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“We are like the prisoners in the cave. There are platonic ‘biological bases of behaviour’ that 

we want to discover (the figures walking on the pathway behind the prisoners), but all we can 

observe are the shadows cast on the wall (empirical data) by the flame in the back of the cave 

(methods and technologies); our concept of the nature and shape of the figures (theories) are 

shaped by past experience, intuition, and, perhaps most importantly, how the light of the 

flame defines the shadows. 

However, we have one important advantage over the prisoners in Plato’s cave: We can, to 

some extent, control the flame. We can develop new technologies and methodologies, and we 

can combine methodologies in interesting, novel, and insightful ways. We can compare the 

shadows cast on the wall using different materials to fuel the fire.” 

 

Michael X Cohen 
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 INTRODUCTION 

 

That humans and animals learn from interaction with the environment is a foundational idea 

underlying nearly all theories of learning and intelligence (Sutton and Barto, 1998). Learning 

that certain outcomes are associated with specific actions or stimuli (both internal and external), 

is at the very core of the capacity to adapt behaviour to environmental changes. It is such a basic 

ability to be observable even in mollusks like the Aplysia (Nargeot and Simmers, 2011), a sea 

slug with only about 20,000 neurons, but at the same time it carries a critical survival value, as it 

allows flexible adaptation of ongoing behaviour to volatile contingencies and unexpected 

outcomes (Kehagia et al., 2010; Cohen et al., 2011). 

Reinforcement learning is a form of learning in which choices are guided by the presence of 

rewards and punishments (the reinforcers) in the environment. In this perspective, humans and 

animals are conceived as goal-directed agents who learn, by trial and error, how to maximize 

current and future rewards (or minimize punishments) while interacting with an uncertain 

environment (Sutton and Barto, 1998).  

The two most basic forms of associative learning are widely known as Pavlovian Conditioning 

and Instrumental Conditioning.  

In Pavlovian Conditioning, learning occurs when rewards or punishments (unconditioned stimuli 

- US) are paired with otherwise irrelevant environmental cues, which gain salience thanks to this 

association (thus becoming conditioned stimuli, CS). These CS-US pairings occur regardless of 

any action performed, which means that the probability of an outcome (US) given the presence 
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of a specific cue (CS) is independent of the individual performance. Once a CS is paired with a 

US, the CS acquires a motivational salience that can elicit a so-called conditioned response (CR), 

a psychophysiological reaction to the  predicted outcome that reflects the existence and the 

strength of the associative learning process.  

In Instrumental Conditioning, on the other hand, learning is represented by the association 

between an action and an outcome (e.g., a button press and the consequent occurrence of a 

reward). In this case, individual performance does influence the probability of getting rewards 

and punishments. For this reason, instrumental actions are consequently shaped by the 

occurrence of rewards and punishments, as they can be actively sought or avoided. 

Understanding how associations between (past and present) events, actions and their related 

outcomes are build, is the principal goal of  research in learning theory (Behrens et al., 2007). 

From a computational point of view, learning has been conceptualized as a prefrontally mediated 

modulation of the synaptic weights connecting population of neurons coding for stimuli or 

contexts, goal-directed actions and the outcomes connected to them (Cohen et al., 2011; Hebb, 

1949). 

Studies on the neural mechanisms underlying learning and flexibility pointed to a major role 

played by fronto-striatal loops and modulated by monoamines, such as dopamine (DA), 

serotonin (5-hydroxytryp-tamine, 5-HT) and noradrenaline (NA) (Kehagia et al., 2010). 

Such fronto-striatal loops are involved in behaviour monitoring by learning rules, forming 

expectations about outcome delivery and coding for prediction error (i.e., when the actual 
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outcome differs from the predicted outcome) (O’Doherty et al., 2003; Schultz et al., 1997; Histed 

et al., 2009; Miller, Nieder, Freedman, and Wallis, 2003; Miller and Cohen, 2001; Wallis, 

Anderson, and Miller, 2001; White and Wise, 1999). 

Neurochemically, strong links have been reported in literature with dopaminergic activity 

(Kehagia et al., 2010). Many studies showed a direct relationship between striatal D2 and D1 

receptor activity and frontal functions and dysfunctions (Pycock et al., 1980; Bach et al., 2008; 

Kellendonk et al., 2006; Castner et al., 2001). 

The importance of further investigation into the behavioural and neural basis of reinforcement 

learning resides in its strong links with both adaptive and maladaptive human processes. 

Reinforcement learning is indeed believed to be at the core of human social and emotional 

abilities (Behrens et al, 2008; Brown and Brüne, 2012), as well as implicated in different forms 

of addiction - like drug or alcohol dependence (Baker, et al. 2011; Crean et al. 2011; Park. et al., 

2010) - and psychiatric diseases - including schizophrenia, obsessive compulsive disorder 

(OCD), post-traumatic stress disorder and phobia (Everitt and Robbins, 2005; Gold, et al. 2008; 

Fletcher and Frith, 2009; Berridge et al., 1998). 

In the present work, appetitive and aversive reinforcement learning paradigms have been used to 

investigate the fronto-striatal loops and behavioural correlates of adaptive and maladaptive 

reinforcement learning processes, aiming to a deeper understanding of how cortical and 

subcortical substrates interacts between them and with other brain systems to support learning. 
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A first study, carried out at the Centre for studies and research in Cognitive Neuroscience (CNC) 

of the University of Bologna, investigated brain responses to the omission aversive of aversive 

outcomes in healthy volunteers. This experiment investigated the role of a specific mediofrontal 

negative event-related potential (ERP), the mediofrontal negativity, a component implicated in 

prediction-error signalling. Research based on ERPs reported mediofrontal negativities following 

unexpected negative feedback or performance error. Some authors proposed that these signals 

reflect reward prediction error for worse than expected outcomes, while others suggested that 

mediofrontal negativities express medial prefrontal cortex (mPFC) coding for unexpected non-

occurrence of a predicted outcome, whether worse or better than expected. Many studies found 

mediofrontal negativities coding for unexpected negative outcomes; however, few studies found 

them after unexpected positive outcomes. This research investigated ERP and skin conductance 

response (SCR) to the unexpected omission of electric shocks during Pavlovian aversive 

conditioning. To manipulate expectancies, participants were presented with visual stimuli paired 

with electric shocks on either 80% (CS+1) or 20% (CS+2) of trials. SCR analysis confirmed 

higher shock-delivery expectancy for CS+1, relative to CS+2. ERP analysis evidenced a stronger 

negative frontocentral ERP component after unexpected, relative to expected, shock-omission. 

The results of this experiment have been successfully published in Garofalo et al. (2014). 

 

A second study, carried out at the CNC (University of Bologna), aimed at the investigation of 

ERP signals of Timing Prediction Error (TPE) during aversive reinforcement learning in healthy 

volunteers. The medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC) have 
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been consistently implicated in learning predictions of future outcomes, and signaling prediction 

errors (i.e., unexpected deviations from such predictions). A recent computational model of the 

mPFC posits that these prediction errors should be modulated by outcomes occurring at 

unexpected times, even if the outcomes themselves are predicted. However, unexpectedness per 

se is not the only variable that modulates mPFC activity, as studies reported its sensitivity to the 

salience of outcomes.  In the present study, mediofrontal negativity, a component of the event-

related brain potential generated in the mPFC/ACC and coding for prediction errors, was 

measured in 48 participants performing a Pavlovian aversive conditioning task, during which 

aversive (thus, salient) and neutral outcomes were unexpectedly anticipated or delayed in time. 

Mediofrontal ERP signals of prediction error were observed for outcomes occurring at 

unexpected times, but were specific for salient (shock-associated), as compared to neutral, 

outcomes. These findings have important implications for theoretical accounts of the 

mPFC/ACC and suggest a critical role of timing and salience information in prediction error 

signaling. The results of this experiment are in preparation for submission to international 

scientific journals. 

 

A third study, in collaboration with the Department of Engineering of the University of Bologna,  

aimed at investigating the cortical generators of the ERP component found to code for salient 

timing prediction error in the second experiment here described. Cortical generators were 

estimated using a source localization method known as sLORETA. Results showed that some 

regions in the frontal and prefrontal cortex may be responsive to unexpected timing of feedback, 
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to a larger extent in case of aversive than neutral feedback. The present study can contribute to 

inform current theories of performance monitoring in frontal/prefrontal cortex and to drive future 

investigation and results are discussed with respect to findings of previous works. These results 

have been successfully published in the Conference Proceedings of the 2015 Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society (Magosso et 

al., 2015). 

 

A fourth study, carried out at the Department of Psychiatry of the University of Cambridge, used 

fMRI and computational modelling techniques to investigate the presence of deficits in fronto-

striatal signals of reward processing in Parkinson’s Disease associated psychosis. Psychotic 

symptoms frequently occur in Parkinson’s Disease, but their pathophysiology is poorly 

understood. According to cognitive neuropsychiatric theory, and the National Institute of Health 

RDoc programme, the pathophysiological basis of psychiatric symptoms may be better 

understood in terms of dysfunction of underlying domains of neurocognition, rather than simply 

according to diagnosis. Abnormal frontal striatal reinforcement learning signalling, associated 

with dysregulated dopamine, has been proposed as a key process contributing to the pathogenesis 

of psychosis. This theory has received empirical support in the study of schizophrenia spectrum 

disorders and preclinical models of psychosis, but has not been tested in psychosis associated 

with a degenerative neurological condition such as Parkinson’s Disease. This study aimed to 

investigate brain responses associated with reward feedback and prediction error signalling 

during reinforcement learning in Parkinson’s Disease associated psychosis. An instrumental 
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reinforcement learning task was performed by three groups of subjects during fMRI scanning: 

patients with Parkinson’s Disease with a history of psychotic symptoms (n=12), patients with 

Parkinson’s Disease without a history of psychotic symptoms (n=17), and healthy controls 

(n=24). Results confirmed the presence of altered activation in the medial prefrontal cortex and 

the ventral striatum in PD patients with psychosis in different stages of reward processing. These 

results extend the link between psychotic symptoms and abnormalities in fronto-striatal reward 

processing beyond schizophrenia spectrum conditions into psychosis as manifest in Parkinson’s 

Disease. The results of this experiment are in preparation for submission to international 

scientific journals. 

 

A fifth study, carried out at the CNC (University of Bologna), focused on individual differences 

in the influence of task-irrelevant Pavlovian cues on human behaviour. Pavlovian-to-

instrumental transfer (PIT) refers to the process of a Pavlovian reward-paired cue acquiring 

incentive motivational proprieties that drive choices. It represents a crucial phenomenon for 

understanding cue-controlled behaviour, and it has both adaptive and maladaptive implications 

(i.e., drug-taking). In animals, individual differences in the degree to which such cues bias 

performance have been identified in two types of individuals that exhibit distinct Conditioned 

Responses (CR) during Pavlovian conditioning: Sign-Trackers (ST) and Goal-Trackers (GT). 

Using an appetitive PIT procedure with a monetary reward, the present study investigated, for 

the first time, the extent to which such individual differences might affect the influence of 

reward-paired cues in humans. In a first task, participants learned an instrumental response 
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leading to reward; then, in a second task, a visual Pavlovian cue was associated with the same 

reward; finally, in a third task, PIT was tested by measuring the preference for the reward-paired 

instrumental response when the task-irrelevant reward-paired cue was presented, in the absence 

of the reward itself. In ST individuals, but not in GT individuals, reward-related cues biased 

behaviour, resulting in an increased likelihood to perform the instrumental response 

independently paired with the same reward when presented with the task-irrelevant reward-

paired cue, even if the reward itself was no longer available (i.e., stronger PIT effect). This 

finding has important implications for developing individualized treatment for maladaptive 

behaviours, such as addiction. The results of this experiment have been successfully published in 

Garofalo et al. (2015). 

 

A sixth study, carried out at the Department of Psychology of the University of Cambridge, 

aimed at testing the influence of Pavlovian aversive stimuli on avoidance instrumental responses 

by using a Pavlovian-to-Instrumental Transfer (PIT) task. PIT effect reflects the learned 

motivational influence of the CS over the instrumental response (Blundell, Hall, and Killcross, 

2001; Corbit, Muir, and Balleine, 2001; Dickinson, Smith, and Mirenowicz, 2000; Hall, 

Parkinson, Connor, Dickinson, and Everitt, 2001; Holland and Gallagher, 2003). Two forms of 

transfer have been object of investigation: outcome-specific transfer (which is thought to be 

mediated by the sensory-specific properties of the reinforcer, deriving from a S-O-R association) 

and general transfer (which is thought to be mediated by a direct S–R association, reflecting a 

more general motivational response). Additionally, in order to clarify the nature of the transfer 
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effect (goal-directed/habit), the impact of reinforcer devaluation after different amounts of 

instrumental training has been investigated. A double dissociation between specific and general 

aversive transfer effects was reported for the first time in humans. Specific transfer was 

expressed in the percentage of responses but not in the vigour of such responses; whereas the 

opposite pattern was observed for general transfer,  where the effect was captured by the vigour 

of the responses but not percentage of responses. Moreover, specific transfer was enhanced by 

instrumental overtraining, but not by reinforcer devaluation. General transfer was not affected by 

neither instrumental overtraining nor reinforcer devaluation. The results of this experiment are in 

preparation for submission to international scientific journals.  



14 

 

PART I - FRONTO-STRIATAL LOOPS INVOLVED IN REINFORCEMENT 

LEARNING 

 

 

Adapting behaviour to a changing environment 
 

Prediction Error signals 

In its most basic form, learning is the process by which we become able to use past and current 

experience to predict future events
 
(Niv and Schoenbaum, 2008). According to associative 

learning theories (Sutton and Barto, 1981; Rescorla and Wagner, 1972), learning occurs when 

the actual outcome differs from the predicted outcome, resulting in a prediction error. Therefore, 

prediction error represents the extent to which an outcome occurs surprisingly or unpredictably 

and inform about changes in the environment (Schultz and Dickinson, 2000; Sutton and Barto, 

1998). Prediction error signals are thought to drive learning as are used to update expectations in 

order to make predictions more accurate
 
(Gläscher et al., 2011).  

People form representations of events based on experience and, consequently, create predictions 

about what is going to happen in specific situations. The actual event that ultimately occurs is 

then compared with the expectancy and, if different, a prediction error signal is generated and 

used to update knowledge. 
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Neural underpinnings of Prediction Error 

This ability to acquire associations useful to adapt ongoing behaviour, carries an important 

adaptive value that has been mainly attributed to the prefrontal cortex (Kehagia et al., 2010).  

The medial prefrontal cortex (mPFC) and the anterior cingulate cortex (ACC) have been reported 

as a key areas in acquiring and updating outcome expectation (Rushworth and Behrens, 2008), 

being involved in the evaluation of both external cues and actions (Matsumoto et al., 2003; 

Amiez et al., 2005; Amiez et al., 2006; Matsumoto et al., 2007; Seo and Lee, 2007). 

Prediction error signals have been reported as expressed in midbrain and subsequently conveyed 

to mPFC and ACC areas (Schultz and Dickinson, 2000; Schoenbaum et al., 2010; Holyd et al., 

2004). An hypothesis proposed by Holroyd and Coles (2002) suggests that the mesencephalic 

dopamine system conveys reinforcement learning signals to the frontal cortex in corresponsence 

of prediction errors, which generates mediofrontal negativities by disinhibiting the apical 

dendrites of motor neurons in the anterior cingulate cortex, ensuring control over future actions. 

Electrophysiological correlates of prediction error signals, deriving from the dopaminergic 

projections to mPFC/ACC, can be identified in mediofrontal negative Event-Related Potentials 

(ERP) observed after performance error (Error Related Negativity - ERN) or following 

unexpected feedbacsa (Feedback Related Negativity - FRN) (Sambrook and Goslin, 2016; 

Hauser et al., 2014; Holroyd and Coles., 2002; Gehring et al., 1993; Falkenstein et al., 1990; for 

reviews see Nieuwenhuis et al., 2004 and Walsh and Anderson, 2012). 
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Models 

Currently, there is still an open debate about if learning via prediction error is primarily driven 

by an event’s valence or simply its unexpectedness
 
(Ferdinand et al., 2012).  

The Reinforcement Learning account of mediofrontal negativity (RL-ERN) states that mPFC is 

involved in the elaboration of worse than expected outcome
 
(Holroyd and Coles, 2002; Hajcak et 

al 2006), supporting the idea of mPFC coding for valence. This signal is thought to be triggered 

by either internal information (e.g., when a performance error occurs instead of the expected 

correct response) or external information (e.g., when a choice is followed by negative feedback). 

Following this line, many studies reported mPFC activation for aversive representation of 

prediction error (Seymour et al., 2005) responding to negative affect and pain (Shackman et al., 

2011) and negative outcomes (Hajcak et al 2006; Gehring and Willoughby, 2002; Holroyd et al., 

2004). 

A more recent hypothesis comes from the Predicted Response-Outcome (PRO) model, which 

proposed a comprehensive model of the role of mPFC and the adjacent anterior cingulate cortex 

(ACC)  in learning (Alexander and Brown, 2011; 2014) and their interaction with the 

dorsolateral prefontal cortex (Alexander and Brown, 2015). 

The authors proposed that mPFC codes the unexpected non-occurrence of a predicted outcome, 

regardless of its affective valence. When an expected outcome is surprisingly omitted (i.e., an 

expected reward or punishment are not delivered) an unexpected non-occurrence signal is 

reflected by mPFC activation, regardless of whether outcome is worse or better than expected. 
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This signal should be maximal when an expected outcome fails to occur, while it is inhibited 

when the predicted outcome actually occurs (Alexander and Brown, 2011).  

The PRO-model holds that mediofrontal negativities, reflect mPFC activation for the unexpected 

non-occurrence of a predicted outcome. Consequently, both positive and negative unexpected 

non-occurrence events should be able to generate mediofrontal negative component. It has to be 

noticed that the omission of a positive outcome has a negative valence (e.g., frustration if you 

don’t get a monetary win), while the omission of a negative outcome has a positive valence (e.g., 

relief if you don’t get an electric shock)
 
(Rolls, 2000). In line with both hypotheses, many 

findings reported frontal negative ERP signals for unexpected negative outcomes (Crowley et al., 

2009; Holroyd et al., 2003; Holroyd and Krigolson, 2007; Chase et al., 2007); but few studies 

also reported similar mediofrontal negativities to unexpected positive outcomes (Talmi et al., 

2013; Oliveira et al., 2007; Ferdinand et al., 2012), a finding that is coherent with the PRO-

model but not with the Reinforcement Learning account. Even if these experiments did not aim 

to directly test the unexpected non-occurrence hypothesis postulated by the PRO-model, their 

findings are coherent with it as mediofrontal negative ERPs were reported after the presentation 

of a different stimulus than the one expected (i.e., a stimulus with the opposite valence or a 

neutral stimulus), rather than after the omission of the expected stimulus itself. For example, in a 

study from Talmi and colleagues
 
(Talmi et al., 2013), participants explicitly knew the outcome 

probability and a “truth cue” informed about the subsequent presence or absence of the outcome. 

In this paradigm, the mediofrontal negativity was related to “truth cue” onset rather than to the 

omission of the outcome itself. In a different study, Oliveira and colleagues
 
(Oliveira et al., 

2007), reported mediofrontal negativity after a better than expected performance-feedback 
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during an anticipation-timing task. Again, rather than the unexpected omission of the predicted 

feedback, participants were presented with a positive feedback when a negative one was 

expected. In a further study by Ferdinand and colleagues
 
(Ferdinand et al., 2012), mediofrontal 

negativity was found after a rare, and thus unexpected, positive or negative feedback (relative to 

an intermediate feedback of high frequency) during a time-estimation task. 

Another interesting aspect hypothesized by the PRO-model concerns the prediction of the timing 

of outcomes. ACC/mPFC activation should be registered for outcomes occurring at unexpected 

times, even if the outcomes themselves are expected (Alexander and Brown, 2011), therefore 

signalling a Timing Prediction error (TPE).  

The PRO-model suggests that some ACC/mPFC neurons are reliably activated as a consequence 

of specific events and increase their firing to anticipate them, peaking around the time when the 

event is most likely to occur. The more likely an event becomes, the stronger becomes also the 

anticipatory neural firing. These signals reflect a learned prediction of the probability and timing 

of possible outcomes and are inhibited when the outcome actually occurs. Maximal activity will 

be consequently registered when an expected outcome fails to occur. Cells that are excited by 

predictions and inhibited by outcomes will generate Prediction error signals, computed as the 

difference between a prediction and an outcome. Predictions about the timing of outcome 

delivery are the result of implicit learning processes in which relevance is given not only to what 

event will occur or how likely its occurrence is, but also when it will occur. In this context, 

Prediction error signals are used to update previous expectations, when new contradictory and 

salient events occur. 
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This assumption of the PRO-model is largely coherent with evidences obtained in 

electrophysiological animal studies where dopamine increases corresponding to TPEs have been 

reported (Hollerman and Schultz, 1998). It is, indeed, now widely accepted that the 

dopaminergic system plays an important role in signalling Prediction errors (Holroyd and Cole, 

2002; Schultz et al., 1997; Schultz, 2007) and electrophysiological studies with animals showed 

dopaminergic activity coding for unpredicted timing of outcome, when upcoming events are 

either delayed or anticipated in time (Kobayashi and Schultz, 2008; Schultz and Dickinson, 

2000; Hollerman and Schultz, 1998; Fiorillo et al., 2003; 2008). 

Evidences obtained by functional magnetic resonance imaging (fMRI) studies identified the 

ventral tegmental area (VTA) and ventral striatum (VS) - key dopaminergic areas – as coding for 

reward prediction errors and timing-related performance respectively (Klein-Flügge et al., 2011). 

Moreover, Forster and Brown (2011) investigated how the delivery of rewards at unexpected 

timings modulates activity in the ACC. Using a probabilistic learning task, participants were 

presented with outcomes at variable timings. Outcomes unexpectedly delayed in time correlated 

with activations in the caudate cingulate zone and dorsomedial prefrontal cortex.  

Few previous studies reported inconsistent findings about the relationship between timing of 

outcome delivery and mediofrontal negativity (Weinberg et al., 2012; Wang et al., 2014; 

Peterburs et al., 2015), but none of these studies ever considered how expectation and violation 

of expectation (thus, prediction error) can modulate that. 

The idea proposed by the PRO-model of ACC/mPFC general role in predicting outcomes and 

signalling prediction errors, irrespective of their valence, has been supported by many studies on 
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mediofrontal negativity (Garofalo et al., 2014; Ferdinand et al., 2012; Jessup et al., 2010; 

Oliveira et al., 2007; Talmi et al., 2013). However, unexpectedness per se is not the only variable 

that accounts for ACC/mPFC activation. Mediofrontal negative ERP components have been 

reported to be sensitive to the salience of outcomes and errors, being modulated by the amount of 

punishment (Maier et al., 2013; Talmi et al., 2013; Ganushchak et al., 2008; Hajcak et al., 2005), 

the attentional significance (Maier et al., 2011; 2012) or the perceptual salience (Lou et al., 2015) 

of the events regardless of their likelihood. 

In scientific literature, the concept of salience has been used with many different meanings. 

For example, an extension of the PRO-model (Alexander and Brown, 2014) proposes that 

ACC/mPFC responds to any salient sensory input, rather than being restricted only to action 

outcomes, as stated in the first formulation of the model. However, what is intended for “salient” 

is not really clarified and it seems to be used just as a general term to indicate any non-action-

related event. In other studies, salience has been conceptualized as higher versus lower rewards 

and punishments (Talmi et al., 2013) or as perceptual salience (Lou et al., 2015). 

Commonly, the term salience is attributed to something that has a motivational significance (e.g., 

drive to get rewards and/or to avoid punishments), and a behavioural component of such 

significance can possibly be identified and attributed to ACC/mPFC role in reinforcement 

learning (e.g., when acquiring relevant information to optimize imminent and future behaviour to 

gain rewards or when anticipatory preparation to receive an inevitable punishment is at stake). In 

appetitive contexts, for example, it might be necessary to grasp food or to swallow juice right in 
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time to avoid unwanted loss (Hollerman and Schultz, 1998). Similarly, predicting an aversive 

event can favour bodily adaptation to something potentially annoying, painful or even dangerous.   

 

Maladaptive implications 
 

The case of Parkinson’s Disease associated psychosis 

When altered, stimulus-reward associations are likely to favour assignment of salience to 

otherwise irrelevant external and internal states, thus favouring abnormal salience processing 

(Miller at al., 1976; Berridge et al., 1998). Maladaptive forms of reward processing, mediated by 

the dopaminergic system, are believed to be at the core of the formation of psychotic symptoms 

(Fletcher and Frith, 2009; Kapur, 2003; Heinz, 2002). A large number of studies have shown that 

activity in the ventral striatum (VS) (Bernacer et al., 2013; Murray et al., 2008; Fusar-Poli and 

Meyer-Lindenberg, 2012; Juckel et al., 2006a; de Leeuw et al., 2015; Schlagenhauf et al., 2014), 

medial prefrontal cortex (mPFC) (Schlagenhauf et al., 2009; Bernacer et al., 2013) and inhibitory 

functions of the medial temporal lobe (Lodge and Grace, 2011) are altered in patients with 

psychosis or at risk of psychosis.  

In particular, studies reported impairments in various different stages of reward-processing: 

Reward Anticipation (Grimm et al., 2014; Esslinger et al., 2012; Juckel et al., 2006b), Reward 

Feedback (Waltz et al., 2010; Schlagenhauf et al., 2009) and Prediction Error (Murray et al., 

2008b; Griffiths et al., 2014; Morris et al., 2012; Corlett and Fletcher, 2012).  
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Psychiatric symptoms - such as, psychosis, depression, anxiety and apathy - are a frequent 

comorbidity in Parkinson’s Disease, and for long have been regarded as mainly side effects of 

the dopaminergic treatments (Gallagher et al., 2012). However, the role of dopaminergic 

medication is still controversial and some evidences point to a more complex interaction between 

disease and treatment-related effects (Park and Stacy, 2009). PD associated psychosis is present 

in about 15-40% of treated PD patients and has a major influence on quality of life and 

likelihood of nursing home placement (Gallagher et al., 2012; Park and Stacy, 2009).  

