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Abstract

Background: Growing evidence shows the potential of nutritional interventions to treat obesity but most investigations
have utilized non-digestible carbohydrates only. Peach and plum contain high amounts of polyphenols, compounds with
demonstrated anti-obesity effects. The underlying process of successfully treating obesity using polyphenols may involve an
alteration of the intestinal microbiota. However, this phenomenon is not well understood.

Methodology/Principal Findings: Obese Zucker rats were assigned to three groups (peach, plum, and control, n = 10 each),
wild-type group was named lean (n = 10). Carbohydrates in the fruit juices were eliminated using enzymatic hydrolysis. Fecal
samples were obtained after 11 weeks of fruit or control juice administration. Real-time PCR and 454-pyrosequencing were
used to evaluate changes in fecal microbiota. Over 1,500 different Operational Taxonomic Units at 97% similarity were
detected in all rats. Several bacterial groups (e.g. Lactobacillus and members of Ruminococcacea) were found to be more
abundant in the peach but especially in the plum group (plum juice contained 3 times more total polyphenolics compared
to peach juice). Principal coordinate analysis based on Unifrac-based unweighted distance matrices revealed a distinct
separation between the microbiota of control and treatment groups. These changes in fecal microbiota occurred
simultaneously with differences in fecal short-chain acids concentrations between the control and treatment groups as well
as a significant decrease in body weight in the plum group.

Conclusions: This study suggests that consumption of carbohydrate-free peach and plum juice has the potential to modify
fecal microbial ecology in an obese animal model. The separate contribution of polyphenols and non-polyphenols
compounds (vitamins and minerals) to the observed changes is unknown.
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Introduction

Obesity is a critical health issue worldwide affecting both

industrialized and developing nations. Several factors have been

associated with the increasing prevalence of obesity, including

diminished physical exercise and an increased consumption of

saturated fats and refined carbohydrates. Obesity is associated

with multiple clinical complications and diseases including insulin

resistance, hypertension, inflammation, oxidative stress, and

dyslipidemia [1–4].

Polyphenols are a diverse group of compounds that are

ubiquitous in the plant kingdom [5]. Over the last few years, the

beneficial effects associated with the consumption of polyphenols

have been widely studied [6–9]. Several in vitro and in vivo studies

have demonstrated the anti-oxidant and anti-inflammatory

activities of polyphenolics [10–12], some of which have also been

shown to possess anti-lipidemic and anti-obesity effects, including

suppression of adipogenesis and adipocyte proliferation, inhibition

of fat absorption, as well as modulation of energy metabolism and

inflammation [6,13]. Interestingly, a growing number of investi-
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gations suggest that dietary polyphenols can modulate the

composition and metabolic activity of intestinal microorganisms

[14–21], which may be, at least in part, involved in the underlying

mechanisms for the associated health benefits. This hypothesis is

supported by the close association between energy harvest, obesity,

and the complex assembly of microorganisms residing in the

intestinal tract [22,23].

Obesity has been linked to the composition of the gut

microbiota but this relationship is not completely understood.

Moreover, dietary interventions aiming to treat obesity have

mostly focused on non-digestible carbohydrates [23]. Although the

effect of polyphenols on the intestinal microbiota has been studied

using culture and molecular techniques [15,16,24,25], research is

needed to determine whether these widely available compounds

are capable of modulating the gut microbiota in obese individuals.

Additionally, the gut microbiota consists of hundreds of microbial

taxa, an ecosystem that can only be fully approached using high-

throughput sequencing systems. Unfortunately, very few papers

are available that have made use of these technologies to obtain a

better insight on the effect of polyphenolics-rich fruits on the

intestinal microbiota [26].

