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I. General introduction 

I.I. Scleractinian corals  

The order Scleractinia first appeared in the Triassic period (Veron 1995) and consists of 

stony corals that produce hard exoskeleton of calcium carbonate crystals. Even though some 

species are solitary, most are colonial (about 60% of the approximately 1400 extant species; 

Cairns 1999). These organisms can be ecologically divided into reef-building (hermatypic) corals 

and non-reef-building (ahermatypic) corals. Both type of corals secrete an exoskeleton, but while 

hermatypic species construct the primary reef framework and most of them normally contain 

millions of zooxanthellae (i.e., zooxanthellate), ahermatypic species do not contribute 

significantly to reef formation and mostly lack zooxanthellae (i.e., non-zooxanthellate; Yonge 

1973; Schuhmacher and Zibrowius 1985; Cairns 2007). Specifically, the zooxanthellae are 

dinoflagellate endosymbionts of the genus Symbiodinium sp. that make mutualistic associations 

with corals, residing within vacuoles in the cells of the host gastrodermis (Trench 1979, 1987). 

The zooxanthellae serve as primary producers and supply their coral host with up to 95% of their 

photosynthetic products, such as sugars, amino acids, carbohydrates and small peptides (Trench 

1979; Muscatine 1990). These compounds provide the coral with energy for respiration, growth, 

and the deposition of its CaCO3 skeleton (Muscatine 1990). It is believed that the rapid 

ecological success of these animals is directly related to the symbiosis with the zooxanthellae 

that allowed them to survive in oligotrophic and highly irradiated habitats through 

photosynthesis. Moreover, photoautotrophy is not the only source of nutrition for corals. 

Heterotrophy (or the direct ingestion of zooplankton and other organic particles in the water 

column) in corals seems essential for providing nitrogen, phosphorus, and other nutrients 

necessary for protein synthesis and other essential metabolic requirements (Lesser 2004).  
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The fossil record suggests that corals as a group are more likely to suffer extinctions than 

some of the groups associating with them, whose habitat requirements may be less stringent 

(Bruno and Selig 2007). As with rainforests, the importance of coral reefs lies not so much in the 

diversity of the corals themselves, but rather in the millions of species that live primarily or 

exclusively in association with them (Knowlton 2001). Moreover, coral reefs are a source of 

food and livelihood for at least 100 million people worldwide, support major industries (fishing 

and tourism) and play a key role in stabilizing coastlines (Connell 1978).  

Despite scleractinian corals have been extensively studied in the last 200 years (Harrison 

and Wallace 1990), knowledge on the extant scleractinian “species” is scarce, probably because 

the investigation of marine environments is more challenging. For example, the exploration of 

deeper reefs (e.g. mesophotic) and deep-sea environments is still at its infancy (Cairns 2007). 

Other complications may derive also from the imperfect taxonomic resolution of highly variable 

species and potential cryptic species (Veron 1995, 2000). Therefore, further information about 

both solitary and colonial, hermatipic and ahermatypic, zooxanthellate and non-zooxanthellate 

scleractinian species is essential, in particular concerning temperate and subtropical regions.  

I.II. Coral reproduction  

Usually, coral life cycle involves the production of gametes in the mesenteries of the polyp 

(that is the benthic phase), fertilization, embryo development and a larval phase that actively 

swim looking for a hard substratum. After the settlement, the planula larvae metamorphoses into 

a juvenile polyp that starts the formation of the calcium carbonate exoskeleton (Fig. 1). In 

colonial species, follows the growth of tissues and skeleton by asexual budding (which can be 

intratentacular and extratentacular) to form new polyps attached to the parent or asexual 

reproduction for giving rise to new colonies (see Richmond 1997).  
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Based on the anatomical and physiological simplicity, members of the phylum Cnidaria are 

evolutionarily plastic (Fautin 2002) and display several patterns in reproductive traits: 

hermaphroditic broadcast spawners, hermaphroditic brooders, gonochoric broadcast spawners, or 

gonochoric brooders. However, there are some scleractinian species with a mixed sexuality and 

/or both reproductive modes (Harrison 2011). Hermaphroditic corals are the most common (74% 

of the total known species) and develop both male and female gametes within polyps or colonies 

during their lifetime, whereas gonochoric corals have separate sexes (see Harrison 2011; Baird et 

al. 2009). Hermaphroditism is usually simultaneous, but there are some forms of 

hermaphroditism which are more complex to detect, such as the cyclic sequential characterized 

by oocytes and spermaries that mature at different times in the same breeding season (Waller et 

al. 2005) and the protandrous or protogynous sequential during the lifetime (in which the first 

part of life is characterized by the presence of female or male gametes and in the second part 

there is a sexual inversion; Loya and Sakai 2008). When gametes reach the maturity, they are 

released in the water column by the broadcast spawning corals for external fertilization and 

subsequent embryo and larval development, while in brooding corals fertilization takes place 

within the coelenteric cavity of polyp (Harrison and Wallace 1990; Richmond and Hunter 1990).  

Corals have also the ability to reproduce asexually in several ways, developing new 

solitary corals or colonies genetically identical to the parent (Highsmith 1982; Cairns 1988; 

Harrison and Wallace 1990). In branching corals, asexual reproduction may take place via 

colony fragmentation as a result of physical impacts such as wave action and fish predation. 

Other asexual processes are colony fission, longitudinal and transverse division, polyp expulsion 

or polyp “bail-out” and budding. In rare cases, the asexual production of brooded embryos has 

been observed in some tropical and subtropical scleractinians (Stoddart 1983; Ayre and Miller 
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2004; Sherman et al. 2006; Ayre and Resing 1986; Nakano and Yamazoto 1992; Lam 2000). 

During my research, a possible agamic production of brooded embryos was found continuously 

in females, males and sexually inactive individuals of the temperate coral Caryophyllia inornata, 

without a clear seasonal trend (Marchini et al. 2015: Chapter 2). While sexual reproduction allow 

genetic variability of the populations through recombination and subsequent production of new 

genotypes that can adapt to changing environment with a wide dispersion or recolonization of 

more heterogeneous habitats, asexual planulae possess well-adapted genotypes at the local level 

but with limited dispersal abilities (Williams 1975; Maynard-Smith 1978).  

It was observed that sexuality and reproductive mode follow evident biogeographical patterns, 

perhaps as an adaptation strategy to cope with the different surrounding environmental 

conditions (Szmant 1986; Baird et al. 2009) since they are unable to move to a more suitable 

environment (van Oppen et al. 2015). Indeed, in contrast to tropical corals, it seems that most of 

the Mediterranean species are gonochoric brooders. However, very few studies are available on 

Mediterranean species, thus, further investigations on their reproduction are essential. The 

temperate zooxanthellate coral Balanophyllia europaea (Family: Dendrophylliidae; Goffredo et 

al. 1998, 2002; Airi et al. 2014) is hermaphrodite and brooding, while the non-zooxanthellate 

Leptopsammia pruvoti (Family: Dendrophylliidae; Goffredo et al. 2005, 2006), Astroides 

calycularis (Family: Dendrophylliidae; Goffredo et al. 2010, 2011) and Caryophyllia inornata 

(Family: Caryophylliidae; Goffredo et al. 2012; Marchini et al. 2015) are all gonochoric and 

brooding. Lastly, the zooxanthellate Cladocora caespitosa (Family: Oculinidae; Kružić et al. 

2008; Kersting et al. 2013) was described as both gonochoric and hermaphrodite and is the only 

known spawning coral in the Mediterranean Sea. 
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Fig. 1 Main stages of coral life cycle that involves oocytes and spermary development (gametogenesis), which can 

encounter in the water column for broadcast spawners or inside the body of brooders (fertilization). Subsequently, 

embryos develop from blastula to gastrula stage (embryogenesis) up to the formation of planula larva that swim 

looking for a suitable substratum where to settle. The polyp starts to grow and, in many case, forms the colony by 

budding. 
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I.III. Coral population structure 

Population size structure depend on variations in rates of colony growth, recruitment and 

mortality, and may indicate individual sensitivities to life-history processes and environmental 

variation (Goodbody-Gringley et al. 2015). The analysis of coral populations in terms of size-

frequency distribution, can provide a snap-shot of current reef condition and if monitored over 

time may be an indicator for stability or decline (Meesters et al. 1996; Caroselli et al. 2012). 

However, the population structure of coral species has been little investigated in the field, maybe 

for the extreme requirements of underwater survey efforts to collect colony-size data (Meesters 

et al. 2001). Population dynamics of modular organisms are often influenced by the depth at 

which they live, as depth can affects the feeding abilities of corals and consequently their 

potential energy reserves (Tsounis et al. 2006; Harland et al. 1992). During my abroad period I 

was involved in the investigation of population structure of the tropical colonial coral 

Montastraea cavernosa along the South Shore in Bermuda. Colony density, surface area and 

size-frequency distributions were strongly related to environmental conditions that vary with 

depth, such as temperature and nutrient levels. In fact, mesophotic reefs are characterized by 

more numerous but smaller colonies than shallow reefs. However, shallower and deeper 

populations contribute equally to overall percent cover, suggesting that mesophotic reef in 

Bermuda is relatively stable (Goodbody-Gringley et al. 2015: Chapter 5). The different size-

frequency distributions between depths could have a direct effect on larval recruitment, as a 

depth-dependent settlement of new recruits has been demonstrated in scleractinian corals 

(Mundy and Babcock 2000). 
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I.IV. Environmental influences on reproductive cycle  

It is widely recognized that environmental patterns influence many aspects of coral 

reproduction, such as gamete development, spawning, fertilization and planulation (Michalek-

Wagner and Willis 2001; van Woesik 2009; Torrents and Garrabou 2011). Gametogenesis and 

spawning require coordination with environmental cycles for ensuring synchronization and 

reproductive success but the degree of reproductive synchrony varies greatly within and among 

species at different geographic locations (Harrison 2011). Some corals belong to the highly 

coordinated mass phenomena described for the Great Barrier Reef (Babcock et al. 1986), and 

some species display biannual or multiple cycles of gametogenesis and breeding throughout the 

year in shallow and deep waters (Dahan and Benayahu 1997; Ben-David-Zaslow et al. 1999; 

Cordes et al. 2001, all soft corals; Waller and Tyler 2005; Goffredo et al. 2002, 2006, 2011; 

Marchini et al. 2015).  

Numerous studies state that seawater temperature is the major seasonal cue, partly because 

it influences many key physiological processes (Hochachka and Somero 2002) and also because 

broadcast spawning generally takes place when waters are warming or close to the annual 

maxima (Harrison and Wallace 1990). Other environmental variables can regulate reproductive 

cycles, in alternative to or in combination with temperature cycles, as food availability (Hartnoll 

1975; Coma et al. 1995), seasonal rainfall (Mendes and Woodley 2002), typhoons (Fan et al. 

2005), wind or tide patterns (Simpson 1985). Although seawater temperature has been suggested 

to influence larvae release in corals (Harrison et al. 1984; Babcock et al. 1986), this process 

appears to be triggered by the level of lunar irradiance (Harrison et al. 1984; Jokiel et al. 1985; 

Babcock et al. 1994) through sensitive photoreception in the blue region of the spectrum 

(Gorbunov and Falkowski 2002) and via photosensitive cryptochromes (Levy et al. 2007). Also 
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photoperiod was described as an environmental determinant of gamete release, capable of 

phasing the overall reproductive cycle. However, photoperiod might have a greater effect at 

higher latitudes where the seasonal day-length signal is strongest, but its importance as a natural 

entraining variable remains largely unknown (Pankhurst and Porter 2003).  

The temperate Mediterranean Sea is characterized by annual cycles of photoperiod that in 

turn influences seasonal patterns of seawater temperature, acting as regulator of the biological 

clocks of corals (Fiorillo et al. 2013). Gametogenesis in Mediterranean scleractinian corals 

investigated to date (Balanophyllia europaea, Goffredo et al. 2002; Leptopsammia pruvoti, 

Goffredo et al. 2006; Cladocora caespitosa, Kružić et al. 2008, Kersting et al. 2013; Astroides 

calycularis; Goffredo et al. 2011) seems related to seasonal variations of photoperiod and 

seawater temperature. In fact, while the decrease in photoperiod and seawater temperature in 

autumn and winter could be a cue for gamete development, the increase of the same 

environmental parameters, during winter and spring, seems to coincide with sperm release and 

oocyte fertilization (Airi et al. 2016). These results were confirmed by the study on the annual 

reproductive cycle of the Mediterranean coral Caryophyllia inornata at Elba Island, describing a 

gonadal development strongly influenced by seasonal variations of the environmental 

parameters. Indeed, gonadal size of both females and males increase significantly from March 

until May, when both photoperiod and seawater temperature increase after the minimum of the 

year. Fertilization takes place from April to July, when photoperiod is the longest of the year 

(Marchini et al. 2015: Chapter 2). 

For these reasons, sexual reproduction is considered the most sensitive life process to 

environmental variations and may indicate how organisms respond to stress (Harrison and 

Wallace 1990; Ward 1995; van Woesik 2009) such as thermal stress (Negri et al. 2007; Meyer et 
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al. 2008; Randall and Szmant 2009) or increased sedimentation and turbidity (Gilmour 1999; 

Fabricius et al. 2003). Moreover, all the phases of coral life cycle suffer the continuous increase 

of pollutants resulting from human action such as oil (Loya and Rinkevich 1979; Lane and 

Harrison 2002), metals (Reichelt-Brushett and Harrison 2005; Negri and Heyward 2001) and 

pesticides (Negri et al. 2005; Markey et al. 2007), which are severely compromising the health of 

coral reefs together with the impacts of climate changes such as global warming and ocean 

acidification.  

I.V. Corals in a changing ocean 

Temperature, pH, pCO2 and calcium carbonate (CaCO3) saturation are among the most 

important environmental factors controlling the distribution, physiological performance, 

morphology and behavior of marine invertebrates (Kinne 1970, Pörtner et al. 2005, Pörtner and 

Knust 2007, Pörtner 2008, Widdicombe and Spicer 2008, Doney et al. 2009). However, in the 

last decades there have been some alterations in the balance of these parameters, modifying the 

marine ecosystem. Currently, nearly 30% of the world's coral reefs are considered severely 

damaged, and close to 60% are likely to be lost by 2030 for a combination of physical, chemical 

and biological stresses (Wilkinson 2003). This decline is mostly due to the growing greenhouse 

gas emissions, which have led large increases in the atmospheric anthropogenic CO2 emissions 

to the atmosphere. Since the Industrial Revolution, the atmospheric CO2 has risen from 280 ppm 

to today’s level of 387 ppm (Pachauri et al. 2014). The current climate models estimated that 

pCO2 present levels will likely attain more than 1000 ppm by 2100 (Fig. 2a; Pachauri et al. 

2014). About half of the emitted anthropogenic CO2 still remains in the atmosphere (Houghton 

2007), a further 20% is removed from the atmosphere and stored on land and the remaining 30% 

is absorbed by the oceans, increasing acidity and causing ocean acidification (Sabine et al. 2004). 
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By dissolving in seawater, CO2 reacts with H2O, triggering a series of chemical reactions that 

alter the seawater carbonate chemistry, resulting in a drop in surface ocean pH. If the oceans 

continue to absorb CO2 , a further reductions of 0.3–0.5 pH units are expected by the end of this 

century (Fig. 2c; Pachauri et al. 2014). As the deposition of CaCO3 by the calcifying 

scleractinian corals and other reef organisms is partially controlled by the saturation state 

(Ωarag), a reduction in Ωarag indicates undersaturation and a tendency towards dissolution of the 

skeletal (Gattuso et al. 1998). Moreover, coral reproduction is described as a sensitive process to 

ocean acidification and negative effects have already been detected on sperm motility (Morita et 

al. 2009), fertilization success (Albright et al. 2010) and larval development (Albright et al. 

2008, 2010; Cohen et al. 2009; Suwa et al. 2010; Albright and Langdon 2011).   

Atmospheric greenhouse gases also trap some of the heat energy that would otherwise re-

radiate to space, contributing to warm the planet. In the past century, sea surface temperatures 

have risen by 0.4–0.8 °C and it was estimated a further increase ranging between 2 and 4.5°C by 

2100 (Fig. 2b; Pachauri et al. 2014). Ocean warming is the most serious direct climate change 

stressor for some regions, including the Mediterranean, southern North Sea, Western Antarctic 

Peninsula and south-eastern Australia (Ridgway 2007; Barnes and Peck 2008; Coma et al. 2009; 

Schmalenbach and Franke 2010; Schofield et al. 2010), leading to significant losses of ice sheets 

and increase in sea level (Pachauri et al. 2014). One of the most dramatic impacts of ocean 

warming on corals is mass coral bleaching, which is the breakdown of the symbiosis between 

corals and zooxanthellae (Glynn 1993). The host coral cannot then rely on the energy supplied 

by photosynthesis of the zooxanthellae, with negative consequences on the costly processes such 

as reproduction. Impacts of increasing temperature on environmental control of reproduction 

include reduced individual fecundity, low egg quality, lowered fertilization success and reduced 



12 
 

recruitment through effects on post-fertilization processes (e.g., embryonic and larval 

development, survival, settlement, metamorphosis, and early post-settlement growth; Albright 

and Mason 2013; Linares et al. 2008). 