To date, there have been a paucity of attempts to integrate the pathophysiology of psychotic 

experiences in Parkinson’s Disease with the current models of their pathogenesis in 

schizophrenia. Leading candidates to understand the presence of psychosis in Parkinson’s 

Disease include medication effects, perhaps operating in the basal ganglia and cortex, and/or 

disruption of cortical function secondary to pathology. Dopaminergic treatment is a strong risk 

factor for the manifestation of psychosis in Parkinson’s Disease, and elevation of dopamine 

levels is strongly implicated in the psychosis of schizophrenia. However, the explanation cannot 

be that simple, as less than half the patients with Parkinson’s Disease manifest psychosis. 

According to cognitive neuropsychiatric theory and the National Institute of Health RDoc 

programme, the pathophysiological basis of psychiatric symptoms may be better understood in 

terms of dysfunction of underlying domains of neurocognition, cutting across traditional 

diagnostic boundaries, rather than simply according to diagnosis. Abnormal frontal striatal 

reinforcement learning signalling, associated with dysregulated dopamine, has been proposed as 

a key processes contributing to the pathogenesis of psychosis (Miller 1976; Kapur 2003). This 
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theory has received empirical support in the study of psychosis in schizophrenia spectrum 

disorders and preclinical models of psychosis, but has not been tested in PD associated 

psychosis. 

 

Driving behaviour 
 

Influences between Pavlovian and Instrumental forms of reinforcement 
learning 

Goal-directed behaviour can be variably influenced by external and internal factors which impact 

the values and priorities assigned to rewards and goals (Doya, 2008). One of the most simple and 

effective mechanisms for influencing choice is reinforcement learning. Reinforcement learning 

allows animals to connect spatially and/or temporally related events in order to predict future 

events. Given the complexity of the animal’s environment, learning that an arbitrary cue (e.g., a 

sound) is predictive of a certain goal (e.g., obtain a reward, such as food), allows the animal to 

learn a flexible response that facilitates achievement of the goal itself. In most cases such cue-

controlled behaviour is adaptive; for example it helps one obtain food when hungry (Holmes, 

Marchand, and Coutureau, 2010; Perks and Clifton, 1997). However, an inflexible association 

can lead to perseverance in the same choice even if the goal itself is no longer available, or has 

negative long-term consequences (Holmes et al., 2010). For example, a cue associated with 

drugs can induce relapse even when the drug is not voluntary sought, and a sign associated with 

food can induce craving in the absence of hunger, leading to compulsive over-eating (Volkow, 

Wang, Fowler, and Telang, 2008). These biases on voluntary choice are also implemented in 
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marketing strategies, such as advertisements, to influence consumer behaviour (Bray, Rangel, 

Shimojo, Balleine, and O’Doherty, 2008; de Wit and Dickinson, 2009; Smeets and Barnes-

Holmes, 2003). Cue-controlled behaviours have been interpreted as the endpoint of an initial 

intentional seeking behaviour (of a reward), which leads to habitual, and ultimately compulsive, 

conduct characterized by a loss of control over behaviour (Everitt and Robbins, 2005). This 

interesting framework proposes that the transition from intentional volition to habit and 

compulsion can be explained by interactions between Pavlovian and instrumental learning 

processes: a reward acts as an instrumental reinforcer by enhancing actions that are able to 

produce it, while Pavlovian learning confers incentive salience to cues (Conditioned Stimuli or 

CS) closely associated with the reward (Everitt and Robbins, 2005). Such cues can elicit craving 

and motivation towards the associated reward, thus biasing choice. Well-known evidence of this 

effect can be found in the so-called Pavlovian-to-Instrumental Transfer (PIT) effect (Estes, 1943, 

1948). PIT captures the ability of a Pavlovian cue (i.e., a CS associated with a reward) to 

increase the likelihood of an instrumental response independently paired with the same (specific 

transfer), or a similar (general transfer), reward (de Wit and Dickinson, 2009; Holmes et al., 

2010; Rescorla and Solomon, 1967). This effect emerges without any formal association between 

Pavlovian and instrumental contingencies, and even when the reward itself is no longer available 

(Talmi, Seymour, Dayan, and Dolan, 2008). PIT has been mainly studied in non-human animals 

(Balleine, 1994; Colwill and Rescorla, 1988; Corbit and Balleine, 2003; Delamater and Holland, 

2008; Delamater, 1995, 1996; Holland and Gallagher, 2003; Holland, Petrovich, and Gallagher, 

2002; Holland, 2004; Lovibond, 1981; Rescorla and Solomon, 1967; Rescorla, 1994a, 1997, 

2000) (for review, see Dickinson and Balleine, 1994, 2002; Holmes et al., 2010), but some recent 
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studies have also reported this effect in humans (Allman, DeLeon, Cataldo, Holland, and 

Johnson, 2010; Bray et al., 2008; Hogarth, Balleine, Corbit, and Killcross, 2013; Hogarth, 

Dickinson, and Duka, 2010; Hogarth, Dickinson, Wright, Kouvaraki, and Duka, 2007; Hogarth, 

Field, and Rose, 2013; Lovibond and Colagiuri, 2013; Nadler, Delgado, and Delamater, 2011; 

Paredes-Olay, Abad, Gámez, and Rosas, 2002; Prévost, Liljeholm, Tyszka, and O’Doherty, 

2012).  

The importance of a deeper understanding of the interactions between Pavlovian and 

instrumental learning processes comes from evidences suggesting that transfer effect is a 

candidate mechanisms underlying addiction (e.g., drug seeking and relapse) (Hogarth at al., 

2013; 2010; 2007; Watson et al., 2012; 2013; 2014), compulsions (Everitt and Robbins, 2005) 

and other neuropsychiatric disorders (Dayan et al., 2006; Dayan and Huys, 2008; Boureau and 

Dayan, 2011). 

 

Forms of transfer 

During Pavlovian conditioning a CS is connected to the reinforcer by both a direct motivational 

representation of its value and an indirect representation of its sensory features (Dickinson and 

Balleine, 2001). This differentiation is thought to be reflected in two kinds of transfer effects: in 

a general form of transfer, the CS invigorates instrumental responses paired with motivationally 

similar reinforcers; whereas, in an outcome-specific form transfer, the CS exerts its influence 

selectively on instrumental responses associated with the exact same reinforcer.  
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Some authors suggested that the difference between outcome-specific and general forms of 

transfer can be reflected in a different underlying learning model. Outcome-specific transfer - 

depending on a detailed match of specific reinforcers with the respective CS and instrumental 

response – should reflect a model-based process; conversely, general transfer - depending solely 

on the motivational valence of the reinforcer - should reflect a model-free process (Dolan and 

Dayan, 2013). 

However, this theoretical differentiation does not inform about the nature of such behaviours. 

From a clinical perspective, it would be more interesting to understand if specific and general 

transfer reflect goal-directed or habit-like behaviours.  

Instrumental behaviour is considered goal-directed when it reflects knowledge of the relationship 

between response and outcome (R-O control) and if it is motivationally relevant (desirable). 

Conversely, it is considered habitual when it depends on past reinforcement and is divorced from 

the current value of the outcome (Dolan and Dayan, 2013). Goal-directed is highly flexible, but 

computationally expensive; habitual is automatic and computationally efficient, but inflexible to 

the requirements of a changing environment (Dolan and Dayan, 2013; Dayan, 2009). 

Since transfer effect implies an external Pavlovian control on instrumental responses (potentially 

governed by both model-based and model-free mechanisms), it can hardly reflect a goal-directed 

behaviour. In fact, by definition, transfer is observed in extinction, which means in absence of 

the actual reinforcer (the goal). 

A widely used procedure in literature to directly test the goal-directed nature of an instrumental 

response is the so-called devaluation (Dolan and Dayan, 2013). Devaluation procedures aim to 
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weaken the value of a reinforcer by using a manipulation that should determine a reduced 

instrumental performance. For example: in appetitive contexts, food can be paired with a toxin 

(e.g., Colwill and Rescorla, 1988) or satiated (e.g., Balleine and Dickinson, 1998); in aversive 

contexts, an electric-shock stimulator can be visibly disconnected from the participant to ensure 

absence of pain (e.g., Gillan et al., 2014). Devaluation procedures reduce goal-directed 

instrumental responses oriented to obtaining rewards or avoiding potential punishments. 

Another variable that can favour the formation of habits is the continuative and repetitive 

practice of an action, which can be experimentally reproduced with instrumental overtraining 

(Yin and Knowlton, 2002; Tricomi, Balleine, and OʼDoherty, 2009; Dayan and Berridge, 2014). 

Instrumental overtraining reduces the impact of the reinforcer on the instrumental responses, so 

that the performance is not anymore guided by the current value of the outcome of the action 

(goal-directed), but it’s rather habitual. For example, in humans, instrumental overtraining can 

determine unnecessary avoidance responses to previously aversive stimuli, but now safe (Gillan 

et al., 2014). 

 

Individual differences 

An important, but still neglected, aspect in the human literature about PIT concerns individual 

differences. In the animal literature, the extent to which a Pavlovian cue becomes attractive and 

exerts a biasing effect varies between individuals. In particular, Sign-Trackers (ST) and Goal-

Trackers (GT) have been shown to have different learning styles, consisting of a tendency to 

attribute more or less incentive salience to Pavlovian reward-associated cues. In a typical 
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Pavlovian conditioning paradigm, a CS (e.g., lever presentation) is paired with a reward (e.g., 

food pellet), which is delivered in a different spatial position. In such a situation, two different 

Conditioned Responses (CR) (i.e., learned responses to a previously neutral stimulus) might be 

expressed. Some animals approach and engage the CS (the Sign) itself and, only after its 

termination, reach the location of reward delivery; other animals, upon CS presentation, 

immediately engage the location of reward delivery (the Goal), even if it is not yet available. The 

first CR has been categorized as Sign-Tracking behaviour, while the second CR has been 

categorized as Goal-Tracking behaviour. ST and GT can be conceived of as different learning 

styles, expressed through a specific CR during Pavlovian learning. ST behaviour is thought to 

arise from the attribution of incentive salience to Pavlovian reward-paired cues, which 

consequently become a powerful source of motivation for future behaviour (Flagel et al., 2011). 

In ST, incentive stimuli become attractive, eliciting approach towards them and promoting 

potentially maladaptive cue-controlled behaviours; ST individuals, indeed, are generally more 

vulnerable to addiction and relapse (Flagel, Watson, Akil, and Robinson, 2008; Robinson and 

Flagel, 2009; Tomie, Aguado, Pohorecky, and Benjamin, 1998). The ST and GT profiles do not 

seem to be limited to the CR expressed, but are also associated with differences in traits such as 

impulsivity; ST individuals are characterized by higher levels of impulsive behaviour compared 

to GT individuals (Flagel et al., 2009; Tomie, Aguado, Pohorecky, and Benjamin, 2000). 

A deeper investigation into individual differences in attributing incentive salience to reward-

paired stimuli would thus be important for understanding and reducing the propensity to develop 

maladaptive behaviours. 
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PART II  - EXPERIMENTAL STUDIES ON PREDICTION ERROR 

 

 

Study 1 - Mediofrontal negativity signals unexpected omission of 

aversive events. 
 

Abstract 

Research based on event-related potential (ERP) reported mediofrontal negativities following 

unexpected negative feedback or performance error. Some authors proposed that these signals 

reflect reward prediction error for worse than expected outcomes, while others suggested that 

mediofrontal negativities express medial prefrontal cortex coding for unexpected non-occurrence 

of a predicted outcome, whether worse or better than expected. Many studies found mediofrontal 

negativities coding for unexpected negative outcomes; however, few studies found them after 

unexpected positive outcomes. The present study investigated ERP and skin conductance 

response (SCR) to the unexpected omission of electric shocks during Pavlovian aversive 

conditioning. To manipulate expectancies, participants were presented with visual stimuli paired 

with electric shock on either 80% (CS+1) or 20% (CS+2) of trials. SCR analysis confirmed 

higher shock-delivery expectancy for CS+1, relative to CS+2. ERP analysis evidenced a stronger 

negative frontocentral ERP component after unexpected, relative to expected, shock-omission. 

Methodological and theoretical implications are discussed. 
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Experimental Design 

The aim of the present study was to investigate ERPs for the unexpected omission of a physical 

pain (an electric shock); thus, a prediction error signal for a positively valenced event (in this 

case, a relief condition). More specifically, this study aims to directly test the prediction made by 

the PRO-model (Alexander and Brown, 2011; 2014) that the unexpected non-occurrence of a 

salient negative event (i.e., a relief event) triggers mediofrontal negativity. To this end, the 

unexpected non-occurrence has been operationalized as the absence of a predicted electric shock, 

rather than as the presentation of a different stimulus than the one expected. A mediofrontal 

negativity triggered by the unexpected omission of a predicted negative outcome would lead to 

the conclusion that an event was expected and that its omission produced a prediction error 

signal. 

For this purpose, a Pavlovian aversive conditioning paradigm with a partial reinforcement 

schedule was used. On each trial, participants were presented with a visual stimulus (Japanese 

kana) displayed for 4 seconds, with a variable 7-9 seconds inter-trial interval (ITI). On some 

trials, a mild electric shock was delivered during the final 200ms of stimulus presentation (Fig. 

1.1). Participants performed a total of 640 trials divided in 16 blocks. During a single block, 2 

different stimuli were presented 20 times each. Subjects were required to  press a keyboard 

button correspondent to the left or right presentation of the stimulus and they were informed that 

this response had no effect on shock-delivery. In order to manipulate expectancies, one of the 

two stimuli presented in each block was paired with an electric shock on 80% of trials (CS+1), 

whereas the other was paired with an electric shock on 20% of trials (CS+2). Thus, by learning 

associations between stimuli and shock-delivery probability, participants should build up a high 
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shock-delivery expectancy for CS+1 stimuli and a low shock-delivery expectancy for CS+2 

stimuli. Two critical conditions were compared: unexpected shock-omission (CS+1 trials without 

shock-delivery: CS+1ws) and expected shock-omission (CS+2 trials without shock-delivery: 

CS+2ws). On CS+1ws trials, not receiving a shock represents an unexpected omission, while on 

CS+2ws trials, not receiving a shock represents a predicted event. Skin Conductance Response 

(SCR) and electroencephalogram (EEG) were recorded during the task: SCR analysis was used 

as a somatic indicator of expectancy, thus it was used to test the presence of a different shock-

delivery expectancy between CS+1ws and CS+2ws (Schiller et al., 2008). The EEG was 

recorded to examine ERPs associated with expected and unexpected shock-omission. If 

unexpected omission of a negative event (i.e, a positively valenced relief event) triggers 

mediofrontal negativity as predicted by the PRO-model, then a stronger mediofrontal negativity 

for unexpected shock omission relative to expected shock omission should be observed. 

Moreover, in order to investigate possible relationships between personality traits related to 

behavioural responsiveness to reward (Gray, 1990) and ERPs associated with positively valenced 

unexpected omission, Behavioural Activation System (BAS) inventory (Carver and White, 1994) 

was filled by participants at the end of the task. 
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Materials and Methods 

 

Participants 

Twenty volunteers with no history of neurological diseases were randomly recruited from the 

student population of the University of Bologna. Two participants completed only one of the 

three testing sessions and three other participants were excluded for excessive eye artifacts. 

Thus, the final sample included fifteen (7 female, 1 left-handed) subjects between 19 and 29 

years of age (mean =23.93; sd =2.37). All participants gave informed consent. The study was 

conducted in accordance with institutional guidelines and was approved by the Department of 

Psychology’s ethical committee.  

 

Stimuli and materials 

The task consisted in a Pavlovian aversive conditioning paradigm with a partial reinforcement 

schedule. Visual stimuli were used as conditioned stimuli (CSs) and mild electrical shocks 

served as unconditioned stimuli (USs). A CS consisted in a 3cm white square with a Japanese 

kana on it. All the stimuli were balanced for luminance, complexity and colour saturation and 

were displayed on a 17-inch colour monitor with a black background, at a viewing distance of 80 

cm. Electrical shocks were pulses of 200 ms duration generated by a Digitimer Stimulator 

(Model DS7, Digitimer Ltd., Hertfordshire, United Kingdom). Mild shocks were administered to 

the inner wrist of the dominant hand, to which two SU15N1 electrodes (SEI EMG, Padova) were 

attached. The shock intensity was individually set before the task: stimulation was initially set at 

5 and the intensity was gradually increased (1 mA increments) to a level the participant indicated 
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as “uncomfortable, but not painful” (Schiller et al., 2008). The mean shock intensity was 4.6 mA 

(sd =2.1 mA; min =1.8 mA; max =8.9 mA). 

A single trial consisted in the presentation of one of two possible CSs, on the left or the right side 

of the screen: one was paired with an electric shock on 80% of trials (CS+1) and one was paired 

with shock on 20% of trials (CS+2). The CSs were presented for 4 seconds, with a 7-9 seconds 

inter-trial interval (ITI) during which a fixation point was presented (Fig. 1.1). Stimuli were 

presented 8.5 cm to the left or to the right of fixation, and participants were asked to press a left 

or a right button corresponding to the side of stimulus presentation. This procedure was 

introduced in order to keep subject’s attention focused on the stimuli. Participants performed a 

total of 640 trials divided in 16 blocks. Each block consisted of 40 trials, equally divided 

between the two conditions (CS+1 and CS+2). In each block, 2 out of 32 different Japanese kana 

were used as CSs and their assignment to a specific category (CS+1 and CS+2) was 

counterbalanced across subjects. Each block was internally divided in two identical hemiblocks 

containing half of the stimuli. At the very beginning of each block, there was a brief learning 

phase during which 5 stimuli for each category (10 stimuli total) were visualized. This phase was 

not considered in the subsequent analysis. The 16 blocks were spread across three testing days: 5 

on the first day, 6 on the second day and 5 on the last day. Between individual testing sessions 

there was a variable interval lasting from 1 to 4 days. A PC running Presentation software 

(Neurobehavioural Systems, Albany, CA) controlled stimulus presentation. 
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Figure 1.1 

Schematic representation of a single trial. 

 

Procedure 

On arrival, participants were comfortably seated in a silent room and their position was centered 

relative to the screen. Both SCR and EEG signals were collected continuously during the task 

and stored for off-line analysis. Participants were required to remain as quiet and still as possible, 

in order to avoid confounding effects on measurements. The experimental session began with a 

10 minutes rest period during which the participant acclimated to the environment and a correct 

attachment and conductance of the electrodes - for both SCR and EEG - was ensured. Then, the 

participants’ ability to generate SCRs to external stimuli was tested by generating loud sounds 

(i.e., clapping of the hands). Subsequently, the intensity of the electrical stimulation was 

individually set as previously described. Before the beginning of the task, participants were told 

that they would see visual images, on the right or left side of a computer screen, that might be 

followed by a mild electrical shock. They were required to pay attention to the screen and press a 

keyboard button correspondent to the left or right presentation of the stimulus. Participants were 

informed that their response about side of presentation had no effect on shock-delivery. Subjects 
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were also told that they could take a short break between each block, if they wished. At the end 

of each day, all participants underwent an extinction session in order to eliminate the effects of 

the aversive conditioning. At the end of the last session, all subjects filled the Italian version 

(Leone et al., 2002) of BAS inventory (Carver, C. S. and White, 1994). 

 

SCR recording and analysis 

The skin conductance response (SCR) was recorded using Ag/AgCl electrodes (TSD203 Model; 

Biopac Systems, Goleta, CA), filled with isotonic hyposaturated conductant. Electrodes were 

attached to the volar surface of the middle and index fingertip of the nondominant hand and held 

with Velcro straps. The signal was recorded using a DC amplifier (Biopac GSR100) with a gain 

factor of 5 μS/V and low-pass filter set at 10 Hz. The analog signal was digitized using the MP-

150 digital converter (Biopac Systems) at a rate of 200 Hz and fed into AcqKnowledge 3.9 

recording software (Biopac Systems). 

SCR data acquired during the task were offline analysed by using custom made scripts realized 

on MATLAB (2011a, The MathWorks, Inc., Natick, Massachusetts, United States). Statistical 

analyses were performed with SPSS 19.0 (IBM Corp. Released 2010. IBM SPSS Statistics for 

Windows, Armonk, NY: IBM Corp.). The skin conductance response was transformed into 

microsiemens and calculated for each trial. SCR was calculated as the peak-to-peak amplitude 

difference of the largest deflection in the 0.5-4.5 sec latency window after stimulus onset 

(Schiller et al., 2008). The minimal response criterion was 0.02 µs and smaller responses were 

encoded as zero; raw skin conductance scores were square root transformed to normalize the 
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distributions and scaled to each subject's maximal US response to account for interindividual 

variability (Schiller et al., 2008). Only trials without shock occurrence were analysed. 

 

EEG recording and analysis 

Electroencephalographic (EEG) signal was recorded with Ag/AgCl electrodes (Fast’n Easy 

Electrodes, Brain Products, Gilching, Germany) from 26 electrode sites (Fp1, F3, F7, FC1, FC5, 

C3, T7, CP1, P3, P7, O1, Fz, FCz, Cz, Pz, Fp2, F4, F8, FC2, FC6, C4, T8, CP2, P4, P8, O2), as 

well as from the right mastoid. The left mastoid was used as reference electrode, and the ground 

electrode was placed on the right cheek. All electrodes were offline rereferenced to the average 

of both mastoids. Vertical and horizontal electrooculogram (EOG) was recorded from above and 

below the left eye and from the outer canthi of both eyes. Both the EEG and EOG were recorded 

with 0.01-100 Hz band-pass of and amplified by BrainAmp DC amplifier (Brain Products, 

Gilching, Germany). The amplified signals were digitized at a sampling rate of 500 Hz and were 

offline filtered with a 25 Hz low-pass filter. 

EEG data acquired during the task were offline analysed by using MATLAB (2011a, The 

MathWorks, Inc., Natick, Massachusetts, United States) and EEGLAB 11.0.5.4b free toolbox 

(Delorme and Makeig, 2004). Statistical analyses were performed with SPSS 19.0 (IBM Corp. 

Released 2010. IBM SPSS Statistics for Windows, Armonk, NY: IBM Corp.). Epochs of 400 ms 

before and 800 ms after stimulus offset were extracted from the continuous EEG. The average 

voltage during the time interval from 400 ms to 200 ms before stimulus offset was used as 

baseline, as the shock was delivered 200 ms before stimulus offset on trials with shock-delivery. 
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In this way, no influence of expectancy violation or confirmation on the ERP was possible 

during the baseline window. First, epochs presenting large artifacts were identified and excluded 

using a rejection method implemented in EEGLAB (pop_autorej, Onton and Delorme, 

SCCN/INC/UCSD, 2007 with default parameters). Second, EOG artifacts were corrected using a 

regression approach (Gratton et al., 1983). The mean percentage of excluded trials was 12% (sd 

=0,4%). Epochs were then averaged separately for each participant and each condition. ERPs 

were calculated as the local peak amplitude in a 250-350ms interval after stimulus offset. 

 

BAS Inventory 

The Behavioural Activation System (BAS) inventory is a personality self-reported questionnaire 

proposed by Carver and White
 
(1994). And based on Gray's personality theory

 
(1990). It is 

composed of 13 items, each one is a statement that a person may either agree or disagree with. It 

is required to indicate how much you agree or disagree with that item on a 4 point likert scale 

(from “totally agree” to “totally disagree”). The inventory can be divided in three subscales: 

Drive (BASD, reflecting the strength with which reward outcome guides subsequent behaviour), 

Reward Responsiveness (BASRR, indexing the degree to which a person derives pleasure from 

reward) and Fun Seeking (BASFS, reflecting a novelty-seeking trait). The BAS is generally 

believed to control appetitive motivation and is sensitive to signals of reward and escape from 

punishment. Activity in this system elicits movement toward goals and to engage in goal-

directed efforts. Greater BAS sensitivity is reflected in greater experience for positive feelings 

and is supposed to be unrelated to negative affect.  
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BAS scales were scored according to the procedures indicated from the authors and final scores 

(BASTOT mean =40.47, sd =3.51; BASD mean =12.14, sd =1.88; BASRR, mean =18.4, sd =1.68; 

BASFS mean =9.94, sd =2.40) were consistent with those reported in literature (Carver and 

White, 1994). 

 

Results 

 

SCR 

SCR analysis was performed to check if there was a higher shock-delivery expectancy in the 

CS+1ws condition relative to the CS+2ws. SCR was calculated as the peak-to-peak amplitude 

difference of the largest deflection in the 0.5-4.5 seconds latency window after stimulus onset 

(Schiller et al., 2008). To analyze how rapidly expectancies were build up and to determine 

possible habituation effects on SCR level (Dawson et al., 1990), each block was divided in two 

hemiblocks, containing 20 stimuli each. Assumptions of normal distribution, independence of 

residuals and sphericity were verified. A 2x2 repeated measure ANOVA with Time (first/second 

hemiblock) and Condition (CS+1ws /CS+2ws) as within factors was performed. A significant main 

effect of Time (F(1, 14) =26.27; two-tailed p <.0001; partial η
2
 =.68; N =15) was found, with the 

first hemiblock (mean =.48 µS) presenting a significantly higher SCR level than the second 

hemiblock (mean =.37 µS). This indicates that the general electrodermal responsiveness to the 

task is reduced in the second hemiblock. Furthermore, a significant interaction Time X Condition 

(F(1, 14) =11.06; two-tailed p =.006; partial η
2
 =.48; N =15) was found. Bonferroni-corrected 
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post-hoc analysis on the interaction effect revealed a significant difference (p =.04) between 

CS+1ws (mean =.52 µS; sd =.05 µS) and CS+2ws (mean =.44 µS; sd =.04 µS) in the first 

hemiblock; no significant effect emerged for the second hemiblock (p =.90) (Fig. 1.2). This 

indicates that subjects showed a higher arousal level when presented with the CS+1ws stimulus 

relative to CS+2ws in the first hemiblock consistent with a higher shock-delivery expectancy on 

these trials (Schiller et al., 2008). No further effects reached significance (ps >.27).  

