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Introduction

Galaxy clusters play a leading role in both present and planned cosmological investiga-
tions (see Allen, Evrard, and A. B. Mantz, 2011, and references therein). They represent
the biggest collapsed structure of the Universe, sitting on top of the highest peaks of the
dark matter density field. These objects are considered from long time as cosmological
probes; the possibility to link their observed properties to the fundamental quantities
of their host haloes, modelled as a function of cosmological parameters, is in fact very
concrete. The advantage in using these objects for this kind of studies comes from a) the
presence of multiple independent methods covering the whole spectrum to determine
the total halo mass: this helps in understanding the systematics that affect different
procedures and then provide a robust mass estimate; b) the less sophisticated modelling
required to link the observations with cosmologically relevant quantities, as for these
masses the baryon physics has only a marginal influence; the same cannot be exploited
with e.g. galaxies, as the link between the total mass and observable quantities is much
more influenced by baryon physics.

These positive aspects apply also to the case of clustering of galaxy clusters. More-
over, clusters have a large clustering signal, due to the high bias and a very negligible
contribution from non-linear redshift-space distortions caused by peculiar motions of
objects in virialized haloes. All of these advantages counterbalance the larger mea-
surement uncertainties due to the paucity of cluster sample with respect to galaxy
clustering analyses. Moreover, the possibility to combine all the probes the galaxy
clusters can provide gives us an unique instrument to address the fundamental puzzles
in the present-day cosmology (Sartoris et al., 2016).

In this Thesis we will exploit the clustering of an optically selected sample of galaxy
clusters, focusing in particular on the two-point correlation function (2PCF). In § 1 we
will give a general overview on clustering. Firstly, we will describe the basic concepts
of standard cosmological model and on the theory of structure formation. Then we will
provide details on the methods used to measure the clustering signal from samples
of discrete tracers and how to model them to derive cosmological constraints. In § 2
we will present the CosmoBolognaLib (Marulli, Veropalumbo, and Moresco, 2016), a
large set of Open Source C++ numerical libraries for cosmological calculations, aimed
at defining a common numerical environment for cosmological investigations of the
large-scale structure of the Universe. In these libraries are implemented all the tools that
we will use in this thesis. We will describe in § 3 our results on clustering, focusing in
particular on the detection and modelling of the baryon acoustic oscillation peak. In § 4
we will exploit the standard ruler technique to measure the distance from the BAO peak
detected from the clustering of three cluster samples, selected in three different redshift
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ranges. We will then sample the distance-redshift relation and derive constraints on
different cosmological models. We will present in § 5 a joint analysis of clustering and
stacked lensing to break the degeneracy between the bias and the power spectrum
amplitude parameter σ8. Finally, in § 6 we draw our conclusions.
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Chapter 1

Clustering - theory and observations

The standard cosmological model is the theoretical framework that describes the
evolution of the Universe, its dynamic and the emerging of structures from the growth
of gravitational instabilities of small overdensities. This paradigm postulates that the
Universe is spatially homogeneous and isotropic, and evolves according to the General
Relativity theory of gravity. The Universe is found to be spatially flat, and formed in
a hot Big Bang scenario about 13.8 Gyr ago, as confirmed from observations of the
Cosmic Microvawe Background (CMB) (Planck Collaboration et al., 2016).

Its evolution is determined by its energy budget. The latter consists of several
components: relativistic radiation (lights and neutrinos); non-relativistic matter, made
of a dominant dark component, the cold dark matter (CDM) that interacts only gravita-
tionally and a minor fraction of baryonic matter; finally the larger part of the energy
budget today is composed of a dark energy (DE) component, that can be described
as a constant term, Λ. The seeds of the gravitational instabilities are the quantum
fluctuations, stretched to macroscopic scales during an exponentially expanding phase
at very early time, called cosmic inflation.

In this chapter we will overview the basic assumptions of the standard cosmological
model that we aim to constrain in the forthcoming sections of this Thesis. in § 1.1 we will
describe the geometry of the Universe, and how the Universe dynamics is influenced
by its content § 1.1.1. In § 1.2, we will describe the growth of perturbations, that led to
the large-scale structure properties observed at present days, starting from linear theory,
in § 1.2.1, and then briefly outlining the theory of non-linear growth in § 1.2.2. Finally,
we will describe the emerging of collapsed objects from the peaks of the density field
in § 1.3. We will review the most common definitions of distances used in cosmological
analyses in § 1.1.3, focusing in particular on baryon acoustic oscillation feature, that is
described in § 1.4. Finally we will present the main techniques used to measure and
model the two-point correlation function (2PCF) in § 1.5, and § 1.6.

1.1 Metric of the Universe space-time

The two main pillars of the standard cosmological model are the General Relativity
(GR) theory and the Cosmological Principle (CP). GR is the theory of gravity developed
by Albert Einstein in 1915, in which the Newtonian gravitational scalar field is replaced
by a 4-th dimensional tensor, that describes the behaviour of space-time in presence of



4 Chapter 1. Clustering - theory and observations

mass. The field equations are:

Gµ,ν =
8πG

c4
Tµ,ν , (1.1)

where G is the gravitational constant and c is the speed of light. Eq. (1.1) relates the
source of the gravitational field, that is the energy-momentum tensor, Tµ,ν , with the
space-time curvature Gµ,ν .

The CP states that the Universe is homogeneous and isotropic on large scales; that
is, its main properties appears the same at each observer, in all directions. Indeed, large
scale structure studies demonstrated the isotropy of the present day universe on scales
larger than 150 Mpc ; going to earlier epochs the same results appear from the analysis
of the temperature distribution of cosmic microwave background radiation, which
deviation from the mean value of T = 2.7255 K is of the order of 10−5. Homogeneity
is instead impossible to be probed directly. It must be assumed that we are not a
privileged observer in the Universe: this can only be not rejected by testing data against
non-homogeneous models (see Maartens, 2011, for a review of homogeneity tests) .

The direct consequence from these assumptions is the possibility to define a
uniquely determined space-time metric: the Robertson-Walker metric (RW), defined as
follows:

ds2 = c2dt2 − a(t)2

[
dr2

1−Kr2
+ r2dΩ2

]
, (1.2)

where ds2 is the infinitesimal element separating two events in space-time, c is the
speed of light, dt is the time interval and dr, dΩ is the spatial separation in spherical
coordinates. The metric depends on two quantities:

• the scale factor a(t), that describes the evolution of the space; as a consequence of
the cosmological principle, only the temporal dependence remains,

• the curvature constant K, that describes the geometry of the Universe and can
have three values: K = 0,−1,+1, that mean flat, hyperbolic and spherical Uni-
verse, respectively; moreover it is important to notice that this quantity is constant
with time.

Keeping fixed the angular coordinates, we can derive two types of distances from
RW:

• the proper distance, that is the distance computed by considering contemporane-
ity in the measure (dt = 0):

dp(r, t) = a(t)

∫
dr√

(1−Kr2)
= a(t)f(r) , (1.3)

f(r) =





sinh−1(r) K = −1

r K = 0

sin−1(r) K = 1

(1.4)
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• the comoving distance, that is the proper distance computed today (t = t0, a(t) =

a0):

dc = a0f(r) =
a0

a(t)
dp(r, t) , (1.5)

From Eq. (1.4) we can obtain the expansion rate of the Universe, that is the Hubble
function:

H(t) ≡ ȧ(t)

a(t)
, (1.6)

The Universe expands (contracts) if H > 0 (H < 0). Taylor expanding at second order
the scale factor a(t) for t0 and after some algebra we obtain:

a(t) ≈ a0

[
1 +H0(t− t0)− q0H

2
0 (t− t0)2

]
, (1.7)

where H0 is the Hubble constant and q is the deceleration parameter, defined as:

q = − äa
ȧ2

, (1.8)

According to the above definition, the space accelerates if q < 0, and viceversa. The
Hubble constant and the deceleration parameter can be used to approximate the
description of the universe dynamics, the first describing the expansion rate, the second
quantifying how fast it is. In the following, we will provide more general equations
that describes the dynamics of the Universe as a function of its content.

1.1.1 Universe components

The energy content of the Universe enters the Einstein field equations (Eq. 1.1) trough
the stress-energy tensor, Tµ,ν . The most generic choice under the CP assumption is to
assume a multi-species perfect fluid:

Tµ,ν = (p+ ρ)UµUν + pgµ,ν , (1.9)

where ρ and p are the energy density and pressure of the fluid, Uν its 4−velocity and gµ,ν
is the space-time metric. For non-interacting particle species, the stress energy tensor
can be written as the sum of the contributions of each component: Tµ,ν =

∑N
i=1 T

i
µ,ν .

Applying continuity equations to this quantity,∇νTµ,ν = 0 , Eq. (1.9) becomes:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 . (1.10)

Each of the Universe component can be considered a barotropic fluid, so that its
equation of state can be written as:

p = wc2ρ , (1.11)
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where w the equation of state parameter. From Eqs. (1.10) and (1.11), one can easily
derive the equation that links energy density and Universe dynamics:

ρ ∝ a(t)−3(1+w) , (1.12)

with a(t) the scale factor.
Taking the first derivative with respect to ρ in Eq. (1.11), we derive the fluid speed

of sound as c2
s = dp

dρ = wc2..The Zel’dovich interval is defined by imposing cs < c. It
provides the range of allowed values for the equation of state parameter: 0 ≤ w < 1.

The main components of the Universe are the following:

• non-relativistic matter, in the form of baryonic matter and CDM whose equation
of state parameter is wm = 0. The matter energy density contribution scales as
the volume, getting diluted as the Universe expands;

• relativistic component, with wr = 1
3 . Its energy density scales as a−4: relativistic

species such as photons and massless neutrinos get diluted and lose energy as a
consequence of the expansion;

• the cosmological constant: The solutions of the Einstein field equations are invari-
ant for a constant term Λ; interpreted as the vacuum energy, this term enters the
stress-energy tensor as an extra density component ρΛ = − Λc4

8πG . From Eq. (1.9) it
can be derived wΛ = −1.

The standard cosmological paradigm can be extended once we relax the cosmo-
logical constant hypothesis, that is we can introduce a DE component with equation
of state wde 6= −1. There is no restriction on wDE , it can be either constant or redshift
dependent: Chevallier and Polarski (2001) and Linder and Jenkins (2003) propose the
following parametrization (CPL):

wDE = w0 + wa
z

1− z , (1.13)

where w0 is the present day value of the equation of state and wa parametrises its
redshift evolution.

1.1.2 Friedmann equations

Solving the Einstein field equations, using Eq. (1.2) as a metric, for an isotropic and
homogeneous Universe and a perfect fluid stress-energy tensor, only 2 equations remain
independent. These are called the Friedmann equations:

ȧ+Kc2 =
8πG

3
ρa2 +

Λ

3
, ä =

4π

3
G

[
ρ+

3p

c2

]
a+

Λ

3
(1.14)

where ρ is the energy density and p is the pressure; ȧ, ä are the first and second time
derivatives of the scale factor, respectively.
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Defining the critical density as:

ρcrit =
3H(t)2

8πG
, (1.15)

and combining Eqs. (1.12), (1.15), we can write the density parameter, Ω as:

Ω =
ρ

ρcrit
=

8πG

3H2
0

ρ =
8πG

3H2
0

ρ0

(a0

a

)3(1+w)
. (1.16)

Substituting the latter into first Friedmann equation for a multi-component fluid, we
have:

H2(a)

H2
0 (a)

=
( a0

a

)2
[∑

i

Ω0,i

(a0

a

)1+3wi
+ 1− Ω0

]
, (1.17)

where H(t) and H0 are the Hubble function values at t and t = 0 respectively, Ω0 is the
total density parameter today and the sum runs over the energy density components.
From Eq. (1.17) we can deduce two fundamental points. The first is that dynamics of
the Universe is determined completely by its contents. The second one is related to the
curvature constant K: by further manipulating the first Friedmann equation, we can
write:

Kc2 = −Ωka
2
0

D2
H

, (1.18)

where Ωk = 1−Ω0 is the present day total energy density parameter and DH = c/H0 is
the Hubble distance. It is evident that the curvature is determined by the total amount
of energy in the Universe; if ρ > ρcrit the Universe is closed, while ρ < ρcrit means an
open Universe. Finally ρ = ρcrit stands for a flat Universe.

By looking at the second time derivative of the scale factor, ä it can be easily shown
that the expansion is accelerated only if w ≤ −1

3 : In fact, the deceleration parameter
can be written as follows:

q0 =
Ω0

2
(1 + 3w) , (1.19)

A Universe with only components whose equation of state fall into the Zel’dovich
interval cannot experiencing an accelerated expansion.

1.1.3 Distances in cosmology

In the previous sections we have seen how strong is the connection between the
Universe dynamics and its contents. In this section we will describe how this connection
can be exploited to derive cosmological constraints.

The most important distance indicator is the redshift, that is the wavelength shift of
the observed spectrum with respect to its rest frame value, due to photons travelling in
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an expanding space. By integrating the RW geodetics, we have:

z ≡ λo − λe
λe

=
a0

a(t)
− 1 , (1.20)

where a0 and a(t) are respectively the scale factor nowadays and at time t. An expand-
ing (contracting) Universe implies a0 > a(t) (a0 < a(t)), then the observed wavelenght
of distant sources will be redshifted (blueshifted) with respect to the emitted wave-
length. Taking the first order of Eq. (1.7) we obtain cz = H0dp; that is a reasonable
approximation only at low redshift.

We can rewrite the comoving distance as:

DC(z) = DH

∫ z

0

dz√
E(z)

, (1.21)

with DH = c/H0 is the Hubble distance and E(z) = H(z)/H0 is given by Eq.(1.17).
We can introduce also the other distance definitions, as follows:

• the luminosity distance DL: this quantity is defined to keep unaltered the relation
between the source flux F and the intrinsic luminosity L, that is→ F = L

4πD2
L

.
Taking into account the redshift due to photons travelling in the expanding space,
DL can be written as:

DL = a0r(1 + z) , (1.22)

where from Eq. (1.5), r = f−1(DC/a0).

• angular diameter distance DA: suppose we have a source with angular extension
δθ at r = r1, emitting photons at t = t1; Eq (1.2) relates its angular size to the
proper dimension as D = a(t1)r1δθ. We can define:

DA(t) = a(t)r . (1.23)

In order to constrain fundamental quantities related to the geometry of the Universe,
it’s required to measure independently distances and redshifts. This can be done by
comparing distance-dependent observables, such as fluxes or projected source sizes,
absolute quantities, known a priori or calibrate independently. This is the case of
standard candles and standard rulers , sources with known absolute magnitude and
intrinsic sizes, respectively.

1.2 Basic concepts of clustering

As already stated, the CP holds only at very large scales. In fact the Universe is largely
inhomogeneous at scales ≤ 150Mpc with an hierarchy of structures emerging from the
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background density field. The density contrast δ is defined as:

δ(~x) ≡ ρ(~x)− ρ
ρ

, (1.24)

where ρ(x) is the punctual density and ρ is the background mean density. Its Fourier
transform is:

δ̂(~k) =
1

(2π)3/2

∫
d3x δ(~x)ei

~k·~x , (1.25)

where k = 2π/x.
As a theoretical starting point, we can assume that density contrast is a homoge-

neous and isotropic stochastic field; the value of the field at each point is randomly
extracted from a probability distribution, that has to be invariant for translations and
rotations. This extends the CP to a perturbed Universe. The exact theoretical descrip-
tion of the density contrast field is not achievable as the field comes out of stochastic
processes. Instead what can be modelled are the compressed statistical information
that describe it. To complicate the picture, we are not able to compare different realiza-
tions: the observed Universe represents the only achievable realisation among all ones.
Nevertheless, we can exploit the ergodic hypothesis, that states that the mean between
the different realisations is equal to the spatial mean of a single one: according to this
principle, sufficiently distance regions evolved independently between each other. CP
+ Ergodic assumption together form the so called Fair Sample hypothesis.

To determine the density contrast field, we can measure its moments. The mean
value and the first order central moments are zero, (Eq. 1.24). The first significant
quantity is the variance. In the density fluctuations are Gaussian, the variance is all we
need to describe statistical properties of the density field. The variance of the density
contrast field can be computed by taking the spatial average:

σ2 ≡ 1

V∞

∫
d3x < δ2(x) > , (1.26)

where V∞ =
∫

d3x is the so-called Universe volume. that in Fourier space become:

σ2 ≡ 1

(2π)3V∞

∫
d3k < δ2(k) > . (1.27)

< δ2(k) > is what is called the power spectrum P (k), and measures the contribution
of scales k to a generic fluctuation in configuration space, δ(x). Its anti-transform is the
two-point correlation function (2PCF):

ξ(r) =
1

(2π)3/2

∫
d3kP (k)eikr . (1.28)
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Moreover, punctual density fluctuations cannot be observed directly; we can actu-
ally measure only mass fluctuations averaged on a typical scale R:

δM (~x) ≡< δM

M
>= δ(~x) ∗W (~x,R) , (1.29)

where R is the scale, M ∝ ρ̄R3 and W (~x,R) is the window function.
This operation provide a filtered density field; all the information at scale < R is

then lost. δM (~k) is again the Fourier transform of δM (~x). In Fourier space convolutions
became products, so that:

δM (~k) = δ(~k)Ŵ (~k,R) , (1.30)

where δ(~k) and Ŵ (~k,R) are the Fourier transform of δ(~x) and W (~x,R) respectively.
From Eq. (1.29) the mass variance is defined as the convolution of the power spectrum

with the window function W̃R(k):

σ2
M ≡

1

(2π)3V∞

∫
d3k < δ2(~k) > Ŵ 2(~k,R) . (1.31)

This quantity is the typical size of a density fluctuation on a scale R. The value of
this quantity at z = 0 and r = 8 Mpch−1 , that is σ8, is commonly used to parametrise
the power spectrum normalization.

1.2.1 Linear perturbation theory

As long as the density contrast field is much lower then 1, the linear theory can be
applied to obtain analytic solutions for the growth of structures. The approach is
similar to the classical Jeans solution for gravitational instabilities, here expanded to a
non-static space.

From fluid equations approximated at first order and modified for an expanding
Universe, we can derive the dispersion relation:

δ̈k + 2
ȧ

a
δ̇k + δk

[
k2v2

s − 4πGρb
]

= 0, , (1.32)

where v2
s is the speed sound, ρb is the background density and k = kcom/a is the

physical wave number. This equation links the temporal evolution of fluctuations on
a scale k of a certain component to the background expansion. It thus depends on a)
the type of component, which determines the pressure term via the sound speed, b)
the epoch considered, that determines the background evolution. Another important
consequence is that the density contrast depends only on its scale k; fluctuations on
different scales evolves independently. This is one of the main advantages of the
linear approximation.This condition will cease to be true when approaching non-linear
regimes.

In analogy with classical Jeans theory, we can define a typical length λJ =
√

(πc2
s)/(Gρ),

at which corresponds a mass MJ ∝ λ3
Jρb. This scale separates two regimes: for λ > λJ
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perturbations become unstable and can growth; for smaller values, fluctuations propa-
gate into the fluid at the sound speed. The dissipation scale, λd, separates the regimes
at which perturbations can survive, from the ones in which perturbations are washed
out by energy exchange between particles. The dissipation scale is associated to the
typical particle velocity, the speed of sound for baryonic matter, the dispersion velocity
for DMr particles. It is worth notice that both the Jeans scale and the dissipation scale
change with time and as a function of cosmological parameters.

We are going to present the solutions for the growth of fluctuations before and after
the equivalence, by assuming that in these two epochs the background evolution is
described by a radiation dominated (for z > zeq) and matter dominated (for z < zeq)
Einstein-de Sitter model. The solutions presented below are valid for Ω = 1. It can
be shown that the growth outside and inside the horizon for Ω < 1 (> 1) Universe is
slower (faster) with respect to the one of flat universe.

Outside the horizon

Above the horizon scale (λ > RH ), by definition, perturbations are dominated by
gravity, as these scales are not causally connected. The growth of fluctuations is
common for all the components and it only depends on the background cosmology.

We have the following trends:

• δDM ∝ δb ∝ δR ∝ a2 for z > zeq,

• δR ∝ δb ∝ δDM ∝ a for z < zeq,

where δDM , δb and δR are the fluctuations of DM, radiation and baryons respectively.

Inside the horizon

Due to their high sound speed, radiation fluctuations cannot growth inside the horizon
scale as their Jeans scale is larger than the horizon: each overdensity is then rapidly
cancelled. For the matter component we have to consider different behaviours before
and after the equivalence: before the equivalence, DM fluctuation can growth until
they enter the horizon, then they remain frozen; this is the so called stagnation effect
(Meszaros, 1974). Their maximum growth is ∝ (aH/aeq)

2, where aH and aeq are the
value of the scale factor when the perturbation scale crosses the horizon and at the
equivalence epoch, respectively. After the equivalence, fluctuations larger than the
Jeans scale growth at a rate δ̇ ∝ a(t). Fluctuations that enters the horizon after the
equivalence never stop to growth.

Baryons stay coupled to radiation until Compton scattering is efficient against
expansion of the Universe. The baryon-photon fluid oscillates in the already collapsed
DM haloes and, after decoupling (z < zdec) they are free to collapse, with a growth
δB = δDM (1− adec/a)(baryon catch-up), where adec is the scale horizon at zdec.
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Primordial power spectrum and transfer function

The standard cosmological paradigm predicts an early phase of inflation, in which
the expansion of the scale factor is exponential with time, and thus the expansion is
accelerated. The inflationary phase provides a mechanism for the origin of the initial
seeds of the large-scale structure that we see today. The distribution of the primordial
density fluctuations is described by a power-law power spectrum:

P (k) = Ask
ns , (1.33)

where As and ns are the amplitude and the scalar index of primordial power spectrum,
respectively. The value of ns has been measured with high accuracy with CMB data.
It’s concordance values is ns = 0.968± 0.006± (Planck Collaboration et al., 2016). The
growth of perturbations modifies the primordial shape according to:

P (k, t) = Ask
ns

(
D(t)

D(t0)

)2

T (k) , (1.34)

where D(t) is the growth factor, that scales as a ∝ 1/(1 + z) after equivalence, and
T (k, t) is the transfer function that describes how much of the original perturbation
survives the processes related to micro-physics (i.e. the sub-horizon effects). The scales
interested by this kind of processes are the ones smaller than the horizon scale before
equivalence. We have:

k → 0 =⇒ T (k)→ 1 , (1.35a)

k →∞ =⇒ T (k)→ k−2 → 0 . (1.35b)

(1.35c)

The scale that separates these two regimes is the size of the horizon at the equiva-
lence. Thus it depends on both ΩM and Ωr.

1.2.2 Growth of perturbations in non-linear regime

The linear perturbation theory works only at very high redshift, and is accurate enough
to reproduce the CMB power spectrum (see e.g. Planck Collaboration et al., 2014b).
This is not enough anyway to reproduce the properties of the observed non linearly
evolved density field.

The description of the density field evolution in non-linear regime cannot be done
analytically: the major complication, as anticipated in § 1.2.1, is mode-coupling: the
growth depends on all the scales k. The basic approach is the so-called Perturbation
Theory (PT), that extends to higher orders the equations describing the gravitational
instability. The linear theory briefly summarised in § 1.2.1 represents its limit at first-
order. For a review on PT and its extension see Bernardeau et al. (2002) and Crocce and
Scoccimarro (2006). The PT modelling is not the unique way to address the question.
Many efforts have also been spent in the past to build large cosmological simulations,
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aimed to directly look the non-linear effects of gravity, to have an independent re-
alisation to be compared with models and data. (see e.g. Sanchez et al., 2016, for a
comparison between models and simulations).

The final goal is to have a theory that should be able to predict with high accuracy
statistical properties of the density field. The big challenge is that future surveys are
predicted to reach a statistical precision that is below the present day systematics of
theoretical models.

Far to be exhaustive on the topic, we provide some basic results that are useful
for the context of this Thesis; we will present the first order Largrangian perturbation
theory solutions for the non-linear evolved density field, commonly recognized as
Zel’dovich approximation (ZA) (Zel’dovich, 1970).

The Lagrangian approach to perturbation theory (LPT) aims at describing the
non-linear density field by the displacement field ~Ψ((q, t)):

x(t) = q(t) + ~Ψ(q, t) , (1.36)

where x(t) and q(t) are respectively the Eulerian and Lagrangian particle positions,
respectively. The displacement field is the function that maps the two reference frames.
The Zel’dovich approximation is the linear solution of the motion equations in LPT. For
~Ψ((q, t)) we have:

∇q
~Ψ(q, t) = −D(t)δ(q) , (1.37)

where D(t) is the growth factor and δ(q) is the density field contrast in Lagrangian
coordinates. From Eq. (1.36) we can derive the Jacobian of the transformation, that
is J = ∇q

~Ψ(q, t). Putting together the latter, and Eq. (1.37), and considering an
overdensity in Eulerian coordinates ρ̄(1+δ(x))dx3 = ρ̄dq3 we get the following solution:

1 + δ(x, t) =
1

(1−D(t)λ1) (1−D(t)λ2) (1−D(t)λ3)
. (1.38)

where λi are the eigenvalues of the Jacobian matrix.
Being D(t) positive, the sign of eigenvalues determine the way collapse proceed:

• all negative eigenvalues: no collapse;

• only one positive eigenvalue: the collapse happens only along one direction,
forming bi-dimensional structures;

• two positive eigenvalues: filamentary structures form;

• all positive eigenvalues: the growth happens along all the axis, with matter that
condensates in nodes.
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Results from numerical simulations show that the collapse happens at most in fil-
amentary structures, with large structures as groups of clusters that form at their
intersections.

ZA led to a good approximation for the non-linear power spectrum, at least when
sufficiently large scales are considered. It is also useful to revert the effect of the non-
linear growth on the observed density field. This method is called the reconstruction
technique (Eisenstein, Seo, and M. White, 2007).

1.3 Haloes

In this section we will describe the basic concepts on formation of collapsed DM
structures, that is the haloes, and the connection with the underlying density field. We
will start by reviewing the analytic treatment of the spherical collapse in § 1.3.1. The
we will move to describe the main statistics of haloes in § 1.3.2, and their relation with
the density field in § 1.3.3.

1.3.1 Spherical collape

Spherical collapse represents the simplest model of non-linear growth, and the only one
with an exact analytic solution (Gunn and Gott, 1972; Lahav et al., 1991). This model
describes the evolution of a spherical overdensity, that detaches from the background
density field and possibly collapse in a finite timescale. The collapse follows three
phases:

• expanding phase: the overdensity still follows the background dynamics, but
decelerates due to the gravitational field attraction, and finally stops at the
turnaround epoch, tta;

• collapse: after reaching tta, the perturbation evolves independently from the
background and starts to collapse;

• virialization: the collapse is stopped by the internal matter pressure; the structure
is now formed in a typical timescale t = tc = 2tta. The full virialization happens
tvir = 3tta.

At the time of collapse, the overdensity reaches the value 1 + δNL ≈ 178. Extrap-
olate from linear theory, the corrisponding value of the overdensity is δ = 1.68. We
actually consider as collapsed all the fluctuations that reach this value of δ in the linear
approximation. Despite its simplicity, this model then represents the starting point for
the description of collapsed structures. (Press and Schechter, 1974).

