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Abstract

General relativity describes gravity as the curvature of space-time. The theory pre-

dicts the existence of gravitational waves (GWs), which can be described as ripples

in space-time propagating at the speed of light. So far no direct detection of GWs

has been achieved. The sensitivities of the currently leading laser interferometric

GW detectors are limited by various noise sources, i.e. seismic, thermal, shot noises

etc.

Several conceptual studies are underway investigating new techniques that aim to

improve sensitivities enough to fulfil the requirements of the next generation of

detectors. One of these new techniques under investigation is displacement and

frequency noise free interferometry (DFI). This thesis reports on the experimental

demonstration of a new method of partial DFI that is effective in the GW detection

frequency band.

The isolation of a mimicked GW signal from displacement noise of one mirror is

demonstrated for a detuned Fabry-Perot cavity. A significant reduction in the

displacement noise of the cavity input mirror was achieved by properly combining

the reflected and transmitted signals from the cavity. This result represents the

first experimental demonstration of this recently proposed DFI scheme, and lays

the foundations for future work aimed at implementing DFI schemes in up-coming

laser interferometric GW detectors.
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Statement of originality

The thesis presents research work carried out the University of Birmingham, be-

tween September 2006 and March 2010.

Chapter 1 contains an introduction of the general topology of the current, second

and third generation of GW detectors based on a review of papers already pub-

lished. However the description of a proposed topology for third generation GW

detectors is based on new original work reported in:

A. Freise, S. Chelkowski, S. Hild, W. Del Pozzo, A. Perreca, and A. Vecchio. ”Triple

michelson interferometer for a third-generation gravitational wave detector.” Clas-

sical and Quantum Gravity, 26(8):085012, 2009,

of which I am one of the coauthors.

Chapter 2 provides a detailed description of the conceptual model for a proposed

detuned Fabry-Perot (FP) cavity based DFI, largely taken from:

S. P. Tarabrin and S. P. Vyatchanin. ”Displacement-noise-free gravitational-wave

detection with a single Fabry-Perot cavity: A toy model.”Phys. Letters A, 372:6801-

6812, 2008.

Chapter 3 describes original work that I led and carried out in the laboratory for

the construction of a full experimental setup to investigate the feasibility of the

DFI technique in the low frequency region.

Chapter 4 details an analysis of a simulated detuned FP-cavity originally devel-

oped by myself for this thesis.

Chapter 5 shows a new experimental demonstration of the proposed detuned FP-

cavity based DFI model, that I carried out (in collaboration with S. Chelkowski, S.
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Hild and A. Freise). Material described in this Chapter (and partly in Chapter 3

and 4) provides the basis for a paper accepted by Physical Review D which I led:

A. Perreca, S. Chelkowski, S. Hild and A. Freise. ”Experimental demonstration of

a Displacement noise Free Interferometry scheme for gravitational wave detectors

showing displacement noise reduction at low frequencies.” arXiv:0912.4749, 2010.

Appendix A describes the original design of the Length and Sensing Control sys-

tem for Advanced Virgo that I did in collaboration with S. Hild, M. Mantovani and

A. Freise. This Chapter is largely taken from a document delivered to the Virgo

Project:

S. Hild, M. Mantovani, A. Perreca, and A. Freise. ”Advanced virgo design: The ad-

vanced ligo approach for choosing modulation frequencies.” Technical Report VIR-

066A-08, Virgo, 2009.

Appendix B provides original material that describes mathematically the homo-

dyne detector features.

Appendix C is an additional analysis of a simulated detuned FP-cavity originally

made by myself.

Appendix D contains the circuit diagrams of the electronic devices mainly used

for the DFI experiment described in this thesis. These circuits have been designed

by H. Vahlbruch and B. Hage with new inputs added by myself.
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Chapter 1.

Topology of Gravitational Wave

detectors

1.1. Introduction

The search for gravitational waves goes back to the years between 1916 and 1918,

when Albert Einstein predicted their existence as a direct consequence of the theory

of General Relativity [Har03]. Until then Newton’s principle of gravitation had been

adopted according to which gravity propagates instantaneously.

Gravity is the weakest of the four known fundamental forces in nature and despite

its weakness, its long range and attractive-only behaviour make it the shaping

force in an astrophysical context. With the introduction by Einstein’s of Special

Relativity in 1905, and of General Relativity in 1915 our understanding of the

gravitational force radically changed from the old Newtonian conception of infinitely

fast propagation effect between bodies. The finite nature of the speed of light,

1
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according to GR, implies that gravitational signals must travel at a finite speed,

the speed of light itself. General Relativity describes gravity as the curvature

of the space-time, this implies that changes in the gravitational field of a body

can be described as ripples in the space-time itself propagating with the speed of

light. These ripples are called gravitational waves. To date no gravitational waves

have been detected, even though strong indirect observational evidence exists in

literature Hulse-Taylor Pulsar) [HT75].

Instruments now under construction are expected to provide direct detections of

GW in the next few years. GW detection is possible by measuring the variation

δl of the distance between two free masses at separation l. The wave amplitude

h is defined by the ratio δl/l, but the predicted intensities are so tiny that they

are expected to be of the order h ≈ 10−21. Gravitational wave detectors use this

behaviour, looking for changes of the length of mechanical systems such as bars of

aluminium [BM72] or in the arms of Michelson-type interferometers to reveal GWs.

Such detectors have to look for gravitational radiation from real astrophysical ob-

jects since it is not possible to generate detectable levels of such radiation artificially.

The weak coupling of gravity with matter guarantees that the known matter in the

present Universe is nearly transparent to gravitational waves. Thus the detection

of such tiny space-time disturbances would not only be the most striking confir-

mation of General Relativity, but open a whole new branch in astronomy. The

identification of sources using gravitational waves would allow the determination of

their masses and distances independently fashion and thus a way of testing present

cosmological models.

The sensitivity of the current GW detectors is limited by several noise sources.
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Chapter 1. Topology of Gravitational Wave detectors

One group, usually referred to as displacement noises (DNs), directly moves the

reflective part of the test masses. Future GW detectors are expected to be lim-

ited by displacement noise such as seismic noise, gravity gradient noise, thermal

noise and radiation pressure noise at frequencies below 100 Hz. Several studies

are currently ongoing to create a new generation of GW detectors with a strongly

improved sensitivity [FCH+09]. In a context of future GW detectors a new idea

called displacement and frequency noise free interferometry (DFI) was proposed

by S.Kawamura and Y.Chen [KC04]. DFI is based on the fact that gravitational

waves and displacement noise as well as frequency noise affect the light in a different

manner and aims at reducing all displacement noises and frequency noise simulta-

neously. The realisation of an experiment with multiple read-out channels where

each single channel carries the gravitational wave signal and the noise information

differently allows the creation of a channel that is completely free from laser and

displacement noises [CK06, CPS+06].

However the current experimental demonstrations of DFI have been carried outside

the GW detectors frequency band. Recently a new DFI scheme has been proposed

which works in a low frequency region. A detuned Fabry-Perot (FP) cavity con-

figuration [TV08] in combination with two lasers is used to partially remove the

displacement noise from both cavity mirrors. One laser is used for the input cavity

mirror (IM) and one is used for the end cavity mirror (EM) (Double Pumped Fabry-

Perot cavity). This thesis is aimed at the first experimental proof of DFI in the

GW detector frequency band providing the demonstration of the principle of the

detuned FP-cavity based DFI scheme proposed in [TV08]. Here one laser is used in

combination with two homodyne detectors to suppress strongly the displacement

noise of the input mirror of a FP-cavity with respect to a simulated GW signal. As

3
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a result we obtain a gain in the GW signal to displacement noise ratio in the whole

frequency range of interest of ∼ 60.

1.1.1. Structure of the thesis

The aim of this thesis is to describe the first experimental demonstration of dis-

placement noise free laser interferometry (DFI) in the gravitational wave detection

band. The structure follows a logical order to provide the basic concept of DFI

before the individual steps necessary for the experimental proof are presented.

Chapter 1 is an overview of the topology of current and future generations of GW

detectors. The basic principle of the detection and limitations of GW detectors are

provided.

Chapter 2 provides an overview of displacement noise free laser interferometry with

a more detailed description of the conceptual model for a proposed detuned Fabry-

Perot cavity based DFI.

Chapter 3 provides a description of the experimental setup with all its optical and

electronic components. It is shown that the experimental demonstration of the

proposed detuned FP-cavity DFI scheme can be performed with the use of a single

laser.

Chapter 4 provides the description of a simulated detuned FP-cavity. Some features

of the homodyne detector angle are studied to build the basis of the experimental

measurements. GW signals and DNs are simulated and consequently used to show

the feasibility of the proposed detuned FP-cavity based DFI model.

Chapter 5 describes the measurements made to demonstrate the validity of the

4
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proposed scheme. GW and DN measurements are made and consequently used to

give an experimental proof of the new DFI scheme. The gravitational wave wave

signal to displacement noise ratio is improved in the frequency range of 10Hz to

10 kHz with a typical factor of ∼ 60.

In Chapter 6 an overview of the experiment and relative use of the detuned FP-

cavity for future gravitational wave detectors are presented.

Appendix A describes the design of the length sensing and control system (LSCS)

of the Advanced Virgo interferometer.

1.2. Principle of detection with a Michelson

Interferometer

A Michelson interferometer is a device that detects the interference at the output

of two light beams travelling along its arms which are at 90◦ angle to each other.

It translates differences between the length of the arms into differences in phase of

its two beams. Fig. 1.1 shows the GW effect on a Michelson interferometer, where

for simplicity the GW is assumed travelling orthogonal to the interferometer plane.

In order to understand the principle of detection with a Michelson it is worthwhile

to consider its response to a sample GW signal.

A sinusoidal GW with amplitude h and frequency fgw can be written as follows,

for simplicity optimal GW polarisation and directions are assumed :
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0 π/2 π 3π/2 2π
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Figure 1.1.: In a Michelson interferometer the laser light is divided in two equal
beams which travel along the arms, reflect on the mirror and travel
back to the output interfering with each other. The circle in the image
represents the space occupied by the interferometer, and its distortion
as a sample gravitational wave passes through. From left to right the
distortion is shown for the two possible gravitational wave polarisations
(h+) and (hx). This plot is taken from [Che07].

h(t) = hei2πfgwt (1.1)

The light pumped from the laser at frequency f takes a time τ = 2L/c to travel

one round trip in each arm of length L. When a GW interacts with the detector

it changes the two arms length and the light takes a different round trip time.

This difference can be translated into phase difference at the output of the detector

which can be expressed as [Sau94]:

∆φ(t) = hτ
2πc

λ
sinc(fgwτ)eiπfgwτ (1.2)
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where λ is the light source wavelength and sinc(fgwτ) = sin(πfgwτ)/(πfgwτ). Thus

the GW affects the travelling light by modulating the light phase at the GW fre-

quency fgw with a modulation index of (2π/λ) sin (πfgwτ)/(πfgwτ). It is interesting

to notice that the term sin (πfgwL/c) can be maximised by choosing the optimal

interferometer arm length L ∼ c/fgw to let the detection be more sensitive at a

specific GW frequency fgw. In other words, in Fig. 1.2 it can be seen how the mod-

ulation varies with arm length and frequency. For GW frequencies below 1 kHz the

maximum of the modulation index occurs for arm lengths of at least 75 km, that

is in practice too long for ground-based GW detectors. However advanced optical

techniques are used to enlarge the optical path of the laser light which results in

an increased detection sensitivity.

It is worth noticing that the phase difference ∆φ at the output of the interferometer

is translated into optical power sensed by a photodetector as follows [Sau94]:

Pout =
Pin

2
(1 + cos 2∆φ) (1.3)

where Pout is the power at the output and Pin is the power of the light source. This

shows that the GW signal is proportional to the input power (Pin).1

1.3. Ground based gravitational wave detectors

In order to detect gravitational waves, current detectors are now taking data. One

is LIGO (Laser Interferometer Gravitational wave Observatory). That comprises

three devices: one in Livingston, Louisiana; the other two in Hanford, Washington.

1The GW signal can be detected at the output of the interferometer with modern techniques (as
’heterodyne technique’) which ensures that the GW signal is proportional to the illuminating
light whilst the working point of the detector is at the dark fringe (Pout = 0) [Miz95].
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Figure 1.2.: Michelson sensitivity for a simultaneous scan of arm length and grav-
itational wave (GW) frequency. A GW modulates the phase of the
traveling light at GW frequency itself. The interferometer design can
be optimised to its sensitivity (S) GW band by using an optimal arm
length. The red bands represent the maximum Michelson normalized
sensitivity for any frequency and arm length. The sinusoidal contribute
to the modulation index shows the repetition of the red band. The first
band is the most significant one. For GW frequencies below 1 kHz the
optimal arm length starts from 75 km.

Those are Michelson interferometers whose arms are 2 and 4 kilometers in length

[BW99].

The French/Italian Virgo detector [AAA+08], whose arms are 3 km long has a good

low-frequency sensitivity, down to 10 Hz. It is located at Cascina (Pisa).

The Japanese TAMA300 detector, which has arms of 300 m length, is located at

the TA0 Tokyo Astronomical Observatory [TTA+07].

These interferometers have resonant cavities in the arms of the detectors and also

they use a technique known as power recycling (see Sec. 1.3.2) by placing a mirror,
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Laser
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Laser
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Laser

Photodetector

L
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Figure 1.3.: GW wave detector layout. On the left is shown the basic layout of
a Michelson. In the middle is shown a Michelson with Fabry-Perot
cavities in its arms and with the power and signal recycling mirrors
(PRM, SRM). On the right a folded Michelson with delay-lines and the
power and signal recycling mirrors. This plot is taken from [Che07].

named power recycling mirror (PRM), between the laser and the beamsplitter to

increase the power into the detector [Mee88].

The German/British detector, GEO600, whose arms are 600 m long, is different

[WAA+04] from the others. It does not have cavities in the arms but it makes

use of a delay line system and a technique called signal recycling (see Sec. 1.5.1)

[HSM+98, MS91, SM91, FHS+00]. This technique provides a signal enhancement

as a mirror at the output, named signal recycling mirror (SRM), sends the signal

sidebands back into the interferometer (see Fig. 1.3).

1.3.1. Delay line and Fabry-Perot cavity

The optimised sensitivity of GW detectors requires very long arms which is unre-

alistic for ground based interferometers. To increase the effective length of the arm

the optical path can be folded in a way that the travel time of the light between the

test masses is increased. This means that the light experiences a longer interaction

time with GWs and accumulates a bigger phase shift resulting in a greater sensitiv-
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ity of the instruments. The time, τs, the light needs to leave the interferometer is

called storage time. The folding techniques, used so far, include Fabry-Perot cavity

or Delay-lines into the arms [FBBM86].

For a Michelson interferometer with delay lines, in the ideal case of folding mirrors

with reflectivities of unity, the storage time is:

τs,dl = 2L/c (1.4)

where L is the length of the total optical path. The bandwidth of this kind of

interferometers can be estimated as:

∆fdl = 1/2τs,dl (1.5)

The transfer function of such instruments can be obtained by replacing τ with τs,dl

into equation 1.2

∆φdl = h(t)τs,dl
2πc

λ
sinc(fgwτs,dl)e

iπfgwτs,dl (1.6)

On the other hand the definition of storage time in a Fabry-Perot cavity is a little

different from the delay lines case since the light photons have a different storage

time from each other. Here the storage time is intended as the average time of a

photon which remains in the cavity.

For a Fabry-Perot cavity of length L, with the input cavity mirror of reflectivity of

10



Chapter 1. Topology of Gravitational Wave detectors

10
0

10
1

10
2

10
3

10
4

10
6

10
8

10
10

10
12

10
14

Frequency [Hz]

P
ha

se
 d

iff
er

en
ce

/h
 [r

ad
]

Figure 1.4.: GW response comparison between a folded and a non-folded Michelson.
The detector is pumped with light of wavelength λ = 0.5µm. The
blue curve shows the transfer function normalised to h of a non-folded
Michelson of 4 km arm length. The sensitivity shows a magnitude
of 1011 rad and a bandwidth of 18 kHz. The red curve represents the
transfer function normalised to h of a Michelson folded with FP cavities
of length of 4 km and finesse of 30 in its arms. The sensitivity improves
up to 2·1012 with a smaller bandwidth of 600Hz. The green curve shows
the sensitivity of a Michelson with a delay-line, of ∼ 150 km, showing
a wider bandwidth and notch points at which this detector type are
insensitive to gravitational waves.

unity, the light storage time is given by [Sau94]

τs,fp =
F

2π · FSR
=

L

c

F

π
(1.7)

where F is the cavity finesse and FSR is the Free Spectral Range of the cavity

(Section 3.3.1). The bandwidth of the cavity is given by:
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∆ffp = FSR/2F ≈ 1/4πτs,fp (1.8)

which differs by a factor of 2π from the bandwidth ∆fdl of a folded interferometer

with delay lines.

The response of this folded interferometer can be expressed as [Mee88]

∆φfp = hτs,fp
8πc

λ

1
√

1 + (4πfgwτs,fp)2
(1.9)

where it can be seen that the cavity behaves as a one pole filter. It is important

to notice that in the limit fgwτfp ≫ 1 (time-storage limit) the response can be

approximated as

∆φfp ≈ 2c

λfgw
(1.10)

where the response is inversely proportional to GW frequency and is not dependent

on the storage time. This represents the upper limit of the storage time above

which the cavity negatively affects the response of the detector. Note that all the

considerations are under the condition of a GW travelling orthogonally the plane

where the detector is sitting.

It is interesting to compare the GW response between the two designs types and the

non-folded Michelson interferometer shown in Fig. 1.4. The blue curve shows the

transfer function normalised to h of a non-folded Michelson of 4 km arm length. The

12
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sensitivity shows a magnitude of 1011 rad and a bandwidth of 18 kHz. The red curve

represents the transfer function normalised to h of a Michelson folded with cavities

of length of 4 km and finesse of 30 in its arms. The sensitivity improves to 2·1012 rad

with a lower bandwidth of 600Hz. If one wants to consider a Michelson with a

delay-line, the same sensitivity can be reached with an arm length of ∼ 150 km,

which is given by 4cτs,fp. The green curve shows such response. It can be noticed

there is a higher bandwidth of 2π and several notch points at which the detector is

completely insensitive to GW. With a price of narrower bandwidth the Fabry-Perot

has the advantage of not having any points at which the detector is insensitive to

GW’s. Furthermore the longer the time storage in the delay-line interferometer the

more the notch points are at lower frequencies.

1.3.2. Power Recycling cavity

As discussed previously the interaction of GW’s with detectors affects the phase

of the travelling light which has a maximum when the storage time of the light is

half the GW period. This phase shift is measured at the output of the interfer-

ometer while it is held in its working point when the beams experience destructive

interference on the beam splitter, the so called dark fringe. Then almost the whole

amount of light returns back to the laser. Positioning a partially reflective mirror,

as shown in Fig. 1.3, the PRM mirror, this returning light, in phase with the ’new’

light coming from the laser, is recycled by the interferometer. In other words the

PRM creates an additional cavity between the PRM itself and the two input cavity

mirrors, resulting in a similar interferometer with a more powerful light source.

This also means that the power recycling does not change the frequency shape of

13



Chapter 1. Topology of Gravitational Wave detectors

the detector response, rather it improves sensitivity by a scaling factor proportional

to the power stored inside the interferometer [Miz95]. This can be seen as a con-

sequence of improvement in the shot noise (see sec.1.4.1) which is the limitation of

the sensitivity of GW detectors at frequencies above 500 Hz.

1.4. Limiting noise sources

Recalling that GW detectors aim to measure variations of distance between their

mirror test-masses, which result in a tiny phase difference between the travelling

light inside the two arms, their sensitivity to GW detection is limited by undesirable

sources which can completely mask the GW signal. The limiting noise sources can

be divided in two main categories:

• Phase Noises are spurious signals which affect directly the phase of the trav-

eling light inside the interferometer;

• Displacement Noises (DNs) are spurious signals which impose position vari-

ations of the mirrors test masses.

1.4.1. Sources of Phase Noise

Shot noise

Fluctuations of the detected photocurrent, the so called shot noise, impose a limi-

tation in the sensitivity given by the optical readout scheme. This noise originally

comes from the quantisation of the light energy on the photodetector.

Considering that a number of photoelectrons measured in a time τ obey Poisson
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statistics it can be shown for a simplified model [Cav80, Cav81] that the displace-

ment sensitivity is a function of laser power (Pin), the wavelength (λ) of the laser,

the arm length L, and a bandwidth ∆f as follow:

hsn(f) =
1

L

√

~cλ

4πPin
(1.11)

where c is the velocity of light and ~ is the reduced Planck’s constant. This equation

shows that the photon shot noise is described by a white amplitude spectral density.

Thus improvements in sensitivity can be obtained either by increasing the power of

the laser or increasing the arm length. It must be noticed that since the shot noise

is proportional to ∼
√

P and the GW signal is ∼ P then GW signal to shot noise

ratio is proportional to ∼
√

P .

Radiation Pressure noise

In GW interferometers the amount of measured light at the output is related to the

differential phase between the two light beams coming from the arms after bouncing

from the mirror test-masses. This photon bouncing causes a recoil effect on the

atoms in test masses which can affect the measurement of the phase of the light at

the output as radiation pressure noise. Thus high power increases the fluctuations

in radiation pressure on the mirrors and it can be shown that for a simple Michelson

interferometer the displacement sensitivity is given by [HRS05, Sau94]:

hrp(f) =
1

mf 2L

√

~Pin

2π3cλ
(1.12)
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where m is the mass of the mirror test mass. Here it can be notice that the radiation

pressure noise, at despite of shot noise, is proportional to 1/f 2 and to
√

Pin [Cav80].

Thus high power improves the shot noise at the price of increased radiation pressure

noise at low frequency.
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Figure 1.5.: Shot noise and radiation pressure noise amplitude spectral density. The
considered interferometer is a 4 km Michelson interferometer with test
masses of 10 kg and laser light of wavelength λ = 0.5 µm at Pin = 20 W.
The orange curve is the radiation pressure noise. The pink curve is
the shot noise and the corresponding readout noise is dark-dashed line,
which is the sum of the two contributes. For laser light power at 4.7 kW
the minimum of the amplitude spectral density is at 1 Hz.

