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Abstract 

 

The removal of an eye is one of the most difficult and dramatic decisions that a surgeon must 

consider in case of severe trauma or life-threatening diseases to the patient. The philosophy behind 

the design of orbital implants has significantly evolved over the last 60 years, and the use of ever 

more appropriate biomaterials has successfully reduced the complication rate and improved the 

patient’s clinical outcomes and satisfaction. This review provides a comprehensive picture of the 

main advances that have been made in the development of innovative biomaterials for orbital 

implants and ocular prostheses. Specifically, the advantages, limitations and performance of the 
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existing devices are examined and critically compared, and the potential of new, smart and suitable 

biomaterials are described and discussed in detail to outline a forecast for future research directions. 

 

Keywords: Orbital implant; Ocular prosthesis; Enucleation; Porous biomaterials; Antibacterial 

properties. 

 

1. Introduction 

 

Dating back thousands of years, there is evidence that the Sumerians and Egyptians were able to 

surgically remove the ocular globe as well as to make artificial eyes; however, it was not until the 

late 1500s that enucleation procedures were reported in detail in the medical literature [1]. The 

advances in this field progressed relatively slowly and only in 1885 the use of a well-defined orbital 

implant, a glass sphere, to restore the socket volume was documented [2]. Improvements in surgical 

techniques, anesthesia, implant materials and design over the last decades have significantly got 

better clinical outcomes and patient’s satisfaction. Furthermore, the ability to more effectively deal 

with the long-term complications of the anophthalmic socket such as enophthalmos, exposure and 

lower lid laxity (ectropion) have greatly improved. Today, most patients can confidently return to 

their daily activities with good cosmetic results following the removal of an eye. 

This article chronicles the evolution of orbital implants and ocular prostheses, gives a 

comprehensive overview of the current state of the art and provides a picture for prospective 

research. Other devices used in oculo-orbital surgery, such as the biomaterials for orbital floor 

repair, have been recently reviewed elsewhere [3-5] and are not included in the present work. 

Medical details are often given, so that the reader can well understand the key problems related to 

the use and applications of the described devices, the suitability and limitations of existing solutions 

and the potential of some novel approaches suggested at the end of the article. Just to give the 

reader a “road map” showing the organization of the article, it can be divided into three parts, 
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devoted to presenting an essential medical background, a comprehensive materials/implants review 

and some indications for prospective research and future challenges, respectively. The first part, 

section 2, gives the reader a concise overview of the surgical approaches that can be adopted to 

remove a diseased eye, as well as the basic information related to orbital implants and ocular 

prostheses. In this context Table 1 provides a short glossary of the medical terms that are not 

explained directly in the text which may be unclear or unknown to non-specialist readers. In the 

second part, the different types of biomaterials and devices used as orbital implants (section 3) and 

ocular prostheses (section 4) are extensively reviewed. At the end of the section 3, an organized and 

critical comparison among the several existing types of orbital implants is provided. The third part, 

Section 5, presents the future challenges in the field and particularly highlights the potential of new 

experimental biomaterials with advanced properties (e.g. angiogenetic ability, controlled resorption, 

antiseptic functionality). 

 

2. Need for eye removal: aetiology and surgery 

 

The removal of an eye or the orbital contents is one of the most serious and difficult decisions that a 

patient and a surgeon must consider. The patient facing the loss of an eye has often underwent 

multiple ophthalmic/orbital surgeries, experienced severe ocular trauma or been diagnosed with a 

potentially life-threatening disease, such as eye tissue tumours. Therefore, psychological support 

before and after surgery is fundamental in these patents, who are often feeling depressed and 

overwhelmed [6].  

At present, removal of a diseased eye can be carried out by following different surgical approaches, 

according to the particular pathology and medical history of each patient. Evisceration involves the 

removal of the intraocular contents of the eye while the sclera, Tenon’s capsule, conjunctiva, 

extraocular muscles and the optic nerve are left intact [7]. Enucleation is another option involving 

the removal of the globe from the orbital socket together with the scleral envelope and a portion of 



4 

 

the optic nerve, while, as with evisceration, the conjunctiva, Tenon’s capsule and extraocular 

muscles are spared [8,9]. It has long been believed that evisceration is superior to enucleation as to 

motility and cosmesis; however, modern enucleation procedures, which involves a careful 

attachment of extraocular muscles to the implant, actually rival those of evisceration in the 

preservation of motility of the artificial eye and cosmetic outcome. In the final stage of surgery, an 

orbital implant is placed within the scleral envelope after evisceration or within the Tenon’s capsule 

after enucleation; an ocular prosthesis will be then worn by the patient to restore an appropriate 

aesthetic appearance (Fig. 1). Unfortunately, recovery of the visual function of the eye by 

implantation of what we might ideally term “seeing artificial device” still remains a dream; 

nonetheless, the present surgical strategies are fully able to restore an acceptable cosmetic 

appearance and life-like motility to the prosthetic eye.     

Removal of an eye can be necessary in case of intraocular malignancy (e.g. retinoblastoma, which 

can develop especially in children), blind painful eye, prevention of sympathetic ophthalmia in a 

blind (or even seeing) eye, severe trauma, cosmesis and infections not responsive to pharmaceutical 

therapy. In some cases either approach can be adopted: from a general viewpoint, evisceration is 

less invasive and less surgically complex than enucleation and can be performed even under local 

anesthesia, but some reports demonstrated that the complication rate for evisceration, specifically 

implant extrusion, may be significantly higher [10]. Evisceration is indicated in the treatment of 

active, uncontrolled endophthalmitis and in all cases when there may be a danger of intraocular 

infection spreading back along a cut optic nerve sheath; however, enucleation may be indicated if 

the infection has spread to the sclera. Evisceration is also recommended in patients who cannot 

tolerate general anesthesia or have bleeding disorders since it is a faster, easier procedure and 

damages fewer blood vessels than enucleation. Evisceration is absolutely contraindicated in the 

presence of intraocular malignancy as it does not allow for eradication of tumour cells that have 

spread to the sclera. Enucleation is generally indicated for tumours that are confined to the ocular 

globe; exenteration procedure, which involves the removal of the entire orbit and surrounding 
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structures and tissues, should be performed if the malignancy has spread to the extraocular tissues 

and structures (e.g. adjacent sinuses, cranium bone, face muscles and skin, conjunctiva and eyelids) 

[11]. Exenterations vary in the amount of tissue removed and, apart from being indicated for the 

eradication of extended tumours, can be applied in the case of otherwise unmanageable rhino-

orbital infections and, less commonly, severe orbital pain and deformity [12]. After the socket has 

healed, silicone or acrylic custom-made prosthetic devices can be constructed and attached to the 

orbit or skin with various types of adhesives to provide an excellent cosmetic result [13]. The use of 

osteointegration techniques, which involve the permanent placement of bone-anchored titanium 

implants, can also be used to successfully support maxillofacial prosthetic devices [14]. 

 

3. Orbital implants 

  

Over the centuries, a wide variety of materials has been experimented to manufacture more or less 

rudimental orbital fillers with the aim of replacing the anophthalmic socket volume and restoring an 

acceptable aesthetic appearance to the patient’s face. Use of metals (e.g. gold, silver, platinum, 

stainless steel), substances of vegetal (e.g. wool) or animal (e.g. cork, ivory) origin and even rock-

derived materials (asbestos) has been documented [15]. Since the late 19
th

 century, surgical 

procedures and materials to be implanted progressively moved to more defined standards, in order 

to avoid or at least to limit the negative outcomes of a “trial and error” approach. Therefore, the 

term “orbital implant” has been employed to denote a properly-designed, reproducible, often man-

made device which not only is able to replace orbital volume but also, hopefully, to ensure adequate 

motility to an aesthetic ocular prosthesis (artificial eye); in this review, particular emphasis will be 

dedicated to recently-developed solutions (approximately in the last two decades) and related 

studies. The earliest orbital implants were simple spheres buried within the Tenon’s capsule [2]; the 

extraocular muscles were disinserted from the globe and left to contract within the socket. Due to 

the limited movement of the overlying ocular prosthesis, surgeons began to perform the muscles 
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attachment to the implant to better anchor it, thereby reducing extrusion rates, and to allow 

conjugate movement with the contralateral normal eye.  

The attachment of the extraocular muscles to the implant, the implant incorporation within the 

surrounding orbital tissues and the implant-prosthesis interlocking have all become a source of 

some confusion in terminology over the years. For instance, some authors referred to “implant 

integration” as the simple attachment of the extraocular muscles to the implant, whereas other 

researchers defined integration as the mechanical contact between implant and ocular prosthesis. In 

order to solve this controversy, Sami et al. [15] recently suggested a 3-type categorization (buried, 

exposed-integrated and buried-integrated implants) based on the assumption that integration 

specifically refers to the nature of fit between the ocular prosthesis and the implant, whereas 

attachment of the extraocular muscles to the implant does not imply integration. In the present 

work, the authors propose a 7-type general classification of orbital implants (Table 2), in the 

attempt at taking in account all currently available implants, including the porous ones with their 

own peculiarities. According to this classification, some overlapping among the classes is 

unavoidable depending on the context of use; for instance, a solid silicone sphere may be a simple 

non-integrated device but, if wrapped within a foil of biological tissue, it will become a non-

integrated and biogenic implant. As the research continuously proceeds and new materials are 

developed, in the next future even a 8
th

 class (bioactive implants) might be added to Table 2, as 

shortly discussed at the end of the article in the section 5.2.1.    

The orbital implants developed over the years – available on the marketplace or currently 

abandoned – are collected in Table 3 with essential information for the reader’s benefit. Just to 

provide a short overview of the complex issues related to the design and selection of suitable orbital 

implants, we have to mention that an ideal implant should display a number of characteristics, 

including biocompatibility, adequate volume replacement, adequate support for the ocular 

prosthesis, accessible cost for the patient, easiness of implantation, good motility transmitted to the 

ocular prosthesis and low rate of complications (e.g. post-operative infections). The use of non-
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toxic materials should be a mandatory pre-condition to produce biocompatible implants. In order to 

fit the anatomic needs of each specific patient, including children, implants of different size are 

today available on the marketplace; the prices are quite variable (from few tens to several hundreds 

Euros in Europe) and mainly depend on employed material and implant style. Surgical implantation 

can be facilitated by wrapping the implant within a foil of a smooth material; this procedure is 

particularly recommended for porous implants characterized by a slightly irregular porous surface. 

Over the years, different strategies have been developed to suture the extraocular muscles to the 

implant in order to improve motility; for instance, the muscle can be directly and independently 

attached to the implant or sutured together in front of it (imbrication). Different approaches were 

also experimented to improve the motility of the ocular prosthesis, including pegging procedures 

and use of magnets to guide the prosthesis movement in accordance to that of the orbital implant. 

Infections following implant exposure are more amenable to treatment in porous implants, as 

vascular in-growth helps to anchor the implant and permits immune surveillance. Therefore, the use 

of a porous implant is a good option in adults but is generally discouraged in children, since implant 

substitution with another one of larger size may be necessary to stimulate adequate orbital growth. 

All these issues will be critically discussed in the following sections to give the reader a 

comprehensive picture about features, advantages and limitations of each implant type as well as 

some criteria for implant choice.     

 

3.1. Non-integrated implants 

 

3.1.1. Glass 

 

In 1885, Mules placed the first orbital implant after evisceration [2] and one year later Frost 

described orbital implant placement after enucleation surgery [16,17]. The Mules implant was 

essentially a hollow blown glass sphere and commonly used till the World War II (WWII). Volume 
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replacement by the Mules implant within Tenon’s capsule was a significant advance, reducing 

socket retraction, intra-orbital fat redistribution and superior sulcus deformity. Implants of different 

sizes were experimented for better fitting to patient’s anatomy; it was also noted that the use of 

smaller and lighter devices led to decreased stress on the lower lid and associated ectropion 

formation. At the beginning, the Mules implant had high extrusion rates (50-90%), but the 

progressive improvement of surgical techniques led to the reduction in this complication, although 

still high compared to modern standards: Verrey reported an extrusion rate of 21% in 343 cases 

receiving the Mules implant up to 1898, and in 1944 Burch reported failures in less than 10% of 52 

operations [18,19]. The major drawbacks of Mules implant were the brittleness, as the implant 

could break due to trauma, and the risk of implosion due to sudden temperature changes.  

At present, use of glass spheres as orbital implants has been almost totally abandoned considering 

the availability of other implants generally ensuring better outcomes. Occasionally, glass has been 

still used in recent years: in the late 1980s Helms et al. [20] implanted a glass sphere (1 patient) that 

underwent posterior intracranial migration, and in the 1990s Christmas et al. [21] used a glass 

implant in a single patient without reporting any complication after a 2-year follow-up. 

 

3.1.2. Silicone  

 

Silicone has been extensively proposed for more than 50 years as a suitable material for various 

surgical applications due to its attractive properties, including biological/chemical inertness, 

flexibility, ease of handling and low cost. For instance, episcleral implants made of solid or porous 

silicone are still today the unique devices clinically approved and commercially available 

worldwide for scleral buckling in retinal detachment surgery [22]. 

As to orbital implants, a non-porous silicone sphere, as-such (bare) or wrapped, centered within the 

muscle cone and attached to the four rectus muscles has been the most common alternative to Allen 

and Universal implants before porous implants have been introduced on the market at the end of 
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1980s. The use of a non-porous silicone sphere is still now a good option if pegging is discouraged 

or cannot be performed; however, although prosthetic movement occurs, it is not as much as is seen 

with mounded (i.e. quasi-integrated) devices or pegged porous implants. In the view of many 

surgeons, a standard silicone sphere simply placed into the orbit, without a wrap and without 

connection to the rectus muscles, is the least desirable choice as it offers little movement and the 

implant is prone to migrate with time [23].  

Non-porous silicone spheres can be also preferred depending on the patient’s age. In infants and 

preschool-aged children, a wrapped silicone sphere centered within the muscle cone and connected 

to the four rectus muscles and inferior oblique muscle is often recommended; implant exchange 

with a porous orbital implant that may potentially be pegged is considered at a later age (> 15 

years). Some surgeons also prefer to implant a wrapped non-porous silicone sphere in aging patients 

(> 65 years); porous implants are not used routinely in this age group, as experience suggested that 

these patients are often bad candidates for pegging due to gradually failing health and difficulty in 

maintaining regular follow-up visits [23]. 

Excellent outcomes have been reported by suturing the recti independently to a 20-mm spherical 

silicone implant reinforced with autogenous fascia or preserved sclera: an extrusion rate of only 

0.84% (1 of 119 patients over a 10-year follow-up period) and no cases of implant migration were 

reported [24]. This is an interesting achievements as, when muscles are imbricated over the surface 

of a spherical implant, implant migration normally occurs more frequently with non-porous 

implants [25,26]. 

Many surgeons experienced that this implant is an excellent choice also in cases of trauma, such as 

a severe gunshot wound to the orbit, where extraocular muscles are unidentifiable and will not be 

reattached to the implant. The implant, usually wrapped within a sclera foil or other suitable 

biomaterial, can be placed into the orbit and the Tenon’s capsule and conjunctiva sewn over the top. 

Gonzalez-Candial et al. showed that, if pegging is not planned, no advantage seems to occur, in 

terms of motility, in using porous orbital implants instead of solid silicone spheres [27]. Christmas 
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et al. [21] performed six implantation, by using solid silicone spheres, without reporting any 

complications over a 2-year follow-up. Pegging procedures were sometimes performed also in 

presence of solid silicone implants; interestingly, Shoamanesh et al. [28] showed that silicone 

implants had significantly less pre-pegging and post-pegging complications (especially pyogenic 

granuloma and hypo-ophthalmos) than the other implant types (including the porous ones), which 

demonstrates the great potential – often underestimated after the introduction of porous implants – 

that silicone can still have today. 

Apart from solid spherical implants, for sake of completeness it is also worth mentioning the 

silicone-based orbital implant proposed in the late 1960s by Soll, who devised an inflatable silicone 

implant filled with silicone gel [29,30]. By using a 30-gauge needle, saline or antibiotic solution 

could be injected centrally through a self-sealing area; this implant was designed to preferentially 

expand superiorly in order to address superior sulcus deficit. Due to pressure-related problems 

occurring both intraoperatively and after implantation, associated to the risk of silicone gel release, 

this approach was abandoned. 

Silicone has also been recently proposed in the USA in the manufacturing of the commercially-

termed “Flexiglass system”, comprising a silicone ocular prosthesis together with some accessories 

(more information will be presented in the section 4.2) and an orbital device called “Flexiglass 

eye”. To the best of the authors’ knowledge, no clinical studies about the “Flexiglass eye” have 

been reported in the medical and scientific literature up to now; the few available information have 

been found on the producer’s website [31], wherein we simply read that clinical trials started in 

2005 and are currently on going. We textually report the sentences describing this product [31]: 

“With the use of a safe, topical ‘growing’ oil application, the Flexiglass™ eye can actually be made 

to expand to fill the pediatric patient’s eye socket. Therefore, one can quickly see that the 

advantages of having an eye growing with the pediatric patient are quite significant. When an ocular 

prosthesis inadequately compensates for the space of an eye socket, the socket will inevitably 

contract and deform resulting in an unsatisfactory cosmesis. This inadequate cosmesis can continue 
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into adulthood and possibly requires many grueling and unnecessary surgeries to properly correct”. 

The features of the described device are unclear and the authors have strong perplexities about the 

use of a ‘growing oil’ that allows the implant to fit the anophtalmic socket. Clarification of these 

crucial issues, which should involve an accurate, serious investigation of the actual suitability of 

this implant for clinical use and a careful monitoring of its current commercialization, is therefore 

strongly expected in the next future. 

 

3.1.3. Poly(methylmethacrylate) 

 

Poly(methylmethacrylate) (PMMA) is well-known in ophthalmology mainly as an ideal material to 

fabricate intra-ocular lenses [32], as well as rigid and semi-rigid contact lenses [33], due to its 

excellent biocompatibility with ocular tissues and transparency to visible light; furthermore, PMMA 

has been also widely used in oculoplasty. As to the field of non-integrated orbital implants, in 1976 

Frueh and Felker first described the use of the so-called “baseball implant”, i.e. a PMMA sphere in 

an envelope of donor sclera [34]; although originally described as a secondary implant, its design 

might allow primary implantation as well.  

In 1985, Tyers and Collin implanted 35 secondary and 6 primary baseball implants and monitored 

the patients over a 24-month follow-up [35]; complications occurred in 59% of cases, but most of 

them (e.g. postoperative oedema) were resolved by pharmaceutical treatment. Volume correction 

was excellent and the motility was apparently comparable with that of quasi-integrated implants; 

therefore, the authors concluded that the baseball implant had a promising potential and might be 

recommended both as a safe and convenient secondary implant and as the first approach to a 

volume deficit in the anophthalmic socket, but it should be avoided if the conjunctival fornices were 

already shallow as a result of previous surgery. On the other hand, they acknowledged that the 

reported series of primary baseball implants was too small to allow them to draw definite 

conclusions, and the use of this implant after recent trauma was discouraged. 
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In 1994, Leatherbarrow et al. [36] reviewed 44 patients receiving the baseball implant and reported 

6 cases of severe complications (1 case of unacceptable pain, 3 cases of implant migration and 2 

cases of implant exposure). In the late 1990s, Christmas et al. [21] implanted the baseball implant in 

6 patients (primary enucleation) and implant removal was necessary in one case (exposure after 14 

days).  

