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Analysis of Application-Layer Filtering Policies
with application to HTTP

Cataldo Basile, Antonio Lioy

Abstract—Application firewalls are increasingly used to inspect
upper layer protocols (as HTTP) that are target or vehicle
of several attacks and are not properly addressed by network
firewalls. Like other security controls, application firewalls need
to be carefully configured, as errors have a significant impact on
service security and availability. However, currently no technique
is available to analyse their configuration for correctness and
consistency. This paper extends a previous model for analysis
of packet filters to the policy anomaly analysis in application
firewalls. Both rule pair and multi-rule anomalies are detected,
hence reducing the likelihood of conflicting and suboptimal
configurations. The expressiveness of this model has been suc-
cessfully tested against the features of Squid, a popular web
caching proxy offering various access control capabilities. The
tool implementing this model has been tested on various scenarios
and exhibits good performance.

Index Terms—firewall, application gateway, proxy, policy
anomalies, policy conflicts, regular expressions.

I. INTRODUCTION

Despite huge investments in security, US government agen-
cies report that billions of dollars are lost every year due
to cyber attacks [1], and those based on malware and web
vulnerabilities are amongst the most damaging ones [2].

Firewalls are traditionally an important component of a
cyber defense architecture and frequently take the form of
packet filters. However, as threats evolve and increasingly
target the higher OSI levels, users turn to a new firewall
class: the application gateway. This analyzes application-level
protocols and payloads, and hence can enforce sophisticated
policies and thwart attacks that packet filters are unable to
prevent. Application firewalls are often part of a reverse proxy
(to shield a public server from attacks) or a forward proxy (to
authenticate the internal clients for external access and filter
their requests according to the company policy).

The presence of a firewall is no guarantee of protection
unless it is properly configured. Writing a firewall policy is a
security-sensitive and error-prone activity: as assessed by the
NSA [3], “inappropriate or incorrect security configurations
(most often caused by configuration errors at the local base
level) were responsible for 80% of Air Force vulnerabilities”.

While techniques and tools exist for the specification and
analysis of packet filter configurations [4] [5], to the best of
our knowledge no tool exists for application firewalls. We
address this problem by extending our geometric model in [6]
to a formal model of application-level policies that permits
their anomaly analysis. This model is based on an IETF-
compliant representation of the architecture of stateful and
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application firewalls [7] and it is inspired by the stateful model
of Liu [8]. Our anomaly analysis permits the identification
in application firewalls of conflicting rules (a symptom of a
wrong configuration as they may be activated simultaneously
but enforce different actions) and unnecessary rules (that can
be removed as they do not affect the decisions but decrease
the performance). While there is no published statistics about
the frequency of these cases, our talks with various secu-
rity managers point in one direction: firewall policies are
monotonic increasing in size, as nobody is taking the risk
to remove, compact, or rewrite existing rules created by a
previous manager. If a policy works, then nobody will touch it.
If a policy does not work, then new specific rules will be added
to fix the issue but no old rule will be removed. Therefore the
availability of an automatic analysis tool is important to detect
problems, suggest appropriate changes and create confidence
in their correctness. Even when no anomaly exists, the tool is
valuable just to certify this case.

We verified the expressiveness of the our model against
the access control features of Squid [9], a popular HTTP
proxy that offers many filtering capabilities. This was used
also to test the performance of the associated analysis tool: the
experiments confirm that the model can be proficiently used
in real scenarios. While we modelled and tested only HTTP
firewalls, our model can be equally well applied to other text-
based application protocols, as FTP and SMTP.

The paper is organized as follows: section II briefly in-
troduces our geometric model; section III describes existing
firewall categories and identifies information relevant for mod-
elling the application firewall; section IV sketches the Squid
filtering model and introduces Squid filtering rules to derive
requirements for our model; section V presents our support for
regular expressions and introduces the algorithms for anomaly
analysis in policies with text-based rules; section VI presents a
computational analysis of the algorithms; section VII presents
our tool and its experimental results; section VIII discusses
relevant work in the same area and, finally, section IX draws
conclusions and provides hints for future work.

II. THE GEOMETRIC MODEL

According to RFC-3198 [10], a policy is “a set of rules to
administer, manage, and control access to network resources”.
The IETF architecture for policy-based access control [7] uses
two main architectural elements, the Policy Enforcement Point
(PEP) and the Policy Decision Point (PDP). The latter is the
logical entity making decisions about access request, while the
former actually enforces these decisions. Decisions are based
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Fig. 1: Condition clause c = s1 × s2 in a selection space
formed by two selectors S1 and S2

on a policy (usually expressed as a ruleset) defining the de-
cision criteria. We name policy-enabled element a component
able to enforce a policy, that is, a component that acts as a
PEP and knows how to contact its PDP.

Firewalls are common policy-enabled elements and have
different capabilities to analyse network traffic and pass or
block specific packets or flows. Packet filtering is the simplest
control that a firewall may provide: decisions are made on each
received packet based on information in its IP and transport
headers, without looking at the global data stream.

We defined in [6] a geometric model of packet filter policies
expressed as rulesets, useful for conflict analysis and policy
translation. That model is summarized here as this paper
extends it to higher network levels. Modelled policies are
expressed as a set of rules in the “if condition then action”
format [10]. Rules consist of a condition clause and an action
clause. Actions are well known and organized in an action set
A. For filtering devices, the enforceable actions are Allow and
Deny, thus A = {A,D}.

Conditions are typed predicates concerning a given selector.
A selector describes the values that a protocol field may take,
e.g. the IP source selector is the set of all possible IP source
addresses. Geometrically a condition is a subset of its selector
for which it evaluates to true. A condition on a given selector
matches a packet if the value of the field referred to by the
selector belongs to the condition. For instance, in Fig. 1 the
conditions are s1 ⊆ S1 and s2 ⊆ S2 (on the axes), both s1
and s2 match the packet x1, while only s2 matches x2.

To consider conditions in different selectors, the decision
space is extended using the Cartesian product because distinct
selectors refer to different fields, possibly from different pro-
tocol headers. Given a policy-enabled element that allows the
definition of conditions on the selectors S1, S2, . . . , Sm (where
m is the number of available selectors) its selection space is

S = S1 × S2 × · · · × Sm

Accordingly, the condition clause c is a subset of S:

c = s1 × s2 × · · · × sm ⊆ S1 × S2 × · · · × Sm = S

S represents the totality of the packets, but not all its subsets
are valid condition clauses: only hyper-rectangles or union
of hyper-rectangles (obtained as the Cartesian product of
conditions) are valid. This is an intrinsic constraint of the
policy languages as they specify rules by defining a condition
for each selector. Fig. 1 graphically represents a condition
clause in a two-dimensional selection space. In the rest of the
paper we will generically name hyper-rectangle both single
(compact) ones and union of hyper-rectangles.

matching
function

(matchR(x))

ruleset (R)
r1
r2
· · ·

extended ruleset

(r1, f1(r1), f2(r1), . . .)
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· · ·
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d
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Fig. 2: Geometric policy model: the PDP.

In our model, a rule is expressed as r = (c, a), where c ⊆ S
and a ∈ A. A condition clause of a rule matches a packet, or
briefly a rule matches a packet, if all the conditions forming
the clause match the packet: in Fig. 1, the rule with condition
clause c matches the packet x1 but not x2. Therefore, two
or more rules match the same packet and can be activated
simultaneously if the intersection of their condition clauses is
non-empty. We will say that two rules intersect each other if
their condition clauses do. This is useful for anomaly detection
and policy transformation purposes (sections II-B and II-C).

