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ABSTRACT 
 

“Chronic Obstructive Pulmonary Disease: genetic polymorphisms and intermediary 

metabolism alterations” 

 

Chronic obstructive pulmonary disease (COPD) is a multifactorial disease characterized by 

airflow obstruction that is usually progressive and associated with an abnormal 

inflammatory response of the lungs to noxious particles and gases. Cigarette smoke (CS) 

is the main risk factor, but only a small proportion of smokers (15-20%) develop 

symptomatic disease, this suggests that there are individual susceptibility factors involved 

in disease onset and progression. Considering the impact of environmental and genetic 

risk factors in COPD, this dissertation sought to uncover genetic susceptibility biomarkers 

in a population affected by COPD and explore tissue metabolic alterations induced by 

chronic CS exposure in a mouse model. 

A case-control study was carried on in a COPD population, aiming to investigate whether 

polymorphisms of microsomal epoxide hydrolase (EPHX1) gene, and related phenotypes, 

had any bearing on individual susceptibility to COPD onset and severity. DNA of COPD 

patients and controls was genotyped for functional polymorphisms of EPHX1 gene (exon 3 

Tyr113His, exon 4 His139Arg), and haplotype analysis was performed using PCR-RFLP 

and PCR-RT techniques. The statistical analysis did not show any significant result about 

the potential relationship between analyzed SNPs, related phenotypes, and COPD risk 

and severity.  

Stable isotope-resolved metabolomics approach was used to study glycolytic pathway 

alterations induced by chronic CS exposure in lung and liver tissue of an emphysema 

mouse model. C57BL/6J mice, after CS exposure, were injected via IP injection with 

glucose tracer containing carbon stable isotope - 13C6-glucose – then, tissues were 

collected and the incorporation of 13C into metabolites was monitored by mass 

spectrometry and nuclear magnetic resonance spettroscopy. Lung tissue analyses did not 

reveal any significant alteration in lung tissue glycolysis of mice exposed to CS. On the 

other hand, CS may contribute to dysregulated glycolysis, PPP, glycogen synthesis and 

utilization, in emphysema mouse model liver tissue.  
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PREFACE 

 

“EVERY BREATH WE TAKE: epidemiological overview of 
chronic respiratory diseases” 

 
 
The human lung is subject to airborne pollutants and irritants with each breath. Tobacco 

smoke, including passive smoke exposures, is a leading cause of the respiratory disease 

burden, along with air pollution and workplace exposure to unsafe air. Contact with smoke 

from fires used in heating and cooking causes acute and chronic respiratory illness.  

With an aging global population, chronic respiratory diseases (CRDs) are becoming a 

more prominent cause of death and disability. Over two billion people are regularly 

exposed to the toxic effects of indoor and outdoor air pollution, which is responsible for 3.5 

million premature deaths each year [1]. Much of the morbidity and mortality associated 

with exposure to poor indoor air quality occurs in women and children, especially in low-

income families [2-4]. 

Respiratory diseases are among the leading causes of death worldwide (Table 1). Lung 

infections (mostly pneumonia and tuberculosis), lung cancer and chronic obstructive 

pulmonary disease (COPD) together accounted for one sixth of all deaths worldwide (~10 

milion). The World Health Organization (WHO) estimates that the same four diseases 

accounted for one-tenth of the disability-adjusted life years (DALYs) lost worldwide in 2008 

(~150 milion) (Table 2) [5]. 

 

 

Table 1. The 10 most common causes of death in 2008. Source: World Health Organization (WHO) World 

Health Statistics 2011. 
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Table 2. The 10 most common causes of disability-adjusted life-years (DALYs) lost worldwide in 

2008.Source: World Health Organization World Health Statistics 2011. 

 

CRDs are diseases of the airways and other structures of the lung, including asthma and 

respiratory allergies, COPD, occupational lung diseases, sleep apnea syndrome and 

pulmonary hypertension. 

COPD and lung cancer are leading causes of death worldwide, and their numbers are 

rising. Lung cancer is the most common malignancy worldwide, and is largely preventable 

by smoking prevention and cessation. 

CRDs are often under-recognized, under-diagnosed, under-treated and insufficiently 

prevented. Many are preventable, but are not curable, however, various forms of 

treatment, that help to dilate major air passages and improve shortness of breath, can help 

control symptoms and increase the quality of life for people with the disease.  

CRDs adversely impact the quality of life of affected individuals and can lead to premature 

deaths and disabilities. The prevalence of these diseases is increasing everywhere, 

particularly among children and elderly people [4]. 

By 2030, the WHO estimates that the four major potentially fatal respiratory diseases 

(pneumonia, tuberculosis, lung cancer and COPD) will account for about one in five deaths 

worldwide, compared to one sixth of all deaths globally in 2008.  

 

In the WHO European Region respiratory disease causes about 1 million deaths annually, 

of which two-thirds (~660.000 people) occur in the 28 countries of the European Union 

(EU), with at least 6 million hospital admissions, accounting for over 43 million in-patient 

bed-days (Figure 1).  
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The main respiratory diseases among the ten leading causes of death are: pneumonia, 

COPD, lung cancer and tuberculosis. Lung cancer is the leading cause of respiratory 

death, followed by COPD, lower respiratory infections and tuberculosis. More than half of 

all the deaths from respiratory disease are due to diseases caused by smoking. It is 

predicted that lung cancer and COPD as causes of death will continue to rise until 2015 

and 2030 respectively (Table 3) [6].  