Some interesting studies have been recently performed in Pakistan using the so-called Sahaf 

implants, made of solid PMMA. The development of a new, cost-effective implant that could be 

readily available on site was an urgent need for Pakistani ophthalmic surgeons as the most 

commonly used porous orbital implants have to be imported from abroad through a process that can 

take several weeks. From 2003 to 2006 Kamal-Siddiqi et al. [37] implanted in 60 enucleated 

patients the Sahaf implant type I, that was characterized by a 2-piece design wherein the posterior 

hemispherical portion gave support to hold recti muscles and the anterior convex curvature 

supported the ocular prosthesis; it was also available with multiple sizes to restore different ocular 

volumes. The anterior part of the implant was wrapped in sclera or fascia lata in some cases. After 

surgery, three initial cases showed necrosis of the conjunctiva leading to exposure of the implant, 

which needed reinforcement by autogenous fascia lata, and in one case the anterior part of the 

implant was extruded; in general, all cases had satisfactory socket filling. These early results were 

promising but the authors wisely concluded that further studies and long-term follow-up on a 

broader number of cases were needed to draw definite conclusions about the advantages of Sahaf 

orbital implant I over the existing ones. 

Kamal et al. [38] also reported a review of 30 patients who received, from 2006 to 2009, a pear-

shaped PMMA non-integrated implant (the so-called Sahaf orbital implant type II) which rested on 

the orbital floor and projected up to fill the orbit (Fig. 2a). Most of patients underwent enucleation, 

but this implant was also used in some cases of exenterated socket, along with temporalis muscle 

rotation and with 360° fornix reconstruction using mucous membrane graft. Wrapping of donor 

sclera or autogenous fascia lata was used in most cases. Postoperatively, two cases exhibited initial 
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necrosis of the conjunctiva leading to exposure of implant, which needed reinforcement by 

autogenous fascia lata.   

Among the recently-developed designs, it is worth mentioning the clever approach reported by 

Agahan and Tan [39], who hypothesized that implant weight might be a cause for most cases of 

implant migration; hence, they suggested that a hollow PMMA implant would be expected to be 

more stable compared with a solid implant of the same size as it would be subjected to less 

gravitational force. Hollow implants were manufactured by fusing 2 hemispherical elements made 

from medical-grade PMMA powder. Twelve patients were randomly divided into two equal groups, 

receiving either the standard solid acrylic implant or the hollow PMMA implant, respectively. The 

anophthalmic socket was examined postoperatively by serial computed tomography (CT) scanning 

to detect implant migration. Most of the implants remained in the socket at least 6 weeks in both 

groups, with 1 case of early implant extrusion in the solid acrylic group. Small degree of implant 

migration was observed on CT scans in 4 patients in the solid acrylic group and 3 in the hollow 

PMMA group after a 12-week follow-up. In the solid acrylic group, the implant migrated 

posteriorly in eviscerated patients and anteriorly in enucleated patients. No pattern was observed in 

the type of operation and direction of the implant migration in the hollow PMMA group. The 

authors concluded that hollow PMMA implants were comparable substitutes for solid acrylic 

implant, but multicenter clinical trials with adequate patients’ sample size and longer follow-up are 

needed to establish the long-term stability of the implant. 

In summary, PMMA is an excellent biomaterial for ophthalmic applications; it is also commonly 

used to manufacture ocular prostheses (as described in the section 4) and has been recently 

proposed for the repair of extensive orbito-facial defects due to trauma. In an interesting study, 

Groth et al. [40] treated 9 severely-injured patients by implanting CT-based biomodelled, 

prefabricated, heat-cured PMMA implants, that were well tolerated postoperatively; further 

advantages included customized design, long-term biocompatibility and excellent aesthetic results. 
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The criteria adopted for the choice of a PMMA non-integrated spherical implant are substantially 

analogous to those that were already presented for the silicone sphere; for instance, many surgeons 

prefer to implant a PMMA non-porous sphere (or a silicone one, that is slightly more pliable) rather 

than a porous device in children and elderly patients [23]. PMMA has been also used for 

manufacturing the majority of quasi-integrated implants, that are described in the section 3.2. 

 

3.2. Quasi-integrated implants 

 

An interesting approach to provide adequate motility without interrupting the conjunctival lining, 

with the aim of minimizing discharge and infections related to exposures or pegging procedures, 

was introduced about 70 years ago with the use of what is known as a quasi-integrated orbital 

implant design. These implants have irregularly-shaped anterior surfaces that create an indirect 

coupling mechanism between implant and ocular prosthesis, thereby allowing movement transfer 

from the implant to the artificial eye and, accordingly, imparting greater mobility to the latter one. 

The posterior surface of the ocular prosthesis is modified so that it fits in a “lock-and-key” fashion 

with the anterior surface of the implant, although it remains buried beneath the conjunctiva. Among 

the various types of orbital implants, the quasi-integrated ones nicely capture the progression of 

orbital implant design and “philosophy” from the WWII to present. 

 

3.2.1. Early models 

 

In 1946, Cutler introduced the so-called “basket implant” (Cutler implant I), that had four openings 

through which the rectus muscles were pulled through and sutured together with the patient’s 

conjunctiva closed over it; the ocular prosthesis had a knob on its posterior surface that fitted into 

the concavity of the (female) implant without direct contact [41]. Some variations of the quasi-

integrated Cutler implant have been proposed in the following years, such as the King implant that 
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consisted of a pear-shaped tantalum mesh at whose base the rectus muscles were attached with the 

patient’s conjunctiva closed over it [17]. The interested reader can find a comprehensive historical 

picture about early quasi-integrated models in a valuable paper by Gougelmann [17].  

 

3.2.2. The Allen implant and its evolutions 

 

The original Allen implant, that was developed in the mid 1940s by Prof. James Allen (Iowa 

University) together with the ocularist Lee Allen, was actually a mechanically-integrated PMMA 

implant connected by a thin rod (peg) to the aesthetic ocular prosthesis [42]. In the attempt of 

improving the design of Cutler integrated (female) implant (section 3.4), the Allen design 

incorporated the peg into the implant (male); each rectus muscle was passed through a peripheral 

tunnel, split lengthwise to straddle the gold peg and was sutured to its antagonist. Unfortunately, 

this first model gave less than satisfactory results as these implants were retained only a few months 

before they extruded or were removed because of infection due to bacterial colonization of 

implant/tissues [43]. The implant design was therefore modified: the peg was removed, the muscles 

were sutured together (or “imbricated”) through a central 6-mm opening and the Tenon’s capsule 

and conjunctiva were completely closed over the flat PMMA surface of the implant that was thus 

buried beneath the tissues of the eye socket. Such a design for the Allen implant was widely used 

for more than 10 years until it was replaced by a modified version developed to address the 

common complaints of some of the ocularists who were fitting them. For instance, since the flat 

surface did not well support the weight of the ocular prosthesis against gravity, lower lid droop and 

exaggeration of the upper lid sulcus were noticeable in some patients [44]. In the late 1970s Jahrling 

[45] reported an average 19% incidence of exposure among 186 Allen implants; in other long-term 

studies, however, much lower exposure rates (about 1%) were found and no exposure occurred 

before 5 years of follow-up [44]. 
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For the redesign, Lee Allen saw the advantage of a differently-shaped motility implant with 

pronounced irregularity on its anterior surface, in order to connect it more securely to the artificial 

eye’s posterior surface, which was shaped to match the irregular anterior surface of the implant. 

This next design, first reported in 1959, was referred to as the quasi-integrated Iowa implant I [46]; 

the Iowa implant II, introduced one year later, was similar in shape but nearly one third larger in 

volume [47]. The Iowa implants (type I and II), made of PMMA, had four peripheral mounds 

(height 5 mm) on the anterior surface designed to integrate with four depressions on the back of the 

ocular prosthesis (Fig. 2b); the rectus muscles were brought together through the valleys between 

the mounds, overlapped and tied together at a central anterior depression. Holes were also made 

through parts of the implant in the attempt at promoting fibrovascular tissue in-growth – this 

concept will be fully explored and applied 25 years later with the development of porous implants 

(section 3.5). The Iowa implants addressed many of the problems complained about the Allen 

implant: for instance, the four surface small hills supported the ocular prosthesis and remarkably 

reduced gravitational effect on the lower lid. Spivey et al. reported a 3.3% exposure rate of Iowa 

implants over a 10-year follow-up [48]. It was also noted that Iowa implants exposure was usually 

localized at the surface of the mounds due to pressure-induced necrosis; therefore, the Iowa 

implants design was modified and the Universal implant, exhibiting lower and more round-shaped 

mounds (Fig. 2b), was introduced in the late 1980s [49,50]. However, the Universal implant was 

not widely used because it emerged around the same time that the porous implants begin to greatly 

spread on the market. 

 

3.3. Magnetic implants  

 

The class of magnetic orbital implants deserves a particular mention. From a historical perspective, 

the development of orbital implant design seems to be mainly “evolutionary”, as surgeons and 

ocularists progressively tried to improve implant performances and clinical outcomes by 
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overcoming step-by-step some specific drawbacks which featured the implants proposed by their 

predecessors; a typical example is represented by the modifications of the Allen implant towards the 

Iowa and eventually the Universal implant. However, in the authors’ view, magnetic implants might 

be considered – at least partially – “revolutionary” due to the interesting principle behind their 

action. Essentially, the ocular prosthesis is held in place and the implant movement can be 

transferred to it by means of the action of magnets with opposite poles incorporated on the posterior 

surface of the prosthesis and within the anterior region of the implant, respectively; the conjunctiva 

is sandwiched between the two elements. 

This approach was introduced after the WWII and led to the development of a certain number of 

early models [51-56]. In 1954, Troutman [51] published the results of a 5-year follow-up including 

102 patients receiving a magnetic orbital implant and reported an extrusion rate below 4%. Roper-

Hall [55,56] developed a magnetic implant deriving from the Allen design and consisting of a 

PMMA 21-mm hemisphere with a flat anterior face into which a magnet was embedded; a ring of 

the same material stand forward of the face and had tunnels through which the 4 rectus muscles 

might be passed. More horizontal than vertical movement of the artificial eye was usually seen, and 

this could be increased in all directions if additional magnets were placed in the ocular prosthesis. 

Unlike the mechanically-integrated (pegged) implants developed in the same period, this implant 

did not have an extreme amplitude of movement, for it was limited to a “conversational” range [57]. 

In the early 1980s, Atkins and Roper-Hall [58] monitored 66 enucleated patients over a 5-year 

follow-up: only 1 case of extrusion was reported, together with residual problems of lower lid droop 

and a deep upper lid sulcus. 

Magnetic implants generally had adequate movement, but if the magnet was too strong or 

misaligned, conjunctiva and Tenon’s capsule tissue could become compressed between implant and 

prosthesis, thereby leading to breakdown and exposure along the outer edges [59]. These implants, 

although representing a clever approach to the problem of implant-prosthesis integration, exhibited 

two apparently unavoidable drawbacks. The first issue was recently pointed out by Sami et al. [15], 
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who clearly recognized local toxicity related to iron ions accumulation within the conjunctival 

tissues and associated tissue necrosis as an important cause of possible tissue breakdown and late 

exposure. Over time, PMMA tends to absorb water due to prolonged contact with biological fluids, 

which may cause magnet rusting (Fig. 2c,d) with subsequent exposures developing over the central 

anterior surface, as opposed to the peripheral edges which are prone to pressure necrosis [60]. The 

second issue is common to all metallic implants or prostheses that can be potentially hazardous 

during magnetic resonance (MR) imaging because of movement or dislodgment of the foreign 

metal object [61]. Yuh et al. [62] reported a case of a magnetic orbital implant extrusion caused by 

implant movement during MR imaging at 0.5 T. In recent years, there has been a renewed interest 

by surgeons, biomaterials researchers and implant producers towards magnetic orbital implants, as 

demonstrated by some relevant patents deposited in the early 2000s [63,64]. 

 

3.4. Mechanically-integrated implants 

 

The evolution of quasi-integrated and mechanically-integrated (pegged) orbital implants was 

substantially concurrent. In the late 1940s, Cutler described a PMMA “ball-and-ring” implant 

(Cutler implant type II) whose exposed face had a square (female) receptacle, into which a gold 

square (male) peg attached to the ocular prosthesis could be inserted; the rectus muscles were 

looped around and sutured to the ring [65,66]. In the following years, similar implants were 

developed by other researchers with slight modifications [15,17]. 

It is worth mentioning that pegged integrated implants were developed not only for enucleation but 

also for evisceration. In 1951, Young first described a PMMA implant to be inserted in an 

eviscerated globe; the device was maintained in position by tantalum wires passing through the 

sclera and the peg passed through a hole in the cornea, thereby acting as an obturator on which the 

ocular prosthesis rested [67].      
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All these implants generally gave excellent movement, but their long-term results were 

unsatisfactory. In a review of the outcomes of 91 patients receiving mechanically-integrated 

implants, Choyce found that the rate of survival after a 2-year follow-up was from 40 to 50% 

depending on the implant type; infection due to bacterial colonization of peg/tissues was the reason 

for extrusion and subsequent removal in 80% of cases [68]. For this reason, the use of 

mechanically-integrated implants was progressively abandoned and the adoption of quasi-integrated 

ones was preferred until the diffusion of porous implants widely took place about 20 years ago: the 

“peg approach” has been re-invented and applied to this new generation of implants that allowed 

better outcomes thanks to fibrovascular in-growth within the pores. 

 

3.5. Porous implants 

 

From the design style viewpoint, in some ways the porous orbital implants represented a sort of 

“regression”, since the porous sphere could not translate movement to the implant as the irregular 

anterior surface of quasi-integrated implants did. On the other hand, advantages of porous implants 

included fibrovascularization with intrinsic decrease of infection risk as well as the capability of a 

more effective treatment of infections via antibiotic systemic therapy. If porous implants are used 

for evisceration, scleral windows should be produced by the surgeon to allow fibrovascular in-

growth; the same approach is recommended if the implant is covered with wrapping material. Some 

examples of clinically-used porous orbital implants are collected in Fig. 3. The majority of scientific 

articles and books dealing with materials for ophthalmolplasty indicate the coralline hydroxyapatite 

(HA) implant, introduced in the mid 1980s, as the first example of porous orbital devices that have 

revolutionized anophthalmic socket surgery. However, this statement is only partially correct as 

porous orbital implants actually have an older but often forgotten history, as shortly summarized in 

the following two sections.  
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3.5.1. Bone-derived orbital implants 

 

More than one century ago, in the attempt at overcoming the complications related to the Mules’s 

glass implant, a wide variety of different materials were experimented, including the mineral matrix 

of bovine cancellous bone first introduced by Schmidt in 1899 [69]. This implant was prepared by 

heating spheres of cancellous bone to destroy all organic matter, leaving only the calcium phosphate 

mineral framework [70], that was subsequently shown to consist predominantly of ultramicroscopic 

crystals of HA with small amounts of calcium carbonate and calcium citrate [71,72]. Schmidt’s 

bone-derived HA spheres were used until 1930 [73] and a variation of this implant, i.e. the so-called 

Guist’s implant constituted by calcined bovine bone spheres [74,75], was widely used and 

recommended as “the most satisfactory of all orbital implants” before the WWII [76]. 

Since the 1950s, biologically-inert non-integrated polymeric spheres (silicone and PMMA) 

progressively displaced the early types of porous implants. In the 1960s, Molteno carefully 

reviewed the existing literature on orbital implants and noted that the earlier bone-derived HA 

implants had given good results and that small exposures of the implant during the postoperative 

period frequently healed spontaneously [76]. This behaviour, which was quite unlike that observed 

with a smooth surfaced polymeric implant, suggested that the biodegradable microcrystalline HA 

matrix of bone would constitute a superior orbital implant since, once organized by host connective 

tissue, it would not migrate through the tissues while any small exposures would heal 

spontaneously. Furthermore, the mass of host connective tissue incorporating the bone mineral 

implant would be likely persist unchanged for the patient’s whole life. The early trials of this type 

of implant (M-Sphere, Molteno Ophthalmic, New Zealand; currently it is also produced by IOP 

Inc., Costa Mesa, USA) were reported in the early 1970s and 1980s [77,78], involved the use of 

deproteinized (antigen-free) bone of calf fibulae and confirmed that the mineral matrix of 

cancellous bone was readily incorporated into the tissues and that small exposures were followed by 

spontaneous crumbling of the exposed bone with healing of the overlying conjunctiva. Other 52 
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cases with up to 10-year follow-up were reported in 1991 [79], and the long-term successful 

outcomes of 120 M-Sphere orbital implants inserted after enucleation between 1977 and 2000 were 

more recently documented [80]. This implant, however, is significantly more porous and, 

accordingly, more fragile than other available HA implants (described in the section 3.5.3) and may 

be unable to support a peg [81,82]. Furthermore, its comparatively high cost (500 € or more) may 

have contributed to its relatively limited diffusion.  

 

3.5.2. Proplast 

 

Unlike what commonly reported in most of the literature, the first porous orbital implant made of an 

artificial material was introduced more than one decade before synthetic HA and polyethylene (PE) 

porous implants. In the late 1970s, Lyall [83] pioneered the use of Proplast, an inert felt-like 

composite material constituted of polytetrafluoroethylene (Teflon) and carbon fibres, to 

manufacture hemispherical orbital implants (Proplast implant I) that, when implanted, could be 

invaded by fibrous tissue to overcome the problem of extrusion and rejection; no rejection was 

reported after a 18-month follow-up in 16 patients receiving such implants and the motility was 

generally good. Neuhaus et al. tested Proplast implants I in rabbits and observed a high degree of 

soft tissue fixation with no implant migration; subsequent human use showed good results in 4 

patients followed for 2 years and in 6 patients followed for 1 year, with no cases of extrusion or 

migration in both groups [84]. In recent years, however, the popularity of Proplast has declined 

because of long-term post-operative complications, primarily late infections, associated with its use 

[85]. 

 

3.5.3. Hydroxyapatite 
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Porous orbital implants spread worldwide after the introduction of modern HA orbital implants, that 

are not based on treated bone deriving from animal sources. HA formally belongs to the class of 

calcium orthophosphates and, especially in form of coralline or synthetic HA, has been widely used 

since more than 50 years in orthopaedics and dentistry for bone repair thanks to its chemical and 

compositional similarity to biological apatite of hard tissues; interested reader can find 

comprehensive pictures about the features and use of HA and calcium phosphates in medicine in a 

series of reviews published by Dorozhkin [86-88]. 

Perry experimentally introduced the coralline porous HA sphere (Bio-Eye
®

 Orbital Implants or 

Integrated Orbital Implants, Inc., San Diego, CA, USA) (Fig. 3a) in the mid 1980s [89] and since 

the early 1990s it has been commonly adopted in the clinical practice, eventually becoming the 

most frequently used implant after primary enucleation [90]. Due to this reason, porous HA 

implants have been widely studied and a lot of retrospective reviews on patients’ outcomes are 

available in the literature [23]. The interconnected porous structure of the HA implant allowed host 

fibrovascular in-growth, which potentially reduces the risk of migration, extrusion and infection 

[91]. Apart from discouraging bacterial colonization of implant surface, vascularization also allows 

the treatment of ocular infection by antibiotic therapy. Extraocular muscles can be securely attached 

to the HA implant, which in turn leads to improved implant motility [89,92]. By drilling into the 

frontal region of the HA implant and placing a peg, that can be subsequently coupled to the 

posterior surface of the ocular prosthesis, a wide range of artificial eye movements (especially along 

the horizontal axis) as well as fine darting eye movements (commonly seen during close 

conversational speech) can be achieved, thereby imparting a more life-like quality to the artificial 

eye. 