The functional behaviour of the PDP is depicted in Fig. 2.
When the PEP receives a packet x it throws an event and
sends x to the PDP. The PDP identifies the set of rules M =
{rl, rm, . . .} ⊆ R that match x. This is formalized through
the matchR function:

matchR : S −→ 2R

x 7−→ M = {ri ∈ R | x ∈ ci}
that returns the subset M ⊆ R of rules whose condition
clauses match x. We’ll use the form 2R to denote the power
set of R, the set of all subsets of R. The decision criteria for
the action to apply when a packet matches two or more rules
is abstracted by means of the resolution strategy

R : 2R → A

Given a set of rules representing a policy, the resolution
strategy maps all the possible groups of rules to an action
a ∈ A. When no rule matches a packet, the PDP selects the
default action d ∈ A. The decision is then notified to the PEP.

Resolution strategies may use, besides intrinsic rule data
(i.e. condition clause and action clause), also “external data”
related to each rule, such as priority, identity of the creator,
and creation time. Formally, every rule ri is extended through
a function εE so that the rule becomes:

εE(ri) = (ri, f1(ri), f2(ri), . . .)

where E = {fj : R→ Xj}j is a set of functions mapping
rules to a set of external attributes Xj . In this case, the
resolution strategy R is the composition between the extension
function εE , and a resolution function RE that works on the
rule extensions, that is R = RE ◦ εE (where ◦ is the function
composition operation):

R : {rl, rm, . . .}
εE7−→ {εE(rl), εE(rm), . . .} RE7−→ a
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A policy is thus a function p : S → A that connects each
point of the selection space to an action taken from the action
set A according to the rules in R. By defining R(∅) = d and
R(ri) = ai, the policy p is formally defined as:

p(x) = R(matchR(x))

Therefore, a policy is completely defined by the 4-tuple
(R,RE , E, d): the ruleset R, the resolution function RE , the
set E of mappings to the external attributes, and the default
action d. Two policy representations (R1,RE1

, E1, d1) and
(R2,RE2 , E2, d2) are equivalent if:

∀x ∈ S,R1(matchR1(x)) = R2(matchR2(x))

where R1 = RE1 ◦ εE1 and R2 = RE2 ◦ εE2 .
The use of this model in real cases requires a specific

model characterization: all the enforceable actions, the needed
selectors and the data type of each selector must be identi-
fied. For instance, Al-Shaer’s five-tuple model can be easily
represented introducing the action set A = {A,D}, and five
selectors: source and destination IP address (ips, ipd), source
and destination port (ps, pd), and protocol type (proto). The
IP addresses and the port numbers can be mapped to integers,
and the protocol types to a set consisting of all the IANA
registered protocols. Here is an example of a five-tuple rule:

( (ips = 1.2.3.4, ipd = 5.6.7.8, ps < 1024, pd = 80,
proto = TCP), A)

We will use this syntax for rules in the rest of the paper.

A. Selector types

Current packet filters support three types of selectors: exact
match, range-based, and prefix match ones [11].

Exact match selectors are unstructured sets with no specific
order: elements can only be checked for equality. An example
is the protocol type field of the IP header.

Range-based selectors are ordered sets where it is possible
to naturally specify ranges as they can be easily mapped to
integers. As an example, the ports in the TCP protocol are well
represented using a range-based selector (e.g. 1024-65535).

Prefix match selectors are those without an explicit notion of
ordering but such that ranges of values can be specified using
a prefix regular expression. The typical case is the IP address
selector (e.g. 10.10.1.*). As stated in [6], there is no need to
distinguish between prefix match and range-based selectors as
10.10.1.* easily maps to [10.10.1.0, 10.10.1.255].

B. Anomalies

An abstract definition of policies presenting anomalies
and algorithms to detect them is presented in [6]. Policies
containing anomalies are divided in conflicting policies, such
that for at least one point in the selection space two rules
contradict each other, and sub-optimal policies that contain at
least one rule that can be removed without changing the policy
(unnecessary rule).

Conflicting policies are identified through rule pair analysis,
that detects correlated rules: two rules ri and rj are correlated
if ci ∩ cj 6= ∅ and ai 6= aj . The effective contribution of a

rule depends on all the other rules: a rule can be removed
if its condition clause is completely covered by one rule or
the union of several overriding rules. Therefore, an analysis
limited only to rule pairs does not identify all the sub-optimal
policies. The function effp(r), which returns the portion of the
rule r that “effectively” contributes to the policy p, is used to
detect unnecessary rules:

effp : R → 2S

r 7→ x ∈ c such that R(matchR(x)) 6=
6= R(matchR(x) \ {r})

If effp(r) = ∅ then r is unnecessary for p, but two types of
sub-optimality occur: the general redundancy anomaly, when
the action of the unnecessary rules is always the same as the
rules that cover it, and the general shadowing anomaly, when
the policy enforces a different action for at least one point of
the unnecessary rule.

C. Translating into low-level representations

The geometric model supports the definition of custom
resolution strategies. However, existing policy-enabled ele-
ments typically use the FMR (First Matching Rule) resolution
strategy. To this purpose, the semantics-preserving policy
morphism has been introduced in [6]: given (R,RE , E, d),
a morphism is a transformation that finds an equivalent policy
(R′,R′E′ , E

′, d′). Additionally, we demonstrated that every
policy expressed in the geometric model can be translated into
a policy that uses FMR.

III. FIREWALL TYPES AND MODEL

As stated previously, the simplest feature of firewalls is
packet filtering. Stateful inspection improves the packet filter
functionality by also maintaining connection states at the
transport layer, giving origin to stateful firewalls. Gouda and
Liu presented in [8] a model of stateful firewalls as devices
split into two components: the stateful section and the stateless
one (Figure 3). The former analyses the transport headers
and maintains a state table that associates a set of Boolean
variables to each connection, usually represented by a five-
tuple composed by the IP source and destination addresses,
the source and destination port, and the L4 protocol. The state
table is updated according to a set of stateful rules, depending
on the received packet and the current table content. In the
existing firewalls (e.g. iptables or commercial products), these
rules are hardcoded and cannot be specified explicitly. From
the functional point of view, this scenario can be modelled by

stateful
section
(PIP)

tag +

stateful
ruleset

read

x x tag

state
table

read/update

stateless
section
(PDP)

stateless
ruleset

read

allow
deny

Fig. 3: Functional model of a stateful firewall (the ⊕ operation
indicates concatenation).
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associating each received packet to a set of Boolean variables,
named tag, before handling control to the stateless section.
Therefore, according to the AAA authorization framework in
RFC-2904 [12], the stateful section does not take any decision,
hence it does not perform any PDP functionality, rather it
acts as a Policy Information Point (PIP) because it provides
external information to the PDP.

The stateless section is the component that actually plays
the PDP role in the firewall. It takes decisions according to a
set of rules whose conditions apply to packet fields and also
to tag values (for stateful firewalls only). By checking state
information in the tag, the stateful firewalls can express more
sophisticated rules, explicitly (e.g. allowing the traffic related
to an “established” connection) and sometimes implicitly (e.g.
blocking packets that violate the TCP specification).

Stateful firewalls may also enforce a simple form of band-
width control: they may be used to specify the maximum
number of connections allowed to a given destination, or the
maximum packet rate per destination address or per port.
Additionally, it is possible to bound the rule hits, i.e. the
number of times that a rule is applied in a given time period.
For example, this feature may be used to limit the number
of ICMP packets allowed per second. We can model this case
introducing another table that associates stateless rules to a set
of counters. Some devices are also able to monitor the state of
upper layer protocols, for instance, they can enforce a policy
that only allows a DNS response if the corresponding query
was seen first.