 

 
Figure 1.2 

SCR levels during the two hemiblocks. Bars indicate standard error. CS+1ws corresponds to the 

expected shock-delivery condition; CS+ 2ws corresponds to the unexpected shock-delivery 

condition. 

 

The analysis of SCR data confirmed that different expectancies were successfully generated in 

the first hemiblock as subjects presented a higher SCR in the CS+1ws condition, as compared with 

CS+2ws condition. In sum, the SCR data suggest that the build-up of expectancy was very rapid 
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during the first hemiblock and then habituation hid the effect in the second hemiblock (Dawson 

et al., 1990). 

 

Behavioural data 

Percentage of errors and reaction times were also analysed. Assumptions of normal distribution, 

independence of residuals and sphericity were verified. Two separate 2x2 repeated measure 

ANOVAs with Time (first/second hemiblock) and Condition (CS+1ws /CS+2ws) as within factors 

were performed. 

Neither main effects, nor interaction effect emerged from the analysis on the percentage of errors 

(ps >.17). The average percentage of errors was 1.24 (first hemiblock: CS+1ws = 0.96 and CS+2ws 

=1.20; second hemiblock:  CS+1ws = 1.37 and CS+2ws =1.42). 

The analysis of reaction times showed a significant main effect of Condition (F(1, 14) =8.63; 

two-tailed p =.01; partial η
2
 =.38; N =15), with CS+1ws (mean =520.86 ms; sd =150.87 ms) 

presenting faster reaction times than CS+2ws (mean =534.24 ms; sd =159.43 ms). A marginal 

effect of Time (p = .06) and a significant Time X Condition interaction were found. Bonferroni-

corrected post-hoc analysis on the interaction effect revealed a significant difference (p =.03) 

between CS+1ws (mean = 523.77 ms; sd = 149.42 ms) and CS+2ws (mean = 540.63 ms; sd = 

161.03 ms) in the second hemiblock; a marginally significant effect emerged also for the first 

hemiblock (p =.058), with CS+1ws (mean = 517.36 ms; sd = 142.10 ms) presenting slightly faster 

reaction times than CS+2ws (mean = 527.55 ms; sd = 147.02 ms). These results suggests that, 

although shock-delivery was not relevant for the task, subjects were faster in indicating the side 
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of presentation of the stimulus when presented with the cue which was highly associated with 

shock. This effect was stronger in the second hemiblock, relative to the first, when stimulus 

contingencies were better learned and expectations were stronger. 

 

EEG 

The aim of EEG analysis was to investigate the presence of an mediofrontal negativity-like 

component during unexpected, relative to expected, shock omission. mediofrontal negativity has 

been reported to present its maximum negative peak between 250 and 350ms following the event 

indicating the prediction error (Hajcak et al., 2006). In the present task, participants can be 

completely sure about shock omission and consequently, about whether their expectancy is 

confirmed or violated by the actual course of events only upon stimulus offset. Thus, this event 

represents the point in time where the prediction error occurs. Therefore, ERPs were calculated 

as the most negative peak in a 250-350ms interval after stimulus offset, in unexpected shock-

omission trials (CS+1ws) and expected shock-omission trials (CS+2ws). Grandaverage scalp 

topographies showed a frontal maximum activation for the difference between these two 

conditions (Fig. 1.3).  

Statistical analysis were conducted on Fz electrode, where mediofrontal negativity has been 

previously reported (Talmi et al., 2013; Hajcak et al., 2006). Assumptions for a correct use of t-

test (normal distribution, independence of residuals and sphericity) were verified. A paired t-test 

to compare CS+1ws (mean trial number =58; sd =4) and CS+2ws (mean trial number =288; sd =16) 

was performed. A significant difference between CS+1ws (mean = -0.31 μV; sd =2.40 μV) and 
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CS+2ws (mean =.95 μV; sd =1.82 μV) was found (t(14) = -2.73; two-tailed p =.016; partial η
2 

=.34; N =15). These results indicate that the unexpected omission of a shock (CS+1ws condition) 

generates a stronger frontal negative ERP component relative to the expected omission of a 

shock (CS+2ws condition) (Fig. 1.4). 

 

 
Figure 1.3 

Scalp distribution of the difference between expected and unexpected shock-omission in a time 

window of 250-350ms after stimulus offset. 
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Figure 1.4 

Grandaverage ERP waveforms from channel Fz. The asterisk shows the maximum peak 

amplitude reached in the considered time window (250-350 ms). CS+1ws corresponds to the 

unexpected shock-omission condition; CS+2ws corresponds to the expected shock-omission 

condition. 0 represents stimulus offset.  

 

Moreover, to further investigate the relationship between shock-delivery expectancy and neural 

activity consequent to its violation, a correlation between shock-delivery expectancy (as 

expressed by the difference in SCR signal during the two expectancy conditions CS+1ws and 

CS+2ws) and unexpected omission neural signal (as indexed by the difference in ERPs originated 

in Fz during CS+1ws and CS+2ws) was analysed. A significant positive correlation (r =.61, one-

tailed p =.01; N =15) was found. Critically, this effect indicates that the stronger shock-delivery 

expectancy (as measured by psychophysiological arousal), the stronger prediction error for 

unexpected shock-omission (as reflected by cortical ERPs) (Fig. 1.5). 
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Figure 1.5 

Scatter-plot of the correlation between shock-delivery expectancy (SCR difference) and 

prediction error neural signal for unexpected shock-omission (ERP difference). 

 

BAS Inventory 

To examine the relationship between reward responsiveness and neural activation consequent to 

the unexpected omission of shock-delivery, participants were required to fill the Behavioural 

Activation System (BAS) inventory. Correlation between BAS (total score and subscales) and 

ERP peak amplitude during unexpected shock-omission condition was calculated. A marginally 

significant (for Bonferroni-corrected α =.0125) negative correlation emerged with BAS-Drive 

(BASD) subscale (r =-.54; one-tailed p =.019; N =15). This negative correlation indicates that the 

higher BASD is, the more negative is the peak for unexpected omission. Thus, people with high 

levels of reward responsiveness tended to present a more negative ERP peak when a shock 
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unexpectedly did not occur, a situation that is better than expected (i.e., a relief) (Fig. 1.6). No 

correlations with other BAS subscales or the total score reached significance (ps >.08). 

 
Figure 1.6 

Scatter-plot of the correlation between BASD score and ERP peak-amplitude in the unexpected 

shock-omission condition. 

 

Conclusion

EEG and SCR were recorded during a Pavlovian aversive conditioning procedure, in which 

participants learned to associate visual stimuli to a high (CS+1) or a low (CS+2) shock-delivery 

probability. This made it possible to contrast and compare two critical conditions: unexpected 

shock-omission (CS+1ws) and expected shock-omission (CS+2ws). SCR analysis allowed ensuring 

that subjects actually differentiated between the two stimuli and that different shock-delivery 

expectancies were created. This evidence was also supported by reaction time analysis. A larger 
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SCR response indicating a higher arousal level at CS+1ws, relative to CS+2ws, was found. From 

this result, it can be inferred that there was a higher shock-delivery expectancy for the CS+1ws 

condition relative to the CS+2ws condition. ERPs in the 250-350ms interval after stimulus offset, 

i.e., the point in time when subjective expectancy was confirmed or violated, were calculated for 

the unexpected (CS+1ws) and the expected (CS+2ws) shock-omission conditions. Analysis showed 

the presence of a stronger frontocentral negative ERP component in the CS+1ws condition, 

relative to CS+2ws. Thus, the unexpected omission of a predicted shock generated a stronger 

frontocentral negativity, signalling unexpected omission. 

Time window, frontocentral localization and negative deflection detected in the unexpected 

omission condition are coherent with an mediofrontal negativity-like component (Hajcak et al., 

2006). Moreover, previous fMRI studies revealed mPFC activity after unexpected shock-

omission during Pavlovian aversive conditioning paradigm, which is in line with ERN and 

mediofrontal negativity source localization reported in the literature (Nieuwenhuis et al., 2004). 

Since a mediofrontal negativity component was found after a positively valenced unexpected 

omission event, the present results are not in line with RL-ERN theory account of mediofrontal 

negativities as selectively coding for worse than expected outcomes (Holroyd and Coles, 2002). 

The present findings are, instead, coherent with the view that mediofrontal negativities can also 

be triggered by a positive event (Oliveira et al., 2007; Talmi et al., 2013; Ferdinand et al., 2012) 

thus supporting PRO-model conception that the mPFC detects both positive and negative 

unexpected omissions (Alexander and Brown, 2011). This view seems to be able to account for a 

wide range of findings, thus representing a promising unifying framework for mPFC functioning. 
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It assumes that the mediofrontal negativity
 
reflects general outcome monitoring on the basis of 

expectancy violations irrespective of outcome-valence aspects, thus explaining that positive and 

negative unexpected feedback elicit similar mediofrontal negativities. Similarly, also the ERN
 

(Holroyd et al., 2003; 2007) following performance errors in rapid choice tasks can be explained 

by the fact that an error violates the expectancy of a correct response (Holroyd et al., 2002; San 

Martìn et al., 2010). fMRI studies also reported enhanced mPFC activation to unexpected wins 

as compared with losses, when losses are more frequent than wins; thus, suggesting that error 

effect reflected in ERN results from a comparison between actual and expected outcomes, rather 

than by the error feedback per se (Jessup et al., 2010). 

According to the PRO-model, the size of the mediofrontal negativity is proportional to the 

unexpectedness of the outcome
 
(Alexander and Brown, 2011). Critically, as a demonstration of 

the link between expectancies and the observed negative ERP component, correlation analysis in 

the present study showed that higher shock-delivery expectancy, as expressed in SCR, is linked 

to a greater neural unexpected omission signal, as expressed in frontal negative ERPs at stimulus 

offset. Thus, in accordance with the predictions of the PRO-model, the frontal unexpected 

omission signal is larger when a stronger expectancy is disconfirmed, i.e., the higher expectancy, 

the higher mPFC response to expectancy-violations.  

A further observation concerns the correlation between BAS measures (Carver and White, 1994) 

and frontocentral negative component for positive unexpected omission. The observed trend 

indicates that this mediofrontal negativity-like component triggered by an unexpected positive 

event is stronger for people who are more responsive to rewards. Indeed, as compared with 
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shock-delivery, shock-omission should be perceived as a positively valenced event (Konorski et 

al., 1987). The influence of reward responsiveness to ERP components (such as ERN) between 

subjects that are highly sensitive to punishment or to rewards has already been reported 

(Kreussel et al., 2012; Boksem et al., 2006; 2008), but these differences mainly concerned high-

BAS as more responsive to ERPs associated with reward omission. To our knowledge, the 

present study for the first time reports the presence of a relation between BAS responsiveness 

and mediofrontal negativities coding for positive unexpected omission of a predicted 

punishment. However, this correlation could reflect a relationship between reward 

responsiveness and either positive events or omission events. Although this latter possibility 

seems extremely unlikely, future studies could specifically aim at disentangling these alternative 

explanations. 
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Study 2 - When timing matters: mediofrontal negativities signal the 

timing of salient outcomes 
 

Abstract 

Recent models, such as the predicted response-outcome (PRO) model, proposed a 

comprehensive computational model of the medial prefrontal cortex (mPFC) and anterior 

cingulate cortex (ACC) as primarily involved in encoding the likelihood of outcomes and 

signalling unexpected events (prediction error). An interesting hypothesis concerns the 

prediction of expected outcomes unexpectedly shifted in time, thus signalling Timing Prediction 

Error (TPE). However, unexpectedness per se is not the only variable that modulates mPFC 

activity, as studies reported its sensitivity to the salience of outcomes. In the present study 

mediofrontal negative event-related potentials (ERP), coding for prediction error, were obtained 

from 48 participants performing a Pavlovian aversive conditioning task, during which 

conditioned aversive (thus, salient) and neutral stimuli were unexpectedly anticipated or delayed 

in time. Results partially supported the PRO-model, as mediofrontal ERP signals of prediction 

error were observed for outcomes occurring at unexpected timings, but were specific for 

behaviourally salient outcomes (shock), as compared to neutral outcomes.  

 

Experimental Design 

The aim of the present study is to test whether the unexpected delay or anticipation in time of 

salient (i.e., aversive) and neutral outcomes can differently trigger ACC/mPFC activity, as 

expressed by mediofrontal negativities. 
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To this purpose, electroencephalographic (EEG) signal and galvanic skin response (GSR) were 

recorded from 48 participants performing a Pavlovian aversive conditioning task. Visual 

conditioned stimuli (CS) were associated with aversive (i.e., shock-associated) or neutral 

outcomes, but probabilistically delivered at different timings: in 80% of trials the outcome was 

presented at a predicted timing; in 20% of trials the outcome was unexpectedly shifted in time 

(either anticipated or delayed). 

If only the likelihood of events accounts for ACC/mPFC activity (as proposed by the PRO-

model), then salient and neutral stimuli delivered at unexpected timings should be equally able to 

elicit mediofrontal negativities. Whereas, if behaviourally salient outcomes selectively trigger 

ACC/mPFC activity, these should be able to elicit a stronger mediofrontal negativity, as 

compared to  neutral outcomes, when unexpectedly shifted in time. 

 

Materials and Methods 

 

Participants 

Forty-eight volunteers (24 female; 8 left-handed; age mean = 23.62, sd = 2.39; education mean = 

16, sd = 1.2) were recruited from the student population of the University of Bologna and 

enrolled for the study. The participants had no history of neurological diseases and normal or 

corrected-to-normal vision. All gave written informed consent before the beginning of the 

experiment. The study was conducted in accordance with institutional guidelines of the 

University of Bologna and was approved by the Department of Psychology’s ethical committee. 
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Stimuli  

A Pavlovian aversive conditioning paradigm was used for the task. Japanese Kanji symbols 

served as conditioned (CS+) and neutral stimuli (CS-). Mild electric shocks were used as 

unconditioned stimuli (US). Coloured frames surrounding the CSs served as visual outcomes. 

The visual outcomes were of two possible colours (blue or orange) and each colour was uniquely 

associated with either aversive (CS+), thus shock-associated, or neutral (CS-) outcome. Colours 

were counterbalanced across subjects. The stimuli were displayed at a viewing distance of 80 cm 

on a 17-inch colour monitor with a black background. A PC running Presentation software 

(Neurobehavioural Systems, Albany, CA) controlled stimulus presentation. All stimuli were 

balanced for luminance, complexity and colour saturation. A Digitimer Stimulator (Model DS7, 

Digitimer Ltd., Hertfordshire, United Kingdom) generated the electrical shocks, consisting of 

pulses of 200 ms. Two SU15N1 electrodes (SEI EMG, Padova), attached to subjects’ left hand 

were used for delivering the mild shock. Shock intensity was adjusted for each participant before 

each block: stimulation intensity was initially set at 0.5 and gradually increased (1 mA 

increments) to a level perceived as “annoying, but not painful” by the participant. The mean 

shock intensity was 3.58 mA (sd =3.08 mA; min =0.32 mA; max =9.27 mA). 

 

Task Description 

Anticipation and Delay versions of the task were created, differing solely on the timing in which 

the outcomes were presented (Fig. 2.1). Participants had to complete only one version. 
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The task began displaying a black screen for a random interval (1-2 sec.), followed by a fixation 

cross. Participants were required to press a button when presented with the fixation cross, in 

order to start the trial. For each trial, a stimulus (CS+/CS-) was displayed for a variable amount 

of time (depending on the Anticipation/Delay condition) and then followed by the corresponding 

visual outcome, consisting in a coloured frame (850 ms). During Shock Trials (CS+) a shock 

(US) was delivered in the last 200 ms of visual outcome. During Neutral Trials (CS-), the visual 

outcome was not paired with anything. As the FRN occurs within about 400 ms after outcome 

onset, an interval of 600 ms between the onset of the visual outcome and US delivery allowed to 

avoid confounding effects due to the overlap between the shock delivery and the epoch of 

interest for the EEG analysis. 

In the Anticipation Task the CSs were followed by the visual outcome after 2500 ms in 80% of 

trials (Expected Timing) and after 1000 ms in 20% of trials (Unexpected Timing). Consequently, 

in a lower number of trials the outcome was unexpectedly anticipated in time. In the Delay Task 

the CSs were followed by the corresponding outcome after 1000 ms in 80% of trials (Expected 

Timing) and after 2500 ms in 20% of trials (Unexpected Timing). Consequently, in a lower 

number of trials the outcome was unexpectedly delayed in time. 

The task consisted of 858 trials, divided in 11 blocks. Each block began with a learning phase, 

during which only the Expected Timing condition was presented for the first 10 trials. The 

subsequent 60 trials followed the 80-20 partial reinforcement schedule explained earlier. The 

trials in the learning phase were not considered for the EEG analysis. Galvanic Skin Response 



53 

 

was analysed from 88 catch trials (total) consisting in CS+ stimuli followed by no US and larger 

inter trial intervals (5-6 sec.). 

In order to assess explicit learning, at the end of each block participants were required to indicate 

which of the two stimuli presented in that block was associated to the shock. 

 

 
Figure 2.1 – Pavlovian aversive conditioning task 

Participants were required to press a button to start a new trial and were subsequently presented 

with one of two possible conditioned stimuli (CS+/CS-). The stimuli were followed by a visual 

outcome indicating an imminent shock delivery (Shock Trials - CS+) or neutral outcome 

(Neutral Trials - CS-). Such outcomes occurred on 80% trials at an Expected Timing (up), and 

were shifted in time on 20% of trials (down). Two task versions were used between-subjects: 

Anticipation (left) and Delay (right), differing solely on the timing in which the outcomes were 

presented. 
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Procedure 

Subjects were comfortably seated in a silent room and their position was centred relative to the 

screen. Electroencephalogram (EEG) and skin conductance response (SCR) were recorded 

continuously while participants completed the task and data were stored for off-line analysis. 

Participants were asked to remain as quiet and still as possible during task completion and keep 

their gaze strait towards the centre of the screen. After verifying that EEG and SCR were being 

properly recorded, the intensity of shock delivery was adjusted for each participant (see Stimuli 

and Materials). Written instructions for completing the task appeared on the computer screen. 

Participants were informed that their responses and actions had no effect on shock administration 

and were allowed to take short breaks between blocks. 

 

EEG recording and analysis 

The EEG signal was recorded using Ag/AgCl electrodes (Fast’n Easy Electrodes, Brain 

Products, Gilching, Germany) at 59 electrode sites and right mastoid. The left mastoid was used 

as reference site and a ground electrode was placed on subjects’ right cheek. All electrodes were 

re-referenced offline to the average of both mastoids. Two electrodes placed above and below 

the left eye, as well as two electrodes placed in the outer canthi of both eyes were used to record 

vertical and horizontal electrooculogram (EOG). The recorded signals were amplified using a 

BrainAmp DC amplifier (Brain Products, Gilching, Germany)and recorded at a sampling rate of 

500 Hz. 
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MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States) and EEGLAB 13.02.2b 

free toolbox (Delorme and Makeig, 2004) were used for offline analysis.  

EEG data were re-referenced off-line to the average of both mastoids and filtered with a 1-30 Hz 

pass-band. Epochs of 600 ms before and after the onset of the visual outcome were extracted 

from the continuous EEG. Baseline-correction was performed using the average voltage in a 100 

ms time window preceding the outcome onset. Epochs contaminated with large artifacts were 

identified and excluded whenever the voltage on an individual channel exceeded 400 to remove 

epochs with extremely large voltage fluctuations and whenever the joint probability of a trial 

exceeded five standard deviations to remove epochs with improbable data (Delorme et al., 2007). 

To correct remaining artifacts, the data were subjected to a temporal ICA (Jutten and Herault, 

1991; Makeig et al., 1996) using the infomax algorithm (Bell and Sejnowski, 1995). The 

resulting component matrix was screened for independent components (ICs) representing 

stereotyped artifact activity, such as horizontal (saccades) and vertical (blinks) eye movements. 

This was done using a multistep correlational template-matching process as implemented in 

CORRMAP v1.02 (Viola et al., 2009). Topographies of ICs labeled as artifacts by the 

CORRMAP procedure were visually inspected and then calculated out of the data using inverse 

matrix multiplication. To increase signal-to-noise ratio for the FRN analyses {Debener, 2005}, 

frontocentral ICs corresponding to the FRN were extracted from the data. To this end, we first 

chose an IC that showed a typical frontocentral distribution from one participant, and then 

correlated all ICs of all participants with this template (correlations above r = 0.90). Mean 

extracted ICs showed typical frontocentral distributions in all conditions. These ICs were 

selected and back-projected into channel space using inverse matrix multiplication. All FRN 
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analyses were performed using these back-projected data. The FRN was quantified as the peak-to 

peak amplitude in the 200-350 ms time-window after outcome onset (Hajcak et al., 2006). To 

obtain the peak-to-peak amplitude, the difference between the minimum peak in the 275-350 ms 

time-window after outcome onset and the maximum peak in the 200-275 ms time-window after 

outcome onset was computed. All statistical analyses were performed with RStudio v0.98.1062 

(Boston, MA).  

 

Galvanic skin response recording and analysis 

Ag/AgCl electrodes (TSD203 Model; Biopac Systems, Goleta, CA), filled with isotonic 

hyposaturated conductant were used for recording galvanic skin response (GSR). These were 

attached to participants’ volar surface of the index and middle fingertip in their left hand (which 

did not require any motor movements during the task). A DC amplifier (Biopac GSR100) was 

used while recording the GSR signal. A gain factor of 5 μS/V and low-pass filter set at 10 Hz 

were used for recording the analog signal, which was then passed through a MP-150 digital 

converter at a 200Hz rate. The digital signal was then fed into AcqKnowledge 3.9 (Biopac 

Systems) and transformed into microsiemens for offline analysis. Data were analysed offline 

using custom-made MATLAB scripts (The MathWorks, Inc., Natick, Massachusetts, United 

States) and all statistical analyses were performed with RStudio v0.98.1062 (Boston, MA).  All 

trials were recorded, however for the analyses only 88 catch trials in which no shock was 

delivered were considered, in order to exclude shock artifacts. 



57 

 

Skin Conductance Response (SCR) were extracted from the continuous signal and calculated for 

each trial as the peak-to-peak amplitude of the largest deflection during the 0.5-4.5 sec time 

window following stimulus onset (Schiller et al. 2008). The minimal response criterion was 0.02 

μS and smaller responses were encoded as zero. Raw SCR scores were square root transformed 

to normalize the distributions and scaled to each subject’s maximal US response to account for 

interindividual variability (Schiller et al., 2008). Three participants were excluded due to a 

malfunctioning of the SCR recorder instrument and four participants had non-measurable level 

of skin conductance. Thus, the SCR analysis included 41 participants. 

 

Results 

 

SCR results 

SCR response during Shock (CS+) and Neutral (CS-) trials were compared to test for implicit 

acquisition of the Pavlovian contingencies.  

A 2x2 repeated measure ANOVA was performed, with Task (Anticipation/Delay) as between-

subjects independent variable, CS (CS+/CS-) as within-subjects independent variables and SCR 

as dependent variable. A marginally significant main effect of CS (F(1, 39)= 3.59; p= 0.06; 

part.η
2
= 0.09) was found, with CS+ trials (mean= 0.1 μS; sd= 0.06 μS) presenting higher SCR 

levels relative to CS- trials (mean= 0.092 μS; sd= 0.05 μS) (Fig. 2.2). All other effects were not 

significant (ps >.54).  
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Even if these results were only marginally significant, participants showed a trend that supports 

an implicit learning of the association between the conditioned stimuli (CS+ or CS-) and their 

respective outcome (shock or neutral), as higher levels of arousal were found during CS+ trials 

as compared CS- trials.  

Furthermore, explicit learning was assessed by asking the participant to indicate the stimulus 

associated with the shock, at the end of each block. The CS+ was correctly indicated 99,79% of 

times. 

 
Figure 2.2 – Skin Conductance Response 

SCR levels at stimulus presentation during Pavlovian aversive conditioning task. Bars represent 

standard error. 

 

EEG results 

The aim of EEG analysis was to contrast and compare the amplitude of mediofrontal negativities 

(FRN) elicited by shock and neutral outcomes delivered at expected or Unexpected Timings. 

Statistical analyses were performed on the data from the frontocentral electrode FCz, where FRN 

has been previously reported (Hajcak et al., 2006). A mixed-effect model was performed, using 
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Task (Anticipation/Delay) as between-subjects independent variable, Timing 

(Expected/Unexpected) and Salience (Shock/Neutral) as within-subjects independent variables. 

Peak-to-peak amplitude (see EEG recording and analysis) was used as dependent variable and 

calculated matching the number of trials in each condition. Results showed a significant main 

effect of Salience (F(1, 46) = 18.88; p <.001; part.η
2 

=.29), qualified by a significant Task X 

Salience interaction (F(1, 46) = 9.3; p <.001; part.η
2 

=.17) and a significant main effect of 

Timing (F(1, 46) = 15.84; p <.001; part.η
2 

=.26), qualified by a significant Salience X Timing 

interaction (F(1, 46) = 7.17; p =.01; part.η2 =.13) (Fig. 2.3 A-B). All other effects were not 

statistically significant (ps >.17). 

Bonferroni-corrected post-hoc analysis on the Task X Salience interaction revealed an overall 

significant difference (p <.0001) between Shock Trials (mean = 3.62 µV; sd = 2.79 µV) and 

Neutral Trials (mean = 2.91; sd = 2.44) in the Delay Task, but not in the Anticipation Task (p =1; 

Shock Trials mean = 2.46 µV, sd = 1.73 µV; Neutral Trials mean = 2.34 µV, sd = 1.61 µV). 

Bonferroni-corrected post-hoc analysis on the Salience X Timing interaction revealed a 

significant difference (ps <.0001) between Shock Expected (mean = 2.77 µV; sd = 2.07 µV) and 

Shock Unexpected (mean = 3.30 µV; sd =2.65 µV), and between Neutral Unexpected (mean = 

2.68; sd = 2.17 µV) and Shock Unexpected. No difference was found between Neutral Expected 

(mean =2.57 µV; sd =2.02 µV) and Neutral Unexpected (p =1) and between Neutral Expected 

and Shock Expected (p =.5). 

