligand for phosphatidylserine in the cell membra-
ne, an early marker for apoptosis. The annexin-V-based 
nanoparticle AnxCLIO acts as a reporter for both MR and 
NIRF and has been used in vivo to identify regions of car-
diomyocyte apoptosis in mice.24 Annexin has also been 
used to target apoptosis with SPECT imaging in animal 
models 25-28 and patients,29 and shows promise in PET ima-
ging with 18F-labelled annexin.30

The cell surface adhesion molecule VCAM-1 has also 
been used as a target for MNP’s,15, 31, 32 given its expression 
on activated endothelial cells, smooth muscle cells, and 
macrophages early in the inflammatory process of athe-
rosclerotic plaques.33, 34

Among the next generation of magnetic nanoparti-
cles are carboxymethyl dextran nanoparticles, some of 
which are already seeing clinical use. Ferumoxytol is an 
example of this, and already has been shown to have a 
favorable safety profile in phase I and II clinical trials for 
use as iron-replacement therapy in anemia.35,36 As it was 

A Post EP2104R injection inversion recovery black-blood gradient-
echo imaging (IR) sagittal cut of thrombus (arrow) in descen-
ding thoracic aorta of 82-year-old female patient compared to 
conventional CT multiplanar reconstruction B In image B, white 
arrowhead delineates a calcification. C and D Pre- and post- con-
trast cross-sectional imaging of left ventricular thrombus (arrows) 
in an 80-year-old male patient using IR (RV: right ventricle, LV: 
left ventricle).  E Descending thoracic aorta thrombus (arrow) in 
65-year-old male patient with EP-2104R contrast and pre-contrast 
T2-weighted black-blood turbo spin imaging F  Adapted with per-
mission.9

Figure 1.  In vivo MR imaging with fibrin-specific contrast 
agent, EP-2104R.

aches for sensitive T1 targeted imaging involve signal am-
plification through activatable Gd-chelates10 (Figure 2).  

Recently, although Gd-DTPA has been used for deca-
des, there has been concern over the risk of nephrogenic 
systemic fibrosis (NSF), a disorder associated with the use 
gadolinium-based contrast agents in patients with renal 
insufficiency.11Therefore, techniques that reduce the 
required quantity of gadolinium and increase detection 
sensitivity are of great interest. Ultrasmall superparamag-
netic nanoparticles with sufficient T1 effects such as fer-
moxytol have been proposed as alternatives to gadolinium  
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designed specifically for anemia therapy in patients with 
chronic kidney disease, it retains its favorable safety 
profile in patients with chronic renal impairment. It has 
characteristics that improve upon the prior generation 
prototype, ferumoxtran-10, which was successful in seve-
ral clinical trials.20-22 With a blood half-life of 10-14 hours, 
increased signal in the vasculature secondary to a greater 
T1 shortening, and the ability to be given as an injectable 
bolus, ferumoxytol is among the more promising of this 
generation of nanoparticles. Recent patient studies re-
veal applications in the identification of malignant lymph 
node metastasis by MR,37 for imaging of brain tumors38 
and as a vascular contrast agent for use in MR angiogra-
phy.38-40 Ultrasmall superparamagnetic particles have also 
been shown to have a role in imaging of atherosclerotic 
plaques in both animal and patient studies.41-44   

Gadolinium-based agents
One of the interesting examples for clinical molecular MRI 
is the fibrin-specific contrast agent EP-2104R. Originally 

tested in several animal models,45-51 it has advanced to a 
Phase II study in human subjects with known intra-cardiac 
or intra-arterial thrombi.9 This compound is a small pep-
tide with 4 Gd-chelate moieties that binds to fibrin, but 
not to circulating fibrinogen.52 Results show that in the 
majority of patients, signal enhancement of the throm-
bus was visualized with high contrast to the background 
tissue, and when compared with precontrast imaging (Fi-
gure 1).9 Additionally, based on data from animal studies, 
this technique could be useful for detection of pulmonary 
embolism and deep vein thrombosis. 

Another recent innovation using MRI uses a “smart” 
gadolinium chelate sensitive to the activity of myelope-
roxidase (MPO), an enzyme known to be present in high 
levels within atherosclerotic plaque and produced by ma-
crophages and neutrophils.53 The agent is activated by ra-
dicalization in the presence of MPO, and then undergoes 
polymerization resulting in increased T1 relaxivity. The 
activated agent also crosslinks to surrounding proteins, 
effectively trapping the molecule in areas of high MPO 
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Figure 2.  Targeted MR imaging of myeloperoxidase (MPO) activity using an activatible MPO-Gd chelate in injured myocardium in 
mice.

