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ABSTRACT 

Objective:  To measure in vitro vibration displacement amplitudes of high-speed dental 

handpieces under unloaded and loaded conditions using a non-contact Scanning Laser 

Vibrometer (SLV). 

 

Methods:  Five turbines (two KaVo, three W&H) and two speed-increasing handpieces (one 

KaVo and one W&H) were investigated using a Polytec SLV (PSV-300).  Handpieces were 

operated under various conditions which included equipping with no rotary cutting 

instrument (RCI), with a diamond RCI, or with a tungsten carbide bur.  Repeated 

measurements were taken from six selected points on the handpiece.  Further tests were 

performed to study the influence of increasing loads (50 to 200 g) whilst cutting into 

extracted human teeth.  Results were investigated using analysis of variance (ANOVA) at a 

significance level of p = 0.05, and post hoc tests. 

 

Results:  Maximum handpiece vibrations were less than 4 µm.  Significant differences were 

found  between some handpiece models when  unloaded.   Increasing  the  load  from  100  to  

150 g corresponded with an increase in vibration amplitudes.  Interactions between RCI type 

and handpiece model significantly affected vibrations. 

 

Conclusions:  Variations in displacement amplitudes were observed under different 

conditions.  It was difficult to determine consistent patterns of vibration.  Further research is 

needed in this area. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

A substantial amount of a dentist‟s time is spent filling teeth or replacing existing 

restorations
1
.  These are procedures which patients often associate with the unpleasant 

sensations of pain and vibration.  It is therefore important to consider the cutting tools that 

are used to remove diseased tissues and prepare cavities for restoration, and the nature of the 

vibrations they emit. 

 

The main dental tissues removed in simple restorative procedures are enamel and dentine.  

The underlying pulp is involved in the reactionary responses to disease and trauma.  In an 

unfavourable oral environment the disease process of caries progressively destroys these 

tissues.  Once operative intervention becomes necessary, restoration usually involves 

preparation of a cavity using cutting instruments, in readiness for placement of a filling 

material. 

 

Various apparatus has been used for gaining access to caries and for removal of diseased 

tissue, but using rotary handpieces and their associated instruments remains the most 

common method
2
.  The development of these tools underwent significant change in the 

1950s, when high speeds of instrument rotation became possible
3
.  There have been 

continued improvements in the design of these devices over the subsequent years, and 

various means of testing efficiency have been introduced. 



2 

Use of rotary instruments can lead to the production of heat
4, 5

, cracking of enamel
6, 7

, and 

deposition of debris on the cut surfaces
8
.  There are possible implications for the long-term 

health of the operator in terms of auditory damage
9
 and the effects of vibrations on the upper 

limbs
10

.  Patient perceptions of handpiece vibrations are associated with pain
11

.  The 

equipment can also become damaged through repeated use
12, 13

. 

 

Understanding the physical characteristics of these tools under a variety of conditions can 

help to identify potential problems and lead to improvements in design.  Measurements of 

handpiece vibration in the past have been hindered by a lack of appropriate technology.  

However laser vibrometry has been introduced into many different areas of engineering and 

shows great potential for assessing the vibrations of dental handpieces. 

1.2 Aims 

This study aims to provide a better understanding of the vibrations of high-speed dental 

handpieces using laser vibrometry.  Various operating conditions were investigated in vitro, 

including the effects of handpiece model, instrument type and load. 

1.3 Objectives 

The objectives of this research were to: 

 compare measured maximum cutting instrument rotation rate with the approximate 

maximum rates documented in handpiece manufacturers' literature. 

 determine the ability of a scanning laser vibrometer to measure vibrations of dental 

handpieces. 
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 measure unloaded vibration displacement amplitudes of high-speed dental turbines and 

speed-increasing handpieces when equipped with, and without, cutting instruments. 

 compare vibration data acquired at different scan point positions across the surfaces of 

handpieces. 

 establish whether handpiece model affects vibrations detected at the turbine head whilst 

loaded. 

 assess the effect of increasing load upon displacement amplitudes of turbines. 

 determine whether type of cutting instrument affects vibrations of turbines. 

 evaluate the consistency of handpiece vibration results achieved using identical cutting 

instruments. 

 determine the influence of exchanging teeth upon the magnitude of loaded handpiece 

vibrations. 
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CHAPTER 2 

2 ANATOMY AND HISTOLOGY 

2.1 Introduction 

In order to comprehend the manner in which dental handpieces are used to cut cavities in 

teeth, it is helpful to first understand the structure of the dental tissues.  There are a number 

of clinical conditions that are treated operatively using dental handpieces; much of the 

information provided here is relevant to understanding these problems or disease processes.  

Particular emphasis is also placed on factors related to the action of dental handpieces, such 

as vibration detection or crack formation, which will be explained further in subsequent 

chapters. 

 

The mineralised tissues that make up the teeth are enamel, dentine, and cementum (Figure 

2.1).  Enamel covers the outer layer of the tooth crown, whereas cementum forms the outer 

layer of the root.  Beneath each of these is found dentine.  This forms the bulk of the tooth 

and encloses the dental pulp, which is the innermost tissue of a tooth.  The tooth itself is held 

in place by the surrounding periodontal tissues including the periodontal ligament, gingiva 

(gum) and alveolar bone. 

2.2 Enamel 

As the outermost layer of a tooth crown, enamel is the hardest tissue in the human body
14

.  

The thickness varies from a very thin layer where it meets the cementum, up to around 2.5 

mm thick over the biting surface
15

.  Its structure allows it to withstand shearing stresses and 

impact forces well as it has a high modulus of elasticity
15

,  although its brittle nature makes it  
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Figure 2.1:  The anatomy of a typical molar tooth.  Adapted from Kapit and Elson
16

.  

 

 

Key to Figure 2.1: 

 

A – Enamel 

B – Dentine 

C – Pulp cavity 

D – Root canal 

E – Pulp 

F – Nerve 

G – Artery 

H – Vein 

I – Cementum 

J – Periodontal ligament 

K – Gingiva 

L – Alveolar bone 

M – Apical (root) foramen 
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susceptible to fracture in areas not supported by underlying dentine
17

.  It also exhibits some 

permeability, allowing exchange of some fluids, bacteria and bacterial products.  This 

permeability decreases with age
17

.  Enamel is non-vital and insensitive; once it is laid down 

it is not possible to replace or regenerate lost tissue
15, 17

.  The physical properties of enamel 

are compared with those of dentine in Table 2.1. 

 

Enamel is highly mineralised and acellular, with around 96% inorganic material in the form 

of calcium hydroxyapatite crystallites
17

.  The crystallites have an irregular outline that 

sometimes appears hexagonal in cross-section.  They are approximately 60-70 nm wide and 

25-30 nm thick, and may be long enough to extend from the enamel-dentine junction (EDJ) 

to the tooth surface
17

.  The remaining 4% of enamel consists of water and an organic matrix 

of amino acids, proteins and lipids
17

.  The hardness of enamel is related to both the hardness 

of the crystals and the strong adhesion between crystals
18

.   

 

The densely packed hydroxyapatite crystals in mature enamel have a regular structural 

arrangement.  These structures are called prisms or rods, and each is approximately 6 µm 

wide
19

.  The structural arrangement of enamel differs in appearance depending on the 

orientation of the prisms within the section, and it is impossible to view a whole prism in a 

two-dimensional section
20

.  Under the scanning electron microscope these prisms can appear 

as striations extending from the EDJ to the surface, following a sinuous course
17

.  Each 

prism is surrounded by an interprismatic enamel sheath, which has a higher organic content 

than the prism
21

.   
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Table 2.1:  A comparison of the physical properties of enamel and dentine.  From Berkovitz 

et al.
15

 

 

 Enamel Dentine 

Specific gravity 2.9 2.14 

Hardness (Knoop no.) 296 64 

Stiffness (Young’s modulus) 131 GN m-2 12 GN m-2 

Compressive strength 76 MN m-2 262 MN m-2 

Tensile strength 46 MN m-2 33 MN m-2 

GN = giganewtons (N x 10
9
), MN = meganewtons (N x 10

6
) 
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A number of other phenomena such as tufts and lamellae can be observed in dental enamel 

after the application of various investigative techniques.  Enamel tufts are branched areas of 

hypomineralisation adjacent to the EDJ, and extending for a short distance into the enamel.  

Situated between groups of prisms, the spaces are filled with protein
17

.  They may be of 

clinical relevance in the spread of bacteria at this junction in teeth affected by the disease 

process of caries.  Enamel lamellae are defects that extend from the surface to various 

depths, sometimes running through the whole thickness of enamel.  They can appear as 

cracks on the surface, but differ in that they are filled with organic material
17

.  They may be 

another potential route for the progression of caries, and also a feature along which cracks 

may be propagated
22

.   

2.3 The dentine-pulp complex 

Unlike enamel, dentine is a vital tissue and is capable of repair.  Dentine forms the bulk of a 

tooth, lying between the enamel and pulp of the crown, and the cementum and pulp of the 

root.  The border between enamel and dentine, the enamel-dentine junction (EDJ, or amelo-

dentinal junction) has a scalloped appearance, which is thought to improve adherence 

between the two tissue types, and acts as a soft cushion between them
23

.  Dentine (a hard 

tissue) has a close relationship with pulp (a soft tissue), forming an inter-dependent 

complex
17

.  In fact the cell bodies of odontoblasts (the cells responsible for the production 

and maintenance of dentine) lie within the outer layer of the pulp, whilst their cytoplasmic 

extensions are enclosed within the dentine
24

.  The soft dental pulp containing blood vessels 

and nerve bundles is found in the centre of a tooth, enclosed by the dentine.  The space it 

occupies in the tooth crown is called the pulp chamber, and the pulp also extends internally 

within the root canals
17

. 
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Dentine is less mineralised than enamel, although it is harder than bone and cementum 

(Table 2.1).  Its composition is approximately 50% inorganic, 30% organic and 20% water 

(by volume) in mature teeth
23

.  Most of the mineral component is hydroxyapatite, and 

although the crystals are similar to those found in enamel, they are much smaller
25

.  The 

organic matrix comprises mainly type I collagen fibres held within an amorphous ground 

substance containing proteins, growth factors and lipids.  As dentine has some elasticity, it 

helps to prevent shattering of the overlying brittle enamel
23

.  The extent of mineralisation of 

the tissue is responsible for these mechanical properties in healthy teeth, whilst destructive 

disease processes can result in softened dentine
26

. 

 

The main feature of dentine is its tubules, which are formed by odontoblasts and sometimes 

contain odontoblast processes.  The tubules run between the EDJ and the pulp with a roughly 

sigmoid-shaped primary curvature
17

.  Near the pulp these have a diameter of approximately 

2.5 m, but they are tapered in shape and so the diameter at the EDJ measures around 900 

nm
17

, accompanied by more intertubular dentine
27

.  There are interconnecting branches, 

increasing the permeability of the tissue, and occasional blind-ended offshoots. 

2.3.1 Sensitivity and innervation of dentine 

During cavity preparation, exposure of dentine can cause discomfort to patients, and local 

anaesthesia is often used to alleviate this pain
28

.  Stimuli include cold water, drying of the 

dentine surface or contact with dental instruments
17

.  Various models have been proposed for 

the mechanism of dentine sensitivity, but the most likely seems to be the hydrodynamic 

hypothesis
29, 30

 as described by Brännström and Ǻström
31

.  This proposes that the movement 

of fluid within the tubules elicits pain in response to thermal, mechanical, osmotic and 

evaporative stimuli
24, 32, 33

.  Other theories are that pain is detected directly by nerve endings 
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within the dentine, or that the mechano-sensitive membrane of an odontoblast process 

triggers an electrophysiological signal.  This is thought to be similar to the way in which an 

action potential is propagated along nerve axons
34, 35

. 

 

There are many types of nerve fibres innervating the teeth.  They enter with the blood vessels 

through the apical foramen at the end of the root.  Nerves supplying the pulp are either 

sympathetic or sensory, although there is a possibility that some parasympathetic innervation 

also exists
36

.  The sensory fibres can be categorised physiologically according to stimulation 

intensity and speed of conduction.  The three main sensations associated with them are 

described as a poorly defined „pre-pain‟, a sharp pain, or a dull ache
37

.  Some evidence of 

nociceptive and non-nociceptive mechanosensitivity has also been found, though not in all 

sensory neurons
35, 37

.  Some free nerve terminals penetrate a short distance into the dentine of 

mature teeth, probably under the influence of specific guidance proteins and nerve growth 

factors
4, 6, 7

.  These nerve endings lie alongside odontoblastic processes in up to 70% of inner 

crown dentine
38

, and it is thought that there may be some communication between them
39, 40

.   

2.4 Periodontium 

The tissues surrounding and supporting the teeth are described collectively as the 

periodontium.  These include the cementum (the mineralised tissue covering the root), 

gingivae (gums), periodontal ligament and the bone of the socket, known as alveolar bone
41

.  

In a healthy mouth these structures function as a unit and hold the tooth in place, whilst 

allowing a limited degree of movement
42

.  Increased mobility of a tooth can be an indicator 

of periodontal disease
43

.  The periodontal ligament (PDL) is a specialised dense fibrous 

connective tissue that separates the outer layer of the tooth root (cementum) from the inner 
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layer of the tooth socket (alveolar bone)
44

, providing a cushioning support to dissipate biting 

pressures averaging around 10 kg
45

.   

2.4.1 Mechanoreception and vibration perception 

The movements of teeth within their sockets are detected by mechanoreceptors in the PDL.  

These receptors are capable of communicating detailed information about the speed, 

amplitude, direction and duration of displacement of individual teeth to the brain
45, 46

.  This 

produces a response that influences the jaw movements during chewing
15

.  The 

mechanoreceptors are highly sensitive to changes in pressure of less than 1 N
46

.  Other 

sensory nerve endings within the PDL are nociceptors, which detect pain
45

, and sympathetic 

free nerve endings thought to affect the blood flow to the area
17

. 

 

Vibratory stimuli have been found to have a conditioning effect upon mechanoreceptors, by 

temporarily increasing the acute response to mechanical stimuli, depending upon frequency 

and duration of vibration
47

, but perception of vibration is not necessarily considered 

painful
48

.  Thresholds for perception of vibratory stimulation of teeth vary between 

individuals, but in general a linear increase in threshold (force) occurs between frequencies 

of 40 and 315 Hz for central incisors
49

.   

 

Sensations are not only distinguished within the PDL.  Some mechanoreceptors are found 

within the tooth pulp
50

.  Forces applied to teeth can also be detected by nerve endings in the 

gingiva or periosteum (the outer layer of bone)
45

.  Vibrations applied to teeth can pass 

through bone and be detected in the inner ear and jaw muscle spindles
51

.  



12 

CHAPTER 3 

3 DISEASES AND DAMAGE OF TEETH 

3.1 Introduction 

When teeth are damaged through trauma or disease, a patient will often require dental 

treatment.  In order to manage each case, it is important that clinicians understand the nature 

of the problem and any underlying disease processes
28

.  Some of the most common reasons 

for destruction of dental tissues are described in the following paragraphs, but issues relating 

to treatment are covered in Chapter 4. 

3.2 Caries 

The most common cause of tooth damage is caries
52

.  Caries is a chronic disease where 

progressive destruction of dental hard tissues (enamel, dentine and cementum) occurs under 

the influence of bacteria and their products when exposed to dietary carbohydrates.  The 

process involves demineralisation of the inorganic material followed by disintegration of the 

organic component.  It relies on there being an available tooth surface, an appropriate 

substrate (ie fermentable carbohydrate), microorganisms (plaque bacteria), and sufficient 

time
53

.  This relationship is conventionally illustrated using a Venn diagram (Figure 3.1).  

Caries can potentially result in pain, the formation of cavities and eventual tooth loss.   

 

Each exposure to dietary carbohydrates will produce an effect, so that regular consumption 

will mean that the destructive cariogenic conditions are maintained for longer periods
54

.  

Fortunately, under appropriate conditions it is also possible to arrest the progression of 

caries, and even for some remineralisation to occur if cavitation has not yet occurred
55, 56

.   
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Figure 3.1:  Factors which must coincide for the existence of caries.  Substrate refers to a 

suitable fermentable carbohydrate being present in the diet.  Adapted from Samaranayake
57

.   
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Saliva is supersaturated with calcium and phosphate ions, which can replenish those minerals 

lost, particularly in the presence of fluoride.  The destruction of the dental hard tissues can 

therefore take months or years to progress, due to the cyclical nature of periods of 

destruction and repair
55

. 