Another feature provided by some firewalls is stateful
protocol analysis, also known as deep packet inspection (DPI),
that is the ability to (recursively) extract nested information
in TCP or UDP packets and take decisions using application
protocol data and states. The firewalls with DPI capability are
often referred to as application firewalls. When they have been
tailored to a specific application, they are named specialized
application firewalls. The most widespread specialized firewall
is the Web Application Firewall (WAF), which deeply analyses
HTTP traffic.

As in the case with stateful firewalls, DPI can also be
modelled using the stateful and stateless sections. First, appli-
cation firewalls are able to check the compliance to protocol
standards or to a set of non-harmful implementations (“RFC
compliance”) and identify unexpected sequences of commands
(e.g. repeated commands or those not preceded by other
commands on which they depend). This means that they use
protocol-specific stateful components. Application firewalls
can also block the traffic depending on the values of protocol-
specific properties and fields; for example, they can filter e-
mail messages according to the attachment type, or block
possibly harmful protocol operations, such as HTTP unsafe
methods (e.g. TRACK, TRACE, DELETE). This enables fine-
grained decisions, such as controlling access to a web page
based not only on its URL but also on its content (e.g. checking
for malicious Java or ActiveX applets), or blocking an SSL
connection to a server presenting an untrustworthy certificate.
Since information is often represented as character strings
(e.g. MIME object, URL, filename), conditions in application
firewalls are often formulated using regular expressions (e.g.

Content-Type: image/*). In brief, the stateless section of
application layer firewalls evaluates conditions on additional
fields, which means that the decision space of stateful and
application firewalls is composed of more selectors than in
packet filtering and, in some cases, the evaluation of conditions
is made using regular expressions.

Application data are typically split across several packets
thus application firewalls are equipped with buffers to tem-
porarily store and reassemble data flows. Consequently, not
all the conditions can be evaluated every time a new packet
arrives. Hence, the PEP will query the PDP not only when a
packet is received but also when an entire application protocol
data unit (APDU) is reconstructed. To avoid ambiguities, we
will name protocol data unit (PDU) any data sent to the PDP
to take decisions, e.g. an IP packet or an APDU.

An improved type of application firewall is the application-
proxy gateway, which enforces an access control policy using
a proxy agent. Application-proxy gateways keep track of
authenticated users and can limit the maximum number of
simultaneous users or connections per user.

Based on this analysis of firewall types, we created a
model of an application-layer filtering PEP. This model is
built according to the IETF architecture in [10] and extends
the Liu’s model of stateful firewalls to the application level.
Fig. 4 presents a functional view of the model, composed of
several modules. It is worth noting that existing firewalls use
complex architectures optimized for performance, thus they
do not necessarily use separated modules to implement the
functionalities presented here.

The packets that arrive at the network interface are tem-
porarily stored in the Input Unit, equipped with a buffer to
reorder and reconstruct an entire PDU.

The PDU is then examined by the stateful section which is
a modular entity: each component manages the state machine
of a specific protocol, or handles other state information
used by stateful and deep inspection algorithms. In particular,
Figure 4 highlights the TCP module, which manages all the
data associated to TCP connections (established, related, or
the number of open connections, . . . ), the Rule Hit module,
which maintains the hit counters associated to the rules in the
stateless ruleset, two examples of application protocol state
managers (for FTP and HTTP), and the Proxy module to
maintain state info about authenticated users.

The stateful section accumulates state information into the
Tag and updates the state table according to stateful rules.
PDU and Tag are used by the PDP to identify the matching
rules (whose conditions contain predicates on both the PDU
and the state information). The PDP then notifies its decision
to the Enforcement Unit that permits or denies the traffic flow.

IV. SQUID ACCESS CONTROL FEATURES

We prove the effectiveness of our model by showing how
it can be used to ease the specification and to perform the
anomaly analysis of the Squid access control policies [9].
Therefore, we briefly present here this access control model
to derive our requirements.

The open-source caching proxy Squid is widely used due
to its great flexibility; it offers access control mechanisms
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Fig. 4: Functional model of the PEP.

at different levels, from network data (e.g. MAC and IP
addresses) to application information (e.g. host domain or
browser information). The access control policy is written as
a set of rules in the squid.conf file.

Three Squid commands are of our interest: acl , used
to specify different types of conditions, http access and
http reply access, used to combine acls for filtering rules. The
acl syntax is:

acl aclname acltype value1 value2 ...

The string aclname univocally identifies a condition, acltype
specifies the part of the packet considered by the matching
process and the remaining fields define the values for which
the condition is true. For instance, the following condition:

acl webPort port 80 443

is true if the destination port field in the packet header is either
80 or 443 (independent of the transport protocol).

When two acls have the same name and type, Squid applies
the logical disjunction. For instance, the following acls are
equivalent to the previous one:

acl webPort port 80
acl webPort port 443

The http access syntax is:

http_access ("allow" | "deny") [acl1][acl2]...
http_reply_access ("allow"|"deny") [acl1][acl2]...

The http reply access command is used to filter replies to
client requests, and it is complementary to http access .

The Squid policy enforcement process supports only two
actions, allow and deny, specified as first parameter, followed
by a list of acls. All the listed acls are logically conjuncted
when performing the matching process, that is, a rule is
activated only when all its acls match the PDU.

Squid applies the action from the first http access command
found in squid.conf which is true, that is, it uses the FMR
resolution strategy. The default action is determined in a very
peculiar way: if the action enforced by the last rule is Deny,
then the default action is Allow, otherwise it is Deny. For
this reason, to avoid unexpected behaviours, the best practice
strongly recommends to add a “deny all” rule as last command.

Mapping Squid policies to our model requires the iden-
tification of the available actions and the selectors forming
the decision space. First, as the actions considered by Squid
are Allow and Deny, our action set is A = {A,D}. Finding

the selectors that must be included into the decision space
is more complex and requires the analysis of the different
acltypes. For most acltypes there is no ambiguity in defining
the corresponding selector. For instance, it is easy to identify
the selector type for addresses and ports (i.e. range-based) and
the set of admissible values, that are analogous to the five-tuple
example. However, three major differences with the stateless
packet-filter case exist, because application-layer policies use:
• stateful conditions, not only on TCP connections but also

at higher level (e.g. the number of user connections);
• regular expressions to define conditions on text fields, like

URL and MIME type;
• alternate ways to define conditions on the same field, like

path and domain conditions on URL.

A. Stateful conditions
Squid support various stateful conditions [13]. For exam-

ple, it is possible to define the maximum number of HTTP
connections open from the same IP address, via the maxconn
acl , as in the following example that permits a maximum of
four HTTP connections:

acl OverConnLimit maxconn 4
http_access deny OverConnLimit

Adding support to this condition type in our model is easy,
because it can be mapped to a range-based selector. Therefore
we just need to add the conn selector to the selection space.
Practically, we can assume that the stateful section adds the
user’s connections counter to the tag, hence the previous rule
matches when it has a value greater than four. This is expressed
in our model as:

((ips = any, ipd = any, ps = any,
pd = any, proto = any, conn > 4), D)

Analogously, we can model the max ip conn acl (i.e. the
maximum number of IP addresses from which the same
user can connect) by introducing the authIPno range-based
selector. In general, supporting stateful conditions requires just
introducing additional exact-match and range-based selectors
in the selection space. In fact, according to the model in
Fig. 4, conditions on (dynamically maintained) stateful data
are mapped to stateless conditions on tags.