It is expected that corals will be among the most threatened organisms on the planet, thus 

there is an urgent need to understand the susceptibility of the coral life history stages in face of 

changing ocean to develop management strategies for reproductive success. 

 

 

 

Fig. 2. (a) Emissions of carbon dioxide (CO) alone in the Representative Concentration Pathways (RCPs) (lines) and 

the associated scenario categories used in WGIII (coloured areas show 5 to 95% range). The WGIII scenario 

categories summarize the wide range of emission scenarios published in the scientific literature and are defined on 

the basis of CO2-eq concentration levels (in ppm) in 2100 (b) CMIP5 multi-model simulated time series from 1950 

to 2100 for change in global annual mean surface temperature relative to 1986–2005, and (c) global mean ocean 

surface pH. Time series of projections and a measure of uncertainty (shading) are shown for scenarios RCP2.6 

(blue) and RCP8.5 (red). Black (grey shading) is the modelled historical evolution using historical reconstructed 

forcings (Pachauri et al. 2014).  

  

(a) 
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I.VI. Environmental gradients as “natural laboratories” for climate changes studies 

To examine the effects of climate change on the organisms, there are two main empirical 

methods. In the first case, experiments can be performed in aquaria under controlled conditions 

(e.g., temperature, light, pCO2 or pH). This approach enables researchers to avoid the impact of 

confounding factors and to study organisms' responses to environmental conditions not yet 

occurring under natural conditions, such as predicted extreme temperatures or pH values. 

However, they lack the complexity of natural systems, including co-limiting factors (nutrients, 

currents and irradiance) and are too short to fully address ecosystem-level responses. Another 

approach implies using environmental gradients (such as latitudinal, acidity and bathymetric) as 

“natural laboratories”, in which however confounding factors such as local adaptation and 

species interactions (Dunne et al. 2004) cannot be excluded. On the other hand, sites along a 

natural gradient have evolved with the local climate over years or even centuries, providing a 

unique opportunity to assess the integrated long-term effects of temperature on marine organisms 

in a larger ecosystem framework (Rustad 2008). For these reasons, the relative lack of studies 

using natural gradients merits attention given the different abiotic and biotic processes occurring 

along all the types of gradients.  

In the Mediterranean Sea, the effects of temperature and solar radiation on reproduction 

have been recently investigate along a latitudinal gradient covering approximately 850 km and a 

2°C temperature difference that matches the expected temperature increase for the end of this 

century (Stocker et al. 2013). The zooxanthellate coral Balanophyllia europaea was investigated 

in six populations located along this gradient. The warmest populations showed a reduced 

productivity in the gametogenetic process, suggesting that the zooxanthellate B. europaea is 

affected by increasing temperature. It is hypothesized that this sensitivity could depend on the 

http://onlinelibrary.wiley.com/doi/10.1111/1365-2745.12074/full#jec12074-bib-0039


14 
 

symbiosis with the zooxanthellae since the photosynthesis of these unicellular algae is inhibited 

at higher temperatures, reducing the available energy for reproductive processes (Airi et al 

2014). In fact, reproductive output of the non-zooxanthellate coral Leptopsammia pruvoti, 

studied along the same latitudinal gradient, is unaffected by higher temperature and solar 

radiation. My research included a study performed along this temperature gradient on the non-

zooxanthellate coral Caryophyllia inornata. The reproductive output of this non symbiotic 

species does not vary along the gradient, indicating that this species might be quite tolerant to 

increasing temperature and solar radiation (Manuscript in preparation: Chapter 3).   

We also assessed, for the first time, the effect of long-term exposure to acidic conditions on 

the reproduction of a coral naturally occurring at CO2 vents (Manuscript in preparation: Chapter 

4). Continuous and localized CO2 emissions (99% CO2; Capaccioni et al. 2007), which naturally 

acidify the surrounding seawater, are generated by an underwater volcanic crater at 10 m depth, 

located off Panarea Island (Aeolian Archipelago, southern Tyrrhenian Sea). The CO2 emissions 

generate a pH gradient simulating levels matching different IPCC scenarios. The 

spermatogenesis of B. europaea living along the natural pH gradient, was not affected by 

increasing CO2, perhaps because in a hypercapnic (high CO2) environment the photosynthetic 

efficiency of the zooxanthellae is enhanced, leading to an increase of the available energy for 

host gonadal development.  

Finally, bathymetric gradients are useful to compare the structures between shallow and 

deep populations to establish criteria that characterize the ‘‘health’’ of coral reefs, and to 

formulate management plans in response to anthropogenic and natural disturbances (Lesser 

2004). As corals of shallow depths (5 to 30 m) are most susceptible to the effects of climate 

change (increase of sea surface temperatures and storm wave damage) and to the harmful human 
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activities (sedimentation, nutrient enrichment, physical damage, overfishing), mesophotic 

populations (> 30 m) may serve as potential sources of larvae for the impacted shallow reef 

communities. In Bermuda we observed that the colony size of M. cavernosa was significantly 

smaller at mesophotic sites, suggesting that growth rates and maximum colony surface area are 

limited in conditions of lower light intensity, seawater temperature, and nutrient concentration. 

Colony density was significantly higher at mesophotic sites, however, the average percent cover 

was not significantly different (Goodbody-Gringley et al. 2015: Chapter 5). These results suggest 

that the mesophotic zone, which extends around the perimeter of the Bermuda platform, makes a 

viable habitat able to support an established population of M. cavernosa, leading to the 

development of the “Deep Reef Refugia Hypothesis”. In fact, investigating the health and 

stability of mesophotic coral populations can give insights on the capability of these reefs to 

serve as a source of propagules to maintain shallow water reefs and help guide future 

management and conservation strategies (Lesser et al. 2010). 
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Abstract
The variety of reproductive processes and modes among coral species reflects their

extraordinary regeneration ability. Scleractinians are an established example of clonal ani-

mals that can exhibit a mixed strategy of sexual and asexual reproduction to maintain their

populations. This study provides the first description of the annual reproductive cycle and

embryogenesis of the temperate species Caryophyllia inornata. Cytometric analyses were

used to define the annual development of germ cells and embryogenesis. The species was

gonochoric with three times more male polyps than female. Polyps were sexually mature

from 6 to 8 mm length. Not only females, but also sexually inactive individuals (without germ

cells) and males were found to brood their embryos. Spermaries required 12 months to

reach maturity, while oogenesis seemed to occur more rapidly (5–6 months). Female polyps

were found only during spring and summer. Furthermore, the rate of gamete development

in both females and males increased significantly from March to May and fertilization was

estimated to occur from April to July, when mature germ cells disappeared. Gametogenesis

showed a strong seasonal influence, while embryos were found throughout the year in

males and in sexually inactive individuals without a defined trend. This unusual embryogen-

esis suggests the possibility of agamic reproduction, which combined with sexual reproduc-

tion results in high fertility. This mechanism is uncommon and only four other scleractinians

(Pocillopora damicornis, Tubastraea diaphana, T. coccinea andOulastrea crispata) have
been shown to generate their broods asexually. The precise nature of this process is still

unknown.

Introduction
Reproductive biology is a key feature of an organism’s life strategy [1] and is fundamental to
understand the population structure and dynamics of sessile animals [2], which are an
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important component of aquatic communities. Corals are modular organisms that can poten-
tially lead to a variety of reproductive processes and modes, reflecting their extraordinary
regeneration ability, developmental plasticity, and adaptability [3,4]. However, for reproduc-
tion, there are essentially only four combinations of reproductive patterns: propagation mode
(sexual or asexual), sexuality (hermaphroditic or gonochoric), reproductive mode (broadcast-
ing or brooding), and embryonic development (coeloblastula or stereoblastula) [4]. These
organisms can display a mixed propagation mode of sexual and asexual reproduction in order
to preserve their populations [5]. Simultaneous mixed reproduction is rare in animals and is
often described as the “best-of-both-worlds” scenario that can help organisms adapt to chang-
ing environments [6]. Sexual reproduction requires the production of gametes, fertilization,
embryo development, a larval phase and enables genetic recombination and production of new
genotypes. This genotypically different lineage might enable a wide dispersion or recoloniza-
tion of more heterogeneous habitats, increasing the fitness and survival of the species [7,8].
Asexual reproduction may take place via colony fragmentation, colony fission, longitudinal
and transverse division, polyp expulsion or polyp “bail-out”, budding and, in rare cases, the
production of brooded embryos spreading successful genotypes without mating [4]. This clonal
line might contribute to keeping populations inside the area of the parental habitat, thus propa-
gating well-adapted genotypes at the local level [8]. It may be also an adaptation that allows the
exploitation of newly available substrata after a disturbance event [9].

Concerning sexuality, most of the scleractinians are hermaphrodites and only 26% of the
studied species are described as gonochoric [3,4]. The hermaphroditism normally is simulta-
neous, but there are some forms of hermaphroditism more complex to detect as the cyclic
sequential in the same breeding season (as has been described for three deep species of the
genus Caryophyllia) [10] and the protandrous or protogynous sequential during the life. Lobac-
tis scutaria and Lithophyllon repanda are predominantly male at small sizes whereas large indi-
viduals are all females, suggesting that these fungiids are protandrous hermaphrodites [11,12].
Additionally, Ctenactis echinata is a protandrous species but has the capacity for bidirectional
sex change between the years as occurs in dioecious plants that display a labile sexuality in
response to energetic and/or environmental constraints [12].

Fertilization can be either internal when the embryo is formed and develops within the
polyp and is released as a motile planula (brooding), or external when the embryo develops in
the water column (broadcast spawning); the first condition is less common within the order
Scleractinia and represents the 16% of the total number of known coral species [3,4]. Very few
brooders can produce planulae by asexual processes, indeed, it has been shown only in some
populations of Pocillopora damicornis [13], sometimes in combination with gametogenetic
activity [9,14,15], in Tubastraea diaphana [16], T. coccinea [16,17], and Oulastrea crispata
[18,19]. These scleractinians were also found to be pioneer species, colonizing unpredictable,
short-lived or unexploited habitats as oil and gas platforms [19,20].

The reproductive cycle can be regulated by several environmental factors such as seawater
temperature, photoperiod, wind or current patterns, lunar cycles of night irradiance, food
availability and seasonal rainfall [1,4]. In particular, photoperiod (therefore solar radiation)
and seawater temperature are not mutually exclusive events. In fact, in the Mediterranean Sea
there are marked seasonal patterns of seawater temperature driven by photoperiod and irradi-
ance cycles distinctive of temperate latitudes [1]. However, while several studies have shown
that seawater temperature strongly influences gametogenesis [17,21–25], the potential role of
photoperiod has so far been overlooked.

Although reproduction of scleractinians has been thoroughly studied in the last decades
[12,21,22,26–34], the great variety of reproductive strategies within this group is not yet
entirely known and even less is known about asexual patterns. Furthermore, knowledge on the
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reproductive biology of Mediterranean scleractinian corals is scarce and exclusively linked to
aspects of the sexual propagation of Balanophyllia europaea [35–39], Leptopsammia pruvoti
[2,40], Cladocora caespitosa [41,42] and Astroides calycularis [43–45].

This manuscript describes, for the first time, the quantitative aspects (sex ratio, size of indi-
viduals at sexual maturity, fecundity, and seasonal patterns of gonadal development and fertil-
ity) of the annual reproductive cycle in the Mediterranean solitary coral Caryophyllia inornata
(S1 Fig; Duncan, 1878) at Elba Isle (Italy). Some aspects of the reproductive biology of this spe-
cies have already been described, revealing a gonochoric sexuality and a brooding reproductive
mode, driven by an unusual pattern of embryogenesis in which embryos are found in females,
males and sexually inactive individuals throughout the year, suggesting a possible asexual ori-
gin of the embryos [46].

Materials and Methods

Ethic Statement
According to the European normative (2010/63/EU of 8 August 2010) on the protection of ani-
mals used for scientific purposes, there is no active conservation measure for the Mediterra-
nean coral Caryophyllia inornata. The species is not protected in Italy, nor it is subject to any
regulations. Hence, no permit was needed to collect samples. For this study, sampling was lim-
ited strictly to the number necessary and performed where the species is characterized by a
high population density to minimize the impact of removing individuals and preserve both the
demographic and genetic structure of the natural populations.

Study species, sample collection and environmental parameters
The solitary coral Caryophyllia inornata is distributed in the Mediterranean Sea [47] and
extends up to the Northeastern Atlantic coasts [48], from the Canary Islands to the Southern
coast of the United Kingdom [47]. It colonizes caves, walls and wrecks, from the surface down
to 100 m depth in dimly lit or dark environments, representing one of the main species that
populate the walls and the vaults of caves and in some cases is the dominant species [49].

Polyps were collected from an aircraft wreck at Elba Isle (42°45’N, 10°24’E), during 18
monthly samplings fromMay 2009 to October 2010. A minimum of 15 polyps were collected
randomly each month at a depth of 12–15 m by SCUBA diving. The population density in the
sampling site was 6025 ± 898 (mean ± SE) individuals m-2 with a percentage cover of
15.3 ± 2.5% (mean ± SE) [50].

Photoperiod data were obtained from an online database (http://www.eurometeo.com).
Water temperature (°C) was continuously recorded every three hours by digital sensors (I-But-
ton DS1921H, Maxim Integrated Products) placed at the depth and site of collection for the
entire sampling period. A linear regression was produced between DT (Depth Temperature;
°C) and SST (Sea Surface Temperature; °C) data to estimate temperatures during periods in
which sensors were lost due to bad weather conditions. In this study we considered the
monthly average DT of almost two years of sampling (n = 18 monthly temperatures).

Polyps were fixed in saturated formalin solution (10% formaldehyde and 90% seawater; the
solution was saturated with calcium carbonate) and transferred to the laboratories for histolog-
ical analysis.

Biometric and histological analysis
Biometric analyses were performed on 158 polyps by measuring length (L, maximum axis of
the oral disc), width (l, minimum axis of the oral disc) and height (h, oral–aboral axis) of each
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sampled polyp. The volume (V) of the individual polyp was calculated using the formula
V = h � (L/2) � (l/2) � π [37].

Polyps were post-fixed in Bouin solution. After decalcification in EDTA and dehydration in
a graded alcohol series from 80% to 100%, polyps were embedded in paraffin and serial trans-
verse sections were cut at 7 μm intervals along the oral-aboral axis, from the oral to the aboral
poles. Tissues were then stained with Mayer’s haematoxylin and eosin [37].

Cytohistometric analysis
Cytohistometric observations were performed with an optical microscope using the software
NIKON NIS-Elements D 3.2. The maximum and minimum diameters of the oocytes in nucle-
ated sections and spermaries were measured and classified into developmental stages according
to earlier studies on gametogenesis in scleractinians [11,37,51–54]. The presence of embryos in
the gastrovascular cavity and mesenterial septa was recorded, and their stage of maturation
identified [2,35]. The size of each reproductive element was determined as the mean of the two
diameters [2,43].

Definitions
In accordance with the sexuality described by Goffredo et al [46], based on the type of germ
cells observed and the presence or absence of embryos, 5 reproductive states have been identi-
fied: sexually active individuals that present gametogenetic activity (i.e., females with embryos,
males, and males with embryos) and sexually inactive individuals, without germ cells (i.e., inac-
tive individuals and inactive individuals with embryos).

The following reproductive parameters were determined: a) size at sexual maturity, defined as
the length at which 50% of the analyzed polyps developed spermaries or oocytes; b) fecundity,
defined as the number of mature oocytes produced per body volume unit (100 mm3) per repro-
ductive season; c) gonadal index, defined as the percentage of body volume occupied by germ
cells [37]; d) fertility, defined as the number of embryos per body volume unit (100 mm3).

Results

Sexuality and reproductive mode
The analysis of 158 polyps confirmed that Caryophyllia inornata is gonochoric and brooder
[46]. The sex ratio of sexually active polyps was significantly different from 1 with a 1:3.5 male
biased ratio (chi-square test, χ2 = 20.43, df = 1, p< 0.001).

Embryos were found in all monthly samples and inside females, males, and inactive individ-
uals (Fig 1) [46]. All 15 females had embryos (L = 7.9 ± 0.4 mm; V = 366 ± 47 mm3;
mean ± SE). Of the 52 males, 45 had embryos (L = 8.2 ± 0.3 mm; V = 363 ± 31 mm3;
mean ± SE) and 7 were without embryos (L = 6.5 ± 0.4 mm; V = 219 ± 27 mm3; mean ± SE).
Of the 91 inactive polyps, 60 had embryos (L = 7.9 ± 0.3 mm; V = 341 ± 29 mm3; mean ± SE)
and 31 did not show embryos (L = 5.5 ± 0.4 mm; V = 171 ± 40 mm3; mean ± SE).

