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Abstract 

The nutritional contribution of the dietary nitrogen, carbon and total dry matter supplied by 

fish meal (FM), soy protein isolate (SP) and corn gluten (CG) to the growth of Pacific 

white shrimp Litopenaeus vannamei was assessed by means of isotopic analyses. As SP 

and CG are ingredients derived from plants having different photosynthetic pathways 

which imprint specific carbon isotope values to plant tissues, their isotopic values were 

contrasting. FM is isotopically different to these plant meals in regards to both, carbon and 

nitrogen. Such natural isotopic differences were used to design experimental diets having 

contrasting isotopic signatures. Seven isoproteic (36% crude protein), isoenergetic (4.7 

Kcal gr-1) diets were formulated; three diets consisted in isotopic controls manufactured 

with only one main ingredient supplying dietary nitrogen and carbon: 100 % FM (diet 

100F), 100% SP (diet 100S) and 100% CG (diet 100G). Four more diets were formulated 

with varying mixtures of these three ingredients, one included 33% of each ingredient on a 

dietary nitrogen basis (diet 33FSG) and the other three included a proportion 50:25:25 for 

each of the three ingredients (diets 50FSG, 50SGF and 50GFS). At the end of the bioassay 

there were no significant differences in growth rate in shrimps fed on the four mixed diets 

and diet 100F (k = 0.215-0.224). Growth rates were significantly lower (k = 0.163-0.201) in 

shrimps grown on diets containing only plant meals. Carbon and nitrogen stable isotope 

values (δ13C and δ15N) were measured in experimental diets and shrimp muscle tissue and 

results were incorporated into a three-source, two-isotope mixing model. The relative 

contributions of dietary nitrogen, carbon and total dry matter from FM, SP and CG to 

growth were statistically similar to the proportions established in most of the diets after 

correcting for the apparent digestibility coefficients of the ingredients. Dietary nitrogen 
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available in diet 33FSG was incorporated in muscle tissue at proportions representing 24, 

35 and 41% of the respective ingredients. Diet 50GSF contributed significantly higher 

amounts of dietary nitrogen from CG than from FM. When the level of dietary nitrogen 

derived from FM was increased in diet 50FSG, nutrient contributions were more 

comparable to the available dietary proportions as there was an incorporation of 44, 29 and 

27% from FM, SP and CG, respectively. Nutritional contributions from SP were very 

consistent to the dietary proportions established in the experimental diets.  

 

Keywords: Stable isotopes, nutrient contribution, fish meal, soy protein, corn gluten, 

Litopenaeus vannamei 

 

1. Introduction 

Information gathered from traditional nutritional assays in conjunction with data from 

chemical analyses of diets and animal tissues provides valuable information to infer on the 

dietary performance of specific ingredients. Among these chemical analyses, the use of 

stable isotopes represents an additional tool for nutritional studies conducted on aquatic 

species. The integration of isotopic data into isotopic mixing models has made possible to 

convert the isotopic values of consumers and their different trophic elements to dietary 

contributions (Phillips, 2012). In the fields of ecology and nutrition, the isotopic techniques 

have provided an improved understanding of how organisms incorporate the elements they 

consume. In this context, it has been pointed out that animal tissue often does not reflect the 

bulk isotopic composition of the diet, but the isotopic composition of the dietary 
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components from which the tissue was biosynthesized (Gannes et al., 1997; Newsome et 

al., 2011). In aquaculture nutrition, the natural isotope ratios of nitrogen and carbon 

(15N/14N and 13C/12C, respectively measured and reported in delta notation as δ15N and 

δ
13C) have been used as natural biomarkers to estimate dietary contributions in organisms 

fed either on different types of live food and inert diets, or raised on formulated diets 

having ingredients with contrasting isotopic signatures (Gamboa-Delgado et al., 2008; 

Jomori et al., 2008; Gamboa-Delgado & Le Vay, 2009a, 2009b; Matsuda et al., 2009; 

Martínez-Rocha et al., 2012).  

Partial or total replacement of fish meal in aquaculture diets represents important 

advantages in economical and ecological terms. The progressively higher production of 

several aquaculture species is in turn exerting a higher demand for aquafeeds. Among these 

mass-produced marine animals, the Pacific white shrimp Litopenaeus vannamei has 

become the main shrimp species produced through aquaculture practices since 2003 (FAO, 

2007). Hence, numerous nutritional studies conducted on this species have focused on 

testing different plant-derived meals and purified, isolated plant proteins as dietary 

ingredients to replace fish meal (e.g. Amaya et al., 2007; Harter et al., 2011; Liu et al., 

2012; Oujifard et al., 2012). Different dietary resources found in the aquatic and terrestrial 

ecosystems frequently show distinct isotopic values due to the effect of characteristic 

nutrient flows and metabolic pathways. This natural isotopic labeling allows conducting 

studies aimed to elucidate the nutritional contribution of specific dietary sources to the 

growth of a consuming organism. Plants exhibit three different photosynthetic pathways 

(C3, C4 and CAM), which imprint different isotopic values to vegetal tissues. For example, 

soy is a C3 or Calvin cycle plant (called C3 because during photosynthesis, the first product 



5 

 

of CO2 fixation is a 3-carbon compound), while corn is a C4 or Hatch-Slack cycle plant 

(Leegood, 2002). The reaction kinetics of these photosynthetic pathways has a significant 

influence on the carbon isotopic values (δ13C) of each type of plant. C3 plants have a mean 

δ
13C value of -29‰, while C4 plants show a more isotopically-enriched, mean δ13C value 

of -13‰ (O'Leary, 1988; Ehleringer and Cerling, 2002). In the case of δ15N values, most 

plants have isotopic values ranging from 2 to 6‰; however, the nitrogen isotope values of 

most traditional crops are strongly influenced by the δ15N values of the inorganic fertilizers 

used to grow them. As the isotopic mixing models are able to estimate dietary contributions 

at higher resolution when the nutrient sources are isotopically distinct (Phillips, 2012), the 

isotopic values of primary producers have been systematically manipulated using specific 

fertilizers (Gamboa-Delgado et al., 2009, 2011). The present study employed the natural 

isotopic differences found in soy protein isolate, corn gluten and fish meal, to 

simultaneously assess the relative incorporation of dietary nitrogen, carbon and total dry 

matter supplied by these three sources to the muscle tissue of Pacific white shrimp. In 

addition, the nitrogen and carbon half times in muscle tissue of shrimps fed on the different 

experimental diets were estimated. 