1.3.2 Halo mass function

The spherical collapse describes how an overdensity eventually becomes high enough
to detach from the background evolution and to collapse in a bound object, that we
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call haloes. Their comoving number density is strictly related to cosmology, and is
determined by the mass function:

dn(M, z)

dM
= f(σ(M, z))

ρ̄

M

d lnσ(M, z)−1

dM
. (1.39)

f(σ(M, z))ρ̄ is the amount of mass contained in fluctuations of typical mass M =
4
3πR

3ρ̄, with ρ̄ the average matter density and σ the density contrast for a fluctuation
on scale R.

The simplest argument that can be invoked to derive this quantity analytically
comes from the spherical collapse (§ 1.3.1): a perturbation is considered collapsed when
it reaches the threshold value δc = 1.68. Assuming that the probability distribution
function for a perturbation on a scale M is a Gaussian with variance σ2

M (Eq. (1.31)),
we can derive an analytic function for f(σ):

f(σ(M)) =

√
2

π

δc
σ(M)

exp

(
− δ2

c

2σ2(M)

)
. (1.40)

This results is the basis of the Press-Schechter theory (PS) (Press and Schechter, 1974).
Subsequent works extended this theory by relaxing some of its assumptions, such
as the spherical geometry. For instance, Sheth and Tormen (2002) proposed a more
accurate model by considering an elliptical collapse.

A different approach is to compute the comoving number density of haloes from
numerical simulations. (e.g. Angulo et al., 2012; Crocce et al., 2010; Jenkins et al., 2001;
Reed et al., 2007; J. Tinker et al., 2008).

One of the fundamental characteristics of the mass function is that it decreases
at large masses. The dependence on cosmology enters trough the smoothed density
field term, that is σ(M). Larger smoothing radii correspond to larger masses. this
implies that bigger haloes trace the highest (and rarest) peaks of the density field. Thus,
massive haloes are less abundant with respect to smaller ones in a fixed comoving
volume.

From Eq. (1.39) it is straightforward to obtain the total number of haloes Nh above
a certain mass threshold Mmin in a volume V :

Nh = A

∫
zmax

zmin

∫ ∞

Mmin

dV

dz
n(M, z)dMdz , (1.41)

where A is the area, zmin and zmax are the redshift boundaries and dV
dz is the comov-

ing volume element.

1.3.3 Halo bias

The mass function provides the average abundance of haloes as a function of mass, that
at a given redshift can be computed by counting the amount of matter in fluctuations
large enough to collapse δ > δc (Press and Schechter, 1974). The collapse is anyway
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dependent also on the local density fluctuation. Assuming the PS formalism, the ratio
between the number of collapsed haloes in a Lagrangian volume with respect to the
mean value can be written as:

δLh =
δn

n
=

(
ν2 − 1

δc

)
δ0 , (1.42)

with δLh and δ0 the density contrast of haloes and matter respectively, and ν = δc/σM

with δc the critical density above which the collapse can happen and σM the typical
root mean square of matter fluctuations. At fixed M (σM ), if δ0 > 0 (δ0 < 0) the number
of haloes is larger (lower) than the mean value. Varying M , if δc > σM (< σM ) the
number of haloes is larger (lower) than the mean value. At M = M∗ the number of
haloes is equal to the average. Mapping to Eulerian coordinates one can write:

δh =
δn

n
=

(
1 +

ν2 − 1

δc

)
δ , (1.43)

being δh and δ the overdensity of haloes and matter respectively and ν ∝ σ(M)−1. The
halo bias then becomes:

bh =

(
1 +

ν2 − 1

δc

)
. (1.44)

Thus in the PS formalism, the bias depends only on the mass, M , and the redshift and
it is scale independent. It is easy to derive that the bias increases with M . Going to
second order statistics, Eqs.(1.71b) and (1.44) give:

ξhh =

(
1 +

ν2 − 1

δc

)2

ξm = b2(M, z)ξm . (1.45)

It can be noticed that in case we are able to measure the halo mass function, both the
bias and the correlation function depends on the DM density field; the bias is itself, in
this case, a model prediction.

By assuming a model for the bias b(M, z), it is possible to obtain the effective bias
of a haloes sample above a certain threshold Mmin:

beff (z) =

∫ ∞
Mmin

n(M, z)b(M, z)dM∫ ∞
Mmin

n(M, z)dM
. (1.46)

Being weighted by the mass function, the effective bias is almost equal to the bias
of the smallest halos, as the latter dominate in number.

The first to introduce the bias argument was (Kaiser, 1984), which noticed the
different clustering of galaxies and galaxy clusters. Rare objects such as clusters show
and enhanced clustering signal with respect to the galaxy correlation. Their rarity is
then the key to explain this effects, as they can only form at the highest peaks of DM
density field.
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1.4 The baryon acoustic oscillations

The early time Universe was denser and hotter with respect to the present day. Ac-
cording to the theory of thermal history, the one that describes the behaviour of the
thermodynamic properties of the Universe as a function of its energy density content,
it existed a phase in which the baryonic matter, mainly composed by H , He, and traces
of light elements as a result of big bang nucleosyntesis, was completely ionized. This
allowed frequent photon-electrons interactions via Compton scattering. The continuous
energy exchanges made the two components coupled.

The baryon-photon fluid perturbations oscillate in the already formed DM potential
wells, instead of directly collapse in them, due to the equilibrium between gravitational
attraction and radiation pressure. The sound speed cs can be computed assuming
the balance between radiation pressure and gravitational inertia of the baryons; this
quantity depends on the baryon-to-photon density ratio, via the relation:

cs =
c√

3(1 + 3 ρbργ )
. (1.47)

The causal connection between the components stays until photon-electron scatter-
ing is efficient against the expansion of the Universe.

After ∼ 105 years from the Big Bang, the decreased background temperature al-
lowed atoms to recombine, consequently decreasing number density of free electrons.
This made interactions between photons and baryons more and more inefficient, until
the total decoupling, that happens at zdec = 1100, at the last scattering surface.

The maximum distance a wave emitted from the centre of a potential well can reach
is the sound horizon rs:

rs =

∫ ∞

zdec

cs
H(z)

dz . (1.48)

The sound horizon scale is ≈ 150Mpc.
After recombination, without the pressure support, baryons start to collapse into

DM haloes and form structures. Photons instead streams away from them forming the
radiation background we see today as the CMB.

In a very simplified picture, we can describe the Universe immediately after de-
coupling as filled with DM density perturbations surrounded by shells of baryons in
stalling density waves at a typical distance of rs. These waves can have constructive
interference, increasing the density where crests are on top of each other, and generating
a peak in the power spectrum, or either have destructive interference, where crests and
troughs meet. Hence, one finds a harmonic pattern of oscillations in the matter power
spectrum, and a peak in the correlation function, given the mathematical connection, at
the sound-horizon scale.

The baryon-photon oscillations stay imprinted in both the baryon and photon
energy density. Indeed they are clearly seen as temperature fluctuations in the CMB
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and as oscillations in the power spectrum, called the Baryon acoustic oscillations (BAO).
How this signal is seen today depends on the properties of the universe components,

from zdec to the present day. Radiation does not interact with the other components: as
a consequence the signal arrives almost unaltered. Baryons contributes to a minimal
part to the total matter power spectrum, that is DM dominated. Nevertheless the
oscillation amplitude in the matter power spectrum depends on the baryon fraction.
Moreover, the BAO feature is influenced by the non-linear growth of perturbation too.
Thought the latter has direct effects only at relatively small scales ( r > 10 Mpch−1

), they can actually impact also larger separation, including the BAO scale, causing a
damping of the signal, and a shift of the peak (see e.g. Eisenstein, Seo, and M. White,
2007, and references therein).

The detection of the BAO peak was a fundamental success of the standard cosmolog-
ical picture, as it confirmed thermal history of the Universe and the structure formation
paradigm (Anderson et al., 2014; Beutler et al., 2011; Blake et al., 2011; Eisenstein, Seo,
and M. White, 2007; Eisenstein et al., 2005; Kazin et al., 2014; Ross et al., 2015, 2016).
Moreover, the BAO is itself one of the most powerful cosmological probe as it can be
used to exploit the technique of the standard ruler, to map the distance-redshift relation
(see § 1.1.3). We can write, in fact:

DA(z) =
rs

∆θ(1 + z)
, (1.49a)

H(z) =
c∆z

rs
. (1.49b)

where rs is the sound horizon, and c∆z and ∆θ are respectively its radial and
angular sizes of the as seen in the matter distribution distribution.

1.5 Measuring the clustering of discrete samples

The clustering of matter is strictly linked to the Universe dynamics, as we showed in
§ 1.2. It complements distance-based cosmological probes, and will be at the centre of
the future of cosmological analysis.

As described in § 1.2, the 2PCF and power spectrum describe statistics of the
perturbed density field. As we move from theory to observation, we need to take
into account the effects that link discrete tracers of the DM density field to the global
statistical properties of the Universe. Measuring the clustering of galaxies, clusters, and
other cosmic tracers is not the same as measuring the clustering of the density field, for
the following reasons;

• we do not measure the punctual density contrast, δ(x). Indeed, by using discrete
tracers we measure its smoothed version, computing number counts contrast in
cells of finite volume;
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• the number density contrast depends on observational systematics that modify
the sources distribution on the sky; this effect is included in the so called selection
function;

• tracers are biased with respect to the density field in a way not easy to model;

• the clustering measure depends on the observed tracers positions: distortions
effects enter the measure since a) redshifts are not a pure distance indicator; b) a
cosmology must be assumed to convert to physical coordinates;

• the measured covariance, Ci,j , must be estimated at very high precision in order
to not bias the constraints.

We will describe these aspects in more details in this section, focusing mainly on
clustering in configuration space. We will describe our choices on how to treat the
bias, as well as geometric and dynamic distortions in § 1.5.1, 1.5.2, 1.5.3. We review the
techniques used for 2PCF measures in § 1.5.4 and describe the modelling used in this
Thesis to derive clustering constraints in § 1.6.

1.5.1 Bias

The main complication affecting clustering studies is the fact that all particles such as
galaxies, galaxy clusters, AGN etc. do not exactly trace the DM density field. This
complicates the modelling of the connection between matter overdensities and counts;
the link between the matter density field δDM , and the number density contrast, δt,
where the subscript t indicates a generic tracer, is a function of δDM :

δt ≡
δn

n̄
= f (δDM ) . (1.50)

A convenient choice is to assume a linear dependence in 1.50, parametrized by a
bias factor, so that:

δt = bδDM , (1.51)

from which it follows.

ξt(r) = b2ξDM (r) . (1.52)

Theory and numerical simulations show that the bias is extremely complicated
to model: it is stochastic, and it depends on galaxy properties such as luminosity,
colour and/or morphological type. Moreover the linear relation Eq. 1.51 only holds
on sufficiently large scales (Cacciato et al., 2013; Marulli et al., 2013, and references
therein).

Our ignorance on the bias impacts the cosmological constraints we will be able
to derive from clustering measurements. Specifically, the bias is highly degenerate
with the amplitude parameters such as the initial power spectrum normalization or
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the density fluctuations growth rate. A common strategy is to consider the bias as a
nuisance parameter.

Informations complementary to the density field statistics are required to break this
degeneracy. Halo mass proxies are one example. Haloes are biased tracers of the DM
density field, and their bias is mass dependent (Bhattacharya et al., 2013; Sheth and
Tormen, 1999; J. L. Tinker et al., 2010) as described in § 1.2. Combining number counts
and clustering of massive objects, such as galaxy clusters, is thus a possible way to
break degeneracies (see e.g. Mana et al., 2013; Sartoris et al., 2016).

1.5.2 Geometric distortions

Geometric distortions enter when a fiducial cosmology, instead of the true one, is
assumed to convert observed coordinates to physical ones. This has the effect of
altering the object distances differently in direction transverse and parallel to the line
of sight.

The transformation can be written as:

d3s =

[
(1 + z)2DA(z)2 cz

H(z)

]
dΩdz , (1.53)

where d3s and dΩdz are respectively the volume elements in physical and observed
coordinates, and the term in parenthesis is the Jacobian transformation. We define the
volume-averaged distance as:

DV (z) =

[
(1 + z)2Df

A(z)2 cz

Hf (z)

]1/3

, (1.54)

whereDf
A(z) andHf (z) are the angular diameter distance and the Hubble function com-

puted in the fiducial cosmology, respectively. We can define a cosmology independent
quantity: ds3/Df

V (z)3, assuming that also the following relation holds, independently
of the assumed cosmological model:

d3s′ =

[
Df ′

V (z)

Df
V (z)

]3

d3s , (1.55)

where Df ′

V (z) Df
V (z) are the isotropic volume distance assuming two different cosmo-

logical models.
A statistic based on the position of discrete tracers such as the 2PCF, is clearly

affected by the geometric distortions. In order to extract unbiased results, the relation
in Eq. (1.55) must be taken into account. In Fig 1.1 we show the monopole of the
2PCF of a simulation computed with two different fiducial cosmologies. Left panel
shows how the same signal is distorted by this difference in computing the distances.
In the right panel it is clearly shown how geometric distortions can be modelled by
performing the transformation s→ ys ≡ s/Df

V (z) (see Sánchez et al., 2012, for further
details).
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Figure 1.1: left panel: measure of 2PCF monopole for a set of mocks using
two different value of Ωfid

M to convert observed coordinates, respectively
ΩM = 0.274 (blue circles and line) and ΩM = 0.4 (red squares dashed
lines). Shaded blue region is the typical variance of the data. Right panel:
same measurements as the left panel, but expressed as a function of
ys =≡ s/Df

V (z). This removes the dependence on the fiducial cosmology.
Further details can be found in (Sánchez et al., 2012)

1.5.3 Redshift-space distortions

This kind of distortion enters the analysis when using the redshift as a distance proxy.
In fact, the redshift encodes also information about the peculiar motions parallel to the
line of sight:

zobs = zc +
v‖

c
(1 + zc) +

σz
c
, (1.56)

with c the speed of light, zobs and zc the observed and cosmological redshift respectively,
v‖ the parallel to the line of sight component of the object velocity, σz the error on the
measurement.

There are two main source of peculiar velocities:

• the motion of structures generated by gravitational instabilities: this term depends
on the density field itself and satisfies the following relation:

~v =
2

3

Gρcra

H
f(Ω) , (1.57)

where f ≡ d ln δ
d ln a is the linear growth rate; a good approximation in standard

ΛCDM+GR is to assume f = Ωγ
M , with γ = 0.545 for GR (Kaiser, 1987; Peebles,

1980);

• the random motion of galaxies inside virialized DM haloes. This term causes the
so-called fingers-of-God effect: structures appear elongated along the line of sight.
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p

Figure 1.2: A sketch describing the coordinate convention used in this
Thesis. The blue point represents the observer, while the red points
represent a pair of objects separated by a distance r. rp and π are the
component of r transverse and perpendicular to the line of sight; θ = π/r.

In § 1.5.3 we will describe in more detail how to treat these effects in clustering
analyses, and discuss about the cosmological information that can be extracted from
them.

1.5.4 Clustering measurements

In the following we will discuss the most important aspects and issues concerning the
clustering measurement. We will discuss the 2PCF monopole estimators in § 1.5.4, and
their extension for anisotropic clustering, ξrp, π and multipole expansion in § 1.5.4. We
will review the method to integrate over RSD by projecting and de-projecting ξ(rp, π)

in § 1.5.4. We will review the technique to obtain the 2PCF covariance matrix in § 1.5.4.
In Fig. 1.2, we report the convention for coordinate estimates used in this Thesis.

Two-point correlation function estimators

The 2PCF, ξ(r), describes the joint probability dP12 of finding a pair of objects, in two
volumes dV1 and dV2 separated by the distance r:

dP12 = n̄2 [1 + ξ(r)] dV1dV2 , (1.58)

where n̄dVi is the stochastic probability of finding an object in dVi, being n̄ the
average object density. From this definition it is evident that ξ(r) = 0 means an exactly
random distribution of points; ξ(r) > 0 a positive correlation and −1 < ξ(r) < 0 a
negative correlation. From a practical point of view, one generally measure the quantity
dP12 binned in shells of width ∆r, as

dP12 =
DD(r)

NDD
, (1.59)

with DD(r) the total number of objects pairs separated by a distance r ±∆r divided
by the total number of pairs in the sample NDD = ND(ND − 1)/2. We should then
provide the term n̄2dV1dV2. This term describes the uncorrelated probability of find a
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pair of objects; it must encodes all the geometrical properties of the volume sampled by
the data. The most common and straightforward way to take into account the latter is
to extract a random sample from the survey volume and compute pairs as well as for
data, obtaining (from Eq. (1.58) imposing ξ(r) = 0):

n̄2dV1dV2 =
RR(r)

NRR
, (1.60)

being RR(r) and NRR the analogous of DD(r) and NDD for a random collection of
points. Simply comparing this two quantities, we obtain the Peebles and Hauser (1974)
(PH) unbiased estimator of the correlation function:

ξ̂PH(r) =
NRR

NDD

DD(r)

RR(r)
− 1 . (1.61)

Being a statistics based on discrete counts of stochastic variables, its variance should
scale as the inverse of number of pairs (Poissonian variance). Landy and Szalay (1993)
(hereafter LS) demonstrated that PH is not a minimum variance 2PCF estimator, and
proposed the following solution:

ξ̂LS(r) =
NRR

NDD

DD(r)

RR(r)
− 2

NRR

NDR

DR(r)

RR(r)
+ 1 , (1.62)

where the DR(r) term is the number of data-random cross pairs and NDR = NDNR

is the total number of cross pairs. The LS estimator is unbiased and with minimum
variance; it is widely used in studies involving clustering in configuration space and
validated against distributions with known correlation signal (e.g. Hamilton, 1993;
Labatie et al., 2010, and references therein). Finally, In order to have an estimate of the
correlation function whose variance is not affected by discrete pair counts from the
random sample, the random collection of point should be larger than the clustered one.

Anisotropic clustering estimate

Geometrical and dynamical distortions impact on the shape of the 2PCF introducing
predictable anisotropic effects that can be disentangled by looking at 2D clustering
at sufficiently large scales (Marulli et al., 2012). Analogously to the 1D 2PCF case
(Eq. (1.62)), the 2D 2PCF estimator is:

ξ(rp, π) =
DD(rp, π) +RR(rp, π)− 2DR(rp, π)

RR(rp, π)
, (1.63)

where DD(rp, π), RR(rp, π). DR(rp, π) are the data-data, random-random, data
random pairs, computed in bins of transverse and parallel to the line-of-sight separa-
tions, ∆rp, ∆π respectively. In real space at the true cosmology ξ(rp, π) ≡ ξ(r), with
r =

√
r2
p + π2. In redshift space, the peculiar velocity term distorts the clustering signal

along the line of sight in a predictable way; at small separations separations, random
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motions cause the distortion known as fingers-of-God effect, while at larger separations
linear velocities enhance the clustering signal. In order to reduce the number of bins, a
more convenient strategy is to measure the moments of ξ(rp, π), by expanding on the
Legendre polynomials:

ξl(r) =
2l + 1

2

∫ 1

0
ξ(r, µ)Lldµ , (1.64)

where l is the order of the Legendre polynomial expansion, µ = π/r is the cosine
of angle between the object separation and the line of sight. Since the majority of
the information is in l ≤ 4 multipoles; the higher order multipoles can be generally
neglected, moreover for l odd the multipoles are = 0 for symmetry reasons. Using the
multipoles instead of the full 2D 2PCF increases the anisotropic signal and reduces the
size of the covariance matrix, that enters in the 2PCF modelling.

A similar result can be achieved measuring the wedges of the 2D 2PCF (Kazin et al.,
2014), that are defined as:

ξw(r) =
1

δµ

∫ 1

0
ξ(r, µ)dµ . (1.65)

Alleviating redshift space distortions

In order to alleviate the RSD effects, two statistics can be used: the projected 2PCF,
wp(rp), and the deprojected one. The projected 2PCF is defined as an integral of ξ(rpi, π)

along the line of sight:

wp(rp) =

∫ ∞

0
dπ′ξ(rp, π

′), (1.66)

where ξ(rp, π) is measured in bins of perpendicular, rp, and parallel, π, separations
with respect to the line-of-sight. Integrating along the direction parallel to the line-of-
sight allows us to alleviate RSD distortions effects.

The real space correlation function can then be measured by deprojecting wp, by
using the Abel integral (Davis and Peebles, 1983; Saunders, Rowan-Robinson, and
Lawrence, 1992):

ξ(r) = − 1

π

∫ ∞

r

dwp
drp

drp√
r2
p − r

. (1.67)

Eq. (1.67) strictly holds in the limit of integrating to infinity to obtain wp. This
procedure instead depends on the choice of the parameter πmax, the maximum scale at
which the integral is performed. This parameter must be optimized, too small values
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produce a noisy estimate of the projected 2PCF, too large values can introduce noise
from large separation (Coil et al., 2008; Norberg et al., 2009; Zehavi et al., 2011).

Covariance matrix

The covariance matrix Ci,j is a crucial ingredient for clustering analyses. It measures
the variance and correlation between 2PCF bins. It can be directly estimated using
mock catalogues extracted from numerical simulations (see e.g. Anderson et al., 2014;
Kazin et al., 2014). and it is defined as follows:

Ci,j =
1

N − 1

N∑

k=1

(ξki − ξ̂i)(ξkj − ξ̂j) , (1.68)

where the subscripts i and j run over spatial bins of the correlation function and k

refers to the 2PCF of the kth of N realizations; ξ̂ is the mean 2PCF of the N realizations.
However, this method is very computational expensive since a large set of mocks

have to be created and analysed. Alternatively, different statistical techniques can be
exploited, that still provide fairly robust estimates of the covariance matrix. For our
analysis, we consider the following approaches:

• internal error estimators: the covariance matrix can be estimated by subsampling
the original catalogue and calculating the correlation function in all but one sub-
samples (jackknife), or in a random selection of them (bootstrap), recursively (see
e.g. Norberg et al., 2009);. This technique has the clear advantage of being very
fast in producing the covariance matrix, already including possible systematics
effects and biases, as well as contributions from higher order correlations. On the
other hand, this approach is limited by the survey volume and often produce a
conservative estimates of the variance and noisy off-diagonal terms: aspects that
has an impact on the modelling of the 2PCF;

• external error estimator, we consider fast methods to produce a large number
of mocks, with a target 2PCF signal. The most famous of them is the lognormal
density field technique, by Coles and Jones (1991). This method to infer the
covariance matrix has been already used by several authors for clustering analyses
(see e.g. Beutler et al., 2011; Blake et al., 2011; Chuang et al., 2015). An approach
like that can give a very clear estimate of the covariance matrix, in a reasonable
amount of time, but it lacks controls on the systematics that a full simulations can
include.

Recovering the full information content from baryon acoustic oscillations

In § 1.4 we briefly reviewed physics of the BAO and their use in cosmology as standard
rulers to constrain distances.

Also we noticed that non-linear growth has an impact on the BAO as well, smearing
and shifting the peak, in configuration space or the oscillatory pattern in Fourier space.
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Effect of non-linear growth cause a loss of the original information available from the
BAO in the linear density field. A possible strategy is to recover the BAO peak selecting
tracers able to trace a more linear density field such as structure with large bias (Angulo
et al., 2014; Eisenstein, Seo, and M. White, 2007; Wang and Zhan, 2013).

Another methodology is to apply reconstruction techniques, that is aimed at revert
the effects on the non-linear growth of the density perturbation; (see e.g. Padmanabhan
et al., 2012; M. White, 2015, and references therein). To understand the way reconstruc-
tion works we consider Zel’dovich approximation (see § 1.2.2): the displacement field
~Ψ describing non-linear growths can be obtained from the density field itself. Thus,
starting from a discrete sample and knowing its bias, ~Ψ can be computed by solving
Eq. 1.37 and apply the displacements to positions of tracers, restoring their position in
the linear density field.

Reconstruction is now a standard technique in the clustering analyses aimed at the
BAO detection. It allows to improve the measured distance from the BAO position;
nevertheless restoring the properties of the linear field results in a sharper BAO peak.
Fig. 1.3 shows the 2PCF and P (k) monopole of the galaxy sample obtained from the
Baryon Oscillations Spectroscopic Sample (BOSS) (Anderson et al., 2014). Left and right
panels show the 2PCF and the P (k) respectively before and after the reconstruction (top
and bottom panels, respectively). The original BAO signal, damped by the non-linear
growth, is almost totally restored. The application of the reconstruction shrinks the
BAO peak, located at ≈ 100 Mpch−1 , and a restore the original oscillation pattern BAO
for the 2PCF and P (k) respectively.

1.6 Modelling the clustering measures

In this section we will provide a description of the models used in this Thesis to model
clustering signal and derive cosmological constraints. We will describe how to fit the
bias by modelling the projected 2PCF (§ 1.6.1). We will present the de-wiggle template
model Eisenstein, Seo, and M. White, 2007; Ross et al., 2012 for the fit of the BAO in the
monopole of 2PCF in § 1.6.2. Finally, we will describe the dispersion model, aimed at
modelling small scales anisotropic clustering (Davis and Peebles, 1983; Peacock and
Dodds, 1996; Peebles, 1980) in § 1.6.3.

1.6.1 Bias from projected 2PCF

Projecting the 2D 2PCF along the line of sight reduces the effects of RSD on the 2PCF
measurements. The model provided by Eq. (1.66) can thus be used, i.e. assuming that
the 2D correlation function in isotropic it follows then:

wp(rp) = b2

∫ √
π2
max+r2p

r2p

dr
2rξDM (r)√
r2 − r2

p

, (1.69)
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Figure 1.3: The BAO constraints obtained for the galaxy in the BOSS
sample Anderson et al. (2014). The left panels show the measured 2PCF
monopole before and after reconstruction of the density field. Right
panels show the same, for the power P (k).The reconstruction shrinks
the BAO peak, restoring the linear pattern of the BAO for the 2PCF and
the P (k) respectively. Anderson et al. (From 2014)

where ξDM (r) is the 2PCF. The linear bias b is then obtained by comparing this model
with the data.

1.6.2 Baryon acoustic oscillations peak detection in the monopole

To obtain the distance constraints from the BAO peak, we adopt the following widely
used and robust model (see Anderson et al., 2012, and reference therein):

ξ(r) = B2ξDW (αr,ΣNL) +A0 +
A1

r
+
A2

r2
, (1.70)

where B factorises the difference between the DM 2PCF and the tracer 2PCF, α
is the parameter that contains the distance information, and A0, A1 and A2 are the
parameters of an additive polynomial used to marginalize over small scales non-linear
signals or systematics not fully taken into account. ξDW is the de-wiggled correlation
function, obtained by Fourier transforming the de-wiggled DM power spectrum, PDW
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(Eisenstein, Seo, and M. White, 2007):

PDW (k) = [Plin(k)− Pnw(k)] e−k
2Σ2

NL/2 + Pnw(k) , (1.71a)

ξDW (r) =
1

2π2

∫
dk k2PDW (k)

sin(kr)

kr
, (1.71b)

where Plin is the linear power spectrum that can be computed e.g. with CAMB

(Lewis and Bridle, 2002), while Pnw is the power spectrum without the BAO feature,
that we will obtain by the parametric formula of Eisenstein, Seo, and M. White (2007).
As can be noticed, the model ignore the small scales non linear effects, being focused
in pinpointing the peak position. Effects of non-linear growth of structures at the
BAO scales are controlled by the parameter ΣNL, that describes the smearing of the
BAO, and it is left free to vary. The model for ξDW (r) is then obtained by Fourier
transforming the power spectrum, (Eq. 1.71b). Fig. 1.4 shows the effects of the damping
on the power spectrum and correlation function for for different values of ΣNL =

{0, 5, 10, 20}Mpch−1 .
The distance constraint is entirely contained in α (Eq. 1.70). That can be derived

through the following by correcting for geometric distortions: approximation:

DV (z̄) = αDfid
V (z̄)

(
rs

rfids

)
Mpc . (1.72)

Eq. (1.72) states that the distance constraint at the mean redshift of the catalogue
is α times the distance at the fiducial cosmology, scaled to the ratio between the true
and fiducial sound horizons. DV (z̄) is the isotropic volume distance calculated at the
mean redshift of the catalogue, defined in Eq. (1.54). If we assume that the true value
of the sound horizon is known, we can directly measure a distance; otherwise we can
exploit an uncalibrated version of the standard ruler technique, measuring the ratio
dz = DV (z)/rs.

