
Alma Mater Studiorum – Università di Bologna 

 
 

DOTTORATO DI RICERCA IN 
 

INGEGNERIA CHIMICA, DELL’AMBIENTE E DELLA 
SICUREZZA 

 
Ciclo XXVIII 

 
Settore Concorsuale di afferenza: 03/D–Farmaceutico, Tecnologico, 
Alimentare 
 
Settore Scientifico disciplinare: CHIM/11-Chimica e Biotecnologia delle 
Fermentazioni 

 
 

DEVELOPMENT OF BIOREFINERY SCHEMES FOR THE 
VALORIZATION OF AGRO-INDUSTRIAL WASTES: PRODUCTION 

OF POLYHYDROXYALKANOATES  

 
 

 
 

Presentata da: Gonzalo Agustín Martinez 

 
 
 
 
Coordinatore Dottorato    Relatore 
 

 
Prof. Serena Bandini                 Prof. Fabio Fava 
 
 

 
 
 

Esame finale anno 2016



I 
 

ACKNOWLEDGEMENTS 

 

First of all I would like to thank my family for supporting me. In this regard,  I will be always very 

grateful indeed to my mother who gave all she can for educating me; teaching me the ideas of 

justice, willingness to learn and hardworking for trying to obtain what desired.    

Secondly, my sincere gratitude to my tutors Prof. Lorenzo Bertin and Prof. Fabio Fava, for giving 

me the opportunity to make the PhD on bioprocesses at their group, for their advices and 

recommendations. In this las regard, I am also grateful to Prof. Braunegg. Special thanks to PhD. 

Alberto Scoma with whom I start working in the lab, on biopolymers production; a new research 

field for the group in 2012. I would like also to extend special thanks to Prof. Bandini, who guided 

me on my first steps on acids separation with membranes.   

To my colleagues Joana M. B. Domingos, Stefano Rebecchi and Andrea Negroni with whom we 

discuss about work and life, they also actively collaborates and support me during the hard and 

long experiments. Even more important, thank you very much indeed for your friendship. Also 

thanks to Valentina Morelli who sheared me her bench-pilot nanofiltration plant for carrying out 

the acid separation experiments. 

Finally, I would like to gratefully acknowledge the projects Water for Crops and PRIN for the 

grants during these three years. 

  



II 
 

ABSTRACT 

Aiming to reduce the cost of production of polyhydroxyalkanoates (PHAs), it was verified the 

use of two agro-industrial wastes as alternatives carbon sources for the production of: 

A- poly(hydroxybutyrate-co-hydroxyvalerate), from olive mill wastewater (2012 

campaign; 60% dephenolised). It was possible to used up to 25% v/v in the culture 

media due to the presence of polyphenolic inhibitors in the matrix. 

B- polyhydroxybutyrate (PHB) with OMW belonging to 2013 (>70% dephenolised): the 

culture medium could contain 100% v/v without causing inhibition. An integrated 

biorefinery scheme was defined and tested sequentially: polyphenols recovery, 

organic acids PHAs and biogas production. 

C- PHB from dephenolised and fermented grape pomace. An integrated biorefinery 

scheme was proposed for the first time for the valorisation of grape pomace. 

D- medium chain length polyhydroxyalkanoates by performing the anaerobic 

acidogenic digestion of GP before dephenolisation. 

From the research work on OMW, a study about total polyphenols determination by 

colorimetric method was carried out. Indeed, solid phase extraction break-through curves 

obtained during polyphenols recovery experiment were employed as a tool for the analysis. 

To increase the volatile fatty acids (VFAs) concentration, for obtaining a feeding solution which 

allow fed-batch fermentation, it was proposed to concentrate VFAs produced in acidogenic 

digestion using nanofiltration (NF). A preliminary feasibility study has been carried out, getting 

rejections in the range 30-90%, using a plant-counter and prepared in the laboratory of VFAS 

solution (C2 to C6) salts and buffers in distilled water. 

The optimization of the PHAs downstream process was also studied. It is been developed a 

procedure for the extraction of PHAs by cell pretreatment with, heat, acids, digestion with NaOH 

and ethanol-water washing. In this study it was verified that the implementation of a pre-

treatment with H2SO4 allows to recover 85% of PHAs products reaching a purity of >95%. 

 

KEYWORDS: Biopolymer, Polyhydroxyalkanoates, Volatile fatty acids, Agro-industrial wastes, 

Residues, Valorisation, Biorefinery 
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1.1 MOTIVATION 

“Polymers are the newcomers among the bulk materials used in modern economies” [1]. 

Statistic arises that world plastics production, including thermoplastics and elastomers among 

others, has a grows trend since 1950 (Figure 1 A). Nowadays, this is also true for biobased 

polymers (Figure 1 B); produced from renewable resources allow independency from petrol and 

avoid land filling. In this line, polylactic (PLA) acid and polyhydroxyalkanoates (PHAs) were 

previously considered as potential substituters of petrol-based polymers. Differing from PLA, 

PHAs allow the obtainment of a variety (a family) of polymers with different characteristics. 

Nevertheless, nowadays it is hardly economically feasible its  industrial production mainly due 

to carbon source and downstream costs; both accounting 40-60% of the final product cost [2].  

 

From all that mention, the main goal of the present thesis was to develop 

polyhydroxyalkanoates (PHAs) production processes using agro-industrial wastes as alternative 

carbon sources and pure cultures. This production study was carried out in the frame of 

biorefineries development, as to maximise waste valorisation. Therefore, the specific aims were 

to: 

1- Study the valorisation of Italian agro-industrial wastes through the production of PHAs 

a. The production of PHAs using acidified effluents 

b. Development of a biorefinery scheme that allow integrated valorisation, 

including at least polyphenols recovery and biogas production from wastes 

streams 

2- Study the implementation of a water-based PHAs down-stream process 

Figure 1: (A) World and European plastic production trends [104]. (B) Estimated market 
demand for biobased plastics in the EU [105]. 

A B 
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1.2 THESIS OUTLINE 

The thesis includes 9 chapters describing the work carried out during the three years of PhD. 

The present chapter (Chapter 1) contains the motivation and objectives of the project.  

Following to this, PHAs production studies are presented: using olive mill wastewater (Chapter 

2) and grape pomaces (Chapter 3); were integrated schemes development have been studied. 

For the second residue, also an alternative valorisation scheme was developed.  

During the research on PHAs production using alternative carbon sources, organic acids 

concentration was identified as a potential key process for the pretended biorefinery schemes. 

Thus, the implementation of nanofiltration-concentration step was preliminary studied (Chapter 

4).  

While studying the valorisation of olive mill wastewater, this when testing PHAs production or 

designing a biorefinery scheme, it was identified the total phenols measurement as an important 

analytical tool. Hence, a study was dedicated (Chapter 5) in order to understand the accuracy of 

an already stablished (however down-scaled) colorimetric method. 

The PHAs down-stream process was studied on Chapter 6. Specifically, trying to optimize a water 

based recovery and purification procedure. 

Each of these chapters are constituted by introduction within a brief state of art, description of 

material and methods employed for carrying out the work, results and discussion and 

conclusions. 

Finally, main conclusions of the PhD project and future work sugestions are presented in Chapter 

7. 

Chapter 8 contains the appendices and Chapter 9 the references. 
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2 POLYHYDROXYALKANOATES PRODUCTION FROM OLIVE MILL 

WASTEWATER 
 

 

Summary  The feasibility of producing polyhydroxyalkanoates (PHAs) by feeding a pure 

culture of Cupriavidus necator with a pre-treated olive mill wastewater (OMW) was 

demonstrated at 500 mL shaken flask scale. The OMW was previously dephenolised and then 

fermented to produce an effluent rich in volatile fatty acids (VFAs). The latter stream (OMWAcid) 

was then employed as the carbon source for PHAs production. Firstly, pre-grown cells were fed 

with different dilutions of OMWAcid, namely: 25, 50, 75 and 100 % v/v. Significant inhibitory 

effects were observed when OMWAcid concentration was 75 and 100 %.Thereafter, experiments 

with laboratory prepared solutions, simulating the OMWAcid, allowed to demonstrate that 

polyphenols significantly contributed to the observed inhibition. Furthermore, The copolymer 

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (poly(HB-co-HV)), containing 11% of 

hydroxyvalerate, was accumulated up to 55% of the cells dry weight when two consecutive 

accumulation batch processes were carried out with 25% of OMWAcid and without adding any 

exogenous carbon source. The obtained results are promising in the perspective of continuing 

the production study at a bench-top bioreactor scale and thereafter analysing the possibility of 

developing a biotechnological PHAs production process as a part of an integrated OMW 

valorisation process. 

* Chapter adapted from Gonzalo Agustín Martinez, Lorenzo Bertìn, Alberto Scoma, Stefano 

Rebecchi, Gerhart Braunegg, Fabio Fava, Production of polyhydroxyalkanoates from 

dephenolised and fermented olive mill wastewater by employing a pure culture of Cupriavidus 

necator, Biochemical Engineering Journal, 97 (2015) 92–100  [3] 
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2.1 INTRODUCTION 

Polyhydroxyalkanoates (PHAs) are well known aliphatic polyesters naturally produced by many 

microorganisms [4,5]. Different materials with new properties can be obtained by combining 

different PHAs monomers, including bioplastics with similar or even better physicochemical and 

mechanical properties than those exerted by their petrochemical-based homologues 

polyolefins. As an example, a polymer with a lower oxygen permeability, which can be exploited 

to enhance the material features of food packaging, can be obtained [6–9]. Besides, PHAs can 

be produced from renewable resources, therefore representing one of the most promising 

biopolymers for replacing the petrochemical-based plastomers, elastomers, latexes or even 

high-performance polymers [10].  

Nevertheless, nowadays, PHAs industrial production is carried out from expensive carbon 

sources, resulting in a hardly economically competitive product with respect to that of petrol-

based polymers. The production costs are mainly associated to those of carbon source 

procurement and down-stream process (recovery and purification), representing both 30-50 % 

(approximately) of the final product cost [2]. Thus, new alternatives and strategies are being 

studied in order to lower PHAs production costs. To this aim, the application of alternative 

inexpensive carbon sources, usually represented by agro-industrial wastes [11], was widely 

studied. Fried oil [12], effluents from the palm mill [13], molasses [14], cheese whey [15], olive 

mill wastewater (OMW) [16] and biodiesel waste glycerol [15,17], among others, were tested 

with pure or mixed cultures. Pure cultures (wild type or genetically modified)allow getting higher 

productivities and PHAs content. Conversely, the employment of mixed cultures has the 

economic advantage that they do not need to work under sterile conditions, since the microbial 

selection of PHAs producer strains can be carried out under selective pressure by repeated feast 

and famine processes [18].  

On the other hand, most of the mentioned alternative substrates have moderate to low carbon 

source concentration (around 80 g/L and 10–40 g/L, respectively), this leading to a low PHAs 

productivity potential [19], which hence negatively affects process costs. Pure cells allow high 

cell densities and PHAs contents, which conversely contribute moderating downstream costs. 

Furthermore, the employment of a single bacterial strain allows the obtainment of a well-

defined single type of polymer, while a mixture of polymers would be obtained from microbial 

consortia.  

The present work was dedicated to evaluate the possibility of producing PHAs by employing a 

pure culture and an inexpensive substrate. In particular, Cupriavidus necator (formerly Ralstonia 
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eutropha) was chosen as the biocatalyst since it is a well-known and robust PHAs producer strain 

capable of high accumulation potential. OMW was selected as the alternative carbon source 

because it is an abundant biowaste mostly produced within the Mediterranean region. 

Particularly, the experimental wastewater was produced in Italy, where about 1 Mm3 of OMWs 

are generated per year (FAO and [20]). OMW is a typical effluent of the olive oil industry, which 

applies the conventional three phases extraction procedure. Compared to the biowaste 

obtained from the two phase extraction one (mainly generated in Spain and conventionally 

called “alperujo”), which includes the solid fraction from processed olives, OMW is a much more 

homogeneous and liquid effluent. It is considered an environmental harmful waste because of 

its typical acidity (pH 3 - 6), high organic content (40 - 200 g COD / L), occurrence of polyphenolic 

compounds (1 - 20 g/L), and seasonality [21]. Polyphenols are known to exert antimicrobial 

activity; on the other hand, they are natural antioxidants, which could be exploited in several 

industrial fields [22]. All this considered, the development of integrated OMW valorisation 

processes would allow combining its treatment to the obtainment of added value products (e.g., 

polyphenols, PHAs and biogas).  

In this work, in a first study, the experimental OMW was previously dephenolised (in batch) in 

order to couple the recovery of added value molecules to a detoxification of the effluent. Then, 

it was digested under acidogenic condition to obtain a volatile fatty acids (VFAs)-rich stream 

(OMWAcid), which was used as the carbon source for PHAs accumulation. More in details, the 

main aims of the present study were: (a) to verify the possibility of producing PHAs, by using a 

pre-grown culture of C. necator, from OMWAcid; (b) to determine what type of polymer can be 

produced from OMWAcid; (c) to study the occurrence of inhibitory effects due to OMWAcid 

concentration and determine the potential inhibitors by employing laboratory pre-pared OMW 

simulating solutions; and (d) to verify the possibility of increasing PHAs content by applying 

consecutive accumulation batch processes, with the perspective of developing a cell-recycling 

strategy for achieving a high cell density. All experiments were carried out in 500 mL shake flasks. 

To the very best of our knowledge, this work represents the first attempt to produce PHAs within 

a pure culture of C. necator by employing digested OMW as alternative carbon source. 

A second study was carried out to verify the technical feasibility of valorising the OMW through 

an integrated biorefinery scheme. In particular, the sequential steps consisted on: continuous  

dephenolisation (better than batch), anaerobic acidogenic digestion, PHAs production and 

methanogenic digestion of the suspended solids occurring in the OMW. Finally, using the last 

obtained results, a preliminary techno-economic analysis was carried out within a bioprocess 

simulating tool. 
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2.2 MATERIAL AND METHODS 

2.2.1 CHEMICALS AND OLIVE MILL WASTEWATER 

The standard volatile fatty acids (VFAs) mixture (Supelco), poly(3-hydroxybutyric acid-co-3-

hydroxyvaleric acid) (Poly(HB-co-HV)) (12 mol % PHV; natural origin), salts (BioReagent) for the 

mineral medium, single VFAs and fructose (BioReagent) were purchased from Sigma–Aldrich. 

The OMWs, from 2012 (used in Sections 2.2.3.1 and 2.2.3.2) and from 2013 (used in Section 

2.2.3.3), were kindly supplied by the “Sant’Agata d’Oneglia” Italian olive mill, which is located in 

the Liguria northern region, and it had a COD of about 55 g/L (2012) and 26 g/L (2013), partially 

due to polyphenolic compounds (about 2.55 g/L and 1 g/L, respectively).  

The OMW 2012 (used in sections 2.2.3.1 and 2.2.3.2) underwent a pretreatment procedure, 

which consisted in a solid phase extraction (SPE), which was carried out by using a non-polar 

resin (Amberlite XAD16, Sigma–Aldrich) as the adsorbent and ethanol (96% grade, Sigma–

Aldrich) as the desorption solvent [22]. The SPE batch procedure enabled the removal of the 

polyphenolic fraction; however, a significant amount of total polyphenols still occurred (  
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Table 1). Thereafter, the dephenolised wastewater (OMWDeph) was processed under anaerobic 

acidogenic conditions in order to obtain an effluent rich in VFAs (OMWAcid), which was employed 

as the carbon source for the biological accumulation of PHAs. The anaerobic acidogenic 

digestion of the OMW was carried out in a 2.5 L packed bed bioreactor, whose configuration 

was reported elsewhere [23]. In brief, it was an up-flow glass column, which was packed with 

ceramic material and was operating under continuous mode at 35ºC with a hydraulic retention 

time (HRT) of 7 days. The main features of the OMWAcid are shown in   
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Table 1; it contained different short chain VFAs, mainly (g/L): acetic (7.22 ± 0.16), propionic (1.25 

± 0.05), butyric (1.75 ± 0.03), valeric (0.22 ± 0.04) and caproic (0.35 ± 0.01) acids. 

The treatment for the OMW 2013 and its characteristics are described in Section 2.2.3.3.1. 
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Table 1: OMWAcid main features. 

  

COD (g COD / L) 31.4 ± 0.5 

Total VFAs (g / L) 11.43 ± 0.6 

Total phenols (g /L)a 1.20 ± 0.20 

pH 6.5 ± 0.1 

N-NH4 (mg / L) 60 ± 1 

Proteins (g / L) 1.56 ± 0.12 

Lipids (g / L) 3.24 ± 0.34 

a Expressed as gallic acid equivalents 

 

2.2.2 BACTERIAL STRAIN, INOCULUM AND CULTURE MEDIA FOR PHAs 

PRODUCTION  

C. necator DSMZ 545 (DSMZ, Germany) was used as the PHAs producer strain. Pre-cultures were 

started from agar plates and pre-grown within 24 h in 500 mL Erlenmeyer flask containing 150 

mL of Luria Bertani (LB) medium without any extra carbon source [24]; incubation conditions 

were 30 °C and 150 rpm. 

All experiments were performed according to a dual-phase strategy (as reported in Section 0).  

2.2.2.1 GROWTH AND PHAs PRODUCTION EXPERIMENTS USING THE OMW 2012 

For experiment of section 2.2.3.1, the mineral medium E2 [25] was prepared using the 

OMWDeph as solvent (from the beginning) and fructose (5g/L) as carbon source. Regarding the 

experiments of Section 2.2.3.2 , the same medium was always employed in the first process 

step dedicated to cell growth (balanced growth phase), while different culture media were 

utilised in the second process steps dedicated to PHAs production (accumulation phase), 

depending on specific experimental aims. All these accumulation media exerted a NH4 

limitation, which did not allow cell growth(essential nutrient limitation). At the same time, this 

limitation triggered the biopolymer accumulation. In particular, the growth medium consisted 

of a slightly modified E2 mineral medium and it was employed for the cell growth phase. It 

contained 1.5 instead of 1.1 g/L of NH4HPO4. Fructose (5 g/L) was added as the sole carbon 

source. Two types of ammonia free-media were employed for the subsequent PHAs 

accumulation phase: they included (a) the actual OMWAcid, or(b) laboratory prepared solutions, 

which simulated OMWAcid by containing target chemicals occurring in the actual acidogenic 

effluent (SimOMWAcid). The former media were prepared by filtering the OMWAcid with 

Whatman N11 (11  µm) filters, adding E2 salts (except for NH4HPO4) by respecting their 

concentration in the E2 medium, and autoclaving the amended OMWAcid using special 

Beckman flasks, which allowed to perform a subsequent centrifugation (8000 RPM, 4ºC and 25 

min) under sterile conditions; finally, when necessary, it was diluted with a sterilised distilled 

water solution containing the same kind and concentration of E2 salts, so that such media 

contained 25, 50, 75 or 100% v/v of the amended OMWAcid. Two kinds of SimOMWAcid were 
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employed, containing VFAs (SimVFAsOMWAcid) or a mixture of VFAs and polyphenols 

(SimPhenOMWAcid), respectively. In agreement with the preparation of accumulation media 

containing OMWAcid, SimVFAsOMWAcid was prepared by combining different relative amounts of 

two sterilised stock solutions, namely: (a) a VFAs solution, where VFAs concentrations were 

the same of those occurring in the actual OMWAcid (as reported in Section 2.2.1); and (b) sterile 

distilled water. SimVFAsOMWAcid media contained 25, 50, 75 or 100% v/v of the VFA solution. 

Both solutions were previously amended by adding E2 salts (except for NH4HPO4), by 

respecting their concentration in the E2 medium. Finally, SimPhenOMWAcid media were prepared 

by combining 30% v/v of the VFA solution described above with a sterilised polyphenolic 

aqueous solution. The latter solution was prepared as follows: the alcoholic polyphenolic 

solution obtained as a result of the dephenolisation process was dried under vacuum, using a 

rotary evaporator (25ºC and 10 mbar). Then, resulting powder was resuspended in distilled 

water and, once completely dissolved, E2 salts (except for NH4HPO4) were amended and the 

solution was sterilised by filtration (Cellulose-acetate membrane, 0.2  µm and 25 mm). Total 

polyphenols con-centration in the polyphenolic stock was 4 g/L. Such a solution was combined 

with the VFA solution and sterile distilled water, so that the total polyphenols concentration in 

SimPhenOMWAcid media were 10, 25, 40 or 55% of the total polyphenols concentration 

occurring in the actual OMWAcid (  
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Table 1), i.e., 0.12, 0.30, 0.48 and 0.66 g/L, respectively. All accumulation phases started with a 

pH of 7.2.  

2.2.2.2 PHAs PRODUCTION (USING THE OMW 2013) IN THE FRAME OF AN 

INTEGRATED BIOREFINERY SCHEME 

The mineral medium 81 (DSMZ) was employed with slightly differences: for the growth phase it 

contained 3 instead of 1 g L-1 of (NH4)2SO4 and, for triggering the accumulation phase, 

NH4 free. Regarding the carbon source, glucose (5 g L-1) was used for the 1st phase; while 

for the 2nd phase the medium was prepared by dissolving the medium salts in the liquid 

fraction of the acidified effluent, no distil water was used in this case.  
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2.2.3 EXPERIMENTAL APPROACH 

First of all, a study was dedicated to verify the possibility of using pretreated OMW for cell 

growth and PHAs accumulation. Thereafter, a second study was carried out in order to verify the 

technical feasibility of valorising the OMW within an integrated biorefinery scheme that includes 

-among other steps- the PHAs production using a better dephenolised effluent. 