3.2.1 The carious process 

The carious process is first evidenced macroscopically on the tooth crown as a white spot 

lesion on a susceptible enamel surface, which is due to an increase in porosity caused by 

acids produced by plaque bacteria
1
.  The most common locations for the disease to manifest 

are in areas that are difficult to access, where plaque is accumulates and is retained, such as 

within the depths of a fissure
58

.  Caries can also be initiated in the root cementum, or directly 

into dentine where the thin cementum has already been worn away
56

.   

 

In a typical lesion cariogenic bacteria and their products progress through the enamel.  Upon 

reaching the EDJ, a lateral spread of the lesion occurs, undermining the enamel
56

.  The rate 

of destruction of dentine is variable, and there is still the possibility that progression can be 

prevented if enamel cavitation has not yet occurred
1
.  When conditions repeatedly favour 

demineralisation and the area of affected dentine increases, the overlying sound enamel 

becomes vulnerable to fracture and cavitation, particularly under masticatory stresses.  Once 

the surface enamel collapses and plaque becomes trapped within the cavity, further 

progression of the caries is likely and some form of restoration will usually be required
59

. 

 

At this stage the patient is liable to experience some pain due to the sensitivity of dentine and 

its intimate relationship with the pulp, although it is not inevitable.  Some protection is 

afforded by the defence mechanisms of the pulp-dentine complex, such as the deposition of 
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tertiary dentine or sclerosis of tubules
60

.  Pulpal inflammation (pulpitis) may occur 

chronically under prolonged provocation, or as an acute reaction to a sudden stimulus.  Acute 

inflammation is usually accompanied by pain, which is triggered by hot, cold, or sweet 

stimuli
1
.  Where the damage is great or infection uncontrolled, the repair mechanism is 

compromised and the pulpitis becomes irreversible
37

.  Swelling of the pulp due to dilation of 

blood vessels is restricted by the physical constraints of the surrounding hard tissues, and 

necrosis can occur.  Necrotic pulps are painless as there are no viable nerves to transmit 

pain
1
.  But once the tooth loses its vitality, the inflammation can spread into the supporting 

periodontal tissues
61

, causing considerable discomfort.   

3.3 Trauma, wear, and developmental defects 

Rather than undergoing the relatively slow process of carious disease, traumatic damage to 

teeth can happen suddenly, for example due to sports injuries or vehicular accidents.  If a 

tooth crown is fractured, the defect may involve enamel only, enamel and dentine, or enamel, 

dentine, and pulp.  The fracture may be complete (with visible separation of segments) or 

incomplete, otherwise known as 'cracked tooth'
52

.  Fractures that extend into dentine can 

expose a large number of dentinal tubules, providing bacteria with a route to the pulp
62

.  

Depending on the type of injury other structures in the mouth may have been damaged (eg 

blood vessels), and it is possible that the tooth may have lost its vitality
28

. 

 

Loss of dental hard tissues from tooth surfaces can occur as a result of wear through erosion, 

attrition or abrasion.  Erosion occurs by chemical means, by exposure to an acidic diet or 

regurgitated stomach acid.  Attrition is caused by physical contact with opposing teeth.  

Abrasion is the mechanical wearing of teeth by other substances such as abrasive toothpastes 
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or hard toothbrushes.  One factor thought to predispose a tooth to surface loss is that bending 

stresses cause disruption in the enamel in the cervical area of a tooth (where the enamel of 

the crown meets the cementum of the root) causing 'abfractions'
52

.  All types of wear are 

irreversible
28

. 

 

Problems can also occur with teeth during their development, resulting in malformed, 

discoloured or missing teeth.  The aetiology is varied and not always easy to establish, and 

can be due to both local and systemic insults
63

 or hereditary conditions
64

.  Conditions such as 

enamel hypomineralisation can lead to increased sensitivity, extensive microcracking and 

susceptibility to fracture
65

.  If drugs such as tetracyclines have been administered during 

calcification of teeth, the teeth may become extensively discoloured as a side-effect, and the 

aesthetics of this can cause considerable concern for patients
66

. 
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CHAPTER 4 

4 REPAIR AND RESTORATION 

4.1 Introduction 

Teeth are capable of a certain amount of natural repair in response to disease or trauma.  

Under favourable conditions, this potential can be exploited by patients and dentists to 

conserve as much healthy tissue as possible and encourage recovery of tissues without 

significant intervention
67

.  However operative treatment may at times be necessary in order 

to restore a tooth
55

.  It should be noted that not all restorations are carried out to replace 

tissue lost through caries; other reasons include trauma, wear, and developmental defects
28

.  

The replacement of failed restorations is also a very common occurrence
55

. 

4.1.1 Natural repair 

Natural repair mechanisms of teeth act to protect the pulp from exposure to bacteria
68

, and 

the dental tissues vary in their reaction to insult.  Once lost, enamel cannot be replaced as it 

is a non-vital tissue.  However a certain degree of remineralisation can occur through an 

exchange of calcium and phosphate ions within a favourable oral environment
56

.  Fluoride 

can also aid in the strengthening of enamel
17

. 

 

Dentine on the other hand is capable of repair, and responds in different ways depending on 

the stimulus.  Primary and secondary dentine occur naturally in health, but tertiary dentine 

forms only in response to insults such as caries or restorative procedures
60

.  Primary dentine 

is that which is established during initial development, and forms the main bulk of dentine.  

Secondary dentine is laid down more slowly once the tooth root is fully formed, and its 



18 

continued deposition with increasing age helps to protect the pulp from exposure (eg whilst 

cavities are prepared for restoration)
17

.  Tertiary dentine is also known as reactionary dentine 

(a deposition of material that occludes tubules when a mild injury such as slowly-progressing 

caries occurs) or reparative dentine (a rapid response to more severe injury such as tooth 

fracture or deep cavity preparation by cell proliferation and scar tissue formation)
62, 68

.   

 

Whenever the pulp is damaged an immune response occurs in the form of inflammation 

(pulpitis), which can sometimes resolve without loss of tooth vitality
17

.  If infection is 

removed from the area, periodontal tissues are capable of complete healing, but pulp and 

dentine do not return to their original state once the natural repair mechanisms are 

complete
37

. 

4.1.2 Restoration of carious teeth 

Management of caries should initially take advantage of the possibility of remineralisation of 

enamel through preventative treatment
56

, but where the destruction of the tissues has 

progressed further, operative intervention may become a necessity.  Teeth damaged by caries 

are restored in order to remove the diseased tissue and prevent further spread, re-establish 

function, facilitate control of plaque, reduce sensitivity, preserve pulp vitality and improve 

aesthetics
1, 55

.  Enamel and dentine are removed, then replaced with a restorative material 

that forms a protective seal between the dentine-pulp complex and the external 

environment
17

.  

 

Historically, restoration of teeth involved an attempt to remove all infected tissue and also 

required some destruction of sound tissue before placement of a restorative material.  

Described as one of the pioneers of modern dentistry
69

, G. V. Black is well recognised for 
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his proposal in 1908 of the 'extension for prevention' concept
67, 70

.  This involved positioning 

the margins of a cavity using standard outline profiles in order to achieve retention, 

resistance and convenience forms
71

. 

 

These principles have now been extensively modified due to a better understanding of caries, 

and technological advancements leading to new materials and improved restorative 

procedures in recent years
28

.  There has been a significant progression in accepting the 

importance of preserving as much natural tissue as possible
67

.  The focus has shifted towards 

preventive measures: promoting health through education of patients and the implementation 

of public health campaigns
72

.  The consequent decline in the rate of dental caries has been 

reported in the literature
72-74

.   

 

However, these changes over the last century have not yet negated the need for operative 

intervention in the treatment of carious lesions.  With this in mind, a „minimally invasive‟ 

attitude is becoming increasingly adopted by the dental profession
55

.  Some of the factors 

that have influenced the current approach to cavity preparation include better understanding 

of the mechanisms of the carious process, improved methods for early detection and 

monitoring of the disease, advancements in restorative materials and technological 

developments in handpiece design
55, 75

.  These allow more conservation of the natural tissues 

than was possible in the 'extension for prevention' era
52

, although evaluating how much 

demineralised dentine is infected and should be removed can be challenging, and is usually 

decided by a subjective assessment of the consistency of the tissue
76

. 
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4.1.3 Restoration following trauma, wear or developmental defects 

Fractures resulting from trauma to the crown of a tooth sometimes only extend into the 

enamel, and would not necessarily require operative treatment.  However if a fracture has 

caused an exposure of the dentine or pulp, immediate intervention is usually indicated
28

.  If 

tooth vitality has been lost, the pulp is removed and the root canals filled to prevent infection 

and discoloration
28

. 

 

In contrast, tooth wear is generally managed by prevention and monitoring, but occasionally 

the placing of a restoration may be worthwhile in order to reduce sensitivity, improve 

appearance or prevent further deterioration
28

.  Severe loss of tooth surface can lead to 

infection in non-vital teeth, also necessitating treatment.  Other reasons for restoring worn 

teeth are to combat temporomandibular joint disorders or problems with phonation 

(speech)
52

. 

 

Developmental defects often do not require treatment, and can sometimes be improved using 

only minor interventions such as bleaching or applying fluoride, whereas some necessitate 

operative treatment to prepare teeth for veneers or crowns
77

.  Staining caused by a side-effect 

of drugs such as the antibiotic tetracycline cannot be removed, and bleaching is usually only 

partially successful
66

.  However it can be successfully treated operatively in order to improve 

aesthetics.  First the tooth crown is slightly reduced using rotary cutting instruments in a 

dental handpiece.  Then composite resins or porcelain veneers are applied, covering over the 

visible portion of the tooth
66, 78

.   
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4.2 Cutting 

When dental enamel is cut, there are in fact two mechanisms by which the tissue is removed 

– plastic deformation and fracture.  In plastic deformation, a chip of enamel is removed at the 

cutting edge of the tool and produces a 'smear' layer of debris.  Fracture (or shattering) 

occurs a little way ahead of the cutting edge and cleaves the enamel along natural planes, 

such as those that exist between enamel prisms
79

.  In this section, the mechanisms of cutting 

in dentistry are compared to industrial cutting.  In addition, having already described the 

rationale behind common dental restorative procedures, consideration is given to some of the 

specialised forms of cutting used in dentistry. 

4.2.1 Industrial cutting 

An understanding of cutting mechanisms such as fracturing and plastic deformation is 

important to the manufacturing industry.  Cutting by exploiting natural lines of weakness can 

be seen when sedimentary rock fractures along its grain boundaries under the influence of 

diamond stone-cutting tools
80

.  An example of plastic deformation is when material is 

removed from a metal to create a workpiece of desired specifications
81

. 

 

The type of industrial cutting that relates most closely to the action of a dental rotary cutting 

instrument is drilling, whereby cylindrical holes are created by a 'twist drill' with helical 

flutes.  Machining conditions can be precisely controlled (increasingly by computers)
82

; the 

substrate can be selected and its composition manipulated according to purpose
83

, and input 

parameters can be quantified.  Therefore it is possible to construct models to predict the 

output in terms of cutting forces, chip behaviour, temperature distribution at the cutting edge 

and tool wear rates
84

, and for repeated processes to create identical products of exact 
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dimensions.  Although similar principles could be applied to dental cutting, the outcome is 

far less predictable due collectively to the composite nature of dental tissues, the hand-held 

manipulation of complex cutting tools by different operators and the difficulty in controlling 

numerous environmental parameters. 

4.2.2 Endodontics 

One form of specialised dental cutting occurs when dentine is removed from inside root 

canals during a course of endodontic treatment.  Where infection has progressed so far 

through the tooth that the vitality of the tooth is endangered, or when trauma occurs and the 

blood supply to the tooth is damaged, it may be necessary to remove the pulp
1
.  The empty 

pulp chamber and canals are prepared then sealed with an inert material (root canal filling). 

 

Cutting of dental tissues in preparation for filling of root canals includes creating an access 

cavity (in much the same way as for a conventional filling), followed by cleaning and 

shaping of the canal using specialised endodontic instruments
52

.  These hand instruments are 

known as files, reamers or broaches.  The same purpose can be achieved using specially 

designed flexible nickel-titanium files inserted into slow-speed rotary handpieces, but 

occasional breakages are an unfortunate weakness of these instruments
85

, and files differ in 

their effectiveness depending upon variations in cutting blade design
86

.  These handpieces 

can be driven by either air or electric motors, but no significant difference in file breakages 

was found between motor types
87

.  The root canal can also be shaped using laser ablation
88

.  

Sonic or ultrasonic (endosonic) oscillating units with attached files are sometimes used for 

canal debridement and have been evaluated for cutting efficiency
89

 but have not been found 

to be very effective as tools for shaping root canals
52

.  
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4.2.3 Implants 

In restorative dentistry, dentine and enamel are not the only hard tissues that are removed; 

bone is also cut in preparation for placement of implants.  Implants have been used to replace 

missing teeth since the early 1980s
52

.  They are metal posts (usually titanium) that are either 

screwed or tapped into the alveolar bone of the upper or lower jaw as a surgical procedure, 

and support replacement teeth in the form of crowns, bridges or dentures.  The socket into 

which an implant is introduced must be carefully drilled in a precise location.  Specialised 

slow-speed rotary handpieces and instruments have been designed for this purpose
52

. 

4.3 Tools for tooth preparation 

With conservative dentistry in mind, important considerations in the design of a cutting 

instrument will relate to establishing a balance between efficiency and minimising trauma
71

. 

 

Banerjee et al.
76

 describe an ideal cutting instrument as: 

 comfortable and easy to use in the clinical environment 

 able to discriminate and remove only diseased tissue 

 painless, silent and requiring only minimal pressure for optimal use 

 not generating vibration or heat during periods of operation 

 affordable and easy to maintain. 

4.3.1 Hand instruments 

In the eighteenth and nineteenth centuries caries was removed by scraping with hand-held 

instruments or by cauterising
70

.  So-called „enamel cutters‟ were used to gain access to the 

carious dentine, which was then removed using excavators
90

.  Using such hand instruments 
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was laborious and time-consuming.  As other means of removing the bulk of the enamel 

developed, the design of hand instruments evolved
71

. 

 

Hand instruments used to cut teeth and remove caries remain in employment today, and 

include excavators, chisels, hatchets and hoes.  Excavators, with a disc- or pear-shaped 

cutting blade are mainly used for removal of carious dentine
91

.  Chisels, hatchets and hoes 

aid in the preparation of cavity margins by cleaving enamel, such as that which is 

unsupported
79

, and by smoothing the cavity floor and walls
92

.  These cutting instruments are 

made of stainless steel or carbon steel, and can be of use in areas that are not easily accessed 

by rotary instruments
28

.   

 

In a comparison of methods of caries excavation, hand instruments were found to be the 

most efficient and effective in terms of time taken and material removed
93

.  A microscopic 

examination of the effect of cutting enamel using a hand-held chisel corresponded with 

erratic cracking away from the site of impact, but a direct observation of this interaction 

proved difficult to accomplish
22

.  Hand instruments are cheaper than rotary handpieces, 

easier to clean and sterilise, and can be used in parts of the world without a reliable 

electricity supply
94

. 

4.3.2 Rotary instruments 

Despite the availability of alternative techniques, most removal of dental tissue is still 

performed using rotary cutting instruments (RCIs)
2, 75, 95

 and this is expected to continue for 

the foreseeable future
6, 96

.  As more adults retain their teeth for longer and life expectancy 

improves, the need for reparative dentistry will remain
74

.  Some minimally-invasive 

techniques, such as a 'tunnel preparation' still require the use of high-speed handpieces with 
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small RCIs
55

.  But it is in the removal of larger quantities of tissues (eg when cutting a crown 

preparation), or of existing heavy metal restorations, that alternatives to the rotary handpiece 

fall short
2, 97

. 

 

Because of the importance of rotary cutting instruments in clinical practice, and as high-

speed handpieces form the basis for this research project, Chapter 5 is devoted to the 

developmental history, design features, physical characteristics and biological effects of 

dental handpieces. 

4.3.3 Air abrasion and air polishing 

An air/powder abrasive system was developed by R V Black in 1945
3
.  Particles, suspended 

in a narrow stream of air and directed toward a tooth, abrade the surface by transfer of 

kinetic energy
55

.  Various abrasives have been employed, but aluminium oxide is the 

standard choice
76

.  The coarseness of the surface finish depends on the hardness and size of 

abrasive particle
76

. 