1.6.3 Modelling Redshift-Space distortions

The peculiar motion of structures are a consequence of the growth of matter pertur-
bations. This peculiar velocity field is directly linked the density field itself, being
v ∝ δ̇. RSD at large scales are due to the infall of objects inside bigger structures,
and causes a squashing of the correlation function contours. This signal is another
strong cosmological probe (see e.g. de la Torre et al., 2013; Guzzo et al., 2008; Sanchez
et al., 2016, and references therein); that is parametrized with the linear growth rate
parameters, previously defined in § 1.5.3 (Peebles, 1980).

By assuming the coordinate transformation in Eq. (1.56) and the peculiar velocity v
from linear theory, Kaiser (1987) derives the transformation to map the density field
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different values of ΣNL = {0, 5, 10, 20}Mpch−1 and the power spectrum
without the BAO feature. Right panel: Effects of the damping on the BAO
peak in the 2PCF monopole, for the same values of ΣNL as in left panel.

from real space to redshift space:

δr(k) = (1 + fµ2)δs(k) . (1.73)

This implies that the linear redshift-space 2D power spectrum can be modelled in
polar coordinates as follows:

P (k, µ) = b2PDM(k)(1 + βµ2) , (1.74)

with β = f/b.
Fisher, Scharf, and Lahav (1994) and Hamilton (1992) derive the linear redshift

space 2PCF:

ξ(s, µ) =

[
1 + f

(
∂

∂π

)2 (
∇2
)−1

]
ξ(r) , (1.75)

where π = sµ. Expanding the equation on a Legendre polynomial basis, we get:

ξlin(s, µ) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) , (1.76)

with:

ξ0(s) =

(
1 +

2

3
β +

1

5
β2

)
· ξ(r) (1.77a)

=

[
(bσ8)2 +

2

3
fσ8 · bσ8 +

1

5
(fσ8)2

]
· ξDM(r)

σ2
8

, (1.77b)
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ξ2(s) =

(
4

3
β +

4

7
β2

)[
ξ(r)− ξ(r)

]
(1.78a)

=

[
4

3
fσ8 · bσ8 +

4

7
(fσ8)2

] [
ξDM(r)

σ2
8

− ξDM(r)

σ2
8

]
, (1.78b)

ξ4(s) =
8

35
β2

[
ξ(r) +

5

2
ξ(r)− 7

2
ξ(r)

]
(1.79a)

=
8

35
(fσ8)2

[
ξDM(r)

σ2
8

+
5

2

ξDM(r)

σ2
8

− 7

2

ξDM(r)

σ2
8

]
, (1.79b)

where Pl are the Legendre polynomials.
ξ(r) and ξDM(r) are the real-space undistorted correlation functions of tracers and

DM , respectively, whereas the barred functions are:

ξDM(r) ≡ 3

r3

∫ r

0
dr′ξDM(r′)r′2 , (1.80)

ξDM(r) ≡ 5

r5

∫ r

0
dr′ξDM(r′)r′4 . (1.81)

Eq. (1.76)- (1.81) are derived in the distant-observer approximation, that is reason-
able at the small scales.

Eqs. (1.77b)), (1.78b)) and (1.79b)) are derived from Eqs. (1.77a)), (1.78a) and (1.79a)
respectively, assuming β = f/b. In the following analysis, ξDM(r) will be estimated by
Fourier transforming the linear power spectrum computed with the software CAMB

(Lewis and Bridle, 2002) for the cosmological model considered. Alternatively, the
real-space 2PCF ξ(r) can be estimated directly from the real-space mock samples,
or computed with the deprojection technique shown in § 1.5.4 or from theoretical
prediction assuming a value for the linear bias as shown in Eq. (1.67).

Eq. (1.76) is an effective description of RSD only at large scales, where non-linear
effects are negligible. An empirical model that can account for both linear and non-
linear dynamics is the so-called dispersion model (Davis and Peebles, 1983; Peacock
and Dodds, 1996; Peebles, 1980), that describes the redshift-space correlation function
as a convolution of the linearly-distorted correlation with the distribution function of
pairwise velocities, f(v):

ξ(s⊥, s‖) =

∫ ∞

−∞
dvf(v)ξ

(
s⊥, s‖ −

v(1 + z)

H(z)

)

lin

, (1.82)

where the pairwise velocity v is expressed in physical coordinates.
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If redshift errors can be neglected, we use the exponential form for f(v) (Marulli
et al., 2012), namely:

f(v) =
1

σ12

√
2

exp

(
−
√

2|v|
σ12

)
, (1.83)

(Davis and Peebles, 1983; Fisher, Scharf, and Lahav, 1994; Zurek et al., 1994). The
quantity σ12 can be interpreted as the dispersion in the pairwise random peculiar
velocities, and is generally assumed to be independent of pair separations (see e.g.
Bianchi et al., 2012, for a detailed discussion). Other possible choices for f(v) is the
Gaussian form, typically used when large redshift errors contribute to the small scales
RSD.

The dispersion model given by Eqs. (1.76)-(1.83) depends on three free quantities,
fσ8, bσ8 and σ12 (since ξDM ∝ σ2

8), and on the reference background cosmology used
both to convert angles and redshifts into distances and to estimate the real-space DM
2PCF.

This model has been extensively tested against cosmological simulations (see e.g.
Bianchi et al., 2012; Contreras et al., 2013; Marulli et al., 2015). In particular in Marulli,
Veropalumbo et al. 2015 we tested the model to determine the best strategy to obtain un-
biased results from the dispersion model. Fig. 1.5 shows the iso-correlation contours of
the redshift-space 2PCF, corresponding to the values ξ(s⊥, s‖) = [0.05, 0.1, 0.2, 0.4, 1, 3],
(black contours) for clusters, in the range log(M500[h−1 M�]) > 13 and galaxies from
the Magneticum simulation (Dolag et al, in prep.) at z = 0.2. The dot-dashed green
and solid red contours show the best-fit model given by Eq. (1.82), with the real-space
correlation function ξ(r) measured directly from the simulation, and estimated from
the CAMB power spectrum, respectively. The blue dashed contours show the linear
best-fit model given by Eq. (1.76) with the CAMB real-space correlation function

1.6.4 Likelihood definition

All the cosmological constraints presented in the forthcoming sections of this Thesis
are obtained with Bayesian inference method. These are based on the Bayes’ theorem:

p(~θ | ~X) =
p( ~X | ~θ) p(~θ)

p( ~X)
, (1.84)

where ~X are the data, ~θ are the model parameters, p(~θ) is the prior probability distri-
bution of the parameters, and p( ~X | ~θ) and p(~θ | ~X) are the likelihood function and the
parameter posterior probability distribution, respectively. P ( ~X) is the data prior, and it
enters as a normalization constant.

Where not specified, we adopted for clustering modelling and cosmological con-
straints a standard Gaussian likelihood to describe the probability p( ~X | ~θ). , LCL ∝
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Figure 1.5: left panel: the iso-correlation contours of the redshift-space
2PCF, corresponding to the values ξ(s⊥, s‖) = [0.05, 0.1, 0.2, 0.4, 1, 3], for
clusters of the Magneticum simulation (Dolag et al, in prep.) with
log(M500[h−1 M�]) > 13, at z = 0.2 (black contours). The dot-dashed
green and solid red contours show the best-fit model given by Eq. (1.82),
with the real-space correlation function ξ(r) measured from the simula-
tion, and estimated from the CAMB power spectrum, respectively. The
blue dashed contours show the linear best-fit model given by Eq. (1.76)
with the CAMB real-space correlation function. Right panel: Same as left
panel, for galaxies with log(MSTAR[h−1 M�]) > 10, at z = 0.2

exp(−χ2
CL/2), with

χ2
CL =

n∑

i=0

n∑

j=0

(ξi − ξ̂i)C−1
ij (ξj − ξ̂j) , (1.85)

where ξi is the correlation function measured in the i-th spatial bin, ξ̂i is the model and
C−1 is the inverted covariance matrix.

Likelihood is generally not easy to be described; the most useful technique to sample
that is to use the Monte Carlo Markov Chain (MCMC) procedure. This consists in
sampling a target distribution using a correlated random walk: every step is extracted
after a trial that depends only on the previous one (Markov process). The steps
are collected in chains, that define marginalised posterior probability of the model
parameters p(~θ | ~X).

1.7 Cosmological constraints from clustering

In order to provide precise estimates of the statistical properties of density field, clus-
tering experiments aim to survey large volumes to extract cosmological information
from both BAO and RSD.
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Figure 1.6: The Hubble diagram from a collection of BAO detections. Blue,
red, and green points show BAO measurements of DV /rs, DM/rs, and
zDH/rs, respectively, from BAO analysis of different surveys, as indi-
cated in the legend. The latter can be compared to the corresponding
coloured lines, which represent the predictions of the fiducial Planck
ΛCDM model (Planck Collaboration et al., 2016). (From Alam et al.,
2016).

An increasing number of clustering studies at local redshift (z < 1) has been
performed in the last years such as Six degrees Field Galaxy survey (6dFGS Beutler
et al., 2011), WiggleZ Dark Energy survey (Blake et al., 2011; Kazin et al., 2014), Sloan
Digital Sky Survey I-II (SDSS Eisenstein et al., 2005), Baryon Oscillations Spectroscopic
Survey (BOSS Anderson et al., 2014; Cuesta et al., 2016; Ross et al., 2016; Sanchez et al.,
2016), VIMOS Public Extragalactic Redshift Survey (VIPERS) (Guzzo et al., 2014).

In particular Alam et al. (2016) presented the BOSS final constraints, obtained
by combining all the clustering probes, after accurately estimating the covariance
of the different methods.This provided the best ever clustering-based cosmological
constraints.

Moreover, clustering is going to be one of the main cosmological probes also for
the next future, with dedicated ongoing and planned experiments, such as Euclid
(Amendola et al., 2013; Laureijs et al., 2011), eBOSS (Dawson et al., 2015), HETDEX

(Stevans et al., 2014).
An large number of BAO distance measures has been obtained at local redshift,

thanks to wide surveys of galaxies, (Anderson et al., 2014; Beutler et al., 2011; Cuesta
et al., 2016; Kazin et al., 2014; Ross et al., 2016). Moreover, BAO can also be detected in
the clustering pattern of other tracers, such as Lyα emitters (Delubac et al., 2015).

Their combination provides accurate constraints on the distance-redshift relation,
that can be obtained by exploiting both the isotropic and anisotropic BAO standard
ruler techniques (Aubourg et al., 2015). Fig.1.6 from Alam et al. (2016) shows a collection
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of constraints for DV /rs, DM/rs, cDH/rs in blue, red and green respectively from BAO
detection in survey of galaxies and Lyα emitters.

Thanks to the advances in modelling the clustering properties, the measures of
the linear growth rate fσ8 can be constrained as well. Fig. 1.7 from Alam et al. (2016)
shows a set of recent fσ8 constraints from different galaxy surveys, compared to the
Planck predictions; in particular the constraints shown are the one coming from the
2dfGRS (Percival et al., 2004), 6dFGS (Beutler et al., 2012), Galaxy and Mass Assembly
survey (GAMA Blake et al., 2013), WiggleZ (Blake et al., 2012), Vimos VLT Deep Survey
(VVDS Guzzo et al., 2008), and VIPERS (de la Torre et al., 2013) surveys, as well as the
measurements from the SDSS-I and -II main galaxy sample (Howlett et al., 2015) and
the SDSS-II Luminous Red Galaxy sample (Oka et al., 2014).

Probing the late time Universe with the BAO distance and linear growth rate,
in synergy with early time constraints from CMB and from Supernova Luminosity
distance measures (SN), allow us to measure with unprecedent precision dark energy-
related cosmological parameters (i.e. ΩΛ and wDE), only marginally constrained from
CMB measurements. As it can be seen in Figs. 1.6 and 1.7, BAO and RSD measurements
are in reasonable agreement with predictions from the fiducial Planck cosmology
(Planck Collaboration et al., 2016). As a further example, Fig.1.8 from Alam et al. (2016)
shows the 1− 2σ joint constraints on Ωk − w, from CMB data (green ellipses)and from
CMB+BAO (grey ellipses). Combining CMB and the distance constraints has a huge
impact on the parameter constraints. Moreover, adding constraints from full shape of
the anisotropic 2PCF (FS) (red ellipses) and Supernova luminosity distance (Betoule
et al., 2014) (blue ellipses), further improve the measured parameters, that appear fully



1.7. Cosmological constraints from clustering 35

0.06 0.04 0.02 0.00

ΩK

1.65

1.50

1.35

1.20

1.05

0.90

w

PLANCK+SN

PLANCK+BAO

PLANCK+BAO+FS

PLANCK+BAO+FS+SN

Figure 1.8: Parameter constraints for the owCDM cosmological models,
comparing the results from BAO and BAO+FS to those with JLA SNe.
One sees that the galaxy clustering results are particularly strong in the
Ωk − w.

consistent with the ΛCDM predictions.

1.7.1 Clustering of galaxy clusters

The clustering of galaxy clusters contains the same information that can be extracted
from galaxy clustering. Moreover, it can be combined to the mass function for cosmo-
logical studies. In the past, the main limitation was the small volume of the available
cluster samples. The first cluster clustering measurements probed the high bias of these
tracers (Bahcall, 1986; Bahcall and Soneira, 1983; Moscardini et al., 2000). The interest
on the detection of the BAO in the clustering of galaxy cluster recently raised, thanks to
large photometric and spectroscopic optical surveys such as the SDSS, which triggered
the creation of photometric (Koester et al., 2007; Oguri, 2014; Wen and Han, 2015; Wen,
Han, and Liu, 2009, 2012) and spectroscopic (Tempel et al., 2014) samples of galaxy
clusters.

The first BAO detection from cluster clustering was claimed by Estrada, Sefusatti,
and Frieman (2009) and Hütsi (2010), that measured the 2PCF and P (k) for the MaxBCG
sample (Koester et al., 2007) respectively. These works found a BAO detection at ∼ 2σ

confidence level. The left panel of Fig. 1.9 shows the 2PCF of galaxy clusters from
Estrada, Sefusatti, and Frieman (2009), while the right panel shows the power spectrum
of the same sample measured by Hütsi (2010). Hong et al. (2012) used the spectroscopic
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Figure 1.9: left panel: 2PCF of the MaxBCG sample obtained by Estrada,
Sefusatti, and Frieman (2009). Right panel: the power spectrum of the
same sample shown in the left panel, from the analysis of Hütsi (2010).

cluster sample from WHL09 Wen, Han, and Liu (2009), finding the first convincing
BAO detection (1.10).

A powerful strategy is to use the 2PCF or power spectrum measurements of galaxy
clusters in a joint analysis with mass function and weak lensing measurements (see e.g.
Mana et al., 2013; Sartoris et al., 2016, and references therein).

The mass function is the most important cluster cosmology probe. It measures
the comoving number density of haloes as a function of mass. It is very sensitive to
cosmological parameters (e.g. ΩΛ and σ8), as it quantifies the capability of structures to
form against the expansion of the Universe. Vikhlinin et al. (2009) and A. Mantz et al.
(2010) used the mass function of X-ray selected galaxy clusters to constrain the main
cosmological parameters; Rozo et al. (2010) measured the mass function of optically
selected galaxy clusters, using the MaxBCG sample compiled by Koester et al. (2007).
Constraints from the mass function break some of the degeneracies when combined
with other cosmological datasets. For instance, Rozo et al. (2010) constrained ΩM − σ8

by combining cluster and CMB measurements, showing an increase of precision of a
factor of 2. Planck Collaboration et al. (2014c), using the Planck Sunyaev-Zeldovich
clusters counts, found a ∼ 2σ tension with respect to the cosmological constraints
coming from early time CMB data; after investigating all of the systematics possibly
affecting the measure, they concluded that this could represent a hint for a modification
of the standard cosmological paradigm, suggesting the intervention of late-time effects
not fully accounted for in the modelling.

Galaxy clusters provide also another cosmological information: the baryon fraction.
Due to their high masses, the baryon loss in galaxy clusters is almost negligible; the
baryon fraction should then be the cosmological one: fgas = Ωb/ΩM . Gonzalez et al.
(2013) constrained this value using a sample of 12 X-ray selected galaxy clusters at
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Figure 1.10: 2PCF of 13904 clusters from WHL09 in 18 bins from
20 Mpch−1 to 200 Mpch−1 , together with the best-fit model curves with
the BAO features (solid line) and without the BAO features (dashed line).
(From Hong et al., 2012).

z ∼ 0.1, finding results consistent with Planck predictions.
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Chapter 2

The CosmoBolognaLib

We present the CosmoBolognaLib, a large set of Open Source C++ numerical libraries for
cosmological calculations. CosmoBolognaLib is a living project aimed at defining a common
numerical environment for cosmological investigations of the large-scale structure of the
Universe. In particular, one of the primary focuses of this software is to help in handling astro-
nomical catalogues, both real and simulated, measuring one-point, two-point and three-point
statistics in configuration space, and performing cosmological analyses. In this chapter, we
will discuss the main features of this software, providing an overview of all the available C++
classes implemented up to now. Both the CosmoBolognaLib and their associated doxygen doc-
umentation can be freely downloaded at https://github.com/federicomarulli/
CosmoBolognaLib. The description of the code we present in this chapter is based on
Marulli, Veropalumbo, and Moresco (2016).

2.1 Introduction

Numerical tools for cosmological calculations are one of the crucial ingredients in the
increasingly ambitious investigations of the large-scale structure of the Universe. Sev-
eral public libraries for astronomical calculations are nowadays available, in different
languages, such as e.g. CfunBASE (Taghizadeh-Popp, 2010), CosmoPMC (Kilbinger
et al., 2011), AstroML (Vanderplas et al., 2012), CUTE (Alonso, 2012), Astropy (Astropy
Collaboration et al., 2013), Cosmo++ (Aslanyan, 2014), CosmoloPy1, NumCosmo (Dias
Pinto Vitenti and Penna-Lima, 2014), TreeCorr (Jarvis, 2015).

Aiming at defining a common environment for handling extragalactic source cat-
alogues, performing statistical analyses and extracting cosmological constraints, we
implemented a large set of C++ libraries, called CosmoBolognaLib (hereafter CBL),
specifically focused on numerical computations for cosmology, thus complementing
the available software. In particular, the CBL provide highly optimised algorithms to
measure 2PCF and three-point correlation functions (3PCF), exploiting a specifically
designed parallel chain-mesh algorithm to count pairs and triplets. Several types
of correlation functions can be computed, such as the angle-averaged 2PCF, the 2D
2PCF in both Cartesian and polar coordinates and its multipole moments, the angular,
projected and deprojected 2PCF, the clustering wedges, the filtered 2PCF, and the con-
nected and reduced 3PCF (see §2.4.1). Moreover, a large set of methods are provided to
construct random catalogues, to estimate errors and to extract cosmological constraints

1http://roban.github.com/CosmoloPy/

https://github.com/federicomarulli/CosmoBolognaLib
https://github.com/federicomarulli/CosmoBolognaLib
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from clustering analyses (see §2.4.3). These features represent the main novelty of the
presented libraries. The CBL are fully written in C++. They can be included either in
C++ codes or, alternatively, in high-level scripting languages through wrapping.

This effort can be considered as a living project, started a few years ago and intended
to be continued in the forthcoming years. The following is the list of scientific publica-
tions that have been fully or partially performed using the presented libraries: Marulli,
Baldi, and Moscardini (2012) and Marulli et al. (2011, 2012, 2013, 2015), Giocoli et al.
(2013), Villaescusa-Navarro et al. (2014), Moresco et al. (2014, 2016), Veropalumbo et al.
(2014, 2016), Sereno et al. (2015), Petracca et al. (2016), Cucciati et al. (2016). Thanks
mainly to the adopted object-oriented programming technique, the CBL are flexible
enough to be significantly extented.

In this chapter, we present the main features of the current version of the CBL, that
is fully publicly available2, together with the documentation obtained with doxygen3.
A set of sample codes, that explain how to use these libraries in either C++ or Python
software, is provided at the same webpage.

The paper is organised as follows. In § 2.2 we will describe the CBL class for
cosmological computations. In § 2.3 we will present the classes implemented for
handling catalogues of extragalactic sources. 2PCF and 3PCF can be measured and
modelled with specific classes that will be described in § 2.4. § 2.5 presents the CBL
methods for statistical analyses. In § 2.5 we will provide a brief description of the other
CBL functions used for several generic calculations.

2.2 Cosmology

The CBL provide a versatile implementation of different cosmological models. The list
of customizable parameters is the following: the matter density, that is the sum of the
density of baryons, CDM and massive neutrinos (in units of the critical density) at z=0,
Ωmatter; the density of baryons at z=0, Ωbaryon; the density of massive neutrinos at z=0,
Ων ; the effective number of relativistic degrees of freedom, Neff ; the number of massive
neutrino species; the density of dark energy at z=0, ΩDE; the density of radiation at
z=0, Ωradiation; the Hubble parameter, h = H0/100; the initial scalar amplitude of the
power spectrum, As; the primordial spectral index, nspec; the CPL parameters of the
DE equation of state (Eq. (1.13); Chevallier and Polarski, 2001; Linder and Jenkins,
2003), w0 and wa; the non-Gaussian amplitude, fNL; the non-Gaussian shape – local,
equilateral, enfolded, orthogonal (Fedeli et al., 2011); the model used to compute
distances (used only for some specific interacting DE models, see Marulli, Baldi, and
Moscardini 2012); a variable called unit, used to choose between physical units or
cosmological units (that is in unit of h). If the above parameters are not specified when
creating an object of this class, default values from Planck cosmology will be used

2 https://github.com/federicomarulli/CosmoBolognaLib and
http://apps.difa.unibo.it/files/people/federico.marulli3

3 www.doxygen.org

https://github.com/federicomarulli/CosmoBolognaLib
http://apps.difa.unibo.it/files/people/federico.marulli3
www.doxygen.org
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(Planck Collaboration et al., 2014b). In any case, each cosmological parameter can be
set individually, when required.

Once the cosmological model has been chosen by setting the parameters described
above, a large set of cosmological functions can then be used. We provide here a brief
overview of the main functions of the class. The full explanation of the whole set of
class members can be found in the doxygen documentation at the CBL webpage.

Several functions are available to estimate the redshift evolution of all the relevant
cosmological parameters, to compute the lookback and cosmic times, to estimate
cosmological distances and volumes, and to convert redshifts into comoving distances
and viceversa.

There are methods to estimate the number density and mass function of DM haloes
(see § 1.3.2). Specifically, the code implements the equations to compute the halo mass
function (Eq. (1.39)) : at the moment, the implemented mass function models are the
following: Angulo et al. (2012), Jenkins et al. (2001), Pan (2007), Press and Schechter
(1974), Reed et al. (2007), Shen et al. (2006), Sheth and Tormen (1999), J. Tinker et al.
(2008), and Warren et al. (2006).

Methods to estimate the effective linear bias of DM haloes are provided as well
(Eq. (1.46)). The available parameterisations are: Sheth, Mo, and Tormen (2001), Sheth
and Tormen (1999), and J. L. Tinker et al. (2010).

A large set of functions is provided to estimate the real-space and redshift-space
power spectra and 2PCF. To estimate the DM power spectrum and all the derived quan-
tities, such as the mass variance used to compute the mass function and bias, the user
can choose between one of the following external codes: CAMB (Lewis, Challinor, and
Lasenby, 2000), MPTbreeze (Crocce, Scoccimarro, and Bernardeau, 2012), CLASS (Blas,
Lesgourgues, and Tram, 2011; Lesgourgues, 2011), Eisenstein&Hu code (Eisenstein and
Hu, 1998, 1999). The latter will be exploited authomatically by the CBL via specific
functions used to set the parameter files conveniently. Finally the code implements
algorithms to asses the cosmic mass accretion history (Giocoli et al., 2013).

2.3 Catalogues

The CBL can be used to handle samples of astronomical objects, with specific support
for different kind of object catalogues: galaxies, clusters of galaxies, voids, DM haloes
and generic mock objects. Moreover, the code structure is sufficiently versatile to easily
include new objects or to extend the present ones, e.g. by adding new properties.
Once the catalogue is created, several operations can be performed, such as estimating
the distribution of any property of the object members, dividing the catalogues in
sub-samples, or creating a smoothed version of the original catalogue. Moreover, a
catalogue can be used to estimate 2PCF and 3PCF (see § 2.4.1), or to assess errors
through the jackknife or boostrap techniques (see § 2.4.2). Catalogues can also be added
together, or they can be enlarged by adding new single objects.
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Figure 2.1: illustrative figure of the chain-mesh technique. For a given
point, (blue dot) we highlight the pairs falling in the r− dr, r+ dr region
(red continuos curves), identified by the algorithm for two different cell
sizes (shaded red region), shown in the two panels as an example case.

For a fast spatial search of objects in the catalogues, we implemented a highly
optimised chain-mesh method, specifically designed for counting object pairs and
triplets in a specified range of scales. The algorithm implements a pixelization scheme,
similar to the one described in Alonso (2012). First, the catalogue is divided into cubic
cells, and the indexes of all the objects in each cell are stored in vectors. Then, to find
all the objects close to a given one, the search is performed only on the cells in the
chosen scale range, thus minimising the amount of useless counts of objects at too large
separations. In this way, the efficiency of the method depends primarily on the ratio
between the scale range of the searching region and the maximum separation between
the objects in the catalogue. This is particularly useful when measuring 2PCF and 3PCF
(see § 2.4). The chain-mesh method is illustrated in Fig. 2.1. For alternative searching
algorithms, such as kd-tree and ball-tree methods, see e.g. Jarvis (2015).

The chain-mesh method is designed to handle chains in 1, 2 and 3 dimensions. An
example that shows how to create and use objects of these classes is provided at the
CBL webpage.

2.4 Clustering

One of the main focuses of the CBL is to provide functions to measure and model the
clustering properties of astronomical sources. In this section, we present a general
description of the main features of the current version of CBL methods for clustering
analyses.

2.4.1 Measurements

The CBL provide estimators to measures all the following clustering functions:
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• the angle-averaged 2PCF, ξ(r) (Eq. (1.62));

• the 2D 2PCF in both Cartesian and polar coordinates (Eq. (1.63));

• the projected 2PCF (Eq. (1.66));

• the deprojected 2PCF(Eq. (1.67));

• the multipole moments of the 2PCF (Eq. (1.64));

• the wedges of the 2PCF (Eq. (1.64));

• the angular 2PCF, w(θ), where θ is the angular separations.