The biopolymer production approach was the same in both studies. Being C. necator a non-

growth associated producer, the whole PHAs production process was separated in a two-stages 

(Figure 2). They were dedicated to favour the bacterial growth and to induce the biopolymer 

accumulation, respectively. The consecutive process steps were fed with a monosaccharide 

(growth phase) and the target biowaste (accumulation phase), respectively. Beside, PHAs may 

represent over 80 % of the whole CDW of C. necator strain [4,26]. This would allow potentially 

replacing about 80 % of the costly sugar required by the conventional PHAs production process. 

All PHAs production experiments were carried out using 500 mL Erlenmeyer flasks containing 

150 mL of culture media, experimental conditions were tested in triplicate. Thus, presented 

results are the average of the triplicates and standard deviation if represented by error bars or 

±.  

2.2.3.1 GROWTH WITHIN A MEDIA CONTAINING OMWDeph 60% DEPHENOLISED 

This experiment was dedicated to verify if OMWDeph can be used for preparing the culture media 

(fresh water replacement). To this aim, a balanced growth test was carried out in a mineral salt 

medium and fructose, prepared by using different relative proportions of OMWDeph (0, 25, 50, 

75 and 100 % v/v) and distilled water. 

A
b

s 6
0

0
 

Figure 2: Production steps: 1st growth phase using simple sugars and 2nd  the accumulation phase 

using VFAs under NH4 limitation. 
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2.2.3.2 ACCUMULATION STUDIES USING OMWAcid (60% DEPHENOLISED) 

This study was focused on the PHAs accumulation phase. The growth phase was carried out 

under balanced growth conditions, using fructose as the carbon source. To this aim, pre-grown 

cells were harvested by centrifugation (6000 rpm for 5 min at 4ºC) and suspended in the media 

to an initial absorbance (Abs600) of about 0.4. The incubation conditions were the same 

mentioned in the former Section 2.2.2. After 24 h, cells were harvested by centrifugation (6000 

rpm for 5 min at 4ºC). Thereafter, the grown biomass was resuspended in the specific 

experimental accumulation medium (ammonia free) and the subsequent PHAs accumulation 

phase was started (second process phase). Four experimental sets were carried out, each 

experimental condition was tested in triplicate. 

2.2.3.2.1 PHAs ACCUMULATION WITHIN OMWAcid 

A first trial was dedicated to verify the possibility of using OMWAcid as an alternative carbon 

source for PHAs production by using C. necator as the biocatalyst and to determine which kind 

of polymer could be obtained. The employment of different OMWAcid dilutions (up to 100% of 

the accumulation phase media, as reported in the former Section 2.2.2), allowed to study if the 

concentration of the OMWAcid matter could affect the PHAs accumulation activity of grown cells. 

2.2.3.2.2 PHAs ACCUMULATION WITHIN SimVFAsOMWAcid  

A second identical experiment was launched, by replacing OMWAcid with the SimVFAsOMWAcid, so 

that VFAs concentrations were the same of those tested with the different OMWAcid solutions. 

This allowed determining if inhibitory effects on PHAs accumulation were due to VFAs content, 

by excluding the role of other chemicals occurring in OMWAcid.  

2.2.3.2.3 PHAs ACCUMULATION WITHIN SimPhenOMWAcid 

Furthermore, the inhibition of PHAs production due to polyphenols naturally occurring in the 

OMWAcid was studied by means of a third experiment, which was carried out with accumulation 

culture media containing 30% v/v of SimVFAsOMWAcid together with different amounts of total 

phenols, as indicated above (Section 2.2.2).  

2.2.3.2.4 PHAs ACCUMULATION BY APPLYING MULTIPLE BATCHES 

Finally, the possibility of increasing the polymer content in cells fed with OMWAcid and 

SimVFAsOMWAcid at 25% v/v was tested by applying a second consecutive accumulation batch 

process. To this aim, once the accumulation processes was concluded, cells were harvested and 

resuspended in fresh accumulation media. A consecutive batch processes was then carried out.  
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2.2.3.3 AN INTEGRATED OMW BIOREFINERY FOR PRODUCING A 

POLYPHENOLS MIXTURE, PHAs AND BIOGAS: A TECHNICAL 

FEASIBILITY STUDY 

As mentioned, once the conditions and limitations of using OMW for producing PHAs were 

known, a second study was dedicated to verified the feasibility of valorising the Italian OMW 

through sequential steps, namely: continuous SPE, acidogenic digestion, PHAs production 

(within a better dephenolised OMW) and methanogenic digestion. The proposed steps are 

described in the same order they occur. All steps were planned, designed and carried out by our 

research group, except the continuous dephenolisation step which was studied and optimized 

by Prof. Pinelli’s group and thus it will be briefly presented in order to allow the analysis of the 

biorefinery scheme. 

2.2.3.3.1 CONTINUOUS POLYPHENOLS RECOVERY 

In the projected biorefinery the OMW 2013 (Table 6) was first centrifuged (8000 rpm, 6°C, 25 

min) for separating the suspended solids (OMWSolid) and thereafter the stocked liquid fraction 

was treated in a continuous SPE process [27]. Briefly, the OMW was filtered in-line (25 and 11 

µm) and fed within a peristaltic pump to 4 columns in series (0.5 m length, 0.0244 m inner 

diameter, total resin bed 1.81m) at superficial velocity of 3.05 m . h-1 (19 mL.min-1). Each column 

was  packed with XAD-16 (10mm quartz sand, 1810mm resin and 10mm quartz sand). After 

reaching the ratio 
[𝑃𝐹]𝑂𝑈𝑇

[𝑃𝐹]𝐼𝑁
= 0.41 ± 0.01, feeding was stopped and desorption started. This was 

by feeding 5 bed volumes of an acidified ethanol solution (0.5% v/v of HCl 0.1N). 

For the process simulation analysis, it was proposed to implement two columns working 

alternately for obtaining a  dephenolised OMW (OMWDeph) and the polyphenols mixture (Figure 

3). Hence, when one column rich the pre-established saturation level (5 bed volumes), OMW 

feed was stop in column 1 and starts in column 2, meanwhile -at that time- it starts the 

polyphenols desorption in column 1 by feeding the ethanol solution. Finally, the desorpted 

polyphenols were separated from the ethanol by vacuum distillation; allowing to recycle the 

solvent.  
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Figure 3: Continuous OMW dephenolisation pilot-plant. OMW is treated in columns 1 and 2, 

that work alternately. When one column is absorbing polyphenols the other one is desorbing 

them within an acidified ethanol solution. The polyphenols are obtained at the same time the 

ethanol is recovered for recycling it.  

  

2.2.3.3.2 ANAEROBIC ACIDOGENIC DIGESTION OF 𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡 

As in the first study (Section 2.2.1), the 𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡 still contains organic material. Thus, it 

was anaerobically digested under acidogenic conditions for obtaining a VFAs-rich stream 

(𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡
𝐴𝑐𝑖𝑑 ) with low total phenols concentration. To do this, it was employed the same 

packed bed bioreactor ( and experimental set-up) described in Section 2.2.1, but in batch mode 

because of the lack of enough 𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡 quantity for starting a continuous process and 

arrive to a stationed state. 

2.2.3.3.3 PHAs PRODUCTION FROM 𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡
𝐴𝑐𝑖𝑑   

In this case, since the OMW was better dephenolised (total phenols lower than 270 mg/L), it was 

proposed to use the 𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡
𝐴𝑐𝑖𝑑  at 100 % v/v when preparing the culture media for the 

biopolymer production. As before, a parallel condition was run; in which the 𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡
𝐴𝑐𝑖𝑑  was 

replaced with 𝑆𝑖𝑚𝑉𝐹𝐴𝑠𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡
𝐴𝑐𝑖𝑑 . This biopolymer production was carried out with the 

same approach as previously described: growth phase using simple sugars and accumulation 

phase using the VFAs occurring in the acidified stream. Multiple sequential batches were 

applied.  
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2.2.3.3.4 ANAEROBIC METHANOGENIC DIGESTION OF 𝑂𝑀𝑊𝑆𝑜𝑙𝑖𝑑   

The last step of the biorefinery consist of an overall digestion of all residues remaining in all 

streams. Hence, a preliminary test was carried out to verify the possibility of producing biogas 

from OMWSolid and to evaluate the amount of biogas that can be produced. To this aim, 100-mL 

Pyrex bottles (microcosms with silicon septum, 55-mL working volume) were used. The OMWSolid 

was resuspended and mix with the methanogenic inoculum. The final TS was 10 % and the 

inoculum to substrate rate was 0.44 (g of VS from the inoculum per gram of VS from the 

substrate) [28,29].  

A next experiment was dedicated to study the OMWSolid digestion kinetic. In this case, OMWDeph 

was used as solvent instead of fresh-water. This was carried out also at microcosm scale, by 

testing different substrate concentrations, namely (CVS in g/L; ISR): 0.064;1.000,  0.190;0.867, 

0.580;0.813, 3.100;0.744, 5.980;0.707, 10.200;0.556 and 99.500;0.425.  

In both experiments a control blank condition was run, prepared with inoculum and water. Thus, 

the results for each condition were analysed in terms of effective biogas produced; calculated 

by subtracting the biogas amount produced by the inoculum. All experimental conditions were 

carried out in triplicate.            

 

2.3 ANALYTICAL PROCEDURES 

Cell concentration measurements during PHAs production. In the growth phase was followed 

by turbidimetry, according to absorbance measurements at 600 nm (Abs600), by using a Cary-

100 UV–vis spectrophotometer. Dilutions were performed when needed, so that absorbances 

(AU) values were always in the range 0-1. Two linear correlations were obtained when 

performing the Abs600 vs. cell dry weight (CDW) calibration curve: one for the growth phase 

and another for the accumulation phase (data not shown). Therefore, absorbance 

measurements were also used to detect PHAs production during the accumulation phase in 

agreement with [30–32]. PHAs were qualitatively and quantitatively determined by GC analyses, 

as described below. When accumulation media were high coloured solutions, due to the 

employment of OMWAcid or polyphenols, the turbidimetrically analysed sample was centrifuged 

and supernatant absorbance was measured, in order to get a final absorbance measurement 

only related to suspended cells. The rest of the aqueous sample was centrifuged, and 

supernatant and pellet (after washing with NaCl 0.9%) were separated and stocked for analyses. 

For the accumulation phase samples, the pellet was dried and weighted for determining the 

biomass concentration (expressed in cell dry weight, g CDW / L) and PHAs content (g PHAs / g 

CDW × 100%).  
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PHAs concentration and composition were determined PHAs were determined by GC-FID 

analysis (Agilent 7890 A), using a CP-Sil 5CB column (ID 0.25 mm, length 30 m and film thickness 

0.25 µm) with the temperature program described in [33]. To this aim, the pellet samples were 

digested with methanol and chloroform according to the conventional method described in [34]; 

analytical procedure set-up is shown in Appendice 8.1.  The employed standard was poly(HB-

co-HV) (12 mol% PHV; natural origin). 

Sugars and VFAs concentrations. Fructose or glucose concentration was determined by HPLC-

IR analysis, using a Varian Hi-Plex H column (300 × 7.7 mm); the mobile phase was sulphuric acid 

5 mM at an elution rate of 0.6 ml/min and the operating temperature was 65ºC. VFAs were 

determined by GC-FID analysis, using the Agilent 7890A and a HP-INNOWAX column (ID 0.25 

mm, length 30 m and film thickness 0.25  µm) according to the method described in [23]. Organic 

matter consumption during the PHAs accumulation phase was followed by measuring the 

samples supernatant chemical oxy-gen demand (COD) with a commercial kit (AQUALYTIC Vario 

MR). A theoretical COD variation was calculated by only taking into account the VFAs 

consumptions. To this aim, VFAs concentrations were expressed as COD equivalents according 

to stoichiometric calculations and variation on these were calculated. 

 Total polyphenols contents (TPhs). First in the OMWAcid and then in the extracted and 

concentrated solution (Section 2.3.3), TPhs were measured by the conventional Folin-Chocalteu 

colorimetric method [35], by using gallic acid as the analytical standard. 

Biogas production. It was measured in terms of volume (glass syringe) and composition. This, in 

terms of H2, O2, CH4 and CO2, was measured by gas-chromatography using a μGC (model 3000 A 

– Agilent Technologies, Milano, Italy) under the following conditions: injector temperature 90 

°C; column temperature 60 °C; sampling time 20 s; injection time 50 ms; column pressure 25 psi; 

run time is 44 s and the carrier gas was nitrogen. 

TS were determined by conventional gravimetric method exposing the sample to 105 °C 

overnight and VS were determined by exposing the resulting dried sample to 600 °C for 1 hour. 

 

2.4 RESULTS AND DISCUSION 

The utilization of an alternative carbon source such as OMW, would potentially allow to diminish 

the PHAs production cost. Nevertheless, such potential production process would hardly results 

economically feasible as single. One of the reason, the lack of equipment occupancy 

optimization. On the other hand, an integrated valorisation with multiple products would allow 
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to optimize this factor and others that will positively influence on the economically feasibility of 

the entire valorisation scheme.  

Therefore, the work was divided in two: the first study was related specifically with the 

utilization of OMW for producing PHAs, and a second study was carried out in which the 

production of biopolymer was integrated with the obtainment of polyphenols, VFAs and biogas. 

Results are presented and discussed in the same order. 

   

2.4.1 GROWTH WITHIN A MEDIA CONTAINING OMWDeph (60% 

DEPHENOLISED) 

Using OMWDeph for preparing the media would potentially allow to substitute the utilization of 

fresh water. Hence, a growth experiment was carried out using different OMWDeph contents (0-

100 % v/v). The obtained results are presented in Figure 4. Long lag phases were detected in the 

conditions in which the OMWDeph content was 50 % or higher. After 100 hours the 50 % condition 

grew to a similar extent of the lower concentrated conditions. From these results it was inferred 

that the OMWDeph matrix contain one or more compounds that result growth inhibitors, such as 

phenols. Because of this, interest on using OMWDeph (with this grade of dephenolisation) was 

lost, since it would increase the growth time to approximately double it.  

 

 

Figure 4: Absorbance (Abs600) trends during the growth phase when OMWAcid represented 0, 25, 

50, 75 or 100 % v/v of the culture medium. 

 

2.4.2 ACCUMULATION STUDIES USING OMWAcid (60 % dephenolised) 

Low cost carbon sources and high polymer contents are required in order to achieve an 

economically feasible biotechnological PHAs production process. In this section, a pure culture 

A
b
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of C. necator, which is a PHAs producer with a rapid growth and a high accumulation potential 

(over 80 % of PHAs content on CDW bases [4,26]), was fed with a pretreated OMW in order to 

verify its capability of producing PHAs from such a biowaste. As a matter of fact, C. necator was 

found to grow and produce the biopolymer from diverse carbon sources [12,36–40]. C. necator 

is a non-growth associated PHAs producer. In fact, it accumulates the biopolymer by converting 

feasible PHAs precursors, such as VFAs, in the absence of other nutrients required for growth. 

Thus, the production process can be carried out according to a two sequential steps approach 

(dual-phase process), respectively dedicated to obtain a high cell concentration and to induce 

the grown biomass to produce and store PHAs [41]. The former process phase needs optimal 

cultivation conditions, including the employment of a simple sugar (such as glucose) as a readily 

bioavailable carbon source. VFAs do not represent a feasible carbon source for the bacterial 

growth, which is rather low especially when VFAs are odd-numbered, such as propionic and 

valeric acids are. Conversely, the latter PHAs accumulation phase, which requires nutrient 

limiting conditions, can be fed with different organic PHAs precursors. This evidence is of a high 

interest in the perspective of significantly lowering the employment of costly substrates by using 

an alternative carbon source for the accumulation phase. In fact, PHAs can represent the large 

majority of C. necator cell dry weight (CDW) and so the amount of sugar potentially substituted. 

The present section was focused on the utilization of a pre-treated biowaste (OMWAcid) as the 

feeding for a PHAs production process mediated by a pure culture of a strain, data related to 

the cell growth phase (when fructose represented the carbon source) are briefly presented. In 

all experiments, the first batch process lasted from 23 to 26 h with a final cell concentration of 

1.5 ± 0.2 g/L. Fructose consumption was 2.9 ± 0.3 g/L. Thereafter, cells were harvested and re-

suspended in a specific accumulation medium.  It is important to mention that grown cells 

already contained low PHAs amounts (up to 15 % w/w on CDW bases). This evidence is in 

agreement with previous observations [42] and did not prejudiced the proposed study, since 

significant PHAs productions from OMWAcid were detected during the accumulation phase. 

2.4.2.1 PHAs ACCUMULATION WITHIN OMWAcid 

A linear increase of Abs600, ascribed to PHAs production and storage, was observed during the 

accumulation phase when OMWAcid represented 25 % and 50 % of the flasks working volume 

(Figure 5A). Determinations of the PHAs content (calculated by GC analyses) confirmed that 

PHAs accumulation was responsible for that evidence (Figure 5B). The 25% condition started 

immediately, while an accumulation lag phase (about 24 h) was observed with 50% of OMWAcid. 

The other tested conditions (75 % and 100 %) did not allow any PHAs accumulation: accordingly, 

absorbance, total VFAs concentrations and pH remained almost constant all along the 
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accumulation phase (Figure 5A, C). Taken together, those evidences demonstrated an inhibitory 

effect due to the complex matrix of the employed substrate. Among others, two groups of 

chemicals could have exerted inhibitory effects, namely: polyphenols, which can modify the 

membrane fluidity [43,44], and VFAs, since they can interfere with the proton gradient 

mechanism [45].  

Main results for both accumulating conditions are shown in Table 2. The 25 % condition was 

stopped after 22 h of accumulation (when CDW was 1.74 g/L), even if some acetic acid still 

occurred, since PHA production and storage was already verified and propionic acid was 

completely consumed. This allowed avoiding the relative decrease of the HV content. For this 

condition, the main single VFAs concentration profile as a function of the experimental time is 

shown in Figure 5D: propionic acid remained almost constant until butyric acid was depleted, 

then it started to be consumed at a higher rate (Table 2).Regarding the 50 % condition, Abs600, 

PHAs content and total VFAs concentration remained constant for about 24 h before the 

beginning of PHA accumulation. Related final cell concentration was 1.65 g CDW/L. Few 

propionic acid consumption and HV production were detected. To identify whether PHAs were 

produced from VFAs or other compounds occurring in the complex OMWAcid matrix, initials and 

finals COD values were measured and COD depletions were com-pared with theoretical COD 

decays, which were calculated on the basis of VFAs consumption (by expressing single VFAs 

concentrations in grams of equivalent COD per litter, gCOD /L, according to stoichiometric 

calculations). The measured decreases of COD were 2.44 ± 0.50 gCOD/L and 3.54 ± 0.46 gCOD/L 

for 25 % and 50 % conditions, respectively. The calculated theoretical COD decays were: 2.25 ± 

0.28 gCOD/L and 3.23 ± 0.35 gCOD/L, respectively. 
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Figure 5: Time course profiles of main experimental parameters during the accumulation phase 

when OMWAcid represented 25 (Δ), 50 (□), 75 (○) or 100 % (×) v/v of the accumulation medium: 

(A) Absorbance (Abs600) values related to growth (--◊--) and accumulation phases; (B) PHAs 

content (PHAscont) related to accumulating conditions (%, g/g); (C) Total VFA concentrations; (D) 

concentration of Acetic (▬●▬), propionic (---) and butyric acids (▬▬) when OMWAcid 

represented 25% of the flask working volume. 

 

 

Table 2: Main performances of accumulation processes fed with 25 or 50% v/v of OMWAcid, 

which led to PHAs accumulation: PHAs content (PHAsCont) and yield (YPHAs/VFAs); specific HV 

content in the produced co-polymer (HV%); specific accumulation rate (ΠAccum); acetic, propionic 
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and butyric acids consumption averages rates (ΔAc / Δt, ΔPro / Δt and ΔBut / Δt, respectively); 

total VFAs consumptions (ΔVFAsTot); final pH values. 

OMWAcid 25% 50% 

PHAsCont (%) 46 ± 4 43 ± 2 
HV % (mol HV / mol PHAs) 14 ± 3 8 ± 2 
YPHAs/VFAs (g PHAs / g VFAs) 0.31 ± 0.05 0.22 ± 0.03 
ΠAccum (h-1) 0.023 ± 0.001 0.012 ± 0.003a (0.019 ± 0.003)b 
ΔAc / Δt (g L-1 h-1) 0.035 ± 0.007 0.031 ± 0.005a (0.058 ± 0.006)b 
ΔPro / Δt (g L-1 h-1) 0.011 ± 0.002 0.006 ± 0.001a (0.010 ± 0.002)b 
ΔBut / Δt (g L-1 h-1) 0.022 ± 0.005 0.012 ± 0.001a (0.018 ± 0.002)b 
ΔVFAsTot; 22h (g L-1) 1.60 ± 0.25 2.44 ± 0.27b 
pHf 8.0 ± 0.1 7.9 ± 0.2 
a Calculated considering the whole accumulation phase 
b Calculated without considering the accumulation delay 

 

2.4.2.2 PHAs ACCUMULATION WITHIN SimVFAsOMWAcid 

In order to verify if VFAs could have contributed to the previously observed inhibition of the PHA 

accumulation, a second experiment was carried out by replacing OMWAcid with SimVFAsOMWAcid 

solutions (from 25 to 100%, v/v). In this way, the same VFAs concentrations of those occurring 

in OMWAcid accumulation media were tested. PHAs production was observed for all tested VFAs 

concentrations (Table 3). Accordingly, the increase of Abs600 and pH values, along with total 

VFAs consumptions, were detected from the time the accumulation phase started and for the 

whole time course of the experiment (Figure 6 A, B). The last sampling for the 25 and 50% 

conditions showed that VFAs were completely consumed, and PHAs production was finished. In 

particular, no VFAs were further available after 44 h for the 25% condition (Figure 6B).This 

induced a consumption of the stored biopolymers, which were used as a carbon and energy 

source. Main results, including total VFAs consumptions related to the firsts 21 h of the 

accumulation phase (when all VFAs in the 25% condition were depleted), are shown in Table 3. 