The use of animal models is common to study the gut

microbiota because mammals (humans included) share the most

predominant gut phylotypes and therefore the obtained results

may help guide future interventions, either dietary or therapeutic,

in human populations. Zucker rats possess a mutation in the leptin

receptor and develop metabolic syndrome symptoms, including

insulin resistance and dyslipidemia, at 4–5 weeks of age. This

animal model has been very well characterized as a model of

obesity and therefore makes it attractive for studies of the gut

microbiota [27]. The present study aimed to investigate the effect

of carbohydrate-free peach and plum juice on fecal microbial

ecology using obese Zucker rats as the animal model. Animals

were assigned to three groups (peach, plum and control obese), the

lean wild-type was used as control lean. Quantitative real-time

PCR revealed a significantly higher abundance of the phylum

Bacteroidetes, the family Ruminococcacea, and the genera

Faecalibacterium, Lactobacillus, and Turicibacter in the plum group (3

times more polyphenolics than peach) when compared to the

control and the lean groups. These changes were accompanied by

a significant difference between control and treatment groups in

principal coordinate analysis (based on Unifrac-based unweighted

distance matrices), differences in fecal fatty acids among the

animal groups as well as by a significantly lower body weight in the

plum group.

Material and Methods

Ethics statement
Experiments were approved by the Institutional Animal Care

and Use Committee at Texas A&M University (AUP#2010-138).

This research complies with the ‘Animal Research: Reporting of In

Vivo Experiments’ (ARRIVE) guidelines (Checklist S1) [28].

Study design
Male Zucker-Leprfa/Lepr+ heterozygotes rats were used to

evaluate the effects of peach and plum juice on the obese fecal

microbiota. The lean Zucker-Lepr+ (Wild Type) rats were used as

negative controls. Animals were purchased from Harlan Labora-

tories (Houston, TX) at 5–6 weeks age and maintained in a

ventilated rack system with food and water provided ad libitum. All

obese Zucker rats were the same age and arrived at the same time

in our laboratory. After an acclimation period of seven days, the

obese Zucker rats were allocated to three groups (n = 10 each)

namely control, peach, and plum. The wild type Zucker rat group

(n = 10) was named lean. The control and lean groups received a

control beverage containing water with glucose in the same

concentration as the average concentration of reducing sugars in

peach and plum juices (2.4%60.1). Additionally, pH was adjusted

to match the pH of juices using citric acid. Animals were housed in

pairs (2 rats per cage) at 22–25uC under a 12 hours light cycle. All

rats were visually inspected every day and body weight was

recorded from all animals once a week.

Preparation of peach and plum juices
The commercial varieties ‘‘Angeleno’’ plum and ‘‘Crimson

Lady’’ peach were collected at a mature, firm stage of

development from commercial packing houses near Fresno, CA

and shipped next day to the Department of Horticultural Sciences,

Texas A&M University, College Station, TX. Fruits were stored at

4uC on the day of arrival whereby the stone was removed and the

edible flesh stored at 280 uC until juice preparation. Peach and

plum juices were prepared by enzymatic hydrolysis of pureed pulp

obtained with a food processor. In brief, fruit puree was heated up

to 90uC to inactivate polyphenoloxidase enzymes, cooled down to

50–55uC and subjected to enzymatic hydrolysis for 2 h with a

mixture of food-grade enzymes multicellulase complex and

hemicellulases (ValidaseTRL), pectin esterase, depolymerase,

cellulases, hemicellulases, and arabinase (Crystalzyme 200XL)

kindly supplied by Valley Research (South Bend, IN). After

enzymatic hydrolysis, clarified peach and plum juices were

obtained by centrifugation at 5000 rpm for 5 min.

Reducing sugars and total polyphenols
Reducing sugars were determined using dinitrosalicilic acid as a

reagent against a standard curve of glucose [29]. Peach and plum

juices contained 2.360.3% and 2.560.4% of reducing sugars

respectively. Total polyphenols were quantified with Folin-

Ciocalteu reagent (Fisher Scientific, Pittsburgh, PA) against a

standard curve of gallic acid and expressed as mg gallic acid

equivalents (GAE)/L [30]. Peach and plum juices contained

43066.3 and 1,270612.6 mg GAE/mL respectively.

Fecal collection and DNA extraction
Fresh fecal samples were obtained from all rats at the end of the

study (11 weeks of consumption of sugary water or peach or plum

juices) and stored at 280 C until analysis. Total DNA was

extracted and purified from 100 mg of fecal sample using a bead-

beating phenol-chloroform method as previously described [31].

