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ABSTRACT 

Lack of efficacy in current pharmacotherapy, applied in osteoarthritis (OA) treatment, is spurring 

community to spend a lot of work and resources so as to unveil new molecular targets implicated in 

the pathogenesis of OA. 

Several studies have reported beneficial effects of autophagy in preventing chondrocyte death, OA-

like changes in gene expression and cartilage degeneration and many miRs have been identified as 

key modulators of autophagy pathway. So far, to our knowledge no relationship has been revealed 

between nutraceutical compounds and miR network in OA models. 

First aim of this thesis is to evaluate molecular mechanisms of action of hydroxytyrosol (HT) a 

promising compound already tested for protective efficacy in OA chondrocytes in our recent 

published work.  

HT increases markers of autophagy and protects chondrocytes from DNA damage and cell death 

induced by oxidative stress. The protective effect requires the deacetylase SIRT-1, which 

accumulated in the nucleus following HT treatment. In fact silencing of this enzyme prevented HT 

from promoting the autophagic process and cell survival. Furthermore HT supports autophagy even 

in a SIRT-1-independent manner, by increasing p62 transcription, required for autophagic 

degradation of polyubiquitin containing bodies. 

Second aim consists in identifying a microRNA (miR) implicated in HT-mediated protective 

response to oxidative stress and examining the effects after modulation of miR levels by approach 

of transient transfection. 

HT induces an increased expression of SIRT-1 protein, but without mRNA changes. After in silico 

analysis we identify miR-9 as a speculative candidate able to target SIRT-1 and confirm this 

hypothesis by means of luciferase gene-reporter assay. Moreover miR-9  mediates cell death 

induced by H2O2 and the protective effect of HT, as observed in human primary chondrocytes and 
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C/28-I2 cell line transfected with antimiR-9 and premiR-9 by trypan blue exclusion and caspase 

activity assays. 

Third aim is to investigate the potential role of miR-155, found to be one of the most highly 

upregulated miRs in human OA knee cartilage, in autophagic pathway. 

Autophagy flux induced by rapamycin and 2-DG was significantly increased by miR-155 LNA, and 

significantly decreased after miR-155 mimic transfection in T/C28a2 cells and in human primary 

chondrocytes. These effects of miR-155 on autophagy were related to suppression of gene and 

protein expression of key autophagy regulators including ULK1, FOXO3, ATG14, ATG5, ATG3, 

GABARAPL1, and MAP1LC3. 

MiRs are promising targets as a single miR is able to regulate multiple genes in dysregulated 

pathways in a disease. Thus, the identification of a single miR, involved simultaneously in several 

disease-related pathways, discloses a potent therapeutic target. Indeed the unveiling of bioactive 

compounds, exerting a beneficial effect through induction of epigenetic changes, may open a new 

topic of research with huge potential and not yet well explored. 
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1. INTRODUCTION 

1.1 Articular cartilage 

Articular cartilage is a specialized connective tissue that covers the bone surfaces of diarthrodial 

joints. Cartilage in human body is classified into elastic, fibro-cartilage, fibro-elastic and hyaline 

cartilage; the latter is most known as articular cartilage and lies on the bones of synovial joints, 

giving them the lubricating feature and resistance to compression. Free movement and fractioning 

reduction is allowed thanks to the synovial fluid secreted by synovial membrane-resident cells.  

Articular cartilage is devoid of blood vessels, lymphatics and nerve endings and is subject to a 

variable load and strong biomechanical stress during everyday life. Most important, this tissue has a 

limited capacity for intrinsic self-repair. Therefore, the preservation and health of articular cartilage 

are crucial to joint health. 

The only cell population of hyaline cartilage is represented by chondrocytes that are responsible for 

synthesizing and maintaining the matrix infrastructure and homeostasis. Cellular component forms 

only 1-5% volume of cartilage tissue and the dense extracellular matrix (ECM) occupies the rest 

part. 

Composition and structure of chondrocytes and ECM depend on the distance from the surface of 

cartilage and four different morphologically zones are distinguished (Fig.1.1). 

The superficial (tangential) zone (STZ), the thinnest of the four, provides the articulating surface 

and is composed of flattened cells lying parallel to the joint surface. Chondrocytes in this region 

synthesize high amount of collagen (primary type II and IX), being packed tightly and in parallel to 

the articular surface, and very low amount of proteoglycan, so as to have the highest content of 

water. This zone is responsible of tensile and shears strength and its disruption contributes to the 

development of osteoarthritis.  
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The middle or transitional zone represents 40-60% of articular cartilage volume and provides a 

functional and anatomical bridge between the superficial and deep zones. It holds a low density of 

cells with spheroid shape surrounded by abundant matrix. Large diameter collagen fibrils are 

organized obliquely to the articular surface and higher amounts of proteoglycans compose the 

extracellular matrix of this region.  

The deep or radial zone includes 30-40% of the total tissue volume and has the highest 

concentration of proteoglycans, the largest diameter of fibrils, the lowest cell density and the lowest 

water concentration. The chondrocytes are oriented in columns, parallel to the collagen fibers and 

perpendicular to the joint line. 

In the calcified cartilage zone, chondrocytes show a very low metabolic activity with hypertrophic 

phenotype (1). This zone is embedded below the so-called “tide mark” that has a specific affinity 

for basic dyes, such as toluidine blue and the main function of this layer is to ensure the anchoring 

between cartilage and bone, by collagen fibrils that penetrate from the radial zone to the 

subchondral bone. 

Each zone is distinguished in 3 different regions, named the pericellular region, the territorial region 

and the interterritorial region based on ECM composition. As the name suggests, the pericellular 

region lies around the chondrocyte. This thin layer is composed mainly in proteoglycans, as well as 

glycoproteins and non-collagenous proteins and exerts an actual role in signal transduction 

mechanisms. 

The territorial region, that contains largely thin collagen fibers, is responsible of load bearing and 

protects the chondrocyte from mechanical stresses.  

The interterritorial region is characterized by bundles of large collagen fibrils, organized parallel to 

the surface of the superficial zone, obliquely in the middle zone, and perpendicular to the joint 

surface in the deep zone. Proteoglycans are abundant in the interterritorial zone (2). 
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Figure 1.1: Schematic, cross-sectional diagram of healthy articular cartilage: A, cellular 

organization in the zones of articular cartilage; B, collagen fiber architecture. Image modified from 

Sophia Fox et al. 2009 (2) 

1.2 Extracellular matrix composition 

Normal articular cartilage consists of 70% water and 30% of solid compound. The latter percentage 

is mainly represented by collagens and proteoglycans and a smaller amount by noncollagenous 

proteins, glycoproteins, lipids, phospholipids and inorganic compounds (1). 

Proteoglycans consist in a core protein attached covalently to one or more glycosaminoglycan 

chains. The most abundant of this class of conjugated proteins is aggrecan, characterized by more 

than 100 of chondroitin sulphate and keratin sulphate chains. Aggrecan has a strong affinity to link 

hyaluronan forming large aggregates (1, 3). The chondroitin sulphate chain shows a structural 

function because of its negative charge, while the keratin sulphate domain does not exhibit any 

known function. The interaction between collagen and aggrecan confers to ECM a high degree of 

hydrophily, allowing strong capability of resistance to mechanical loads (1). 

Collagen is the most abundant molecule in the ECM and collagen type II constitutes 90-95% of the 

total. The minor components, collagen types I, IV, V, VI, IX, and XI, assist to form the network of 

collagen type II fibrils. All members of the collagen family contain a region consisting of 3 
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polypeptide chains (α-chains) organized into a triple helix, namely procollagen, that are covalently 

bound at the level of C-terminal extension through disulphide bridges. When procollagens are 

secreted into the ECM, the N-terminal and C-terminal ends are removed by aggrecanases, e.g. A 

Disintegrin And Metalloproteinases with ThromboSpondin (ADAMTS)-2, -3, -14 and Bone 

Morphogenetic Protein (BMP)-1. The mature form of collagen spontaneously self-assembles in 

fibrils by covalent cross-linking (4-6).  

Many other proteins support the fibre network, including thrombospondins, leucine-rich proteins 

(biglycan, decorin, fibromodulin, lumican), matrillins and fibronectin (3).  

1.3 Biology of chondrocyte 

As mentioned above, chondrocytes are the only resident cell type of articular cartilage and 

constitute about 5% of the wet weight of articular cartilage. Chondrocytes vary in shape, number, 

and size, depending on the zones of the articular cartilage. In the superficial zone they are flatter 

and smaller and generally have a greater density than the cells located deeper in the matrix. Being 

cartilage a non-vascularized tissue, chondrocytes receive nutrients and metabolites by diffusion 

from articular surface through synovial fluid. Therefore, the articular cartilage has a low oxygen 

level that varies depending on zone depth, 10% in the surface to less than 1% in the deep zone. 

Schipani et al. reports a survival role of hypoxia inducible factor -1 alpha (HIF-1α) in the hypoxia 

status by stimulating genes responsible of cartilage anabolism and differentiation, that is SOX9 and 

TGFβ (7). 

Chondrocytes originate from mesenchymal stem cells (MSCs) and articular cartilage development 

partly reproduce a finely ordered process called endochondral ossification, which is structured in 

four steps: chondrogenesis, chondrocyte differentiation and hypertrophy, mineralization and 

invasion of bone cells, and finally formation of bone (8, 9). The MSCs undertake this fine process 

by migrating to the future area that will become bone. Then, they begin a phenomenon of 



11 
 

condensation, that is an increase of cellular volume without cellular proliferation. The ECM that 

surrounds undifferentiated MSCs is composed of collagen type I, III, V, hyaluronan, tenascin and 

fibronectin. During the differentiation of MSCs a switch in ECM composition happens and 

chondrocytes produce collagen type II, IX and XI, aggrecan, large chondroitin sulphate rich 

proteoglycan and link protein and no more collagen type I. Following further differentiation and 

hypertrophy, the chondrocyte decreases the production of collagen type II while begins to express 

collagen type X. After chondrogenesis, the chondrocytes hold a resting phenotype in the articular 

cartilage or enter a cascade of proliferation, terminal differentiation, hypertrophy and apoptosis. At 

the same time, cartilage undergoes an invasion by blood vessels that are responsible for carrying 

osteoblasts, whereby calcified hypertrophic cartilage will be resorbed and replaced by mineralized 

bone (8, 10, 11). During these events, matrix metalloproteinase (MMP) 9, 13, and 14, vascular 

endothelial growth factor (VEGF) and VEGF receptors are employed to convert a non-vascularized 

and hypoxic tissue to bone (11). 

Unfortunately, chondrocytes have poor replicative strength thus conferring to cartilage a limited 

intrinsic capability of self-repair after mechanical injury. Therefore, cell integrity and health are 

critical for tissue biochemical properties and joint function. Moreover, in adult humans, 

chondrocytes has also a low activity of matrix turnover. Indeed, the half-life of collagen and 

aggrecan core protein is 100 years and 3-24 years, respectively, with a higher turnover rate in the 

pericellular region (9). 

1.4 Osteoarthritis 

Osteoarthritis (OA) is a multifactorial degenerative disease of the cartilage with the highest 

prevalence and socio-economic impact if we consider the loss of working time and early retirement 

of middle-aged individuals. OA is the most common form of arthritis, whose millions of people 

worldwide suffer, affecting 60% of men and 70% of women above 65 (12).  Clinical symptoms are 

pain, stiffness and disability of joint motility that may lead to joint replacement (13). OA can 
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clinically be classified into two categories. Primary OA is featured by late onset and without a 

causative event, on the contrary secondary OA occurs after an identifiable event, such as trauma or 

pre-existing condition. The most common joint affecting by OA are the knee, hip, foot and hand 

(Fig. 1.3) that undergo severe changes, as loss of joint space, subchondral bone sclerosis, presence 

of osteophytes located at joint margins, degeneration of ligaments and hypertrophy of the joint 

capsule (Fig. 1.4). 

Figure 1.3: Main districts affected by OA: knee (A), hip (B), foot (C) and hand (D). 

 These features are usually accompanied by chronic pain. Nevertheless, only half of people with 

radiographic OA complain significant symptoms and, on the other hand, not all elderly with chronic 

joint pain have radiographic OA features (14). 

OA is a multifactorial disease whose aetiology appears to result from a complex system of 

biochemical and biomechanical causes. Many studies underlined the role of systemic factors (such 

as genetics, aging, dietary intake, estrogen use and bone density) and of local biomechanical factors 

(such as muscle weakness, obesity, joint laxity and injury) (15). However, the final common effect 

on cartilage destruction is due to the defective homeostatic balance between synthesis and 

degradation of ECM by chondrocyte population. 

A
 

C D B 
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Figure 1.4: a Healthy tissue is shown: normal cartilage without any fissures, no signs of synovial 

inflammation. B Early focal degenerate lesion and 'fibrillated' cartilage, as well as remodelling of 

bone, is observed in osteoarthritis. This can lead to bony outgrowth and subchondral sclerosis. 

Image modified from Wieland et al. 2005(16) 

Articular cartilage degeneration is a biphasic process including an initial biosynthesis step, aimed to 

damage repair, and a subsequent degenerative step, characterized by increase of matrix degrading 

proteinases, such as matrix metalloproteinases (MMPs), aggrecanases and other proteinases, and 

decrease of matrix components, mainly aggrecan. Moreover other phenotypic changes and 

abnormal phenomena in cell proliferation and death occur in OA chondrocytes (17). Cytokines, 

growth factors and matrix components trigger intracellular signals able to regulate chondrocyte 

metabolic activity and to switch on a pro-inflammatory and catabolic scenario. Indeed, the presence 
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of many inflammatory mediators, such as interleukin (IL)-1, IL-6, IL-7, IL-8 and tumour necrosis 

factor (TNF)-α, identifies OA as an inflammatory pathology much more than initially thought (18). 

These cytokines lead to cartilage destruction through activation of nuclear factor κB (NF-κB), 

phosphatidylinositol 3-kinase (PI3K)/Akt and transcription pathways, inducing the up-regulation of 

different metalloproteinases (MMPs) including MMP-13, the major type collagen II (Col2) 

degrading MMP. MMP-13-specific type II collagen cleavage products have been identified in OA 

cartilage together with cytokines (19, 20) and constitutive expression of MMP-13 in cartilage in 

mice produces OA-like changes in knee join (21). Furthermore other factors, such as fibrinogen, 

heat shock proteins or derivatives from hyaluronic acid, that are in surroundings during OA 

inflammation, can activate toll-like receptors (TLR) that, in turn, participate in the action of pro-

inflammatory cytokines in the joint (22, 23).  

Besides a stimulation of matrix-degrading proteinases, IL-1β and TNFα reduce COL2A1 expression 

(24). Indeed, IL-1β is able to address inhibitory Smads (small mother against decapentaplegic), 

transcriptional regulators of TGF-β and BMP pathways, by up-regulating Smad7 and down-

regulating Smad6 (25). TGFβ is responsible to maintain the anabolic activity in chondrocytes by 

eliciting an increase in aggrecan and collagen gene expression and triggers the signalling by binding 

transmembrane serine/threonine kinases, consisting of TGFβ receptor type I (TGFβ RI) and TGFβ 

RII. Then, TGFβ RI phosphorylates receptor-associated Smad 2(R-Smad2) and R-Smad3, in this 

way, turning on the intracellular signal. Smad2 and Smad3, forming a complex with Smad4, 

migrate to the nucleus and contribute to the transcriptional activation of target genes. Smad7 

interacts with TGFβ RI, prevents Smad2 and Smad3 phosphorylation and their participation in the 

activation of downstream target transcription (26). 

 Surprisingly, an increased anabolic activity in OA cartilage has been reported and likely correlated 

to cytokine-induced production of prostaglandin E2 (PGE2) by promoting  COX-2 activity and 

COL2A1 expression (27), or to BMP-2 by activating COL2A1 transcription (28). This opposite 
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effect may be due to the chondrocyte effort in counteracting the matrix degradation, like in a 

compensatory condition. Other studies support the hypothesis that COL2A1 expression levels may 

vary in different zones of cartilage analysed and in different stages of OA samples (29-31). 

COL2A1 results predominantly up-regulated in cell samples deriving from middle and deep zones, 

rather than from the samples of degraded superficial region (32). 

The best characterized anabolic factors in this tissue context are insulin-like growth factor (IGF)-I, 

the bone morphogenetic proteins (BMPs), including osteogenic protein-I (OP-I or BMP-7) and 

cartilage-derived morphogenetic proteins (CDMPs), TGF-β and fibroblast growth factors (FGFs). 

IGF-I and other anabolic factors, able to maintain cartilage matrix synthesis, reveal a gradual 

decreased expression or declined activity during aging progression. IGF-I can stimulate 

proteoglycan synthesis, promote chondrocyte survival and counteract catabolic cytokines. OA 

patients are hypo-sensitive to IGF-I, but they show normal or increased IGF-I receptor levels (33).  