B. Regular expressions
In other cases, mapping acltypes to selectors requires

changes to the model. For instance, Squid supports filtering
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based on URLs, that are character strings with the following
structure [14]:

scheme://<host>:<port>/<path>?<searchpart>
The following rule grants access to a web site whose domain
ends with the string “.site.com”:

acl dom1 dstdomain .site.com
http_access allow dom1

The condition in this rule cannot be mapped onto the geometric
model as it supports only the exact match, prefix match and
range-based selectors.

Some acltypes can be specified using regular expressions,
as they are a very effective way to write complex conditions
that match character strings, e.g. this rule allows access only
to .htm pages within the .web.com domain:

acl url1 url_regex (.*).web.com/(.*).htm
http_access allow url1

Also this rule cannot be represented in the geometric model.
Therefore, we conclude that a new selector type is needed to
support conditions on strings: the regex selector. String match-
ing is a subcase of regular expression matching. Therefore,
from the theoretical point of view, both cases can be mapped
to regex selectors. However, it is quite frequent to search
for plain-text data set, thus implementations should consider
optimized versions that internally distinguish the two cases.

It is worth noting that the analysis of Squid filtering capabil-
ity produces requirements that also apply to other HTTP filters
(like Apache with mod proxy) as well as other protocols. For
instance, Microsoft IIS implements FTP filtering capabilities
and uses the <requestFiltering> command that introduces
the need for regular expressions as it may discard messages
based on URLs (e.g. <denyUrlSequences>) and for stateful
conditions (e.g. <requestLimits>).

C. Overlapping condition types

As a last example, Squid offers four acltypes referring to
URLs: dstdomain and dstdomain regex express conditions
on the <host> portion of the URL, urlpath regex on the
<path>?<searchpart> part, while url regex refers to the
entire URL. This means that conditions specified using these
acltypes may intersect since their matching spaces are not
disjoint. For instance, this is a set of intersecting acl directives:

acl dom1 dstdomain .site.com
acl dom2 dstdom_regex site
acl url1 url_regex (.*).web.com/(.*).htm
acl url2 urlpath_regex page.(.*)

It is evident that the acls dom1 and dom2 may match the same
URL, for instance http://site.com/page.asp. Analogously, both
url1 and url2 match the URL http://www.web.com/page.htm.
Moreover, url2 matches some URLs matched also by dom1
and dom2, such as URL http://site.com/page.asp.

In our model of Squid, all these acls are associated to the
same selector: the url selector. From the implementation point
of view, it is better to minimize the use of regular expressions
for improving the performance of the analysis and to pro-
duce optimal anomaly-free Squid configurations. For example,
when a dstdomain acl (string matching) is intersected with a

dstdomain regex one (regex matching), the result should be
represented as a dstdomain, since their intersection is either the
entire dstdomain acl or the empty set. Additionally, url regex
matching is interpreted as dstdomain regex or urlpath regex,
if they only apply to one part.

The rules presented above are thus translated to:

((ips = any, ipd = any, ps = any, pd = any,
proto = any, conn = any, url = .site.com/), A)

((ips = any, ipd = any, ps = any, pd = any,
proto = any, conn = any,
url = (.*).web.com/(.*).htm), A)

The same consideration applies to other acls pairs,
namely proxy auth and proxy auth regex, srcdomain and
srcdom regex, and ident and ident regex.

V. REGEX SELECTORS AND ANOMALY ANALYSIS

We have seen in the previous section that regex selectors
are needed to handle application-level policies, in addition
to exact match, prefix match, and range-based selectors that
already exist in packet filters. As a consequence, we need also
to define methods to perform set operation, rule pair analysis,
and general (multi-rule) anomaly analysis over regex selectors.

Intersecting two regular expressions is a complex operation.
To simplify it, we translate regular expressions to deterministic
automata – given their equivalence [15] – and operate on
the latter. In fact, automata intersection is a well-known
and (relatively) simple operation for which algorithms and
implementations exist for several programming languages.
Additionally, implementations exist to map regular expressions
to automata. For example, Figure 5 depicts the intersection of
two simple regular expressions performed using automata.

Unfortunately, the conversion from automata to regular
expressions is no easy task. Different methods are available in
literature, the most used ones being the transitive closure [16],
the algebraic approach (Brzozowski’s method) [17], and the
state removal [18]. It is worth mentioning that this conversion
is rarely needed and only for visualization purposes. The tran-
sitive closure approach has a simple implementation, but tends
to create long regular expressions. The algebraic approach
leans toward a recursive approach, which generates reasonably
compact regular expressions, but its implementation using
standard programming languages (e.g. Java, C) is too long and
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a b
c

*

*
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∩

321 4
a b c

*
ˆabc

Fig. 5: intersection of regular expressions using deterministic
automata (using POSIX Basic Regular Expressions syntax).
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Fig. 6: Example of a lattice mesh partitioning a condition
clause.

complex for the purpose of our prototype. Thereby, we adopted
the state removal approach since it requires little effort to be
adapted to our model.

It should be noted that, having introduced set operations on
regex selectors, we can perform rule-pair analysis for policies
expressed with regular expressions. In turn, this permits the
identification of all the Al-Shaer anomalies for these policies.

We have now all the components to define an algorithm
for general anomaly analysis with regex selectors. It has to
handle the following task: given a policy (R,R, E, d) and a
target rule r = (c, a), the algorithm verifies if r is unnecessary
in R, that is if the policy is unchanged when r is removed from
R. Intuitively, the target rule is unnecessary only if:
• r is completely “overridden” by other rules at higher

priority, or
• r is not completely overridden but it does neither “over-

ride” any rule at lower priority nor overrides parts where
the policy would apply the default action.

The “sub-optimality property” serves to this purpose, veri-
fying if removing the rule changes the action the policy would
return in any of the points of the decision space by checking
the following property

R(matchR(x)) = R(matchR(x) \ {r}) (1)

The algorithms presented in [6] are based on the computation
of the effp function that returns the portion of the target rule
not hidden. To avoid set minus operations, effp is calculated
by intersecting rules in canonical form. This method is not
suitable for application layer policies due to the high num-
ber of selectors. In fact, representing the set minus of two
m-dimensional hyper-rectangles may require up to m hyper-
rectangles, and an equivalent number of rules intersections.
Moreover, the number of rule operations exponentially in-
creases with the number of input hyper-rectangles.

Thus we introduce a new approach, that avoids rule oper-
ations. We will assume in this section the following naming
convention. c = s1 × · · · × sm, is the condition clause of r
formed by m selectors, and si is the condition of the i-th
selector Si of c. The other rules in R \ {r} will be identified
as rj = (cj , aj) with cj = sj,1 × · · · × sj,m, thus sj,i is the
condition of cj in Si.

The idea behind this approach is to create a lattice mesh that
partitions ci in hyper-rectangles where matchR(x) is constant
so that the “sub-optimality property” 1 can be evaluated
without explicitly calculating effp. An example of a mesh

that partitions a condition clause is presented in Fig. 6. Note
that Fig. 6, 7a, 8a, 8b, and 8c present cases for range-based
selectors for graphical immediateness only. However, as it will
be evident in this section, the verification algorithm actually
works regardless of the selector type.

To build the mesh, each selector si is split into blocks.
Formally, a block is defined as

b ⊆ si such that ∀x ∈ b,matchR(x) ⊆ R

A set of blocks Bi = {bi,k}k exists that partitions si, that is:

si =
⋃
i∈Bi

bi,k and bi,k1
∩ bi,k2

= ∅ with k1 6= k2

Each block is associated to matching rules via the ρ function:

ρ :
⋃

iBi −→ 2R

bi,j 7−→ matchR(x) ⊆ R, x ∈ bi,j
The blocks identification problem is the following one: given

si ⊆ Si and the n selectors sj,i, find the minimum number of
blocks Bi = {bi,k}k that partition si. This implies determining
blocks with distinct ρ values, i.e. bi,k1

6= bi,k2
when k1 6= k2.