 

2. Material and methods 

2.1. Experimental animals 

Pacific white shrimp (Litopenaeus vannamei) postlarvae were obtained from a commercial 

hatchery (Maricultura del Pacífico) located in Mazatlán, Mexico. After reception, animals 

were placed in 500 L tanks and acclimated for 20 d to a bioassay room under the following 
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conditions: seawater temperature 30.2 ±0.7 °C, salinity 35.4 ±0.7 g l−1, pH 8.4 ±0.1 and 

saturated dissolved oxygen. Total ammonia nitrogen (0.09 ± 0.06 mg/L), nitrite (not 

detected), and nitrate (12.9 ± 4.6 mg/L) were monitored using a commercial kit (FasTest; 

Aquarium Systems, Sarrebourg, France). A photoperiod was set up to provide a light:dark 

ratio of 10:14h.  During the acclimation period, shrimps were exclusively fed a crumbled 

commercial compound diet (35% protein, Grupo Costamar, Hermosillo, Mexico) that 

established a known isotopic baseline in shrimp tissue before the start of the experiment. It 

has been demonstrated that fast-growing postlarval Penaeid shrimps achieve isotopic 

equilibrium with their respective diets in 15 to 20 d (Gamboa -Delgado and Le Vay, 2009; 

Gamboa -Delgado et al., 2011). The commercial diet was analyzed for nitrogen and carbon 

content and their respective isotopic values (δ15N and δ13C) before the experimental feeding 

trial.  

 

2.2. Experimental diets 

Seven isonitrogenous (36% crude protein) and isoenergetic (4.7 kcal g-1) experimental 

compound diets were formulated with different proportions of fish meal (FM), soy protein 

isolate (SP) and corn gluten (CG) (Table 1). The software Nutrion (Nutrion Software, 

Chapala, Mexico) was used to assist with the formulation of experimental diets. Diets were 

not manufactured to conduct an ingredient-substitution study; instead, they were formulated 

with ingredients having contrasting isotopic values to explore their nutritional contributions 

to shrimp growth as described below.  
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Table 1. Nutritional (g 1000 g−1 diet dry weight) and isotopic (δ15N, δ13C, ‰) composition 
of formulated diets fed to Litopenaeus vannamei to estimate the nutritional contribution of 

fish meal (F), soy protein isolate (S) and corn gluten (G) to shrimp muscle tissue. 

Ingredient / Diet 100F 100S 100G 33FSG 50FSG 50SFG 50GFS 

Fish meala 556.2 0.0 0.0 180.0 278.0 139.0 139.0 

Soy protein isolateb 0.0 449.5 0.0 149.0 112.0 224.9 112.1 

Corn glutenc 0.0 0.0 600.2 199.0 150.7 150.0 300.5 

Wheat starchd 348.8 390.7 253.5 348.1 348.1 354.3 323.4 

Lecithine 35.0 54.1 54.5 45.4 40.6 47.4 47.5 

Fish oila 24.0 34.6 10.4 26.3 27.9 28.3 22.2 

Disodium phosphatef  - 20.2 41.0 10.8 -  12.5 17.7 

Cellulosef                      7.0 20.6 10.0 12.0 13.7 14.1 7.9 

Alginatef                       20.0 20.0 20.0 20.0 20.0 20.0 20.0 

Vitamin premixa 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Mineral premixa 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Choline chloridea 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Cholesterolg -  1.2 1.5 0.4 -  0.6 0.7 

Vitamin Ca                 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Antioxidanta 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Antifungic agenta 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Total 1000 1000 1000 1000 1000 1000 1000 

Proximal and isotopic analysis               

Crude protein (g kg-1)  362 356 365 356 367 353 362 

Lipids (g kg-1) 83 80 84 83 80 81 84 

Gross energy (Kcal g-1) 4.6 4.8 4.6 4.7 4.7 4.8 4.7 

δ
15N (‰) 16.5 0.6 3.1 6.4 9.0 5.1 5.9 

δ
13C (‰)h -19.5 -25.1 -16.6 -20.1 -20.4 -21.7 -19.3 

 
aAlimentos Costamar (Sonora, Mexico). 
bAmerican Soybean Association (St. Louis, MO, USA). 
cTrow Nutrition International (Putten, The Netherlands). 
dAlmidones y gluten S.A. (Monterrey, Mexico). 
eSodium salt, Sigma-Aldrich (St. Louis, MO, USA). 
dBentoli Inc. (Homestead, FL, USA). 
eRagaza Industrias Proteínas Naturales S.A. de C.V. (Monterrey, Mexico).  

fSigma-Aldrich (St. Louis, MO, USA). 
gSolvay Pharmaceuticals (Houston, TX, USA). 
hAfter lipid extraction and uncorrected for isotopic discrimination factors. 
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Three diets were formulated with only one ingredient supplying dietary nitrogen: 100% FM 