 

After the introduction of high-speed turbine in the 1950s the airbrasive technique declined in 

popularity, but regained interest in the mid 1990s
98

.  It has advantages over rotary drilling 

such as reduced noise, heat, bone-conducted vibration and other mechanical stimulation
28, 55, 

76, 99
.  Patients have reported less sensitivity, although not consistently

55
.  The cavities 

produced through the use of this technique have rounded contours, which reduces internal 

stresses and may increase the longevity of the eventual restoration
55

, although a similar effect 

could be achieved with a large diameter round bur.   
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There are also a number of disadvantages to using air abrasion, such as dust pollution 

(impairing visibility of the operative area and potentially causing harm by inhalation), and a 

lack of tactile sensation for the operator
76

.  The demarcation between infected dentine 

(requiring removal) and relatively healthy dentine (which should be preserved) is largely 

discerned by sensing the change in hardness
100

.  Without this feedback mechanism there may 

be either insufficient removal of infected tissue (hence jeopardising the success of the 

restoration), or conversely over-extension of the cavity margins and loss of sound tissue
76

. 

 

Air abrasion is particularly useful for removal of dental plaque or stains
3
 or for creating 

minimal cavities
55, 76, 96

.  However, through recent developments in micro-abrasion 

technology, it is hoped that a system may be developed which could differentially remove 

softened diseased tissue only
28

.  Advancements in dust protection and removal may lessen 

the dangers of inhalation for both patient and dentist
76

.  

 

Banerjee et al.
76

 describe air-polishing, which is similar to air-abrasion but differs in that the 

particles (sodium bicarbonate and tricalcium phosphate) are water-soluble.  The particles are 

carried in a jet of water that is propelled by air pressure, with the advantage that the abrasive 

is not released beyond the immediate area of operation.  As with air-abrasion, this technique 

carries the risk that sound tissue will be removed due to its non-selective nature
76

. 

4.3.4 Ultrasonic cutting and sonoabrasion 

It was in the 1950s that there was the most interest in cutting teeth by ultrasonic means, when 

Nielsen et al.
101, 102

 carried out a number of investigations.  The cutting action was due to 

high frequency (25 kHz) mechanical vibrations generated by a magnetostrictive or 

piezoelectric transducer, and enhanced by bathing the tip in an abrasive slurry.  
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Unfortunately the inconsistent results meant that the studies were abandoned, despite 

positive feedback from patients in a clinical trial who appreciated that there was less 

vibration than when a rotary handpiece was used
76

. 

 

Although ultrasonic cutting instruments were not successfully introduced for restorative 

procedures, sonic air-scalers have been effectively modified to be used for cavity preparation 

in the guise of „sonoabrasion‟.  Kinetic energy removes tissues through high frequency 

oscillations of a diamond-coated tip, which is powered by an air-driven handpiece
99

.  Sono-

abrasion is useful in the preparation of minimally invasive cavities
99

, finishing cavity 

margins, and may be able to remove softened, carious dentine
76

.  It is also less damaging to 

adjacent teeth than rotary methods of cavity preparation, but is likely to produce some heat 

locally
99

. 

 

The prospect of cutting bone by ultrasonic means has been established within the context of 

maxillofacial surgery, with particular emphasis on the precise nature of the procedure
103-105

.  

Additional investigations in this field are anticipated
103-105

. 

4.3.5 Lasers 

Laser is an acronym for Light Amplification by the Stimulated Emission of Radiation.  In 

dentistry lasers have been used for a numerous purposes.  Amongst other uses they are 

utilised in the detection of caries
106

; to kill bacteria in dentine by light activation of 

bactericidal agents
107

; and to increase resistance of enamel to demineralisation
108

.  Their 

potential in cutting hard tissues has been under investigation since 1963 (shortly after the 

first laser was constructed)
109

.  They continue to be commonly used for this purpose, but 

have advanced significantly
110

.  Studies have shown that cavity preparation and removal of 
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caries can be achieved using a variety of types of laser
76, 111

, that they produce less vibration 

during cutting than rotary instruments
112, 113

, and that they are well tolerated by patients
114

.  

The cutting mechanism is due to the absorption of light into water within the dental tissues.  

The irradiated water suddenly evaporates, resulting in ablation of the surrounding area
88

.   

 

In the past many of these lasers were considered expensive
96

, bulky, difficult to control, and 

responsible for thermal damage to the pulp
76

.  However, rapid advances in the field are 

resulting in new technologies being applied in the quest for a more practical laser-powered 

system, including the possibility of increased selectivity of tissue type
76, 107, 115

, and 

avoidance of enamel cracking
111, 116

.  The CO2 laser shows potential as a relatively 

inexpensive tool for removal of hard tissues without adverse effects if optimal settings are 

used, but further research is needed to evaluate its performance under more specific 

conditions
107, 117

.  Since the first attempts to remove dental hard tissues using lasers there has 

been speculation about whether they can be a suitable alternative to rotary handpieces
109, 114, 

118, 119
, but drawbacks still exist

120-122
 and their value remains limited as they are unsuitable 

for procedures requiring bulk removal of tissue or toxic heavy metals
2
. 

4.3.6 Chemicals, enzymes and plasma 

The main systems used for chemo-mechanical removal of carious dentine have been 

Caridex, introduced in the late 1970s, and the more recent Carisolv gel.  Upon application of 

the chemical, dentine is softened so that it can be removed with specially designed hand 

instruments
76

.  One benefit is that patients report significantly less pain than conventional 

methods such as rotary handpieces and hand instruments
123

.  The main drawback is that these 

systems still require the use of conventional rotary methods for gaining initial access to the 

carious lesion
76

. 
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The concept of employing enzymes for the removal of carious dentine arose as a result of a 

growing understanding of the carious process in the early 1980s
75

.  There are reports that this 

has been accomplished in the research setting, but confirmation that this is a viable technique 

for adoption in the clinical setting has not yet been forthcoming
75, 76

. 
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CHAPTER 5 

5 ROTARY INSTRUMENTATION 

5.1 Introduction 

Rotary handpieces are very important tools in dentistry, as they provide the main means for 

removing hard tissues in restorative treatments
2
.  This chapter gives consideration to key 

advancements in the history of their development, before summarising the types of 

handpieces and cutting instruments currently in use in dental practices.  Information is 

provided about testing of physical characteristics (such as vibration measurement).  Also 

included are descriptions of some of the biological effects of handpiece use on the dental 

tissues, the patient and the operator. 

5.2 History of rotary instrumentation 

The first attempts to use cutting instruments in a rotary manner occurred in the 18
th

 century
6, 

95
.  Various systems were devised to facilitate the twisting of burs, such as the finger ring of 

1846
71, 90

.  However the first successful driven handpiece arrived in the 1870s with the 

introduction of the foot treadle engine by the American dentist, James Beall Morrison
69, 70, 95

.  

This remained popular for a number of years; despite early electric motors being introduced 

in 1864, they were not widely used until the 1950s
75

.  The flexible cable used connect the 

handpiece to the foot treadle or electric motor was replaced by the endless cord arm in 1911, 

enabling a smoother transmission of power
69

.  Straight and contra-angled handpieces were 

available at the time, and there was little change in their design until the middle of the 20
th

 

century
90, 95

. 
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Although the benefits of high speeds of instrument rotation had been recognised by Emil 

Huet as early as 1911
95

, and Walsh had demonstrated in the 1940s that vibrations would not 

be perceived at high frequencies
2, 124

, a number of obstacles had yet to be overcome.  

Handpiece bearings were unable to withstand the pressures generated at speeds over 20 

krpm
90, 95

.  A mechanism for counteracting the frictional heat generated by cutting was also 

necessary
90

.  Moreover, the cumbersome cord arm drive required the dentist to remain 

standing
90

.   

 

Many of these much-needed developments finally arrived in the 1950s, such as the 

availability from 1955 of an effective cooling system that involved an air and water spray 

mechanism fitted to the handpieces
90, 95

, which allowed for development of higher speeds in 

cutting
75

.  The same decade witnessed advancements in other types of dental cutting 

instruments such as air abrasion and ultrasonic handpieces
96

. 

5.2.1 The high-speed era 

Arguably the most revolutionary advancement in the design of dental handpieces occurred in 

1957, with the establishment of Borden‟s „Airotor‟ as the first commercially viable high-

speed handpiece driven by an air turbine in the head
3
.  There were many other contributions 

to the pursuit of high-speed dentistry including the Page-Chayes belt-driven handpiece
3, 96

, 

Norlen‟s „Dentalair‟ turbine
90, 95, 96

, and hydraulic turbines such as the Turbo-jet
90, 96, 124

.  

However the Airotor‟s miniature ball bearings, small instrument shaft diameter, and 

lubrication system, all of which combined to allow speeds of up to 300 krpm, earned it 

recognition as the handpiece of the future
90, 96

. 
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The 1970s saw the advent of KaVo‟s Super-Torque turbine with rubber-mounted bearing 

races, and later developments led to dynamically-balanced rotors.  These designs all carried 

the advantages of reduced vibration and, since bearing wear was reduced, increased 

longevity
125

.  One of the limitations of turbine design however is its low torque, which can 

result in decreasing instrument rotation rates, and even stalling, under load
126

.  The air 

turbine remains the most popular type of high-speed handpiece in the USA and is likely to be 

found in most dental offices worldwide as the main means of cutting dental tissues
2, 96, 127

. 

5.2.2 Low-speed, high-torque handpieces 

Despite the emergence in the 1950s of more efficient tools for removal of enamel at high 

speed, there remained a need for further development of slower speed instruments with 

higher torque
96

.  High torque is important for adequate tactile feedback whilst removing 

softened dentine from the base of a cavity
6, 28

.  Low-speed cutting was carried out using cord 

arm driven handpieces until the 1960s saw the arrival of KaVo‟s Intra handpiece
90

.  The 

wheels and cogs within the shaft allowed gear reduction of 2:1 or direct transmission (1:1)
90

.  

With the drive coming from the Dentatus air motor located within the handpiece, the 

operator benefited from a greater freedom of movement
3, 90

.    

 

Shortly after this, small electric motors were adapted for dental use by the Kerr Company
3, 90

.  

The „Electrotorque‟ handpieces provided the high torque necessary, whilst operating more 

quietly than the noisy air motors
3, 90

.  Air motors remain in common usage, but it is the 

electric motor that has recently been further developed for high-speed cutting (see section 

5.3.3).  
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5.3 Types of modern handpieces 

There are several manufacturers and many models of dental handpieces.  They can be 

classified in a number of different ways, such as speed (slow or high) or power source 

(compressed air or electricity).  W&H have produced a useful illustration to summarise the 

range of clinical applications and speeds at which handpieces operate (Figure 5.1). 

5.3.1 Power sources 

A high-speed dental turbine uses a current of air passing over its blades to provide energy 

which then turns the rotary cutting instrument, operating in much the same way as a 

windmill or waterwheel.  Dental surgeries therefore incorporate units that compress air to be 

fed into the turbine handpiece. 

 

Either air motors or electric motors may provide power to slow-speed handpieces.  Like the 

air turbines, air motors are driven by compressed air, and so are connected to conventional 

dental units in the same way.  Operating at 5 to 20 krpm, they are cheaper to buy and 

maintain than electric motors.  As the air motor has more moving parts than an electric 

motor, it is more likely to produce vibration due to wear
28

. 

 

In his personal account, Christensen
128

 showed a preference for electric motors at slow speed 

than air motors.  Although the air motor is less expensive, it is more difficult to control 

operating speeds, and vibrations can be more pronounced
28

.  As they require electricity to 

function rather than compressed air, dental units must be adapted to cater for this, although 

stand-alone conversion units are available.  Air motors are common in the UK, whilst in the 

USA electrically powered motors are becoming increasingly popular
127

. 
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Figure 5.1:  Types of dental handpieces and turbines, showing ranges of RCI speeds in revolutions per minute (rpm). Courtesy of W&H. 
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Handpieces are operated by means of a foot pedal, which also controls instrument rotation 

speed
91

 depending on pressure applied and positioning of the pedal. 

5.3.2 Handpiece gears 

Although motors are limited in their ranges of rotation velocity, different handpieces have 

been designed to incorporate gear systems in order to extend this range by either increasing 

or decreasing the speed of application.  The gear ratio is usually indicated on the handpiece 

itself, often with a coloured band. 

 

In practice, direct transmission is generally used for polishing and finishing of restorations.  

Motors have a greater longevity when operated at maximum speed, therefore when slower 

speeds are required, it is advisable to use handpieces to reduce the speed at the RCI.  Slow 

speeds of rotation are required in a number of clinical situations, such as cutting bone for 

implantology treatment, preparation of a root canal, and excavation of carious dentine.  

These procedures would typically necessitate rotations under 2 krpm. 

 

Most handpieces are of a one-piece design but some slow-speed handpieces are supplied 

with a detachable head, which may itself contain gears.  This allows for a “mix and match” 

style combination of handpieces and heads, so that a range of operating speeds can be 

achieved. 

5.3.3 High-speed, high-torque handpieces 

It is now possible to operate high-torque handpieces driven by electric motors at rotation 

speeds of up to 200 krpm.  These handpieces, often referred to as „speed-increasing‟ due to 

gearing ratios of up to 1:5, are being directly compared against air turbines as an alternative 
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means of cavity preparation
6, 127

.  An advantage of this higher torque is an increase in tactile 

sensation for the operator
6
, and also avoidance of stalling

126
.  These handpieces ideally need 

to be used in conjunction with electric motors, as the higher speeds (above around 100 krpm) 

are not possible with air motors. 

 

Watson et al.
6
 concluded their evaluation of high and low torque handpieces with the 

observation that speed-increasing handpieces are no more likely than air turbines to produce 

enamel cracking or increases in temperature.  Kenyon et al.
127

 also found no evidence to 

suggest that the quality of cavity preparations differed significantly between the two types, 

although the speed-increasing handpiece has been demonstrated to cut more efficiently under 

load
126

.  The principal disadvantages of the high-speed, high-torque handpiece are that it is 

larger, 50 to 100% heavier, and more expensive (at twice or three times the cost) when 

compared to an air turbine
96, 126, 127

.  It has been claimed that speed-increasing handpieces 

produce less vibration
127

, but this conclusion was based upon operator observations rather 

than quantitative assessments. 

5.3.4 General handpiece designs and features 

Handpieces used inside a patients‟ mouth are contra-angled in order to improve accessibility.  

These include specialised designs such as some surgical handpieces, or models with smaller 

heads (but lower torque) for working in a restricted space such as a child's mouth.  

Conventional straight handpieces are used in laboratory situations or for trimming acrylic 

dentures at the chairside, but not for direct patient contact.  There are also some straight 

handpieces for surgical procedures at the front of the mouth. 
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For many applications, and certainly at high speeds, a spray of air and water is directed onto 

the RCI to counteract the adverse effects of heating.  Most handpieces have an internal tube 

to supply this water, with one or more outlet ports on the head.  External tubes can be found 

attached to some models, and others (for slow-speed use only) are available with no water 

coolant at all.   

 

To improve visibility, many styles of handpiece are offered with an inbuilt fibre-optic light 

to illuminate the area around the RCI.  When these are attached to a motor, the motor itself 

must be of an appropriate design so that the energy supply to the light is not interrupted. 

5.3.5 Handpiece connections 

The flexible tube that links the dental unit to the handpiece carries supplies of air, water and 

sometimes electricity (for light and/or an electric motor).  The outlet patterns of these tubes 

must match with the pattern of the handpiece or motor.  The main configurations are known 

as MidWest, Borden, and Sirona. 

 

In basic systems, handpieces and motors are screwed directly onto the tubing.  In order to 

facilitate detachment for regular cleaning and sterilisation, some manufacturers have 

developed additional multiple coupling connectors with rotatable joints, effectively offering 

a „quick-release‟ system
75

.  These connectors screw onto the tubing, but the motors and high-

speed handpieces attach to them simply by pushing (and detach with a sharp tug).  Examples 

are KaVo‟s Multiflex coupling and W&H‟s Rotoquick coupling. 

 

The coupling between a motor and a slow-speed handpiece is also found in various 

configurations, but most modern designs use an „E‟-fitting, in accordance with international 
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standards
129

.  With all these different arrangements of components available, it is important 

to carefully consider and match up each part so that the whole system is fully functional. 

5.4 Types of rotary cutting instruments 

Rotary cutting instruments (RCIs) insert into the chuck of a dental handpiece in much the 

same way that a bit fits into a standard workman‟s drill.  They are commonly referred to as 

burs, although strictly this title only refers to those with bladed cutting flutes.  There are 

many shapes and sizes of RCIs for different purposes
28

.  For example, a cylindrical 

instrument (such as a 'fissure bur') is primarily used to cut large cavities
91

.  A large round (or 

'rose-head') bur is used at low speed to remove carious dentine
91

. 