 

 

 

 

Figure 1. Map of age-standardised mortality rates for all respiratory conditions. Source: World Health 

Organization World and Europe Detailed Mortality Databases, November 2011 update. 

 

 

Table 3. Data from World Health Organization. World Health Statistics 2011 

 

 

Meanwhile, lung cancer remains the number one cancer killer for both sexes and is likely 

to increase faster than any other type, COPD alone affects an estimated 44 million 

Europeans. This progressive and debilitating disease of the respiratory system, today 



8 

 

largely undiagnosed by physicians and patients alike, is expected to become leading 

cause of death by 2030.  

Within the WHO European Region, in the next two decades, the proportion of deaths 

caused by respiratory disease is likely to remain stable, at about one-tenth of all deaths 

(~500.000), with an increase in COPD and lung cancer deaths balancing a decline in 

deaths from lower respiratory infections and tuberculosis (Tables 4 and 5) [5]. 

 

 

Table 4. Projected proportion of deaths due to leading respiratory causes. COPD: chronic obstructive 

pulmonary disease. Source: World Health Organization World Health Statistics 2011. 

 

 

Table 5. Projected disability-adjusted life-years (DALYs) lost due to leading respiratory causes. COPD: 

chronic obstructive pulmonary disease. Source: World Health Organization World Health Statistics 2011 

 

In Italy respiratory diseases represent the third leading cause of death (after cancer and 

diseases of the circulatory system), and they account for 12% of all deaths (~70.000). 

Asthma and COPD account for 55% of all death caused by respiratory diseases. 
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In Italy, COPD affects about 14% of the older population (65 years or more), and it is the 

fifth cause of hospital admission in this age group. The prevalence of COPD shows a 

growing trend that varies from 2.5% in 2005 to 3% in 2013, with estimates significantly 

higher in men (3.2% in 2005 and 3.6% in 2013) than women (1.8% in 2005 and 2.4% in 

2013). There are substantial geographic differences in the prevalence estimation, with 

higher values in the South and lowest in the North, with no significant differences in 

gender. The prevalence of COPD shows rising values as age increases, with a significant 

increase in male reaches the peak in the over 85 (18%) [7]. 

Both the prevention and treatment of lung diseases will need to be improved. Public health 

programs are needed to reduce or eliminate cigarette smoking to avoid the inevitable rise 

in respiratory chronic diseases, such cancers and COPD. Moreover, it is necessary to 

develop long-term, strategic and integrated policy advice to protect people against 

significant negative effects of air pollution on human health and the environment. 

Respiratory illnesses are frequently avoidable. The ability to control and eliminate 

respiratory diseases worldwide relies on public health measures, which include increasing 

awareness, education, and capacity. Scientific research is essential to improve knowledge 

and understanding of pathophysiological processes, which then allows for better 

diagnoses, treatments, and overall prevention.  
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CHAPTER 1 
 

Chronic Obstructive Pulmonary Disease (COPD) 

 

 
1.1 . PATHOLOGY 

 

Chronic Obstructive Pulmonary Disease (COPD) is currently the fourth leading cause of 

death in the world [8], and represents one of the major public health challenge (Figure 1). 

COPD is a life-threatening lung disease that interferes with normal breathing. Many people 

suffer from this disease for years, and die prematurely from it or its complications. 

The primary cause of COPD is tobacco smoke (including second-hand or passive 

exposure), although in many countries, indoor air pollution (such as solid fuel used for 

cooking and heating), outdoor air pollution, occupational dusts and chemicals (vapours, 

irritants and fumes) and frequent lower respiratory infections during childhood are major 

COPD risk factors [9]. 

COPD is a disease that it is growing in both industrialized countries and developing 

countries, with a prevalence of 5% in the general population and it is by far the leading 

cause of hospitalization in the departments of internal medicine and pulmonology. 

According to WHO estimates, 65 million people have moderate to severe COPD. More 

than 3 million people died of COPD in 2012, which is equal to 6% of all deaths globally that 

year [10]. 

 

Figure 1.  Mortality rate for chronic obstructive pulmonary disease (COPD). Data from World Health 
Organization World and Europe Mortality Databases, November 2011 update. Data for some countries are 
missing because mortality data for asthma and COPD are not reported separately. 
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The Global Burden of Disease Study estimated that COPD will be the third leading cause 

of death worldwide in 2030. In addition, considering the sum of years lost because of 

premature mortality and years of life lived with disability (Disability-Adjusted Life Year = 

DALY), it has been estimated that by 2030 COPD will be the seventh leading cause of 

DALYs lost worldwide [11].  

The increased mortality is mainly driven by the expanding epidemic of smoking, reduced 

mortality from other common causes of death (e.g. ischemic heart disease, infectious 

diseases), and aging of the world population [12]. 

A systematic review and meta-analysis of studies carried out in 28 countries between 1990 

and 2004 [13], provides evidences that the prevalence of COPD is appreciably higher in 

smokers and ex-smokers than in nonsmokers, in those over 40 years of age than those 

under 40, and in men than in women. Because of increased tobacco use among women in 

high-income countries and the higher risk of exposure to indoor air pollution (such as 

biomass fuel used for cooking and heating) in low-income countries, the disease now 

affects men and women almost equally. 

COPD is not curable and it is essential to stop smoking to prevent the progression of the 

disease. Various forms of treatment can help control symptoms and increase quality of life 

for people with the illness, for example, medicines that help dilate major air passages of 

the lungs, improving shortness of breath, such as broncodilators (β2-agonists, 

anticolinergics, methylxantines), or anti-inflammatory drugs (corticosteroids and 

phosphodiesterase-4 inhibitors). Usually these drugs are used in combination. 