A compromise between these two complementary noises at any frequency is given

by choosing Pin = P0 as follows:

P0 = πλcmf 2 (1.13)

which represents the value of Pin at which shot noise and radiation pressure are the
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same giving the minimum noise spectral density.

Fig. 1.52 shows plots of the amplitude spectral density of the shot noise and radiation

pressure for a 4 km Michelson interferometer with test masses of 10 kg and laser

light of wavelength λ = 0.5 µm at Pin = 20 W. It is possible to notice that at low

frequency the radiation pressure noise (orange curve) is dominant while the shot

noise (pink curve) dominates at higher frequency. These two noises can be described

as one noise called readout noise (dark-dashed curve). Thus if, for example, one

wants to have the minimum spectral density at 1 Hz (red-dashed curve) the relative

light power is P0 = 4.7kW.

Laser frequency noise

Amplitude and phase variations of the light sources can cause undesirable noise at

the interferometer output. Small imperfections of the optical cavity lengths ∆Lc

results in an additional phase shift which couples to the light as follows [HWK+91,

CYWM00]:

ϕs =
4π∆Lc

λ
δ2
s(f) (1.14)

where δ2
s Hz/

√
Hz is the spectral density of the light fluctuations and λ is the

wavelength of the light source. Imperfections ∆Lc/L ≈ 1% in the arms optical

path admit a maximum fluctuation in spectral density of 10−5Hz/
√

Hz.

2A revised version of readout noise can be found in [Cor08].
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Residual gas noise

Propagation of light depends on the refractive index, thus fluctuations of gas density

generate variations of the optical path. The phase difference when air travels in the

air and vacuum is [Sau94]:

φ = (nair − 1)
2π

λ
(1.15)

where nair is the refractive index of air. Therefore it is necessary to keep both the

arms under vacuum at the same pressure and temperature.

1.4.2. Sources of Displacement Noise

Seismic noise

This is a noise coming from the earth shaking. In a very quiet place the seismic

spectral density is [BBB+01, HRS05]:

hs ≈ 10−7f−2 m/
√

Hz (1.16)

In order to obtain a ’good’ detector sensitivity over a certain range of frequency, the

displacement of each test mass has to be attenuated by a factor greater than 109 in

the horizontal direction. Since the coupling between vertical and horizontal move-

ments is of the order of 10−3, isolation in the vertical direction is required [HRS05].

The isolation in the horizontal direction is performed by using a multistage pen-
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dulum, which can be seen as a low-pass filter. In other words if one considers a

single pendulum system, the transfer function from the suspension point to the

mass shows a resonance frequency above of which this response falls off behaviour

as f−2. On the other hand vertical isolation is reached with the suspension of a

mass on a spring.

In the Virgo detector the seismic noise is attenuated in the vertical direction to a

useful level with the adoption of a seven stage horizontal pendulum system with

six of the upper stages suspended by cantilever springs [BV02]. A triple pendulum

system is adopted for the GEO600 detector (operation down to 50Hz). This system

has the first two stages hung from cantilever springs to provide the needed vertical

isolation [Gos04].

Gravity Gradient noise

This noise can be associated with the time variability of the matter surrounding the

detector. When the matter changes its distribution it causes the fluctuations of the

gravitational field which couple directly to mirrors test masses [Sau84]. Thus gravity

gradient noise can be seen as a consequence of seismic noise and its amplitude

spectral density, for an interferometer with mirrors test masses separated by L, can

be written as follows

hG =
1

L

2Gρ

3
√

π

hs

f 2
(1.17)

where G is the gravitational constant, ρ is the density of the matter surrounding

the test masses and hs is the amplitude spectral density of the seismic noise.
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Fig. 1.6 shows the noise contributions due to seismic and gravity gradient in a

Michelson located in a place where the seismic noise is modelled differently from

equation 1.16. In a very quit place the seismic noise is dominant. The gravity

gradient noise currently is not limiting the sensitivity of the ground based interfer-

ometers.
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Figure 1.6.: Seismic and gravity gradient amplitude spectral density noise. The
considered Michelson interferometer is 4 km long with test masses sus-
pended from a 10m pendulum system. The pink curve represents the
seismic noise and the blue curve the gravity gradient noise.

Thermal noise

One more fundamental noise source is due to the fact that the mirror used as

test masses are at finite temperature. Consequently the atoms which comprise

the masses, as well as the wires used for the suspension, vibrate. Vibrations of

the test mass atoms cause vibrations of mirrors which can cover the GW signal

[Sau90, Lev98, SY09].
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One aspect of thermal noise can be associated with the Brownian motion of atoms

forming the suspended mass system. The internal friction of the material dissipates

energy causing noise. Thus the fluctuation-dissipation theorem gives an important

relation between the resulting displacement of the test masses and the dissipation

of the material. In particular the thermal noise, htn(f), associated to a pendulum

system with a resonance frequency f0, is given by [Sau94, HRS05]:

htn(f) =
kBTf 2

0 φ(f)

2π3fm[(f 2
0 − f 2)2 + f 4

0 φ2(f)]
(1.18)

where kB is the Boltzmann constant and φ(f) is the mechanical dissipation factor

of the oscillator of mass m at temperature T . From this equation can be noticed

that at resonance frequency the thermal noise is proportional to 1/φ. Thus the

higher the dissipation of the material the lower is the resonance peak resulting in

the same time in a larger frequency range of the thermal noise. For this reason

the current GW detectors use material for the suspensions with a low dissipation

factor (e.g. fused silica is used for the test masses). In particular GEO600 uses

fused silica fibers also for the suspensions in contrast with the Virgo, LIGO and

TAMA300 detectors where carbon steel wires are used.

It can be also noticed from equation 1.18 another feature of the pendulum system

which imposes a low thermal noise spectrum for frequency above the resonance

frequency. Indeed at frequency higher than f0 the thermal noise spectrum shows a

1/f 5 slope. It has to mentioned also that test masses are designed in a way that

their internal modes are located at very high frequency (order of kHz) in order to

avoid any disturb in the GW frequency band while the wires present longitudinal

modes around 1Hz and transverse modes around hundreds of Hz. For this reason
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the transverse modes, called also violin modes, are present in the sensitivity curves

of the current GW detectors. One other aspect of the thermal noise which can be

relevant in the current GW detectors is associated with the so called thermoelastic

noise where the dissipation is due to the temperature fluctuation which couples

with thermal expansion of the material [HRS05].

1.4.3. Sensitivity
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Figure 1.7.: Virgo design sensitivity. Seismic, pendulum TN, mirror TN and shot
noises limit the Virgo designed sensitivity. Violins transversal modes
are also shown in the sensitivity curve. This plot is taken from [Pun04].

The noise sources mentioned above cause unwanted spurious signals which limit the

detector sensitivity. The sources of noise affect the sensitivity in a different manner

over the frequency range. In Fig. 1.7 the Virgo design sensitivity can be seen. The

designed sensitivity sets limitation on the GW detection mainly at low frequency

where seismic and pendulum thermal noise (TN) are dominant respectively up
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to ∼ 3 Hz and up to ∼ 50 Hz. In high frequency band, starting from ∼ 300 Hz

limitations are due to the shot noise. In this band the violin transversal mode of

the wires can also be noticed. In the middle frequency range, where the detector is

most sensitive, limitations are due to the mirror TN.

Figure 1.8.: Ground based GW detector sensitivities. LLO-4 km is the LIGO de-
tector in Livingston; LHO-2 km and LHO-4 km are the two detectors
in Hanford respectively 2 and 4 km long. Virgo shows the best perfor-
mance at frequencies below 40Hz and matches LIGO LHO-4 km sensi-
tivity which is very close to its design. The experimental sensitivity in
Virgo below 200Hz is still far from its design. This plot is taken from
[AAA+08].

In 2007 the collaboration between LIGO and Virgo started with the purpose of

sharing and analysis of data. Fig. 1.8 shows the comparison between LIGO, Virgo

and GEO sensitivities. It can be seen that at high frequency Virgo matches the

LIGO LHO-4 km (LIGO 4km long in Hanford) sensitivity and it has the best per-

formances at frequencies below ∼ 40 Hz. In the intermediate frequency band Virgo
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sensitivity is worse than designed. In this band LIGO is better by almost one order

of magnitude.

However, the main GW sources are expected to be in the frequency range, up to

hundreds Hz, as signals emitted by binaries Neutron Stars (NS-NS) binaries Black

Holes (BH-BH) and at higher frequency signals emitted by pulsars and NS. Given

a higher sensitivity further can be the sources, thus an improvement of one order

of magnitude of the sensitivity would increase the probability of the detection. For

example detection of GW from NS-NS would increase the event-rate (per year) from

0.1 to 500, while the event-rate of BH-BH could be even of the order of thousands

higher [HRS05]. For this reason the second generation of GW detectors is essential.
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1.5. Second generation GW detectors

Although current GW detectors have performed long-duration data recording runs,

sensitivities have to be improved to make the detection possible. During the next

decade an upgrading of all of these interferometers is scheduled, the so-called second-

generation instruments. The second generation of laser interferometric detectors

aim to improve their sensitivities by one order of magnitude over the whole fre-

quency range of interest. This generation of GW detectors is represented by Ad-

vanced LIGO [Fri03], Advanced Virgo [FFG+05], LCGT [KtLC06] and GEO-HF

[WAA+06] and are planning advanced technology upgrades of the existing detectors,

i.e. high laser power, new materials, etc.

The noise anatomy of Advanced LIGO is shown in figure 1.9. The use of a higher

power laser will be one of the upgrades of the GW detectors. This will improve

the sensitivity at high frequency at the price of higher radiation pressure noise,

which will be dominant at low frequency. In the middle frequency band the mirror

TN gives the limit to the Advanced LIGO sensitivity. The reduction of coating

thermal noise (in Fig. 1.9 referred as ’internal noise’) forms a significant challenge

to be overcome in designing the second generation of GW detectors. All advanced

detectors will implement the SRM between the output and the beam splitter as

shown in Fig. 1.3.

1.5.1. Signal recycling

One of the parameters which affects a detectors sensitivity is the power of the light

stored in the device. It has to be mentioned that high light power, with use of
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Figure 1.9.: Advanced LIGO sensitivity. The next generation of LIGO will be lim-
ited in sensitivity at low frequency by the radiation pressure noise and
at high frequency by the shot noise. The middle range is dominated
by the coating thermal noise. This plot is taken from [HRS05].

a FP-cavity or delay lines, influences the light storage time in the arms [Hei99].

The longer the storage time the greater the interaction time of light with GWs.

However there is an upper limit of the storage time above which the sensitivity

of the device decreases as 1/f . It has to be noticed that when GWs arrive the

interaction with light produces sidebands inside the interferometer. If no recycling

and no FP cavities are used the GW sidebands (or signal sidebands) will leave

the interferometer quickly. A signal recycling cavity will be adopted in the second

generation of GW detectors to increase the signal storage time (as in GEO600

provided by delay lines which double the optical path to 1200 m). In this case the
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signal sideband is resonant in the SRC. The SRC keeps the GW sidebands trapped

inside the interferometer where they are enhanced by the resonance factor of the

signal recycling cavity itself. The drawback of this technique is a correspondingly

narrower bandwidth.

In an optical setup with arm cavities this could be a limitation since high finesse arm

cavities cannot be used. Indeed high finesse is obtained with high reflectivities of the

the cavity mirrors thus light could leave the arms after too much time. In Advanced

LIGO and Advanced Virgo the use of the signal recycling cavity can be modified

by placing the SRM roughly in the same position of the previous case and adding

some detuning to the SRM position. In this case the signal storage time decreases

independent of the finesse of the arm cavities, widening the bandwidth compared

to the configuration with the power recycling cavity only. When the tuning of the

cavity is such that the signal sideband is anti-resonant in the recycling cavity the

technique is called resonant sideband extraction [HSM+98, MS91, SM91, FHS+00].

Benefits of this configuration are that it allows the use of high finesse in the arm

cavities and consequently high power stored in the arms, thus the enhancement

from the power recycling can be reduced. In turn this means that less power light

passes through optics and then less thermal lensing effects are experienced.

Fig. 1.10 shows an example of the effect of the SRM at transmittance TMSR = 2 %

in GEO600 with a light power of 1.8 kW. It can be noticed that for zero detuning

(signal recycling) has a higher sensitivity at the price of a narrower bandwidth.
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Figure 1.10.: Signal recycling and signal extraction sidebands. From signal recycling
to signal extraction sideband the mirror SRM is tuned from zero to
half FSR. At zero tuning the signal recycling cavity is resonant and
traps the signal in the interforemeter; at half FSR the signal recycling
cavity is anti-resonant and the signal sideband remain in the detector
less time. This plot is taken from [Hil07].

1.6. A step toward the third generation GW

detectors

(This is a Section mainly extracted from a paper already published [FCH+09]).

The third-generation of gravitational wave observatories will focus not on the first

detection of gravitational waves but rather recording astronomically useful data.

This can be done by improving the sensitivity of the initial detectors and second

generation respectively of by a factor of 100 and a factor of 10, in the whole fre-

quency range. The design study for the Einstein Telescope (ET) is the first step
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to the third generation of GW detectors [ETh07, ETd]. Several studies are ongo-

ing to improve the sensitivity to the aimed goal [EBN+09, VCH+05, CDKME09],

although the field is very wide and many aspects must be taken into account. For

example the reduction of seismic and gradient noises will be likely performed by

locating the detectors underground [HT98, TW99]. This also means that the third

generation will be not upgrading the current infrastructures, thus studies of new

sites are also under way.

One more aspect to be considered is the topology of the new generation instru-

ments. So far only Michelson topology has been considered for the first and second

generations. A step toward the third generation GW detectors is presented in

[FCH+09].

In particular a Michelson topology is investigated with a triangular geometry. Three

coplanar Michelson are located at the same site to form an equilateral triangle. Here

some features of this new detector are evaluated.

The first aspect of such a geometry comes from the fact that three Michelson’s

located in same place form multiple readout channels for the GW signal. This

means that their linear combinations can be performed numerically to create a new

GW channel to enhance the sensitivity of the detector. Two techniques like time-

delay interferometry (TDI) [AET99, TA99, ETA00, AET03] and displacement and

frequency noise free interferometry (DFI) (Chapter 2), although they have been de-

veloped for different purposes, can be considered for the triple Michelson geometry

shown in Fig. 1.11. Both take advantages of the multiple readout channels to create

one additional numerical channel. TDI uses this channel to remove the laser fre-

quency noise, whereas DFI uses this channel to suppress all forms of displacement
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Figure 1.11.: Triple Michelson. Three coplanar Michelson are located in the same
site to form an equilateral triangle. This configuration is provided with
resonant arm cavities, power recycling and tunable signal recycling
cavities. This plot is taken from [FCH+09].

noise. In other words the new channel can be interpreted as the output of ’virtual’

interferometers. An example is given by the two 60◦ Michelson with uncorrelated

noise described in [Cut98].

These two techniques (TDI, DFI) are currently used for the the construction of a

particular channel, the so-called null-streams, which is a powerful technique of data

analysis to identify noise signals that could be wrongly interpreted as GW signals.

It is obtained from a linear combination of detector signals such that GW signals

are suppressed while the noise signals are left with a certain amplitude.

In general, given three instruments (not all co-aligned) it is always possible to

form one null-stream where the sensitivity of this stream depends on the relative

instrument rotation [CLS+06, FCH+09]. From [JKS98] the response function h
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Figure 1.12.: The responses of detectors to a polarised GW traveling along the
z-axis as a function of the detector orientation. The left-hand side
shows the normalised sensitivity to one of a single Michelson, while the
right-hand side shows the normalised sensitivity of the triple Michel-
son shown in Fig. 1.11. Data points represent the sensitivity of the
detector which has its normal passing the respective data point and
its origin. The magnitude of the sensitivity is expressed with color.
This plot is taken from [FCH+09].

of a Michelson interferometer to gravitational waves can be written as a function

dependent on the detector rotation γ around its normal, as follows:

h(γ) = sin ζ [(C1 sin 2γ + C2 cos 2γ) h+

+ (C3 sin 2γ + C4 cos 2γ)h×]
(1.19)

with ζ the opening angle of the interferometer arms, hx and h+ represent the two

GW polarisations and Cn functions of time. In particular for three Michelson

interferometers oriented at 0◦, 120◦ and 240◦, it can be written:

31



Chapter 1. Topology of Gravitational Wave detectors

− h0◦ = h240◦ + h120◦ (1.20)

This shows two important features of the triangular geometry. One is that from

two detector signals, the signal of a third can be obtained, the second is that is

possible to create a null stream simply by adding all the outputs.

One more advantage of such geometry comes from better sky coverage. A single

Michelson is more sensitive to one GW polarisation than to the other one, and one

must consider that most GW will not be optimally polarised. The three Michelson

geometry is sensitive to both polarisations at once, increasing the real sensitivity

to most likely gravitational wave sources.

Thus the three Michelson geometry increases the sensitivity since it is sensitive to

the second polarisation as well. Indeed using equation 1.20 the output signal can

be synthesized for a Michelson at 45◦ rotated from equal interferometers rotated

by 120◦ and 240◦:

h45◦ =
1√
3

(h240◦ − h120◦) (1.21)

Fig. 1.12 shows the responses of detectors to a polarised GW traveling along the

z-axis as a function of the detector orientation (antenna patterns). The sensitivity

of a triple Michelson in a triangular geometry shows better performances than a

single Michelson. The latter shows orientation at which it is insensitive to a certain

GW polarisation, whereas the former does not present such limitations.
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Chapter 2.

Displacement noise Free

Interferometry for a Fabry-Perot

cavity

As described in Chapter 1 current gravitational wave detectors are limited in sen-

sitivity by several kinds of fundamental noises. Improvements in sensitivity is the

goal to be reached in the next decade for the second and third generation of gravi-

tational wave detectors. Sources of noise below 500 Hz belong to the displacement

noises group which, in order to improve the sensitivity in this frequency band, is

proving to be a great challenge for scientists. In this context a few years ago a new

promising technique, later called Displacement Noise-Free Interferometry (DFI)

was proposed by Y. Chen and S. Kawamura [KC04]. They used in this work a

toy model composed of three aligned test masses analysed in the TT coordinate

system, in which test masses when subjected to GW signals behave differently from
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motions due to displacement noises [Rak05]. Using an appropriate combination of

light travel between the test masses, this difference allows the constructions of an

observable which is free from any kind of displacement noise while the GW signal

is still present. The implementation of this technique in GW detection, when laser

interferometry is used, requires a further step for laser frequency noise, which affects

all laser detectors. In the paper [CK06] Y. Chen and S. Kawamura, using the same

approach of the previous paper, proposed a scheme in which both displacement and

time noise were suppressed. Using N detectors, with connections between each of

the pairs in d spatial dimensions, they showed that, when N > d + 2, it is possible

to construct at least N(N − d + 2) light travel combinations that are free from

both displacement and time noises. They have proved that the GWs sensitivity

was limited at low frequency by the frequency factor ∼ f 3 for a two-dimensional

interferometer. Later an optical design consisting of two pairs of two equal arm

Mach-Zehnder placed in three spatial dimensions was proposed in [CPS+06] where

the GWs sensitivity was limited at low frequency by the frequency factor ∼ f 2.

A partial experimental proof of DFI is described in [SKW+07] where a pair of

bi-directional Mach-Zehnders were used to remove displacement from the folded

mirror in the frequency band [105 − 108] Hz. A complete experimental demonstra-

tion of DFI is provided in a recent work [KSN+09] where the three-dimensional

configuration proposed in [CPS+06] has been implemented, as displacement noise

from mirrors and beam-splitters were reduced in frequency-band [105 − 108] Hz.

However, the large-baseline gravitational wave detectors do not work in this band.

Recently a new DFI scheme has been proposed which works in a low frequency

region. A detuned Fabry-Perot (FP) cavity configuration [TV08] in combination

with two lasers is used to remove partially the displacement noise from both cavity
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mirrors. One laser is used for the input cavity mirror (IM) and one is used for the

end cavity mirror (EM), known as Double Pumped Fabry-Perot cavity.

Such a configuration, although it does not include the frequency noise aspect of

DFI, allows the isolation of the GW signal from displacement noise in a wide range

of frequencies. Basically for each laser the reflected and transmitted output signals

of the detuned FP-cavity carry different GW and displacement noise information,

due to the existence of the prompt reflected light, and a proper combination of

both signals results in the suppression of the displacement noise of the cavity’s

input mirror. Here the mechanism of noise cancelation is completely different from

Chen-Kawamura’s mechanism. The latter uses the distributed nature of GWs which

result in different kinds of responses. In the long wave approximation λgw ≫ L,

where λgw is the GW wavelength and L is the cavity length, the leading order of the

DFI signal for the detuned FP-cavity is h(L/λgw)0 which is much better than the

h(L/λgw)2 that can be obtained from the Chen-Kawamura DFI scheme [CPS+06].

Nevertheless the detuned FP-cavity scheme loses the optical resonant gain from the

cavity which is in the order of c/γL, where γ is the cavity half bandwidth. Hence,

the sensitivity of this scheme concerning GWs is strongly reduced compared to

conventional interferometers and the noise performance of auxiliary optics becomes

much more important.

This Chapter describes the idea behind the DFI topology of a detuned FP-cavity

which has been proposed by S. P. Tarabrin , S. P. Vyatchanin. The description is

largely based on the work referred in [TV08], and experimental demonstration will

be provided in the following Chapters.
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2.1. Simplified idea of DFI behind the detuned

Fabry-Perot cavity

This Section explains the basic idea behind the DFI feature of a FP-cavity locked

in a detuned state. The treatment is done neglecting time delay and considering

GWs as classical forces applied on cavity mirrors in the inertial laboratory frame.

Fig. 2.1 shows the set-up of a Double Pumped Fabry-Perot cavity which is basically

the toy-model proposed in [TV08], where the cavity is pumped from both sides using

the two lasers L1 and L2. The cavity is assembled by the two partially reflective

mirrors a and b. The laser L1 pumps the cavity through the mirror a and the two

detectors D1 and D2 measure the phases of the reflected and transmitted signals

respectively. In order to simplify the analysis, the laser L1 and the detector D1

are rigidly mounted on the platform P1 and the detector D2 is rigidly mounted

on platform P2. On the other side the laser L2 pumps the cavity through the

mirror b and the two detectors D3 and D4 measure the phases of the reflected

and transmitted signals respectively. The laser L2 and the detector D3 are rigidly

mounted on platform P2 and the detector D4 is rigidly mounted on platform P1. In

other words relative movements of optical elements rigidly mounted on the same

platforms are not taken in account but only the movements of platforms center of

masses are considered.