(diet 100F), 100% SP (diet 100S) and 100% CG (diet 100G). These diets were used as 

isotopic controls to correct for the isotopic differences between diets and consumers 

(isotopic discrimination factors) after having reached dietary equilibrium. The other four 

diets were formulated with varying mixtures of FM, SP and CG, one included 33% of each 

ingredient on a dietary nitrogen basis (diet 33FSG) and the other three included a 

proportion of 50:25:25 for each of the respective three ingredients (diets 50FSG, 50SFG 

and 50GFS). Before manufacturing the diets, macronutrients were finely ground using a 

Pulvex 200 grinder fitted with a size #35 mesh. Micronutrients were weighed to the nearest 

mg, hand-mixed for 5 min and added to the macronutrients, which in turn were 

homogenized for 15 min using a commercial blender. Lecithin was dissolved in pre-

weighed, warm fish oil and added to the mixture. The dough was extruded through a die 

plate having orifices of 1.4 mm in diameter. Strands were collected on wire trays and post-

conditioned by 5 min autoclaving (18.5 psi, 125 °C) to reduce nutrient leaching rates. Diets 

containing plant meals as the only protein source were sprayed-coated with a hydrolyzed 

protein to improve palatability. Diets were dried in a convection oven for 8 min at 100 °C 

and stored at 4 °C. Proximal analyses of the experimental diets included moisture content 

(method AOAC 930.15), protein content (Dumas method, LECO) and lipid content 

(Soxhlet system HT-1045, method AOAC 996.06) (Tecator, 1983). The energy content of 

the ingredients was estimated using a semi-micro bomb calorimeter (Parr 1425 PIC, 

Illinois, USA).  

 

2.3. Experimental design and rearing system 
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Shrimps having an initial mean wet weight of 162 ± 36 mg were distributed in 21, 60-L 

capacity tanks. Twenty animals were placed in triplicate tanks after conducting a pre-

selection aimed to distribute animals with the same size distribution pattern in each unit. 

The experimental tanks having built-in air lifts are connected to a recirculation system 

holding artificial seawater (Fritz, Chemical Co., Texas, USA). Seawater was exchanged in 

every tank at a rate of 800% d-1 and it was treated by mechanical cartridge filters, UV filter, 

protein skimmers and a bubble bead biological filter. The experimental tank array is 

designed so that possible water quality variations affect all tanks simultaneously. Animals 

were fed the experimental compound diets at daily amounts representing 10 to 15% of the 

animal biomass. Feed was delivered in four rations at 8:00, 12:00, 16:00 and 20:00 hours 

for 29 days. Before the first feeding ration, uneaten feed, feces and moults were siphoned 

out daily. Tank walls were periodically scrubbed off with a rough fiber to avoid any 

possible biofilm growth. The experimental time period and sampling points to collect 

muscle samples for isotopic analysis were defined according to the exponential rate of 

isotopic change previously observed in experiments using small-sized Penaeid shrimp 

(Gamboa-Delgado et al., 2011; Martínez-Rocha et al., 2012). In order to verify isotopic 

values shifting in time to isotopic equilibrium, on experimental days 0, 2, 4, 8, 15 and 22, 

one shrimp was randomly collected from each replicate tank, killed in ice/water slurry and 

dissected to isolate the abdominal muscle. The exoskeleton and hind gut were removed, 

muscle tissue samples were rinsed with distilled water and stored in Eppendorf tubes at −80 

°C until sample pretreatment. As an estimate of growth (k) is required for the exponential 

model of isotopic change, the individual wet weight of five animals per replicate was 

determined on the sampling days using a digital balance. Animals were captured with nets 

and weighed after blotting off excess water with a moist cloth. At the end of the experiment 
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(day 29), all the remaining animals were killed and three shrimps per replicate tank (9 per 

treatment) were also weighed, sacrificed and dissected to obtain abdominal muscle tissue.  

 

2.4. Sample pretreatment and stable isotope analyses  

Samples of shrimp muscle tissue and compound diets were dehydrated at 50 °C until 

constant weight in a convection oven. Dry samples were manually ground using mortar and 

pestle to obtain a fine powder. In order to avoid sample loss, small muscle samples (e.g. 

those belonging to shrimps sampled on the first experimental week or showing slow 

growth) were not ground, instead, fragments of dry muscle tissue were obtained for isotopic 

analysis. Lipids are usually depleted in 13C relative to carbohydrates and protein (De Niro 

& Epstein, 1978, Stenroth et al., 2006); therefore, in order to reduce the variability of δ13C 

values and allow further comparisons, diet samples (8% lipid content) were lipid extracted 

following Beaudoin et al. (2001) by suspending the ground material in a 50:50 solution of 

chloroform–methanol for 12 h. Samples were solvent-treated twice over this period of time. 

After lipid extraction samples were oven-dried (50 °C until constant weight), homogenized 

again, and kept in a desiccator. Muscle tissue samples were not lipid extracted as part of the 

pre-treatment as shrimp muscle contains low lipid levels and it has been shown that δ15N 

values in muscle tissue of decapod crustaceans undergo minimal, no significant changes 

after solvent treatment (Stenroth et al., 2006; Bodin et al., 2007). Diet and muscle tissue 

samples of 900 to 1100 µg were packed in tin cups (D1008 Elemental Microanalysis Ltd., 

UK) and organized in 96-well microplates. Samples were analyzed at the Stable Isotope 

Facility of the Department of Plant Sciences, University of California, (Davis, CA, USA) 
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using a PDZ Europa Scientific Roboprep elemental analyzer coupled to a PDZ Europa 

Hydra 20/20 stable isotope ratio mass spectrometer (Crewe, UK). Repeated measurements 

of two calibration standards indicated that instrument precision (SD) was 0.08 ‰ for δ15N 

and 0.14 ‰ for δ13C. Isotopic results are expressed in delta notation (δ), which is defined as 

part per thousand (‰) deviations from the δ15N and δ13C values of the isotopic standard 

reference materials (atmospheric nitrogen and Pee Dee belemnite, respectively). We 

employ the term “discrimination factor” following Cherel et al. (2005) and Dennis et al. 