Polyps up to 6 mm in length were immature and size at sexual maturity ranged from 6 to 8
mm in length (Fig 2). According to biometric analyses a polyp in this category has l = 5–7 mm,
h = 5–6 mm, V = 146–206 mm3. The frequency of sexually mature polyps decreased in larger
size classes (Fig 2).

Annual reproductive cycle
Female polyps were observed between February and July, while males were found during the
entire year (Figs 1 and 3). This suggests that the oogenesis process requires less time to reach
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the final stage of maturation than spermatogenesis, which needed about 12 months (Fig 3).
Gonadal size of both females and males increased significantly fromMarch until May, when
both photoperiod and water temperature increased after the minimum of the year (Fig 4A and
4B). Fertilization took place from April to July, when photoperiod was the longest of the year
(Fig 4A and 4B). Immediately after the fertilization period, we observed the emptying of

Fig 1. Monthly frequency of the 5 reproductive states.Monthly frequency of the 5 reproductive states (female with embryos, inactive individual, inactive
individual with embryos, male and male with embryos) characterizing the population of Elba Isle, between May 2009 and October 2010 (N = 158).

doi:10.1371/journal.pone.0141162.g001

Fig 2. Fraction of sexually mature individuals per size class (mm). Fraction of sexually mature individuals per size class in millimeters, collected at Elba
Isle. The values above the bars indicate the number of sexually mature polyps (bold) out of the number of polyps analyzed per size class (N = 158).

doi:10.1371/journal.pone.0141162.g002
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spermaries and we did not register the presence of oocytes (Fig 3). During the autumn months
following the fertilization period, we observed the development of early stages of spermaries
maturation in males (Fig 3).

Size of mature oocytes and fecundity
All the oocytes of Caryophyllia inornata reached maturity during the period from February to
July, since we observed their disappearance after fertilization. Mature oocyte size was 69.7 μm
(SE = 0.1) and ranged from 12 μm to 382 μm. We found a mean fecundity of 20’106
(SE = 11’715) mature oocytes in averaged-sized females of L = 7.9 mm (SE = 0.4), correspond-
ing to l = 7.0 mm (SE = 0.4), h = 8.0 mm (SE = 0.4), V = 366 mm3 (SE = 47), N = 15 polyps col-
lected during the period of gonadal development (Fig 4B).

Fertility
Polyps up to 6 mm in length were not fertile and size at embryo production ranged from 6 to 8
mm in length (Fig 5). A continuous production of embryos in different stages of development
(early embryos, intermediate and advanced stereogastrulae) [46] was observed during the
entire year (Fig 4C). The fertility of females increased significantly from April to June, the same
period in which gonadal development increased and fertilization occurred (Figs 4B and 4C and
6A). Embryos inside males and sexually inactive individuals were observed in all sampling
months without a clear relation with seasonal variations of water temperature and photoperiod
(Fig 6B and 6C).

Discussion

Sexuality and reproductive mode
This study provides the first description of the quantitative aspects of the annual reproductive
cycle and embryogenesis of the temperate species Caryophyllia inornata.

C. inornata is gonochoric and brooder, as previously described for this species [46]. Histo-
logical analyses confirmed that no polyps showed simultaneous male and female gametes in
different stages of development, excluding the possibility of a cyclical hermaphroditism, as
reported for the three deep species of the genus Caryophyllia [10]. Also, protandrous or proto-
gynous sequential hermaphroditism can be excluded, as the size of male and female individuals
was not significantly different [46].

The male biased sex ratio observed in C. inornata could be explained by a clonal propaga-
tion where male clones are more likely to reproduce asexually than females, as has been
reported in some solitary scleractinians of the Fungidae family: Diaseris distorta, Lobactis scu-
taria, Lithophyllon concinna and Fungia fungites [11,23,55]. A male biased sex ratio may also
increase fertilization success, resulting in an advantage for sessile gonochoric corals with inter-
nal or surface fertilization [56–58]. Within the family Caryophylliidae, an agamic propagation
by unequal intratentacular budding was observed in the colonial coral Lophelia pertusa [59–
61]. This cold-water scleractinian also displays sexual reproduction, following an annual cycle
of gametogenesis [62]. Evidence of an asexual production of brooded embryos in combination
with gametogenetic activity, as it might occur for C. inornata, has been demonstrated in some
populations of Pocillopora damicornis, in Western Australia, Hawaii, and southern Japan

Fig 3. Oocytes and spermaries size-frequency distribution. Size-frequency distribution of oocytes and of the five stages of spermary maturation in
monthly samples collected at Elba Isle fromMay 2009 to October 2010. Values reported indicate the number of polyps/the total number of oocytes or
spermaries measured per monthly sample. F = fertilization period.

doi:10.1371/journal.pone.0141162.g003
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[6,9,15,16,63–67]. This strategy has been observed in other tropical scleractinians like Tubas-
traea diaphana [16], T. coccinea [17] and Oulastrea crispata, which can also produce asexual
embryos during periods when gametogenesis is not occurring [18,19]. This mixed reproductive
strategy might allow colonization of new structures in the sea, in a relatively short period of
time [19]. The Australian sea anemone Actinia tenebrosa [68,69] and the tropical A.

Fig 4. Variation in water temperature, photoperiod, gamete development and fertility. Variation in water temperature and photoperiod (A), gamete
development (monthly mean + SE; B), and total fertility (monthly mean + SE; C) fromMay 2009 to October 2010 at Elba Isle. F = fertilization period.

doi:10.1371/journal.pone.0141162.g004
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bermudensis [70] brood embryos genetically identical to the parent. The same pattern of
embryogenesis was observed in the temperate A. equina, which displays asexual brooded
embryos while undergoing a (regular) gametogenetic cycle and reveals genetic variation at iso-
zyme loci, providing clear evidence that sexual reproduction also occurs [71–74]. However, to
date, none of these species have been shown to use sexual reproduction to produce brooded lar-
vae. Instead, sexual larvae could be generated by broadcast spawning and external fertilization
[72,74–76], probably to produce widely dispersed planktonic progeny [7].

Reaching sexual maturity is a process which depends on size and age of the organism and is
one of the main components of reproductive biology [77]. C. inornata reached sexual maturity
between 6 and 8 mm in length. The fraction distribution of sexually mature individuals has a
bell-like shape, where both smaller size and larger size individuals tended to not produce germ
cells. Smaller polyps may be immature individuals without the ability to produce gametes,
while larger polyps may be sexually old individuals that preserve the ability to produce agamic
embryos. In fact, it is possible that this species, after reaching a certain size/age, is affected by
senescence [46] leading to a progressive decline in metabolic functions and to an increase in
the mortality rate [78]. This phenomenon was demonstrated for the colonial coral Stylophora
pistillata which shows a significant decrease in the rate of reproduction a few months before
the natural death of the colony [79]. However, this hypothesis has to be taken cautiously
because sexually inactive individuals with embryos in C. inornata were not significantly larger
than the embryogenetic sexually active ones. Further studies on reproductive senescence are
needed to clarify this peculiar aspect.

Annual reproductive cycle
The size frequency distribution of spermaries observed during monthly samples suggests that
spermatogenesis of Caryophyllia inornata follows an annual cycle, where male germ cells
require about 12 months to mature. A similar spermatogenesis has been documented, within

Fig 5. Fraction of fertile individuals per size class (mm). Fraction of fertile individuals per size class in millimeters, collected at Elba Isle. The values above
the bars indicate the number of sexually mature polyps (bold) out of the number of polyps analyzed per size class (N = 158).

doi:10.1371/journal.pone.0141162.g005
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the Caryophylliidae family, for the deep coral Lophelia pertusa in Norway [62]. On the other
hand, oocytes were present in only 5–6 months, showing a shorter oogenesis than L. pertusa

Fig 6. Diagram of the relationship between environmental parameters and fertility.Diagram of the
relationship between water temperature (solid line), photoperiod (dotted line) and monthly mean fertility (bars)
of females (A), sexually inactive individuals (B) and males (C) fromMay 2009 to October 2010. Error bars are
standard errors (SE). * Reproductive state not detected.

doi:10.1371/journal.pone.0141162.g006

Reproductive Biology in a Mediterranean Coral

PLOS ONE | DOI:10.1371/journal.pone.0141162 October 29, 2015 10 / 17



(13–14 months in duration, with one or two months overlapping between cycles) and shorter
than the other temperate scleractinians whose reproductive cycle has been studied in detail:
Balanophyllia europaea [37], Leptopsammia pruvoti [40], Astroides calycularis [44]. These
three species display an oogenesis of about 24 months with an overlap of the gametogenetic
cycle. Is not unusual for scleractinian gametogenetic cycle to differ between males and females
but the general trend is a much longer oogenesis [11,21,40,80,81] which needs more time and
energetic investment with respect to spermatogenesis [37,82].

Our results showed that the annual reproductive cycle of C. inornata is characterized by
oogenetic development and fertilization that take place between February and July and appears
to be strongly influenced by seasonal variation in photoperiod and water temperature. The
increase of photoperiod and water temperature during the spring and early summer coincides
with the maximum development of the gonads and might be a potential cue for sperm release
and oocytes fertilization. Variations in seawater temperature are often mentioned as an impor-
tant phenomenon that controls gametogenetic cycles and planula release in many anthozoans
[17,21–25,83]. Fewer studies have been shown that even photoperiod could be involved in the
reproduction processes [81,84–86]. Histological techniques do not allow to detect with reason-
able accuracy the planulation patterns in C. inornata. However, the population shows
decreased fertility in July, which could indicate the release into the environment of planulae
derived from the previous period of fertilization (sexual planulae) and, therefore, a rather short
maturation period of planulae. The timing of maturation of sexual planulae is usually of the
order of several months, 1–4 months for L. pruvoti [2] and 4–5 months for B. europaea [37,38].
In B. elegans, embryos require 14–15 months of development, presenting an equally long
oogenesis [87].

Size of mature oocytes and fecundity
In order to make a comparison within the genus, it has been considered the maximum oocyte
size which was greater in Caryophyllia inornata (382 μm) than in C. smithii (150 μm) [88]. On
the other hand, the maximum oocytes size of the deep species C. sequenzae (450 μm) and C.
ambrosia (700 μm) was greater than C. inornata, while C. cornuformis was approximately the
same size (350 μm) [10]. Within the genus Caryophyllia, the size of mature oocytes could
increase with the increase of depth [10]. Large oocytes and subsequent lecitotrophic develop-
ment are currently recognized as an adaptation to environments such as the oligotrophic abyss
[89]. The larval development mode has not yet been determined for C. inornata, but the small
size of oocytes (12–382 μm) could suggests a planktotrophic development of the larvae that
generally have a rather long pelagic larval phase and a marked ability to disperse [90].

All the oocytes of C. inornata were considered potentially fertilizable (therefore mature) as
we observed their disappearance after fertilization with oogenesis restricted to a short period of
time (February-July). This contrasts with the Mediterranean coral Leptopsammia pruvoti
whose reproductive cycle has been extensively studied. Fecundity of L. pruvoti was estimated
considering only mature oocytes (size> 340 μm) since two distinct stocks of oocytes are pres-
ent, resulting in thousands of times lower (20.2 mature oocytes) fecundity than in C. inornata
[40]. These results suggest that our species tends to produce many small oocytes concentrated
in a few months a year.

Fertility
Caryophyllia inornata was fertile between 6 and 8 mm in length, the same size of sexual matu-
rity. However, it is noteworthy that in the smaller size (between 4 and 6 mm) almost 50% of
polyps was able to produce embryos, while less than 30% of the same size class was sexually
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mature. It is therefore likely that this species begins to produce embryos before producing
germ cells, suggesting again a possible agamic production of brooded embryos. In contrast to
the “bell shaped” distribution of sexually mature individuals, the distribution of fertile (embry-
ogenenetic) individuals showed an increasing trend, suggesting that larger/older polyps main-
tain their ability to produce embryos even without sexual reproduction. Combosch and
Vollmer [6] found that bigger colonies of Pocillopora damicornis reproduce more asexually
than smaller colonies, leading to increased recruitment and survival of the successful genotypes
in larval cohorts.

In C. inornata, 87% of males and 66% of sexually inactive individuals had embryos at differ-
ent stages of maturation (66% of total individuals). The production of embryos by these indi-
viduals was not related with seasonal variations in water temperature and photoperiod. In fact,
these embryogenetic polyps showed all stages of embryo development throughout the year
[46]. Embryogenetic sexually inactive individuals, that strongly characterize this population,
might be: i) a third reproductive state that reproduces only agamically; ii) sexually old individu-
als (as observed in Stylophora pistillata) [79], with the ability to produce agamic embryos; iii)
quiescent males during the months immediately following the fertilization period; iv) cryptic
females within the group of sexually inactive individuals. In fact, the high proportion of this
group raises the possibility that females could be present in the same abundance as the sexually
inactive individuals, but that their gametes develop in a shorter period (5–6 month per year).
The sea anemones Actinia equina, A. tenebrosa and A. bermudensis show similarities with C.
inornata as their populations are characterized by embryogenetic females, embryogenetic
males, and embryogenetic sexually inactive individuals that brood embryos throughout the
year [69,70,74]. It has been hypothesized that these anemones present a rapid sequential
hermaphroditism, producing sexual embryos as females, and continue to brood while they
switch rapidly (relative to the duration of brooding) into males, passing through an intermedi-
ate sexually inactive phase [91]. However, molecular studies and laboratory experiments dem-
onstrate that embryos inside males and sexually inactive individuals may be produced by some
form of agamic internal budding [14,15,18,69,72,73,75,92].

The continuous and high fertility of C. inornata in the study area, on the order of about a
hundred embryos per polyp, might partially be due to asexual production of planulae, making
this species a successful colonizer. As such, the small oocytes and the consequent plankto-
trophic development may favor the dispersal and colonization of distant areas. However, the
effect of habitat stability and varying levels of disturbance on sexual and asexual reproduction
might be more complex [15].

Summarizing, C. inornata was sexually mature and produced embryos between 6–8 mm in
length. Gametogenesis was influenced by temperature and photoperiod and was characterized
by a rapid oogenesis. C. inornata showed small oocytes and high fecundity. In contrast to
gametogenesis, fertility did not show a seasonal trend since embryos were found in females,
males and sexually inactive individuals throughout the year, suggesting an agamic origin of the
embryos. Further analysis with molecular markers such as hypervariable microsatellites are
needed to confirm a possible asexual production of brooded embryos in C. inornata at Elba
Isle. Although several studies on the production of brooded embryos have been carried out, the
precise nature of this reproductive mode is still unknown.
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Reproduction of the solitary coral Caryophyllia inornata is unaffected along an 850 km 

gradient on the western Italian coast 

Abstract 

The main greenhouse gas produced by human activity is carbon dioxide that traps some of the 

thermal energy, causing an increase in global surface temperature. The IPCC predicted that 

ocean surface temperature will rise of 0.6-2.0 °C by 2100. Ocean warming is expected to 

produce strong impacts on marine ecosystems such as coral reefs, affecting reproductive 

processes. This study examined variations in reproductive output in relation to seawater 

temperature and solar radiation along a wide latitudinal gradient on the western Italian coast, in 

the non-zooxanthellate Mediterranean coral, Caryophyllia inornata. Fecundity, spermary 

abundance, gonadal index and fertility in females, males and sexually inactive individuals were 

homogeneous along the latitudinal gradient. The non-zooxanthellate species C. inornata seems 

quite tolerant to environmental changes, similarly to the non-zooxanthellate Leptopsammia 

pruvoti, probably because the lack of zooxanthellae would make them less dependent from 

environmental parameters as solar radiation and temperature. 
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Introduction 

Climate change is today one of the most serious threats to the biodiversity of our planet. 

Since the Industrial revolution, the human use of fossil fuels, deforestation and the massive 

advent of the intensive agriculture have dramatically increased the concentration of greenhouse 

gases in the atmosphere (Sabine et al. 2004). The main greenhouse gas produced by human 

activity is carbon dioxide (Solomon et al. 2007), which currently has an accumulation rate in the 

atmosphere that has never been recorded (Kump et al. 2009). Greenhouse gases trap some of the 

thermal energy, causing an increase in global mean temperature (Harley et al. 2006) and, 

consequently, in ocean surface temperature that has risen of 0.4-0.8 °C over the last century 

(Harley et al. 2006). If the anthropogenic emissions keep growing, a further increase of 0.6-2.0 

°C is expected by 2100 (Stocker et al. 2013). According to the Intergovernmental Panel on 

Climate Change (IPCC), ocean warming is producing profound impacts on marine ecosystems, 

which are among the most ecologically and socio-economically vital on the planet (Harley et al. 

2006).  

Climatic models predict greater influence of the global warming in the temperate areas 

than tropical ones (Solomon et al. 2007). In particular, the small enclosed Mediterranean Sea that 

is considered a ‘biodiversity hotspot’, is one of the most strongly affected regions by increasing 

temperature (Field et al. 2012). Indeed, the warming rates of the Mediterranean Sea are three 

times higher than those of the oceans (Solomon et al. 2007; Vargas-Yáñez et al. 2007). These 

traits make the Mediterranean Sea one of the most emblematic natural model for studying the 

interactions between marine life and environmental changes (Feely et al. 2004; Lejeusne et al. 