Increased levels of IGF binding proteins (IGFBPs) have been found to be responsible of this hypo-

responsivity by interfering with IGF-I signalling (34). TGF-β 1, 2 and 3 stimulate proteoglycan and 

type II collagen synthesis in primary chondrocytes and cartilage explants in vitro. However, it has 

been reported that administration of TGF-β leads to side effects, such as osteophyte formation, 

swelling and synovial hyperplasia. These factors could be involved in physiological turnover of 

proteoglycans, since TGF-β is able to promote ADAMTS-4 expression and thus aggrecan 

degradation (35). BMPs, another class of the TGF-β family, are involved in chondrogenesis. BMP-

2, -4, -6, -7, -9 and -13 enhance COL2 and aggrecan synthesis. BMP-7 can counteract IL-1β-

induced catabolic actions, such as stimulation of MMP-1 and -13, inhibition of tissue inhibitors of 

metalloproteinases (TIMPs) expression and down-regulation of proteoglycan synthesis in adult 

chondrocytes (36). 
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1.5 The role of oxidative stress in aging and OA 

Although aging is not the only responsible condition for the onset of OA, it is accepted that aging 

can promote the development of OA and has been proposed as the main risk factor of this 

pathology, followed by obesity (37). The real connection between aging changes in cells and the 

inclination to OA seems to be found in the role of cell senescence and in its morphological 

expression, the senescence-associate secretory phenotype (SASP) (38). This phenotype can be 

associated to an over production of reactive oxygen species (ROS) due to defective mitochondrial 

function and up-regulation of inflammatory pathways that participate in the “aging stress response” 

(39). Because of unpaired electrons, free radicals are very reactive and can affect cell components, 

thus causing damages. 

An imbalance between ROS production in mitochondria and cell scavenging systems (superoxide 

dismutase-SOD, catalase, glutathione peroxidase, glutathione reductase and reduced glutathione 

levels) to detoxify these species, determines the oxidative stress condition and is strongly associated 

to aging and age-related diseases, including OA. The main ROS detected in chondrocytes are 

peroxynitrite (ONOOˉ) and hydrogen peroxide (H2O2), derived from activation of inducible NO 

synthase (iNOS) and mitochondrial NADPH-dehydrogenase, respectively (40, 41). In chondrocytes 

iron Fe
2+

 and H2O2 release hydroxyl radicals (OH˙) that react with unsaturated fatty acids of 

membrane lipids thus forming lipidic radicals (RO˙, ROO˙). Several studies in humans and 

experimental animal models reported a limited anti-oxidant capacity of the glutathione systems and 

some enzymes, such as SOD and catalase, in OA (42, 43).  

In a pathological scenario, whether cellular antioxidant systems are altered and/or insufficient to 

detoxify the ROS excess, oxidative stress leads to membranes and nucleic acids damage and, also, 

breakdown of extracellular components, including proteoglycans and collagens, as well as down-

regulation of glycosaminoglycan and collagen synthesis, and up-regulation of MMPs and 

aggrecanases. All these alterations contribute to promote cartilage derangement and destruction. It 



17 
 

should be noted that in physiological conditions, ROS are essential for the control of cellular 

function, e.g. signal transduction, by acting as messengers. However when in excess, ROS produce 

deregulated post-translational modifications of signalling proteins by oxidation and nitrosylation of 

amino acid residues, leading to altered activity of several cellular processes, e.g. apoptosis and cell 

proliferation (44). ROS can interact with other cellular components, such as advanced glycation end 

products (AGEs) that are noteworthy to be accumulated in aged tissues and OA cartilage (45). 

Furthermore, these events establish a positive feed-back loop: the cartilage degradation-derived 

products can promote further inflammation and oxidative stress in chondrocytes, leading to OA 

progression.  

However, our organism has several adaptive molecular devices fighting stress-related alterations, 

thus promoting survival. One of these longevity factors is SIRT-1, a class III protein deacetylase. 

This story began at least 30 years ago when its homologous Sir2 (silent information regulator 2) 

was identified in yeast and found to be a silencer of specific genome regions, such as telomeric ends 

and homothallic mating (HM) loci. In this way it influences the replicative aging process of yeast. 

When the exact activity of Sir2 was discovered and characterized as NAD
+
-dependent histone 

deacetylase, a mechanistic explanation became available for the actual role of this protein as a 

metabolic link between the energetic state and life span (46). Despite being principally a nuclear 

protein, SIRT-1 is provided with two nuclear localization signals and two nuclear exportation 

signals, via which it shuttles between nucleus and cytosol.  

As described above, ROS at physiological levels are important cellular signalling molecules 

performing fundamental cell survival functions, whereas at higher doses can directly damage 

proteins, lipids and DNA. The free radical theory of aging refined by Hekimi and collaborators 

proposes a gradual ROS response hypothesis (47). As shown in Fig 1.5 an optimal level of ROS is 

required for the best healthspan and for extending the lifespan. This threshold matches with a 

specific and sustained activity of SIRT-1. Moreover SIRT-1 interacts with NF-κB signalling, 
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controlling the ROS production. It has been reported that SIRT-1 is able to deacetylate Lys310 of 

Rel/p65 component of NF-κB complex and, in this way, inhibit its transcriptional activity (48). 

However, until 2008 the actual potential of SIRT-1 as modulator of cellular processes was unclear. 

The missing piece in this complicated puzzle was the discovery that SIRT-1 may be involved in 

autophagy by deacetylating ATG5, ATG7, and ATG8. Actually, this finding did not come as a 

surprise, because both autophagy and SIRT1 are stimulated during starvation and fasting. It has 

been shown how SIRT1 deacetylates these autophagy-related proteins in a NAD
+
-dependent 

fashion. Moreover, it has been found that FoxO3 deacetylation may control the transcription of 

autophagy-related genes such as LC3 and BCL-2/E1B 19 kDa interacting protein (BNIP3) in 

skeletal muscle, and that SIRT1 promotes starvation-induced autophagy by deacetylating FoxO in 

cardiac myocytes (46). 

Figure 1.5: A schematic drawing representing the crosstalk between ROS and SIRT-1 activity. 

ROS concentration is inversely correlated to SIRT-1 level and the optimal level of ROS production 

is identified through interpolation of lifespan on y-axis (A). The interplay between ROS and SIRT-1 

controls autophagy and NF-κB pathway and, in this way, promotes age-related changes and 

senescence (B). Image modified from Salminen et al. 2013 (49). 

It has been shown that SIRT-1 regulates gene transcription in human chondrocytes by increasing the 

expression of ECM components and inhibits apoptosis in human OA chondrocytes (50, 51). An 

interesting in vivo study showed that SIRT-1-null mice also have defective cartilage, with facial 
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abnormalities and their long bones mineralized slower than normal. These mutants were 

predisposed to develop OA, especially with age, due to a higher level of cartilage breakdown and 

apoptosis (52). 

1.6 Hydroxytyrosol and nutraceuticals as alternative therapies for OA 

So far, pharmacotherapies for arthritic diseases are only based on palliative treatments that focus on 

symptoms, e.g. pain and inflammation, and mainly consist of analgesics and nonsteroidal anti-

inflammatory drugs (NSAIDs) (53). This is the reason why they lack efficacy in slowing disease 

progression and, also, result in several side effects, mostly gastrointestinal and cardiovascular 

injuries. Therefore, an increasing need for alternative therapies, to improve the life quality or 

reverse the pathology of OA sufferers, is spurring the scientific community towards the basic and 

applied research on the potential of nutraceuticals. The term “nutraceutical” derives from a 

combination between “nutrition” and “pharmaceutical” and identifies a food or only a component of 

this with a scientifically proven beneficial effect for our organism. At present, nutraceuticals 

include dietary supplements at high concentration of a bioactive compound provided from food, like 

pills of food (Fig. 1.6). Many reports suggest that nutraceuticals exert a protective role for several 

pathologies, including cardiovascular disease, cancer, and OA (54, 55) 
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Figure 1.6: A representative drawing of concept on nutraceuticals: pills of specific components 

originally derived from food. Image modified from website http://www.marsing-

sa.com/nutraceuticals/ 

Nutraceuticals have shown to exhibit a role not merely as anti-oxidant or ROS scavengers, but also 

as efficient modulators of gene expression of key factors underlying the OA onset. A simplified 

scheme of the best studied pathways that mediate nutraceuticals action, is shown in Fig. 1.7. Many 

researchers have identified specific nutraceuticals able to inhibit NF-κB transcription factors, which 

are stimulated following toll-like receptors (TLRs) and IL-R activation by extracellular matrix 

fragments and IL1-β, respectively. Moreover, some polyphenols (e.g. sesamin and morin) have 

been found to suppress the up-regulation of pro-inflammatory cytokines and catabolic enzymes by 

inhibiting the mitogen-activated protein kinases (MAPKs) (56, 57). The mammalian target of 

rapamycin (mTOR) signalling has been reported to be regulated by poly-unsaturated fatty acids 

(PUFAs), lipids well known for their anti-inflammatory properties, leading to a protective 

stimulation of autophagy in chondrocytes (58). It is noteworthy that SIRT-1 downregulation results 

to address OA progression in induced and aged models (59). Indeed, SIRT-1 activation in the 

presence of resveratrol interferes with NF-kB signaling, resulting in anti-inflammatory effects 

during OA (60). 
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Figure 1.7: Mechanism of action of nutraceuticals in synoviocytes and chondrocytes. 

Nutraceuticals alleviate inflammation and cartilage degradation by modulating NF-κB and MAPKs 

(ERK1/2, p38  and JNK). These critical pathways are activated by IL-1β or extracellular matrix 

(ECM) fragments that are recognized as damage-associated molecular patterns (DAMPs), leading to 

the expression of MMPs and ADAMTS and, again, inflammatory cytokines, which participate in 

cartilage degradation. The supplementation of nutraceuticals can block many steps of these 

signaling pathways to decrease osteoarthritis (OA) severity. Image modified from Mével et al. 2014 

(61) 

Even though several dietary factors and nutraceuticals are promising, extensive investigation in 

preclinical and clinical settings is required to prove their usefulness. On this purpose, we and others 

have showed the ability of sulforaphane, a natural isothiocyanate derived from edible cruciferous 

vegetables, to protect chondrocytes in vitro (62, 63), and, quite recently, a sulforaphane-rich diet 

was found effective in a murine OA model (63).  

Another interesting candidate molecule is hydroxytyrosol (HT), a phenolic compound endowed of a 

powerful anti-oxidant action, mainly found in the fruits of olive tree (Olea europaea L.) and their 

derivatives, such as olive oil (64).  From the point of view of chemical composition, olive oil can be 
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divided into major and minor fractions. The first one includes the saponificable fraction, that are 

mostly triacylglycerides, and represents 98-99% of the total weight. The main components of this 

fraction is oleic acid (18:1 n-9) and the others are palmitic, stearic, linoleic and α-linoleic acid. The 

minor fraction comprises the unsaponificable components and the soluble part, that are the phenolic 

compounds. Stress conditions, such as high temperature and ultraviolet radiation being usual in the 

Mediterranean area, promote a further metabolic process in vegetables, including olives and grapes. 

This pushes an increased synthesis of phenolic compounds with known antioxidant features. This 

group is classified in two sub-groups: lipophilic phenols (tocopherols and tocotrienols) and 

hydrophilic phenols. The latter sub-group can be divided into different classes: phenolic acids, 

phenolic alcohols, lignans and flavonoids. HT [(3,4-dihydroxyphenyl)ethanol] belongs to the 

second class together with tyrosol [(p-hydroxyphenyl)ethanol] and HT glucoside (64). The 

concentrations of HT and tyrosol in olive oil have been reported as 14.4 and 27.5 mg/kg, 

respectively (65). 

As shown in figure 1.8, HT is a product obtained from the hydrolytic reaction of oleuropein 

occurring during the maturation of olives. Given that phenolic compounds are polar species, a great 

amount of HT is found in the residues of oil processing, including pomace olive oil, olive-mill 

waste water or, the rinse waters. On the other hand, HT shows amphipathic behaviour and, in this 

way, is also found in olive oil and in the olive leaf.  

Mediterranean countries, e.g. Italy, Greece and Spain are the main providers and consumers, thanks 

to their long tradition of olive cultivation. Indeed, it has been estimated that these populations 

consume around 25-50 mL/die of olive oil, with thus 9 mg/die of polyphenols and, at least, 1 

mg/die of HT and tyrosol (64). 

The absorption of HT occurs in a dose-dependent manner in the small intestine and colon (66) and 

it is very rapid, with a maximum peak of HT concentration in plasma 5-10 minutes after ingestion. 

Tuck et al. reported that rats were able to absorbe 75% of HT in aqueous solution and 90% in oily 
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vehicle (67). HT is able to cross the blood-brain barrier, even if it should be considered that HT may 

result endogenously from dihydroxyphenylacetic acid in the brain. HT can also be generated from 

dopamine leading to consider both the dietary intake and the endogenous levels (68, 69). 

Several studies, mostly performed in cell and animal models, have revealed a range of biological 

properties of HT, suggesting beneficial effects in the prevention or treatment of chronic and 

degenerative diseases, especially cardiovascular disease and cancer. In particular HT has been 

shown to display cytoprotective and anti-inflammatory actions in a variety of cell types (70-74) 

 

Figure 1.8: Origin of hydroxytyrosol from oleuropein. After the hydrolysis of oleuropein (resulting 

in oleuropein aglycone), which originates during the maturation of the olives, storage of the oil, and 

preparation of table olives, hydroxyrosol is given rise together with elenolic acid. These are 

responsible, in part, for the complex and varied flavour of the oil and the olives. Image modified 

from Granados-Principal et al. 2010 (64). 

1.7 Autophagy in OA 

The word “autophagy” (from the Greek auto and phagein, meaning self-eating) was coined by 

Christian de Duve in 1963 following the discovery of cytosolic components and lysosomal 

hydrolases engulfed in membrane-bound vesicles. Autophagy is a catabolic process via lysosomes 

that plays crucial roles in several cellular aspects, including intracellular homeostasis, immunity, 
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internal quality checking, cell survival (75-77).  Based on the type of cargo delivery, three different 

forms of autophagy have been described in mammals: macro-autophagy, micro-autophagy and 

chaperone-mediated autophagy, all of them characterized by proteolytic degradation of cytosolic 

components at the lysosome. Macro-autophagy is a bulk-degradation of cytosolic portions via the 

intermediary of a double membrane-bound vesicle, named autophagosome, fusing with the 

lysosome so as to form the autolysosome. Instead, micro-autophagy bypasses this step and cytosolic 

components are caught directly by mean of lysosomal membrane invagination. These types of 

autophagy are able to deliver large structures through selective and non-selective processes. In the 

last type, chaperone-mediated autophagy, chaperones, such as Hsc-70, binds targeted proteins to 

form a complex on the lysosomal membrane. Then, this complex is recognized by lysosomal-

associated membrane protein-2A (LAMP-2A) leading to cargo (78).  

This thesis focuses on a better understanding of molecular aspects of macro-autophagy, hereafter 

termed simply “autophagy”, and on its involvement in pathological conditions of osteoarthritis. The 

remarkable molecular complexity of the basic autophagic machinery and its modulators is being 

unravelled and is emerging as described below. 

The origin of autophagy is attributed to isolation of membranes, named phagophores, from the 

endoplasmic reticulum (ER)  and/or the trans-Golgi and endosomes, even if the beginning is still 

unclear in mammals. This phagophore engulfs the cargo by “stretching” the ends around and 

thereby incorporating it in a double-membrane autophagosome. Then, the “stuffed” autophagosome 

is ready to fuse with the lysosome that is responsible to digest the content by means of proteases. 

Hence, some membrane carriers allow amino acids and other digestion products to get out to the 

cytoplasm where they can participate to recycling processes (79). 

Although autophagy is active at basal conditions in most cell types by exerting a housekeeping role 

of cellular homeostasis, starvation is a clear inducer of autophagy. One of the main sensors of 

nutrient and energy status is the mammalian target of rapamycin (mTOR) kinase being a readout 
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key of response to growth factors, nutrients-derived signals, hypoxia and adenosine triphosphate 

(ATP) levels. MTOR is activated by AKT-PI3K pathway when nutrients and growth factors, such 

as insulin, are available so as to stimulate cell growth by increasing protein translation (80). Low 

ATP levels and thus high adenosine 5′-monophosphate (AMP)/ATP ratio lead to activation of 

AMP-activated protein kinase (AMPK) promoting the inhibition of the tumour suppressor proteins 

Tuberous sclerosis complex TSC1/TSC2 on RHEB, a small GTPase that is upstream of mTOR. 

Moreover, a reduced activity of AKT also inhibits mTOR (Fig. 1.9). The role of mTOR unveils the 

mode of action of its artificial inhibitor, rapamycin (RAPA)  (80). It has been reported that RAPA, 

tested for cancer therapy in clinical trials, is able to block tumour growth by inhibiting protein 

translation and by stimulating autophagy (81). However, mTOR form two different complexes, 

named TORC1 and TORC2, but RAPA only shows an inhibitory activity on the first complex. 

mTOR interacts with two alternative subunits, RAPTOR to form mTORC1 and RICTOR to form 

mTORC2 (82, 83). The latter one is able to inhibit mTORC1 and  may exert a positive influence on 

autophagy. This finding provides an interesting point of view to be discussed in the light of the 

results in this thesis.  