The CBL provide also methods both to construct random catalogues with different
geometries and to read them from files, in case they have been already computed.
Specifically, there are functions for both cubic and conic geometries, in order to construct
random catalogues both for cubic simulation snapshots, and for mock or real catalogues
in light-cones.

Analogously to the 2PCF, the 3PCF can be computed as well. The 3PCF ζ(r12, r23, r31),
is defined as dP123 = n3[1 + ξ(r12) + ξ(r23) + ξ(r31) + ζ(r12, r23, r31)]dV1dV2dV3, where
n is the average density of objects, and Vi are comoving volumes. To calculate it the
CBL implement the Szapudi and Szalay (1998) estimator:

ζ(r12, r23, r31) =
DDD − 3DDR+ 3DRR−RRR

RRR
, (2.1)

where DDD, RRR, DDR, and DRR are the normalised numbers of data triplets,
random triplets, data-data-random triplets, and data-random-random triplets, respec-
tively.

The algorithms to measure the above clustering functions use the chain-mesh
method described in §2.3. The code exploits also multi-threaded parallelism. Specifi-
cally, all the loops to count the number of object pairs and triplets are parallelized via
OpenMP4. The code performances scale almost linearly with the number of threads.

These functions have been deeply tested with both simulated catalogues (Marulli,
Baldi, and Moscardini, 2012; Marulli et al., 2011, 2012, 2015; Moresco et al., 2014;
Petracca et al., 2016; Villaescusa-Navarro et al., 2014), and real catalogues of galaxies
(Marulli et al., 2013; Moresco et al., 2016) and galaxy clusters (Sereno et al., 2015;
Veropalumbo et al., 2014, 2016). Examples can be found at the CBL webpage.

2.4.2 Errors

The CBL provide specific functions to estimate the covariance matrix defined in
Eq. (1.68). The latter can be estimated with three alternative methods (see e.g. Norberg
et al., 2009):

4http://openmp.org/wp/

http://openmp.org/wp/
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• analytic errors: 2PCF errors can be estimated analytically, assuming Poisson statis-
tics. The CBL contain functions to compute analytic errors used to set the diagonal
elements of Ci,j ;

• internal errors: the CBL provide functions to estimate errors by sub-sampling
the data catalogue and measuring the 2PCF for all but one region – jackknife, or
for a random extraction of regions – bootstrap. The volume can be partitioned
either in cubic sub-regions, useful e.g. when analysing simulation snapshots,
or in sub-regions of generic geometry using the external software MANGLE to
reconstruct the angular mask (Swanson et al., 2008);

• external errors: the CBL can generate lognormal mock catalogues (Coles and Jones,
1991), with a specified power spectrum, from which the covariance matrix can be
estimated.

Analogous methods for the 3PCF will be included in a forthcoming version of the
CBL.

2.4.3 Models

The CBL implement the following facilities to model the 2PCF signal:

• the angle-averaged 2PCF of cosmic tracers, ξ(r), can be modelled both in real
space and in redshift space. In real space, we implement the model in Eq. (1.52):
this is used to measure the bias b or when exploiting the standard ruler technique
fitting (Veropalumbo et al., 2014). To model the angle-averaged 2PCF in redshift
space, we compute the Fourier anti-transform of the damped redshift-space
power spectrum. The implement also models for the de-wiggled power spectrum
and correlation function (Eq. (1.70)), used to describe the non-linear damping
effects at BAO scales. In this case, the dependence on non-linear effects is explicit,
via the ΣNL parameter (Eisenstein, Seo, and M. White, 2007).

• the redshift-space 2D 2PCF and its multipole moments can be modelled via the
so-called dispersion model, that is currently implemented for both the linear and
non-linear regimes (Eqs. (1.76)-(1.83)). Both exponential and Gaussian functions
can be used to model the distribution function f(v) (see e.g. Marulli et al., 2012).
More accurate models for RSD will be included in a forthcoming version of the
CBL.

• the projected 2PCF is modelled using Eq. (1.69).

Methods to model the angular 2PCF and the 3PCF are not yet available and will be
added in a future version of the CBL.
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2.5 Tools for statistical analyses

We implemented generic classes to model measured quantities and derive cosmological
constraints. Input data and models are fully customizable. The CBL provide also
Bayesian inference methods based on the Bayes’ theorem (Eq. (1.84)). In particular, they
provide CBL provide methods to perform the MCMC ikelihood sampling technique.
The latter consists in sampling a target distribution using a correlated random walk:
every step is extracted after a trial that depends only on the previous one (Markov
process). The steps are collected in chains, that define marginalised posterior probability
of the model parameters p(~θ | ~X). We implemented two MCMC algorithms:

• the Metropolis-Hastings algorithm (Hastings, 1970). It consists of a single-particle
sampling of the parameter space. At each step, t, the proposed parameter vector,
~θ′, is extracted from the distribution q(~θ′|~θ(t)), centered on ~θ(t);

• the stretch-move algorithm (Goodman and Weare, 2010). It represents a multi-
particle approach. At each step, t, the proposed position ~θ′i for the i−th particle
is located on the line connecting ~θi(t) and ~θj(t), where the latter is randomly
extracted from the particle ensemble. This allows an exchange of information
between particles in the cloud.

The current version of the CBL implements Gaussian priors, though minor modifica-
tions are required to include different parameterisations. Examples of scientific results
obtained using the implemented Bayes methods are provided e.g. in Veropalumbo
et al. (2014, 2016).

2.6 Other functions

In addition to the classes described above, a large set of generic functions are included
in the libraries. Among them, the set includes: i) functions of generic use, such as to
handle errors and warning messages or endian conversions; ii) functions to manipulate
vectors and matrices; iii) functions for statistical analyses; iv) functions to calculate
distances; v) special functions (e.g. Legendre polynomials). A full documentation can
be found at the CBL webpage.
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Chapter 3

Cosmological constraints from a
sample of optically selected galaxy
clusters

In this chapter we will describe the clustering properties of a spectroscopic sample of 69035

clusters selected from the Sloan Digital Sky Survey. Galaxy clusters, as tracers of massive dark
matter haloes, are highly biased structures. The linear bias of the sample considered in this
work, that we estimate from the projected correlation function, is b σ8 = 2.00± 0.03. Thanks
to the high signal in the cluster correlation function and to the accurate spectroscopic redshift
measurements, we obtained a ∼ 4σ detection of the BAO peak, providing an uncalibrated
distance estimate Dv/rs = 9.58±0.22

0.24, and a calibrated distance Dv = 989±22
25 Mpch−1 by

combining with sound horizon from CMB data. The results are robust and insensitive to the
reconstruction technique. We model the monopole full shape, finding ΩMh

2 = 0.116±0.010
0.009.

The measurement presented in this work thus provides a new strong confirmation of the
concordance cosmological model and demonstrates the power and promise of galaxy clusters
as key probes for cosmological applications based on large scale structures. This work expands
the analysis presented in Veropalumbo et al. (2014), updating the dataset and modelling
techniques.

3.1 Introduction

In this chapter we investigate the possibility of using clustering of clusters as a cos-
mological probe. The chapter is organized as follows. In § 3.2 we will describe the
cluster sample used in this analysis. We will describe the clustering measures and
covariance matrix estimates in § 3.3 and 3.4 respectively. We will provide results on the
sample bias in 3.5, on the BAO detection in§ 3.6, on the cosmological constraints from
the monopole modelling in § 3.7 and on small scale clustering in § 3.8. In § 3.9, we will
compare our results with expected features of cluster clustering, focusing in particular
on the BAO detectability.
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3.2 Data

The catalogue analysed in this chapter consists of optically selected clusters of galaxies
that have identified by Wen, Han, and Liu (2012, WHL12) 1 from the Sloan Digital Sky
Survey III (Aihara et al., 2011, SDSS-III, Data Release 8) .

The WHL12 catalogue consists of 132683 galaxy clusters on a sky area of ∼ 15000

square degrees, spanning a redshift range 0.05 < z < 0.8. The cluster identification is
based on a friends-of-friends procedure (Huchra and Geller, 1982). This approach has
been already exploited to find groups and clusters, using volume-limited spectroscopic
samples of galaxies (see e.g. Berlind et al., 2006; Tempel et al., 2014), at low redshift
(z < 0.2). The WHL12 cluster sample extends the technique on photometric redshift
samples of galaxies, allowing the detection of over-densities of galaxies around the
Brightest Cluster Galaxy (BCG) at higher redshift.

The optical richness is defined as RL∗ = L̃200/L∗, where L̃200 is the total r-band
luminosity within an empirically determined radius r̃200 and L∗ is the evolved char-
acteristic galaxy luminosity (Blanton et al., 2003). N200 is the number of member
candidates within r̃200. The subscript 200 denotes quantities measured in a sphere
whose mean density is 200 times the critical density at the halo redshift. The cluster
photometric redshift reported in the catalogue is the median value of the photometric
redshifts of the galaxy members. A candidate cluster is included in the catalogue if
RL∗ ≥ 12 and N200 ≥ 8. These thresholds correspond to a mass of ∼ 0.6 × 1014M�

(WHL12 Covone et al., 2014).
According to WHL12, the sample is complete for M200 & 2 · 1014M� in the redshift

range 0.1 < z < 0.42, while the detection rate decreases down to ∼ 75% for the
minimum mass of the sample, M200 = 6 · 1013M� (see WHL12 for more details on the
detection algorithm adopted). WHL12 also quantified the false cluster detection to be
at the level of 6% for RL∗ = 12, decreasing to < 1% for cluster of richness RL∗ ≥ 23.

3.2.1 Building the spectroscopic cluster sample

A precise estimate of the redshift is crucial when reconstructing statistical properties of
the large-scale distribution of matter. Large redshift errors, as in photometric redshift
surveys, lead to severe distortion effects that reflect in the 2PCF measurement, compli-
cating its analysis and cosmological interpretation (see e.g. Marulli et al., 2012; Sereno
and Ettori, 2014). In order to construct spectroscopic cluster samples, we take advan-
tage of the spectroscopic data from the SDSS. focusing on the SDSS DR7 (Abazajian
et al., 2009) and on the final spectroscopic data release from BOSS (Alam et al., 2015;
Dawson et al., 2013), part of the SDSS III program. This survey measured the spectra for
millions of galaxies. We assign redshift to WHL12 clusters by cross-matching with the
spectroscopic galaxy sample 2. The total cluster sample with spectroscopic information
is made of 72518 objects, spanning a redshift range 0 . z . 1. We cut the sample using

1The latest version of the WHL12 catalogue cluster_dr9sz.dat is publicly available at http://zmtt.
bao.ac.cn/galaxy_clusters/.

2 The match has been done using th OBJID entry.

http://zmtt.bao.ac.cn/galaxy_clusters/
http://zmtt.bao.ac.cn/galaxy_clusters/
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Figure 3.1: Left Panel. Angular distribution of the WHL12 sample.
In red all the clusters in the sample, in blue only the cluster whose
BCG has a redshift in the 0.1 < z < 0.6 range. Right Panel. Redshift
distribution of clusters with photometric (in red) and spectroscopic
(blue) redshift in the range 0.1 < z < 0.6. Only clusters in the BOSS
window are considered here. Nearly 70% of clusters have a BCG with
spectroscopic information.

only those clusters with a spectroscopic redshift in the range 0.1 . z . 0.6; the number
of remaining BCG is then 69035, with a median redshift of 0.37, covering an area of
∼ 10800 deg2.

The top panel of Fig. 3.1 shows the angular distribution of photometric and spectro-
scopic cluster samples (red and blue dots respectively); the bottom panel shows the
redshift distribution of the same samples.

Hereafter, we make no distinction between galaxy clusters and BCGs because, by
construction, the position of each cluster is entirely determined by the coordinates of
its BCG. Clusters with no spectroscopic information for their BCG are discarded, even
in the case that members galaxies have a measured spectroscopic redshift. We made
this choice to reduce contamination from non linear dynamics in virialized haloes.

3.3 Clustering Measure

In this section, we will recall the basics of the clustering measure technique, applied for
this case of study. More information on clustering measures can be found in § 1.5.4.
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We choose to measure clustering in configuration space, measuring the 2PCF. Ac-
cording to its definition (Eq. 1.62), it quantifies the excess or defect of probability of
finding pairs separated by a certain comoving distance ∆r, with respect to a random
distribution of points. From a practical point of view, the only operation needed is
the computation of numbers of data-data, random-random, data-random pairs in bins
of physical separation. A fiducial cosmology must be assumed to convert observed
coordinates into comoving coordinates. In this work the fiducial cosmology is a ΛCDM
model with ΩM = 0.3, h = 0.7. All the measurements have been performed with the
CBL software (§ 2 Marulli, Veropalumbo, and Moresco, 2016).

3.3.1 Weights

We apply a weight to each cluster to correct for mass and redshift incompleteness (see
WHL12 for further details). We take into account the dependence on seeing and stellar
density of targets on the celestial sphere, as introduced in Anderson et al. (2012), to
obtain a more consistent estimate of the 2PCF at large scales. This weighting scheme
lowers the 2PCF normalization by < 10%. Thus, it can be considered as a minor
effect considering the 2PCF uncertainties at the BAO scales, and does not impact peak
determination.

3.3.2 Random Sample

According to the Eq. (1.62), a random sample has to be provided to evaluate the
2PCF taking into account geometrical selection effects. A random catalogue contains
in fact the information on the selection function of the data sample, that are used to
balance spurious effects affecting the pair counting. The selection function can be safely
reproduced by separating it into the angular and radial parts. We generate random
catalogues almost 20 times larger than the reference cluster samples to limit shot noise
effects.

We generate random points using publicly available survey footprints for the BOSS
survey 3 and the MANGLE software (Swanson et al., 2008). We mask the random points
falling in the veto regions, as done for the data. We consider two methods to assign
redshifts to the random collection of objects:

• random extraction from the smoothed redshift distribution; the parameters in-
volved are the size of the redshift bin and the size of the Gaussian kernel;

• random shuffling the galaxy cluster redshifts (see Ross et al., 2012); a redshift is
extracted from the data and assigned to a point in the random sample.

We verified that all the results are robust independently of the method and parameters
adopted. In the following, we will show the results obtained with the first method,
grouping the cluster redshift distribution in 100 bins and smoothing with a Gaussian
kernel three times larger than the bin size.

3the mask is available at footprint is available at http://data.sdss3.org/sas/dr9/boss/lss/.

http://data.sdss3.org/sas/dr9/boss/lss/
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3.4 Covariance matrix

We estimate the covariance of the 2PCF measurements via internal estimator techniques.
In particular, we choose the jackknife resampling technique; we recall the covariance
matrix equation, already introduced in § 1.5.4:

Cij =
Nsub − 1

Nsub

N∑

k=1

(ξki − ξ̄i)(ξkj − ξ̄j) , (3.1)

where the subscripts i and j refers to the spatial bins of the 2PCF and k refers to the
2PCF of the kth of N sub-samples; for the jackknife this consist in the whole sample
except for the kth region. Finally ξ̂ is the mean 2PCF of the N realizations.

We divide the sample in 100 subregions, keeping the number of object per region
constant. As verified directly, the value of Nsub adopted here is large enough to assure
the convergence of the results and at the same time to keep size of regions large enough
compared to the scales considered (see e.g. Beutler et al., 2011). In the left panel of
Fig. 3.2 we compare the diagonal elements of the two matrices. The jackknife error
estimate at separations larger than 50 Mpch−1 are a factor ∼

√
2 larger to the analytic

ones. This result is consistent with expected errors obtained directly from mocks. We
extensively test the jackknife algorithm exploited in this work using the LasDamas

mock catalogues (McBride et al., 2009), finding that the quoted errors are conservative
estimates. In the right panel of Fig. 3.2 we show the correlation matrix from the
jackknife compared to the one obtained with the Gaussian analytic model presented
by Grieb et al. (2016). The jackknife estimate of the covariance is very scattered, as
also expected. This scatter propagates into the likelihood and on the final posterior
probabilities of the parameters. Anyway we do not consider in this work corrections to
these effects.

3.5 Cluster bias

We use the projected correlation function to estimate the linear bias, b, of the galaxy
clusters used in this sample, following the procedure described in § 1.6.1. Thanks to
the large signal at small separation, we measure the projected correlation function in
comoving radial bins of 2 Mpch−1 , testing several values of πmax used to perform the
line-of-sight integration. In particular, we considered the range 20 Mpch−1 ≤ πmax ≤
90 Mpch−1 . The projected correlation function covariance is obtained via jackknife
resampling of 100 angular regions, as specified in § 3.4. We assume different values of
ΩM when computing the projected correlation function model. In Fig. 3.3, left panel,
we show the projected correlation function, obtained for πmax = 50 Mpch−1 (black
dots), and the best fit models for three different values of ΩM , ΩM = 0.25 (dashed red
line), ΩM = 0.3 (blue continuos line), ΩM = 0.35 (green dot-dashed line).
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Figure 3.2: Left panel: comparison of the monopole errors computed with
Jackknife and with theoretical prescription. The jackknife error results
to be a factor ∼

√
2 larger at scales larger than 50 Mpch−1 , making

our final constraints conservative. Right Panel: correlation matrix of
the 2PCF monopole, as obtained via the jackknife resampling (upper
diagonal elements) and with the analytic Gaussian formula (Eq (3.5)).
The jackknife correlation results noisy; this effect propagates on the
parameter posteriors, increasing the parameter variance.

We find bσ8 = 2.03 ± 0.03 for ΩM = 0.25, bσ8 = 2.27 ± 0.03 for ΩM = 0.30 and
bσ8 = 2.48±0.04 for ΩM = 0.35. The fit has been performed in the range 10 Mpch−1 <

rp < 35 Mpch−1 .
The right panel of Fig. 3.3 shows the values of the bias for different values of πmax.

The results are very stable with respect to this parameter. The main effect is a slight
increase in the bias error (∼ 10%) when going to high values of πmax. This is due to the
fact that signal at large separation along the line of sight add noise to the estimate of
the projected correlation function, that propagates into the bias measure. Changing the
fit boundaries does not effect significantly the constrained value of bσ8

This demonstrates that the cluster selection adopted in this work provides a sample
of high biased tracers as expected, with values of the bias compatible with expectation
from the cluster masses in the sample. Anyway this match has no statistical signifi-
cance. We plan to quantify the impact of cluster richness information on the clustering
measurements in a future work.

3.6 Baryon acoustic oscillations

We look at the BAO peak in the clustering of galaxy clusters, measuring the monopole of
the 2PCF using the LS estimator (Landy and Szalay, 1993), in bins of ∆s = 8 Mpch−1 .
We constrain the BAO peak applying the model described in § 1.6.2, and deriving
marginalized constraints on the parameter using a MCMC approach, sampling the
Gaussian likelihood function described by Eq. 1.85. For the 2PCF monopole we use
the de-wiggle template described in Eq. 1.70: It models the shape of the correlation
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Figure 3.3: Left panel.Projected correlation function for the galaxy clus-
ter sample (black points). Here are shown best fit model for ΩM = 0.25
(red dashed line), ΩM = 0.3 (blue line) and ΩM = 0.35 (green dot-
dashed line), for πmax = 50 Mpch−1 . The model with ΩM = 0.25
seems slightly preferred, by looking at χ2 residuals. Geometrical
distortions only have a little impact on the results . Anyway no
conclusion on cosmological parameters should be drawn as geo-
metrical distortions are not taken into account in the model. For
this reason we took as our reference bσ8 = 2.27 ± 0.03, obtained for
πmax = 50 Mpch−1 and ΩM = 0.3. Right panel. Bias as a function of
πmax for different values of ΩM . There is a clear difference in bσ8 vary-
ing ΩM ; on the other hand the model is almost insensitive to different
values of πmax, this demonstrates the robustness of this method in
alleviating redshift space distortion effects.

function with a bias factor B and polynomial terms A0
r2

+ A1
r +A2, aimed at constrain

the small-scales non linear effects as well as large-scales systematics not fully accounted
for in the random. The BAO peak is modelled by an extra-parameter, ΣNL, that
describes its shape.This parameter is kept fixed in the analysis. The only parameter
of the model of cosmological interest is then α, that measure the shift of the BAO
peak with respect to the position predicted by the fiducial model, and provides the
distance information, as Eq. 1.72 shows. The median redshit of the sample is z̄ = 0.37.
Using this approach the true value of the sound horizon should be known a priori. For
this analysis we use rs = 147.34 ± 0.65 Mpc from Planck Collaboration et al., 2014b.
The alternative approach is to not assume any value for this quantity, providing the
uncalibrated distance DV /rs = αDfid

V (z̄)/rfids . For the fiducial cosmology assumed
here, Dfid

V (0.37) = 980.6 Mpch−1 and rfids = 145.7 Mpc .
The BAO peak is very clearly detected; we find the distance Dv = 968±23

25 Mpch−1 ,
and its uncalibrated version Dv/rs = 9.38±0.22

0.24, corresponding to a 2.5% distance error.
This is a great result, that demonstrates that the BAO signal can be easily detected also
from galaxy clusters. It is worth to be noticed that our covariance matrix estimate is
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Figure 3.4: Left panel: the monopole of the 2PCF of the galaxy clusters
sample, before (blue circles) and after(red squares) reconstruction.
The best-fit models from the fitting procedure described in § 3.6 are
also shown, blue dashed line for the pre-reconstruction fit and red
dashed line for the post-reconstruction respectively. For galaxy cluster,
the BAO signal does not improve significantly after the reconstruction
is applied. Right panel: The values of ∆χ2 as a function of ΣNL. The
values span from a linear power spectrum (ΣNL = 0 Mpch−1 ) to a
power spectrum model with no BAO (ΣNL →∞). Detections of the
BAO is 4σ. The shape of the peak is consistent with linear theory,
considering the error estimates from our clustering measurements.

conservative, and so is our estimate of the distance. We test the impact of different
choices for the binning and for the fitting ranges, finding that the results are robust
with respect to these choices. Hong, Han, and Wen (2016) recently detected the BAO
from the same sample of galaxy clusters finding a comparable result.

We also reconstruct the galaxy clusters density field using the Zel’dovich approxi-
mation, following the procedure described in § 1.5.4. The goal of the reconstruction is
to reverse non-linear growth of structures, by moving haloes to their position and thus
shrinking the BAO peak to a shape closer to the one predicted by linear theory. For
this case we find the distance Dv = 989±22

25 Mpch−1 , and the uncalibrated distance
Dv/rs = 9.58±0.22

0.24. The results for the two case are very well compatible, and in perfect
agreement with prediction for ΛCDM cosmology. Moreover, no improvement comes
from applying this technique considering the error estimates, differently from the case
of galaxy clustering, where a strong improvement on BAO peak detection comes after
reconstruction is applied (Anderson et al., 2012).

In the left panel of figure 3.4 we show the monopole of the cluster correlation
function before (blue circles) and after reconstruction (red squares).

This is made clear by looking at the shape of the BAO peak. In the right panel of
figure 3.4 we show the ∆χ2 value for the model described in Eq. 1.70 as a function of
ΣNL. As already discussed in § 1.6.2, ΣNL describes the damping of the BAO caused
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by the non linear growth. A null value of this parameter means that the BAO shape
is described by linear theory; with ΣNL →∞ the BAO signal is completely dumped.
The best fit value of ΣNL is 0 Mpch−1 both before and after reconstruction, suggesting
that the density field probed by large collapsed structure is negligibly influenced by
non-linear growth. This makes the application of reconstruction procedure unnecessary
considering the actual measurements uncertainties. Similar results have been obtained
by Prada et al., 2016; Sánchez, Baugh, and Angulo, 2008; Wang and Zhan, 2013 who
analysed the shape of the BAO feature in bias-dependent study of the correlation
function, finding that a shaper BAO peak is detected from more massive haloes. The
results are robust for changing in the reconstruction parameters; that is the sample
bias and the smoothing parameters. This also implies that galaxy clusters show a very
sharp and strong BAO signal, detected at a very high significance despite the paucity
of the sample (detection > 4σ).

3.7 Constraints from the monopole full shape

In order to infer more information from the clustering signal, we also choose to model
the full shape of the 2PCF pre-reconstructed monopole in redshift space; this allows to
combine the geometrical information coming from the BAO peak, with the information
coming from the clustering shape. This method has already been used in previous
galaxy clustering works (see e.g. Beutler et al., 2011; Blake et al., 2011; Eisenstein
et al., 2005), as well as for smaller sub-sample of galaxy clusters (Hong et al., 2012;
Veropalumbo et al., 2014).

We consider a theoretical model that includes both the cluster bias and the effects
of RSD and geometric distortions due to a possible incorrect assumption of the fiducial
cosmology. The adopted model is the following:

ξcl(s) = b2
(

1 +
2

3
β +

1

5
β2

)
ξDM (αs) , (3.2)

where b is the linear bias factor, α is the ratio between the test and fiducial values of DV ,
used to model geometric distortions, and β = f/b is the linear distortion parameter,
that is the ratio of the linear growth rate f and the bias b. Based on results showed in the
previous section, we use the linear dark matter correlation function, ξDM , computed
using the software CAMB (Lewis and Bridle, 2002).

To compare with previous studies, we derive also other parameters such as ys(z) =

rs/DV (z) (see also §1.6.2), and the acoustic parameter A(z), defined as follows:

A(z) ≡ 100DV (z)
√

ΩMh2

cz
. (3.3)

Cosmological information are encoded in ΩMh
2, in the linear bias, b, and in the shift
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Figure 3.5: Left panel: the pre-reconstruction monopole of the 2PCF for
the galaxy cluster sample (black dots) described in § 3.3, compared
to the best fit full-shape models with and without the BAO feature
(red and green dashed curves respectively) and to the best-fit model
from § 3.6 locating the BAO position (blue curve). The results of
the two methods are in agreement, leading to a similar BAO peak
detection. Right panel: 1− 2σ confidence contours for the parameters
ΩMh

2, DV (z = 0.37), obtained from the fit of the model given in
Eq. (3.2). Following the degeneracies directions, the fit is driven both
by the BAO peak geometrical information and by the monopole shape
constraints.

parameter, α, that traces the geometrical distortions. All the other cosmological pa-
rameters are kept fixed to the Planck values: H0 = 67.4 km s−1 Mpc−1, Ωb = 0.02207h2,
ns = 0.96 and σ8 = 0.83 (Planck Collaboration et al., 2014b).

The best-fit parameters are summarized in Table 3.1. The reported values are the
medians of the MCMC parameter distributions, while the 1σ errors span from the 16th

to the 84th percentiles. The dashed red line in the left panel of Fig. 3.5 shows the result
of the fit obtained using the CAMB software to estimate ξDM (r), while the green one
has been obtained using the fitting formula given by Eisenstein and Hu (1999) with
no BAO. We show by comparison the best-fit curve from BAO-only model, (see § 3.6).
The BAO feature is detected with a ∼ 3.5σ confidence level, in good agreement with
previous results.

We estimate a distance measure of DV = 955±32
34 Mpch−1 . Constraints on the

distortion parameters ys are of the order of 2.6%, in good agreement with the value
obtained with the modelling used §3.6. Fitting in the range 20 < s[ Mpch−1 ] < 180,
we obtain a 8% constraint on the mass density parameter, ΩMh

2 = 0.116±0.01
0.009, after

marginalizing over the other two model parameters α and b. This significantly improves
the results obtained in Veropalumbo et al., 2014.