 

The most common materials used in the manufacture of RCIs are steel, tungsten carbide and 

diamond.  Steel burs are the cheapest option, and are used at low speeds with a short working 

life
91

.  Tungsten carbide can be used for the whole bur, or as the cutting tip only, mounted on 

a steel shaft
19

.  Higher quality RCIs are constructed of steel with a coating of diamond.  

Figure 5.2 shows the ends of both a diamond instrument and a tungsten carbide bur, as 

viewed by means of scanning electron microscopy.  The differences in construction are clear 

– the first picture shows tiny pieces of diamond embedded into an electro-deposited metal 

film, providing a rough surface which grinds shavings of dental tissues away through 

abrasion.  The tungsten carbide bur however is manufactured from one material which is 

shaped into cutting flutes that slice into the tissues.  These tend to become blunt more rapidly 

than diamond instruments, and are discarded after fewer uses
91

. 
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Figure 5.2:  Scanning electron microscope images (x100) of the ends of two types of 

cylindrical cutting instruments a) diamond and b) tungsten carbide. 
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Shaft diameters generally differ depending on whether they will be used in a slow-speed 

handpiece (2.35 mm) or high-speed turbine (1.60 mm)
91

.  Chuck mechanisms for securing a 

RCI in place also vary.  Modern handpieces are increasingly being equipped with friction-

grip chucks, where the RCI is released by pushing a button on the back of the handpiece 

head.  These result in less vibration than the conventional latch-grip (lever chuck) systems, 

which grip the instrument less firmly
28

.   

5.5 Handpiece testing 

In their review articles of 1993, Dyson and Darvell
3, 95

 noted that the development of dental 

handpieces had been largely empirical.  Their subsequent work over a number of years has 

endeavoured to expand understanding of air turbine performance in particular
125, 130-134

.  

Initial measurements of gas flow, free running speed, torque, power and efficiency provided 

some reference data against which further evaluations could be assessed
131, 132

.   

 

Brockhurst & Shams
135

 attempted to provide a less sophisticated means by which dentists 

could check the power performance of their handpieces, recommending a stall torque test for 

use in the clinic.  However it was conceded that the test would not identify handpieces that 

were under-performing due to excessive vibration. 

 

Having recognised the need for a standardised means with which to test and compare 

handpiece characteristics, Darvell and Dyson
130

 published the recommendations for a 

machine designed specifically for this purpose.  This machine was subsequently used by 

Monaghan et al.
125

 to test air-turbine handpieces in everyday use and compare longevity over 

a period of 30 months.  Free-running speed was found to decrease as bearings became 
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resistant, and an increase in sound output seemed to act as a predictor of bearing failure.  The 

monitoring equipment was an apparent success, but it was acknowledged that additional 

comprehensive tests with larger sample sizes would be required in order to investigate more 

of the conditions that handpieces are exposed to in practice.     

5.6 Physical characteristics 

There are a number of factors affecting the reactions of the dentine-pulp complex to the 

destruction of dental tissues by rotary instruments, including heat and pressure
75

. 

5.6.1 Heat generation 

The friction generated during dental cutting can lead to production of high temperatures, and 

has the potential to cause damage to the dental pulp.  The design of high-speed handpieces 

therefore evolved to incorporate a cooling system in the form of a water spray mechanism as 

an essential component
4, 96

.  The compensatory cooling effect of the water spray has been 

confirmed to be efficient by laboratory studies
4, 6

, even to such an extent that following 

cavity preparation a reduction in temperature was reported
6
. 

 

In the research environment, temperature changes during cavity preparation can be measured 

by placing thermocouples into the pulp chamber or close to the area being cut
4, 6, 136

.  A 

thermal imaging device has been used to record in-vivo tooth temperatures
137

 and to observe 

heat generation during ultrasonic scaling
138

.  It may be possible to use this equipment for 

additional investigations of the heat produced by the action of cutting instruments. 

 

It has been demonstrated that significant damage is no more likely with high-speed 

handpieces than with conventional low-speeds
96

.  Similarly, high-torque (speed-increasing) 
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handpieces do not cause an increase in temperature when compared with conventional air 

turbines, although operating speed may have some influence.  Diamond RCIs were found to 

produce marginally higher temperatures than tungsten carbide burs, perhaps due to the 

effects of friction or the cooling action of the blade flutes
6
.  Cavalcanti et al.

4
 demonstrated 

that increases in load are directly related to the generation of heat; an influence that was also 

acknowledged by Öztürk et al.
5
.  Temperatures during cutting are also affected by the wear 

of a tool and its effectiveness
82

.  

5.6.2 Forces applied during cutting 

Many of the studies of dental cutting recognise the influence of force applied to the RCI, and 

some attempts have been made to record the usual loads naturally applied by dentists whilst 

preparing teeth using rotary instruments.   

 

Ohmoto et al.
139

 measured the applied load whilst bovine dentine was cut with carbide burs 

in turbine handpieces.  This comparison of two techniques suggested that the maximum 

loads applied during a continuous cutting procedure (20 to 60 g) were greater than those 

generated during intermittent cutting (30 to 40 g), and that a greater load was applied 

vertically than horizontally.  Liao et al.
140

 extended this work to investigate three techniques 

using diamond RCIs in both enamel and dentine.  Loading in this study ranged from 

approximately 35 g when cutting in a horizontal motion in dentine, to a maximum of 105 g 

when cutting enamel vertically. 

 

The main limitation of both of these studies is that only one dentist carried out the cutting for 

each.  The argument for this was that reproducible data were required, and that cutting 

procedures varied depending upon the operator
139

.  Whilst there is evidence of operator-
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dependent variation in cutting technique
141

, it is for this same reason that a greater number of 

operators would need to be investigated to obtain a general reference for clinical loading.  

This was recognised by Liao et al.
140

, and suggested it as a potential future direction for 

research.   

 

A crude test of applied force was performed by Siegel and Von Fraunhofer
12

.  A RCI was 

inserted into the chuck of a handpiece, which was held freely by a dental practitioner.  They 

were instructed to press the end of the RCI onto a balance with the force that they would 

usually use in practice.  This exercise was repeated for six operators, and the mean load was 

determined to be 99.3 (± 23.4) g. 

 

Elias et al.
142

 measured the magnitude of forces applied to the teeth during lateral cutting 

with two types of turbine.  The extracted teeth were mounted on a custom-made force 

measuring unit.  In comparing variables such as wet or dry cutting and RCI type, no 

significant differences were found.  However, operators (n=31) were found to apply a 

average force of 1.44 N when using the turbine which had the higher torque, whereas with 

the lower torque handpiece the mean cutting force was significantly lower at 1.20 N. 

 

Abouzgia and James
143

 measured shaft speeds whilst drilling through bone under load forces 

between 1.5 and 9.0 N.  A key finding of this study was that high forces can reduce the 

operating speed by as much as 50%.  A comparable result was obtained by Sorenson
144

, 

using an air-turbine handpiece, where bur rotation speeds were markedly reduced (by almost 

100 krpm) when lateral loading was only slightly increased (from 50 to 60 g). 
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5.6.3 Vibration measurement in dentistry 

Henry and Peyton
11

 published some of the earliest calculations of vibrations relating to 

dental cutting.  They recorded characteristic frequency waves using a record player needle to 

detect vibrations in a block of ivory under the influence of cutting instruments.  Though 

limited by available technology, their attempts gave some momentum to the notion of high-

speed dentistry.  Other traditional means of measuring vibrations include accelerometers, 

strain gauges and microphones
133, 145

.  Light microscopy has been used to measure vibration 

displacement of sonic scaling tips, which are powered by compressed air and oscillate within 

the same frequency range as high-speed handpieces
146

.  Significant discrepancies were found 

when displacement amplitudes were measured in instruments from different manufacturers 

under identical conditions. 

 

Rytkönen & Sorainen
147

 used a piezoelectric charge accelerometer to measure handpiece 

vibration:  movement of the handpiece would have been detected by the compression of a 

piezoelectric crystal element, which releases a charge in proportion to the vibration 

amplitude and frequency.  They attempted to test the influence of various conditions on 

vibrations of new and used dental turbines and micromotor (speed-increasing) handpieces.  

Unfortunately crucial details were omitted from the description of methodology and results, 

and no statistical analysis appears to have been attempted, casting doubt upon the reliability 

and validity of the conclusions.   

5.6.4 Laser vibrometry in dentistry 

The use of accelerometers for the measurement of handpiece vibration is not ideal, as the 

mass of the accelerometer attached to the handpiece may affect the accuracy of the results
112, 

148
. A modern alternative is to utilise the technique of laser vibrometry, which offers the 
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advantages of high accuracy and sensitivity, whilst its non-contact nature avoids damping
149-

151
.   

 

Laser vibrometry has been used successfully to scrutinise the oscillations of ultrasonic scaler 

tips both when vibrating in air and in contact with teeth.  The effects of water flow rate, 

power setting and loading of the instruments have been demonstrated, and a number of 

factors of clinical importance have been highlighted
150-153

.  Oscillations of other dental 

instruments (such as endosonic files) have also been characterised using this method
154-156

.  

Castellini et al.
149

 advocated laser vibrometry as a practical tool for the assessment of tooth 

mobility under dynamic loads.  The data achieved using this method correlated well with 

results obtained in earlier evaluations of displacement, in which a static load had been 

applied
43

. 

 

Takamori et al.
112

 compared the vibrations of teeth, using a laser Doppler vibrometer, whilst 

cavities were prepared using a high-speed dental turbine and an Er:YAG laser.  They 

concluded that greater vibrations had been caused by drilling with the high-speed handpiece.  

Also of note was the observation that the frequency spectrum of the turbine, at around 5kHz, 

was close to the range of high sensitivity of the human ear (1 to 5 kHz), whilst the Er:YAG 

laser displayed a frequency characteristic approaching 230 Hz. 

 

Building upon their earlier work on handpiece vibration, Rytkönen & Sorainen
157

 introduced 

a laser vibrometer for simultaneous comparison with accelerometer recordings, with both 

methods producing similar results.  Again there were weaknesses in their report, which 

offered no indication whether the correlation between techniques was statistically significant. 
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Poole et al.
158

 measured vibrations of turbines and speed-increasing handpieces using a 

scanning laser vibrometer.  Areas scanned at the head end of the handpieces vibrated more 

than those further from the rotary instrument.  Significant differences were also found 

between different handpiece models. 

5.6.5 Wear of tools/longevity of handpieces 

The frictional forces of cutting result in wear of tools, which will affect the rate of tissue 

removal and surface finish.  There is a close association between temperature and wear.  

Plastic deformation during cutting produces an audible sound; as tools become worn, the 

pitch changes
82

. 

 

Scanning electron microscopy has been used to examine changes in the appearance of small 

dental cutting instruments through repeated use
136, 159, 160

.  Watson and Cook
19

 observed 

cutting interactions using video-rate confocal microscopy.  They revealed that inadequately 

engineered RCIs tended to revolve eccentrically, and were therefore expected to produce 

vibrations.  Erratic movement of RCIs led to uneven wear and deformation of blade surfaces, 

generating a micro judder and roughness of the cut surface.  Eccentric rotation of RCIs could 

alternatively be attributed to the handpieces themselves.  Leonard and Charlton
13

 measured 

RCI displacement in nine models of turbine handpieces using a standard test mandrel.  None 

exceeded the ISO standard
161

 of a maximum 0.03 mm of eccentricity.  Five models were 

tested again after 1000 cycles of use.  Although they all exhibited significantly increased 

eccentricity, they still met the required standard. 

 

Much of the available literature on dental cutting and drill efficiency relates to drilling into 

alveolar bone in preparation for dental implants.   Wear of these tools reduces efficiency and 
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the resulting friction produces additional heat
136, 160

, with a possible influence on vibration.  

Cleaning and sterilisation procedures have been shown to affect the rate and nature of 

deterioration of dental instruments
162

.  Tanaka et al.
159

 used scanning electron microscopy to 

look at the wear of tungsten carbide burs when used to cut bovine dentine three times at four 

loads.  This subjective evaluation concluded that the burs were 'little affected' by wear after 

an apparent 12 uses, of 5 seconds duration each.  Galindo et al.
163

 also examined SEM 

images before and after a diamond RCI was used to make 60 cuts of 2 mm each into human 

molar teeth, and observed blunting of the RCI surface.  The limitation of the assessment 

technique was recognised, and suggestions were given regarding possible methods for 

quantifying the extent of the wear. 

 

In a test of the effects of wear of RCIs whilst cutting a machinable glass ceramic, a 

significant reduction in efficiency (p < 0.05) occurred between 2½ and 5 minutes of cutting 

for two types of conventional diamond RCI
12

.  A third type of diamond RCI showed no 

difference in the mean amount of substrate removed as time progressed.  Under the same 

conditions, a tungsten carbide bur removed more substrate in the initial 2½ minutes than the 

diamond instruments, but in the subsequent 2½ minutes a highly significant reduction in 

efficiency was observed (p < 0.001).  It was recognised that the properties of the artificial 

cutting substrate may have influenced this effect.  Nevertheless, the less rapid deterioration 

of diamond RCIs lead to the recommendation that they should be preferred for procedures 

requiring extended enamel preparation. 
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Testing of turbine handpiece performance subjected to simulated clinical use has indicated 

that properly maintained handpieces should be expected to function for at least 500 cycles 

(or approximately one year), without loss of performance
13

. 

5.7 Biological effects 

Using dental handpieces involves removal of some sound tissue (particularly at high speed), 

even when the treatment is only to replace an existing restoration
67

.  As handpieces are hand-

held, the unrestricted movements of both patient and operator result in erratic interactions 

between tooth and cutting instrument
19

, with precision limited to 1 or 2 mm at best
107

.  It has 

been demonstrated that pulpal repair mechanisms are triggered by dental cutting procedures 

in the absence of caries
60

.  Damage is often also caused to an adjacent tooth if the teeth are in 

close proximity to one another
67

. 

5.7.1 Enamel cracking 

Some degree of cracking exists naturally in dental enamel in the form of structures such as 

lamellae
6, 15

.  It has been known for some time that dental cutting instruments are capable of 

inducing and increasing sub-surface cracking in enamel during normal operative 

interventions
7, 164

.  Where cracks weaken enamel, there is a danger that shrinkage of an 

adhesive restorative material will increase cracking
6, 19, 165

.  Hence the effectiveness of the 

seal around the restoration is reduced
6, 19

, and the cracks will be receptive to new carious 

attacks
116

.  Analyses of iatrogenic cracking therefore are of clinical relevance, but the 

mechanism by which the cracks propagate is a complicated process
14

. 

 

Kasloff et al.
7
 used the penetration of a fluorescent dye to indicate cracking.  A higher 

incidence of severe cracking was seen in teeth prepared using carbide burs than in those cut 
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using diamond RCIs, although Watson et al.
166

 later found no significant difference between 

the instrument types in their confocal microscopy examinations.  Video-rate confocal 

microscopy has been used to directly observe the fragmentation of enamel whilst cutting 

with different types of RCI, which was particularly evident where enamel prisms are 

unsupported
19

.  It was demonstrated that differences in the engineering of RCIs affected the 

extent of subsurface enamel cracking, which extended 5-15 prism depths into the tooth.     

 

Another investigation carried out by Watson and his colleagues
6
 examined cracks initiated as 

a result of cutting with high and low torque handpieces.  This confirmed that sub-surface 

cracking significantly increases when enamel is cut, but noted that the handpiece type (high-

speed low-torque or high-torque speed-increasing) did not appear to affect this result.  This 

was similar to the conclusion drawn by Kasloff
7
, describing no direct correlation between 

speed of rotation and crack occurrence.  Kasloff‟s report also noted that a high-speed 

instrument powered by water turbine had produced fewer cracks than an air turbine and a 

low-speed belt-driven handpiece. 

5.7.2 Smear layer 

Instrumentation in the preparation of cavities results in the deposition of a layer of debris on 

the cut surfaces of enamel and dentine, known as the smear layer
8, 15

.  Research has 

concentrated on the smear layer of dentine, as this is known to affect the permeability of the 

tissue and consequently bonding of restorative materials
99, 167

.  The enamel smear layer may 

also affect bonding but less has been determined about its ultrastructure
168

, and adhesion to 

dentine is more of a challenge due to its higher organic content and tubular structures
15

. 
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When observed under scanning electron microscope, the  dentine  smear  layer  appears  as  a 

1-2 m coating of debris
99

.  This apparently amorphous structure is made up of particles of 

dental tissues, and an organic film
8
.  The debris also infiltrates the dentine tubules forming 

„plugs‟
167

.  Although the tubules are then occluded, bacteria may be contained in the material 

and adherence to the surface is difficult
15

. 