Though a low level of basal autophagy is required to maintain the cellular homeostasis, a persistent 

self-digestion might impair the correct cellular equilibrium. By the way, this is the reason why 

every activated pathway needs to be inhibited through a negative feed-back loop. One of the main 

suppressor is the complex TORC1 and the mechanism by which it regulates negatively autophagy 

has first been reported in Saccharomyces cerevisiae. As shown in Fig. 1.9, once activated, TORC1 

inhibits autophagy by suppressing the most upstream protein complex that comprises the 

serine/threonine kinase Atg1 as well as two accessory proteins Atg13 and Atg17. TORC1 

phosphorylates several Atg13 at several serine residues so as to prevent Atg13 binding to Atg1 and, 

hence, Atg1-Atg13-Atg17 complex formation. Under nutrient deprivation or RAPA treatment, 

TORC1 inactivation leads to a prompt dephosphorylation of ATG13, to form the complex and 
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promote ATG1 kinase activity (84, 85). Actually, the involvement of ATG1 has been reported in 

several species, including Caenorhabditis elegans and Drosophila melanogaster, which express 

only one ATG1 homologue (86, 87). Although vertebrates have five different kinases related to 

ATG1, two of these, i.e. unc-51-like kinase-1 (ULK-1) and ULK-2, show the highest homology to 

ATG1 in C. elegans. Several studies showed the essential role of both proteins for a successful 

autophagy, whereas many others reported that they have partially redundant functions (84). These 

opposite results may be artificial and simply mirror the necessity of clearer and better defined guide 

lines of experimental settings for autophagy assays. Furthermore, the focal adhesion kinase (FAK) 

family-interacting protein of 200 kDa (FIP200), also called retinoblastoma 1-inducible coiled-coil 1 

(RB1CC1), has been proposed as the functional counterpart of Atg17. FIP200 interacts with ULK-

1/ULK-2 so as to promote ULK1 kinase activity and the translocation of the entire complex to the 

pre-autophagosomal membrane after starvation. Under nutrient-rich conditions, mTORC1 interacts 

with ULK1/2-ATG13-FIP200 complex via direct binding between RAPTOR and ULK1/2 and  

phosphorylates ATG13 and ULK1/2 thereby inhibiting its activity. Under starvation conditions or 

pharmacological inhibition of mTORC1, these sites are immediately dephosphorylated by unknown 

phosphatases. As shown in the panel A of fig. 1.10, ULK1/2 phosphorylates itself, FIP200 and 

ATG13 and triggers the autophagy process (88). 
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Figure 1.9: Control of autophagy by the mTOR signaling network in metazoans. mTORC1 

responds to intracellular and extracellular stimuli, including amino acids (aa) and growth factors 

(insulin). Amino acids can activate the GTPase Rheb, which, in turn, activates mTORC1, while the 

growth factor signal is transduced to TSC1/TSC2. TSC1/TSC2 switch off mTORC1 by inactivating 

Rheb. When activated, mTORC1 suppresses autophagy by inhibiting the ATG1 complex. Green 

arrows represent activation, whereas red bars represent inhibition. Dashed lines refer to potential 

interactions. Image modified from Diaz-Troya et al 2008 (85) 

The next step involves Beclin-1, the mammalian homologue of yeast Atg6 and the core component 

of the class III phosphatidylinositol 3-kinase (PI(3)KC3) complex. This complex is characterized of 

six subunits, including VPS34 (the mammalian homologue of yeast Vps34), p150 (in yeast Vps15), 

BECLIN-1 (Atg6 in yeast), ATG14L (also known as Barkor; Atg14 in yeast), UVRAG (Vps38 in 
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yeast) and Rubicon (which has no yeast counterpart) (89). Russell et al demonstrated that ULK 

phosphorylates Beclin-1 in amino acids deprivation, and that this phosphorylation step is crucial for 

the function of Beclin-1 in autophagy (90). The complex is well-represented in the panel B of 

fig.1.10. VPS34 is widely involved in different membrane-sorting systems and, when associated 

with BECLIN-1, it exerts its role in nucleation step of phagophores during autophagy cascade. 

VPS34 is able to use phosphatidylinositol (PI) as substrate to make phosphatidylinositol 

trisphosphate (PIP3). This latter one is crucial for phagophore nucleation and elongation, and for 

recruitment of ATG proteins. VPS34 function is critical for this phase, however its association with 

BECLIN-1 results fundamental. BECLIN-1 activity is finely regulated by several factors, including 

BCL-2. Their interaction at ER leads to an inhibitory effect of BECLIN-1 activity, which instead 

may be restored by JNK-mediated phosphorylation of BCL-2 after starvation stimuli so as to 

promote autophagy. Cell fate seems to be dependent on BLC-2 localization: autophagy blocking 

when it lies at ER, vs apoptosis inhibition when located at outer mitochondrial membrane by 

stopping cytochrome c release (91). 

 

Figure 1.10: Two clusters of autophagy signaling. A The ULK1–ATG13–FIP200–ATG101 protein 

kinase complex, B the PtdIns3K class III complex containing the core proteins VPS34, VPS15 and 

Beclin 1. Image modified from Wesselborg et al 2015 (91).  

Two ubiquitin-like conjugation systems are responsible for autophagosome elongation and 

maturation steps. In the first one ATG7 acts as E1 ubiquitin activating enzyme by catching ATG12 

through its carboxyterminal glycine residue. Hence, ATG12 is relocated to an E2-like ubiquitin 

carrier protein that promotes covalent binding to ATG5. These heterodimer complexes with a 
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homodimer ATG16 so as to associate to the phagophore and likely induce the correct curvature. 

When autophagosomes are completed this complex may be released. Indeed, many researchers 

consider ATG12-ATG5 conjugated as untrusted marker of the autophagy efficiency. The processing 

of microtubule-associated protein light chain 3 (LC3B), the mammalian homologue of ATG8 in 

yeast, is performed by another ubiquitin-like system. This protein is expressed as a cytosolic form 

and, following autophagy stimuli, it undergoes a ATG4- mediated proteolytic cleavage resulting in 

LC3B-I formation and priming for the next steps. Indeed, LC3B-I exposes its carboxyterminal 

glycine to binding by ATG7 and then is transferred by ATG3 (E2-like ubiquitin carrier) to 

phosphatydilethanolamine (PE) so as to generate LC3B-II. This latter processed form is engaged to 

phagophore membrane by means of ATG12-ATG5 system and becomes responsible for the fusion 

between membrane ends and for cargo selection. In fact LC3B-II acts as a phagophore receptor that 

recognizes P62/SQSTM1, an adaptor protein that links targets, such as poly-ubiquitinated protein 

aggregates and mitochondria, addressing them to autophagic degradation.  

Actually Atg8 orthologs are identified in two subfamilies: the MAP1LC3, named LC3 above 

described, and the GABARAP (GABA[A] receptor-associated protein) family including 

GABARAP, GABARAP-like 1 (GABARAPL1), and GABARAPL2. At the beginning it was 

speculated that these subfamilies would exert redundant activity in autophagy. However in 2010, 

Weidberg et al. discovered that LC3 family is responsible of elongation phase and GABARAP 

group is involved in late maturation of autophagosomes (92). Moreover, another explanation about 

the abundance of members in this ATG8 homologue family is that each of these is involved in 

different types of selective autophagy (e.g., aggrephagy, mitophagy, pexophagy, ribophagy, or 

xenophagy) (93). 

After the complete fusion of autophagosome ends, in the maturation step autophagosomes fuse with 

lysosomes to form the so-called “autolysosomes” where cargo is degraded and released in cytosol in 

order to be recycled (94). Furthermore, P62 is digested together with the content of autolysosome 



30 
 

and this event has been employed by many researchers as an important and very useful tool for 

autophagy assay. Indeed, late autophagy blocking is detected through the accumulation of P62 

content. It is very common to monitor both LC3B-II and P62 variations as reliable readout key of 

successful autophagy. As a matter of fact, although partly stimuli-dependent, increased levels of 

LC3B-II are often accompanied to decreased levels of P62 (95).  

Autophagy promotes cellular and organism health and exerts a fundamental role in cellular 

homeostasis by digesting long-lived protein aggregates and damaged organelles. For example the 

degradation of dysfunctional mitochondria via mitophagy is a cytoprotective process that limits 

both the production of reactive oxygen species (ROS) and the release of toxic intramitochondrial 

proteins. Autophagy dysregulation has been identified in several disorders, including metabolic 

diseases, neurodegenerative pathology and cancer, where its inhibition or activation addresses 

towards pathogenesis. On the other hand, inducers able to sustain autophagy cascade have been 

classified as longevity promoters, confirming the idea that ageing and longevity may exploit 

autophagy as a therapeutic target (96). 

In certain physiological and pathological conditions, autophagy has been identified as type II 

programmed cell death. Roach et al in 2004 reported for the first time a specific variant of apoptosis 

in chondrocyte, called chondroptosis, characterized by presence of autophagic vacuoles and 

increasing amount of ER membrane (97). Changes in autophagy that have been reported in aging 

and OA-affected cartilage include reduced numbers and size of autophagosomes and this is, in part, 

related to a reduced expression of the autophagy proteins ULK1, BECLIN1 and LC3 (98) and 

mTOR overexpression (99). In healthy cartilage autophagy results sustained in order to modulate 

changes of gene expression in OA by regulating apoptosis and production of ROS. Actually during 

the initial degenerative phase at the beginning of OA pathologic process, autophagy may act as a 

protective response to environmental stress, but during OA progression, autophagy efficiency 

decreases leading to cell death. Several studies reported beneficial effects of autophagy in 
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preventing chondrocyte death, OA-like changes in gene expression and cartilage degeneration (100-

104). Rapamycin, which is a direct suppressor of the mTOR pathway, induces expression of 

autophagy regulators and prevents chondrocyte death. Sasaki and colleagues investigated the role of 

autophagy in human chondrocytes and OA pathophysiology and observed that the inhibition of 

autophagy caused OA-like gene expression changes, and conversely the induction of autophagy 

prevented them. Furthermore, ROS activity was decreased by induction of autophagy (103). 

However, despite the remarkable number of scientists striving in this field, the mechanisms 

underlying the autophagy failure in OA are still unclear, specifically those related to the reduced 

expression of autophagy proteins. 

1.8 MicroRNAs: molecular mechanisms and implications in OA 

MicroRNAs (miRs) are an abundant, evolutionary conserved subfamily of short non-coding RNAs 

(22-25 nt) that are identified as potent post-transcriptional regulators. In 1993 Ambros and Ruvkun 

discovered the first miR, lin-4, as the main modulator of some phases in development of C. elegans 

by suppressing lin-14 levels. They detected several multiple sites of imperfect complementarity of 

lin-4 harbored in lin-14 mRNA 3’untranslated region (UTR) and indicated this antisense binding as 

able to block lin-14 translation (105, 106). Rheinart et al. in 2000 discovered a second miR in C. 

elegans, named let-7 (107). Since this miR was known to have well-described homologues in 

human and fly, the entire scientific community was spurred to identify this class of RNAs in higher 

species and a new topic was inaugurated, becoming object of intensive research. To date, 1881 

sequences of miRs have been identified in human cells and uploaded in the main web databases 

miRBase based on the new human genome assembly (GRCh38) released. Computational 

predictions, tools also available in many others web databases (TargetScan, miRWalk2.0, 

miRanda), unveil that more than 50% of all human proteins are under potential regulation by miRs. 

Hence, finding miR targets became a necessity. 

http://www.mirbase.org/help/FAQs.shtml#How%20many%20miRNAs%20are%20deposited%20in%20miRBase%20for%20a%20specific%20organism?
http://www.targetscan.org/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
http://www.microrna.org/
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The genomic distribution of miRs is shown in figure 1.11. As initially found for C. elegans lin-4 

and let-7, most of currently annotated miR genes lie in introns of protein coding genes or non-

coding genes; these miRs can occur alone or in a cluster of several miRs and are thought to be 

regulated by the same promoter of host genes and likely generated from the host intron. Other miRs, 

called intergenic, lie in genomic regions distant from known genes and can be monocistronic or 

polycistronic, transcribed by their own promoter or in a primary transcript by a shared promoter. 

Another class of miRs, named mirtrons, are inserted in introns with splice sites on both sides; these 

miRs are processed during splicing of primary transcript by means of spliceosome. The last class 

consists of exonic miRs whose gene overlaps an exon and an intron of the host gene (108). 

 

Figure 1.11: Genomic locations of miRs: A Intergenic miRs are found in genomic regions distinct 

from known transcription units. B: Intronic miRs are found in the introns of annotated genes, both 

protein coding and noncoding. In the special case of mirtrons (middle part), the intron is the exact 

sequence of the pre-miR with splice sites on either side (denoted by white asterisks). C: Exonic 

miRs are far more rare than either of the types above and often overlap an exon and an intron of a 

noncoding gene. (109). 

The current model of mature miR biogenesis is shown in figure 1.12. Several observations provided 

indirect evidence that most of miRs are transcribed by RNA polymerase (pol) II, even though most 

of metazoan miRs are not polyadenylated as classical RNA pol II transcripts: miR transcript are 

longer than RNA pol III transcripts and have internal runs of uridine residues that would lead to 
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termination of maturation mediated by RNA pol III; many miRs are time-dependently expressed 

during development, just as pol II transcripts; observations on the expression of a chimera gene, 

derived from fusion between 5’end of miR gene and the open reading frame portion of a reporter 

gene, show a sustained strong expression like a capped pol II transcript. However it has been 

reported that some miRs are transcribed by RNA pol III (110). 

The long RNA precursor with a single or several stem loops is called primary (pri)-miR. It looks 

like a  hairpin with imperfect complementarity at the stem portion, where the mature miR lies. 

Then, pri-miR undergoes a cleavage by a miR processor composed of Drosha (a highly conserved 

RNase type III) and DGCR8 (DiGeorge syndrome critical region 8) in the nucleus. This complex 

generates a shorter hairpin structure, called pre-miR, of 70-100 nt that is transferred through 

exportin-5 to the cytoplasm, where undresses of the loop by another RNase III, Dicer, to form the 

double-stranded (ds) miR duplex. This ds-RNA is 22 nt in length and is composed of the mature 

miR and the so-called passenger miR. Generally, but not always, the latter (3’ end) is degraded and 

the mature miR (5’ end-termodinamically less stable) forms the RNA-induced silencing complex 

(RISC) alongside with the main components, Argonaute proteins (Agos). Hence, a specific miR 

addresses RISC complex towards specific mRNA targets by matching between them. Gene 

silencing mechanism depends on the degree of base-pairing complementarity of sequences. MiRs 

induce mRNA cleavage or deadenylation and then degradation in perfect complementarity 

condition, whereas translation repression occurs in imperfect complementarity condition. Perfect 

base-pairing and subsequent target degradation also takes place when exogenous short RNAs, such 

as siRNAs or virus RNAs, enter in the cytoplasm so as to suppress the complete target expression 

through the same RISC complex. Finally, the repressed target mRNAs and miRs aggregate in 

cytoplasmic foci, called polycomb bodies (P-bodies) where mRNA is decayed (110, 111). This 

process, well-known as RNA interference, has been discovered by Jorgensen and colleagues in 

1990 (112) and characterized by Fire and Mello in 1998 with a first study in C. elegans showing 
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that dsRNA is much more potent at inhibiting gene expression than antisense RNA (113). This 

major breakthrough set the stage for understanding the role of miRs in development and gene 

regulation and conferred the Nobel Prize in Physiology and Medicine to Fire and Mello in 2006.  

 

Figure 1.12: Molecular pathway of miR biogenesis and gene silencing mediated by RISC complex. 

Image modified by Hannon et al. 2004 (114) 

The base-pairing sequence, called seed sequence, is 2-8 nt long and lies at the 5′end of the mature 

miR. As mentioned above, the mechanism of action is mainly exerted by the matching of the miR to 

the mRNA 3′UTR but alternative bindings to the coding portion or to the 5′UTR have been 

confirmed (115) 

Although the function of miRs needs further and deeper investigations, their involvement in 

cartilage and chondrocyte physiology has been established. Kobayashi et al. showed skeletal growth 

defects and premature death in Dicer-deficient chondrocytes derived from Dicer-null mice. Since 

Dicer composes the miR processor, this finding indirectly unveils the fundamental role of miRs in 
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chondrogenesis and bone development (116). Moreover, Iliopoulos and colleagues investigated the 

expression of 365 miRs by comparing articular cartilage derived from OA patients and normal 

patients without a history of joint disease. As shown in fig 1.13, they reported that 16 miRs were 

deregulated in OA versus normal cartilage. In particular, 9 miRs were up-regulated and 7 

downregulated. These microarray-derived results were confirmed by means of Real Time PCR and 

Northern blot assay. Furthermore, a very interesting discovery was that some of these miRs showed 

a significant correlation with patient body mass index (BMI), opening a new window on the not-

too-surprising involvement of miRs in obesity and inflammation. 

 

Figure 1.13: MiR gene signature in osteoarthritis (A) Up-regulated (red colour) and down-

regulated (green colour) microRNAs by means of microarray platform. (B) Validation with Real-

time RT-PCR. (C) Northern blot validation. MiR-483 and miR-22 expression in normal and 

osteoarthritic cartilage tissues (D) MiRs correlated with BMI (Body Mass Index). Image modified 

by Iliopoulos et al. 2008 (117). 