The right panel of Fig. 3.5 shows the 1 and 2σ marginalized probability contours
in the ΩMh

2 −DV plane. The dotted line indicates the points with constant ys, i.e. it
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represents the degeneracy direction between parameters the that would occur if the
fit was driven by the BAO feature only. The dashed line (constant ΩMh

2DV ) shows
the complementary case in which the fit is driven only by the shape of the 2PCF. As
it can be seen, the orientation of the parameter degeneracy obtained in this work lies
approximately in the middle between these two extremes, closely following the solid
line of constant A (Eq. 3.3). In Table 3.1 we report the best-fit values of the cosmological
parameters, as well as the estimated uncertainties derived from the MCMC analysis
after marginalizing over all the free parameters of the fit. As it can be seen, the estimated
value of b is consistent with the one derived in § 3.5 by fitting the projected correlation
function at smaller scales. Reducing the fitting range has the effect of worsening the
constraints: the precision drop of a 30% factor when changing the lower limit of the fit
to 40 Mpch−1 . Also the degeneracies direction indicates that the fit becomes dominated
by the BAO when increasing the lower fit boundary.

3.8 Redshift space distortions

In this section we measure the RSD of the galaxy clusters. The goal is to assess the
detectability of the Fingers-of-God signal in the anisotropic clustering of BCGs, to test
the hypothesis that I described in § 1.7.1.

To do so, we measure the 2D cartesian 2PCF ξ(rp, π) for the galaxy cluster sample,
up to rmax = 50 Mpch−1 , with a bin width of 2 Mpch−1 . Figure 3.6 shows the iso-
correlation contours of ξ(rp, π) = {5, 2, 1, 0.5, 0.3, 0.15}. Other approaches consist in
measuring multipoles of the anisotropic 2D correlation function, or wedges (see § 1.5.4);
we plan to use also these technique in future works. In this case we only consider
the diagonal elements of the covariance matrix; this approximation can be considered
as a lower limit to the precision on parameters modelling the non-linear small scale
signal. We consider the dispersion model (Hamilton, 1992; Kaiser, 1987) to infer the
small-scales redshift space distortion signal; the free parameters are the linear growth
rate, fσ8, the cluster bias, bσ8, and the σ12, the parameter tuning the fingers-of-God.
This effect enters the model as the convolution of the parallel to the line-of-sight part of
the correlation function and a velocity distribution; here we assumed the latter to be an
exponential (Eq. (1.83)).

More details on the model are described in § 1.6.3. The best fit results are shown
in Figure 3.6; we show the models with the values of σ12 both free (blue dashed
line) and fixed to 0 (red dashed line), plotted at same iso-correlation levels as for
the data. Constraints on σ12 are very weak; from the marginalized posterior σ12 =

430±370
250. This suggests a < 2σ detection of the fingers-of-God signal. The same can

be seen by comparing the residuals of the best fit in the two case of free and fixed σ12;
with a reduced χ2 of 1.26 and 1.34 respectively: the difference between the models is
almost undetectable. Other best fit model parameter values are: fσ8(0.37) = 0.33±0.28

0.19,
bσ8(0.37) = 2.0±0.1

0.1.
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Measure Model Parameter

ξ(s)

BAO only Pre Reconstruction

DV = 968±23
25 Mpch−1

DV (rfids /rs) = 957±23
25 Mpch−1

DV /rs = 9.6±0.2
0.2

BAO only Post Reconstruction

DV = 989±22
25 Mpch−1

DV (rfids /rs) = 978±22
25 Mpch−1

DV /rs = 9.6±0.2
0.2

Full shape

ΩMh
2 = 0.117±0.01

0.009

DV (rfids /rs) = 956±32
35 Mpch−1

bσ8 = 2.0±0.1
0.1

wp(rp)

ΩM = 0.25 bσ8 = 2.03± 0.03

ΩM = 0.30 bσ8 = 2.27± 0.03

ΩM = 0.35 bσ8 = 2.48± 0.04

ξ(rp, π) Dispersion Model

fσ8(z) = 0.33±0.3
0.2

bσ8 = 2.0±0.1
0.1

σ12 = 430±370
250 km/s

Table 3.1: Best-fit parameters obtained from modelling the projected,
the monopole and the cartesian 2D correlation functions. The median
redshift is z = 0.37
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Figure 3.6: The Two-dimensional 2PCF of the galaxy cluster sam-
ple. The solid lines show iso-correlation contours at ξ(rp, π) =
{0.15, 0.3, 0.5, 1, 2, 5}. The other lines show the results from the disper-
sion model are shown, as described in 3.8: the red lines refer to the linear
dispersion model, while the blue owes to the non linear model, which
includes the Fingers-of-God effect.

3.9 Discussion

The results presented in previous sections showed that galaxy clusters are powerful
cosmological probes for the detection of BAO, even with a fairly limited statistics,
and highly competitive with respect to galaxies. Future large surveys such as Euclid
(Amendola et al., 2013; Laureijs et al., 2011) and eROSITA (Merloni et al., 2012) will
allow this approach to be fully exploited in several open key questions (e.g. the
dark energy equation of state). Accurate forecasts on the cosmological constraints
achievable by these future cluster surveys will be provided in a future work. Moreover,
significantly improvements can be made by combining this rich of information statistics
with other cosmological probes from galaxy clusters, such as the mass function and
stacked gravitational lensing.

In this section we describe the expected cluster clustering signal, focusing in par-
ticular on the BAO detection, as a function of the bias and number of haloes, and the
influences from small scales non linear dynamics.
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3.9.1 Detection of the BAO peak in clustering of haloes

Galaxy clusters are the largest bound structures in the Universe and the more biased
tracers of the dark matter density field. Their number density is strictly cosmology
dependent, via the mass function expressed in § 1.3.2.

By choosing a mass threshold Mmin and a volume, Eqs. (1.41), (1.46) provide the
total number of haloes Nh and their effective bias beff . It can be noticed that the
for fixed volume, the number of haloes decreases with mass, while beff increases. It
is then clear that both clustering signal and noise change when selecting haloes at
different Mmin. We are interested in understanding the impact of this changes on the
BAO detection. To do so, we construct mock monopole signal and covariance starting
from three basic quantities: a) the survey volume, Vs, b) the haloes number density
n = Nh/Vs and c) the effective bias beff .

We use the Kaiser model for the monopole obtained from Fourier anti-trasforming
the monopole of the anisotropic power spectrum P (k, µ) (Kaiser, 1987):

ξ0(s) = b2eff (1 +
2

3
β +

1

5
β2)ξDM , (3.4)

where β is the ratio of the linear growth rate f and beff . We model the monopole
covariance matrix Ci,j following the analytic prescription given by Grieb et al., 2016:

Ci,j =
1

2π2

∫ ∞

0
k2

[
1

Vs

∫ 1

−1

[
P (k, µ) +

1

n̄

]2

dµ

]
j̄0(ksi)j̄0(ksj)dk, (3.5)

where n̄ = Nh/Vs.
In order to reproduce the cluster sample we described in § 3.2, we fix a redshift

range 0.1 < z < 0.6, with a median redshift z = 0.37 and an area A ≈ 10000 deg2: the
total survey model is Vs ≈ 4Gpc3h−3.

We then compute monopole signal ξ0(s) and covariance matrices Ci,j for combi-
nations of of (Nh, beff ), and constrain the BAO signal using the model described in
§ 1.6.2.

Results are shown in left panel of Fig. 3.7. The black curve connects pairs {Nh, beff}
obtained from Eqs. 1.41, 1.46 using the same Mmin; the grey area above this line is
then a forbidden region for these choices of volume and redshift; the white area below
the line represents a region in which incomplete halo samples should fall. Red curves
correspond to line with same percentage precision for α. Smaller highly biased samples
perform severally worse than large samples with smaller clustering signal. Anyway
the bias still plays a role as the iso-precision lines are not parallel to the bias axis. These
trends are in agreement with results from mock halo catalogues by Angulo et al., 2005.

For the value of the bias and the number of clusters in our sample, the expected
BAO precision should be of the order of 1.5%. This confirms that clusters are a very
good candidate for BAO analysis. This also confirms that our results are conservatives.

For cluster clustering studies aimed at extracting cosmological information from
the BAO feature, it is worth focusing on complete highly biased samples of clusters
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Figure 3.7: Error on α as a function of bias and number of haloes for a
fixed choice of volume. Results have been obtained for a mock survey
with volume ∼ 4Gpc3h−3 and 13.5 < logMminh

−1 < 14.5. The black
line connect values of {Nh, beff} obtained from Eqs. (1.41), (1.46) with
the same Mmin. Red lines connect instead mock realizations for which
the precision on the shift parameter α is 1.5, 3, 6, 9% . The number of
haloes available is the leading parameter. The bias anyway plays a
role helping in detecting BAO feature for sample less populated but
with a large clustering signal.

as these can constraint the peak as well as larger but incomplete less-biased samples.
Moreover, complete samples are easily to be treated when combined with other probes,
such as the mass function; since it help in building a joint mass function-clustering
likelihood.

3.9.2 Non linear dynamics

Identifying a galaxy cluster coincides, in principle, with identifying the coordinates of
the centre of its potential well. This implies that the redshift of the galaxy cluster should
be unaffected by the fingers-of-God effect, the latter coming from random motions of
cluster members. This provide a clustering signal not distorted, in particular at the BAO
scales since small scales random motions can influence also very large separations. To
qualitative look the impact of fingers-of-God on the correlation function, we consider a
model from the monopole of the anisotropic power spectrum P0(k):

P0(k) =

∫ 1

0
P (k, µ)dµ. (3.6)
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Figure 3.8: Shape of the monopole of the 2PCF for different redshift
error. Here we kept fixed the bias b = 2.5.

P (k,mu) is modelled using the following prescription:

P (k, µ) = (b+ fµ2)2 exp(−k2µ2σ2)PDM (k), (3.7)

with PDM (k) the matter power spectrum, b the bias, f the linear growth rate and
exp(−k2µ2σ2) the cut-off term describing the random perturbations of the redshifts
that wash out the signal over a typical scale k ∼ 1/σ, thus causing a scale-dependent
effect. Both non-linear stochastic motions and redshift errors contribute to the value of
σ

The right panel of Fig.3.7 shows how the clustering signal is modified when adding
non-linear redshift space contributions, here shown as redshift error. In the case of
optically selected galaxy clusters structures are detected by looking at galaxy distri-
butions. The most common assumption made in this case is that the cluster centre is
occupied by a galaxy often identified as the BCG (e.g. Koester et al., 2007; Wen, Han,
and Liu, 2012). It follows that the cluster positions coincides with the coordinates of
a sub sample of galaxies, that probe the highest peaks of the density field and with a
redshift in principle not affected by Fingers-of-God. However, this selection is very
difficult to obtain, for both physical reasons, (clusters can be in unrelaxed dynamical
states) and technical reasons, especially when the cluster selection is extended down to
low massive, and then poor haloes, where BCG can easily be misidentified. Anyway
the analysis of samples of galaxy clusters detected in different ways is beyond the scope
of this thesis and will be part of a future analysis.
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Chapter 4

Distance-redshift relation from
galaxy clusters BAO detection

After providing in § 3 a BAO detection for the whole cluster sample, in this chapter we will
provide observational constraints on the distance-redshift relation from BAO as detected from
the monopole of the 2PCF of galaxy clusters. The cluster samples considered in this work have
been extracted from the SDSS III in three redshifts bins, ( z̄ = 0.2, z̄ = 0.3, and z̄ = 0.5). The
number of objects is 12910, 42215, and 11816, respectively. We detect the peak of BAO for
all the three samples. The derived distance constraints are: rs/DV (z = 0.2) = 0.18± 0.01,
rs/DV (z = 0.3) = 0.124 ± 0.004 and rs/DV (z = 0.5) = 0.080 ± 0.002. Combining
these measurements with the sound horizon scale measured from the CMB, we obtain robust
constraints on cosmological parameters. The results are in agreement with the standard
ΛCDM. These results have been published in Veropalumbo et al. (2016).

4.1 Introduction

Galaxy clusters reveal to be a suitable tracer for the matter distribution. The main
advantages in using these objects in a clustering analysis have been described and
demonstrated in § 3: clusters have a large clustering signal, due to high bias and a
very negligible contribution from RSD. Moreover, the BAO signal detected from the
cluster clustering is compatible with prediction from linear theory, and BAO reconstruc-
tion methods are not required to improve the signal. All this aspects counterbalance
the larger measurements uncertainties on clustering estimates compared to galaxies,
coming from the fact that massive haloes are limited in numbers for a fixed volume.

The main goal of this chapter is to obtain a multi-redshift distance constraint by
measuring the BAO peak in the 2PCF of three spectroscopic samples of galaxy clusters
and obtain cosmological constraints from the distance measurements. This allows us to
understand the amount of information coming from a purely geometric cosmological
probe obtained with this relatively small, but peculiar, collection of objects. This is a
part of the general picture, that is using cluster catalogues to perform a joint analysis of
the mass function and clustering, to further tighten the cosmological constraints.

The chapter is organised as follows. We will present our cluster samples in § 4.2,
and in § 4.3 we will show our results on clustering measurements. We will describe
cosmological constraints in § 4.4 Finally, in 4.5 we will compare our results with BAO
detection from galaxy surveys .
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4.2 Data

This section describes the data used for the clustering analyses. More details on the
methods exploited to detect the galaxy clusters and to construct the spectroscopic
samples can be found in Wen, Han, and Liu (2012) and are described in § 3.2.

4.2.1 Sample selection

By cross-matching the photometric sample of BCG with the spectroscopic galaxy sample
from SDSS DR12 final release, we have ∼ 65000 galaxy clusters with a spectrocopic
redshift in 0.1 < z < 0.6.

Thanks to this high abundance , we can split the catalogue in three subsamples at
different redshifts, according to the type of target each BCG is assigned in the SDSS
program (Anderson et al., 2014; Ross et al., 2015). For details on the targeting selection,
we refer to Dawson et al. (2013). We choose this method instead of a simple redshift bin
cut of the sample presented in 3.2.1 because before the public release of the combined
sample there was no way to create a correct random sample accounting for all the
spectroscopic data (Alam et al., 2016). We consider three types of targets: the Main
Galaxy Sample, formed of luminous galaxies (r < 17.77) at z < 0.3; the LOWZ sample,
that targets Luminous Red Galaxies up to a redshift z < 0.43; the CMASS sample,
focused on high-redshift galaxies in the range 0.43 < z < 0.7; the latter samples are
part of the BOSS selection.

The derived spectroscopic cluster catalogues are the following:

• the Main Galaxy Cluster Sample (Main-GCS), consisting of 12910 BCGs, part of
the Main Galaxy sample in the north galactic cap;

• the LOWZ Galaxy Cluster Sample (LOWZ-GCG), with 42215 BCGs in the LOWZ
sample;

• the CMASS Galaxy Cluster Sample (CMASS-GCS), with 11816 BCGs in the north
galactic cap of the CMASS sample.

We restrict the redshift ranges to i) 0.1 ≤ z ≤ 0.3 for the Main-GCS, ii) 0.1 ≤ z ≤ 0.43

for the LOWZ-GCS, and iii) 0.43 ≤ z ≤ 0.55 for the CMASS-GCS. We have chosen the
redshift cut at z = 0.43 so that the CMASS-GCS and the LOWZ-GCS are independent
samples. On the other hand, a significant fraction of clusters is in common between the
Main-CGS and the LOWZ-CGS samples. We choose this sample splitting to maximize
the number of clusters in each redshift bin and to simplify the creation of random
catalogues. We discuss the covariance between samples in § 4.3.2. Table 4.1 reports
the main properties of the selected samples, while in Fig. 4.1 we show their angular
(upper panels) and redshift distributions (lower panels). We apply the same weighting
scheme described in § 3.3.1; this slightly lowers the 2PCF normalization; thus, it can be
considered as a minor effect considering the 2PCF uncertainites at the BAO scales.
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Figure 4.1: The angular (top panels) and redshift distributions (bottom
panels) of the three selected galaxy cluster catalogues: Main-GCS
(blue), LOWZ-GCS (green) and CMASS-GCS (red). The black dashed
curves in the bottom panels are the reconstructed redshift distribu-
tions used for the construction of random catalogues.

Sample name Number of clusters Redshift range Median redshift bias

Main-GCS 12910 0.1 ≤ z ≤ 0.3 0.20 2.00± 0.05

LOWZ-GCS 42115 0.1 ≤ z ≤ 0.43 0.30 2.42± 0.02

CMASS-GCS 11816 0.43 ≤ z ≤ 0.55 0.50 3.05± 0.07

Table 4.1: The main properties of the cluster samples used for the
clustering analysis. The bias has been obtained by modelling the
projected correlation function in the scale range 5 < r[ Mpch−1 ] < 20.

4.2.2 Random catalogues

We generate random points using publicly available survey footprints 1 and the MAN-

GLE software (Swanson et al., 2008). For the three cluster samples we used the following
masks:

• Main-GCS: the SDSS DR7 survey footprint, using the window provided by the
NYU Value-Added Galaxy Catalogue (NYU-VAGC) (Blanton et al., 2005), a cross-
matched collection of galaxy catalogues aimed at clustering and galaxy formation
studies;

• Lowz-GCS: the BOSS survey footprint, excluding regions afflicted by the wrong
targeting selections due to slightly different colour cuts assumed (Reid et al.,
2016). (these excluded regions are identified via the spectroscopic tiles ID TILEID>

10324);

• CMASS-GCS: the Northern Galactic Cap of BOSS survey footprint.

1the SDSS DR7 window is available at http://sdss.physics.nyu.edu/vagc/; the BOSS survey
footprint is available at http://data.sdss3.org/sas/dr9/boss/lss/.

http://sdss.physics.nyu.edu/vagc/
http://data.sdss3.org/sas/dr9/boss/lss/
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Random points falling in the veto regions that consider bad photometry and stars are
masked, as done for the data.

As already described in § 3.3.2, we assigned redshifts to the random points from a
random sampling of the smoothed cluster redshift distribution. We grouped the cluster
redshift distribution in 100 bins and smoothed the redshift distribution with a Gaussian
kernel three times larger than the bin size. In bottom panels of Fig.4.1 we show the
smoothed redshift distribution used in random creation (black dashed lines).

4.2.3 Covariance matrix

To compute the covariance matrix we use both jackknife/bootstrap and lognormal
mock samples to compute the covariance matrix, more details are described in § 1.5.4.

We compare the internal error estimates described above with the ones assessed
through the lognormal density field technique (Coles and Jones, 1991). This method
to infer the covariance matrix has been already used by several authors for clustering
analyses (see e.g. Beutler et al., 2011; Blake et al., 2011; Chuang et al., 2015).

We create the density field realizations using the redshift-space monopole model:

Pmodel(k) = b2
(

1 +
2

3
β +

1

5
β2

)
PDM (k) , (4.1)

where PDM is the linear matter power spectrum obtained with the CAMB software
(Lewis and Bridle, 2002), b is the bias constrained from the galaxy cluster projected
correlation function at the small scales, and β is the ratio between the linear growth
rate function f = ΩM (z)0.545, as predicted by General Relativity, and the bias b. The
value of the bias has been obtained fitting the projected correlation function with the
jackknife covariance. The covariance matrix used for the fit is the one derived with the
sub-sampling approach. The estimated values of the bias and its standard deviation for
each sample are reported in Table 4.1.

The density fields are generated in boxes large enough to contain the survey vol-
umes, with a regular grid of steps half the size of the bins used to estimate the 2PCF.
The survey selection function is taken into account in the random catalogues. Once the
mock clusters are extracted according to the density distribution, the covariance matrix
can be directly estimated by measuring the 2PCF for each mock sample.

4.3 Clustering measurements

In the top panel of Fig. 4.3 we present the measured 2PCF for the three galaxy cluster
samples considered. We used LS estimator for the 2PCF (Eq. (1.62)), with bins of
8 Mpch−1 for the Main-CGS and LOWZ-CGS and of 10 Mpch−1 for CMASS-CGS.
Error bars shown are the ones computed with the lognormal mock method. The
measures are robust when changing the modelling of the radial selection function.
The clustering signal is well determined despite the sparseness of the samples. The
measured 2PCFs are all consistent with each other in terms of the BAO peak position,
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Figure 4.2: Upper panels: ratio of internal error (jackknife: filled circles,
bootstrap: open diamonds) and lognormal principal diagonal square
roots. At the scales of interest for the fit, internal error methods pro-
vide a conservative error estimate. Lower panels: correlation matrices
(Ci,j/

√
Ci,iCj,j) from lognormal realizations (upper diagonal part)

and from jackknife estimates (lower diagonal part). The 1000 lognor-
mal mocks provide a less scattered covariance matrix with respect to
the jackknife method. This is due mainly to the low number of bins
(50) used when resampling the catalogue.

though a significant difference in the bias is measured (see Table 4.1). As already
pointed out in § 4.2.3, we consider different methods to compute the covariance matrix.
In the case of internal errors, we divide each cluster catalogue in 50 samples to get the
jackknife estimate, and re-sample them 200 times to exploit the bootstrap technique. We
use instead 1000 lognormal mock realizations. Results are shown in Fig. 4.2. In the top
panels we compare internal estimates (filled circles for jackknife, open diamonds for
bootstrap) and lognormal mock estimates of the square root of the principal diagonal
values of the covariance matrix. Internal methods provide conservative estimates of
the errors, that become less biased for larger number of objects. Both the jackknife
and bootstrap estimates are robust when changing the number of subsamples, or
resamplings. Nevertheless, a large number of realizations makes the covariance matrix
less scattered. This can be seen in the bottom panels of Fig. 4.2: the covariance matrix
obtained with lognormal mocks is smoother compared to the jackknife one. In the
following we adopt the lognormal mock estimate of the covariance matrix as the
reference. Covariance matrices from internal estimators will be used to check for
consistencies in the parameter determination and BAO peak detection.
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Figure 4.3: Top panel. The redshift-space 2PCF of galaxy clusters,
respectively Main-GCS (left panel), LOWZ-CGS (central panel) and
CMASS-CGS (right panel). The errorbars are computed with the log-
normal mock method. The dashed line shows the best-fit model from
Eq. 1.82. The shaded area represents the 68% posterior uncertainties
provided by the MCMC analysis. Bottom panel. The values of ∆χ2 as
a function of ΣNL for the three cluster samples – Main-GCS (left panel),
LOWZ-GCS (centeral panel), and CMASS-GCS (right panel) – and for
the three covariance matrix definitions – lognormal mocks (blue filled
circles), jackknife (red squares) and bootstrap (yellow diamonds). The
values span from a linear power spectrum (ΣNL = 0 Mpch−1 ) to a
power spectrum model with no BAO (ΣNL →∞). Detections of the
BAO are well over 2σ in all cases.

4.3.1 Distance constraints

We get distance constraints by fitting the BAO peak position in the measured 2PCF
at different redshifts. The BAO feature is clearly detected for all samples. Results of
the fits using the different definitions of the covariance matrix are reported in Table
4.2. The α values estimated in the three redshift bins are all consistent. The precision
in the detection degrades when using jackknife or bootstrap covariance matrices, as
expected. As already described in § 1.6.2, and applied in § 3.6, the model depends on
the parameter ΣNL, that describes the degradation of the BAO feature in the power
spectrum. The bottom panel of Fig. 4.3 shows the values of ∆χ2 as a function of
ΣNL. Each point represents the difference between the minimum χ2 at each ΣNL

and the absolute minimum of the curve. We do this for all the three samples and
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Sample Name LogNormal Jackknife Bootstrap

Main-GCS 0.97± 0.06 0.97± 0.08 0.98± 0.08

LOWZ-GCS 0.99± 0.03 0.99± 0.04 0.99± 0.05

CMASS-GCS 0.99± 0.03 0.99± 0.06 0.99± 0.08

Table 4.2: Values of the shift parameter α for the three catalogues,
obtained using covariance matrices from lognormal mocks, jackknife
and bootstrap subsampling, from column 2 to column 4. All the
results have been obtained by fitting the 2PCF from 40 Mpch−1 to
200 Mpch−1 , and fixing ΣNL = 4 Mpch−1 .

for the three error definitions. This allows us to determine the significance of our
detections. The significance of the BAO detections result to be well above 2σ for all
the considered samples. Also in this case we cannot distinguish between models with
ΣNL < 8 Mpch−1 , that are all consistent within 1σ. Nevertheless, Fig. 4.3 clearly
indicates that galaxy clusters have a more limited non-linear contribution at the BAO
scales with respect of other tracers, such as galaxies (the ∆χ2 minima are in some
cases at ΣNL = 0 Mpch−1 ). Again, a practical consequence is that the density field
reconstruction seems not crucial in the BAO distance constraints from galaxy clusters,
as already pointed out in § 3.6. Hereafter we consider the lognormal results with
ΣNL = 4 Mpch−1 as our reference distance constraint.

We measure the following values: DV (z = 0.2)(rfids /rs) = 545 ± 31 Mpch−1 ,
DV (z = 0.3)(rfids /rs) = 806±24 Mpch−1 andDV (z = 0.5)(rfids /rs) = 1247±53 Mpch−1 .
Fig. 4.4 shows the distance-redshift diagram. The coloured points are the isotropic dis-
tance estimates for the Main-GCS (blue), the LOWZ-GCS (green) and the CMASS-GCS
(red) sample, respectively. We also show the point obtained for the full sample of clus-
ters (yellow circles). The other black symbols show DV estimates for galaxy samples
from literature: 6dFGS survey (Beutler et al., 2011, black star), Main galaxy sample
(MGS) from SDSS DR7 (Ross et al., 2015, black diamond), BOSS LOWZ and CMASS
DR12 (Cuesta et al., 2016, black square and pentagon, respectively) and WiggleZ (Kazin
et al., 2014, black cross). The black curve is the theoretical prediction for the Planck
ΛCDM cosmology (Planck Collaboration et al., 2014b). As it can be seen, our results are
fully consistent with previous measurements from galaxy surveys, and with standard
ΛCDM predictions. Results are fully consistent with constraints for the whole galaxy
cluster sampl,e as showed in § 3.6.

4.3.2 Sample covariance

As already pointed out in section 4.2.1, the Main-GCS and the LOWZ-GCS catalogues
have a large fraction of data in common (∼ 2/3 of galaxy clusters in the Main-GCS).
Thus distance constraints from these two samples are not independent. To estimate
the sample correlation, we construct 100 lognormal mocks of both Main-CGS and
LOWZ-GCS, according to their sample selection functions. The mocks share the same
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Figure 4.4: The distance DV (z)/(rfids /rs) – redshift relation. The coloured
points show our measurements at redshifts 0.2, 0.3, 0.5. The distance esti-
mates from Main-GCS and LOWZ-GCS (blue and green dot, respectively)
are not independent: the correlation factor between the two samples is
≈ ρ = 0.4 (see § 4.3.2). We also show the BAO distance constraint of the
whole cluster sample (yellow circles). Other black symbols correspond
to other distance constraints from galaxy surveys: 6dFGS (Beutler et al.,
2011, star), MGS (Ross et al., 2015, diamond) , BOSS LOWZ and CMASS
(Cuesta et al., 2016, square and pentagon, respectively) and WiggleZ
(Kazin et al., 2014, crosses). The black curve is the DV (z) prediction for
the ΛCDM cosmology with the Planck parameters (Planck Collaboration
et al., 2014b). We also show distance prediction in a flat, matter-only
Einstein-De Sitter universe (black dashed curve) and for a De Sitter
universe with ΩΛ = 1 (black dot-dashed curve)

fraction of data as in the real case. we measure the 2PCF of each realization, and fit the
measurements with a two-parameter model:

ξ(r) = b2ξDM (αr) , (4.2)

where b is the bias factor and α is the shift parameter. We then calculate the covariance
matrix, Ci,j , for the derived values of α:

Ci,j =
1

Nmock − 1

Nmock∑

k=1

(αki − α̂i)(αkj − α̂j) , (4.3)
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where i and j run over Main-CGS and LOWZ-CGS α measurements, respectively. The
correlation is defined as

ρ =
Ci,j√
Ci,iCj,j

. (4.4)

The correlation is moderate, with ρ = 0.402.