Specific accumulation rates resulted inversely proportional to the SimVFAsOMWAcid content. 

Furthermore, the single VFAs consumption profiles related to the 50% condition are shown in 

Figure 6 C, representing a typical observed behaviour: again, propionic acid consumption rate 

increased once butyric acid was depleted. The consumption rates of single VFAs varied with the 

SimVFAsOMWAcid content: in particular, that of acetic acid started to slow down from 50% 

condition, the consumption rate of propionic acid decreased from 75 % condition, while that of 

butyric acid was almost the same under all tested conditions. 
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Table 3: Main performances of accumulation processes fed with 25, 50, 75 or 50% v/v of 

SimVFAsOMWAcid: PHAs content (PHAsCont) and yield (YPHAs/VFAs); specific HV content in the 

produced co-polymer (HV%); specific accumulation rate (ΠAccum); acetic, propionic and butyric 

acids consumption averages rates (ΔAc / Δt, ΔPro / Δt and ΔBut / Δt, respectively); total VFAs 

consumptions (ΔVFAsTot); final pH values. 

SimVFAOMWAcid 25% 50% 75% 100% 

PHAsCont (%) 42 ± 3 53 ± 2 60 ± 2 38 ± 4 
HV % (mol HV mol PHAs-1) 10 ± 2 16 ± 2 20 ± 2 22 ± 2 
YPHAs/VFAs (g PHAs g VFAs-1) 0.30±0.02 0.30±0.02 0.26±0.04 0.19±0.05 
ΠAccum (h-1) 0.0397±0.0043 0.0289±0.0028 0.0094±0.0002 0.0074±0.0010 
ΔAc / Δt (g L-1 h-1) 0.0793±0.0057 0.0342±0.0072 0.0290±0.0011 0.0073±0.0028 
ΔPro / Δt (g L-1 h-1) 0.0143±0.0003 0.0170±0.0026 0.0098±0.0005 0.0087±0.0039 
ΔBut / Δt (g L-1 h-1) 0.0296±0.0047 0.0291±0.0001 0.0330±0.0028 0.0330±0.0056 
ΔVFAsTot; 21h (g L-1) 2.67 ± 0.10 1.70 ± 0.40 1.05 ± 0.85 0.94 ± 0.60 
pHf 8.5±0.1 8.9±0.1 8.9±0.2 8.8±0.3 

 

 

Figure 6: Time course profiles of main experimental parameters during the accumulation phase 

when SimVFAsOMWAcid represented 25 (Δ), 50 (□), 75 (○) or 100% (×) v/v of the accumulation 

medium: (A) Absorbance (Abs600) values related to growth (--◊--) and accumulation phases; (B) 
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Total VFA concentrations; (C) concentration of acetic (▬●▬), propionic (---) and butyric acids 

(▬▬) when SimVFAsOMWAcid represented 50% of the flask working volume. 

 

Importantly, this experiment carried out with VFAs solutions allowed to exclude VFAs as the 

main responsible of the former observed phenomenon: indeed, PHAs accumulation was 

observed under all conditions, including when SimVFAsOMWAcid represented 75 % and 100 % of 

the accumulation medium, while corresponding OMWAcid amounts did not allowed significant 

PHAs productions. Lower performances in terms of specific accumulation rates and yields 

obtained under those latter conditions (ΠAccum and YPHAs/VFAs, Table 3) are coherent with previous 

studies, reporting VFAs inhibitory effects when their concentration values were between those 

of 50 and 75 % conditions [46,47]. Furthermore, consumption rates of single VFAs and specific 

accumulation rates related to SimVFAsOMWAcid content (Table 3) demonstrated that acetic acid 

exerted a higher toxicity, followed by propionic acid, while butyric acid seemed not to induce 

toxic effects. Higher HV contents were observed for the 75 % and the 100 % conditions. This 

evidence was assigned to the fact that the consumption ratio of propionic to acetic acid 

increased while increasing the SimVFAsOMWAcid content. In fact, the consumption rate of the 

acetic acid decreased up to 11.3 times if comparing the 25 % and 100 % conditions, while that 

of the propionic acid was only 1.5 times slower. 

 

2.4.2.3 PHAs ACCUMULATION WITHIN SimPhenOMWAcid 

Concentration of polyphenols occurring in the accumulation medium containing 25 % of 

OMWAcid (i.e., about 0.3 g L−1 of total polyphenolic compounds) was comparable to the upper 

concentration limit, over which such chemicals were expected to exert toxic effects to the 

employed C. necator strain [44,48]: thus, polyphenols probably contributed to the mentioned 

PHA accumulation delay (50 % condition) or absence (75 and 100 % condition). This hypothesis 

was tested by a dedicated experiment. 

To this aim, the accumulation phase was done using a culture media containing an amount of 

total VFAs equal to 30 % of that occurring in OMWAcid (previously demonstrated not to represent 

an inhibitory concentration) and different contents of the polyphenols mixture (SimPhenOMWAcid 

solutions). PHAs production was observed in all tested conditions. When polyphenols content 

represented 10% and 25% of total polyphenols contained in the actual OMWAcid (0.12 and 0.30 

g L−1, respectively), the accumulation started immediately. Related last sampling showed that 

VFAs were completely consumed and PHAs did not accumulated further. Moreover, for the 10% 

condition even PHAs consumption was observed. This evidence was ascribed to the previous 
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depletion of the carbon source, in agreement with what mentioned above for the 

SimVFAsOMWAcid 25 % condition. Higher polyphenols content negatively affected PHAs 

production: accumulation started at a lower rate for the 40 % condition (0.48 g L−1 of total 

polyphenols), while no accumulation was observed for the 55 % condition (0.66 g L−1 of total 

polyphenols) (Figure 7A). Total VFAs concentrations and PHAs content profiles were in 

agreement with such evidences (Figure 7 B, C); it was confirmed the role of polyphenols in the 

PHA accumulation inhibition.  

Main results of the experiment carried out with SimPhenOMWAcid solutions are reported in Table 

4. The specific accumulation rates related to the 40 % and 55 % conditions were about 58 % and 

19 %, respectively, of that obtained when the lower polyphenols content was tested (10 % 

condition). 

 

Figure 7: Time course profiles of main experimental parameters during the accumulation phase 

when SimPhenOMWAcid represented 10 % (Δ), 25 % (□), 40 % (○) and 55 % (×) v/v of the 

accumulation medium: (A) Absorbance (Abs600) values related to growth (--◊--) and 

accumulation phases; (B) Total VFA concentrations; (C) PHAs content (PHAscont) related to 

accumulating conditions (%, g g-1). 
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Table 4: Main performances of accumulation processes fed with SimPhenOMWAcid containing 10, 

25, 40 or 55 % of total polyphenols occurring in OMWAcid: PHAs content (PHAsCont) and yield 

(YPHAs/VFAs); specific accumulation rate (ΠAccum); acetic, propionic and butyric acids consumption 

averages rates (ΔAc / Δt, ΔPro / Δt and ΔBut / Δt, respectively); total VFA consumptions 

(ΔVFAsTot); initial (i) and final (f) cell concentrations (X); final pH values. 

Total Polyphenol Content 10% 25% 40% 55% 

PHAsCont (%) 49±2 48±2 43±2 22±2 
YPHAs/VFAs (g PHAs g VFAs-1) 0.28±0.01 0.26±0.01 0.23±0.02 0.10±0.02 
ΠAccum (h-1) 0.0325±0.0012 0.0321±0.0018 0.0174±0.0028 0.0057±0.0018 
ΔAc / Δt (g L-1 h-1) 0.0676±0.0059 0.0652±0.0038 0.0488±0.0066 0.0149±0.0023 
ΔPro / Δt (g L-1 h-1) 0.0160±0.0004 0.0164±0.0001 0.0082±0.0002 0.0026±0.0004 
ΔBut / Δt (g L-1 h-1) 0.0311±0.0007 0.0325±0.0002 0.0190±0.0005 0.0086±0.0015 
ΔVFAsTot (g L-1) 3.56 ± 0.08 3.74 ± 0.03  3.49 ±0.10  1.20 ± 0.28  
Xi (g L-1) 1.7±0.3 1.7±0.3 1.7±0.3 1.7±0.3 
Xf (g L-1) 2.5±0.2 2.5±0.2 2.3±0.2 1.7±0.2 
pHf 8.6 ± 0.1 8.6 ± 0.1 8.2 ± 0.1 7.7 ± 0.1 

 

 

2.4.2.4 PHAs ACCUMULATION BY APPLYING MULTIPLE BATCHES 

The possibility of increasing the final PHAs content by per-forming two consecutive 

accumulation batch processes was tested with the OMWAcid and SimVFAsOMWAcid solutions, both 

employed at the 25 % condition. Results were also compared to those of a repeated single 

accumulation batch, which was carried with the 50% OMWAcid and SimVFAsOMWAcid solutions 

conditions, since they were fed with the same overall amount of carbon source. PHAs production 

and storage continued during the second accumulation batch process. In particular, a PHAs 

content of 55 and 60% w/w was obtained when OMWAcid and SimVFAsOMWAcid were fed, respectively ( 

Table 5). Results belonging to the OMWAcid 50 % conditions strictly confirmed those reported in 

Table 2. As for the SimOMWAcid 50 %, new cultures were launched also in order to get the 

maximum PHAs content, which was not detected in the experiment described within Section 3.2 

because of the sampling frequency. Time course profiles of main process parameters related to 

this experiment and to the above mentioned 50 % conditions are reported in Figure 8. 

 

 

Table 5: Main performances of accumulation processes fed with 25 % of OMWacid and 

SimVFAOMWAcid when two consecutive batch processes were applied: PHAs content (PHAsCont) 



2. POLYHYDROXYALKANOATES PRODUCTION FROM OLIVE MILL WASTEWATER 

28 
 

and yield (YPHAs/VFAs); specific accumulation rate (ΠAccum); acetic, propionic and butyric acids 

consumption averages rates (ΔAc / Δt, ΔPro / Δt and ΔBut / Δt, respectively); total VFA 

consumptions (ΔVFAsTot); initial (i) and final (f) cell concentrations (X); final pH values. 

                 Two sequential processes Single process 

 OMWAcid 25% SimVFAsOMWAcid 25% SimVFAsOMWAcid 50% 

PHAsCont (%) 55 ± 4 60 ± 2 59 ± 4 

HV %(mol HV mol PHAs-1)  11 ± 2 18 ± 1 20 ± 4 

YPHAs/VFAs (g PHAs g VFAs-1)  0.25 ± 0.04 0.26 ± 0.02 0.30 ± 0.05 

ΠAccum (h-1) 0.0222 ± 0.0011 
(0.0079 ± 0.0013)a 

0.0215 ± 0.0013 
(0.0114 ± 0.0013)a 

0.0190 ± 0.0006 

ΔAc/Δt (g L-1 h-1) 0.0350 ± 0.0069 
(0.0364 ± 0.0002)a 

0.0641 ± 0.0032 
(0.0344 ± 0.0002)a 

0.0466 ± 0.0065 

ΔPro/Δt (g L-1 h-1) 0.0142 ± 0.0023 
(0.0064 ± 0.0003)a 

0.0218 ± 0.0001 
(0.0090 ± 0.0002)a 

0.0162 ± 0.0024 

ΔBut/Δt (g L-1 h-1) 0.0221 ± 0.0005 
(0.0144 ± 0.0011)a 

0.0282 ± 0.0002  
(0.0150 ± 0.0005)a 

0.0130 ± 0.0024 

ΔVFAsTot (g L-1) 2.98 ± 0.59 3.92 ± 0.27 3.34 ± 0.50 

Xi (g L-1) 1.3 ± 0.2 1.3 ± 0.2 1.3 ± 0.2 

Xf (g L-1) 2.0 ± 0.2 2.2 ± 0.1 2.2 ± 0.2 

a Related to the 2nd accumulation batch. 
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Figure 8: Time course profiles of main experimental parameters during the accumulation phase 

when OMWAcid (□) and SimVFAsOMWAcid (○) represented 50% v/v of the accumulation media; and 

when the same solutions represented 25% v/v of the accumulation media and two sequential 

accumulation batch processes were applied (Δ and ×, respectively): (A) Absorbance (Abs600) 

values related to growth (--◊--) and accumulation phases; (B) Total VFA concentrations; (C) PHAs 

content (PHAscont) related to accumulating conditions (%, g g-1). 

 

The application of two consecutive accumulation batch pro-cesses with accumulation media 

containing 25 % of OMWAcid and SimVFAsOMWAcid allowed significantly increasing the PHA 

content, which was obtained as the result of a single accumulation run. Notably, a comparison 

with the single batch tests fed with the same overall amount of substrate (50 % condition) 

demonstrated that the sequential batch process strategy can lead to the same final PHAs 

content (Fig. 4C). Such a result was more remarkable when the actual biowaste (OMWAcid) was 

used. In that case, the PHAs content shifted from 43 to 55 % (Table 2 and  
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Table 5, respectively). This evidence was in agreement with the substrate inhibition, which was 

observed when OMWAcid solutions represented the accumulation media. Furthermore, such 

PHAs content value was closed to that obtained by using the SimVFAsOMWAcid solution (60 %,  

Table 5) and slightly higher than what obtained with the same laboratory prepared medium by 

the application of a single accumulation batch process fed with the same overall amount of 

substrate (53 %, Table 3). All this considered, and since VFAs concentration in the OMWAcid 

would not allow performing a fed-batch culture system without decreasing the cell 

concentration, those evidences are of interest in the perspective of developing cell recycling 

processes in which feeding grown-cells until the obtainment of satisfactory PHAs accumulation 

yield, by avoiding at the same time inhibitory effects due to substrate concentration. The 

polymer production yield (grams of PHAs produced per grams of depleted VFAs), related to the 

25 % OMWAcid condition (single batch process) was lower than values previously published when 

pure acids were tested as the carbon source [49,50] (YPHB/Acetic= 0.47 g g−1 and YPHB/Butyric= 0.65 g 

g−1, respectively). However, it was comparable to that obtained when a fermented OMW and a 

mixed microbial culture were employed [51]. Moreover, it was higher than yields reported when 

palm oil mill effluent and a pure culture of Rhodobacter sphaeroides (0.22 gPHAs . g VFAs−1) [13] 

or fermented organic waste and a pure culture of R. eutropha TF93 (0.16 g PHAs . g VFAs−1) 

were used [52]. The production of a copolymer, which contained 11–14 % (on molar bases) of 

HV, was very interesting in terms of biopolymer post-production processability. As a matter of 

fact, pure PHB has limited applicability, since its melting and degradation temperatures are 

closed each other [9]. The HV yield (YHV/Prop, expressed as g of HV per g of consumed propionic 

acid) was similar to that obtained by using a laboratory prepared solution containing acetic, 

propionic and butyric acids so that relative concentrations were 60, 20 and 20 % (on molar 

bases), respectively: thus, in that case, the expected HV relative content (20 %) was not achieved 

[42]. This was assigned to the facts that (a) cells already contained a low amount of PHB at the 

end of the growth phase, and (b) part of the propionic acid could be used for HB formation. In 

this respect, HV content was lower than that reported in [52] (30 % on molar bases) but higher 

than that reported in [53] when fermented OMWs represented the substrate for PHA storage, 

which is the case of the present work. The HV content could be increased even more by inducing 

the anaerobic acidogenic digestion of the target biowaste to produce more VFAs with an odd 

number of carbons [54,55]. As recently referred, PHAs productions from OMWs and pure 

cultures of Azotobacter sp. were previously reported [56], even if an effluent with a very low 

VFAs content was employed (30 mg L−1 of total VFAs) [53]. However, such bacteria were unable 

to produce the copolymer poly(hydroxybutyrate-co-hydroxyvalerate) (Poly(HB-co-HV)) without 

the addition of valeric acid as an exogenous carbon source. The profile of VFAs consumption was 



2. POLYHYDROXYALKANOATES PRODUCTION FROM OLIVE MILL WASTEWATER 

31 
 

comparable to that reported elsewhere [38], when VFAs were used for cell growth and PHAs 

production: butyric acid was firstly consumed, followed by propionic acid and acetic acid, 

respectively. Finally, the comparison between the measured and theoretical COD removals 

related to both accumulation conditions in the presence of OMWAcid (25 and 50 % conditions) 

demonstrated that PHAs were mainly produced from VFAs, since the differences between such 

parameters are lower than the standard deviation errors. 

 

2.4.3 INTEGRATED BIOREFINERY OF OMW FOR PRODUCING A 

POLYPHENOLS MIXTURE, BIOPOLYMER AND BIOGAS: TECHNICAL 

FEASIBILITY STUDY 

The present work was dedicated to analyse the feasibility of valorising the OMW within a multi-

purpose biorefinery. Results are presented in the order the processes-steps occurred. 

2.4.3.1 CONTINUOUS POLYPHENOLS RECOVERY 

The SPE was studied in deep by Prof. Pinelli’s group, our study was in terms of general material 

balances for the biorefinery. SPE results are briefly presented. After the centrifugation step, the 

OMW was treated in continuous within a packed column. Polyphenols concentration and COD 

of samples along the breakthrough test were measured (Figure 9). 

 

Regarding essential material balance, main effluent characteristics of the initial and pre-treated 

OMW are shown in Table 6. It can be seen that the required centrifugation step (for SPE) 

diminished the effluent material content in 8±1.8 g COD . L-1. Indeed, 5.8±2.4 g.L-1 of suspended 

Figure 9: Dephenolisation break-through test. Samples taken from the exit stream of the 

column to analyse: total phenols content (TPhs) and COD. The presented values are the mean 

of three measurements and standard deviation is represented by error bars.  
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solids were removed and employed to produce biogas forward in the scheme. As for the 

dephenolisation efficiency, 603 ± 29 mg TPhs.L-1 were removed (75% extracted).     

 

 

Table 6: OMW 2013 original and post-dephenolisation characteristics. 

 OMWFresh OMWCentrifuged OMWDeph 

COD (gO2.L-1) 26.0 ± 0.6 18.0 ± 1.2 11.4 ± 0.4 

TS (g.L-1) 11.2 ± 1.8 5.4 ± 0.6 4. 5 ± 0.8  

pH 4.7 ± 0.1 4.7 ± 0.1 5.0 ± 0.1 

TPhs (mg.L-1) N.M 804 ± 15 201 ± 14 

N-NH4 (mg.L-1) N.M 19.4 ± 1.2 12.3 ± 0.6 

N.M: not measured 

 

 

2.4.3.2 ANAEROBIC ACIDOGENIC DIGESTION OF 𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡 

After polyphenols recovery, the OMWDeph,cont still contained material. Even though the over left 

material concentration was less in comparison with the former applied batch dephenolisation, 

an anaerobic acidogenic digestion step was carried out to transform the complex molecules into 

simplers such as VFAs. The importance of the experiment relied on the potential use of a low 

TPhs content effluent for producing PHAs.  

After 7 days the total VFAs concentration was 5.52 ± 0.11 g.L-1 (7.7 gCOD.L-1), mainly (g/L): acetic 

(2.45±0.03), propionic (0.96±0.02), butyric (0.89±0.03), valeric (0.84±0.02) and caproic 

(0.39±0.03) acids. Important to mention, the OMWFresh contained 1.6 ±0.2 g.L-1 of ethanol, in 

accordance with OMW composition described elsewhere [57], and thus the OMWDeph,cont  

contained ethanol; allowing to produce crapoic acid by chain elongation.  

The final OMWAcid COD was  10 gO2.L-1 , almost 80% of which was represented by VFAs.       
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Figure 10: VFAs concentration trends along acidogenic batch process. 

 

 

2.4.3.3 PHAs PRODUCTION FROM 𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡
𝐴𝑐𝑖𝑑  

The obtained results are presented in Figure 11. It can be seen that in both conditions the 

absorbance increased at similar rates, meaning that they started to accumulate immediately 

after initialising the accumulation phase and that no significant inhibition occurred when using 

100 % v/v 𝑂𝑀𝑊𝐷𝑒𝑝ℎ,𝑐𝑜𝑛𝑡
𝐴𝑐𝑖𝑑 . 
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Figure 11: Time course profiles of main experimental parameters during the accumulation phase 

when OMWAcid and SimVFAsOMWAcid represented 100 % v/v of the accumulation media. (A) Cell 

concentration in terms of absorbance (Abs600) and (B) carbon substrate concentration -glucose 

and total VFA concentrations-; both related to growth and accumulation phases. 
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Regarding the biopolymer production, results from TGA analyses from samples belonging to 

the beginning and end of the accumulation phase are shown in Figure 12. It can be seen that 

final PHAs contents were similar for both conditions; increased by 50 % during the 

accumulation phase. 

 

 

 

2.4.3.4 ANAEROBIC METHANOGENIC DIGESTION OF 𝑂𝑀𝑊𝑆𝑜𝑙𝑖𝑑  

A first experiment allowed to confirm the possibility of using OMWSolid as substrate for biogas 

production (Figure 13). After 30 days of digestion, 280 mL CH4 . g VSsubstrate
-1 were produced, 

Figure 13: Effective biogas production using OMWSolid as substrate. 

Figure 12: Thermo-gravimetric analysis of samples taken at the end of the growth phase (curve 

in red) and samples belonging to the end of the last accumulation batch (blue for OMWAcid and 

green for SimVFAsOMWAcid 
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biogas was composed by (%): CH4 (67.5), CO2(32.49) and H2 (0.01). The biomethane potential 

(BMP) after 60 days was 353±16 mL CH4 . g VSsub.  