Critically, this analysis evidenced the presence of significantly higher ERP amplitude for salient 

(aversive) outcomes unexpectedly anticipated or delayed in time (Shock Unexpected), as 
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compared to both salient outcomes delivered at the expected timing (Shock Expected) and 

neutral outcomes unexpectedly anticipated or delayed in time (Neutral Unexpected) (Fig. 2.3 A-

B). Thus, behaviourally salient outcomes unexpectedly shifted in time, selectively trigger 

stronger mediofrontal negativities.  

Grandaverage scalp topographies showed a frontal activation for all Timing and Salience 

conditions, with a maximum activation for Unexpected Timing of shock outcomes (Fig. 2.3-C). 

 
Figure 2.3 – Event Relates Potentials 

Panel A shows the grandaverage ERP waveforms from channel FCz. The coloured band 

indicates the considered time-window (200-350ms). 0 represents the visual outcome onset; Panel 

B shows the average peak-to-peak amplitude in all Timing (Expected/Unxpected) and Salience 

(Shock/Neutral) conditions; Panel C shows the Scalp distribution of the peak-to-peak amplitude 

the 200-350ms time window after outcome offset. 
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Conclusion

The present study aimed at investigating whether expected salient (i.e., shock-associated) and 

neutral outcomes are able to elicit mediofrontal negativity when delivered at unexpected timings. 

Results showed that unexpected delays and anticipations in time of salient (i.e., shock-

associated) outcomes selectively increase the amplitude of mediofrontal negativity, as compared 

to neutral outcomes. 

These findings support the idea that mediofrontal negativity signal when salient, but not neutral, 

outcomes are likely to occur. 

Analysis of both explicit and implicit measures of learning showed that participants correctly 

associated the stimuli (CS+/CS-) to their respective outcome (shock/neutral), thus confirming a 

successful manipulation of salience. 

The present results constitutes a strong link between mediofrontal negative ERP components 

classically associated with prediction error (i.e., mediofrontal negativity) and the literature about 

midbrain dopaminergic signals coding information about the timing of outcome delivery 

(Schultz et al., 1997; Schultz and Dickinson, 2000; Hollerman and Schultz, 1998; Fiorillo et al., 

2003; 2008).  

Furthermore, it is in line withPrevious fMRI  studies (Klein-Flügge et al., 2011; Forster and 

Brown, 2011) reporting activity in frontal and striatal areas (from which mediofrontal negativity 

is originated - Sambrook and Goslin, 2016; Hauser et al., 2014) correlated with prediction of the 

timing of outcome delivery (Klein-Flügge et al., 2011; Forster and Brown, 2011). 
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The results here presented partially support what is postulated by the PRO model (Alexander and 

Brown, 2011; 2014), as mediofrontal activation has been observed for outcomes occurring at 

unexpected times, even if the outcomes themselves are expected. However, these signals appear 

to be specific for salient events (Talmi et al., 2013; Lou et al 2015), which is in contrast with 

what predicted by the PRO model. Indeed, the PRO model postulates a dual role of ACC/mPFC 

in encoding the likelihood of outcomes - regardless of affective valence - and signalling all 

unexpected events (prediction error). 

Nevertheless, in line with other studies (Talmi et al., 2013; Maier et al., 2012; 2013; Lou et al., 

2015; Ganushchak et al., 2008; Hajcak et al., 2005), the current results showed how ACC/mPFC 

activation is sensitive to the salience of outcomes, as a higher amplitude of mediofrontal 

negativity was selectively observed for aversive salient outcomes occurring at unexpected 

timings, as compared to neutral outcomes similarly delivered at unexpected timings. 

 In conclusion, this study provides evidence that mediofrontal negativity is sensitive to the timing 

of outcome delivery of salient outcomes. This represents a step towards the link between 

midbrain dopaminergic activity following violations of the expected timing of outcome and 

mediofrontal ERP signals of prediction error. 

 

 



63 

 

Study 3 - Event-Related Brain Potential Signalling Unexpected Timing of 

Feedback: A Source Localization Analysis 
 

Abstract 

Mediofrontal event-related potential (ERP) components have been extensively reported 

following performance error or unexpected feedback, and are thought to reflect dopaminergic 

phasic changes conveyed to medial prefrontal cortex. Recent studies suggest a role for medial 

prefrontal cortex not only in signalling unexpected feedback but also unexpected timing of 

expected feedback.  However, analyses of this aspect are still scarce.  In this study, a task 

creating a condition of unexpected (anticipated) timing of a predicted feedback was designed and 

the associated ERP analysed. Both an aversive and a neutral feedback were considered. ERP 

analysis evidenced frontocentral ERP component elicited by unexpected, relative to expected, 

timing of feedback, more significant for aversive than neutral feedback. Cortical generators of 

this ERP component were estimated using sLORETA source localization method: some regions 

in the frontal and prefrontal cortex may be responsive to unexpected timing of feedback, to a 

larger extent in case of aversive than neutral feedback. Obtained results are discussed with 

respect to findings of previous works. The present study can contribute to inform current theories 

of performance monitoring in frontal/prefrontal cortex and to drive future investigation. 

 

Experimental Design 

The brain continuously makes predictions and compares outcomes or inputs with those 

predictions. Evaluation of the expectations against observed events is crucial to identify 
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discrepancies that may drive behaviour in an uncertain and changing environment. Regions in 

the medial prefrontal cortex (mPFC), especially anterior cingulate cortex (ACC), have repeatedly 

emerged as implicated in expectation evaluation and subsequent behavioural adjustments 

(Rushworth et al., 2004). In particular, event-related potential (ERP) studies, combined with 

cortical source localization techniques, reported the presence of frontocentral ERP components 

that originate in mPFC/ACC (for a review see, Walsh and Anderson, 2002), such as the feedback 

related negativity (FRN), usually observed after negative or unexpected feedback (Hajcak et al., 

2006; Alexander and Brown, 2011; Ferdinand et al., 2012; Talmi et al., 2013; Garofalo et al., 

2014). As mPFC/ACC receive a preponderance of projection from the midbrain dopamine 

system (Willians and Goldman-Rakic, 1993), these ERP components may reflect phasic changes 

in activity of dopaminergic neurons, that have been demonstrated to code discrepancy between 

predicted and actual outcome (Fiorillo eta l., 2003).  

Recent fMRI studies (Forster et al., 2011) reported that mPFC/ACC not only signal violations of 

feedback expectancy but also violations of the expected timing of feedback (i.e., a correctly 

predicted feedback occurring at an unexpected time); this may reflect sensitivity to outcome 

timing observed in dopamine neurons (Hollerman and Schultz, 1998). However, to date, ERP 

components of timing prediction error have never been directly investigated, and information on 

how and to what extent they may be related to mPFC/ACC activity are lacking. Aim of the 

present study is to investigate whether predicted outcomes that occur at unexpected rather than 

expected timing produce differences in ERP, and to identify the cortical generators of these 

differences by means of an electrophysiological source localization technique (sLORETA). In 

particular, the anticipated timing condition was investigated; moreover, to assess whether 
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feedback valence may have an effect on timing prediction error, an aversive and a neutral 

feedback have been considered.  

 

Materials and Methods 

 
Participants and Procedure 

Twenty healthy volunteers (9 females, mean age = 23.55, sd= 2.32) participated in the study. All 

participants gave informed consent and the study was approved by the institutional ethical 

committee. A Pavlovian aversive condition task was used. Each participant was presented with 

two visual stimuli (Japanese kanji), paired either with an aversive (shock-associated, CS+ trials) 

visual feedback or with a neutral (CS- trials) visual feedback, consisting in a coloured frame (red 

or blue, respectively), appearing around the image for 850 ms (Fig. 2.1). The aversive visual 

feedback was followed by a shock delivery during the last 200 ms, while during the neutral 

visual feedback presentation nothing happened until its termination. The shock intensity was 

individually set before the task to a level the participant indicated as “uncomfortable, but not 

painful”. Each subject performed 350 CS+ trials and 350 CS- trials; in both conditions, the 

feedback was presented 2.5 s after stimulus (kanji) presentation on 80% of trials (Expected 

Timing of feedback, ET), while it was unexpectedly anticipated in 20% of trials and presented 1 

sec after stimulus presentation (Unexpected Timing of feedback, UT) (Fig. 2.1).  
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EEG Recording and Analysis  

During the task, electroencephalographic (EEG) signal was recorded from 59 electrode sites, 

referenced to left mastoid. Vertical and horizontal electro-oculogram (EOG) was recorded too. 

EEG signals were digitized at a sampling rate of 500 Hz, offline re-referenced to the average of 

both mastoids, filtered between 1-30 Hz and analysed by using MATLAB (MathWorks ®) and 

EEGLAB 11.0.5.4b free toolbox (Delorme and Makeig, 2004). Epochs of 100 ms before and 500 

ms after feedback presentation were extracted from the continuous EEG (epochs did not include 

shock delivery). The average voltage during the 100 ms preceding feedback was used as 

baseline. Epochs presenting large artifacts were identified and excluded (mean percentage of 

excluded epochs = 3%) and EOG artifacts were corrected using a regression approach. Epochs 

were then averaged separately for each participant and each condition (aversiveET, aversiveUT, 

neutralET, neutralUT), to obtain the ERP. Previous studies extracted FRN component from the 

ERP at frontocentral sites (e.g., FCz) by computing the peak-to-peak difference in a time 

window included between 200 ms and 350 ms following feedback presentation [3],[5],[7]. 

Accordingly, in the present study, the presence of FRN-like components due to unexpected 

timing relative to expected timing condition, was assessed by computing the peak-to-peak 

amplitude recorded on FCz electrode in the window 220-340 ms after feedback presentation; 

based on grand average visual inspection, this temporal window included the peak-to-peak 

deflection.  
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Cortical Source Localization and Statistical Analysis 

Standardized Low Resolution Electromagnetic Tomography free software (sLORETA, Key 

Institute for Brain-Mind Research, Zurich) was used to compute the cortical three-dimensional 

distribution from electrode scalp field. sLORETA method estimates current density magnitude at 

each of 6239 voxels in the gray matter of a reference brain (MNI 152 template, Mazziotta et al., 

2001). This method finds a particular solution addressing the non-unique EEG inverse problem 

by assuming similar activation of neighboring neuronal sources, followed by an appropriate 

standardization of the current density, producing images of electrical neuronal activity without 

localization bias (Pascual-Marqui, 2001; Cannon, 2012), as validated by several simultaneous 

EEG/fMRI studies (Cannon, 2012).  In this study, sLORETA was used to analyze source 

localization differences, due to unexpected compared to expected timing, in the temporal 

window 220 ms -340 ms. To this aim, for each subject and condition, the averaged ERP data 

within this window were directly imported and processed by sLORETA. Voxel-by-voxel paired 

t-test statistical analyses were performed using the built-in statistical non-parametric mapping: 

this method (Nichols and Holmes, 2002) uses randomization to estimate the exact significant 

threshold, regardless of any assumption of Gaussianity, and corrected for multiple testing (i.e., in 

this study, for the collection of tests performed for all voxels). Threshold at a significance level 

of p<0.05 was used.  

 

Results 

Fig. 3.2 (left panel) displays grand average ERP waveforms on FCz electrode in the 4 conditions 

(aversiveET, aversiveUT, neutralET, neutralUT). Mean peak-to-peak amplitudes computed on 
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the window 220 ms - 340 ms are displayed in the right panel. Paired t-test on peak-to-peak 

amplitudes revealed a significant difference only between aversiveUT and aversiveET 

(p=0.0053).  
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Figure 3.2 

Left: GrandAverage ERP waveforms on electrode FCz in the four conditions. Black vertical line 

at time = 0 ms represents feedback onset. Gray dashed lines denote the time window for peak-to-

peak computation. Right: Mean peak-to-peak amplitudes computed on the selected window. t-

test: neutralUT vs neutralET, p=0.1882; aversiveET vs neutralET, p=0.3774; aversiveUT vs 

neutralUT, p=0.056. 

 

Fig. 3.3 shows the statistical maps comparing sLORETA solutions between aversiveUT and 

aversiveET, revealing a significantly stronger activation of several areas of the brain in case of 

unexpected timing of the aversive feedback. The center of gravity for statistically stronger 

activated areas appears to be located in the  fronto-temporal zones. In order to quantify this, 

voxels at the higher extreme of the map scale (i.e., with t-value higher than 80% of maximal t-

value) were identified and clustered on the basis of the Brodmann Areas (BA) they belonged to. 
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Results are reported in Table 3.1, listing the first ten clusters of statistically stronger activation: 

they mainly belonged to middle/inferior frontal structures and middle/superior temporal 

structures. 

Despite the absence of a statistically significant difference in the ERP between neutralUT and 

neutralET, cortical source analysis disclosed differences in source localization between the two 

conditions, as evidenced by the statistical maps in Fig. 3.4. Graphically, patterns resemble those 

obtained for aversive feedback (Fig. 3.3). For a quantitative comparison  with aversive condition, 

Table 3.2 extracts the areas of statistically higher activation in unexpected compared to expected 

timing in case of neutral feedback, using the same procedure as Table 3.1;  parieto-occipital 

areas appear to be involved in this case, besides fronto-temporal areas.  
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Figure 3.3  

Grand average of sLORETA statistical maps comparing aversiveUT and aversiveET over the 

examined time window (220 ms-340 ms). Upper 3D representations: bottom, left, frontal view. 

Lower 2D representations: axial, sagittal and coronar slice. Colour indicates voxel-by-voxel t-

value of the statistical comparison (p<0.05 for t-values above 2.69). 
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For completeness, sLORETA analyses were conducted to compare aversiveET with neutralET 

and aversiveUT with neutralUT, too. sLORETA comparison between aversiveET and neutralET 

(Fig. 3.5) revealed statistically significant higher activation in a few areas, still located in the 

frontal lobe but in regions complementary compared to those involved when contrasting 

conditions UT-ET; indeed, statistically significant voxels were in BA 10, 11, 46 in 

middle/superior frontal gyrus (Fig. 3.5). sLORETA comparison between aversiveUT and 

neutralUT did not produce statistically significant results. However, it is interesting to note that 

when contrasting these two conditions, differences in source localization (although not reaching 

significance) appear also in somatosensory areas 2 and 3 (Fig. 3.6).  

 

 

 

 
Table 3.1  

Voxel clusters of statistcally higher activation in AVERSIVEut vs AVERSIVEet 
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Conclusion

In this pilot study, the aim was to investigate ERP components associated with feedbacks that 

were delivered at unexpected (anticipated) time, even if the feedbacks themselves were expected, 

and to estimate their cortical sources. Obtained results deserve some major comments.  

1) ERP analysis evidenced the presence of a mediofrontal FRN-like components, suggesting that 

these components may reflect not only feedback prediction error, as reported by the vast majority 

of studies (Walsh and Anderson, 2002; Alexander and Brown, 2011; Ferdinand et al., 2012; 

Talmi et al., 2013; Garofalo et al., 2014), but also temporal prediction error.  Furthermore,  

analysis at ERP  level highlighted a salience effect, since shock associated feedback at 

unexpected time generated a stronger FRN-like component compared to neutral feedback (Fig. 

3.2, right panel). This ERP result seems in line with previous work which reported evidence for 

ERP FRN-like component mainly signaling salience prediction errors (Talmi et al., 2013). 
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Figure 3.4  

Grand average of sLORETA statistical maps comparing neutralUT and neutralET over the 

examined time window (220 ms-340 ms). p<0.05 for t-values above 2.86. 
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Table 3.2 

Voxel clusters of statistcally higher activation in neutralut vs neutralet 

 

 

2) sLORETA analysis provided interpretation, in terms of cortical source activation, of ERP 

analysis results. First, the significant effect induced by unexpected timing of aversive feedback 

on mediofrontal ERP, was explained by significantly higher brain electrical activity in several 

prefrontal and frontal areas (BA 11, 9, 6, 45, 47, 10, 44 Table 3.1). Second, at variance with the 

absence of a significant effect on scalp mediofrontal ERP, cortical source analysis revealed some 

cortical prefrontal areas (BA 11, 47) having statistically stronger activation for unexpected as 

compared to expected timing, even in case of neutral feedback. However, in neutral feedback 

condition, there was a minor involvement of prefrontal areas and a major engagement of parieto-

occipital areas  compared to aversive feedback condition. This may explain the absence of a 

statistically significant effect at mediofrontal scalp sites in case of neutral feedback.  



73 

 

 

           

 
t-values

0 0.9 1 .8 2.7 3.6
 

Figure 3.5 

Grand average of sLORETA statistical maps comparing aversiveET and neutralET over the 

examined time window (220 ms-340 ms). p<0.05 for t-values above 3. 

 

3) Despite higher activation in some prefrontal areas in unexpected timing conditions, sLORETA 

analysis failed to reveal a statistically significant role for the ACC in the examined task. 

Although this may be surprising as ACC has emerged as a primary locus coding unexpected 

feedback, our result is in line with a recent fMRI study (Forster et al., 2011) reporting a 

significant activation of ACC only for unexpected delayed feedback and not for unexpected 

anticipated feedback, which is the condition examined in our study.  However, prefrontal and 

mesiotemporal areas that have emerged in this study as responsive to anticipated feedback may 

represent other targets of midbrain dopamine projections conveying outcome valance and timing 

information. In future, tasks involving both an anticipated timing of feedback and a delayed 

timing of feedback can be designed and analysed to further support the inferences of the present 

and previous studies.   
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Figure 3.6 

Grand average of sLORETA statistical maps (3D bottom, top, front view) comparing aversiveUT 

and neutralUT over the examined time window (220-340 ms). p<0.05 for t-values above 3.93. 

For sake of space, only 3D views are reported. 

 

4) Secondary to the previous primary results (which targeted the main goal of our study), further 

interesting cues emerged from source localization analysis contrasting aversive and neutral 

feedbacks in each of the two timing conditions. First, different activation of superior prefrontal 

areas (figure 3.5 and figure 3.6, even if in figure 3.6 it did not reach significance) may represent 

coding of feedback valence. These specific regions, indeed, did not appear to be differently 

activated when contrasting the same feedback across the two timing conditions. Finally, in 

unexpected timing, stronger activation appears in somatosensory areas, although below 

significance threshold. Such activation can be related to shock mental imagery (Schmidt et al., 

2014) induced by the anticipated aversive feedback.  

In conclusion, results of these preliminary study represent a further step towards a possible link 

between mediofrontal ERP signals of timing prediction error, frontal/prefrontal cortex activity, 

and dopaminergic changes following violations of the expected timing of feedback.  
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It is important to underlie the main limitation of this preliminary study and its future 

developments. In particular, the main descriptive nature of this study, and the lack, at this level 

of analysis, of clear insights into the underlying operating mechanisms. Indeed, this work is 

intended to report only the results of a preliminary step towards more thorough and interpretative 

analyses that is going to perform using neural network modeling (a field of wide expertise of 

some of the authors, e.g. see Ursino et al., 2007) joined with methods of cortical connectivity 

estimation (Ursino et al., 2012) on the entire experimental dataset used for Study 2. 
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Study 4 - Altered fronto-striatal reward processing in Parkinson’s 

Disease associated psychosis 
 

Abstract 

Psychotic symptoms frequently occur in Parkinson’s Disease, but their pathophysiology is poorly 

understood. According to cognitive neuropsychiatric theory, and the National Institute of Health 

RDoc programme, the pathophysiological basis of psychiatric symptoms may be better 

understood in terms of dysfunction of underlying domains of neurocognition, rather than simply 

according to diagnosis. Abnormal frontal striatal reinforcement learning signalling, associated 

with dysregulated dopamine, has been proposed as a key process contributing to the pathogenesis 

of psychosis. This theory has received empirical support in the study of schizophrenia spectrum 

disorders and preclinical models of psychosis, but has not been tested in psychosis associated 

with a degenerative neurological condition such as Parkinson’s Disease. The aim was to 

investigate brain responses associated with reward feedback and prediction error signalling 

during reinforcement learning in Parkinson’s Disease associated psychosis. An instrumental 

reinforcement learning task was performed by three groups of subjects during fMRI scanning: 

patients with Parkinson’s Disease with a history of psychotic symptoms (n=12), patients with 

Parkinson’s Disease without a history of psychotic symptoms (n=17), and healthy controls 

(n=24). Results confirmed the presence of altered activation in the medial-prefrontal cortex and 

the ventral striatum in PD patients with psychosis during reward feedback (contrast of winning 

£1 versus neutral feedback). Also, lateral parietal deficits in reward prediction error signalling 

were found in Parkinson’s Disease independent of whether they had psychotic symptoms. These 

results extend the link between psychotic symptoms and abnormalities in fronto-striatal reward 
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processing beyond schizophrenia spectrum conditions into psychosis as manifest in Parkinson’s 

Disease. 

 

Experimental Design 

The aim of the present study was to investigate the neural correlates of reward processing in a 

population of patients with a diagnosis of Parkinson Disease (PD) with and without psychotic 

symptoms and a matched group of healthy Controls. In particular, three stages of reward-

processing were investigated: Reward Anticipation, Reward Feedback and Prediction Error.  

The hypothesis is that PD patients with psychosis should present differences in the neural 

activations associated with reward processing relative to both healthy controls and PD patients 

without psychosis. 

 

Materials and Methods 

 
Participants 

The final sample was composed of 53 participants: 17 patients with a diagnosis of Parkinson 

Disease without any psychotic symptoms (PD); 12 patients with a diagnosis of Parkinson 

Disease and a history of current or previous psychotic symptoms (lifetime CAARMS scoring 

equal or over 3 in global and frequency scales) (PD psychosis); 24 healthy volunteers, with no 

history of neurological, psychiatric or medical disorders (Controls). The initial sample was 

composed of 66 participants. Ten participants (8 PD, 1 PD psychosis, 1 Control) were excluded 
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due to technical problems occurred to the task (responses not recorded) or to the fRMI scanning. 

Three additional subjects (2 PD, 1 Control) were excluded for low cognitive abilities that 

interfeared with the learning task. Patients were recruited via the PD research clinic at the John 

van Geest Centre for Brain Repair (BRC). All fulfilled the Queen Square Brain Bank Criteria for 

idiopathic PD (Gibb and Lees, 1988) and remained on their usual medications during testing. 

Each patient's dopaminergic drug regime was converted to an equivalent L-dopa dose 

(Tomlinson et al., 2010). Patients with dementia were excluded (operationalized as a mini-

mental state score less than 24).Descriptive statistics of the sample are reported in Table 4.1. All 

subjects had normal or corrected-to-normal acuity and were without any contraindications for 

MRI scanning. The research was approved by the Cambridgeshire 2 NHS Research Ethics 

Committee; all participants provided informed consent. 

 

Task 

During the fMRI scan, subjects performed a computerized instrumental learning task based on 

previous studies (O’Doherty et al. 2004; Pessiglione et al., 2006; Seymour et al., 2007; Murray et 

al., 2008; Bernacer et al., 2013). During the task participants were presented with two fractal 

images and required to choose one of them, with a button press, in order to maximise their pay-

offs. Each choice was followed by a visual feedback indicating the associated outcome. There 

were three possible trials: during Reward Trials one choice was associated with a £1 win in 80% 

of trials and to neutral feedback in 20% of trials (High-Likelihood - HL), whereas the other 

choice was associated with a neutral outcome in 80% of trials and to a £1 win in 20% of trials 

(Low-Likelihood - LL); during Bivalent Trials each choice was associated with a 50% chance of  

http://www.sciencedirect.com/science/article/pii/S0197458014007982#bib19
http://www.sciencedirect.com/science/article/pii/S0197458014007982#200001068
http://www.sciencedirect.com/science/article/pii/S0197458014007982#200023007
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Table 4.1 – Descriptive statistics 

Characteristics of the whole sample separated into the three groups: Controls, Parkinson Disease 

and Parkinson Disease with psychosis. The inclusion criterion for the psychosis group is 

Lifetime CAARMS (Comprehensive Assessment of At Risk Mental States scale, which 

measures psychotic symptoms) scoring equal or over 3 in global and frequency scales. BDI, 

Beck Depression Inventory. 
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either losing or winning £1; during Neutral Trials each choice was associated with a 80%/20% 

chance of receiving two kinds of neutral feedbacks (Fig. 4.1). Each trial type was repeated 30 

times in a random sequence, for a total of 90 trials. The order and position of the pictures 

presented were counterbalanced across trials of the same kind. To win money, the participants 

had to learn, by trial and error, to select the stimulus that was more likely to produce a reward. 

All participants were informed that the total amount won during the task would be paid to them 

at the end of the experimental session. 

 
Figure 4.1 – Visual representation of the instrumental conditioning task 

Participants were presented with two fractal images and required to choose one of them in order 

to maximise their pay-offs. Each choice was followed by a visual feedback indicating the 

associated outcome. During Reward Trials one choice was associated with an 80% chance to win 

1£ (High-Likelihood - HL) and the other choice was associated with a 20% chance to win 1£ 

(Low-Likelihood - LL). During Bivalent Trials each choice was associated with a 50% chance of 

either losing or winning £1. During Neutral Trials each choice was associated with an 80%/20% 

chance of receiving two kinds of neutral feedbacks. 
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Rating scales 

Before scanning, participants underwent a general interview and clinical assessment using the 

Comprehensive Assessment of At-Risk Mental States (CAARMS) (Yung et al., 2005). The Beck 

Depression Inventory (BDI) (Beck and Steer, 1996) was used to assess depressive symptoms 

during last 2 weeks. IQ was estimated using the Culture Fair test (Cattell et al., 1973). Hoehn and 

Yahr scale (Hoehn and Yahr, 1967) was used to assess the stage of Parkinson's Disease in 

patients. 

The Levodopa Equivalent Dosage (LED) was calculated according to Tomlinson et al. (2010). 