Besides the above-mentioned advantages, however, coralline porous HA implants had – and still 

have – two peculiar drawbacks. The first problem is ecological, as the manufacture of such an 

implant involves damage to sea life ecosystems due to the harvesting of natural corals; the second 

issue is related to the significant raise of the costs associated with enucleation, evisceration and 
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more generally ophthalmoplastic surgical procedures. In fact, the expenses associated to the 

placement of coralline HA implant include the intrinsic cost of the implant (600 € or even more, 

whereas traditional silicone or PMMA spherical implants range within 20-50 €) – which is often the 

most significant cost –, the need for a wrapping material, the assessment of implant vascularization 

with a confirmatory magnetic resonance imaging (MRI) study and, even if optionally, a secondary 

drilling procedure for peg placement with the consequent modification of the ocular prosthesis. 

Mainly in order to reduce the cost of the device, other forms of HA have been proposed as suitable 

and less expensive materials for implant fabrication. Synthetic HA implants (FCI, Issy-Les-

Moulineaux, Cedex, France) [93], that are currently in their third generation (FCI3), have an 

identical chemical composition to that of the Bio-Eye
®

, although scanning electron microscopy 

(SEM) investigations revealed some architectural differences (lower porosity: 50 vs. 65 vol.%; 

decreased pore uniformity and interconnectivity; presence of blind pouches and closed pores) [94]. 

Central implant fibrovascularization in a rabbit model appeared to occur in both Bio-Eye
®

 and FCI3 

implants [95]. FCI3 implant has gained increasing popularity over the past 10 years especially as it 

is significantly less expensive than the Bio-Eye
®

 (approximately 450 € vs. 600 €) and easier to drill 

for peg placement. 

Lower-cost versions of these materials have been developed and are currently in use around the 

world; however, they exhibit some drawbacks that strongly limit the (economic) advantages over 

the other available models. The Chinese HA implant (H+Y Comprehensive Technologies, 

Philadelphia, USA) has been reported to contain some CaO impurities that, after hydration in host 

tissues, may form Ca(OH)2, which is caustic [96,97]. The Brazilian HA implant, currently available 

in Brazil only, has higher weight, lower porosity and lower pore interconnectivity than Bio-Eye
®

 

and FCI3 implants, with consequent enhanced risk of implant migration and limited 

fibrovascularization [98]. Other types of synthetic HA implants (75 vol.% porosity, pore sizes 

ranging from 100 to 300 µm) were also recently used in India leading to patient’s good outcomes 

[99].  
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Despite the relatively good overall biocompatibility profile, HA generally exhibits certain 

drawbacks for use in orbital implants. Being a porous ceramic, its brittle nature precludes suturing 

the extraocular muscles directly to the implant [8,9]. There are convincing evidences that the rough 

surface of HA implants may adversely impact on biocompatibility, contributing to the development 

of late exposure due to the abrasion of the relatively thin conjunctiva and Tenon’s capsule as the 

implant moves. Therefore, it is generally recommended that HA implants are placed within a 

wrapping material (Fig. 3d) before introduction into the orbit [100-102]. It was shown that the 

majority of exposed HA implants can be successfully treated by using patch grafts of different 

origin (e.g. scleral graft, dermis graft, oral mucosa graft) without the need for implant removal 

[103-105]. In case of orbital implant infections, administration of systemic antibiotics and topical 

eye drops can solve the problem, but if no symptoms improvement is noticed, implant removal 

should be considered [106].   

Other reported complications include conjunctival thinning (followed or not by exposure), socket 

discharge, pyogenic granuloma formation, mid-term to chronic infection of the implant and 

persistent pain or discomfort [107-111]. In order to solve the possible problem of peg extrusion 

from drilled HA implants due to hole occlusion, Lew et al. proposed a 0.5 mg ml
-1

 mitomycin-C 

application to the drill hole and obtained good results in an albino rabbit model [112]. 

The use of porous HA implants in pediatric population has been alternatively advocated and 

castigated – implant exchange should be necessary later since the patient is growing, but its removal 

is difficult due to fibrovascularization – and this controversy still lingers on [113,114]; at present, 

non-porous implants seem to remain the preferable choice in children for the majority of surgeons 

[23]. In summary, porous HA implants still remain the most commonly used in anophtahlmic 

surgery and their advantages and suitability, in regard to considering the patient’s overall life 

quality, have been recently underscored by Wang et al. in an interesting paper [115]. However, in 

the search for an “ideal” porous orbital implants with a reduced complication profile and diminished 
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surgical and postoperative costs, alternative materials have been also explored over the last two 

decades. 

 

3.5.4. Polyethylene 

 

Synthetic porous PE implants (Medpor
®

, Porex Surgical Inc., Newnan, USA) were introduced in 

the late 1980s for use in the orbit and have been widely accepted as an alternative to the Bio-Eye
®

 

HA [116,117]. Furthermore, since then Medpor
®

 thin sheets have been also used for the surgical 

repair of orbital floor fractures [5].  

In an animal model study, Goldberg et al. suggested that porous PE induces less inflammation and 

fibrosis than HA [118]; similar conclusions were more recently reported by Jordan et al. [119]. 

SEM investigations showed that porous PE implants exhibit a smoother surface than coralline HA 

(Bio-Eye
®

), synthetic HA (FCI3) and even aluminum oxide implants [119,120]. PE implants are 

also malleable, which permits easier implantation and potentially less irritation of the overlying 

conjunctiva following placement in comparison to porous HA spheres. On the other hand, the rate 

of vascularization of porous PE appears to be slower than coralline HA (Bio-Eye
®

), synthetic HA 

(FCI3) and aluminum oxide implants [119] as well as dependent on the pore size: PE implants with 

400-µm pore size vascularize more rapidly than those having 200-µm pore size [118,121]. In a 

recent work by Choi et al., gadolinium-enhanced MRI showed that the rate of fibrovascularization 

was similar for enucleated and eviscerated eyes in rabbits [122]. 

Medpor
®

 implants may be used with or without a wrapping material and the extraocular muscles 

can be sutured directly onto the implant, although most surgeons find this difficult without 

predrilled holes [123]. In a minipig model, acellular dermis wraps were observed to support 

fibrovascularization of porous PE (and HA) orbital implants without inducing significant 

inflammation and persisted in situ for at least 12 weeks after surgery [120]. A recent retrospective 
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report by Blaydon et al. suggested similar exposure rates for wrapped and unwrapped porous PE 

implants (< 5%) [117]. 

An unusual complication following implant exposure was reported by Robberecht et al., who 

described a patient with lost eyelashes perpendicular to the extruding part of a porous PE implant 

due to their entrapment within the implant pores [124]. Infections of porous PE implants are 

generally rare [125]. Chuo et al. carefully reviewed the histopathologic features of 18 explanted 

porous PE orbital implants and confirmed that anterior exposure is a risk factor allowing bacterial 

colonization; furthermore, poor tissue in-growth may limit the penetration of topical or systemic 

antibiotic therapy, leading to the need for implant removal [126]. 

Comparative studies about the postoperative problems associated to HA and PE implants did not 

provide yet definite conclusions. In 2008 Sadiq et al. analyzed 2 groups of 26 patients receiving a 

HA or porous PE implant, respectively, and reported that the complication rates were identical 

between the groups; only, the implant motility was better in the PE group [127]. On the contrary, 

Ramey et al. found that porous PE and aluminum oxide implants were associated with higher 

exposure rates and higher overall complication rates compared to HA implants [128]. It is worth 

mentioning that the type of material is certainly a key aspect but, in clinical practice, the choice of 

orbital implant is often mainly governed by other factors such as surgeon experience, ease of use 

and cost. Porous PE implants were also used in pediatric population with satisfactory outcomes and 

relatively low complications rates [129, 130]. Some authors have recently suggested that the risk of 

exposure can be prevented if the porous PE implant is used in combination with a free orbital fat 

graft over its anterior surface [131,132]; however, Kim et al. observed in a rabbit model that the fat 

patch on Medpor
®

 implants was gradually resorbed and the fat-occupied volume was not 

maintained [133]. 

The first generation of spherical porous PE implants had a rough surface like HA – probably this 

was the reason why a high exposure rate (about 22%) was reported in the early studies [134] – and 

quite homogeneous pore distribution [123]; since then, implants with gradients of porosity have 
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been introduced. For instance, the smooth surface tunnel sphere (SST
TM

, Porex Surgical Inc., 

Newnan, USA) has suture tunnels for easier muscle attachment and exhibits a non-porous anterior 

surface to prevent abrasion of the overlying tissue while retains a larger pore size posteriorly to 

facilitate fibrovascular in-growth [135]. Other currently available Medpor
®

 implants (Fig. 3b) 

include some variations of the standard porous sphere (e.g. egg-shaped implant developed for easier 

implantation), conical implants with a flat anterior surface and an upward projection to reduce 

superior sulcus defect [136] and the recent quasi-integrated “quad” PE motility implant (Medpor 

Quad
TM

 Motility Implant, Porex Surgical Inc., Newnan, USA), which is similar in design 

philosophy, shape and method of muscle attachment (imbrication) to the Iowa and Universal 

implants (see the section 3.6). A standard spherical Medpor
®

 implant costs approximately 150 € 

less than the Bio-Eye
®

 porous HA sphere; new-generation PE implants having complex shape and 

advanced functionalities are more expensive proportionally. 

By looking at the future of PE orbital implants, it is instructive to mention the recent work by 

Kozakiewicz et al. [137] who fabricated by a CAD-CAM approach and implanted in 3 patients 

ultra-high molecular weight PE implants for orbital reconstructions. On the basis of CT scanning, 

the authors prepared a virtual model of both orbits (injured and uninjured); the two resulting 

surfaces were then overlapped and the outer surface, taken from the injured orbit, was used to 

design the external surface of the implant whereas the inner profile, taken from the uninjured orbit, 

was followed for the internal surface of the implant. This new, advanced approach could be applied 

in the future also for designing and manufacturing orbital implants closely mimicking the original 

shape and size of the anophtalmic socket; issues to be considered concerns the long time required to 

design and manufacture implants at the pre-operative stage and, accordingly, their high cost. 

 

3.5.5. Polytetrafluoroethylene 
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The use of expanded (porous) polytetrafluoroethylene (ePTFE or Gore-Tex; W. L. Gore & 

Associates, Flagstaff, USA) spheres as orbital implants was investigated by Dei Cas et al. in the late 

1990s [138]. The left eyes of 6 New Zealand white rabbits were enucleated and replaced with 

spherical Gore-Tex implants. After a 6-week follow-up, no rabbits developed a postoperative 

infection and no cases of exposure or extrusion were noted; there was also evidence of 

inflammatory infiltration and fibrovascular in-growth into each implant to a maximum penetration 

depth of 500 µm. Histopathologic analyses revealed varying degrees of acute and chronic 

inflammation surrounding each implant; probably, this is the reason why no other studies on Gore-

Tex as an orbital implant biomaterial were carried out in the following year.  

It is instructive to mention that, in the ophthalmic field, the problems related to ePTFE-induced 

inflammatory reactions were also found by Mourtemousque and associates [139,140], who 

investigated its use as a scleral buckling biomaterial for the treatment of retinal detachment; 

stiffness mismatch with orbital tissues is probably one of the reasons why these postoperative 

complications occurred.  

 

3.5.6. Aluminum oxide 

 

Aluminum oxide (Al2O3), commonly termed alumina, has been used for decades in orthopaedics 

thanks to its attractive mechanical properties (high hardness and compressive strength, excellent 

resistance to wear), biocompatibility and bio-inertness. For instance, the introduction of alumina 

and, later, alumina-based ceramic composites for manufacturing prosthetic femur heads had a 

significant impact in the field of hip joint replacement, leading to an improvement of prosthesis 

duration and performance as well as of patient’s life quality [141]. Since the late 1990s, alumina 

was also proposed in a porous form to fabricate orbital implants to be used in ophthalmoplasty; this 

type of device was approved by US Food and Drug Administration in April 2000 and has been 

marketed under the commercial name of “Bioceramic implant” (Fig. 3c). 
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The first in vivo study was reported in 1998 by Morel et al. [142], who evaluated the clinical 

tolerance of porous alumina implants implanted in 16 eviscerated rabbits; only one infection was 

observed and there was no conjunctival breakdown. Fibrovascular in-growth occurred as soon as 15 

days postoperatively and was full at 1 month. These promising results was confirmed two years 

later by Jordan et al. [143], who compared the performance of alumina and HA implants in rabbits 

again. The authors reported that the new alumina implant was as biocompatible as HA, less 

expensive and its manufacturing did not involve any damage to marine life ecosystems as may 

occur in the harvesting of coral for coralline HA devices. 

A more exhaustive comparison about the proliferation of orbital fibroblasts in vitro after exposure 

to Bioceramic implant and other three implants made of different materials (coralline HA, synthetic 

HA, porous PE) was documented by Mawn et al. [144], who assessed cell growth with 

immunocytochemical analysis using bromodeoxyuridine, a thymidine analogue. The proliferation 

of fibroblasts differed on the various studied implants and, specifically, was maximum on the 

Bioceramic implant. Furthermore, the fibroblasts growing on the Bio-Eye
®

, synthetic HA and 

Medpor
®

 implants all had debris associated with them, whereas the alumina implant was free of 

these debris, which was mainly attributed to its finely crystalline microstructure. 

Promising results were also published in 2002 by Akichica et al. [145], who implanted pieces of 

alumina with 75 vol.% porosity in the eye sockets of albino rabbits. There were no signs of implant 

rejection or prolapse of the implanted material over a 8-week follow-up; at 4 weeks after 

implantation, fibroblast proliferation and vascular invasion were noted, followed by tissue in-

growth by the 8
th

 week. The first outcomes of Bioceramic implant in humans (107 patients over a 3-

year follow-up) were reported by Jordan et al. in 2003 [146]. Postoperative problems encountered 

with its use were similar to those observed with coralline HA orbital implants (Bio-eye
®

) but 

appeared to occur rarely; furthermore, the incidence of exposure associated with the Bioceramic 

implant was less than that reported for the HA ones, and infection did not occur in any patient. In a 

following study Jordan and coworkers showed that alumina implant infections are generally rare 
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[147] and, after reviewing a clinical case series of 419 patients who received a Bioceramic orbital 

implant, estimated an implant exposure rate of 9.1% with the majority of the exposures occurring 

after a 3-month follow-up period [148]. Wang et al. [149] reported that exposures of Bioceramic 

implants occurred after long-term follow-up and were preferentially associated with evisceration, 

pegging and prior ocular surgeries, whereas no late side effects were found in enucleated eyes; the 

authors also emphasized that implant wrapping technique can prevent exposure. 

In a recent study, Ramey et al. [128] compared the complication rates of HA, porous PE and 

polyglactin-wrapped alumina implants and, interestingly, found that porous PE and alumina devices 

were associated with higher exposure rates and higher overall complication rates compared to HA 

implants; these results seem to contradict those reported by the majority of authors [147-149]. In 

case of alumina implant exposure, some strategies can be attempted to avoid removal of the implant 

and secondary surgery; for instance, Wang and Lai [150] successfully repaired an exposed 

Bioceramic implant after 4 months after surgery by a retroauricular myoperiosteal graft. This type 

of autologous graft contained myofibrovascularized tissue, provided durable and vascularized 

coverage of exposed implant and only required a nearby harvesting site; the exposure completely 

resolved without recurrence after 2 years of follow-up. Zigiotti et al. [151] recently described a new 

surgical procedure to reduce postoperative complication following alumina implant insertion in 

enucleated eyes. The authors initially performed a standard enucleation on 19 patients; then, they 

covered the Bioceramic implant only partially with the patient’s sclera harvested from the 

enucleated eye, and the implant was finally inserted into the posterior Tenon’s space with the scleral 

covering looking at front. There were no cases of implant extrusion over a 16-month follow-up 

period and the orbital volume was well reintegrated with good cosmetic result after final prosthetic 

fitting (a good motility was also documented). 

 

3.5.7. HA-coated aluminium oxide implants 
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The HA/Al2O3 composite porous orbital implant, developed by a group of Korean researchers in the 

early 2000s, deserves a special mention. A synthetic HA-coated porous alumina implant was 

fabricated by the polymeric sponge replication method in order to overcome the limitations 

associated to coralline HA implants; the porous Al2O3 skeleton acted as a load-bearing member, 

whereas the 20-µm thick HA coating layer was advocated to provide biocompatibility and long-

term stability in the eye [152]. Seong et al. [153] evaluated the morphologic changes of 12-mm 

sized HA/Al2O3 devices with different pore sizes (300, 500 and 800 µm) after implantation in 18 

eviscerated rabbits. Fibrovascularization was noted at the implant periphery in all groups after 2 

postoperative weeks and also at the center of the implant after 4 weeks. Fibrovascularization was 

most predominant in the group of implants having 500-µm pores compared to the other two groups. 

In 2002 Jordan et al. [154] reported a comparative study on the implantation of experimental 

alumina implants coated with HA or calcium metaphosphate in rabbits. Both types of implant had 

multiple interconnected pores and, in comparison to the uncoated one, the coatings increased the 

size of the trabeculae from 150 to 300 µm; therefore, the pores appeared smaller but still ranged in 

the 300-750 µm range. There was no clinical difference in the socket response between coated or 

uncoated implants and, histopathologically, fibrovascularization occurred uniformly throughout 

each implant at 4, 8 and 12 weeks after implantation. 

Three years later Chung et al. [155] investigated the fibrovascular in-growth and fibrovascular 

tissue maturation of HA-coated porous alumina implants in comparison with HA sphere in 

enucleated rabbits over a 24-month follow-up and achieved similar conclusions. There was no 

significant difference between the two groups, except for the 3
th

 to 4
th

 week postoperative period, 

during which the composite sphere showed a significantly lower grade of fibrovascular tissue 

maturation.  

To the best of the authors’ knowledge, no other studies about HA-coated implants have been 

reported in the literature. Although these implants showed similar appearance of 

fibrovascularization, low price and easy manufacture compared to the coralline HA implants (Bio-
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eye
®

), probably the absence of a clear advantage from a clinical viewpoint (HA coatings did not 

appear to facilitate or inhibit fibrovascular in-growth) and the presence of significant amounts of 

CaO as a contaminant (related to the coating manufacture) [154] led the researchers to abandon 

further investigations. As a suggestion for future research, long-term studies could be useful to more 

clearly determine whether the HA coating actually plays a significant role in the acceptance and 

retention of the implant.  

 

3.5.8. Polyethylene/bioglass composite implants 

 

As first demonstrated by Hench et al. in the early 1970s [156], bioactive glasses (BGs) exhibit the 

unique properties to bond to bone forming a stable interface and to stimulate bone tissue 

regeneration. BGs are recognized as ideal materials for bone substitution with superior 

performances with respect to HA or other calcium-phosphate bioceramics, have been extensively 

investigated over the years in form of dense implants, fine particulate and 3-D porous scaffolds by 

several research groups worldwide [157-163] and some BG-based products are currently available 

on the market [164]. To date, the application of BGs to orbital implants fabrication is quite limited 

and the relevant reports are still scarce [165,166]. 

In 2006, Choi et al. [165] first investigated the in vivo suitability of BG for the manufacture of 

orbital implants; specifically, the authors studied the effects of BG particulate on the fibrovascular 

in-growth that occurred in porous PE orbital implants. Forty-eight rabbits were divided into 4 

equally-sized groups, according to the different surgical techniques and implanted materials used: 

groups 1 and 2 were implanted with porous PE after enucleation or evisceration, respectively 

(reference groups), whereas groups 3 and 4 received porous PE/BG composite implants after 

enucleation or evisceration, respectively. Histological examinations revealed that there was no 

statistically significant difference with regard to fibrovascular in-growth among the 4 groups after 1, 

2, 4 and 8 weeks of postoperative follow-up. Therefore, the authors concluded that inclusion of BG 
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particulate did not significantly promote the rate of fibrovascular in-growth into porous PE orbital 

implants. 