A c-mesh hyper-rectangle is defined as h = w1×· · ·×wm ⊆
c with wi ⊆ si such that ∀x ∈ h,matchR(x) ⊆ R. It is also
possible to find a set of mesh hyper-rectangles that partition
c, that is:

c =
⋃
i

hi and hi1 ∩ hi2 = ∅ with i1 6= i2

A set Hc of mesh hyper-rectangles that partition c can be
obtained as Cartesian products of blocks, that is:

Hc = {b1,i1×b2,i2×· · ·×bm,im} b1,i1 ∈ Bi, . . . , b1,im ∈ Bm

The matching rules in h = b1,i1×· · ·×bm,im can be calculated
by extending the ρ function to:

ρ(h) =
⋂
j

ρ(bj,ij )

because the matching rules in a mesh hyper-rectangle also
match all its constituting blocks.

Working with HC mesh hyper-rectangles, the general cri-
terion to determine “not unnecessary” rules becomes:

∃h ∈ Hc, R(ρ(h)) 6= R(ρ(h) \ {r}) (2)

This states that the target rule is necessary if property 1 is not
verified for at least one mesh hyper-rectangle.

From property 2 we derive the block criterion to identify not
unnecessary rules based on block information only. If, regard-
less of the selector, there exists a block b such that ρ(b) = ∅
and a (the action enforced by the target rule) is different from
the default action d, then the rule is not unnecessary. In fact,
each mesh hyper-rectangle h formed by using b will also have
ρ(h) = ∅, and R{ρ(h))} = R{∅} = d 6= R{r} = a, thus
property 1 is not satisfied.

The rest of this section is devoted to algorithmically present-
ing the general anomaly analysis algorithm and its complexity.

Algorithm 1 presents the procedure that determines if a
rule is unnecessary. We assume that the rule pair analysis is
completed (as it is computationally faster) and the identified
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redundant and shadowed rules have been removed. Moreover,
we assume that the intersecting rules have been determined.
After an initialization phase in which the blocks are com-
puted (BUILDBLOCKS, line 1), two verifications are per-
formed: a first selector-wise verification, SELECTORVERIFY
(line 2), implements the block criterion, while the second one,
MESHVERIFY (line 3), implements the general criterion used
if SELECTORVERIFY is unable to reach a verdict on the rule
necessity.

Algorithm 1 UNNECESSARYVERIFY(r,R)

Input: r ∈ R, the rule to analyze
Input: R, the policy ruleset
Output: Boolean, True if r is unnecessary in R

1: B ←BUILDBLOCKS(r,R)
2: if SELECTORVERIFY(B) does not recognise r as not

unnecessary then
3: execute MESHVERIFY(B, 1)
4: end if

The blocks identification problem is implemented by
BUILDBLOCKS (Algorithm 2) according to the selector type.
It uses BUILDBLOCKSREGEX (line 3) for regex and BUILD-
BLOCKSRANGE (line 6) for other selectors. A further step is
required to process unordered exact match selectors as ordered
ranges (line 5). This is easily performed by mapping every
point in an exact match selector to an integer with standard
ordering. This task is very natural, as packet header fields use
bits (i.e. integers) to encode information, like protocol type in
IP packets.

Algorithm 2 BUILDBLOCKS(r,R)

Input: r ∈ R the rule to analyze
Input: R the policy ruleset
Output: B = {Bi}i, an array of m blocks, one for each

selector
1: for all selector si ⊆ Si in c do
2: if Si is a regex selector then
3: Bi ←BUILDBLOCKSREGEX(r,R, i)
4: else
5: interpret Si as a range-based selector
6: Bi ←BUILDBLOCKSRANGE(r,R, i)
7: end if
8: end for
9: return B

Algorithm 3 presents block identification for range-based
selectors. We initially assume, for ease of presentation, that
conditions are formed by a single range, point or regular
expression, and extend later the results to the general case.
BUILDBLOCKSRANGE identifies the blocks by splitting the
initial condition si. Every time a new condition sj,i is consid-
ered, si is split in at most two points, that is, if si ∩ sj,i =
[xj , yj ] at xj (line 6) and yj + 1 (line 7). Fig.7a depicts how
the initial condition is split when adding a new condition and
how ρ is assigned to blocks.

The following theorem holds for range-based selectors.

Algorithm 3 BUILDBLOCKSRANGE(r,R, i)

Input: R the policy ruleset
Input: r = (c, a) ∈ R the rule to analyse
Input: i the ordinal of the range-based selector in S
Output: the blocks set Bi

1: create an empty blocks set Bi and add si
2: set ρ(si)← ∅
3: for all intersecting rules rj = (cj , aj) do
4: sj,i ← the i-th selector of cj
5: calculate ν∩ = [xj , yj ]← si ∩ sj,i
6: take the block ν = [νs, νe] such that xj ∈ ν, remove

it from Bi, split it in [νs, xj − 1] and [xj , νe] and insert
the results in Bi

7: take the block µ = [µs, µe] such that yj + 1 ∈ µ,
remove it from Bi, split it in [µs, yj ] and [yj + 1, µe] and
insert the results in Bi

8: for each range τ ⊆ [xj , yj ] in Bi do
9: ρ(τ)← ρ(τ) ∪ rj

10: end for
11: end for

Theorem 1: The number of block induced in si = [x, y] by
nr conditions {si,j} (with si,j = [xj , yj ], x ≤ xj ≤ y and
x ≤ yj ≤ y) is at most 2nr.
This theorem states that the number of blocks is at most twice
the number of intersecting ranges, that in this simple case
is also the number of rules intersecting r. Let us prove it
using a constructive proof. We build the set of integers P =
{x, y + 1} ∪ {xj}j ∪ {yj + 1}, that is, the set composed of
all the starting points and the successors of all endpoints. By
ordering and indexing the points in P according to their value
(i.e. pi, pj ∈ P ⇔ i < j), we can describe a set of ranges that
partition si, that is

si = [p1, p2 − 1] ∪ [p2, p3 − 1] ∪ · · · ∪ [p|P |−1, p|P | − 1]

where p1 = x and p|P | = y+ 1. The range number is |P |−1.
If all the integers in P are distinct, |P | = 2nr + 2 holds,

and there are 2nr + 1 ranges. This number is maximal. In
that case, the initial range ν1 = [x, p1− 1] and the final range
ν2 = [p|P |−1, y] have ρ(ν1) = ρ(ν2) = ∅. Therefore, they can
be merged and we have at most 2nr blocks. To finish the proof
we prove that there exists a case with 2nr blocks. If we have
as input conditions si,j = [xj , yj ] with x < x1 < x2 < y1,
and for all j, xj+2 = yj + 1 and xj−1 < yj < xj hold, then
the 2nr generated blocks with distinct ρ are:
• ρ([x, x1]) = ∅,
• ρ(x1, x2]) = {r1},
• ρ([xj , yj−1]) = {rj−1, rj} with j ∈ [3, 2nr − 2]
• ρ([ynr−1, ynr

]) = {rnr
}, and

• ρ([yni
, y]) = ∅.

In two other cases we have a maximal number of blocks, that
is 2nr blocks, if one of the yi equals y and if one of the xi
equals x. In all other cases |P | ≤ 2nr.

The analysis can be extended to conditions described as
union of ranges and it is easy to show that, if conditions are
formed by K ranges, the points are at most |P | ≤ 2Knr
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and the number of blocks |Bi| ≤ min{2nr , 2Knr}. While
for nr ≤ 4 the 2nr factor prevails, for larger nr (the cases
interesting for the complexity analysis) the linear term prevails.