Quantitative real-time PCR (qPCR)
The primary experimental outcome was the abundance of fecal

microbiota, as determined by qPCR and pyrosequencing. qPCR

analyses were performed to first investigate changes in specific

bacterial groups among the animal groups. Briefly, PCR reaction

mixtures (total of 10 mL) contained 5 mL of SsoFast EvaGreen

supermix (Biorad Laboratories), 2.6 mL of water, 0.4 mL of each

primer (final concentration: 400 nM), and 2 mL of adjusted (5 ng/

mL) DNA. PCR conditions were 95uC for 2 min and 40 cycles at

95uC for 5 s and 10 s at the optimized annealing temperature

(Table 1). A melt curve analysis was performed to verify the

specificity of the primers using the following conditions: 1 min at

95uC, 1 min at 55uC, and 80 cycles of 0.5uC increments for 10 s

each. Raw PCR data was normalized to the qPCR data for the

total bacteria (universal primers F341 and R518) and all samples

were run in duplicate as performed elsewhere [33].

Peach and Plum Juices Alter Fecal Microbial Ecology

PLOS ONE | www.plosone.org 2 July 2014 | Volume 9 | Issue 7 | e101723



454-pyrosequencing
Bacterial tag-encoded FLX-titanium amplicon pyrosequencing

(bTEFAP) was performed using the primers 28F (GAGTTT-

GATCNTGGCTCAG, forward) and 519R (GTNTTACNGCG-

GCKGCTG, reverse) targeting a semi-conserved region of the

16S rRNA gene at the Research and Testing Laboratory

(Lubbock, TX). The Quantitative Insights in Microbial Ecology

(QIIME) software platform (version 1.5.0) was used for processing

and analysis of the sequences [37]. The process included chimera

removal and denoising using UCHIME [38] and USEARCH

[39], respectively, as well as removal of sequences that had low

quality tags, primers, or ends, and failed to be at least 250 bp in

length. The operational taxonomic units (OTUs) were defined as

sequences with at least 97% similarity using the RDP classifier [40]

in QIIME. Alpha and beta diversity measures were calculated

using an equal number of sequences (2489, lowest number of

sequences in a sample after removal of chimeric sequences) also

using QIIME. Collection and sequence information has been

submitted to the Sequence Read Archive (SRP029310).

Fecal fatty acids analysis
Short-chain fatty acids (SCFA) and branched-chain fatty acids

(BCFA) were measured in fecal samples in order to obtain a better

understanding of the effect of peach and plum juice on the

metabolic activity of the intestinal microbiota. Concentrations of

SCFA (acetate, propionate, butyrate), and BCFA (isobutyrate,

isovalerate, valerate) in feces were measured using a stable isotope

dilution gas chromatography-mass spectrometry (GC-MS) assay as

previously described [41], with some modifications. Briefly, the

fecal samples were weighed and diluted 1:5 in extraction solution

(2N hydrochloric acid). After homogenization for 30 min at room

temperature, fecal suspensions were centrifuged for 20 min at

2,100 g at 4uC. Supernatants were then collected using serum

filters (Fisher Scientific Inc., Pittsburgh, Pa). Of each sample,

500 ml of supernatant were mixed with 10 ml of internal standard

(200 mM heptadeuterated butyric acid) and extracted using a C18

solid phase extraction column (Sep-Pak C18 1 cc Vac Cartridge,

Waters Corporation, Milford, MA). Samples were derivatized using

N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA)

at room temperature for 60 minutes. A gas chromatograph (Agilent

6890N, Agilent Technologies Inc, Santa Clara, CA) coupled with a

mass spectrometer (Agilent 5975C, Agilent Technologies Inc, Santa

Clara, CA) was used for chromatographic separation and quanti-

fication of the derivatized samples. Separation was achieved using a

DB-1ms capillary column (Agilent Technologies Inc., Santa Clara,

CA). The GC temperature program was as follows: 40uC held for

0.1 min, increased to 70uC at 5uC/min, 70uC held for 3.5 min,

increased to 160uC at 20uC/min and finally increased to 280uC for

3 min at 35uC/min. The total run time was 20.5 min. The mass

spectrometer was operated in electron impact positive-ion mode

with selective ion monitoring at mass-to-charge ratios (M/Z) of 117

(acetate), 131 (propionate), 145 (butyrate and isobutyrate), 152

(deuterated butyrate; internal standard), and 159 (valerate and

isovalerate). Quantification was based on the ratio of the area under

the curve of the internal standard and each fatty acid. Results are

reported as micromoles (mmol) per gram of wet feces.