A Time course of MPO-Gd signal showing bright and persistent signal enhancement over 2 hours on day 2 after MI. B Conventional MR 
imaging with Gd-DTPA over same time period, showing progressive reduction in signal intensity over the 2 hour period. C Graphical repre-
sentation comparing contrast-to-noise ratios (CNR) for MPO-Gd and Gd-DTPA imaging of the myocardial septum showing longer duration of 
high signal with MPO-Gd.  Adapted with permission10
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activity, all of which results in increased enhancement on 
T1-weighted MRI.53 We have shown the agent enables de-
tection of MPO activity in infarcted myocardium (Figure 
2) and allows for the monitoring of atorvastatin’s anti-
inflammatory effects.10  This demonstrates the agent’s 
potential for detection of myocardial inflammation and 
monitoring of pharmaceutical response.  Recently, the 
agent was used to visualize cerebral inflammation secon-
dary to stroke.54 Given the increased myeloperoxidase ac-
tivity in atherosclerotic plaque,55 it is also an attractive 
modality to image vulnerable inflammatory atherosclero-
tic lesions.

Computed tomography
There have been few targeted contrast agents for CT, 
most likely due to the low sensitivity of this modality. 
Therefore, CT has been primarily employed in hybrid ima-
ging to add anatomical information to PET, CT and optical 

sensing. However recently, Hyafil et al described a nano-
particulate contrast agent for CT, N1177. This compound 
is composed of crystalline iodinated particles dispersed 
with surfactant that targets macrophages in atheroscle-
rotic plaques, potentially enhancing the use of CT for 
identification of at-risk inflammatory lesions.56 The na-
noparticulate formulation achieved a signal amplification 
that allowed molecular sensing in these experiments. 
An important aspect of this work is that coronary CT cu-
rrently has the technological edge when it comes to reso-
lution; however, radiation exposure needs to be carefully 
balanced against the benefits of screening.57 

Nuclear imaging
Nuclear imaging modalities such as SPECT and PET po-
tentially have high sensitivity for detecting reporters at 
low concentrations.58 PET imaging is also fully quantita-
tive, which facilitates efficient comparison of imaging  

A-C Conventional T1W MRA of hyperlipidemic rabbits pre-injection A, immediately post-injection (day 0) B, and on day 6 after injection of MION-47 
C. Signal decrease in B secondary to T2*-shortening of blood. D-F Inversion recovery with ON-resonant water suppression (IRON) MRA of the thoracic 
aorta before and after injection of MION-47 in hyperlipidemic rabbits. D IRON MRA of thoracic aorta pre-injection of MION-47. E IRON MRA immedia-
tely post-injection (day 0) of MION-47 and  F IRON MRA on day 6 after injection identifying atherosclerotic lesions in the aorta (arrows).  Adapted 
with permission7 

Figure 3. MR atherosclerotic plaque detection using monocrystalline iron-oxide nanoparticles (MION-47). 
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A Coronal CT (left), PET (middle) and fused PET/CT (right) images showing 18FDG uptake (arrow/arrowheads) in descending thoracic aorta. B Tran-
saxial CT (left), PET (middle), and fused PET/CT (right) images showing 18FDG uptake in descending thoracic aorta (arrow/arrowheads). Note high 
background uptake in myocardium of left ventricle.  Adapted with permission72

A-F Multimodality 64Cu-TNP imaging of atherosclerosis in apoE-/- mouse. 64Cu-TNP distributes to atherosclerotic lesions. A and B PET-CT shows en-
hancement of the posterior aortic root (arrow). C-F En face Oil Red O staining of the excised aorta depicts plaque-loaded vessel segments, which 
colocalize with areas of high 64Cu-TNP uptake on autoradiography. G-K 18F-CLIO imaging of mouse 2h after injection. G Coronal CT image. H Coronal 
PET image. I Fused PET/CT imaging. J 3D reconstruction of fused PET/CT images. K In vitro PET imaging of 18F-CLIO showing detection threshold of 
0.025µg Fe/mL. Liver ROI denoted by asterix and blood pool ROI by arrow. A-F adapted with permission.58 G-K adapted with permission78

Figure 4.  18FDG PET/CT imaging of human aortic atherosclerosis.