A second experiment was designed to study the kinetic of OMWSolid digestion; useful when 

considering a potential scale-up study. To this aim, different concentration of OMWSolid were 

tested; results are show in Figure 14. Biomethane production increase according the substrate 

concentration increase; from K1 to K6. The lowest and highest concentrated conditions (K1 and 

K7) did not produce at all. In the first case the little substrate amount do not allow to properly 

measure the effective biogas production, while for K7 condition it was inferred that substrate 

inhibition occurred. Indeed, when measuring the VFAs concentration at the end of the 

experiment, K7 contained 17.7 g. L-1 of total VFAs. 

BMP (after 60 days) depended on the initial substrate concentration as shown in Figure 15; the 

trend includes the result obtained in the previous experiment (with 44 g SV . L-1). 

The maximum specific rates of methane production (rCH4) were calculated for each condition 

(K1-K7). Considering that methane yield (mL CH4 . g VSSub
-1) is constant along the digestion, the 

Figure 14: Biomethane production using OMWSolid at different concentrations; from 0.064 (K1) 

to 99.5 (K7) g SV . L-1 and K0 was the blank. 

Figure 15: BMP after 60 days as a function of initial substrate concentration 
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substrate concentration when maximal rate occurred was calculated (∆𝑆 =
∆𝑃

𝑌𝑝/𝑠
). To do this, 

the yield used was 𝑌𝑝/𝑠 = 591 ± 29 
𝑚𝐿 𝐶𝐻4

𝑔 𝑉𝑆𝑠𝑢𝑏
, which is the average of the BMP results obtained 

for conditions K4-K6. The resulting points were plotted (Figure 16, shown as black cross). It can 

be seen that point K7 (the red triangle) do not fit with Michaelis-Menten’s model; this in 

accordance with the fact that the model do not consider inhibition by substrate. Trying to go a 

little further with the study, the result obtained in the first experiment -in which an intermediate 

concentration was used- was also plotted in Figure 16 (the single grey triangle). It can be 

observed that digestion occurs at a notably lower rCH4, what allowed to inferred that inhibition 

by substrate starts at least from that tested concentration. In that first case VFAs concentration 

at the end of the digestion was not measured since testing a single condition no inhibition was 

detected; this showing the importance of doing a kinetic study. Even though an inhibition kinetic 

study would require more points to well-fit a model, a preliminary study was done using Aiba’s 

model (Figure 16).    

  

    

 

 

 

 

Figure 16: Specific rate of CH4 production (rCH4) as a function of substrate concentration. 

(A)Presented results are: experimental data obtained in the first (PE) and second experiment 

(K1-K7) and Michaelis-Menten and Aiba models fittings.  
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2.5 CONCLUSIONS 

A dual-phase PHA production process was set up and carried out with a pure culture of C. 

necator as the biocatalyst. Grown cells were fed with an acid effluent, which was obtained by 

anaerobically digesting a pre-treated olive mill wastewater under acidogenic conditions 

(OMWAcid). An accumulation of PHAs, which corresponded to 46 % (w/w) of the overall cell dry 

weight, was obtained when OMWAcid represented ¼ of the accumulation phase medium. Even 

55 % PHAs content (with an 11 % of HV) was achieved when two sequential batch processes 

were applied. Polyphenols contributed to inhibit the PHA accumulation process, while a good 

strain tolerance toward VFAs concentration was demonstrated. Furthermore, the production of 

the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a significant relative amount 

of HV (11–14 %) was observed without adding any extra carbon source.  

Regarding the utilization of a continuous dephenolised OMW, it was possible to produced PHB 

by implementing the acidic effluent at 100% v/v in the culture media.  

All this considered, the obtained results are promising in the perspective of extending to the 

bench-top bioreactor scale the development of a PHAs production process based on the 

mentioned pure strain and feedstock. To the very best of our knowledge, the present 

investigation represents the first attempt to employ OMWs as the carbon source for the 

production of PHAs by using a pure culture of C. necator. 

A biorefinery scheme could be defined for obtaining a polyphenol mixture and biopolymers. 

Finally, methanogenic digestion tests allowed to verified the possibility of producing a biogas 

(with high CH4 content) from the OMW suspended solids. 
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3 POLYHYDROXYALKANOATES PRODUCTION FROM GRAPE 

POMACE 
 

 

Summary  The development of a multi-purpose four step-cascading biorefinery scheme for 

the valorization of red grape pomace (GP) was proposed. The consecutive processes were 
respectively dedicated to (a) the recovery of polyphenols by supercritical CO2 extraction, (b) the 
production of volatile fatty acids (VFAs) by anaerobic acidogenic digestion, (c) the exploitation 
of produced VFAs as the precursors for the biotechnological production of 
polyhydroxyalkanoates (PHAs) and (d) the production of a CH4-rich biogas by the anaerobic 
digestion of solid leftovers from the acidogenic process. Thereafter a second scheme was 
developed, in which the GP was directly (no defenolisation step) anaerobically digested. A 
stream high concentrated in hexanoic acid (>14 g/L) was obtained. From this, medium chain 
length PHAs were produced.  
 

* Chapter adapted from Gonzalo A. Martinez, Stefano Rebecchi, Deborha Decorti, Joana M. B. 

Domingos, Andrea Natolino, Daniele Del Rio, Lorenzo Bertin, Carla Da Porto and Fabio Fava, 

Towards multi-purpose biorefinery platforms for the valorisation of red grape pomace: 

production of polyphenols, volatile fatty acids, polyhydroxyalkanoates and biogas, Green Chem., 

2016, 18, 261–270 [58] 
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3.1 INTRODUCTION 

According to an estimation reported by the OIV (International Organisation of Vine and Wine), 

279 million hectolitres of wine were globally produced in 2014, 44.4 of which was produced in 

Italy [59]. Winemaking processes lead to the generation of significant amount of solid and liquid 

residues. In particular, grape pomace (GP), which represents the main solid winery waste, 

consists of about 50 % skin, 25 % stem and 25 % seed [60]. Considering that 18 kg of GP is 

generated on average per 100 L of wine produced [61], about 5 million tons of such residue are 

annually spawned worldwide, 0.8 of which is in Italy. According to a previous regulation (EC 

Regulation 1493/ 99), GP and lees of winery waste had to be processed by distilleries within the 

EU. Nowadays, a recent European reform in the wine sector (EC Regulation 479/2008) promotes 

the gradual withdrawal of distillation subsidies and consequently revokes the compulsory 

distillation. This should drive the promotion of integrated, sustainable and standardized 

alternative protocols for the valorisation of solid winery waste [60]. 

In this frame, the development of multi-purpose cascading biorefinery schemes fed with GP 

appears to be of great interest. This approach allows obtaining different valuable products by 

applying consecutive modular processes, along with a more extensive exploitation of organic 

leftovers, thus minimizing the generation of waste [62,63].  

The extraction of bioactive compounds from GP can represent an option for valorising the 

residue. In particular, GP polyphenolic compounds can exert beneficial effects on human health 

[64] and they were found in the grape skin and seeds after the fermentation process for the 

production of wine. Their extraction from GP was already proposed for recovering highly 

valuable substances for the cosmetics, food additives (nutraceuticals) and pharmaceutical 

industries [63]. 

In particular, grape skins contain significant amounts of fibre (17 – 21%), fats (7 –12%), tannins 

(16 – 27%) and other polyphenolic compounds (2–6.5%), including catechins, anthocyanins, 

proanthocyanidins, quercetin, ellagic acid and resveratrol. Grape seeds, in addition to oil, 

contain approximately 60% of the polyphenols occurring in grapes, with high concentrations of 

flavan-3-ols, catechins and epicatechins [60]. However, the proposed recovery subtracts only a 

minor organic fraction.  

An alternative valorisation of GP could be represented by the production of a methane-rich 

biogas by anaerobic digestion (AD) processes [65]. However, low biomethanization 

performances were generally achieved. This was ascribed to the high content of lignin, which is 

not readily fermentable. Moreover, Fabbri et al. [66] reported the detection of a significant lag 

phase during methane production. Inhibition by alcohols and phenols was proposed among 
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possible explanations. Some preliminary GP anaerobic digestion tests, confirming scarce 

biomethanization of the waste, were carried out also in our labs. High volatile fatty acids (VFAs) 

production, and therefore their accumulation, was supposed as a further inhibitory cause [67]. 

On the other hand, VFAs, i.e., linear short chain (C2–C6) carboxylic acids, are functional 

molecules, which represent the precursors for the production of reduced added value chemicals 

(alcohols and aldehydes), polymers and biofuels in the frame of the carboxylate platform [68]. 

Thus, the acidogenic anaerobic digestion (AAD) of GP for the production of VFAs can be 

considered an alternative low-cost valuable approach for the valorisation of the biowaste. 

Besides, VFAs are suitable precursors for the biotechnological production of 

polyhydroxyalkanoates (PHAs), which are microbial aliphatic polyesters naturally produced by 

many microorganisms. PHAs can exhibit similar or even better physicochemical properties with 

respect to those of petrol-based polyolefins [6–9]. Nowadays, PHAs are industrially produced by 

microbial pure cultures commonly fed with glucose [26]. Nevertheless, this approach hardly 

allows an economically competitive polymer production [2] when compared to that of petrol-

based equivalent molecules, such as polypropylene. Alternative strategies based on the 

employment of mixed microbial culture (MMC) fed with VFA-rich effluents, which were obtained 

by digesting different biowastes under acidogenic conditions, were proposed with the aim of 

lowering the costs associated with the substrate and the process [18]. However, even the best 

results [69] showed that low PHAs concentrations can be obtained in MMCs effluents, and this 

negatively affects downstream costs. In addition to this, the employment of MMCs leads to a 

mixture of polymers instead of a well-defined single polymer type. Therefore, the development 

of new PHAs production processes mediated by pure cultures fed with VFAs-rich effluents 

appears to be of great interest [3]. 

Considering all this, the present work was dedicated to evaluate the technical feasibility of a 

multi-purpose cascading biorefinery scheme fed with a red GP for the obtainment of 

polyphenols, VFAs, PHAs and biomethane. Initially, it was proposed to study the scheme shown 

in Figure 17. In particular, a supercritical CO2 extraction (SC-CO2) was applied for the recovery of 

polyphenols. The resulting dephenolised GP (𝐺𝑃𝐷𝑒𝑝ℎ) was anaerobically digested under batch 

acidogenic conditions for the production of a VFA-rich liquid stream (𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑 ). This liquid 

fraction was employed as the substrate for producing PHAs by a pure culture of Cupriavidus 

necator. Furthermore, the solid leftover from 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  underwent a further methanogenic AD 

process dedicated to the production of a methane-rich biogas. 

Beyond this study, a second integrated strategy for GP valorisation was proposed in which the 

GP is directly digested -without dephenolisation step- under acidogenic conditions. This strategy 



3. POLYHYDROXYALKANOATES PRODUCTION FROM GRAPE POMACE 

42 
 

also includes the production of PHAs within Pseudomonas putida and biogas by employing the 

obtained VFAs-rich stream (𝐺𝑃𝐴𝑐𝑖𝑑) and the solid leftover remained from 𝐺𝑃𝐴𝑐𝑖𝑑, respectively. 

To the very best of our knowledge, this is the first study dedicated to develop an integrated GP 

valorisation scheme. In particular, it represents the first attempts to produce short chain length 

and medium chain length PHAs within pure cultures of C. necator and P. putida by employing 

digested 𝐺𝑃𝐷𝑒𝑝ℎ and GP, both respectively, as an alternative carbon source. 

 

3.2 MATERIAL AND METHODS 

3.2.1 CHEMICALS AND GRAPE POMACES 

Folin–Ciocalteu reagent, gallic acid, (±)catechin, (+)-α-tocopherol,vanillin 99%, the standard 

volatile fatty acid (VFA) mixture (Supelco), poly(3-hydroxybutyric acid- co-3-hydroxyvaleric acid) 

(12 wt% PHV; natural origin), salts (BioReagent) for the mineral medium, single VFA and glucose 

(BioReagent) were purchased from Sigma Aldrich. 

GP from red grape (Vitis vinifera L.) varieties were collected during September 2012 in the Friuli 

Venezia-Giulia region (Italy). It was air dried at room temperature (moisture 14.3% ± 0.3 w/w) 

Figure 17: 
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and stocked at 4 °C until use. It was ground with a domestic miller, with an average particle 

diameter of 0.83 ± 0.05 mm as calculated with Sauter’s equation [70]. 

 

3.2.2 POLYPHENOLS EXTRACTION 

The polyphenol recovery via supercritical CO2 extraction was carried out using a commercial 

pilot-plant (SCF100 series 3 PLC-GR-DLMP, Separeco s.r.l., Pinerolo, Italy) equipped with a 1 L 

extraction vessel, two 0.3 L separators in series and a tank for CO2 storage. The gas was recycled 

after the separation process. A simplified flow sheet of the SFE pilot plant is given in Figure 18. 

 

 

Ground GP was fed to the extractor (0.480 kg; density 600 kg m−3) in order to be defatted by 

supercritical CO2. As suggested by Sovová et al. [71] pressure was 28 MPa and temperature was 

45 °C, while CO2 flow rate was 10 kg h−1 and the total extraction time was 3 h. Such conditions 

corresponded to 62.5 Q (kg CO2 per kg feed). Subsequently, a co-solvent was required for 

extracting polyphenols from the defatted GP, due to the polarity of polyphenols. Therefore, 0.1 

kg of defatted GP were treated with supercritical CO2 containing 10% ethanol–water mixture 

(57%, v/v) (EtW) as a co-solvent at 8 MPa, 40 °C and CO2 flow rate of 6 kg h−1 [60]. Aliquots of 

grape extract were collected during extractions in volumetric flasks at intervals of about 30 min, 

to asses several data points for the overall extraction curves (OECs). The ethanol aqueous 

mixture was then removed from the extracts with a rotary evaporator (Buchi, B465, -

Switzerland) at 45 °C. After solvent removal, extracts were weighed and analysed. All 

experiments were conducted in duplicate. The statistical significances of the differences 

Figure 18: 
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between means were determined using Tukey’s test with the level of significance set up at p ≤ 

0.05. 

 

3.2.3 ANAEROBIC ACIDOGENIC DIGESTION OF GPDeph or GPFresh 

The anaerobic processes were inoculated with an acidogenic microbial consortium, which was 

obtained from an anaerobic treatment of organic fraction of municipal solid waste and 

acclimated to the acidogenic digestion of GP and exhausted in terms of VFAs production.  

The GPFresh and the 𝐺𝑃𝐷𝑒𝑝ℎ coming from the extraction step were characterized in terms of total 

solid content (g TS g 𝐺𝑃𝐷𝑒𝑝ℎ/𝐹𝑟𝑒𝑠ℎ
−1) and volatile solid content (g VS g TS−1).  

Thereafter, a 1 L-Pyrex bottle (supplied with a tri-ports cap with silicone septum) was fed with 

water, GPFresh or 𝐺𝑃𝐷𝑒𝑝ℎ and a microbial inoculum (10%, v/v), so that final working volume and 

TS content were 560 mL and 20% (w/v), respectively. Incubation conditions were: pH 7, 37 °C 

and 150 rpm. The process was monitored every 2–3 days for biogas and VFAs production. To the 

latter aim, 500 μL-liquid samples were withdrawn. pH was corrected to 7 by the addition of 10 

M NaOH after each monitoring process. During such operation, nitrogen was flushed to maintain 

anaerobic conditions. VS were determined at the end of the digestion in order to evaluate the 

amount of organic matter consumed during this step. The experiment was carried out in 

triplicate. 

 

3.2.4 PHAs PRODUCTION 

3.2.4.1 Bacteria strains, inoculums and culture media 

3.2.4.1.1 PHAs from 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  

Cupriavidus necator (DSMZ 545) pre-culture was started from agar plates and grown within 24 

hours, in a 500 mL-Erlenmeyer flask containing 150 mL of LB; incubation conditions were 30 °C 

and 150 rpm [3].  

The experiments were performed according to a dual-phase process (reported above). Briefly, 

PHAs accumulation was induced after a preliminary phase, during which cells were grown under 

optimal conditions. A slightly modified Medium 81 from DSMZ was employed for the cell 

balanced growth (growth phase); it contained 3 g L−1 instead of 1 g L−1 of (NH4)2SO4. Glucose (5 

g L−1) was added as the sole carbon source. Conversely, an ammonia free-medium was employed 

for the subsequent PHAs accumulation phase. It was prepared by combining two sterilized stock 

solutions, namely: (a) the VFAs-rich effluent obtained by the acidogenic digestion of 𝐺𝑃𝐷𝑒𝑝ℎ 

(𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑 ), which was filtered (Whatman N11, 11 μm), amended with Medium 81-DSMZ salts 

(except for (NH4)2SO4) and autoclaved using special Beckman flasks allowing a subsequent 
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centrifugation (8000 rpm, 4 °C and 25 minutes) under sterile conditions; and (b) distilled water 

amended with Medium 81- DSMZ salts (except for (NH4)2SO4) at the same concentrations they 

occur in such a medium. The accumulation culture media were prepared by mixing the two stock 

solutions at different proportions, namely: 20 and 40% v/v of 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑 . In addition to this, a 

parallel control test was carried out using a simulated 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  (𝑆𝑖𝑚𝐺𝑃𝐷𝑒𝑝ℎ

𝐴𝑐𝑖𝑑 ), which was a VFA 

solution prepared by dissolving in distilled water the organic acids at the same concentrations 

as in 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑 . The control test was aimed at verifying whether other compounds than VFAs 

occurring in 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  could affect PHA accumulation. Two sequential accumulation batch 

processes were carried out under all conditions with an initial pH of 7.2. 

3.2.4.1.2 PHAs from 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  

Pseudomonas putida (KT 2440) pre-culture was started from agar plates and grown within 12 

hours in a 500 mL-Erlenmeyer flask containing 150 mL of LB; incubation conditions were 30 °C 

and 180 rpm [72]. 

Two strategies were tested using 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  as substrate: 1- two stages and 2- one stage 

production. In the former strategies, cells were grown under balanced conditions, using a slightly 

modified Medium 81 from DSMZ [72]; it contained 4 g L−1 instead of 1 g L−1 of (NH4)2SO4 and 

glucose (4.5 g L−1) as carbon source. Thereafter, the same medium -but NH4 free- was used to 

induced the PHAs accumulation. It was prepared by combining two sterilized stock solutions, 

namely: (a) the 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  liquid fraction, which was filtered (Whatman N11, 11 μm) and 

autoclaved using special Beckman flasks allowing a subsequent centrifugation (8000 rpm, 4 °C 

and 25 minutes) under sterile conditions; and (b) distilled water amended with Medium 81- 

DSMZ salts (except for (NH4)2SO4) at the corresponding amounts to achieve after mixing the 

same concentrations they occur in such a medium. The accumulation culture media was 

prepared by mixing the two stock solutions at 15% of 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑 , this in order to avoid 

accumulation inhibition by high hexanoic acid concentration. 

For the production in one stage, glucose and the VFAs accruing in the 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  were present from 

the beginning. To do this, the culture media was prepared -as before- by combining two 

sterilized solutions, namely: (a) the 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  liquid fraction, which was filtered (Whatman N11, 

11 μm) and autoclaved using special Beckman flasks allowing a subsequent centrifugation (8000 

rpm, 4 °C and 25 minutes) under sterile conditions; and (b) distilled water amended with 

Medium 81- DSMZ salts (including the (NH4)2SO4) at the corresponding amounts to achieve after 

mixing the same concentrations they occur in such a medium. Also this time, the culture media 

was prepared by mixing the two stock solutions at 15% of 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑 , this in order to avoid 

accumulation inhibition by high hexanoic acid concentration. 
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In addition to this, parallel control tests were carried out for each strategy using a simulated 

𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  (𝑆𝑖𝑚𝐺𝑃𝐹𝑟𝑒𝑠ℎ

𝐴𝑐𝑖𝑑 ), which was a VFA solution prepared by dissolving in distilled water the 

organic acids at the same concentrations they occur in 𝐺𝑃𝑓𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑 . The control tests were aimed at 

verifying whether other compounds than VFAs occurring in 𝐺𝑃𝑓𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  could affect PHAs 

accumulation. 

 

3.2.4.2 Experimental approach  

3.2.4.2.1 PHAs from 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑   

The whole PHAs production process was separated in a two-stage batch cultivation procedure. 

A growth phase (1st process phase) was carried out under balanced growth conditions, using 

glucose as the carbon source, and it was started by inoculating 500 mL-Erlenmeyer flasks 

containing 150 mL of the growing culture media. To this aim, pre-grown cells were harvested by 

centrifugation (6000 rpm for 5 minutes at 4 °C) and suspended in the media to an initial 

absorbance (Abs600) of 0.4. The incubation conditions were the same as previously mentioned. 

After 24 hours, the growth phase was concluded and cells were harvested by centrifugation 

(6000 rpm for 5 minutes at 4 °C). Thereafter, the grown biomass was re-suspended in the 

experimental accumulation medium at the same concentration they occurred at the end of the 

growth phase, this representing the beginning of the subsequent PHA accumulation phase (2nd 

process phase). In this way, the possibility of using 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  as an alternative carbon source 

specifically only for PHAs production was studied. The latter acid effluent constituted 20% and 

40% of the accumulation phase media, as reported previously, in order to determine if 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  

concentration could affect the PHAs accumulation activity of grown cells. Each experiment was 

carried out in triplicate. 

 

3.2.4.2.2 PHAs from 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  

The production in two stages was carried out as previously mentioned in Section 3.2.4.2.1, with 

the difference that the growth phase finished after 13 hours.    

Regarding the second strategy, the production in one stage, experiment started with the culture 

media already containing 15% v/v of 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  (together with glucose) and therefore no 

centrifugation and resuspension was required. 