Statistical analysis
The experimental unit in this study was individual rats.

Pyrosequencing data was used to determine any significant

differences to the control using an analysis of similarities

(ANOSIM) on the unweighted Unifrac distance matrix in PAST

[42]. An unweighted Pair Group Method with Arithmetic Mean

(UPGMA) hierarchical clustering was generated using QIIME to

visualize clustering of samples. Differences in relative proportions

of sequences (including the Firmicutes/Bacteroidetes ratio), alpha

diversity indices, fecal fatty acids, body weight, and qPCR data

were analyzed using an analysis of variance (ANOVA) or its non-

parametric counterpart Kruskal-Wallis using JMP 9.0.0 (SAS

Institute Inc.), depending on sample size, type of data, and/or

normality of the residuals from the ANOVA. Multiple compar-

isons were adjusted by the Tukey-Kramer or the Dunn’s method.

A p,0.05 was considered for statistical significance. QIIME, JMP

and R (version 2.15.2) were used to generate graphs.

Results

Throughout the study (11 weeks) control and lean groups

consumed an average of 50.668.7 and 46.067.9 mL water/

animal-day, respectively, peach and plum groups consumed an

Table 1. Oligonucleotides used in this study for qPCR analysis.

qPCR primers Sequence (59–39) Target Annealing (6C) Reference

UniF CCTACGGGAGGCAGCAG All bacteria 59 [32]

UniR ATTACCGCGGCTGCTGG

RumiF ACTGAGAGGTTGAACGGCCA Family Ruminococcaceae 59 [33]

RumiR CCTTTACACCCAGTAAWTCCGGA

FaecaliF GAAGGCGGCCTACTGGGCAC Faecalibacterium 60 [33]

FaecaliR GTGCAGGCGAGTTGCAGCCT

LacF AGCAGTAGGGAATCTTCCA Lactobacillus 58 [34]

LacR CACCGCTACACATGGAG

TuriciF CAGACGGGGACAACGATTGGA Turicibacter 63 [35]

TuriciR TACGCATCGTCGCCTTGGTA

CFB555f CCGGAWTYATTGGGTTTAAAGGG Bacteroidetes 60 [36]

CFB968r GGTAAGGTTCCTCGCGTA

BifF TCGCGTCYGGTGTGAAAG Bifidobacterium 60 [34]

BifR CCACATCCAGCRTCCAC

doi:10.1371/journal.pone.0101723.t001
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average of 47.569.0 and 45.2611.8 mL juice/animal-day

respectively (Table S1). All rats remained clinically healthy during

the study.

qPCR analyses
qPCR analyses were performed on 6 samples from the lean

group, 8 samples from the obese control group, 7 samples from the

peach group, and 9 samples from the plum group. The reason for

using a subset of samples obeyed availability of fecal DNA for all

analysis. The abundance of Bacteroidetes (phylum) and the genera

Faecalibacterium, Lactobacillus, and Turicibacter were found to be

significantly higher in the plum group when compared to all other

groups (p,0.05; Figure 1). The abundance of the family

Ruminococcaceae was found to be significantly higher in the

plum group when compared to both the control and the lean

groups. Additionally, Ruminococcaceae was also significantly

higher in the peach group when compared to the control group

(Figure 1).

bTEFAP
Pyrosequencing was performed in an effort to investigate

differences in the overall phylogenetic composition of the fecal

microbiota among the animal groups. For this analysis, we

analyzed 4 fecal DNA samples from the obese control group, 4

samples from the peach group and 4 samples from the plum

group. Additionally, we also included one fecal DNA sample from

a lean subject but the results from this separate analysis of all

samples (control obese, peach, plum and the lean subject) are only

provided as supporting information (Figures S1–S3, Table S2). A

total of 60,798 non-chimeric good-quality 16S rRNA gene

sequences were analyzed (average: 5,067 61,666 sequences per

sample). The fecal microbiota of all rats was composed by 1,549

OTUs (97% similarity) from 12 distinctive bacterial phyla. Despite

the high bacterial diversity, only four phyla (Firmicutes, Bacter-

oidetes, Verrucomicrobia, and Proteobacteria) accounted for more

than 90% of all the obtained sequences (Figure 2). The

Firmicutes/Bacteroidetes ratio was not significantly different

among the control obese and treatment groups (p = 0.209,

Figure 2).