 

The nature of the smear layer differs depending on the cutting instrument or preparation 

method used.  Hand instruments deposit a thick layer of debris on enamel surfaces
79

.  After 

acid etching, a dentine surface cut using a carbide steel bur has been found to be significantly 

more permeable than that prepared using a diamond RCI
169

.  There were also differences in 

surface characteristics produced with diamond RCIs and finishing RCIs
167

.  There is 

evidence that removing caries chemically (eg using Carisolv) or by laser ablation does not 

result in a full smear layer and leaves some tubules exposed, which may improve the 

adhesion of restorative materials
76, 170

.  A smear layer has also been found as a result of using 

rotary instruments during endodontic preparation of root canals
86

. 

5.7.3 Patient discomfort 

Sources of discomfort for the patient undergoing restorative treatment are principally 

attributed to the heat generation and vibrations of the instruments used in cavity 

preparation
11

.  The effects of dental handpiece vibration have been studied since at least 

1949, when patients were invited to report their perceptions of vibrations at various 

frequencies
95

.  High-speed rotary instrumentation is better tolerated than conventional slow 

speeds in this respect, as the vibrations are less discernable at speeds over 40 krpm
28

.  

Operators have been advised to deaden the extent of these movements using digital pressure 

and by ensuring that handpiece bearings are not failing
171

. 
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The relationship between vibration and pain is complex.  There is some evidence that similar 

areas of the brain are involved in processing the sensory information for both stimulants; an 

association between them can be made where memory processes are integrated with these 

pathways
172

.  An interesting finding is that high frequency vibrations are not always 

perceived as unpleasant, and can in fact be used to reduce pain.  This is known as vibratory 

analgesia, and has found a dental application in the relief of temporomandibular joint 

disorders
173

.  It is assumed that this concept was also the inspiration for a dental handpiece 

that has been designed to vibrate in order to give an anaesthetic effect (Japan patent 

2003250814)
174

. 

5.8 Effects on operator 

Operators of dental handpieces include dental surgeons, hygienists, therapists and 

technicians.  They can suffer from adverse effects of regular handpiece use, particularly as a 

result of long-term exposure. 

5.8.1 Aerosol production 

One consequence of using an air-water spray for cooling an instrument whilst cutting is that 

bacteria may be released as an aerosol.  This may infect adjacent teeth and can also be 

released into the air surrounding the treatment area, exposing the operator to potentially 

hazardous air-borne particles.  This highlights the value of isolating a tooth with rubber dam 

and using efficient aspirating equipment whilst cutting
71

. 

5.8.2 Auditory damage 

Several researchers have taken an interest in the harmful effects of noises produced during 

dental cutting operations, which may contribute to hearing loss for staff after prolonged 

exposure
9, 175-177

.  Bahannan et al.
175

 noted differences in noise intensity and frequencies 
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according to handpiece type, and considered some design features that may be responsible 

for this variation. 

5.8.3 Hand-arm vibration syndrome 

There are accounts in the literature of dental staff experiencing vascular and neurological 

symptoms in the upper limbs, which are attributed to the high frequency vibrations of dental 

tools
10, 147, 178, 179

.  This condition is termed “Hand-Arm Vibration Syndrome” (HAVS).  In 

2005 a Physical Agents (Vibration) Directive (2002) was implemented across the European 

Union in an attempt to reduce occupational exposure to risks associated with vibration.  The 

method for measuring hand-tool vibration was documented by the International Organization 

for Standardization (ISO)
148, 180

.  Although Mansfield
10

 concluded that the magnitude of 

vibrations in the dental profession are well within the limits enforced by the Directive, he 

encouraged handpiece manufacturers to increase the efficiency of their products in order to 

minimise exposure times. 

 

In an interesting study by Concettoni and Griffin
181

, a scanning laser vibrometer (SLV) was 

used to detect the transmission of vibrations across the fingers, hand and arm.  The 14 

participants each pressed against a vibrating metal plate at frequencies up to 500 Hz.  The 

fingertips were found to resonate at higher frequencies than the thicker areas of the hand and 

arm.  It may be possible to apply this technique to investigate the transmissibility of the high-

frequency vibrations generated by dental tools. 
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CHAPTER 6 

6 MATERIALS AND METHODS 

6.1 Introduction 

The aim of this study was to evaluate the vibrations of dental handpieces in a non-contacting 

manner.  Vibration analyses were carried out using a Scanning Laser Vibrometer (SLV), the 

operating principles of which are described in more detail below (6.2).  The experimental 

conditions investigated were: 

1) Unloaded:  Measurement of vibration displacement amplitudes of dental turbines and 

speed-increasing handpieces whilst operated in air, with and without a RCI (rotary 

cutting instrument).   

2) Loaded:  Measurements were repeated on some of the turbines whilst they cut into teeth 

at known loads.   

3) Tooth/RCI exchange:  The final study was performed to determine whether changing 

the RCI or the cutting substrate (ie tooth) would contribute to variations in vibration.   

6.2 Laser vibrometer operating principles 

A laser vibrometer is a device capable of measuring the frequency, velocity, acceleration and 

displacement of a vibrating object.  The system exploits the Doppler Effect – a phenomenon 

that describes how waves (sound, light etc) reflected off a moving object are altered in 

frequency depending on speed and direction of movement of the object in relation to the 

original source of energy.   
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Figure 6.1:  Schematic diagram illustrating the path of a laser from its source (LS) to the detector (D) within the scanning head of a laser 

vibrometer.  Beamsplitters (BS) are used to divide the laser into measurement (M) and reference (R) beams, and a Bragg Cell (BC) aids the 

interpretation of the interference pattern of the reflected light.  A dental handpiece represents the vibrating object.  From Poole et al.
158
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The laser vibrometer detects differences in the frequency of reflected light when compared 

against a reference beam; the shift recorded relating to the velocity of the object.  The 

displacement amplitude is calculated by the pattern generated by the reflected beam as it 

interferes with the reference beam.  This has been illustrated using a schematic diagram 

(Figure 6.1), to show the path of the laser.   

 

A laser beam of wavelength 632.8 nm is emitted from a helium-neon source (LS).  At the 

first beamsplitter (BS), this divides into a measurement beam (M) and a reference beam (R).  

The measurement beam is focused upon the target object (represented in this case by a dental 

turbine handpiece), and undergoes a shift in frequency at the point of reflection according to 

the Doppler Effect.  This signal is received by the scanning head, and is proportional to the 

velocity of the moving target.  The reference beam remains within the scanning head and is 

diverted through a Bragg Cell (BC), which enables determination of the direction of 

movement (towards or away from the laser source), before recombining with the frequency-

shifted measurement beam.  The resulting interference pattern at the detector (D) allows 

calculation of vibration displacement amplitudes to a resolution of 2 nm.  If measured at 

several points on the surface of an object, its movements can then be characterised as an 

animation superimposed over a video image.   

6.2.1 Reference signal 

An important component in the equipment accompanying the laser vibrometer is a transducer 

that acts as a reference signal.  Vibrations occur in cycles, and each repeated measurement 

must be taken at the same phase of the cycle.  Reference signals can be monitored using 

various types of transducers depending on the type of object under investigation.  For 
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example, microphones can act as a detector of a reference signal in objects that emit an 

audible sound at a frequency that relates to their vibrations. 

6.3 Vibrometry methodology 

Handpiece vibrations were measured using a PSV-300-F/S High Frequency Scanning 

Vibrometer System (Polytec GmbH, Waldbronn, Germany).  The main components of the 

system were a scanning head which housed the laser and had an integrated video camera 

(OFV 056, Polytec GmbH, Waldbronn, Germany), and a workstation comprised of a 

processing unit connected to a keyboard, mouse and monitor.  A reference signal was used to 

synchronise the phase of the vibration cycle, which in handpieces correspond with the 

rotation of the RCI.  As the turbines produced an audible sound, it was possible to use a 

microphone (Sekaku Dynamic Microphone KUD-626, Sekaku Electron Industry, Taiwan), 

with a pre-amplifier to boost the low-voltage signal, and use this as the reference signal.  The 

quieter speed-increasing handpieces were powered by electric motors, so the reference signal 

in these instances was obtained by placing a wire coil transducer
151

 adjacent to the motor, so 

that it detected the electromagnetic field and consequently the frequency.  Figure 6.2 shows 

the vibrometer scanning head, with the laser beam directed onto a speed-increasing 

handpiece. 

 

The specific points on the handpiece from which to obtain measurements were marked on 

the monitor by superimposing individual points onto a captured video image of the 

handpiece.  The laser beam was aligned with the points on the image, and focused to 

facilitate the reception of the reflected signal.  This prepared the SLV software, so that 
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during each scan the laser could rapidly locate the desired scan point location and detect the 

vibrations occurring at that position. 

 

Vibration data were collected over a frequency range of 0.5 to 20 kHz.  Data at frequencies 

under 0.5 kHz were excluded due to high noise levels.  Ten measurements were taken under 

each condition.  The SLV software produced graphical representations of frequency spectra, 

where a peak in velocity indicated the fundamental vibration frequencies of handpieces.  The 

frequency resolution was ±12.5 Hz.  Vibration data obtained at these particular frequencies 

were selected for further interrogation and exported as an ASCII file.  This text file contained 

details of maximum vibration displacement amplitudes at each scan point position, and the 

frequency they were recorded at.    

6.3.1 Statistical analysis 

Exported data were initially explored using Microsoft Excel then manipulated further using 

the Statistical Package for the Social Sciences (SPSS) for Windows (Release 15.0.0, 2006. 

Chicago, USA: SPSS Inc.).  As there was one dependent variable and several independent 

variables, a univariate Analysis of Variance (ANOVA) with a significance level of p = 0.05 

was carried out for each condition, followed by post hoc testing where appropriate.  Levene's 

test was used to find out whether the assumptions of a parametric test were being met by 

finding out whether error variances were equal.  Where population variances were unequal, 

Welch's F-ratio was used to measure the ratio of variation due to individual differences 

against the variation caused by experimental manipulation.  Games-Howell tests are also 

appropriate for use when homogeneity of variance is violated, and particularly applicable to 

small samples.  Therefore Games-Howell tests were used to determine which groups had 

means that differed significantly from one another.  
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Figure 6.2:  Arrangement of equipment for unloaded measurements.  The path of the laser beam is indicated by a red line.  The beam is 

directed from the scanning head of the vibrometer (S), toward the vibrating handpiece (H).  In this example, a speed-increasing handpiece 

is being regulated by a table-top control unit (C), and the metal coil transducer (T) is acting as the reference signal.  The nearby microphone 

(M) is for use with turbine handpieces, and would be arranged close to the top of the handpiece head.
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6.3.2 Calculation of rotation velocities 

Peaks in the frequency spectra indicate where the maximum vibration velocities occurred 

(Figure 6.3), and can be used to calculate the rotation speed of the RCI.  The fundamental 

vibration frequencies of unloaded handpieces were used to calculate instrument rotation 

velocities by applying two equations.  Equation 6.1 converts the detected frequency, 

measured in kHz, to Hertz by multiplying by 1000.  This is then converted from seconds to 

minutes by multiplying by a factor of 60 in order to give a rotation speed in units of 

revolutions per minute (rpm). 

 

frequency (kHz) x 1000 x 60 = rotational speed (rpm)           [6.1] 

 

In order to conform to the International System of Units (SI) for angular velocity, equation 

6.2 was then also applied: 

 

1 rpm = 2 rad/min = 
   2   

 rad/s = 0.1047 rad/s            [6.2] 
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It was then possible to compare these derived speeds with the maximum rotation speeds 

documented in the manufacturers' literature.  The percentage difference was calculated using 

equation 6.3: 

 

 

 

 

 

Documented speed of instrument rotation 

Derived speed of instrument rotation 
x 100 - 100 = % difference [6.3] 
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Figure 6.3:  Example of average vibration velocity frequency spectrum recorded during a 

scan of KaVo's 637C (turbine handpiece with small head).  A main vibration peak may be 

observed at 7.35 ± 0.01 kHz, corresponding to the speed of instrument rotation. 
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6.4 Experimental arrangement 

All handpieces used during this research were new turbines or new speed-increasing 

handpieces provided by two manufacturers, KaVo (KaVo Dental GmbH, Biberach, 

Germany) and W&H (W&H Dentalwerk Bürmoos GmbH, Austria) – details are recorded in 

Table 6.1.  The turbines were clamped firmly at the end furthest from the RCI; speed-

increasing handpieces were supported likewise by clamping the electric motor.  The 

preparation and arrangement of equipment for both unloaded and loaded conditions was 

initially alike.   

 

Compressed air was supplied to the handpieces from an oil-free compressor (OF302-25B, 

Jun-Air, Denmark), via a portable dental unit known as an Esticart (KaVo Dental GmbH, 

Biberach, Germany).  The speed-increasing handpieces required an additional table-top 

control unit in order to program the desired speed (Electrotorque - KaVo Dental GmbH, 

Biberach, Germany; Plug & Go - W&H Dentalwerk Bürmoos GmbH, Austria), which was 

connected to an electric motor provided by the corresponding manufacturer. 

 

To prevent overheating of RCIs, handpieces were supplied with an air/water coolant spray.  

The water for this was held in a container attached to the Esticart unit, with a water flow rate 

through the handpiece of 40 to 50 ml/min.  Before each set of scans was carried out, the 

drive air supply was measured using a pressure gauge adjacent to the handpiece connection, 

to ensure that it met with the manufacturers' recommendations.  Handpieces were also 

regularly lubricated as instructed by the manufacturer. 
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Table 6.1:  Details of handpiece models, including maximum rotary cutting instrument rotation speeds as documented in manufacturers‟ 

literature. 

 

Model Manufacturer Description 
Speed 
(krpm) 

Speed 
(rad/s) 

WA-99 A W&Ha 
Synea LS speed-increasing 200 20944 

25 CHC KaVob 
INTRAcompact speed-increasing 200 20944 

TA-98 CM W&Ha Synea HS turbine Up to 350 36652 

660C KaVob SUPERtorque turbine 350 36652 

TA-96 CM W&Ha Synea HS turbine (mini) 370 38746 

637C KaVob BELLAtorque mini turbine 400 to 480 50265 

TA-98 M W&Ha Synea HS turbine (steel bearings) Up to 350 36652 
 

a
W&H (W&H Dentalwerk Bürmoos GmbH, Austria) 

b
KaVo (KaVo Dental GmbH, Biberach, Germany) 

 



 

63 

6.5 Unloaded measurements 

Six scan points along the side of each handpiece were selected from which to collect data 

(Figure 6.4).  There were a number of factors that influenced the choice of scan points.  

Firstly, as the intention was to gain a general impression of vibrations at different areas of 

the handpiece, the points chosen were widely distributed across the surface.  Secondly, it was 

important that each point was located where the surface of the handpiece was approximately 

perpendicular to the path of the laser beam, as this facilitated detection of the measurement 

beam as it was reflected back towards the scanning head.  Due to the constraints of the 

vibrometer system, points could not be situated at the edges of the object under scrutiny.  

The RCI was not considered a suitable target as the SLV was not capable of differentiating 

rotational vibrations, and would not have been accessible in the either the 'no RCI' state or 

the anticipated loaded cutting study. 

 

Figure 6.2 shows the arrangement of the equipment for the unloaded investigations.  

Maximum vibration displacement amplitudes of five turbines and two speed-increasing 

handpieces were measured whilst they were running unloaded in air.  Recordings were taken 

whilst handpieces were equipped with and without cutting instruments.  Where a handpiece 

was operated with a RCI, the same diamond instrument was used (Hi-Di 541, Ash 

Instruments Inc., Delaware, USA).  Identical tests were also carried out but with the 

exception that no RCI had been inserted into the handpiece. 

6.6 Loaded measurements 

The arrangement of the equipment for the loaded experiments is illustrated in Figure 6.5.  