Although in the recent years the scientific community has paid increased attention to 

COPD, this syndrome remains relatively unknown or ignored by the general population, 

the public health system and government officials. In 1998, in order to bring more attention 

to COPD, its prevention and its treatment, a committee of scientists, encouraged by the 

US National Heart, Lung and Blood Institute, US National Institute of Health (NIH) and the 

World Health Organization (WHO), has initiated the Global Strategy for the Diagnosis, 

Treatment and Prevention of COPD (Global Initiative for Chronic Obstructive Lung 

Disease - GOLD). Among the important goals of this project are, to increase awareness of 

the burden of COPD and to improve prevention and management of COPD, in order to 

help millions of people who suffer and die prematurely from COPD or its complications 

[14].  
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According to the guidelines adopted by the international scientific community, Chronic 

Obstructive Pulmonary Disease (COPD) is a “common preventable and treatable disease 

characterized by persistent airflow limitation that is usually progressive and associated 

with an enhanced chronic inflammatory response in the airways and the lung to noxious 

particles or gases. Exacerbations 

and comorbidities contribute to the 

overall severity in individual 

patients” [14]. 

COPD is a syndrome, with a set of 

medical signs and symptoms that 

are correlated with each other, 

essentially characterized by chronic 

airflow limitation, a variety of 

pathological changes in the lung 

(Figure 2), some significant 

extrapulmonary effects, and 

important comorbidities that may 

contribute to the severity of the 

disease in individual patients.  

The chronic airflow limitation, characteristic of COPD, is caused partly by a mixture of 

small airways disease (obstructive bronchiolitis), parenchymal tissue destruction 

(emphysema), and disrupt normal repair and defense mechanisms (resulting in small 

airway fibrosis), the relative contributions of which vary from person to person (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 Small airways disease 
 

 Airway inflammation 
 

 Airway fibrosis; luminal plugs 
 

 Increased airway resistance 

 Parenchymal destruction 
 

 Loss of alveolar attachments 
 

 Decrease of elastic recoil 

AIRFLOW LIMITATION 

 

Figure 3. Mechanisms underlying Airflow Limitation in COPD 

Figure 2. Pulmonary section 

of an healthy individual [a] and 

one affected by COPD [b]. 

- [a] 

- [b] 
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It is important to point out that emphysema, or destruction of the gas-exchanging surfaces 

of the lung (alveoli), is a pathological term that is often (but incorrectly) used clinically and 

describes only one of several structural abnormalities present in patients with COPD. 

Chronic bronchitis, or the presence of cough and sputum production for at least 3 months 

in each of two consecutive years, remains a clinically and epidemiologically useful term. 

However, it is important to point out that chronic cough and sputum production (chronic 

bronchitis) is an independent disease entity that may precede or follow the development of 

airflow limitation and may be associated with development and/or acceleration of fixed 

airflow limitation. Chronic bronchitis also exists in patients with normal spirometry. 

The chronic inflammatory response causes structural changes, narrowing of the small 

airways, and the destruction of the lung parenchyma that leads to the loss of alveolar 

attachments to the small airways and a reduction in lung elastic recoil. These alterations 

diminish the ability of the airways to remain pervious during the expiratory phase. COPD 

clinically manifested as chronic cough, phlegm and progressive shortness of breath on 

exertion before, and then, in severe cases, even at rest.  

Based on these characteristics, the team of experts involved in the GOLD project defined 

the disease according to spirometric criteria. Spirometry is the most common and 

reproducible pulmonary function tests, and the best way to measure the extent of airflow 

limitation. Through this test it was drawn up the "spirometric classification of COPD 

severity " that includes four stages: mild, moderate, severe, very severe (Table 1). 

 

 

 

Table 1. Classification of Severity of Airflow Limitation in COPD (Based on Post-Bronchodilator FEV1) 

GOLD 1: Mild 
FEV1/FVC < 0.70  

FEV1 ≥ 80% predicted 

GOLD 2: Moderate 
FEV1/FVC < 0.70  

50% ≤ FEV1 < 80% predicted 

GOLD 3: Severe 
FEV1/FVC < 0.70  

30% ≤ FEV1 < 50% predicted 

GOLD 4: Very Severe 
FEV1/FVC < 0.70  

FEV1< 30% predicted o FEV1 < 50% predicted, with chronic respiratory failure 
FEV1: Forced Expiratory Volume in the first second, post-bronchodilator; FVC: Forced Vital Capacity; Respiratory Failure: arterial partial 
pressure of oxygen (PaO2) less than 8.0 kPa (60 mm Hg) with or without arterial partial pressure of carbon dioxide (PCO2) greater than 6.7 
kPa (50 mm Hg), at sea level. 
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Spirometry is often altered in the patient with COPD, even before the onset of major 

symptoms, so it is essential that it is performed in subjects at risk, even in the absence of 

symptoms, as a measure of general health. In practice, the basic measure is to perform a 

forced expiration through the mouth by which a given volume of air is expelled in a 

determined time. This air volume is expressed by the term FEV1 - Forced Expiratory 

Volume in the first second, post-bronchodilator administration. In patients affected by 

COPD the FEV1 value is much less than the theoretical one of an healthy person with the 

same age, sex, height, race and body size. A normal subject in the first second expels 

more than 70% of the mobilized air (Vital Capacity), in comparison to a COPD patient, that 

expels less than 70% of vital capacity, even after inhaled bronchodilators. In conclusion a 

post-bronchodilator ratio FEV1/FVC < 0.70 confirms the presence of persistent airflow 

limitation and thus presence of COPD (Figure 4) [14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A population study showed that the FEV1/FVC ratio post-bronchodilator exceed the value 

of 0.70 regardless of age, supporting the use of this fixed ratio in the spirometric 

classification of COPD severity [15]. However, there are limitations to the use of this value: 

the aging process affects the lung volume, so the use of this ratio is likely to lead to an 

overestimation in the diagnosis of COPD in elderly and to an underestimation in young 

adults, under 45 years, particularly the mild COPD [16]. 