Considering the cavity pumped through mirror a, if ξgw is the phase induced by

GW displacement, ξa and ξb are the phases induced by the two mirrors a and b

respectively, the measured transmitted signal at
out can be written as follows:

at
out = q1(ξgw + ξb − ξa), (2.1)
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Figure 2.1.: Double pumped Fabry-Perot cavity. (a) The laser L1 pumps the cavity
through the mirror a and the two detectors D1 and D2 measure the
reflected and transmitted signals respectively. (b) The laser L2 pumps
the cavity through the mirror b and the two detectors D3 and D4 mea-
sure the reflected and transmitted signals respectively. This plot is
taken from [TV08].

where q1 is the cavity gain factor. On the other hand, if ξP1
is the phase induced

by platform P1 displacement, the measured reflected signal ar
out can be expressed

as:

ar
out = p(ξa − ξP1

) + q2(ξgw + ξb − ξa), (2.2)

where p is the gain factor of the so called prompt reflected light by the input cavity

mirror and q2 is the cavity gain factor. All the measurement are made with respect

to platform P1.
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Similarly in the case of same lasers and same detunings when the cavity is pumped

through the mirror b using the laser L2 the phases of the reflected signal br
out and

the transmitted light bt
out can be written with respect to platform P2 as follows:

bt
out = q1(ξgw + ξb − ξa), (2.3)

br
out = p(ξP2

− ξb) + q2(ξgw + ξb − ξa), (2.4)

ξP2
is the phase induced by platform P2 displacement.

The following linear combination

s = ar
out +

p − q2

q1

at
out + br

out −
q2

q1

bt
out = p(ξgw + ξP2

− ξP1
), (2.5)

removes displacement noise from both cavity mirrors while the gravitational wave

signal is retained, although displacement noise of both platforms is still present. It

has to be noted that the noise suppression is not possible in two cases: The first is

when the cavity is locked on a resonant state, which means p = 0, the second case

is when the two cavity mirrors are attached simultaneously to the platforms, which

means ξa = ξP1
and ξb = ξP2

.

2.2. Model of a single pumped Fabry Perot cavity

The proposed detuned FP-cavity configuration uses two lasers to remove the dis-

placement noise from both cavity mirrors. The demonstration provided in [TV08]
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shows, as a first step, the use of one laser to remove the displacement noise from

the IM. Afterwards the use of the second laser is used symmetrically to remove the

displacement noise from the EM. This Section describes the fields of the cavity that

will be used later to show the cancelation of the displacement noise from the IM

which represents the theoretical view of the experimental demonstration provided

in this thesis.

Fig. 2.2 shows the model of a single pumped FP-cavity. The cavity is assembled

using the two movable and partially reflective mirrors a and b with transmission

coefficients of T ≪ 1. The laser L pumps the cavity through the mirror a and

simultaneously its beam is used as a reference beam in the two homodyne detectors

HD1 and HD2 [TV08]. Auxiliary mirrors together with the laser and detectors are

rigidly mounted on the platform P1 and other auxiliary mirrors are rigidly mounted

on platform P2. This requirement is not restrictive as relative fluctuations of such

elements would result in additional noises which are not essential to the description

of the DFI detuned cavity model. The distances between platforms and cavity

mirrors, l1 and l2, are supposed to be much smaller than the cavity length Lc.

Assuming the cavity is lying in the x-y plane, and is aligned to the GW x-axis,

with respect to the local reference frame of the center of mass of platform P1 the

coordinates of the cavity mirrors and platforms can be written as:
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Figure 2.2.: Toy model. The cavity consists of the two movable and partially re-
flective mirrors a and b with transmission coefficients of T ≪ 1. The
laser L pumps the cavity through the mirror a and simultaneously its
beam is used as reference beam (LO) into the two homodyne detectors
HD1 and HD2. The LO travels the same distance compared with the
transmitted light in order to avoid additional phase shift induced by
different optical path. The auxiliary mirrors, laser and detectors are
rigidly mounted on the platform P1, and other auxiliary mirrors are
rigidly mounted on platform P2. This plot is taken from [TV08].

xP1
(t) = 0,

xa(t) = l1 + Xa(t) ≈ Xa(t),

xb(t) = l1 + Lc + Xb(t) ≈ Lc + Xb(t),

xP2
(t) = l1 + Lc + l2 + XP2

≈ Lc + XP2
, (2.6)

where Xa, Xb and XP2
are the displacement noise with respect to platform P1.

Here the terms l1 and l2 are omitted since l1,2 ≪ Lc and do not change the results

presented in this Chapter.
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2.2.1. From TT-gauges to LL-gauges

It is important to remember that General Relativity is a gauge invariant theory, i.e.

all measurable quantities in it do not depend on the choice of the gauge (reference

frame) [FH05]. However the description of the GW interaction with interferometers

in TT and LL gauges results in some differences [Rak05]. Basically in the TT-gauge

the coordinates are fixed and the mutual distances between test masses change.

Here the coordinates of the test masses do not change by interacting with GWs but

they follow the test masses motion, which are meant as free falling objects. The

interaction of GWs in this case results entirely in a light phase shift. In contrast in

the LL-gauge a GW would move test masses from their positions, which results in

changes in distance caused by their physical displacement. Here the coordinates of

the test masses change when compared with the coordinate of the reference frame

and their proper distance changes as well. In other simplified words in TT-gauge

the coordinates moves with the test masses while in LL-gauge the coordinates do

not follow the test masses. The interaction of GWs with interferometers in this case

appears as tidal forces applied to the test masses (which means that that GWs are

undistinguishable from any other non-gravitational forces), plus a small correction

of the order of (x/λgw)2h where x is the distance between two test masses, λgw is

the GW wavelength and h is the GW amplitude [Tar07]. However, whatever gauge

is used, the final measurable result is the same.

Since the test masses do not follow geodesics, the analysis of GW detectors is more

appropriate in the local reference frame (LL gauge), which is a non inertial frame.

The required inertial state of test masses imposed by the TT gauge description is

not realistic. Test masses in ground based interferometers are subjected to several
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non-gravitational forces, consequently the proper reference frame is non-inertial

[Tar07].

2.2.2. Quantised electromagnetic wave formalism

Taking into account the effect of the GWs and accelerating fields on the optical

fields, the equivalence between TT gauges and LL-gauges is ensured [Rak05]. In

this case, the electromagnetic wave propagating along the x-axis at frequency ω0

and wave vector k0, can be described by the electromagnetic field operator A(x, t)

as a sum of a strong field, which approximates the light wave of amplitude A0 and

a weak field a(x, t) which describes the fluctuations of the light field [TV08]:

A(x, t) =

√

2π~ω0

Sc
[A0 + a(x, t)]e−i(ω0t∓k0x), with (2.7)

a(x, t) =

∫ +∞

−∞
a(ω0 + Ω)e−iΩ(t∓x/c) dΩ

2π
,

where Ω is the GW frequency, S the cross section of the beam, ~ the Plank’s

constant and c the speed of light.

Assuming GWs and acceleration fields only couple to the strong light field, or

equally said with the first order approximation in GW amplitude h and displace-

ment ξ can be written [Tar07][TS08]:

A(x, t) =

√

2π~ω0

Sc
[A0 + A0g±(x, t) + A0w±(x, t) + a(x, t)]e−i(ω0t∓k0x), (2.8)

where g± is the coupling term between GW and electro magnetic wave and w± is
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the redshift effect of the electro magnetic wave caused by the non inertial reference

frame.

The g± term is defined as:

g±(x, t) =

∫ +∞

−∞
g±(x, ωo + Ω)e−iΩt dΩ

2π
, with (2.9)

g±(x, ωo + Ω) = h(Ω)

[

1

4
ω0Ω

x2

c2
∓ i

1

2
k0x +

1

2

ω0

Ω
(e±iΩx/c − 1)

]

(2.10)

The w± term is defined as:

w±(x, t) =

∫ +∞

−∞
w±(x, ω0 + Ω)e−iΩt dΩ

2π
, with (2.11)

w±(x, ωo + Ω) = −k0ξ(Ω)

[

Ω

c
x ± i(e±iΩx/c − 1)

]

. (2.12)

2.2.3. Input, output and circulating cavity waves

Fig. 2.3 shows the fields found in the F-P cavity as described in Section 2.2. Ain(x, t)

describes the wave pumped by the laser through the mirror a. The two outputs

Ar
out(x, t) and At

out(x, t) are respectively the reflected and transmitted waves. The

fields inside the cavity are divided into two: A+(x, t) represents the wave circulating

along the positive direction of the x axis and A−(x, t) represents the wave circulating

along the negative direction of the x axis. The cavity is pumped through the mirror

b by the vacuum state wave Avac(x, t).

Using the the quantised formalism described in Section 2.2.2 the cavity fields can

be described as follow:
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Figure 2.3.: Fields in a Fabry-Perot cavity. Ain(x, t) describes the wave pumped
by the laser through the mirror a. The enhanced light field inside the
cavity, here represented by A+(x, t) and A−(x, t) according to the direc-
tion of the propagation, leaks outside the cavity. The leakage through
the mirror b forms the transmitted output of the cavity At

out(x, t). The
leakage through the mirror a in addition to the prompt reflected light
from the mirror a forms the reflected output of the cavity Ar

out(x, t).
The cavity is also pumped through the mirror b by the vacuum state
wave Avac(x, t). This plot is taken from [TV08].

Input wave

Ain(x, t) =

√

2π~ω0

Sc
Ain0[1 + g+(x, t) + w+(x, t)]e−i(ω1t−k1x) +

+

√

2π~ω0

Sc
ain(x, t)e−i(ω1t−k1x), (2.13)

where ain(x, t) describes the laser fluctuations, which in the current formalism is

represented by a weak field.

Vacuum wave

Avac(x, t) =

√

2π~ω0

Sc
avac(x, t)e−i(ω1t+k1(x−Lc)), (2.14)
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where avac(x, t) describes the vacuum noise.

Circulating wave

A±(x, t) =

√

2π~ω0

Sc
A±0[1 + g±(x, t) + w±(x, t)]e−i(ω1t∓k1x) +

+

√

2π~ω0

Sc
a±(x, t)e−i(ω1t∓k1x), (2.15)

where a±(x, t) is the phase shift acquired by the light circulating in the cavity.

Reflected wave

Ar
out(x, t) =

√

2π~ω0

Sc
Ar

out0[1 + g−(x, t) + w−(x, t)]e−i(ω1t+k1x) +

+

√

2π~ω0

Sc
ar

out(x, t)e−i(ω1t+k1x), (2.16)

where ar
out(x, t) describes the reflected signal of the cavity, whose quadratures are

measured in the homodyne detector HD1 [TV08]. The first addend describes the

light propagation in the absence of the cavity which automatically vanishes at the

origin point of the coordinates xP1
= 0 where w = g = 0.
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Transmitted wave

At
out(x, t) =

√

2π~ω0

Sc
At

out0[1 + g−(x, t) + w−(x, t)]e−i(ω1t+k1x) +

+

√

2π~ω0

Sc
at

out(x, t)e−i[ω1t−k1(x−Lc)], (2.17)

where at
out(x, t) describes the transmitted signal of the cavity whose quadratures

are measured in the homodyne detector HD2 [TV08]. As in the case of the reflected

wave the first addend describes the light propagation in the absence of the cavity,

but this time the addend does not vanish automatically. Indeed, the transmitted

wave is detected at the origin of the coordinates after one round trip of light travel,

as the light acquires on additional phase shift on the backward trip compared to the

phase acquired by the local oscillator. This problem can be overcome by sending

the reference light to platform P2, as shown in Fig. 2.2. This will cause the reference

light to travel the same distance as the transmitted wave, thus acquiring the same

phase. The two equally acquired phases are completely subtracted in the homodyne

detection.

It is worth noting that with such an optical setup, where the two homodyne detec-

tors are located on the platform P1, the same results could be obtained analysing

the toy model into the general inertial frame.

The FP responses at
out(x, t) and at

out(x, t) are obtained as the solutions of the bound-

ary conditions for a FP-cavity. This will now be further explained.
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2.2.4. Boundary conditions and solutions

The continuity of the field on the mirrors surfaces is imposed as follow:

A+(xa, t) = TAin(xa, t) − RA−(xa, t), (2.18)

Ar
out(xa, t) = RAin(xa, t) + TA−(xa, t), (2.19)

A−(xb, t) = TAvac(xb, t) − RA+(xb, t), (2.20)

At
out(xb, t) = RAvac(xb, t) + TA+(xb, t). (2.21)

This set of equations is solved in [TV08] where the first order of Ω/ω1 solutions in

the spectral domain are written as follow:

ar
out =

R − Re2i(δ1+Ω)τ

1 − R2e2i(δ1+Ω)τ
ain +

T 2ei(δ1+Ω)τ

1 − R2e2i(δ1+Ω)τ
avac +

−RT 2Ain0e
2iδ1τ

1 − R2e2iδ1τ
i
2k1(Xbe

iΩτ − σ1Xa) + δΨemw

1 − R2e2i(δ1+Ω)τ
(2.22)

at
out =

T 2ei(δ1+Ω)τ

1 − R2e2i(δ1+Ω)τ
ain +

R − Re2i(δ1+Ω)τ

1 − R2e2i(δ1+Ω)τ
avac +

+
R2T 2Ain0e

3iδ1τ

1 − R2e2iδ1τ
i
2k1(Xbe

iΩτ − Xa) + δΨemw

1 − R2e2i(δ1+Ω)τ
eiΩτ (2.23)

where τ = L/c is the time delay, and δ1 is the detuning of the cavity and Ψemw

describes the coupling of the light field with the GW and accelerating field in the

approximation Ω/ω1 ≪ 1 and has the following form:
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Ψemw = Ψemw+gw + Ψemw+acc

= −k1Lh(Ω)

(

1 − sin Ωτ

Ωτ

)

eiΩτ − k1ξP1
(Ω)(1 − 2eiΩτ + e2iΩτ ). (2.24)

The factor σ1 describes the difference between ar
out and at

out which is equal to 1

when the cavity is on the resonant state. It is defined as:

σ1(Ω) = e−2iΩτ [1 − R2e2iδ1τ − R2e2i(δ1+Ω)τ + R2e2i(2δ1+Ω)τ ]/T 2 (2.25)

Rewriting equations 2.22 and 2.23 in term of displacements ξa, ξb, ξP1
, the cavity

responses are:

ar
out = R1ain + T1avac

− RT 2Ain0e
2iδ1τ

T 2
δ1
T 2

δ1+Ω

2ik1[(ξb + ξgw)eiΩτ − σ1ξa]

− RT 2Ain0e
2iδ1τ

T 2
δ1
T 2

δ1+Ω

ik1ξP1
(2σ1 − 1 − e2iΩτ ), (2.26)

at
out = T1ain + R1avac

+
R2T 2Ain0e

3iδ1τ

T 2
δ1
T 2

δ1+Ω

2ik1[(ξb + ξgw)e2iΩτ − ξae
iΩτ ]

+
R2T 2Ain0e

3iδ1τ

T 2
δ1
T 2

δ1+Ω

ik1ξP1
(1 − e2iΩτ )eiΩτ , (2.27)

where
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T 2
δ1

= 1 − R2e2iδ1τ , T 2
δ1+Ω = 1 − R2e2i(δ1+Ω)τ , (2.28)

R1 =
R − Re2i(δ1+Ω)τ

1 − R2e2i(δ1+Ω)τ
, T1 =

T 2ei(δ1+Ω)τ

1 − R2e2i(δ1+Ω)τ
(2.29)

with R1 and T1 being the reflection and the transmission coefficient of a Fabry-Perot

cavity. It can be noticed that the amplitude Ain0 of input wave Ain is amplified

inside the cavity by the factor 1/T 2
δ1

. The GW frequency Ω affect the gain cavity

factor by T 2
δ1+Ω. Since the cavity responses have been obtained when a single laser is

used the same can be done when the cavity is pumped with a second laser from the

other side and thus the mechanism of noise cancellation can be applied as described

in the next Section.

2.3. Double pumped Fabry-Perot cavity

Fig. 2.4 shows a Fabry-Perot cavity pumped with two laser from both sides. The

cavity is assembled using two partially reflective mirrors, a and b, spaced by a

distance L. Laser L1 pumps the cavity through the mirror a and laser L2 pumps

the cavity through the mirror b. Both lasers are rigidly mounted on platforms P1

and P2 respectively. Ain describes the input wave emitted by the laser L1 and

correspondingly the two outputs waves are described by Ar
out in reflection and by

At
out in transmission. Avac is the correspondent vacuum field pumping the cavity

through the mirror b. Bin describes the input wave emitted by the laser L2 and

correspondingly the two outputs waves are described by Br
out in reflection and by

Bt
out in transmission. Bvac is the correspondent vacuum field pumping the cavity

through the mirror a. The two light fields are orthogonally polarised. The detection
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scheme concerning the laser L1 of such a model is shown in Fig. 2.2. Due to the

symmetry of the model the detection scheme for laser L2 can be equally thought

of with two more homodyne detectors rigidly mounted together with laser L2 on

platform P2.

Figure 2.4.: Double pumped Fabry-Perot fields. The cavity is assembled from two
partially reflective mirrors, a and b, spaced by a distance L. Two
lasers are used to pump the cavity from both sides in order to obtain
multiple channels to be used to construct the desired DFI channel.
More specifically laser L1 creates two channels given by the reflected
Ar

out and transmitted At
out outputs of the cavity, whereas L2 creates two

channels given by the reflected Br
out and transmitted Bt

out output of the
cavity. A linear combination of these channels is used to construct a
DFI channel which suppress the DN from the cavity mirrors. This plot
is taken from [TV08].

The cavity response functions br
out and bt

out when the cavity is pumped by the laser

L2 through the mirror b can be obtained from equations (2.26) and (2.27) replacing

δ1 with δ2, ξa with ξb, ξb with −ξa, ξP1
with −ξP2

and σ1 with σ2:

br
out = R2bin + T2bvac +

− RT 2Bin0e
2iδ2τ

T 2
δ2
T 2

δ2+Ω

2ik2[(−ξa + ξgw)eiΩτ + σ2ξb] +

+
RT 2Bin0e

2iδ2τ

T 2
δ2
T 2

δ2+Ω

2ik2ξP2
(2σ2 − 1 − e2iΩτ ), (2.30)
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bt
out = T2bin + R2bvac +

+
R2T 2Bin0e

3iδ2τ

T 2
δ2
T 2

δ2+Ω

2ik2[(−ξa + ξgw)e2iΩτ + ξbe
iΩτ ] +

− R2T 2Bin0e
3iδ2τ

T 2
δ2
T 2

δ2+Ω

ik2ξP2
(1 − e2iΩτ )eiΩτ , (2.31)

where (as similarly described in equations 2.28 and 2.29)

T 2
δ2 = 1 − R2e2iδ2τ , T 2

δ2+Ω = 1 − R2e2i(δ2+Ω)τ , (2.32)

R2 =
R − Re2i(δ2+Ω)τ

1 − R2e2i(δ2+Ω)τ
, T2 =

T 2ei(δ2+Ω)τ

1 − R2e2i(δ2+Ω)τ
(2.33)

and

σ2(Ω) = e−2iΩτ [1 − R2e2iδ2τ − R2e2i(δ2+Ω)τ + R2e2i(2δ2+Ω)τ ]/T 2. (2.34)

The physical meaning of these coefficients can be deduced as for the laser L1 case.

2.3.1. Displacement noise suppression procedure

As described previously the general DFI idea is to manipulate the multiple responses

provided by the setup as an appropriate combination of them (the so called DFI

response), resulting in the suppression of the displacement noise while the GW

signal is still present.

Multiplying ar
out by the factor Rei(δ1+Ω)τ and multiplying at

out by σ1, the combination
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s1 is defined as follow:

s1 = Rei(δ1+Ω)τar
out + σ1a

t
out (2.35)

Multiplying br
out by the factor Rei(δ2+Ω)τ and summing it to bt

out, the combination

s2 is defined as follows:

s2 = Rei(δ2+Ω)τbr
out + bt

out (2.36)

The DFI response is given by the following combination of s1 and s2 [TV08]:

s = s1 +
eiδ1τ (1 − e2iδ1τ )

eiδ2τ (1 − e2iδ2τ )
s2e

iΩτ . (2.37)

The meaning of the DFI response can be kept if the combination s is written in a

different form. Replacing equations 2.26 and 2.27 in equation 2.35, equations 2.30

and 2.31 in equation 2.36 and assuming Ain0/T 2
δ1

= Bin0/T 2
δ2

, the combination s can

be presented in the following explicit form:
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s = aine−i(δ1−Ω)τ +
1 − e2iδ1τ

1 − e2iδ2τ
bine

i(δ1+2Ω)τ

+
R

T 2
[e2iΩτ (e2iδ1τ − 1) + T 2

δ1
e−2iδ1τ ]avac

+
e−iδ1τ (1 − e2iδ1τ )

e−iδ2τ (1 − e2iδ2τ )
Rbvace

iΩτ

+ R2e−i(δ1+Ω)τ (1 − e2iδ1τ )
Ain0

T 2
δ1

× ik0[−ξP1
+ 2(ξP2

+ ξgw)eiΩτ − ξP1
e2iΩτ ] (2.38)

The s combination shows that the DFI response is free from displacement noise

from the cavity mirrors ξa and ξb while it still contains the term ξgw which is phase

accumulated by the light due to the GW interaction.

It the particular case of equal detuning (δ1 = δ2), in the long-wave approximation

where ΩL/c ≪ 1, assuming A = Ain0=Bin0
, s can be rewritten as follows:

s ≈ ain + bin + avac + bvac

− iδ1

γ − iδ1

A2ik0

(

1

2
Lh + ξP2

− ξP1

)

(2.39)

It is interesting to note that equation 2.39, which can be associated with equation

2.5, shows that the double pumping F-P cavity shows a response with no cavity

gain, and its sensitivity is limited by the displacement noise of the platforms.