Three  turbines  were  used  to  investigate  maximum  vibration  displacement  amplitudes of  
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Figure 6.4:  Scan point positions shown on a turbine (top) and speed-increasing handpiece. 
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Figure 6.5:  Schematic diagram of the arrangement of equipment for loaded measurements.  The laser beam (L) was directed from the 

Scanning Laser Vibrometer (S), toward the turbine handpiece (H), which was supported by a clamp as it cut into a tooth (T).  The tooth was 

encased in a cylinder (C) containing impression material, and set upon a pan balance (B) along with a number of weights (W).  A 

microphone (M) was used to produce a reference signal. 
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handpieces whilst cutting teeth under load.  Ten extracted, sound molar teeth were collected, 

stored and used in full compliance with Human Tissue Authority protocol
182

.  Following 

extraction they were fixed in 10% formalin then washed and stored at -20 °C.  The teeth 

were prepared by setting them individually into small cylinders containing vinylpolysiloxane 

impression material (Virtual Light Body, Ivoclar Vivadent, Ontario, Canada).  The tooth 

roots were immersed within the impression material up to the level of the EDJ, leaving the 

crown exposed.  Once the material was set, the whole cylinder was mounted onto a 

laboratory pan-balance. 

 

The turbines used in this investigation were the TA98CM (W&H), 660C (KaVo) and 

TA96CM (W&H), details of which can be found in Table 6.1.  It was necessary for the 

handpiece to remain stationary so that the laser could remain focused at a fixed location.  

This was important as conditions needed to be standardised in order to allow experimental 

comparisons to be made, and to allow the detection of vibration only (rather than any other 

handpiece movement).  So rather than applying a moveable handpiece to a fixed substrate, 

the handpiece was secured in a clamp whilst a pan-balance was used to apply the load onto 

the instrument.  Weights were adjusted either side of the balance so that the crown of the 

tooth contacted the rotating cutting instrument at a known load of 50, 100, 150 or 200 g.  The 

foot pedal (which operated the handpieces) was depressed before cutting began, so that the 

instrument was already rotating prior to contact with a tooth. 

 

Two types of cutting instrument were investigated – a diamond RCI (Hi-Di 541, Ash 

Instruments Inc., Delaware, USA) and a tungsten carbide bur (FG 57, Jet, Kerr Dental, 

California, USA) (Figure 6.6).  Twelve new RCIs of each type were used, and were 
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exchanged at the same time as the teeth were replaced and loads were changed.  Cuts were 

made into the sound enamel.  If the investigator observed that the instrument had entered into 

the softer dentine layer of the tooth, the scan was abandoned and another attempt was made 

at a different location on the surface of the tooth crown.  Therefore a single instrument was 

sometimes used more than ten times in order to achieve ten successful scan measurements.  

To minimise the chances of wear (of the RCI) affecting the results, it was ensured that each 

instrument was used no more than 20 times.  As a scan could be carried out within five 

seconds, this means that no RCI was cutting for more than 100 seconds in total.  Data were 

collected from a scan point in the centre of the side of the head of each handpiece 

(corresponding to scan point 2, Figure 6.4).  Analysis was carried out on ten measurements 

for each handpiece at each load and with each type of instrument. 

6.7 Tooth/RCI exchange 

As the exchange of RCIs and teeth occurred simultaneously in the loaded investigation, it 

was not possible to determine which of these variables was responsible for the results 

obtained.  A third experiment was therefore devised in order to establish whether differences 

between teeth, or between instruments, were most likely to be responsible for differences in 

vibrations.   

    

The procedure was the same as for the loaded study, with one main exception:  instead of 

changing the RCI at the same time as replacing the tooth, all of the teeth were cut using all of 

the instruments.  For example in the first scan, RCI 1 was used to cut tooth A, then in the 

second scan  tooth  B,  third  scan  tooth  C etc.  After measurements had been achieved with  
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a) 

 

 

 

b) 

 

 

Figure 6.6:  Photographs of the two types of rotary cutting instruments used in the loaded 

investigations a) diamond (Hi-Di 541) and b) tungsten carbide bur (Jet FG 57). 
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RCI 1 cutting all ten teeth, RCI 2 was inserted.  The handpiece was then scanned whilst this 

second RCI was cutting tooth A, then B, then C, and so on.  

 

This final test was carried out on one turbine (TA96CM, KaVo) with diamond instruments 

only (Ash Hi-Di 541), at a load of 100 g. 
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CHAPTER 7 

7 RESULTS 

7.1 Rotation velocities 

Following each scan, the SLV software produced a graph displaying a frequency spectrum 

for the handpiece under investigation, an example of which can be seen in Figure 6.3.  With 

this handpiece (KaVo 637C), the peak occurred at 7.35  0.01 kHz.  Using equation 6.1, the 

speed of rotation of the RCI could be calculated as 441,000 rpm.  Equation 6.2 then enabled 

the conversion to SI units, and revealed that the handpiece was operating at 46,181 rad/s.  

These calculations were applied to all seven handpieces to derive maximum handpiece 

operating speeds (Table 7.1).   

 

As the manufacturers of the handpieces had indicated approximate maximum rotation speeds 

of instruments in their literature, it was possible to compare these documented speeds with 

those that were achieved in the current study.  Results of this comparison are included in 

Table 7.1 as a percentage difference (calculated using equation 6.3).  A positive sign denotes 

that the derived speed was higher than the documented speed, and a negative sign indicated 

that the documented speed was greater. 

7.2 Unloaded measurements 

Vibration data were acquired for five turbines and two speed-increasing handpieces, whilst 

operated unloaded, with and without a rotary cutting instrument.  Raw data for unloaded 

measurements can be found in Appendix 11.1.  Observations of individual handpieces are 

recorded, followed by an overall analysis of statistical significance in section 7.2.8.  
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7.2.1 W&H - WA99A 

All vibration displacement data from this handpiece were measured at less than 0.5 µm 

(Table 7.2).  Although the presence or absence of a RCI had an effect on the results (p < 

0.01), this was not consistent across the six scan points (Figure 7.1a).  When equipped with a 

RCI, the vibration amplitude was higher at the base of the head (scan point 3, Figure 6.4) 

than all other areas (p < 0.05). 

7.2.2 KaVo - 25CHC 

When equipped with a RCI, the scan point nearest to the RCI (scan point 3, Figure 6.4) 

demonstrated the greatest extent of vibration (up to a maximum of 3.6 µm).  Displacement 

here was significantly greater (p < 0.01) than points further from the rotating instrument 

(point 1 and 4-6).  This trend was also apparent when the handpiece was not equipped with a 

RCI, in that the greatest vibrations were found near to the (vacant) insertion site of the RCI 

(Figure 7.1b), and points 1-3 all differed significantly from points 4-6 (p < 0.05).  At each 

scan point, mean values were all greater with a RCI than without (Table 7.2); the overall 

effect of using a RCI with this speed-increasing handpiece was statistically significant (p < 

0.01).  It should be noted that this data, particularly in the presence of a RCI, was highly 

variable.  For example, the mean of the maximum displacement amplitudes at the second 

scan point was 0.94 µm, but with a relatively large standard deviation of 1.26 µm. 

7.2.3 W&H - TA98CM 

Mean displacement amplitudes ranged from 0.09 to 0.26 µm with a RCI and from 0.11 to 

0.27 µm without a RCI (Table 7.3).  The presence or absence of RCI had no significant 

effect on the vibration of this turbine (p = 0.33).  The six points selected for analysis (Figure 

6.4) indicated a similar degree of vibration throughout the length of the handpiece, although  
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Table 7.1:  Mean frequency of main peak and equivalent rate of instrument rotation whilst 

operated unloaded. 

 

Model 
Measured 
frequency 

(kHz) 

Calculated 
speed (krpm) 

Calculated 
speed 
(rad/s) 

Comparison 
with 

documented 
max. speed 

WA99A 3.45 207 21,677 + 3.5% 

25CHC 3.09 185 19,415 - 7.5% 

TA98CM 5.78 347 36,317 - 0.9% 

660C 5.96 357 37,447 + 2.0% 

TA96CM 6.21 372 39,018 + 0.5% 

637C 7.38 443 46,370 - 7.7% 

TA98M 5.82 349 36,568 - 0.3% 

 

Table 7.2:  Vibration data (mean m +/- 1 standard deviation) for speed-increasing 

handpieces whilst operated unloaded with and without a RCI. 

 

 W&H WA99A KaVo 25CHC 

Scan point With 541 RCI With no RCI With 541 RCI With no RCI 

1 0.10 ± 0.05 0.03 ± 0.02 0.37 ± 0.37 0.22 ± 0.10 

2 0.12 ± 0.05 0.10 ± 0.07 0.94 ± 1.26 0.24 ± 0.16 

3 0.25 ± 0.09 0.01 ± 0.01 1.33 ± 0.28 0.47 ± 0.10 

4 0.16 ± 0.10 0.46 ± 0.22 0.32 ± 0.09 0.02 ± 0.01 

5 0.09 ± 0.01 0.36 ± 0.07 0.08 ± 0.06 0.04 ± 0.02 

6 0.04 ± 0.01 0.28 ± 0.04 0.06 ± 0.05 0.01 ± 0.01 
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Figure 7.1:  Maximum mean vibration displacement amplitude data from speed-increasing 

handpieces a) W&H WA99A and b) KaVo 25CHC.  Error bars show +1 standard deviation.  

Handpiece illustrations indicate locations selected for scanning (ie scan points). 
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in contrast to other handpiece models, scan point 3 exhibited lower levels of vibration (p < 

0.05) than other points (1, 2 and 6; Figure 7.2a). 

7.2.4 KaVo - 660C 

The largest mean vibration recorded both with (0.33 µm) and without a RCI (0.47 µm) was 

measured at scan point 1 on the top of the turbine head (Table 7.3), and was significantly 

greater than at all other points (p < 0.01).  Amplitudes of vibrations tended to decrease at 

scan points further from the head (Figure 7.2b).  The influence of the RCI was not significant 

(p = 0.69). 

7.2.5 W&H - TA96CM 

The maximum displacement recorded was 0.41 µm at scan point 4 (Table 7.4).  The least 

vibration was detected at scan point 3 at the base of the head, particularly when no RCI was 

present (Figure 7.3a).  The significant influence of the RCI (p < 0.01) led to the results for 

scan point 1 being greater than point 6 (p < 0.01), however no other scan points differed 

from one another (p > 0.05). 

7.2.6 KaVo - 637C  

The RCI had a significant effect (p < 0.01), and although vibration amplitudes were 

generally higher with a RCI than without, the reverse was true at scan point 2 (Figure 7.3b).  

Some scan points differed in the extent of vibration displayed (p < 0.05), but no obvious 

trends were observed.  All data revealed vibrations lower than 0.5 µm (Table 7.4). 

7.2.7 W&H - TA98M 

Equipping this handpiece with a RCI influenced results (p < 0.01), but appeared to both 

increase and decrease vibrations depending on location (Figure 7.4).  Some differences were 

observed between scan locations (p < 0.01), but followed no particular pattern.   A  relatively  
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Table 7.3:  Vibration data (mean m +/- 1 standard deviation) for standard turbine 

handpieces (with ceramic bearings) whilst operated unloaded with and without a RCI. 

 

 W&H TA98CM KaVo 660C 

Scan point With 541 RCI With no RCI With 541 RCI With no RCI 

1 0.22 ± 0.07 0.27 ± 0.17 0.33 ± 0.07 0.47 ± 0.18 

2 0.26 ± 0.11 0.16 ± 0.07 0.18 ± 0.03 0.20 ± 0.05 

3 0.13 ± 0.05 0.13 ± 0.04 0.15 ± 0.04 0.21 ± 0.07 

4 0.09 ± 0.04 0.18 ± 0.06 0.13 ± 0.10 0.07 ± 0.01 

5 0.24 ± 0.09 0.11 ± 0.03 0.08 ± 0.03 0.08 ± 0.02 

6 0.17 ± 0.06 0.20 ± 0.07 0.17 ± 0.04 0.04 ± 0.01 

 

Table 7.4:  Vibration data (mean m +/- 1 standard deviation) for turbine handpieces with 

small head whilst operated unloaded with and without a RCI. 

 

 W&H TA96CM KaVo 637C 

Scan point With 541 RCI With no RCI With 541 RCI With no RCI 

1 0.16 ± 0.04 0.18 ± 0.07 0.36 ± 0.07 0.16 ± 0.05 

2 0.18 ± 0.06 0.06 ± 0.03 0.15 ± 0.06 0.31 ± 0.07 

3 0.09 ± 0.02 0.19 ± 0.05 0.16 ± 0.06 0.16 ± 0.05 

4 0.12 ± 0.04 0.19 ± 0.10 0.19 ± 0.05 0.12 ± 0.04 

5 0.21 ± 0.06 0.10 ± 0.04 0.27 ± 0.12 0.10 ± 0.02 

6 0.15 ± 0.05 0.02 ± 0.02 0.14 ± 0.04 0.13 ± 0.06 
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Figure 7.2:  Maximum mean vibration displacement amplitude data from standard turbines 

with ceramic bearings a) W&H TA98CM and b) KaVo 660C.  Error bars show +1 standard 

deviation.  Handpiece illustrations indicate locations selected for scanning (ie scan points). 
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Figure 7.3:  Maximum mean vibration displacement amplitude data from turbines with small 

head a) W&H TA96CM and b) KaVo 637C.  Error bars show +1 standard deviation.  

Handpiece illustrations indicate locations selected for scanning (ie scan points). 
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Figure 7.4:  Maximum mean vibration displacement amplitude data from turbine with steel 

bearings W&H TA98M.  Error bars show +1 standard deviation.  Handpiece illustration 

indicates locations selected for scanning (ie scan points). 
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high mean level of vibration (0.34 µm) was also observed at scan point 6, furthest from the 

handpiece head (Table 7.5). 

7.2.8 Statistical analysis of unloaded results 

At a significance level of p = 0.05, a univariate ANOVA test (Table 7.6) showed that there 

were significant differences between handpiece models (p < 0.01).  The presence or absence 

of a RCI also produced a significant effect (p < 0.01), and there were significant differences 

between the points selected for measurement along the side of the handpiece (p < 0.01). 

 

In an investigation of the homogeneity of variance, Levene's test indicated that the error 

variance of the dependent variable was not equal across the groups (p < 0.01).  As the data 

therefore did not satisfy the assumptions of a parametric test, the most appropriate of the post 

hoc tests available was the Games-Howell, which is suitable for use even when population 

variances differ. 

 

The post hoc Games-Howell tests revealed that only two models of handpiece differed from 

the others in relation to the extent of vibration.  The KaVo 25CHC speed-increasing 

handpiece generated significantly greater vibrations than five other models (p < 0.01).  

However vibration displacement amplitudes recorded for the W&H TA-96CM turbine (with 

small head) were significantly smaller than four other models (p < 0.01).  The RCI 

influenced vibrations by increasing vibration levels compared to those measured when no 

RCI was inserted (p < 0.01).  Scan points along the head of the handpiece (points 1, 2 and 3) 

were each found to exhibit greater vibrations than each of the scan points (5, 6 and 7) along 

the handpiece body (p < 0.01), particularly when an RCI was present (Figure 7.5). 
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Table 7.5:  Vibration data (mean m +/- 1 standard deviation) for standard turbine handpiece 

(with steel bearings) whilst operated unloaded with and without a RCI. 

 

 W&H TA98M 

Scan point With 541 RCI With no RCI 

1 0.41 ± 0.32 0.10 ± 0.03 

2 0.24 ± 0.10 0.34 ± 0.12 

3 0.15 ± 0.11 0.17 ± 0.07 

4 0.20 ± 0.05 0.10 ± 0.07 

5 0.11 ± 0.09 0.09 ± 0.02 

6 0.34 ± 0.24 0.20 ± 0.07 

 

Table 7.6:  Main ANOVA results for unloaded measurements, generated using SPSS 

software.  Significance levels are less than 0.05, indicating that all independent variables 

(model, scan point and RCI) had an effect on the dependent variable (ie vibration 

displacement amplitude).  Post hoc testing was necessary to establish what these effects 

were. 

 

Tests of Be tw een-Subjects  Effects

Dependent Variable: Displacement (microns)

28.060a 83 .338 11.832 .000

33.422 1 33.422 1169.724 .000

3.150 6 .525 18.376 .000

2.103 5 .421 14.721 .000

.793 1 .793 27.770 .000

12.801 30 .427 14.934 .000

3.358 6 .560 19.588 .000

.460 5 .092 3.219 .007

5.394 30 .180 6.293 .000

21.601 756 .029

83.082 840

49.660 839

Source

Correc ted Model

Intercept

Model

ScanPoint

RCI

Model * ScanPoint

Model * RCI

ScanPoint * RCI

Model * ScanPoint * RCI

Error

Total

Correc ted Total

Type III Sum

of Squares df Mean Square F Sig.