Figure 4. Lung capacity spirogram of a healthy individual and a patient with mild to 
moderate COPD. 
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The impact of the disease on the individual patient depends, not only on the degree of 

airflow limitation, but also on the severity of the symptoms, especially dyspnea and 

decreased exercise ability. However, the COPD stages are defined based on the 

spirometry results, which provide a general indication for defining the initial therapeutic 

approach. 

COPD stages based on GOLD guidelines: 

 

 GOLD 1 - MILD: mild airflow limitation; the symptoms, chronic cough and sputum 

production may be present or not; at this stage the individual is usually unaware that 

lung function is impaired. 

 GOLD 2 - MODERATE: worsening airflow limitation; progression of symptoms with 

shortness of breath especially on exertion (exertional dyspnea), cough and sputum 

production; at this stage patients usually resort to medical care because of respiratory 

symptoms. 

 GOLD 3 - SEVERE: further worsening airflow limitation; increased shortness of breath, 

reduced exercise capacity, fatigue, and repeated exacerbations that almost always 

have an impact on the patient’s quality of life. 

 GOLD 4 - VERY SEVERE: severe airflow limitation or the presence of chronic 

respiratory failure. The respiratory failure may also lead to effects on the heart, such 

as right heart failure that may occur, for example, with elevation of jugular venous 

pressure. At this stage the quality of life is significantly impaired and exacerbations 

may be life threatening the patient.  

COPD often develops in people of middle aged who smoke for a long time, so patients 

often have co-morbidities related to smoking or aging [17]. COPD itself also has significant 

extrapulmonary (systemic) effects that lead to comorbid conditions [18]. A Dutch study 

showed that up to 25% of the population aged 65 and older suffer from two comorbid 

conditions and up to 17% has three [19]. Weight loss, nutritional abnormalities and skeletal 

muscle dysfunction are well-recognized extrapulmonary effects of COPD and patients 

have increased risk of myocardial infarction, angina, osteoporosis, respiratory infection, 

bone fractures, depression, diabetes, sleep disorders, anemia and glaucoma [20].  
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COPD has a variable natural history and not all individuals follow the same progress. 

However, it is usually a progressive disease, especially if patient is continuously exposed 

to noxious agents. Stopping exposure to these agents, even after the emergence of a 

significant airflow limitation, may improve lung function and slow or even stop the 

progression of the disease. Once COPD is developed, and its comorbidities can not be 

cured and it is necessary continuous treatment, COPD treatment may reduce symptoms, 

improve quality of life, reduce exacerbations, and possibly reduce mortality in patients. 

 
1.2 . PATHOGENESIS 

 

The anatomical and pathological changes 

characteristic of COPD are observed in the 

proximal and peripheral airways, in the lung 

parenchyma, and pulmonary vasculature [21]. 

These alterations include chronic inflammation, 

with increased numbers of specific 

inflammatory cells in various parts of the lung 

(mostly lymphocytes and macrophages, few 

neutrophils or eosinophils) (Figure 5), and 

structural changes resulting from repeated 

damage and subsequent repair attempts. 

Usually, inflammation and structural changes 

in the airways increase with disease severity, 

and persist even after smoking cessation. 

The inflammation in the respiratory system of 

COPD patients appears to be an amplification 

of the inflammatory response to chronic 

irritants such as cigarette smoke. The 

mechanism for this abnormal process is not 

yet understood, but it is supposed to be genetically determined. Some patients can 

develop COPD without smoking, but, in these patients, the nature of the inflammatory 

response and the related mechanisms are unknown [22]. Lung inflammation is further 

amplified by oxidative stress and an excess of proteinases in the lung. Together these 

factors lead to characteristic pathologic changes in COPD (Figure 6). 

Figure 5. COPD Inflammatory cascade 
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Oxidative stress may be an important amplifying mechanism in COPD [23]. Biomarkers of 

oxidative stress (e.g., hydrogen peroxide, 8-isoprostane) are increased in the exhaled 

breath condensate, sputum, and systemic circulation of COPD patients.  Oxidative stress 

is further increased in exacerbations.  Oxidants are generated by cigarette smoke and 

other inhaled particulates, and released from activated inflammatory cells such as 

macrophages and neutrophils. In COPD patients it is also possible a reduction in 

endogenous antioxidants, as consequence of reduced activity of transcription factor Nrf2, 

important regulator of antioxidant genes expression [24].  

There is compelling evidence for an imbalance in the COPD patients’ lungs between 

proteases, which break down connective tissue components, and antiproteases, which 

counteract proteases activity. Several proteases, derived from inflammatory cells and 

epithelial cells, are increased in COPD patients. Protease-mediated destruction of elastin 

(a major connective tissue component in lung parenchyma) is believed to be an important 

feature of emphysema and it is likely to be irreversible.  