A heat map of the most abundant OTUs ($ 500 total in all

samples analyzed) suggested differences in the relative abundance

of various bacterial groups among the different animal groups

(Figure 3) that confirmed the qPCR results (see above). Specifi-

cally, the relative abundance of OTUs from Turicibacteraceae was

found to be high only in samples from the plum group. Moreover,

most animals in the plum and the peach group had a high

abundance of one unclassified Ruminococcaceae, and OTUs from

several Bacteroidetes were also high only in the treatment groups

(Figure 3). Despite these suggested dissimilarities in relative

abundance of OTUs, there was no statistically significant

difference in relative proportions of pyrosequencing reads

(percentage of sequences) except for Turicibacter (Table S3), which

was found to be significantly higher in both the peach and plum

groups when compared to the control group. The genus

Figure 1. Quantitative real-time PCR results for Ruminococcaceae (family, A), Faecalibacterium (B), Lactobacillus (C), Turicibacter (D),
Bacteroidetes (phylum, E) and Bifidobacterium (F) in the lean (n = 6), control obese (n = 8), peach (n = 7), and plum (n = 9) groups. Error
bars represent the median and interquartile ranges (all results were normalized to qPCR data for total bacteria). Columns not sharing the same
superscript are significantly different (p,0.05). *Significantly higher than all other groups.
doi:10.1371/journal.pone.0101723.g001
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Akkermansia (phylum Verrucomicrobia) was higher in the obese

control group but this difference did not reach significance

(p = 0.069, Table S3). Figure 4 illustrates the rarefaction curves for

the control and the treatment groups. Alpha diversity indices were

not significantly different among the animal groups (Table 2).

A Principal Coordinate Analysis (PCoA) analysis of the Unifrac-

based unweighted distance matrices revealed useful information

about the phylogenetic relationship among the fecal bacterial

microbiota in the different animal groups (Figure 5). Most samples

from the control obese group were separated from the peach and

the plum samples in at least two of the combinations of coordinates

(ANOSIM with 9999 permutations, p = 0.0012, Figure 5). It is

known that when few independent factors are responsible for most

of the variation, the first 2–3 coordinates explain most of the

variation in the data [43]. In this study, the first three coordinates

only described 41% of the variability, suggesting that many

independent factors could have contributed to the observed

variation in UniFrac distance values among the samples [43].

An UPGMA hierarchical clustering was created and suggested a

distinctive clustering of all but one of the samples in the control

group (75–100% jackknife support) (Figure 6). Expectedly, the

sample from the control obese group that did not cluster with the

rest of the control samples in the UPGMA hierarchical clustering

was the same sample that remained independent in the PCoA

analysis (Figure 5). There was not clear distinction (low jackknife

support) among the samples from the peach and the plum groups

(Figures 6), an observation that was also noted in the PCoA plots

(Figure 5).

The analysis of all samples (control obese, treatment groups,

and the one lean subject) revealed that the lean subject had higher

indices of diversity and richness than any other sample analyzed

(Table S2).

Fecal fatty acids analysis
Fecal fatty acids were measured in a subset of samples from the

peach (n = 6), plum (n = 8), control (n = 6) and lean (n = 5) groups.

The samples from the obese control group had a significantly

higher concentration of acetic and propionic acid when compared

to the plum and the lean group (acetic acid) and the peach and the

lean group (propionic acid) (p,0.05), respectively (Table S4). All

other fecal fatty acids, including butyric acid, were not significantly

different among the animal groups (Table S4).

Body weight
Body weight at day 0 (beginning of experiment) was significantly

different between the lean group and all other groups (data not

shown). Animals in the plum group showed a significantly lower

body weight (541.8 643.6) compared to control obese (644.4

639.3) and peach (611.1 639.4) group at week 11 (end of

experiment, p,0.05, Table S1).