2010).  
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The increase in seawater temperature will probably have an impact on the biology of coral 

populations, reducing their reproductive capacity (Baird and Marshall 2002). In fact 

reproduction, which is steadily exposed to environmental cues, is considered the most sensitive 

stage of the life cycle and can provide information on how organisms react to stress (Harrison 

and Wallace 1990; Ward 1995; van Woesik 2009). The reproductive cycle of corals can be 

affected by ocean warming through reduction of fertility, eggs quality, fertilization and 

recruitment success, threatening the ability of corals to recover after disturbances (Albright and 

Mason 2013; Linares et al. 2008). Although fertilization of corals is highly sensitive to water 

chemistry, some studies indicates that this process in many species can be resistant to near-future 

ocean warming, suggesting an acclimatization or adaptation to high temperature stress (van 

Oppen et al. 2015). In general, embryos and larvae were found to be less thermotolerant than 

gametes and fertilization (Byrne 2011).  

While several studies show the effects of ocean warming on sexual reproduction of tropical 

scleractinians (Harriot 1983; Bassim et al. 2002; Krupp et al. 2006; Nozawa and Harrison 2007, 

Negri et al. 2007), only a few investigated the response at elevated temperatures in temperate 

corals and even less in the non-zooxanthellate ones (Airi et al. 2014; Airi submitted). 

The present study examined the non-zooxanthellate solitary coral Caryophyllia inornata 

(Fig 1), which is widely distributed in the eastern and western Mediterranean Sea (Zibrowius 

1980), extending to the northeast of the Atlantic coast (Cairns 1999), and from the Canary 

Islands to the southern coasts of England (Zibrowius 1980). Its population density can reach 

thousands of individuals per m
2
, varying from 100 to 1500 individuals per m

2
 along the western 

Italian coasts (Caroselli et al. 2015). Caryophyllia inornata is gonochoric and brooding 

(Goffredo et al 2012, Marchini et al. 2015), showing peculiar traits such as a male biased sex 
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ratio (1:3; Goffredo et al. 2012) and the presence of embryos in coelenteric cavity and mesenteric 

septa of females, males and sexually inactive individuals (without germ cells), throughout the 

year (Marchini et al. 2015). Previous studies reveal that temperature and solar radiation not affect 

population density, growth parameters, net calcification rate, bulk skeletal density and linear 

extension rate of C. inornata (Caroselli et al. 2015; Caroselli et al. 2016a; Caroselli et al. 2016b), 

while variations have been observed in population dynamics with increasing solar radiation 

(Caroselli et al. 2016a). The specific aim of this work was to quantify the reproductive output of 

Caryophyllia inornata along a latitudinal gradient of temperature and solar radiation in face of 

ocean warming. 

Materials and Methods 

Samples collection and environmental parameters 

Specimens of Caryophyllia inornata were collected from five sites along a latitudinal 

gradient, from 44°20'N to 36°46'N (Fig 2). Coral collection occurs from June 2010 to November 

2012. During this period, 18 monthly samplings were performed for four populations (Genova: 

April 2011-September 2012; Calafuria: February 2011-July 2012; Scilla: July 2010-November 

2012; Pantelleria: September 2010-November 2012), with a minimum of 15 polyps collected 

during each excursion. Data from Elba Island population came from a previous study (Marchini 

et al. 2015) for which samples were collected between May 2009 and October 2010.  

Depth Temperature (DT; °C) was measured by digital thermometers (I-Button DS1921H, 

Maxim Integrated Products), placed at the sampling location for each population. Sensors 

recorded seawater temperature during the entire experimental period. Sea Surface Temperature 

data (SST; °C) for each site were recorded hourly from the National Mareographic Network of 

the Institute for the Environmental Protection and Research (ISPRA, available to 
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http://www.mareografico.it). These data were measured by mareographic stations, (SM3810 

manufactured by the Society for the Environmental and Industrial monitoring; SIAP+MICROS), 

placed close to the sampling sites. For each location, a linear regression was obtained between 

DT and SST data to estimate historical at-depth temperatures of the three years preceding the 

sampling.  

Solar radiation (W/m
2
) was recorded from the archives of the Satellite Application Facility 

on Climate Monitoring (CM-SAF/EUMETSAT, available to http://www.cmsaf.eu), using real 

time data sets based on intersensor calibrated radiances from MFG satellites. Mean annual solar 

radiation of each site was obtained for the 15 km square associated with each of the five sites. As 

for temperature, also for solar radiation we considered the average of the three years preceding 

the sampling. 

Biometric and hystological analysis 

Biometric analyses were performed by measuring length (L, maximum axis of the oral 

disc), width (W, minimum axis of the oral disc) and height (h, oral–aboral axis) of each sampled 

polyp. The volume (V) of the individual polyp was calculated using the formula                               

 V =  h ∗ (L/2) ∗ (l/2) ∗ π  (Goffredo et al. 2002). 

Polyps were post-fixed in Bouin solution to ensure a better fixation and staining of the 

tissues. After decalcification in EDTA and dehydration in a graded alcohol series from 80% to 

100%, polyps were embedded in paraffin and serial transverse sections were cut at 7 µm 

intervals along the oral-aboral axis, from the oral to the aboral poles. Tissues were then stained 

with Mayer’s haematoxylin and eosin (Goffredo et al. 2002; Marchini et al. 2015).  
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Cytohistometric analysis 

Cytometric analyses were made with an optical microscope using the image analyzer 

NIKON NIS-Elements D 3.2. The maximum and minimum diameters of the oocytes in nucleated 

sections and spermaries were measured and the presence of embryos was recorded. Spermaries 

were classified into five developmental stages according to earlier studies on gametogenesis in 

scleractinians (Goffredo et al. 2005; Goffredo et al. 2012).  

Definitions 

Reproductive output was defined through four reproductive parameters: a) fecundity rate 

and spermary abundance, both defined as the number of reproductive elements per body volume 

unit (100 mm
3
); b) “gonadal” index, defined as the percentage of body volume occupied by the 

germ cells; c) reproductive element size, defined as the average of the maximum and minimum 

diameter of spermaries and oocytes in nucleated section; d) fertility, defined as the number of 

embryos per body volume unit (100 mm
3
; Marchini et al. 2015). 

In accordance with the annual reproductive cycle described by Marchini et al. (2015), 

gametal development in C. inornata was characterized by two gametes activity periods. The 

gametes recruitment period (Korta et al. 2010; Lowerre-Barbieri et al 2011; Airi et al. 2014), 

occurring between February and April, was characterized by the development of early stages of 

oocytes and spermaries. The gametes maturity period (Korta et al. 2010; Lowerre-Barbieri et al 

2011; Airi et al. 2014), between May and July, was characterized by the presence of larger 

oocytes and advanced stage of maturation of spermaries that reached maturity for fertilization. 

Statistical analysis 

A 2-sample Kolmogorov-Smirnov test was used to compare the stages/size-frequency 

distribution of reproductive elements between gametes recruitment and gametes maturity periods 
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for all populations (Olea and Pawlowsky-Glahn 2009). Data were tested for normality using a 

single Kolmogorov-Smirnov test and for homogeneity of variance or homoscedasticity using a 

Levene’s test. When assumptions for parametric statistics were not fulfilled, a non-parametric 

test was used. The Kruskal-Wallis test is a non-parametric alternative to the analysis of variance 

(ANOVA) and is used to compare groups of means. The non-parametric Kruskal-Wallis test was 

used to compare reproductive parameters among study sites. Student’s t test was used to compare 

the mean oocytes and spermaries size of populations between reproductive periods. The Mann-

Whitney U test was used as a non-parametric alternative to the Student’s t test. Spearman’s rank 

correlation coefficient (ρ) was used to calculate the significance of the correlations between 

reproductive and environmental parameters. Spearman’s rank correlation coefficient is an 

alternative used for data that do not meet the assumptions of Pearson’s correlation coefficient 

(Altman 1991; Potvin and Roff 1993). All analyses were computed using SPSS 22.0 (Apache 

Computer Software Foundation). 

Results 

Mean annual depth temperature (DT; °C) and mean annual solar radiation (W/m²) were 

significantly different among sites (DT, Kruskal-Wallis, p<0.05; solar radiation, ANOVA, 

p<0.001; Table 1). 

All populations showed gonochoric and sexually inactive polyps in both reproductive 

periods (Table 2). 

Oocytes size/frequency distribution during February-April (gametes recruitment period) 

was significantly different from that of May-July (gametes maturity period), in all populations 

(Kolmogorov-Smirnov, p<0.001; Fig 3). The mean oocytes size was smaller than 100 µm in both 

reproductive periods and in all populations (Table 3; Fig 3). 

http://www.springerlink.com/content/?Author=Ricardo+A.+Olea
http://www.springerlink.com/content/?Author=Vera+Pawlowsky-Glahn
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The distribution of spermary maturation stages was significantly different between gametes 

recruitment and gametes maturity periods in all populations (Kolmogorov-Smirnov, p<0.001; 

Fig 4). From February to April (gametes recruitment period), each population was characterized 

by small spermaries belonging to the earliest maturation stages (stages I, II and III; Fig 4). 

During May-July (gametes maturity period) all populations were characterized by more 

advanced maturation stages (stage III, IV and V; Fig 4). The mean spermaries size during the 

gametes recruitment period was significantly lower than that of gametes maturity period in all 

populations (Mann-Whitney U test, p<0.05; Table 4; Fig 4). 

The presence of embryos in the gastrovascular cavity and mesenterial septa were recorded 

throughout the year without significantly differences between reproductive periods, in females, 

males and sexually inactive individuals of all populations (Table 5; Fig 5). 

Female fecundity and gonadal index were the same during both gametes recruitment and 

gametes maturity periods in all populations along the latitudinal gradient (Table S1; Figs S5 and 

S6). The mean oocytes diameter was significantly different during both reproductive periods 

among populations (Kruskal–Wallis test, p<0.001; Table S1; Figs S5 and S6). While in the 

gametes recruitment period the mean oocytes diameter was negatively correlated with the DT 

and the solar radiation, during gametes maturity period it was positively correlated with the same 

environmental parameters (Spearman correlation test, p<0.01; Table S1; Figs S5 and S6).  

Male abundance and gonadal index did not change among populations in both reproductive 

periods (Table S2; Figs S7 and S8). Instead, the mean spermary diameter was significantly 

different during gametes recruitment and gametes maturity periods among populations (Kruskal–

Wallis test, p<0.001; Table S2; Figs S7 and S8). In southern populations, males showed smaller 
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spermaries during February-April (Spearman correlation test, p<0.01; Table S2; Fig S7), and 

larger germ cells during May-July (Spearman correlation test, p<0.05; Table S2; Fig S8).  

In both periods, fertility did not differ in females and inactive individuals in all populations 

along the gradient (Table S3; Figs S9 and S10). Only males fertility was significantly different 

among populations during gametes maturity period, without any correlation with solar radiation 

and DT variations (Kruskal–Wallis test, p<0.05; Table S3; Fig S10). 

Discussion 

All the populations of C. inornata analyzed along the latitudinal gradient displayed a rapid 

oogenesis, mainly represented by oocytes smaller than 100 µm, a spermatogenesis distinct in two 

reproductive periods (gametes recruitment and gametes maturity periods), the presence of 

sexually inactive individuals throughout the year and a reproductive cycle influenced by annual 

variation of seawater temperature and photoperiod, as previously reported for the population of 

Elba Island (Marchini et al. 2015). Relations between reproductive cycle and environmental 

conditions have been observed also for the temperate scleractinians Balanophyllia europaea 

(Goffredo et al. 2002), Leptopsammia pruvoti (Goffredo et al. 2006), Astroides calycularis 

(Goffredo et al. 2011), Cladocora caespitosa (Kružić et al. 2008; Kersting et al. 2013) and 

Balanophyllia elegans in the temperate waters of California (Fadlallah and Pearse 1982; 

Beauchamp 1993). At present, several studies assert that sexual reproduction of corals, including 

gametogenesis, gamete release, fertilization and planulation, depends on seasonal environmental 

cues (Babcock et al. 1986; Harrison and Wallace 1990; Penland et al. 2004; van Woesik et al. 

2006). The main environmental factors involved in the control of reproductive processes are 

seawater temperature and solar radiation, as they may exert a significant influence on 

physiological processes (Harrison and Wallace 1990; Brown 1996). Despite mean solar radiation 



52 
 

and annual depth temperature were significantly different among sites, the seasonal trend of 

these parameters seems not produce temporal shifts of the reproductive cycle of C. inornata. 

Indeed, all populations showed a similar periodicity for gamete development during both 

gametes recruitment and maturity periods, suggesting an overlap in reproductive seasonality of 

C. inornata along the latitudinal gradient. Similarly, B. europaea and L. pruvoti exhibited an 

overlap in gonadal development stages among the same populations analyzed for this study (Airi 

et al. 2014; Airi et al. submitted). 

It is important to note that C. inornata is characterized by a strong male biased sex ratio, 

thus, the analysis of the oocytes was challenging and performed on a small number of females. 

Polyps of C. inornata showed the same reproductive output in all the analyzed populations, since 

oocytes fecundity, spermary abundance, female and male gonadal index were not affected by 

increasing temperature and solar radiation (Supplementary Tables S1, S2 and Figures S1, S2, S3, 

S4). The absence of an evident relation with environmental parameters displayed by C. inornata 

confirms previous findings on population density, net calcification rate (that is linear extension 

rate × bulk skeletal density) and growth parameters of this species, which are not influenced by 

increasing solar radiation and temperature (Caroselli et al. 2015; Caroselli et al. 2016a; Caroselli 

et al. 2016b). In fact, the reproductive capacity of a species is strongly influenced by the growth 

rate and the ecological dynamics of populations (Madin et al. 2012). Thus, C. inornata seems 

quite tolerant to environmental variations, as observed for L. pruvoti, studied along the same 

latitudinal gradient (Airi et al. submitted). On the contrary, the populations of the zooxanthellate 

coral B. europaea analyzed along the same gradient were less abundant, less stable (with loss of 

young individuals; Goffredo et al. 2007, Caroselli et al. 2011, Goffredo et al. 2008, Goffredo et 

al. 2009) and less efficient in using the energy invested for gonadal development with increasing 



53 
 

temperature (Airi et al. 2014). Indeed, the warmest populations showed more and larger oocytes 

during gametes recruitment period, while at the end of the maturation processes were 

characterized by the same number of the oocytes compared to the populations with lower solar 

radiation and temperature. This less efficiency in energy allocation highlighted in the warmer 

populations, could be due to an inhibition of the photosynthetic activity of the zooxanthellae that, 

exposed to extreme temperatures, reduces the available energy towards reproduction (Goffredo 

et al. 2007, 2008; Airi et al. 2014). Contrary to B. europaea, C. inornata and L. pruvoti are both 

non-zooxanthellate corals and the absence of symbiosis with the dinoflagellates unicellular algae 

would make them less dependent to solar radiation and temperature variations. 

The population of Elba Island of C. inornata is characterized by the presence of embryos 

in all stages of development throughout the year in females, males and sexually inactive 

individuals. The same pattern was found in all populations studied along the latitudinal gradient. 

The absence of seasonality in embryo development and the presence of embryos before the 

fertilization period (gametes recruitment period), suggest the possibility of an agamic production 

of embryos in this species (Goffredo et al. 2012; Marchini et al. 2015). Fertility (number of 

embryos per body volume unit) was homogeneous among populations along the latitudinal 

gradient (Supplementary Tables S3 and Figures S5 and S6) confirming that the reproduction of 

C. inornata does not vary with increasing temperature and solar radiation. A mixed strategy of 

sexual and asexual reproduction, seems to merge into a single organism the advantages of both 

propagation modes. Asexual reproduction allows the rapid propagation of a large number of 

individuals well adapted to local level (Maynard-Smith 1978) and to reproduce in unfavorable 

habitats, or in absence of the both sexes (Francis 1979). In fact, the scleractinians Acropora 

cervicornis and A. palmata, favoring asexual reproduction in disturbed habitats, partly reduce the 
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genotypic variability of populations (Tunnicliffe 1981; Neigel 1983) and partly they are able to 

persist even in stress conditions, apparently delaying the response of the populations to 

environmental variations (Lasker and Croffoth 1999). In contrast, sexual reproduction 

contributes to the formation of new genotypes (Williams 1975), allowing organisms to adapt to 

the surrounding environment variations (van Woesik 2009). However, this propagation mode is 

energy costly (Ward 1995). During sexual reproduction most of the available resources for an 

organism must be allocated to the formation of gametes (Antonovics 1980), in fact in the oocytes 

are stored a large quantities of lipids (Leuzinger et al. 2003; Stimson 1987) that are removed 

from the energy reserves addressed to other metabolic processes (Patton et al. 1977). On the 

contrary, the cell division and regeneration processes of tissues involved in asexual reproduction 

require a low energy investment (Francis 1979). A mixed reproduction strategy could therefore 

offer a reproductive assurance to the organism, which can be independent from the formation 

and maturation of gametes and fertilization success (Yund 2000), energetically expensive 

processes and dependent on environmental parameters. These reproductive traits have probably 

evolved in response to their sessile lifestyle, making C. inornata able to regularly adjusts to 

environmental conditions, since the organism is unable to move in a more suitable environment 

(van Oppen et al. 2015). 
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Tables 

Table 1. Mean annual depth temperature (DT; °C) and solar radiation (W/m²) from the sampled 

populations. The sites are arranged in order of increasing solar radiation; SE, standard error. 