4.4 Cosmological implications

We can use the distance measurements described above to derive constraints on cosmo-
logical parameters. Using only the three measures obtained with our cluster samples,
we do not expect to get constraints competitive with the ones obtained by combin-
ing larger galaxy samples with different probes. The aim here is just to check the
consistency of our measurements with the predictions of the standard cosmological
framework, and to quantify the amount of information available from this kind of
analysis using clustering of galaxy clusters.

As reported in § 1.6.2, We consider two methods to derive cosmological constraints,
that is the calibrated and the uncalibrated distance estimators. In the first case, we use the
Planck value of the sound horizon, rs = 147.34±0.65 Mpc , to calibrate the BAO distance
measure. We have Dv(z = 0.2) = 800 ± 50 Mpc , DV (z = 0.3) = 1183 ± 35 Mpc and
DV (z = 0.5) = 1832± 55 Mpc . In the second approach the sound horizon is a function
of cosmological parameters, through the interpolation formula given by Anderson et al.
(2014). In this case we get rs/DV (z = 0.2) = 0.18±0.01, rs/DV (z = 0.3) = 0.124±0.004

and rs/DV (z = 0.5) = 0.080± 0.002. The value of Ωb is kept fixed to the best-fit Planck
value (Planck Collaboration et al., 2014b): Ωb = 0.049.

We use the full covariance matrix to get cosmological constraints. The only non-
diagonal term comes from the cross-correlation between the Main-CGS and LOWZ-CGS
samples, as described in § 4.3.2. We tested the robustness of our results when using
only the diagonal terms of the covariance matrix. As expected, we get constraints
5− 10% narrower with respect to the full covariance case. The effect is however small,
considering the estimated uncertainties.

With both the methods we test some cosmological scenarios. Specifically, we
constrain the cosmological parameters that enter the Hubble function, H(z). In fact, the
quantity DV is a function of H(z) and of the angular diameter distance DA(z), which
in turn depends on the comoving distance DC(z) =

∫ z
0 dz′c/H(z′) (Eq. (1.54)).

4.4.1 ΛCDM models

The simplest model we test is the flat ΛCDM Universe (equation of state w = −1), with
a negligible contribution of radiation. In this case the Hubble function reads:

H2(z)/H2
0 = ΩM (1 + z)3 + ΩΛ . (4.5)
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ΛCDM
Distance

DV dz

H0

[ km s−1Mpc−1 ]

Prior U(30, 120) U(30, 120)

Posterior 71+14
−14 64+17

−8

ΩM
Prior U(0, 1) U(0, 1)

Posterior 0.32+0.22
−0.15 0.33+0.24

−0.16

Table 4.3: Summary of the cosmological parameters obtained by fitting
the calibrated BAO distance DV and the uncalibrated BAO distance dz
for ΛCDM cosmology. We report priors used in the fitting procedures.

Since the curvature Ωk = 1 − ΩM − ΩΛ − Ωr is fixed to zero, ΩΛ is a function of ΩM .
We fit our distance constraints against the pair {ΩM , H0}. We impose a large uniform
prior on both parameters: U(0, 1) for ΩM and U(30, 120) for H0. Here U(a, b) is the
uniform distribution, equal to 0 outside prior limits a, b. We find ΩM = 0.32+0.22

−0.15 and
H0 = 71+14

−14 km s−1Mpc−1 for the calibrated distance indicator, and ΩM = 0.33+0.24
−0.16

and H0 = 64+17
−8 km s−1Mpc−1 for the uncalibrated case. Results are summarized

in Fig. 4.5 (upper left panel), where we show the 1 − 2σ confidence contours for the
parameters ΩM−H0. The Planck cosmology is well compatible with our results, in both
cases. Our constraints are broad, due to our distance uncertainties and to our limits
in redshift. As we will show in particular for the next cases, high-redshift distance
measures significantly help in measuring the geometry of the Universe.

4.4.2 oΛCDM models

Here we test our measurements against a non-flat Universe with CDM and cosmological
constant. In this case the Hubble equation becomes:

H2(z)/H2
0 = ΩM (1 + z)3 + ΩΛ + Ωk(1 + z)2; . (4.6)

We fit the combination of parameters {ΩM ,ΩΛ, H0}, using a flat prior for ΩΛ,
and broad Gaussian priors, N (µ, σ), for ΩM and H0, with mean values, µ, set from
Planck (ΩM = 0.31 and H0 = 67 km s−1Mpc−1 ), and standard deviations, σ, of 0.3 and
20 km s−1Mpc−1 , respectively. See Tab. 4.4 for more information on the adopted priors.
We find Ωk = −0.000.44

−0.48 for the DV fit and Ωk = 0.01+0.34
−0.33 for the fit using rs/DV . In

Fig. 4.5 (upper right panel) we show the 1−2σ confidence contours for the combination
ΩM − ΩΛ, marginalized over H0. we confirm at 1σ the necessity of a negative pressure
component in the cosmological model. The different degeneracy directions obtained
with the two methods are due to the introduction of the cosmological dependence of
the sound horizon, that depends only on ΩMh

2 and Ωbh
2.
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oΛCDM
Distance

DV dz

H0

[ km s−1Mpc−1 ]

Prior N (67, 20) N (67, 20)

Posterior 70+12
−10 64+13

−12

ΩM
Prior N (0.3, 0.3) N (0.3, 0.3)

Posterior 0.35+0.21
−0.18 0.34+0.15

−0.11

ΩΛ
Prior U(0, 1.5) U(0, 1.5)

Posterior 0.65+0.34
−0.34 0.64+0.34

−0.36

Table 4.4: Same as table 4.3, for oΛCDM cosmology.

wCDM
Distance

DV dz

H0[ km s−1Mpc−1 ]
Prior N (67, 20) N (67, 20)

Posterior 67+12
−11 60+13

−8

ΩM
Prior U(0, 1) U(0, 1)

Posterior 0.40+0.17
−0.17 0.38+0.21

−0.14

w
Prior U(−2, 0) U(−20)

Posterior −1.12+0.46
−0.55 −1.06+0.49

−0.52

Table 4.5: Same as table 4.3, for wCDM cosmology.

4.4.3 wCDM models

We now test our data against a flat Universe with CDM and dark energy, with dark
energy density changing with time. We parametrize the dark energy density time
dependence with constant equation of state w. The Hubble equation in this case is:

H2(z)/H2
0 = ΩM (1 + z)3 + ΩDE(1 + z)3(1+w) . (4.7)

This model turns into standard ΛCDM cosmology imposing w = −1. We fit the
combination of parameters {ΩM , w,H0}, since, as in the ΛCDM case, the value of ΩDE

at the present time is fixed by the relation ΩDE = 1−ΩM . we assume a flat prior on ΩM

and w and a broad Gaussian prior on H0, centered at the Planck value 67 km s−1Mpc−1 ,
with a standard deviation of 20 km s−1Mpc−1 . We findw = −1.12+0.46

−0.55 for the calibrated
distance fit, and w = −1.06+0.49

−0.52 for the uncalibrated one. contours up to 2σ for the pair
ΩM − w are shown in Fig. 4.5 (lower left panel), while the best-fit corresponding value
of α is reported in the third row of Fig. 4.5.
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owCDM
Distance

DV dz

H0

[ km s−1Mpc−1 ]

Prior N (67, 2) N (67, 2)

Posterior 67.0+1.5
−1.5 60.0+1.4

−1.4

ΩM
Prior N (0.31, 0.02) N (0.31, 0.02)

Posterior 0.31+0.01
−0.01 0.32+0.01

−0.01

ΩDE
Prior U(0, 1.5) U(0, 1.5)

Posterior 0.67+0.45
−0.25 0.68+0.44

−0.25

w
Prior U(−1.5, 0) U(−1.5, 0)

Posterior −0.87+0.23
−0.38 −0.88+0.24

−0.37

Table 4.6: Same as table 4.3, for owCDM cosmology.

4.4.4 owCDM models

The most general case we consider is the one with a non-flat Universe with time-
dependent dark energy density:

H2(z)/H2
0 = ΩM (1 + z)3 + ΩDE(1 + z)3(1+w) + Ωk(1 + z)2 . (4.8)

We vary the parameters {ΩM ,ΩDE , w,H0}, keeping totally free ΩDE and w, and assum-
ing a Gaussian prior for ΩM , centered on 0.31 with a standard deviation of 0.02, and
for H0 centered on 67 km s−1Mpc−1 with a small standard deviation of 2 km s−1Mpc−1 ,
respectively. In the case of the uncalibrated distance measure, the strong priors on ΩM

and H0 resume in an almost constant value for the sound horizon. Since the central
values for these two parameters are the ones from Planck, the value of the sound
horizon is centered on the Planck value too. This explains the similarity in the bottom
row of Fig. 4.5 (lower right panel) that shows the degeneracy between the parameters
ΩDE and w. Even with the assumption of these strong priors, no clear constraint can be
extracted in this case. As we verified, the impact of the assumed priors on our results
is small, considering the uncertainties in our measurements. For instance, changing
the mean value of the Gaussian prior on ΩM in the range {0.29, 0.33}, the derived
mean values of the posteriors of ΩDE and w0 change in the ranges {0.63, 0.68}, and
{−0.91,−0.94}, respectively. In Table 4.6 we report the 16− 84th percentile intervals of
the parameter posterior distributions.
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Figure 4.5: 1− 2σ confidence contours for parameters assuming different
cosmological models: ΩM -H0 plane in the ΛCDM model (upper left
panel), ΩM −ΩΛ plane in the oΛCDM model (upper right panel), ΩM −w
plane in the wCDM model (lower left panel) and ΩDE − w plane in
the owCDM model(lower right panel). The red dashed contours show
results from the uncalibrated distance rs/DV , the blue for the calibrated
distance DV . The best fit value for Planck ΛCDM cosmology is also
reported (white cross).
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Figure 4.6: left Panel: comparison of the 1 − 2σ confidence contours
in the ΩM − H0 plane between our work (blue filled contours) and
previous measurements from galaxy samples – WiggleZ (red dot-dashed
contours) and MGS+BOSS (green dashed contours). Right panel The
same as bottom panel of Fig. 4.3 but for BOSS CMASS before (orange
filled circles) and after reconstruction (green filled squares) (Cuesta et al.,
2016) and CMASS-GCS, with lognormal mock covariance matrix (blue
filled diamonds). The high significance of the BAO detection is evident
for galaxies, compared to our results. The reconstruction process helps
in reducing non-linear effects, shifting the ∆χ2 minimum to 4 Mpch−1

in the post-reconstruction measurement.

4.5 Comparison with previous measurements

The left panel of Fig. 4.6 shows the posterior 1 − 2σ confidence contours of ΩM–H0

parameters, obtained with the calibrated distance estimators (see § 4.3.1) from the BAO
of the galaxy cluster samples considered in this work, and of the galaxy samples of
MGS+BOSS Anderson et al., 2014; Cuesta et al., 2016; Ross et al., 2015 and WiggleZ
(Kazin et al., 2014). As one can see, our constraints are consistent with previous
estimates. Our uncertainties appear slightly better than the ones obtained by modelling
the post-reconstruction WiggleZ clustering (Kazin et al., 2014), despite the paucity of
our samples, while they are broader with respect to the ones from the BOSS survey
(Anderson et al., 2014; Cuesta et al., 2016). This is expected, since our BCGs represent a
subsample of the BOSS galaxy survey. Indeed, the measurements obtained with these
BOSS galaxy catalogues provide the best BAO distance constraints to date, both in term
of accuracy and of BAO reconstruction and modelling techniques2.

Compared to clusters, we find a lower value of the bias factor for the BOSS galaxies.

2the 2PCF for the galaxies of the CMASS sample pre- and post-reconstruction, together with covariance
matrices, are publicly available https://www.sdss3.org/science/boss_publications.php.

https://www.sdss3.org/science/boss_publications.php
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This result is expected and implies that our cluster catalogues cannot be simply con-
sidered as random sub-samples of the galaxy catalogue, but they identify the highest
peaks of the density field, confirming our previous results (Veropalumbo et al., 2014).

Finally, we reanalyze the BOSS CMASS clustering data with the method described
in § 1.6.2. Right panel of Fig. 4.6 shows the values of ∆χ2 as a function of ΣNL for the
BOSS CMASS pre- and post-reconstruction samples, and for our CMASS-GCS sample.
Firstly, our estimated value of the BAO detection significance for the BOSS CMASS
data is consistent with the value claimed by Anderson et al. (2014). Moreover, this
analysis highlights the impact of the density field reconstruction technique, that shifts
the best-fit value of ΣNL from 8 Mpch−1 to 4 Mpch−1 and lower, improving BAO
distance constraints. On the other hand, galaxy clusters trace a more linear density
field with respect to galaxies. Thus, as it has been proved in § 3.6, the reconstruction is
be not necessary for galaxy clusters, as it does not improve significantly the BAO peak
detection.

This study clearly demonstrates that galaxy clusters are powerful tracers of the
cosmic density field and can be efficiently exploited for BAO analyses. Despite the
paucity of cluster samples, with respect to generally larger galaxy samples, the higher
values of cluster bias and the fact that their redshifts are less distorted by random
motions improve the clustering signal, that results almost insensitive to non-linear
dynamical distortions. This reflects in a sharper BAO peak in the 2PCF, close to the
prediction of linear theory. To further tighten the cosmological constraints obtained in
this work, we plan to combine these clustering measurements with estimates of the
cluster mass function. These investigations will be presented in a forthcoming work.
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Chapter 5

Joint cosmological analysis of
galaxy clusters clustering and weak
lensing

The joint analysis of clustering and stacked gravitational lensing of galaxy clusters in large
surveys can constrain the formation and evolution of structures and the cosmological parame-
ters. On scales outside a few virial radii, the halo bias, b, is linear and the lensing signal is
dominated by the correlated distribution of matter around galaxy clusters. We will discuss a
method to measure the power spectrum amplitude σ8 and b based on a minimal modelling.
Using same clusters for measuring both lensing and clustering, the estimate of σ8 does require
neither the mass-richness relation, nor the knowledge of the selection function, nor the mod-
elling of b. With an additional theoretical prior on the bias, we obtain σ8 = 0.75± 0.08. This
chapter is based on the analysis presented in Sereno, Veropalumbo et al. (2015).

5.1 Introduction

Stacked gravitational lensing is the cross-correlation between foreground deflector
positions and background galaxy shears. Weak gravitational lensing depends on the
total matter density (including dark matter) via the deflection of light due to intervening
matter along the line of sight, which both magnifies and distorts galaxy shapes. Stacked
lensing can then be used to measure the galaxy-mass cross-correlation. On the other
hand, galaxy clustering recovers the auto-correlation of galaxy positions.

Galaxies are biased tracers of the underlying mass distribution (Bhattacharya et al.,
2013; Sheth and Tormen, 1999; J. L. Tinker et al., 2010). This severely limits the constrain-
ing power of either galaxy clustering or stacked lensing on the matter power spectrum
amplitude. Constraints from the two probes have to be combined to break degeneracies
and to recover the matter correlation function (Baldauf et al., 2010; Cacciato et al., 2013;
Mandelbaum et al., 2013; Miyatake et al., 2015; More et al., 2015; Oguri and Takada,
2011).

Theory and numerical simulations shows that the galaxy bias is extremely com-
plicated to model: it is stochastic, it depends on galaxy properties such as luminosity,
colour and/or morphological type, and it is scale dependent on small scales (Cacciato
et al., 2013; Marulli et al., 2013; Sheth and Tormen, 1999, and references therein). The
proper treatment of how galaxies populate dark matter haloes, assembly bias, and
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baryonic effects on the matter power spectrum on small scales requires a very accurate
modelling. If the adopted scheme is too restrictive and fails to account for some impor-
tant features, the constraining power on cosmological parameters is limited and the
results can be severely biased.

Galaxy bias contains very valuable information regarding galaxy formation, mainly
on small scales, but at the same time it is difficult to model it properly. Complementary
approaches have been proposed to deal with bias in joint clustering plus lensing analy-
ses. At one extreme, methods can be optimised to study the bias. Physically motivated
models based on the halo occupation distribution (HOD) have been considered to
simultaneously solve for cosmology and galaxy bias (Cacciato et al., 2013; Leauthaud
et al., 2012; J. L. Tinker et al., 2012; Yoo et al., 2006). Using the small scale lensing signals
enhances the signal-to-noise ratio (SNR) and consequently reduces the statistical errors.
However, problems connected to theory interpretation, arbitrary bias modelling, and
observational uncertainties are more pronounced on small scales and they can cause
additional systematic uncertainties which are difficult to ascertain.

At the other extreme, galaxy bias can be seen as a nuisance when attempting to
determine cosmological parameters (1.5.1). The information from galaxy clustering
and galaxy-galaxy lensing can then be retained only above scales equal to a few times
the typical dark matter halo virial radius, where the treatment of the bias is simplified
(Baldauf et al., 2010; Mandelbaum et al., 2013; Yoo and Seljak, 2012).

Most of the previous studies which combine clustering and lensing have focused
on galactic scales. These studies can be optimised to estimate σ8. Mandelbaum et al.
(2013) recently constrained cosmology and galaxy bias using measurements of galaxy
abundances, galaxy clustering and galaxy-galaxy lensing taken from the SDSS DR7. In
the framework of the cold dark matter model with a cosmological constant (ΛCDM),
they found σ8 = 0.76± 0.06. More et al. (2015) measured the clustering and abundance
of the BOSS (Baryon Oscillation Spectroscopic Survey) galaxies from the SDSS-III DR11,
and their galaxy-galaxy lensing signal with the CFHTLenS to find σ8 = 0.79± 0.05.

In the era of precision cosmology, the development of independent methods to
measure cosmological parameters is crucial to test possible failures of the standard
ΛCDM model. The tension between the lower values of σ8 inferred from clusters counts
(Planck Collaboration et al., 2014b, and references therein) and higher estimates from
measurements of the primary Cosmic Microwave Background (CMB) temperature
anisotropies (Planck Collaboration et al., 2014a) may reflect either the need to extend
the minimal ΛCDM model or some hidden systematics.

The Planck Collaboration et al. (2014b) measured σ8 = 0.75 ± 0.03 and ΩM =

0.29± 0.02 using number counts as a function of redshift of 189 galaxy clusters from
the Planck Sunyaev-Zel’dovich catalogue. However, the values of the cosmological
parameters obtained from cluster abundance are degenerate with any systematic error
in the assumed scaling relation between mass and the observed quantity. This problem
can be solved in the context of joint experiments alike that considered in this work.
In fact, the combination of cluster observables (number counts and cluster-cluster
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correlation functions) and stacked weak lensing enables secure self-calibration of
important systematic errors inherent in these measurements, including the source
redshift uncertainty and the cluster mass-observable relation (Oguri and Takada, 2011).

Analyses of the primary CMB temperature anisotropies have provided higher esti-
mates of the power spectrum amplitude. The Planck Collaboration et al. (2014a) found
σ8 = 0.83 ± 0.02 assuming a standard flat ΛCDM model. Estimates of cosmological
parameters with CMB experiment are very accurate but highly degenerate, since only
one source redshift can be observed. Results are then model dependent.

Measurements of the cosmic shear, i.e., the auto-correlation of galaxy shape dis-
tortions due to intervening matter along the line of sight, can constrain the amplitude
and growth of matter fluctuations. Using non-linear models of the dark-matter power
spectrum, Kilbinger et al. (2013) estimated σ8 = 0.84±0.03 for a flat ΛCDM model with
ΩM = 0.3 from 2D large-scale structure weak gravitational lensing in the CFHTLenS.
This method is not affected by halo bias but since it relies on auto-correlations rather
than shear cross-correlations, coherent additive errors in galaxy shapes (such as those
induced by seeing or distortions in the telescope) may be difficult to remove from
the analysis (Mandelbaum et al., 2013). Moreover, intrinsic alignments with the local
density field anti-correlate with the real gravitational shear and can contaminate cosmic
shear measurements (Hirata and Seljak, 2004).

Here we propose a novel method based on the joint analysis of clustering and
lensing of clusters of galaxies. The focus on clusters of galaxies is intended for a
much simpler discussion. Clusters of galaxies trace the biggest collapsed structures
and produce a very clean lensing signal. The stacked lensing technique has been
highly successful in measuring the average masses of galaxy clusters down to the less
massive haloes (Covone et al., 2014; Ford et al., 2015; Johnston et al., 2007; Mandelbaum,
Seljak, and Hirata, 2008). Furthermore, galaxy clusters are more strongly clustered
than galaxies. Measurements of the 2PCF of galaxy clusters have already provided
detections of the BAO peak(Estrada, Sefusatti, and Frieman, 2009; Hong et al., 2012;
Hütsi, 2010; Veropalumbo et al., 2014). For extended informations see § 3, 4.

The novelty of the method is that: i) we track clusters of galaxies rather than galaxies;
ii) we consider the same clusters for both lensing and clustering; iii) we determine bias
and σ8 based exclusively on the large-scale signal. Even though some of these elements
were separately considered by previous papers, their combination makes for a new
approach with minimal modelling.

The method strongly relies on using the same cluster population for both stacked
lensing and clustering. If we correlate the positions of the lenses, the galaxy bias for
the considered sample can be directly measured without any demanding theoretical
modelling. Instead of being a systematic uncertainty, the information on the bias can
be extracted to constrain structure formation and evolution. We relate the bias to the
observed cluster population rather than trying to model the bias as a function of the
halo mass, which would require the problematic calibration of the mass against the
observable property the clusters were selected for (Sereno and Ettori, 2014; Sereno,
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Ettori, and Moscardini, 2015). At the same time, σ8 can be estimated without the
knowledge of the selection function of the clusters.

The simultaneous analysis of stacked lensing and clustering is further simplified
by keeping only the information well beyond the virial radius. Even at large scales,
the proper treatment of the connection between galaxies and dark matter requires the
modelling of the halo occupation statistics as a function of galaxy luminosity through
the conditional luminosity function, combined with the halo model, which describes
the non-linear matter field in terms of its halo building blocks (Mandelbaum et al.,
2013). The modelling of halo bias from very massive haloes is instead much easier to
perform on a theoretical ground (J. L. Tinker et al., 2010).

We focus on the determination of the amplitude of the power spectrum, σ8, in
a reference flat ΛCDM model with matter density parameter ΩM = 0.3, baryonic
density parameter ΩB = 0.04, spectral index ns = 1 and Hubble constant H0 =

100 hkm s−1Mpc−1 (Planck Collaboration et al., 2014a). When necessary, we assume
h = 0.7.

The structure of the chapter is as follows. In § 5.2 we will present the basics
of how the combination of galaxy clustering and stacked lensing can determine the
amplitude of the power spectrum and the halo bias. In § 5.3, we will introduce the
cluster catalogueand the data-sets. Sections 5.4 and 5.5 will detail how we performed
the analysis of clustering and stacked lensing, respectively. The joint analysis and the
cosmological constraints will be presented in § 5.6. § 5.7 will forecast the performance
of the method with Euclid data.

5.2 Overview

As already specified in § 1.3.3, clustered haloes are biased tracers of the underlying
mass distribution (Kaiser, 1984; J. L. Tinker et al., 2010).

Auto-correlation functions between either matter or halo density fields depend
on the halo bias in different ways. In principle, we can break degeneracies with
proper combinations of correlation functions and we can infer at the same time the
cosmological parameters and the halo bias.

The matter auto-correlation function is

ξmm(r) = 〈δm(x)δ∗m(x + r)〉 , (5.1)

where δm is the matter density contrast. The analogous auto-correlation function
for the halo density field is ξhh(r), which is related to the matter statistics through the
halo bias b as

ξhh(r) = b2(r)ξmm(r). (5.2)

On the large scales probed by clusters of galaxies, the cross-correlation coefficient
between the matter and halo fluctuations is one and the bias is linear, i.e., b(r) =
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constant (Mandelbaum et al., 2013). For a given cosmological model, b depends on
the mass and the redshift of the haloes hosting the galaxies through the peak height
(Bhattacharya et al., 2013; Sheth and Tormen, 1999; J. L. Tinker et al., 2010).

Finally, the cross-correlation function is

ξhm(r) = 〈δg(x)δ∗m(x + r)〉. (5.3)

On the observational side, ξhh and ξhm can be measured through clustering and
stacked lensing, respectively. If we focus on the bias and σ8, we can single out simple
proportionality factors,

ξmm ∝ σ2
8, ξhm ∝ b σ2

8, ξhh ∝ b2σ2
8. (5.4)

In the regime where the bias is linear, b and σ8 can then be determined as

b ∝ ξhh

ξhm
, σ8 ∝

√
ξ2

hm

ξhh
. (5.5)

5.3 Data

For the computation of the 2PCF, we consider a subsample of 69527 galaxy clusters from
WHL12 sample (see 3.2) selected on a contiguous area of ∼ 9000 deg2 in the Northern
Galactic Cap obtained including all the SDSS stripes between 10 and 37. Clusters are
identified via Friends-of- Friends as overdensities of galaxies in photometric space. The
minimum cluster richness is RL∗ = 12.

This selection is used to ease the reconstruction of the visibility mask. Neverthe-
less, its impact on the final results is negligible, considering the uncertainties in the
measurements.

To optimise the lensing signal, we consider a redshift limited subsample (median
redshift z = 0.365), wherein 123822 clusters lie (93.3 per cent of the whole sample). The
upper redshift limit enabled us to perform a robust separation between the lensing and
the background population (Covone et al., 2014).

For the lensing sample, we consider the 1176 clusters centred in the four fields of the
Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS, Heymans et al., 2012),
covering about 154 square degrees in optical ugriz bands. The public archive1 provides
weak lensing data processed with THELI (Erben et al., 2013), shear measurements
with lensfit (Miller et al., 2013), and photometric redshift measurements with accuracy
∼ 0.04(1 + z) and a catastrophic outlier rate of about 4 per cent (Benjamin et al., 2013;
Hildebrandt et al., 2012). Full details on the shear measurements can be found in
Heymans et al. (2012). Since we took all clusters in the CFHTLenS fields without
any further restriction, the lensing clusters we considered are a small but unbiased
subsample of the total catalogue. This was verified with a Kolmogorov-Smirnov test.

1http://www.cfht.hawaii.edu/Science/CFHLS.

http://www.cfht.hawaii.edu/Science/CFHLS
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The optical richness (redshift) distributions are compatible with a probability of 49.0
(39.4) per cent.

The CFHTLenS is at the same time much deeper and much smaller than the SDSS.
As far as the signal-to-noise ratio of the stacked haloes is concerned, these effects
counterbalance each other and lensing results are comparable (Brimioulle et al., 2013;
Covone et al., 2014; Ford et al., 2014, 2015; Hudson et al., 2015; Johnston et al., 2007;
Mandelbaum, Seljak, and Hirata, 2008; Mandelbaum et al., 2013; Oguri, 2014; Velander
et al., 2014). A similar choice of data-sets for a joint analysis of galaxy clustering and
galaxy-galaxy lensing was recently made by More et al. (2015).