(2010) to describe changes in isotopic values between a consuming organism (whole body 

or specific tissue) and its diet after having reached isotopic equilibrium (∆15N or ∆13C).  

 

2.5. Estimation of nutrient contribution and elemental residency times in tissue 

A three-source, two-isotope mixing model (Phillips & Koch, 2002) was applied to estimate 

the relative contribution of dietary nitrogen, carbon and total dry matter supplied by FM, 

SP and CG to the muscle tissue of shrimps under the different dietary treatments. The 

model considers the isotopic differences between the sources (in this particular study 

represented by the ingredients FM, SP and CG) and the mixture (shrimp muscle tissue). 

One of the model assumptions indicates that the consuming organism is in isotopic 

equilibrium with its diet, this assumption was verified by measuring the isotopic values in 

shrimp muscle throughout the experimental period and until asymptotic values were 

reached. Additional assumptions associated to the use of isotopic mixing models and the 

validation of results (Gannes et al., 1997; Martínez del Rio and Wolf, 2005; Post, et al., 

2007; Martinez del Rio et al., 2009) were also met or taken into consideration in 

interpreting the results. These include similar (or known, in order to correct for) elemental 

composition of the food sources (dietary ingredients), estimation of discrimination factors 
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and consideration of isotopic routing and dietary assimilation efficiencies. Estimation of 

isotopic discrimination factors (∆15N and ∆13C) increases the accuracy of the estimated 

dietary contributions by integrating correction factors into the mixing model (Martínez del 

Rio et al., 2009; Phillips, 2012). In the present study, measured isotope values were 

corrected for discrimination factors by introducing into the model three reference isotopic 

values determined in muscle tissue of shrimps fed exclusively on diets containing only FM, 

SP or CG. Previous studies have shown that FM, SP and CG have different apparent 

digestibility coefficients (ADC) for protein (0.78, 0.96 and 0.81, respectively) and dry 

matter (0.66, 0.92 and 0.83, respectively) when fed to L. vannamei  (Cruz-Suárez et al., 

2009; Terrazas et al., 2010; Villarreal, 2011). Therefore, expected dietary proportions of 

dietary nitrogen, carbon and total dry matter were corrected for ADC before comparisons to 

observed proportions determined in muscle tissue were conducted. Considering that the 

carbon and nitrogen isotopes found in amino acids reflect both, diet composition and 

metabolic processes (Boecklen et al., 2011) and the majority of deposited carbon in muscle 

tissue is derived from amino acids, corrections applied for the ADC of dietary protein 

(nitrogen) were also applied to dietary carbon. δ13C and δ15N values measured in shrimp 

muscle tissue were sequentially introduced into the model to estimate the relative 

proportion of dietary nitrogen, carbon and dry matter incorporated from the three main 

ingredients. An indicator of the variability of nutritional contributions was generated by 

introducing into the isotopic mixing model isotope values measured in individual animals 

and not averaged values. Preliminary analysis indicated that elemental contents in FM, SP 

and CG were significantly different (N= 10.5±0.4, 13.8±0.3 and 10.7±0.7%, respectively, 

and C= 39.3±0.4, 47.2±0.7 and 52.1±1.7%, respectively). Elemental values are also 

considered by the mixing model to obtain estimates of the relative contribution of dry 
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matter from the food sources to growth. δ15N and δ13C values were determined at different 

times of the experimental period and these values were introduced into an exponential 

model of isotopic change (Hesslein et al., 1993) as described in Gamboa-Delgado et al. 

(2011). The model provides a quantitative coefficient (m) that allows distinguishing the 

isotopic change that is due to growth (k) and/or metabolic turnover (m). Coefficients k and 

m in turn provide an indicator of the residency time (Equation 1), the time period necessary 

for half of the muscle nitrogen or carbon to be replaced after animals consume a new diet 

(half time, t50) (MacAvoy et al,. 2005). 

t50= In2 / m+k         (1) 

 

2.6. Statistical analyses 

Nitrogen and carbon contents of dietary ingredients and their respective δ15N and δ13C 

values, dietary effects on isotopic values of muscle tissue at different times, and mean 

shrimp wet weight were analyzed by one way ANOVA after normal distribution and data 

homoscedasticity were verified. Tukey pair wise comparisons were used to detect 

treatments significantly differing from each other. Survival data lacked homoscedasticity   

after transformation and comparisons were done using a Kruskal-Wallis test. Chi-square 

goodness of fit tests (χ2) were applied to compare expected (dietary proportions of nutrients 

contributed by FM, SP and CG after correcting for ADC) and observed (estimated 

proportions incorporated in muscle tissue) dietary proportions of incorporated nutrients. 

Parameter m in the exponential model of isotopic change was estimated by iterative non-

linear regression. All tests were done using SPSS 17.0 software (SPSS Inc.) at a 

significance level of P<0.05. 
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3. Results 

3.1. Shrimp growth and survival 

During the experimental feeding period, water quality parameters remained within the 

recommended optimal values for this species. Temperature, pH, salinity, dissolved oxygen 

and nitrogenous waste concentrations were maintained as the previously described 

conditions for the bioassay room. At the end of the experiment, shrimps reared under the 

seven experimental treatments showed similar survival rates (93±6%) but significantly 

different mean final wet weights (Table 2). Shrimp fed diet 100F and those fed the four 

mixed diets containing the three ingredients at different inclusion levels showed statistically 

similar final weights. From these treatments, animals fed on diets 50SFG and 50GFS 

showed lower growth rates. Growth rates were significantly lower in shrimps fed diets 

containing only SP or only CG as nitrogen source.  