Population Code 
DT (°C)  

mean ± SE 

Solar radiation (W/m²)  

mean ± SE 

Genova GN 17.65 ±0.62 156.9±3.2 

Calafuria CL 16.56 ±0.55 174.1±1.9 

Elba LB 17.47 ±0.58 184.9±2.3 

Scilla SC 18.61 ±0.60 205.5±1.8 

Pantelleria PN 19.01 ±0.57 218.2±0.5 

 

Table 2. Number of females, males, inactive individuals and proportion of fertile polyps in each 

population for gametes recruitment and gametes maturity periods. The sites are arranged in order of 

increasing solar radiation. 

Gametes recruitment period  

Population Females Males 
Inactive Proportion of 

individuals fertile polyps 

Genova 1 7 19 20/27 

Calafuria 1 5 25 19/31 

Elba 4 7 11 20/22 

Scilla 2 4 7 12/13 

Pantelleria 1 3 9 12/13 

Gametes maturity period  

Population Females Males 
Inactive Proportion of 

individuals fertile polyps 

Genova 2 10 9 20/21 

Calafuria 1 7 9 15/17 

Elba 10 28 16 45/54 

Scilla 2 9 5 12/16 

Pantelleria 2 14 9 23/25 
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Table 3. Mean fecundity, gonadal index and diameter of oocytes in each population for gametes 

recruitment and gametes maturity periods. The sites are arranged in order of increasing solar radiation; 

N, polyps number for fecundity and gonadal index, oocytes number for diameter. SE, standard error. 

Gametes recruitment period  

Population N 
Fecundity  

(#/100 mm
3
) 

Gonadal Index ♀ 

(%) mean ± SE 
N 

Oocytes Diameter 

(µm) mean ± SE 

Genova 1 41706 0.9 1441 32±0.3 

Calafuria 1 7357 0.3 261 43±0.7 

Elba 4 5789±4755 2.0±1.6 627 74±0.3 

Scilla 2 13114±526 0.2±0.1 1991 28±0.2 

Pantelleria 1 861 0.0 29 46±3.2 

Gametes maturity period  

Population N 
Fecundity 

(#/100 mm
3
) 

Gonadal Index ♀  

(%) mean ± SE 
N 

Oocytes Diameter 

(µm) mean ± SE 

Genova 2 23879±23739 4.2±4.2 4036 71±0.2 

Calafuria 1 180278 19.2 16288 59±0.1 

Elba 10 23900±17388 4.5±2.6 16176 68±0.1 

Scilla 2 4991±3981 1.9±1.6 3165 96±0.2 

Pantelleria 2 67402±27976 15.3 22541 70±0.1 
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Table 4. Mean abundance, gonadal index and diameter of spermaries in each population for 

gametes recruitment and gametes maturity periods. The sites are arranged in order of increasing solar 

radiation. N, polyps number for abundance and gonadal index, spermaries number for diameter. SE, 

standard error. 

Gametes recruitment period  

Population N 
Abundance  

(#/100 mm
3
) 

Gonadal Index ♂ 

(%) mean ± SE 
N 

Spermary Diameter 

(µm) mean ± SE 

Genova 7 300±145 0.0±0.0 181 53±1.9 

Calafuria 5 46±27 0.0±0.0 37 50±7.3 

Elba 7 11362±4125 1.9±0.9 4879 84±0.7 

Scilla 4 1780±1594 0.2±0.2 2847 67±0.6 

Pantelleria 3 1551±1075 0.0±0.0 501 36±0.3 

Gametes maturity period  

Population N 
Abundance  

(#/100 mm
3
) 

Gonadal Index ♂  

(%) mean ± SE 
N 

Spermary Diameter 

 (µm) mean ± SE 

Genova 10 2628±1062 1.2±0.5 2863 109±1.1 

Calafuria 7 1723±933 0.4±0.2 1267 103±1.0 

Elba 28 5564±1994 1.7±0.6 13257 94±0.4 

Scilla 9 10602±5081 3.7±1.9 7384 102±0.5 

Pantelleria 14 5380 ±1829 2.3±0.9 9667 104±0.4 
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Table 5. Mean fertility of females (F), males (M) and inactive individuals (I) in each population for 

gametes recruitment and gametes maturity periods. The sites are arranged in order of increasing solar 

radiation. SE, standard error. 

 

  

Gametes recruitment period 

Popolazione N F N M N I 

Genova 1 9.4 7 212.3±71.9 13 190.3±67.8 

Calafuria 1 225.8 3 69.2±34.8 15 28.6±7.1 

Elba 4 48.9±20.0 6 160.1±57.1 9 120.3±45.5 

Scilla 2 69.7±34.0 4 67.4±26.7 6 80.2±28.3 

Pantelleria 1 0 3 35.9±23.5 8 66.8±25.2 

Gametes maturity period 

Popolazione N F N M N I 

Genova 2 125.6±81.8 10 73.8±18.9 8 141.8±62.8 

Calafuria 1 176.4 6 121.7±48.3 8 84.7±26.3 

Elba 10 187.7±62.9 23 116.0±31.6 12 29.3±9.3 

Scilla 2 14.9±1.6 6 31.4±7.3 4 12.0±5.5 

Pantelleria 2 28.11±16.7 14 105.1±28.0 8 74.0±17.0 
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Figure 1. Living specimens of Caryophyllia inornata at Elba Isle (42°45’N, 10°24’E) by the courtesy 

of the nature photographer Gianni Neto.  
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Figure 2. Map of the Italian coastline indicating the sites where corals were collected. Abbreviations 

and coordinates of the sites in decreasing order of latitude: GN Genova, 44°20’N, 9°08’E; CL Calafuria, 

43°27’N, 10°21’E; LB Elba Isle, 42°45’N, 10°24’E; SC Scilla, 38°01’N, 15°38’E; PN Pantelleria Isle, 

36°45’N, 11°57’E. Map was created by the authors using the software Adobe® Illustrator® CS3. 
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Figure 3. Oocyte size/frequency distribution in the recruitment and maturity periods. Distribution of 

the oocytes size during gametes recruitment period (gray line) and gametes maturity period (black line).  
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Figure 4. Spermary frequency distribution in the two reproductive periods. Distribution of the 

maturation stages during gametes recruitment period (gray bars) and gametes maturity period (black 

bars).  
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Figure 5. Mean fertility in feamles (F), males (M) and sexually inactive individuals (I) ± standard 

error (ES) for the two reproductive periods. Mean fertility during gametes recruitment period (gray 

bars) and gametes maturity period (black bars). N = number of analyzed polyps.  
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Supporting Information 

Table S1. Oocytes. ANOVA/Kruskal-Wallis test and correlation analyses between reproductive 

(fecundity, gonadal index, oocytes diameter) and environmental parameters (DT, solar radiation) 

for gametes recruitment and gametes maturity periods.  

Gametes recruitment period  

    DT(C°) Solar radiation (W/m
2
) 

  ANOVA/K-W Test ρ ρ 

Fecundity (#/mm
3
) ns - - 

Gonadal index ♀(%) ns - - 

Oocytes diameter (µm) *** -0.360** -0.148** 

Gametes maturity period  

    DT(C°) Solar radiation (W/m
2
) 

  ANOVA/K-W Test ρ ρ 

Fecundity (#/mm
3
) ns - - 

Gonadal index ♀(%) ns - - 

Oocytes diameter (µm) *** 0.286** 0.247** 

 

ANOVA/K-W Test, significance of the ANOVA/Kruskal-Wallis test; ρ, Spearman’s correlation 

coefficient; * p < 0.05; ** p < 0.01; *** p < 0.001; ns p > 0.05. 
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Table S2. Spermaries. ANOVA/Kruskal-Wallis test and correlation analyses between reproductive 

(abundance, gonadal index, spermary diameter) and environmental parameters (DT, solar 

radiation) for gametes recruitment and gametes maturity periods.  

Gametes recruitment period  

    DT(C°) Solar radiation (W/m
2
) 

  ANOVA/K-W Test ρ ρ 

Abundance (#/mm
3
) * ns 0.414* 

Gonadal index ♂ (%) ns - - 

Spermary diameter (µm) *** -0.230** -0.198** 

Gametes maturity period  

    DT(C°) Solar radiation (W/m
2
) 

  ANOVA/K-W Test ρ ρ 

Abundance (#/mm
3
) ns - - 

Gonadal index ♂ (%) ns - - 

Spermary diameter (µm) *** 0.106** 0.073** 

    

 

ANOVA/K-W Test, significance of the Anova/Kruskal-Wallis test; ρ, Spearman’s correlation coefficient; 

* p < 0.05; ** p < 0.01; *** p < 0.001; ns p > 0.05. 
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Table S3. Embryos. ANOVA/Kruskal-Wallis test and correlation analyses between fertility in 

females (F), males (M), inactive individuals (I) and environmental parameters (DT, solar radiation) 

for gametes recruitment and gametes maturity periods.  

Gametes recruitment period  

    DT(C°) Solar radiation (W/m
2
) 

  ANOVA/K-W Test ρ ρ 

Fertility (#/mm
3
) F ns - - 

Fertility (#/mm
3
) M ns - - 

Fertility (#/mm
3
) I ns - - 

Gametes maturity period  

    DT(C°) Solar radiation (W/m
2
) 

  ANOVA/K-W Test ρ ρ 

Fertility (#/mm
3
) F ns - - 

Fertility (#/mm
3
) M ns - - 

Fertility (#/mm
3
) I ns - - 

    

 

ANOVA/K-W Test, significance of the ANOVA/Kruskal-Wallis test; ρ, Spearman’s correlation 

coefficient; * p < 0.05; ** p < 0.01; *** p < 0.001; ns p > 0.05. 
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Figure S1. Oocytes. Boxplot of Spearman's correlation between reproductive and environmental 

parameters during gametes recruitment period. Median (solid horizontal line), first and third quartiles 

(box outline), minimum and maximum values (whiskers) and outliers (circles). See Table 3 for the 

number of polyps and oocytes analyzed and Table S1 for Spearman’s correlation test. 
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Figure S2. Oocytes. Boxplot of Spearman's correlation between reproductive and environmental 

parameters during gametes maturity period. Median (solid horizontal line), first and third quartiles 

(box outline), minimum and maximum values (whiskers) and outliers (circles). See Table 3 for the 

number of polyps and oocytes analyzed and Table S1 for Spearman’s correlation test. 
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Figure S3. Spermaries. Boxplot of Spearman's correlation between reproductive and 

environmental parameters during gametes recruitment period. Median (solid horizontal line), first 

and third quartiles (box outline), minimum and maximum values (whiskers) and outliers (circles). See 

Table 4 for the number of polyps and spermaries analyzed and Table S 2 for Spearman’s correlation 

test. 



75 
 

 

Figure S4. Spermaries. Boxplot of Spearman's correlation between reproductive and 

environmental parameters during gametes maturity period. Median (solid horizontal line), first and 

third quartiles (box outline), minimum and maximum values (whiskers) and outliers (circles). See Table 4 

for the number of polyps and spermaries analyzed and Table S2 for Spearman’s correlation test. 
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Figure S5. Embryos. Boxplot of Spearman's correlation between reproductive and environmental 

parameters during gametes recruitment period. Median (solid horizontal line), first and third quartiles 

(box outline), minimum and maximum values (whiskers) and outliers (circles). See Table 5 for the 

number of polyps and embryos analyzed and Table S3 for Spearman’s correlation test. 
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Figure S6. Embryos. Boxplot of Spearman's correlation between reproductive and environmental 

parameters during gametes maturity period. Median (solid horizontal line), first and third quartiles 

(box outline), minimum and maximum values (whiskers) and outliers (circles). See Table 5 for the 

number of polyps and embryos analyzed and Table S3 for Spearman’s correlation test. 
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Spermatogenesis of a temperate zooxanthellate coral is not influenced by long-term CO2 

exposure at a volcanic vent 

Abstract 

In recent years, there is a growing awareness concerning the effects of climate change on marine 

ecosystems. The progressive increase in ocean acidification is a major threat on calcifying 

organisms such as scleractinian corals. This study examines the effects of pCO2 on 

spermatogenesis of the temperate and zooxanthellate coral Balanophyllia europaea, which lives 

along a natural pCO2 gradient in close proximity to an underwater crater near Panarea island 

(Tyrrhenian Sea, Italy). Specimens were collected from three sites along the pCO2 gradient 

generated by continuous CO2 bubbles from the crater that ranged from pH 8.07 to pH 7.74. 

Increasing pCO2 along this gradient did not affect spermatogenesis of B. europaea, probably due 

to the symbiosis with the zooxanthellae, which increase the photosynthetic efficiency, providing 

additional energy to be allocated towards reproduction. Therefore, this symbiosis could be an 

advantage for the temperate B. europaea, allowing the coral to persist in face of ocean 

acidification. 
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Introduction 

The planet is undergoing a drastic increase in atmospheric carbon dioxide (pCO2) 

concentrations (from 280 ppm to 390 ppm since the Industrial Revolution) due to anthropogenic 

activity such as the burning of fossil fuels, cement production, and land use changes (Stocker et 

al. 2013). Around one-third of all CO2 emissions from the past 200 years have been absorbed by 

the oceans (Sabine et al. 2004), driving changes in seawater carbonate chemistry and leading to a 

reduction of about 0.1 pH units in ocean surface waters (Caldeira and Wickett 2003). Ocean 

acidification (OA) is in progress and a further pH decline by 0.3–0.4 units is expected by 2100 

(Pachauri et al. 2014).  

OA is causing alterations to marine ecosystems and, in particular, represents a major threat 

for numerous calcifying marine organisms such as mollusks and corals (Jokiel et al. 2008), 

arousing serious concerns among scientists. Calcification may be especially sensitive because 

altered carbonate chemistry directly affects the deposition and dissolution rates of the CaCO3 

used for shells and skeletons (Gattuso and Buddemeier 2000).  

However, other physiological and biological processes including reproduction of these 

marine organisms can be vulnerable to an increase in pCO2 (Kurihara and Shirayama 2004; 

Havenhand et al. 2008; Parker et al. 2009; Havenhand and Schlegel 2009; Morita et al. 2009; 

Byrne et al. 2010; Albright et al. 2010; Reuter et al. 2011). Due to their sensitivity to water 

chemistry, marine gametes and embryos have long been used as a bioassay system for 

monitoring of environmental pollutants (Dinnel et al. 1987, Ringwood 1992, Carr et al. 2006, 

Byrne et al. 2008). A compromised gamete production could have negative consequences on 

larval recruitment and growth, reflecting on marine population dynamics (Doherty and Fowler 

1994). 
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Even if susceptibility of corals to increased pCO2 varies with species (Fabricius et al. 

2011), it seems that many structurally complex corals will be lost, leading to a decline in habitat 

available to a variety of other species and changes in structure and function of the marine 

ecosystem (Fabricius et al. 2014). Despite the growing awareness about the threats of coral reefs, 

the little information available regarding the effects of OA on coral sexual reproduction includes 

sperm motility (Morita et al. 2009), fertilization success (Albright et al. 2010), and larval 

development and/or growth (Albright et al. 2010; Albright et al. 2008; de Putron et al. 2011). 

Assessing effects of acidification on gamete development is hard as gametogenesis can 

extend even up to 24 months for some temperate species (Goffredo et al. 2002, 2006, 2011), and 

maintaining corals under experimental conditions for this period of time can prove challenging 

(Albright 2011). This research, therefore, investigated the effect of OA on spermatogenesis in the 

Mediterranean scleractinian coral Balanophyllia europaea (Fig. 1) naturally living along a pCO2 

gradient. The species under study is solitary and zooxanthellate with a simultaneous 

hermaphroditic sexuality and a brooding reproductive mode (Goffredo et al. 2002). Previous 

works reveals that biomineralization control (Goffredo et al. 2014), skeletal nano and 

microstructural features, linear extension rate, interseptal volume fraction and corallite biometry 

(Fantazzini et al. 2015) of B. europaea did not change significantly with decreasing pH, despite a 

clear reduction in net calcification rates. This reduction in net calcification rate was 

complemented by an increase in skeletal porosity and a consequent decrease in skeletal bulk 

density and stiffness (Fantazzini et a l. 2015), which could result in increased mortality and the 

observed population density decline (Goffredo et al. 2014). B. europaea was also studied in 

relation to increasing temperature, which negatively affects skeletal density (Goffredo et al. 