Since the cluster catalogue and the shape measurements we considered are extracted
from completely different data-sets, the SDSS and CFHTLenS data respectively, we are
assured that the distribution of lens galaxies is uncorrelated with residual systematics
in the shape measurements (Miyatake et al., 2015).

5.4 Clustering

This section provides a general description of the methods used in this work to measure
the halo clustering, to estimate the observational uncertainties, and to constrain the
linear bias and σ8. We refer to § 1.5 for further details. We estimate the 2PCF monopole
using the LS estimator, (Eq. 1.62) (Landy and Szalay, 1993) We compute clustering
for the whole sample and for four richness bins, with 29130 objects in the richness
range 12 ≤ RL∗ < 16, 21047 for 16 ≤ RL∗ < 21, 11962 for 21 ≤ RL∗ < 30 and 7388 for
RL∗ ≥ 30. The number density decreases as increasing the richness, as expected. This
has an impact on our constraint of clustering parameters, as the error increase when
diluting the sample.

5.4.1 Random catalogues

To construct the random catalogues, we reproduce separately the angular and redshift
selection functions of the cluster sample. This method provides a fair approximation of
the full distribution as already described in 3.3.2 (Veropalumbo et al., 2016). The main
differences are a) we limit the analysis to the Northern galactic cap, b) we are using
the photometric redshifts. We associate redshifts to the random objects by drawing
from the observed redshift distribution of the cluster samples. The latter was assessed
grouping the data in 100 redshift bins and applying a Gaussian convolution with a
kernel three times larger than the bin size (Marulli et al., 2013). Reducing the bin size
has the effect of lowering the clustering signal along the line of sight. However, the
impact of this effect is negligible considering the measurement uncertainties, as we
verified. To minimise the impact of the shot noise at small scales, for each sample
considered in this work, we generated a random catalogue 20 times larger.



5.4. Clustering 85

5.4.2 Error estimates

We use the jackknife re-sampling technique to estimate the covariance matrix of the
correlation function measurements (Eq. (3.1)).

The jackknife subsamples are constructed following the SDSS geometry. With respect
to previous analysis, described in § 3.4, we divide the original catalogue in fractions
of SDSS stripes (5 regions in each of the 28 considered SDSS stripes, Nsub = 140

subvolumes in total) and excluding recursively one of them. As tested, the number
of subsamples is large enough to ensure convergence and stability of the covariance
matrix estimate.

5.4.3 Modelling the redshift-space cluster clustering

2PCF is affected by geometric and dynamic distortions (§ 1.5). In particular, the precision
of redshift measurements influences the estimate of line-of-sight distances (Marulli
et al., 2012). With respect to modelling used in § 1.5, 4, we choose to model the 2PCF
monopole with a Gaussian damping term, to introduce the redshift error effect:

exp(−k2µ2, σ2). (5.6)

The exponential cut-off term describes the random perturbations of the redshifts caused
by both non-linear stochastic motions and redshift errors. It washes out the signal over
a typical scale k ∼ 1/σ, thus causing a scale-dependent effect.

To derive the monopole of the correlation function, we integrate Eq. ((3.7)) over the
angle µ, and then Fourier anti-transformed. The solution can be written as follows

ξ(s) = b2ξ′(s) + bξ′′(s) + ξ′′′(s) . (5.7)

The main term, ξ′, is the Fourier anti-transform of the monopole P ′(k):

P ′(k) = PDM(k)

√
π

2kσ
erf(kσ) , (5.8)

that corresponds to the model given by Eq. ((3.7)) when neglecting the dynamic distor-
tion term. The ξ′′ and ξ′′′ terms are the Fourier anti-transforms of

P ′′(k) =
f

(kσ)3
PDM(k)

[√
π

2
erf(kσ)− kσ exp(−k2σ2)

]
, (5.9)

and

P ′′′(k) =
f2

(kσ)5
PDM(k)

{
3
√
π

8
erf(kσ)− kσ

4

[
2(kσ)2 + 3

]
exp(−k2σ2)

}
, (5.10)

respectively.
In our case, photo-z errors perturb the most the distance measurements along the

line of sight. Indeed, as already verified in § 3.8 , the BCGs identified as cluster centres
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Figure 5.1: Top panel: model for the 2PCF estimated with Eq. 5.7 for a
fixed value of the bias b=2.7 and five different values for σz , as shown in
the legend. For sufficiently large values of the redshift error, the shape of
the correlation function is almost parallel for the fitting range considered
in the study (10 ≤ r[ Mpch−1 ] ≤ 40).In Fig 3.8 we shows the effect of
damping on BAO scales with the same modelling. Bottom panel: ratios
between the computed models and the one calculated at the redshift
error of the cluster sample (σz = 0.016).

are close to the minimum of the cluster potential wells. Therefore their small-scale
random motions are negligible with respect to photo-z errors, and the effect of non-
linear peculiar velocities at small scales, the so-called fingers of God effect, can be safely
neglected. The cut-off scale in Eq. ((3.7)) can thus be written as

σ =
cσz
H(z)

, (5.11)

where H(z) is the Hubble function computed at the median redshift of the sample, and
σz is the typical photo-z error. In Fig. 5.1 we show this damped clustering model, for
different choices of σz = {0, 0.007, 0.013, 0.016, 0.02}. The 2PCF shape results heavily
distorted up to very large scales for the introduction of large photometric redshift error.

A similar approach has been used for photometric clustering of galaxy clusters by
Estrada, Sefusatti, and Frieman (2009). Authors anyway truncates the term only to the
first term. We will describe the effects of this choice in § 5.4.5.
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5.4.4 Photo-z errors

Large photo-z errors have a dramatic impact on the measured ξ(s). The real-space
clustering can be derived by projecting the correlation function along the line of sight
(e.g. Marulli et al., 2013; Veropalumbo et al., 2014). However, this technique becomes
quite ineffective for large redshift errors and small survey area, since it would be
necessary to integrate the correlation function up to too large scales to fully correct for
redshift errors (see § 1.5.4, § 3.5). Here we followed a different strategy, fitting directly
the redshift-space clustering with a model that takes into account redshift uncertainties.
Due to targeting processes in SDSS, the redshift distributions of the photometric and
spectroscopic redshift samples are different. Therefore, to combine clustering with
lensing data, we are forced to measure the clustering of the photometric sample.

To estimate the photo-z errors, we use the spectroscopic data available for a sub-
sample of the photometric catalogue. A spectroscopic redshift was assigned to a galaxy
cluster if it was measured for its BCG. Here we consider spectroscopic redshifts of
BCGs basically unaffected by peculiar velocities (Veropalumbo et al., 2014), and are
measured with high precision. The resulting sample of clusters with both photometric
and spectroscopic redshift measurements consists of 31338 objects.

We estimate the photo-z errors, σz by comparing spectroscopic and photometric
cluster redshifts in different redshift and richness bins. As shown in Fig. 5.2, the ∆z(≡
zphot − zspec) distributions are well described by a Gaussian function at all redshifts.
Specifically, Fig. 5.2 shows the ∆z distributions (black solid lines) estimated in four
illustrative redshift bins, 0.10 ≤ zphot < 0.21, 0.21 ≤ zphot < 0.30, 0.30 ≤ zphot < 0.38,
and 0.38 ≤ zphot ≤ 0.59. The red dashed lines show the best-fit Gaussian models, which
faithfully reproduce the measured distributions. The photo-z error, σz , could then be
estimated as the standard deviation of the distribution.

To reconstruct the full ∆z distribution, we use 20 redshift bins. Anyway, the estimate
of the photo-z errors resulted to be very weakly dependent on the specific redshift
partition. In Fig. 5.3, top panel, we show the variation of σz with redshift for the whole
sample (black solid line) and for four richness bins (coloured lines) in the entire redshift
range. The z ∼ 0.35 peak is due to the shift of the 4000 Å break from the g − r to r − i
colours (Rykoff et al., 2014). Our results agree with what found by Wen, Han, and Liu
(2012). As it can be seen in the bottom panel of Fig. 5.3, thanks to the larger number of
cluster members, the larger the richness, the smaller the photo-z error. The estimated
values of σz are reported in Table 5.2. Finally, to obtain a unique value of σz to be used
in Eq. (5.11), we average the standard deviations measured in the different redshift
bins, weighting over the cluster redshift distribution.

5.4.5 Constraints

The analysis to constrain the bias and σ8 is with MCMC technique, using the full
covariance matrix.
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Figure 5.2: distribution of ∆z(≡ zphot − zspec) in four redshift bins
(black solid lines) and the associated Gaussian fit (red dashed lines).
The limiting values of each redshift bin are indicated in the corre-
sponding panels. The vertical lines correspond to the median values
of the ∆z distributions (black) and to the mean of the Gaussian models
(red dashed).

As described in §5.4.3, we fit the redshift-space 2PCF ξ(s) with the model given by
Eq. (5.7).

The redshift-space 2PCF of our photometric cluster sample is shown in Fig. 5.4
(black dots). The error bars are the square root of the diagonal values of the covariance
matrix. The dashed blue line shows the best-fit model given by Eq. (5.7). The red line
is the result obtained by fitting only the dominant ξ′ term. The blue and red lines are
in close agreement. The model with only ξ′ can fit the data nearly as well as the full
model but it produces systematically shifted parameter estimates. If we neglect the
Kaiser term, fµ2, we find a 6 per cent higher bias. The long-dashed green line, that
shows the case of a model without the photo-z dumping term, clearly demonstrates
the dramatic effect of photo-z errors on the clustering shape.

When the cosmology density parameters are fixed, as in this case, this model
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Figure 5.3: Left panel: photo-z errors as a function of redshift for the
whole sample (black solid line) and for the four richness bins reported
in Table 5.2, as indicated by the labels. The photometric redshift is
systematically better determined for high richness clusters. Right
panel: photo-z errors obtained following the procedure described in
§ 5.4.4 for the whole sample (red point) and for the four richness
bins. The horizontal error bars span from the 16 to the 84 percentiles
of the cluster richness distribution, while the vertical error bars are
the standard deviations of the σz redshift distribution. The solid line
is a least-squares linear fit to the black points which highlights the
decreasing behaviour as a function of richness.

depends on three parameters only, the amplitude σ8, the bias, b, and the cut-off scale
σ, related to σz through Eq. (5.11). Formally, the photo-z error is a parameter to
be determined too but, following the procedure described in §5.4.4, we assume an
informative Gaussian prior on σz , with a measured standard deviation of 0.003.

We choose this approach because the bias parameter and the photometric redshift
error σz are strongly degenerate for sufficiently large values of σz on the scale used for
the fit (10 ≤ r [ Mpch−1 ] ≤ 40). This is shown in Fig. 5.5, where we present the b-σz
confidence region constrained from the measured 2PCF fit with the model in Eq.5.7,
for the whole cluster sample case (richness RL >= 12). The blue-cyan filled areas are
the 1− 2σ confidence regions in case of flat prior on σz . Contours show the confidence
levels after introducing a Gaussian prior on σz centred on two different mean values:
the estimated one, σz = 0.016, in the left panel and the highest measure, σz = 0.02, in
the right one, with two values of the standard deviation, ∆σz = 0.003 (red contours)
and ∆σz = 0.001 (green contours) respectively.

As can be clearly seen, without priors on σz we are not able to constraint the bias.
This is due to the behaviour of the model for large values of σz as we show in Fig. 5.1.
We notice an increasing loss of correlation from small to large scale for higher values of
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Figure 5.4: Left panel. The redshift-space 2PCF of the whole cluster
sample (RL∗ ≥ 12, black dots), compared to best-fit models obtained
with the full model in Eq. (5.7, red solid line), the dominant ξ′ term
only (blue dashed line), and without the photo-z damping term (green
long-dashed line). The error bars show the square roots of the diago-
nal values of the covariance matrix. Right panel. The redshift-space
2PCF of the four richness-selected cluster samples (dots), compared
to the best-fit model obtained with Eq. (5.7, lines). The blue, ma-
genta, purple, and red colour codes refer to the 12 ≤ RL∗ < 16,
16 ≤ RL∗ < 21, 21 ≤ RL∗ < 30, and RL∗ > 30, respectively. The error
bars show the square roots of the diagonal elements of the covariance
matrix.

σz (top panel). On the scale considered in this work, for sufficiently large values of σz
(≈ 0.01), models have a very similar shape (bottom panel of Fig. 5.1): differences on σz
are compensated with higher value of the bias.

Introducing a Gaussian prior on σz allows us to constrain the bias. However, using
a wrong value for the mean of the photometric redshift error introduces a systematic
error in the bias estimate.

Constraints are strongly degenerate. Clustering is strongly dependent on the
product b σ8. This degeneracy would be exact if the correlation function was measured
in the real space. For the whole sample, we measured b σ8 = 2.29± 0.08, at the median
redshift z = 0.37. The error estimate is conservative, due to the choice of the prior
standard deviation. Lowering the value of the σz standard deviation enhances the
precision of the measurement. This value is in very good agreement with results from
spectroscopic cluster clustering, presented in § 3.5, demonstrating the goodness of the
solution we choose to adopt. Anyway, despite the enhanced number density for the
photometric cluster sample, redshift error influence the results broadening constraints
by a factor ∼ 2.

We repeat the analysis in the 4 richness bins, finding the value of bσ8 increasing
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Figure 5.5: Left Panel: confidence region in the b− σz plan. The filled
area constraints the 1 − 2σ confidence of the parameters with flat
priors, while the contours are obtained with a Gaussian prior on σz
with mean = 0.016 and standard deviation ∆σz respectively 0.003
(red contours) and 0.001 (green contours). Right panel: same as left
panel, with mean of the Gaussian prior = 0.02.

with redshift; we get bσ8 = 1.87 ± 0.08 for first richness bin, bσ8 = 2.12 ± 0.08 and
bσ8 = 2.3±0.16 for the intermediate bins; finally we get bσ8 = 2.97±0.16 for the higher
richness bin. Together with increase of the bias, worsening of constraint can also be
appreciated; this is due, as expected to increasing noise in the clustering of the sample
due to change in number density of tracers.

Figure 5.4 shows the redshift-space clustering measured in the four richness-selected
samples. The amplitude of the correlation function scales according to the richness.
The lines are the best-fit full models given by Eq. (5.7). Richer clusters also shows
more precise redshift estimates; this is expected as the photometric redshift error are
estimated as the mean of members redshift; the more the members the smaller is the
mean error σclz ≈ σgalz /

√
(Nmembers). The results are summarised in Table 5.2.

5.5 Weak lensing

The connection between galaxies and matter can be probed with gravitational lensing.
In this section, we review the methods used to extract the lensing signal from the
shape measurements, to estimate the observational uncertainties, and to constrain the
cosmological parameters.

5.5.1 Basics

The so-called shear-cluster correlation (or stacked lensing) is the cross-correlation be-
tween the cluster distribution and the shapes of source galaxies. The main observable
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quantity for weak lensing is the tangential shear distortion γ+ of the shapes of back-
ground galaxies. It is related to the projected surface density Σ(R) around lenses
(Mandelbaum et al., 2013),

Σ(R) = ρ̄m

∫ [
1 + ξhm(

√
R2 + Π2)

]
dΠ, (5.12)

via

∆Σ+(R) = γ+Σcr = Σ̄(< R)− Σ(R). (5.13)

In the equations above, ρ̄m is the mean mass density at z, Π is the line of sight
separation measured from the lens, Σ̄(< R) is the average lens matter density within
the projected distance R, and Σcr is the critical surface density for lensing. For a single
source redshift

Σcr =
c2

4πG

Ds

DdDds
, (5.14)

where c is the speed of light in the vacuum, G is the gravitational constant, and Dd, Ds

and Dds are the angular diameter distances to the lens, to the source, and from the lens
to the source, respectively.

5.5.2 Shear profile modelling

Stacked lensing by galaxy clusters is described in terms of three main terms. The
treatment is simplified with respect to galaxy-galaxy lensing, when central haloes have
to be differentiated from satellites and related additional terms contribute to the total
shear profile.

Our treatment follows Covone et al. (2014). The dominant contribution up to
∼ 1 Mpch−1 comes from the central haloes, ∆ΣBMO. We model this term as a smoothly
truncated Navarro-Frenk-White (NFW) density profile (Baltz, Marshall, and Oguri,
2009, BMO),

ρBMO =
ρs

r
rs

(1 + r
rs

)2

(
r2

t

r2 + r2
t

)2

, (5.15)

where rs is the inner scale length, rt is the truncation radius, and ρs is the character-
istic density. When fitting the shear profiles up to very large radii (ten times the virial
radius and beyond), the truncated NFW model gives less biased estimates of mass and
concentration with respect to the original NFW profile (Oguri and Hamana, 2011). The
truncation removes the unphysical divergence of the total mass and better describes
the transition between the cluster and the 2-halo term which occurs beyond the virial
radius.
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In the following, as a reference halo mass, we consider M200, i.e., the mass in
a sphere of radius r200. The concentration is defined as c200 = r200/rs. We set the
truncation radius rt = 3 r200 (Covone et al., 2014; Oguri and Hamana, 2011).

The second contribution to the total profile comes from the off-centred clusters,
∆Σoff . The BCG defining the cluster centre might be misidentified (Johnston et al., 2007),
which leads to underestimate ∆Σ(R) at small scales and to bias low the measurement
of the concentration. Furthermore, even if properly identified, the BCG might not
coincide with the matter centroid, but this effect is generally very small and negligible
at the weak lensing scale (George et al., 2012; Zitrin et al., 2012). The azimuthally
averaged profile of clusters which are displaced by a distance Rs in the lens plane is
(Yang et al., 2006)

Σ(R|Rs) =
1

2π

∫ 2π

0
dθΣcen(

√
R2 +R2

s + 2RRs cos θ), (5.16)

where Σcen is the centred profile. We model the distribution of off-sets with an az-
imuthally symmetric Gaussian distribution (Hilbert and S. D. M. White, 2010; Johnston
et al., 2007),

P (Rs) =
Rs

σ2
s

exp

[
−1

2

(
Rs

σs

)2
]
, (5.17)

where σs is the scale length. The contribution of the off-centred haloes is then

Σoff(R) =

∫
dRsP (Rs)Σ(R|Rs). (5.18)

Typical scale lengths are of order of σs ∼ 0.4 Mpch−1 (Johnston et al., 2007).
Miscentring mainly matters with regard to an unbiased determination of the cluster
concentration. Its effect is minor on the scales where the correlated matter manifests
through the 2-halo term. We assume that a fraction foff of the lenses is miscentred.

The third significant contribution to the total density profile is the 2-halo term, ∆Σ2h,
which describes the effects of the correlated matter distribution around the location of
the galaxy cluster at scales >∼ 10 Mpc. The 2-halo shear term around a single lens of
mass M at redshift z for a single source redshift can be model as (Oguri and Hamana,
2011; Oguri and Takada, 2011)

γ+,2h(θ;M, z) =

∫
ldl

2π
J2(lθ)

ρ̄m(z)b(M ; z)

(1 + z)3ΣcrD2
d(z)

Pm(kl; z), (5.19)

where θ is the angular radius, J2 is the second order Bessel function, and kl ≡
l/[(1 + z)Dd(z)]. Pm(kl; z) is the linear power spectrum, which is computed following
Eisenstein and Hu (1999). Given the observational errors on the shear measurements,
more accurate computations of Pm have a negligible impact on the final result.
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The final profile for the total differential projected surface density is then

∆Σtot = (1− foff)∆ΣBMO + foff∆Σoff + ∆Σ2h. (5.20)

The above model has five free parameters: the mass M200 and the concentration
c200 of the clusters; the fraction of off-centred haloes, foff , and the scale length σs of
the probability distribution of the off-sets; the product b σ2

8 , which determines the
amplitude of the 2-halo term.

We consider only the cosmological information contained in the 2-halo term, whose
signal is proportional to ∝ b σ2

8 . Small-scale lensing has typically the best signal-to-
noise ratio, but it may be subject to systematic uncertainties both in terms of theoretical
interpretation and observational uncertainties (Mandelbaum et al., 2013). We do not
try to connect it directly to the halo bias and the cosmological background. We just
model it in terms of a physically motivated model, i.e., the (truncated) NFW profile.
In this basic approach, the parameters M200 and c200 of the main haloes, as well as
the parameters foff and σs describing the miscentred clusters, can be seen as nuisance
parameters that we marginalise over to measure the amplitude of the 2-halo term.

However, gravitational lensing presents an exclusive feature: it provides a direct
measurement of the halo mass without relying on any scaling relation. The estimate of
M200 can then be used to constrain the evolution of bias with the halo mass.

5.5.3 Measured profiles

We measure the lensing signal behind the 1176 clusters of the WHL12 catalogue centred
in the four fields of the CFHTLenS. We extract the shear profiles between 0.1 and
30 ∼Mpch in 25 radial annuli equally distanced in logarithmic space. The procedure
is described in Covone et al. (2014), which we refer to for details on shear calibration,
selection of background galaxies, source redshift estimation and stacking.

Very briefly, the raw shear components in the CFHTLenS catalogue are corrected
by applying a multiplicative and an additive parameter, empirically derived from the
data. The background lensed galaxy population behind each galaxy cluster are selected
by using a two colour selection in the g and r bands (Medezinski et al., 2010; Oguri
et al., 2012), which can safely single out galaxies at z >∼ 0.7. We determine the tangential
and cross component of the shear for each cluster from the weighted ellipticity of the
background sources.

The clusters are finally stacked according to their optical richness. We adopt two
binning schemes: either a single bin in optical richness comprising all clusters, which
we will refer to in the following as our reference case, or four bins with comparable
SNR (12 ≤ RL∗ < 16, 16 ≤ RL∗ < 21, 21 ≤ RL∗ < 30 and RL∗ ≥ 30), as already done in
Covone et al. (2014).
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5.5.4 Uncertainty covariance matrix

Due to stacking, shear observations at different radii are correlated. The effect is
significant at radii larger than the typical lens angular separation (Mandelbaum et al.,
2013). We estimate the uncertainty covariance matrix with a bootstrap procedure with
replacement. We resample the clusters 10000 times. Covariance also accounts for the
residual contribution from large scale projections, which is subdominant due to the
large number of line of sights we stacked over.

The inverse of a noisy, unbiased estimator of the covariance matrix is not an unbi-
ased estimator of the inverse covariance matrix (Hartlap, Simon, and Schneider, 2007;
Mandelbaum et al., 2013). An unbiasing correction factor can be estimated under very
restrictive statistical requirements, which are likely violated under usual observational
conditions (Hartlap, Simon, and Schneider, 2007). Furthermore, the correction is negli-
gible if the number of lenses is significantly larger than the number of radial bins. We
prefer not to apply any correction.

An alternative approach requires the smoothing of the covariance matrix to create
a noiseless version (Mandelbaum et al., 2013). The diagonal terms behave according
to reproducible trends. The shape noise is the dominant source of variance at small
radii. It scales like R−2 for logarithmically spaced annular bins. However, the total
noise flattens at larger radii. There are two main reasons. First, when R is significantly
larger than the typical separation between lenses, annular bins include many of the
same sources around nearby lenses and the shape noise can not decrease by adding
more lenses (Mandelbaum et al., 2013).

Secondly, when R is comparable with the field of view of the camera, an imperfect
correction of the optical distortion can cause a tangential or radial pattern of the point
spread function (PSF) ellipticities in the edge of the field of view. This coherent PSF
anisotropy can then cause a residual systematic error (Miyatake et al., 2015). The field
of view of CFHT/MegaCam is 1 deg large, which corresponds to ∼ 12.9 Mpch−1 at
the median redshift of the lens sample, z ∼ 0.37.

Taking into account all the above sources of noise, the diagonal terms of the lensing
uncertainty covariance matrix V can be modelled as (Mandelbaum et al., 2013):

V(Ri, Ri) = AR−2
[
1 + (R/Rt)

2
]
, (5.21)

where Rt denotes the turn-around radius above which the shape noise is subdominant.
A basic unweighted fit for the reference binning in optical richness (RL∗ ≥ 12) gives
Rt ∼ 9.3 Mpch−1 (see Fig. 5.6).

The smoothing of the non-diagonal terms of the covariance matrix is more problem-
atic. The two main sources of correlation are the cosmic variance (which is subdominant
given the large number of line of sights in our sample) and the correlated shape noise
due to the large R compared to the separation between lenses (Mandelbaum et al.,
2013). These effects are difficult to model. Furthermore, a smoothing procedure might
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Figure 5.6: Diagonal terms of the lensing uncertainty covariance ma-
trix of the total sample (RL∗ ≥ 12) as a function of the transverse
separation R. The matrix elements are estimated with a bootstrap
procedure. The full black line plots the fitted smoothing function.
Vertical red lines delimit the radial range considered when fitting the
shear profiles.

bias low the estimated correlation of the elements near the diagonal. We then prefer to
use the noisy version of the covariance matrix.

The uncertainty covariance matrix can be determined only when the number of
clusters to stack js large enough. This is not the case for the less populated bins in
optical richness. We then decide to use the full covariance matrix only for our reference
case, whereas we take only the diagonal elements for the subsamples in optical richness
in order to perform a coherent analysis when we look for trends with richness/mass.

5.5.5 Random catalogues

Residual systematic effects affecting the stacked shear profiles may come either from
stacking over annuli which are largely incomplete due to the limited field of view or
from other source of errors. These additional systematics are estimated by extracting the
signal around random points with the same procedure used for the cluster lenses. We
build a catalogue of 5046 random lenses with the same redshift and spatial distribution
of the galaxy clusters. We realise 10000 bootstrap resamplings with replacement of
the catalogue. The signal from the random pointings is consistent with zero up to
∼ 5 Mpch−1 . The spurious signal at larger radii is likely due to residual systematics
in the shear measurements at the edges of detector (Miyatake et al., 2015).

The shear profiles of the stacked clusters can be corrected for these residual sys-
tematics by subtracting the stacked signal estimated from the random catalogue. This
correction rests on the assumption that the distribution of lenses is uncorrelated with
residual systematics in the shape measurements (Miyatake et al., 2015), which holds in
our analysis because the cluster catalogue and the shape measurements are taken from
completely different data-sets.
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Figure 5.7: The renormalized cross component of the differential shear
profile of the full sample of lensing clusters (RL∗ ≥ 12) after correc-
tion for the residual signal. Vertical red line delimit the radial range
considered when fitting the shear profiles.

After correction for the spurious signal, the cross component of the shear profile,
∆Σ× = Σcrγ×, is consistent with zero at nearly all radii. This confirms that the main sys-
tematics have been eliminated. The radial profile of ∆Σ× for the full sample of clusters
is plotted in Fig. 5.7. Most of the points are within 1-σ from the null value which might
indicate somewhat over-estimated uncertainties. ∆Σ× increases at R>∼ 20 Mpch−1

but the deviation is not statistically significant.

5.5.6 Constraints

The corrected excess surface density for the total sample is plotted in Fig. 5.8. The signal
is detected with high significance (SNR ' 26.1) over the full radial range. Stacked
profiles for subsamples in optical richness can be found in Covone et al. (2014). Based
on the analysis of the turn-around radius in the diagonal elements of the covariance
matrix and the features of the shear profile ∆Σ×, we limit our analysis to a maximum
radius of 15.8 ∼ Mpch−1 .