Table 2. Final wet weight (FW), weight gain (WG), specific growth rate (SGR) and 
survival rate of Pacific white shrimp L. vannamei reared under diets having different 

dietary proportions of fish meal, soy protein isolate and corn gluten.   

Diet                    FW (mg)               WG (%)               SGR (% d-1)          Survival (%) 

100F 

100S  

100G  

33FSG 

50FSG  

50SFG  

50GFS  

804 ± 348a 

508 ± 189b 

276 ± 79c 

839 ± 301a 

816 ± 310a 

724 ± 256a 

682 ± 233ab 

404 ± 96a 

214 ± 49bc 

72 ± 32c 

419 ± 53a 

407 ± 101a 

343 ± 58ab 

317 ± 20ab 

5.58 ± 0.61a 

3.95 ± 0.54b 

1.87 ± 0.64c 

5.68 ± 0.34a 

5.60 ±  0.63a 

5.14 ± 0.41ab 

4.93 ± 0.16ab 

96 ± 6a 

93 ± 6a 

93 ± 13a 

96 ± 6a 

93 ± 6a 

100 ± 0a 

89 ± 11a 

Different superscripts indicate significant differences for that particular column. 
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3.2. Isotopic shifts and discrimination factors 

SP and CG showed very contrasting δ15N (0.6 ± 0.2 and 3.0 ± 0.1‰, respectively) and δ13C 

values (-25.5±0.4 and -13.5±0.1‰, respectively). Isotopic values in plant sources were also 

significantly different when compared to the isotopic values of FM (δ15N=16.6±0.2‰ and 

δ
13C= -16.9±0.4‰). These significant differences allowed formulating diets having 

ingredients with isotopically contrasting values that in turn elicited a wide range of nitrogen 

and carbon isotope changes in muscle tissue (Figs. 1a and 1b). All mixed experimental diets 

exerted a rapid influence on the isotopic values of shrimp tissue and by day 22, animals in 

all treatments (including those in the three isotopic control diets) had reached isotopic 

equilibrium with their feed. ∆15N and ∆13C values between animals and their respective 

diets were significantly different (Table 3). ∆15N values between muscle tissue and diet 

100F were small (0.3‰), while values observed in shrimps fed on diets 100S and 100G 

were significantly larger (5.3 and 5.8‰, respectively).The mixed diets caused ∆15N values 

ranging from 2.5 to 3.3‰. In contrast, overall ∆13C values were less variable and ranged 

from -0.1 to 2.8 ‰. The high range of isotopic values in the three main dietary ingredients 

being reflected in shrimp muscle tissue increased the resolution when assessing total dry 

matter contributions and nitrogen and carbon residency times in tissue. However, after 

applying correction factors for isotopic discriminations, the δ15N values of some diets 

approached to the δ15N values of shrimp tissue and isotopic changes did not describe 

exponential trends (Fig. 1a).  
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Fig. 1. Changes in nitrogen (a) and carbon (b) stable isotope values in muscle tissue of 
white shrimp L. vannamei reared on experimental diets having different proportions of fish 
meal, soy protein isolate and corn gluten. Dotted lines represent the isotopic values of 
control diets containing only one nitrogen source. Solid lines indicate predicted isotopic 
values generated by an exponential model of isotopic change (Hesslein et al., 1993) and 
show the best fit to observed data. Mean of 3 to 9 animals per sample ±SD. 
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3.3. Nitrogen and carbon half times in tissue  

Nitrogen and carbon isotopic shifts followed an expected pattern characterized by an 

exponential trend caused by the isotopic values of the experimental diets being reflected in 

shrimp muscle tissue. For most treatments, predicted isotopic values fitted well on the 

observed data and from these data, parameter m (metabolic turnover) was estimated by 

means of iterative non-linear regression. Although isotopic differences between the 

conditioning diet and the experimental diets were significant, it was not possible to estimate 

the nitrogen half times for all diets because after applying corrections for isotopic 

discrimination factors, isotopic differences between shrimp and diets were narrowed down.  

 

Table 3. Mean growth rates (k) and estimated half times of nitrogen and carbon in muscle 
tissue of Pacific white shrimp L. vannamei reared under diets having different dietary 
proportions of fish meal, soy protein and corn gluten. ∆15N and ∆13C represents the isotopic 

difference between diets and muscle tissue after isotopic equilibrium was reached.  

Diet                 Nitrogen        Carbon  

 k (d-1) half time (d) R2 ∆
15N half time (d) R2 ∆

13C 

100F 

100S  

100G  

33FSG 

50FSG  

50SFG  

50GFS  

0.056 ± 0.004a 

0.039 ± 0.007b 

0.019 ± 0.006c 

0.057 ± 0.003a 

0.056 ± 0.004a 

0.051 ± 0.005a 

0.049 ± 0.008ab 

6.2 ± 0.7a 

7.8 ± 1.1a 

-  

-  

6.6 ± 1.3a 

- 

- 

99 

95 

- 

-  

49 

- 

- 

0.3 

5.3 

5.8 

3.3 

2.5 

3.2 

3.2 

6.4 ± 0.9ab 

9.8 ± 2.1b 

4.5 ± 0.4a 

6.2 ± 1.2ab 

3.3 ± 0.7a 

- 

3.4 ± 0.5a 

83 

74 

93 

86 

87 

- 

93 

2.3 

2.8 

-0.1 

1.7 

2.2 

2.1 

1.5 

Different superscripts indicate significant differences for that particular column. R2 values 
indicate the degree of fitness of data generated by the exponential model of isotopic change 

and isotopic values measured in shrimp muscle tissue. 
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Due to this, diets 50SFG and 50GFS did not cause exponential nitrogen isotopic shifts in 

shrimps (Fig. 1a). Parameters m and k indicated that estimated nitrogen half times in tissue 

ranged from 6.2 d in shrimp fed diet 100F to 7.8 d in shrimp fed on diet 100S (Table 3). 