In 2011, Ma et al. [166] reviewed the clinical outcomes of 170 patients after placement of porous 

PE/BG composite orbital implants for primary enucleation or secondary implantation. The majority 

of patients did not experienced any complications (161 cases) and had comfortable socket 

characterized by good implant motility, without conjunctival thinning or inflammation; excessive 

discharge and implant exposure occurred in 2 and 7 cases, respectively. All exposures were 

successfully treated with antibiotics or additional surgery; secondary surgeries were required by 

some patients but not due to implant-related complications (ectropion repair in 5 patients and 

volume augmentation in 3 patients). These early results suggest that the porous PE/BG composite 

orbital implant may be a useful implant for orbital reconstruction, but comparative studies are 

necessary to definitely estimate their performance with respect to the other available – and routinely 

used – implants. 

 

3.5.9. Silicone 

 

In a very recent study, Son et al. [167] compared the extent of fibrovascular in-growth of 

experimental porous silicone orbital implants with that of commercially-available porous PE 

(Medpor
®

). Both types of spherical implants were implanted in the left socket of 20 New Zealand 

white rabbits after enucleation. At 4 weeks after surgery, porous PE implants showed deeper 

fibrovascular in-growth than porous silicone spheres (42.4% vs. 34.2% of the radius of the 

implants) and a similar trend was also observed after 8 weeks, although the difference was more 

moderate (71.6% vs. 63.6%). This preliminary report demonstrates that porous silicone orbital 

implants exhibit fibrovascular in-growth comparable to that of commercial Medpor
®

 implants and 

might be therefore low-cost, effective alternatives to current porous implants; long-term studies on a 
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larger number of subjects are needed to clearly determine the suitability of porous silicone as an 

orbital implant as well as the advantages/drawbacks ratio. 

 

3.6. Porous quasi-integrated implants 

 

The advantages of porous and quasi-integrated implants, in terms of fibrovascular in-growth and 

motility, respectively, was merged for the first time by Girard and co-workers [168,169] who 

described a porous quasi-integrated enucleation implant made of Proplast II (Vitek, Inc., Houston, 

TX). It differed from Proplast implant I in its composition, being constituted by Teflon and 

alumina, and in having a siliconized non-porous posterior surface to allow smoother movements, 

together with a porous anterior portion to facilitate fibrovascular in-growth. Proplast implant II was 

completely buried maintaining a nipple on its anterior surface that could integrate with a depression 

on the posterior surface of the ocular prosthesis. Several Proplast implants II required subsequent 

removal because of poor motility and, over histopathological examination, were found to be 

completely avascular and surrounded by a pseudocapsule [170]. Use of Proplast II has been still 

reported later as a subperiosteal implant for the correction of anophthalmic enophthalmos in 

patients having poor orbital volume replacement despite the prior insertion of an adequately-sized 

spherical implant within the orbital socket [171]. 

In the same years, Guthoff and associates [172] developed a composite implant constituted by a 

semispherical anterior part made of synthetic porous HA to guarantee tissue integration joined to a 

posterior part that was manufactured using silicone rubber; the horizontal and vertical eye muscles 

were sutured cross-wise in front of the implant to ensure better stability and motility. Overall 

implant biocompatibility was excellent and the transmission of the motility to the prosthesis was 

moderate to good [173,174]. To date this implant is commercialized and considered a good option 

especially in Europe; however, its diffusion is quite limited as standard porous implants seem to be 

generally preferred by surgeons.   
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The more recent evolution of this type of devices is represented by the Medpor Quad
TM

 implant, 

that is conceptually similar to the Iowa implant but fully made of porous PE instead of solid 

PMMA. A preliminary study on 24 patients showed no cases of the “quad” implant extrusion or 

migration; only, 2 patients required deepening of their inferior fornix to accommodate the increased 

motility of their prosthesis [175]. In a following study on 10 enucleated pediatric patients, one case 

of implant exposure was noted with no other significant complications; good motility of the ocular 

prosthesis was reported in all cases [176]. 

 

3.7. Comparison of the present strategies and crucial issues 

 

After presenting in the previous sections an overview of the different types of orbital implants that 

are currently available in the marketplace or have been recently proposed for experimental studies, 

some crucial questions will reasonably raise: first of all, is there a class of orbital implants 

univocally superior to the other ones? And then, more specifically, what is the role of surface 

chemistry and topography of the implant? Are the porous implants truly superior to the other orbital 

implants, including the last generation of PMMA quasi-integrated ones (the Universal implant)? 

Are the clinical outcomes of wrapped implants superior to those of unwrapped ones? Should the 

pegging procedure be clearly recommended to improve the ocular prosthesis motility?   

On the basis of the existing literature, it is almost impossible to give definite responses to this 

complex set of questions; nonetheless, some indications can be presented, together with a series of 

challenges for the future. It is worth underlining once more that, in general, the choice of an 

“optimal” orbital implant is influenced by many factors, including the specific characteristics of the 

injury, cost, the patient’s clinical history and age and the experience/opinion of the surgeon. For the 

reader’s benefit, it is instructive to report part of the results of a recent questionnaire addressed to 

UK ophthalmologists to evaluate current clinical practice in the management of the anophthalmic 

socket [177]. The surgeons’ responses indicated that 55% used porous orbital implants (PE, HA or 
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alumina) as their first choice and 42% used PMMA quasi-integrated implants; most porous implants 

were spherical (diameter 18-20 mm) and only a minority were egg-shaped or conical; 57% wrapped 

the implant after enucleation using salvaged autogenous sclera (20%), donor sclera (28%) and 

synthetic Vicryl or Mersilene mesh (42%); only 7% placed motility pegs in selected cases, usually 

as a secondary procedure; 14% of respondents reported implant exposure for each type of procedure 

and extrusion was reported by 4% after enucleation and 3% after evisceration. In summary, this 

survey highlights that most UK surgeons use porous orbital implants with a synthetic wrap after 

enucleation and only few perform motility pegging. The validity of these results may be reasonably 

extended to the whole European context; however, in other areas of the world, different options 

may be preferred. For instance, as declared by some local surgeons [37], in Pakistan it is quicker 

and less expensive to use the Sahaf quasi-integrated PMMA implant (produced on site) than to 

import porous orbital devices from abroad. 

 

3.7.1. Material features 

 

Looking at the chemical, physical and structural characteristics of orbital implants, comparative 

studies on such topics are actually quite rare in the literature. It has been recognized that adequate 

fibrovascularization is vital for achieving a long-term success of a porous implant: chemical 

composition, microstructure and mechanical features are all factors playing a role, but there is a 

high variation in these characteristics among the available materials. Perhaps the most 

comprehensive study was carried out by Mawn et al. [94], who compared the microstructural and 

architectural features (assessed by SEM) of six porous orbital implants made of HA (coralline Bio-

Eye
®

, synthetic HA (FCI) and Chinese HA implant), porous PE (Medpor
®

; two implants with 

nominal pore size of 150 and 400 µm were examined) and alumina (Bioceramic implant). The Bio-

Eye
®

 had multiple interconnected pores in the 300-700 µm range; coarse-appearing 2-µm sized HA 

crystals were also observed. The FCI implant showed similar interconnectivity of the pores but with 
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fewer pores ranging within 300-500 µm; hexagonal HA crystals (size 1-5 µm) were detected. The 

Chinese HA implant had multiple interconnected pores ranging from 200 to 700 µm in size; the HA 

crystals were a bit smaller and more granular than those of Bio-Eye
®

. The 150-µm pore size 

Medpor
®

 implant had irregularly-shaped pores in the actual 100-500 µm range, whereas the 400-µm 

pore size implant had channel-like pores actually ranging from 125 to 1000 µm; in both cases the 

surface showed a woven texture of PE. In the alumina implant the pores (size about 500 µm) were 

well interconnected and evenly distributed inside the material volume; the material showed a 

cobblestone-like pattern of crystals ranging from 4 to 5 µm. Therefore, there were marked 

variations of crystal size/shape and surface topography of porous implant biomaterials, and the 

authors suggested that such variations could influence the inflammatory response after implantation 

and hence the overall biocompatibility. From the viewpoint of micro-scale features, crystal size, for 

example, could determine the material-induced phagocytic response: biomaterials with crystal size 

above 3 µm showed greater tissue reaction, which was probably due to increased phagocytic 

activation by crystals of this size. Moreover, smooth HA crystals have been associated with less 

inflammation than sharp-edged crystals [178]. 

In a recent study, Choi et al. [179] examined the surface of non-porous PMMA, porous alumina and 

porous PE intact implants by atomic force microscopy (AFM). The surface of the non-porous 

PMMA implant showed nodule nanostructures in the 160-260 nm range, the alumina implant 

exhibited a porous structure with crystals ranging from 400 nm to 1.1 µm and the porous PE 

implant had the highest roughness with severe surface irregularities. The authors suggested that the 

surface roughness of orbital implants might be associated with the rate of complications and cell 

adhesion. 

From this viewpoint, an important issue to be considered is the effect of micro-/nano-scale 

topography on bacteria, since cells have to compete with bacteria in many environments. In a 

fascinating scenario, surface topography could be purposely designed to encourage cells 

colonization while limiting bacterial adhesion [180]. The currently-available evidences indicate that 
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the relationship between the microstructural features and the clinical performance of orbital 

implants deserves future investigation, which could lead to develop novel design and manufacturing 

strategies. Looking at the macro-scale, pore size and interconnectivity can also influence the 

success of an implant; these features have been shown to be key determinants of tissue in-growth 

into 3-D tissue engineering scaffolds [181]. Rubin et al. [121] studied the vascularization in porous 

HA and PE orbital implants with small and large pore size and suggested that pore size should be 

greater than 150 µm and preferably around 400 µm in order to encourage favourable tissue in-

growth. Another issue deserving investigation concerns the material surface chemistry and response 

to biological fluids through ion-exchange mechanisms, that are expected to play a key role for 

porous implants fibrovascularization; the challenge of the chemical design of orbital implant 

biomaterials, for instance by using BGs [165,166], will be discussed in the section 5.2.1.    

A final interesting issue, which has been almost totally neglected in existing reports, is related to the 

mechanical properties of the implants that, especially if made of ceramic materials (HA, alumina), 

are remarkably stiffer than the original ocular globe as well as the surrounding orbital tissues. The 

use of stiff biomaterials carries some advantages from an operative viewpoint – e.g. the surgeon can 

easily handle and place the implant within the orbit with a great control over its position – but 

compliance mismatch between implant and overlying conjunctiva/soft tissues, in combination with 

repetitive movement of the implant by the extraocular muscles, might contribute to inflammation 

and soft tissue necrosis leading to implant exposure. Therefore, future research directions towards 

an ideal orbital implant might consider the use of more compliant biomaterials; potential options 

might be adapted, for instance, from the field of experimental vitreous substitutes, such as some 

selected hydrogels – biocompatible, porous and able to absorb water for having similar physical 

properties to living tissues [182] – or the capsular artificial vitreous, constituted by a 10-µm thick 

capsule made of a silicone rubber elastomer with a silicone tube valve system filled with 

physiological solution [183]. 
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3.7.2. Motility 

 

From a theoretical viewpoint, one of the major advantages of porous implants (e.g. porous HA, PE, 

alumina) in comparison to the non-integrated ones (e.g. silicone and PMMA sphere) should be the 

improved motility, even without the placement of a peg due to implant fibrovascularization. 

However, to date, no objective difference has been documented in terms of motility associated to 

porous or non-porous spherical implants. In a study on 55 patients, Colen et al. reported no 

statistical difference between the motility of unpegged porous HA and non-integrated PMMA or 

silicone spherical orbital implants (both types were wrapped within a scleral sheet) [184]. 

Analogous conclusions were formulated by Custer et al. in another report involving 107 patients 

receiving sclera-wrapped porous HA or non-integrated spherical implants [185].  

It has been demonstrated that placement of a peg in porous implants may improve horizontal 

excursions [186] but this procedure is associated with some complications including chronic 

discharge, pyogenic granuloma formation, peg extrusion and audible “click” [96] – this is the 

reason why many surgeons and patients generally prefer to avoid peg placement [177]. Peg systems 

are generally designed for peg placement by additional surgery once fibrovascularization of the 

implant has been completed, since drilling into an avascular area may predispose the implant to 

infection [187]; assessment of the extent of implant vascularization can be performed by 

gadolinium-enhanced MRI [122]. Fibrovascular in-growth may occur at varying rates in different 

patients, but implant drilling and peg placement is generally deferred until 5 to 6 months after 

implant insertion. Several titanium peg systems are currently available for use with porous orbital 

implants: for instance, the Medpor
®

 Motility Coupling Post (MCP) (Porex Surgical, USA) is a 

titanium screw that can be screwed directly into porous PE implants [188]. In summary, implant 

pegging seems to improve motility at the expense of a second procedure with related imaging 

studies, postoperative diseases and further costs. In order to overcome these drawbacks, some 

surgeons have experimented the peg insertion at the time of orbital implant placement (Fig. 3e), but 
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this practice still remains controversial [189-192]. Pegging has been sometimes experimented in 

non-integrated silicone spheres with good results [27]. 

A quasi-integrated implant, such as the Universal Implant, can be a valuable alternative to porous 

devices if pegging is not under consideration. From a theoretical viewpoint, the mounded surface of 

quasi-integrated implants should reasonably offer improved motility over a non-integrated sphere as 

a result of the partial coupling that occurs between the mounds on the implant and the posterior 

surface of the ocular prosthesis; however, the report by Smit et al. [193] showed no significant 

difference in prosthesis motility between Allen and sclera-wrapped PMMA baseball primary 

implants (18-mm sphere). 

As far as the authors are aware, to date no motility comparison between quasi-integrated and porous 

orbital implants have been reported in the literature. From these relatively few data from the 

existing literature, it is evident that systematic comparative studies are still needed to draw definite 

conclusions about the superiority of a class of orbital implants over the other ones, at least as far as 

motility is concerned. The quasi-integrated design in a porous form, such as the Medpor Quad
TM

 

Motility Implant, might at least partially overcome the drawbacks associated to pegging (costs and 

postoperative complications). 

 

3.7.3. Exposure and clinical outcomes 

 

Although comparisons are difficult due to different implant sizes, surgical techniques and follow-up 

periods, there are convincing evidences that the exposures occurring in porous implants are more 

amenable to conservative management without a second operative procedure; on the contrary, the 

exposures in non-integrated and quasi-integrated implants, unless very limited, almost certainly 

require implant removal [15,194]. Implant wrapping is useful to decrease the risk of exposure, since 

the smooth wrapping material acts as a barrier between the overlying soft tissue and the micro-

/macro-rough surface of the implant, which is particularly helpful in the case of HA implants having 



41 

 

a rougher surface than other implants [91,100]. It has been demonstrated that the rough surface of 

unwrapped HA implants appears to be associated with a higher exposure rate when compared to 

non-integrated implants, and also sclera-covered HA implants seem to have higher late exposure 

rates than sclera-covered non-porous silicone implants [91,100] – but the former ones can be more 

successfully treated. Exposure rates for porous PE implants wrapped in absorbable material were 

found similar to those of unwrapped porous PE [117].  

From a general viewpoint, implant wrapping carries some additional advantages as it enables easy 

attachment of extraocular muscles for better prosthesis motility, entails a smooth external surface 

thus making the process of implant insertion easier and helps volume augmentation by adding 1 to 

1.5 mm of material to the implant diameter. Human donor sclera is the most commonly used 

wrapping material, but specially-processed bovine pericardium, human fascia lata and acellular 

dermis are also commercially available. Especially in the past, allografts and xenografts were 

associated to the risk of disease transmission from donor to patient, such as human 

immunodeficiency virus (HIV), hepatitis B or C and prions (Creutzfeldt-Jakob disease). Currently, 

at least in Europe and USA, extensive legislation exists and the donor sources are carefully checked 

before a graft is released for clinical use. Autologous sclera can also be used if enucleation is 

performed but its use must be avoided in case of ocular tumour. Alternative autografts include 

temporalis fascia, fascia lata, rectus abdominus sheath and posterior auricular muscle complex 

grafts, but the use of these tissues requires a second operative site, extra-surgery time and carries the 

risk of morbidity at the harvesting site; therefore, synthetic wrapping materials such as polyglactin-

910 mesh are often preferred [8,9]. If non-absorbable wrapping material is used, the surgeon should 

consider the creation of holes through the wrap to allow a good vascularization of the porous 

implant. 

In summary, it appears that the incidence of implant extrusion and socket infection is lower with 

porous implants; this supports the theoretical considerations that vascular in-growth helps to anchor 

the implant and permits immune surveillance. In case of implant exposure, implant savage by the 
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placement of frontal patches represents a successful approach [105]. Therefore, from the viewpoint 

of exposure-related complications porous implants seem to be preferable to other implant types, at 

least when surgery is performed in adults. When eye removal is performed in infancy, implant 

exchange may be necessary to stimulate adequate orbital growth; therefore, the use of porous 

implants in children is controversial, since implant exchange is more difficult once a porous implant 

has been vascularized.  

By looking at the commercially-available porous orbital implants, it is impossible to univocally 

claim one porous material as clearly superior to the others, even though alumina, exhibiting 

excellent biocompatibility and favorable microstructural features [94], seems a promising candidate. 

The search for “ideal” orbital implant design and materials continues to progress due to significant 

improvements in analytical techniques for materials/implants analysis and patient monitoring. A 

robust comparison of currently-available orbital implants, as well as the clear detection of what 

features might be selectively improved, is difficult due to the relative scarcity of large randomized 

controlled trials in this area, the significant variations in patient populations, the differences in 

surgical technique, the wrapping option and the length of follow-up, as complications may not be 

apparent until 5 or more years post-operatively [44]. The results of well-designed, longer-term 

studies on the orbital implants performance could contribute to clarify some of these issues in the 

next years. 

 

4. Ocular prostheses 

 

Over the centuries, different models of ocular prostheses were tested and described, including metal 

(usually gold) shells with the iris painted in coloured enamel and thin, fragile glass shells that often 

had poor fit and little comfort [16]. Generally, all these prostheses were not supported by an orbital 

implant placed in the socket (there was no volume replacement), which was clearly reported by 

Mules only in 1885 [2]. At the end of 19
th

 century, a thick but hollow glass artificial eye (the so-
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called Snellen reform eye), that better compensated for volume loss after enucleation and reduced 

the sunken appearance of post-enucleation prostheses, was introduced and remained the standard 

until WWII [16]. Since the 1940s, the introduction of PMMA revolutionized the field of both 

orbital implants and ocular prostheses [18].  

 

4.1. Post-surgical conformers 

 

A final artificial eye (ocular prosthesis) is manufactured as soon as the postoperative inflammation 

has settled, usually within 6-12 weeks after surgery. During this time, a temporary acrylic 

conformer, commonly made of PMMA, is worn to keep the fornices formed and to prevent socket 

contracture [195,196]. Two holes are usually present in the conformer to allow the drainage of 

discharge from the socket and to make easier the application of medication (e.g. therapeutic drops) 

[196]. Standard conformers do not resemble a natural eye and often do not fit very well the correct 

ocular dimensions – they are too large or too small. Low-cost, pink acrylic resin for dentistry is 

often employed to make postoperative standard conformers. 