Algorithm 4 BUILDBLOCKSREGEX(r,R, i)

Input: R the policy ruleset
Input: r = (c, a) ∈ R the rule to analyse
Input: i the ordinal of the regex selector in S
Output: the blocks set Bi

1: create a list of blocks Bi and add si
2: set ρ(si)← ∅
3: for all intersecting rules rj = (cj , aj) do
4: sj,i ← the i-th selector of cj
5: x← si ∩ sj,i 6= ∅
6: y ← si ∩ ¬sj,i
7: for each block b in Bi do
8: if x← b ∩ x then . 6= ∅ because rj intersects r

9: remove b and add x in Bi

10: ρ(x)← ρ(l) ∪ {rj}
11: end if
12: if y ← b ∩ y 6= ∅ then
13: remove b (if still in Bi) and add y in Bi

14: ρ(y)← ρ(b)
15: end if
16: end for
17: end for

On another hand, when working with regex selectors, the
ordering cannot be used to determine the blocks that need to
be enumerated explicitly (Algorithm 4). In fact, every time
a new rule is considered, the algorithm first calculates the
intersection x between the root node and the selector sj,i. If
x is not empty (line 5) it also calculates the intersection y
with the negation of sj,i (line 6). Then, for each previously
computed block b in Bi, it calculates the intersection with
x (line 8) and y (line 12), and if they are not empty, it
substitutes b and updates ρ for x and y (lines 9-10 and 13-14).
For instance, Fig. 7b displays the blocks generated from the
condition si when intersected with the regex conditions si,1,
si,2, si,3 whose Venn diagram is shown in Fig. 7b. The figure
presents the intermediate algorithm iterations in form of a tree.
The tree helps us to quantify the maximum number of blocks
that can be formed in a regex selector, that is, 2nr , where nr
is the number of rules that intersect r.

Algorithm 5 shows the implementation of the block criterion
used for selector-wise verification that simply consists in
checking the ρ value for all blocks.

Algorithm 5 SELECTORVERIFY(B)

Input: B the set of the selector blocks si
Output: Boolean, True if the rule is not selector-wise hidden

1: for each data structure Bi in B do
2: for all blocks b in Bi do
3: if ρ(b) = ∅ and a 6= d then r is necessary
4: end if
5: end for
6: end for

Graphically, the meaning of this approach is more evident.
For example, Fig. 8a presents the block b1,3 having empty
ρ, that corresponds to a “white slot” that ranges from the
beginning to the end of the other selector. If r is dropped, in
that slot the default action is applied. This algorithm can be
further optimized. In fact, in a regex selector, an empty block
may appear only as intersection of negated conditions ¬sj,i. In
Fig. 7c, the empty block is b1,5 = si ∩¬s1,i ∩¬s2,i ∩¬s3,i∩,
that is, the “rightmost leaf node”.

However, if all the selectors are partitioned in blocks with
non-empty ρ, it does not means that the rule is unnecessary.
Fig. 8b presents a rule for which the block criterion is
satisfied that may be unnecessary if a 6= d. The MESHVERIFY
procedure is used in these cases (Algorithm 6).

Algorithm 6 MESHVERIFY(B, i)

Input: B = {Bi}i, an array of m blocks sets
Input: i the current selector

1: assume r unnecessary and redundant
2: for all blocks b in Bi do
3: ρ(h)← ρ(h) ∩ ρ(b)
4: if ρ(h) = ∅ and a 6= d then r is necessary
5: end if
6: if i=m then . last selector
7: if R{ρ(h)} 6= R{ρ(h) ∪ {r}} then
8: r is necessary
9: else

10: if R{ρ(h)} 6= a then
11: if unnecessary, assume r shadowed
12: end if
13: end if
14: else . intermediate selectors
15: continue recursively MESHVERIFY(B, i+ 1,m)
16: end if
17: end for

MESHVERIFY follows this approach: it assumes that r is
unnecessary if the contrary is not proven. It recursively obtains
all Hc mesh hyper-rectangles using the previously computed
blocks and updates ρ (line 3). If ρ becomes empty and if
a 6= d, then r is declared necessary (line 4) without the need
to complete the recursion. This is the case in Fig.8b, where ρ
in b1,2 × b2,2 is empty.

At the last selector, when mesh hyper-rectangles are com-
plete, the algorithm checks if the property 1 holds. According
to the general criterion, r is declared necessary as soon as the
algorithm finds a hyper-rectangle such that the property 1 does
not hold. If no mesh hyper-rectangle contradicts property 1 the
rule is unnecessary. An unnecessary rule is redundant if its
action is not overridden in any of the mesh hyper-rectangles
(line 11) otherwise it is shadowed. This is the case in Fig. 8c,
where the verification must check property 1 for all the 16
hyper-rectangles to declare it unnecessary.

VI. COMPUTATIONAL ANALYSIS

We proceed now to the computational analysis of our
algorithm for general anomaly identification for policies using
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(a) Block splitting for range-based selectors.
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Fig. 7: Example of block calculation for different selector types.
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Fig. 8: Example of unnecessary rules verification.

regex selectors too. To this purpose, we will use the following
symbols:
• (variables) n = nr + nr is the number of rules in the

ruleset R, among them only nr intersect the target rule
r;

• (constants) m = mR +mE is the number of selectors in
the decision space of rules in R, mR of range-based type
and mE of regex type; mR and mE are fixed values that
depend on the policy. Since the general anomaly analysis
maps exact-match selectors to range-based ones, mR is
actually the sum of non-regex selectors;

• (computational costs) IR and IE are respectively the
cost to intersect two conditions in range-based and regex
selectors; N is the cost to add a new block in a range-
based selector and T in a regex one and to update ρ; ε
is the cost of other operations, like comparing ρ values,
extracting a selector from a rule, or a combination of
them.

The worst case scenario happens when the target rule is
unnecessary, because in all other cases the verification stops
before performing all steps. In that case, the complexity of
UNNECESSARYVERIFY is the sum of the computational costs
of BUILDBLOCKS, SELECTORVERIFY, and MESHVERIFY.

Assessing BUILDBLOCKS complexity requires to con-
sider both BUILDBLOCKSREGEX and BUILDBLOCKSRANGE
cases. BUILDBLOCKSREGEX has worst case complexity given
by the following formula:

nr(ε+ 2IE) + 2 (IE + ε)

nr∑
k=1

∣∣∣B(k)
i

∣∣∣
This is because instructions at lines 4-6 are executed nr times,
and the inner cycle at line 7 requires in the worst case two

intersections, two updates and three list operations for each
of the blocks already in Bi. At the iteration k, the blocks in
B

(k)
i are at most 2k, thus, the following holds

∑nr

k=1

∣∣∣B(k)
i

∣∣∣ =∑nr

k=1 2k = 2(2ni − 1). The complexity of this function is
O (2nr ) because previous formula becomes nr(ε + 2IE) +
4 (IE + ε) (2nr − 1).