 

 Computational model 

A standard reinforcement learning algorithm (Q-learning) was used to fit each subject’s sequence 

of choices (Pessiglione et al., 2006; Seymour et al., 2007; Murray et al., 2008). For each pair of 

stimuli A and B, the model estimates the expected values of choosing A (Qa) and B (Qb), on the 

basis of individual sequences of choices and outcomes. This value (Q) reflects the expected 

reward obtained by taking that particular action. Q values were set at zero before learning, and 

after every trial (t>0) the value of the chosen stimulus was updated according to the following 

rule. For example, for choosing A: 

Qa(t+1)=Qa(t) + α*δ(t) 

 

The prediction error was: 

δ(t)=R(t)-Qa(t) 
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where R(t) was defined as the reinforcement obtained as an outcome of choosing A at trial t. In 

other words, the prediction error δ(t) was the difference between the expected outcome (Q(t)) 

and the actual outcome (R(t)). The reinforcement magnitude (R) was +1 for reward feedback, 0 

for neutral feedback and -1 for loss feedback. Given the Q values, the associated probability of 

selecting each action was estimated by implementing the Softmax Rule. For example, for 

choosing A: 

Pa(t)= (expQa(t)/β)/(expQa(t)/β+expQb(t)/β) 

 

The Softmax Rule is a standard stochastic decision rule that calculates the probability of taking 

one of a set of actions according to their associated values. The constants α (learning rate) and β 

(temperature, i.e. the balance between exploration and exploitation) were adjusted to maximize 

the likelihood of the actual choices under the model. The learning model was used to obtain a 

statistical regressor corresponding to the modelled outcome prediction error, to be used in the 

analysis of the imaging data. The constants α and β were individually estimated. The accuracy of 

fit was assessed by using negative log-likelihood, which can be summed across trials, sessions 

and subjects.   

 

fMRI data acquisition and analysis 

A Siemens Magnetom Trio Tim operating at 3 T was used to collect imaging data. Gradient-echo 

echo planar T2*-weighted images depicting BOLD contrast were acquired from 35 non-

contiguous oblique axial planes to minimize signal drop-out in ventral regions.   



83 

 

TR was 1620ms; echo time was 30ms; flip angle was 65; in-plane resolution was 3.0x3.0, matrix 

size was 64x64; field of view was 192x192 mm, bandwidth 2442 HZ/Px. A total of 550 volumes 

per subject were acquired (27 slices each of 2 mm thickness, interslice gap 1mm). The first 5 

volumes were discarded to allow for T1 equilibration effects.  

The data were analysed in SPM 12 software (Wellcome Department of Cognitive Neurology, 

London, UK). Images were realigned, spatially normalized to a standard template and spatially 

smoothed with a Gaussian kernel (8mm at full-width half-maximum). A high pass filter was 

applied (128 Hz).  

Explanatory variables (EVs) used were as follows: onset time of the bivalent cues; onset time of 

the neutral cues; onset time of the reward cues; onset time of loss feedback during Bivalent 

Trials; onset time of win feedback during Bivalent Trials; onset time of neutral feedback 1 

during neutral trial; onset time of neutral feedback 2 during Neutral Trials; onset time of neutral 

feedback during Reward Trials; onset time of win feedback during Reward Trials. Parametric 

modulators of expected incentive value of the chosen cue, as estimated by the Q learning 

computational model, were used for all onset times of cue. Parametric modulators of prediction 

error (estimated by the Q learning computational model) were used for all onset times of 

feedback. The model constituted of 18 EVs in total. All regressors were modelled as 0s events 

and convolved with a canonical hemodynamic response function. Three further motion 

parameters were used as additional regressors to control for any movement artefacts along the 

three axes. All regressors of interest were convolved with a canonical hemodynamic response 

function with a temporal derivative. 
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The contrasts of interest were computed at the individual subject level and then taken to a group 

level for statistical analysis. There were two main contrast of interest: Reward Feedback and 

Prediction Error. For the Reward Feedback, a contrast between the presentation of win feedbacks 

(during Reward Trials) minus the presentation of neutral feedbacks (during Neutral Trials) was 

performed. The rationale here is that the two conditions differed in the actual monetary value 

(respectively, £1 and £0). To estimate Prediction Error, a contrast between the presentation of 

win feedbacks during bivalent minus Reward Trials was performed. In this case, the two 

conditions shared the same value (£1), but differed in the expected value (£1 during Reward 

Trials and 0£ during Bivalent Trials). To measure Reward Anticipation, the parametric 

modulator of the expected value of the chosen cue (estimated by the Q learning model) during 

Reward Trials was evaluated. The contrast of interest was PD versus PD psychosis. Brain 

activation in healthy Controls and Controls versus all PD patients are also reported. All analysis 

consisted of whole-brain t-contrasts, initial cluster-forming threshold at p=.01, Family-Wise 

Error (FWE) corrected at p=.05. 

 

Results 

 

Movement artifacts 

To ensure that the three groups did not differ in the amount of movements during the fMRI 

scanning session, the averaged time series of translations and rotations along the three axes (x, y, 

z), as estimated during the realignment phase of pre-processing, were compared across groups. 
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Two separate mixed-effects models were used, with Group (Controls/PD/PD psychosis) as in 

depended variable and translations (mm) or rotations (degrees) ad dependent variable. 

No group differences were found both in the amount of translations (p =.35; part. μ
2
 = .04) or 

rotations (p =.32; part. μ
2
 = .04). 

 

Behavioural results 

To ensure successful learning of the contingencies across the three groups, participant's 

performance during the task was analysed. 

Three separate 3x2 mixed-effects models were performed for each trial condition 

(Reward/Neutral/Bivalent), using the total number of responses as the dependent variable (Fig. 

4.2-A). Group (Controls/PD/PD psychosis) and Choice (High/Low-Likelihood or 1/2) were used 

as the independent variables. Results from Reward Trials showed a significant main effect of 

Choice (F(1, 50) = 83.22; two-tailed p < .001; part. μ
2
 = .62), evidencing a higher number of 

High-Likelihood over Low-Likelihood choices, and a Group X Choice interaction F(2, 50) = 

4,42; two-tailed p =.02; part. μ
2
 = .15). Bonferroni-corrected post-hoc tests revealed a significant 

difference only between Controls and PD psychosis for both High-Likelihood (p <.01) and Low-

Likelihood (p <.01) choices. On average, High-Likelihood choices were performed more by 

Controls (mean = 25.62, sd = 5.21) than PD psychosis (mean =19.25, sd =8.31); whereas Low-

Likelihood choices were performed less by Controls (mean = 4.12, sd = 5.31) than PD psychosis 

(mean =10.58, sd =8.36). 
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Results from Neutral and Bivalent Trials showed no statistically significant effect (ps > .1). 

A further 3x3 mixed-effects model was performed using the reaction times as the dependent 

variable (Fig. 4.2-C). Group (Controls/PD/PD psychosis) and Trial type 

(Reward/Neutral/Bivalent) were used as the independent variables. Results showed a significant 

main effect of Trial type (F(1, 87) = 5.09; two-tailed p = .007; part. μ
2
 = .03). Bonferroni-

corrected post-hoc tests revealed a significant difference only between Reward and Neutral 

Trials (p=.006). All other effects were not significant (ps >.1). 

Overall, these results indicate that all participants, irrespective of the group to which they 

belonged, showed contingencies learning during Reward Trials, expressed both as a preference 

for the High-Likelihood (HL) choice (i.e., more frequently associated with a reward – 80%) over 

the Low-Likelihood (LL) choice (i.e., less frequently associated with a reward – 20%), and as 

faster reaction times when choosing during such trials, as compared with Bivalent and Neutral 

Trials. Nevertheless, Controls presented a significantly higher ability to distinguish between 

choices with higher and lower chance of rewards, as compared with PD patients with psychosis. 

Such a difference was subsequently directly tested by creating an index of the ability to learn 

from rewards (reward learning), obtained by subtracting for each subject the number of LL 

responses from the number of HL responses (Fig. 4.2-B). A mixed-effects model was performed 

using the reward learning index as the dependent variable and Group (Controls/PD/PD 

psychosis) as the independent variable. Results showed a significant main effect of Group F(2, 

50) = 4.37; two-tailed p =.02; part. μ2 = .15). This further analysis confirmed what observed with 

the previous analysis: Control subjects are better able to differentiate between choices with 
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higher and lower chance of reward and to use this information to adapt their behaviour. In this 

regard, it is important to notice that PD patients with psychosis still showed a significant 

difference between High-Likelihood and Low-Likelihood choices (HL > LL), so they did learn 

the contingencies during Reward Trials. Critically, no significant difference between PD patients 

with and without psychosis was found.  

Neither preferences for a choice, nor differences in reaction times, were evidenced in Neutral and 

Bivalent Trials.  

Furthermore, the number of actual rewards received during Reward Trials was checked. A 

mixed-effects model was performed using the number of rewards received as the dependent 

variable and Group (Controls/PD/PD psychosis) as the independent variable. Results showed a 

significant main effect of Group F(2, 50) = 5.11; two-tailed p =.01; part. μ2 = .17). Bonferroni-

corrected post-hoc tests revealed a significant difference only between Controls and PD 

psychosis (p <.02). On average, more rewards were received by Controls (mean = 21.16, sd = 

.22) relative to PD psychosis (mean =17.25, sd =4.39). Critically, no significant difference 

between PD patients with and without psychosis (mean =18.17, sd =4.39) was found (p >.9). 

 

Computational Model results 

The parameters α, β and negative log-likelihood (estimated with the Q-learning model), were 

statistically compared to check for possible differences between groups and conditions.  
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Figure 4.2 – Behavioural performance 

Panel A shows the total number of responses during the three trial types 

(Reward/Neutral/Bivalent) for the three groups (Controls/PD/PD psychosis). Panel B shows the 

reward learning index (High-Likelihood - Low-Likelihood) for the three groups 

(Controls/Parkinson Disease/Parkinson Disease with psychosis). Panel C shows mean reaction 

times during the three trial types (Reward/Neutral/Bivalent) for the three groups 

(Controls/Parkinson Disease/Parkinson Disease with psychosis).  

HL = High-Likelihood; LL = Low-Likelihood; 1 = choice one; 2 = choice two; PD = Parkinson’s 

Disease. Bars indicate standard error. ***p<.0001; **p<.001.; *p<.05.  
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Three separate 3x3 mixed-effects models were performed using each parameter as the dependent 

variable and Group (Controls/PD/PD psychosis) and Trial type (Reward/Neutral/Bivalent) as the 

independent variables. For the parameter α, no significant differences were found (ps>.10).  

For the parameter β, a significant effect of condition was found F(1, 95) =7.87; p=.001; μ
2
 =.10. 

Bonferroni-corrected post-hoc tests revealed a significant (p=.0004) difference between Reward 

Trials (mean =0.84; sd =1.54) and Neutral Trials (mean =2.42; sd =2.17). All other effects were 

not significant (ps >.08). This result is interpretable as a stronger expression of explorative 

behaviour during Neutral Trials (thus, when no response is preferred over the other) as compared 

with Reward Trials (where the High-Likelihood choice is preferred).  

In the analysis of the negative log-likelihood a significant effect of condition was found F(1, 95) 

=27.56; p<.001; μ
2
 =.24. Bonferroni-corrected post-hoc tests revealed a significant (p<.0001) 

difference between Reward Trials (mean =-10.43; sd =8.23) and both Neutral Trials (mean =-

17.28; sd =5.52) and Bivalent Trials (mean =-18.38; sd =2.70). All other effects were not 

significant (ps >.1). This result is interpretable as a better fit of the model in which performances 

is expressed as an actual preference for a specific option, as compared to a more random choice 

(i.e., when there is no preference).  

Overall these results showed that no group differences were present on the parameters α, β and 

negative log-likelihood as estimated by the Q-learning model. 
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Imaging results 

Reward Anticipation 

In Controls, the Reward Anticipation was associated with activation in the occipital cortex (peak 

voxel MNI coordinates: x, y, z = 16, -70, 22; peak voxel Z = 3.53, FWE cluster corrected p = 

0.02, 915 voxels). In the whole PD patient group, Reward Anticipation did not show any 

significant activation.  

In all PD patients, as compared with Controls, there was reduced activation in the occipital 

cortex (peak voxel MNI coordinates: x, y, z = 16, -64, -10; peak voxel Z = 3.90; FWE cluster 

corrected p < 0.001; 5519 voxels). 

In PD psychosis patients, as compared with PD patients, there was reduced activation in two 

clusters, one localized in the medial prefrontal cortex (peak voxel MNI coordinates: x, y, z = 6, 

42, 4; peak voxel Z = 3.21; FWE cluster corrected p = 0.008; 1202 voxels) and in a cluster 

spanning from the right medial temporal lobe to the middle temporal gyrus laterally (peak voxel 

MNI coordinates: x, y, z = 48, -18, -6; peak voxel Z = 3.34; FWE cluster corrected p = 0.03; 908 

voxels).Standard parametrical maps of the Reward Feedback contrasts is presented in Figure 4.3. 

 

Reward Feedback 

In Controls, the Reward Feedback was associated with activation in a cluster spanning from the 

occipital cortex to the ventral striatum bilaterally (peak voxel MNI coordinates: x, y, z = 8, -50, 

6; peak voxel Z = 4.89, FWE cluster corrected p < 0.001, 1079 voxels) with a further cluster in 

the medial prefrontal cortex (peak voxel MNI coordinates: x, y, z = -10, 28, 0; peak voxel Z = 



91 

 

4.87; FWE cluster corrected p =.01; 1180 voxels). In the whole PD patient group, Reward 

Feedback did not show any significant activation.  

 

 
 

Figure 4.3 – Reward Anticipation 

On top -Statistical parametric maps of the Reward Anticipation paramentric modulator. Effects 

significant at p < 0.05 FWE cluster corrected for multiple comparisons are shown in yellow and 

orange. Left hemisphere is plotted on the left and right hemisphere is plotted on the right. PD = 

Parkinson’s Disease. 
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In all PD patients, as compared with Controls, there was reduced activation bilaterally in the 

ventral striatum (peak voxel MNI coordinates: x, y, z = -18, 10, -8; peak voxel Z = 4.97; FWE 

cluster corrected p =.02; 1206 voxels) and in the occipital cortex (peak voxel MNI coordinates: 

x, y, z =0, -82, 16; peak voxel Z = 4.94; FWE cluster corrected p < 0.001; 8483 voxels). 

In PD psychosis patients, as compared with PD patients, there was reduced activation in a cluster 

spanning from the medial prefrontal cortex to the ventral striatum bilaterally (peak voxel MNI 

coordinates: x, y, z = -10, 34, -4; peak voxel Z = 4.16; FWE cluster corrected p = 0.002; 1715 

voxels) and a further cluster beginning in the left lateral temporal lobe and peaking in the left 

orbitofrontal cortex (peak voxel MNI coordinates: x, y, z = -26, 16, -18; peak voxel Z = 4.36; 

FWE cluster corrected p = 0.03; 1038 voxels). 

Standard parametrical maps of the Reward Feedback contrasts is presented in Figure 4.4. 

 

Prediction Error 

In Controls, the Prediction Error was associated with activation in the left parietal cortex (peak 

voxel MNI coordinates: x, y, z = -46, -56, 54; peak voxel Z = 4.02; FWE cluster corrected p = 

0.001; 2175 voxels). In the whole PD patient group, Prediction Error did not show any 

significant activation.  
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Figure 4.4 – Reward Feedback 

On top - Statistical parametric maps of the Reward Feedback contrast. Effects significant at p < 

0.05 FWE cluster corrected for multiple comparisons are shown in yellow and orange. Left 

hemisphere is plotted on the left and right hemisphere is plotted on the right. PD = Parkinson’s 

Disease. 

 

In all PD patients, as compared with Controls, there was reduced activation in the left parietal 

cortex (peak voxel MNI coordinates: x, y, z = -34, -60, 44; peak voxel Z = 4.11; FWE cluster 

corrected p < 0.001; 2254 voxels)  
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When comparing PD patients without and with psychosis, there was no significant associated 

activation.Standard parametrical maps of the Reward Feedback contrasts is presented in Figure 

4.5. 

 

 
 

Figure 4.5 – Prediction Error 

On top - Statistical parametric maps of the Prediction Error contrast. Effects significant at p < 

0.05 FWE cluster corrected for multiple comparisons are shown in yellow and orange. Left 

hemisphere is plotted on the left and right hemisphere is plotted on the right. PD = Parkinson’s 

Disease. 
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Conclusion

The present study aimed at investigating the neural correlates of reward processing in three 

groups of subjects: patients with Parkinson’s Disease without any history of psychosis (PD) 

(N=17); patients with Parkinson’s Disease associated Psychosis (PD psychosis) (N=12) and a 

matched group of healthy Controls (N=24).  

All participants underwent fMRI scanning while performing an instrumental learning task during 

which they were presented with visual stimuli and required to choose one of them to maximize 

their pay-offs. During Reward Trials one choice was associated with an 80% chance to win 1£ 

(High-Likelihood - HL) and the other with a 20% chance to win 1£ (Low-Likelihood - LL). 

During Neutral Trials each choice was associated with  80%/20% chance of receiving two kinds 

of neutral feedbacks. During Bivalent Trials each choice was associated with 50% chance of 

either losing or winning £1 (Fig.4.1). 

 

Behavioural performance 

Analysis of the behavioural performance during the task, suggested that all participants acquired 

a preference for the highly rewarded choice during Reward Trials (High-Likelihood > Low-

Likelihood), thus showing learning of the task contingencies. No preference for a specific choice 

was present during Neutral and Bivalent Trials. Furthermore, all participants expressed faster 

reaction times when choosing during Reward Trials, as compared with Neutral and Bivalent 

Trials. Nevertheless, when considering the number of choices, PD patients with psychosis 

displayed a significantly lower preference for the rewarded choice, relative to Controls. It is 
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important to notice that these patients still showed a significant difference between High-

Likelihood and Low-Likelihood choices (HL > LL), thus expressing learning. Nevertheless their 

ability to learn reward-related associations and to use such learning to optimize their behaviour 

was significantly lower as compared with Controls. Critically, no differences between patients 

with and without psychosis were found. 

 

fMRI 

Reward anticipation and Reward Feedback 

The fMRI contrast, looking at Reward Anticipation, showed hypoactivation of the medial 

prefrontal cortex and the right temporal lobe in PD patients with psychosis, as compared to PD 

patients without psychosis.  

The fMRI contrast looking at Reward Feedback, showed hypoactivation of medial prefrontal 

cortex, ventral striatum, left temporal lobe and left orbitofrontal cortex in PD patients with 

psychosis, as compared to PD patients without psychosis.  

The finding of abnormal prefrontal activity linked to psychotic symptoms is in line with a 

significant body of literature showing - across a wide range of procedures and manipulations - 

altered fronto-striatal connectivity and dysfunctional neural processing of reward in such 

individuals (Murray et al., 2008a; Fusar-Poli and Meyer-Lindenberg, 2012; Juckel et al., 2006a; 

de Leeuw et al., 2015; Juckel et al., 2012; Schlagenhauf et al., 2014; 2009). Interestingly, the 

hypoactivation observed in the medial prefrontal cortex partially overlaps with the one found in a 

previous study (Bernacer et al., 2013), in which a correlation between psychotic symptoms and 
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impaired activation for reward anticipation was found in the ventromedial prefrontal cortex, by 

using a methamphetamine manipulation. 

 

Prediction Error 

No relevant differences between PD patients with and without psychosis were found regarding 

Prediction Error. This lack of a difference might be explained in the light of recent evidences 

reporting incomplete prediction error signals in older adults (Chowdhury et al., 2013). 

Senescence can indeed affect the ability to use information about rewards, which can result in 

little to null reward prediction error signals, probably determining the impossibility to capture 

such signals from the sample of interest of the present study. In healthy Controls, Reward 

Anticipation correlated with activation in the occipital cortex only, and this was also significantly 

underactivated in all PD patients compared with Controls.  

Prediction Error correlated in healthy Controls with activation in the right posterior parietal lobe, 

and this area was hypoactivated in all PD patients as compared with Controls. Even though it did 

not survive FWE correction, activity in frontal areas was visible when using less stringent 

cluster-level thresholds (p =.05).  

However, previous studies suggested a role of the parietal cortex in signalling surprising 

outcomes (Nieuwenhuis et al, 2005; Glascher et al, 2010), with some evidences also pointing to a 

dopaminergic mediation of reward processing in this region (Medic et al, 2014). 
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PART III - EXPERIMENTAL STUDIES ON PAVLOVIAN-TO-INSTRUMENTAL 

TRANSFER 

 

 

Study 5 - Individual differences in the influence of task-irrelevant 

Pavlovian cues on human decision 
 

Abstract 

Pavlovian-to-instrumental transfer (PIT) refers to the process of a Pavlovian reward-paired cue 

acquiring incentive motivational proprieties that drive choices. It represents a crucial 

phenomenon for understanding cue-controlled behaviour, and it has both adaptive and 

maladaptive implications (i.e., drug-taking). In animals, individual differences in the degree to 

which such cues bias performance have been identified in two types of individuals that exhibit 

distinct Conditioned Responses during Pavlovian conditioning: Sign-Trackers (ST) and Goal-

Trackers (GT). Using an appetitive PIT procedure with a monetary reward, the present study 

investigated, for the first time, the extent to which such individual differences might affect the 

influence of reward-paired cues in humans. In a first task, participants learned an instrumental 

response leading to reward; then, in a second task, a visual Pavlovian cue was associated with the 

same reward; finally, in a third task, PIT was tested by measuring the preference for the reward-

paired instrumental response when the task-irrelevant reward-paired cue was presented, in the 

absence of the reward itself.  In ST individuals, but not in GT individuals, reward-related cues 

biased behaviour, resulting in an increased likelihood to perform the instrumental response 

independently paired with the same reward when presented with the task-irrelevant reward-
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paired cue, even if the reward itself was no longer available (i.e., stronger PIT effect).  This 

finding has important implications for developing individualized treatment for maladaptive 

behaviours, such as addiction. 

 

Experimental Design 

The aim of the present study was to investigate individual differences in human PIT. 

Specifically, the present study explored, for the first time in humans, whether individual 

differences in the propensity to approach and engage a Sign (cue-predicting reward) or a Goal 

(reward) are predictive of cue-controlled behaviour. To this end, a typical PIT experimental 

design was used, comprising three tasks. In the first phase, participants performed an 

Instrumental Conditioning task, in which they were presented with two possible choices, one 

paired with an actual monetary win (Rewarded Choice) and the other paired with a neutral 

outcome (Unrewarded Choice). In a subsequent session, participants performed a Pavlovian 

Conditioning task, during which they learned to associate a specific visual cue with an actual 

monetary win (CS+), and another visual cue with a neutral outcome (CS-). During this phase, 

eye-movements were recorded and subsequently analysed in order to identify the expressed CR 

and characterize participants as ST or GT. Mirroring previous studies conducted in animals 

(Boakes, 1977; Flagel et al., 2011, 2008; Flagel, Watson, Robinson, and Akil, 2007; Robinson, 

Yager, Cogan, and Saunders, 2013), in which the CR is identified based on the amount of 

approaching behaviour expressed during CS presentation, in the present study ST and GT 

participants were distinguished based on a learned oculomotor CR. Specifically, it was measured 

the tendency to direct contiguous eye-gazes toward the location where the visual CS (Sign) or 
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the reward (Goal) would be presented. Finally, PIT was tested in an extinction phase (without 

any rewards), during which participants had to choose between the same two options given 

during instrumental conditioning, while presented with the task-irrelevant CS. In this final phase, 

PIT would be observed if presentation of the CS+, compared to the CS-, enhanced instrumental 

responses to the choice rewarded during instrumental conditioning (Congruent Choice), relative 

to the previously unrewarded choice (Incongruent Choice). If consistent with animal literature, 

this effect should be stronger in ST individuals than in GT individuals, possibly indicating a 

stronger biasing effect of Pavlovian cues over behaviour in the first group relative to the second. 

 

Materials and Methods 

 
Participants 

Forty-five volunteers (27 female; 2 left-handed; mean age = 24.87 sd = 2.5; mean education = 

17.53, sd = 1.5) with no history of neurological diseases were recruited from the student 

population at the University of Bologna. All participants gave written informed consent to take 

part in the experiment and received payment corresponding to the amount earned during the 

tasks. The study was conducted in accordance with institutional guidelines and the 1964 

Declaration of Helsinki. It was approved by the Ethics Committee for Psychological Research at 

the University of Bologna. 

Stimuli and procedure 

The whole experiment consisted of three tasks. The same visual background was used in all three 

tasks. Four black squares (4 cm
2
) were displayed on a 17-inch colour monitor with a black 

background. The squares were highlighted by a white frame and positioned as follows: top 
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center, bottom center, right center, left center. Two black-and-white fractal images (balanced for 

luminance, complexity and colour saturation) were used as Pavlovian cues (CS) and presented 

within the top center square. An image of a 10 euro cent coin was used as the reward, and a light-

yellow circle (equally sized) was used as the neutral outcome (no-reward). Both these visual cues 

appeared within the bottom center square (Fig. 5.1). A computer running Presentation software 

(Neurobehavioural Systems, Albany, CA) controlled stimulus presentation. On arrival, 

participants were comfortably seated in a silent room and their position was centered relative to 

the screen, at a viewing distance of 60 cm from the eye-tracker and 75 cm from the screen. The 

eye-tracker was positioned under the screen, and was centered relative to both the screen and the 

participant. Eye-movements and behavioural responses were collected throughout the experiment 

and stored for offline analysis. Participants were asked to remain as still as possible to avoid 

confounding effects on eye-movements. The whole experiment was conducted in a dark room to 

facilitate eye-movement recording. The experimental session began with calibration of the eye-

tracker device, during which the participant fixated 9 specific points on the computer screen The 

experimental session followed the standard paradigm for testing Pavlovian-to-Instrumental 

Transfer It was composed of three tasks administered in succession: an Instrumental 

Conditioning task, in which participants learned a response-contingent reward; a Pavlovian 

Conditioning task, in which participants learned a cue-contingent reward; and a Pavlovian-to-

Instrumental Transfer task, during which the influence of irrelevant Pavlovian cues on 

instrumental responding was tested. In each task, participants were required to pay attention to 

the screen and follow the instructions reported at the beginning of the task. A few example trials 

were always performed and, if necessary, further clarifications were given before beginning each 
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task. At the end of the experimental session, participants completed the Barratt Impulsiveness 

Scale (BIS-11) (Patton, Stanford, and Barratt, 1995). Previous studies on animals reported an 

association between Sign-Tracking behaviour and reduced impulse control (Flagel et al., 2011). 