In conclusion it has been demonstrated theoretically the DFI feature of a FP-cavity

when the cavity itself is pumped from both sides with two lasers (or equivalently

with two orthogonal polarised light fields) using the transmitted and the reflected

responses as channels to be combined. It was shown that a proper combination of
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these channels allows the DN suppression from both cavity mirrors while the GW

is still present. This is the basis for the realisation of the real experiment described

in the next Chapters.
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Construction of a DFI detuned cavity

3.1. From two lasers to one laser

The DFI scheme described in Chapter 2 shows that a detuned FP-cavity configura-

tion [TV08] in combination with two lasers can be used to remove the displacement

noise from both cavity mirrors. In such a double pumped Fabry-Perot cavity one

laser is used for the input cavity mirror (IM) and one is used for the end cavity

mirror (EM) (Double Pumped Fabry-Perot cavity). This configuration requires two

homodyne detectors for each laser. From the experimental point of view the use

of two lasers can be avoided by using auxiliary optics to have the laser pumping

each side of the cavity with a different polarisation of light. The aim of this work

is to demonstrate the feasibility of a DFI scheme for a detuned FP-cavity showing

suppression of displacement noise at low frequencies, by showing the displacement

noise cancelation only on the input cavity mirror.

Combining the responses at
out and ar

out described in equations 2.1 and 2.2 a DFI
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channel can be created which is free from displacement noise of the input cavity

mirror while the GW signal is still present:

s = ar
out +

p − q2

q1
at

out = p(ξgw + ξP2
− ξP1

+ ξb), (3.1)

where qi are the cavity gain factors and ξi are phase induced by the ”ith” optical

element.

Alternatively the potential for DFI can be shown using the detuned cavity re-

sponses multiplying ar
out by the factor Rei(δ1+Ω)τ and multiplying at

out by σ1, the

DFI combination s1 is defined as follow:

s1 = Rei(δ1+Ω)τar
out + σ1a

t
out (3.2)

where σ1 is defined in equation 2.25, δ1 is the cavity detuning and Ω the GW

frequency. In explicit form, using equations 2.26 and 2.27, s1 can be rewritten as

(see Section 2.3.1):

s1 = aine
−i(δ1−Ω)τ

+
R

T 2
[e2iΩτ (e2iδ1τ − 1) + T 2

δ1
e−2iδ1τ ]avac

+ R2eiδ1τ (1 − e2iδ1τ )
Ain0

T 2
δ1

2ik0(ξb + ξgw)e2iΩτ

− R2eiδ1τ (1 − e2iδ1τ )
Ain0

T 2
δ1

ik0ξP1
(1 + e2iδ1τ )eiΩτ (3.3)

In this thesis DFI is addressed only insofar as it deals with the suppression of
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displacement noise of the input cavity mirror.

3.1.1. Laser

(This Section follows the description presented in [Che07]). The light source used

for the DFI experiment is a solid state Nd:YAG laser which yields 1 W power

with λ0 = 1064 nm wavelength. It is a Mephisto manufactured by Innolight. A

schematic of this laser is shown in Fig. 3.1. Two diodes, electrically driven by

a stable low noise injection system with a maximum current of 3 A, provide the

radiation to the monolithic nonplanar crystal Nd:YAG. The two light pumps are

combined onto a polarising beam splitter (PBS) and opportunely focused to match

the crystal’s fundamental mode. The crystal forms a ring cavity that the pump light

field circulates in, transforming it to a wavelength of λ0 = 1064 nm wavelength.

The injection current is internally restricted to its clamping value by a limiting

circuit to protect the diode laser. In Fig. 3.2 the power radiated by the laser is

shown responding to the electric current applied to the crystal.

A photodetector is used to sense a fraction of the generated laser light and variations

in the emitted radiation are analysed. The fluctuations of the emitted light are

mainly due to the relaxation oscillation effect that is a typical noise source of

solid state lasers [HRH+97]. The sensed signal, after been opportunely filtered

and amplified, is fed back to the diode pump sources to reduce such intensity

fluctuations. This is an optional servo loop called Noise Eater.

The laser system is also provided with a temperature stabilising control of the laser

diode junction to prevent wavelength variations of the emitted light. Furthermore

the wavelength of the Nd:YAG laser also depends on the crystal temperature which
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Figure 3.1.: Laser scheme. Two diodes, electrically driven by a stable low noise

injection system with a maximum current of 3 A, provide the radiation
to the monolithic nonplanar crystal Nd:YAG. Two light pumps are
combined on a polarising beam splitter (PBS) and opportunely focused
to match the fundamental mode of the crystal. This plot is taken from
[Che07].
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Figure 3.2.: Power radiated vs. injection current. The electrical protection sys-
tem clamps the current at 2.750 A. The crystal temperature is fixed at
32.8 ◦C.
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Output power 1 W
Beam quality M2 < 1.1
Thermal tuning coefficient [GHz/K] -3
Thermal tuning range [GHz] 30
Thermal response bandwidth [Hz] 1
PZT tuning coefficient [MHz/V] >1
PZT tuning range [MHz] ± 100
PZT response bandwidth [kHz] 100
Emission spectrum single-frequency
Coherence length [km] >1
Relative Intensity Noise, RIN [dB/Hz] <-100
Noise eater option, RIN [dB/Hz] <-150
Output polarised beam Is/Ip ∼= 5/1

Table 3.1.: General specification of the ND:YAG laser

is also stabilised using a temperature actuator. Thermal expansion of the crystal

corresponds to a change in length of it and therefore its internal ring cavity, causing

the wavelength of the emitted light to vary. Such temperature actuator reaches a

thermal tuning range of 3 GHz/K with a response bandwidth of 1 Hz. An additional

actuator, a piezoelectric transducer (PZT), is attached to the laser crystal to change

its length, for fast tuning of laser frequency. The frequency tuning range obtainable

is 2 MHz/V with a response bandwidth of 100 kHz.

The relevant specifications of the laser are collected in the Tab. 3.1.

The output beam of the ND:YAG laser is elliptically polarised with an intensity

ratio of Is/Ip
∼= 5/1, where Is and Ip are respectively the intensities of the s and p

components of the light. A combination of a quarter-waveplate and half-waveplate

is able to transform the light to any of the linear polarisation states. The quarter-

waveplate eliminates the residual elliptical polarisation while the half-waveplate

rotates a linearly polarised light from one state to another.
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24

Laser
FI

Figure 3.3.: Laser source setup. The generated laser light is elliptically polarised
with an intensity ratio of Is/Ip ∼= 5/1. A quarter-waveplate transforms
the elliptical polarised light in linear polarised light. The half-waveplate
is used to rotate the linear polarised state into the other linear polarised
state to maximise the light reaching the experiment. The Faraday
isolator (FI) itself is used to protect the laser from the light reflected
back from the experiment.

In order to maintain good laser function a Faraday isolator is used afterwards

to suppress the light reflected from the experiment back to the laser, avoiding

any disturbances of the generated light. The linear polarisation state of the light

is optimised for transmission through the Faraday isolator, maximizing the light

power that reaches the experiment.

The Fig. 3.3 shows the light source setup used in the DFI experiment.

3.1.2. Laser beam source profile characterisation

The current of the laser crystal is I = 2.200 A and the crystal temperature is set

to T = 32.8 ◦C. The light source has been characterised by measuring its beam

profile. Both the vertical and horizontal beam sections are measured along the

laser beam path above the Faraday isolator with a CCD-sensor (WinCamD) and

displayed by Dataray software. The data are then fitted to a mathematical model

[Hei95]. Fig. 3.4 shows the measured results and both sections with fitted curves.
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Vertical waist size 197.0 µm
Horizontal waist size 183.2 µm
Vertical waist position -23.4 cm
Horizontal waist position -24.3 cm

Table 3.2.: Laser beam profile features. The zero reference point is the front edge
of the Fraday isolator.

The gaussian nature of the beam allows it to be completely determined once its

beam waist size and its beam waist position are known. In the Tab. 3.2 the values

calculated by the fitting function are given, taking as zero reference position the

edge of the Faraday isolator farthest from the laser.
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Figure 3.4.: Laser beam profile of the light source. The measurements of the beam
profile have been made along the path in front of the Faraday isolator.
The injection current of the laser diode is I = 2.200 A and the laser
crystal temperature is T = 32.8 ◦C.
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3.2. Feedback control system

Control theory is a research area based on mathematical and engineering techniques

aimed at automatising and improving mechanical systems. Several types of control

loops are described in literature as in [DFT91]. The basic concept is that of keeping

one or more system output variables on a prefixed value, the so called reference.

Dynamical behavior of systems imposes the output variable to be monitored over

time. When the output variable of the system deviates from its reference a signal

proportional to the deviation is generated, the error signal, and elaborated by

the controller which manipulates the input variables of the system, acting on an

actuator compensating the unwanted output variations. The physical variable to

be controlled is detected by the sensor, which usually is a transducer, a device used

to convert physical quantity to another.

In this experiment, the crucial physical variables requiring feedback control are the

length of the cavity and the relative phases of the two beams in the homodyne

detectors. In order to demonstrate the DFI method experimentally it is necessary

to keep the cavity in a detuned state. This is achieved with a feedback control

loop based on the Pound-Drever-Hall (PDH) technique. The advantage of this

technique is the decoupling of the laser frequency from the laser intensity, resulting

in a low noise control loop. Frequency drift of the laser and displacement of the

mirrors can cause a deviation of the cavity from the required detuned working

point. These effects can be corrected for by either tuning the laser frequency or

the cavity length, thereby keeping the cavity at the correct working point. In the

former case, with the PDH method, one can measure the laser frequency with a

FP-cavity and feedback this measurement to the laser to correct and suppress drift
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and fluctuations in frequency. In this thesis the latter case is adopted, where the

laser frequency is measured with the same cavity and the feedback signal is applied

to a PZT actuator attached to the cavity input mirror. The cavity length is changed

in this way to compensate for laser frequency and mirror position fluctuations.

Similarly the two homodyne detectors required by the DFI detuned cavity setup can

be locked with a modulation-demodulation technique to maintain the homodynes

detectors desired working point given by a fixed phase difference between the LO

and the input beam (see Section 3.4.1).

The stabilisation of both the optical systems, cavity and homodyne detectors, can

be described as in Fig. 3.5 where the sensor is assembled by the photodectors (PD),

the mixer (Mx) and the oscillator (Osc). The light is modulated into the optical

system with use of an electro-optic-modulator. The optical output of the system

is measured and converted into a voltage signal in the photodetector and sent to

the mixer to be demodulated with the use of a 12 MHz oscillator. The resulting

measured output is compared with the reference signal and opportunely filtered by

the servo amplifier to provide a voltage signal which is applied to the actuator. The

actuator is, both for the cavity and for the homodynes, a transducer (PZT) which

transforms the input voltage into mechanical movements. In the cavity case this

can be either the PZT attached to the laser or the PZT attached onto the input

cavity mirror whereas for the homodyne detector only the PZT attached onto one

of the optical elements along one of its beam path.
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Figure 3.5.: Schematic feedback control loop. The DFI experiment requires three
different optical systems to be stabilised: The Fabry-Perot cavity and
two homodyne detectors. All these systems can be controlled with a
modulation-demodulation method. The cavity has to be locked on a
12 MHz state, while the homodyne detectors can be locked respecting
all their quadratures.

3.2.1. Optical modulation of the light

Electro-Optic-Modulators (EOMs), New Focus products, are used in the DFI de-

tuned FP-cavity to provide a phase modulation of the light field in a wide range

of frequencies. EOM consist basically of an anisotropic crystal, Magnesium Oxide

doped with Lithium Niobate (MgO : LiNbO3), and two electrodes used to apply

an external electric field along the crystal axis orthogonal to the direction of light

propagation. Modulation is produced by aligning the polarisation of the input light

with the crystal axis along which the electric field is applied [New01], whereas any

misalignment can create unwanted light amplitude modulation. In particular the

optimal case is when when the light is s-polarised, also called vertically polarised

light.

EOMs are based on the Pockels cell effect which is the linear dependence of the
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model 4001 model 4004

Wavelength 1.0 - 1.6 µm 1.0 - 1.6 µm
Type Resonant PM Broadband PM

Operating Frequency 0.01 - 250 MHz DC-100 MHz
Modulation Depth > 0.2 rad/V 15 mrad/V

Max Vπ 16 V 210 V
Max. Optical Power 1W/mm2 1W/mm2

Aperture 2 mm 2 mm

Table 3.3.: Characteristics of New Focus electro-modulators
[New01].

crystal’s refractive index on the applied electric field. It can be expressed as follow:

∆n ∝ n3
eE (3.4)

where ∆n is the change in the index of refraction, ne is the unperturbed index of

refraction and E is the applied electric field.

Two different EOMs are used in this work for two different purposes. The 4001

model is a narrow-band phase modulator and it is used to provide the cavity sta-

bilisation signal using the Pound-Drever-Hall scheme, while the 4004 model is a

wide-band phase modulator and it is used to produce a simulated GW-signal. Char-

acteristics of both EOMs are collected in the table 3.3.

3.2.2. Mixer

The Pound-Drever-Hall technique used to stabilise the cavity requires the use of a

mixer to extract the error signal. The mixer used (see Appendix D.4) is an electronic
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device with three ports: Two inputs and one output. The input which contains the

signal is RF (Received Frequency). The other input which is generated electronically

by an oscillator at fixed frequency, Ω, is LO (Local Oscillator). The mixing of the

two inputs produces an output with frequency between Ω and the signal frequency,

ω, which is called IF (Intermediate Frequency). Actually the output, which can

be understood as the product of the two inputs, contains multiple components at

the sum and difference of the two inputs frequencies and their harmonics. An

ideal mixer produces only the sum and the difference components, which can be

selected with a proper filter: the selection of the components gives respectively an

up conversion and down conversion.

3.2.3. Servo amplifier

The error signal extracted from the mixer is processed by the servo amplifier (see

Appendix D.3) to produce a feedback signal. Appropriately designed analogue fil-

ters allow the system to maintain a physical variable on a prefixed value, known as

the operating point. Deviations from the operating point are compensated for by

the servo which produces signals proportional to the deviations but with opposite

phase. The output of the servo is used to close the loop on an actuator system. In

particular the servo used in the DFI setup has a proportional gain and three dif-

ferent integrators. The roll-off frequencies of such filters are 100 Hz, 1 kHz, 10 kHz.

The Fig. 3.6 shows the measured servo transfer function from its error-in input to

feedback signal output when the integrators are all switched off.
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Figure 3.6.: The measured servo transfer function. The plot shows a 100 kHz low
pass filter effect.

3.2.4. Local oscillator

The local oscillator provided to both the EOM and the mixer is a device which pro-

duce a 12 MHz frequency waveform. The schematic can be found in the Appendix

D.5. Fig. 3.7 shows a partial simulated transfer function of the oscillator.

3.2.5. Photodetectors

The optical reflected and transmitted signals from the cavity are converted by a

BPX ”Manufacturer” photodiode into electrical current signals. The photodiode is

arranged in a self-made electrical circuit to convert the current signal in voltage

signal using a transimpedance stage. The voltage signal is amplified by two ampli-

fication stages, one providing the AC output and the other the DC. The DC stage

feature is to amplify the voltage signal keeping low frequency components; The

AC stage amplifies the voltage signal and high-pass filters the signal. In this work
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Figure 3.7.: The simulated transfer function of the 12 MHz oscillator from pin 8 to
the output as shown in Fig.D.12. The plot shows the 12 MHz band-
width filter effect.

the photodiode and the electrical circuit together are called the photodetector. The

schematic of the photodetectors used in the current DFI experiment is in Appendix

D.1. In particular the locking photodetector detects the light reflected back from

the cavity forming part of the sensor used in the cavity control loop. The homo-

dyne photodetectors are used for the homodyne detection at the DFI outputs. The

balanced homodyne detection requires that the homodyne photodetectors are as

equal as possible. Figures 3.8 and 3.9 show the transfer functions of the locking

and the homodyne photodetectors from the optical input to both the DC and AC

outputs respectively.
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Locking photodetector

Homodynes photodetectors

Figure 3.8.: The measured DC transfer functions of photodetectors. These are mea-
sured transfer functions from the optical input to the DC output chan-
nels of the photodetectors. All the measured transfer functions show a
flat response at low frequencies.

3.3. The DFI core

The core instrument of the work presented here is a FP-cavity. This system is used

to provide multiple readout channels, given by the reflected and transmitted light

from the cavity. In this Section the design and the method used to keep it at a

desired working point are described.

3.3.1. Fabry-Perot cavity design

An EOM (see Section 3.2.1) is situated in the centre of the cavity to provide a sim-

ulated gravitational wave signal. This places a constraint on the cavity design, due

to the 2 mm aperture and the maximum optical power limitation. These constraints

lead to the design which requires an input beam waist size between 250 and 500 µm

and a Rayleigh range at least equal to the length of the crystal as required by the
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Locking photodetector

Homodynes photodetectors

Figure 3.9.: The transfer functions of the AC photodetectors. Those are transfer
functions measured from the optical input to the AC output. All the
measured transfer functions show a high-pass filter effect: The locking
photodetector has a roll-off frequency at 160 kHz while the homodyne
photodetectors have a roll off frequency at 15 kHz.

manufacturer ([New01]). The cavity length and the radius of curvature of both

cavity mirrors determine the shape of the TEM00 eigenmode [Yar89]. Defining the

following quantities as

z1 = (Rc2 · L − L2)/(Rc1 − Rc2 + 2L) and z2 = L + z1 (3.5)

where Rc1 and Rc2 are the radii of curvatures of the input and output cavity mirrors

respectively and L is the cavity length. It is possible to express the Rayleigh range,

70



Chapter 3. Construction of a DFI detuned cavity

zr, as a function of radius of curvature, Rc1 as follows:

zr =
√

(Rc1 − z1)z1, (3.6)

and the beam waist radius, ω0, the beam radius ω1 at the cavity input mirror and

the beam radius ω2 at the end cavity mirror as

ω0 =
√

zrλ/π, ω1 = ω0

√

1 + (z1/zr)2, ω2 = ω0

√

1 + (z2/zr)2. (3.7)

The detuned state of the cavity required by the DFI configuration [TV08] imposes

a careful choice of the amplitude reflectivities r1, r2 of the two cavity mirrors which

affect the cavity Finesse as shown in the reference [Hei99]:

Finesse =
FSR

FWHM
=

π

2 arcsin
(

1−r1r2
2
√

r1r2

) ≈ π
√

r1r2

1 − r1r2

≈ π

1 − r1r2

(3.8)

where FSR=c/2L is called Free Spectral Range and FWHM is the Full Width at

Half Maximum. The parameters of the designed FP-cavity are collected in Table

3.4.

Fig. 3.10 shows the optical setup of the cavity used in the DFI experiment. The light

source is turned into an s-polarised state by half-waveplate. A telescope assembled

by the lenses f1 and f2 is used to obtain a beam waist of 400 µm located in the
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Cavity length L 30 cm
Free spectral range FSR 500 MHz
Radius of curvature of the input mirror Rc1 1 m
Radius of curvature of the output mirror Rc2 1 m
Beam waist ω0 347 µm
Beam size onto input cavity mirror ω1 377 µm
Beam size onto output cavity mirror ω2 377 µm
Rayleigh range zr 35.7 cm
Power reflectivity of the input cavity mirror r2

1 0.985
Power reflectivity of the output cavity mirror r2

2 0.985
Finesse F 208
Full Width at Half Maximum FWHM 2.4 MHz

Table 3.4.: The designed optical parameters of the cavity.

center of EOM1, which is used in turn to produce the 12 MHz sidebands. The

half-waveplate and the polarising beam splitter (PBS1) are used to set the power

input to the cavity cavity beam at 1.5 mW. A telescope consisting of lenses f3 and

f4, is used to match the TEM00 mode of a beam into the cavity, resulting in a beam

waist of 360 µm located in the middle of the cavity.

3.3.2. Cavity stabilisation

The laser light field Einc(ω), after being passed through EOM1 (see Fig. 3.10), can

be expressed as a sum of three terms, a carrier at frequency ω and two sidebands

at ω ± Ω, with Ω being the modulation frequency and m the modulation depth:

Einc = E0e
i(ωt+m sin Ωt)

≈ E0[J0(m)eiωt + J1(m)ei(ω+Ω)t − J1(m)ei(ω−Ω)t] (3.9)

72



Chapter 3. Construction of a DFI detuned cavity

2

2
2

4

PD-lock

F
a
ra
d
a
y

Is
o
la
to
r

L
a
s
e
r

Cavity

EOM1

f1
f2 PBS1

f3

f4
IM EM

EOM2

12Mhz Mx Hv-amp

Figure 3.10.: The FP-cavity setup. The cavity is pumped through the mirror
IM with s-polarised light modulated at 12MHz by the electro-optic-
modulator EOM1. The pump light is set at 1.5 mW by a half-
waveplate and the polarising beam splitter PBS1. Two telescopes
assembled by the lenses f1, f2 and f3, f4 provide a beam waist of
400 µm in the center of EOM1 and a beam waist of 360 µm in the
middle of the cavity, respectively. The reflected light from the cavity
is sensed by the locking photodetector, PD-lock, and demodulated in
the mixer Mx. The output of Mx, after being appropriately filtered
by the servo PID and amplified by HV-ampl, is applied to the PZT
attached onto IM.
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where Ji are the Bessel functions of the first kind. The power in the carrier can

be expressed as Pc = J2
0 (m)P0 and the power in the first order sidebands as Ps =

J2
1 (m)P0 where P0 = |E0|2. When the modulation index m is much smaller than

one, all the power is shared between the carrier and sidebands P0 ≈ Pc + 2Ps.

The locking photodetector PD-lock measures the power of the reflected beam from

the cavity:

Pref = |Eref |2 = Pc|F (ω)|2 + Ps{|F (ω + Ω)|2 + |F (ω − Ω)|2}

+ 2
√

PcPs{ℜ[F (ω)F ∗(ω + Ω) − F ∗(ω)F (ω − Ω)] cos Ωt}

+ 2
√

PcPs{ℑ[F (ω)F ∗(ω + Ω) − F ∗(ω)F (ω − Ω)] sin Ωt}

+ (2Ω terms), (3.10)

where F (ω) = Eref/Einc is the reflection coefficient. The use of a mixer and a

low-pass filter isolates only the Ω term generating the PDH error-signal used to

control the cavity. Depending on the modulation frequency Ω the measured PDH

error-signal can be either the cos Ωt or sin Ωt terms. When Ω is high (Ω ≫ FSR/F )

only the sin Ωt term survives and when Ω is low (Ω ≪ FSR/F ) only the cos Ωt

term survives [Bla01]. The PDH signal for the DFI detuned cavity relies on the

former case, since the modulation is applied at 12 MHz.