36 
 

The best characterized microRNA is miR-140, whose gene is harboured between exons 16 and 17 

of the E3 ubiquitin protein gene Wwp2 on chromosome 8 in mouse and chromosome 16 in human 

genome. Tuddenham et al. reported a study on miR-140 regarding its expression in cartilage in 

murine embryos and its direct target, the histone deacetylase 4 (118). Later, Miyaki et al. performed 

a gene-expression profiling through microarray technology and validation phase using quantitative 

polymerase chain reaction (qPCR) in human articular chondrocytes (hAC) and human 

mesenchymal stem cells (hMSCs). They demonstrated that miR-140 expression in MSC cultures 

increased in parallel with the expression of SOX9 and COL2A1 during chondrogenesis, and this 

expression was significantly reduced in OA tissue compared to normal cartilage. Moreover, they 

also showed how IL-1β is able to inhibit miR-140 expression in chondrocytes (119). Although, 

initially many researchers focused on miR-140 role in cartilage tissue and OA, then other miRs 

were identified as important post-transcriptional regulators of key pathways involved in OA 

pathogenesis. Table I shows a short summary of some miRs correlated to OA (120). Jones et al. 

showed that the over-expression of miR-9, miR-98 or miR-146 in isolated human chondrocytes 

suppressed IL-1β-induced TNF-α production and the modulation of miR-9 was able to modulate 

MMP13 secretion (121). Then, some scientists reported that IL-1β suppressed miR-27b expression 

that, in turn, resulted inversely correlated to MMP-13 production, so as to identify the linear IL-

1β—miR-27b—MMP13 axis (122). 
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Table I: miRs targeting OA and specific cartilage processes. +: overexpression; -: inhibition; WB: 

western blot. Image modified from Barter and Young 2012 (120) 

Recently the great potential of miRs as important regulators of a specific target and/or entire 

cellular processes has received much attention and also in the field of OA research many 

investigators are striving to identify the fine crosstalk between autophagy and miRs thereby 

discovering new intriguing molecular therapeutical targets. As shown in figure 1.15, several miRs 

have been reported as modulators of multiple steps along autophagy cascade. The final effect 

depends on miR targets. For example, ULK2, with a redundant function in case of ULK1 

deficiency, is a direct target of miR-855-3p in response to chemotherapeutic drugs. Moreover, miR-

855-3p shows seed-complementary sequence to other apoptosis and autophagy-related genes, such 

as MDM4, BCL-2, CASP-2, CASP-3, leading to the understanding that these small modulators are 

finely inserted in the complex regulation network of cellular processes (123). BECLIN-1 is targeted 

by several miRs, including miR-30a, miR-30d, miR-17, miR-216a, miR-365-2, miR-376a. The 

latter is also able to suppress ATG-4 expression thereby modulating different phases of autophagy 

pathway (see review (124)). Other findings showed that miR-375 suppresses autophagy by targeting 

ATG7, while its negative regulation of mTORC1 pathway is not sufficient to restore the autophagic 

process (125).  
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Figure 1.15: Schematic drawing of miRs-mediated regulation of the autophagic core. Image 

modified from Yang and Liang, 2015 (124) 
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2. AIM OF THE STUDY 

OA is the most frequent degenerative pathology of joints leading to pain and loss of function for 

many patients, in particular the elders. Lack of efficacy in current pharmacotherapy is spurring 

scientific community to spend a lot of work and resources so as to unveil new molecular targets 

implicated in the pathogenesis of OA. Indeed, the first step to discover new clinical treatments for 

preventing, slowing and possibly regressing the course of disease, consists in identifying new 

deregulated, pathogenic factors of OA scenario, and a valid strategy able to restore their correct 

pattern of expression. 

Several studies have reported beneficial effects of autophagy in preventing chondrocyte death, OA-

like changes in gene expression and cartilage degeneration (100-104) and many miRs have been 

identified as key modulators of autophagy pathway (123-126). So far, to our knowledge no 

relationship has been revealed between nutraceutical compounds and miR network in OA models. 

Thus, we have undertaken a task in order to deep our understanding on these molecular aspects 

implicated in the pathogenesis and the prevention of OA. Specific aims in this study were reached 

by evaluation of: 

 the ability of HT to stimulate autophagic cascade in C-28/I2 cell line and human primary 

chondrocytes; 

 the capacity of HT and of efficient autophagy to prevent H2O2-induced cell death and DNA 

damage in C-28/I2 cell line and human primary chondrocytes; 

 the role of SIRT-1 in HT-mediated chondrocyte protection and autophagy promotion; 

 the role of miR-9 as post-transcriptional regulator of SIRT-1 and modulator of the response 

to HT and H2O2 treatments in C-28/I2 cell line and human OA chondrocytes; 

 the genuine relationship between miR-9 and SIRT-1; 
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 the role of miR-155 for successful autophagy induction in T-C28a2 cell line and human 

adult chondrocytes; 

 target candidates of miR-155 involved in different steps of autophagy in response to changes 

of miR-155 levels; 

 the involvement of mTOR pathway in miR-155-mediated modulation of autophagy. 
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2. MATERIALS AND METHODS 

2.1 Hydroxytyrosol prevents chondrocyte death under oxidative stress by 

inducing autophagy through sirtuin 1-dependent and -independent mechanisms 

Cell cultures and viability 

C-28/I2 chondrocytes (127), kindly provided by Dr. Mary Goldring, are a human cell line 

representative of primary chondrocytes that has been used extensively as a reproducible ‘‘in vitro’’ 

model to study chondrocyte physiopathology in experiments requiring large numbers of cells. They 

were grown in DMEM-F12 medium supplemented with 10% fetal bovine serum as previously 

detailed (128). With local Ethics Committee approval, primary cultures of chondrocytes were used 

and prepared from fragments of articular cartilage obtained from two adult OA patients undergoing  

knee arthroplasty as described (128). The cells were incubated in the absence or presence of 100 

µM H2O2 for 2 to 48 h as indicated in the various figures; 100 µM HT (from Cayman Chemical) 

was added 30 min before H2O2, on the basis of a published previous study (129).  Autophagy 

inhibitors 3-methyladenine and cloroquine and the autophagy inducer rapamycin (all from Sigma-

Aldrich) were used at 10 mM, 50 µM and 500 nM, respectively, and were added to cell medium 30′ 

before other treatments. Control cells received the corresponding volume of vehicle. Viable cells 

were directly counted following the trypan blue exclusion test. Dead cells including the dye were 

reported as a percentage of the total number of cells.  The use of the human cells in this study was 

in accordance with the Helsinki Declaration of 1975. 

Western blotting  

In western blotting procedure equal amounts of cell extract were subjected to electrophoresis in 

15% gels, blotted onto nitrocellulose membranes as previously described (130), and probed with 

primary antibody at 4°C overnight. The following antibodies were used: anti-LC3A/B (Cell 
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Signaling Technology), anti-p62 (Santa Cruz Biotechnology), anti-β-actin (Sigma-Aldrich), anti-

SIRT-1 (Santa Cruz Biotechnology). 

After washes, membranes were incubated with horseradish peroxidase-conjugated anti-rabbit (Cell 

Signaling Technology) or anti-mouse (Santa Cruz Biotechnology) IgG for 1 h. The 

chemiluminescent signals were detected using an ECL system (LuminataTM Crescendo, Millipore). 

β-actin was used as loading control. A representative image of visualized immunoreactive bands 

and densitometric analysis show the relative intensity of protein expression. 

Detection of γH2AX 

The extent of oxidative DNA damage and in particular the amount of double strand breaks tagged 

by the phosphorylation of the histone H2AX were evaluated by flow cytometer on cells previously 

fixed with 2% PFA and then post-fixed with 90% methanol on ice, as described before (129). After 

a  treatment with 0.02 U/ml chondroitinase ABC (Sigma) in Tris/HCl pH 8, 20’ at 37°C in a humid 

chamber and a step of blocking of nonspecific bindings (with 150µl 5% BSA in TBS with the 

addition of 0.1% Triton), a mouse anti-γH2AX monoclonal antibody (Millipore 05–636, IgG1, at 5 

µg/ml) was incubated overnight at 4°C and then revealed by an Alexa Fluor 647 Donkey anti-

mouse IgG (Jackson Immunoresearch). Specificity was checked by running an isotypic control for 

each sample under analysis: cells were probed with normal mouse immunoglobulins of the same 

isotype (IgG1) and at the same concentration of the anti-γH2AX antibody. Analyses were 

performed by using a FACS Canto II flow cytometer (BD) on at least 5000 cells per sample. For 

each sample the level of “median channel of fluorescence intensity (MCFI) increment” of γ-H2AX 

staining was calculated as the difference between the median channel of fluorescence intensity of 

the samples stained for γH2AX and that of the same sample probed with the isotypic control. 

Immunocytochemical detection of autophagy and mitophagy 

To carry out immunocytochemical studies C-28/I2 chondrocytic cells  were seeded in chamber 

slides. Autophagy was assessed by staining the cells with monodansylcadaverine (MDC) (Sigma-
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Aldrich), a lysosomotropic agent that accumulates in late autophagic vacuoles as a function of the 

acidity of their content. MDC was used at 50 µM on viable cells 1 hour at 37°C. Then cells were 

washed, fixed with 2% PFA 10 min at RT and then few drops of an anti-fading agent (50 mg/ml 

1,4-diazabicyclo[2.2.2]octane, SIGMA, in 90% glycerol in Tris-HCl, 0.1 M pH 8.0) were added 

before mounting the coverslips. Pictures were taken with a Nikon ELIPSE 90i Fluorescence 

Microscope equipped with a NIS software using the UV-2A filter set. Filter settings were as 

follows: excitation (EX): 330-380 nm, dichroic mirror (DM) at 400 nm and barrier filter (BA) for 

emission at 420 nm.  

Immunofluorescence on cells grown on glass slides was used to detect the extent of “mitophagy” as 

assessed by colocalization of LC3 A/B positive autophagic vacuoles and the mitochondrial marker 

TOM20. At the end of the treatment, C-28/I2 cells were carefully washed, gently fixed with 2% 

PFA for 10 min and then the slides were stored at 4°C in PBS until processing. 

Each condition was prepared in duplicate to allow for comparison of the cells stained with 

antibodies to LC3 A/B and TOM20  with cells stained with control antibodies. In the 

immunocytochemical protocol primary and secondary antibodies were diluted in 3% BSA in TBS 

with the addition of 0.1% Triton. Between each step, two washings with 3%BSA TBS left for 5′ at 

RT under continuous stirring were performed to remove unbound reagents. 

Before immunocytochemistry, further steps of permeabilization were carried out using a 10′ 

treatment with ice-cold 90% methanol (100µl per well)  followed  by a  treatment with 0.02 U/ml 

chondroitinase ABC (Sigma) in Tris/HCl pH 8, 20′ at 37°C in a humid chamber. After a step of 

blocking of nonspecific bindings (with 150µl 5% BSA in TBS with the addition of 0.1% Triton), 

primary antibodies were delivered at the same time  and left overnight at 4°C: a rabbit polyclonal 

anti-LC3A/B antibody  (Cell signaling) and a mouse monoclonal anti-TOM20 antibody (Santa Cruz 

Biotechnology).  Immunodetection was performed by addition to all wells (sample and controls) of 

a biotinylated goat anti-rabbit polyclonal antiserum (DAKO) that was left for 30′. Then, to reveal 



44 
 

the stained proteins,  the cells underwent addition of an Alexa Fluor 555 conjugated streptavidin 

(Molecular Probes) together with an Alexa Fluor 488 polyclonal donkey anti-mouse IgG (H+L) 

(Molecular Probes).  At the end of a 30′ incubation at RT, cells were washed and then underwent 

nuclear counterstaing with DAPI (Molecular Probes) left for 30′ at RT. Finally, ProLong® 

Diamond Antifade Mountant (Molecular Probes) was applied to fluorescently labeled cells before 

image acquisition at the Nikon ELIPSE 90i Fluorescence Microscope. Distinct images were 

acquired for the green (TOM20), red (LC3A/B) and blue (nuclei) fluorescence and then merged to 

evidence sequestering of damaged mitochondria into autophagosomes. TOM20 green fluorescence 

was acquired with a FITC filter set (Ex=465-495; DM=505; BA=515-555); LC3A/B red 

fluorescence  was acquired with a TRITC filter set (Ex=540/25; DM=565; BA=605/55); DAPI blue 

nuclear counterstaining was acquired with a UV-2A filter set as described above. Confirmation of 

mitophagy occurrence, was also carried out exploiting confocal laser scanning microscopy,  using a 

NIKON confocal microscope system A1 equipped with a Nikon Eclipse Ti microscope and an 

Argon Ion laser for a 488 nm line and a DPSS laser for a 561 nm line. Emission signals were 

detected by a photomultiplier tube (DU4) preceded by emission filters BP 525/50 nm and BP 

595/50 nm for AlexaFluor 488 and  AlexaFluor 555 respectively. Laser scanning, image acquisition 

and processing were performed with Nikon Imaging Software NIS Elements AR-4 (Nikon Inc., 

USA). Fields of 210 µmx210µm (acquired with a Nikon plan apo 60x1.40 oil objective) were 

acquired and analyzed.  

Immunocytochemical analysis of SIRT-1 protein 

The level and subcellular localization of SIRT-1 were investigated by a colorimetric detection 

system, using the Supersensitive link-label (biotin based) IHC kit (Biogenex) and Fast red substrate 

(Biogenex), essentially as described by the manufacturer. The immunodetection was carried out on 

cells treated, fixed and permeabilized with both methanol and chondroitinase ABC as described 

above. SIRT-1 was detected with a mouse monoclonal anti-SIRT-1 antibody (LS-Bio) and signal 
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specificity was checked by comparison with isotype controls, i.e. mouse IgG1 monoclonal 

(MAB002).  At the end, to facilitate their automatic counting, the cells were treated with a DAPI 

nuclear counterstaining. Then, an automatic analysis procedure was employed exploiting the NIS 

software that combined colorimetric and fluorescent staining to easily count the cells. At least four 

fields (with 40-160 cells each) were counted  for each condition.  For each field the percentage of 

cells with SIRT-1 localized in the nucleus was assessed. This experiment was carried out 4 times. 

To compare the different culture conditions, the average values of the four fields were taken into 

account for each experiment. 

RNA interference 

For transient transfection experiments, C-28/I2 cells were seeded at a density of 20000/cm2 in 6-

well plates in antibiotic-free growth medium. When the cells reached 70% confluence, they were 

transfected with 25nM ON-TARGETplus Human Sirt1 siRNA or ON-TARGETplus non-targeting 

pool (Dharmacon) by Lipofectamine® RNAiMAX Reagent in Opti-MEM® Medium (Life 

Technologies) according to manufacturer's instructions. The cells were incubated for 24 hours 

before evaluating mRNA expression or protein expression. 

RNA isolation, cDNA synthesis and Real-Time PCR 

Total cellular RNA was extracted with 700 µl TRIZOL (Invitrogen), according to manufacturer’s 

instructions. The RNA pellets were treated with DNAse (DNA-free, Ambion, Austin, TX) and, after 

buffer exchange, were quantified by using RiboGreen RNA quantitation reagent (Molecular Probes, 

Eugene OR). The same quantity of total RNA (100ng) was reverse transcribed by using random 

primers and the reagents provided with the Superscript VILO System for RT-PCR (Invitrogen). The 

cDNA mixture (2 µl) was used in Real time PCR analysis in a LightCycler Instrument (Roche 

Molecular Biochemicals) by means of the QuantiTect SYBR Green PCR kit (TaKaRa, Japan) with 

the following protocol: initial activation of HotStart Taq DNA polymerase at 95°C for 10″, 

followed by amplification (40 cycles: 95°C for 5″ followed by appropriate annealing temperature 
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for each target as detailed below kept for 20″). The protocol was concluded by melting curve 

analysis to check amplicon specificity. The following primers were used: human p62 forward AAG-

CCG-GGT-GGG-AAT-GTT-G and reverse GCT-TGG-CCC-TTC-GGA-TTC-T (Sigma-Aldrich); 

human LC3 forward AGC-ATC-CAA-CCA-AAA-TCC-CG and reverse TGA-GCT-GTA-AGC-

GCC-TTC-TA (Sigma-Aldrich); human GAPDH forward TGG-TAT-CGT-GGA-AGG-ACT-CA 

and reverse  GCA-GGG-ATG-ATG-TTC-TGG-A (Invitrogen). Primers were annealed at 59°C, 

except GAPDH at 56°C. The amount of mRNA was normalized for GAPDH expression in each 

sample and referred to untreated, control sample. 

Statistical analysis 

All the experiments shown were performed independently at least three times with comparable 

results. All the data presented in graphs are expressed as means ± SEM. Means of groups were 

compared with GraphPad Prism 5 statistical software (GraphPad Software, Inc.) and analyzed for 

statistical significance (* = p<0.05, ** = p<0.01, *** = p<0.001). Differences were considered 

statistically significant at p<0.05. 