 

3.2.5 BIOGAS PRODUCTION 
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The solid leftover from the anaerobic acidogenic digestion step (𝐺𝑃𝐷𝑒𝑝ℎ;𝑆𝑜𝑙𝑖𝑑
𝐴𝑐𝑖𝑑  𝑜𝑟 𝐺𝑃𝐹𝑟𝑒𝑠ℎ;𝑆𝑜𝑙𝑖𝑑

𝐴𝑐𝑖𝑑 ) 

was tested as a substrate for biogas production. The experiments were carried out in 100 mL 

Pyrex bottles (microcosms, 55 mL of working volume) tightly closed with a modified Pyrex-cap 

that allowed gas sampling. The inoculum to substrate ratio was 1 g of VS in the inoculum per g 

VS in the substrate, and the TS content was 8% (92% of which VS). The methanogenic microbial 

consortium employed as inoculum was obtained from a commercial biogas production plant 

located in the Emilia Romagna Region (Italy) fed with agro-industrial wastes and zootechnical 

liquor. It was exhausted in terms of gas production before being employed. The incubation 

conditions were 37 °C and 150 rpm. The experiment was carried out in triplicate. A blank control 

experiment was set up by filling microcosms only with water and the inoculum, in order to 

calculate the effective biogas production by subtracting the amount of biogas eventually 

produced within control experiments to that produced within target test. Biogas production was 

measured every 2–3 days. After biogas sampling, the bottles were opened under nitrogen gas 

flux to keep anaerobiose and pH was corrected to 7.5 by adding few drops of 10 M H2SO4. All 

the adopted experimental conditions were recommended by [28,29]. 

 

3.2.6 ANALYTICAL PROCEDURES 

Polyphenols extraction. All procedures were carried out as previously described [60]. 

The total phenolic content (TPhs) of the extracts was measured using the Folin–Ciocalteu 

reagent, according to [73]. A calibration curve was obtained with standard solutions of gallic acid 

in the range 0.2–10 mg mL−1 and measurements were carried out at 765 nm (R2 = 0.99). Results 

were expressed as milligrams of equivalent gallic acid per 100 gram of dried matter (mgGAE per 

100 gDM). 

The fractionation of proanthocyanidins from the extracts was conducted as reported by ref. [74], 

as well as the total flavan-3-ol content that was determined by the vanillin assay. Results were 

expressed as milligrams of equivalent catechin acid per 100 g of dried matter (mgcatechin per 

100 gDM). 

The antioxidant activity of the phenolic extract and proanthocyanidin fraction was evaluated by 

the total free radical scavenger capacity (RSC) following the methodology described by ref. [75] 

with slight modification.2 The antioxidant activity of the samples was expressed as the 

milligrams of α-tocopherol per 100 g of dried matter (mgα-tocopherol per 100 gDM). A 

calibration curve was obtained with standard solutions of α-tocopherol in the range 5.8 × 10−5–

2.3 × 10−3 mol L−1 (R2 = 0.98). 

All analyses were performed in triplicate. 
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The qualitative characterization of polyphenolic extracts was carried out by UHPLC-MSn analyses 

as reported by Bresciani et al. [76]. 

 

VFAs determination. VFA concentrations were determined by GC-FID analysis (Agilent 7890A). 

A HP-INNOWAX column (ID 0.25 mm, length 30 m and film thickness 0.25 μm) was employed 

under the following conditions: injector and FID temperature were 250 °C and 280 °C, 

respectively; pressure was 9.5649 psi; H2 flow was 30 mL min−1; air flow was 300 mL 

min−1; carrier gas flow rate (nitrogen) was 29.281 mL min−1, with a split ratio of 10 : 1 (7 mL 

min−1); injection volume was 1 μL. The temperature programme was: 80 °C for 0.5 min, then 20 

°C min−1 to 150 °C for 1 min, then 20 °C min−1 to 240 °C for 2.5 min. Before the analyses, the 

samples were diluted with an equal amount of a 60 mM oxalic acid solution. 

At the end of the fermentation, organic matter content in the liquid phase was measured by 

determining chemical oxygen demand (COD) of the sample supernatant experimentally and 

theoretically, therefore obtaining the percentage of the total COD content that was ascribed to 

the occurrence of VFAs (
𝐶𝑂𝐷𝑉𝐹𝐴𝑠

𝐶𝑂𝐷𝑇𝑜𝑡𝑎𝑙
∗ 100%).  

TPhs in the 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  was measured by colorimetry with a down-scaled procedure of the method 

reported elsewhere. [35] 

 

Chemical oxygen demand (COD). A colorimetric commercial kit (AQUALYTIC Vario MR) was 

used. At the same time a theoretical COD was calculated by only taking into account the VFA 

oxidation: concentrations were expressed as COD equivalents according to stoichiometric 

calculations. 

 

PHAs production. Sampling was performed periodically. The procedures for sample treatment 

and analysis were the same as previously described in ref. [3].  

When performing the Abs600 vs. cell dry weight (CDW) calibration curve, linear correlations 

were obtained for the growth and the accumulation phases (data not shown). PHA content was 

defined as 
𝑔𝑃𝐻𝐴𝑠

𝑔𝐶𝐷𝑊
∗ 100% , on a cell dry weight basis.  

Organic matter consumption during the accumulation phase was followed by measuring the 

sample supernatant COD and the theoretical COD variation was calculated. 

 

Biogas production was measured in terms of volume (glass syringe) and composition. This, in 

terms of H2, O2, CH4 and CO2, was measured by gas-chromatography using a μGC (model 3000 A 

– Agilent Technologies, Milano, Italy) under the following conditions: injector temperature 90 
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°C; column temperature 60 °C; sampling time 20 s; injection time 50 ms; column pressure 25 psi; 

run time is 44 s and the carrier gas was nitrogen. 

TS were determined by conventional gravimetric method exposing the sample to 105 °C 

overnight and VS were determined by exposing the resulting dried sample to 600 °C for 1 hour. 

 

 

3.3 RESULTS AND DISCUSION 

Several approaches dedicated to the valorisation of grape pomace were reported in the 

literature, as reviewed by Scoma et al.[63]. However, most of these processes would hardly be 

economically feasible at an industrial scale if singularly applied. Conversely, multi-purpose 

integrated biorefinery could generate some positive synergistic effects, such as (a) cost 

investment optimization by better exploiting the diverse equipment, (b) diversification of the 

incoming profits by covering multiple markets/niches, (c) sharing manpower, (d) minimizing 

waste generation and (e) reaching energy self-sufficiency (e.g. biogas production from waste 

streams). This strategy could lead to an overall economic sustainability of the employment of 

biowaste as an innovative renewable and low-cost feedstock. [77] In this frame, olive pomace 

was recently proposed as a raw material for the integrated production of natural antioxidants 

and renewable energy [78]. Moreover, the potential beneficial effects of multi-purpose 

biorefineries could be further enhanced if more than one waste is valorised. At the same time, 

this may also represent a solution for the valorisation of seasonal biowaste. As an example, the 

extraction of polyphenols from olive pomace and GP would allow the facility to run all over the 

year. 

According to the mentioned strategy, the present work represents an attempt to evaluate the 

possibility of valorising a red GP by the integrated production of natural antioxidants, 

biopolymers and biogas. The four processes included in the proposed GP biorefinery scheme 

were studied separately and sequentially, in agreement with the cascade approach. Experiments 

were performed at the bench-top/flask scale. Results are therefore presented according to the 

same processes and sequence order. 

 

3.3.1 POLYPHENOLS EXTRACTION 

The extraction of polyphenols from GP was studied by using: (a) supercritical carbon dioxide (SC-

CO2) containing 10% ethanol aqueous mixture at 57% (v/v) (SC-CO2 + 10% EtW) and (b) 

conventional methanol extraction. The results for both methods are reported in Table 7. The 

process efficiency is quantitatively related to extraction yield. No statistically significant 
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difference (p ≤ 0.01) in the global yield of recovered dry matter (expressed as extracted mass 

per fed mass) obtained by SC-CO2 and by methanol extractions was highlighted (Table 7). 

 

 

  

 

 

The application of the SC-CO2 extraction allowed recovering 90% of the total polyphenols 

recovered within the conventional solvent method. The yield was higher than that reported by 

Farías et al. [79] (2200 mgGAE per 100 gDM), as well as the total antioxidant activity. 

The obtained results indicate that the extracts recovered by the application of both methods 

contained a large number of soluble compounds, and that GP polyphenols included flavonoids 

and non-flavonoids. [80] Among the former ones, catechins and their oligomeric and polymeric 

forms, and procyanidins (PCs), have been reported to exert potential health benefits in 

humans.[81] The healthy properties of catechins and PCs may depend on their structure and on 

their degree of polymeriz- ation. Monomeric structures have been shown to be quite efficiently 

absorbed, while oligomers reach the large intestine where they are efficiently converted into 

smaller metabolites by the local colonic microbial community.[82] In the present work, the 

amount of total catechins and PCs obtained by SC-CO2 was 703.7 mg of catechin equivalents per 

100 gDM, and monomeric and oligomeric fractions together represented about half of total 

Methanol SC-CO2 + 10% EtW

Global Yield (% w/w) 15.6 ± 1.2 a
*

14.6 ± 1.5 a

Total Phenols (mg GAE 100 g 
-1

 DM) 2813 ± 10.8 a 2527 ± 11.5 b

Phenolic Yield (g GAE  kg 
-1 

extract ) 180.3 ± 0.4 a 173.1 ± 0.5 b

Phenolic Yield (% SC-CO2/methanolic yield) 100 90

Total Antioxidant Activity  (mg α-tocopherol  100 g 
-1

 DM) 678 ± 15.5 8703 ± 17.5

Proanthocyanidins (mg catechin 100 g
 -1 

DM)

Monomeric fraction 1.2 ± 0.2 188.0 ± 3.8

Oligomeric fraction 4.1 ± 0.1 154.2 ± 5.8

Polymeric fraction 153.7 ± 0.2 361.5 ± 18.6

Antioxidant Activity (mg α-tocopherol 100 g 
-1

DM)

Monomeric fraction 28.1 ± 1.2 808.7 ± 10.2

Oligomeric fraction 30.1 ± 2.4 545.8 ± 7.3

Polymeric fraction 600.5 ± 2.9 3675.5 ± 6.8

Each data represent the mean of three replicates ± SD

* Values with different letter within row indicate significant differences (p ≤0.05)

EXTRACTION METHODS 

Table 7: Chemical composition of GP extracts obtained by methanol and SC-CO2 + 10% EtW 

extraction methods 
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extracted flavan-3-ols. In particular, the small size oligomeric fraction was composed of several 

dimeric, trimeric and tetrameric B-type PCs (see ESI Table S1 and Fig. S1†). 

The SC-CO2 polyphenol extraction from GP was recently demonstrated to allow better 

performances with respect to those of a conventional solvent-based approach.[60] In fact, even 

if the total polyphenol extraction yields were nearly the same, the antioxidant activity was one 

order of magnitude higher when using the SC-CO2. Yet more important, the SC-CO2 extract 

presented a higher level of total proanthocyanidins (PAs) with monomeric and oligomeric 

fractions (Table 7). This suggests that supercritical CO2 extraction of PAs from GP is more 

selective in extracting proanthocyanidin fractions – beneficial for human health – than methanol 

extraction. Finally, it is worthy of note that about 60% of the total antioxidant activity resulted 

due to PAs in SC-CO2 + 10% EtW, and 97 % in the conventional extraction. This evidence, together 

with the previous observation indicate that the supercritical operating conditions developed are 

able to extract not only selectively the PAs, but also a great amount of other antioxidant 

compounds, not extractable with the conventional method. 

 

3.3.2 VFAs PRODUCTION 

3.3.2.1 VFAs FROM 𝐺𝑃𝐷𝑒𝑝ℎ 

After polyphenol extraction, the dephenolised leftover (𝐺𝑃𝐷𝑒𝑝ℎ) contained 90 % of total solids 

(TS). Volatile solids (VS) were 90% of the latter fraction. The application of a batch anaerobic 

acidogenic wet process onto such an organic matter allowed the accumulation of a mixture of 

VFAs in the liquid phase. The VFAs concentration profile as a function of the experimental time 

Figure 19: VFAs production from 𝐺𝑃𝐷𝑒𝑝ℎ. Single and total VFA concentration trends. 
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is shown in Figure 19. The whole AAD lasted 16 days, after which 22.2 ± 0.8 g L−1 of total VFAs 

were obtained, corresponding to 111 g of total VFAs per kilogram of 𝐺𝑃𝐷𝑒𝑝ℎ. Among the 

produced acids, acetic (15.5 g L−1) and butyric (4.3 g L−1) mainly accumulated in the medium. At 

the end of this process the measured COD of the dephenolised and acidified effluent (𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑 ) 

was 35 ± 1 g COD L−1. Since the COD due to the occurrence of VFAs (according to stoichiometric 

calculations) was 28.5 ± 1.5 g COD L−1, more than 80 % of the organic matter was represented 

by the target VFAs. 

The final VFAs concentration was comparable to that reported in a study where vinasse was 

used for VFAs production (19 g L−1 of total VFAs).[83] Furthermore, comparable VFAs’ overall 

concentration was obtained when the same process was carried out using non-dephenolised GP 

as the substrate (about 23 g L−1, see ESI Fig. S2†). Taken together, such evidence seems to 

demonstrate that the preliminary polyphenol extraction process did not significantly lower the 

potentialities of the acidogenic step, probably both because a large availability of readily 

biodegradable organics still occurred in the 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  and the biological process is inhibited by 

higher overall VFAs concentrations. 

9 mL g VS−1 of biogas were produced all through the anaerobic acidogenic digestion. Importantly, 

no VFAs-consuming methanogenic activity was detected, while the overall produced biogas was 

composed of H2 (35 %) and CO2 (65 %). The total polyphenol content of the VFAs-rich liquid 

stream was 447 ± 39 mg L−1. 

The over left solid fraction (the pellet after centrifugation) contained 30.1±0.7 % TS and 91.6±0.5 

% VS. 

 

3.3.2.2 VFAs FROM 𝐺𝑃𝐹𝑟𝑒𝑠ℎ 

Previous results obtained at the acidogenic digestion of OMW containing ethanol, suggested 

that a high content ethanol matrix would allow to produce a VFAs-rich stream with high hexanoic 

acid concentration. GPFresh contains high amount of ethanol since it arrives from the wine 

production. Therefore, an anaerobic acidogenic digestion experiment was carried out using this 

agro-industrial residue; results are shown in Error! Reference source not found.. After 10 days 

21.9±0.5 g.L-1 of total VFAs were produced. No VFAs-consuming methanogenic activity was 

detected, neither from the biogas composition trend (data not shown) nor from the VFAs 

concentration trends. The obtained VFAs composition is compared with the mix obtained 

previously from GPDeph in Table 8. 
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Table 8: VFAs mixtures compositions obtained using 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  and 𝐺𝑃𝐴𝑐𝑖𝑑. 

  𝑮𝑷𝑫𝒆𝒑𝒉
𝑨𝒄𝒊𝒅  𝑮𝑷𝑨𝒄𝒊𝒅 

Acetic ac. (g.L-1) 15.5±0.6 4.4±0.2 

Propionic ac. (g.L-1) 0.8±0.0 0.35±0.1 

Butyric ac. (g.L-1) 4.3±0.2 3.5±0.2 

Valeric ac. (g.L-1) 0.2±0.0 0.97±0.02 

Hexanoic ac. (g.L-1) 0.5±0.0 14.0±0.4 

Total VFAs (g.L-1) 22.2±0.8 22.3±0.3 

 

Originally, the GP contained 43.2±0.1 % of TS and 93.3±0.1 %. After the acidogenic digestion and 

liquid separation by centrifugation, the over left solid (pellet obtained after centrifugation) 

contained 29.8±1.0 % of TS and 91.2±0.5 %. 

 

3.3.3 PHAs PRODUCTION 

3.3.3.1 PHAs FROM 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  

Low cost substrates and high polymer amounts per cell dry weights are required in order to 

persecute economic sustainability of biotechnological PHAs production. As a matter of fact, C. 

necator was found to grow and produce the biopolymer from diverse carbon sources.[3,12,36–

40] Among winery waste, wine lees were used as supplementary medium [84] and enzyme 

pretreated GP (saccharified) was used as a carbon source.[85] However, acidified pre-treated 

GP was never tested as the substrate for the biotechnological production of PHAs. Recently, an 

effective two-step strategy for the production of PHAs from acidified olive mill wastewater by 

C. necator was proposed.[3] In that work, the advantages of employing a two-stage production 

process (constituted by a preliminary balanced growth using glucose as the carbon source and 

a consecutive PHAs accumulation step under NH4 limiting conditions by feeding grown cells with 

VFAs) were discussed. Briefly, the employment of a low-cost alternative carbon source for the 

accumulation phase would allow replacing a large majority of the costly sugar required by the 

conventional PHA production process. In fact, PHAs may represent over 80% of the total CDW 

of C. necator strain.[4,26] Hence, the same approach was applied in this work, where grown cells 

of C. necator were fed (a) with different concentrations of the 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  liquid fraction or (b) with 

aqueous solutions containing the same amount of VFAs occurring in the mentioned 

experimental VFA-rich substrates. 
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During all experiments, the preliminary growth phase lasted 24.5 hours. The final cell 

concentration was 2.5 ± 0.3 g L−1 and the glucose consumption was 5.0 ± 0.1 g L−1. Thereafter, 

cells were harvested and re-suspended in the corresponding medium of each experimental test. 

PHAs accumulation was observed for all conditions as a linear increase of Abs600 (Figure 20A). 

The VFAs and PHAs profiles as a function of the experimental time are shown in Figure 20B and 

C. 

The complete consumption of the carbon sources was detected after 42 hours when 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  

represented 20% of the accumulation medium (Figure 20B). Accordingly, a negative slope for 

biomass concentration, due to the consumption of accumulated PHAs (Figure 20C), started after 

Figure 20: 
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42 h of observation (Figure 20A). Similar evidence was observed for the 40% conditions, since 

VFAs were not detected anymore after 44 hours and absorbance started to decrease two hours 

later (46 h). Therefore, cells were harvested and re-suspended in fresh media for the application 

of the second accumulation batch process, which lasted 46 hours in all experimental conditions. 

The 20% conditions were monitored until VFAs were exhausted, which occurred after a 

complete experimental time of 64 h (Figure 20B). The 40% conditions were stopped after 70 h 

since no further significant absorbance increase was detected. 

At that time, the overall VFAs concentration was 2 g L−1. Final PHAs content, PHAs yields, 

accumulation rates and final pH values are shown in Table 9. PHAs contents, which were 

measured according to GC analyses, were confirmed by TGA analyses (see ESI Fig. S3†). 

 

The highest PHAs content in cells fed with the actual VFAs-rich effluent (63%) was obtained for 

the 40% conditions as a consequence of the application of the two consecutive accumulation 

batch processes. This value represents an encouraging result for the design, set up and 

evaluation of the bioprocess at the bench-top scale. Moreover, the application of a cell recycling 

culture system, as demonstrated elsewhere,[19,86] would allow a continuous feeding together 

with an increase of the final cell concentration. 

The comparison among results related to the employment of the actual effluent and the VFAs 

solution suggests that no inhibition effects due to other organics in 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  occurred. 

Indeed, 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  tested concentrations were selected in order to avoid VFA inhibition,[46,47] 

therefore it was important to exclude negative effects due to the effluent matrix. Polyphenols 

are well known anti-microbial agents. However, they probably did not inhibit the process both 

because of their low concentration in the 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  (lower than the inhibitory concentration 

reported in a previous work[3]) and the fact that their antimicrobial activity is probably not 

Table 9: 
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significant for this case. This is in accordance with the wine fermentation process in which 

polyphenols do not cause inhibition. 

The polymer production yields were lower than values previously published when pure acids 

were tested as the carbon source[49,50] (𝑌𝑃𝐻𝐵 𝐴𝑐𝑒𝑡𝑖𝑐⁄ = 0.47 𝑔/𝑔 and 𝑌𝑃𝐻𝐵 𝐵𝑢𝑡𝑦𝑟𝑖𝑐⁄ =

0.65 𝑔/𝑔, respectively). However, they were comparable to that obtained when pre-treated 

olive mill wastewater was employed.[3] Furthermore, they resulted higher yields than reported 

when the palm oil mill effluent and a pure culture of Rhodobacter sphaeroides (0.22 g PHAs per 

g VFAs)[13] or fermented organic waste and a pure culture of R. eutropha TF93 (0.16 g PHAs per 

gVFAs) were used.[52] 

The lower calculated ΠAccum parameter related to both 20% conditions are concurrent with 

previous studies,[46,47] reporting higher specific rates in response to higher VFAs 

concentrations. This evidence was supposed to represent a kind of a mechanism for avoiding 

the toxic effects due to the acids. On the other hand, the produced polymer was almost pure 

polyhydroxybutyrate (PHB). It is very well known that pure PHB has limited applicability, since it 

is highly crystalline and because its melting and degradation temperatures are close to each 

other.[9,87] A possible perspective to persecute higher industrial interest for the proposed 

approach can be represented by the addition of a co-substrate such as propionic or valeric acids, 

these leading to the obtainment of the copolymer poly(hydroxybutyrate-co-hydroxyvalerate), 

which is more flexible and stronger.[87] Propionic and valeric acids are VFAs that can be easily 

obtained from other biowastes or by modifying the AAD conditions.[55,88] 

To identify whether PHAs were produced only from VFAs or from other compounds occurring in 

the complex 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  matrix, too, initial and final COD values were measured and COD depletions 

were compared with theoretical calculated COD decays. The measured decreases of COD were 

9.7 ± 2.4 gCOD L−1 and 15.4 ± 2.6 gCOD L−1 for 20% and 40% conditions, respectively. The 

calculated theoretical COD decays were 10.20 ± 0.15 gCOD L−1 and 19.65 ± 0.20 gCOD L−1, 

respectively. These results suggested that other organics than VFAs did not significantly 

contribute to PHAs accumulation.  