Cosmetic conformers, exhibiting a variety of sizes, iris colours and scleral colours, are also 

available to patients. While they do not provide as good a fit or cosmetic appearance as the custom-

made ocular prosthesis, however they are a valuable temporary option. A study published by Patil et 

al. showed that the majority of patients was pleased to wear a cosmetic conformer instead of a 

standard conformer, although the latter was less expensive [197]; the authors also highlighted that 

this early cosmetic improvement seemed to be very important in the emotional rehabilitation of 

patients following the loss of an eye. 

 

4.2. Definitive ocular prostheses 
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The ocular prosthesis, as previously mentioned, fits over the orbital implant – with or without 

coupling by a peg – and sits just behind the eyelids. Professional ocularists are responsible for the 

overall fabrication and fitting of ocular prostheses (creation of the impression, shaping and painting 

the prosthesis); they also have to instruct the patient on how to place and care for the prosthesis, 

providing long-term support and help.  

From a historical standpoint, before the WWII the majority of ocular prostheses were made of glass 

– hence they were popularly referred to as “glass eyes”; however, artificial glass eyes were brittle 

and prone to implosion with acute changes in temperature, as already discussed about the Mules 

orbital implant [2]. Furthermore, over time the glass prosthesis became etched from exposure to 

body secretions and usually lasts only about 2 years [197]. The battles of WWII created a large 

demand for artificial glass eyes, that were mainly produced in Germany; the unavoidable wartime 

shortage of ocular prostheses imported from this country led to the development, especially in the 

USA, of a new generation of artificial eyes based on acrylic resin. Interestingly, the introduction of 

PMMA ocular prostheses mirrored the advances of orbital implants, as the early models of quasi-

integrated and mechanically-integrated PMMA orbital implants were also proposed in the mid 

1940s. 

Today, most of available prostheses are either stock or custom-made PMMA devices. With respect 

to glass, PMMA is more durable and has a longer life expectancy as well as better tissue 

compatibility [197]; however, glass is still used in selected cases. Stock, or ready-made, prostheses 

are advantageous when time and cost are limited because they can be fabricated rapidly with acrylic 

materials found in any dental office; furthermore, they do not require an artist to complete the 

painting of the iris and the sclera. However, stock prostheses are available in a limited range of 

sizes and iris colours. The size limitation is a concern because an improperly-fitting prosthesis may 

not only distort the lid and socket but it could also create an air pocket between the prosthesis and 

the socket, which provides a good medium for bacterial overgrowth. Moreover, rough fitting of the 

prosthesis may leave pockets where fluids stagnate; as a result, trapped fluid may gush forward in 
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response to firm eyelid closure – which is a socially unpleasing situation. The colour limitation of 

stock prostheses is also a concern for many patients because the iris colour of the prosthesis is often 

noticeably different from that of the healthy eye, which is aesthetically displeasing.  

The preferred ocular prostheses are then the custom-made PMMA prostheses, fabricated through a 

multi-step processing schedule. To ensure that the artificial eye sits in a natural position and does 

not fall back into the socket and to minimise any space in which infected debris could collect, the 

device should be shaped to match the contours of the orbital tissues. Therefore, an impression of the 

socket is taken using a quick-setting material such as dental alginate; once set, the alginate is 

removed and a plaster of Paris mould is made from it. The mould is used to cast a wax shape, which 

is then trimmed to fit the socket. A further mould is made from the modified wax shape, and the 

PMMA prosthesis is finally cast in this mould. A hand-painted iris button is placed on the front of 

the eye, scleral features (e.g. veins) are painted on and clear plastic is laminated over the top (Fig. 

4). Of course, the prosthesis should be tested in the patient’s eye during the manufacturing process 

for proper fit and aesthetic appearance: symmetry of the iris in the palpebral opening and the 

alignment and plane of the irises in both the artificial and healthy eye are determined with the use of 

a corneal-iris button. Correct position of the iris is also ensured by measuring the distance from the 

facial midline and pupillary light reflex in the healthy eye and duplicating this measurement for the 

prosthesis.    

The use of silicone as an alternative for the manufacture of ocular prostheses has been alternatively 

advocated or castigated over the years, and this controversy still lingers on. Since the mid 2000s, a 

silicone ocular prosthesis together with the so-called “Flexiglass system” – a kit for making the 

prosthesis – has begun to be marketed in the USA by the same producer. On the product website 

[31], silicone was claimed superior to PMMA as the latter was considered responsible of adverse 

reactions in certain patients and due to the toxicity of the catalyst used for PMMA production; it is 

textually reported that “the Flexiglass™ System is also now available globally. All of the products 

in the system comply with the medical device directives for a class 1 customizable medical device 
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and are CE compliant”. However, as far as the authors are aware, the USA Society of Ocularists 

maintain the position that the quality of silicone prostheses is poor compared to that of acrylic-

based ones, and therefore PMMA still remains the material of choice for the majority of ocularists, 

ophthalmologists and patients. Serious, comparative studies would be useful to give ultimate 

conclusions and full clarification to this issue. 

The patients should receive precise instructions regarding the proper care and use of their own 

ocular prosthesis. It is strongly recommended to wear eye prostheses overnight during periods of 

orbital growth, and they may be worn overnight even later especially to prevent eyelashes turning in 

and irritating the conjunctival surface; however, if conjunctival inflammation develops, it is better 

not to wear the prosthesis during sleep. Cleaning can be performed by hand with a simple liquid 

surfactant; the ocular prosthesis should be then dried at air as paper tissues or towels could scratch 

the surface or allow bacterial contamination. Bacterial colonization of the posterior surface of the 

artificial eye in contact with the patient’s conjunctiva or with the orbital implant’s peg could be a 

crucial issue during the follow-up and lead to the development of infections; interesting strategies to 

overcome this problem are discussed in the section 5.2.3. 

 

4.3. Cosmetic contact lenses 

 

The removal of an eye is an extreme surgical option and not all painfully disfigured, atrophic, often 

blind ocular globes undergo such a fate; in many cases, pharmaceutical treatments can be 

administered to reduce pain and cosmetic solutions alternative to surgery are explored. Cosmetic 

contact lenses can be considered, at least to some extent, a particular subset of ocular prostheses and 

are intended to disguise eyes with unacceptable appearances; the lenses fall into three groups, i.e. 

scleral shells, soft corneoscleral contact lenses and rigid corneal contact lenses.  

PMMA scleral shells are indicated when a blind eye is shrunken or its surface is very uneven; the 

thickness of the shell can be varied to properly fill out the volume deficit that accompanies ocular 
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atrophy. Scleral shells should be worn only while awake as the shell occludes the cornea, placing it 

under metabolic stress and thereby increasing the risk of ulceration; even more scrupulous care 

should be taken over the maintenance and cleaning (by an appropriate surfactant) of a scleral shell 

than over a whole eye prosthesis, behind which a “living” ocular globe does no longer exist.  

Soft corneoscleral lenses are made of different types of hydrogels and can be recommended to hide 

corneal scars (due to trauma or infections) and iris defects (due to trauma or congenital diseases) in 

normal sized eyes that have a fairly regular surface. Soft lenses cannot be used if the eye is so 

misshaped that the lens will not centre or if the tear film is deficient. These lenses can be fully 

occlusive, with both pupil and iris coloured to match the fellow eye, or can have a clear pupil if the 

eye is sighted. Soft lenses should be worn only while awake for the same reasons that apply to 

scleral shells. 

Rigid lenses are made of PMMA and their fabrication process and external features are analogous 

to those of definitive ocular prostheses.  

 

5. Future perspectives and research challenges 

 

5.1. The potential of advanced imaging techniques 

 

Periodic monitoring of composition, density, volume and shape changes of orbital implants in vivo 

is essential to gain key information about the postoperative outcomes; in particular, the assessment 

of fibrovascular in-growth is extremely important when porous implants are used. Over the years, 

several imaging techniques have been developed and are currently at the surgeons’ disposal. 

Medical source CT (MSCT) scanning has been widely used [121,198,199] but has the disadvantage 

of a significant radiation dose with each examination. Other imaging options to verify implant 

vascularization include gadolinium-enhanced MRI [122,200-202] and technetium 99m bone 

scintigraphy [203-205]. 
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Intraorbital implant examination with cone beam CT (CBCT), having lower radiation exposure than 

MSCT, may be a simpler, less expensive and reliable alternative for the detection of soft and hard 

tissues which still has to be fully evaluated. CBCT was first described in the early 1980s and since 

then applied to dentomaxillofacial diagnostics [206,207]. In the past CBCT was less accurate than 

MSCT in tissue density measurements, but recent advances allowed to achieve a voxel resolution 

from 400 to 70 µm, whereas MSCT voxels are generally larger than 250 µm. However, image noise 

is generally higher with CBCT [208], while the dose of radiation is much lower [206].  

In a recent work, Lukats et al. [209] highlighted the potential of CBCT in tissue engineering 

applications wherein long-term monitoring of scaffolds in a noninvasive manner with the lowest 

possible doses of radiation is required, and applied this technique to evaluate 30 enucleated patients 

receiving polyglactin-wrapped HA and alumina orbital implants over a mean follow-up of 3.2 

years. Implant volume, orientation and shape estimations were possible while density evaluation 

was more complicated compared to MSCT and required careful calibration procedures. This 

approach is interesting and would deserve further investigations in next years to achieve definite 

conclusions about CBCT suitability in the ophthalmoplastic field. 

As a final remark, it is worth mentioning that advanced imaging techniques associated to 

CAD/CAM systems for implant prototyping could disclose a great potential to fabricate ever more 

accurate, custom-made implants able to successfully fulfill the patient’s anatomic and cosmetic 

needs; this issue will be further discussed in the section 5.2.1.    

 

5.2. Smart biomaterials and implants with advanced and multipurpose properties 

 

5.2.1. Bioactive glass-based orbital implants 

 

BGs have been commercialized worldwide for almost 30 years mainly for bone defect and dental 

repair [164]. In the specific context of oculo-orbital surgery, BGs have been implanted in humans as 
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small plates for orbital floor repair [5,210-212] and introduced as particulate in experimental PE/BG 

composite porous orbital implants [165,166]; moreover, Lloyd and associates recently proposed the 

use of porous BG as an osteo-odonto-keratoprosthetic skirt material [213]. Hence, there are 

increasing evidences that BGs could have a great potential also for ophthalmic applications and the 

authors wish to report here some remarks to emphasize their possible impact in the development of 

a new generation of orbital implants with advanced properties that only few years ago would have 

seemed impossible.  

BGs have not only the ability to bond to bone [156], but they were also found to stimulate new bone 

growth and to bond to soft tissues in vivo [159]. It was observed that ionic dissolution products 

from BGs play a key role in affecting the biological response of such materials in vitro and in vivo, 

stimulating the expression of several genes of osteoblastic cells towards a path of regeneration and 

self-repair [214]. Since many trace elements (e.g. Sr, Cu, Zn) present in the human body are known 

for their anabolic effects in bone metabolism, a new approach for enhancing the bioactivity of BG 

and BG-derived products could imply the introduction of therapeutic ions into the BG formulation. 

The subsequent release of these ions after exposure to a physiological environment is believed to 

exhibit possible antibacterial [215] or anti-inflammatory [216] effects and to selectively affect the 

response of human cells towards angiogenesis [217,218]. As to the type of orbital implant that 

might be fabricated by using BGs, porous spherical devices (scaffolds) conceptually similar to those 

made of HA or alumina would seem the most likely candidates; clearly, cell response will depend 

not only on chemical composition, but also on surface micro-/nano-roughness, porosity, 

topography, grain size and crystallinity (if a final glass-ceramic material will be obtained) of the 

implant [180,218]. 

Considering the particular application, it is worth pointing out an important aspect: osteogenesis 

stimulation and bone-bonding ability seem not to be desirable features for an orbital implant, but the 

added values to be pursued are the enhanced angiogenesis and fibrovascularization that may be 

induced by BGs. In fact, it has been recognized that vascularization is a desirable characteristic of 
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orbital implants since it discourages bacterial colonization of the surface and permits treatment of 

low-grade ocular infection with systemic antibiotics. Hence, an accurate design of BG composition 

should be performed to synthesize materials suitable to stimulate angiogenesis and 

fibrovascularization without inducing bone cells recruitment and bone in-growth. Furthermore, the 

dose effect also seems to play a key role: in a recent study, it has been observed that BG exhibits 

proangiogenic potential at low concentrations and significant osteogenic potential at higher 

concentrations [219]. It was reported that the BG surface reactivity, which is so critical in bone 

adhesion, does not imply a toxic effect in non-osseous tissues [220] and BGs were shown to be able 

to bond also to soft tissues [159,164].   

A detailed overview of the studies investigating the BG effect on angiogenesis in vitro has been 

recently reported by Gorustovich et al. [221]. From a general viewpoint, in vitro experiments have 

shown that BGs stimulate the secretion of angiogenic growth factors in fibroblasts, the proliferation 

of endothelial cells and the formation of endothelial tubules [217,222]. Day et al. [217] found that 

L929 fibroblasts cultured on the surface of poly(L-lactic-co-glycolic acid) (PLGA)/Bioglass
®

 discs 

with 0.01%, 0.1%, and 1% (w/v) of 45S5 Bioglass
®

 particles (size < 5 µm) secreted increased 

amounts of vascular endothelial growth factor (VEGF) compared with cells cultured on PLGA 

alone. Keshaw et al. [222] recently reported that microporous spheres of PLGA containing 10 wt.% 

of 45S5 Bioglass
®

 particles (mean particle size = 4 µm) stimulated a significant increase in VEGF 

secretion from CCD-18Co fibroblasts consistently over a 10-day period compared with neat PLGA 

microporous spheres.  

In vivo results have confirmed that BG is able to stimulate and to promote neo-vascularization, as 

highlighted by Gerhardt and Boccaccini in a recent review [223]. Leu and Leach [219] filled 

calvarial defects in Sprague-Dawley rats with 45S5 Bioglass
®

-impregnated collagen sponges, using 

unloaded empty sponges as a control; after 2 weeks of implantation, histological analyses of 

calvaria demonstrated significantly greater neo-vascularisation and vascular density within the 

defects treated with the BG/collagen composite sponges as compared to collagen controls alone. In 
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a recent study, Gerhardt et al. [224] investigated the angiogenic potential of poly(D,L-lactide) 

(PDLLA)/45S5 Bioglass
®

 porous composites wherein micro-sized and nano-sized BG particles 

were used. The authors observed that human fibroblasts produced 5 times higher VEGF if cultured 

on BG-containing (20 wt.%) composite in comparison to pure PDLLA; furthermore, after 8 weeks 

of implantation in Sprague-Dawley rats the composites were well-infiltrated with newly formed 

tissue and demonstrated higher vascularization and blood vessel-to-tissue percentage (11.6-15.1 %) 

than PDLLA scaffolds (8.5%). Following an interesting approach, Vargas et al. [225] used the quail 

chorioallantoic membrane as an in vivo model to evaluate angiogenesis and observed that addition 

of 10 wt.% of silicate BG nanoparticles to collagen films induced an early angiogenic response, 

which makes these composites promising matrices for tissue engineering and regenerative 

medicine.  

Apart from the advantages from a biological viewpoint, BGs also have other attractive properties. 

BGs are very versatile as they are synthesizable in form of powders, granules or 3-D porous 

scaffolds of various size and shape including the spherical one typical of orbital implants (Fig. 5a). 

Macroporous scaffolds can be obtained by a variety of methods such as foaming techniques [226], 

organic phase burning-out [227] and sponge replication [157,161]. If glasses are processed in form 

of mesoporous materials (Fig. 5b), they can also easily incorporate specific molecules, for instance 

anti-inflammatory drugs, to be released in situ postoperatively to elicit an appropriate therapeutic 

effect [228-230]. Custom-made BG-derived porous orbital implants could be fabricated by using 

rapid prototyping techniques [231]: CT- and MRI-derived files can act as input data for CAD/CAM 

manufacturing systems in order to produce scaffolds matching exactly the dimensional features of 

the anophtahlmic socket. Recent studies have demonstrated that advanced manufacturing 

techniques such as lithography-based methods [232] or selective laser sintering [233] can lead to the 

production of high-quality porous scaffolds of complex shape with an accurate control of pore size 

and interconnectivity. Furthermore, BG-derived products can be easily, quickly and effectively 

sterilized, for instance by β- or γ-irradiation, without undergoing degradation.  
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Specific added values can be imparted to BG-derived products by appropriate surface treatments 

[163]: for instance, use of silver-doped glasses [234] to produce orbital implants exerting 

antibacterial properties could be a promising strategy for the future (an example of silver-doped 

layer on the surface of a bioactive glass, obtained by ion exchange, is reported in Fig. 5c); this topic 

will be treated in more detail in the section 5.2.3.  

A further opportunity to improve the biological performances of bioactive glasses involves their 

surface functionalization. Silica-based glasses easily expose reactive hydroxyls groups on their 

surface by simple water treatments, and these functionalities can be employed for the grafting of 

appropriate biomolecules/drugs eliciting specific responses/therapeutic actions. For instance, Verné 

and associates successfully coupled biomolecules and drugs to different bioactive glasses and glass-

ceramics for bone regeneration and cancer treatment [235,236]. In this way, the idea of grafting 

specific growth factors to enhance vascularization, or drugs to reduce inflammation and infection, 

could be of interest also in the field of orbital implants. 

Comprehensive reviews dealing with the recent advances on bioactive porous glasses and glass-

ceramics have been published in last years and are available to interested readers [163,223,237].  

In the light of the above-discussed properties of BGs, in the next future a 8
th

 type of orbital implant 

could be included in Table 2, as BG-based porous implants are expected to fall under the definition 

of “bioactive orbital implants”. In biomaterials science and regenerative medicine, the term 

“bioactivity” refers to the ability of a biomaterial to perform a desired, appropriate function 

generating the most appropriate beneficial cellular or tissue response in a specific situation. Of 

course, bioactivity implies biocompatibility (that is a sort of pre-condition), i.e. the ability of a 

biomaterial to perform its function without eliciting any undesirable local or systemic effects in the 

recipient, according the definition provided by Williams [238]. In the context of anophtalmic 

surgery, as previously mentioned one of the most important functions to be performed by the 

(porous) orbital implant biomaterial is the promotion of fibrovascularization, which could be 

actually enhanced by in situ release from a BG implant of suitable metal ions eliciting an 
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angiogenetic effect [218]. The possibility of making porous orbital implants fully constituted by 

BGs was disclosed by Richter et al. in a recent patent [239] but, as far as the authors are aware, no 

manufacturing or clinical studies have been reported yet in the literature on this type of implants; 

early studies on BG/PE composite orbital implants have been carried out [165,166] but further 

investigations are needed to obtain more substantial conclusions.   

Few closing remarks on the concept of orbital implant bioactivity need to be presented. In this 

work, BG-based orbital implants are defined “bioactive” as BGs were shown to intrinsically exert 

an active role, mainly by the deliberate release of appropriate ions, in stimulating and directing 

angiogenesis at the cellular and genetic level; therefore, the term “bioactive” is equivalent to 

“angio-inductive”. On the other hand, fibrovascular in-growth has been observed also in 

commercially-available HA, PE and alumina orbital implants from which no release of “angio-

stimulating” ionic species occurs. In these cases, however, the vascular in-growth is possible due to 

the presence of a 3-D porous network in the implants; therefore, these porous biomaterials should 

be defined “angio-conductive” instead of “angio-inductive” (i.e. “bioactive” in a strict sense). 

Alternatively, adopting a remarkable simplification and focusing the attention only on the final 

effect (i.e. the fibrovascular in-growth inside the implant), all porous orbital implants might be 

defined as potentially “bioactive”, but in this way the peculiar, intrinsic features of the different 

biomaterials would be no longer taken in account.   