2.2 MicroRNA-9 mediates oxidative stress-induced cytotoxicity in chondrocytes 

by targeting SIRT-1 

Cell transfection and experimental design 

Primary chondrocytes and C-28/I2 cells were seeded in 6-well plates at a density of 2 X 10
5
 

cells/well and in 96-well plates at a density of 1,28 X 10
3
 cells/well without antibiotics. The next 

day, Ambion® Anti-miR™ miRNA Inhibitors, negative control #1 (antimiR-NC) (50nM) and 

antimiR-9 (50nM), and Ambion® Pre-miR™ miRNA Precursors, negative control #1 (premiR-NC) 

(50nM) and premiR-9 (Life Technologies) (50nM) were transfected into cells by using 

Lipofectamine RNAiMAX (Invitrogen) for 24 h. Anti-miR miRNA Inhibitors are chemically 

modified, single stranded nucleic acids designed to specifically bind to and inhibit endogenous miR 
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molecules. These pre-miRNA precursor molecules are small, chemically modified double stranded 

RNA molecules designed to mimic endogenous mature miRs.  

C-28/I2 cells were co-transfected with either antimiR-NC or antimiR-9 and either ON-

TARGETplus Human Sirt1 siRNA or ON-TARGETplus non-targeting pool by Lipofectamine® 

3000 Reagent in Opti-MEM® Medium (Life Technologies) according to manufacturer's 

instructions.  

Bioinformatics prediction of miR candidates targeting SIRT-1 

TargetScan and miRWalk databases were used to predict miR candidates targeting SIRT-1 by 

detecting the complementarity between their seed sequences and specific sequences in SIRT-1 

mRNA. 

RNA isolation, cDNA synthesis and real-time PCR (qPCR) 

Samples were collected as described above.  

MicroRNA reverse transcription was conducted with TaqMan MicroRNA RT kit (Life 

Technologies) and qPCR was performed with TaqMan Universal Mastermix (Life Technologies) 

following kit instructions. Mature miR quantification was performed using TaqMan MicroRNA Assays 

for miR-9 and U6 snRNA (internal control), according to manufacturer recommended protocols (Applied 

Biosystems). Ten nanograms of total RNA, 50 nM stem-loop RT primer, RT buffer, 0.25 mM each 

dNTP, 3.33 units/ml MultiScribe reverse transcriptase (RT), and 0.25 units/ml RNase inhibitor were 

used in 15-μL RT reactions for 30 min at 16 °C, 30 min at 42 °C, and 5 min at 85 °C, using the 

TaqMan MicroRNA reverse transcription kit (Applied Biosystems). For real-time PCR, 1.33 μL 

(1:15 dilution) of cDNA, 0.2 mM TaqMan probe, 1.5 mM forward primer, 0.7 mM reverse primer, 

and TaqMan Universal PCR Master Mix (Applied Biosystems) were added in 20-μL reactions for 

10′ at 95 °C and 40 cycles of 15 sec at 95 °C and 1′ at 60 °C. 

http://www.targetscan.org/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
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Protein isolation and Western Blotting 

Western blotting procedure was performed as described above. 

Determination of caspase activity 

Caspase activity was measured by the cleavage of the fluorogenic peptide substrate Ac-Asp-Glu-

Val-Asp-7-amido-4-methylcoumarin (Ac-DEVD-AMC) as previously detailed (128). Since the 

sequence DEVD represents a substrate for caspase-3 and other effector caspases, this activity has 

been referred to as caspase 3-like activity. Caspase activity was expressed per mg protein, and 

normalized to untreated controls. 

Luciferase reporter assay 

To confirm that the regulation of SIRT-1 expression is mediated through targeting of its 3′-UTR by 

miR-9, we used pEZX-MT06 reporter vector carrying miR binding sequences of 3′UTR of SIRT-1 

gene (GeneCopoeia, Rockville, MD) in combination with Luc-Pair™ Duo-Luciferase HS Assay Kit 

(GeneCopoeia, Rockville, MD). This vector has dual reporters including one for regulatory 

detection (firefly) and another for internal control and signal normalization (Renilla). C-28/I2 cells 

were co-transfected with either plasmid carrying wild type 3' UTR of SIRT-1 (3' UTR wt), or 3' 

UTR without the seed-complementary sequence (identified by TargetScan) (3' UTR mut1), or 3' 

UTR without the seed-complementary sequence and the 3'pairing sequence (identified by 

TargetScan) (3' UTR mut2), and either premiR-9 or premiR-NC. The transfection was carried out in 

antibiotics free medium using Lipofectamine 3000 according to the manufacturer's protocol 

(Invitrogen). The dual luciferase activity of the transfected cells were measured by using 

WallacVictor2 1420. The results were expressed as percentage of normalized firefly luciferase 

activity against Renilla luciferase activity. Three individual transfections were carried out and the 

results were expressed as percentage reduction of luciferase activity in premiR-9 transfected cells in 

relation to 100% activity for cells transfected with Pre-miR negative control. 
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Statistical analysis 

To evaluate normal distribution of the data, we performed the Kolmogorov-Smirnov test and homogeneity of 

variance using Bartlett's test. Statistically significant differences between 2 groups were determined with 

Student's unpaired t-test. P values less than 0.05 were considered significant. 

2.3 MicroRNA-155 suppresses autophagy in chondrocytes by modulating 

expression of autophagy proteins 

Cell culture of human chondrocytes 

Normal human cartilage was harvested during autopsy from the femoral condyles and the tibial 

plateaus from 4 adult donors (age < 50) without history of joint diseases and with macroscopically 

normal cartilage surfaces. The collection of human tissue was under the approval by the Scripps 

Human Subjects Committee. Chondrocytes were isolated as described previously (131) and cultured 

in DMEM supplemented with 10% calf serum with antibiotics. First or second-passage cells were 

used in this study. 

Immortalized human primary chondrocytes, T/C-28a2 (127), were obtained from Dr. Mary 

Goldring and maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Life Technologies, 

NY, USA) supplemented with 10% Fetal Bovine Serum (FBS) (Life Technologies), with antibiotics 

at 37°C in the presence of 5% CO2.  

Cell transfection and experimental design 

Primary chondrocytes and T/C28a2 cells were seeded in 24-well plates at a density of 5 X 10
4
 

cells/well and in 96-well plates at a density of 1 X 10
4
 cells/well without antibiotics. The next day, 

LNA
TM

 GapmeR control (LNA nc) and LNA miR-155 (40nM) (Exiqon) and Mission
®
 microRNA 

mimic control (mimic nc) and mimic miR-155 (10nM) (Sigma Aldrich) were transfected into cells 

using Lipofectamine RNAiMAX (Invitrogen) for 24 h.  
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To assess autophagic flux, time course experiments were conducted in cells stimulated with 

rapamycin (RAPA, 50nM), 2-deoxy-glucose (2-DG, 5mM) or vehicle in the presence or absence of 

chloroquine (CQ, 25µM). Maximal induction of autophagy was achieved at different time points 

depending on the cell type and treatment employed; subsequently, these specific time points were 

selected for miR-155 functional experiments as indicated for each experiment. Briefly, primary 

human chondrocytes were treated with RAPA for 12 h or maintained for 24 h under basal 

conditions. T/C28a2 cells were treated with RAPA or 2-DG for 4 and 2 h, respectively. Then, RNA 

or protein samples were collected for qPCR and western blot analysis, or cells were subjected to 

Cyto-ID dye detection as described below. Doses of the various agents were selected to be non-

toxic based on prior studies (132-134). In addition, at completion of each experiment cell 

morphology was monitored and there was no apparent cell shrinkage, rounding or detachment from 

the culture plates. 

Bioinformatics prediction of miR-155 targets 

TargetScan and miRWalk databases were used to predict potential targets of miR-155 directly and 

indirectly involved in the autophagic pathway. 

RNA isolation, cDNA synthesis and real-time PCR (qPCR) 

Samples were collected in Qiazol (Qiagen) at room temperature and after the addition of 

chloroform, centrifuged at 12,000g at 4°C for 15′. RNA was extracted by using miRneasy minikit 

(Qiagen) to separate small RNAs from total RNA. Two different fractions were used to assess miR-

155 levels and gene expression of potential miR-155 targets, respectively. MicroRNA reverse 

transcription was conducted with TaqMan MicroRNA RT kit (Life Technologies) and qPCR was 

performed with TaqMan Universal Mastermix (Life Technologies) following kit instructions. 

Specific primers for miR-155 and RNU48 (internal control) were purchased from Life 

Technologies. RNA reverse transcription and qPCR were performed with TaqMan Reverse 

Transcription kit (Life Technologies) and LightCycler 480 Probes Master (Roche), respectively. 

http://www.targetscan.org/
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/
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Pre-designed primers for GAPDH (internal control), FOXO3, RICTOR, ATG14, ATG3, 

GABARAPL1, MAP1LC33, ULK1 and ATG5 were obtained from Life Technologies. 

Protein isolation and Western Blotting 

Cells were lysed in RIPA buffer, sonicated at 4°C and centrifuged at 12,000g for 15′. Proteins were 

separated on 4%-20% SDS-polyacrylamide gels and transferred to nitrocellulose membranes 

(Amersham), blocked in Odyssey blocking buffer 1X (LI-COR Bioscience) for 60′ at room 

temperature and incubated overnight with primary antibodies diluted in Odyssey Blocking Buffer 

1:1 with phosphate-buffered saline-PBS and 0.1% Tween 20. Antibodies for RICTOR (1:1000), 

ULK1 (1:1000), FOXO3 (1:1000), ATG14 (1:1000), P-AKT (Ser473) (1:2000), AKT (1:1000), 

ATG5 (1:1000) ATG3 (1:1000), P-S6 (S235/S236) (1:2000), S6 (1:1000), LC3A/B (1:1000) were 

purchased from Cell Signaling. Antibody for Gabarapl1 (1:500) was purchased from Fisher 

Scientific and that for β-actin (1:5000) from Abcam. After three washes with Tris-buffered saline–

0.1% Tween (TBST), membranes were incubated with IR Dye labelled secondary antibody (goat 

anti-Mouse 1:10000 and goat anti-Rabbit 1:5000, LI-COR Biosciences) diluted in Odyssey 

Blocking Buffer 1:1 with PBS, 0.1% Tween 20 and 0.01% SDS. Subsequently, the membranes 

were washed 3 times with TBST, kept in water and visualized by Odyssey Scanner (LI-COR 

Biosciences). Densitometry was performed using LI-COR Odyssey Software Version 4.0 (LI-COR 

Biosciences). 

Cyto-ID dye detection  

Cyto-ID assay (Enzo) measures autophagic vacuoles and monitors autophagic flux in live cells 

using a dye that selectively labels autophagic vacuoles. The dye has been optimized through the 

identification of titratable functional moieties that allows minimal staining of lysosomes while 

exhibiting bright fluorescence upon incorporation into pre-autophagosomes, autophagosomes, and 

autolysosomes (autophagolysosomes) (135). Fluorescence was measured at 360 Ex/460 Em 

(Hoechst 33342 nuclear stain) and 480 Ex/530 Em (Cyto-ID green autophagy detection reagent) 
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with a plate reader (TECAN Safire II from Tecan Systems). Cyto-ID intensity was first normalized 

to Hoechst intensity and then to the control sample in order to evaluate the fold changes. 

Statistical analysis 

The data are reported as mean ± standard deviation (SD) of the indicated number of independent 

experiments. Some experiments were conducted with primary chondrocytes samples from four 

different donors, each performed either in duplicate or in triplicate. All datasets were assessed for 

normal population distribution using the Kolmogorov-Smirnov test, and homogeneity of variance 

using Bartlett's test. Analysis of variance (ANOVA) was used to compare group means from 

datasets that met all the assumptions of this test, followed by planned pairwise comparisons using 

the Bonferroni procedure for these selected pairs of groups. The overall ANOVA tests were 

performed at the alpha = 0.05 level of significance, and the alpha levels of the subsequent 

individual comparisons were adjusted so as to preserve the familywise error rate at the 0.05 level. 

Not-normally distributed populations were compared using the nonparametric Kruskal-Wallis test 

with Dunn’s method. Statistical analysis was conducted using Prism (GraphPad Software version 

5.0). P < 0.05 was considered statistically significant. 
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4 RESULTS 

4.1 Hydroxytyrosol prevents chondrocyte death under oxidative stress by 

inducing autophagy through sirtuin 1-dependent and -independent mechanisms 

Hydroxytyrosol leads to autophagy induction in C-28/I2 chondrocytes 

In a previous work with primary chondrocyte cultures exposed to oxidative stress, we found that HT 

protects against DNA damage and cell death (129). To investigate the cellular and molecular 

mechanisms involved in these HT beneficial effects, we have performed a new study with C-28/I2 

chondrocytes, which are widely used as representative of primary chondrocytes and allow abundant 

availability of cell material. First we have evaluated the ability of HT to stimulate autophagy. In 

order to monitor the autophagic process, two proteins widely used as markers of autophagy have 

been considered: the mammalian ortholog of yeast Atg8, light chain 3 (LC3), and SQSTM1/P62 

(95). LC3 can be detected by western blot in non-lipidated and lipidated forms, termed LC3-I and 

LC3-II, respectively. This protein participates in phagophore assembly and, conjugated with 

phosphatidylethanolamine, in autophagosome formation. On the other hand, P62 operates as a 

molecular link between LC3 and ubiquitinated substrates, thus docking them to autophagy 

degradation. Decreased P62 levels, in combination with increased LC3-II, are commonly associated 

with autophagy activation. In the current study, C-28/I2 cells were exposed to oxidative stress by 

the treatment with hydrogen peroxide for 2 h, in presence or absence of HT in the culture medium. 

HT induced LC3-II expression markedly and independently of the condition of oxidative stress 

(Fig. 4.1A and B). At the same time the level of P62 protein was reduced by HT treatment (Fig. 

4.1A and C). These findings indicate that HT is able to stimulate the autophagic process. 

Monodansylcadaverine (MDC) is an autofluorescent compound that stains late autophagic 

compartments (in particular autolysosomes). In our experiments we observed a reduced MDC 
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fluorescence in C-28/I2 chondrocytes under oxidative stress conditions, 2 h after treatment with 

hydrogen peroxide (Fig. 4.1D). An opposite effect was shown in presence of HT. Moreover in this 

condition we assessed the increase in LC3-II puncta that colocalize with mitochondria, highlighted 

with an antibody specific for the translocase of outer mitochondrial membrane, a protein with a Mw 

of 20 kDa (TOM20). Confocal laser scanning microscopy confirmed these findings, via a marked 

increase of these colocalized signals, evident as a yellow staining  (Fig. 4.1E). Thus HT treatment 

promotes mitophagy along with autophagy in C-28/I2 cells. 
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Figure 4.1: Hydroxytyrosol stimulates autophagy in C-28/I2 chondrocytes. C-28/I2 cells were pre-

incubated in the absence or in the presence of HT for 30 min before addition of  H2O2. After a 

further 2h incubation, cells were harvested for LC3, P62 and β-ACTIN detection by western 

blotting. Representative images (A) and relative quantification for LC3-II/β-ACTIN (B) and P62/β-

ACTIN (C) ratios are shown. Values are expressed as means ± SEM, *p<0.05, **p<0.01. 

Alternatively in immunocytochemical studies, C-28/I2 cells were stained at the end of incubation 

with monodansylcadaverine (D: 200x, original magnification), with antibodies to LC3 A/B and 

TOM20 (E). DAPI was used as a nuclear counterstaining. The labeled cells were visualized by 

fluorescence microscopy (left pictures, showing separate and merged TOM20 and LC3 signals, 

400x, original magnification) and confirmation of mitophagy was also carried out with confocal 

laser scanning microscopy (CLSM, right column, 180x, original magnification:). Representative 

fields of control, non-stimulated cells (NS) or cells treated with HT and/or H2O2 are shown. 

Autophagy protects C-28/I2 cells from oxidative stress-induced DNA damage and cell death 

Next we evaluated the ability of HT and autophagy to protect C-28/I2 chondrocytes against DNA 

damage and cell death under conditions of oxidative stress. In order to assess the degree of DNA 

damage and cell death, a phosphorylated form of histone H2AX referred to as γH2AX was detected 

as a marker of DNA double strand breaks, while the percentage of dead cells was estimated by 

trypan blue exclusion test. We found that HT as well as the autophagy inducer rapamycin 

significantly reduced the DNA damage elicited by hydrogen peroxide after 2 h treatment (Fig. 

4.2A). Moreover both compounds were able to decrease the percentage of dead C-28/I2 cells after 

24 h (Fig. 4.2B). Conversely the pro-survival effect of HT was abolished in presence of autophagy 

inhibitors; in particular we used 3-methyladenine and cloroquine, operating at different steps in the 

autophagic process. These compounds alone did not change cell viability significantly. Thus, these 

data indicated that HT exerts its cell protective action by autophagy induction. 
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Figure 4.2: Autophagy protects C-28/I2 cells from oxidative stress-induced DNA damage and cell 

death. C-28/I2 cells were pre-treated with or without hydroxytyrosol (HT), rapamycin (RAPA), 3-

methyladenine (3MA) or cloroquine (CQ) for 30 min before addition of H2O2. After further 2h 

incubation, cells were evaluated for the extent of DNA damage by detection of γH2AX and 

calculation of the increment of the mean channel fluorescence intensity (MCFI) over basal 

fluorescence (A). Alternatively after 24 h incubation with or without H2O2, cells were counted to 

assess cell viability by trypan blue exclusion test (B). Values are expressed as means ± SEM, 

*p<0.05, **p<0.01,***p<0.001. 