Fig. 3.11 shows the PDH error-signal (yellow curve) and the reflected power detected

on PD-lock (blue curve) while a ramp (pink curve) is applied on the PZT attached

onto the input cavity mirror IM, scanning the cavity length.

Recalling that the mixer output can be modelled as the product of its inputs, in
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Figure 3.11.: Cavity signals. The PDH error-signal (yellow curve) and the reflected
power detected on PD-lock (blue curve) while a ramp (pink curve) is
applied on the PZT attached to the input cavity mirror IM, scanning
the cavity length.

the general case, for a modulation signal at Ω this can be written:

sin(Ωt) sin(Ω∗t) =
1

2
{cos[(Ω − Ω∗)t] − cos[(Ω + Ω∗)t]}, (3.11)

where Ω∗ is the demodulation frequency. In particular if Ω = Ω∗ we can write:

sin(Ωt) sin(Ωt) =
1

2
{1 − cos(2Ωt)}. (3.12)

When the 2Ω term is filtered with a low-pass filter only a DC term survives. In

practice the low-pass filter and a phase delay are implemented in the mixer box, the

latter used to match the modulation and demodulation phases. (Appendix D.4).
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Figure 3.12.: Simulated PDH error-signals vs. cavity mirror detuning at different
demodulation frequency values: Phase matched modulation and de-
modulation frequency (blue curve), demodulation frequency at 30◦

(green curve), 60◦ (red curve) and 90◦ (orange curve).

Fig. 3.12 shows simulated PDH error-signals vs. cavity mirror detuning at different

demodulation frequency values: Phase matched modulation and demodulation fre-

quency (blue curve), demodulation frequency at 30◦ (green curve), 60◦ (red curve)

and 90◦ (orange curve).

Fig. 3.13 shows the experimental time trace of the PDH error signal obtained by

scanning the cavity length with a ramp applied onto the PZT of the input cavity

mirror at different phase delay settings.
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Figure 3.13.: Experimental time trace of the PDH error signal obtained by scanning
the cavity length with a ramp applied onto the PZT of the input cavity
mirror at different phase delay settings.

3.4. DFI detection

Since a direct detection scheme could measure only amplitude fluctuations and

would be not able to distinguish between the quadratures of the field, the detection

scheme proposed in [TV08] is provided by the two homodyne detectors. These are

able to detect the phase modulated signal coming from the input cavity mirror (used

to simulate the displacement noise signal) and from the EOM (used to simulate the

GW signal). This can be obtained with the use of a reference beam, the local

oscillator (LO), which gives a phase reference to detect both the amplitude and the

phase modulation.

The Fig. 3.14 shows the setup of the DFI detection. The light originating from the

laser is split into two beams, one to pump the FP-cavity and one to provide the two

local oscillators (LO) for the homodyne detectors HD1 and HD2. The reflected and
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transmitted signals from the cavity individually interfere onto the homodyne beam

splitters, BSH1 and BSH2, with the LO beam and sensed with the two homodyne

detectors HD1 and HD2 respectively. The two half waveplates and two polarising

beam splitters PBS2 and PBS3 are used to set the LO power in both the homodyne

detectors at 20mW. The transmitted light from PBS3, which is p-polarised, is then

rotated again by an half waveplate to let the light interferes on BSH2 in s-polarised

state.

Figure 3.14.: DFI detection setup. The light originating from the laser is split into
two beams, one to pump the FP-cavity and one to provide the two
local oscillators (LO) for the homodyne detectors HD1 and HD2. The
reflected and transmitted light are sensed with homodyne detectors
HD1 and HD2 respectively. The two half-waveplates and two polar-
ising beam splitters PBS2 and PBS3 are used to set the LO power in
both the homodyne detectors at 20mW.
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Figure 3.15.: The homodyne detector. It consists of a beam splitter and two pho-
todetectors PD1 and PD2. The LO provided by the laser interferes
onto the beam splitter with an input beam of which the contribution
of the modulation one wants to evaluate. The interference signal is
detected by PD1 and PD2. The subtraction of their photocurrents
gives the output of the homodyne detector.

3.4.1. Homodyne detector

Fig. 3.15 shows the generic setup of a homodyne detector. In general homodyne

detection can be done with the use of a beam splitter BS and two photodetectors

PD1 and PD2. The LO provided by the laser interferes on the beam splitter

with an input beam which contributes to the modulation one wants to evaluate.

The interference signal is detected by PD1 and PD2. The subtraction of their

photocurrents gives the output of the homodyne detector. In order to use the LO

as a phase reference beam the input beam to the cavity has to be phase locked

to LO. In the case of the DFI detuned FP-cavity the input beam for HD1 is the

reflected light and the input beam in HD2 is the transmitted light.
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A homodyne detector feature

Let’s represent each of the two homodyne beams as the sum of two contribution: a

sum of a strong field which approximates the light wave of amplitude Ein,lo and a

weak field δEin,lo(t) which describe the fluctuations of the the light field [Bac98]:

Ein(t) = Ein + δEin(t)

Elo(t) = (Elo + δElo(t))e
iφlo (3.13)

where eiφlo represents the relative phase difference between the two beams. It is

controlled with a PZT attached onto a mirror located in one of that path to change

the length of one of the paths.

Fields on the two photodetectors PD1 and PD2 are described with following con-

vention:

EPD1 =

√

1

2
(iElo(t) + Ein(t)) (3.14)

EPD2 =

√

1

2
(Elo(t) + iEin(t)) (3.15)

In the case where the LO intensity is much higher than input beam intensity,

E2
lo ≫ E2

in, the intensity IPD1 onto the photodetector PD1 can be calculated as:

IPD1 = |EPD1|2 =
1

2

(

|Elo(t)|2 + iElo(t)E
∗
in(t) − iEin(t)E∗

lo(t) + |Ein(t)|2
)

≈ 1

2

(

|Elo(t)|2 + 2EloδElo + 2EloδEin(t) sin φlo

)

(3.16)
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In the same way the intensity IPD2 on the photodetector PD2 can be calculated as:

IPD2 = |EPD2|2 ≈
1

2

(

|Elo(t)|2 + 2EloδElo − 2EloδEin(t) sin φlo

)

(3.17)

Now the homodyne detector output can be defined, represented by the intensity

difference between the two photodetectors:

I12 = IPD1 − IPD2 ≈ 2EloδEin(t) sin φlo. (3.18)

This equation shows an important feature of the homodyne detector: that the

output scales with the amplitude of the local oscillator while the noise on the local

oscillator itself is completely suppressed.

Decomposing the weak field into its quadratures as δEin(t) = E1in(t)+iE2in(t), the

photocurrent fluctuations at the output of the homodyne detector can be expressed

as:

∆I12 ≈ 4E2
lo

(

∆E1in(t) sin2 φlo + ∆E2in(t) cos2 φlo

)

(3.19)

where it can be noted that the variance of the output is a combination of the

variance of the fluctuations in the two quadratures. The LO phase determines in

which quadrature the fluctuations can be measured.
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Figure 3.16.: The homodyne detectors HD1 outputs. Both the photodetectors PD1
(yellow curve) and PD2 (green curve) show an interference pattern
with a visibility (Vmax−Vmin/Vmax+Vmin) of ≈ 93%. The error-signal
is the difference photocurrent detected by the two photodetectors PD1
and PD2 represented in the red curve.
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Figure 3.17.: The homodyne detectors HD2 outputs. Both the photodetectors PD3
(yellow curve) and PD4 (green curve) show an interference pattern
with a visibility (Vmax − Vmin/Vmax + Vmin) of ≈ 99%. It is notice-
able that the high frequency noise due to the 12MHz sidebands. The
error-signal is the difference photocurrent detected by the two pho-
todetectors PD3 and PD4 represented in the red curve.
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3.4.2. Homodyne detector stabilisation

The homodyne stabilisation can be achieved using either as an error-signal the

low-frequency (DC) difference photocurrents detected by the two homodyne pho-

todetectors or demodulating the phase modulated signal as described in the previ-

ous Section 3.4.1. The difference photocurrents of the homodyne detectors can be

expressed in general as (see Appendix B):

I21 = 2
N
∑

i=0

M
∑

j=0

ℑ{aib
∗
je

iωijteiϕij} = (3.20)

= 2

(

N
∑

i=0

ℑ{aibie
iϕii} +

N
∑

j=i+1

ℑ{aib
∗
je

iωijteiϕij + b∗i aje
−iωijte−iϕij}

)

(3.21)

that is, with an appropriate low-pass filter, the homodyne error-signal for the DFI

setup, which provides a carrier a0 and the two sidebands a1,2 on one path and a

carrier b0 and two sidebands b1,2 on the LO path. It can be expressed as:

I21 = 2
N
∑

i=0

ℑ{aibie
iϕii} = 2ℑ{(a0b0 + a1b1 + a2b2) e−iϕH . (3.22)

Fig. 3.16 shows the homodyne HD1 outputs when a ramp is applied on the phase

shifter PS1 and the cavity is locked on its detuned state. Both the photodetectors

PD1 (yellow curve) and PD2 (green curve) show an interference pattern with a

visibility (Vmax − Vmin/Vmax + Vmin) of ≈ 93%. The error-signal is the difference

photocurrent detected by the two photodetectors PD1 and PD2 represented in the

red curve.
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Figure 3.18.: This is a picture of the real experimental setup.

Fig. 3.17 shows the homodyne HD2 outputs when a ramp is applied on the phase

shifter PS2 and the cavity is locked on its detuned state. Both the photodetectors

PD3 (yellow curve) and PD4 (green curve) show an interference pattern with a

visibility of ≈ 99%. The error-signal is the difference photocurrent detected by the

two photodetectors PD3 and PD4 represented in the red curve.

3.5. Pictures of the experimental setup

In this Section pictures of the real experimental setup are shown.
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Figure 3.19.: This is a picture of the real homodyne detector setup.

Figure 3.20.: This is a picture of the real PZT attached to the input cavity mirror.
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Figure 3.21.: This is a picture of mixers and servos used to control the cavity and
the two homodyne detectors.

Figure 3.22.: This is a picture of a servo during its construction.
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Fig. 3.18 shows a picture of the real setup, while Fig. 3.19 and Fig. 3.20 show the

pictures of one of the homodyne detectors and the PZT attached to the input cavity

mirror, respectively. Finally the last two pictures partially show the electronics used

in this work. In particular Fig. 3.21 shows the crate with mixers and servos used to

control the FP-cavity and the homodyne detectors, while Fig. 3.22 shows the servo

used during the construction.

This Chapter showed the features of the experimental setup entirely realised in

this work for the demonstration of DFI at low frequency applied to a FP-cavity.

Electronic devices have been built for this experiment following the diagrams shown

in Appendix D.
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DFI Simulation

The experimental setup described in Chapter 3 has been based on the information

obtained from the DFI simulation. This Chapter shows the demonstration of DFI

for a detuned FP-cavity within the simulated environment using the Finesse soft-

ware [FHL+04]. It shows that the displacement noise injected on the input cavity

mirror (IM) can be strongly suppressed while the GW is retained. The simulated

setup was minimised to keep the basic features of the experimental setup.

4.1. Simulated setup

The simulated setup is shown in Fig. 4.1. The light originating from the laser is

split into two beams, one to pump the FP-cavity and one to provide the two local

oscillators (LO) for the homodyne detectors HD1 and HD2. The output of the two

homodyne detectors is the difference signal given respectively by HD1=PDH1a-

PDH1b and HD2=PDH2a-PDH2b. The FP-cavity used is formed by two identical
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mirrors which are separated by 30 cm. Each mirror has a power reflectivity of 98.5%

and a radius of curvature of 1m which results in a cavity bandwidth of 2.4MHz.

The reflected and transmitted signals from the cavity are individually sensed with

the two homodyne detectors HD1 and HD2. These detectors allow to measure

signals in an arbitrary quadrature in between amplitude and phase quadrature.

Here the local oscillator power is much stronger than the signal beam for each

homodyne detector, thus fulfilling the condition whereby the LO has to be much

stronger than the signal power to ensure that the resulting signal is dominated by

the signal on the signal beam and not by noise present on the LO [Bac98]. Since

the DFI responses for a FP-cavity depends on which quadratures the homodyne

detectors are set, an appropriate use of the homodyne beam splitters tuning can be

used to define the quadratures of both the reflected and the transmitted fields.

4.2. Homodyne quadratures

The reflected and the transmitted light from the cavity interfere respectively on the

beamsplitters BSH1 and BSH2 with the light reference beam coming from the laser

(LO). The intensity is a sinusoidal function of the optical path ∆φ = 2π
λ

∆x, where

λ is the wavelength of the laser and ∆x is the path difference of the two waves.

Path changes of λ provide a complete cycle of the intensity.

The interference pattern detected by each single photodetector in both homodyne

detectors HD1 and HD2, are shown in Fig. 4.2 where the optical path is tuned with

the homodyne beam splitters BSH1 and BSH2.

At a BSH1 tuning of 51.3◦ the homodyne HD1 measures the phase quadrature
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Figure 4.1.: Simulated setup. The setup is provided by a FP-cavity kept in its
detuned state of 12 MHz and two homodyne detectors. One homodyne
detector is used to sense the reflected light from the cavity and one is
used to sense the transmitted light from the cavity. Both the homodyne
detectors are provided with reference beam (LO) interfering on BSH1
and BSH2 respectively for the homodyne detectors HD1 and HD2,
where HD1 = PDH1a − PdH1a and HD2 = PDH2a − PDH2a.

(PQ) of the reflected beam from the cavity where the two photodetectors intensities

have the same amplitude. At a BSH1 tuning of 96.3◦ HD1 measures the amplitude

quadrature (AQ) of the reflected beam from the cavity where the two photodetectors

intensities have opposite amplitude.

Similarly, at a BSH2 tuning of 34.7◦ the homodyne HD2 measures the phase quadra-

ture of the transmitted beam from the cavity where the two photodetectors inten-

sities have the same amplitude. At a BSH2 tuning of 79.7◦ HD2 measures the

amplitude quadrature of the transmitted beam from the cavity where the two pho-

todetectors intensities have opposite amplitude.
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Figure 4.2.: Homodyne detectors signals output. On the left-hand side are shown
the signals of HD1. The blue and the green line are the intensities
detected in the photodetectors. The red curve represents the output
signal of HD1. On the right-hand side are shown the signals of HD2.
The cyan and the light-green line are the intensities detected in the
photodetectors. The orange curve represents the output signal of HD2.
Both plots show that phase and amplitude quadratures are 45◦ phase
shifted.

4.3. DFI combination algorithm

The DFI has the requirement of a multiple channel experiment in which their

combination creates a new channel which is free from displacement noise while the

GW signal is still present.

To demonstrate the detuned FP-cavity based DFI scheme, the displacement noise

and the GW responses have been simulated.

The two transfer functions from the cavity input mirror IM to the two homodyne

detectors are the displacement noise responses S1DN and S2DN respectively in HD1

and HD2. On the other hand the two transfer functions from the cavity-length

to the two homodyne detectors are the GW signal responses S1GW and S2GW

respectively. Both the DN and GW responses allow the creation of two new channels

with SDN,DFI and SGW,DFI being respectively the DN and GW responses of the DFI.

These new DFI data are given by:
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SDN,DFI± = S1DN ± k · S2DN,

SGW,DFI± = S1GW ± k · S2GW. (4.1)

here k represents a fixed scaling factor which minimises the DN content in channel

SDN,DFI. In the simulation an arbitrary k is chosen to be the ratio of the DN

transfer function magnitude at 1Hz (k = S1DNA
[1 Hz]/S2DNA

[1 Hz]), as changing

the frequency for determining k does not change the results. Afterwards the DFI

effect is evaluated by comparing the DFI SNR and the initial unprocessed data

SNRs.

In this thesis the SNRs are defined as follow:

The signal-to-noise ratios (SNRs) σ of the initial unprocessed data channels of S1

and S2 are given by σS1 = S1GW/S1DN and σS2 = S2GW/S2DN and show how good

a GW can be detected with respect to the present DN. For the processed data

channels a similar SNR given by σDFI± = SGW,DFI±/SDN,DFI± can be calculated,

where plus and minus correspond to the sum and difference combination DFI+,

DFI- respectively used in equations 4.1. To see the enhancement effect of the DFI,

the ratio ρi between the processed and unprocessed SNRs ρS1± = σDFI±/σS1 and

ρS2± = σDFI±/σS2 are evaluated.

On the other hand, since the resulting transfer functions depend on which quadra-

tures the homodyne detectors are able to detect, an analysis of the homodyne

quadratures is provided in the following Section. In this case the analysis is done

by simulating the DN and GW transfer functions at a fixed frequency and study-

ing their behaviour against the homodyne quadratures. The DFI effect can be
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Figure 4.3.: DN and the GW transfer functions at fixed frequency vs quadrature
angle. The scanning of the quadratures starts when both the homodyne
detectors are in amplitude quadratures. The left-hand side of shows the
DN transfer functions from the input cavity mirror to HD1 (blue curve)
and HD2 (green curve). The right-hand side shows the GW transfer
functions from the cavity-length to HD1 (blue curve) and HD2 (green
curve).

evaluated equally as mentioned above in this Section.

4.4. Homodyne detectors quadratures analysis

4.4.1. Scanning the quadrature angles: HD1 and HD2 start in

amplitude quadrature

In this subsection the homodyne quadratures analysis is done by calculating the DN

and the GW transfer functions at fixed frequency against the quadrature angles,

where the scanning of the quadratures starts when both the homodyne detectors
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Figure 4.4.: SNRs of the unprocessed data vs quadrature angle. Tunings at 0◦ give
both the homodynes detector in amplitude quadratures, while tunings
at 45◦ give both the homodyne detectors in phase quadrature. On the
left-hand side is plotted the SNR in HD1 (σS1). On the right-hand side
is plotted the SNR in HD2 (σS2).

are in amplitude quadrature. The entire cycle of the quadratures goes for tunings

of both BSH1 and BSH2 from 0◦ to 90◦. Tunings at 0◦ give both the homodynes

detectors in amplitude quadratures, while tunings at 45◦ give both the homodyne

detectors in phase quadrature.

To this aim, the left-hand side of Fig. 4.3 shows the DN transfer functions from

the input cavity mirror to HD1 (blue curve) and HD2 (green curve), respectively

named S1DN and S2DN, as functions of quadrature angles. S1DN has a minimum

of zero at 4.7◦ while S2DN has a minimum of zero at 64.5◦. In between these two

points the respective phases are shifted of 180◦. The right-hand side of Fig. 4.3

shows the GW transfer functions from the cavity-length to HD1 (blue curve) and

HD2 (green curve), respectively named S1GW and S2GW. S1GW has a minimum of

zero at 82.4◦ while S2GW has a minimum of zero at 58.5◦. In between these two

94



Chapter 4. DFI Simulation

points the respective phases are shifted by 180◦.

Fig. 4.4 shows the initial SNRs, σS1 and σS2, of the unprocessed data respectively

in HD1 (left-hand side) and HD2 (right-hand side). σS1 has a peak at 4.7◦ and a

minimum at 82.4◦, while σS2 has a peak at 64.5◦ and a minimum at 58.5◦.
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Figure 4.5.: SNRs of the DFI processed data vs quadrature angles. Tunings at
0◦ give both the homodynes detector in amplitude quadratures, while
tunings at 45◦ give both the homodyne detectors in phase quadrature.
On the left-hand side the SNR of the DFI+ channel (σDFI+). On the
right-hand side the SNR of the DFI- channel (σDFI−).

To evaluate how the DFI channels are sensitive to a GW signal one can look at the

SNRs of the DFI processed data in Fig. 4.5. From here can be seen which DFI chan-

nel is more sensitive to the GW signal in correspondence to any quadrature angles.

On the left-hand side the SNR of the DFI+ channel, σDFI+ = S2GW,DFI+/S2DN,DFI+,

where the latter is built taking into account the plus sign in the equations 4.1. On

the right-hand side the SNR of the DFI- channel, σDFI− = S2GW,DFI−/S2DN,DFI−,

where the latter is built taking into account the plus sign in the equations 4.1. Both

σDFI+ and σDFI− show peaks at 4.7◦ and 64.5◦. In between those two values σDFI+
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is relatively high varying from ≈ 102 to ≈ 104 with a minimum of ≈ 10 at 60◦. In

the complementary interval σDFI− shows relative high values varying from ≈ 102 to

≈ 104 as well.
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Figure 4.6.: Enhancement effect of the DFI. Tunings at 0◦ give both the homodyne
detectors in amplitude quadratures, while tunings at 45◦ give both the
homodyne detectors in phase quadrature. The ratio ρi between the
processed and unprocessed SNRs against the quadrature angles are
evaluated. The plots are organised as follows: On the top-left-hand
side ρS1+. On the top-right-hand side ρS2+. On the bottom-left-hand
side ρS1−. On the bottom-right-hand side ρS2−.

Finally one can evaluate the enhancement effect ρi of the DFI. In Fig. 4.6 the

ratio ρi between the processed and unprocessed SNRs are evaluated. The plots

are organised as follows: On the top-left-hand side ρS1+ = σDFI+/σS1. On the top-

right-hand side ρS2+ = σDFI+/σS2. On the bottom-left-hand side ρS1− = σDFI−/σS2.

On the bottom-right-hand side ρS2− = σDFI−/σS2.

ρS1+ shows two peaks of ≈ 104 and ≈ 103 respectively at 64.5◦ and 82.4◦. In

the region between 10◦ and 55◦ a relative high enhancement effect ρS1+ of ≈ 150
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is shown. In the same region ρS2+ shows approximately the same relative high

enhancement effect of ≈ 100 and a peak of ≈ 104 at 58.5◦. On the other hand ρS1−

shows an enhancement effect of ≈ 103 in region in between two peaks of ≈ 104 and

≈ 105 respectively at 64.5◦ and 82.4◦. In contrast in the same region ρS2− shows

an enhancement effect of ≈ 80. ρS1− and ρS2− also show peaks at 4.7◦.

4.5. DFI in phase quadrature

The quadrature analysis presented in Section 4.4 and Appendix C is crucial to the

execution of the DFI experiment described in this thesis. This quadrature analy-

sis shows several homodyne beam splitter settings for which the noise cancelation

mechanism gives interesting results.