 

3.3.3.2 PHAs FROM 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑   

Considering the high hexanoic acid content occurring in 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑 , it was decided to use P. putida 

since its capability of valorising the C6 organic acid by producing hydroxyhexanoate. Therefore, 

an experiment was carried out to verify the possibility of producing mcl-PHAs within this 

alternative substrate. 
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Since it was found a literature controversy about if P. putida is or not a growth-associated PHAs 

producer, two strategies were tested: 1- production in two stages and 2-production in one stage 

Figure 21. 

 

Figure 21: mcl-PHAs production in two stages (A, B) and in one stage (C, D) using 𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  

(red curves) or 𝑆𝑖𝑚_𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑   (red curves). Cell concentration is reported in terms of 

absorbances (Abs), cell dry weight (CDW) and residual cell material (RCM, non-PHAs 

material). 
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It can be seen that PHAs were produced in both conditions from the VFAs occurring in the 

𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑 . When comparing the results obtained with the real effluent with those obtained with 

the simulating solution, no significant differences were detected (A vs B and C vs D). Thus, it was 

inferred that the  𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  did not cause any inhibition. 

Besides, comparing the different production strategies (A and B vs C and D), a significant lag 

phase was detected when producing the PHAs in one stage (conditions C and D). This was 

assigned to the presence of VFAs from the beginning. Regarding the accumulation with or 

without NH4 limitation, similar PHAs concentrations were detected (by GC analyses), but the 

PHAs contents was slightly less in conditions C and D (25% against the 30% obtained in A and B). 

This was probably due to the fact that (even if hexanoic acid is a PHA related substrate) ammonia 

was not limiting at all and thus part of the acid could be used for cell growth; in accordance with 

[89,90].  

As previously mentioned, 30% of PHAs content was achieved in conditions A and B. However, a 

further increase was tested by performing a second accumulation batch (Figure 25). 3.9 ± 0.2 

g.L-1 of CDW were obtained, with a PHAs content of 40 ± 4 %. The produced mcl-PHAs were 

composed by (molar %, from GC-analyses): hydroxyhexanoate (83), hydroxydecanoate (10) and 

Figure 22: mcl-PHAs production in two stages (A, B) and in one stage (C, D) using  𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑  

(red curves) or 𝑆𝑖𝑚_𝐺𝑃𝐹𝑟𝑒𝑠ℎ
𝐴𝑐𝑖𝑑   (red curves). Cell concentration is reported in terms of 

absorbances (Abs), cell dry weight (CDW) and residual cell material (RCM, non-PHAs 

material). 
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the rest by hydroxyoctanoate (˜3%) and hydroxydodecanoate (˜4%). These values were 

confirmed by NMR-H and NMR-C analyses (Figure 26). Beside these, others characterization 

were performed by Prof. Annamaria Celli’s group; results are shown in Table 10. 

The PHAs production yield -for condition A, two accumulation batches- was 0.18 ± 0.04 g PHAs 

. g VFAs-1; similar to those obtained using 𝐺𝑃𝐷𝑒𝑝ℎ
𝐴𝑐𝑖𝑑  (0.25-0.26) or 𝑂𝑀𝑊𝐷𝑒𝑝ℎ

𝐴𝑐𝑖𝑑  (0.25). 

 Considering all the facts, it can be said that the optimal production process would be one in 

which a critical cell concentration is achieved using only glucose under balanced conditions 

(avoiding the growth lag phase). Thereafter, continue working under balanced conditions, VFAs 

Figure 23: 1H-NMR and 13C-NMR analyses.  
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feeding starts in conjunction with glucose. In this way, the latter is used only for cell growth (cell 

multiplication) and the former for PHAs accumulation; this was also observed by [89].  

  

Table 10: Polymer characterization by gel permeation chromatography and differential scanning 

calorimetry. 

Polymer Mn 

(kDa) 

Mw 

(kDa) 

D Tg 

(°C) 

Tm 

(°C) 

ΔHm 

(J/g) 

Ref 

C6 (80%)-C10 (10%) 94 211 2.2 -33 - - This work 

C6 (100%) 206 272 1.3 -28 - - [91] 

 

 

 

3.3.4 BIOGAS PRODUCTION 

3.3.4.1 BIOGAS FROM 𝐺𝑃𝐷𝑒𝑝ℎ;𝑆𝑜𝑙𝑖𝑑
𝐴𝑐𝑖𝑑  

The net cumulative biogas production profiles as a function of the experimental time are 

presented in Figure 24. A rapidly increasing cumulative CH4 production was observed for about 

twelve days. After 31 days, 292 mL of biogas were produced. It was composed of methane 

(67.4%) and carbon dioxide (32.6%), while no hydrogen was detected. At the end of the 

experiment, 113 mL per g VS of biomethane were obtained.   

Figure 24: 
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Such a result did not represent a high biomethanization yield when compared to some evidence 

obtained with other biowastes.[29] Furthermore, the AD of the same non-pretreated GP at the 

same inoculum to substrate ratio led to almost double biomethane production (see Section 

3.3.4.2). On the other hand, it was quite similar to the value reported by ref. [65] also with non-

pretreated GP and a lower inoculum to substrate ratio (0.66). The yields obtained by ref. [66] 

were significantly higher than those obtained in the present work, but a shredding step was 

added for oil extraction from seeds. Therefore, the obtained results can be considered of 

interest in the perspective of developing effective continuous anaerobic methanogenic 

processes fed with the target leftover and with the potentiality of also including the residues 

from the PHAs downstream process. 

 

3.3.4.2 BIOGAS FROM 𝐺𝑃𝐹𝑟𝑒𝑠ℎ;𝑠𝑜𝑙𝑖𝑑
𝐴𝑐𝑖𝑑  

The effective cumulative biogas production trends is shown in Figure 25. After 33 days, 465.7 ± 

32.4 mL of biogas was produced, composed mainly by (%): CH4 (68%) and CO2 (32%); as within 

the 𝐺𝑃𝐷𝑒𝑝ℎ;𝑆𝑜𝑙𝑖𝑑
𝐴𝑐𝑖𝑑  almost no hydrogen was produced. Regarding the yield, 193 ± 10 mL CH4 . 

g VS-1 were produced; lower than the yield obtained with OMWSolid and higher than the value 

for 𝐺𝑃𝐷𝑒𝑝ℎ;𝑆𝑜𝑙𝑖𝑑
𝐴𝑐𝑖𝑑 . 

 

 

 

 

Figure 25: Biomethane production from  



3. POLYHYDROXYALKANOATES PRODUCTION FROM GRAPE POMACE 

62 
 

 

 

 

 

3.4 CONCLUSIONS 

In conclusion, the possibility of developing a multi-purpose biorefinery scheme for the 

valorisation of red grape pomace by obtaining natural antioxidants, volatile fatty acids, 

biopolymers and biomethane was demonstrated. The extracted polyphenolic fraction included 

significant amounts of bioactive compounds, which are readily adsorbed by the organisms. The 

acidification of the dephenolised residue was obtained by feeding the organic matrix to a 

biological anaerobic acidogenic process. The resulting VFA-rich liquid effluent was employed as 

the substrate for an effective biotechnological production of PHAs. Biomethane was obtained 

from the exhausted solid leftover, which was digested under anaerobic methanogenic 

conditions. To the very best of our knowledge, this study represents the first attempt of 

exploiting grape pomace for the integrated production of several industrial products. In 

particular, the target biowaste have never been tested before as an alternative low-cost 

substrate for the production of PHAs. 

 
 

 

Figure 26: Comparison of biomethane production (right) and biogas compositions (left) for 

the different AD substrates. 
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4.1 INTRODUCTION 

In the framework of agro-industrial wastes valorisation, anaerobic acidogenic digestion allows 

the production of a volatile fatty acids (VFAs) rich effluent from complex matrixes. These 

carboxylic acids (C2-C6) can be further bioconverted to biogas (CH4), polyhydroxyalkanoates 

(PHAs) or exploited as single compounds. This is, their functional group allows to obtain a 

reduced number of compounds, namely: esters, ketones, aldehydes, alcohols and alkanes. 

However, the production of many important molecules -including traditional and new products- 

involves their utilization directly (i.e. reactants) or indirectly (i.e. solvents) as shown in Figure 27. 

Thus VFAs are considered molecules of interest for the chemical industry.  

 

 

 

Figure 27: The production of volatile fatty acids (C2-C6) from agro-industrial wastes such as: 

olive mill wastewater (OMW), grape pomace (GP), cheese whey (CW), organic fraction of 

municipal waste (OFMW) or fruit &.vegetable waste (FVW). Main utilization of the VFAs 

potentially produced. 
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Therefore, the VFAs separation from the acidified stream is of importance for reaching the 

feasibility of a “carboxylate platform”. In the case of PHAs production, its importance relies on 

the fact that 

As well, it is very well known the possibility of separating organic acids using polyamide based 

membranes in nanofiltration (NF). Briefly, this group confer to the membrane a double effect 

filtration, i.e. due to: 1- porous dimension and 2- charge rejection (NH- with COO-). 

 

From all this, the main goal of the present work is to study the separation of VFAs from an 

acidified effluent by employing a NF process. The particular aims were: (A)-to carry out 

preliminary tests that allow to verify the applicability of NF by employing a laboratory prepared 

solution that simulates a typical acidified stream (  2̴0 g VFAs /L) and (B)-to study the influence 

on the rejection (R %) values of the operation transmembrane pressure (Pt = P3 - P2) at a fixed 

pH and the pH at a fixed pressure. 

Fed-batch or continuous culture systems are employed to avoid inhibition on cells from 

substrates such as VFAs. As a rule of thumb, an economical feasible polyhydroxyalkanoates 

process requires a final cell concentration of at least 100g/L, with polymer content higher than 

60% (wt PHAs / wt CDW). Considering YPHAs/VFAs approximately 0.3-0.4 grams of PHAs per gram 

of VFAs and a final PHAs content of 80% (80 g PHAs / L), 267 grams of VFAs per liter of culture 

(20 g cells / L) are required; these to be added stepwise in fed-batch or in continuous. Therefore, 

in order to minimize the cell dilution effect when feeding, a high concentrated feeding solution 

is required.  

However, a typical acidogenic digestion of agro-industrial wastes allows to obtain 15-25 g VFAs.L-

1, that would decrease cell concentration and so render the biopolymer production economically 

unfeasible. 

Therefore, the main goal is to recover and/or concentrate VFAs from fermented broths 

(anaerobic digestion) in order to obtain a concentrated VFAs solution or more than one if it is 

also possible to separate them  

In this first stage study the particular aim is to concentrate (elimination of water) the VFAs. 

VFAs recovery by membrane separation 

A briefly compilation (Table 12) containing the main process values collected (for reverse 

osmosis and nanofiltration) from literature is presented.  

From all this, concentration seems possible with a polyamide membrane or an aromatic 

polyamide membrane (better with this last), at pH>7, cut off (100-300), temperature of 25-50°C 

and pressure between 1-40 bar. 
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Regarding a possible future goal, electrodialisis and bipolar membrane electrodialysis (2 

chambers) were found to be techniques that do not require any chemical addition. In the last 

case an acid stream and an alkaline stream are obtained, the second can be used to maintain 

the pH in the anaerobic reactor. The acids can be finally concentrated by employing the 

technique previously described. 

Real fermented broth and Proposed separation process After anaerobic acidogenic digestion, 

cells and part of the suspended solids are separated by centrifugation (  1̴0 µm) and the liquid 

fraction is stocked at 4°C. During the acidogenic fermentation NaOH is added in order to 

maintain the pH (6-7), in this way all acids are present as sodium salts at the end of the anaerobic 

process. The main composition of the stream to be treated is presented in Table 11, with 

approximately 80% of the total chemical oxygen demand arising from the VFAs content. The 

other 20% percent may arise from protein (not determined), phenols (0.5 g/L) and/or lipids (not 

determined) among others. Hence the concentration of the stream (water elimination) could 

represent a solution for the biopolymer production. 

 

Table 11: Typical acidogenic effluent composition. 

STREAM COMPOSITION  Na salt-Solubility Acid Solubility 

Acetic acid (g/L) 4.1 1230-1300 Miscible  

Propionic acid (g/L) 0.3 1000 Miscible 

Butyric acid (g/L) 4.2 100 Miscible 

Valeric acid (g/L) 1.4 55 49.7 (25°C) 

Caproic acid (g/L) 19.4 18-30 10.8 (25°C) 

COD from VFAs (g COD / L) 58   

Total Phenols (g/L) 0.5   

Total COD (g COD / L) 70   

pH 7   
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Table 12: Literature review (till 2014) about VFAs separation using NF. 

REF [VFAs] 

g/L 

Membrane Membrane material Feed (L/min) 

[cross flow] 

P (bar) Temp 

(°C) 

pH R 

(%) 

[92] 0.5 ES10(Nitto Denko) Aromatic polyamide 0.6 [0.25m/s] 1.25-2.75 25 9 >95 

[93] 2-10 Desal-5-DK  4.4 [0.22m/s] 24.5 25 9 90 

[94] - ES20(Nitto Denko)  1.2 2.9 25 9 99 

[95] 10 TLC (Fluid system); NTR759 

(Nitto Denko);FT30(Dow) 

 - 14-28 30 6.8 90-99 

[96] 2 Filmtec FT30 Sea Water(Dow) Aromatic polyamide 5 40 25-30 7-10 >90 

100for 

C6 

[97] 1 ESPA2, LFC3 , CPA2 

(Hydranautics); BW30 , 

BW30LE (Filmtec); SG, SE , CE 

(Osmonics) 

 6.7 30 25-50 10 >95 

[98]  CPA2, ESPA2(Hydranautics); 

BW30 (Dow) 
 6.7 5-30 20 6-9 80-99 

[99] 1 PCI membranes Systems AFC99 
membranes 

polyamide 22 [2m/s] 10 20 7-9 >90 

[100] 5 Desal-5 DK (GE); AlfaLaval-NF, 
RO98pHt*, RO99 (AlfaLaval) 

*polymeric, 3-layer membrane with 

an active layer of aromatic PA 

8 30 25-40 7-10 90-99 
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4.2 MATERIAL AND METHODS 

4.2.1 CHEMICALS AND STANDARDS 

Mineral salts, acids and VFAs standard were purchased at Sigma Aldrich. 

 

4.2.2 EXPERIMENTAL SET-UP 

The experiments were carried out in a bench-top scale plant (Figure 28) composed by a 10 L-

feeding tank, a volumetric pump, a pre-filter (membrane preservation), a membrane testing 

shield and a pressure regulating valve. The utilized membranes models were DK, AK and AG 

(General Electric-waters), with a molecular cut-off between 100 and 300 Da. Temperature was 

controlled at 50°C with an external bath. Once stabilization was achieved for each condition: (1)- 

the permeate (flux and composition) was evaluated; (2)- also the feeding composition and (3)- 

pH was controlled with an off-line pH-meter by drop-wise addition of NaOH or HCl (concentrated 

solutions). VFAs concentrations were determined by GC-FID analysis. First experiments were 

carried out at different Pt (5-30 bar), at pH 4. A second series of experiments were carried out at 

different pH (4, 5, 6 and 9) and 15 bar. 

 

 

The stream mentioned represents a special situation since the high hexanoate content; 

usually C2-C5 VFAs (higher solubility) are produced.  

At pH 7 (or higher) acids are retained because of electrostatic repulsion with the 

negative charged membrane. But hexanoate precipitation might occur if concentrated more 

Figure 28: NF bench-top plant. 
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than 55 g/L. Water can be feed to maintain the haxanoate concentration (dialysis), but this is 

useless if concentration is pretended. 

Therefore a hexanoic acid separation step could be applied, without pH control -hoping that it 

will develop an acid pH in the retentate- and with a membrane cut off 100Da or less if possible. 

In this way hexanoic acid would be separated and concentrated in the acid form (no solid 

formation) because of the molecular size effect. Since the acid solubility is 10g/L, two liquid 

phases will be formed in the feeding tank: the organic upper phase (mainly hexanoic acid) and 

the water phase. The membrane separation should continue: the feeding pipe must take liquid 

from the last phase. Once the hexanoic acid is separated, the rest of the VFAs can be 

concentrated by filtration at pH>7 since their solubility is higher. 

For the real stream, a microfiltration step to separate the suspended solids not decanted by the 

centrifuge is required. Thereafter, a pre-filtration step could represent a way to eliminate: 

proteins, phenols and all molecules bigger –in the retentate- than hexanoic acid (MW is 116 

g/mol), that will permeate with the rest of the VFAs. The complete flow-sheet would be: 

 

 

Experimental design 

The separation of hexanoic acid (C6) without pH control –only molecular size exclusion effect 

(MWCO 100 Da)- is proposed to be tested first. Leaving for a second experiment the 

concentration of the rest of the VFAs by filtration at pH>7 (charge exclusion effect). Or, another 

option is just trying to concentrate the small VFAs (C2-C5), that are the ones without 

precipitation problems.   

Initially, membranes could be tested by employing a laboratory prepared solution for simulating 

the VFAs-rich effluent: HK2PO4, 5.8 g/L; H2KPO4, 3.7 g/L and the VFAs; pH between 6 and 7. 

As far as known, treatment temperature is not a critical variable for the stream; therefore it is 

possible to work on the range 20-50°C. 

Figure 29: An hypothesised scheme for VFAs separation-concentration, also considering the 

single separation. 
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In which respect to analytical procedures, individual VFAs concentrations can be obtained in 14 

minutes with GC analysis. Regarding an online measurement, pH could represent a separation 

indicator variable. 

 

4.3 RESULTS AND DISCUSION 

The pH parameter affected the R% of both the whole VFA mixture and the single acids more 

than the operational pressure. Comparing the three tested membranes, the R obtained with AK 

and AG -for a pH of 9.5- were about 85% and 98%, respectively. In particular, at pH of 4 different 

R% values were observed for each acid, namely (%): acetic (40), propionic (55), butyric (70), 

valeric (80) and hexanoic (90) acids. Conversely, the R% related to the DK membrane (20%) 

suggested that it is not suitable for this application. 

The first experiment was dedicated to verify the influence of the operating pressures (5-30bar) 

at pH 4 and 50°C. 

 

 

 

Figure 30: Results obtained at different operating pressures (5-30 bar) at fixed pH and temperature. 
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A second experiment was carried out in order to verify the previous results, just with a slightly 

modification on the pH (3.5 instead of 4). The temperature was the same (50°C) and pressure 

was the tested variable. Results were not consistently; this was assigned to membranes fouling. 

 

 

Thereafter, membranes were cleaned and a blank was done. From this last, it was observed that 

the membrane DK permeability was two folds the previous measured, while the AK permeability 

was the original. 

A third experiment was carried out, this time the fixed conditions were the temperature (50°C) 

and the pressure (15bar) and the tested variable was the pH (3.5; 6.5; 9.3). 

 

 

 

 

 

Figure 31: Water permeate test 

Figure 32: VFAs separation using DK or AK. Rejected values against pH condition. 
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4.4 CONCLUSIONS 

VFAs separation from a simulated acidified effluent by NF has been tested and its applicability 

confirmed. Among tested process variables, pH was observed to greatly influence process 

performances. This, in combination with the molecular cut-off, would allow to selectively 

separate the VFAs. A preliminary techno-economic analysis is being carried out for inducing a 

first input toward the research activities. Besides, more experiments need to be carried out; 

using different membrane cartridge arrangements for obtaining technical data that would allow 

a process scale-up and more effective techno-economic analysis. 
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5 TOTAL PHENOLS DETERMINATION IN OLIVE MILL WASTEWATER 

BY COLORIMETRIC AND HPLC METHODS  
 

Summary   

Valorization of olive mill wastewater (OMW) may include a phenolic compounds recovery. It 

has already been tested the feasibility of applying solid phase extraction process for the 

mentioned recovery. Hence, an analytical method need to be applied for the process study. 

From this, the utilization of a well-known colorimetric method for measuring OMW’s total 

phenols content has been studied, optimized and compared with a HPLC measurements. To 

this aim, the wastewater matrix effect (interference) was analyzed by performing calibrations 

in which the solvent for the standards was the dephenolised OMW.  

 

KEYWORDS 

Polyphenols content; Olive mill wastewater; Tyrosol, Hydroxytyrosol; Dephenolisation; Modified 

Lowry method; Phenols determination by HPLC-UV 
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5.1 INTRODUCTION 

Olive mill wastewater (OMW) is a dark brown-greenish effluent -abundant within the 

Mediterranean region- from the olive oil production. It is very well known that OMW -with high 

organic matter and phenolic compounds content (see Table 13) - has a long term 

biodegradability. Besides, it is generated in a short period of two months approximately 

(seasonality): from the middle of the autumn till the beginning of the winter. Therefore, it 

represents a harmful effluent that must be treated before being discharged. Hence, it appears 

the opportunity of coupling the treatment with the obtainment of added value molecules such 

as phenolic compounds. These are natural antioxidants, antibacterial, anti-inflamatory and anti-

angiogenic activities that can be exploited in the food, pharmaceutical and cosmetic industries 

[101]. OMW physicochemical and biotechnological treatments coupled with valorization have 

been studied during the last 10 years, examples are: polyphenols solid phase extraction from 

the fresh wastewater (OMWFresh) in a batch process [22]; and from the dephenolised stream 

(OMWDeph) volatile fatty acids (VFAs) production (OMWAcid) within an anaerobic acidogenic 

digester [88]. In this last step, complex compounds are bioconverted into VFAs, i.e. simpler and 

functional molecules that can be utilized for the production of biopolymers [3,11] and/or in the 

carboxylation platform [68]. 