Discussion

There has been an increased interest in the characteristics and

potential modifications of the intestinal microbiota to improve

health in obese individuals. However, little information is available

investigating the effect of potentially beneficial nutrients on the

obese microbiota. To our knowledge, this study is the first to

report the effect of peach and plum juices on the intestinal

microbiota of obese rats using molecular tools, including a high-

throughput sequencing technique.

Obese individuals have been reported to harbor a distinctive

intestinal microbiota when compared to non-obese subjects. For

example, Ley et al. showed a lower proportion of Bacteroidetes and

a higher proportion of Firmicutes in obese mice when compared

with lean mice [44]. Likewise, it has been suggested that obesity is

related to phylum-level changes in the microbiota and reduced

bacterial diversity [45]. However, others have found either no

difference in the proportions of the main phyla or a change in

proportions that seemed to contradict the original observations by

Ley et al. [23]. In this study, qPCR analyses revealed statistically

significant differences in the abundance of several fecal bacterial

groups between the treatment (peach and plum) groups compared

to the control and lean groups, but there was no difference

between the lean and the obese control groups. The reasons for

this lack of difference between lean and obese subjects are

unknown but other authors have proposed a role of inter-

individual differences, methods of sample preparation or methods

of bacterial analysis [46].

The study of intestinal microorganisms and their relationship

with fat metabolism and obesity has received increased attention

Figure 2. Composition of fecal microbiota in the control (n = 4), peach (n = 4) and plum (n = 4) groups at the phylum level. Bars
represent median percentage of sequences. The y axis (percentage of sequences) was modified to also show the low abundant phyla.
doi:10.1371/journal.pone.0101723.g002
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over the last few years. However, little is known about how to

successfully manipulate the obese gut microbiota, previous studies

mainly used non-digestible carbohydrates [23]. Using an obese

animal model, this study suggest that the polyphenolics in the

juices played a role in the observed changes because the plum juice

contained 3 times more polyphenolics and the differences in fecal

microbial ecology and body weight were more marked in the plum

group. For example, we found a higher abundance of Turicibacter in

the plum group and this bacterial group has received increased

attention because of its close relationship with the immune system

of the host [47]. Also, we found a higher abundance of

Bacteroidetes in the plum group. As mentioned above, Ley et al.

[44] and others have shown that lean individuals generally carry a

higher abundance of this group. Interestingly, in the plum group

we also found a higher abundance of Faecalibacterium and

Lactobacillus, important and abundant members of the phylum

Firmicutes [48–49]. Moreover, we found differences in the

abundance of the genus Akkermansia (phylum Verrucomicrobia),

whose abundance has been shown to decrease in obese and type 2

diabetic mice [50]. It is important to note that our results about

Akkermansia are somehow in disagreement with previous studies

where a high abundance of this bacterial group is associated with

health [50–51]. In our study, the relative abundance of Akkermansia

was higher (although not statistically, p = 0.069) in obese rats and

Figure 3. Heat map showing the most abundant operational taxonomic units (OTUs, at least 500 total) in the control (n = 4), peach
(n = 4) and plum (n = 4) groups. Colors represent differences in relative abundance within samples (red: higher; white: median; blue: lower).
doi:10.1371/journal.pone.0101723.g003

Figure 4. Rarefaction plots of 16S rRNA gene sequences
obtained from fecal samples. Lines denote the average of each
group; error bars represent the standard deviation. This analysis was
carried out using a randomly selected 2489 sequences per sample.
doi:10.1371/journal.pone.0101723.g004
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the consumption of peach and plum extracts helped diminish its

abundance (Table S3). This discrepancy may be explained by

phenotypic differences among species within the genus or strains

within the species as well as differences in the animal models utilized.

In order to obtain a better understanding of the effect of the

peach and plum juices on the gut microbial ecosystem, we also

measured SCFA and BCFA in fecal samples. Using an in vitro fecal

culturing system, Bialonska et al. [18] showed that the inoculation

of pomegranate polyphenols-rich extracts yielded significant

increases in acetate, propionate and butyrate concentrations, as

well as in the abundance of total bacteria, Bifidobacterium and

Lactobacillus spp. Interestingly, the authors also inoculated the

major pomegranate polyphenols (i.e., punicalagins) in the fecal

cultures and did not observe changes in the abundance of fecal

microorganisms and/or SCFA concentrations [18]. The authors

of this study suggest that the effect of pomegranate extracts on

fecal bacteria can be attributed to other non-punicalagins

polyphenolics in pomegranate as well as glucose. Similarly, our

data suggests that polyphenolics in the peach and plum juices have

the potential to modify the composition of fecal SCFA concen-

trations in vivo. Moreover, the current study offers valuable

information to the field of functional foods because carbohydrates

were removed from the fruits. More detailed functional (metabolic)

data, such as single-cell stable isotope probing, are necessary to

research in more depth the complex bacterial interactions during

the metabolism of polyphenolics inside the gut.