It must be mentioned that at certain quadrature angles the homodyne detector

response to a DN at a fixed frequency is zero. The response to a similarly fixed-

frequency GW signal is zero at different angles, as shown in Figures 4.3, C.1, C.5.

At these points the scaling factor required for producing DFI signal is infinite and

theoretically an infinite suppression of DN can be achieved. These settings may

appear to be the best to use for the experimental measurement of DFI response, in

fact this is not the case. The aim of this demonstration is to show the more general

case where high DFI SNR can be achieved, without narrowing the discussion to a

single readout quadrature specific to the setup described here. It is clear that the

noise cancelation for a detuned FP-cavity relies on the readout quadrature chosen

for each homodyne detector. Although the DFI response has not been constructed

for each possible combination of readout quadratures, the aforementioned analysis

points towards areas of interest where the DFI SNR is expected to be high. DN
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and GW transfer functions have been performed at fixed frequencies against the

quadrature angles. The initial SNRs in each homodyne detector, the DFI channel

SNR and the factor with which it improved have also been studied versus the

quadrature angles. The scanning of these quadrature angles has been done in three

different ways:

The noise cancelation for a detuned FP-cavity relies on which quadrature angles

are set in each homodyne detectors. Although this has not being done for all

possible cases, the quadrature analysis shown gives helpful information of which

quadrature angles gives high DFI response. DN and GW transfer functions have

been performed at fixed frequency and studied against the quadrature angles. The

initial SNRs in each homodyne detectors, the DFI channel SNR and its improving

factor have also been studied against the quadrature angles. The scanning of the

quadrature angles has been done in three different way:

• HD1 and HD2 start in AQ;

• HD1 starts in AQ and HD2 in PQ;

• HD1 and HD2 start at maximum GW detection;

In the first case in the region between 10◦ and 55◦ a relatively high enhancement

effect ρS1+ and ρS2+ of ≈ 150 and ≈ 100 respectively is shown. On the other hand

in the region between 64.5◦ and 82.4◦, an enhancement effect of ≈ 103 and ≈ 80 is

shown for ρS1− and ρS2− respectively.

In the second case in the region between 25◦ and 65◦ a relativly high enhancement

effect ρS1+ and ρS2+ of ≈ 200 and ≈ 100 respectively is shown. On the other hand

in a region in between 5◦ and 20◦, an enhancement effect of ≈ 70 and ≈ 200 is
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shown for ρS1− and ρS2− respectively.

In the third case in the region in between 5◦ and 75◦ ρS1− and ρS2− show an

enhancement effect of ≈ 300 and ≈ 150 respectively.

From this analysis it can be noticed that, the setting of the two homodyne angles

in phase quadrature, which correspond essentially to the first case at 45◦ angle,

is a good option that ensures a high DFI enhancement of the new created DFI+

channel in both the homodyne detectors. From the experimental point of view this

is a more practical choice where the locking of the two homodyne detectors can be

achieved using as an error signal the difference of the two homodyne photodetectors,

without the use of any other electronic devices.

4.5.1. Example of DFI transfer functions

The previous quadrature analysis shows that a relative high improvement of SNR for

DFI+ channel is given when both the homodyne detectors are in phase quadrature.

In the following an example of DFI measurements for such quadrature angle is

presented.

As already mentioned the two transfer functions from the cavity input mirror IM to

the two homodyne detectors S1DN and S2DN are the displacement noise responses.

On the other hand the two transfer functions from the cavity-length to the two

homodyne detectors S1GW and S2GW are the GW signal responses respectively.

The transfer functions are plotted in Fig. 4.7.

As one can see the two transfer functions for the displacement noise from the cavity

input mirror IM to the two homodyne detectors S1DN (blue curve) and S2DN (green
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Figure 4.7.: Simulated transfer functions when both HD1 and HD2 are in phase
quadrature. On the left-hand side there are plotted the DN transfer
functions while on the right-hand side are plotted the GW transfer
functions.

curve) are out of phase by 180◦ in the entire frequency range. On the other hand

the two GW signal transfer functions S1GW (blue curve) and S2GW (green curve)

are in phase. All transfer functions include phase shifts induced by the optical

elements that the reflected and transmitted light from the cavity passes before the

detection in the homodyne detectors S1 and S2 respectively.

4.5.2. DFI combined channels transfer functions

From both the displacement noise and GW responses one can create new channels

with SDN,DFI being the DFI displacement noise response and SGW,DFI being the DFI

GW response. These new DFI data are given in equations 4.1.
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Fig. 4.8 shows the combined transfer functions of the new DFI channel. On the

left-hand side the new DFI displacement noise and DFI gravitational wave transfer

functions SDN,DFI+ (blue curve) and SGW,DFI+ (green curve) respectively are shown.

These are obtained from equations 4.1 using the sum. On the right-hand side the

new DFI displacement noise and DFI gravitational wave transfer functions SDN,DFI−

(blue curve) and SGW,DFI− (green curve) respectively are shown. Those are obtained

from equations 4.1 using the difference.
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Figure 4.8.: The combined transfer functions of the new DFI channel. On the left-
hand side the new DFI displacement noise and DFI gravitational wave
transfer functions respectively, SDN,DFI+ (blue curve) and SGW,DFI+

(green curve). On the right-hand side the new DFI displacement noise
and DFI gravitational wave transfer functions respectively, SDN,DFI−
(blue curve) and SGW,DFI− (green curve).

Recalling that for the processed data channels the SNR is given by

σDFI± = S2GW,DFI±/S2DN,DFI± (4.2)
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Figure 4.9.: Improvement in SNR of the DFI scheme. The improvement due to the
DFI scheme is expressed by the ratio ρi between the processed SNR
σDFI and unprocessed SNRs σS1 and σS2.

one can see σDFI+ has a relative high value since for the new DFI channel displace-

ment noise has been suppressed and the GW signal has been retained.

4.5.3. DFI simulated results

The improvement due to the DFI scheme is expressed by the ratio ρi between the

processed SNR, σDFI±, and unprocessed SNRs, σS1 and σS2. In particular here

σDFI+ has been evaluated. The two resulting ratios ρS1 = σDFI/σS1 (blue curve)

and ρS2 = σDFI/σS2 (pink curve) show an improvement of ≈ 140 and of ≈ 95

respectively over the whole frequency range.

It is useful to mention that the analysis so far have been performed taking into

account an expected feature of a realistic setup. In particular it has been seen that

the noise cancelation mechanism relies on phase relations between the DN and GW
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Figure 4.10.: Improvement factor as a function of the asymmetry φ. In the ideal case
of φ = 0 the improvement factor diverges. Increasing the asymmetry
reduces the improvement factor. In particular when φ = 1 the factors
achieved are ρ1 = 140 and ρ1 = 95 respectively in HD1 and HD2.

responses. If one considers the DFI- channel, from the first term of equation 4.1 it

may be noticed that if the phases of the two homodyne transfer functions S1DN and

S2DN are the same a perfect noise cancelation occurs in the new DFI channel leading

to the improvement factor ρ being infinite. However non-ideal components cannot

ensure a perfect phase matching of the homodyne detector transfer functions. For

this reason the simulation takes into account this effect, replacing the DN response

in equation 4.1 with

SDN,DFI± = S1DNeiφ ± k · S2DN, (4.3)

where φ = 1◦ is the phase asymmetry considered in the simulations provided in

this thesis and k = |S1DN|/|S2DN| represents a fixed scaling factor. It is then

straightforward express the improvement factor ρ as a function of the asymmetry
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angle φ as follows:

ρ(φ) =
α

eiφ − 1
, (4.4)

where α = |SGW,DFI|/|S1GW| for HD1 and α = |SGW,DFI| · k/|S2GW| for HD2.

Fig. 4.10 shows the improvement factor as a function of the asymmetry φ, when the

two homodyne detectors are set in phase quadrature.

In conclusion in this Chapter it has been shown, with a simulated setup, the fea-

sibility of the proposed detuned FP-cavity based DFI model. The responses at

different quadratures have been studied in order to localize at which quadrature

point the enhancement of the SNR is higher. This simulation is the guideline for

the real experiment which is described in the next Chapter.
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Measurements and experimental

results

Presented in this Chapter is the first experimental proof of principle demonstration

of the new DFI scheme based on the detuned FP-cavity proposed in [TV08]. Thus

the core concept of this new idea which is the basis for newly proposed interferome-

ter schemes [RV08] has been verified. One laser in combination with two homodyne

detectors is used to suppress strongly the displacement noise of the input mirror of

a FP-cavity with respect to a simulated GW signal. As a result a gain in the GW

signal to displacement noise ratio in the frequency band from 10Hz to 10 kHz of

∼ 60 is obtained. The results described here provides the basis for the previously

accepted paper [PCHF10].
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5.1. DFI measurement description

The experimental setup of the detuned FP-cavity DFI based scheme described in

detail in Chapter 3 is shown in Fig. 5.1. The light originating from the laser is

split into two beams, one to pump the FP-cavity and one to provide the two local

oscillators (LO) for the homodyne detectors HD1 and HD2, where the output of

the two homodyne detectors is the difference signal given respectively by S1=PD1-

PD2 and S2=PD3-PD4. The reflected and transmitted signals from the cavity are

individually sensed with the two homodyne detectors HD1 and HD2. The homo-

dyne detectors allow the possibility to measure signals in an arbitrary quadrature

in between amplitude and phase quadrature. The local oscillator power is 25 mW,

whereas the signal beams for the homodyne detectors are one order of magnitude

weaker. This condition ensures that the resulting signal is dominated by the signal

present in reflected and transmitted light from the cavity and not by noise present

on the LO [Bac98].

The difference photocurrents of each homodyne detector, S1 and S2 for HD1 and

HD2 respectively, are used to generate individual error signals for the homodyne

detectors. Each error signal is fed back to the PZT actuators PS1 and PS2 re-

spectively. This provides the necessary control to lock both homodyne detectors to

phase quadrature. The control bandwidth of the cavity and the homodyne detec-

tor control loops are kept as low as possible, around ∼ 70 Hz, in order to avoid the

control loop affecting the DFI response in the low frequency region.

The electro-optic-modulator EOM2 is used to imprint a phase modulation on the

light resonating inside the cavity simulating the effect of GW. By injecting a swept-

sine signal into EOM2, one can measure a simulated GW transfer function to both
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Figure 5.1.: DFI transfer functions setup. The laser pumps the cavity through
the input cavity mirror (IM) and provides a local oscillator (LO) as
reference beam to each homodyne detectors. The reflected and the
transmitted light from the cavity contain the DN and GW signals,
obtained one after the other. The signals are created respectively in-
jecting a swept-sine signal onto the PZT attached on the IM and onto
the EOM2. Both the DN and GW signals are sensed by the two homo-
dyne detectors with outputs S1 and S2. These two signals are divided
by an active buffer (B) to provide a feedback loop signal to control the
homodyne detectors and to provide the signals to be measured by a
network analyser.
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homodyne detectors. The original scheme proposed in [TV08] includes the effects

of the GW on the LO paths. This scheme however represents the case where the

LO for HD2 can be provided by an independent laser.

The PZT attached to mirror IM is used to stabilise the cavity length by applying a

feedback signal. Furthermore, the simulated displacement noise signal is imprinted

on the light by applying swept-sine signal to this PZT which allows the possibility

to measure a displacement noise transfer function to both homodyne detectors.

Both transfer functions (DN and simulated GW) are measured using the homodyne

outputs S1 and S2, thereby creating the basis for the demonstration of this DFI

scheme.

5.2. Open loop transfer functions

In general the system loop performances can be seen by looking at the open loop

transfer function. The unity gain frequency determines the frequency band within

which the loop is able to suppress the disturbances acting on the system. The

DFI experiment contains three loops as described in Chapter 3; the cavity loop

and the two homodyne detector loops. Since the success of the DFI experiment is

determined by the features of the control loops, the open loop transfer functions

(OLTFs) of these systems are shown here.

The schematic measurement diagram of the OLTFs is shown in Fig. 5.2 and Fig. 5.3,

for the cavity and HDs loops respectively. A swept-sine S, provided by a network

analyser, is injected into the control loop, between the servo amplifier (PID) and

the high voltage amplifier (HV), and the response to the signal S is measured.
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PD-lock

Cavity

IM EM

EOM2

12 MHz Mx HV
S

A B

A/B

Figure 5.2.: The cavity open loop transfer function (OLTF) setup. A signal S,
provided by a network analyser, is injected into the cavity control loop,
in particular between the servo amplifier (PID) and the high voltage
amplifier (HV). The response to the signal S is measured at the two
points A and B and the OLTF is given by A/B.

Figure 5.3.: The homodyne detectors (HDs) open loop transfer functions (OLTF)
setup. A signal S, provided by a network analyser, is injected into
the HDs control loop, between the servo amplifier (PID) and the high
voltage amplifier (HV). The response to the signal S is measured at the
two points A and B and the OLTF is given by A/B.
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Figure 5.4.: The cavity open loop transfer function (OLTF) measured with the use
of three servo integrators. The green curve represents the cavity OLTF
when the 10 kHz integrator has been enabled; the pink curve represents
the cavity OLTF when the 1 kHz integrator has been enabled and the
red curve represents the cavity OLTF when the 100 Hz integrator has
been enabled.

Fig. 5.4, Fig. 5.5, Fig. 5.6 show the cavity OLTFs for the cavity and HDs, measured

with the use of three servo integrators, with the green curve representing the OLTF

when the 10 kHz integrator has been enabled, the pink curve representing the OLTF

when the 1 kHz integrator has been enabled and the red curve representing the

OLTF when the 100Hz integrator has been enabled in each.

The unity gain frequency of the system loops can be set up to a maximum of

10 kHz. The control loops can therefore suppress unwanted disturbances up to this

frequency. The challenge, however, is to set the unity gain frequencies of all the

systems as low as possible, in order to avoid affecting the DN and GW transfer

functions in the measurement bandwidth.
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Figure 5.5.: The HD1 open loop transfer function (OLTF) measured with the use
of three servo integrators. The green curve represents the HD1-OLTF
when the 10 kHz integrator has been enabled; the pink curve represents
the HD1-OLTF when the 1 kHz integrator has been enabled and the
red curve represents the HD1-OLTF when the 100 Hz integrator has
been enabled.

5.2.1. Cavity loop unity gain for DFI

Fig. 5.7 shows the cavity loop unity gain setting for the DFI measurements while

the cavity is on its locking point of 12 MHz. The stability of the loop is described

by the unity gain at around 90 Hz with a phase margin of ≈ 50◦. It has to be

noticed that a phase margin of 60◦ is highly desirable in feedback system design.

Typically, the minimum acceptable phase margin is 45◦.
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Figure 5.6.: The HD2 open loop transfer function (OLTF) measured with the use
of three servo integrators. The green curve represents the HD2-OLTF
when the 10 kHz integrator has been enabled; the pink curve represents
the HD2-OLTF when the 1 kHz integrator has been enabled and the
red curve represents the HD2-OLTF when the 100 Hz integrator has
been enabled.
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Figure 5.7.: Cavity loop unity gain for DFI. The stability of the loop is described
by the unity gain at around 90 Hz with a phase margin of ≈ 50◦.
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Figure 5.8.: Homodyne detector HD1 loop unity gain for DFI. The stability of the
loop is described by the unity gain at around 70 Hz with a phase margin
of ≈ 60◦.
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Figure 5.9.: Homodyne detector HD2 loop unity gain for DFI. The stability of the
loop is described by the unity gain at around 70 Hz with a phase margin
of ≈ 60◦.
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5.2.2. Homodyne detectors HD1 and HD2 loop unity gain for

DFI

Fig. 5.8 and Fig. 5.9 show the homodyne detector HDs loop unity gain set for the

DFI measurements. The cavity is still on its locking point of 12 MHz. The stability

of the loop is described by the unity gain at around 70 Hz with a phase margin of

≈ 60◦.

5.3. Preparation for the DFI measurement:

Relaxation oscillation suppression

The homodyne detection described in Section 3.4.1 is a balanced homodyne detector

provided by a 50/50 beam splitter and two equal photodetectors. In reality the

beam splitter is not perfectly 50/50 and the two photodetectors are not perfectly

equal. Subsequently for the homodyne detector shown in Fig. 3.15, if one of the

two beams is dumped and the other contains a generic signal, the latter will be

not cancelled at the output of the subtractor, which is the output of the homodyne

detector.

This problem is solved by implementing an attenuator in one of the subtractor in-

puts, which allows the suppression of the highest photocurrent in the two homodyne

photodectors by on amount that makes the two photocurrents perfectly equal and

gives a zero signal at the homodyne output. The described procedure is a funda-

mental step to be followed for preparing the experiment for the DFI measurements,

which can be affected by the unbalanced homodyne outputs.
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Figure 5.10.: The relaxation oscillation (RO) suppression on HD1 in the frequency
domain. The blue curve is the output of the homodyne when only
the photodetector PD1 is connected to the subtractor; The red curve
is the output of the homodyne when only the photodetector PD2 is
connected to the subtractor; the green curve is the output of the ho-
modyne when both the photodetectors are connected to the subtractor
with no use of the attenuator at the input of the subtractor; the cyan
curve shows that the RO signal is completely suppressed when the
attenuator at the subtractor input where the photodetector PD1 is
connected, is enabled and appropriately tuned. (The same plots ap-
ply for the RO suppression on HD2 since the LO beam is the same in
both homodyne detectors)

In particular for the homodyne HD1 the reflected light by the cavity is dumped

and for the homodyne HD2 the transmitted light by the cavity is dumped, leav-

ing only the LO in the two photodector outputs. The evaluation of a perfectly

balanced homodyne is done in the current work by looking at the relaxation oscil-

lation (RO) signal provided by the laser (introduced in Section 3.1.1). A perfectly

balanced homodyne detector will suppress totally the RO signal present in each

photodetector.

Fig. 5.10 shows the RO suppression on HD1 in the frequency domain (the same
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plots apply for the RO suppression on HD2 since the LO beam is the same in

both homodyne detectors). The output of the homodyne detector shows a peak

at around 50 kHz, measured by both photodetectors at different amplitudes. A

subtraction of the two photodetector signals does not give a perfect cancelation of

this peak, due to the difference in amplitudes of the two signals. With the use of an

appropriately tuned attenuator on one of the subtractor inputs, however, a much

more effective suppression of the 50 kHz peak is achieved. These measurements

have been made using a spectrum analyser, manufactured by Agilent, which can

measure only signals from 0Hz to 100 kHz. Thus a mixer is used to display such

measurements where the output of the subtractors is connected to the RF input of

the mixer, a 20 kHz signal is connected to the other LO input of the mixer, and the

IF output of the mixer is connected to the spectrum analyser. The displayed RO

signal at 50 kHz corresponds to the real RO signal at 470 kHz.

5.4. DFI quadratures analysis at high frequency

The performances of the detuned FP-cavity DFI based scheme described in Sec-

tion 5.5, show that suppression of the input cavity mirror has been achieved when

both the homodyne detectors are in phase quadrature. On the other hand Sec-

tion 4.4 showed how the simulated performances vary with the quadrature angle

changes. Since the DN and GW responses depend on which quadratures the ho-

modyne detectors are set, an analysis of the homodyne quadratures as it is shown

in Section 4.4 is described here in order to provide qualitative information of the

experimental performance at high frequency. The homodyne quadratures analysis

provided in this Section is done by measuring the DN and the GW transfer func-
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tions at fixed frequency against the homodyne quadrature angles. The scanning

of the quadratures starts when both the homodyne detectors are in phase quadra-

ture. The entire cycle of the quadratures goes for tunings of both LOs from 0◦ to

180◦. Tunings at 0◦ give both the homodyne detectors in phase quadratures, while

tunings at 90◦ give both the homodyne detectors in amplitude quadrature.

Figure 5.11.: DN and GW transfer functions measurement setup. The DN and
GW transfer functions are obtained one after the other by injecting a
sinusoidal signal at fs = 99.6 kHz respectively in the PZT attached on
the input cavity mirror and into the EOM2, while the cavity is locked
in its 12 MHz detuned state. Successively the homodyne detector
outputs are demodulated at fs and then the time traces of DN (DN1,
DN2) and GW (GW1, GW2) transfer functions at fixed frequency are
evaluated.

The DN and GW transfer functions are obtained separately using a modulation-

demodulation technique. A sinusoidal signal is injected at fs = 99.6 kHz into

the PZT attached to the cavity input mirror for the DN transfer function, and

subsequently into EOM2 for the GW transfer function, all while the cavity is locked

in the 12 MHz detuned state. In this way the time traces of DN (DN1, DN2)

and GW (GW1, GW2) transfer functions at fixed frequency to HD1 and HD2 are
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Figure 5.12.: DN and the GW transfer functions at fixed frequencies vs quadrature
angle. The scanning of the quadratures starts when both the homo-
dyne detectors are in phase quadrature. The left-hand side of shows
the DN transfer functions from the input cavity mirror to HD1 (blue
curve) and HD2 (green curve), (S1DN and S2DN). The right-hand side
shows the GW transfer functions from the cavity-length to HD1 (blue
curve) and HD2 (green curve), (S1GW and S2GW).

recorded. The DFI performances are evaluated from these measurements using the

algorithm described in Section 4.3.

The modulation frequency fs is chosen as the lowest possible as the cavity loses its

locking state below this frequency.

The schematic diagram of such measurement is shown in Fig. 5.11.

Fig. 5.12 shows on the top the traces of DN and GW transfer functions after being

calibrated against quadrature angles. Since the phases of DN and GW traces are not

provided, in order to perform a qualitative analysis of the homodyne quadratures

the phases of the transfer functions are simulated. Fig. 5.16 and Fig.5.17 show the
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phases of the DN transfer functions are the same while the GW transfer functions

are 180◦ phase shifted, when both HD1 and HD2 are in phase quadrature. This

relationship is used in Fig. 5.12 when the homodyne angles are at 0◦. Successively

a phase shift of 180◦ is imposed to the phases at each zero point of their relative

amplitude transfer function.

The left-hand side of Fig. 5.12 shows the DN transfer functions from the input cavity

mirror to HD1 (blue curve) and HD2 (green curve), respectively named S1DN and

S2DN. S1DN has a minimum of zero at 130◦ while S2DN has a minimum of zero

at 46◦. In between these two points the respective simulated phases are shifted

by 180◦. The right-hand side of Fig. 5.12 shows the GW transfer functions from

the cavity-length to HD1 (blue curve) and HD2 (green curve), respectively named

S1GW and S2GW. S1GW has a minimum of zero at 99◦ while S2GW has a minimum

of zero at 10◦. In between these two points the respective simulated phases are

the same. This quadrature analysis aims to identify quadrature angles at which

DFI results show a relatively high improvement factor. For simplicity here the

definitions of SNRs relative to both the processed and unprocessed data will be

recalled and plotted in order to give more clarifications of some features of the

improvement factor.