2009) [(due to increased porosity (Caroselli et al. 2011)], growth and calcification (Caroselli et 
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al. 2011), population abundance (Goffredo et al. 2007), population structure stability (Goffredo 

et al. 2008) and reproductive output (Airi et al. 2014). 

Materials and Methods 

Study site  

Fieldwork was conducted close to an underwater volcanic crater located in the southeast of 

the islet of Bottaro, near the island of Panarea (Sicily, Italy, 38°38′16″N 15°06′37″E; Fig. 2). The 

crater (20 m x 14 m) situated at roughly 10 m depth (Capaccioni et al. 2007), generates 

hydrothermally stable CO2 emissions (99%; Capaccioni et al. 2007; Goffredo et al. 2014) 

creating a natural pH gradient that extends about 34 m from the center of the crater (Goffredo et 

al. 2014), where there is a condition of greater acidity (pHTS 7.40), to the periphery characterized 

by a condition normal pH (pHTS 8.07; Prada 2014). For this study, three Sites along the pH 

gradient have been selected: the control site (Site 1: mean Total Scale pHTS 8.07) that is 34 m 

away from the crater, the intermediate site (Site 2: mean Total Scale pHTS 7.87) located 13 m 

away from the crater, and the highest pCO2 site (Site 3: mean Total Scale pHTS 7.74) that is 9 m 

from the crater. 

Seawater carbonate chemistry  

pH (NBS scale), temperature (T), salinity (Sal) and total alkalinity (TA) were measured at 

each Site during several surveys between July 2010 and May 2013 with a multi-parametric probe 

(600R, YSI Incorporated, USA; Tab. 1) and operated by SCUBA divers. Measured pHNBS was 

converted in total scale (TS) using CO2SYS software (Mehrbach et al. 1973; Dickson 1990; 

Dickson and Millero 1987). Temperature sensors (Thermochron iButton, DS1921G, Maxim 

Integrated Products, USA) were placed near each Site and recorded depth temperature (T; °C) 
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every three hours from June 2011 to May 2013 and replaced to each field campaign. The pH, 

total alkalinity, salinity and temperature were used to calculate other carbonate system 

parameters using the software CO2SYS with referenced dissociation constant (Tab. 1). The study 

site has stable hydrothermal–chemical properties and only pCO2 concentration differed 

significantly across sites (Capaccioni et al. 2007; Goffredo et al. 2014). 

Sampling 

Specimens of Balanophyllia europaea were randomly collected by SCUBA diving at the 

three study sites along the pH gradient (10 from Site 1, 10 from Site 2 and 10 from Site 3) on 

April 28
th

 2013. Based on a previous work on the sexual reproduction of B. europaea (Goffredo 

et al 2002), the reproductive cycle displays the maximum gonadal development and is 

characterized by advanced maturation stages of spermaries (just before the fertilization process) 

during this sampling period. The sample size was chosen to limit damage on the natural 

population, which significantly diminishes in the most acidic sites (Goffredo et al. 2014) and was 

considered suitable for properly describing the trend and properties of spermatogenesis.  

Polyps were fixed in saturated formalin solution (10% formaldehyde and 90% seawater; 

the solution was saturated with calcium carbonate) and transferred to the laboratories for 

histological analysis. 

Biometric and cytometric analysis 

Biometric analyses were performed on 20 polyps by measuring length (L, maximum axis 

of the oral disc), width (l, minimum axis of the oral disc) and height (h, oral–aboral axis) of each 

sampled polyp. The volume (V) of the individual polyp was calculated using the formula 

V =  h ∗  (L/2) ∗  (l/2) ∗  π  (Goffredo et al. 2002).  
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Polyps were post-fixed in Bouin solution. After decalcification in EDTA and dehydration 

in a graded alcohol series from 80 to 100%, polyps were embedded in paraffin, and serial 

transverse sections were cut at 7µm intervals along the oral–aboral axis, from the oral to the 

aboral poles. Tissues were stained with Mayer’s hematoxylin and eosin (Goffredo et al. 2002).  

Cytometric analyses were made with a light microscope NIKON Eclipse 80i using an 

image analysis systems: NIKON NIS-Elements D 3.1. All spermaries, classified into 

developmental stages in accordance with earlier studies on gametogenesis in scleractinians 

(Goffredo et al. 2002, 2005, 2010, 2012), were measured. The size of each spermary was 

determined as the mean of the two diameters (Goffredo et al. 2002). 

Reproductive parameters 

Spermatogenesis was studied through the following reproductive parameters: 1) spermary 

abundance, defined as the number of spermaries per body volume unit (100 mm
3
); 2) gonadal 

index, defined as the percentage of body volume occupied by spermaries; 3) spermary size, 

defined as the average of the maximum and minimum diameter of spermaries. 

Statistical analyses 

A one-way permutation analysis of variance (PERMANOVA, Anderson 2001) based on 

Euclidean similarity was performed to test differences of spermary maturation stage distributions 

among Sites. This analysis was performed using PRIMER version 6. Levene’s test was used for 

testing homogeneity of variance, and one-sample Kolmogorov-Smirnov’s test was used to check 

for normality. The comparison with the normal distribution was test also using the powerful 

Shapiro-Wilk W test when the sample size was lower than 2000 (Shapiro and Francia 1972, 

Royston 1991). To compare reproductive parameters among Sites the non-parametric Kruskal-
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Wallis equality-of-populations rank test (Kruskal and Wallis 1952) was used, as the assumptions 

for parametric statistics were not fulfilled. Spearman’s rank correlation coefficient was used to 

calculate the significance of the correlations between spermary diameters and pH. Spearman’s 

rank correlation coefficient is an alternative to Pearson’s correlation coefficient (Altman 1991). 

It is useful for data that are non-normally distributed and do not meet the assumptions of 

Pearson’s correlation coefficient (Potvin and Roff 1993). The analyses were computed using 

PASW Statistics 17.0. 

Results 

The analysis of 20 polyps revealed that sexuality of Balanophyllia europaea is 

hermaphroditic in all Sites along the pCO2 gradient of the underwater crater. Spermary 

maturation stage distribution was the same among the three Sites (Fig 3), showing both early and 

advanced stages of maturation (stage: I, II, III, IV, V; Fig. 3; Fig. 4), with a prevalence of III, IV, 

V stages. Spermaries abundance and gonadal index did not show variations among the three 

Sites (Tables 2 and 3; Fig 5). Conversely, the diameter of spermaries was significantly different 

among Sites (Kruskall-Wallis test, p < 0.001) and increased with increasing of pCO2 (Tables 2 

and 3; Fig 5).  

Discussion  

This is the first long-term study on the influence of OA on spermatogenesis in a temperate 

zooxanthellate coral, naturally exposed to a pCO2 gradient. Although there are available studies 

on coral reproduction, they describe the effect of the pH decrease exclusively by manipulative 

experiments with constant treatment conditions that eliminate natural variability (Albright 2011). 

Moreover, most of the researches regard mollusks (Kurihara et al. 2007; Parker et al. 2009; but 
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see Havenhand and Schlegel 2009; Ellis et al. 2009), crustaceans (Arnold et al. 2009; McDonald 

et al. 2009; Findlay et al. 2009, 2010) and echinoderms (Kurihara and Shirayama 2004; 

Havenhand et al. 2008; Dupont et al. 2008; Morita et al. 2009; Clark et al. 2009; Reuter et al. 

2011; but see Byrne et al. 2010; Brennand et al. 2010; O’Donnell et al. 2010) with very little 

information available for corals, which are exclusively tropical (Albright et al. 2008; Morita et 

al. 2009; Cohen et al. 2009; Albright et al. 2010; Suwa et al. 2010; Albright and Langdon 2011; 

Albright and Mason 2013).  

Specimens were collected in the maximum gonadal development period (just before 

fertilization) and thus advanced maturation stages of spermaries were expected. Increasing pCO2 

did not affect male germ cells, since the presence of all five spermary maturation stages have 

been observed in all the three Sites. Increasing pCO2 did not show an influence on either 

spermary development or production (abundance and gonadal index) among Sites. Only 

spermary diameter was significantly different among Sites, displaying a positive correlation with 

increasing pCO2. However, the medians of the three box plots almost overlap, providing no 

biological interpretation. Available studies indicate that gamete production may show resistance 

to acidification, although this question deserves further attention. Similarly, the corals Montipora 

capitata, Oculina patagonica and Madracis pharensis did not show a decrease in gamete 

production under acidified conditions, even though the former was exposed to lower pH only for 

6 months and the other two corals for 12 months (Jokiel et al. 2008; Fine and Tchernov 2007). 

While gametogenesis may proceed normally, the spawning process (in particular of females) in 

Astrangia poculata was found to be susceptible to ocean acidification (Holcomb et al. 2011), 

suggesting that the energetically costly process of egg production leaves little energy available to 

the coral to sustain “normal” calcification rates in more acidic conditions (Cohen and Holcomb 
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2009). Also fertilization success can be negatively affected by elevated pCO2, as observed for 

other two species of coral, Acropora palmata (Albright et al. 2010) and Montastraea faveolata 

(Albright 2011), but in these studies the effect of pCO2 was dependent on the sperm 

concentration.  

The results of this work are in agreement with a similar analysis for the same population of 

B. europaea performed on the oogenesis, confirming that gonadal development of this 

zooxanthellate coral is unaffected by an increase in pCO2 (Gizzi 2016). However, its population 

density decreased in more acidic Site, with also a reduction in the number of immature polyps 

(Caroselli et al. in prep.). A constant gametogenesis but with a decline in juveniles could be 

explained by a possible vulnerability of the fertilization process or the larval phase or settlement 

to increase acidity. Moreover, a previous analysis performed along the same pH gradient on 

skeletal properties of B. europaea describes a decrease in net calcification rate (that is, gross 

calcification minus dissolution) due to an increase in skeletal porosity under low pH conditions, 

probably to maintain a constant linear extension rate, which is essential for reaching size at 

sexual maturity, thus for reproductive process (Fantazzini et al. 2015). The increase in skeletal 

porosity could be explained by a short-term study conducted in a different experimental site on 

B. europaea, which show an increase in gross calcification and also in dissolution in the most 

acidic condition, leading to a decrease in net calcification (Metalpa et al. 2011). Moreover, 

another short-term experiment along the pH gradient close to the underwater crater at Panarea, 

showed an increase in zooxanthellae photosynthetic efficiency of B. europaea under low pH 

conditions (Dubinsky personal observation), providing extra available energy that could be 

allocated towards reproduction.  
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The non-zooxanthellate coral L. pruvoti, transplanted at the same study site (short-term 

experiment), displayed a spermatogenesis negatively affected by increasing pCO2, resulting in a 

delay of fertilization and planulation process (Gizzi 2016). Thus, the symbiosis with the 

zooxanthellae could be a benefit for B. europaea to cope with the increased pCO2 expected by 

the end of this century.  
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Tables 

Table 1. Seawater carbonate chemistry measurements for each Site. The pH, temperature (T), total 

alkalinity (TA) and salinity (S) were used to calculate all the other parameters using CO2SYS software 

with dissociation constants. Mean pH values were calculated after conversion of data to hydrogen ion 

concentrations. Mean values are reported with the min and max values in brackets. 

Measured Parameters   

Treatment 
pH             

(total scale) 

T                        

(°C) 

TA                    

(µmol kg
-1

) 

S                              

(‰) 
  

  

 

Site 1 
8.07 (7.82-8.45) 20.5 (14.3-26.0) 2438 (2368-2600) 37 (33-38) 

  

            

Site 2 7.87 (7.54-8.25) 20.7 (14.4-26.0) 2429 (2334-2618) 37 (33-38)   

            

Site 3 7.74 (7.05-8.21) 20.6 (14.4-26.0) 2426 (2343-2610) 37 (34-38)   

            

Calculated Parameters 

Treatment 
*pCO2                     

(µatm) 

*HCO3
-              

 

(µmol kg
-1

) 

*CO3
2-                   

(µmol kg
-1

) 

*DIC                        

(µmol kg
-1

) 
*Ωarag 

 

Site 1 391 (127-780) 1869 (1466-2144) 232 (120-398) 2114 (1867-2291) 3.6 (1.8-6.3) 

            

Site 2 672 (234-1561) 2030 (1664-2264) 163 (68-314) 2214 (1984-2383) 2.5 (1.1-5.0) 

            

Site 3 907 (262-5100) 2073 (1835-2365) 144 (25-243) 2246 (2089-2552) 2.2 (0.4-3.9) 

            

      
 

pH (n = 103-110 per site), T (n = 112-115 per site) and S (n = 107-110 per site) were measured in July 

2010, September 2010, November 2010, March 2011, June 2011, July-August 2011, November-

December 2011, April-May 2012, June 2012 and May 2013. TA (n = 14 per site) was measured in 

September 2010, November 2010, March 2011, June 2011, July-August 2011, November-December 

2011, April-May 2012, June 2012 and May 2013. pCO2 = carbon dioxide partial pressure; HCO3
-
 = 

bicarbonate; CO3 
2-

 = carbonate; DIC = dissolved inorganic carbon; Ωarag = aragonite saturation.  
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Table 2. Mean abundance, gonadal index and diameter value of spermaries in each Site along the 

pHTS gradient.      

Site pHTS Np 
Abundance (#/100 mm

3
) 

mean ± SE 

Gonadal Index (%)     

mean ± SE 
Ns 

Diameter (μm) 

mean ± SE 

1 8.07 7 1483 ± 537 0.9 ± 0.3 1935 116 ± 0.9 

2 7.87 7 2855 ± 1209 2.1 ± 1.1 3874 122 ± 0.8 

3 7.74 6 1077 ± 343 0.9 ± 0.3 1550 133 ± 1.4 
 

Np , number of polyps; Ns number of spermaries.      

 

 

Table 3. Kruskal-Wallis test and correlation analyses between reproductive parameters and pHTS  

in the sampled Sites.  

Reproductive parameters K-W rhoS 

Abundance (#/100 mm
3
) NS - 

Gonadal Index (%) NS - 

Diameter (μm) *** *** 
 

K-W, significance of the Kruskal-Wallis test; rs, Spearman’s correlation coefficient; *** p < 0.001; NS, 

not significant. 
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Figures 

 

Figure 1. Living specimens of Balanophyllia europaea photographed at Scilla (South Italy, 38°01’N, 

15°38’E). Photo by courtesy of Francesco Sesso. 
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Figure 2. Map of the study site off Panarea Island (Aeolian Archipelago) with a close-up on the 

location of the vent area, Southeast of Bottaro, where corals were collected. 
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Figure 3. Spermary maturation stages distribution. Distribution of the five stages of spermary 

maturation in the three Sites along the pCO2 gradient collected at Panarea Island in April 2013. N indicate 

the number of polyps/the total number of spermaries measured per Site.  
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Figure 4. Spermatogenesis of Balanophyllia europaea. Five spermary maturation stages (I, II, III, IV, 

V) in the three study Sites along the pCO2 gradient. Stage I: undifferentiated germ cells (spermatogonia) 

disposed in the gastrodermis layers of the mesentery. Stage II: the spermary is made up of a group of 

spermatocytes involved in the meiosis process. Stage III: the spermaries are delineated by a wall that has 

arisen from the mesoglea (arrows). Stage IV: the spermary presents an external layer of spermatocytes 

and an internal mass of spermatids. Stage V: the spermary is made up of a mass of spermatozoa. [g: 

gastrodermis; sni: spermatogonia; sti: spermatocytes; sdi: spermatids; szoi: spermatozoa]. 
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Figure 5. Spermary abundance, gonadal index and diameter of Balanophyllia europaea. Box plot of 

spermary abundance, gonadal index and diameter in the three study Sites showing median (solid 

horizontal line), first and third quartiles (box outline), and minimum and maximum values (whiskers) and 

outliers (circles and stars), recorded at Panarea Island in April 2013. See Table 2 for the number of polyps 

and spermaries analyzed and mean abundance, gonadal index and spermary diameter. See Table 3 for 

Spearman’s correlation test. 
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Abstract
Mesophotic coral reef ecosystems remain largely unexplored with only limited information

available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs

may serve as potential refugia for shallow-water species and thus understanding biodiver-

sity, ecology and connectivity of deep reef communities is integral for resource manage-

ment and conservation. The Caribbean coral,Montastraea cavernosa, is considered a

depth generalist and is commonly found at mesophotic depths. We surveyed abundance

and size-frequency ofM. cavernosa populations at six shallow (10m) and six upper meso-

photic (45m) sites in Bermuda and found population structure was depth dependent. The

mean surface area of colonies at mesophotic sites was significantly smaller than at shallow

sites, suggesting that growth rates and maximum colony surface area are limited on meso-

photic reefs. Colony density was significantly higher at mesophotic sites, however, resulting

in equal contributions to overall percent cover. Size-frequency distributions between shal-

low and mesophotic sites were also significantly different with populations at mesophotic

reefs skewed towards smaller individuals. Overall, the results of this study provide valuable

baseline data on population structure, which indicate that the mesophotic reefs of Bermuda

support an established population ofM. cavernosa.