 

5.2.2. Absorbable orbital implants 

 

All orbital implants developed over the years have been designed to be permanent, i.e. they should 

remain in situ indefinitely during the patient’s whole life without undergoing resorption, 

degradation or partial/total replacement by surrounding tissues. An interesting exception has been 

proposed in a patent deposited in the late 1990s by Durette [240], who disclosed an approach in 

partial countertendency with respect to the established perspective. The Durette orbital implant was 



54 

 

provided with a passageway extending from the anterior surface inwardly to receive a peg prior to 

implantation; the peg should be made of non-porous material so that the surrounding tissue would 

encapsulate it without a tight contact. A cap of absorbable biomaterial was placed in front of the 

implant in order to create a “cushion” between implant and overlying ocular prosthesis, that would 

be later coupled to the implant by means of the peg without the need for a second drilling procedure 

for peg placement. Durette specified that the implant should be preferably made of biodegradable 

material having a matrix with random voids throughout to enhance tissue in-growth [240].    

The ideas suggested by Durette are fascinating and would deserve careful experimentation in the 

next years. A partially absorbable implant able to increase its porosity in vivo, thereby allowing 

improved fibrovascularization, could represent a clever approach; however, the use of a fully 

biodegradable orbital implant poses several issues, especially concerning the kinetics of socket 

volume replacement by tissue during implant degradation and the ocular prosthesis motility in 

absence of an implant that can transfer movement to it.   

 

5.2.3. Antibacterial devices 

 

Bacterial issues in ophthalmic applications, with particular reference to postoperative infection of 

ocular implants, can cause significant problems followed by post-surgery additional treatments that 

are both expensive and stressful for patients [104,106,125,126,147,241-242]. Over the years, some 

strategies have been experimented to limit the risk of bacterial colonization at the time of surgery; 

for instance, it is a common practice to impregnate porous HA orbital implants in antibiotics prior 

to implantation in the orbital socket [244]. This approach is certainly useful intraoperatively, but a 

key challenge of modern ophthalmology is to develop smart biomaterials able to exert a long-term 

antibacterial activity in order to limit late bacterial colonization and infection of the implant. 

Moreover, the widespread and increasing use of antibiotics led to the development of antibiotic-
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resistant bacteria and, therefore, there is the need for investigating alternative strategies and 

approaches.  

Attempts at imparting intrinsic antiseptic properties to the devices for ophthalmoplasty (ocular 

prosthesis and orbital implant) are very rare in the literature. In a recent patent, Jun et al. disclosed 

an antibacterial ocular prosthesis produced by incorporating small amounts of silver, gold or 

platinum nanoparticles in the acrylic resin (PMMA) or silicone used to fabricate the prosthesis; the 

patent also related to a conformer produced by the same method and having antibacterial properties 

in itself [245]. Following a similar approach, Yang et al. produced a PMMA-based ocular prosthesis 

dispersing silver nanoparticles in the resin (concentration from 300 to 700 ppm), tested its 

antibacterial properties in vitro against Streptococcus pneumoniae, Staphylococcus aureus, 

Pseudomonas aeruginosa and Escherichia coli and reported that the antimicrobial activity of the 

Ag-containing artificial eye was 4.8-6.2 times stronger than that of controls [246]. Both approaches, 

however, pose some problems associated to the release of nano-sized silver, which could be a 

crucial issue for the implant applicability since tissue toxicity of metal nanoparticles has been 

reported in several in vitro and in vivo studies [247,248]. 

A promising strategy, that was very recently proposed in a patent by the authors [249], involves the 

deposition of an antibacterial composite coating on the surface of ocular prostheses and orbital 

implants. The coating is preferentially constituted by silver nanoclusters embedded in a silica matrix 

and can be produced by radio-frequency (RF) co-sputtering of silver and silica used as targets (an 

example of TEM cross-sectional image is reported in Fig. 5d). Previous papers demonstrated that 

these coating can be successfully deposited on wide variety of substrates (e.g. silicate glasses, 

polymers) and are able to retain their mechanical stability and antibacterial characteristics even after 

heating above 500 °C [250-252]. Other matrices (e.g. alumina, TiO2, polymers) and antibacterial 

metal agents (e.g. copper, zinc) may be experimented to find the best solution depending on the 

type of substrate material to be coated and on the biological environment wherein the antibacterial 

device will exert its function. The proposed coatings are generally thin (from few tens to thousands 
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of nanometers) in order to maintain bulk properties of substrates and, in particular, possible 

flexibility of polymeric materials. 

The co-sputtering technique has the advantage to allow the tuning of the antibacterial metal 

concentration through the control of the deposition parameters (e.g. power, pressure in the 

deposition chamber) and the metal nanoclusters size by using thermal treatment following the 

sputtering process [250]. In such a way, in a fascinating scenario it would be possible to tailor and 

to properly design the antibacterial effect in terms of both efficacy (amount of released antibacterial 

agent) and persistency (more or less prolonged kinetics of release). Considering the silver/silica 

composite coatings produced by this method in preliminary studies, it has been observed that the as-

sputtered coatings contained small silver nanoclusters (diameter of 5-10 nm) that increased their 

size by heating up to 600 °C [250]. Moreover, it has been also demonstrated by leaching test in 

different conditions (water or simulated body fluid at 37 °C) that the obtained coatings were able to 

exert an antibacterial activity for at least 1 month [250]. Furthermore, there are preliminary 

evidences suggesting that silver is released in ionic form instead of nanoparticles: this is a 

significant added value overcoming the toxicity issues related to metal nanoparticles delivery. 

Moreover, the use of metals as antibacterial agents instead of antibiotics, commonly employed in 

therapy and prevention of implant-related infections, could overcome the problem of bacterial 

resistance and can be effective also on resistant bacterial strains. 

In the case of ceramic orbital implants, such as the HA or alumina ones, ion exchange techniques 

for surface silver-doping are also suggested in the patent [249], on the basis of the good results 

obtained with surface treatment of glass and glass-ceramic substrates (Fig. 5c) [234,253].  

Exploitation of appropriate metal ions release from biomaterials surfaces for antiseptic purposes is 

certainly a valuable and promising strategy, and not only in the ophthalmic field [218]. However, it 

cannot be ignored that ocular environment is particularly complex and several parameters should be 

taken in account for designing really suitable implants; for instance, the interaction of metal ions 

with the tears, the fate of released ions and the possible ion-induced eye tissue necrosis are all 
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aspects deserving careful consideration. Being such topics very new, the existing literature is very 

scarce but it is instructive to mention a significant case recently documented by Hau and Tuft [254], 

who described corneal argyrosis associated with silver nitrate-coated cosmetic soft contact lenses 

that a 67-year-old woman wore for 17 years for the management of intractable diplopia: this is a 

typical example of an apparently unexpected side effect detectable only after many years of follow-

up. In the next years an ever increasing cooperation among materials scientists, chemists, biologists, 

oculo-orbital surgeons, ocularists and researchers in the medical implant industry would be 

desirable in an attempt to select and market more suitable and cost-effective biomaterials for the 

management of the anophtalmic socket, in order to further improve the patient’s quality of life.  

 

Acknowledgements 

 

This work was partially supported by the Regione Piemonte, Italy (Regional Project “NABLA” – 

Nanostructured Antibacterial Layers) and by the EC-funded Project NASLA-FP7-SME-2010-1 

(Project # 262209). 

 

Disclosures 

 

The authors have no conflict of interest with one or more companies whose products are mentioned 

in the manuscript. 

 

 

 

 

 

 



58 

 

References 

 

[1] Kelley JJ. History of ocular prostheses. Int Ophthalmol Clinics 1970;10:713-9. 

[2] Mules PH. Evisceration of the globe, with artificial vitreous. Trans Ophthalmol Soc UK 

1885;5:200-6. 

[3] Mok D, Lessard L, Cordoba C, Harris PG, Nikolis A. A review of materials currently used in 

orbital floor reconstruction. Can J Plast Surg 2004;12:134-40. 

[4] Betz MW, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP. Challenges associated with 

regeneration of orbital floor bone. Tissue Eng B 2010;16:541-50. 

[5] Baino F. Biomaterials and implants for orbital floor repair. Acta Biomater 2011;7:3248-66. 

[6] Bailey CS, Buckley RJ. Ocular prosthesis and contact lenses. I. Cosmetic devices. BMJ 

1991;27:1010-2. 

[7] Levine MR, Pou CR, Lash RH. Evisceration: is sympathetic ophthalmia a concern in the new 

millennium?. Ophthalmic Plast Reconstr Surg 1999;15:4-8.  

[8] Moshfeghi DM, Moshfeghi AA, Finger PT. Enucleation. Surv Ophthalmol 2000;44:277-301. 

[9] Custer PL. Enucleation: past, present, and future. Ophthal Plast Reconstr Surg 2000;16:316-21. 

[10] Deacon BS. Orbital implants and ocular prostheses: a comprehensive review. J Ophthal Med 

Technol, available from URL: http://www.jomtonline.com/jomt/articles/volumes/4/2/orbital.pdf 

[11] Levin PS, Dutton JA. A 20-year series of orbital exenteration. Am J Ophthalmol 

1991;112:496-501. 

[12] Bartley GB, Garrity JA, Waller RR, Henderson JW, Ilstrup DM. Orbital exenteration at the 

Mayo Clinic 1967-1986. Ophthalmology 1989;96:468-73. 

[13] Nerad JA, Carter KD, LaVelle WE, Fyler A, Branemark PI. The osseointegration technique for 

the rehabilitation of the exenterated orbit. Arch Ophthalmol 1991;109:1032-8. 

[14] Mohr C, Esser J. Orbital exenteration: surgical and reconstructive strategies. Graefes Arch Clin 

Exp Ophthalmol 1997;235:288-95. 



59 

 

[15] Sami D, Young S, Petersen R. Perspective on orbital enucleation implants. Survey Ophthalmol 

2007;52:244-65. 

[16] Luce CM. A short history of enucleation. Int Ophthalmol Clin 1970;10:681-7. 

[17] Gougelmann HP. The evolution of the ocular motility implant. Int Ophthalmol Clin 

1970;10:689-711. 

[18] Guyton JS. Enucleation and Allied procedures: a review and description of a new operation. 

Trans Am Ophthalmol Soc 1948;46:472-527. 

[19] Culler AM. Orbital implants after enucleation: basic principles of anatomy and physiology of 

the orbit and relation to implant surgery. Trans Am Acad Ophthalmol Otolaryngol 1952;56:17-20. 

[20] Helms HA, Zeiger HE Jr, Callahan A. Complications following enucleation and implantation 

of multiple glass spheres in the orbit. Ophthal Plast Reconstr Surg 1987;3:87-9. 

[21] Christmas NJ, Gordon CD, Murray TG, Tse D, Johnson T, Garonzik S et al. Intraorbital 

implants after enucleation and their complications: a 10-year review. Arch Ophthalmol 

1998;116:1199-203. 

[22] Baino F. Scleral buckling biomaterials and implants for retinal detachment surgery. Med Eng 

Phys 2010;32:945-56. 

[23] Jordan DR, Klapper SR. Controversies in enucleation technique and implant selection: whether 

to wrap, attach muscles and peg?. In: Guthoff RF, Katowitz JA, editors. Oculoplastics and orbit. 

Berlin Heidelberg: Springer-Verlag, 2010. p. 195-211.  

[24] Nunnery WR, Cepela MA, Heinz GW, Zale D, Martin RT. Extrusion rate of silicone spherical 

anophthalmic socket implants. Ophthal Plast Reconstr Surg 1993;9:90-5. 

[25] Trichopoulos N, Augsburger JJ. Enucleation with unwrapped porous and nonporous orbital 

implants: a 15-year experience. Ophthal Plast Reconstr Surg 2005;21:331-6. 

[26] Allen L. The argument against imbricating the rectus muscles over spherical orbital implants 

after enucleation. Ophthalmology 1983;90:1116-20. 



60 

 

[27] Gonzalez-Candial M, Umana MA, Galvez C, Medel R, Ayala E. Comparison between motility 

of biointegratable and silicone orbital implants. Am J Ophthalmol 2007;143:711-2. 

[28] Shoamanesh A, Pang NK, Oestreicher JH. Complications of orbital implants: a review of 542 

patients who have undergone orbital implantation and 275 subsequent PEG placement. Orbit 

2007;26:173-82. 

[29] Soll DB. Expandable orbital implants. In: Turtz A, editor. Proc Centennial Symp, Manhattan 

Eye, Ear and Throat Hospital. St. Louis: Mosby, 1969. p. 197-202. 

[30] Soll DB. Insertion of secondary orbital implant. Arch Ophthalmol 1973;89:214-6. 

[31] Website dedicated to the Flexiglass System, URL: http://www.flexiglasseye.com (last access 

October 2013). 

[32] Bozukova D, Pagnoulle C, Jerome R, Jerome C. Polymers in modern ophthalmic implants - 

historical background and recent advances. Mater Sci Eng R 2010;69:63-83. 

[33] Lloyd AW, Faragher RGA, Denyer SP. Ocular biomaterials and implants. Biomaterials 

2001;22:769-85. 

[34] Frueh BR, Felker GV. Baseball implant - a method of secondary insertion of an intraorbital 

implant. Arch Ophthalmol 1976;94:429-30. 

[35] Tyers AG, Collin JR. Baseball orbital implants: a review of 39 patients. Br J Ophthalmol 

1985;69:438-42. 

[36] Leatherbarrow B, Kwartz J, Sunderland S, Brammer R, Nichol E. The “baseball” orbital 

implant: a prospective study. Eye 1994;8:569-76. 

[37] Kamal-Siddiqi Z, Lal G, Hye A. Outcome of Sahaf enucleation implants in 60 patients. Pak J 

Ophthalmol 2008;24:34-6. 

[38] Kamal Z, Rizwan-Ullah M, Lal G, Hye A, Akram-Sahaf I. Reconstruction of empty sockets 

with Sahaf’s orbital implant. Pak J Ophthalmol 2010;26:128-32. 

[39] Agahan ALD, Tan AD. Use of hollow polymethylmethacrylate as an orbital implant. 

Philippine J Ophthalmol 2004;29:21-5. 



61 

 

[40] Groth MJ, Bhatnagar A, Clearhiue WJ, Goldberg RA, Douglas RS. Long-term efficacy of 

biomodeled polymethyl methacrylate implants for orbitofacial defects. Arch Facial Plast Surg 

2006;8:381-9. 

[41] Cutler NL. A basket type implant for use after enucleation. Arch Ophthalmol 1946;35:71-93. 

[42] Hughes MO, Joy EM, Young SR. J Ophthalmic Prosthetics 2009;14:13-25. 

[43] Allen L. A buried muscle cone implant - development of a tunneled hemispherical type. Arch 

Ophthalmol 1950;43:879-90. 

[44] Fan JT, Robertson DM. Long-term follow-up of the Allen implant. 1967 to 1991. 

Ophthalmology 199;102:510-6. 

[45] Jahrling RC. Statistical study of extruded implants. Todays Ocularist 1979;9:25-7. 

[46] Allen L, Ferguson EC, Braley AE. A quasi-integrated buried muscle cone implant with good 

motility and advantages for prosthetic fitting. Trans Am Acad Ophthalmol Otolaryngol 1960; 

64:272-86. 

[47] Allen L, Spivey BE, Burns CA. A larger Iowa implant. Am J Ophthalmol 1969;68:397-400. 

[48] Spivey BE, Allen L, Burns CA. The Iowa enucleation implant- a 10-year evaluation of 

technique and results. Am J Ophthalmol 1969;67:171-88. 

[49] Jordan DR, Anderson RL, Nerad JA, Allen L. A preliminary report on the Universal Implant. 

Arch Ophthalmol 1987;105:1726-31. 

[50] Jordan DR. Anophtalmic orbital implants. Ophthalmol Clinics North Am 2000;13:587-608. 

[51] Troutman RC. Five-year survey on use of a magnetic implant for improving cosmetic result of 

enucleation. AMA Arch Ophthalmol 1954;52:58-62. 

[52] Tomb EH, Gearhart DF. A new magnetic implant. Arch Ophthalmol 1954;52:763-8. 

[53] Young JH. Magnetic intra-ocular implant: the magnetic artificial eye. Br J Ophthalmol 1954; 

38:705-18. 

[54] Ellis OH, Levy OR. A new magnetic orbital implant. Arch Ophthalmol 1956;56:352-60. 

[55] Roper-Hall MJ. Orbital implants. Trans Ophthalmol Soc UK 1954;74:337-46. 



62 

 

[56] Roper-Hall MJ. Magnetic orbital implant. Br J Ophthalmol 1956;40:575. 

[57] Myska V, Roper-Hall MJ. Late follow-up of acrylic magnetic orbital implants. Proc R Soc 

Med 1970;63:315-7. 

[58] Atkins AD, Roper-Hall MJ. Magnetic orbital implants. Br J Ophthalmol 1983;67:315-6. 

[59] Soll DB. Evolution and current concepts in the surgical treatment of the anophthalmic orbit. 

Ophthal Plast Reconstr Surg 1986;2:163-71. 

[60] Murray TG, Cicciarelli NL, Croft BH, Garonzik S, Voigt M, Hernandez E. Design of a 

magnetically integrated microporous implant. Arch Ophthalmol 2000;118:1259-62. 

[61] Kotzé DJ, De Vries C. A quick guide to safety and compatibility of passive implants and 

devices in an MR environment. SA J Radiol 2004;8:6-12. 

[62] Yuh WTC, Hanigan MT, Nerad JA, Ehrhardt JC, Carter KD, Kardon RH et al. Extrusion of 

Eye socket magnetic implant after MR imaging: Potential hazard to patient with eye prosthesis. J 

Magn Resonance Imag 1991;1:711-3. 

[63] Garonzik ST. Ocular replacement apparatus and method of coupling a prosthesis to an implant. 

US Patent No. 6187041B1, 2001. 

[64] Garonzik ST. Method of magnetically coupling a prosthesis with an orbital implant. US Patent 

No. 6530953B2, 2003. 

[65] Cutler NL. A positive contact ball and ring implant for use after enucleation. Arch Ophthalmol 

1947;37:73-81. 

[66] Cutler NL. A ball and ring implant for use in enucleation. Trans Ophthalmol Soc UK 

1947;67:423-5. 

[67] Young JH. A new ocular prosthetic aid: the intra-ocular implant. Br J Ophthalmol. 

1951;35:623-7. 

[68] Choyce DP. Orbital implants: review of results obtained at the Moorfields branch of the 

Moorfields, Westminster, and Central Eye Hospital, London. Br J Ophthalmol 1952;36:123-30. 



63 

 

[69] Schmidt H. Zur Lösung des Problems der Kugeleinheilung. Zeitschrift für Augenheilkunde 

1906;16:63-80. 

[70] Schmidt H. Zur Lösung des Problems der Kugeleinheilung. Nachtrag 1909. Zeitschrift für 

Augenheilkunde 1910;23:321-39. 

[71] Klement R, Trömel G. Hydroxylapatit, der Hauptbestandteil der anorganischen Knochen- und 

Zahnsubstanz. HoppeSeyler’s Zeitschrift für Physiologische Chemie 1932;230:263-9. 

[72] Bredig MA. Zur Apatitstruktur der anorganischen Knochen- und Zahnsubstanz. HoppeSeyler’s 

Zeitschrift für Physiologische Chemie 1933;260:239-43. 

[73] Schmidt, H. Zur kritischen Würdigung der plastischen Stumpfbildungsmethoden. Berlin: 

Verlag von S Karger, 1930. 