COPD is characterized by a specific inflammation pattern involving increased numbers of 

CD8+ (cytotoxic) Tc1 lymphocytes (present only in smokers that develop the disease), 

neutrophils, macrophages and lymphocytes [25]. These cells release inflammatory 

mediators and enzymes and interact with structural cells in the airways, lung parenchyma 

and pulmonary vasculature [26]. A wide variety of inflammatory mediators, which have 

been shown to increase in COPD patients [27-28], attract inflammatory cells from the 

circulation (chemotactic factors), amplify the inflammatory process (proinflammatory 

Figura 6. Pathogenesis of COPD 
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cytokines), and induce structural changes (growth factors) [29]. Examples of each type of 

mediator are listed in Table 2. 

 

 

 

 

1.3 . COMORBIDITIES 

 

COPD often coexists with other diseases (comorbidities) that may have a significant 

impact on prognosis [22] [30-34]. Some of these arise independently of COPD whereas 

others may be causally related, either with shared risk factors or by one disease actually 

increasing the risk of another.  It is possible that features of COPD, such as systemic 

inflammation, are shared with other diseases and as such this mechanism represents a 

link between COPD and some of its comorbidities [35].  This risk of comorbid disease can 

be increased by the sequelae of COPD (e.g. reduced physical activity).  

Comorbidities are common at any severity of COPD [36] and the differential diagnosis can 

often be difficult.  For example, in a patient with both COPD and heart failure an 

exacerbation of COPD may be accompanied by worsening of heart failure. 

The chronic airflow limitation is mainly caused by inhaled particles and gases, the most 

common of which is cigarette smoking. However, also nonsmokers may develop airflow 

limitation presenting similar symptoms that can be associated with other diseases, such as 

asthma, congestive heart failure, lung cancer, pulmonary tuberculosis and other lung 

diseases. 

 

Asthma and COPD - COPD can coexist with asthma, the other major chronic obstructive 

pulmonary disease characterized by an underlying inflammation of the airways. The airway 

inflammation occurs with very different patterns in the two diseases. However, individuals 

Table 2. Inflammatory mediators in COPD  

CHEMOTACTIC FACTORS:  

 lipid mediators: eg. leukotriene B4 exerts chemoattractant activity for neutrophils and T 
lymphocytes 

 Chemokines: eg. Interleukin-8 (IL-8) exerts chemoattractant activity for neutrophils and monocytes 

 

PROINFLAMMATORY CYTOKINES: eg. tumor necrosis factor-α (TNF-α), IL-1β, IL-6 amplify the 
inflammatory process and may contribute to some of the systemic effects of COPD 

 

GROWTH FACTORS: eg. the transforming growth factor-β (TGF-β) can cause fibrosis of small airways 
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with asthma who are exposed to noxious agents, may also develop inflammation that is a 

combination of Asthma-like and COPD-like. In addition, there are epidemiological 

evidences that, in the long term, asthma alone can lead to the irreversible airflow limitation 

[37]. Other patients with COPD may have features of asthma such as a mixed 

inflammatory pattern with increased eosinophils [38]. 

 

COPD and pulmonary tuberculosis - In many developing countries both pulmonary 

tuberculosis and COPD are common. Tuberculosis has proved as an independent risk 

factor for airways obstruction. For this reason every doctor should be aware of the long-

term risk of COPD in patients with tuberculosis, regardless of smoking status, especially in 

patients from countries with a high rate of tuberculosis [39]. 

 

1.4 . RISK FACTORS 

 

The identification of risk factors is an important stage in the development of strategies for 

prevention and treatment of any disease. At the base of major chronic diseases, such as 

COPD, there are common and modifiable risk factors, including unhealthy diet, tobacco 

use, alcohol abuse and lack of physical activity, but also non-modifiable risk factors such 

as age and genetic predisposition. In the last years, environmental factors are becoming 

increasingly important determinants of COPD.  

Identification of cigarette smoking as the most common risk factor for COPD has led to 

consider smoking cessation programs essential in COPD prevention, as well as an 

important intervention for patients have already developed the disease. However, although 

cigarette smoking is the main and better studied risk factor for COPD, it is certainly not the 

only one. There are epidemiological evidences that even non-smokers may develop 

chronic airway obstruction [40-42] suggesting there are individual susceptibility factors to 

disease onset. In other words, of two individuals characterized by the same history of 

smoking, only one may develop COPD due to differences in the genetic predisposition 

(inter-individual genetic differences). 

Many evidences concerning risk factors for COPD are derived from epidemiological 

studies to investigate associations rather than cause-and-effect relationships. Population 

studies on people affected by COPD have been done, with a follow-up until 20 years, but 

none has monitored the progression of the disease through its entire course, or has 
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included the pre-and perinatal periods which may be important in shaping an individual’s 

future COPD risk.   

Therefore, the current understanding of risk factors (Table 3) for COPD in many respects 

is still incomplete. 

 

Table 3. COPD risk factors 

Genetic Factors 
Environmental factors (exposure to particles) 

• Tobacco Smoking 
• Organic and Inorganic Occupational Dusts 
• Indoor air pollution caused by heating and cooking with biomass in poorly ventilated dwellings 
• Outdoor air Pollution 

 

Oxidative Stress 

Lung growth and development 

Sex 
Age 
Infections 
Comorbidities  
Socioeconomic Status 
Nutrition 

 
 

Genetic factors - COPD is a polygenic disease and a classic example of gene-

environment interaction. Among people with the same smoking history, not all will develop 

COPD due to differences in genetic predisposition to the disease, or in how long they live.  