 

Table 13: OMW average physicochemical characterization (Alberto Scoma, 2014) 

  

TS (g.L-1) 64.9 ± 54.3 

TSS (g.L-1) 9.8 ± 2.5 

VS (g VS.g TS-1) 0.98 ± 0.02 

Total Sugars (g.L-1) 17.1 ± 16.0 

Oil and Greases (g.L-1) 3.2 ± 2.1 

TPhs (g.L-1) 6.8 ± 5.3 

COD (g O2.L-1) 107.1 ± 102.8 

BOD5 (g.L-1) 20.4 ± 2.5 

pH 4.6 ± 0.4 

TS: total solids; TSS: total suspended solids; VS volatile solids; TPhs: total phenols; COD: chemical 

oxygen demand. 

 

In this line, during the last three years the dephenolisation process of OMW by solid phase 

extraction has been studied within a bench-top column, simulating a continuous process [27]. 
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Specifically, a non-polar resin has been employed as the adsorbent and ethanol is used for the 

polyphenols desorption step. In these condition, by the moment approximately 75-90% of the 

polyphenols originally contained in the OMWFresh are removed. This represents a higher 

dephenolisation level in comparison with the 60% obtained by the group at the beginning of the 

study [22].  

During this studies, when studying the process optimization or even if a real-scale process would 

be operated, the determination of total phenols (TPhs) with a fast and accurate method became 

of high importance for evaluating mass balances and related continuous process performance 

such as break-through tests.  

To do this, the utilization of colorimetric methods would allow performing a measurement in 

some minutes, by employing a simple procedure which requires small samples volumes and a 

low cost equipment such as a colorimeter. For the TPhs, the modified Lowry procedure is very 

well known and its application for wine analysis was described by Singleton et al. The 

disadvantage of all colorimetric methods when determining contents in “real samples” is the 

high possible interference that may generate the sample’s matrix. In the case of OMW, it known 

that at least sugars would generate interferences on TPhs determination. [35]  

For avoiding interferences and therefore for more accurate determinations, the HPLC analysis 

could be of interest. This implies the utilization of an instrument that is much more expensive 

than a colorimeter; this could represent an obstacle when limited economic resources are 

available. Despite this, HPLC could be considered when more precise TPhs determinations are 

required or for evaluating how accurate is the colorimetric determination.  

From all that mentioned, the main goal of the present work was to study the utilization of the 

colorimetric method developed by [102] for determining TPhs in: OMWFresh, OMWDeph and 

OMWAcid. To this aim, firstly two temperatures were tested for the color-development reaction 

by comparing the TPhs contents results for real samples. Secondly, the matrix effects 

(interferences) on the measurements was studied by performing two calibration curves using 

two different solvents when preparing the standards, namely: (A) water and (B) OMWDeph. 

Finally, an adsorption test (break-through curve) was performed and TPhs content in the 

samples were analyzed within the colorimetric method and with HPLC analysis; results were 

compared by constructing  correlation curves. OMWs coming from two different Italian mills 

were used in this study; both generated during traditional olive oil production (three-phase olive 

oil extraction). 
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5.2 MATERIALS AND METHODS 

 

5.2.1 OMWs, chemicals and standards 

The OMWs employed in this study were provided by: (i) Sant’Agata d’Oneglia mill (Imperia, 

Northen-west Italy), generated in 2012 and 2013; and (ii) by Gallipoli mill (Puglia Region in 

Southern Italy), from 2012 oil production. Both mills apply the three-phase olive oil extraction 

process. According to the required measurements in the different OMW valorization treatments 

previously published [22,23,103], different kinds of OMWs were employed: OMWFresh, OMWDeph 

and OMWAcid. The formers two are the feeding and exit of the dephenolisation step (see section 

5.2.2); and the OMWAcid is the exit stream of an anaerobic acidogenic digester, which consist of 

a packed bed bioreactor with an HRT of 6-7 days [88] fed with the OMWDeph. TPhs determination 

in  OMWAcid is important (as ultimately control) when the VFAs-rich stream is employed for PHAs 

production, since they may cause polymer accumulation inhibition (Martinez et al., 2015). 

The ethanol (96%), Na2CO3, Folin & Ciocalteu’s phenol reagent and gallic acid were purchased 

from Sigma Aldrich. The COD assay test tubes (range: 0-1500 mgO2/L) were acquired from 

Aqualytic (Dortmund, Germany). 

5.2.2 Dephenolisation in bench-top packed column operating in 

continuous 

The dephenolisation studies were carried out in a glass column (length 525 mm and inner 

diameter 20 mm), packed with the non-ionic resin XAD 16 (DOW Chemicals Europe GmbH, 

Switzerland), as described by [27]. Briefly, the pre-treated OMW (without suspended solids) was 

fed to the column at 2.4 cm/min. Sampling was done every hour from the column bottom and 

every three hours at the column inlet. These were stock in freezer (-20 °C) for analyses. In this 

way, OMWDeph was accumulated in a tank and a break-through curve was constructed by 

analyzing the TPhs content in the samples. For desorption (coupled with regeneration step), 

acidified ethanol (0.5% v/v HCl 0.1N) was fed from the top of the column. The phenols solution 

was vacuum distillated in a rotatory evaporator and the ethanol was recovered.  

5.2.3 Total phenols determination with colorimetric procedures 

The colorimetric method previously developed [35,102] allows to determine total phenols as 

gallic acid (or other representative standards) equivalent concentration.  

Firstly, the colorimetric method at 25 mL-scale have been used [22,88], with color-development 

reaction at 75 °C. But high standard deviations were obtained. Moreover, a significant number 

of samples could not be measured as some precipitation and turbidity formed during the test. 
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This negative behavior forced to increase to 5 the determinations for each sample to be sure 

that at least 3 of them could be measured with a considerable loss in time and materials. In 

order to diminish the standard deviation and improve the performance of the analysis two 

procedures were studied and compared: a down-scaled colorimetric procedure and HPLC 

method (section 5.2.4).  

Regarding the down-scaled procedure, this would reduce the amount of reagents to be used. 

For working with absorbance values between 0 and 1, the procedure described by [35] was 

slightly modified (µL): H2O dionex (912), sample (20), Folin & Ciocalteu’s phenol reagent (100), 

mix & wait 1-8 minutes and Na2CO3 20% w/v (300). After 2 hours in dark at ambient temperature 

(25°C) or at 75°C (when specified), the absorbance was measured at 765 nm using an UV-Vis 

spectrophotometer Varian Cary 100. 

Calibration curves were done initially by preparing gallic acid standards in demineralized water 

and lately using standards of gallic acid in demineralized water or in OMWDeph (when specified). 

 

5.2.4 Total phenols determination with HPLC 

For the chromatographic method, a HPLC-UV/vis (Jasco 875) was employed, with the detector 

set at 264 nm and within a C18 Kinetex 2.6 µm 100A Phenomenex column. The flow was set at 

1.0 mL/min. The following mobile phase gradient was applied: 0-4 minutes, 100% phase A (HPLC 

water with 0.1with orthophosphoric acid); 4-6 minutes, 70% phase A and 30% phase B 

(acetonitrile); 6-15 minutes 70% phase A and 30% phase B. The mobile phase gradient was 

designed to merge all the phenolic peaks into a single broad peak. This approach makes the 

analysis faster and the method more sensitive, but it prevents the identification of the single 

compounds. Gallic acid was added (50 mg/L) as internal standard in each HPLC analysis. Hence, 

total phenols are determined in gallic acid equivalent concentration but with HPLC. 

 

5.2.5 Chemical oxygen demand (COD) 

In order to evaluate how much of the COD -initially present in the OMW- was absorbed by the 

column, the COD was measured within a commercial colorimetric assay in test tubes and a 

thermoreactor (ECO16 Velp Scientifica). The absorbance was measured (in the 

spectrophotometer described in Section 5.2.3) at 610 nm. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Methods comparison 
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Results obtained when measuring TPhs content in three real fresh samples - different mills and 

years – are presented in Table 14. They were measured using three methods: COLORIM 1 (as in 

[27]); COLORIM 2 (present work, see section 5.2.3) and by developing a HPLC-UV protocol. The 

calibration for COLORIM 1 was done with gallic acid in dephenolised water, while for COLORIM 

2 standards were prepared in deionized water. Both measurements were done against a blank 

reaction prepared with deionized water. Results obtained with COLORIM 1 had a greater percent 

standard deviation than the ones obtained with COLORIM 2, this was attributed to errors in the 

former procedure: non-repeatability on the final volume (depending precision on volume flask 

read and not in micropipette) and color development temperature (75°C, faster development 

and faster disappearance). Moreover, some precipitate occurred for samples analyzed with this 

method. When comparing ratios of the results between the methods (COLORIM1/COLORIM2, 

COLORIM1/HPLC and COLORIM2/HPLC), it can be seen that COLORIM2/HPLC is almost constant 

and are near double of the second for the three samples; interpreted as possible higher 

correspondence between the methods. The differences in the TPhs could not be due to 

interferences (i.e. sugars) since samples could not contain the same amount of interfering 

compounds . But the effect of the colored matrix. Thus, more studies on the down-scaled 

colorimetric method were carried out. 

 

Table 14: Comparison of TPhs values, standard deviation (STD) and percent standard deviation 
(%STD) obtained with three methods: COLORIM 1 (performed at 25mL and 75°C (REF)), COLORIM 
2 (performed at 1.3mL and 25°C) and HPLC_UV. 

 COLORIM 1 COLORIM 2 HPLC_UV Col1/
col2 

Col1/
HPLC 

Col2/
HPLC 

 TPhs  STD TPhs  STD TPhs  STD    

 (mg/L) ± % (mg/L) ± % (mg/L) ± %    

Puglia 2012  4140 513 14 5279 433 7 2787 245 9 0.78 1.49 1.90 

Imperia 2012  1964 216 11 2013 23 1 1071 97 9 0.98 1.83 1.88 

Imperia 2013     942 15 2 507 19 4   1.86 

Note: values presented are the media and standard deviation of: 5-7 analyses for COLORIM 1, 3 
analyses for COLORIM 2 and 2 analyses for HPLC 
 

 
 

5.3.2 Colour development reaction for the down-scaled method: 25°C or 

75°C 

The first test was dedicated to determine the better temperature for color development, using 

the down-scaled procedure. Hence, five real samples (Imperia 2012, 2013, dephenolised and 
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fresh and Puglia 2012 fresh) were analyzed by applying the down-scaled procedure at 75°C and 

25°C (2 hour for both). Deionized water was used for diluting samples (when needed for 

measuring absorbance’s values between 0 and 1) and for preparing the blank. Results are shown 

in Figure 33. A correlation between both conditions was found. It can be seen that the standard 

deviation for the condition 75°C are much bigger. This was attributed to the fact that at higher 

temperature color develops faster, thus color extinction occurs sooner (Singleton et al., 1999) 

and finally less sensibility may be achieved. Indeed, lower absorbance values were obtained for 

the 75°C condition.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Correlation curve for absorbances obtained -with the down-scaled procedure- by 

performing the color development at 75°C and at 25°C. Each point represent the average value 

of three analyses and standard deviation is represented by the error bars. 

 

5.3.3 Matrix interference analysis 

For evaluating the matrix interferences in the colorimetric method, which concentrations are 

almost double the concentrations determined by HPLC, two calibration curves were performed 

using: (i) OMWDeph and (ii) deionized water as solvent (for preparing the standards with gallic 

acid) and as samples when making the color-development reaction for preparing the blanks.  

Three different standards were prepared for each concentration in order to analyze also the 

repeatability of the procedure. First the standards were measured in the spectrophotometer 

against the blank prepared with deionized water and thereafter the same standards were 

measured against the blank prepared with OMWDeph (See Figure 34). When converting the 
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intercept obtained from the linear fitting of the calibration against blank prepared with water 

(0.33897) into TPhs content it came out that TPhs in the OMWDeph was about 216.5 𝑚𝑔/𝐿  . 

Indeed, the same value was obtained from determining the TPhs using a calibration curve 

performed entirely using dionex water as solvent.  

 

 

Figure 34: Calibration curves using OMWDeph as solvent for preparing the standards and dionex 
water (◊) or OMWDeph (*) when making the reaction for preparing the blank.  

 

 

5.3.4 Phenolic compounds determination with the down-scaled 

colorimetric and the HPLC methods: correlation between methods 

 

The obtained break-through curves with the colorimetric and HPLC analyses are presented in 

Figure 35. As it can be seen, a front of COD started to exit from the column before TPhs or at 

least faster; this is more evident when analyzing the derivatives of the curves. 
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When analyzing correspondence between both methods (Figure 36), it was found that there 

was no correlation during the first part of the dephenolisation (till 3.33 hours) and from that 

time both methods showed a high correlation (R2 > 0.96). The obtained slope for this linear 

fitting indicated a proportional relation of 2; which is in accordance with the proportion found 

it in Table 14. 

 

  

Figure 35: Dephenolisation break-through test. TPhs content in the samples taken from the exit 

stream of the column and analyzed by colorimetric and HPLC methods (real values were 

multiplied by 2). Also COD was analyzed. The presented values are the mean of three 

measurements and standard deviation is represented by error bars. For the HPLC, single analyses 

values are presented and the standard deviation was calculated from the calibration. 

Figure 36: Correlation analysis. TPhs determined by HPLC-UV vs TPhs determined by the 
colorimetric method. 
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Therefore, firstly it was hypothesized that the colorimetric 2 measurements were interfered by 

some molecules: initially absorbed by the resin, which rapidly was saturated and so the 

exponential increase of the total phenols value. As mentioned previously, typical interference 

with the colorimetric methods are related with sugars and proteins among others, their effects 

are based on their relative concentration ([protein]/ [phenols] and [sugars]/ [phenols]). 

However, the hypothesis of interference on the colorimetric method is in doubt, since the 

correspondence between both analytical methods started when the sigmoidal curve obtained 

for the colorimetric analysis was on the late exponential –meaning that all those points were 

corresponded already- and so maybe the applied HPLC-UV analysis is not accurately determining 

phenols (e.g. the ones attached to proteins) during the first part (0-3.33 hours); where no 

meaningful trend was detected.  

When evaluating correspondence between COD and TPhs_HPLC, high correlation was found 

between 4.33 and 11.33 hours (Figure 37). This was assigned to the fact that after some time 

the column is saturated in phenols, then the linear increase detected as COD is due to the 

phenols that are not retained any more.  

 

 

Furthermore, the correlation between TPhs_colorimetric and COD arisen two correspondences 

(Figure 38): from 0.33 to 1.67 hours and from 2 to 11.33 hours. Thus, it seems that other 

compounds -apart from phenols- are being detected with the TPhs colorimetric method. But this 

would be in contradiction with the almost perfect correlation found between HPLC and the 

colorimetric methods.  

Figure 37: Correlation analysis between TPhs determined by HPLC-UV and COD. 
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When analyzing the first correlation in Figure 38 (0.33-1.67 hours), it can be seen that while COD 

varied 15 times, TPhs_Colorimetric varied almost 2 times. This was assigned to the fact that 

some polyphenols were not retained and therefore measured as COD, however most of the COD 

was due to others compounds rather phenols.  

Regarding the second correlation in Figure 38 (2.00-11.33 hours), three out of seven points of 

the range 33.35-195.75 mg/L (2.00 – 4.00 hours) are out of the line (even considering the error 

bars) and thus correlation was not considered for that part of the range. Therefore, it exist 

correspondence between TPhs_colorimetric and COD almost for the same range of Figure 37   

(TPhs_HPLC vs COD) and Figure 36 (TPhs_HPLC vs TPhs_Colorimetric), which is the range in 

which the column is already saturated and so COD increased only because phenols were not 

retained anymore. Moreover, from all that mentioned and considering the fact that no 

correlation between TPhs_colorimetric and the others procedure for the range 0.33-3.67, it can 

be hypothesized that TPhs_COLORIMETRIC could affectively be measuring total phenols also 

during the range 0.33-3.67 hours (Figure 35). Indeed, the obtained curve with the colorimetric 

procedure seems to be a theoretical one, while it is not possible to say the same about the 

TPhs_HPLC curve. 

 

 

 

5.4 CONCLUSION 

The implementation of a colorimetric method for determining TPhs in OMW was studied and 

verified. This is important when working with trial tests at lab-scale, where usually low amount 

Figure 38: Correlation analysis between COD and TPhs determined by colorimetric method. 



5. TOTAL PHENOLS DETERMINATION IN OLIVE MILL WASTEWATER BY COLORIMETRIC 
AND HPLC METHODS 

84 
 

of samples volume (  1̴-5 mL) are available. Besides, this method would only requires the 

utilization of a colorimeter, i.e. a relative cheap and easy to use technical equipment. This last is 

also an advantage for analyses performed at industrial scale. 

In order to achieve total verification, one more comparison is required. This is, the 

implementation of the sample pre-treatment procedure described by the official analytical 

methods for wastewater, in which phenols are separated by distillation from all possible 

interferences and therefore it can be analyzed by colorimetric technique.   
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6 RECOVERY AND PURIFICATION OF POLYHYDROXYALKANOATES  
 

Summary  Polyhydroxyalkanoates (PHAs) production costs are mainly associated to carbon 

sources and to the down-stream process. This work is focused on optimizing the downstream 

by lowing its cost, but maintaining the biopolyesters special characteristics. 

In this framework, the goal of the present work was to evaluate different NaOH digestion 

protocols -in combination- for the recovery and purification of PHAs from Cupriavidus necator 

DSM-545 strain. In particular, the study was addressed to evaluate the effect of the following 

parameters: centrifugation speed, biomass concentration, NaOH concentration, digestion 

temperature, agitation during the digestion step and the application of an acidic pre-treatment 

and ethanol washing post-digestion. The whole procedure consisted on the following steps: cell 

digestion in a NaOH solution; centrifugation for three washing steps (with distilled water, 

ethanol solution and distilled water again) and drying. Thereafter, results were analysed in terms 

of purification degrees and recovery yields. 

Tested NaOH extraction procedures allowed high purification degrees. The highest value (almost 

96%) was obtained by applying the sulphuric acid pre-treatment, with biomass and NaOH 

concentrations of 50 g/L and 0.1 N, respectively, at 30°C. Generally, no significant differences in 

the purification degree were observed when centrifuging at different rates, in the presence or 

absence of agitation during the digestion process and at different tested temperatures. 

However, higher polymer recovery yields were obtained at centrifugation speed ≥ 10000 rpm 

and without any agitation. Importantly, process effectiveness was not negatively affected by 

increasing the cell concentration up to 100 gDM/L. 

 

 

KEYWORDS 

PHAs; Recovery; Purification, TGA; Molecular weight; NaOH digestion 
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6.1 INTRODUCTION 

Nowadays the development of alternative polymers production processes is of great interest, 

either when looking for a new property or a more eco-compatible material. In this framework, 

polyhydroxyalkanoates (PHAs) are considered an interesting biopolymers family, since they can 

be produced from renewable resources at the same time they exert similar or even better 

physicochemical properties than those of petrochemical-based polymers (e.g. polyolefin). PHAs 

are aliphatic polyesters, which are produced and stored by several bacteria as a carbon and 

energy source; usually when cell growth is limited by the lack of some nutrients. These polymers 

are totally biodegradable by bacteria. Therefore, PHAs are potential substituters of petrol based 

polymers. [6–9] 

However, it is not easy to achieve an economic feasible process. Main costs of the PHAs 

production are those due to the carbon source for the fermentation process (usually sugars) and 

to the downstream process (biopolymer separation and purification), each accounting to 40-60 

% of the total cost [2,87]. Thus, alternative strategies to lower the production cost have been 

studied in the last years. Most of the work have been focused on the up-stream improvement 

by applying different alternative cheap carbon substrates when employing pure or mixed 

cultures [3]. On the other hand, the development of down-stream processes have been also 

studied during the las years; trying to achieve an effective (high purity and recovery), sustainable 

and cheap process. However, it is considered that it remains to be studied the protocols -in 

combination- with the particular strains. 

From all this, the goal of the present work was to evaluate NaOH digestion, ethanol and acid 

pretreatment protocols for the recovery and purification of PHAs from Cupriavidus necator 

DSM-545 strain. 

 

6.2 MATERIAL AND METHODS 

6.2.1 CHEMICALS AND STANDARDS 

The salts (BioReagent) for the mineral medium, glucose (BioReagent), ethanol and other 

reagents were purchased from Sigma–Aldrich. 

 

 

6.2.2 PHAs PRODUCTION AT BENCH-TOP BIOREACTOR 

Cupriavidus necator (DSMS 545) inoculum was started from LB-Agar plates and grown within 24 

hours in 500 mL Erlenmeyer flask containing 150 mL of LB medium; incubation conditions were 

30ºC and 150RPM. 
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Polyhydroxybutyrate (4 carbons PHAs, PHB) production was carried out in 3 L Bioreactor 

(BIOSTAT B, Sartorius) in two stages fed-batch: 1- growing cells in a balanced mineral medium 

and 2- polymer production in the same medium but ammonia free (accumulation trigger). The 

feeding solution was sterilized glucose.  

At the end of the fermentation the broth was thermal treated (80°C for 15 min), cells were 

harvested by centrifugation (8000 rpm, 6°C, 25 min), washed and stocked at 4°C till used. 