HT modulates autophagy by SIRT-1-dependent and –independent mechanisms 

SIRT-1, belonging to the sirtuin family of proteins, is considered a “longevity” and “anti-aging” 

factor and known to play a regulatory role in a variety of cellular processes, including autophagy 

(46). Moreover, according to recent evidence, it can exert a pivotal role in the protection of cartilage 

from OA (52). Therefore we have investigated the involvement of SIRT-1 in HT action. 

Immunostaining showed that this protein is localized both in the nucleus and cytosol of control, 

untreated C-28/I2 chondrocytes (Fig. 3A). Oxidative stress inducted in cells by hydrogen peroxide 

reduced nuclear signal compared with control, whereas HT, alone or in association with hydrogen 

peroxide, was able to significantly increase SIRT-1 level and nuclear localization (Fig. 4.3A and B). 
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Figure 4.3: Hydroxytyrosol increases SIRT-1 nuclear localization. C-28/I2 cells were pre-incubated 

in the absence or in the presence of hydroxytyrosol (HT) for 30 min before addition of H2O2. After 

further 2h incubation, cells were processed for immunodetection of SIRT-1 and finally treated with 

a DAPI nuclear counterstaining. The labeled cells were visualized and representative fields of 

control cells (NS) or cells treated with HT and/or H2O2 are shown (A: 400x, original 

magnification).  Quantitative analysis of the percentage of cells with SIRT-1 localized in the 

nucleus was assessed as described in Materials and Methods (B). Data are means  SEM, *p<0.05, 

**p<0.01. 

 

The role of this modulation was evaluated by silencing the gene and testing the cell survival ability 

after oxidative stress in presence or absence of HT. The level of SIRT-1 protein in C-28/I2 

chondrocytes was reduced by more than 60% after silencing procedure compared with control cells 

(Fig. 4.4A and B). The knockdown of SIRT-1 did not affect cell survival significantly under basal 

conditions or after hydrogen peroxide treatment, but it was able to abolish the protective effect of 

HT after oxidative stress (Fig. 4.4C).  
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Figure 4.4: SIRT-1 is required for the cytoprotective effect of hydroxytyrosol under oxidative 

stress. (A, B) C-28/I2 cells were transfected for 48h with SIRT1-siRNA (siSIRT-1) or siRNA 

negative control (NC). SIRT-1 levels were determined by Western blotting. Representative images 

(A) and relative quantification for SIRT-1/β-actin ratio (B) are shown. (C) 24h after transfection, C-

28/I2 cells were treated with H2O2 for 24h. Hydroxytyrosol (HT) was added 30 min before H2O2. At 

the end of incubation, cells were counted to assess cell viability by trypan blue exclusion test. 

Values are expressed as means ± SEM, *p<0.05, **p<0.01. 

Then, to assess the role of SIRT-1 in autophagy stimulation, C-28/I2 cells were treated with 

cloroquine for 24 h, so as to block autophagy flux and allow accumulation of the autophagic protein 

LC3-II, thus affording a better observation by western blot analysis. Figure 4.5A and 4.5B show 

that LC3-II accumulated in C-28/I2 chondrocytes treated with HT, but not in SIRT-1 silenced cells. 

LC3-II level was significantly higher in HT-treated cells with respect to correspondent SIRT-1 

knockdown cells already in the absence of cloroquine, and increased further in the presence of 
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cloroquine. SIRT-1 silencing alone did not affect LC3-II content. Therefore the ability of HT to 

induce LC3-II formation depends on SIRT-1 expression.  

Subsequently, we tested the effect of HT on p62 and LC3 gene expression in order to investigate an 

additional, possible mechanism of autophagy modulation employed by SIRT-1. While no notable 

change in LC3 transcript content was observed (data not shown), HT significantly induced an up-

regulation of p62 mRNA (Fig. 4.5C). However the modulation is not dependent on SIRT-1 because 

the HT ability to induce p62 expression was preserved in SIRT-1 knocked-down C-28/I2 cells. 

Therefore HT appears to stimulate the autophagic process by affecting both SIRT-1 dependent and 

independent pathways. 
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Figure 4.5: Hydroxytyrosol stimulates autophagy by SIRT-1-dependent and –independent mechanisms. 

(A,B) 24h after transfection with SIRT1-siRNA (siSIRT-1) or siRNA negative control (NC), C-28/I2 cells 

were treated with hydroxytyrosol (HT) for 24h. Cloroquine (CQ) was added 30 min before HT. At the end of 

incubation, cells were harvested for LC3 and β-actin detection by western blotting. Representative images 

(A) and relative quantification for LC3-II/β-actin ratio (B) are shown.  (C) 24h after transfection with SIRT1-

siRNA (siSIRT-1) or siRNA negative control (NC), C-28/I2 cells were treated with hydroxytyrosol (HT) for 

24h. Then cells were harvested and analyzed by qRT-PCR for the amount of p62 mRNA. Values are 

expressed as means ± SEM, *p<0.05. 
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HT-induced autophagy protects human primary OA chondrocytes 

In order to validate the findings on the role of autophagy in the HT protective effects in C-28/I2 cell 

line, some experiments were performed with human primary chondrocytes isolated from OA 

patients. Essentially similar results were found in primary chondrocytes treated with HT and 

exposed to oxidative stress, as documented in Fig. 4.6. In fact accumulation of LC3-II protein 

together with reduction of p62 protein was visualized by Western Blot following a brief HT 

treatment (Fig. 4.6A).  Although differences were not statistically significant due to large variability 

(Fig. 4.6B,C), the ability of HT to stimulate the autophagic process was confirmed by 

immunofluorescence images showing increase in LC3-II puncta colocalizing with mitochondria 

(Fig. 4.6D), regardless of H2O2 exposure, which, alone, has an inhibiting effect on autophagy. 

Next it was evaluated the ability of HT and autophagy to protect primary chondrocytes against 

DNA damage and cell death following oxidative stress. As well as described before with C-28/I2 

cells,  HT and the autophagy inducer rapamycin were able to reduce the DNA damage elicited by 

H2O2 (Fig. 4.6E) and the percentage of dead cells significantly (Fig. 4.6F). Again the pro-survival 

effect of HT was eliminated by pre-treatment with autophagy inhibitors. Thus, these data indicated 

that HT exerts its cell protective action in C-28/I2 line and human OA chondrocytes by the same 

modalities. 
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Figure 4.6: Hydroxytyrosol-induced autophagy protects human primary OA chondrocytes from 

oxidative stress. Human primary chondrocytes were pre-incubated in the absence or in the presence 

of hydroxytyrosol (HT) and/or other compounds as indicated, for 30 min before addition of H2O2. 

After further 2h incubation, cells were harvested for LC3, p62 and β-actin detection by western 

blotting. Representative images (A) and relative quantification for LC3-II/β-actin (B) and p62/β-

actin (C) ratios are shown. Cells were also stained at the end of incubation with antibodies to LC3 

A/B and TOM20 (D). The labeled cells were visualized by fluorescence microscopy, showing 

separate and merged LC3 and TOM20 signals (400x, original magnification). Representative fields 

of control, non-stimulated cells (NS) or cells treated with HT and/or H2O2 are shown. DAPI was 

used as a nuclear counterstaining. Alternatively cells were evaluated for the extent of DNA damage 

by detection of γH2AX (E). Finally, after 24 h incubation with or without H2O2, cells were counted 

to assess cell viability by trypan blue exclusion test (F). Values are expressed as means ± SEM, 

*p<0.05, **p<0.01,***p<0.001 

 

4.2 MicroRNA-9 mediates oxidative stress-induced cytotoxicity in chondrocytes 

by targeting SIRT-1 

Opposite variations of miR-9 and Sirt-1 levels in response to H2O2 and HT treatments in human 

primary chondrocytes 

In the previous chapter it has been described that HT is able to reduce H2O2-induced cell death and 

this effect was associated to crucial nucleus-cytoplasm translocation. Next, we hypothesized a 

possible modulation of SIRT-1 expression by HT and H2O2.  In a previous study by our group 

(129), SIRT-1 mRNA levels, measured by qPCR, showed no significant change in human primary 

chondrocytes and C-28/I2 cells when treated with HT or/and H2O2. In the present work 

immunoblotting assay was performed to evaluate protein levels of SIRT-1.  Interestingly H2O2 

treatment reduced the expression of SIRT-1 protein, whereas HT alone or after pre-treatment with 

H2O2 was able to increase it (Fig. 4.7 A, B). This result was particularly intriguing and opened a 

new project branch spurring us to investigate the molecular mechanism underlying the post-

transcriptional changes of SIRT-1 protein levels by HT and H2O2. By exploiting miR-target 

prediction tools of different databases available online (TargetScan, miRanda, miRWalk), some 

miRs, including miR-22, miR-34 and miR-9, were selected because of the presence of seed-
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complementary sequences in SIRT-1 3′UTR. After 4h of treatment we evaluated miR levels by 

using specific primers (TaqMan microRNA assays) able to detect mature miR sequences 

discriminating them from their precursors (pri-miR, pre-miR). Significant variations were 

appreciated in miR-9 levels: H2O2 led to a substantial increase of miR-9, whereas HT reduced this 

effect (Fig.4.7 C). The site of matching identified by TargetScan browser was shown in the panel D 

of fig.4.7. The opposite variations of miR-9 and SIRT-1 indicate that the latter is a possible target of 

miR-9 as predicted by the site of matching. 

 

Figure 4.7: Opposite variations of miR-9 and Sirt-1 levels in response to H2O2 and HT treatments 

in human primary chondrocytes. Human primary chondrocytes were pre-incubated in the absence or 

in the presence of hydroxytyrosol (HT) and/or other compounds as indicated, for 30 min before 

addition of H2O2. After 24h of incubation cells were harvested for SIRT-1 detection by western 

blotting. Representative images (A) and relative quantification for SIRT-1/ β-actin (B) ratio are 

shown. After 4h of incubation samples were collected for miR-9 quantification by qPCR analysis 

(C). Sites of matching between SIRT-1 3’UTR and miR-9 sequences (provided by TargetScan 

database) are shown (D). Values are expressed as means ± SEM, *p<0.05, **p<0.01 
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Opposite variations of miR-9 and Sirt-1 levels in response to H2O2 and HT treatments in C-28/I2 

cells 

In order to use C-28/I2 cell line for further investigations, SIRT-1 protein and miR-9 variations 

were evaluated in response to treatments with HT and/or H2O2. As shown in fig. 4.8A and 4.8B HT 

was able to rescue SIRT-1 protein levels that decreased after H2O2 treatment. In accordance with 

human primary cell results, miR-9 levels vary after treatments in an opposite manner to SIRT-1 

levels in C-28/I2 (Fig. 4.8C). 

 

Figure 4.8: Opposite variations of miR-9 and Sirt-1 levels in response to H2O2 and HT treatments 

in C-28/I2 cell line. C-28/I2 cells were pre-incubated in the absence or in the presence of 

hydroxytyrosol (HT) and/or other compounds as indicated, for 30 min before addition of H2O2. 

After 24h of incubation cells were harvested for SIRT-1 detection by western blotting. 

Representative images (A) and relative quantification for SIRT-1/ β-actin (B) ratio is shown. After 

4h of incubation samples were collected for miR-9 quantification by means of qPCR (C). Values 

are expressed as means ± SEM, *p<0.05, **p<0.01 

 

Impact of miR-9 silencing and overexpression on H2O2 -induced toxicity and HT-mediated 

protection in C-28/I2 cell line and human primary chondrocytes 

Next, we evaluated the role of miR-9 in cell death elicited by H2O2 as well as in the protection 

afforded by HT in human primary chondrocytes and C-28/I2 cells. First, we tested the silencing 

efficiency of Ambion® Anti-miR™ miRNA Inhibitors by using qPCR (Fig.4.9A and 4.10A). We 
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found out that miR-9 silencing rescued protein levels of Sirt-1 reduced by H2O2 treatment and led to 

a complete loss of the H2O2-induced cell death (Fig. 4.9B, C, D and 4.10B, C, D). Accordingly, 

H2O2 treatment in antimiR-9 transfected cells led to a reduced caspase 3-like activity compared to 

H2O2 treatment in CTRL transfected cells (Fig. 4.9E). Then, in order to estimate the importance of 

SIRT-1 in the protection obtained by silencing miR-9, primary chondrocytes and C-28/I2 cells were 

silenced for both miR-9 and SIRT-1 and treated with H2O2. Fig. 4.9F and 4.10E show that SIRT-1 

knockdown reduced the protection afforded by antimiR-9 transfection versus H2O2-induced cell 

death. Indeed, we found a significant difference between and SIRT-1 plus miR-9 -silenced cells and 

miR-9 only-silenced cells when treated with H2O2. 

However the prevention of cell death inhibition was not complete, as antimiR-9 transfection 

concomitantly with SIRT-1 knockdown was still able to partially reduce H2O2-induced cell death. 

Therefore it is conceivable that miR-9 may influence more targets, in addition to SIRT-1, 

implicated in the control of apoptotic cell death mediated by oxidative stress. 
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Figure 4.9: Impact of the miR-9 silencing on the toxicity of H2O2 in human primary chondrocytes. 

Primary cells were transfected for 24h with antimiR-9 or antimiR-NC (50nM). After 4h incubation 

cells were harvested and miR-9 levels were determined by qPCR (A). After 24 h incubation with or 

without H2O2, cells were collected for SIRT-1 detection by western blotting. Representative images 

(B) and relative quantification of SIRT-1/ β-actin ratio (C) are shown. Alternatively, cells were 
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counted to assess cell viability by trypan blue exclusion test (D) or harvested and analyzed for 

caspase activity (E). In addition, cells were transfected for 24h with antimiR-9 or antimiR-NC 

(50nM) and siCTRL or siSIRT1 (25nM). After 24h incubation with or without H2O2, cells were 

counted to assess cell viability by trypan blue exclusion test (F) or harvested and analyzed for 

caspase activity (G). Values are expressed as means ± SEM, *p<0.05, ***p<0.001 
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Figure 4.10: Impact of miR-9 silencing on the toxicity of H2O2 in C-28/I2 cell line. C-28/I2 cells 

were transfected for 24h with antimiR-9 or antimiR-NC (50nM). After 4h incubation cells were 

harvested and miR-9 levels were determined by qPCR (A). After 24 h incubation with or without 

H2O2, cells were collected for SIRT-1 detection by western blotting. Representative images (B) and 

relative quantification for SIRT-1/ β-actin ratio (C) are shown. Alternatively, cells were counted to 

assess cell viability by trypan blue exclusion test (D). C-28/I2 cells were transfected for 24h with 

antimiR-9 or antimiR-NC (50nM) and siCTRL or siSIRT1 (25nM). After 24h incubation with or 

without H2O2, cells were counted to assess cell viability by trypan blue exclusion test (E). Values 

are expressed as means ± SEM, *p<0.05 

 

Then, we verified the efficacy of Ambion® Pre-miR™ miRNA Precursors transfection by 

performing qPCR: as shown in Fig. 4.11A and in Fig. 4.12A, these oligonucleotides are able to 

raise dramatically mature miR-9 levels. We observed that pre-miR-9 transfection decreased protein 

expression of SIRT-1 in control and HT-treated cells (Fig. 4.11B, C – 4.12B, C). Moreover, 

increased levels of miR-9 induced cell death compared to correspondent control cells and the loss of 

HT protection in cells exposed to H2O2-mediated oxidative stress (Fig. 4.11D and 4.12D). 

Consistently with the chances of cell death rate, Fig. 4.11E shows that premiR-9 transfection 

enhanced caspase 3-like activity as well and led to a partial loss of caspase inhibition provoked by 

HT pre-treatment. 
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Figure 4.11: Impact of premiR-9 transfection on the HT-mediated protection in human primary 

chondrocytes. Cells were transfected for 24h with premiR-9 or premiR-NC (50nM). After 4h 

incubation cells were harvested and miR-9 levels were determined by qPCR (A). After 24 h 

incubation with or without HT, cells were collected for SIRT-1 detection by western blotting. 

Representative images (B) and relative quantification for SIRT-1/ β-actin ratio (C) are shown. 

Alternatively after 24h incubation with H2O2 or HT, cells were counted to assess cell viability by 

trypan blue exclusion test (D) or harvested and analyzed for caspase activity (E). Values are 

expressed as means ± SEM, *p<0.05, **p<0.01 
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Figure 4.12: Impact of premiR-9 transfection on the HT-mediated protection in C-28/I2 cell line. 

C-28/I2 cells were transfected for 24h with premiR-9 or premiR-NC (50nM). After 4h incubation 

cells were harvested and miR-9 levels were determined by qPCR (A). After 24 h incubation with or 

without HT, cells were collected for SIRT-1 detection by western blotting. Representative images 

(B) and relative quantification for SIRT-1/ β-actin ratio (C) are shown. Alternatively after 24h 

incubation with H2O2 or HT, cells were counted to assess cell viability by trypan blue exclusion test 

(D). Values are expressed as means ± SEM, *p<0.05, **p<0.01 
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SIRT-1 is a direct target of miR-9 in C-28/I2 cells 

At this point, we were sure that changes in miR-9 levels correspond to opposite expression of SIRT-

1 protein but the critical question was “is SIRT-1 a direct or indirect target of miR-9?”. One of the 

most popular approaches to demonstrate this actual linking is luciferase-based gene reporter assay. 