The best documented genetic risk factor is the severe hereditary deficiency of alpha-1-

antitrypsin [43], an important circulating inhibitor of serine proteases. Premature and 

accelerated panlobular emphysema development and decline in lung function occur in 

both smokers and nonsmokers with the severe deficiency, although smoking habit 

increases considerably the risk. There is significant variability between individuals in the 

extent and severity of emphysema and the pace of decline in lung function. 

Although the alpha-1 antitrypsin deficiency is relevant to only a small part of the world’s 

population (more common in people of Northern European origin) [44], it illustrates the 

interaction between genes and environmental exposure leading to COPD. This way 

provides a model of how it is possible to believe that other genetic factors may contribute 

to COPD onset. 

A significant familial risk of airflow limitation has been observed in smoking siblings of 

patients with severe COPD [45], suggesting that genetic together with environmental 
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factors could influence this susceptibility. Single genes, such as gene encoding matrix 

metalloproteinase 12 (MMP12), have been related to decline in lung function [46]. 

Through genetic linkage analysis, several regions of the genome, that are likely to contain 

COPD susceptibility genes, have been identified, including chromosome 2. Genetic 

association studies have discovered a set of genes involved in the pathogenesis of COPD, 

including tumor growth factor-β1 (TGF-β1), the microsomal epoxide hydrolysis (EPHX1) 

and tumor necrosis factor-α (TNF-α) [47-49]. However, the results of these genetic 

association studies are largely inconsistent, and functional genetic variants influencing the 

development of COPD (other than alpha-1-antitrypsin deficiency) have not yet been 

identified. 

 

Environmental factors (exposure to particles) - Important factor to consider is the 

environment in which the individual lives. Of the many environmental exposures that we 

experience during lifetime, only tobacco smoke, occupational dusts and chemicals in 

professional environments (vapors, irritants and fumes) are known to cause, alone, COPD 

[50-53]. Tobacco smoke and occupational exposures appear to act additively to increase 

the risk of developing COPD. 

Across the world, tobacco smoke is by far the main COPD risk factor. Cigarette smokers 

have a higher prevalence of respiratory symptoms and lung function abnormalities, a 

greater annual rate of decline in FEV1, and a greater COPD mortality rate than 

nonsmokers [54].  Passive exposure to cigarette smoke (also known as environmental 

tobacco smoke or ETS) may also contribute to respiratory symptoms [55] and COPD [56] 

by increasing the lung’s total burden of inhaled particles and gases [57-58].  Smoking 

during pregnancy may also pose a risk for the fetus, by affecting lung growth and 

development in utero and possibly the priming of immune system [59-60].   

The risk of developing COPD in smokers is dose-related, while the age at which the 

smoker begins to smoke, the number of smoked cigarettes in pack per year and current 

smoking status are predictive of COPD mortality. As aforementioned, not all smokers 

develop clinically significant COPD, which suggests that genetic factors are able to change 

the individual risk of disease [47].  

Occupational exposures, including organic and inorganic dusts and chemical agents and 

fumes, are an underappreciated risk factor for COPD [61-63].  An analysis of the large 

U.S. population-based NHANES III (National Health and Nutrition Examination Survey) 

survey of almost 10,000 adults aged 30-75 years estimated the fraction of COPD 
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attributable to work was 19.2% overall, and 31.1% among never-smokers [64].  These 

estimates are consistent with a statement published by the American Thoracic Society that 

concluded that occupational exposures account for 10-20% of either symptoms or 

functional impairment consistent with COPD [65].  

Wood, animal dung, crop residues, and coal, typically burned in open fires or poorly 

functioning stoves, may lead to very high levels of indoor air pollution. Evidences continue 

to grow that indoor pollution from biomass cooking and heating in poorly ventilated 

dwellings is an important risk factor for COPD [66-72].  Almost 3 billion people worldwide 

use biomass and coal as their main energy source for cooking, heating, and other 

household needs, so the population at risk worldwide is very large [69] [73]. 

High levels of urban air pollution are harmful to individuals with existing heart or lung 

disease. The role of outdoor air pollution in causing COPD is unclear, but appears to be 

small when compared with that of cigarette smoking. It has also been difficult to assess the 

effects of single pollutants in long-term exposure to atmospheric pollution. However, 

exposure to air pollution from fossil fuel combustion, primarily by car emissions in urban 

areas, is associated with reduction of respiratory function, and it remains one of the major 

source of health risk, as confirmed by insertion of outdoor particulate matter (PM) in Group 

1 carcinogens (agents certainly carcinogenic to humans) by the International Agency for 

Research on Cancer (IARC) [74-75]. The relative effects of short-term, high-peak 

exposures, and long-term, low-level exposures, are yet to be resolved.  

In estimating the risk of developing COPD, it is important to think in terms of the total 

burden of inhaled particles (Figure 7). 

 

 

 

 

 

 

 

 

 

 

 Figure 7. The risk to develop COPD is related to 
the total amount of inhaled particles. 
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Oxidative Stress - The lungs are continuously exposed to oxidizing substances, either 

endogenously produced, starting from phagocytes and other cell types, either exogenously 

produced, by environmental pollutants or by cigarette smoke. Moreover, intracellular 

oxidants, such as those derived from the electron transport chain in the mitochondria, are 

involved in many cellular pathways of signal transduction [76]. 

Under physiological conditions, the production and detoxification of oxidants are more-or-

less balanced, in order to maintain a state of homeostasis (redox homeostasis), but when 

the balance oxidants/antioxidants shifts in favor of the first (excess of oxidants or depletion 

of antioxidants), oxidative stress occurs. 