Introduction
In recent years, coral reefs have undergone drastic decline due to numerous anthropogenic
impacts to environmental conditions including eutrophication, disease, the loss of herbivory,
and bleaching associated with ocean warming [1–4]. Currently, nearly 30% of the world's coral
reefs are considered severely damaged, and close to 60% are in danger of being lost by 2030 [5].
These losses are particularly pronounced on shallow water reefs of the Caribbean, where the
comprehensive study by Jackson et al. [1] reports an overall decline in coral cover of 59%, from
an average of 33% before 1984 to 14.3% since 2005. Deep reef systems in the mesophotic zone
(>30m), however, have not experienced the same trend, displaying relatively stable coral
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populations over time [6]. Yet, in comparison to shallow-water coral reefs, mesophotic reefs
have received little attention [7].

Mesophotic coral ecosystems (MCE’s) are comprised of a variety of taxa, including sponges,
macroalgae, and azooxanthellate corals, as well as light-dependent zooxanthellate corals that
exist in zones between approximately 30m and 150m in tropical and subtropical zones [8–10].
These regions tend to exist in low energy deep fore-reef zones that are characterized by steep
gradients in light and temperature [8]. Typically the depth at which light is reduced to 1% of
the available surface light defines the lower limits of the mesophotic zone [11]. Previous tech-
nological limitations have presented major challenges to conducting research on MCE’s, result-
ing in limited understanding of the bathymetric and geographic extent of MCE’s and the
biodiversity and community structure they support across regions. Even basic taxonomic and
systematic characterization of these communities is unknown, underscoring the importance of
establishing baseline information on species assemblages and the roles they play in ecosystem
function [10, 12].

Analyses of size-frequency distributions can reveal characteristics of species populations as
they represent stages of population growth and decline [13]. Population size structure results
from variations in rates of colony growth, recruitment and mortality, and may indicate individ-
ual sensitivities to life-history processes and environmental variation. The life cycle of modular
organisms such as scleractinian corals, however, is complicated by processes such as fragmen-
tation, fission, fusion, and partial mortality, making the relationship between surface area and
age difficult to interpret [14]. Yet coral colony surface area can be correlated to age if partial
mortality is low, and thus characterizations of population size-frequency distributions may
provide critical demographic information, particularly for massive, non-branching colonies
[13, 15–19]. Describing coral populations in terms of population size-frequency, therefore, can
provide a snap-shot of current reef condition and if monitored over time may serve as an indi-
cator for stability or decline [17, 20].

The aim of this study is to provide baseline characterization of population structure for the
dominant zooxanthellate coral at adjacent shallow and mesophotic reefs in Bermuda. As such,
this study provides an initial assessment of mesophotic reef condition in relation to environ-
mental conditions that vary with depth, such as temperature and nutrient levels. Fricke and
Meischner [21] conducted the only comprehensive study of mesophotic reef composition in
Bermuda using submersible video transect surveys. Their study found species diversity
decreased drastically below 40m. Among the species found in these mesophotic zones include
Agaricia fragilis, Stephanocoenia michelini,Madracis decactis, Scolymia cubensis,Montastraea
cavernosa and Orbicella franksii, withM. cavernosa and O. franksii being the dominant repre-
sentatives below 30m. Using in situ diver-led surveys we examine variations in colony density,
surface area, percent cover and size-frequency distributions and provide baseline data on the
population structure ofM. cavernosa on mesophotic reefs in Bermuda.

Materials and Methods

Ethics Statement
Surveys for this study were conducted in public areas outside of any marine reserves and did
not require approval or permitting. No specimens were manipulated or collected from reef
sites in completing this study and care was taken to avoid contact with benthic substrata.

Site and Species Selection
Located 32°N, 64°W, Bermuda’s sub-tropical coral reefs represent the northernmost reef sys-
tem in the Atlantic. The shallow rim reefs of this pseudo-atoll encircle the platform, dropping
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quickly to deep mesophotic reefs. Thus, deep reefs are easily accessible in Bermuda and corals
surviving in these zones are both at their latitudinal and bathymetric limits. Furthermore, shal-
low water coral cover in Bermuda ranks among the highest in the Caribbean with an estimated
cover of 38.6% [1]. Bermuda, therefore, is an ideal and important location in which to study
coral community composition and connectivity across a depth gradient.

M. cavernosa (Linnaeus, 1767) is a common reef building coral on fore reef slopes through-
out the Caribbean and western Atlantic, extending from Bermuda to Brazil and the West Afri-
can coast [22, 23].M. cavernosa is considered an ‘extreme’ depth-generalist [9], as it inhabits
depths from 3–100m across its geographical range [21, 24, 25]. Along its bathymetric distribu-
tion,M. cavernosa exhibits significant phenotypic plasticity in morphology, rates of respiration,
and primary productivity [25–27], and is the only hermatypic species documented to survive
below 70m in Bermuda [21].

Surveys
Twelve coral surveys were performed between August 17th and December 28th 2014 to estimate
abundance and surface area ofM. cavernosa colonies between shallow and mesophotic reef
sites in Bermuda (Fig 1). Six surveys were conducted at shallow sites (10m depth), and six were
conducted at nearby mesophotic sites (45m depth). Site names, map labels, GPS coordinates,
and survey dates are included in Table 1. Site locations were selected based on accessibility and

Fig 1. Survey Map. Survey locations on the south shore of Bermuda at shallow (10m; gray markers) and mesophotic (45m; black markers) sites. S1: Rita,
10m; D1: XL, 45m; S2: Coopers, 10m; D2: Coopers, 45m; S3: Tuckers, 10m; D3: Tuckers, 45m; S4: Spittal, 10m; D4: Spittal, 45m; S5: Devonshire, 10m; D5:
Devonshire, 45m; S6: Hungry Bay, 10m; D6: Hungry Bay, 45m.

doi:10.1371/journal.pone.0142427.g001
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visual identification of reef structure at mesophotic sites. Paired shallow sites were selected as
the nearest site encountered at 10m depth traveling up the reef slope perpendicular to the
shoreline. At each site, allM. cavernosa colonies with greater than 50% of the colony located
within 1m of either side of a 30m transect tape (60m2 total area per survey) were counted and
largest surface diameter measured (to nearest cm). Diameter was chosen as a metric for ease of
completing surveys at depth with minimal bottom time (maximum bottom time of 25 min.).
Transects at each site were laid along the reef slope to ensure a constant depth, beginning at the
closest non-living reef structure encountered upon reaching the benthos to which the tape
could be secured. A colony was defined as any autonomous coral skeleton with living tissue as
described by Meesters et al. [19].

Population Structure Analyses
Density ofM. cavernosa colonies (# of colonies 60m-2) met the assumptions of normality and
equal variance and was analyzed by depth using a Student’s t-test. Mean colony diameter was
used to calculate surface area of each colony using the following equation: surface area = 2π
(diameter/2)2. Colony surface area was logarithmically transformed to reduce non-normality
and heteroschedasticity and for each site, geometric mean (μ), standard deviation (SD), skew-
ness (g1), and kurtosis (g2) were calculated. Mean colony surface area, standard deviation and
skewness were compared by depth using the Student’s t-test (n = 6), and kurtosis was com-
pared by depth using a Mann-Whitney U-test [28–30]. These statistics describe the shape of a
distribution and allow comparisons between populations at different depths independent of
colony surface area [13, 19]. The total surface area per 60m2 transect was also used to calculate
percent cover ofM. cavernosa (% cover 60m-2). Data was transformed to arcsine values and
compared by depth using a Student’s t-test.

Mean size-frequency distributions were generated for each depth zone (shallow and meso-
photic) and compared with each other by a Kolmogorov-Smirnov test and to a normal distri-
bution using a Shapiro-Wilk W test [31–33]. Additionally, size-frequency distributions within
each shallow and mesophotic site were compared using a Kolmogorov-Smirnov test. Similarity
of size-frequency distributions between shallow and mesophotic sites was calculated with the
Spearman rank-correlation coefficient by dividing colony numbers into 10 surface area size
classes based on a logarithmic scale (class borders were< 0.5, 1.0, 1.5, 2.0. 2.5, 3.0, 3.5, 4.0, 4.5,

Table 1. Survey Locations. Details of site locations surveyed including site map label (Fig 1), corresponding site name, depth (m), date surveyed, and GPS
location (latitude and longitude).

Map Label Site Name Depth (m) Date Latitude Longitude

S1 Rita 10 17-Aug-14 N32° 21' 29.3" W64° 38' 29.3"

S2 Coopers 10 17-Aug-14 N32° 20' 28.4" W64° 39' 28.1"

S3 Tuckers 10 5-Sep-14 N32° 19' 57.7" W64° 40' 16.5"

S4 Spittal 10 5-Sep-14 N32° 18' 42.3" W64° 42' 53.4"

S5 Devonshire 10 28-Dec-14 N32° 18' 0.7" W64° 44' 16.1"

S6 Hungry Bay 10 28-Dec-14 N32° 17' 8.5" W64° 45' 26.1"

D1 XL 45 17-Aug-14 N32° 21' 58.0" W64° 36' 5.3"

D2 Coopers 45 17-Aug-14 N32° 20' 29.6" W64° 37' 47.2"

D3 Tuckers 45 5-Sep-14 N32° 19' 8.8" W64° 39' 41.0"

D4 Spittal 45 5-Sep-14 N32° 18' 3.7" W64° 42' 34.7"

D5 Devonshire 45 21-Dec-14 N32° 17' 36.5" W64° 43' 48.9"

D6 Hungry Bay 45 28-Dec-14 N32° 16' 37.5" W64° 44' 39.4"

doi:10.1371/journal.pone.0142427.t001
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and>4.5 cm2). Correlation coefficients were not normally distributed, and group means were
tested with the Mann-Whitney U-test. All analyses were computed using PASW Statistics 17.0.

Size-frequency distributions within sites were also examined with a principal coordinate
ordination (PCO) analysis based on Euclidean similarity, which generates a two-dimensional
plot. PCO analysis is an equivalent to principal component analysis (PCA), but with more flex-
ibility of resemblance measures [34] and allows spatial visualization of dissimilarities among
sites and between depths. This analysis was performed using PRIMER version 6.

Nutrient and Temperature Analyses
Seawater samples were collected at two shallow sites and two mesophotic sites during survey
dives (Tuckers and Spittal). Four replicate samples were collected at each site. Analysis of nitrate
(NO3), nitrite (NO2), and silicate (SiO4

-2) were conducted at BIOS with a Seal Analytical AA3
continuous flow analyzer. Concentrations of nitrogen (NO3 + NO2) and silicate at each site met
the assumptions of normality and equal variance and were analyzed by depth using Student’s t-
tests (n = 4 per site). Seawater temperature readings were recorded at each of the surveyed shal-
low and mesophotic sites between July 2014 and January 2015 using a Shearwater Petrel dive
computer. Each site was visited twice during this time period for a total of 12 paired temperature
readings. Mean temperatures were compared by depth using a Student’s t-test (n = 6).

Results

Distribution Parameters
Table 2 gives the geometric mean surface area, skewness, kurtosis, maximum colony surface
area, standard deviation, the probability that the sample is from a normal distribution, and the
sample size at each site. Each parameter is also given for all shallow sites and all mesophotic
sites combined.

Colony abundance, surface area and percent cover
The mean density of colonies varied significantly by depth (p = 0.002, Students t-test,
F = 0.106, n = 6), with higher colony density at mesophotic sites compared with shallow sites

Table 2. Distribution Parameters. M. cavernosa population distribution parameters including site name, depth (m), geometric mean surface area (μ; cm2),
skewness (g1), kurtosis (g2), standard deviation (SD), maximum colony surface area (95%; cm2), the probability that the populations is from a normal distribu-
tion (Pnorm), and the sample size (n) for each site surveyed and for all shallow sites and all mesophotic sites combined.

Site Depth μ g1 g2 SD 95% Pnorm n

Rita/XL 10 2508 -0.638 0.497 0.834 16343 0.042 26

Coopers 10 1731 0.389 -0.369 0.518 8836 0.012 12

Spittal 10 1503 -0.535 -0.281 0.457 5655 0.006 21

Tuckers 10 1991 -1.904 4.283 0.737 5284 0.000 6

Devonshire 10 1808 -0.154 -1.161 0.555 7697 0.005 29

Hungry Bay 10 2145 0.046 -1.052 0.617 13586 0.010 31

Rita/XL 45 522 -0.755 0.992 0.687 7697 0.009 62

Coopers 45 330 -0.763 0.630 0.555 2389 0.010 66

Spittal 45 639 -0.304 -0.178 0.709 3927 0.043 36

Tuckers 45 349 -1.088 0.945 0.767 3041 0.031 58

Devonshire 45 322 -0.260 0.004 0.749 2513 0.152 96

Hungry Bay 45 441 -0.614 0.273 0.719 2513 0.078 108

Shallow 10 1933 -0.499 0.452 0.620 16343 0.000 125

Deep 45 434 -0.627 0.369 0.713 7697 0.000 426

doi:10.1371/journal.pone.0142427.t002
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(Fig 2A). Colony surface area also varied significantly between depths (p<0.0001, Students t-
test, F = 0.082, n = 6), where mean colony surface area was smaller at mesophotic sites com-
pared with shallow sites (Fig 2B; Table 2). Mean colony surface area at shallow sites was typi-
cally 4.5 times greater than at deeper sites, and maximum surface area was 2.1 times greater at
shallow sites (16343cm2) compared with mesophotic sites (7697cm2). This large discrepancy in
individual colony surface area resulted in relatively equal contributions to mean percent cover
at each depth (p = 0.322, Students t-test, F = 0.091, n = 6), despite the higher density of colonies
at mesophotic sites (Fig 2C).

Standard deviation, skewness and kurtosis
Standard deviations of colony surface area data did not differ significantly between shallow and
mesophotic sites (Fig 3; p = 0.262, Student’s t-test). This suggests that variation in colony sur-
face area is similar at shallow and mesophotic sites.

The asymmetry around the mean of a size-frequency distribution is described as the skew-
ness (g1; Table 2); where a negative g1 describes a distribution skewed to the left and a positive
g1 distribution is skewed to the right. In a perfectly symmetrical distribution, g1 is zero [19].
Skewness did not vary significantly by depth (Fig 3; p = 0.649, Student’s t-test). Distributions at
mesophotic and shallow sites were negatively skewed, indicating a lower frequency of colonies
in the smaller size classes.

The degree of peakedness of a distribution around its central mean is described as kurtosis
(g2), where a population can be either over centralized (leptokurtic, g2 > 0) or flatter than nor-
mal (platykurtic, g2 < 0). Kurtosis did not vary significantly by depth (Fig 3; p = 0.150, Mann-
Whitney U-test), where the average kurtosis was 0.45 and 0.37 for shallow and mesophotic
sites, respectively.

Size-Frequency Distributions
Mean size-frequency distributions for shallow versus mesophotic sites are given in Fig 4. Loga-
rithmically transforming colony surface area data greatly improved normality. Mean distribu-
tion patterns from shallow and mesophotic sites were bell-shaped, yet differed significantly
from a normal distribution (Table 2; p<0.05, Shapiro-Wilk W test). Furthermore, mean distri-
bution differed significantly between shallow versus mesophotic sites, being skewed towards
larger colonies at shallow sites compared with mesophotic sites (Fig 4; p<0.001, Kolmogorov-
Smirnov test).

Distributions within each of the mesophotic sites were bell-shaped, and 2 out of six sites did
not differ from normal distribution (Table 2, Fig 5; p>0.05). Distributions within the shallow
sites were more variable due to the lower density of individuals, with distributions at all sites
differing from a normal distribution (Fig 5; p<0.05). Similarity of size-frequency distributions
from each site were compared using the Spearman rank-correlation coefficient. These compar-
isons showed that distributions from the same depths (from distant sites) were more similar
than those from adjacent sites at different depths (Table 3). The mean correlation coefficient of
distributions from sites at the same depths was 0.29 (SD = 0.08, n = 30), while the mean corre-
lation coefficient of comparisons from adjacent sites at different depths was 0.24 (SD = 0.28,
n = 6). These means are significantly different (p = 0.006, Mann-Whitney U-test). The high
degree of similarity between distributions from the same depth suggests that the population
structure ofM. cavernosa has depth specific characteristics. The PCO results are provided in
Fig 6, confirming a clear separation of the size-frequency distributions between depths and
more similarity among sites of the same depth than between paired sites at different depths.
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Fig 2. Colony Abundance, Surface Area, and Percent Cover by Depth. (a) mean number ofM. cavernosa
colonies per 60m2 ± SE at shallow (10m; gray bars) versus mesophotic (45m; black bars) sites (Rita/XL,
Coopers, Tuckers, Spittal, Devonshire, Hungry Bay); (b) meanM. cavernosa colony surface area (cm2) ± SE
at shallow (10m; gray bars) versus mesophotic (45m; black bars) sites; (c) mean percent cover ± SE ofM.
cavernosa at shallow (10m; gray bars) versus mesophotic (45m; black bars) sites (n = 6 per depth).

doi:10.1371/journal.pone.0142427.g002

Population Structure of Mesophotic Coral in Bermuda

PLOSONE | DOI:10.1371/journal.pone.0142427 November 6, 2015 7 / 17



Nutrients and Seawater Temperature
Nutrient concentrations were higher on shallow sites compared with mesophotic sites (Fig
7A), with significant differences found in concentrations of nitrate and nitrite between depths
(p<0.0001, Tuckers; p = 0.019, Spittal; Student’s t-tests, n = 4) and silicate between depths at
Tuckers (p = 0.001, Student’s t-test, n = 4), but not at Spittal (p = 0.058, Student’s t-test, n = 4).
Mean seawater temperatures also differed significantly by depth, being higher on shallow sites
compared with mesophotic sites (p<0.0001, Student’s t-test, n = 6). Likewise, variation in tem-
perature was more pronounced on shallow sites, ranging from 22.8 to 29.5°C, compared with
mesophotic sites, ranging from 22.2 to 27.8°C (Fig 7B).