[74] Allen TD. Guist’s bone spheres. Am J Ophthalmol 1930;13:226-30. 

[75] McCoy LL. Guist bone sphere. Am J Ophthalmol 1932;15:960-3. 

[76] Spaeth EB. The principles and practice of ophthalmic surgery. London: Henry Kimpton, 1939. 

[77] Molteno ACB, Van Rensberg JHJ, Van Rooyen B, Ancker E. “Physiological” orbital implant. 

Br J Ophthalmol 1973;57:615-21. 

[78] Molteno ACB. Antigen-free cancellous bone implants after removal of an eye. Trans 

Ophthalmol Soc NZ 1980;32:36-9. 

[79] Molteno ACB, Elder MJ. Bone implants after enucleation. Aust NZ J Ophthalmol 

1991;19:129-36. 

[80] Suter AJ, Molteno ACB, Bevin TH, Fulton JD, Herbison P. Long term follow up of bone 

derived hydroxyapatite orbital implants. Br J Ophthalmol 2002;86:1287-92. 

[81] Jordan DR, Hwang I, Brownstein S, McEachren T, Gilberg S, Grahovac S et al. The Molteno 

M-Sphere. Ophthal Plast Reconstr Surg 2000;16:356-62. 

[82] Perry JD, Goldberg RA, McCann JD, Shorr N, Engstrom R, Tong J, Bovine hydroxyapatite 

orbital implant: a preliminary report. Ophthal Plast Reconstr Surg 2002;18:268-74. 



64 

 

[83] Lyall MG. Proplast implant in Tenon’s capsule after excision of the eye. Trans Ophthalmol 

Soc UK 1976;96:79-81. 

[84] Neuhaus RW, Greider B, Baylis HI. Enucleation with implantation of a proplast sphere. 

Ophthalmology 1984;91:494-6. 

[85] Whear NM, Cousley RR, Liew C, Henderson D. Post-operative infection of Proplast facial 

implants. Br J Oral Maxillofac Surg 1993;31:292-5. 

[86] Dorozhkin SV. Calcium orthophosphates. J Mater Sci 2007;42:1061-95. 

[87] Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials 2010;31:1465-85. 

[88] Dorozhkin SV. Amorphous calcium (ortho)phosphates. Acta Biomater 2010;6:4457-75. 

[89] Perry AC. Advances in enucleation. Ophthal Clin North Am 1991;4:173-82. 

[90] Hornblass A, Biesman BS, Eviatar JA. Current techniques of enucleation: a survey of 5439 

intraorbital implants and a review of the literature. Ophthal Plast Reconstr Surg 1995;11:77-88. 

[91] Nunnery WR, Heinz GW, Bonnin JM, Martin RT, Cepela MA. Exposure rate of 

hydroxyapatite spheres in the anophthalmic socket: histopathologic correlation and comparison with 

silicone sphere implants. Ophthal Plast Reconstr Surg 1993;9:96-104. 

[92] Dutton JJ. Coralline hydroxyapatite as an ocular implant. Ophthalmology 1991;98:370-7. 

[93] Jordan DR, Bawazeer A. Experience with 120 synthetic hydroxyapatite implants (FCI3). 

Ophthal Plast Reconstr Surg 2001;17:184-90. 

[94] Mawn LA, Jordan DR, Gilberg S. Scanning electron microscopic examination of porous orbital 

implants. Can J Ophthalmol 1998;33:203-9. 

[95] Jordan DR, Munro SM, Brownstein S, Gilberg S, Grahovac S. A synthetic hydroxyapatite 

implant: the so-called counterfeit implant. Ophthal Plast Reconstr Surg 1998;14:244-9. 

[96] Jordan DR, Chan S, Mawn L, Gilberg S, Dean T, Brownstein S et al. Complications associated 

with pegging hydroxyapatite orbital implants. Ophthalmology 1999;106:505-12.  

[97] Jordan DR, Pelletier C, Gilberg SM, Brownstein S, Grahovac SZ. A new variety of 

hydroxyapatite: the Chinese implant. Ophthal Plast Reconstr Surg 1999;15:420-4. 



65 

 

[98] Jordan DR, Hwang I, Gilberg S, Brownstein S, McEachren T, Grahovac S et al. Brazilian 

hydroxyapatite implant. Ophthal Plast Reconstr Surg 2000;16:363-9. 

[99] Kundu B, Sinha MK, Mitra S, Basu D. Synthetic hydroxyapatite-based integrated orbital 

implants: a human pilot trial. Indian J Ophthalmol 2005;53:235-41. 

[100] Gayre GS, Lipham W, Dutton JJ. A comparison of rates of fibrovascular ingrowth in wrapped 

versus unwrapped hydroxyapatite spheres in a rabbit model. Ophthal Plast Reconstr Surg 

2002;18:275-80. 

[101] Babar TF, Hussain M, Zaman M. Clinico-pathologic study of 70 enucleations. J Pak Med 

Assoc 2009;59:612-4. 

[102] Owji N, Mosallaei M, Taylor J. The use of mersilene mesh for wrapping of hydroxyapatite 

orbital implants: mid-term result. Orbit. 2012;31:155-8. 

[103] Jeong JH, Jeong SK, Park YG. Clinical report of hydroxyapatite orbital implant. J Korean 

Ophthalmol Soc 1996;37:1775-83. 

[104] You SJ, Yang HW, Lee HC, Kim SJ. 5 cases of infected hydroxyapatite orbital implant. J 

Korean Ophthalmol Soc 2002 ;43:1553-7. 

[105] Mourgues T, Adenis JP. Repair of hydroxyapatite orbital implant exposure with a 

conjunctival Muller muscle flap. Operative Techniques Oculoplastic Orbital Reconstr Surg 

2001;4:36-8. 

[106] You JR, Seo JH, Kim YH, Choi WC. Six cases of bacterial infection in porous orbital 

implants. Jpn J Ophthalmol 2003;47:512-8. 

[107] Remulla HD, Rubin PA, Shore JW, Sutula FC, Townsend DJ, Wooq JJ et al. Complications 

of porous spherical orbital implants. Ophthalmology 1995;102:586-93. 

[108] Jordan DR, Brownstein S, Jolly SS. Abscessed hydroxyapatite orbital implants - a report of 

two cases. Ophthalmology 1996;103:1784-7. 



66 

 

[109] Oestreicher JH, Liu E, Berkowitz M: Complications of hydroxyapatite orbital implants. A 

review of 100 consecutive cases and a comparison of Dexon mesh (polyglycolic acid) with scleral 

wrapping. Ophthalmology 1997;104:324-9. 

[110] Jin SM, Kim JH, Kim IC. Complications of hydroxyapatite orbital implants (a review of 110 

consecutive cases). J Korean Ophthalmol Soc 2000;41:2144-56. 

[111] Chee E, Kim YD, Woo KI, Lee JH, Kim JH, Suh YL. Inflammatory mass formation 

secondary to hydroxyapatite orbital implant leakage. Ophthal Plast Reconstr Surg 2013;29:40-2. 

[112] Lew H, Lee SY, Yang WI, Kim SJ. A morphological study of drill holes applied with 

mitomycin-C in hydroxyapatite orbital implants. Ophthalmic Res 2001;33:340-4. 

[113] Nolan LM, O’Keefe M, Lanigan B. Hydroxyapatite orbital implant exposure in children. J 

AAPOS 2003;7:345-8. 

[114] Moon JW, Yoon JS, Lee SY Hydroxyapatite orbital implant in pediatric patients with 

retinoblastoma. J Korean Ophthalmol Soc 2006;47:1225-32. 

[115] Wang J, Zhang H, Chen W, Li G. The psychosocial benefits of secondary hydroxyapatite 

orbital implant insertion and prosthesis wearing for patients with anophthalmia. Ophthal Plast 

Reconstr Surg 2012;28:324-7. 

 [116] Karesh JW, Dresner SC. High-density porous polyethylene (Medpor) as a successful 

anophthalmic socket implant. Ophthalmology 1994;101:1688-96. 

[117] Blaydon SM, Shepler TR, Neuhaus RW, White WL, Shore JW. The porous polyethylene 

(Medpor) spherical orbital implant: a retrospective study of 136 cases. Ophthal Plast Reconstr Surg 

2003;19:364-71. 

[118] Goldberg RA, Dresner SC, Braslow RA, Kossovsky N, Legmann A. Animal model of porous 

polyethylene orbital implants. Ophthal Plast Reconstr Surg 1994;10:104-9. 

[119] Jordan DR, Brownstein S, Dorey M, Yuen VH, Gilberg S. Fibrovascularization of porous 

polyethylene (Medpor) orbital implant in a rabbit model. Ophthal Plast Reconstr Surg 2004;20:136-

43. 



67 

 

[120] Thakker MM, Fay AM, Pieroth L, Rubin PA. Fibrovascular ingrowth into hydroxyapatite and 

porous polyethylene orbital implants wrapped with acellular dermis. Ophthal Plast Reconstr Surg 

2004;20:368-73. 

[121] Rubin PA, Popham JK, Bilyk JR, Shore JW. Comparison of fibrovascular ingrowth into 

hydroxyapatite and porous polyethylene orbital implants. Ophthal Plast Reconstr Surg 1994;10:96-

103. 

[122] Choi HY, Lee JS, Park HJ, Oum BS, Kim HJ, Park DY. Magnetic resonance imaging 

assessment of fibrovascular ingrowth into porous polyethylene orbital implants. Clin Experiment 

Ophthalmol 2006;34:354-9. 

[123] Li T, Shen J, Duffy MT. Exposure rates of wrapped and unwrapped orbital implants 

following enucleation. Ophthal Plast Reconstr Surg 2001;17:431-5. 

[124] Robberecht K, Berghmans L, Kestelyn P, Decock C. Eyelashes on an extruding porous 

polyethylene orbital implant. Int Ophthalmology 2011;31:21-2. 

[125] Jordan DR, Brownstein S, Rawlings N, Robinson, J. An infected porous polyethylene orbital 

implant. Ophthal Plast Reconstr Surg 2007;23:413-5. 

[126] Chuo JY, Dolman PJ, Ng TL, Buffam FV, White VA. Clinical and histopathologic review of 

18 explanted porous polyethylene orbital implants. Ophthalmology 2009;116:349-54. 

[127] Sadiq SA, Mengher LS, Lowry J, Downes R. Integrated orbital implants - a comparison of 

hydroxyapatite and porous polyethylene implants. Orbit 2008;27:37-40. 

[128] Ramey N, Gupta D, Price K, Husain A, Richard M, Woodward J. Comparison of 

complication rates of porous anophthalmic orbital implants. Ophthalmic Surg Lasers Imaging 

2011;42:434-40. 

[129] Iordanidou V De Potter P. Porous polyethylene orbital implant in the pediatric population. 

Am J Ophthalmol 2004;138:425-9.  

[130] Benatiya Andaloussi I, Bhallil S, Abdellaoui M, Chraibi F, Tahri H. Tolerance of porous 

polyethylene orbital implants in children. Bull Soc Belge Ophtalmol 2012;319:61-7. 



68 

 

[131] Kim NJ, Choung HK, Khwarg SI, Yu YS. Free orbital fat graft to prevent porous 

polyethylene orbital implant exposure in patients with retinoblastoma. Ophthal Plast Reconstr Surg 

2005;21:253-8. 

[132] Kadyan A, Sandramouli S. Porous polyethylene (Medpor) orbital implants with primary 

acellular dermis patch grafts. Orbit 2008;27:19-23. 

[133] Kim NJ, Choung HK, Khwarg SI. The survival of freely grafted orbital fat on porous 

polyethylene orbital implants in the rabbit. Korean J Ophthalmol 2006;20:143-6. 

[134] Karcioglu ZA, Al-Mesfer SA, Mullaney PB. Porous polyethylene orbital implant in patients 

with retinoblastoma. Ophthalmology 1998;105:1311-18. 

[135] Woog JJ, Dresner SC, Lee TS, Kim YD, Hartstein ME, Shore JW et al. The smooth surface 

tunnel porous polyethylene enucleation implant. Ophthalmic Surg Lasers Imaging 2004;35:358-62. 

[136] Rubin PA, Popham J, Rumelt S, Remulla H, Bilyk JR, Holds J et al. Enhancement of the 

cosmetic and functional outcome of enucleation with the conical orbital implant. Ophthalmology 

1998;105:919-25. 

[137] Kozakiewicz M, Elgalal M, Walkowiak B, Stefanczyk L. Technical concept of patient-

specific, ultrahigh molecular weight polyethylene orbital wall implant. J Craniomaxillofac Surg 

2013;41:282-90. 

[138] Dei Cas R, Maus M, Bilyk J, Chang W, Eagle RC Jr, Rubin P. Gore-Tex as an orbital implant 

material. Ophthal Plast Reconstr Surg 1998;14:425-31. 

[139] Mortemousque B, Diemer C, Leger F, Barach D, Legeais JM, Williamson W. Evaluation 

histologique chez le lapin de la biocompatible d’un materiel d’indentation episcleral: le S-PTFEe 

(noyau en silicone recouvert de polytetrafluoroethylene expanse). J Fr Ophthalmol 2001;24:467-73. 

[140] Mortemousque B, Leger F, Velou S, Graffan R, Colin J, Korobelnik JF. S/e-PTFE episcleral 

buckling implants: an experimental and histopathologic study. J Biomed Mater Res 2002;63:686-

91. 



69 

 

[141] Rahaman MN, Yao A, Sonny Bal B, Garino JP, Ries MD. Ceramics for prosthetic hip and 

knee joint replacement. J Am Ceram Soc 2007;90:1965-88. 

[142] Morel X, Rias A, Briat B, El Aouni A, D’Hermies F, Adenis JP et al. Biocompatibility of a 

porous alumina orbital implant. Preliminary results of an animal experiment. J Fr Ophthalmol 

1998;21:163-9. 

[143] Jordan DR, Mawn LA, Brownstein S, McEachren TM, Gilberg SM, Hill V et al. The 

bioceramic orbital implant: a new generation of porous implants. Ophthal Plast Reconstr Surg 

2000;16:347-55. 

[144] Mawn LA, Jordan DR, Gilberg S. Proliferation of human fibroblasts in vitro after exposure to 

orbital implants. Can J Ophthalmol 2001;36:245-51. 

[145] Akichika N, Futoshi H, Hitoshi M, Kosuke S, Shinichiro K, Katsuhito K. Biocompatibility of 

a mobile alumina-ceramic orbital implant. Folia Ophthalmol Japon 2002;53:476-80. 

[146] Jordan DR, Gilberg S, Mawn LA. The bioceramic orbital implant: experience with 107 

implants. Ophthal Plast Reconstr Surg 2003;19:128-35. 

[147] Jordan DR, Brownstein S, Robinson J. Infected aluminum oxide orbital implant ophthalmic 

Plast Reconstr Surg 2006;22:66-7. 

[148] Jordan DR, Klapper SR, Gilberg SM, Dutton JJ, Wong A, Mawn L. The bioceramic implant: 

evaluation of implant exposures in 419 implants. Ophthal Plast Reconstr Surg 2010;26:80-2. 

[149] Wang JK, Lai PC, Liao SL. Late exposure of the bioceramic orbital implant. Am J 

Ophthalmol 2009;147:162-70. 

[150] Wang JK, Lai PC. Bioceramic orbital implant exposure repaired by a retroauricular 

myoperiosteal graft. Ophthalmic Surg Lasers Imaging 2008;39:399-403. 

[151] Zigiotti GL, Cavarretta S, Morara M, Nam SM, Ranno S, Pichi F et al. Standard enucleation 

with aluminium oxide implant (bioceramic) covered with patient’s sclera. The Sci World J 2012, 

Article ID 481584. 



70 

 

[152] You CK, Oh SH, Kim JW, Choi TH, Lee SY, Kim SY. Hydroxyapatite coated porous 

alumina as a new orbital implant. Key Eng Mater 2003;240-242:563-6. 

[153] Seong YS, Lee SY, Kim SJ. Morphological study of a new orbital implant: hydroxyapatite-

coated porous alumina in rabbit. J Korean Ophthalmol Soc 2001;42:1354-61. 

[154] Jordan DR, Brownstein S, Gilberg S, Coupal D, Kim S, Mawn L. Hydroxyapatite and 

calcium phosphate coatings on aluminium oxide orbital implants. Can J Ophthalmol 2002;37:7-13. 

[155] Chung WS, Song SJ, Lee SH, Kim EA. Fibrovascularization of intraorbital hydroxyapatite-

coated alumina sphere in rabbits. Korean J Ophthalmol 2005;19:9-17. 

[156] Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of 

ceramic prosthetic materials. J Biomed Mater Res 1972;2:117-41. 

[157] Chen Q, Thompson ID, Boccaccini AR. 45S5 Bioglass
®

-derived glass-ceramic scaffolds for 

bone tissue engineering. Biomaterials 2006;27:2414-25. 

[158] Lefebvre L, Gremillard L, Chevalier J, Zenati R, Bernache-Assolant D. Sintering behaviour 

of 45S5 bioactive glass. Acta Biomater 2008;4:1894-903.   

[159] Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF et al. Bioactive glass in tissue 

engineering. Acta Biomater 2011;7:2355-73. 

[160] Vitale-Brovarone C, Baino F, Tallia F, Gervasio C, Verné E. Bioactive glass-derived 

trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. J Mater 

Sci: Mater Med 2012;23:2369-80. 

[161] Baino F, Ferraris M, Bretcanu O, Verné E, Vitale-Brovarone C. Optimization of composition, 

structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. J 

Biomater Appl 2013;27:872-90. 

[162] Renghini C, Giuliani A, Mazzoni S, Brun F, Larsson E, Baino F et al. Microstructural 

characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by 

synchrotron radiation X-ray microtomography. J Eur Ceram Soc 2013;33:1553-65. 

[163] Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013;9:4457-86. 



71 

 

[164] Hench LL. The story of Bioglass
®

. J Mater Sci: Mater Med 2006;17:967-78. 

[165] Choi HY, Lee JE, Park HJ, Oum BS. Effect of synthetic bone glass particulate on the 

fibrovascularization of porous polyethylene orbital implants. Ophthal Plast Reconstr Surg 

2006;22:121-5. 

[166] Ma X, Schou KR, Maloney-Schou M, Harwin FM, Ng JD. The porous polyethylene/Bioglass 

spherical orbital implant: a retrospective study of 170 cases. Ophthal Plast Reconstr Surg 

2011;27:21-7. 

[167] Son JH, Kim CS, Yang JW. Comparison of experimental porous silicone implants and porous 

silicone implants. Graefes Arch Clin Exp Ophthalmol 2012;250:879-85. 

[168] Girard LJ, Esnaola N, Sagahon E. Evisceration implant of Proplast II. A preliminary report. 

Ophthal Plast Reconstr Surg 1990;6:139-40. 

[169] Girard LJ, Eguez I, Soper JW, Soper M, Esnaola N, Homsy CA. Buried quasi-integrated 

enucleation implant of Proplast II: a preliminary report. Ophthalmic Plast Reconstr Surg 

1990;6:141-3. 

[170] Christenbury JD. Use of Proplast II. Ophthalmic Plast Reconstr Surg 1991;7:223. 

[171] Shah S, Rhatigan M, Sampath R, Yeoman C, Sunderland S, Brammer R et al. Use of Proplast 

II as a subperiosteal implant for the correction of anophthalmic enophthalmos. Br J Ophthalmol 

1995;79:830-3. 

[172] Guthoff R, Vick HP, Schaudig U. Prevention of postenucleation syndrome: the 

hydroxylapatite silicone implant. Preliminary experimental studies and initial clinical experiences. 