Figure 5. PET/CT imaging for macrophages using labeled nanoparticles.
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biomarkers longitudinally or between patient popula-
tions. However, these modalities provide little anatomic 
detail. Therefore, especially for imaging of small targets 
such as atherosclerotic plaques, both require localization 
with other modalities, such as CT or MRI.  Clinical hy-
brid PET-CT systems are currently installed rapidly, and 
overcome the paucity of anatomical data in stand-alone 
nuclear imaging efficiently. To lower exposure to radionu-

clides, probes should have high affinity to their target and 
favorable, rapid pharmacokinetics that decrease exposu-
re of vulnerable organs. For example, SPECT/CT was used 
to image monocyte trafficking to atherosclerotic lesions 
using an FDA-approved radiotracer, 111In-oxine.59   Addi-
tionally, in a study on transglutaminase activity in hea-
ling myocardial infarcts, it was possible to monitor Factor 
XIII activity in vivo using SPECT imaging with a Factor XIII 

A Illustration of fluorescent reporter enzymatic activation in presence of a target. In the inactivated state, fluorochrome proximity quenches the 
fluorescent signal.  Presence of the target enzyme releases the fluorochromes to an activated unquenched state. B-G In vivo intravascular catheter-
based NIRF detection of atherosclerotic plaque in rabbits receiving protease NIR agent B-E and control rabbits F-G. B Conventional angiography 
of iliac vessels in rabbit receiving protease agent showing atherosclerosis. C NIR signal detected by intravascular NIRF catheter in region of athe-
rosclerosis in rabbit receiving protease agent, and normal region D after balloon occlusion and saline flushing (area between arrows). The signal is 
reduced in D during flushing secondary to unactivated NIRF agent clearing. E Corresponding ex vivo NIRF image showing high signal in plaques but 
not in distal region. F Iliac angiography of control rabbit showing atherosclerotic plaque. G Catheter-based NIRF signal detection at atherosclerotic 
lesion and normal region (H) in control rabbit without presence of protease-sensitive agent. H NIRF ex-vivo image of iliac vessels showing minimal 
fluorescent signal in control rabbit.  Adapted with permission79, 82

Figure 6. Enzyme activated fluorescent reporter and use in catheter-based NIRF detection. 
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affinity peptide (111In-DOTA-FXIII).60  Progress in detec-
tion technology, especially in CT imaging, may also help 
to lower radiation dose. PET-MRI imaging is technically 
more challenging and therefore likely less cost effective, 
however, it offers anatomical information without adding 
radiation exposure as in PET-CT. Currently, and the first 
clinical PET-MRI systems are being installed.

18F-fludesoxiglucosa –FDG- 
Since it is approved for oncologic imaging, 18FDG-PET 
imaging has been a recent focus for cardiovascular ima-
ging.18FDG is a radio-labeled glucose analog that under-
goes intracellular hexokinase-mediated phosphorylation 
after transport into metabolically active cells.61 It is enri-
ched in tissue with high metabolic activity, and therefore 
accumulates in cancer cells.  Macrophages, key cells in 
atherosclerotic lesion development and complication,62 
also have rather high metabolic rates, therefore,18FDG up-
take has been proposed for imaging of atherosclerosis.63, 

64 Imaging with this tracer has already been performed in 
humans in multiple anatomic regions, including the caro-
tid arteries,65-69 peripheral arteries of upper67 and lower70 
extremities, in addition to the aorta (Figure 4).71, 72 
Uptake of 18FDG on PET imaging was described as corre-
lating to the occurrence of cardiovascular events in pa-
tients,73 and the signal intensity of 18FDG-PET uptake in 
atherosclerotic plaques was attenuated by simvastatin 
therapy.74  Yet, there are several limitations, including 
lack of specificity to atherosclerosis and accumulation in 
other metabolically active tissue. For example, imaging 
of the coronary arteries may prove difficult, as myocar-
dium takes up 18FDG readily (Figure 4). Also, imaging in 
the diabetic population is complicated and requires tight 
glucose and insulin control.75 This is particularly proble-
matic since diabetes is one of the major risk factors for 
atherosclerosis.