 

6.2.3 PHAs RECOVERY AND PURIFICATION TESTS 

NaOH digestion experiments were carried out in 100 mL shake-flaks (30mL working volume), 

with a magnetic stirring bar, under controlled temperature. Different conditions were tested, 

namely: digestion time, biomass concentrations (10,20,50,100,150,200 g/L), centrifugation 

speed to recover the PHAs after NaOH digestion (5000, 10000 or 15000 rpm), NaOH 

concentration (0.05 or 0.1 N); digestion temperature (4 or 30°C) ; agitation during the digestion 

step (0,100 or 750 rpm); application of an acidic pre-treatment (by using 0.1N sulphuric, acetic 

or lactic acid, at a temperature of 80 or 30 °C for 2 h or 15 min). 

The PHAs purity (P) is defined as the PHAs content in a total dried biomass. While the recovery 

yield (R) is the ratio between the amount of PHAs after the downstream procedure and the 

amount of PHAs at the beginning, therefore:  

 

𝑅 =
𝐶𝐷𝑊 ×𝑃𝑢𝑟𝑖𝑡𝑦

𝐶𝐹𝑊 ×(
𝐶𝐷𝑊

𝐶𝐹𝑊
) ×𝐶0,𝑃𝐻𝐴

  

 

6.2.4 ANALYTICAL PROCEDURES 

Sampling was performed periodically. The optical density (OD) measurement at 600nm, using a 

Cary-100 UV-Vis spectrophotometer, was implemented to detect cellular concentration 

variations. Cellular concentration, in terms of cell dry weight (CDW), can be determined by 

employing an OD vs. CDW calibration curve (data not shown). Thereafter, samples were 

centrifuged; the supernatant and pellet were separated and stocked for analyses. Fructose was 

determined by HPLC-IR analysis, using a Varian Hi-Plex H column (300 x 7.7 mm); the mobile 

phase was sulphuric acid 5 mM at an elution rate of 0.6 mL/min and the operating temperature 

was 65°C. 
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PHAs content –and so purity- was measured by thermos-gravimetric analysis (TGA 4000 Perkin 

Elmer). The temperature program started at 100ºC with a ramp of 10ºC/min till 400ºC; and N2 

flux at 40mL/min. 

 

6.3 RESULTS AND DISCUSION 

6.3.1 PHAs production in bioreactor 

The production concentration trends are presented in Figure 39. After 71 hours the biomass 

concentration was approximately 60 g/L; with a  PHAs content of about 80%. 

 

After heat treatment, cells were recovered by centrifuge and washed. The dry weight of the 

biomass pellet was determined to be 43.9 ± 0.5 % (g CDW / g FW).  

 

6.3.2 PHAs recovery and purification tests 

6.3.2.1 Required digestion time 

The first experiment was dedicated to define the required NaOH 0.1N digestion time. From 

Figure 40 it can be seen that after 1 hour the purity arrives to a plateau at 84%. 

  

Figure 39: PHAs production. Concentration trends during the fed-batch fermentation. 
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6.3.2.2 Influence of temperature and agitation 

A second experiment was dedicated to study the influence of the temperature and the agitation 

during the digestion with NaOH. The obtained results are shown in Table 15. 

Table 15: NaOH digestion, influence of temperature and stirring 

 

6.3.2.3 Biomass concentration optimization 

A third experiment was dedicated to find the high-limit of biomass concentration to be treated 

with 0.1N NaOH. The obtained results are shown in Table 16. 

Table 16: NaOH digestion, maximum biomass concentration 

 

Figure 40: Required digestion time of non-PHAs biomass digestion with NaOH 0.1N at 30ºC, 

measured as PHAs purity in the remaining pellet. 
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6.3.2.4 NaOH concentration optimization 

 

Table 17:  

 

 

6.3.2.5 Ethanol washing: required time 

Once optimized the digestion time, the ethanol washing protocol was applied and evaluated, 

results are shown in Figure 41. It can be seen that after 1.5 hours the purity arrives to a plateau 

at 89%.  

 

 

6.3.2.6 Pre-treatment implementation 

The implementation of an acidic pre-treatment was proposed as to achieve higher purity values 

and to protect the PHAs granule from NaOH degradation. The obtained results using sulphuric 

(pKa 1.99), lactic (pKa 3.86) or acetic acid (pKa 4.76) are shown in Figure 42. It can be seen that 

the pre-treatment with sulphuric acid allowed to obtain more than 95% of PHAs purity, and 

recovering 84% of the initial PHAs. This last, the recovery yield lower than for the standard 

procedure, do not showed the effectiveness on PHAs degradation. However, to analyse this it is 

necessary to determine the molecular weight; which could be a more relevant and evident 

variable. 

Figure 41: Post-treatment: washing with ethanol 20% v/v 
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The future work will be focus on analysing the same treatment variables but using the GC-

analysis to determine PHAs. Regarding the acid pre-treatment, formic acid (pKa 3.77) could be 

tested for replacing sulfuric acid, as it could probably represent a future cheap acid (from the 

levulinic acid production). Besides, time treatment and concentration must be optimized for this 

step.   

 

6.4 CONCLUSIONS 

An internal procedure was developed for studying the water based PHAs separation and 

purification. Specifically, for the non-PHAs digestion using NaOH.  

From these test:  

- no significant differences in the purification degree were observed when centrifuging at 

different rates. Higher polymer recoveries were obtained at speed ≥ 10000 rpm 

- Low temperature did not favour the purification degree 

- Process effectiveness was not negatively affected  by increasing the cell concentration 

up to 100 gDM/L 

- The agitation rate during the alkaline digestion did not significantly affect the 

purification degree. Higher polymer recoveries were obtained without any agitation 

- The application of acidic pre-treatments enhanced the purification degree significantly 

when using sulfuric acid (P > 95%). 

 

Figure 42: Pre-treatment with acids 0.1N at 80ºC for 2 hours, followed by digestion with NaOH 

and washing even with ethanol. 
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7.1 GENERAL CONCLUSIONS 

In this thesis the production of polyhydroxyalkanoates from pretreated agro-industrial wastes 

was studied. Specifically, olive mill wastewater and grape pomace were used. The obtained 

results will contribute in the near future to design more proper experiments at bench-bioreactor 

towards the production cost evaluation. 

Regarding the olive mill wastewater employment, different tests allow to identified polyphenols 

as the accumulation inhibition responsible and to accumulate PHAs without using any extra 

carbon source. 

In which respect to the employment of grape pomace, phenols present in it did not exerted any 

negative effect. This is important when considering the implementation of a fed-batch system 

culture using the alternative carbon source. Besides, it was possible to obtain a higher volatile 

fatty acids concentrated stream, what allowed to obtain higher cells and PHAs concentration. 

Moreover, it was also possible to produce a different mix of organic acids -rich in hexanoic acid 

instead of acetic acid- by changing the biorefinery scheme. This last allowed to produced 

medium chain length PHAs with high hydroxyhexanoate content from an alternative-cheap 

carbon source, using a wild type strain. 

From the PHAs production studies, the concentration of the VFAs mixture was detected as 

crucial for developing biorefinery schemes. The preliminary study on concentration using 

membrane separation process allowed to demonstrate the feasibility of working with acidic 

effluent containing around 20 g/L, which is a higher concentration than what found in literature. 

This verification may impact on the feasibility of developing a carboxylate platform through the 

valorisation of many agro-industrial wastes that can be digested under acidogenic conditions. 

The validation study of the analytical colorimetric method for determining total phenols would 

impact not only in future lab-research studies but also in hypothetical OMW industrial 

treatment. This is by evaluating a process performance with an easy and cheap technique that 

requires only the reagents and a colorimeter. 

The preliminary study on the water based biopolymers recovery and purification allowed to tests 

all together the implementation of a procedure including acid pretreatment, the digestion using 

NaOH and washing with ethanol; for the well-known strain Cupriavidus necator.  
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7.2 FUTURE WORK 

Considering the work developed and the obtained results, the following suggestions for future 

work are proposed: 

For the PHAs production using olive mill wastewater, since the polyphenols content would 

influence on the accumulation rate, it would be necessary to stablished a kinetic model so as to 

simulate and study the performance -feasibility and costs- of different culture system, e.g.: cell 

accumulation with cell recycling. 

Now regarding both alternative substrates, bioreactor tests must be carried out in order to 

validate the obtained results. To this aim, it is necessary to concentrate the acids if considering 

a fed-batch process. Thus, studies on acids separation using a pilot scale nanofiltration plant will 

be carried out. Specifically, for testing different cartridge arrangements and for verifying 

operational conditions; all this as to design a reliable process that allows to evaluate the techno-

economic feasibility of the concentration step. 

As for the colorimetric method for total phenols determination, it would useful to implement a 

sample pre-treatment procedure for separating the phenols and thus avoiding any potential 

interference on the colorimetric measurement. Thereafter, direct comparison between 

colorimetric measurements will allow to determine the accuracy of the actual procedure. 

Finally, the biopolymer downstream performance relies also in the molecular weight of the 

obtained polymer. A GPC column was recently acquired to analyse this property. Thus, future 

work on this subject will be focus on comparing the different water based strategies considering 

also this variable. 

All that mention, techno-economic feasibility studies must be performed using process 

simulation. Even using partial results, this study would allow to detect processes or procedures 

that should be optimised in order to render possible a such pretended biorefinery. To this aim, 

a licence software was acquired and simulation studies started.
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8.1 POLYHYDROXYALKANOATES QUANTIFICATION BY GAS-

CHROMATOGRAPHY ANALYSIS: PROCEDURE SET-UP 

 

8.1.1 Methanolysis treatment time 

Aims:  

1- To determine the necessary treatment time to get maximum HBMet concentration and 

so to be able to perform the calibration. 

2- To detect unidentified picks on the chromatogram, that increase and decrease them 

area during the methanolysis treatment. These may be some methanolysis intermediate 

compound. 

3- To test if the methylated monomer (HB-Me) is starting degradation at a certain time. 

This is important in case a produced polymer (medium or long chain length) needs a 

long treatment time to be methylated, which could introduce error to the short chain 

length polymer determination. 

4- To test if the benzoic acid is methylated or not. And, if it was methylated, to test the 

ester degradation during time. 

 

 

 

 

 

 

 

 

The obtained experimental data are showing the following figures, in which it was represented 

the pick area for each retention time against the treatment time. 

 

 

T (h) 

Area 

0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0                           8.0       9.0 

Figure S1: Increasing área of a pick with a determined retention time versus treatment time 
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Conclusion and observations: 

From the graph tendency for the pick area at 4.8min the necessary methanolysis treatment time 

for the standard polyhydroxybutyrate, for these conditions, is between 2.5 and 3 hours. 

Benzoic acid methyl ester (tr = 11.2min) is methanolysed faster than PHB, it was completely 

methanolysed after 1.5-2 hours. This could be because the PHB first has to be first hydrolysed 

and then methanolysed. Moreover, the amount of HB monomer moles is higher than the 

benzoic acid (0.8mg/ml). The benzoic acid methyl ester was identified previously (the first 

methanolysis with the Pirex tubes) by performing a methanolysis of a blank samples, which 

means the reaction solutions without PHAs and treated in the same way. 

Jan et all found that when a treatment time of less than 3.5hours two picks where seen at the 

chromatograms: 14.4min and 21.9min. In this case there were found more than two picks that 

where indicating intermediates components existence: see the graphs that show a decrease or 

increase-decrease tendency. Moreover, maybe the ones that show only decrease belong to the 

monomer and the ones that show increase followed by a decrease belong to intermediates 

components (reactants for the methanolysis, reaction mechanism). 

It is thought that there are present other types of monomer; not only hydroxybutyrate methyl 

ester (tr = 4.8min) but also at 7; 7.6 and 13min at least. The necessary treatment time for these 

is the same (3 hours). 

It seems that at 32,3min another intermediate component was detected; the graph tendency 

indicates this (appearance and disappear). The high standard deviation is because every four 

analysis a column wash have been performed. 

The standard PHB contains 2-hydroxyisobutiric acid, a low amount. There was an increase of the 

area value along time of the pick at 3.2min. In a previous methanolysis experiment 2-
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hydroxyisobutiric acid has been used to see if its pick ejects near the HB-Me pick, and so it was 

observed a retention time of 3.2min. 

Maybe, by relating the speed of increase and decrease of the picks area value and the 

extinction time, it can be establish the correspondence between picks; and therefore for the 

methylated monomers. 

Samples weight and concentration description: 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cultivated Ralstonia eutropha 

AIMS:  

1- To determine the necessary treatment time to get maximum HBMet concentration and 

so to be able to detect it. 

2- To detect unidentified picks on the chromatogram, that increase and decrease them 

area during the methanolysis treatment. These may be some methanolysis intermediate 

compound. 

METHANOLYSIS TREATMENT TIME 

Campioni PHB (mg) [PHB] (mg/ml) t (h) 11:47 

1 10,0 5,00 
0,5 12:17 

2 10,1 5,05 

3 10,0 5,00 
1 12:47 

4 10,0 5,00 

5 10,1 5,05 
1,5 14:17 

6 10,1 5,05 

7 10,1 5,05 
2 14:47 

8 10,1 5,05 

9 10,2 5,10 
2,5 15:17 

10 10,0 5,00 

11 10,1 5,05 
3 15:47 

12 10,1 5,05 

13 10,0 5,00 
3,5 16:17 

14 10,0 5,00 

15 10,0 5,00 
4 16:47 

16 10,0 5,00 

17 10,0 5,00 
8 19:47 

18 10,0 5,00 

19 10,1 5,05 
9,1 20:55 

20 10,0 5,00 
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3- To test if the methylated monomer (HB-Me) is starting degradation at a certain time. 

This is important in case a produced polymer (medium or long chain length) needs a 

long treatment time to be methylated, which could introduce error to the short chain 

length polymer determination. 

4- To test if the benzoic acid is methylated or not. And, if it was methylated, to test the 

ester degradation during time. 

5- To detect others monomers: medium or long length chain monomer that with a short 

treatment time maybe they are not detected. 

CONDITIONS: 

Temperature treatment and GC column and program are all the same the treatment time 

analysis of standard PHB. 

 

  

R eutropha METHANOLYSIS TREATMENT TIME 

Campioni PHB (mg) [PHB] (mg/ml) t (h) 08:30 

1 9,9 4,95 
0,5 09:00 

2 10,3 5,15 

3 10,3 5,15 
1 09:30 

4 10,3 5,15 

5 10,2 5,10 
1,5 10:00 

6 10,2 5,10 

7 10,4 5,20 
2 10:30 

8 10,3 5,15 

9 10,6 5,30 
2,5 11:00 

10 10,4 5,20 

11 10,3 5,15 
3 11:30 

12 10,4 5,20 

13 10,1 5,05 
3,5 12:00 

14 10,4 5,20 

15 10,4 5,20 
4 12:30 

16 10,3 5,15 

17 10,3 5,15 
5 13:30 

18 9,9 4,95 

19 10,4 5,20 
8 16:30 

20 10,3 5,15 

21 10,2 5,10 
12 20:30 

22 10,4 5,20 

23 10,4 5,20 
0 14:30 

24 10,3 5,15 
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EXPERIMENT 

 

 

 

 

 

 

 

CHROMATOGRAPHS THAT SHOW THE REDUCE OF THE PICKS AREAS DURING TIME 

(INTERMEDIATES) 

 

 

 

 

Conclusions and observations 

The treatment time needed for R. eutropha ATCC 17697 is 3.5 hours approximately; 

which is the same result obtained by Braunegg for R. eutropha. But to get sure all the HB is 

methylated, and then a 4 hours treatment will be implemented. 

For studying the HV and others hydroxyacids methylation kinetics, after performing the 

calibration using the HB, HV, hydroxydecanoic acid and others methyl esters standards from 

y = -0.5469x4 + 15.052x3 - 150.83x2 + 647.36x - 369.2
R² = 0.9881
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Sigma Aldrich the obtained chromatographs of this experiment have to be revised and analysed 

in which respect to the dynamic of the pick area at the corresponded retention time. 

Even though it has been used a 10%H2SO4 methanol solution the treatment time was 

not reduced as the experiments from Lavagen and Jan insinuates. The amount of treated 

biomass maybe has a strong influence on this. 

In which respect to the internal standard graph, it shows that the value of the f factor is 

between 550 and 600.  

 

 

8.1.2 Methanolysis-GC Calibration 

AIMS: 

1- To get a correlation between pick area and PHB concentration 

2- To test the range of linearity of the determination technique 

CALIBRATION USING A STANDARD POLYMER (PHB) 

3- Option 1: Weight the corresponded amount of polymer in each tube. Do not prepare a 

unique solution (PHA + chloroform) for trying dissolving it at different concentrations 

and finally perform the methanolysis. The PHAs are hard to dissolve in chloroform (at 

least at ambient temperature), and heating the chloroform is not a confortable step to 

add to the procedure. Therefore, if the calibration has to be done by diluting 

concentrated solution and preparing one by one, the found solution is option 2. 

CONDITIONS 

The samples were treated for 3hours at 100ºC. The methanolysis solutions were the same 

composition as previously. The GC program is the short one, called PROVA5BENGSON.  
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EXPERIMENT 

[PHB] (mg/ml) [PHB] (mg/ml) Area Areaaverage STD %STD 

0,3 

0,30 47 
55,35 11,24 

20% 0,30 63 

0,6 

0,60 80 
77,45 4,17 

5% 0,60 75 

0,9 

0,90 161 
162,20 2,26 

1% 0,90 164 

1,2 

1,20 203 
209,05 8,98 

4% 1,20 215 

3 

3,00 545 
550,22 8,09 

1% 3,05 565 

4 

4,00 771 
773,80 3,96 

1% 4,00 777 

6 

6,00 1107 
1100,90 8,91 

1% 6,00 1095 

10 

10,05 1881 
1943,52 101,93 

5% 10,00 2016 

15 

15,00 3029 
2978,24 71,50 

2% 15,10 2947 

20 

20,05 3939 
4035,26 150,59 

4% 20,05 4152 

 

 

 

 

 

 

 

Conclusions and observations: 

The proportional constant is similar to that found in the previous calibration, which was 

done in the same conditions as this one: 189.21 against 198.59 the last one obtained. 

In the table with the results it can be seen that the highest standard deviation was for 

0.3mgPHB/ml ±20%. This situation can be improved if a higher volume injection is applied (i.e 

2µl). 

Campioni mg Area 

1 0,6 47,4 

2 1,2 80,4 

3 0,6 63,3 

4 1,2 74,5 

5 1,8 160,6 

6 2,4 202,7 

7 1,8 163,8 

8 2,4 215,4 

9 6,0 544,5 

10 6,1 565,2 

11 8,0 771,0 

12 8,0 776,6 

13 12,0 1107,2 

14 12,0 1094,6 

15 20,1 1880,8 

16 20,0 2015,6 

17 30,0 3028,8 

18 30,2 2947,2 

19 40,1 3938,6 

20 40,1 4152,1 

y = 198.59x
R² = 0.9989
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The proportional constant is near to that one obtained for the 2hidroxyisobutyrate acid 

methylated on the first experiment performed using an internal standard. In that experiment it 

was detected that the acid methyl ester has a retention time of 3.2min and a calibration 

proportional constant of 206.27. For a methyl ester which can be identified but without having 

a calibration curve of it, a proportional value of 200aprox can be used. 

Some picks where identified at the end of the chromatograms, picks that have linear 

relation with the PHB added for the methanolysis. Maybe these picks are some other monomers 

(impurities) that were methylated. To corroborate this, it is needed to use the method called 

PROVAjan which has a long ramp that allow a good picks separation for methyl esters with long 

retention time. 

It was observed that the area value for the benzoic acid methyl ester was constant at 500 

approximately with some points that were near 580. It is thought that these values belong to 

vials prepared with the lasts ml of chloroform, no mix had been performed during its addition 

and so was concentrated. I remember I finished two bottles of chloroform solution, but I don’t 

remember exactly when I finished bottle 1 of chloroform solution and starts to use bottle 2. But 

I remember that the last vial was prepared with pure chloroform (without benzoic acid). From 

the graph It seems that this happened at sample number 9 and 10 from the first bottle; and at 

samples 17,18 and 19 from the second bottle. 

 

 

 

 

 

 

 

 

 

Comparing the area values for the internal standard with the previous obtained for biomass 

methanolysis kinetic experiment it can be seen that the media in this case (500) is lower than 

the previous (550-600). Two reasons were thought for this: 1- inaccuracy on the preparation of 

the chloroform-Benzoic acid solution, small variations on the added amount of acid can be seen 

on the GC as a proportional variation of the correspond pick area value; 2- a variation on the 
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added amount of chloroform solution with the micropipette, which will be seen as a 

proportional variation of the correspond pick area value also.  

4- Option 2: Prepare the necessary amount of test tubes with 20mg of standard PHB, 

perform the methanolysis in each of them and once the reaction is complete and the 

extraction was done perform different dilutions to perform de calibration Area vs. 

concentration. 

 

CALIBRATION USING A STANDARD METHYL ESTER 

5- It can be compared the signal acquired for the calibration using the standard PHB and 

the one using the standard methyl ester, same quantities measured in molar 

concentration: 1mol of monomer in the PHB = 1mol of the methyl ester. In this way the 

methanolysis process is checked.   

CONDITIONS 

The same mix as when the methanolysis has to be performed will be used. This is in 

order not to modify the partitioning coefficient. 

 

Standards to be used: 

6- Methyl 3-hydroxyhexanoate C7H14O3  (C6 + C1) 

7- 2- hydroxyisobutiric acid C4H8O3 (C4 + C1) 

8- Methyl R -3 hydroxyvalerate C6H12O3 (C5 + C1) 

9- 3-hydroxydecanoic acid C10H20O3 (C10 + C1) 
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8.1.3 Methanolysis-GC Treated biomass linearity 

 Aims: 

1- To see the optimum amount of our cultured Ralstonia eutropha (ATCC  17697) dry cell 

to be used for methanolysis-GC analysis. 

2- To compare with the results obtained with the lyophilized cells from Portugal (See next 

graph). 
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