R Squared = .565 (Adjus ted R Squared = .517)a. 
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Figure 7.5:  Influence of the presence or absence of a rotary cutting instrument (Ash Hi-Di 

541 diamond RCI) on vibration displacement amplitudes.  Error bars show 95% confidence 

intervals of the means.  Scan points 1-3 are at the head of the handpiece, and show higher 

levels of vibration than scan points 4-6 along the handpiece body. 
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7.3 Loaded measurements 

The vibrations of three turbines were measured at scan point 2 (Figure 6.4) whilst cutting 

under loads of 50 to 200 g.  Raw data from loaded measurements can be found in Appendix 

11.2.  The overall analysis of statistical significance is included in section 7.3.4, following 

some descriptive results for each handpiece. 

7.3.1 W&H - TA98CM 

There was a large extent of variability between measurements when the tungsten carbide 

RCI was loaded with a force of 50 g, with data ranging from 0.25 to 2.26 µm, despite being 

taken from the same scan point (Figure 7.6b).  The mean vibration displacement of the 

turbine when equipped with this bur was significantly higher at 50g than at higher loads (p < 

0.05), where the data was more consistently distributed.  Mean displacements were lower 

with a diamond RCI than with a tungsten carbide RCI (p < 0.01), which was observed at all 

of the measured loads (Table 7.7a). 

7.3.2 KaVo - 660C 

Although there were significant differences between the RCIs (p < 0.01), there were no 

obvious patterns relating to the interaction between RCI and loading (Figure 7.6).  A load of 

200 g when using a diamond RCI resulted in significantly lower vibrations than at smaller 

loads (p < 0.05).  The greatest variability of vibration results for this handpiece occurred 

when the diamond RCI was loaded with a force of 50 g; at the same load the standard 

deviation of the tungsten carbide bur data was much lower (Table 7.7b). 
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7.3.3 W&H - TA96CM 

When equipped with a diamond RCI, a pattern of increasing vibration as the load increased 

was observed, although this pattern was less defined when a tungsten carbide RCI was used 

(Figure 7.6).  A load of 50 g produced significantly lower vibration displacement amplitudes 

than at higher loads (p < 0.01).  Mean vibration amplitudes under all conditions were less 

than 0.50 µm (Table 7.7c).  The influence of the RCI was significant (p < 0.01); at loads 

above 50 g, mean vibrations were higher with a diamond RCI than with a tungsten carbide 

bur. 

7.3.4 Statistical analysis of loaded results 

The results of the univariate ANOVA test revealed significant differences in the vibrations of 

each handpiece (p = 0.001), and between each of the four loads selected for the investigation 

(p = 0.001).  When analysing the overall effect of the type of cutting instrument (diamond or 

tungsten carbide), there appeared to be no significant difference in vibration displacement 

amplitudes (p = 0.463).  However the interaction between handpiece and RCI was significant 

(p < 0.01), which is consistent with the results of the individual analyses described in 

sections 7.3.1 to 7.3.3.  Equipping a TA98CM turbine with a diamond RCI resulted in 

smaller vibrations than when a tungsten carbide RCI was used; the opposite was true for the 

two other turbines (ie using the diamond RCI produced larger vibrations than those seen with 

the tungsten carbide RCI). 

 

As for the unloaded data, Levene's test showed that the error variance across groups was not 

homogeneous (p < 0.01), indicating that the data was not parametrically distributed.  With all 

handpiece  and  instrument  data  pooled,  Games-Howell  tests  demonstrated  that  the  only  
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Table 7.7:  Vibration data (mean m +/- 1 standard deviation) whilst operated at increasing 

loads with 541 diamond RCI or tungsten carbide RCI.  Handpieces under investigation were 

a) TA98CM, b) 660C and c) TA96CM. 

 

a) 

 TA98CM 

Load (g) 541 RCI TC RCI 

50 0.10 ± 0.11 1.29 ± 0.77 

100 0.15 ± 0.10 0.31 ± 0.19 

150 0.31 ± 0.05 0.35 ± 0.16 

200 0.20 ± 0.09 0.44 ± 0.18 

 

 

b) 

 

 

 

 

 

 

c) 

 660C 

Load (g) 541 RCI TC RCI 

50 0.67 ± 0.42 0.14 ± 0.03 

100 0.33 ± 0.15 0.22 ± 0.07 

150 0.37 ± 0.07 0.19 ± 0.04 

200 0.18 ± 0.05 0.23 ± 0.06 

 TA96CM 

Load (g) 541 RCI TC RCI 

50 0.15 ± 0.04 0.29 ± 0.04 

100 0.30 ± 0.09 0.16 ± 0.12 

150 0.46 ± 0.25 0.38 ± 0.20 

200 0.49 ± 0.20 0.17 ± 0.10 
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a) 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6:  Boxplots for three turbine models equipped with a) diamond RCI or b) tungsten 

carbide bur at four increasing loads.  Crosses indicate outliers. 
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significant difference between loads occurred between 100 and 150 g (p = 0.004), with more 

vibration occurring under the higher loading. 

 

Although the ANOVA results implied differences between the handpieces (when loaded), 

not all of the post hoc comparisons confirmed that these differences were significant.  A post 

hoc Tukey test, for example, indicated that each of the three handpieces differed significantly 

from one another except the 660C and the TA96CM.  However the Tukey test assumes that 

population variances are similar – an incorrect assumption in this study, as already revealed 

by Levene's test.  This is why a Games-Howell test is more appropriate under these 

conditions, as this procedure was specifically designed for situations in which population 

variances differ
183

.  The Games-Howell results showed no significant differences between 

handpieces whilst cutting under load, and therefore this must be the more reliable 

conclusion. 

7.4 Tooth/RCI exchange 

An investigation into the differences in handpiece vibration as a consequence of changing 

individual teeth, and also as a result of changing RCIs, was carried out whilst cutting at a 

load of 100 g.   

 

An initial inspection of the graph comparing the teeth used for this study, revealed consistent 

levels of vibration across the ten teeth (Figure 7.7a).  This suggested that any differences 

between the teeth did not affect the vibration displacement amplitudes.  The mean values for 

each tooth ranged from 173.15  70.53 nm to 226.12  105.11 nm (Table 7.8). 

 



 

 

8
7
 

Table 7.8:  Vibration data (nm) for TA96CM turbine whilst cutting into ten teeth at a load of 100g, using ten identical rotary cutting instruments 

(RCI). 

 

 Tooth 

A B C D E F G H I J Mean SD 

R
C

I 

1 145.1 153.0 198.6 139.5 186.4 112.5 234.4 123.6 153.0 88.8 153.49 43.06 

2 151.9 264.7 115.5 271.2 165.5 160.5 236.4 235.9 111.5 122.3 183.54 62.57 

3 183.5 262.0 268.0 236.2 189.0 223.6 150.1 314.3 194.8 202.1 222.36 48.67 

4 219.8 82.6 53.1 58.8 75.7 50.8 68.3 85.9 59.8 42.4 79.71 51.19 

5 140.8 161.5 76.5 153.7 272.0 88.6 88.4 80.7 365.4 343.2 177.07 110.20 

6 216.9 160.2 162.3 305.2 205.9 196.9 221.6 178.6 277.6 224.6 214.98 46.80 

7 164.7 80.3 185.6 118.3 83.9 95.8 236.7 100.0 337.7 233.4 163.63 84.99 

8 169.5 148.9 226.1 189.6 378.0 363.3 153.0 270.8 215.8 200.2 231.52 81.80 

9 318.2 153.9 226.7 243.6 178.0 237.8 438.5 322.2 354.5 241.1 271.45 86.25 

10 146.5 361.8 219.1 151.9 248.1 297.2 217.4 314.0 191.1 284.0 243.11 70.97 

Mean 185.69 182.89 173.15 186.80 198.25 182.69 204.47 202.60 226.12 198.22   

SD 54.51 87.82 70.53 76.34 88.25 99.94 103.18 100.43 105.11 90.78   
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a) 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

Figure 7.7:  Mean vibration displacement amplitude data from TA96CM recorded under  

100 g load and presented according to a) tooth and b) RCI. 
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The variation between the mean results of the individual instruments was more apparent than 

the variation between teeth (Figure 7.7b), with values ranging from 79.71  51.19 nm to 

271.45  86.25 nm (Table 7.8). 

7.4.1 Statistical analysis of tooth/RCI exchange results 

When a one-way univariate ANOVA was performed to compare the ten teeth, Levene's test 

showed that the variances of the groups were equal (p = 0.562).  The ANOVA produced a 

significance of p = 0.976, therefore there were no significant differences in vibration levels 

recorded between the ten teeth. 

 

However the variances between the RCIs were found to differ (p = 0.012), violating one of 

the assumptions of the ANOVA test, and requiring instead the application of Welch's F-ratio.  

This revealed significant differences in the vibration displacement amplitudes of the 

handpieces when equipped with the ten different instruments (p < 0.01).  Using a post hoc 

Games-Howell test, it was possible to see that most of the RCIs had produced similar 

vibration displacement amplitudes, but that one in particular (RCI 4, figure 7.7b) was 

associated with significantly smaller vibrations than six other RCIs. 
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CHAPTER 8 

8 DISCUSSION 

8.1 SLV methodology 

It has been demonstrated that detection and measurement of high-speed dental handpiece 

vibration can be achieved using a scanning laser vibrometer.  Laser Doppler vibrometers 

have been used to measure vibrations in various fields including engineering and the 

automotive industry, biology and medicine
145

.  Topics are diverse - from the investigation of 

vibrations inside butterfly ears
184

, to detection of damage in aircraft
185

 or defects in works of 

art
186

.  As these vibrometers are non-contact and non-invasive, they are able to record 

vibrations of very small structures such as Micro-Electro Mechanical Systems (MEMS)
145

.  

They avoid the problem of mass-loading, which is a recognised limitation of more traditional 

vibration detectors (eg accelerometers) when attached to small or light objects
148

.  For this 

reason in particular, the SLV is useful in the assessment of vibrating or oscillating dental 

instruments.   

 

Laser vibrometers are able to detect vibration displacement amplitudes at a resolution of  

2 nm or less
187

.  Earlier publications and previous calibration of the particular SLV used in 

this study demonstrated that it is capable of producing highly reproducible, accurate 

results
152, 188

.  It was also important that the equipment had the capacity to discern vibrations 

at high frequencies, as the handpieces were operating at up to 7.38 kHz when unloaded 

(Table 7.1).  This is well within the measurement range of up to 1.5 MHz of the PSV-300-

F/S High Frequency SLV
189

.  Finally, in the loaded studies it was crucial that measurements 
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should be recorded within a few seconds, as the instruments cut through the dental enamel 

very quickly.  The SLV was well suited to the requirements of this study of high-speed 

handpiece vibration due to its non-contact nature, high resolution at high frequencies, and 

capacity for rapid detection. 

8.2 Rotation velocities 

The maximum instrument rotation speeds for each handpiece, as documented by the 

corresponding manufacturer, are detailed in Table 6.1.  Using the SLV it was possible to 

determine the fundamental frequency of each unloaded handpiece, and from this derive the 

speed of instrument rotation.  The results of these calculations were described in Table 7.1.   

 

When documented maximum speeds were compared with measured maximum speeds, it was 

found that five of the seven handpieces had differences no greater than +/- 3.5%.  These 

small differences could be attributed to small changes in drive air pressures, which are 

known to affect rotation speeds
132

.  The other two handpieces (KaVo's 25CHC and 637C 

models) were operating a little more slowly than the expected maximum at a difference of 

almost 8%.  It should be noted that the maximum speed documented in the accompanying 

literature for the 637C turbine was actually given as 400 to 480 krpm.  The speed derived by 

measurement and calculation (at 443 krpm) fell within this range.  

 

However the result for the 25CHC model is surprising.  This was the KaVo speed-increasing 

handpiece, powered by an electric motor that was programmed to run at 40 krpm.  As the 

handpiece gear ratio was 1:5, the instrument should have rotated five times faster than the 

motor, at 200 krpm.  It is not known why the measured rate was only 185 krpm.  The 
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discrepancy is likely to be attributed to either the measurement technique or to inaccuracies 

in the dental equipment.  The method of calculating speeds based on the SLV frequency peak 

appeared to produce accurate data for most of the handpieces, but could be compared with an 

alternative method such as that described by Darvell and Dyson
2
.  This provides an avenue 

for further research. 

8.3 Unloaded measurements 

The ten scans carried out under each condition (ie with or without RCI) did not always give 

consistent results, despite no changes being introduced to the experimental set-up between 

the scans.  The greatest variation in recordings occurred under the same conditions that also 

exhibited the largest vibrations. 

 

In clinical dentistry a handpiece is never operated without a RCI.  The reason that this 

condition was investigated in this in vitro study was to provide baseline data prior to testing 

with different types of RCIs.  Initial examination of the results of the statistical analyses 

indicated that equipping handpieces with a RCI increased vibrations, particularly at the head 

end of the handpiece (scan points 1-3) where increases of 23 to 46% were observed (Figure 

7.5).  Unless an RCI was perfectly balanced in its shape and weight distribution, it would be 

expected to rotate in a slightly eccentric manner
19

, and therefore the increase in vibrations at 

the head end of the handpiece would have been anticipated. 

 

Statistical differences were found between some of the unloaded handpieces, which is 

similar to the conclusion drawn by Shah et al.
146

 in their study of sonic scaler vibration.  

Data had been pooled for the seven handpiece models when the statistical analyses were 
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carried out to establish the overall influence of the RCI and scan point positions.  As the 

25CHC speed-increasing handpiece had generated much larger vibrations than other models, 

the data from this handpiece is likely to have contributed a disproportionate amount to the 

overall effects observed.  When the 25CHC data was excluded and the ANOVA was 

repeated, the presence of a RCI still resulted in significantly greater vibrations than when no 

RCI was used (p = 0.04), and scan point data remained significantly different (p < 0.01).  

The largest vibrations were still found at the head end, although closer to the top of the head 

(scan point 1, Figure 6.4) rather than next to the insertion site of the RCI. 

 

Previous publications have suggested that an advantage of using speed-increasing handpieces 

(in preference to turbines) is that they offer reduced levels of vibration
127, 128

.  This was not 

substantiated by the present study.  In fact, the overall mean vibration displacement of the 

speed-increasing handpieces was significantly larger than that of the turbines (p < 0.01).  

But, as described in section 7.2.9, the vibration of one of the two speed-increasing 

handpieces did not differ significantly from most of the turbines.  Therefore it is 

recommended that the vibrations of each model should be evaluated individually, rather than 

generalising according to handpiece type. 

 

It should be noted that even the greatest vibration amplitudes measured in this investigation 

remained below 4 m – smaller than the width of an enamel prism
19

.  In assessing the 

likelihood of vibrating tools contributing to the occupational disease hand-arm vibration 

syndrome (HAVS), the frequency, magnitude, duration of exposure, and cumulative 

exposure are taken into account
180

.  The measured vibration is frequency-weighted to model 

the human response to vibration, although this relies on assumptions and there are doubts 
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about the appropriateness of this technique
10

.  The ISO guidance
180

 describes how the 

frequency weighting should be applied, but the specified frequency range is limited to a 

maximum of 1000 Hz.  The high-speed handpieces in the current study were operating at 

frequencies of 3.09 ± 0.01 to 7.38 ± 0.01 kHz (Table 7.1).  Without accurate details of the 

durations that dental personnel are exposed to the vibration of these tools, it is not possible to 

apply these calculations to achieve a reliable risk assessment. 

 

Although the use of rotary instruments has been linked to cracking of dental enamel
6, 19, 164

, it 

is not known how much vibration is required to cause (or exacerbate) these effects.  As the 

vibration amplitudes of the handpieces in the current study were small, it is proposed that 

they are unlikely to contribute to undesirable effects such as enamel cracking or HAVS, but 

further research into both of these conditions would enable a more definitive conclusion to 

be reached. 

8.4 Loaded measurements  

Like the unloaded measurements, the data collected displayed considerable variability when 

scans were repeated under identical conditions.  Vibration levels were again small, with a 

maximum recorded amplitude of less than 2.3 µm.  It was concluded that there were no 

significant differences in vibration displacement amplitudes between the handpiece models 

when loaded. 

 

Due to the interactions of many parameters affecting handpiece performance
12, 134

, it was 

necessary to standardise as many conditions as possible for these experiments.  For this 

reason, static loads were applied, the magnitude of which were representative of those 
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measured under clinical conditions
140, 142

.  However in practice these loads are not constant – 

handpieces are held freely and intermittent pressure is applied by the operator, with loading 

depending on the tissue or material being cut, the stage of cavity preparation and the operator 

technique
125, 139

.  The angle of attack of the RCI and direction of cutting would also vary.  A 

better understanding of handpiece vibration would be achieved if clinical conditions could be 

more closely simulated. 