Thus, this measure allowed further investigation into the differences between ST and GT 

individuals. 

Instrumental Conditioning task. Participants were instructed to choose between two squares to 

gain a reward. One square was paired with an actual monetary win (Rewarded Choice), while the 

other was paired with a neutral outcome (Unrewarded Choice). The right and left squares were 

presented in white and indicated as possible choices to be selected by a mouse click. The mouse 

pointer was centrally positioned before each choice, in order to not encourage a specific choice. 

Only one square was associated with a reward following a partial reinforcement schedule, so that 

between one reward and the next a variable interval between 4 and 12 seconds was always 

associated with no-reward. After each choice, a corresponding neutral image (light-yellow circle) 

or reward image (10 euro cents coin) appeared for 1 second in the bottom square (Fig. 5.1-A). 

Participants were aware that they would receive an actual payment corresponding to the amount 

of coins collected during the task. The association between square and outcome was 

counterbalanced across subjects. The rationale of this task was to make participants learn an 

association between a specific response (left or right square) and the reward; thus, participants 

would get a higher frequency of Rewarded Choices if they learned the correct association. The 

task lasted about 6 minutes, during which subjects were free to perform as many choices as they 

wished, with no time pressure. 
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Pavlovian Conditioning task. In each trial, one of two possible visual cues (fractal images) 

appeared for 5 seconds within the top square, followed by a white patch within the bottom 

square. Upon presentation of the patch, participants were instructed to press the left-Ctrl button 

on the keyboard as quickly as possible to remove the patch and discover the outcome hidden 

below. To perform this button press, participants did not need to remove their gaze from the 

screen. The outcome was then presented for 1 second. One fractal was associated with a reward 

(10 euro cent coin) on 80% of trials (CS+), while the other fractal was associated with no-reward 

(light-yellow circle) on all trials (CS-) (Fig. 5.1-B). The task consisted of 40 trials (20 per 

condition) with a variable inter-trial-interval between 0.5 and 4 seconds. Participants were aware 

that they would receive an actual payment corresponding to the amount of coins collected during 

the task. The association between visual cue and outcome was counterbalanced across subjects. 

The whole task lasted around 6 minutes.  

The Pavlovian speeded reaction time response described above ("press the button upon patch 

presentation") has been successfully used in previous studies (Talmi et al., 2008) and was 

introduced to obtain a behavioural measure of Pavlovian conditioning. The main reason for using 

a speeded response was to mirror PIT studies on animals, in which Pavlovian conditioning is 

measured by a behaviour performed to gain the reward (e.g., latency of the first nose-poke or 

frequency of nose-pokes) (Corbit and Balleine, 2005; Dickinson, Smith, and Mirenowicz, 2000; 

Holland, 2004). The rationale here is to observe a faster reaction times when a reward was 

predicted (CS+ condition) than when a neutral outcome was predicted (CS- condition). To avoid 

a possible instrumental influence on the task, participants were explicitly told that, in this task, 

the reward was not contingent on their response. It was demonstrated that, if no answer was 
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given, the patch would disappear anyway after 1.5 seconds, revealing the outcome. Importantly, 

this speeded reaction time response allowed us to obtain a measure of the learning rate that is 

independent from ST/GT behaviour.  

To identify ST and GT Conditioned Responses, eye-movements were recorded in order to 

evaluate contiguous eye-gazes directed toward the "Sign" (top center square) and the "Goal" 

(bottom center square). Mirroring animal studies, these two Conditioned Responses were 

subsequently used to distinguish participants as ST or GT, depending on the tendency to direct 

eye-gaze toward the Sign or the Goal during the 5 seconds of CS presentation (Flagel et al., 

2011). 

Pavlovian-to-Instrumental Transfer Task. Participants received exactly the same instructions 

as in the Instrumental Conditioning phase requiring them to choose between the right and left 

white squares. The task was identical to the Instrumental Conditioning task, except in two 

aspects: first, the task-irrelevant Pavlovian CS were presented sequentially within the top square, 

changing every 30 seconds; second, the task was completely performed in extinction, so all 

choices always lead to no-reward. (Fig. 5.1-C). Extinction is a standard procedure for assessing 

PIT, both in human and animal research, since it allows one to test the influence of Pavlovian 

cues on instrumental responding without the confounding effects of the reward (Bray et al., 

2008; Corbit, Muir, and Balleine, 2001; Rescorla, 1994a, 1994b; Talmi et al., 2008). Indeed, the 

rationale here is to test the ability of a task-irrelevant Pavlovian cue to drive choices 

(presumably, towards the response previously associated with a reward) even if the reward is not 
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available anymore. The PIT task lasted about 6 minutes, during which subjects were free to 

perform as many choices as they wished, with no time pressure. 

 

 
Figure 5.1 

Graphical illustration of the three tasks: Instrumental Conditioning Task (Panel A), Pavlovian 

Conditioning Task (Panel B); Pavlovian-to-Instrumental Transfer Task (Panel C). 
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Eye tracking 

Eye movements were recorded in a dimly lit room using a Pan/Tilt optic eye-tracker (Eye-Track 

ASL-6000) which registers real-time gaze at 50Hz. Data acquired during the Pavlovian 

Conditioning task were analysed offline using EyeNal Analysis Software (ASL). Dwell time 

during the 5 seconds of CS presentation was then measured for two specific areas of interest 

(AOI): "Sign", corresponding to the 4 cm square at the top center, plus a 1 cm margin; "Goal", 

corresponding to the 4 cm square at the bottom center, plus a 1 cm margin. Dwell time was 

defined as the amount of time during which a series of contiguous fixations remained within the 

same AOI.  

 

Sign-Tracker and Goal-Tracker categorization  

Participants were categorized as ST or GT based on the oculomotor CR expressed during the 

Pavlovian Conditioning task. Previous studies used approaching and engaging behaviours during 

Pavlovian Conditioning to identify ST and GT. In these studies, the numbers of contacts with the 

Sign (i.e., lever) and the Goal (i.e., food tray) were compared to obtain an index of behaviour, 

and divide the subjects into ST (i.e., high probability to engage the lever) and GT (i.e., high 

probability to engage the food-tray) individuals (Flagel et al., 2011, 2008, 2007; Robinson and 

Flagel, 2009; Robinson et al., 2014; Saunders and Robinson, 2013). This method was adapted in 

the present experiment by calculating contiguous eye-gazes (Dwell Time) toward the cue (Sign) 

and the reward (Goal) Areas of Interest (AOI), during CS presentation (see above). ST behaviour 

has been defined as a Conditioned Response to approach and engage “the cue or sign that 

indicates impending reward delivery"; while GT behaviour has been defined as a tendency to 
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"engage the location of unconditioned cue delivery, even though it is not available until 

conditioned cue termination" (Flagel et al., 2011). Thus, a learned oculomotor CR towards the 

location of the Sign or the Goal is a practical method for distinguishing between ST and GT 

individuals. On this basis, an eye-gaze index was created based on the Dwell Time spent on the 

Sign and Goal locations. An individual dwell is defined as the time period during which a 

fixation or series of temporally contiguous fixations remain within an Area of Interest (AOI). 

That is, an individual dwell is defined as the sum of the durations across all fixations within the 

current AOI, from entry to exit. To compute fixations, EyeNal Analysis Software was used, 

which defines a fixation if the observer’ s gaze position remains within a diameter of 0,5 degree 

of visual angle for at least 120 ms (6 consecutive samples, at 50 Hz sampling rate; Eye-Analysis 

software Manual, v. 1.41, Applied Science Laboratories, 2007). The Dwell Time spent on the 

Sign and Goal locations was calculated for each trial and then averaged for each participant. The 

eye-gaze index was calculated as the difference between the Dwell Time on Sign minus the 

Dwell Time on Goal over the total Dwell Time (Sign - Goal / (Sign + Goal)), so that a higher 

value corresponded to a higher Dwell Time toward the Sign (Sign-Tracking behaviour) and a 

lower value corresponded to a higher Dwell Time toward the Goal (Goal-Tracking behaviour). 

Since the interest here was to disentangle two reward-specific Conditioned Responses, only CS+ 

trials in the second half of the task were considered, when contingency learning was more 

established. Based on this index, the top and bottom 50% of the total sample were categorized as 

ST (eye-gaze index between 0.38 and 1.00) and GT (eye-gaze index between -1.00 and 0.27), 

respectively. 
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Results 

 

Sign-Tracker and Goal-Tracker Conditioned Responses  

To ensure that the oculomotor responses used to categorize ST and GT individuals were learned 

CRs, eye-gaze indices were separately analysed for CS+ and CS- trials in the first and second 

halves of the Pavlovian Conditioning task. Two separate mixed-effects models with Group 

(ST/GT) and Hemiblock (1/2) as independent variables were performed for CS+ and CS- 

conditions. The eye-gaze index described above was the dependent variable. Subjects were 

modeled as a random effect. Assumptions of normal distribution, independence of residuals and 

sphericity were verified. Results from CS+ trials showed a significant interaction effect (F(1, 42) 

= 14.75; two-tailed p = .0004; part. η
2
 = .26). Bonferroni-corrected post-hoc tests revealed a 

significant difference (p=.003) between ST (mean = .35; sd = .77) and GT (mean = -.06; sd = 

.79) in the second Hemiblock (Fig. 5.2-A). No other post-hoc comparisons were significant (ps > 

.15). Results from CS- trials did not show any significant effects (ps > .05) (Fig. 5.2-B). Overall, 

these results indicate two important points: first, a bias toward either the Sign or the Goal is a 

learned Conditioned Response, since it is not present at the beginning of the task but emerges 

later in time, when contingencies have been learned (Fig. 5.2-A); moreover, this looking bias is 

specific to the reward-paired cue (CS+), as no differences were observed for the unpaired cue 

(CS-) (Fig. 5.2-B).In Fig. 5.2-A it is evident how, at the beginning of the Pavlovian task, during 

CS+ presentation, no tendency seems evident, while, towards the end ST show higher Dwell 

Time towards the Sign (eye-gaze index increases) while GT show higher Dwell Time towards 
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the Goal (eye-gaze index decreases). Fig. 5.2-B, on the other hand, shows that the same pattern is 

not observable during the presentation of the neutral stimulus (CS-). 

To further test that this behaviour is a reward-specific CR, the eye gaze index was also directly 

compared between CS+ and CS- trials from the second hemiblock (when contingencies had been 

learned) within each group. Two separate paired t-tests were performed for the ST and GT 

groups, using Condition (CS+/CS-) as the independent variable and the eye-gaze index as the 

dependent variable. In both groups a significant difference between the two conditions was 

found. The ST group showed a significantly higher eye-gaze index in the CS+ condition than in 

the CS- condition (t(21) = 1.69; one-tailed p = .03; Cohen’s d = .19), indicating a greater 

tendency to direct contiguous eye-gazes towards the Sign during CS+ trials than during CS- 

trials (Fig. 5.2-C). The GT group showed a significantly lower eye-gaze index in the CS+ 

condition than in the CS- condition (t(21) = 2.21; one-tailed p = .01; Cohen’s d = .24), indicating 

a greater tendency to direct contiguous eye-gazes towards the Goal during CS+ trials than during 

CS- trials (Fig. 5.2-D). 

Given the specific spatial locations of the Sign and the Goal in the present paradigm, visual 

exploratory behaviour was also considered by analyzing the total dwell time spent on the top and 

the bottom portions of the screen, in order to exclude the presence of a spatial bias that could 

account for ST and GT behaviour. A mixed-effects model was used, with Group (ST/GT) and 

AOI (Top/Bottom) as independent variables and Total Dwell Time as dependent variable. 

Subjects were modeled as a random effect. Assumptions of normal distribution, independence of 

residuals and sphericity were verified. Results showed a marginal main effect of AOI (F(1, 42) = 
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4.01; two-tailed p = .05; part. η
2 

= .09), with more Dwell Time spent on the Top of the screen 

(mean = .76; sd = .91) than on the Bottom (mean = .41; sd = .64) in both groups (Fig. 5.2-E). 

Neither group differences, nor interaction effects emerged (ps > .87). These results strengthen the 

evidence that the behavioural differences observed between ST and GT cannot be ascribed to a 

mere spatial bias towards the upper or the lower part of the screen. The general difference in time 

spent looking at the Top and the Bottom of the screen is compatible with the fact that dwell time 

was calculated during the 5 seconds of CS presentation. These results thus indicate that both 

groups spent more time visually exploring the region of the screen where a stimulus was being 

presented (Top), rather than where there was no stimulus (Bottom). No difference in this spatial 

bias  was found between the two groups (Fig. 5.2-E). 

Taken together, the last two analyses demonstrated that group differences in the tendency to 

direct contiguous eye-gazes to the location of the Sign or the Goal cannot be ascribed to a mere 

spatial bias, but rather reflect a learned reward-related conditioned response. 
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Figure 5.2 

Oculomotor response.  Panels A and B show the eye-gaze index in the two groups (ST = Sign-

Trackers; GT = Goal-Trackers) and the two task hemiblocks. Panel A represents CS+ trails and 

panel B represents CS- trials. Panels C and D show the eye-gaze index in the two conditions 

(CS+ = reward-associated cue; CS-  = neutral cue) in Sign-Trackers and Goal-Trackers, 

respectively. Panel E shows visual exploratory behaviour in the two groups (ST = Sign-Trackers; 

GT = Goal-Trackers) throughout the task. Bars indicate standard error of the mean. * p <.05; **p 

<.01; *** p <.001. 
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Instrumental Conditioning 

To ensure that instrumental conditioning was successful in both the ST and the GT groups, so 

that all participants learned which response leads to a reward, the number of choices (mouse 

clicks) made on the two white squares were compared. Choosing the square associated with 

reward was considered a Rewarded Choice, and choosing the square associated with no-reward 

was considered an Unrewarded Choice. A mixed-effects model was used, with Choice 

(Rewarded/Unrewarded) and Group (ST/GT) as independent variables and the number of 

choices as the dependent variable. Subjects were modeled as a random effect. Assumptions of 

normal distribution, independence of residuals and sphericity were verified. Results showed a 

main effect of Choice (F(1, 42) = 20.88; two-tailed p < .0001; part. η
2 

= .33), with Rewarded 

Choices (mean = 32.80; sd = 9.38) occurring more frequently than Unrewarded Choices (mean = 

22.09; sd = 9.10) (Fig. 5.3-A). Neither group differences, nor interaction effects emerged (ps > 

.55). These results indicate that the ST and GT groups learned to discriminate between the 

rewarding and non-rewarding choices equally well. 

 

Pavlovian Conditioning 

To ensure that Pavlovian learning occurred in both ST and GT groups, reaction times to patch 

presentation were analysed. If participants correctly learned to discriminate between the two 

Pavlovian cues, faster reaction times should be observed for CS+ trials relative to CS- trials. A 

mixed-effects model was used, with Condition (CS+/CS-) and Group (ST/GT) as independent 

variables, and reaction times as the dependent variable. Subjects were modeled as a random 

effect. Assumptions of normal distribution, independence of residuals and sphericity were 
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verified. Results showed a significant main effect of Condition (F(1, 842) = 110.24; two-tailed p 

= .0001; part. η
2 

= .72), with faster reaction times for CS+ trials (mean = 306.33; sd = 44.41) 

relative to CS- trials (mean = 351.21; sd = 50.05) (Fig. 5.3-B). Neither group differences, nor 

interaction effects emerged (ps > .29). These results indicate that participants generally reacted 

more quickly to the patch on trials with the reward-paired cue (CS+) than on trials with the 

unpaired cue (CS-). This reward-specific response facilitation indicates successful Pavlovian 

conditioning in both ST and GT. 

 

 
Figure 5.3 

Learning rates in the two groups (ST = Sign-Trackers; GT = Goal-Trackers) during Instrumental 

Conditioning (panel A) and Pavlovian Conditioning (panel B). Bars indicate standard error of the 

mean. * p <.05; **p <.01; *** p <.001. 
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Pavlovian-to Instrumental Transfer 

To test for PIT, the numbers of Congruent choices (associated with the reward during 

Instrumental Conditioning) and Incongruent choices (associated with no-reward during 

Instrumental Conditioning) during CS+ and CS- presentation were compared. A response index 

was calculated as the probability of selecting the Congruent choice minus the probability of 

selecting the Incongruent choice (number of congruent – incongruent choices / total number of 

choices). Higher values correspond to a higher probability of making the Congruent choice, 

while lower values correspond to a higher probability of making the Incongruent choice. A 

mixed-effects model was used, with Condition (CS+/CS-) and Group (ST/GT) as independent 

variables and the response index, described above, as the dependent variable. Subjects were 

modeled as a random effect. Assumptions of normal distribution, independence of residuals and 

sphericity were verified. Results showed a significant Condition X Group interaction (F(1, 42) = 

8.22; two-tailed p = 0.006; part. η
2 

= .16). Bonferroni-corrected post-hoc comparisons revealed a 

significant difference (p = .001) between CS+ (mean = .18; sd = .12) and CS- (mean = .04; sd = 

.13) only in ST group, and a significant difference (p = .04) between ST (mean = .18; sd = .12) 

and GT (mean = .08; sd = .12) during CS+ (Fig. 5.4-A). No other comparisons were significant 

(ps > .13). These results indicate that the ST group was more likely to choose the congruent 

option when they saw the task-irrelevant CS+ than when they saw the CS-. thus revealing a PIT 

effect. Critically, this bias was stronger in ST than in GT individuals. 

While the first analysis on PIT focused on the overall effect, a second analysis divided the task 

into three equal blocks of 2 minutes (4 trials) to check for differences in task performance over 

time. A mixed-effects model was used, with Condition (CS+/CS-), Group (ST/GT) and Block 
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(1/2/3) as independent variables, and the response index as the dependent variable. Subjects were 

modeled as a random effect. Assumptions of normal distribution, independence of residuals and 

sphericity were verified. Results showed a significant main effect of Condition (F(1, 42) = 6.39; 

two-tailed p = 0.02; part. η
2 

= .13), a significant Condition X Group interaction (F(1, 42) = 7.69; 

two-tailed p = 0.008; part. η
2 

= .15), and a significant Block X Group interaction (F(1.27, 53.32) 

= 50.61; two-tailed p < 0.001; part. η
2 

= .5) (Fig. 5.4-B/C). Bonferroni-corrected post-hoc tests 

on the Condition X Group interaction revealed a significant difference (p = .003) between CS+ 

and CS- in ST group but not the GT group, and a significant difference (p = .02) between ST and 

GT groups in CS+ trials (Fig. 5.4-B/C). Bonferroni-corrected post-hoc tests on the Block X 

Group interaction revealed a significant difference (p < .0001) between ST and GT groups in the 

third block, but not in the first and second blocks (Fig. 5.4-B/C). Fig. 5.4-D shows the number of 

responses. 

In line with the results of the first analysis, these results showed that, unlike GT, ST group was 

more likely to choose the congruent option when they saw the task-irrelevant CS+ than when 

they saw the CS-, throughout the entire PIT task. The only effect of time revealed by this 

analysis was in the last block, where a group difference in responses emerged. Since this 

difference was unrelated to the displayed stimulus (CS+/CS-), it does not constitute a difference 

in PIT. This result instead indicates that the ST and GT groups differed in the proportion of 

congruent choice made towards the end of the task, thereby revealing a possible faster extinction 

of the preference for the previously rewarded choice in the GT group than in the GT group.  
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Figure 5.4 

Pavlovian-to-Instrumental Transfer. Panel A shows the response index (Congruent-

Incongruent/Total) in the two groups (ST = Sign-Trackers; GT = Goal-Trackers) during CS- and 

CS+ trials. Panels B and C show the response index over time by dividing the task into three 

blocks of two trials. Panel D shows the number of responses. Bars indicate standard error of the 

mean. * p <.05; **p <.01; *** p <.001. 
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Impulsiveness 

To further investigate differences between ST and GT individuals, self-reported impulsiveness, 

as rated by the BIS-11 questionnaire (Patton et al., 1995), was compared between the two 

groups. A two-sample t-test was performed using Group (ST/GT) as the independent variable 

and BIS-11 scores as the dependent variable. Results revealed a significant difference between 

the two groups (t(28.75) =2.06; two-sided p = 0.04, with the ST group (mean = 61.0; sd =9.91) 

showing higher impulsiveness than the GT group (mean = 54.09; sd = 8.86)  (Fig. 5.5). This 

finding is consistent with previous studies showing significantly higher levels of impulsiveness 

as compared to GT (Flagel et al., 2009; Tomie, Aguado, Pohorecky, and Benjamin, 2000). 

 

 
Figure 5.5  

Impulsiveness levels in the two groups (ST = Sign-Trackers; GT = Goal-Trackers) as measured 

by the Barratt Impulsiveness Scale (BIS-11). Bars indicate standard error of the mean. * p <.05; 

**p <.01; *** p <.001. 
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Conclusion 

In the present study, the Pavlovian-to-Instrumental Transfer (PIT) paradigm was used to examine 

individual differences in the excitatory influence that signals associated with reward can exert on 

human choices. PIT is a well-known procedure for testing the ability of a Pavlovian reward-

paired cue to acquire incentive motivational properties and influence instrumental performance 

(de Wit and Dickinson, 2009; Estes, 1943, 1948; Holmes et al., 2010; Rescorla and Solomon, 

1967). Here, participants performed a standard PIT paradigm composed of 3 tasks: an 

Instrumental Conditioning task, during which response-outcome associations were learned; a 

Pavlovian Conditioning task, during which stimulus-outcome associations were leaned; and a 

PIT task, in which the ability of a Pavlovian cue to drive instrumental responses was tested. 

Individual differences were characterized by two distinct oculomotor Conditioned Responses 

(CR) exhibited during Pavlovian Conditioning, corresponding to two different learning styles 

previously identified and described in animal literature: Sign-Tracking (ST) and Goal-Tracking 

(GT) (Boakes, 1977; Estes, 1943, 1948; Flagel et al., 2011). In the present study, ST behaviour 

consisted of a tendency to direct contiguous eye-gazes towards the cue (CS) that indicated 

impending reward delivery (Sign); in contrast, GT behaviour was characterized by a tendency to 

direct contiguous eye-gazes towards the location of reward (US) delivery (Goal), even if not 

available until CS termination. An eye-gaze index was based on the emergence of these two 

behavioural patterns during presentation of the reward-paired stimulus (CS+) in the second half 

of the task (when contingencies had been learned), and a median split was used to categorize 

participants as ST or GT. Importantly, the present results demonstrate that this oculomotor CR 

was (i) acquired over time (i.e., learned), since a specific CR towards the Sign or the Goal only 
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emerged towards the end of the task, when stimulus-reward associations had been acquired 

selectively during the presentation of reward-paired cues (CS+) (Fig. 5.2-A/B); and (ii)  reward 

specific, since the CR was only evident when participants saw the reward-related cue (CS+) and 

not when they saw the neutral cue (CS-) (Fig. 5.2-C/D). Coherently with what expected, the task-

irrelevant CS had a much stronger influence on the ST group than on the GT group during the 

PIT task. 

Group differences in the PIT effect are not attributable to differences in the strength of 

Instrumental or Pavlovian learning between the groups, which could have potentially induced a 

bias towards the rewarded choice in the Instrumental Conditioning task, or a stronger influence 

of the reward-paired cue in the second Pavlovian Conditioning task. Analyses of both the 

number of rewarded choices during Instrumental Conditioning, and reaction times during 

Pavlovian Conditioning, exclude such a possibility by revealing that both the ST and GT groups 

learned the response-outcome and stimulus-outcome contingencies equally well (Fig. 5.3). 

Consequently, differences in the PIT effect cannot be explained by group differences in the 

ability to learn either the instrumental or the Pavlovian contingencies. In line with the animal 

literature (Robinson and Flagel, 2009), the Pavlovian cue (CS+) was clearly predictive of reward, 

since it elicited faster reaction times during Pavlovian conditioning than the neutral stimulus 

(CS-) did in both groups, along with a CR corresponding to the behavioural profile of each group 

(ST/GT).  

Since the “Sign” and the “Goal” had specific spatial locations (the top and bottom portions of the 

screen, respectively), it is important to rule out the possibility that spatial biases in gaze direction 
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might account for the difference in the PIT effect between groups. A bias towards looking at the 

top of the screen might cause result in a stronger influence of the Sign on the ST group just 

because they spent more time looking at it. Analysis of visual exploratory behaviour during 

Pavlovian Conditioning, however, revealed that the ST and GT groups did not differ in the total 

amount of time spent looking at the top and bottom of the screen (Fig. 5.2-E). Critically, 

behavioural differences only emerged during CS+ trials towards the end of the task, once the 

association between the cue and the reward had been learned. Consequently, it is  conclude that 

there was no a-priori bias in gaze direction; rather, such a bias emerged during the Pavlovian 

Conditioning task as a learned reward-specific CR. 