Fig. 5.13 shows the initial SNRs, σS1 and σS2, of the unprocessed data in HD1

(left-hand side) and HD2 (right-hand side) respectively, defined as follows:

σS1 = |S1GW|/|S1DN|,

σS2 = |S2GW|/|S2DN|. (5.1)
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Figure 5.13.: SNRs of the unprocessed data vs quadrature angle. Tunings at 90◦

give both the homodynes detector in amplitude quadratures, while
tunings at 0◦ give both the homodyne detectors in phase quadrature.
On the left-hand side is plotted the SNR in HD1 (σS1). On the right-
hand side is plotted the SNR in HD2 (σS2).

σS1 has a peak at ∼ 130◦ and a minimum at ∼ 99◦, while σS2 has a peak at

∼ 46◦ and a minimum at ∼ 10◦. The peaks are caused by the zero points of the

absolute values of S1DN and S2DN whereas the dips are caused by the zero points

of the absolute values of S1GW and S2GW, as can be seen from Fig. 5.12 and from

equations 5.1.

The detuned FP-cavity described in this work allows the construction of two new

DFI data channels, as shown in Section 4.3. One is named DFI- with DN SDN,DFI−

and GW signal SGW,DFI− as responses respectively to DN and GW signal, and one

is named DFI+ with DN SDN,DFI+ and GW signal SDN,DFI+ as responses as well.

The quadrature angles will determine the choice of the right DFI channel to be

used for the achievement of an high DFI improvement factor. The two channels are

defined as following:
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Figure 5.14.: SNRs of the DFI processed data. On the left-hand side the SNR of
the DFI+ channel σDFI+ = |S2GW,DFI+/S2DN,DFI+|. On the right-hand
side the SNR of the DFI- channel σDFI− = |S2GW,DFI−/S2DN,DFI−|.

SDN,DFI− = S1DN − k · S2DN SDN,DFI+ = S1DN + k · S2DN (5.2)

SGW,DFI− = S1GW − k · S2GW SGW,DFI+ = S1GW + k · S2GW (5.3)

where k represents a scaling factor which minimises the DN content in channel

SDN,DFI− and SDN,DFI+ defined in any quadrature as k = S1DN/S2DN.

The Fig. 5.14 shows the SNRs of the DFI processed data. On the left-hand side the

SNR of the DFI+ channel (σDFI+). On the right-hand side the SNR of the DFI-

channel, (σDFI−) defined as
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σDFI− = |SGW,DFI−|/|SDN,DFI−| (5.4)

σDFI+ = |SGW,DFI+|/|SDN,DFI+| (5.5)

In between 46◦ and 130◦ σDFI+ is relatively high varying from ≈ 102 to ≈ 103. In

the complementary interval σDFI− shows relative high values varying from ≈ 102 to

≈ 103. Two peaks are shown in both plots at ∼ 46◦ and ∼ 130◦ caused by high

values of k in points of zero of S2DN and S1DN respectively. In particular high

values of k strongly enhance |SGW,DFI−| and |SGW,DFI+|.

Shown in Fig. 5.15 is the enhancement effect ρi of the DFI defined as the ratio ρi

between the processed and unprocessed SNRs:

ρS1+ = σDFI+/σS1 ρS2+ = σDFI+/σS2

ρS1− = σDFI−/σS1 ρS2− = σDFI−/σS2 (5.6)

Present in Fig. 5.15 are peaks of ρS1+ and ρS1− at ∼ 99◦. Looking at equation 5.6

and Fig. 5.13 it is possible to identify the dip of σS1 as the reason of such peaks; in

the same way the dip of σS2 causes peaks of ρS2+ and ρS2− at ∼ 10◦. Other peaks

of ρS1+ and ρS1− are at ∼ 46◦. Recalling that at this point k is extremely high

and causes an high enhancement of |SGW,DFI−| and |SGW,DFI+|, ρS1+ and ρS1− are

enhanced as consequence as well. It can be noticed that such peaks are not found

in ρS2+ and ρS2− since the high value of σS2 at ∼ 46◦ limits the enhancement to

HD2, as can be seen from Fig. 5.14 and equations 5.4 and 5.6. Conversely ρS2+ and

ρS2− have peaks at 130◦, caused by high value of |SGW,DFI−| and |SGW,DFI+|, that
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Figure 5.15.: Enhancement effect of the DFI. The ratio ρi between the processed
and unprocessed SNRs against the quadrature angles are evaluated.
The plots are organised as follows: On the top-left-hand side ρS1+ =
σDFI+/σS1. On the top-right-hand side ρS2+ = σDFI+/σS2. On the
bottom-left-hand side ρS1− = σDFI−/σS1. On the bottom-right-hand
side ρS2− = σDFI−/σS2.

cannot be seen in the enhancement to HD1 since, in this case, σS1 has an extremely

high value in such point. The peak features described so far will be not taken into

account for a qualitative analysis of homodyne quadratures (see Section 4.4). It is

mostly interesting to localise on area where obtained an appreciable SNR can be,

where locking the two homodynes detectors could be experimentally possible.

In Fig. 5.15 a relatively high enhancement effect of ρS1+ varying from ≈ 102 to

≈ 103 can be seen in the region between 46◦ and 130◦. In the same region ρS2+

shows a relatively high enhancement effect of ≈ 90. On the other hand in the

complementary region ρS1− and ρS2− show an enhancement effect of ≈ 100.

Thus the quadrature analysis at high frequency shows an appreciable improvement

factor can be achieved in DFI+ channel for quadrature angles of both HD1 and
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HD2 in between 46◦ and 130◦, i.e. when both the homodyne detectors are in

amplitude quadratures. On the other hand, in the complementary angles interval,

high improvement factor can be achieved in the DFI- channel, i.e when both the

homodyne detectors are in phase quadrature as it is done for the DFI measurement

shown in Section 5.5.

5.5. DFI responses and results

The aim of the DFI measurements, described in Section 5.1, is to obtain DN of

the input cavity mirror and the GW responses to both the homodyne detectors,

which represent two channels of the detuned FP-cavity based DFI scheme. As

previously described these two channels can be used to create a new channel which

is free from displacement noise. The new channel can be created as described in

Section 4.3. The challenge is to prove the principle of the idea proposed in [TV08],

giving a demonstration of DFI at low frequency. Thus the DN and simulated-GW

responses are measured in the frequency range [10Hz-100 kHz] as shown respectively

in Fig. 5.16 and Fig. 5.17.

Since the DFI responses, and then the experimental proof, of the detuned FP-cavity

setup shown in this thesis depend on the particular quadrature, the two homodyne

detectors are provided with two control loops to ensure that their locking point

is in the so called phase quadrature. These responses are measured one after the

other while the cavity is in its locking point at 12 MHz. The cavity and homodyne

detectors loop unity gain is shown in sections 5.2.1 and 5.2.2.

As one can see in Fig. 5.16 the two transfer functions for the displacement noise from
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Figure 5.16.: Comparison of the measured transfer functions with the two homo-
dyne detectors HD1 and HD2. The two displacement noise transfer
functions are represented by the blue and cyan curves measured re-
spectively in HD1 and HD2. One can see that the two displacement
noise transfer functions are in phase almost in the whole frequency
range.
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Figure 5.17.: Comparison of the measured transfer functions with the two homo-
dyne detectors HD1 and HD2. The two simulated gravitational wave
transfer functions are represented by the red and orange curves re-
spectively measured in HD1 and HD2. One can see that the two
simulated GW signal transfer functions have a relative phase shift of
180◦ to each other in the whole frequency range.
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the cavity input mirror IM to the two homodyne detectors S1DN (blue curve) and

S2DN (cyan curve) are in phase in almost the entire frequency range. On the other

hand the two GW signal transfer functions shown in Fig. 5.17, S1GW (red curve)

and S2GW (orange curve), are out of phase by 180◦. All of these transfer functions

include phase shifts induced by the optical elements (φS1, φS2) that the reflected

and transmitted light from the cavity passes before the detection in the homodyne

detectors S1 and S2 respectively. The decreasing magnitude of all transfer functions

towards low frequencies is a result of the cavity servo loop gain which increases at

low frequencies thereby suppressing the injected signals more strongly.

The fact that the GW and DN transfer functions have different phase relations can

be used to create a new DFI data channel where the GW content is maintained

while the DN content will be strongly suppressed. This new data channel, as shown

in Section 4.3, is given by:

SDN,DFI = S1DN − k · S2DN, (5.7)

SGW,DFI = S1GW − k · S2GW. (5.8)

here k represents a fixed scaling factor which minimises the DN content in channel

SDN,DFI. In this case k was arbitrarily chosen to be the ratio of the DN transfer

function magnitude at 50Hz (k = S1DNA
[50 Hz]/S2DNA

[50 Hz]), as changing the

frequency for determining k does not dramatically change the results.

The signal-to-noise ratios (SNRs) σ of the initial unprocessed data channels of S1

and S2 are given by
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σS1 = S1GW/S1DN, (5.9)

σS2 = S2GW/S2DN (5.10)

and show how well a GW can be detected with respect to the present DN. For the

processed data channels a similar SNR can be calculated as:

σDFI = SGW,DFI/SDN,DFI (5.11)

To see the enhancement effect of the DFI in this experiment Figure 5.18 shows the

ratios ρi between the processed and unprocessed SNRs as follows:

ρS1 = σDFI/σS1, (5.12)

ρS2 = σDFI/σS2 (5.13)

respectively as the blue and red curves.

The improvement in the ratios ρi of the processed and unprocessed SNRs is signifi-

cant in the frequency range of interest. Overall ρS1 performs a little bit better than

ρS2. At 10Hz one can see an improvement in ρi of approximately two. This value

increases almost linearly up to 250Hz where it reaches a factor of about a hundred.

In the whole frequency range of interest the typical gain is ∼ 60 [PCHF10].

The DFI toy model described in [TV08] provides a perfect cancelation of dis-

placement noise from the input cavity mirror, which corresponds to an infinite
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Figure 5.18.: The improvement due to the DFI scheme is expressed by the ra-
tio ρi between the processed SNR σDFI and unprocessed SNRs σS1

and σS2. The two resulting ratios ρS1 = σDFI/σS1 (blue curve) and
ρS2 = σDFI/σS2 (red curve) show an improvement in the whole fre-
quency range with a slight advantage for ρS1 compared to ρS2. Trace
G shows the expected result for a phase difference between the trans-
fer functions of the two homodyne detectors of φ = 1◦, which reduces
the maximally achievable DN reduction factor to ∼ 140.

SNR. Although a theoretical description of this experiment using ideal components

predicts perfect cancelation a more realistic improvement factors must be com-

puted including inevitable asymmetries in the experimental setup. If the transfer

functions in Fig. 5.16 show a phase difference φ the expected improvement fac-

tor can be expressed as |α/(eiφ − 1)| where α = |SGW,DFI|/|S1GW| for HD1 and

α = |SGW,DFI| · k/|S2GW| for HD2. In particular when φ = 0.1◦ the expected im-

provement factor is ∼ 1500 (see Section 4.5.3), whereas a phase difference of φ = 1◦

reduces the improvement factor to ∼ 140 resulting in trace G shown in Fig. 5.18.

As one can see the overall DN reduction level of trace G corresponds quite well

with the experimental result at high frequencies.

In addition to this frequency independent phase difference, which was expected
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from an imperfect setup of the homodyne detectors, one could also identify a fre-

quency dependent asymmetry. This originates from slight differences in the feed-

back control electronics which lead to different slopes in the phase behaviour at low

frequencies. In more detail, the traces in Fig. 5.16 have relatively high phase dif-

ference at low frequencies which decreases up to ∼ 100 Hz while the corresponding

amplitudes have flat shapes starting from ∼ 70 Hz. Less dominant but still present,

this effect is visible in the traces of Fig. 5.17. Due to this frequency dependent phase

difference the resulting DN rejection factor decreases towards low frequencies and

does not follow the expected behaviour shown by trace G.

Furthermore, this type of table-top experiment is subject to mechanical vibrations

of optics mounts which create sharp dispersion-like structures in the DN and GW

transfer functions at frequencies between 200Hz and 4 kHz. The phase asymme-

tries mentioned above convert such dispersion structures in peaks or dips in the

improvement factor.
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Conclusions

This thesis presents the first experimental proof of principle of the detuned Fabry-

Perot (FP)-cavity based Displacement noise-Free Interferometry (DFI) scheme show-

ing a large enhancement of a mimicked gravitational wave (GW) signal compared to

the displacement noise (DN) in the gravitational frequency band from 10Hz-10 kHz.

Here the suppression of DN from the input cavity mirror is considered. The success

of the experiment is represented by an improvement in the GW signal to DN ratio

by a factor of 60 over the whole frequency range of interest. The experiment uses a

laser to pump the FP-cavity from the input cavity mirror and uses the reflected and

the transmitted light from the cavity as multiple channels, with each channel sensed

by one of two homodyne detectors. The linear combination of the two homodyne

detectors is used to form a DFI channel which is free from any kind of displacement

noise. The experiment was simulated before its physical construction in order to

support the validity of the setup by providing an expected improvement factor,

which was close to the one obtained from the real experiment. Furthermore the
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simulation gives the possibility to optimise and analyse several possible options for

the homodyne settings. In particular two DFI channels are evaluated against the

quadrature angles, giving useful information for future experiments that might use

this scheme. A similar description is provided in the last part of this thesis for an

analysis at high frequency of the quadrature angles which gives general information

on the behaviour of real experiments. This analysis shows for any angle which DFI

channel one has to choose to obtain the DN suppression, confirming the success of

the experiment presented.

This thesis strictly enters in the challenging (and strongly debated) contest aiming

to improve the sensitivity of GW detectors. Indeed, the surprising DFI technique

this thesis is dealing with was proposed a few years ago by Y. Chen and S. Kawa-

mura, and it was straightforward to see how important this method could have been

for the third generation of GW detectors. In particular this technique uses multiple

readouts from the experiment, which allows the construction of an observable (here

called DFI channel), which is free from any kind of DN whilst retaining the GW

signal.

In order to reach the first GW detection, ground based detectors need to improve

their sensitivity, especially in the low frequency band. Recalling that the noise-

sources limiting the sensitivity of GW detectors at low frequency are DNs, with all

the efforts that scientists are making to attenuate each of these DNs individually,

it can clearly be seen how enchanting a single technique capable of completely

removing all kinds of DNs at once appeared.

Unfortunately the DFI based on the Chen-Kawamura concept is only able to sup-

press noises at high frequencies, which are not the GW frequency band of inter-
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est. They initially proposed a 2-dimensional experiment, later extended to a 3-

dimensional one, using a Mach-Zender configured interferometer where DNs were

suppressed from both mirrors and beam-splitters, again at frequencies above 1MHz.

Although the frequency range was not of direct interest, the technique was demon-

strated with very encouraging results which stimulated researchers to study new

DFI configurations able to improve the DFI performances at low frequency.

Thus a further step was proposed by S. P. Tarabrin and S. P. Vyatchanin in 2008

with a new DFI scheme. Although it does not include the frequency noise aspect

of DFI, it is an interesting toy-model using the features of a FP-cavity to suppress

DN from both the cavity mirrors in the low frequency regime. Here the mechanism

of noise cancelation gives better results than Chen-Kawamura’s responses. In the

long wave approximation λgw ≫ L, where λgw is the GW wavelength and L is the

cavity length, the leading order of the DFI signal for the FP-cavity is h(L/λgw)0

while h(L/λgw)2 is the response obtained from the Chen-Kawamura DFI scheme.

As a drawback the FP-cavity scheme loses the optical resonant gain from the cavity.

Consequently, the sensitivity of this scheme concerning GWs is reduced compared to

conventional interferometers and the noise performance of auxiliary optics becomes

more important. Currently this is the limit for the implementation in GW detectors.

Reducing the noise of the auxiliary optics, for example by using very heavy cooled

platforms where some fraction of them can be mounted, will attenuate this limit

somewhat.

As part of the work for this thesis a new interesting interferometer topology formed

by three coplanar Michelsons in a triangular geometry. This has been introduced

and studied as a possible option to be considered for the third generation of GW

detectors. This configuration, provided with resonant arm cavities, power recycling
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and tunable signal recycling cavities, can be seen as one of the possible starting

point for implementing the FP-cavity DFI based scheme where the arm cavities

can be pumped from both sides in order to remove DN from the cavity mirrors.

This is an almost completely unexplored configuration deserving of further study.

Future research based on the promising results of this thesis could investigate the

feasibility of such platforms.

A further DFI technique has been already proposed for a two aligned FP-cavity

configuration by A. A. Rakhubovsky and S. P. Vyatchanin where they have shown

suppression from all the cavity mirrors, with a DN response better than the one

obtained by Y. Chen and S. Kawamura.

This thesis was designed to prove the underlying idea of many new schemes repre-

sented by the toy-model originally proposed by S. P. Tarabrin and S. P. Vyatchanin.

It represents the first experimental demonstration of the new proposed detuned

FP-cavity DFI scheme showing improvement of GW-signal to DN ratio of a typical

factor of 60 in the GW detector band and opening up the possibility for future work

aimed at implementations in up-coming laser interferometers.

133



Appendix A.

Advanced Virgo: Length sensing and

control system

A.1. Introduction

The development of the design of advanced detectors requires further investigation

for an optimal choice of their parameters. In particular here an area of a work done

for Advanced Virgo is presented. This is an extract from a document delivered to

the Virgo community [HMPF09], aimed to design the length sensing and control

system (LSCS). This work has been done following the Advanced LIGO approach

described in [AAB+08].

The design of Advanced Virgo, which is still under study, will affect the LSCS.

Currently, since many parameters for the design have not been decided yet, the

LSCS cannot be properly optimised. This can be done only after the design is pro-

vided. On the other hand LSCS sets constraints for other systems, i.e. the recycling
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cavity, which in turn affect the detector performances. Thus the idea is to create

an automatised tool able to provide an optimal LSCS under any given constraints

rather than the usual calculations and simulations, allowing the LSCS to be checked

and optimised during any changes of the detector design. This means that for any

change in the detector design the LSCS is able to provide new constraints for other

systems giving the possibility to evaluate the optimal detector configuration, i.e.

finding the optimal modulation frequencies, as well as the detector performances.

This goal is achieved with a set of tools called OSD Tools, a set of Matlab functions

making use of Finesse software, described in more detail in [HMPF09]. Here a

qualitative procedure using such tools to create the optimal detector configuration

for a given set of input parameters and constraints is presented.

A.2. Definition of lengths

Before giving a description of the use of tools it is worth defining the length and tun-

ings. The former represents the distance between two optical elements measured

to an accuracy of ∼ 1 mm, here indicated by Li, the latter represents a micro-

scopic distance. Therefore distances between optical elements can be represented

by lengths and tunings. Fig.A.1 shows a simplified optical layout of the Advanced

Virgo interferometer, where the main lengths are shown. Details of the definition

of lengths are shown in A.1.

135



Appendix A. Advanced Virgo: Length sensing and control system

Figure A.1.: Advanced Virgo optical layout. It is a Michelson interferometer with
arm cavities and recycling cavities [HMPF09].

Name Description
lprm length between PRM HR coating and BS HR coating
lx length between BS HR coating and IMX HR coating

(includes BS and IMX substrates)
ly length between BS HR coating and IMY HR coating

(includes IMY substrate)
Lx length between IMX HR coating and EMX HR coating
Ly length between IMY HR coating and EMY HR coating
lsrm length between BS HR coating and SRM HR coating

(includes BS substrate)

Table A.1.: Definition of the lengths inside the Advanced Virgo interferometer
[HMPF09]. The defined distances take into account the high reflec-
tivity (HR) coating of the optical elements.
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Schnupp length

In order to detect the radio frequency modulation sidebands at the output port

of the interferometer lx and ly must have a macroscopic length difference. This is

then defined as Schnupp asymmetry (or Schnupp length) in the following form:

LSch =
lx − ly

2
(A.1)

Length of the Power-Recycling cavity

The length of the Power-Recycling cavity (PRC) is defined as:

LPRC = lprm +
lx + ly

2
(A.2)

Length of the Signal-Recycling cavity

The length of the Signal-Recycling cavity (SRC) is:

LSRC = lsrm +
lx + ly

2
(A.3)
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Definition of Degrees of Freedom (DOF)

The following five degrees of freedom are used to describe the full core of the

interferometer:

φDARM =
Lx − Ly

2
(A.4)

φCARM =
Lx + Ly

2
(A.5)

φMICH =
lx − ly

2
(A.6)

φPRCL = lprm +
lx + ly

2
(A.7)

φSRCL = lsrm +
lx + ly

2
(A.8)

(A.9)

It should be mentioned that the degrees of freedom concern microscopic lengths.

A.3. Optimisation of detector configuration

The optimisation of the detector configuration is based on the work presented in

[AAB+08], with a set of Matlab functions, OSD Tools, used to interface and auto-

mate the calculation of the simulated interferometer parameters encoded in Finesse

software. The optimisation is performed in the following order:

1. Radii of curvature of the mirrors (ROC)

2. RF-modulation frequencies

3. Length of Power-Recycling cavity (PRC)
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4. Schnupp Asymmetry

5. Length of Signal-Recycling cavity (SRC)

A.3.1. Calculating the radius of curvature for a given beam size

Matlab function which uses OSD tools (OSD ROC.m) has been created in order

to calculate the ROC of the main arm cavity mirrors IMx, EMx, IMy, EMy and

the two recycling mirrors PRM and SRM. This function takes the desired beam

radius as an input, and as additional input a Finesse file is used to simulate the

whole interferometer. As the first step the function runs Finesse to calculate the

ROCs of the main cavity mirrors at a given beam radius. Afterwards it scans the

length L of ROC from L + 1 to L − 1 and then extracts the closest value to the

desired radius of curvature. Then a second simulation is performed for calculating

the ROCs of the two recycling mirrors PRM and SRM.
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Figure A.2.: Beam radius versus radius of curvature (ROC). [HMPF09].