Estimated carbon half times in muscle tissue ranged from 3.3 d (diet 50FSG) to 9.8 d (diet 

100S). 

 

3.4. Nutritional contributions from fish meal, soy protein and corn gluten 

Isotopic changes observed over the experimental period and inclusion of asymptotic values 

into the isotopic mixing model (Fig. 2) indicated that, in most cases, the contributions of 

dietary nitrogen and carbon from FM, SP and CG to the growth of shrimps were 

statistically similar to the expected nutritional contributions available in the dietary 

formulations after correcting for ADC (Tables 1 and 4). Although differences were small, 

shrimps fed on diet 50GFS incorporated significantly higher amounts of dietary nitrogen 

(58%), dietary carbon (66%) and total dry matter (66%) from CG  (χ2=6.2, P= 0.044) and 

significantly less from FM. Shrimps fed on diet 50SFG also incorporated significantly 

higher amounts of dietary carbon and dry matter from CG (χ2=7.7, P= 0.020).  Nutritional 

contributions from SP to muscle tissue were very consistent with the proportions pre-

established in the respective dietary formulations. 
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Fig. 2. Carbon and nitrogen isotope values of experimental diets (corrected for isotopic 

discrimination factors) and isotope values of muscle tissue of shrimps fed on four 

experimental diets having varying levels of fish meal, soy protein isolate and corn gluten. 

Mean of 9 animals per sample ±SD.  
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Table 4. Estimated relative proportions of dietary nitrogen, carbon and total dry matter supplied 
from fish meal, soy protein isolate and corn gluten to muscle growth of Pacific white shrimp L. 

vannamei as indicated by a three-source, two-isotopes mixing model (mean ±SD, n= 9 per diet).  
Diet                         Expected contributions                        Observed contributions                     

         Bulk diet         Corrected for ADC*                     Muscle tissue       

Nitrogen 
33FSG  
Fish meal  

Soy protein  
Corn gluten  
 
50FSG  

Fish meal  
Soy protein  
Corn gluten  
 

50SFG  
Fish meal  
Soy protein  
Corn gluten  

 
50GFS 
Fish meal  
Soy protein  
Corn gluten  

  

 
 

33.2 

33.4 
33.4 

 
 

50.4 
24.7 
24.9 

 

 
25.3 
49.8 
24.9 

 
 

25.3 
24.9 
49.8 

 
 

30.5a 

37.6 
31.9 

 
 

47.2a 
28.5 
24.3 

 

 
22.5a 
54.4 
23.1 

 
 

23.4a 
28.4 
48.2 

 
 

23.9 ± 0.4a         

35.4 ± 1.8       
40.7 ± 1.2 

 
 

  44.1 ± 0.4a         
29.1 ± 1.6           
26.8 ± 1.2 

 

 
15.5 ± 0.8a         
53.5 ± 1.8           
31.0 ± 1.0 

 
 

12.7 ± 0.2b 
29.2 ± 2.4 
58.1 ± 2.6 

Carbon 
33FSG  

Fish meal  
Soy protein    
Corn gluten  
 

50FSG  
Fish meal  
Soy protein  
Corn gluten  

 
50SFG  
Fish meal  
Soy protein  

Corn gluten  
 
50GFS 
Fish meal                                                                                                                              

Soy protein  
Corn gluten  
              

 
 

29.8 
30.3 
39.9 

 

 
46.5 
22.9 
30.6 

 
 

23.6 
46.9 

29.5 
 
 

21.6 

21.5 
56.9 

 
 

27.4a 
34.3 
38.3 

 

 
43.6a 
26.4 
30.0 

 
 

21.1a 
51.4 

27.5 
 
 

20.1a 

24.6 
55.3 

 
 

21.8 ± 0.4a 
29.6 ± 1.8 
48.6 ± 1.4 

 

 
41.7 ± 0.4a       
25.2 ± 1.6         
33.1 ± 1.2 

 
 

14.8 ± 0.8b     
46.6 ± 1.8     

38.6 ± 1.0 
 
 

11.0 ± 0.2b 

23.1 ± 2.0 
65.9 ± 2.4 

 

Total DM** 

33FSG  
Fish meal  
Soy protein  
Corn gluten  

 
50FSG  
Fish meal  
Soy protein  

Corn gluten  
 
50SFG  
Fish meal  

Soy protein  
Corn gluten  
 
50GFS 

Fish meal  
Soy protein  
Corn gluten  
                

 

 
34.1 
28.2 
37.7 

 
 

51.4 
20.7 

27.9 
 
 

27.0 

43.8 
29.2 

 
 

25.2 
20.4 
54.4 

 

 

 
28.3a 
32.5 
39.2 

 
 

44.6a 
25.0 

30.4 
 
 

21.7a 

48.9 
29.4 

 
 

20.7a 
23.3 
56.0 

 

 
26.3 ± 0.4a 

29.7 ± 1.8         
44.0 ± 1.4 

 
 

42.5 ± 0.4a         
25.3 ± 1.4          

32.2 ± 1.0 
 
 

12.8 ± 0.8b        

46.9 ± 1.8         
40.3 ± 1.0 

 
 