Nanoparticle positron emission tomography 
imaging
The use of macrophage-specific PET probes overcomes 
the problem of specificity and background signal seen in 
current 18FDG-PET imaging.  Recently, we described the 
development of macrophage-targeted PET agents uti-
lizing long-circulating, dextran-coated nanoparticles.58 
The agent, 64Cu-TNP, acts as a trimodality reporter in 
PET, MRI, and fluorescence, with a magnetic nanoparti-
cle base conjugated to chelated 64Cu and a near-infrared 
fluorochrome. In a mouse model of atherosclerosis, the 
detection threshold was 5 µg Fe/mL on T2-weighted 
MRI and 0.1 µg Fe/mL for PET-CT in the imaging phan-
tom. The iron concentration used for PET imaging was 
1.5mg Fe/kg, well below the maximum dose of magnetic 
nanoparticles approved by the FDA (2.6 mg Fe/kg). In 
apoE-/- mice, atherosclerotic plaques in the aorta were 
identified readily in-vivo on PET-CT (Figure 5A-F). This 
study used small amounts of 64Cu and the copper was 
chelated, limiting its reactivity and toxicity. Additio-
nally animal studies did not show evidence of toxicity 

for 64Cu, which previously has been used in humans.76, 77 
Building further on this concept, we have also develo-
ped a trimodality reporter nanoparticle using 18F labeled 
iron nanoparticles (18F-CLIO). In contrast to 64Cu, 18F is 
readily available, has a greater PET detection sensitivity 
than 64Cu and a shorter half-life, reducing the radiation 
exposure78 (Figure 5G-K).

Optical imaging
Optical imaging is frequently used in preclinical research, 
since it is versatile, efficient and can be quantitative.  
The fluorochrome indocyanine green (ICG) is FDA appro-
ved for ophthalmic retinal angiography. Fluorochromes 
are non-toxic, and therefore promise to be of value for 
clinical translation. Near infrared wavelengths have the 
best properties for light transmission (< 8 cm) and auto-
fluorescence is minimal at NIR wavelengths. We antici-
pate that fluorescent agents will play a major role for 
endoscopic and intraoperative imaging as well as for su-
perficial structures, such as carotid arteries. 

The use of fluorescent protease sensors for the identi-
fication and characterization of inflamed atherosclerotic 
lesions is highly promising. Matrix metalloproteinase 
(MMP) and cysteine protease activity increases in atheros-
clerotic plaques, and may be well suited to the identifica-
tion of plaques at risk for rupture, given their enzymatic 
role in extracellular matrix degradation.62 There are fluo-
rescent reporters that minimally fluoresce in an inactiva-
ted quenched state, but when in proximity of proteases, 
undergo enzymatic cleavage and become highly fluores-
cent (figure 6A).79 These reporters have been used in 
vivo to identify inflammatory atherosclerotic lesions.80, 81 
To use protease sensors in humans, an endovascular opti-
cal probe capable of detecting intravascular fluorescent 
signal is necessary.82 We therefore developed a catheter 
system capable of detecting fluorescence and which has 
a floppy radiopaque tip (for simultaneous detection by 
x-ray angiography), and a maximum outer diameter of 
0.48 mm.82  Using a commercially available NIR protease 
sensitive fluorescent reporter, this catheter detects ar-
terial atheromata in rabbits in vivo (Figure 6B-G).  The 
study used vessels of similar caliber to human coronary 
arteries (rabbit iliac vessels), and a fluorescent reporter 
sensitive to the protease cathepsin B, which is associated 
with inflammation seen in atherosclerosis.80, 83, 84   

Another optical modality seeing expanded use is opti-
cal coherence tomography (OCT).   Similar in principle to 
ultrasound, but using infrared wavelengths, OCT achieves 
a high resolution (microns) and is able to penetrate seve-
ral millimeters into tissue.85 OCT for intravascular ima-
ging of atherosclerosis has been suggested, and recently 
has been used to identify macrophages in atherosclerotic 
tissue using iron oxide nanoparticles.86 It has also been 
used to explore intracoronary atherosclerotic lesions  
in human patients.87-89 Combination of this technology 
with advances in molecular imaging techniques (i.e. mo-
lecular probes) may enable identification and characteri-
zation of vulnerable plaques. 
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Conclusion
Preclinical molecular imaging has developed a rich variety 
of targeted imaging tools, which are already accelerating 
basic research and drug development. While the field ma-
tures, it starts to focus on improved translatability of these 
techniques. Advantages of a given technique will have to 
be balanced with potential radiation exposure and probe 
toxicity, especially in preventive measures when relatively 
healthy patients are exposed. Promising clinical studies in-
dicate that these goals can be achieved, and that clinical 
translation can enable early and specific diagnosis of disea-
ses such as atherosclerosis and heart failure.
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