Moreover, a recent study (Trick, Hogarth, and Duka, 2011) directly investigated the relation 

between fixation times during Pavlovian learning and the PIT effect. The authors found that 

fixation times during Pavlovian learning increased with uncertainty (that is, more attention was 

paid to stimuli with uncertain outcome probabilities, e.g., 50%, than to stimuli with more certain 

outcome probabilities, e.g., 90%). In contrast, the PIT effect increased with the probability of 

reward (that is, it was stronger for stimuli associated with a high probability of reward, e.g., 90%, 

than for stimuli associated with uncertain outcomes, e.g., 50%, or a low probability of reward, 

e.g. 10%). Thus, Trick et al. (2011) concluded that the behavioural influence exerted by 

conditioned stimuli (i.e., the PIT effect) is dissociated from attention to Pavlovian stimuli in 

humans, (see Kaye and Pearce, 1984, for similar findings in animals). Instead, PIT is linked to 

the predictive value acquired by stimuli during learning. 
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ST behaviour has been explained as a consequence of attributing incentive salience to reward-

paired cues (Pavlovian CS), arising from the interaction between previous experience 

(reinforcement learning processes) and individual propensities (Berridge and Robinson, 2003; 

Berridge, 2001; Flagel et al., 2011). This incentive salience motivates reward-related action 

(Flagel et al., 2008; Robinson and Flagel, 2009; Tomie et al., 2000). In the present study, ST and 

GT groups differed in the extent to which Pavlovian reward-paired cues biased their behaviour: 

relative to the GT group, the ST group showed an increased likelihood of performing the 

instrumental response independently paired with the same reward when presented with the task-

irrelevant reward-paired cue, even if the reward itself was no longer available (i.e., a stronger 

PIT effect) (Fig. 5.4-A). Therefore, reward-paired cues exerted a stronger source of influence on 

the behaviour of ST individuals, as predicted.  Importantly, time course analysis revealed that 

this effect occurred early and remained stable throughout the entire PIT test session (Fig. 5.4-

B/C), thereby suggesting that the group difference in the PIT effect most likely reflects greater 

incentive salience to reward cues in ST than in GT individuals. 

A group difference in the overall amount of congruent responses (during both CS+ and CS- 

presentation, thus not reflecting PIT) emerged towards the end of the task (Fig. 5.4-B/C). This 

difference might reflect a tendency for GT individuals to extinguish reward-associated 

instrumental responses more quickly than ST individuals. However, this interpretation should be 

considered with caution, given the short duration of the task (6 minutes), which might not have 

been sufficient to properly explore group differences in extinction.  
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Previous studies have found an association between ST behaviour and other traits, such as higher 

levels of behavioural impulsivity and a greater propensity to develop addiction (Flagel et al., 

2008; Robinson and Flagel, 2009; Tomie et al., 1998). In line with these studies, the present 

study found reduced self-reported impulse control in the ST group than in the GT group (Fig. 

5.5). These findings seem to corroborate the idea that ST and GT behaviours are just one 

expression of a broader profile of individual differences, which might be clinically relevant. 

Many studies have reported that ST individuals are more impulsive and prone to develop 

potentially maladaptive behaviours, such as addiction (Flagel et al., 2011; Robinson and Flagel, 

2009; Tomie et al., 1998). For example, the propensity to sign-track is associated with a stronger 

effect of psychomotor sensitization, a higher susceptibility to a form of cocaine-induced 

plasticity that may contribute to the development of addiction (Flagel et al., 2008). Furthermore, 

ST behaviour in relation to a specific Pavlovian cue (i.e., a cue predicting monetary reward) is 

also predictive of the propensity to attribute incentive salience to other reward-paired cues, such 

as food-related or drug-related cues (e.g., cocaine and alcohol) (Clark et al., 2013; Cunningham 

and Patel, 2007; Flagel et al., 2008; Uslaner, Acerbo, Jones, and Robinson, 2006). The extent to 

which such individual differences might play a role in the development of addiction and in the 

propensity to relapse is not yet clear, but their implications for developing individually targeted 

treatment programs are promising. 
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Study 6 - Triggering avoidance: the power of aversive conditioned 

stimuli on human behaviour 
 

 

Abstract 

In the present experiment the influence of Pavlovian aversive stimuli on avoidance instrumental 

responses has been tested by using a Pavlovian-to-Instrumental Transfer (PIT) task. Transfer 

effect reflects the learned motivational influence of the CS over the instrumental response 

(Blundell, Hall, and Killcross, 2001; Corbit, Muir, and Balleine, 2001; Dickinson, Smith, and 

Mirenowicz, 2000; Hall, Parkinson, Connor, Dickinson, and Everitt, 2001; Holland and 

Gallagher, 2003). Two forms of transfer have been object of investigation: outcome-specific 

transfer -which is tough to be mediated by the sensory-specific properties of the reinforcer, 

deriving from a S-O-R association - and general transfer – which is thought to be mediated by a 

direct S–R association, reflecting a more general motivational response. Additionally, in order to 

clarify the nature of the transfer effect (goal-directed/habit), the impact of reinforcer devaluation 

after different amounts of instrumental training has been investigated. A double dissociation 

between specific and general aversive transfer effects was reported for the first time in humans. 

Specific transfer was expressed in the percentage of responses but not in the vigour of such 

responses; whereas the opposite pattern was observed for general transfer,  where the effect was 

captured by the vigour of the responses but not percentage of responses. Moreover, specific 

transfer was enhanced by instrumental overtraining, but not by reinforcer devaluation. General 

transfer was not affected by neither instrumental overtraining nor reinforcer devaluation. 
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Experimental Design 

Given the lack of literature human PIT, especially in aversive contexts, a first aim of the present 

study is to investigate the ability of aversive Pavlovian stimuli to increase the number and vigour 

of instrumental responses independently paired with the same (outcome-specific transfer) and 

different (general transfer) punishments. Furthermore, in order to evaluate the nature (goal-

directed/habits) of transfer effect, a second aim of the present study is to test the effect of 

outcome devaluation on specific and general forms of PIT. Finally, to investigate the 

mechanisms behind transfer, a third aim of this study is to test the effect of instrumental 

overtraining on outcome-specific and general transfer. 

With these three aims in mind, an aversive experimental design was used, comprised of three 

main tasks (Instrumental Conditioning, Pavlovian Conditioning, PIT), and presented to the 

participants as a space-war game. Crucially, two measures of transfer were acquired: the 

percentage of instrumental responses performed in each task and the vigour (hand-grip) of such 

responses. 

 

Materials and Methods 

 

Participants 

Thirty-eight volunteers (18 female; 4 left-handed; mean age = 25.18, sd = 5.69 years; mean 

education = 16.5, sd = 2.42 years) with no history of neurological diseases were recruited from 

the student population of the University of Cambridge (UK). All participants gave written 
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informed consent to take part in the experiment and received payment corresponding to the 

amount of time needed to complete the tasks. The study was conducted in accordance with 

institutional guidelines and the 1964 Declaration of Helsinki. It was approved by the Department 

of Psychology Ethics Committee of the University of Cambridge. 

 

Skin Conductance Response (SCR) recording and analysis 

Ambu WS electrodes connected to a DC amplifier (Biopac Systems - MP150 - GSR100) were 

used for recording galvanic skin response. These were attached to subjects’ volar surface of the 

index and middle fingertip in their left hand (which did not require any motor movement during 

the task). A gain factor of 5 μS/V and low-pass filter set at 10 Hz were used for recording the 

analog signal, which was then passed through the digital converter at a 200Hz rate. The signal 

was then fed into AcqKnowledge 3.9 (Biopac Systems) and transformed into microsiemens for 

offline analysis. Skin Conductance Response (SCR) was extracted from the continuous signal 

and calculated for each trial as the peak-to-peak amplitude of the largest deflection during the 

0.5-4.5 sec time window following stimulus onset (Schiller et al. 2008). The minimal response 

criterion was 0.02 μS and smaller responses were encoded as zero. Raw SCR scores were square 

root transformed to normalize the distributions and scaled to each subject’s maximal US 

response to account for interindividual variability (Schller et al., 2008).  

Data were analysed offline using custom-made MATLAB scripts (The MathWorks, Inc., Natick, 

Massachusetts, United States) and all statistical analyses were performed with RStudio 

v0.98.1062 (Boston, MA).   
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This signal was recorded to assess implicit Pavlovian learning. During Pavlovian Conditioning 

task all trials were recorded, however analyses only included trials in which no aversive noise 

was delivered (40% of all CS+ and all CS- trials), in order to exclude artifacts. 

 

Hand-grip and response recording and analysis 

An isometric hand dynamometer was used (Biopac Systems - MP150 - TSD121C - DA100C) to 

record hand gripping (compression), by simply squeezing the handle of the transducer. To ensure 

correct recording of the hand grip, the hand dynamometer was calibrated and each participant 

was given the chance to familiarize with the maximum and minimum strength possible to be 

recorded. The hand grip was recorded in kilograms and extracted from the continuous signal by 

calculating the maximum peak amplitude for each trial. 

To allow for multiple responses, the hand dynamometer was attached to the base of a joystick 

and used as handle. In this way, participants could squeeze the handle bar while moving it 

towards the left or the right. Both the side and the hand-grip were simultaneously recorded. 

These measures were collected to get a measure of the vigour of all responses performed. 

 

Stimuli 

Five different custom made images depicting space scenarios were presented in the background 

of a computer screen during all tasks. Centrally, in the lower part of the screen, a smaller image 

of a monitor was used to display visual feedbacks. Visual feedbacks consisted in: a green circle 
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with the inscription “missed”; a red triangle with the inscription “hit”; the inscription “defend 

yourself”. Images were presented on a 17 inches computer screen, at a viewing distance of 80 

cm.  

The “hit” feedback was always paired with one of three different aversive noises, consisting in 

100db sounds played for 1 second. The three noises had been rated as equally aversive and 

clearly distinguishable by and independent group of subjects prior to the experiment. 

A computer running Presentation software (Neurobehavioural Systems, Albany, CA) controlled 

stimulus presentation.  

 

Procedure 

On arrival, participants were comfortably seated in a silent room and their position was centred 

relative to the screen. They were required to wear a headset used to deliver aversive sounds 

during the task. 

Galvanic skin response, hand grip and behavioural responses were collected throughout the 

experiment and stored for offline analysis.  

The experiment consisted of three main tasks, with a repetition of some of those. The tasks were 

presented in the following order: Instrumental Conditioning, Pavlovian Conditioning, PIT, PIT 

under devaluation (PIT-dev), Instrumental Overtraining, PIT after overtraining (PITo), PIT after 

overtraining under devaluation (PITo-dev). In each task, participants were required to pay 
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attention to the screen and follow the instructions. A few example trials were always performed 

at the beginning and, if necessary, further clarifications were given before each task.  

At the end of the experimental session, participants completed the Behavioural 

Inhibition/Activation System (BIS/BAS) inventory (Carver and White, 1994). 

Instrumental Conditioning task. Participants were engaged in a space-war kind of game. In the 

initial instructions, participants were thanked for taking part to the space mission and warned that 

during this first part of the task there were two possible kinds of attacks (bombs and missiles), 

each one corresponding to a different Unconditioned Stimulus (US), consisting in an aversive 

noise. The two USs were played at this stage to allow participant’s familiarization.  A single 

space scenario was presented on the background for the whole duration of the task and, after a 

random inter trial interval (1.5-2 seconds), a “defend yourself” message was prompted into the 

small monitor (2 seconds). For the following 30 seconds, one of the two possible USs 

(corresponding to either bombs or missiles) was randomly delivered according to a random 

interval (1.5-3 seconds). To avoid attacks, participants were provided with a joystick and 

required to move it towards left or right, while squeezing, in order to learn the correct response 

to avoid each specific US. Each side allowed to avoid only one US. If the US was correctly 

avoided a “missed” visual feedback was displayed in the small monitor; if not a “hit” visual 

feedback was presented (1 second) (see Stimuli section for a description) (Fig. 6.1-A). The 

association between response (left/right) and attack (bombs/missiles) was counterbalanced across 

subjects. The rationale of this task was to learn the association between a specific US and the 
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correct response (left or right) required to avoid it. Participants performed 4 trials for each kind 

of attack, for a total of 8 trials and a duration of about 5 minutes. 

At the end of this task, explicit learning was assessed by asking participants to pair each US with 

the corresponding correct avoidance response. 

Pavlovian Conditioning task. Participants were presented with new instructions informing that 

in this stage they would be travelling through different galaxies (corresponding to the variable 

space scenario backgrounds used as Conditioned Stimuli) and that more attacks could be 

delivered. They were also informed that they would not be able to use the joystick to avoid those 

attacks and were required to pay attention to the contingencies. 

In each trial, after a variable inter trial interval (7-9 seconds), one of four possible space 

scenarios (conditioned stimuli - CSs) was presented in background (4.5 seconds) and was 

followed by a “missed” or “hit visual feedback (1 second). Two scenarios (CS+1/CS+2) were 

paired with the same two USs previously used during Instrumental Conditioning; a third scenario 

(CS+3) was paired with a new US; a fourth scenario (CS-) was associated with no sound. All 

CS+ followed a 60-40 partial reinforcement schedule (Fig. 6.1-B). The association between CS 

and US was counterbalanced across subjects. The rationale of this task was to learn the 

association between the different space scenarios (CSs) and each US. Participants performed 20 

trials for each CS condition, for a total of 80 trials and a duration of about 15 minutes. 

At the end of this task, explicit learning was assessed by asking participants to pair each US with 

the corresponding CS. 
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Pavlovian-to-Instrumental Transfer (PIT) task. Participants were instructed that at this stage 

they could use again the joystick to avoid attacks (as during instrumental conditioning task), but 

that a malfunction occurred to the monitor and no visual feedback was going to be displayed on 

the monitor. The task was identical to the Instrumental Conditioning task, except in two aspects: 

first, the task-irrelevant space scenarios used during Pavlovian Conditioning as CSs were 

randomly presented in background, one for each trial; secondly, the task was completely 

performed in extinction, so neither visual feedbacks nor aversive noises ever occurred (Fig. 6.1-

C). Extinction is a standard procedure for assessing PIT, both in human and animal research, 

since it allows one to test the influence of Pavlovian cues on instrumental responding without the 

confounding effects of the unconditioned stimulus (Bray et al., 2008; Corbit, Muir, and Balleine, 

2001; Rescorla, 1994a, 1994b). The rationale of this phase is to test the ability of a task-

irrelevant Pavlovian cue to trigger avoidance responses (presumably, towards the one previously 

associated with the same or a similar punishment) even if no aversive stimuli are delivered. 

Participants performed 4 trials for each CS condition, for a total of 16 trials and a duration of 

about 8 minutes. 

PIT with devaluation. In this phase, the PIT task was repeated exactly as the first time, but the 

headset was removed from the participant, so that no USs could be delivered. A similar 

procedure was successfully used in previous study to assess devaluation (Gillan et al., 2014). 

Instrumental Overtraining. During this task, participants repeated the Instrumental 

Conditioning task for a total of 24 trials and a duration of about 14 minutes, thus three times 

more than the previous Instrumental Conditioning task. 
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Figure 6.1 

Graphical illustration of the three MAIN tasks: Instrumental Conditioning Task (Panel A), 

Pavlovian Conditioning Task (Panel B); Pavlovian-to-Instrumental Transfer Task (Panel C). 
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Results 

 

Instrumental Conditioning 

To assess implicit learning of the Instrumental Conditioning task, the number of responses 

performed with the joystick were analysed. For each trial, a response (left/right) was categorized 

as correct or wrong according to its ability to avoid the current attack (bombs/missiles). Each 

side, indeed, allowed to avoid only one specific US, uniquely associated with a particular attack. 

A mixed-effects model was used, with Response (correct/wrong) and US (US1/US2) as 

independent variables, and the total number of responses as dependent variable. Subjects were 

modelled as a random effect. Assumptions of normal distribution, independence of residuals and 

sphericity were verified. Results showed a main effect of Response (F(1, 37) = 194.4; two-tailed 

p < .0001; part. η
2 

= .84), with correct responses (mean =49.17; sd =7.41) being performed more 

than wrong responses (mean =17.82; sd =8.49) (Fig. 6.2-A). All other effects were not 

significant (ps > .58).  

Moreover, 89% of participants gave a correct response when explicitly asked to indicate the 

avoidance response associated with each US. 

These results indicate that participants learned, both implicitly and explicitly, to discriminate 

between the two USs and the corresponding avoidance response. 
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Figure 6.2 

Instrumental Conditioning and Pavlovian Conditioning results. 

Panel A reports the number of correct and wrong responses performed when presented with the 

two different attacks/noises (Unconditioned Stimuli – US) during Instrumental Conditioning. 

Panel B reports the Skin Conductance Response (SCR) signal change (second hemiblock – first 

hemiblock) when presented with all possible CSs during Pavlovian Conditioning. Bars indicate 

standard error of the mean. * p <.05. 
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Pavlovian Conditioning 

To assess implicit learning during the Pavlovian Conditioning task, an SCR signal change index 

was calculated, to get a measure of changes in the arousal level as learning occurred. To detect 

variations in time, the difference between SCR during the second and first hemiblocks of the task 

was calculated (SCR signal change) for each CS. If participants correctly learned to discriminate 

between aversive and neutral Pavlovian cues, a higher signal change should be observed for all 

CS+ trials relative to CS- trials. A mixed-effects model was used, with CS 

(CS+1/CS+2/CS+3/CS-) as independent variables, and SCR signal change as dependent variable. 

Subjects were modelled as random effect. Assumptions of normal distribution, independence of 

residuals and sphericity were verified. Results showed a significant main effect of CS (F(1, 111) 

= 3.17; two-tailed p = .03; part. η
2 

= .08). Bonferroni-corrected post-hoc analysis revealed a 

significant difference between CS- (mean =0.011; sd =0.12) and all CS+ (CS+1 mean =0.056, sd 

=0.11; CS+2 mean =0.081, sd =0.12; CS+1 mean =0.044, sd =0.10;) conditions (respectively, 

p=.03; p=.01; p=.04), but not between the CS+ (ps > .2) (Fig. 6.2-B). 

These results show that, as learning occurred over time, participants’ arousal significantly 

increased when presented with aversive stimuli (all CS+) as compared to a neutral stimulus (CS-

), thus indicating successful Pavlovian conditioning. 

 

Pavlovian-to Instrumental Transfer 

To asses transfer effect, two dependent variables were considered, namely the percentage of 

responses and the hand-grip.  
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Specific transfer was tested considering only CS+1 and CS+2 trials, as these were paired with 

the same USs used during Instrumental Conditioning. The rationale of specific transfer is, 

indeed, to test if CSs are able to elicit a response that has been independently associated with the 

same reinforcer. To this aim, all responses were categorized as congruent (e.g., choosing R1 

when presented with CS+1 or choosing R2 when presented with CS+2) or incongruent (e.g., 

choosing R2 when presented with CS+1 or choosing R1 when presented with CS+2) and 

compared. Two separate mixed-effects models were used, with Congruency 

(congruent/incongruent) as independent variable and percentage of responses or hand-grip as 

dependent variables. Subjects were modelled as a random effect. Assumptions of normal 

distribution, independence of residuals and sphericity were verified.  

Results on percentage of responses showed a significant difference (F(1, 37) = 2.56; two-tailed p 

= .05; part. η2 = .12) between congruent and incongruent responses, the first being higher than 

the second (means are reported in Fig. 6.3-A). 

Results on hand-grip showed no difference (p = .7) between congruent and incongruent 

responses (means are reported in Fig. 6.3-A). 

In sum, specific transfer effect was observed when considering the response frequency 

(percentage of responses), but not when considering the vigour (hand-grip) of such responses. 

General transfer, on the other hand, was tested considering only CS+3 and CS- trials, as these 

were respectively paired with a US not used during Instrumental Conditioning (unpaired 

condition) and with no US (neutral condition). The rationale of general transfer is, indeed, to test 
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if CSs are able to elicit a response that has been independently associated with a similar 

reinforcer (unpaired), relative to a neutral CS. 

 
Figure 6.3 

Pavlovian-to-Instrumental Transfer (PIT) task results. 

Panel A shows the first PIT task performed (PIT); panel B shows PIT under devaluation (PIT-

dev); panel C shows PIT after overtraining (PITo); panel C shows PIT after overtraining under 

devaluation (PITo-dev). All panels show results for Specific and general PIT on both percentage 

of responses and hand-grip. Bars indicate standard error of the mean. * p <.05; **p <.01. 

 

 

Two separate mixed-effects models were used, with CS (unpaired/neutral) as independent 

variable and percentage of responses or hand-grip as dependent variables. Subjects were 

modelled as a random effect. Assumptions of normal distribution, independence of residuals and 

sphericity were verified.  
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Results on percentage of responses showed no difference (p = .5) between congruent and 

incongruent responses (means are reported in Fig. 6.3-A). 

Results on hand grip showed a significant difference (F(1, 37) = 37.18; two-tailed p < .001; part. 

η2 = .51) between unpaired and neutral responses, the first being higher than the second (means 

are reported in Fig. 6.3-A). 

 

 

  Percentage of responses Hand-grip 

  F (1, 37) p part-η2 F (1, 37) p part-η2 

 

PIT 

Specific 2.56 .06 .12 .61 .44 .02 

General .2 .6 .01 26.19 <.001 .42 

 

PIT-dev 

Specific 5.67 .02 .13 .13 .72 0 

General .43 .52 .01 37.18 <.001 .51 

 

PITo 

Specific 14.06 <.001 .28 .86 .36 .02 

General 0 .9 0 45.03 <.001 .55 

 

PITo-dev 

Specific 13.85 <.001 .27 .18 .67 .01 

General .04 .83 0 65.87 <.001 .64 

 

Table 6.1 

Specific and General PIT results in all tasks. PIT = Pavlovian-to-Instrumental Transfer; PIT-dev 

= PIT under devaluation; PITo = PIT after overtraining; PITo-dev = PIT after overtraining under 

devaluation. 

 

 

 

In sum, general transfer effect was observed when considering the vigour (hand-grip) of 

responses, but not when considering the frequency of such responses (percentage of responses). 

Crucially, this result indicates the presence of a double dissociation between specific and general 

aversive transfer effects. 
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All the following transfer tasks (PIT-dev, PITo, PITo-dev) were analysed following the same 

criteria and showed a similar trend. All results are described in detail in Table 6.1 and means are 

reported in Fig. 6.3-B-C-D. 

 

PIT effect across tasks 

To directly test how transfer effect on both percentage of responses and hand-grip was 

modulated by the experimental manipulations of devaluation and instrumental overtraining, an 

index of transfer effect was computed.  

For specific transfer, the index was calculated on the percentage of responses (i.e., using the 

dependent variable that expressed a specific transfer effect) by subtracting incongruent from 

congruent responses.  

For general transfer, the index was calculated on the hand-grip (i.e., using the dependent variable 

that expressed an effect) by subtracting responses during neutral trials (neutral) from responses 

during aversive trials (unpaired). 

Two separate mixed-effects models were used, with Task (PIT/PIT-dev/PITo/PITo-dev) as 

independent variable and specific or general transfer index as dependent variables. Subjects were 

modelled as a random effect. Assumptions of normal distribution, independence of residuals and 

sphericity were verified.  

Results on specific transfer showed a significant main effect of Task (F(2.3, 85.19) = 3.53; two-

tailed p = .03; part. η2 = .09) (Fig. 6.4-A). Bonferroni-corrected post-hoc analysis revealed a 
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significant difference (p = .04) between PIT (mean =0.07; sd =0.26) and PITo (mean =0.16; sd 

=0.26) and between PIT and PITo-dev (mean =0.17; sd =0.27)  (p > .03). 

Results on general transfer index reported no significant differences between the tasks (p = .2) 

(Fig. 6.4-B).  

These results indicates that specific transfer was enhanced by instrumental overtraining, but not 

by reinforcer devaluation, and, conversely, general transfer was not affected by neither 

instrumental overtraining nor reinforcer devaluation. 

 

Sensitivity to punishments and rewards: correlation with BIS/BAS inventory 

To further investigate PIT effect, a correlation with sensitivity to punishments and rewards, as 

captured from the Behavioural Inhibition/Activation System (BIS/BAS) inventory (Carverand 

White, 1994) was tested. 

Specific and General PIT indexes (obtained during the first time PIT task was performed) were 

correlated with both BIS and BAS subscales separately. 

A significant correlation between General PIT and BIS was found (r =.34; p =.04). All other 

correlations were not significant (ps >.1). 

This result indicates that stronger motivation to avoid potential punishments is linked to a 

stronger sensitivity to such punishments. 
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Figure 6.4 

Pavlovian-to-Instrumental Transfer effect across tasks.  

Panel A shows an index of the Specific PIT effect calculated on percentage of responses 

(Congruent-Incongruent). Panel B shows an index of the General PIT effect calculated on hand-

grip (Congruent-Incongruent). PIT = Pavlovian-to-Instrumental Transfer; PIT-dev = PIT under 

devaluation; PITo = PIT after overtraining; PITo-dev = PIT after overtraining under devaluation. 

Bars indicate standard error of the mean. * p <.05.  
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Figure 6.5 

Correlation between the index of General PIT effect and the Behavioural Inibition System (BIS) 

scale. 

 

Conclusion 

A double dissociation between specific and general aversive transfer effects was reported for the 

first time in humans. Specific transfer was expressed in the percentage of responses but not in the 

vigour of such responses; whereas the opposite pattern was observed for general transfer,  where 

the effect was captured by the vigour of the responses but not percentage of responses. 

Moreover, specific transfer was enhanced by instrumental overtraining, but not by reinforcer 

devaluation. General transfer was not affected by neither instrumental overtraining nor reinforcer 

devaluation. 

A positive correlation between general transfer and sensitivity to punishments (as measured by 

the BIS scale) was found. 
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DISCUSSION 

 

The role of mediofrontal negativity in prediction error signalling 
 

Unexpected omission of aversive events 

RL-ERN theory (Holroyd ad Coles, 2002) holds that mediofrontal negativities (such as, ERN 

and mediofrontal negativity) signal worse than expected outcomes, while the PRO-model
 

(Alexander and Brown, 2011) proposes that mediofrontal activity can be explained as 

unexpected non-occurrence signals, consequent to the unexpected omission of both positive and 

negative outcomes. Many studies reported the presence of mediofrontal negativities after 

unexpected negative outcomes (Crowley et al., 2009; Chase et al., 2010; Holroyd et al., 2003; 

2007), but only few studies explored the presence of such ERPs after unexpected positive 

outcomes
 
(Oliveira et al 2007; Talmi et al., 2013; Ferdinand  et al., 2012). However, the 

unexpected non-occurrence hypothesis postulated by the PRO-model has never been directly 

tested. The aim of this study was to investigate mediofrontal ERPs associated with the 

unexpected omission of an aversive outcome. 