Discussion
This study documents the population structure ofM. cavernosa at mesophotic versus shallow
reefs in Bermuda and reveals depth specific characteristics of these populations. Our analyses
show that size-frequency distributions of populations at shallow reefs vary significantly from
those at mesophotic reefs (Fig 4), with colonies from neighboring reefs at the same depths
being more similar to one another than to those from adjacent populations at different depths

Fig 3. Distribution Parameters by Depth.Mean standard deviation, skewness, and kurtosis (± SE) ofM. cavernosa population size-frequency distributions
frommeasured colonies at shallow (10m; gray squares) and mesophotic (45m; black triangles) sites (Rita/XL, Coopers, Tuckers, Spittal, Devonshire, Hungry
Bay).

doi:10.1371/journal.pone.0142427.g003
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(Figs 4 and 5, Table 3). These results suggest that conditions that vary with depth, such as light,
seawater temperature, and nutrient concentration, likely influenceM. cavernosa population
structure. Overall, this study found the distribution of populations at the mesophotic reef sites
examined on Bermuda’s south shore is shifted towards smaller individuals relative to shallow
reefs (Fig 4). Likewise, the average colony surface area at these mesophotic reefs was signifi-
cantly smaller than at shallow reefs (Fig 2A). However, it is important to note that a large
degree of variation in colony morphology was observed at the different depths, with colonies at
mesophotic sites being predominately flat and disc shaped, compared with colonies at shallow
sites that varied from flat, to encrusting, to massive boulders. Thus, using diameter to estimate
surface area likely underestimated total surface area of shallow-water colonies, resulting in a
conservative estimate of colony size differential by depth in this study. These data indicate,
therefore, that growth and maximum colony surface area may be limited on mesophotic reefs
and suggests that maximumM. cavernosa colony surface area is likely controlled by environ-
mental conditions that may limit energetic resources, such as light and nutrient availability.

Fig 4. Mean Size-Frequency by Depth. Size-frequency distributions ofM. cavernosa on a logarithmic scale represented as the mean proportion of
individuals (± SE) within each log transformed size class for measured colonies from all shallow (10m; gray bars) and all mesophotic (45m; black bars) survey
locations (Rita/XL, Coopers, Tuckers, Spittal, Devonshire, Hungry Bay).

doi:10.1371/journal.pone.0142427.g004
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Fig 5. Size-Frequency by Site. Size-frequency distributions ofM. cavernosa on a logarithmic scale
represented as the number of individuals within each log transformed size class for colonies from each
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The smaller surface areas ofM. cavernosa colonies found at mesophotic reefs in this study
conforms to previous studies that document a decrease in coral colony surface area with depth
[35] and the predominance of small colonies at deeper depth distributions [36, 37]. Smaller col-
ony surface area may be a result of nutrient limitation at mesophotic reefs as nutrient analyses
of adjacent mesophotic and shallow reefs in this study indicate that nutrients are significantly
reduced at these mesophotic sites compared with shallow sites (Fig 7A). Likewise, Lesser et al.
[25] document a reduction in phytoplankton availability and marked decreases in light-depen-
dent productivity with depth, indicating that energy required for calcification and growth may
indeed be limited for mesophotic corals [38, 39]. Under low-light and nutrient-limited condi-
tions such as those present at mesophotic reefs, corals decrease metabolic demand through
reduced respiration [40], slower growth, and morphological adaptations. For example, Grigg
[41] found skeletal extension rates of Porites lobata declined exponentially with PAR from 3 to
50m in Hawaii. Likewise, Fricke et al. [35] report skeletal extension rates in Leptoseris fragilis at
90 to 120m of 0.5–0.8mm year-1, which is significantly lower than typical rates reported for
other non-branching shallow water corals ranging from 1.0–8.5mm year-1 [42]. Alternatively,
Bongaerts et al. [43] report an average growth rate of 22.0mm year-1 for Agaricia grahamae
fragments transplanted to 60m in Curacao, which is similar to growth rates in the congeneric
species A. humilis and A. agaricites from shallow reefs (<30m) in the same region [44, 45].
Additionally, metabolic demands may be met through increased reliance on heterotrophy in
conditions where primary production is limited. In the Bahamas, Lesser et al. [25] document a
transition from autotrophy to heterotrophy with depth in populations ofM. cavernosa between
45 and 61m associated with significant declines in primary productivity. Whether the energy
consumed through heterotrophy is substantial enough to compensate for the reduction in pri-
mary production and maintain metabolic rates similar to shallow corals, however, is unclear.
Thus, future studies ofM. cavernosa on mesophotic reefs should include examinations of skele-
tal extension rates to determine rates of growth.

Despite the smaller surface area per colony ofM. cavernosa at mesophotic sites, the rela-
tively high density resulted in equal contributions to percent cover at mesophotic and shallow
reefs (Fig 2). The high density ofM. cavernosa colonies at mesophotic reefs may be related to
lack of competition with other coral species that are unable to adapt to conditions at this depth.

survey location (Rita/XL, Coopers, Tuckers, Spittal, Devonshire, Hungry Bay) at 10m (gray bars) and 45m
(black bars) depths. Sites that differed significantly from a normal distribution are indicated with an asterisk (*;
α<0.05).

doi:10.1371/journal.pone.0142427.g005

Table 3. Correlation Coefficients. Spearman rank correlation coefficient values for comparisons of size-frequency distributions ofM. cavernosa between
sites. Values above the staggered line are comparisons among shallow sites; values below the staggered line are comparisons among mesophotic sites; val-
ues between the staggered lines are between adjacent shallow and mesophotic sites. Significant correlations (statistically similar; α = 0.05) are indicated in
bold.

Spearman rank-correlation coefficient

Rita/XL Coopers Spittal Tuckers Devonshire HungryBay

Rita/XL 0.641 0.717 0.279 0.795 0.653 0.873

Coopers 0.934 0.504 0.203 0.934 0.988 0.880

Spittal 0.962 0.881 0.756 0.418 0.229 0.306

Tuckers 0.856 0.879 0.715 -0.160 0.903 0.943

Devonshire 0.905 0.931 0.816 0.892 0.296 0.847

HungryBay 0.917 0.919 0.829 0.941 0.939 0.332

doi:10.1371/journal.pone.0142427.t003
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Diversity decreases dramatically at mesophotic reefs with only a handful of scleractinian spe-
cies known to reside at these depths in Bermuda, including A. fragilis,M. carambi,M. decactis,
M. cavernosa, O. franksii, P. porites, S.michelini, and S. cubensis. Among them,M. cavernosa is

Fig 6. PCO of Population Structure by Site. Principal coordinates analysis (PCO) ofM. cavernosa size-
frequency distributions for each survey location (Rita/XL, Coopers, Tuckers, Spittal, Devonshire, Hungry Bay)
at 10m and 45m depths. PCO1 and PCO2 axes together capture 94.7% of the total variation in size-
frequency distribution.

doi:10.1371/journal.pone.0142427.g006

Fig 7. Nutrient Concentration and Temperature by Depth. (a) mean (±SD) concentration (μM) of nitrate (NO3) + nitrite (NO2) and silicate (SiO4
-2) on

shallow (10m; n = 4 per site) versus mesophotic sites (45m; n = 4 per site) from water samples collected September 5, 2015 (NO3 + NO2, p<0.0001, Tuckers,
p = 0.019, Spittal; SiO4

-2, p = 0.001, Tuckers, p = 0.058, Spittal; Student’s t-tests); (b) box blot of seawater temperature at shallow (10m) and mesophotic
(45m) sites showing median values (solid horizontal line), 25th and 75th percentile values (box outline), and minimum and maximum values (whiskers)
recorded between July 2014 and January 2015 from 6 paired shallow (10m) and mesophotic (45m) survey sites (2 dives per site); Rita/XL, Coopers, Tuckers,
Spittal, Devonshire, and Hungry Bay (p<0.0001, Students t-test, n = 6).

doi:10.1371/journal.pone.0142427.g007
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the most predominant and is the only coral documented to survive in Bermuda below 70m [21,
46]. On surveys conducted for this study,M. cavernosa was the most abundant scleractinian
species at these mesophotic sites, while A. fragilis was the second most abundant species with
low rates of occurrence (Goodbody-Gringley, pers. obs.). Furthermore, recruitment for most
taxa is documented to decline dramatically below 50m, indicating that competitive exclusion
has less influence on community structure at depth [47]. Thus, competition for space is likely
not a limiting factor for population density on mesophotic reefs, as restricted light and nutrient
availability reduces the abundance and diversity of competitive species allowingM. cavernosa
to become well established [47, 48].

Species distribution and population structure are highly influenced by characteristics of the
physical environment such as temperature and wave energy, which vary with depth and thus
affect coral population dynamics on mesophotic reefs. Thermally induced coral bleaching is
known to cause significant mortality on shallow-water reefs [49], however mesophotic corals
appear to be well insulated from the effects of increased sea surface temperature (SST), which
may be in part due to the lower degree of variability in SST experienced on mesophotic reefs
compared with shallow reefs (Fig 7B) [8, 50, 51]. Although increased SST is a reliable indicator
of increasing temperature at mesophotic depths>30m [52], Lesser and Slattery [51] report
bleaching to be virtually absent on corals inhabiting mesophotic reefs. Reduced occurrences of
bleaching events on mesophotic reefs is likely due to a lower maximum SST (Fig 7B) and solar
isolation [53] at depth, despite the potential for cold-water stress to induce bleaching as
reported elsewhere on Caribbean reefs [54–56]. Likewise, hydrodynamic disturbance and
exposure to wave energy are major factors influencing community structure in shallow reef sys-
tems. Such disturbances are minimal on mesophotic reefs, however, as surface wave energy
attenuates with depth [57, 58]. Corals inhabiting mesophotic reefs are, therefore, buffered from
direct physical damage from rough hydrodynamic conditions, which may contribute to the
long-term stability of these ecosystems, although episodic storm events may cause fragmenta-
tion of branching, foliose and columnar coral colonies at depth [9, 59]. Additionally, human-
mediated stresses appear to be reduced on mesophotic reefs due primarily to increased distance
from human populations and greater depths than nearby shallow reef systems [60]. Therefore,
corals inhabiting mesophotic zones may be protected from biotic and abiotic impacts that typi-
cally occur on shallow-water coral reefs.

In fact, the results of this study indicate that colonies ofM. cavernosa appear to form rela-
tively stable populations on mesophotic reefs in Bermuda. Mean population size structure was
bell-curved (Fig 4), and standard deviation, skewness, and kurtosis did not vary greatly by site
(Table 2). These results suggest that the mesophotic zone, which extends around the perimeter
of the Bermuda platform, creates a viable habitat able to support an established population of
M. cavernosa.

Likewise, the mean size-frequency distribution of shallow reef populations was also bell
curved, however, the overall size structure of shallow sites was shifted towards larger individu-
als with the smallest size classes underrepresented (Fig 4). Previous studies on coral population
structures suggest that environmental deterioration may skew populations towards a greater
proportion of larger individuals [13, 19]. While the results of the present study may indicate
that the shallow reef environment in Bermuda is less stable than mesophotic regions, there was
no statistical difference in skewness of the populations preventing any conclusive remarks as to
the stability of shallow sites versus mesophotic sites.

These findings support previous survey work conducted with submersibles and ROV’s in
other regions that show stable populations of scleractinian corals on mesophotic reefs, which
have not undergone declines similar to those seen on their shallow water counterparts [6]. This
apparent stability has led to the development of the “Deep Reef Refugia Hypothesis”, which
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posits that coral populations at depths greater than 30m could serve as a source/sink for genetic
diversity and future repopulation of shallow regions [9]. Several recent studies have undertaken
comparisons of conspecifics at neighboring deep and shallow reefs, and show that while a slight
degree of genetic discontinuity appears to be present at certain locations, other shallow/deep
populations display evidence of genetic connectivity, supporting the possibility of repopulation
of deteriorating shallow reefs by deep reef populations [61–63]. Understanding the degree of
genetic connectivity among shallow and mesophotic corals will, therefore, ultimately indicate
the ability of deep reefs to contribute to shallow reef resilience. Likewise, determining the
health and stability of mesophotic coral populations through demographic analyses will suggest
the viability of these reefs to serve as a source of propagules to maintain shallow water reefs
and help guide future management and conservation strategies [25].

The results presented here represent a baseline assessment of coral population structure and
reef condition on MCE’s in Bermuda. As the technology of mixed-gas closed circuit diving
advances, it is anticipated that research on MCE’s will rapidly increase. Access to baseline data
on community structure and reef condition will be imperative for future examinations of popu-
lation demography, assessments of connectivity, projections of ecosystem change, and the
overall resilience of global coral reef systems.
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VI. Conclusions 

This Ph.D. thesis investigated reproduction and population structure of scleractinian corals 

naturally occurring along environmental gradients, which may be used as natural laboratories for 

climate change studies. In particular, the research mainly focused on Mediterranean corals, 

which are still poorly studied compared to tropical species. 

Reproduction of the Mediterranean coral Caryophyllia inornata is strongly influenced by 

seasonal variations of temperature and photoperiod, presenting a rapid oogenesis and an annual 

spermatogenesis. However, a peculiar embryogenesis without a clear seasonal trend was 

observed in females, males and sexually inactive individuals, suggesting a possible agamic 

development of the embryos. This research has been used as a pilot study in order to have a 

useful point of comparison and extend the analysis to other populations of the same species 

along a latitudinal gradient of temperature and solar radiation. 

Reproductive traits of the non-zooxanthellate coral Caryophyllia inornata were 

homogeneous among the investigated populations, with no effect of temperature or solar 

radiation on their reproductive potential along the latitudinal gradient. Therefore, this species 

seems to be quite tolerant to environmental changes, as observed for another Mediterranean non-

zooxanthellate species, Leptopsammia pruvoti, which was studied along the same gradient. This 

tolerance could depend on the lack of symbiosis with the zooxanthellae, making these species 

less susceptible to increasing temperature. Conversely, the zooxanthellate Balanophyllia 

europaea showed reduced reproductive efficiency in warmer populations along the same 

latitudinal gradient. An inhibition at high temperatures of zooxanthellae photosynthesis is 
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hypothesized, which could lead to reduced available energy for regeneration processes such as 

reproduction.  

These different trophic strategies (mixotrophic/zooxanthellate versus heterotrophic/non-

zooxanthellate) may also explain the different biological responses of corals to ocean 

acidification. The spermatogenesis of the zooxanthellate B. europaea collected along a natural 

pCO2 gradient was not affected by low pH. This result, combined with the oogenesis results 

(obtained by another Ph.D. student of the research group) showed the same trend, suggesting that 

the reproductive activity of B. europaea seems quite tolerant to increasing pCO2. In this case the 

symbiosis with the zooxanthellae may be an advantage, leading to an increase in photosynthetic 

efficiency when pH decreases due to rising pCO2.  

The ability to survive and reproduce under particular conditions is strongly related to 

population structure, which provides information on coral responses to the environment. In light 

of the rapid decline of coral reef health over the past several decades, the population structure of 

the tropical zooxanthellate coral Montastraea cavernosa was investigated along a depth gradient. 

This study was performed during my abroad period at the Bermuda Institute of Ocean Science 

(Bermuda) under the supervision of Dr Gretchen Goodbody Gringley. Mesophotic reefs are 

hypothesized to serve as refugia for shallow coral species exposed to environmental 

perturbations, where propagules from mesophotic reefs may repopulate shallow zones following 

disturbance events. Size frequency distribution was found to be depth dependent since the 

mesophotic zones were represented by smaller colonies but more numerous than the shallow 

zones. However, the percent cover was consistent between the two depths, indicating that the 

mesophotic population of M. cavernosa in Bermuda is quite stable. This analysis provided an 

initial assessment of mesophotic reef state in relation to environmental conditions that vary with 
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depth, such as temperature and nutrient levels. This is a preliminary study which envisions future 

comparisons among additional depths, including an analysis of the reproductive traits of this 

species. Understanding coral reproduction and population structure has major implications for 

the resilience and conservation of coral reef ecosystems.  
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