 

An interesting finding of this part of the investigation was that handpiece vibrations differ 

depending on the extent of loading.  This was particularly evident between the loads of 100 

and 150 g, where the increase in load resulted in a statistically significant increase in mean 

vibration displacement amplitude (p < 0.01).  As these are representative of the loads being 

applied by dentists in practice
140, 142

, there may be justification for adapting operative 

technique if any future conclusive evidence proves that these small vibrations have adverse 

effects upon the dental tissues, operator or patient. 

 

Also of interest is the discovery that the type of RCI has a significant effect on vibration of 

the handpiece depending on the handpiece model under investigation.  This may appear to 

contradict the earlier conclusion that there were no differences between loaded handpieces.  

However the key consideration here is the interaction of the independent variables.  In order 

to comprehend this phenomenon, an analogy could be used.  Consider the following fictional 

scenario. 

 

A study is conducted into whether gender has an effect on height of children, and 

any other factors that may be related.  A group of 100 children of the same age 
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are measured – 50 boys and 50 girls, and no significant difference is found in 

height depending on gender.  Then the same group are further investigated to 

look at whether being left handed or right handed corresponds to differences in 

height of the boys and girls.  It is found that the 25 left handed girls are 

significantly taller than the 25 right handed girls.  But the opposite is true for the 

boys – the 25 right handed boys are significantly taller than the 25 left handed 

boys.  Therefore there are significant differences in height between left and right 

handers, but the direction of this effect is dependent upon gender.  A variable 

that earlier appeared to have no significance (ie gender), has now become 

significant when analysed in the context of another variable (handedness).   

 

Likewise, the handpiece model – initially thought to make no significant difference to 

vibration – was found in the loaded handpiece study to contribute to differences in levels of 

vibration when examined in relation to the cutting instrument used.  For one of the turbines, 

a tungsten carbide RCI produced higher levels of vibration than a diamond RCI (p < 0.01).  

An opposite effect was found in the other two turbines – the diamond RCI was associated 

with the greater displacement amplitudes (p < 0.01).  Ercoli et al.
126

 also noted complex 

interactions between handpiece type (turbine or speed-increasing) and RCI type (diamond or 

tungsten carbide); the depth of material cut had an additional influence.  These interactions 

may have implications for other cutting studies. 

8.5 Tooth/RCI exchange 

Because cutting instruments become worn during use
19

, each new instrument was used to cut 

into a tooth no more than 20 times (each cut requiring less than five seconds) before being 
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discarded.  The number of times each extracted tooth could be cut was also limited by the 

volume of enamel available, meaning that it was only possible to achieve around ten 

successful scans per tooth.  In the investigation of increasing loads, both tooth and 

instrument had been replaced at the same time.  The third part of this study attempted to 

correct this error in experimental design, by investigating whether it was likely that the 

instrument, or the tooth, had a greater influence on handpiece vibration. 

 

One factor to consider in cutting studies is the substrate.  It could be argued that the material 

used for this purpose should be homogenous, so that inconsistencies in texture do not affect 

the vibration studies.  But dental tissues have a complex anisotropic construction, and no 

substrate has been found that adequately substitutes for them
2, 134

.  Another alternative 

employed by some researchers
140, 190

 has been to use bovine teeth, but these were not 

recommended as they differ in structure from human teeth
19

.  For these reasons real extracted 

human molar teeth were chosen for these investigations. 

 

It had been anticipated that enamel sourced from a number of teeth might influence results, 

for example due to variation in age
19

.  No significant differences were found between the 

different teeth whilst measuring handpiece vibrations (p = 0.562).  This was an encouraging 

finding, as it indicated that any differences found in the loading study were not likely to be 

attributable to the use of different teeth.  However it should be noted that only ten teeth were 

used for this comparison, and a greater number would provide a more reliable basis for this 

conclusion. 
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The individual cutting instruments used in this investigation were found to differ 

significantly (p = 0.012).  Watson and Cook
19

 observed differences in the concentricity of 

bur rotation depending upon construction (tungsten carbide only, or tungsten carbide head on 

a steel shank), potentially affecting their vibration.  Although they found differences between 

the bur types, no significant differences were seen within each type, but discrepancies in 

alignment of cutting heads resulted in a range of concentricity errors up to 71 µm.  Sample 

sizes were limited to only five burs of each type, and it would be interesting to compare 

more.  Their study focused on the tooth-cutting interactions of bladed tungsten carbide burs, 

whereas the vibrations in this final part of the current investigation were recorded whilst 

cutting with diamond-coated instruments.  It is proposed that the quality of construction of 

the diamond RCIs may have influenced the vibrations measured at the turbine head.  Another 

possibility is that the instruments had not been inserted into the chuck to the same extent; this 

could be clarified with further testing. 

8.6 Future directions 

The potential for further investigation of discrepancies in instrument rotation rates has been 

discussed in section 8.1.  Vibration frequencies were used to calculate these rotation rates 

whilst the instruments were unloaded.  These rates are limited by the frictional forces 

operating within the handpiece
163

.  It would also be possible to derive the rotation rates of the 

instruments whilst cutting.  The instrument would be expected to rotate more slowly than 

when unloaded, due to an increase in resistance as the RCI contacts the tooth
163

.  

 

One potential criticism of the current research was that only one handpiece of each type was 

used, due to financial limitations.  There may be discrepancies between handpieces of the 
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same type, which would only become apparent with a larger sample size.  Dyson
191

 found 

considerable inconsistencies in performance characteristics (including vibration) within each 

of the two types of disposable handpieces examined.  In general, however, he believes that 

other (ie non-disposable) handpieces can be assumed to be consistent in their engineering 

and performance (Dyson JE 2006, personal communication, March 31), so it is hoped that 

the results included within this report are representative of the models used.  Nevertheless, it 

would be preferable to test a higher number of handpieces and models. 

 

The vibrations measured in this research were those that occurred in one plane, ie towards 

and away from the scanning head.  It is likely that other vibrations were also occurring in 

vertical and lateral planes, but these would have remained undetected by this equipment.  A 

3D (or triaxis) scanning laser vibrometer
192

 could be used to investigate the movements in all 

directions, to provide a more complete description of handpiece vibration patterns.  It may be 

possible in future to use a rotational laser vibrometer to characterise the movement of the 

RCIs,  but at present  they are  limited to investigations  of  objects  rotating  at  speeds up  to  

20 krpm
193

. 

 

An observation made in this study is that there are inconsistencies within the cutting 

instruments even when previously unused, which is in agreement with other researchers
19

.  

Tool imbalance may be associated with vibration
191

.  In the dental clinic, instruments can 

become bent (or broken), and it is hypothesised that the subsequent eccentric rotation would 

have a substantial influence on the vibration of handpieces.  It would be interesting to pursue 

this and perform further research into the relationship between eccentric instrument rotation 

and handpiece vibration. 
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During the course of these investigations, it was noted that vibrations in the teeth under load 

appeared to differ depending on the hardness of the tissue being cut.  This is consistent with 

the observation of Henry and Peyton
11

 that the harmonic content of the vibration becomes 

higher with increasing hardness.  It is possible to use laser vibrometry to measure the 

differences in vibration frequency or magnitude of the teeth due to defects such as caries
194

.  

Dentine is softened when caries causes demineralisation
26

, and the vibration pattern differs 

from that of healthy dentine.   

 

It is proposed that a selective cutting tool could be developed to remove only necrotic 

dentine whilst preserving sound tissue – a criterion that has been mentioned as a requirement 

for an ideal cutting instrument
76

.  A similar principle was recently suggested by Vila 

Verde
107

, whereby characteristic sound signatures of laser ablation are used to indicate when 

tissue removal should cease.  Process monitoring and control systems are already being 

exploited in industrial manufacturing, using sensors to detect acoustic emissions or relative 

vibrations between cutting tools (drills) and workpieces, to estimate surface roughness or 

predict tool wear/breakage
82

.  If handpieces could be adapted to utilise a feedback 

mechanism to alter the rate of cutting in response to changing dentine hardness (detected by 

vibration characteristics), over-extension of cavity margins might be more easily avoided. 
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CHAPTER 9 

9 CONCLUSIONS 

 Measured maximum instrument rotation rates were similar to those documented in 

handpiece manufacturers' literature.   

 It was confirmed that it is possible to use a SLV to measure vibration displacement 

amplitudes of high-speed dental handpieces. 

 Unloaded vibration displacement amplitudes of turbines and speed-increasing handpieces 

were variable, yet remained under 4 m in magnitude. 

 Vibrations of unloaded handpieces were greater when equipped with a RCI than when 

the chuck remained vacant. 

 More vibration activity was recorded at the head end of unloaded handpieces than further 

along the body. 

 Under loaded conditions, the overall effect of handpiece type resulted in no significant 

differences in vibration displacement amplitudes, although further statistical scrutiny 

revealed differences when the interactions of other variables were considered. 

 Significant differences were found between two types of cutting instrument (diamond 

and tungsten carbide) during vibration recordings of loaded handpieces, but the direction 

of the effect (ie an increase or decrease) was dependent on the handpiece model. 

 Vibration amplitudes of handpiece heads increased significantly when loading of the 

instrument increased from 100 to 150 g. 

 Significant inconsistencies were found within a sample of cutting instruments of the 

same type, with regard to the vibrations recorded in the handpiece head whilst cutting. 
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 There were no significant differences between mean vibrations of handpieces when 

cutting into ten different extracted teeth. 
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11 APPENDIX 

11.1 Raw data 

11.1.1 Unloaded data 

Contents of the following tables refer to vibration displacement amplitudes in m. 

WA99A with RCI 

 

WA99A without RCI 
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25CHC with RCI 

 

25CHC without RCI 
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TA98CM with RCI 

 

TA98CM without RCI 
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660C with RCI 

 

660C without RCI 
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TA96CM with RCI 

 

TA96CM without RCI 
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637C with RCI 

 

636C without RCI 
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TA98M with RCI 

 

TA98M without RCI 
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11.1.2 Loaded data 

Contents of the following tables refer to vibration displacement amplitudes in m. 

TA98CM with diamond RCI 

 

TA98CM with tungsten carbide RCI 

 



 

122 

660C with diamond RCI 

 

660C with tungsten carbide RCI 
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TA96CM with diamond RCI 

 

TA96CM with tungsten carbide RCI 
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11.2 Conference abstracts 

11.2.1 British Society for Dental Research (BSDR) 

Durham, April 2007 

 

Vibrations of High-Speed Dental Handpieces  

Measured Using Laser Vibrometry 
 

R.L. POOLE*, S.C. LEA, A.C.C. SHORTALL and A.D. WALMSLEY 

 

School of Dentistry, The University of Birmingham, St. Chad‟s Queensway,  

Birmingham, B4 6NN, UK. 

 

Dental handpieces are used in dentistry to remove tooth substance as part of caries treatment.  

Handpiece oscillations have previously been measured using accelerometers and single-point 

laser vibrometry, showing limited representations of their vibratory patterns. 

 

Objectives:  To measure in vitro vibration displacement amplitudes of high-speed dental 

turbines and speed-increasing handpieces using a Scanning Laser Vibrometer (SLV).   

 

Methods:  Five turbines (KaVo 660C and 637C; W&H TA-98CM, TA-96CM and TA98M) 

and two speed-increasing handpieces (KaVo 25CHC and W&H WA-99A) were investigated 

using a Polytec SLV (PSV-300).  Handpieces were operated with either no bur or a new, 

unused diamond fissure bur (Ash HiDi 541).  Drive air pressures fell within the ranges 

recommended by the manufacturers.  Frequency bands selected for analysis were consistent 

with expected rates of bur rotation, whilst the unloaded handpieces were operated at 

maximum speeds.  Repeated measurements were made at six selected points on the 

handpiece, three at the head and three along the body.  Results were investigated using 

analysis of variance (ANOVA).   

 

Results:  Mean values ranged from 0.01 (± 0.01) to 1.33 (± 0.28) μm.  There were 

significant differences between handpiece models (p < 0.05).  Within the results for each 

handpiece, variations in displacement amplitudes occurred between the areas targeted by the 

laser.  The greatest activity was observed at the head end of the handpieces.  

 

Conclusions:  The SLV has shown that it is possible to visualise the vibratory patterns of 

high-speed dental handpieces.  Variations in displacement amplitudes were observed under 

different conditions, although the magnitudes of the vibrations were small. 

 

This work is supported by an EPSRC project grant (EP/D500834/1). 
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11.2.2 Pan European Federation (PEF IADR) 

London, September 2008 

 

 

The Effect of Load on High-Speed Dental Handpiece Vibrations 
 

R.L. POOLE*, S.C. LEA, A.C.C. SHORTALL and A.D. WALMSLEY 

 

School of Dentistry, The University of Birmingham, St. Chad‟s Queensway,  

Birmingham, B4 6NN, UK. 

 

High-speed dental handpieces may potentially propagate cracks within tooth enamel as a 

result of the vibrations produced during the cutting process.  

 

Objectives:  To measure in vitro vibration displacement amplitudes of high-speed dental 

handpieces using a Scanning Laser Vibrometer (SLV), whilst cutting extracted teeth under 

various loads.   

 

Methods:  Extracted molar teeth were mounted on a laboratory pan-balance so that the tooth 

crown contacted the cutting instrument at a known load.  A Polytec SLV (PSV-300) 

measured vibrations at the head and angle whilst handpieces were clamped in a fixed 

position.  Repeated measurements were taken using a new diamond rotary cutting instrument 

(Ash HiDi 541) both unloaded and with increasing loads of 0.5 to 2.0 N.  Drive air pressures 

fell within ranges recommended by the manufacturers.  Handpieces were operated at 

maximum speeds with a coolant water spray.  Results were investigated using analysis of 

variance (ANOVA).   

 

Results:  Vibration displacement amplitudes of handpieces were not significantly greater 

under loading compared to the unloaded situation (p > 0.05); increases in loading did not 

correspond with increases in displacement of the handpiece.  Vibration activity at the head 

was greater than at the angle of the handpiece. 

 

Conclusion:  Contrary to expectations, increasing the loading of rotary cutting instruments 

did not result in increased vibration displacement amplitudes.  However the data was 

consistent with our earlier work in that greater activity was found at the head, and the levels 

of vibration remained low (< 5 µm). 

 

This work is supported by an EPSRC project grant (EP/D500834/1). 
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11.2.3 International Association for Dental Research (IADR) 

Miami, April 2009 

 

Evaluating Vibrations Transmitted Through Teeth During High-Speed Cutting 
 

R.L. POOLE*, S.C. LEA, A.C.C. SHORTALL and A.D. WALMSLEY 

 

School of Dentistry, The University of Birmingham, St. Chad‟s Queensway,  

Birmingham, B4 6NN, UK. 

 

Vibrations of high-speed dental handpieces are believed to have the potential to propagate 

cracks within tooth enamel during cavity preparation, thereby causing iatrogenic damage. 

 

Objectives:  To investigate the feasibility of using a scanning laser vibrometer to evaluate 

factors affecting the magnitude of vibrations transmitted through teeth. 

 

Methods:  A non-contact scanning laser vibrometer (Polytec PSV-300-F/S) was used to 

measure surface vibrations of extracted molars during cutting procedures.  A high-speed 

dental turbine (KaVo TA98CM), equipped with a new diamond rotary cutting instrument 

(Ash Hi-Di 541), was used to cut into each tooth.  The drive air pressure was 2.8 bar (40 psi) 

and water coolant was supplied at 50 ml/min.  A tension/compression load cell (Sensotec 

Model 31) monitored the load applied to the tooth throughout the data collection period. 

 

Results:  A frequency peak was detected at around 5.4 kHz. The mean velocity of vibrations 

was 19.9 (±2.4) mm/s, whilst the average maximum vibration displacement amplitude was 

recorded at 0.59 (± 0.08) μm. 

 

Conclusion:  Vibrations are transmitted from the rotary cutting instrument through to the 

tooth surfaces.  It is possible to measure the velocity and displacement amplitude of these 

vibrations using scanning laser vibrometry.  Values recorded appeared to be affected by the 

force and direction of the instrument loading, and the type of dental tissue being cut.  This 

preliminary study provides a basis for further research. 

 

This work is supported by an EPSRC project grant (EP/D500834/1). 

 

 

11.3 Publication 
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