10.3 ± 0.2b 
23.3 ± 2.0 
66.4 ± 2.4 

* ADC: Apparent digestibility coefficients. **Total dry matter contributions were estimated after correcting for 

elemental concentrations (C and N) available in the main ingredients. Different superscripts indicate significant 

differences between mean expected and observed dietary contributions.  
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4. Discussion 

4.1. Growth and survival 

In the present study, significant differences observed in growth rates among treatments 

cannot be attributed to the protein level of the experimental diets (36%) as it has been 

reported that a dietary protein level above 32% is optimal for early juveniles of this species 

(Kureshy & Davis, 2002). Likewise, all diets were supplemented with fish oil in order to 

avoid deficiencies of fatty acids induced in marine animals by ingredients containing low 

lipid levels such as CG and SP (Lewis & Kohler, 2008). Lower growth rates observed in 

animals fed on diets having only plant-derived protein can be explained by the nutritionally 

unsuitable amino acid profile of SP and CG for marine shrimp. Additionally, presence of 

anti-nutritional factors in plant meals affecting growth has been previously documented, 

and although diets were post-conditioned, the possibility of a residual presence of protease 

inhibitors, lectins, phytic acid or saponins should not be discarded (Francis et al., 2001). 

Over the experimental period, shrimps increased their body weight in 3 to 4-fold, except 

animals fed on diets having only SP or CG as protein sources. These observations are in 

agreement to other studies that have remarked that the nutritional profile of SP and CG 

does not fully satisfy the nutritional requirements of Penaeid shrimps when supplied at high 

inclusion levels (Cruz-Suarez et al., 2001;  Davis et al., 2002). The observed growth rate, in 

conjunction with the nitrogen turnover rates elicited by the different diets was sufficient for 

the dietary δ15N and δ13C values to be reflected in muscle tissue and reach isotopic 

equilibrium.  Results from previous studies in which FM has been replaced with plant-

derived ingredients in diets for Pacific white shrimp, indicate that lower growth and 

survival rates are observed when the dietary levels of plant meals are high or represent the 
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only source of protein (Galgani et al., 1988;  Paripatananont et al., 2002;  Molina-Poveda 

and Morales, 2004), such observations are consistent with the observed growth rate in 

shrimps fed diets containing only plant-derived meals. SP and CG are ingredients that have 

been previously used to replace FM in aquaculture diets for crustaceans and fish. Most 

studies indicate that better results in terms of biomass production, survival and 

hematological parameters are achieved when these ingredients have been used at low to 

medium replacement levels and in conjunction with other ingredients derived from plant or 

animal sources (Robaina et al., 1997; Kikuchi, 1999; Regost et al., 1999; Lewis and Kohler, 

2008; Ye et al., 2011; Li et al., 2012; Sookying and Davis, 2012). However, successful 

substitution of high levels of dietary FM using plant proteins has also been reported for 

some marine organisms. For example, Alvarez et al. (2007) replaced up to 75% of FM with 

soybean meal in diets for shrimp L. schmitti without compromising weight gain, feed 

conversion ratio and protein efficiency ratio. In a study conducted on Senegalese sole 

(Solea senegalensis), Cabral et al. (2011) reported that a diet in which 75% of FM was 

replaced by a mixture of plant proteins, promoted similar weight gain and protein efficiency 

ratio than a diet containing FM as the main protein source.  

 

4.2. Isotopic shifts and discrimination factors 

SP and CG were selected for their potential to replace FM and also for having highly 

contrasting δ15N and δ13C values in comparison to FM. Such differences allowed 

formulating experimental diets with ingredients having a wide range of isotopic values, 

which in turn allowed exploring dietary effects on the isotopic shifts in shrimp. The 
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isotopic values of the experimental diets were rapidly reflected in shrimp muscle tissue and 

isotopic steady state between diets and animals was reached between experimental days 22 

and 29. As different growth rates were observed, it is assumed that animals reached isotopic 

equilibrium through both, tissue accretion and metabolic turnover rates. Shrimps fed on 

diets 100G and 100S increased their body weights by only 72 and 214 %, respectively; 

however, these animals also reached isotopic equilibrium through tissue metabolic 

turnover. Besides comprising more than 60% of the Penaeid shrimp body weight, 

abdominal muscle tissue was selected because previous studies conducted on crustaceans 

have shown only small differences in nitrogen isotopic ratios between muscle and whole 

body samples (Stenroth et al., 2006; Gamboa-Delgado and Le Vay, 2009b; Gamboa-

Delgado et al., 2011). Such similarity also indicates that isotopic routing effects were not 

significant (e.g. dietary elements were not differently allocated to muscle tissue). At the end 

of the experiment, ∆15N and ∆13C values between shrimp and their respective experimental 

diets were very contrasting and ranged from 0.3 to 5.8‰ for nitrogen and from -0.1 to 

2.7‰ for carbon. Even though the ∆15N and ∆13C values are necessary to apply correction 

factors in the mixing models, these isotopic discrimination factors are frequently unknown 

or difficult to estimate when conducting nutritional or ecological studies. Under these 

situations, average values are taken from the literature despite the fact that wide variations 

in the ∆15N and ∆13C values have been reported (Caut et al., 2009). There is an ongoing 

discussion about what causes these isotopic discrimination factors, and although increasing 

evidence indicates that high ∆15N values are related to a higher demand for specific 

nutrients (Le Vay and Gamboa-Delgado, 2011), is still not known if ∆15N values are more 

affected by the quality of the available dietary protein (Roth and Hobson, 2000;  Robbins et 

al., 2005) or by the protein quantity (Pearson et al., 2003). For example, in juvenile blue 
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crabs Callinectes sapidus, high ∆15N values have been associated to diets containing high 

C:N ratios (Fantle et al., 1999) and some authors consider that when organisms face 

nutritional deficiencies, they respond by increasing the metabolic cycling of nonessential 

nutrients, which might increase the ∆15N values between animal tissue and diet (Martínez 

del Rio and Wolf, 2005). In this context, the higher discrimination factors observed in 

shrimps fed diets having only SP or only CG as protein source, could be related to the 

comparatively lower availability of some essential amino acids (i.e. lysine, methionine) in 

plant-derived ingredients.  