The choice of the lower limit for the radial range comes from a compromise between
minimising the systematic errors due to contamination of cluster member galaxies
and non-linear effects, and minimising the statistical errors (Mandelbaum, Seljak, and
Hirata, 2008). We consider a minimum radius of ∼ 0.5 Mpch−1 . Since to measure σ8

we use only the information in the 2-halo term, which is dominant at very large radii,
our final constraints are affected in a very negligible way by the choice of the lower
fitting radius, which mainly impacts the determination of the effective concentration of
the stacked clusters.

Radial fits are then performed between 0.5 and 15.8 ∼ Mpch−1 (15 equally spaced
points in logarithmic scale). The statistical analysis is based on a χ2 function,

χ2
WL =

∑

i,j

[∆Σobs,i −∆Σth,i] V−1
ij [∆Σobs,j −∆Σth,j ] , (5.22)



98Chapter 5. Joint cosmological analysis of galaxy clusters clustering and weak lensing

ΔΣtot

ΔΣ1 h
tot

ΔΣ2 h

0.1 0.5 1 10

102

1

5

10

R [Mpc/h]

Δ
Σ
+
[h
M

⊙
/p
c2
]

Figure 5.8: Stacked differential surface density ∆Σ+ after correction for
the residual signal as a function of radius for clusters with optical rich-
ness RL∗ ≥ 12. Black points are our measurements. The vertical error
bars show the square root of the diagonal values of the covariance
matrix. The horizontal lines are the weighted standard deviations of
the distribution of radial distances in the annulus. The green line plots
the contribution from the galaxy cluster haloes (i.e., the sum of lensing
contributions from centred and offset lenses); the blue line describes
the 2-halo term; the black line is the overall fitted radial profile. Verti-
cal red lines delimit the radial range considered when fitting the shear
profiles. Dashed lines are extrapolations based on the best fit model,
which was determined in the radial range 0.5 < R < 15.8 Mpc/h.

where V−1 is the inverse of the uncertainty covariance matrix, ∆Σobs,i is the observed
excess density at radiusRi, and ∆Σth is the theoretical prediction of the halo model. We
adopt uniform priors for the fitting parameters and sampled the posterior probability
with four Monte Carlo Markov chains. Results are summarised in Tables 5.1 and 5.2.

For the reference sample, the product b σ2
8 is recovered with an accuracy of ∼ 20 per

cent. This estimate is stable against variation in the fitting procedure, which reassure
us about the proper treatment of systematics (see Table 5.1). As far as we consider a
truncated model for the lenses, the final results on b σ2

8 are nearly independent of the
specific modelling. The variations in the estimated b σ2

8 due to different assumptions on
the truncation radius of the ΣBMO profile are not significant and they are much smaller
than the statistical uncertainty. The case of the divergent NFW model is different.
This model is unphysical at scales well beyond the virial radius and it would severely
under-estimate the contribution of the 2-halo term.

We check that the results of our analysis are very similar whether using the full
covariance matrix or only the diagonal terms. Neglecting the covariance in the shear
measurements of near radial bins does not affect the central estimate. On the other hand,
the uncertainties on the fitting parameters are slightly smaller. This agreement further
supports our choice of using the (noisy) covariance matrix without any correction.
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Assumption b σ2
8

reference 1.56± 0.35
rt = 4 r200 1.52± 0.34
rt = 2 r200 1.63± 0.34
NFW 0.96± 0.42
diagonal covariance 1.54± 0.28
foff = 1 1.58± 0.33
rmax = 20 Mpch−1 1.73± 0.32
rmax = 30 Mpch−1 1.86± 0.29
rmin = 0.1 Mpch−1 1.55± 0.33
rmin = 0.2 Mpch−1 1.55± 0.34

Table 5.1: Product b σ2
8 (col. 2) for the reference sample (RL∗ ≥ 12) as

determined with the stacked lensing analysis under different assump-
tions. In col. 1, we report the difference in the fitting procedure with
respect to the ‘reference’ case. All else being equal, we consider: differ-
ent priors on the truncation radius rt of the BMO model of the central
haloes; a standard NFW model; a uncertainty covariance matrix with
null off-diagonal elements; no miscentred haloes; different thresholds
for either the maximum (rmax) or the minimum (rmin) fitting radius.

As expected, a different minimum radius in the fitting procedure has no effect on
the estimate of the bias, which only depends on the signal at scales >∼ 10 Mpch−1 .
The inclusion of small scales affects nevertheless the estimate of the mass and of the
concentration of the central halo. At scales R ∼ 0.1 Mpch−1 a proper modelling of
the lens requires the treatment of the BCG and of the baryonic component. Similar
considerations hold for the treatment of the miscentred haloes too. The fraction of
haloes with off-sets has a negligible impact on the estimate of the bias.

Finally, the inclusion of shear measurements at large radial scales not fully covered
by the field of view can bias the results.

5.6 Joint analysis

In this section, we combine lensing and clustering to infer σ8 and the halo bias. At the
large scales probed by clusters of galaxies, we can safely consider the bias as linear. For
each binning in optical richness, we can measure the weighted bias

b(Meff , z) =

∫
b(M200, z)fsel(M200)dM200, (5.23)

where fsel(M200) is the selection function,

fsel(M200) =

∫ Rmax
L∗

Rmin
L∗

P (M200|RL∗)n(RL∗)dRL∗ , (5.24)

n(RL∗) is the distribution of the observed richness, Rmin
L∗ and Rmax

L∗ delimit the rich-
ness bin, and P (M200|RL∗) embodies the mass-richness scaling relation through the



100Chapter 5. Joint cosmological analysis of galaxy clusters clustering and weak lensing

b σ8 = const

b σ8
2 = const

bth(σ8)
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Figure 5.9: Main degeneracies between bias and σ8 as probed by either
clustering (blue line), lensing (green line), or a theoretical modelling of
the bias (black line). Theoretical predictions are based on J. L. Tinker
et al. (2010). We consider σ8 = 0.8 and the bias of a halo with mass
M200 = 1014M�/h at z = 0.3.

conditional probability that a cluster with richness RL∗ has a mass M200.
The big advantage of using the same clusters to measure lensing and clustering is

that we do not need to model the bias to infer the amplitude σ8. We are assured that we
observe the same weighted bias, which is written in terms of an effective mass Meff , for
both lensing and clustering. We do not need to determine the effective mass to estimate
σ8, even though Meff can be constrained with the lensing fit of the central haloes.

This basic approach does not need any derivation of the scaling relation between
the observable (the optical richness in our case) and the cluster mass. The effects of
the cluster selection function and of the scaling relation are included in the effective
bias. In this way, we avoid two of the main difficulties which plague cosmological tests
based on cluster of galaxies (Sereno and Ettori, 2014; Sereno, Ettori, and Moscardini,
2015).

Bias and σ8 can be computed by properly matching the constraints obtained with
either lensing (which is degenerate with b σ2

8) and clustering (which is degenerate
with b σ8). Degeneracies between bias and σ8 which affect each of the two probes are
pictured in Fig. 5.9. Results are summarised in Table 5.2. We explore two methods to
infer σ8 according to whether or not the information on the mass halo, which is inferred
from the small scales in the lensing analysis, is used to infer the amplitude of the power
spectrum, σ8.

5.6.1 First method

The first proposed method is the most basic. It consists in a simultaneous analysis of σ8

and bias. It uses only the cosmological information derived from the 2-halo term in the
lensing modelling. Together with σ8, we can then determine the halo bias bi for each
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Figure 5.10: Left Panel. Derived probability density of bias b and σ8 in
the reference case (RL∗ ≥ 12). The green (blue) regions include the
confidence regions as obtained from lensing (clustering). The darker
(lighter) area includes the 1-(3-)σ confidence region in two dimensions,
here defined as the region within which the value of the probability
is larger than exp(−2.3/2) (exp(−11.8/2)) of the maximum. The red
thick (thin) contour includes the 1-(3-)σ confidence regions from the
joint analysis. Right Panel. Bias as a function of mass. The red line is
the prediction by J. L. Tinker et al. (2010) for σ8 = 0.8 at z = 0.37.

binning in optical richness. This method fully exploits the fact that we are measuring
clustering and lensing for the same clusters, which are selected based on their richness.
The determination of σ8 does not require the modelling of the halo bias as a function of
mass/richness.

The joint analysis is performed with the combined likelihood

Ltot (σ8, {bi}) ∝
∏

i

LGL,iLCL,i, (5.25)

where LCL,i is the clustering likelihood for the i-th richness bin, see Eq. (1.85).
The dependence on σz is marginalised over. The lensing likelihood, LGL,i(bi σ8), is
obtained by marginalising the posteriori probability distribution obtained with the
stacked lensing analysis of the i-th bin, see § 5.5.6. We adopt uniform priors for σ8 and
the bias. Results for the reference case are reported in Table 5.2. We find σ8 = 0.79±0.16

and a bias of 2.86± 0.78. Confidence regions are plotted as red contours in Fig. 5.10.
Even though the lensing constraints are quite shallow with respect to the clustering
results, they are crucial to break the degeneracy between bias and power spectrum
amplitude.

The lensing constraints are exactly degenerate with the contours where b σ2
8 is

constant whereas the constraints from clustering align to a very good approximation
with the loci of points where b σ8 is constant. The latter degeneracy would be exact
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if the cluster-cluster correlation function are measured in the real space. A simplified
joint likelihood can be written in terms of the χ2-function

χ2 =
∑

i

([
b σ2

8

]
i
− biσ2

8

δ
[
b σ2

8

]
i

)2

+

(
[b σ8]i − biσ8

δ [b σ8]i

)2

, (5.26)

where the sum runs over the different richness bins;
[
b σ2

8

]
i

and [b σ8]i are the measure-
ments from lensing and clustering in the i-th bin, respectively. For the following tests,
we use the simplified version of the likelihood.

We first check for consistency. Estimates of σ8 obtained considering subsamples
in optical richness one at a time are in agreement among themselves and with the
reference case. We get σ8 = 0.92 ± 0.27 for 12 ≤ RL∗ < 16, σ8 = 0.59 ± 0.24 for
16 ≤ RL∗ < 21, σ8 = 0.80± 0.29 for 21 ≤ RL∗ < 30 and σ8 = 0.57± 0.22 for RL∗ ≥ 30.

Being the estimates consistent, we can analyse the four subsamples together. In
this way we can measure at the same time the halo bias in each richness bin and the
amplitude of the power spectrum. We find σ8 = 0.69± 0.15, which is fully consistent
with the reference case.

The measured halo bias is an increasing function of the optical richness, see Table 5.2.
Stacked lensing also provide direct estimates of effective masses thanks to the modelling
of the main halo term. We can then look for trends of b with mass without assuming
any scaling relation. The bias increases with mass in agreement with results from
theoretical predictions, see Fig. 5.9.

We remark that we use the small scale regime only to derive the halo mass whereas
we do not try to extract constraints on the bias from the regions within the viral radius.
The determination of σ8 and of the bias for each bin was independent of the small
scale-regime, which enters only when we studied the evolution of bias with mass. In
this scheme the effective mass is identified with the lensing mass, which is an acceptable
approximation for stacking analyses in physical length units (Okabe et al., 2013; Umetsu
et al., 2014).

5.6.2 Second method

In the second approach, we focus on the determination of σ8 by assuming that the bias
is a known cosmological function of the peak height (Bhattacharya et al., 2013; J. L.
Tinker et al., 2010). This requires the knowledge of the halo mass, which is determined
with the stacked lensing. The weight factor when stacking in physical length units
is mass-independent and estimated masses and concentration are not biased (Okabe
et al., 2013; Umetsu et al., 2014). We then assume that the effective mass measured by
lensing for the central halo is the same effective mass probed by the bias, see Eq. (5.23),
which strictly holds if the signals are linear in mass. The quantitative analysis can be
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performed in terms of a χ2 function,

χ2 (σ8, {M200,i}) =
∑

i

[ ([
b σ2

8

]
i
− bth,iσ2

8

)2

δ
[
b σ2

8

]2
i

+ δ [bth,i]
2 σ4

8

+
([b σ8]i − bth,iσ8)2

δ [b σ8]2i + δ [bth,i]
2 σ2

8

+

(
M200,i −Mobs

200,i

δMobs
200,i

)2

 . (5.27)

where bth,i = bth,i(σ8, zi,M200,i) is the theoretical prediction for given σ8 and halo mass
M200,i at redshift zi and δ [bth,i] is the related uncertainty. We use the fitting formula for
the bias derived in J. L. Tinker et al. (2010). They found a six per cent scatter about their
best-fit relation, which we conservatively adopted as the uncertainty on the theoretical
prediction.

Differently from the first approach, where the biases themselves are free parameters,
now they are expressed in terms of M200. Since the masses are already constrained
by the lensing analysis, we add to the χ2 function a penalty term, i.e., the third right
hand term in Eq. (5.27), and we still formally consider the mass associated to each bin
as a parameter to be determined. Of course, the posterior estimate of each M200,i just
follows the prior but we had to include the penalty not to underestimate the error on
σ8. As for the first approach, the second method still does not need to calibrate the
mass-richness relation.

For the reference binning in optical richness (RL∗ ≥ 12), we obtain σ8 = 0.75± 0.08,
in agreement with what obtained with the first approach. The use of the information
on the dependence of the bias on the peak height nearly halve the statistical error. The
theoretical constraint on the bias is nearly degenerate with the lensing one, i.e., bth is
nearly proportional to the inverse squared σ8. Constraints from clustering, lensing or
theoretical predictions are compared in Fig. 5.9. However, we can not use the theoretical
constraint without the information on mass from lensing.

5.7 Forecasting

The accuracy in the determination of σ8 will greatly benefit from future optical galaxy
surveys. As a test bed, we consider the wide survey planned by the Euclid mission
(Amendola et al., 2013; Laureijs et al., 2011) 2. The signals of either lensing or clustering
can be enhanced by considering a larger number of clusters (which can be achieved
with either deeper or wider surveys), a larger number of background sources (deeper
surveys) and a larger survey area in order to cover the lensing 2-halo term up to 50 Mpc
(wider surveys). With regard to these three aspects, Euclid will represent a significant
improvement with respect to the data-sets we considered here.

Euclid will observe an area of 15000 deg2 and it is expected to detect ng ∼ 30

galaxies per square arcminute with a median redshift greater than 0.9, that can be used
for weak lensing analyses (Laureijs et al., 2011). These basic properties are enough

2http://www.euclid-ec.org/

http://www.euclid-ec.org/
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to forecast the expected accuracy in the σ8 determination from the joint lensing plus
clustering analysis we presented.

The area of the Euclid survey is nearly 2 times larger than the area we considered
in the clustering analysis and nearly 100 times wider than the CFHTLenS, with a
corresponding expected improvements in the corresponding signals.

Due to improved photometry, a larger number of clusters will be detected to higher
redshifts. Most of the newly detected clusters will be low mass haloes producing a
small lensing signal. On the other hand, Euclid will significantly extend the redshift
range of the background galaxies, whose lensing signal is maximised at high redshift.

Recently, Ford et al. (2015) presented the CFHTLenS 3D-Matched-Filter catalogue
of cluster galaxies. Candidate clusters where selected if they had at least two member
galaxies within the virial radius and a detection significance in excess of 3.5. More than
Ncl ∼ 18000 clusters were detected in the ∼ 150 deg2 area of the survey in the redshift
range 0.2 <∼ z <∼ 0.9. More than 14000 candidate clusters had an estimated N200 > 10. By
comparison, with SDSS-III quality data, Wen, Han, and Liu (2012) detected Ncl ∼ 1200

clusters with N200 >∼ 8 in the redshift range 0.1 < z < 0.6 over the area of ∼ 130 deg3

in common with the CFHTLenS. We can conclude than nearly 10 times more clusters
can be identified by increasing the photometric depth of the survey from SDSS-III to
CFHTLenS quality data.

The Euclid mission is expected to identify an even larger number of clusters. Never-
theless, a significant number of them will be made of small groups, whose photometric
redshift determination might be uncertain, which hampers the clustering analysis.
Furthermore, the larger the number of identified clusters, the larger their density in the
sky. As we have seen, the shot noise is not the only source of uncertainty at large radii.
If we consider clusters whose mean separation is smaller than the range over which we
measure the shear profile, we can not simply rescale the lensing signal-to-noise ratio as
SNR ∝ √Ncl. We can then conservatively consider an improvement of a factor ∼ 10 in
the clustering/lensing signal detected by Euclid with respect to the present analysis
due to the larger density of detected clusters.

The background lensed galaxies resolved by Euclid will be more and further away
than the sources in the CFHTLenS. The number density of galaxies in the CFHTLenS
with shear and redshift data is ngal ∼ 17 galaxies per square arcminute (Heymans
et al., 2012). The effective weighted galaxy number density that is useful for a lensing
analysis is ngal ∼ 11 galaxies per square arcminute in the redshift range 0.2 < z < 1.3

with a median redshift of z ∼ 0.75 (Heymans et al., 2012), and it is ∼ 6 galaxies per
square arcminute at z >∼ 0.7 (Covone et al., 2014). Euclid sources will be more numerous
(ng ∼ 30 galaxies per square arcminute) and at a median redshift of ∼ 0.9. These two
factors make the signal behind a lens nearly two times larger.

Finally, the wide coverage of the Euclid survey will enable us to detect the 2-halo
lensing signal to its full radial extent. The extension of the radial coverage from 15 up to
30 Mpch−1 can decrease the errors in the lensing estimate of b σ2

8 from >∼ 20 to∼ 15 per
cent, see Table 5.1. The improvement would be even more significant considering radii
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up to 50 Mpch−1 but this effect would be counterbalanced by the increased overlap in
the lensing area of near clusters.

Based on the above considerations, we expect that stacked lensing can measure
b σ2

8 with an accuracy of ∼ 0.3 per cent and that clustering can measure b σ8 with an
accuracy of ∼ 0.1 per cent. The combined effects of a larger sample of clusters and less
noisy measurements should be enough to get an accuracy δσ8 ∼ 0.003 with the Euclid
mission without any assumption on the mass-richness scaling or any modelling of the
halo bias.

In the present analysis we could keep ΩM fixed because of the large statistical
uncertainties. This will be no more the case in presence of Euclid quality data. On one
hand, the dependence on ΩM of the joint clustering plus lensing analysis enlarge the
forecasted statistical uncertainty on σ8. On the other hand, ΩM could be determined
to very good accuracy by exploiting other features of the joint analysis. These effects
should counterbalance each other and the expected δσ8 should be nearly unchanged.

The estimate of σ8 will also greatly benefit from the increased spectroscopic sample
associated to the Euclid survey. Working with spectroscopic rather than photometric
redshift eliminates one of the main sources of uncertainty in the clustering analysis, see
§ 5.4.4.

The high precision in Euclid measurements will demand for very accurate theo-
retical modelling. The bias is a stochastic process which is difficult to model. In this
sense our basic approach, where the bias is treated as an effective parameter, is very
promising.
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Chapter 6

Conclusions

In this Thesis we presented new cosmological constraints from clustering and stacked
lensing of galaxy clusters. The main scientific results achieved in this work can be
summarised as follows:

We started our analysis focusing on the BAO detection in the monopole of the 2PCF
of galaxy clusters. The main achievements are the following:

• we compiled a large spectroscopic cluster sample by cross-matching the angular
positions of the cluster BCGs from the SDSS DR8 sample by Wen, Han, and Liu
(2012) with the positions of the BOSS galaxies, (Alam et al., 2015), in order to asses
the spectroscopic redshifts of the BCGs. We then constructed random samples
that accurately account for all the systematics. Our full spectroscopic sample
consists of 69035 clusters in the redshift range 0.1 < z < 0.6. This expands the
work showed in Veropalumbo et al. (2014);

• we measure the redshift-space 2PCF and detect the BAO peak at 4σ confidence
level. This is the most accurate BAO peak detection for galaxy clusters ever
achieved. We found the distance Dv = 989±22

25 Mpch−1 when combining with
sound horizon measurements (Planck Collaboration et al., 2016), and the uncali-
brated distance Dv/rs = 9.6±0.2

0.2, in good agreement with ΛCDM predictions;

• we computed the covariance matrix for the 2PCF measurements using the jack-
knife resampling technique (Norberg et al., 2009); by comparing with the analytic
covariance matrix (Grieb et al., 2016) we showed, that our estimate overpredicts
the variance by a factor ∼ 2, as expected; thus our results can be considered
conservatives;

• we measured the projected correlation function to infer the bias, finding bσ8 =

2.03± 0.03 for ΩM = 0.25, bσ8 = 2.27± 0.03 for Ω=0.30 and bσ8 = 2.48± 0.04 for
ΩM = 0.35. The χ2 comparison suggests that ΩM = 0.25 is preferred. This value
is significantly higher than the bias of galaxies in the BOSS sample, confirming
the goodness of the cluster selection (Alam et al., 2016; Anderson et al., 2014);

• we modelled the full shape of the correlation function monopole, obtaining
ΩMh

2 = 0.116±0.010
0.009; that is slightly lower with respect to CMB based constraints.

However, it has to be noted that the covariance with other model parameters is
neglected in this work, as we chose to vary the matter density parameter only;
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• we showed that there in no need to use the reconstruction technique in cluster
clustering analysis (§ 1.5.4), or to include non-linear predictions for the matter
power spectrum, as the BAO signal is compatible with the one predicted by linear
theory, considering the estimated uncertainties;

• we investigated the small-scale clustering using the cartesian 2D 2PCF and,
modelling RSD with the dispersion model. We found the fingers-of-God signal at
very low significance, being σ12 = 430±370

250 km/s, compatible with 0 at < 2σ. We
also obtained fσ8 = 0.3±0.3

0.2, bσ8 = 2.0±0.1
0.1. Anyway, since for these constraints

we used only the diagonal terms of the covariance matrix, the posterior variance
is likely underestimated.

Since we detected the BAO peak at different redshift, we could obtain the first
observational constraints on the distance-redshift relation using only the clustering
properties of galaxy clusters (§ 4). Specifically:

• we splitted the cluster sample in three redshift ranges. The catalogues have
been constructed by matching the BCGs from the WHL12 catalogue (Wen, Han,
and Liu, 2012), with spectra from SDSS DR7 (Abazajian et al., 2009) and SDSS
DR12 (Alam et al., 2015). This allowed us to construct three catalogues of galaxy
clusters – Main-GCS, LOWZ-GCS and CMASS-GCS – at the median redshifts
z = 0.2, 0.3 and 0.5, respectively. The number of objects is 12910, 42215, and
11816, respectively;

• we then estimated the covariance matrix using both internal error estimators
(jackknife and bootstrap) and the lognormal mock method (Coles and Jones,
1991). These estimators provide fairly consistent errors, with internal errors more
conservative and scattered. We chose the lognormal mock covariance matrix
estimate as reference for this analysis;

• the BAO feature is detected with a significance larger than 2σ, for all the consid-
ered samples. For the three samples analysed we got: α(z = 0.2) = 0.96± 0.06,
α(z = 0.3) = 0.99 ± 0.03 and α(z = 0.5) = 0.99 ± 0.03, respectively. This
translates to the uncalibrated distance estimates: rs/DV (z = 0.2) = 0.18± 0.01,
rs/DV (z = 0.3) = 0.124 ± 0.004, rs/DV (z = 0.5) = 0.080 ± 0.002. We used the
sound horizon estimate from Planck Collaboration et al. (2014b) to calibrate the
distances, obtaining: DV (z = 0.2) = 800 ± 50 Mpc , DV (z = 0.3) = 1183 ± 35,
DV (z = 0.5) = 1832± 55;

• the derived distance constraints are competitive with respect to other estimates
from the BAO peak obtained using richer galaxy catalogues, such as 6dFGS
(Beutler et al., 2011) and WiggleZ (Blake et al., 2011). As expected, these results
are instead not comparable, in precision, with the constraints coming from the
BOSS survey, of which our BCGs represent a subsample, when reconstruction is
applied. However, it is worth to notice that the detection for the LOWZ-GCS is
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comparable to the unreconstructed BAO detection from the whole LOWZ galaxy
sample (Anderson et al., 2014), despite the latter has ∼ 10 times more objects;

• we then used both the uncalibrated and calibrated distance estimates to derive
cosmological constraints. Our results are all consistent with the cosmological
model supported by the Planck results (see Planck Collaboration et al., 2014b).

Finally, we modelled the clustering of galaxy clusters in joint analysis with weak
lensing information (§ 5), to put constraints on b and σ8 separately:

• we considered a sample of 69527 galaxy clusters from the WHL12 with photo-
metric redshift in the range 0.1 < z < 0.6 in the Northern Galactic Cap. For the
lensing sample, we considered the 1176 clusters from the CFHTLens survey.

• we computed the 2PCF monopole, and modelled it with a damped 2PCF model,
to account for the distortions introduced by the photometric redshift errors,
obtaining bσ8 = 2.29± 0.08;

• by measuring the stacked lensing signal we obtained bσ2
8 = 1.87± 0.46;

• we determined the power spectrum amplitude with an accuracy δσ8 >∼ 0.1. Even
though we fixed ΩM = 0.3 in our analysis, the statistical error is too large to
discriminate between the discrepant estimates of σ8 from either number counts
(Planck Collaboration et al., 2014b) or CMB (Planck Collaboration et al., 2014a).
The method is nevertheless promising for its minimal modelling and well con-
trolled systematics. Our estimation of σ8 does not rely on any mass-observable
scaling relation;

• we measured the linear bias as a function of cluster mass, in the mass range
0.5<∼M200/(1014M�/h)<∼ 2. The bias scales with mass according to theoretical
predictions in excellent agreement with results from dark matter N -body simula-
tions (Bhattacharya et al., 2013; J. L. Tinker et al., 2010). Thanks to the minimal
modelling of the employed method, we could obtain this result bypassing the
calibration of the scaling relation between cluster mass and observable.

All the algorithms to perform the described analyses have been implemented within
the CBL software (§ 2 Marulli, Veropalumbo, and Moresco, 2016).

All the results presented in this Thesis, clearly demonstrate that galaxy clusters
are powerful tracers of the cosmic density field and can be efficiently exploited for
BAO analyses. Despite the paucity of cluster samples, with respect to generally larger
galaxy samples, the higher values of cluster bias and the fact that their redshifts are
less distorted by random motions improve the clustering signal, that results almost
insensitive to non-linear dynamical distortions. This reflects in a sharper BAO peak in
the 2PCF, close to the prediction of linear theory. We also showed that by combining
clustering and weak gravitational lensing, it is possible to disentangle the bias and the
power spectrum amplitude constraints, by assuming a minimal-modelling. To further
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tighten the cosmological constraints obtained in this work, these statistics should be
combined with other cosmological probes, such as the cluster mass function.

The techniques presented here will be further exploited in the next future on the
increasingly large collections of data expected from new experiments like e.g. Euclid
(Amendola et al., 2013; Laureijs et al., 2011; Sartoris et al., 2016), eBOSS (Dawson
et al., 2015) and eROSITA (Merloni et al., 2012). Galaxy cluster samples and dedicated
spectroscopic follow-ups will provide in fact an independent tracer of the dark mat-
ter density field, with respect to the typical emission line galaxies, targets of many
future experiments. We will also extend the cluster clustering analysis considering the
anisotropic 2PCF, that is measuring the multipoles and the wedges and modelling their
full shape. The final goal will be to join, in one single likelihood, all the cosmological
probes that galaxy clusters can provide.
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