Ophthalmologe 1995;92:198-205. 

[173] Klett A, Guthoff R. How can artificial eye motility be improved? The influence of fornix 

configuration and tissue thickness in front of hydroxyapatite-silicone implants in 66 patients. 

Ophthalmologe 2003;100:445-8. 

[174] Klett A, Guthoff R. Muscle pedunculated scleral flaps. A microsurgical modification to 

improve prosthesis motility. Ophthalmologe 2003;100:449-52. 



72 

 

[175] Anderson RL, Yen MT, Lucci LM, Caruso RT. The quasi-integrated porous polyethylene 

orbital implant. Ophthal Plast Reconstr Surg 2002;18:50-5. 

[176] Marx DP, Vagefi MR, Bearden WH, Anderson RL, Yen MT. The quasi-integrated porous 

polyethylene implant in pediatric patients enucleated for retinoblastoma. Orbit 2008;27:403-6. 

[177] Viswanathan P, Sagoo MS, Olver JM. UK national survey of enucleation, evisceration and 

orbital implant trends. Br J Ophthalmol 2007;91:616–9.  

[178] Nagase M, Nishiya H, Abe Y. The effect of crystallinity on hydroxyapatite-induced 

production of reactive oxygen metabolites by polymorphonuclear leukocytes. FEBS Lett 

1993;325:247-50. 

[179] Choi S, Lee SJ, Shin JH, Cheong Y, Lee HJ, Paek JH et al. Ultrastructural investigation of 

intact orbital implant surfaces using atomic force microscopy. Scanning 2011;33:211-21. 

[180] Anselme K, Davidson P, Popa A, Giazzon M, Liley M, Ploux L. The interaction of cells and 

bacteria with surfaces structured at the nanometer scale. Acta Biomater 2010;6:3824-46. 

[181] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. 

Biomaterials 2005;26:5474-91. 

[182] F. Baino. Towards an ideal biomaterial for vitreous replacement: historical overview and 

future trends. Acta Biomater 2011;7:921-35. 

[183] Gao Q, Mou S, Ge J, To CH, Hui Y, Liu A et al. A new strategy to replace the natural 

vitreous by a novel capsular artificial vitreous body with pressure-control valve. Eye 2008;22:461-

8. 

[184] Colen TP, Paridaens DA, Lemij HG, Mourits MP, Van Den Bosch WA. Comparison of 

artificial eye amplitudes with acrylic and hydroxyapatite spherical enucleation implants. 

Ophthalmology 2000;107:1889-94. 

[185] Custer PL, Trinkaus KM, Fornoff J. Comparative motility of hydroxyapatite and alloplastic 

enucleation implants. Ophthalmology 1999;106:513-6. 



73 

 

[186] Guillinta P, Vasani SN, Granet DB, Kikkawa DO. Prosthetic motility in pegged versus 

unpegged integrated porous orbital implants. Ophthal Plast Reconstr Surg 2003;19:119-22. 

[187] Ainbinder DJ, Haik BG, Tellado M. Hydroxyapatite orbital implant abscess: histopathologic 

correlation of an infected implant following evisceration. Ophthal Plast Reconstr Surg 1994;10:267-

70. 

[188] Choi JC, Iwamoto MA, Bstandig S, Rubin PA, Shore JW. Medpor Motility Coupling Post: a 

rabbit model. Ophthal Plast Reconstr Surg 1999;15:190-201. 

[189] Rubin PA, Fay AM, Remulla HD. Primary placement of a motility coupling post in porous 

polyethylene orbital implants. Arch Ophthalmol 2000;118:826-32. 

[190] Hsu WC, Green JP, Spilker MH, Rubin PA. Primary placement of a titanium motility post in 

a porous polyethylene orbital implant. Ophthal Plast Reconstr Surg 2000;16:370-9. 

[191] Tawfik HA, Dutton JJ. Primary peg placement in evisceration with the spherical porous 

polyethylene orbital implant. Ophthalmology 2004;111:1401-6. 

[192] Liao SL, Chen MS, Lin LLK. Primary placement of a titanium sleeve in hydroxyapatite 

orbital implants. Eye 2005;19:400-5. 

[193] Smit TJ, Koornneef L, Groet E, Zonneveld FW, Otto AJ. Prosthesis motility with and without 

intraorbital implants in the anophthalmic socket. Br J Ophthalmol 1991;75:667-70. 

[194] Chalasani R, Poole-Warren L, Conway RM, Ben-Nissan B. Porous orbital implants in 

enucleation: a systematic review. Surv Ophthalmol 2007;52:145-55. 

[195] Nunnery WR, Ng JD, Hetzler KJ. Enucleation and evisceration. In: Spaeth G, editor. 

Ophthalmic Surgery: Principles and Practice. 3
rd

 ed. Philadelphia, PA: Elsevier, 2003. p. 485-507.  

[196] Patel BC, Sapp NA, Collin JR. Cosmetic conformers. Ophthalmic Surg Lasers 1997;28:171-

3.  

[197] Patil SB, Meshramkar R, Naveen BH, Patil NP. Ocular prosthesis: a brief review and 

fabrication of an ocular prosthesis for a geriatric patient. Gerodontology 2008;25:57-62. 



74 

 

[198] Karesh JW, Dresner SC, Dutton JJ. High-density porous polyethylene (Medpor) as a 

successful anophthalmic socket implant. Ophthalmology 1994;101:1688-96. 

[199] Klapper SR, Jordan DR, Ells A, Grahovac S. Hydroxyapatite orbital implant migration 

assessed by magnetic resonance imaging. Ophthalmic Plast Reconstr Surg 2003;19:46-52. 

[200] Hamilton HE, Christianson MD, Williams JP, Thomas RA. Evaluation of vascularization of 

coralline hydroxyapatite ocular implants by magnetic resonance imaging. Clin Imaging 

1992;16:243-6. 

[201] Park SW, Seol HY, Hong SJ, Kim KA, Choi JC, Cha IH. Magnetic resonance evaluation of 

fibrovascular ingrowth into porous polyethylene orbital implant. Clin Imaging 2003;27:377-81. 

[202] Spirnak JP, Nieves N, Hollsten DA, White WC, Betz TA. Gadolinium enhanced magnetic 

resonance imaging assessment of hydroxyapatite orbital implants. Am J Ophthalmol 1995;119: 

431-40. 

[203] Ferrone PJ, Dutton JJ. Rate of vascularization of coralline hydroxyapatite ocular implants. 

Ophthalmology 1992;99:376-9. 

[204] Leitha T, Staudenherz A, Scholz U. Three-phase bone scintigraphy of hydroxyapatite ocular 

implants. Eur J Nucl Med 1995;22:308-14. 

[205] Numerow LM, Kloiber R, Mitchell RJ, Molnar CP, Anderson MA. Hydroxyapatite orbital 

implants. Scanning with technetium-99m MDP. Clin Nucl Med 1994;19:9-12. 

[206] Schulze D, Blessmann M, Pohlenz P, Wagner KW, Heiland M. Diagnostic criteria for the 

detection of mandibular osteomyelitis using cone-beam computed tomography. Dentomaxillofacial 

Radiology 2006;35:232–5. 

[207] De Vos W, Casselman J, Swennen GRJ. Cone-beam computerized tomography (CBCT) 

imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral 

Maxillofac Surg 2009;38:609–25. 



75 

 

[208] Araki K, Maki K, Seki K, Sakamaki K, Harata Y, Sakaino R et al. Characteristics of a newly 

developed dentomaxillofacial X-ray cone beam CT scanner (CB MercuRay): system configuration 

and physical properties. Dentomaxillofac Radiology, 2004;33:51-9. 

[209] Lukats O, Buijtar P, Sandor GK, Barabas J. Porous hydroxyapatite and aluminium oxide 

ceramic orbital implant evaluation using CBCT scanning: a method for in vivo porous structure 

evaluation and monitoring. Int J Biomater 2012;764749. 

[210] Kinnunen I, Aitasalo K, Pollonen M, Varpula M. Reconstruction of orbital fractures using 

bioactive glass. J Craniomaxollofac Surg 2000;28:229-34. 

[211] Aitasalo K, Kinnunen I, Palmgren J, Varpula M. Repair of orbital floor fractures with 

bioactive glass implants. J Oral Maxillofac Surg 2001;59:1390-6.  

[212] Peltola M, Kinnunen I, Aitasalo K. Reconstruction of orbital wall defects with bioactive glass 

plates. J Oral Maxillofac Surg 2008;66:639-46. 

[213] Huhtinen R, Sandeman S, Rose S, Fok E, Howell C, Froberg L et al.. Examining porous bio-

active glass as a potential osteo-odonto-keratoprosthetic skirt material. J Mater Sci Mater Med 

2013;24:1217-27. 

[214] Hench LL. Genetic design of bioactive glass. J Eur Ceram Soc 2009;29:1257-65. 

[215] Allan I, Newman H, Wilson M. Antibacterial activity of particulate Bioglass
®

 against supra- 

and subgingival bacteria. Biomaterials 2001;22:1683-7. 

[216] Day RM, Boccaccini AR. Effect of particulate bioactive glasses on human macrophages and 

monocytes in vitro. J Biomed Mater Res A 2005;73:73-9. 

[217] Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and 

angiogenesis in vitro. Tissue Eng 2005;11:768-77. 

[218] Hoppe A, Guldal, Boccaccini AR. A review of the biological response to ionic dissolution 

products from bioactive glasses and glass-ceramics. Biomaterials 2011;32:2757-54. 

[219] Leu A, Leach JK. Proangiogenic potential of a collagen/bioactive glass substrate. Pharm Res 

2008;25:1222-9. 



76 

 

[220] Wilson J, Pigott GH, Schoen FJ, Hench LL. Toxicology and biocompatibility of bioglasses. J 

Biomed Mater Res 1981;15:805-17. 

[221] Gorustovich A, Roether J, Boccaccini AR. Effect of bioactive glasses on angiogenesis: in-

vitro and in-vivo evidence - a review. Tissue Eng B 2010;16:199-207. 

[222] Keshaw H, Georgiou G, Blaker JJ, Forbes A, Knowles JC, Day RM. Assessment of 

polymer/bioactive glass-composite microporous spheres for tissue regeneration applications. Tissue 

Eng A 2009;15:1451-61. 

[223] Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue 

engineering. Materials 2010;3:3867-910. 

[224] Gerhardt LC, Widdows KL, Erol MM, Burch CW, Sanz-Herrera JA, Ochoa I et al. The pro-

angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 

2011;32:4096-108.  

[225] Vargas GE, Haro Durand LA, Cadena V, Romero M, Mesones RV, Mackovic  M et al. Effect 

of nano-sized bioactive glass particles on the angiogenic properties of collagen based composites. J 

Mater Sci: Mater Med 2013;24:1261-9. 

[226] Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue 

engineering. Biomaterials 2006;27:964-73. 

[227] Baino F, Verné E, Vitale-Brovarone C. 3-D high strength glass-ceramic scaffolds containing 

fluoroapatite for load-bearing bone portions replacement. Mater Sci Eng C 2009;29:2055-62. 

[228] Zhu Y, Kaskel S. Comparison of the in vitro bioactivity and drug release property of 

mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous 

Mesoporous Mater 2009;118:176-82. 

[229] Arcos D, Vallet-Regi M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta 

Biomater 2010;6:2874-88. 



77 

 

[230] Baino F, Fiorilli S, Mortera R, Onida B, Saino E, Visai L et al. Mesoporous bioactive glass as 

a multifunctional system for bone regeneration and controlled drug release. J Appl Biomater Funct 

Mater 2012;10:12-21 

[231] Hollister SJ. Porous scaffold design for tissue engineering. Nature Mater 2005;4:518-24. 

[232] Tesavibul P, Felzmann R, Gruber S, Liska R, Thompson I, Boccaccini AR et al. Processing of 

45S5 Bioglass
®

 by lithography-based additive manufacturing. Mater Lett 2012;74:81-4. 

[233] Kolan KCR, Leu MC, Hilmas GE, Brown RF, Velez M. Fabrication of 13-93 bioactive glass 

scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication 

2011;3:025004. 

[234] Verné E, Di Nunzio S, Bosetti M, Appendino P, Vitale-Brovarone C, Maina G et al. Surface 

characterization of silver-doped bioactive glass. Biomaterials 2005;26:5111-9. 

[235] Verné E, Ferraris S, Vitale-Brovarone C, Spriano S, Bianchi CL, Naldoni A, Morra M, 

Cassinelli C. Alkaline phosphatase grafting on bioactive glasses and glass-ceramics. Acta Biomater 

2010;6:229-40. 

[236] Verné E, Miola M, Ferraris S, Bianchi CL, Naldoni A, Maina G, Bretcanu O. Surface 

activation of a ferrimagnetic glass-ceramic for antineoplastic drugs grafting. Adv Eng Mater 

2010;12:B309-19. 

[237] Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue 

engineering: current trends and forecasts for the future. J Biomed Mater Res A 2011;97:514-35. 

[238] Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008;29:2942-53. 

[239] Richter PW, Talma J, Gous PNJ, Roux P, Minnaar M, Levitz LM et al. Orbital implant. US 

Patent No. 2009/0309274A1, 2009. 

[240] Durette JF. Orbital implant. US Patent No. 5713955, 1998. 

[241] Karsloğlu S, Serin D, Simşek I, Ziylan S. Implant infection in porous orbital implants. 

Ophthal Plast Reconstr Surg 2006;22:461-6. 



78 

 

[242] Wilson M, Wobig JL, Dailey, RA. Infection of a porous polyethylene orbital implant with 

Capnocytophaga. Ophthal Plast Reconstr Surg 1998;14:398-402. 

[243] Karslioglu S, Serin D, Simsek I, Ziylan S. Implant infection in porous orbital implants. 

Ophthal Plast Reconstr Surg 2006;22:461-6. 

[244] Badilla J, Dolman PJ. Methods of antibiotic instillation in porous orbital implants. Ophthal 

Plast Reconstr Surg. 2008;24:287-9. 

[245] Jun MS, Jun JH, Jun SU, Jun YM. Bio-artificial eye and conformer. US Patent No. 

US2008/0262612A1, 2008. 

[246] Yang JW, Choi JW, Lee SG, Kim DS. Antibacterial properties of artificial eyes containing 

nano-sized particle silver. Orbit 2011;30:77-81. 

[247] Kawata K, Osawa M, Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses 

to HepG2 human hepatoma cells. Envir Sci Technol 2009;43:6046-51. 

[248] Haase A, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F et al. Toxicity of silver 

nanoparticles in human macrophages: uptake, intracellular distribution and cellular response. J 

Phys: Conf Series 2011;304:012030. 

[249] Baino F, Perero S, Miola M, Ferraris S, Verné E, Ferraris M. Rivestimenti e trattamenti 

superficiali per impartire proprietà antibatteriche a dispositivi per oftalmoplastica. IT Patent No. 

TO2012A00051, 2012. 

[250] Ferraris M, Perero S, Miola M, Ferraris S, Verné E, Morgiel J. Silver nanocluster-silica 

composite coatings with antibacterial properties. Mater Chem Phys 2010;120:123-6. 

[251] Ferraris M, Balagna C, Perero S, Miola M, Ferraris S, Baino F et al. Silver nanocluster/silica 

composite coatings obtained by sputtering for antibacterial applications. IOP Conf Series Mater Sci 

Eng 2012;40:012037. 

[252] Balagna C, Perero S, Ferraris S, Miola M, Fucale G, Manfredotti C et al. Antibacterial coating 

on polymer for space application. Mater Chem Phys 2012;135:714-22. 



79 

 

[252] Verné E, Ferraris S, Miola M, Fucale G, Maina G, Martinasso G et al. Synthesis ad 

characterization of antibacterial glass-ceramics. Part 1 - microstructure, properties and biological 

behavior. Adv Appl Ceram 2008;107:234-44. 

[254] Hau SC, Tuft SJ. Presumed corneal argyrosis from occlusive soft contact lenses: a case report. 

Cornea 2009;28:703-5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 

 

Figure legends 

 

Fig. 1. Sagittal sections of a human orbit after enucleation surgery followed by placement of a 

spherical implant that replaces the volume deficit created by eye removal. In these pictures, the 

extraocular muscles are sutured directly to the implant. The ocular prosthesis is designed to fit in 

between the eyelids and the conjunctiva/implant in order to mimic the normal appearance of a 

healthy eye. The connection between orbital implant and ocular prosthesis can be indirect, due to 

the interposition of the conjunctiva (a), or direct, by the use of a peg (b). Pegging procedures are 

normally performed only in porous orbital implants. After some months from primary surgery, a 

hole can be drilled into the anterior section of the implant; a peg is then inserted in the hole. Use of 

pegged implants leads to a greater transmission of movement of the implant to the artificial eye, 

giving a more life-like appearance. 

  

Fig. 2. Use of PMMA for manufacturing orbital implants: (a) pear-shaped implant (Sahaf implant 

type I) (image adapted from Kamal et al. [38]); (b) comparison between the Iowa implant (upward) 

and the Universal implant (downward), showing that the latter has softer mounds in comparison to 

the Iowa predecessor (image adapted from Sami et al. [15] © Elsevier); (c) magnetic orbital implant 

and (d) associated ocular prosthesis exhibiting magnet rusting in both components, which may 

induce late exposures over the central surface of the implant associated to tissue necrosis due likely 

to iron toxicity (images adapted from Sami et al. [15] © Elsevier).  

 

Fig. 3. Porous orbital implants: (a) coralline HA sphere (Bio-eye
®

); (b) some examples of porous 

PE implants (Medpor
®

 line): simple sphere, conical, egg-shaped, “quad” motility implants (courtesy 

of Porex Surgical); (c) SEM micrograph showing the porous structure of an alumina implant 

(Bioceramic implant) (image adapted from Jordan and Klapper [23] © Springer); (d) HA spherical 

implant wrapped within polyglactine 910 mesh prior to surgery (image adapted from Lukats et al. 
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[209]); (e) vicryl mesh-wrapped HA orbital implant with a titanium sleeve placed before surgery 

(primary placement) (image adapted from Liao et al. [192] © Nature Publishing Group).   

 

Fig. 4. Typical PMMA ocular prosthesis: (a) hand painting of the iris button, so that it can be as 

similar as possible to the aesthetic appearance of the healthy eye (b); (c) frontal appearance (with 

painted capillary vessels) of the final prosthesis after polishing for optimal fit to the patient’s 

anatomy; (b) posterior convex surface. 

 

Fig. 5. Smart biomaterials and strategies for the possible development of future orbital implants 

with advanced properties: (a) SEM micrograph showing the porous structure of a bioactive SiO2-

based glass scaffold fabricated by sponge replication method: its 3-D interconnected pore network 

is similar to that of Bioceramic implant (Fig. 3c); (b) TEM image showing the ordered mesoporous 

structure (parallel channels with diameter of about 5 nm) of a mesoporous bioactive glass (ternary 

system SiO2-CaO-P2O5) wherein therapeutic agents, drugs or suitable organic moieties could be 

incorporated for subsequent controlled release in situ; (c) silver diffusion profile (the surface is on 

the left) on the cross-section of a silver-doped glass (ternary system SiO2-CaO-Na2O) estimated by 

compositional analysis (EDS) (image adapted from Verné et al. [234] © Elsevier); (d) high-

resolution TEM image showing the cross-section of a silver nanocluster/silica composite thin 

coating deposited on silica substrates by radio-frequency co-sputtering (image adapted from 

Ferraris et al. [250] © Elsevier). The approaches illustrated in (c) and (d) are potentially useful to 

impart antiseptic properties to the orbital implant material [249]. 
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