In the first study here presented, the unexpected omission of a predicted shock generated a 

stronger frontocentral negativity, signalling unexpected omission. 

Although the current this result supports PRO-model, it also challenges the idea that unexpected 

omission is specifically related to action-outcomes. Since a Pavlovian aversive conditioning 

paradigm was used, no action was required during the task. Thus, no action-outcome association 
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was possible and the acquired expectancy about shock-delivery was only attributable to a 

stimulus-outcome association. The ERP results reported here clearly indicate that mediofrontal 

activity can be also triggered by stimulus-outcome expectancy violations. Hence, as also reported 

by other studies (Talmi et al., 2013; Yeung et al., 2004; Donkers et al., 2005), mPFC seems to 

code for unexpected outcomes even when there is no need for action. 

An important contribution of this study to the literature is the direct demonstration that the 

observed neural signal to unexpected omission is conveyed by the absence of the expected event, 

rather than by the elaboration of a different stimulus. In the present study the shock absence itself 

acts as the feedback, while previous studies
 
(Oliveira et al 2007; Talmi et al., 2013; Ferdinand  et 

al., 2012) operationalized the unexpectedness by presenting a stimulus different than the one 

expected. The presence of a neural response to the absence of a stimulus leads unambiguously to 

the conclusion that an event was expected and that its absence produced a prediction error signal.  

Thus, the present results strongly support the PRO-model conception of mPFC coding for the 

unexpected omission of a predicted event. 

The present study tested a central claim of the PRO-model, namely that mPFC is specifically 

involved in coding unexpected omission events. Still, it remains to be clarified whether the role 

of mPFC is selectively related to the unexpected omission of predicted outcomes, as 

demonstrated here, or whether it also includes the unexpected occurrence of unpredicted 

outcomes, as some studies seem to indicate (Oliveira et al 2007; Talmi et al., 2013; Ferdinand  et 

al., 2012; Jessup et al., 2010). Although it would be functionally inefficient to have separate 

processors for detecting two kinds of unexpectedness, it could make sense considering the 
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different strategic processing adjustments that these two events could drive
42

. For example, if the 

prediction error signal concerns an unexpectedly omitted punishment, the behaviourally relevant 

information to learn could be to stop avoiding the associated cue or choice; while, if it signals an 

unexpectedly delivered punishment, it would be relevant to learn to avoid the associated cue or 

choice. The inverse relation should be valid if the unexpected outcome is a reward omission or 

delivery. PRO-model's assumptions about the role of mPFC in the detection of unexpected 

events could be strengthened by addressing this issue.  

 

Timing of salient outcomes 

Learning about the time of events in the environment is a fundamental adaptive behaviour 

(Buhusi and Meck, 2005; Cohen, 2011). Like other types of associative learning, it is deemed to 

depend critically on detecting mismatches (i.e., Prediction Errors) between expected and actual 

experience (Rescorla and Wagner, 1972; Mackintosh, 1975; Pearce and Hall, 1980; Sutton and 

Barto, 1998; Holroyd and Coles, 2002).  

Overall, the findings presented in the second study provide novel evidence about neural 

activity in ACC/mPFC as it is reflected in the mediofrontal negativity. They reveal that this 

component tracks the timing of salient events, and reports an error signal when an 

aversive outcome delivery is shifted away from an expected time. 

Although some experimental work has attempted to address whether the mediofrontal 

negativity is modulated by the timing of outcome, no prior studies, to our knowledge, have 

examined whether this ERP component is sensitive to temporal aspect of outcome 
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prediction by showing prediction error responses with surprising changes (i.e., 

unexpectedness) in outcome timing, as proposed by the PRO model.  

In previous studies, temporal expectations or predictions were not varied: either external 

cues signalled in advance whether timing preceding outcome delivery would be short or 

long (Wang et al., 2014; Peterburs et al., 2015), or short and long outcome timings occurred 

in 50% of cases, and thus were equally expected (Weinberg, et al., 2012). By contrast, the 

current study directly manipulated the probability of occurrence of an outcome at a given 

time (i.e., temporal expectation), thus making it possible to contrast expected vs. 

unexpected timing information. 

Our observation that the mediofrontal negativity is highly sensitive to the unexpected 

variation in the temporal interval preceding an outcome, is in agreement with 

electrophysiological recordings of midbrain dopamine neurons responding to errors in the 

temporal prediction of outcome (Hollerman and Schultz, 1998; Fiorillo et al., 2003, 2008; 

Bromberg-Martin et al., 2010) and targeting prefrontal cortical regions (Williams and 

Goldman-Rakic, 1993). As such, the present findings provide a strong functional link 

between mediofrontal negative ERP component and the neural data about midbrain 

dopaminergic signals carrying timing information of salient events (Holroyd and Coles, 

2002). Furthermore, our findings are in line with fMRI studies reporting activity in frontal 

regions and VTA (a crucial source of the dopamine innervation of the prefrontal cortex) 

modulated by predictions of the timing of outcome delivery (Forster and Brown, 2011; 

Klein-Flügge et al., 2011). 
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Crucially, the observed pattern of mediofrontal negativity for outcomes occurring at 

unexpected times is consistent with the predictions of the PRO model that ACC/mPFC 

signal violations of predicted outcome timing (Alexander and Brown, 2011; 2014). Like 

many previous models (Kennerley et al., 2006; Rudebeck et al., 2006; Matsumoto et al., 

2007), the PRO model posits that mPFC can learn to predict outcomes by using a 

reinforcement learning algorithm based on prediction errors (surprising outcomes). 

However, in a contrast to previous accounts, the PRO model also maintains that the mPFC 

encodes multiple independent predictions in parallel, which not only concern the 

likelihood of occurrence of outcomes but also their timing. Consistent with the PRO model 

predictions, we found that the scalp potentials overlying the ACC/mPFC activity were 

significantly more negative when outcomes occurred at unexpected times, even if the 

outcomes themselves were expected, suggesting that ACC/mPFC reports errors in the 

prediction of the timing of outcomes independently of their probability of occurrence.  

Given that mPFC is thought to play a critical role in action selection (Posner and Petersen, 1990; 

Holroyd and Coles, 2002), earlier formulation of the PRO model focussed on the role of mPFC 

in predicting the outcome of an action (Alexander and Brown, 2011). However, to account for 

several findings implicating mPFC in paradigms not explicitly related to response generation, 

more recent simulation works (Alexander and Brown, 2014; 2015) have proposed an extended 

PRO model of mPFC, according to which this region may encode predictions and prediction 

errors even when the predicted outcomes are not contingent on prior actions. In close agreement 

with the extended implementation of the PRO model, the present findings reveal that the 
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mediofrontal negativity encodes the unexpected timing of outcomes during a task with no action 

requirement (i.e., pavlovian aversive conditioning). These results appear consistent with a variety 

of recent empirical evidences suggesting that ACC/mPFC is critically implicated in learning the 

casual structure of the environment (Dayan and Niv, 2008), allowing an individual to predict 

what follows and when. 

Notably, the PRO model maintains that mPFC learns to predict and signal discrepancies between 

expected and actual events of any stimulus and outcome a subject may encounter during the 

course of an experimental task. In striking contrast with this prediction, however, the current 

results reveal that ACC/mPFC activation is sensitive to the salience of the outcome, as a higher 

amplitude of mediofrontal negativity was selectively observed for aversive outcomes occurring 

at unexpected timings, as compared to neutral outcomes similarly delivered at unexpected 

timings. These findings are highly consistent with earlier EEG works (Talmi et al., 2013; Maier 

et al., 2012; 2013; Lou et al., 2015; Ganushchak et al., 2008; Hajcak et al., 2005), suggesting that 

the mediofrontal negativity expresses a prediction error related to the motivational salience of 

outcomes.  

It is worth noting that the way salience is defined may vary between studies. While in some 

studies the term salience defines the magnitude of the outcome and provides a measure of the 

degree of motivation or drive with which the outcome is approached or avoided (Talmi et al., 

2013; Roesch and Olson, 2004; Matsumoto and Hikosaka, 2009: Kahnt et al., 2014), in others, 

salience refers to a large category of arousing and alerting events that signal the need for 

cognitive and behavioural changes (Redgrave et al., 1999; Horvitz, 2000; Zink et al, 2003), 
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including and extending beyond reinforcing events. Unfortunately, the present study fails in 

separating magnitude and arousal-based concepts of salience, since aversive stimuli are both 

arousing and reinforcing events. Regardless of the particular definition, however, the salience of 

an event determines the amount of attentional resources and control processes that are engaged in 

order to mobilize the most adaptive responses (i.e., behavioural, autonomic, cognitive; see 

Seeley et al., 2007; Shackman et al., 2011; Ham et al., 2013). In this context, aversive events (as 

electrical shocks used in the present experiment) can be regarded as salient, since the defensive 

preparatory adjustments elicited can help an organism to minimize the impact of negative 

consequences (Ploghaus et al., 2003). Therefore, learning the precise timing of delivery of a 

salient outcome constitutes a critical feature of an accurate prediction, whereas the timing of 

occurrence of a neutral outcome does not have the same relevance. 

To conclude, many current theories view mPFC as crucially implicated in processing outcomes, 

and signalling discrepancies between actual and expected outcomes (Holroyd and Coles, 2002; 

Alexander and Brown, 2011). The present findings on the mediofrontal negativity, an ERP 

component generated by activity in anterior cingulate cortex and adjacent mPFC, provide further 

evidence for this view. We found that the mediofrontal negativity is sensitive to the timing of 

salient outcomes by reporting prediction error responses with surprising changes in outcome 

timing. These signals may be used to learn about temporal contingencies in the environment, and 

make preparatory adjustments in advance of the occurrence of motivationally significant events 

(Shackman et al., 2011). These findings represent a critical step towards uncovering the link 

between midbrain dopaminergic activity following violations of the expected timing of outcome 

and mediofrontal ERP signals of prediction error. 
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Reward processing in Parkinson’s Disease associated psychosis 

The altered activation found in the temporal lobe during both Reward Anticipation and Reward 

Feedback (right and left lobes, respectively) adds to the idea that psychotic symptoms might be 

secondary to dysfunction in cortical regions that regulate the dopamine system and display 

progressive alterations in psychosis, such as the temporal lobe itself (Lodge and Grace, 2011).  

Alterations of the temporal lobe have been reported in patients affected by psychosis both when 

performing tasks and from postmortem studies (Tamminga et al., 2010; Weiss et al., 2003; 

Heckers, et al. 1998). Furthermore, abnormal activity in the temporal lobe has been directly 

linked with clinical measures of psychosis (Schobel et al., 2009; Molina et al., 2003). This 

theoretical framework probably deserves more attention in future studies, as it sheds new light in 

the understanding of the illness and in the development of better pharmacological treatments for 

psychosis. For instance, of particular interest would be the direct investigation of the 

lateralization found in the present study (hypoactivation in the right temporal lobe for Reward 

Anticipation and left temporal lobe for Reward Feedback). 

Moreover, of interest would be exploring the hypothesis that psychotic aspects of PD (especially 

hallucinations and paranoia) are a possible precursor of the dementia, which predominantly 

involves posterior visual association cortices. 

 

This study provided new evidences about abnormal reward processing in patients with PD 

associated psychosis, as compared with patients presenting PD only and healthy Controls. In PD 

patients with psychosis, medial-prefontal, striatal and temporal areas have been found to be 
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hypoactive in two critical stages: assessment of the expected value of a choice and evaluation of 

the associated reward. Furthermore, impairments in the ability to efficiently use reward 

occurrence to guide their behaviour, relative to Controls, was also evidenced in the behavioural 

performance during the task. 

These results support the idea that psychotic symptoms might take their origin from 

abnormalities in the hierarchical Bayesian processing of reality, as hypothesized by Fletcher and 

Frith (2009). 

An impaired attribution of salience to rewards (higher-level system) can provide altered prior 

beliefs based on which inferences and beliefs are updated (lower-level system), consequently 

favouring an abnormal loop of interpretations and expectations about the world.  

 

 

The influence of task-irrelevant Pavlovian cues on human decision  
 

Individual differences in appetitive contexts 

Motivated behaviour is characterized by a wide span of inter-individual differences in both 

human and non-human animals. Some recent studies highlighted a complex scenario relating ST 

and GT behaviours to addiction. While ST individuals are more susceptible to the influence of 

discrete cues, GT individuals are more influenced by contextual cues, which can motivate drug-

seeking behaviour (Robinson et al., 2014). Consequently, these learning styles seem to reflect 
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differences in the kinds of triggers to which the individual is susceptible (e.g., 

discrete/contextual), rather than a propensity to addiction per se. This finding emphasizes that 

there are diverse pathways to addiction, and has remarkable implications for the development of 

personalized treatments in the future. 

But what exactly is the mechanism underlying the attribution of incentive salience to discrete 

stimuli, such as Pavlovian cues? A large amount of evidence points to the role of dopaminergic 

transmission within circuits known to be involved in addiction. The core of the nucleus 

accumbens, for example, was reported to be involved in ST behaviour, and mediates the 

reinstatement of drug-seeking and drug-taking behaviour (Clark et al., 2013; Flagel et al., 2011, 

2008, 2007). Furthermore, various studies have supported the involvement of the mesolimbic 

dopamine system in the emergence of ST behaviour. ST individuals are characterized by stronger 

dopaminergic gene expression and increased levels of dopamine in the nucleus accumbens 

(correlated with the vigour with which the CR is performed) (Flagel et al., 2008, 2007). Even if 

differences in basic dopaminergic levels cannot fully account for differences in dopamine 

responsiveness, it has been argued that higher reward-related dopamine release before 

conditioning might increase attribution of incentive salience to reward-related cues (Wyvell and 

Berridge, 2000, 2001). Additionally, Flagel and colleagues (2011) directly demonstrated that 

dopaminergic transmission is not involved in all forms of learning, but it is necessary for the 

acquisition of a sign-tracking CR, playing a crucial role in the assignment of incentive salience to 

reward-related cues. The same study also showed that dopaminergic prediction-error signals, 

coded by activity in the nucleus accumbens, are present in ST individuals, but not in GT 

individuals. In the present study, a similar mechanism might occur: high levels of dopamine 
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release might boost attribution of incentive salience to reward-related cues, increasing their 

ability to motivate and drive behaviour.  

Future studies might further investigate individual differences in the influence of Pavlovian cues 

on behaviour by taking additional measures into account, such as phasic dopamine levels, 

psychophysiological indices (e.g., galvanic skin response and heart rate) and as neuroimaging 

measurements. These methods would allow better comparisons between human and non-human 

animal research on individual differences in ST/GT behaviour and learning styles. A general 

limitation in the standard PIT paradigm is that the “Sign” and the “Goal” are presented in distinct 

spatial locations. Thus, unrelated spatial biases in gaze direction might obscure the effect of 

interest. Although the analysis conducted in this study already confirmed that the present 

findings cannot be accounted for by any a-priori difference in spatial bias between groups, 

another way to control for this possibility would be to replicate the experiment with the spatial 

positions of the “Sign” and the “Goal” inverted in the three tasks.  

In conclusion, the individual differences demonstrated here offer a promising direction for 

further investigating the degree to which incentive salience is attributed to environmental stimuli 

associated with rewards, as well as the link between this process and maladaptive behaviours, 

ranging from over-eating to pathological gambling and addiction (Saunders and Robinson, 

2013). Further, the present findings have important implications for the treatment of impulse-

control disorders. Overall, these individual differences in PIT offer new insights into the 

mechanisms underlying the transition from intentional to habitual/compulsive behaviour. 
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Aversive Pavlovian cues and avoidance behaviour 

 

Double dissociation 

The double dissociation found between specific transfer, captured by the percentage of 

responses, and general transfer, captured by the vigour of responses, might be informative about 

the different mechanisms behind the two effects.  

Previous studies reporting outcome-specific and general transfer as measured by percentage of 

responses and vigour of responding, respectively, did not demonstrate a double dissociation 

between these two measures (e.g., Watson et al., 2016). Furthermore, the vigour of response was 

calculated as the average total number of key presses, whereas in the present study a more direct 

measure of the power exerted for each response (hand-grip) has been considered. 

The presence of a double dissociation finds support in the presence of dissociable brain areas 

found in human and animal studies investigating outcome-specific and general transfer. 

Unfortunately, only few evidences directly investigate humans.  

Outcome-specific transfer correlates with activity in the dorsal striatum (putamen) (Bray et al., 

2008) – believed to be implicated in instrumental learning - and ventral amygdala (Prèvost et al., 

2012) – believed to be implicated in processing reinforcer value and S-O associations.  

General transfer correlates with activity in the ventral striatum (nucleus accumbens) (Talmi et 

al., 2008) – believed to be implicated in Pavlovian learning - and dorsal amygdala (Prèvost et al., 

2012; Talmi et al., 2008) – believed to be implicated in assigning incentive motivation to stimuli. 
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From non-human studies comes a larger amount of evidences, but results are not entirely 

straightforward.  

Outcome-specific transfer has been reported to be impaired by lesions of the basolateral 

amygdala (BLA) (Corbit and Balleine, 2005; Hall et al.,2001; Holland and Gallagher, 2003), 

nucleus accumbens shell (NAC-shell) (Corbit et al., 2001; Corbit and Balleine, 2011) and ventral 

tegmental area (VTA) (Corbit et al., 2007). Contrasting evidences have been reported regarding 

the role of the prefrontal cortex in outcome-specific transfer (see Ostlund and Balleine, 2007; 

Cardinal et al., 2003; Homayounand Moghaddam, 2009).  

General transfer has been reported to be impaired by lesions of the central nucleus of the 

amygdala (CeN) (Corbit and Balleine, 2005; Hall et al.,2001; Holland and Gallagher, 2003), 

nucleus accumbens core (NAC-core) (Hall et al., 2001; Corbit and Balleine, 2011), substantia 

nigra (SN) (El-Amamy and Holland, 2007) and ventral tegmental area (VTA) (Corbit et al., 

2007). General transfer has also been reported to correlate with activity in the prefrontal cortex 

(Ostlund and Balleine, 2007; Corbit and Balleine, 2003; Homayounand Moghaddam, 2009) and 

dorsal striatum (Corbit and Janak, 2007). 

It is interesting to notice that some overlapping regions have been identified in human and non-

human animals, which suggest a relation across species and supports the importance of 

translational studies. However, more studies are needed to clarify such relationships as well as 

the mechanism underlying transfer in each of the species.  
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Devaluation 

In line with the idea that transfer does not reflect an intentional goal-directed behaviour, the 

present experiment reported no effect of devaluation on both specific and general transfer in 

humans, regardless of the amount of training (thus, before and after instrumental overtraining).  

Previous studies which obtained similar results with animals (Colwill and Rescorla, 1990; 

Rescorla, 1994; Holland, 2004; Corbit, Janak and Balleine 2007; Hogarth, Dickinson and Duka 

2010; Hogarth and Chase 2011; Hogarth 2012), reported different possible interpretations. 

For some authors, devaluation acts on the sensory specific properties of the reinforcer, though 

not reducing the motivational influence that a Pavlovian CS (associated with an reinforcer before 

its devaluation) can exert on instrumental responding, like in the case of transfer effect (Colwill 

and Motzkin, 1994; Holland, 1990; Holland, 2004). 

Conversely, other authors pointed more to the idea that the decreased motivational value 

consequent to devaluation procedure does not impact transfer effect, as it reflects a signalling 

role of the CS to the appropriate instrumental responding, activated by the representation of 

sensory-specific (rather than motivational) properties of the reinforcer (Rescorla, 1994). 

Much of the confusion might be explained by taking into account the different devaluation 

procedures used in literature. From a theoretical point of view, it is hard to state if devaluation 

selectively acts on sensory-specific or motivational properties of the reinforcer. If a food pellet is 

paired with a toxin, only the motivation towards that specific reward is reduced, but the general 

motivation to eat might not be affected. On the other hand, if devaluation is operationalized as 

satiation, then the overall general motivation to eat might be compromised. In the first case there 
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is a modulation of liking; in the second, a modulation of wanting. Thus, devaluation might 

selectively impact sensory-specific, motivational or even both representations of the reinforcer, 

depending on the procedure used. Consequently, devaluation per se cannot definitely disentangle 

the kind of information (sensory-specific or motivational) implicated in transfer or any other 

effects. 

For example, previous studies that investigated the impact of devaluation on transfer effect in 

humans reported contrasting results. Watson and colleagues (2014) reported that food satiation 

did not influence both specific and general transfer effects. Allman and colleagues (2010), on the 

other hand, found reduced outcome-specific transfer for stimuli associated with a devalued 

currency. Such different results might be explained by the use of very different devaluation 

procedures, respectively satiety and currency deflation. As argued, the first one might have acted 

more on the general wanting of food (satiation for popcorn might reduce not only craving for 

popcorns, but also general hunger), thus impairing motivation. Whereas, the second one might 

have acted on the selective “liking” of the deflated currency, as compared to the more valuable 

one (devaluing a currency does not impair the desire to win more money, especially if there is a 

more valuable currency that would allow to do so), thus being more sensory-specific.  

These different procedures complicates the interpretation of the results. If motivation to win 

money was not reduced by Allman’s procedure, is it possible that the effect observed was just 

driven by a vivid representation of the sensory-specific features of the two reinforcers, that is 

known to be implicated in outcome-specific transfer? 
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In the present experiment devaluation was operationalized as a complete impossibility for the 

learned aversive reinforcers to be delivered, which should have an impact on both general fear 

(motivation) and aversion for those exact aversive stimuli (sensory-specific).  

What can be undoubtedly stated about such a devaluation procedure is that the current value of 

the reinforcer is altered, thus inevitably reducing potential goal-directed responses. 

Consequently, actions that are not altered by that are more habit-like actions, as they are not 

driven by the value of the potential reinforcer. 

Consequently, the absence of an effect of devaluation on both outcome-specific and general 

transfer effect here reported, reflects the independence of transfer from the current value of an 

reinforcer, demonstrating the absence goal-directed behaviour. Moreover, outcome-specific and 

general transfer are always observed in extinction, thus in the absence of the goal itself. 

This proposed framework adds on the idea that the power exerted by Pavlovian CSs on 

instrumental responses does not determine a goal-directed behaviour (see also Hogarth et al., 

2013).  

 

Overtraining 

A possible different mechanism underlying specific and general transfer effects might still 

reflected by the different sensitivity to instrumental overtraining (which increased specific 

transfer but did not alter general transfer) and by the presence of a double dissociation in the 
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measure that allowed the observation of each effect (namely, specific transfer was observed on 

percentage of responses only and general transfer was observed on vigour of response only). 

Instrumental overtraining favours the formation of habits at the expense of goal-directed 

behaviours, determining a reduction of devaluation effect on the instrumental response (Adams, 

1982; Adams and Dickinson, 1981; Dickinson, Balleine, Watt, Gonzalez, and Boakes, 1995; Yin 

and Knowlton, 2002; Tricomi, Balleine, and OʼDoherty, 2009; Dayan and Berridge, 2014).  

Overtraining is often interpreted as a progressive shift in control of instrumental responding from 

a direct R-O association to a more indirect S–R associations, which overcomes and weakens the 

reinforcer representation (Holland et al., 2004). 

In line with this interpretation, overtraining increased outcome-specific transfer, driven by a S-O-

R association, but did not alter general transfer effect, driven by an S-R association and thus  

unrelated to the specific reinforcer. 

In a study on rats, Holland (2004) found that moderate and extensive instrumental training (7 or 

20 sessions, respectively), but not minimal training (2 sessions), could elicit transfer. This result 

was explained as an effect of practice on the response. More specifically, the idea proposed is 

that early in training instrumental responses are more governed by detailed R-O association, but 

as training proceeds a S–R takes over, which is more susceptible to the influence of conditioned 

incentives (Holland, 2004). 

This evidence is coherent with the idea and results here presented that transfer effect does not 

reflect a goal-directed influence on instrumental performance, as it is not influenced by the 
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current value of the reinforcer, especially after that instrumental overtraining weakens even more 

the outcome representation which still plays a role in outcome-specific transfer. 

In conclusion, dissociable aspects of associative representations seem to underlie transfer effect, 

overtraining, and devaluation effects. 

The importance of investigating these issues is given by the chance to achieve new insights about 

the mechanisms underlying the transition from intentional goal-directed actions to habitual and 

compulsive behaviours, which could have significant implications in the treatment of impulse-

control disorders. 
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CONCLUDING REMARKS 

 

Rewards and punishments play a key role in shaping human and animal learning. Thanks to their 

intrinsic value, by interacting with the environment we learn how to get what we need  (not only 

in terms of food, but also socially and emotionally), how to avoid potential dangers and, most 

importantly, how to adapt to a changing environment (Sutton and Barto, 1998; Doya, 2008; 

Cohen et al., 2011; Behrens et al, 2008; Brown and Brüne, 2012). 

Reinforcement learning has the potential to function as a bridge in neuroscientific research 

across different species and to offer new theoretical and methodological frameworks able to get 

new insights into many clinical disorders (Cohen et al., 2011), ranging from addiction (Baker, et 

al. 2011; Crean et al. 2011; Park. et al., 2010) to psychiatric diseases (Everitt and Robbins, 2005; 

Gold, et al. 2008; Fletcher and Frith, 2009; Berridge et al., 1998). 

The present work contributed to the current scientific knowledge around this topic by exploring 

some of the adaptive and maladaptive implications of reinforcement learning processes, 

analysing its behavioural and neural correlates. 

Brain signals of prediction error have been investigated to achieve new awareness of the 

strengths and weaknesses of the current theoretical models and hypothesis about the normal and 

pathological brain. Cue-driven behaviours have been analysed in bot appetitive and aversive 

contexts to further understand how external and internal factors can impact on human behaviour 

and drive choices. 
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Significant gaps still remain in understanding how brain networks interact between them to 

support reinforcement learning, which suggests the need further investigation. Critical to 

advancing our knowledge will be the achievement of new neurobiological models looking at our 

brain, mind, body and environment from a more integrated perspective.  
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