This assay involves placing a genetic regulatory element upstream or 3'UTR downstream of a 

luciferase gene and then transferring the resulting reporter construct into the cells through 

transfection, transformation or injection. Expression of the luciferase reporter gene is then measured 

to quantify the activity of the regulatory element (cis-acting) or proteins (trans-acting) in the 

biological pathway affected by the target element. As illustrated in the drawing below, 

luminescence intensity will be less or more strong with or without miR interaction, respectively.   

 

We transfected three different gene sequences (Fig. 4.13A) inserted in the plasmid provided by 

Genecopoeia: 3'UTR mut1 is 3'UTR SIRT-1 without miR-9 seed sequence identified by 
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TargetScan bioinformatic tool; 3'UTR mut2 lacks seed sequence and the miR-9 3'pairing sequence; 

3'UTR wt is the full 3'UTR sequence of SIRT-1. 

After 24h incubation the enzymatic activity of reporter protein was evaluated and only cells 

transfected with the full 3'UTR showed a decreased signal (around 50%) of bioluminescence (Fig. 

4.13B). Moreover, a 10% difference between 3'UTR mut1and 3’UTR mut2 let us speculate that the 

sequence upstream of seed-complementary sequence (blue highlighted in Fig. 4.13A) may increase 

the silencing efficiency of the seed sequence. Overall this data confirm that SIRT-1 is a genuine 

target of miR-9. 

 

 

 

A 

B 
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Figure 4.13: SIRT-1 is a direct target of miR-9 in C-28/I2 cells. Three different sequences were 

designed and provided within pEZX-MT06 reporter vector (Genecopoeia);  a first sequence deleted 

of seed sequences (3'UTR mut1); a second one deleted of miR-9 3' pairing sequence as well as of 

seed sequence (3'UTR mut2);  a last one with the full 3'UTR sequence (3'UTR wt) (A). Cells were 

co-transfected with either plasmid carrying 3'UTR mut1, 3'UTR mut2 or 3'UTR wt, with premiR-9 

or premiR-NC. The dual luciferase activity of the transfected cells was detected and the luciferase 

activity was normalized on renilla activity (B). Values are expressed as means ± SEM, **p<0.01 

 

4.3 MicroRNA-155 suppresses autophagy in chondrocytes by modulating 

expression of autophagy proteins 

MiR-155 modulates autophagy in T/C28a2 cells 

In a Next Generation Sequencing study, miR-155 was found to be one of the most highly 

upregulated miRs in human OA knee cartilage compared to normal cartilage. Searching miR target 

databases revealed that miR-155 seed-complementary sequences are present in several autophagy-

related genes and identified GABARAPL1, ATG3, ATG5 and FOXO3 as putative targets. In light 

of this, and previous findings of dysfunctional autophagy in OA (136), we analyzed the potential 

role of miR-155 in chondrocyte autophagy. 

We transfected T/C28a2 human immortalized cell line with LNA nc and LNA miR-155, mimic nc 

and mimic miR-155 in order to downregulate and raise endogenous miR-155 levels, respectively, as 

validated by qPCR (Figure 4.14A). Autophagy is a highly dynamic process that involves the 

formation, maturation and degradation of autophagosomes (95). Autophagic flux can be monitored 

by measuring the conversion of LC3-I to LC3-II (137). We analyzed autophagy flux after treatment 

with the autophagy inducers RAPA or 2-DG. Both compounds are widely employed for autophagy 

stimulation in vitro and in vivo studies due to their ability to block the mTOR pathway or reduce 

intracellular ATP thus activating AMPK, respectively (95). Moreover, T/C28a2 cells were 

simultaneously treated with or without CQ, to block autophagy flux and allow accumulation of the 

autophagic protein LC3-II, given its fast protein turnover, thus affording a better observation by 
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western blot analysis (95). As shown in Figure 4.14B and 4.14C, the autophagy flux, as evaluated 

by the LC3-II/LC3-I ratio, was enhanced by CQ alone, indicating basal autophagy activation under 

the culture conditions used. This was significantly increased in samples transfected with LNA miR-

155 compared to those with LNA nc, and was significantly decreased in cells transfected with 

mimic miR-155, compared to mimic nc. 

Consistent with these results on LC3 conversion, the downregulation of miR-155 by LNA miR-155 

increased and mimic miR-155 transfection decreased the number of autophagic vacuoles as 

assessed in live cells by Cyto-ID dye incorporation, specifically targeting autophagosomes (Figures 

4.14D and 4.14E).  
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Figure 4.14: MiR-155 modulates autophagy in T/C28a2 cells. (A) T/C28a2 cells were transfected 

for 24h with LNA miR-155 and LNA negative control (LNA-nc) (40nM), mimic miR-155 and 

mimic negative control (mimic nc) (10nM). MiR-155 levels were determined by qPCR (n=4). (B) 

24h after transfection cells were treated with DMSO or 50nM rapamycin (RAPA) and/or 25µM 

chloroquine (CQ) for 4h or (C) 5mM 2-deoxy-glucose (2-DG) and/or 25µM CQ for 2h and then 

harvested for LC3 and β-actin detection by western blotting. Representative images and relative 
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quantification for LC3-II/LC3-I ratios are shown (n=5), (D) 24h after transfection cells were 

incubated for 18h with DMSO or 50nM RAPA and/or 25µM CQ or (E) 5mM 2-DG and/or 25µM 

CQ and stained with Cyto-ID (1:1000) and Hoechst 33342 (1:2000) (n=3). Values are expressed as 

mean ± SD of 4 independent experiments in A, 5 independent experiments in B and C, 3 

independent experiments in D and E, *P<0.05, **P<0.01,***P<0.001. 

MiR-155 modulates autophagy in human primary chondrocytes 

In order to confirm these observations, we evaluated the autophagic activity in primary 

chondrocytes transfected with LNA nc and LNA miR-155, mimic nc and mimic miR-155 to 

modulate cellular miR-155 levels (Figure 4.15A). A significant increase in basal autophagic flux 

was seen when cells were transfected with LNA miR-155 compared to the LNA nc while mimic 

miR-155 transfection resulted in a significant attenuation of LC3-I conversion (Figure 4.15B). 

We also tested the effects of miR-155 modulation in RAPA-induced autophagy in chondrocytes 

after LNA and mimic transfection. Under this condition, autophagy flux was significantly increased 

by miR-155 downregulation and significantly reduced by mimic miR-155 transfection (Figure 

4.15C). These results were confirmed by quantification of Cyto-ID dye intensity (Figures 4.15D and 

4.15E). 
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Figure 4.15: MiR-155 modulates autophagy in human primary chondrocytes. (A) Cells were 

transfected for 24h with LNA miR-155 and LNA nc, mimic miR-155 and mimic nc. MiR-155 

levels were determined by qPCR (n=5). (B) 24h after transfection cells were treated with or without 

25µM CQ for 12h or (C) DMSO or 50nM RAPA and/or 25µM CQ for 12h and then harvested for 

LC3 and β-actin detection by western blotting. Representative images and relative quantification for 

LC3-II/LC3-I ratios are shown (n=5), (D) 24h after transfection cells were incubated for 18h with 
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or without 25µM CQ or (E) DMSO or 50nM RAPA and/or 25µM CQ and stained with Cyto-ID 

(1:1000) and Hoechst 33342 (1:2000) and intracellular fluorescence was measured (n=3). Values 

are expressed as mean ± SD, *P<0.05, **P<0.01,***P<0.001. 

MiR-155 regulates autophagy by suppressing MAP1LC3, GABARAPL1, ATG3, ATG5, ATG14, 

ULK1 and FOXO3 

To characterize the mechanism underlying autophagy suppression by miR-155, we tested the 

bioinformatics-based prediction that miR-155 targets autophagy genes. We performed qPCR 

analysis on RNA from T/C28a2 cells and from human primary chondrocytes transfected with LNA 

nc, LNA miR-155, mimic nc and mimic miR-155. 

As shown in Figure 3A, LNA miR-155 but not LNA nc, led to a significant increase in the mRNA 

levels of GABARAPL1, ATG3, ATG5 and FOXO3. Conversely, mimic miR-155 but not mimic nc 

significantly reduced mRNA levels of GABARAPL1, ATG3, ATG5 and FOXO3 (Figures 4.16A 

and 4.16B). Furthermore, we analyzed autophagy-related genes that are not predicted targets of 

miR-155 and discovered that mRNA levels of ULK1, ATG14 and MAP1LC3 were modulated by 

miR-155 LNA and mimic (Figures 4.16A and 4.16B). Similar results were obtained in human 

primary chondrocytes (Figure 4.17). 
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Figure 4.16: MiR-155 regulates autophagy by suppressing gene expression of MAP1LC3, 

GABARAPL1, ATG3, ATG5, ULK1, ATG14, and FOXO3. Cells were transfected for 24h with LNA 

miR-155 and LNA nc, mimic miR-155 and mimic nc. (A) qRT-PCR analysis of mRNA expression 

levels of direct and indirect targets of miR-155 in T/C28a2 cells following transfection with LNA or 

(B) mimic. Values are expressed as mean ± SD, *P<0.05, **P<0.01, ***P<0.001. 
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Figure 4.17: MiR-155 regulates autophagy by suppressing autophagy-related gene expression in 

human primary chondrocytes. Cells were transfected for 24h with LNA miR-155 and LNA nc, 

mimic miR-155 and mimic nc. (A) qRT-PCR analysis of mRNA expression levels of direct and 

indirect targets of miR-155 in primary chondrocytes following transfection with LNA or (B) mimic. 

Values are expressed as mean ± SD, *P<0.05, **P<0.01, ***P<0.001. 

 

To confirm that the changes in mRNA levels of miR-155 targets corresponded to changes in protein 

expression, we performed western blotting on T/C28a2 cells transfected with LNA miR-155 or 

mimic miR-155. As shown in Figure 4.18, knockdown of endogenous miR-155 increased levels of 

GABARAPL1, ATG3, ATG5, FOXO3, ULK1, ATG14 and LC3 proteins and mimic miR-155 

transfection strongly decreased these proteins. 
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Figure 4.18: MiR-155 regulates autophagy by reducing protein levels of MAP1LC3, 

GABARAPL1, ATG3, ATG5, ULK1, ATG14, and FOXO3. T/C28a2 cells were transfected for 24h 

with LNA miR-155 and LNA nc, mimic miR-155 and mimic nc. Western blotting analysis of 

MAP1LC3, GABARAPL1, ATG3, ATG5, ULK1, ATG14, FOXO3 and β-ACTIN proteins. 

Representative images and relative quantifications are shown (n=4). Values are expressed as mean 

± SD, *P<0.05, **P<0.01, ***P<0.001. 

MiR-155 regulates mTOR activity 

As mTOR is a critical negative regulator of autophagy (138-140), we examined whether it was 

involved in miR-155 effects. mTOR pathway activity was detected by analyzing the 

phosphorylation levels of ribosomal protein s6 (P-s6, S235/S236) and AKT (P-AKT, S473) in 

response to LNA miR-155 and mimic miR-155 transfection in T/C28a2 cells. Contrary to our 

expectations, P-S6 and P-AKT, in ratio to their total levels, were significantly increased following 

knockdown of miR-155 and significantly attenuated after mimic miR-155 transfection (Figure 
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4.19A). We next evaluated the expression of RICTOR, an essential mTOR complex-2 (mTORC2) 

component that can activate mTOR complex-1 (mTORC1) through phosphorylation of AKT (S473) 

(82, 83), which was identified as a miR-155 target in the bioinformatics analysis. As shown in 

Figures 4.19B and 4.19C, both RICTOR protein and mRNA levels were increased and decreased by 

LNA miR-155 and mimic miR-155 transfection, respectively.  

 

Figure 4.19: Effect of miR-155 on mTOR activity. T/C28a2 cells were transfected for 24h with 

LNA miR-155 and LNA nc, mimic miR-155 and mimic nc. (A) Western blotting analysis of P-

AKT (Ser473), AKT total, P-S6 (Ser235/Ser236), S6 total and β-ACTIN levels by using specific 

antibodies. (B) Western blotting analysis of RICTOR and β-ACTIN. Representative images and 

relative quantifications are shown (n=4). (C) qRT-PCR analysis of mRNA expression levels of 

RICTOR are shown (n=4). Values are expressed as mean ± SD, *P<0.05, **P<0.01, ***P<0.001. 
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5. DISCUSSION AND CONCLUSIONS 

Osteoarthritis (OA) is a multifactorial degenerative disease of the cartilage and the most common 

form of arthritis, whose millions of people worldwide suffer, affecting 60% of men and 70% of 

women above 65 (12). Indeed aging is considered the main risk factor of OA, followed by obesity 

(37).  

So far, palliative therapy for arthritic diseases is the only approach to treat patient symptoms and  is 

mainly based on NSAIDs (53) that lack efficacy to counteract  and slow OA progression and result 

in several side effects. The only resident cell population of cartilage is represented by chondrocytes. 

Therefore, a better understanding of molecular mechanisms underlying cellular changes of OA 

chondrocyte is required in order to identify alternative therapies.  

A promising mechanism as potential target can be found in autophagy pathway, maintaining 

homeostatic balance through removal, degradation and recycling of damaged organelles or proteins. 

In fact defective autophagy has recently emerged as a feature of articular cartilage in OA-affected 

joints in both human and in animal models. Studies in mouse models showed that in normal 

cartilage there is a constitutive or basal level of autophagy that is of higher magnitude as compared 

to liver in the same animal (141). With aging and OA development, the number of autophagosomes 

and the size of the autophagosomes decrease in cartilage. Conceptually, defective autophagy could 

be due to abnormal expression of autophagy proteins or abnormal signalling and regulation of 

autophagy activation. Several studies provided evidence for aging and OA-associated reduction in 

autophagy proteins, including ATG5, ULK1, BECLIN1 and LC3 (98, 141). There is also evidence 

for abnormal autophagy signalling, most importantly, hyperactivation of mTOR, possibly due to 

reduced activation of AMPK (138, 142). 

In this thesis we propose HT, a nutraceutical compound, as modulator of OA changes and 

protective agent against oxidative stress by promoting autophagy successfully. Moreover, we have 
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investigated the involvement of microRNA network and identified two miRs that could be 

implicated in the complex pattern of deregulated gene expression in OA chondrocytes. 

Autophagy and hydroxytyrosol 

Nutraceuticals have shown to exhibit a role not merely as anti-oxidant or ROS scavengers, but also 

as efficient modulators of gene expression of key factors underlying the OA onset. On this purpose, 

we and others have showed the ability of sulforaphane, a natural isothiocyanate derived from edible 

cruciferous vegetables, to protect chondrocytes in vitro (62, 63), and, quite recently, a sulforaphane-

rich diet was found effective in a murine OA model (63). 

In a recently published paper (129), we have reported how HT prevented or reduced ROS 

accumulation, DNA damage, expression of proinflammatory, ECM degrading- and other OA-

related genes, as well as cell death of human chondrocytes treated with stressors involved in OA 

pathogenesis, i.e. H2O2 and GROα. In the present study we have investigated some cellular and 

molecular events mechanistically involved in the protective action of HT in human chondrocytes 

treated with H2O2. The main findings of the present work are the following: 1) HT induces 

autophagy activation; 2) autophagy stimulation by HT mediates its protective action against cell 

death under oxidative stress; 3) autophagy stimulation by HT occurs through SIRT-1-dependent and 

-independent mechanisms. 

It has been reported in a variety of non-tumoral cells and biological systems that HT can exert anti-

oxidant, anti-inflammatory, anti-apoptotic and other protective effects, which may prevent or slow 

progression of degenerative diseases (64, 143). However the mechanism of action of HT is largely 

undefined and can be only partly ascribed to its free-radical scavenging activity and direct anti-

oxidant power. It has been shown in some experimental settings that HT can enhance the cellular 

anti-oxidant and detoxifying defence systems through the modulation of signaling pathways 

impacting on key transcription factors, such as Nrf2 or FOXO3 (70, 144). However the role of 

autophagy in these events was not investigated. To our knowledge this is the first study showing 
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that HT can activate the autophagy process, thus protecting from cell death. This ability of this 

compound to induce autophagy may not be limited to chondrocytes and would be interesting the 

study of HT potential protective effects in other cell types and experimental models. 