In particular the curvature of the wavefront at the position of the recycling mirror,
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i, has been calculated using the distance from the waist, z, and the Rayleigh range,

zr as follows:

Rc,i = zi +
z2

r,i

zi
(A.10)

The optimised values for the ROCs are finally saved into a Finesse output file.

Fig.A.2 shows the beam radius of the test masses as a function of ROCs.

A.3.2. Calculating the RF modulation frequencies

Following the Advanced LIGO approach, Advanced Virgo uses two radio frequency

(RF) modulations which have to be detected at the output of the detector. The

design strategy is to keep both RFs, f1 and f2, simultaneously resonant in the PRC

in order to be enhanced, and not resonant in the arm cavities, together with the

first six higher order modes (TEMlm with l + m ≤ 6), to avoid decoupling effects

with the various length degrees of freedom. The first item can be realized choosing

f1 to be at the first FSR and f2 to be a multiple of the first modulation frequency:

f2 = M · f1 with M ∈ N (A.11)

Note that a large M is required from one side for a better decoupling of f1 and

f2, and a small M is required from the other side for a simpler feasibility of RF

electronics.
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Figure A.3.: Fundamental and 1st order Bessel functions. The first order Bessel
function contains a fraction of the modulation which become more
significant at higher modulation index [HMPF09].

It should also be observed that for a certain modulation index the first order Bessel

function has a significant contribution. For example, Fig.A.3 shows the amplitude

of the fundamental and first order Bessel functions versus modulation index. Here

for a modulation index of 0.3 the first order Bessel function contains more than

10% of the modulation. For this reason, concerning the second item, it is required

that the first harmonic of the modulation frequencies (2 ·f1 and 2 ·f2) together with

their first six higher order optical modes have to be off resonant in the arm cavities.

In other words, the two modulation frequencies must not be at the anti-resonance

of the arm cavity.

To achieve this a Matlab function (OSD modfreq.m) was created. 28 frequencies,

consisting of the modulation sidebands +f1, −f1, +f2 and −f2, their first order

harmonics and their first six higher order modes, are computed. The frequency
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fi,l+m of the TEMlm of the modulation sideband fi is expressed as follows:

fi,l+m = fi + fsep,l+m, (A.12)

where fsep,l+m is the transversal mode spacing of the optical mode of the order l+m,

which is computed as:

fsep,l+m = (l + m) × c

2πL
arccos

√

(1 − L

ROCI
)(1 − L

ROCE
), (A.13)

with L being the length of the arm cavity and ROCI and ROCE being the radius

of curvature of the input cavity mirrors and the end cavity mirrors respectively.

Afterwards the frequency distances ∆i,l+m and ∆i,l+m from the resonance and from

the anti-resonance of the arm cavities respectively, are calculated as follow:

∆i,l+m(f) = k · FSR − fi,l,m(f), (A.14)

Γi,l+m(f) = (k +
1

2
) · FSR − fi,l+m(f) (A.15)

where FSR = c/(2 · L) is the free spectral range of the arm cavities and k is an

integer number describing the free spectral range closest to fi,l+m.

Fig.A.4 shows a qualitative resonance condition of the modulation sidebands inside

the arm cavity. The blue curve is the power enhancement of the fundamental
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order of the carrier inside the cavity, where the two peaks represent the resonances

separated by one FSR, whereas the middle represents the anti-resonance frequency.

The vertical dashed lines represent one modulation sideband and its higher order

modes equally separated. An example of the distance from resonance and anti-

resonance is indicated for the 4th higher order mode (yellow line).
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Figure A.4.: Resonance condition of the modulation sidebands inside the arm cavity
[HMPF09].

Finally the minimal distance (Λ(f)) out of the 56 distance values are calculated for

each of the modulation frequencies scanned over a given frequency range. The latter

is given as an input to the function together with a Finesse file used to simulate the

detector and the integer number M introduced in equation A.11 is given as well.

The optimised modulation frequency is given by the one providing the largest value

of Λ(f).
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A.4. Calculating the length of the Power-Recycling

cavity (PRC)

The calculation of the length of the PRC has to be done taking into account that

the RFs f1 and f2 have to be resonant inside the cavity. Given that f2 is chosen as

an integer multiple of f1, once f1 is resonant into the cavity, f2 will be resonant as

well. Thus the resonance condition is expressed as:

LPRC = (N + 0.5)
c

2f1
(A.16)

where N represents the unknown to be determined. The length of the PRC is

calculated by the OSD-Tool function (OSD PRC length.m), which takes the input

to be the desired rough length of the PRC. The function determines the optimal

value for N following equation A.16 and writes this new value into a Finesse file in

order to run a new simulation of the optical detector with the new optimised value

of the length of the PRC. Using the new simulation, the optimal ROC of the PRM

for the new length of the PRC is performed.

A.4.1. Calculating the Schnupp asymmetry and the length of

the Signal-Recycling cavity

The last step for a new detector configuration obtained with an automated process

is to optimise the Schnupp asymmetry LSch and the length LSRC of the Signal-

Recycling cavity (SRC) already defined in Section A.2. To this purpose it is re-
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Figure A.5.: Power of the two RF modulation sidebands inside SRC for a simulta-
neous scan of SRC and Schnupp lengths. [HMPF09].

quired that only the modulation sideband f2 is resonant in the SRC while f1 has

to be at the anti-resonance point in order to maximise the decoupling of the length

of SRC from the other degrees of freedom. Both the lengths LSch and LSRC are cal-

culated by the OSD-Tool function (OSD SR Schnupp.m). This function requires

as inputs the modulation frequencies sidebands and a rough length of the desired

SRC length. In particular the function calculates the two lengths LSch and LSRC so

as to maximise the power of f2 inside the SRC. Once the lengths are changed the

function recalculates the ROC of the SRM.

Fig.A.5 shows an example of the power of the RF modulation sidebands inside the
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SRC. The plot has been obtained for a simultaneous scan of LSch and LSRC. The

lower plot shows the power of f1 to be maximum at LSRC = 24 m whereas the upper

plot shows the power of f2 to be maximum for several different values of LSch and

LSRC. The desired SRC length is given as an input. An additional input, which

selects a short or long Schnupp length, define univocally the choice of couple lengths

LSch and LSRC. It should be mentioned that the choice has to take into account

the points where f1 is resonant in SRC. Thus in this case, LSRC ≈ 24 m has to be

excluded.
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Homodyne detection

In this Section is derived the mathematical output of the homodyne detectors in

a general case when, on the homodyne beam splitter (BSH), interference occurs

between N fields ai of the signal beam and M fields bi of the LO beam.

B.1. Homodyne

Fields on the two photodetectors PD1 and PD2 are described with following con-

vention:

EPD1 =

√

1

2

N
∑

i=0

aie
i(ωit+αi) +

√

1

2
i

M
∑

j=0

bje
i(ωjt+βj) (B.1)

EPD2 =

√

1

2
i

N
∑

i=0

aie
i(ωit+αi) +

√

1

2

M
∑

j=0

bje
i(ωjt+βj) (B.2)

The intensity IPD1 onto the photodetector PD1 can be calculated as:
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+
1

2

M
∑

j=0

(| bj |2 +
M
∑

l=j+1

(bjb
∗
l e

i(ωj−ωl)tei(βj−βl) + b∗jble
−i(ωj−ωl)te−i(βj−βl))) +

+

N
∑

i=0

M
∑

l=0

ℑ{aib
∗
l e

i(ωi−ωl)tei(αi−βl)}
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In a very compact form then

IPD1 =
1

2

N
∑

i=0

(| ai |2 +

N
∑

k=i+1

Re{aia
∗
ke

i(ωi−ωk)tei(αi−αk)}) +

+
1

2

M
∑

j=0

(| bj |2 +
M
∑

l=j+1

Re{bjb
∗
l e

i(ωj−ωl)tei(βj−βl)}) +

+

N
∑

i=0

M
∑

j=0

ℑ{aib
∗
je

i(ωi−ωj)tei(αi−βj)} (B.3)

IPD2 =
1

2

N
∑

i=0

(| ai |2 +
N
∑

k=i+1

Re{aia
∗
ke

i(ωi−ωk)tei(αi−αk)}) +

+
1

2

M
∑

j=0

(| bj |2 +

M
∑

l=j+1

Re{bjb
∗
l e

i(ωj−ωl)tei(βj−βl)}) +

−
N
∑

i=0

M
∑

j=0

ℑ{aib
∗
je

i(ωi−ωj)tei(αi−βj)} (B.4)

Using ωij = ωi − ωj, α = β, ϕij = αi − αj the two photocurrents can be rewritten

as:

IPD1 =
1

2

N
∑

i=0

(| ai |2 +
N
∑

k=i+1

Re{aia
∗
ke

iωikteiϕik}) +

+
1

2

M
∑

j=0

(| bj |2 +

M
∑

l=j+1

Re{bjb
∗
l e

iωjlteiϕjl}) +

+
N
∑

i=0

M
∑

j=0

ℑ{aib
∗
je

iωijteiϕij} (B.5)
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IPD2 =
1

2

N
∑

i=0

(| ai |2 +
N
∑

k=i+1

Re{aia
∗
ke

iωikteiϕik}) +

+
1

2

∑

j

(| bj |2 +

M
∑

l=j+1

Re{bjb
∗
l e

iωjlteiϕjl}) +

−
N
∑

i=0

M
∑

j=0

ℑ{aib
∗
je

iωijteiϕij} (B.6)

The difference is:

I21 = 2
N
∑

i=0

M
∑

j=0

ℑ{aib
∗
je

iωijteiϕij} = (B.7)

= 2

(

N
∑

i=0

ℑ{aibie
iϕii} +

N
∑

j=i+1

ℑ{aib
∗
je

iωijteiϕij + b∗i aje
−iωijte−iϕij}

)

(B.8)

When looking for DC components

I21 = 2

N
∑

i=0

ℑ{aibie
iϕii} (B.9)

B.1.1. Example 1: One field in each beam

From the equation (B.9) setting N = M = 0 and using ϕ00 = ϕ0 − ϕ0 + β = ϕH it

can be written
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I21 = 2ℑ{a0b
∗
0e

iϕ00} = 2ℑ{a0b
∗
0e

iϕH} = 2

(

a0b
∗
0e

iϕH − a∗
0b0e

−iϕH

2i

)

=

= 2a0b0 sin ϕH (B.10)

where a0 and b0 have been considered real numbers and ϕH is the LO phase shifter.

B.1.2. Example 2: Three fields on both beams

From the equation (B.9) setting N = M = 2 and using ϕii = ϕi − ϕi + β = ϕH it

can be written

I21 = 2
2
∑

i=0

ℑ{aibie
iϕii} = 2ℑ{(a0b0 + a1b1 + a2b2) e−iϕH} (B.11)

where ai and bi have been considered real numbers and ϕH is the LO phase shifter.
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Appendix C.

Simulated quadrature analysis

C.0.3. Scanning the quadrature angles: HD1 starts in AQ and

HD2 in PQ

In this subsection the homodyne quadrature analysis is done by performing the DN

and the GW transfer functions at fixed frequencies against the quadrature angles

where the scanning of the quadratures starts when HD1 is in amplitude quadrature

and HD2 is in phase quadrature. The entire cycle of the quadratures is for tunings

of both BSH1 and BSH2 from 0◦ to 90◦. Tunings at 0◦ give HD1 in amplitude

quadratures, and HD2 in phase quadrature. In this case at 45◦ HD1 is in phase

quadrature and HD2 is in amplitude quadrature.

The left-hand side of Fig. C.1 shows the DN transfer functions from the input cavity

mirror to HD1 (blue curve) and HD2 (green curve), respectively named S1DN and

S2DN. S1DN has a minimum of zero at 4.7◦ while S2DN has a minimum of zero

at 19.3◦. In between these two points the respective phases are the same while
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Figure C.1.: DN and the GW transfer functions at fixed frequency vs quadrature
angle. The scanning of the quadratures starts when HD1 is in ampli-
tude quadrature and HD2 is in phase quadrature. The left-hand side
of shows the DN transfer functions from the input cavity mirror to
HD1 (blue curve) and HD2 (green curve). The right-hand side shows
the GW transfer functions from the cavity-length to HD1 (blue curve)
and HD2 (green curve).

everywhere else they are shifted by 180◦. The right-hand side of Fig. C.1 shows

the GW transfer functions from the cavity-length to HD1 (blue curve) and HD2

(green curve), respectively named S1GW and S2GW. S1GW has a minimum of zero

at 82.4◦ while S2GW has a minimum of zero at 13.5◦. In between these two points

the respective phases are the same while everywhere else are shifted by 180◦.

Fig. C.2 shows the initial SNRs, σS1 and σS2, of the unprocessed data respectively

in HD1 (left-hand side) and HD2 (right-hand side). σS1 has a peak of ≈ 500 at 4.7◦

and a minimum of ≈ 10−3 at 82.4◦, while σS2 has a peak of ≈ 103 at 19.3◦ and a

minimum of ≈ 10−2 at 13.5◦.
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Figure C.2.: SNRs of the unprocessed data vs quadrature angle. Tunings at 0◦ give
HD1 in amplitude quadratures and HD2 in phase quadrature. At 45◦

HD1 is in phase quadrature and HD2 is in amplitude quadrature. On
the left-hand side is plotted the SNR in HD1 σS1. On the right-hand
side is plotted the SNR in HD2 σS2.

Fig. C.3 shows the SNRs of the DFI processed data. On the left-hand side the SNR

of the DFI+ channel, σDFI+ = S2GW,DFI+/S2DN,DFI+, when the latter is built taking

into account the plus sign in the equations 4.1. On the right-hand side the SNR

of the DFI- channel, σDFI− = S2GW,DFI−/S2DN,DFI−, when the latter is built taking

into account the plus sign in the equations 4.1. Both σDFI+ and σDFI− show peaks

at 4.7◦ and 19.3◦.

In between those two values σDFI− is relatively high varying from ≈ 102 to ≈ 103

with a minimum of ≈ 20 at 16.4◦. In the complementary interval σDFI+ shows

relative high values varying from ≈ 300 to ≈ 800.

In Fig.C.4 is shown the enhancement effect ρi of the DFI. The ratio ρi between

the processed and unprocessed SNRs are evaluated. The plots are organised as
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Figure C.3.: SNRs of the DFI processed data. Tunings at 0◦ give HD1 in amplitude
quadratures and HD2 in phase quadrature. At 45◦ HD1 is in phase
quadrature and HD2 is in amplitude quadrature. On the left-hand
side the SNR of the DFI+ channel σDFI+ = S2GW,DFI+/S2DN,DFI+.
On the right-hand side the SNR of the DFI- channel σDFI− =
S2GW,DFI−/S2DN,DFI−.

follows: On the top-left-hand side ρS1+ = σDFI+/σS1. On the top-right-hand side

ρS2+ = σDFI+/σS2. On the bottom-left-hand side ρS1− = σDFI−/σS2. On the bottom-

right-hand side ρS2− = σDFI−/σS2.

ρS1+ shows three peaks of ≈ 5 · 103, ≈ 104 and ≈ 104 respectively at 4◦, 19.3◦ and

82.4◦. In the region between 25◦ and 65◦ a relative high enhancement effect ρS1+ of

≈ 200 is seen. In the same region ρS2+ shows a relative high enhancement effect of

≈ 100 and a peak of ≈ 104 at 4◦. On the other hand ρS1− shows an enhancement

effect of ≈ 70 in the region in between 5◦ and 20◦. In contrast in the same region

ρS2− shows an enhancement effect of ≈ 200. with a peak of ≈ 104 at 13.5◦.
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Figure C.4.: Enhancement effect of the DFI. Tunings at 0◦ give HD1 in amplitude
quadratures and HD2 in phase quadrature. At 45◦ HD1 is in phase
quadrature and HD2 is in amplitude quadrature. The ratio ρi between
the processed and unprocessed SNRs against the quadrature angles are
evaluated. The plots are organised as follows: On the top-left-hand
side ρS1+ = σDFI+/σS1. On the top-right-hand side ρS2+ = σDFI+/σS2.
On the bottom-left-hand side ρS1− = σDFI−/σS2. On the bottom-right-
hand side ρS2− = σDFI−/σS2.

C.0.4. Scanning the quadrature angles: HD1 and HD2 start at

maximum GW detection

In this subsection the homodyne quadratures analysis is done by performing the

DN and the GW transfer functions at a fixed frequency against the quadrature

angles where the scanning of the quadratures starts when HD1 and HD2 are able

to detect the maximum GW signal. The entire cycle of the quadratures goes for

tunings of both BSH1 and BSH2 from 0◦ to 90◦. Tunings at 0◦ give the maximum

detectable GW signal in HD1 and HD2.

The left-hand side of Fig. C.5 shows the DN transfer functions from the input cavity
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Figure C.5.: DN and the GW transfer functions at fixed frequency vs quadrature an-
gle. The scanning of the quadratures starts when both the homodyne
detectors are able to detect the maximum GW signal. The left-hand
side of shows the DN transfer functions from the input cavity mirror to
HD1 (blue curve) and HD2 (green curve). The right-hand side shows
the GW transfer functions from the cavity-length to HD1 (blue curve)
and HD2 (green curve).

mirror to HD1 and HD2, respectively named S1DN and S2DN.

Both S1DN (blue curve) and S2DN (green curve) have a minimum at 0◦ and 90◦

which represents the same point. The phases are the same in all the range of the

quadratures angle. The right-hand side of Fig. C.5 shows the GW transfer functions

from the cavity-length to HD1 (blue curve) and HD2 (green curve), respectively

named S1GW and S2GW. S1GW has a minimum of zero at 77.8◦ while S2GW has a

minimum of zero at 84.4◦. In between these two points the respective phases are

the same while everywhere else they are shifted by 180◦.

Fig. C.6 shows the initial SNRs, σS1 and σS2, of the unprocessed data respectively
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Figure C.6.: SNRs of the unprocessed data vs quadrature angle. The scanning
of the quadratures starts when HD1 and HD2 are able to detect the
maximum GW signal. On the left-hand side is plotted the SNR in
HD1 σS1. On the right-hand side is plotted the SNR in HD2 σS2.

in HD1 (left-hand side) and HD2 (right-hand side). σS1 has a peak of ≈ 600 at

0◦ and a minimum of ≈ 10−3 at 77.8◦, while σS2 has a peak of ≈ 600 at 0◦ and a

minimum of ≈ 10−1 at 84.2◦.

Fig. C.7 shows the SNRs of the DFI processed data. On the left-hand side the SNR

of the DFI+ channel, σDFI+ = S2GW,DFI+/S2DN,DFI+. On the right-hand side the

SNR of the DFI- channel, σDFI− = S2GW,DFI−/S2DN,DFI−. Both σDFI+ and σDFI−

show peaks at 0◦ and 90◦. In the whole range of the quadratures angle σDFI+ is

constantly equal to 2 with a minimum of ≈ 10−1 at 89◦, while σDFI− is relatively

high varying from ≈ 3 · 104 to ≈ 102 with a minimum of ≈ 10 at 82◦.

In Fig.C.8 the enhancement effect ρi of the DFI is shown. The ratio ρi between

the processed and unprocessed SNRs are evaluated. The plots are organised as

follows: On the top-left-hand side ρS1+ = σDFI+/σS1. On the top-right-hand side
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Figure C.7.: SNRs of the DFI processed data. The scanning of the quadra-
tures starts when HD1 and HD2 are able to detect the maximum
GW signal. On the left-hand side the SNR of the DFI+ channel
σDFI+ = S2GW,DFI+/S2DN,DFI+. On the right-hand side the SNR of
the DFI- channel σDFI− = S2GW,DFI−/S2DN,DFI−.

ρS2+ = σDFI+/σS2. On the bottom-left-hand side ρS1− = σDFI−/σS2. On the bottom-

right-hand side ρS2− = σDFI−/σS2.

ρS1+ and ρS2+ are below 1 except at 77.8◦ and 84.2◦. On the other hand ρS1−

shows an enhancement effect almost constantly at ≈ 300 in the region in between

5◦ and 75◦ with a peak of ≈ 105 at 75◦, while in the same region ρS2− shows an

enhancement effect of ≈ 150 and a peak of ≈ 104 at 84.2◦.
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Figure C.8.: Enhancement effect of the DFI. The scanning of the quadratures starts
when HD1 and HD2 are able to detect the maximum GW signal.
The ratio ρi between the processed and unprocessed SNRs against
the quadrature angles. The plots are organised as follows: On the
top-left-hand side ρS1+ = σDFI+/σS1. On the top-right-hand side
ρS2+ = σDFI+/σS2. On the bottom-left-hand side ρS1− = σDFI−/σS2.
On the bottom-right-hand side ρS2− = σDFI−/σS2.
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Appendix D.

Electronics circuits

In this Appendix are collected the circuit diagrams of the electronic devices used

in the DFI experiment described in this thesis. The diagrams have been designed

by H. Vahlbruch and B. Hage and consequently used to build with appropriate

modifications the described electronic devices to realize the demonstration of the

DFI experiment.

D.1. Photodetectors

The circuit diagrams of photodetectors used to detect the reflected signal by the

cavity and into the homodyne detectors are displayed in Figures D.1 and D.2.
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Figure D.1.: Photodetector. Part 1/2
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Figure D.2.: Photodector. Part 2/2
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D.2. Subtractor

The circuit diagrams of the Subtractor device for both the homodynes detectors

are displayed in Figures D.3 and D.4.

D.3. Servo

The circuit diagrams of the servos devices used to control the cavity and the two

homodyne detectors loop are displayed in Figures D.5, D.6 and D.7

D.4. Mixer

The circuit diagrams of the mixer used to control the cavity are displayed in Figures

D.8, D.9, D.10 and D.11.

D.5. Local oscillator

The circuit diagram of the oscillator used for the demodulation of the light is shown

in Fig.D.12.

D.6. Active Buffer

An active buffer has been used to inject a swept-sine signal and simultaneously

feedback signal Fig.D.13 on the input cavity mirror.
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Figure D.3.: Subtractor. Part 1/2
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Figure D.4.: Subtractor. Part 2/2
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Figure D.5.: Servo. Part 1/3
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Figure D.6.: Servo. Part 2/3
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Figure D.7.: Servo. Part 3/3
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Figure D.8.: Mixer. Part 1/4
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Figure D.9.: Mixer. Part 2/4
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Figure D.10.: Mixer. Part 3/4
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Figure D.11.: Mixer. Part 4/4
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Figure D.12.: Oscillator.
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Figure D.13.: Active buffer.
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