BUILDBLOCKSRANGE has worst case complexity given by
the following formula:

nr (ε+ IR + 2N) +

nr∑
k=1

∣∣∣B(k)
i

∣∣∣ ε
This is because lines 4-7 are executed nr times, and the inner
cycle requires in the worst case one ρ update for each of
the blocks already in Bi. At the iteration k, the blocks are
at most B(k)

i ≤ 2Kk, thus,
∑nr

k=1

∣∣∣B(k)
i

∣∣∣ =
∑nr

k=1Kk =

Knr +Kn2r . Therefore the complexity is O
(
n2r
)

because the
previous formula becomes

(
ε+ IR + 2N +Kε

)
nr +Kεn2

r .
We can conclude that overall the worst case complexity of

BUILDBLOCKS is O(2nr ).
On the other hand, the actual verifications only depend on

the number of blocks. SELECTORVERIFY checks the value of
ρ once for each block regardless of the selector, that is, the
complexity is O (2nr ), in fact:

m∑
i=1

|Bi|ε = (mR(2Knr) +mE(2nr ))ε

MESHVERIFY intersects ρ values and compares two reso-
lution strategy results for each mesh hyper-rectangle:

∏
i

|Bi|ε = (2Knr)mR(2nr )mE ε = (Knr)mR2nrmE+mR
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that is ∼ O (nmR
r 2nr ). It is evident, that the computational cost

of VERIFYUNNECESSARY is dominated by MESHVERIFY.
A discussion is needed to explain why, although the worst

case is very bad, this approach works well in practice (as
experimentally verified in section VI).

The parameter that directly affects performance is the
number nr ≤ n of rules intersecting the target rule r, that
is bounded by the rule set size n. Also mR and mE affect the
performance but they are not variable.

In real rule sets, nr is very small and is practically in-
dependent of the rule set size n. Theoretically, rules should
intersect only in case of exceptions/generalizations (e.g. rules
to express policies like “all the IP addresses of a subnet
but one are allowed to reach a service”). Administrators
avoid or limit intersecting rules by logically partitioning the
condition space starting from one or a few selectors. A typical
example is writing rules according to the subnets (IP source
or destination), then by ports (i.e. services).

For packet filters, statistics are available to estimate ruleset
size and number of intersecting rules. Packet filtering policies
may have thousands rules, the biggest rule set analysed by
Wool [19] being of 7400 rules. According to the data in [20],
the maximum number of intersecting rules in the analysed
stateless firewall is 4 , and the maximum number of intersect-
ing conditions is 5, regardless of the rule set size. The work [4]
helps to quantify rules that do not intersect at all: it reports that
in the worst case of inexperienced administrators, about 9%
of the rules are correlated (i.e. intersect at least another rule).
This in turn means that 91% of the rules are not overlapping
at all if pair-wise redundant or shadowed rules are removed.

However, statistical data are not available for application
firewalls. Application firewall rulesets may have the same size
as stateless ones. In fact, if used as reverse proxy, application
firewalls are placed very close to the protected service (e.g.
HTTP server, web service), serve a limited number of IP
addresses and have few rules, but if used as forward proxy
they may contain several rules. In this case, rules are often
partitioned by destination URL. A further analysis has been
done to verify if the same considerations apply to application
firewalls. We considered 15 anonymous or publicly available
Squid configuration files composed by 20 to 50 rules and
we analysed the correlation among conditions and among
rules. We verified that Taylor’s results are compatible with the
application layer scenario with minor differences. The most
important one concerns conditions on URLs, where the num-
ber of intersecting conditions is greater than five, especially
because of an inaccurate use of wildcards1. The worst case
we examined had 7 intersecting nested URL conditions and 5
intersecting rules.

Both SELECTORVERIFY and MESHVERIFY complexity de-
pend on the cardinality of block sets Bi, that in turn depends
on nr. The very limited number of blocks is another reason
for practical usability of our approach. In fact conditions are
not equally distributed on the whole selector but clustered.

1For example, the URL conditions “site1.com” and “site2.com” are in-
terpreted by Squid as “.*site1.com.*” and “.*site2.com.*” thus they actually
intersect, e.g. the domain www.site1.commercial.site2.com matches both. This
intersection might be avoided using end-of-line anchor, e.g.site1.com$

Conditions on source and destination IP addresses correspond
to subnets or single IP addresses. Therefore, the number of
blocks is less than the worst case because endpoints are not
distinct. Moreover, it is not possible to have more blocks
than points in the condition, e.g. a condition including one
IP address forms exactly one block. Source ports in most of
the cases are left unspecified or exclude the well known ports
(e.g. 1024–65535), while destination ports are clustered on
the most used services (e.g. 80, 22, 443). URLs are very often
organized by destination domain or hierarchically organized
by domain/URL path so that conditions are nested or disjoint.
This guarantees that the worst case 2nr for regex selectors
is rarely approached, if ever. The analysis of Squid rulesets
produced one hundred mesh hyper-rectangles in the worst
case. We noticed that even tough dozens of selector types are
available for application firewalls, policy writers tend to use
only a bunch of them for each rule: we noticed that no more
than five selectors are specified, with the unspecified ones
working as wildcards. This also strongly limits the number
and product of block sets size.

Finally, the average number of ranges per condition is 1 for
some specification languages that do not allow union of ranges
and, in general, union of ranges is not abused. In most cases
K is a number close to 1.

VII. IMPLEMENTATION

The tool presented in [6] supports policy specification with
several resolution strategies and performs rule-pair and multi-
rule analysis and policy translation. We extended it to support
application firewalls and the Squid syntax. The anomaly de-
tection is implemented in two steps, pairwise then multi-rule
analysis. Detected anomalies are presented to administrators
for validation purposes.

Range-based selectors are implemented as integers and
set operations are optimized resorting to their natural order.
Prefix match selectors are mapped to range-based selectors.
Exact match selectors use bit sets, that is ordered strings
of boolean digits. Each element is associated to a specific
position in the bit set: if the element is present in the condition,
then the corresponding bit is set. The intersection is mapped
to the bitwise AND operation, the union to the bitwise
OR and the set minus to the AND -NOT . We map regex
selectors to automata by extending the dk.brics.automaton
Java package from A. Møller [21], that offers translation
of regular expressions to automata and provides some set
operations among them. Conditions with string matching use
regex selectors, taking advantage of the “singleton strings”
feature of dk.brics.automaton. Furthermore, we implemented
missing set operations and the algorithm to convert automata
to regular expressions.

It is worth noting that the tool can be easily extended to
support other rule types and scenarios other than Squid with
little or no changes to the source code.

A. Performance analysis

To complete the assessment of the practical usability of
our approach, an extensive testing of the anomaly detection
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Fig. 9: Test results

process has been conducted. Tests were performed using a
computer equipped with a Intel Core i7 (2.7 GHz) CPU and
8 GB RAM, running Java 1.7 on top of a Linux 6 OS.

The most interesting parameter for usability is the time
required to analyse a policy. Testing on real policies is imprac-
tical as they are treated at the maximum confidentiality level,
thus not freely available. The ones we were able to access are
too small and too little to be statistically significant. Therefore,
we tested the model against synthesized rulesets.

A full analysis includes an initial pairwise analysis and a
general anomaly analysis. Pairwise analysis mainly depends
on the efficiency of set operations and comparisons (subset,
superset, equivalent, disjoint). Therefore, with respect to [6],
there are two differences: there are more selectors (up to 20)
and regex selectors are used.

To this purpose, we first evaluated the time to perform set
operations within selectors. Table I reports the time to perform
one million set intersections and unions on the three different
selector types. Range-based and exact match are very efficient
while regex selectors are considerably slower (approximately,
IE ∼ 100IR).

regex range-based exact match

union 5.43 s 0.091 s 0.033 s
intersection 7.54 s 0.054 s 0.067 s

TABLE I: Performance of operations over selector types.