Oxidative stress is a pathological condition characterized by excess of oxidants that, 

through oxidative damage to proteins, lipids, nucleic acids, causes cellular toxic effects, 

leading to tissue injury and inflammation that contribute to aging and disease 

(cardiovascular diseases, pulmonary diseases, autoimmune diseases, neural disorders 

and cancer) [77]. It has been shown that, the generation of ROS and the consequent 

oxidative stress represent an important toxicological mechanism in respiratory diseases. 

The mechanism includes both, effects dependent on factors belonging to the particles that 

come into contact or are deposited on the surface of epithelial cells of respiratory tract 

(shape, size, solubility, reactivity, catalysis by transition metals and reduction of quinone 

species), and cell-dependent (ability to increase the endogenous production of ROS, 

alterations of signal transduction pathways, inflammation) [78]. 

Lung, as the organ of gas exchanges, is the seminal point of exposure to oxygen and 

environmental toxicants, so, a huge amount of oxidants contribute to increase oxidative 

stress, triggering the initiation and progression of diseases like COPD, asthma, cystic 

fibrosis, idiopathic pulmonary fibrosis and lung cancer. 

In the lung, oxidative stress has many negative consequences that include: activation of 

inflammatory genes, inactivation of antiproteases, stimulation of mucus secretion and 

increased plasma exudation. Many of these effects are mediated by nitrogen peroxide that 

is formed by the interaction of superoxide anions (O2
.-) and nitric oxide (NO). The nitric 

oxide is generated by inducible nitric oxide synthase and expressed in the peripheral 

airways and lung parenchyma of COPD patients. Oxidative stress may also be responsible 

for reduction of histone deacetylase activity in lung tissue of COPD patients, and this leads 

to increased expression of inflammatory genes and to reduction in the glucocorticosteroids 

anti-inflammatory activity [79]. 
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Important consequence determined by oxidative stress, as mentioned above, is the 

inactivation of antiproteases, and then the alteration of the protease-antiprotease balance 

(Figure 8). The elastin degradation (a major component of the connective tissue in the 

lung parenchyma) mediated by proteases, is an important feature of emphysema and is 

likely to be irreversible. 

As consequence of free radicals exposure, the body has developed a variety of defense 

mechanisms against oxidative stress. These include: preventive and repair mechanisms, 

physical and antioxidant defenses [80]. In COPD patients there is also a decline in Nrf2-

regulated antioxidants, as consequence of reduced activity of transcription factor Nrf2 [24].  
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Lung growth and development - The lung growth is related to processes occurring 

during pregnancy and birth and to environmental exposures occurring during childhood 

and adolescence [81-82]. Any factor that affects lung growth during pregnancy and 

childhood has the potential to increase individual risk for the development of COPD [83]. 

For example, a large number of studies in meta-analysis have confirmed the association 

between birth weight and FEV1 in adulthood [84], and several studies have found an effect 

of early childhood lung infections. 

 

Age and Gender – Age is often listed as a risk factor for COPD. It is unclear if healthy 

aging as such leads to COPD or if age reflects the sum of cumulative exposures 

throughout life.   

The role of gender in the risk of developing COPD is not yet clear. In the past, most 

studies showed that COPD prevalence and mortality were higher among men than 

women, but data from developed countries [85-86] show that the prevalence of the 

disease is now almost equal in men and women, probably reflecting the changing patterns 

of tobacco smoking. Some studies have even suggested that women are more susceptible 

to the effects of tobacco smoke than men [87-90].  

 

Infections - Viral and bacterial infections may contribute to the pathogenesis of COPD, as 

well as episodes of exacerbation. Several studies have shown that an history of severe 

respiratory infections during childhood is associated with reduced lung function and 

increased respiratory symptoms in adults [81] [91]. Susceptibility to infections plays a role 

in exacerbations of COPD but the effect on the development of the disease is less clear.  

Tuberculosis has been found to be a risk factor for COPD [39] [92]. 

 

Asthma - Asthma can be a risk factor for COPD, although the evidence is not conclusive. 

An epidemiological study showed that adults with asthma were found to have a twelve-fold 

higher risk of acquiring COPD over time than those without asthma, after adjusting for 

smoking [93]. A second study on people with asthma showed that around 20% of subjects 

developed functional alterations related to COPD and irreversible airflow limitation [94]. 

 

Chronic Bronchitis In the seminal study by Fletcher and coworkers, chronic bronchitis 

was not associated with decline in lung function [95].  However, subsequent studies have 

found an association between mucus hypersecretion and FEV1 decline [96], and in 
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younger adults who smoke the presence of chronic bronchitis is associated with an 

increased likelihood of developing COPD [97-98].  

 

Socioeconomic status - Poverty is clearly a risk factor for COPD but the components of 

poverty that contribute to this are unclear. Socioeconomic status is inversely proportional 

to the risk of developing COPD [99], although it is unclear whether this pattern reflects 

exposure to environmental pollutants, poor nutrition, crowding, poor nutrition, infections or 

other factors closely related to low socioeconomic status [100]. 

 

Nutritional status - The nutritional status as independent risk factor for development of 

COPD is not completely clear. It is known that malnutrition and weight loss can reduce the 

length of the respiratory muscles, while animal studies have shown an association 

between emphysema and starvation [101]. 
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“There is no such thing as an average person, we are all genetically and biologically unique. But 
when sperm meets egg, our characteristics are not locked in stone. Bad genes do not necessarily 

cause disease by themselves, and nutrition and environment can alter the outcome.” 
 