SIRT-1 is a protein deacetylase that plays a role in chondrocyte survival and cartilage homeostasis 

(145). The overexpression of SIRT-1 (146) or its activation by resveratrol (147) protects 

chondrocytes and inhibits OA-like gene expression changes in vitro, whereas selective knockout of 

SIRT-1 in chondrocytes accelerates OA development in mice (59). However the involvement of 

autophagy in the chondroprotective effects of SIRT-1 has not been reported. Actually it is known 

that SIRT-1 may regulate autophagy in different ways (148). In fact SIRT-1 can modulate the 

expression of genes involved in autophagy by deacetylating key transcription factors or directly the 

activity of autophagic proteins by deacetylation. We have previously found that HT may enhance 

SIRT-1 expression in human chondrocytes (129). Other research groups also reported an increased 

expression of SIRT-1 mRNA or protein in the heart of SAMP8 mice fed with a diet rich in olive oil 

phenolics (149), in the heart of HT-treated Sprague-Dawley rats (150), and in the brain of HT-

treated db/db mice (151), but the functional role of SIRT-1 in the HT action was not investigated. In 

the present paper we show by mechanistic experiments that HT induces autophagy and protects 

from oxidative stress-induced cell death in a SIRT-1 dependent manner. In fact LC3-II formation, a 

critical event in autophagy, increased in C-28/I2 chondrocytes treated with HT, but not in SIRT-1 

silenced cells. Instead LC3 gene expression was not affected by HT. Huang et al. (152) have 

demonstrated that LC3 deacetylation by SIRT-1 in the nucleus is required for LC3 export to cytosol 

where it is able to bind Atg7 and other autophagy factors and undergoes phosphatidylethanolamine 

conjugation to preautophagic membranes (and can be detected by western blot as LC3-II). The 

nuclear localization of SIRT-1 has proved to be critical also for its pro-survival and anti-apoptotic 

action (153, 154). In H2O2-treated C-28/I2 cells nuclear localization of SIRT-1 decreases, 

confirming previous findings of reduced SIRT-1 levels in a variety of cell types under oxidative 
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stress (155), whereas in HT-treated C-28/I2 cells SIRT-1 becomes concentrated in the nucleus. 

Interestingly an increase of nuclear localization in the hearts of HT-treated rats has also been 

reported (150).  We may therefore hypothesize that following HT treatment SIRT-1 accumulates in 

the nucleus where catalyzes the deacetylation of LC3, which in its turn translocates to the cytosol to 

drive the autophagic process. Indeed SIRT-1 silencing per se did not affect LC3-II accumulation, 

sustaining the view that HT-induced nuclear translocation is necessary for SIRT-1 effect on LC3-II 

formation. Moreover, HT supports autophagy even by increasing transcription of p62, required for 

autophagic degradation of polyubiquitin-containing bodies (136). Thus, the enhanced expression of 

SQSTM1/p62 gene may sustain the increased p62 protein turnover. Accordingly, it has been 

reported that SQSTM1/p62 can be transcriptionally up-regulated in some situations of augmented 

autophagic flux. Notably HT induced an increase of p62 mRNA also in siSIRT-1 cells, indicating 

an additional, SIRT-1 independent mechanism for autophagy activation. In this regard it should be 

considered that p62/SQSTM1 is a target gene for the stress and anti-oxidant responsive 

transcription factor Nrf2, which in its turn can be stimulated by HT as already mentioned (144). 

Overall, by promoting key steps, HT appears able to increase the autophagic flux in chondrocytes. 

In our cell model autophagy activation mediated protection from cell death as demonstrated by 

experiments carried out with either inhibitors or activators of autophagy, including HT and SIRT-1. 

Our findings, documented by immunocytochemistry, support previous reports indicating that 

mitophagy is effective in protecting chondrocytes from apoptosis induced through the 

mitochondrial pathway (103, 156). It is also worthy to underline that reducing the extent of 

oxidative DNA damage in chondrocytes, HT appears promising as a therapeutic tool to limit 

chondrocyte senescence, a major problem in OA as well as in aging cartilage (157). 

It should be noted however that in some contexts prolonged or sustained autophagy may not have a 

protective outcome. For instance, even if autophagy is required to maintain muscle mass (158), 

excessive autophagy is believed to aggravate muscle wasting in animal models. Interestingly HT 
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supplementation to rats inhibited the negative effects of exhaustive exercise on muscle together 

with the deregulated increase in autophagy (159). Therefore HT may have a homeostatic effect, 

activating autophagy to the extent required to limit cell damage after an acute insult, but also 

preventing excessive autophagy.  

HT appears to resemble resveratrol, a polyphenol found in red wine and grapes, under some aspects, 

such as the multiple cellular targets and the ability to induce autophagy in a SIRT-1 dependent 

manner but also through other pathways (148, 155). Interestingly resveratrol can directly induce 

autophagy via activation of AMPK (148), and HT is also known to stimulate AMPK in some 

experimental models (71, 151). Actually AMPK and SIRT-1 may regulate their activities 

reciprocally, albeit indirectly, and contribute to autophagy induction. Thus AMPK might be 

involved in the stimulation of autophagic process by HT in chondrocytes. Finally resveratrol, as 

mentioned above for HT, has been reported to attenuate excessive autophagy (46, 155). 

MiR-9 and hydroxytyrosol 

MiRs have been implicated in fundamental cellular processes such as lipid metabolism, cell 

differentiation and proliferation, stem cell maintenance and organ development. The run of 

identifying miR role in cellular function and in the scenario of a specific pathology is going hand in 

hand with new miR targets being revealed.  

Loss of Dicer studies indicate that the miR pathway is fundamental in the skeletal development. For 

instance, Dicer knockout in limb mesenchyme led to the growth of a smaller limb and skeletal 

growth defects (160). Furthermore, premature death occurred in Dicer-deficient chondrocytes 

derived from Dicer-null mice. Since Dicer composes the microRNA processor, this finding 

indirectly unveiled the fundamental role of miRs in chondrogenesis and bone development (116). 

Although the importance of microRNAs in cartilage development and in the pathology of 

osteoarthritis has been established, numerous researchers keep investigating the roles of specific 
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microRNAs in specific molecular aspects of development and outcome of osteoarthritis in order to 

open new perspectives for diagnosis and therapy. 

So far, miR-140 is the best characterized miR implicated in OA playing a role in chondrogenesis 

and cartilage development (119). 

MiR-140 was reported to target different factors involved in OA, including HDAC4, a known 

corepressor of RUNX-2 (118), CXCL12 and Smad3 (161, 162). Then, SOX9, the major 

transcription factor implicated in the differentiation of chondrocyte phenotype and prevention of 

cellular hypertrophy, has been shown to regulate miR-140 levels (163).  

Studies on miR deregulation in OA are performed by comparing the expression of these molecules 

between OA tissue specimens and their normal articular counterparts (117). Functional studies shed 

light upon the specific role of a deregulated miR in OA through assessment of the modulation of 

endogenous miR levels and subsequent evaluation of pathological phenotypes in several in vitro 

cellular models. 

In order to further characterize the molecular mechanisms underlying the protective effect of HT 

against H2O2-induced cell death, we tried to identify a common factor targeted by both HT and 

H2O2 and able to address chondrocyte fate. Indeed, immunofluorescence assay showed that HT 

induced nuclear localization and increased intensity of SIRT-1 signal (Fig 4.3). Furthermore 

immunoblotting assay showed that H2O2 treatment reduced protein levels of SIRT-1, while HT 

alone or after pre-treatment with H2O2 increased SIRT-1 expression (Fig. 4.7 A, B). Our data of 

discordant mRNA and protein levels of SIRT-1 suggested a post-transcriptional regulation 

modulated by H2O2 and HT. These results were particularly intriguing and opened a new project 

branch spurring us to investigate the actual mechanism underlying HT and H2O2 effects on SIRT-1 

protein independently of mRNA changes. As a matter of fact miRs comprise the most popular class 

of short non-coding RNAs that is able to regulate gene expression post-transcriptionally. By 
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exploiting miR-target prediction tools of many databases available online (TargetScan, miRanda, 

miRWalk), some miR, including miR-22, miR-34, miR-9, were selected based on the presence of 

seed-complementary sequences in SIRT-1 3’UTR. Significant variations were appreciated in miR-9 

levels by means of qPCR: H2O2 led to substantial increase of miR-9, while HT reduced this effect 

(Fig.4.7 C). The seed sequence (5'-UCUUUGGU-3') identified by TargetScan browser is highly 

conserved among species and let us hypothesize that SIRT-1 may be a genuine target of miR-9 in 

our experimental model. Indeed, luciferase reporter assay confirmed that miR-9 targets SIRT-1 in 

C/28-I2 cell line (Fig. 4.11B) and maybe more. Two mutant vectors with deletions in seed sequence 

and 3' pairing sequence (Fig. 4.11A) showed 10% difference of luciferase activity in response to 

premiR-9 transfection. It is conceivable that the upstream sequence of pairing confers a more 

efficient matching.  

Accordingly, Saunders et al. reported that 5 different miRs suppressed SIRT-1 protein expression 

and miR-9 was among these regulators (164). Other authors found this relationship between miR-9 

and SIRT-1 (165, 166); however our study is the first to demonstrate that SIRT-1 is a real target of 

miR-9 in human primary chondrocytes and in C-28/I2 cell line. As we had previously showed that 

HT protected chondrocytes from H2O2-induced cell death via SIRT-1 -dependent and-independent 

mechanisms, we speculated that miR-9 was the missing piece of puzzle through which HT was able 

to express its protective potential against oxidative stress in our experimental model. In order to 

confirm this hypothesis we explored how modulation of miR-9 levels could influence the effects of 

both HT and H2O2 treatments by transfecting antimiR-9 and premiR-9 in human primary 

chondrocytes and in C-28/I2 cell line. First, in both cell systems we observed that antimiR-9 

rescued SIRT-1 protein levels under H2O2 treatment and, conversely premiR-9 suppressed SIRT-1 

levels in control cells and after HT treatment.  Next, our data showed that miR-9  mediates cell 

death induced by H2O2 and the protective effect of HT, as observed in human primary chondrocytes 
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and C/28-I2 cell line transfected with antimiR-9 and premiR-9 by trypan blue exclusion and caspase 

activity assays (Fig 4.9 and 4.10).  

Another interesting question is whether downregulation of SIRT-1 could compromise the protective 

action by antimiR-9 transfection in cells exposed to oxidative stress. Loss of SIRT-1 in antimiR-9-

transfected chondrocytes also resulted in HT-induced protection of H2O2-treated chondrocytes, even 

though less marked (Fig. 4.9F, G and 4.10E). Thus it may be concluded that SIRT-1 is only 

partially required for the protection exerted by HT and, actually, miR-9 is the real hub of cellular 

response to HT and H2O2 treatments. 

Altered expression of miR-9 in OA vs normal cartilage has been reported (117, 121). Jones et al. 

found up-regulated levels of miR-9 and miR-98 and down-regulated levels of miR-146 in OA 

samples and ascribed to these miRs a protective role during late-stage OA. In particular, MMP-13 

was shown to be a direct target of miR-9 (121). Recently Haqqi and collaborators showed that in 

human OA chondrocytes  monocyte chemo-attractant protein1-induced protein 1 (MCPIP-1) down-

regulation corresponds to an increased expression of miR-9, which is initially expressed at low 

levels (167). In accordance with our findings, miR-9 results to be overexpressed in other cellular 

models, including MELA cybrid cells under NF-κB stimulation (168) and HLF-1 under H2O2 and 

TGF-β1 stimulation (169) confirming that miR-9 responds to perturbations in the redox state. 

Overall these data suggest that miR-9 may act as the main player of H2O2-induced changes in 

human chondrocytes and is likely involved in oxidative stress-related and possibly other molecular 

aspects of the pathology of OA. 

Autophagy and miR-155 

Our study carried out at The Scripps Research Institute, La Jolla, CA, USA, was based on the 

discovery in Prof. Lotz’s laboratory that miR-155 was one of the most upregulated miR in human 

OA cartilage and aimed at determining the role of miR-155 in chondrocyte autophagy. MiR-155 

appeared as a potential regulator of autophagy based on the presence of miR-155 seed-
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complementary sequences in the autophagy-related genes (ATG3, GABARAPL1, ATG5, ATG2B, 

LAMP2, FOXO3). 

Our data show that miR-155 suppresses autophagy flux in T/C28a2 cells and primary human 

chondrocytes as measured by LC3 conversion and by utilizing a Cyto-ID cationic amphiphilic 

tracer dye that specifically recognizes autophagosomes (135). Accordingly, the number of 

autophagosomes was significantly increased when miR-155 was blocked by LNA and it was 

reduced when cells were treated with miR-155 mimic. These autophagy modulating effects of miR-

155 LNA and mimic were observed under basal culture conditions and under cell treatment with 

rapamycin in human chondrocytes and after treatment with rapamycin and 2-DG in T/C28a2 cells. 

We explored mechanisms by which miR-155 suppressed autophagy and discovered that multiple 

factors involved in the autophagic cascade are miR-155 targets. By transfecting LNA and mimic 

specific for miR-155 in T/C28a2 and in human primary chondrocytes, we observed a negative 

correlation between miR-155 and its target mRNAs, including ATG3, GABARAPL1, ATG5, 

FOXO3 and other autophagy-related factors not predicted by miR target databases, including 

ULK1, MAP1LC3 and ATG14 (Fig. 4.16 and 4.17). These data suggest that miR-155 is able to 

modulate the autophagy activity by regulating post-transcriptionally several components involved in 

different stages of autophagy, from the induction to elongation steps. Furthermore, consistent with 

changes in mRNA levels, miR-155 modulated protein levels of these factors. It is conceivable that 

miR-155 influences the expression of MAP1LC3, ATG14 and ULK1 by suppression of the 

transcriptional factor FOXO3 (170, 171). 

Moreover, by investigating potential involvement of mTOR as a critical negative regulator of 

autophagy (138-140) in miR-155-mediated autophagy suppression, we discovered that miR-155 

inhibits mTOR activity rather than activating it, as demonstrated by detection of phosphorylation 

levels of ribosomal protein s6, as a downstream substrate of mTORC1, and of AKT, as an upstream 

regulator of mTORC1. This unexpected result can be explained by miR-155 effects on gene and 
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protein expression of RICTOR, a critical component of mTORC2 (82), which induces mTORC1 

activation via AKT phosphorylation (83). We found that LNA and mimic miR-155 transfection 

increased and reduced protein and mRNA levels of RICTOR, respectively. This data indicates that 

the regulation of downstream autophagy-related factors by miR-155 is sufficient to affect the level 

of autophagy, independently of mTOR activity.  

Taken together, these data identify miR-155 as a potent regulator of autophagy under physiological 

conditions. MiR-155 is able to modulate this process via multiple mechanisms as proposed in the 

model shown below. 
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In pathological conditions when miR-155 levels are upregulated, as in OA cartilage, the autophagy 

flux is compromised. We propose that a critical factor might be an exact threshold level of miR-155 

that controls the autophagic response to cellular metabolic requests. 

In accordance with our findings, Holla et al. described an inhibitory role of miR155 on interferon-γ-

induced autophagy in macrophages (172). However, another study found that miR-155 enhanced 

hypoxia-induced autophagy in human cancer cell lines by inhibiting the mTOR pathway (173). 

Although we also found a reduction of mTOR activity in response to mimic miR-155 transfection, 

this was not sufficient to reverse the strong inhibitory effect of miR-155 on autophagy flux. Thus it 

is likely that the final effect of miR-155 on autophagy is stimulus and cell-specific and may be 

dependent on other factors implicated in the post-transcriptional and post-translational regulation of 

autophagy-related genes. 

MiR-155 has been implicated in other aspects linked to OA pathophysiology, in particular in 

regulating inflammatory responses (174-176). For example, CD14+ monocytes and macrophages 

overexpressing miR-155 exhibited increased production of proinflammatory cytokines while these 

were reduced in miR-155-deficient mice (177). In line with these data, Li et al. showed previously 

that miR-155 upregulated TNF-α and IL-1β in peripheral blood macrophages (178).  

Our study reveals that miR-155 can profoundly impact the autophagic cascade. We showed an 

inverse correlation between the miR-155 levels and autophagic flux in human chondrocytes. 

Furthermore, we demonstrated that increased levels of miR-155 inhibit GABARAPL1, ATG3, 

ATG5, ATG14, FOXO3, MAP1LC3, and ULK1 expression, and drastically suppress autophagy 

independently of its regulation on RICTOR expression and on mTOR signalling. In light of this 

study we can hypothesize that miR-155 is responsible, at least in part, to autophagy failure 

associated with the pathophysiology of OA.  
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Although further investigations on the role of miR-155 in dysfunction of autophagy and in other 

processes involved in the development of OA are required, the present study proposes an attractive 

opportunity to develop a future strategy based on miR-155 blockage for OA treatment. 

Concluding remarks 

As widely described in this thesis, articular chondrocyte capacity to maintain normal cartilage 

matrix structure and successful autophagy declines in elders critically contributing to progression in 

cartilage degradation. Thus, pharmacological activation of autophagy and well-known molecular 

factors considered important for adaptive responses to environmental stresses, including SIRT-1 or 

Nrf-2, may be an appropriate therapeutic approach for OA. These studies showed how HT may 

represent a valid agent of prevention against oxidative stress in OA by protecting against DNA 

damage and cell death, and by stimulating autophagy. Furthermore, we demonstrated that HT exerts 

its beneficial effect by suppressing miR-9 levels increased by H2O2 treatment and that this 

mechanism is only partially SIRT-1-dependent. The second miR involved in OA pathology, miR-

155, is implicated in the failure of autophagy in human adult chondrocytes. The involvement of 

miRs across human diseases has been widely reported and motivated the development of miRs-

based therapies. MiRs are promising targets as a single miR is able to regulate multiple genes in 

dysregulated pathways in a disease. Thus, the identification of a single miR, involved 

simultaneously in several disease-related pathways, discloses a potent therapeutic target. Indeed the 

unveiling of bioactive compounds able to influence miR network may open a new topic of research 

with huge potential and not yet well explored. 
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