Then we estimated the time to intersect condition clauses.
It depends on the probability of intersection in each selector
and on the number of regex selectors. As condition clauses
are the Cartesian product of conditions, in our prototype
the intersection works selector-wise and stops as soon as an
empty intersection is found (and due to independence among
selectors it can be also parallelized). Thus the average time is:

t = η1t1 + (1− η1) t2 + (1− η1) (1− η2) t3+
+ · · ·+ (1− η1) (1− η2) · · · (1− ηm−1) tm

where ηi is the probability that two conditions intersect in
the selector Si, and ti is the time to perform the intersection
in Si. Thus the order of the selectors affects the average
time. Figure 9a displays the time to perform the intersection
depending on the ruleset cardinality when regex are used as
first or last selectors (and ηi = 30% for each selector) for

Squid rules, composed of 9 non-regex and 11 regex selectors.
The overall performance drastically improves if the intersec-
tion between regex conditions is calculated later. Moreover,
further improvements are expected if statistical data are used
to determine the selector order.

The most significant evaluation concerns general anomaly
analysis. Two measurements have been performed: the time
to verify that a rule is unnecessary depending on the number
of intersecting rules, and the time to perform general anomaly
analysis on a rule set depending on the rule set size.

In the first test, we created ad hoc unnecessary rules and
measured the time to perform the verification depending on
nr. We generated realistic range-based conditions, composed
of at most 5 ranges with K = 3, exact match conditions
composed of randomly generated sets of points, and random
regex conditions (at most X of them are intersecting but
not nested). In fact, generating regular expressions such that
every pair of them is intersecting but not nested is quite
complex (e.g. URLs, browsers’ names), thus we expect that
the possibility for administrators to generate them accidentally
is also small. No conditions use wildcards.

Fig. 9b presents the results for four sample rules types:
1) five-tuple rules (mR = 5,mE = 0),
2) Squid rules without regex selectors (mR = 9,mE = 0),
3) Squid rules without the uncommon regex selectors

(mR = 9,mE = 6), (e.g. authentication, ident)
4) Squid rules.

In cases 1 and 2, that do not include regex selectors, the
algorithm is able to determine that a rule is unnecessary in
less than one second even when there are 20 intersecting rules
(respectively 3.5 ms and 0.229 s on average). The time for
verification grows less than exponentially with nr but it may
be intractable. However, even if this plot can be theoretically
extended to nr ≥ 20, those cases are very unlikely to happen.
Cases 3 and 4, that include regular expressions, initially grow
faster but this trend decreases with nr. This also depends
on our decision to produce at most X intersecting but not
nested regex conditions. Detecting unnecessary rules requires
respectively 3.24 s and 59.47 s on average. The worst case
we measured took about 600 s to identify an unnecessary rule
covered by 12 rules.

For the second class of tests (the time to perform anomaly
analysis, both rule pair and general one) we used two parame-
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ters to produce realistic policies: nmax
r , the maximum number

of rules intersecting simultaneously, and σ, the percentage of
intersecting rules in the ruleset (discussed in section VI). The
test was performed on two series of policies, randomly gener-
ated with (nmax

r = 4, σ = 20%) and (nmax
r = 10, σ = 40%).

Results in Fig. 9c show that realistic policies can be analysed
in a short time: management of very large correlated policies
is compatible with normal administrator activity. We re-run the
same test on new policies that use different resolution strategy
and obtained the same results. We conclude that performance
is independent of the resolution strategy.

VIII. RELATED WORK

Several works treat policy anomaly classification and de-
tection. The concept of conflicts analysis has been initially
introduced by Sloman for distributed system management with
techniques to solve them [22] [23] [24]. However, these tech-
niques are not directly applicable to firewall policies. Many
seminal papers present solutions for the analysis of packet
filtering. First works concentrated on efficient representations
of the rulesets as conflicting rules decrease performance.
Hazelhurst presented solutions based on binary decision di-
agrams (BDDs) [25], Hari [26] proposed the use of tries,
Baboescu [27] the use of bit vectors, and Srinivasan [28] the
Tuple Space Search classification algorithm.

Then the focus moved to approaches that query the fire-
wall policy, like Fang [29], a simulation-based engine that
performs simple query aggregation, and its successor Firewall
Analyzer (formerly known as Lumeta) [30], [31]. Recently,
Liu proposed a query engine and the Structured Firewall Query
Language [32], that he applied to the analysis of corporate
networks composed of packet filters and NATs [33]. None of
these works consider stateful or application firewalls.

Other approaches proposed the exhaustive anomaly detec-
tion. Al-Shaer focused on the analysis of single packet filters
[4], and on distributed firewalls [34]. His work has two main
limitations: it considers only the packet filter scenario (i.e.,
stateful and application layer firewalls are not supported), and
he detects only anomalies in rule pairs (i.e., anomalies that
arise considering more rules are not considered). His classifi-
cation is the starting point of several works that share the same
limitations. Bouhoula [35] used rule field logical relations,
Thanasegaran [36] bit vectors that allow the detection of rule
pair anomalies more efficiently but fail to effectively express
conditions on ordered fields (e.g. port numbers).

Anomaly detection has been addressed with different per-
spectives. The FIREMAN tool [37] uses BDDs to detect
anomalies, and checks if a distributed policy complies with
an end-to-end policy. In the field of ruleset optimization by
redundancy removal, Gouda [38] and Liu [39] introduced tech-
niques based on Firewall Decision Diagrams. Abedin proposed
a real-time ruleset optimization approach based on data mining
techniques [40]. Alfaro proposed a set of algorithms to remove
anomalies between packet filters and NIDS in distributed
systems [41], recently implemented in MIRAGE [42]. Hu
[43] proposed to divide the five-tuple decision spaces into
disjoint hyper-rectangles where conflicts are resolved using a

combination of automatic strategies and manual administrator
effort driven by risk analysis considerations. A completely
different approach is presented by Bandara, that uses argu-
mentation logic and achieves excellent performance [44], and
Hu that introduced an ontology-based anomaly management
framework that delegates set operation to BDDs [45].

Our work aims at detecting anomalies also for stateful
and application-layer policies, it supports strategies other than
FMR. Moreover, as it is based on the geometric model easily
extends to other rule types. The query approach is completely
different as it does not aim at finding all the inconsistencies
and strongly relies on the selection of the proper queries, as
“users often do not know what to query” [31]. Therefore, in
our opinion, the impact of the human factor is only shifted,
on the other hand, authors focussing on queries object that,
anomaly analysis is impractical as too many anomalies may
be detected to be manually processed [32].

Stateful firewall analysis is less addressed in literature.
Besides the already discussed work of Liu [8], we mention
Cuppens [46] that detects rules that do not allow the normal
TCP setup and termination for allowed connections, or rules
that block allowed related FTP connections. Our tool also
identifies these anomalies, nevertheless, they do not appear in
application layer protocols. Buttyán [47] stated that “stateful is
not harder than stateless”, but this is only partially sharable as
their model simply adds one string field (treated as an exact
match selector) to the FIREMAN five-tuple decision space.
The stateful case is harder because there are new anomalies
and it is computationally more complex.

IX. CONCLUSIONS

This paper presented a model for policy anomaly analysis in
application firewalls and a tool implementing it. The proposed
model is able to manage text-based content filtering specified
with regular expressions. The model effectiveness has been
successfully tested against the access control features of Squid,
a well-known HTTP proxy. Together with the effectiveness,
encouraging results come from the performance analysis. In
fact, even if the worst case is potentially intractable, our
approach can be proficiently used in real-life scenarios because
of the peculiar semantics of the policy.

Our future work aims to extend the model to other security
contexts (e.g. VPNs) and to consider distributed scenarios too.

As a final note, many of the algorithms presented here are
prone to parallelization (due to the properties of sets obtained
as Cartesian products) and this can provide better performance
on modern multi-core, multi-thread architectures.
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