 

4.3. Nitrogen and carbon half times in muscle tissue 

Estimated half times of nitrogen and carbon in muscle tissue ranged from 3.3 to 9.8 d and 

differences were attributed to diet type. As observed in the isotopic discrimination factors, 

diets containing only plant-derived protein elicited different responses in the half times in 

tissue. Diet 100S caused longer nitrogen and carbon half times in tissue (7.8 and 9.8 d, 

respectively), while diets containing higher levels of FM (diets 100F and 50FSG) elicited 

shorter half times (3.3 to 6.6 d), which were probably associated to higher metabolic rates 

caused by higher growth rates. It has been reported that the rates of protein synthesis are 

characteristically high in postlarval and juvenile Penaeid shrimps (Mente et al., 2002).  

Although the energy cost of high metabolic turnover rates and protein synthesis is 

substantial (Waterlow, 2006), in the present experiment the dietary energy supplied to 

shrimp was not limiting as all diets were formulated to have high caloric yield. 

Carbohydrates known to be highly digestible for this shrimp species were supplied (Cousin 



25 

 

et al., 1996) and it is thus suggested that a restriction of specific amino acids (e.g. lysine 

and methionine in SP and CG) in diets formulated with plant-derived proteins caused 

longer nitrogen and carbon half times and lower growth rates. 

 

4.4. Nutrient contribution from fish meal, soy protein isolate and corn gluten 

The contrasting isotopic values of the main dietary ingredients and their introduction into 

the isotopic mixing model in conjunction with the isotopic values measured in shrimps, 

allowed estimating the relative proportional contributions of dietary nitrogen, carbon and 

total dry matter. Although most of the nutritional contributions to shrimp growth were 

statistically similar to the proportions of available nutrients in the dietary formulations, 

there were some differences. For example, under lower FM availability (diets 50SFG and 

50GFS), there was a higher incorporation of nutrients from CG (7 to 11% more) than from 

FM. Diet 33FSG supplied amounts of dietary nitrogen and carbon that were similar to the 

proportions established in the formulated diets. Estimated proportions of assimilated total 

dry matter were not statistically different to the dietary proportions available in diets 

33FSG and 50FSG, but there was a higher incorporation of total dry matter from CG than 

from FM in diets 50SFG and 50GFS. Dietary nitrogen contributions from SP to muscle 

tissue were high and consistent with the amounts of nitrogen available in the respective 

compound diets. In previous experiments applying isotopic techniques to explore dietary 

nitrogen contributions from plant meals to shrimp growth, high contributions of plant-

derived nitrogen have been observed, although not necessarily in proportions matching the 

dietary availability. For example, Gamboa-Delgado and Le Vay (2009b) reported 
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significant differences in the incorporation of FM (73% contribution) and SP (27% 

contribution) when both ingredients were included in diets supplying similar proportions of 

dietary nitrogen (50:50, at 46% crude protein) for juvenile L. vannamei (414 mg). In 

contrast, Martínez-Rocha et al. (2012) observed that postlarval shrimp L. vannamei (141 

mg) incorporated similar amounts of dietary nitrogen from pea meal (Pisum sativum) and 

FM when fed on formulated diets having varying proportions of dietary nitrogen supplied 

from both ingredients. It is very likely that the different nutritional contributions might be 

explained by differences in the amino acid profiles of FM, SP and CG. While FM contains 

higher amounts of the essential amino acids methionine and lysine than SP (Cruz-Suárez et 

al., 2009), CG contains leucine at levels that are up to 2-fold higher than the levels 

available in FM (Terrazas et al., 2010; Villarreal, 2011). Besides its importance as a branch 

chained amino acid, studies conducted on mammals have shown that leucine is the only 

dietary amino acid that has the capacity to stimulate the muscle protein synthesis, hence 

slowing down the degradation of muscle tissue (Etzel, 2004).  Higher levels of the amino 

acid phenylalanine are also found in CG than in FM (Terrazas et al., 2010; Villarreal, 

2011), which might further explain the higher contributions of dietary nitrogen and carbon 

contributed by CG to the muscle of shrimp fed on some of the experimental formulations. It 

has been demonstrated in crustaceans and fish that different amino acids may significantly 

differ in their δ15N (Schmidt et al., 2004) and δ13C values (McCullagh et al., 2008) in a 

range of up to 20 units (‰). Therefore, future nutritional studies might use this natural 

isotopic labeling to explore the transfer of dietary amino acids by applying compound 

specific isotopic analysis (CSIA) of amino acids in diets and shrimp tissues. In the present 

study, the estimated incorporation of nutrients into muscle tissue and the growth rates thus 

suggest that when FM is replaced with SP and CG at a level between 50 to 66% (diets 
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33FSG and 50FSG), growth and survival rates are similar to those observed in shrimps fed 

on fish meal-based diets. The isotopic techniques can yield valuable information on the 

rates of incorporation of specific dietary nutrients in marine organisms, and results from the 

present study highlight the nutritional and economical benefits that plant-derived 

ingredients represent when supplied at dietary levels that promote complementary 

nutritional effects on shrimp growth. 
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