The cause of any difference in the fecal microbiota due to

dietary polyphenols can be attributed to several factors. There is

evidence suggesting that a proportion of dietary polyphenols can

reach the large intestine in their original form [52–53], which are

then subjected to microbial bioconversion [21]. Moreover, dietary

polyphenols have the ability to inhibit the activity of pancreatic

lipase, resulting in a reduced ability to absorb fat and consequently

in a higher fecal fat content [54–56], and can promote fat

oxidation and decrease lipogenesis [57]. Additionally, polyphenols

are not considered as a primary energy source of microbial growth

(compared to polysaccharides) [57] and possess both anti-microbial

and growth-enhancing activities [15,58]. Therefore, the differences

observed in this study may have arisen from the bioconversion of

polyphenols by the gut microbiota, modifications of the lipid

metabolism, as well as anti-microbial and growth-enhancing effects.

More research, using purified polyphenols and whole extracts from

polyphenolics-rich foods, is needed to understand more in depth gut

microbial metabolism of polyphenols.

This study analyzed the effect of carbohydrate-free peach and

plum juices on the obese fecal microbiota. However, the juices

most likely contained other compounds aside the polyphenolics,

such as vitamins and minerals, as peach and plum are known to

contain high concentrations of these nutrients. Although it is

known that several members of the intestinal microbiota are

capable of utilizing and synthesizing vitamins [59–60], very little is

known about the effect of these and other specific nutrients on the

gut microbiota. Nonetheless, we cannot rule out the possibility that

vitamins, minerals and/or other compounds in the juices could

have had a contribution on the changes we observed.

The relevance of the current study to human or veterinary

medicine is debatable. There are similarities in the gut microbiota

of different mammals based on gut type and diet [61]. Mice and

rats also share many physiological similarities with humans and

other mammals, and studies in these animal species can therefore

be useful to human and veterinary medicine. However, it is

difficult for this and other studies to generalize about the

Table 2. Median (minimum-maximum) indices of bacterial diversity (Shannon Weaver and Chao1 3%) and richness (OTUs 3%)
obtained from fecal samples of the control, peach and plum groups. P values come from the non-parametric Kruskal-Wallis.

Control (n = 4) Peach (n = 4) Plum (n = 4) p value

Chao1 500 (434–553) 600 (547–616) 485 (463–576) 0.0592

Shannon 6.9 (6.5–7.4) 7.1 (6.6–7.5) 7.0 (6.8–7.4) 0.8741

OTUs 359 (329–370) 401 (381–413) 355 (341–401) 0.1238

These estimates are based on 2489-sequences subsamples.
doi:10.1371/journal.pone.0101723.t002

Figure 5. Principal Coordinate Analysis (PCoA) plots of the unweighted Unifrac distance matrix. The plots show each combination of the
first three principal coordinates. Red (square): control; orange (circle): plum; blue (upright triangle): peach.
doi:10.1371/journal.pone.0101723.g005
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contribution of specific dietary nutrients to any change in the

abundance or phylogenetic composition of the gut microbiota. For

instance, in this study the prevention of weight gain could have

been responsible for the changes in the microbiota instead or in

addition to any change caused by direct microbial metabolism of

the nutrients in the administered juices.

In summary, the current study suggests that the consumption of

carbohydrate-free peach and plum juice has the potential to

modify fecal bacterial composition in obese rats, as determined by

qPCR and pyrosequencing. These changes occurred simulta-

neously with differences in fecal SCFA concentrations and a

decrease in body weight in the plum group. Clinical research is

needed to investigate the significance of our observations in

preventing and treating human or veterinary patients with obesity.
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