 CHAPTER 2 
 

Population-based case-control study to assess the 
involvement of microsomal epoxide hydrolase in 

COPD onset and severity 

 
 

2.1. METABOLISM OF FOREIGN COMPOUNDS 

 
 

2.1.1. Introduction 
 

When any exogenous substance (xenobiotic) enters into an organism, it is recognized as 

foreign and it needs to be metabolized (transformed) to facilitate the elimination.  

The term metabolism, or biotransformation, refers to the set of processes by which an 

exogenous substance is enzimatically transformed by living organisms. 

During the course of evolution living organisms have learned how to defend themselves 

from the toxic molecules, developing enzyme systems, very simple or acting connected 

each other, that modify the structure of xenobiotics making them easy to eliminate. In 

“higher organisms”, this is achieved through a complex series of biochemical reactions that 

tend to deprive the substances of those characteristics that make them attractive to 

elective places of deposit or for the sites of chemical bond, by decreasing the biological 

half-life and increasing the electric charge and water solubility. The physical property that 

facilitate the absorption of a xenobiotic (lipophilicity) is modified in order to facilitate the 

excretion (hydrophilicity) in the urine or faeces; an exception to this general principle is the 

removal of volatile compounds, which occurs through the exhalation. 

The xenobiotics metabolism take place primarily in the liver cells and, to a lesser extent, in 

other organs such as the kidneys, lungs, gastrointestinal tract, skin and plasma. 

The liver is located in a strategic position in order to drain toxic compounds from the body, 

once they have been absorbed along the gastro-intestinal tract. In fact, the blood, that 

perfuses the gastrointestinal tract, gathers into the portal vein, which is directly connected 

with the liver. The liver, therefore, avoids substances to enter immediately into the systemic 

circulation and consequently avoids molecules distribution in different parts of the body.  
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The liver has also the ability to convey the toxic metabolites through the bile into the 

intestine, where they can be excreted through faeces or they can be reabsorbed, heading 

for an active enterohepatic circulation.  

The molecules excreted through the bile can undergo the enzymatic activity (reactions) of 

the gut microbiota, that gives back to the molecule the original features that enable it to be 

reabsorbed by the gastrointestinal tract and come back to the liver. This is the case of a 

large number of substances that are conjugated with glucuronic acid in the liver and that 

once poured into the intestine undergo the β-glucuronidase reaction.  

The chemical modifications resulting from xenobiotic biotransformation may affect the 

biological properties of xenobiotics in different ways: through elimination of exogenous (but 

also endogenous) compounds, activation of inactive molecules, and control the duration of 

a pharmacological activity. For example, some drugs are converted into active metabolites 

able to exert therapeutic or toxic effect. However, in most cases, biotransformation ends 

the pharmacological effect of an active drug and reduces the toxicity of a xenobiotic. 

Enzymes that catalyze the biotransformation reactions are often crucial in the intensity and 

duration of drug action, and play a critical role in the toxicity and carcinogenesis induced 

by chemicals. 

Xenobiotics, or their reactive metabolites resulting from biotransformation reactions, can 

form covalent bonds with endogenous macromolecules, such as functional proteins 

(enzymes), genetic material (DNA) or macromolecules such as tRNA or mRNA. These 

bonds are irreversible and may damage the cells producing cytotoxic and life-threatening 

effects or interfering with cell cycle regulation; this can lead to an uncontrolled cell 

proliferation that can promote a carcinogenic effects.  

The electrophilic compounds interact with the target molecules through the formation of 

intermediates carbocation or transition complexes energetically unstable. These reactions 

lead to the formation of covalent bonds (alkylation) with molecules that show nucleophiles 

sites such as phosphoric, aminic, sulfidrilic, hydroxylic, carboxylic, imidazole groups.  

In many cases biotransformation enzymes are constitutively expressed, but it has been 

found that the synthesis of these enzymes can be activated by xenobiotics. Some drugs 

(e.g. barbiturates), and also molecules that result from environmental pollution, such as 

polycyclic aromatic hydrocarbons (benzo(a)pyrene, methylcholanthrene) or halogenated 

pesticides (DDT, polychlorinated biphenyls, dioxins), have the ability to induce the smooth 

endoplasmic reticulum proliferation, increasing the biotransformation enzymes. This 

phenomenon, typical in the centrilobular area of hepatocytes, is called enzymatic activity 
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induction and is believed to be the principal mechanism by which the body detoxifies 

foreign substances (e.g. Phenobarbital, environmental pollutants- CYTP450). The opposite 

phenomenon is the enzymatic activity inhibition (eg. Grapefruit juice - CYTP450). In both 

cases, the toxicological implications are important, because the enzymatic activity 

induction and the enzymatic activity inhibition can modify the speed of bioinactivation or 

bioactivation of potentially toxic compounds.  

The stereochemical properties impact the interaction between a xenobiotic and the 

biotransformation enzyme. Many xenobiotics, especially drugs, have one or more chiral 

centers and exist in two mirror images called: enantiomers or stereoisomers. In some 

cases the biotransformation of chiral xenobiotics is stereoselective, and this means one 

stereoisomer is biotransformed faster than its enantiomer.  

A further feature that can determine a potential toxicity associated with biotransformation 

enzymes in the xenobiotics metabolism is the human genetic variability. Both genotypic 

(genetic polymorphisms) as well environmental and physiological factors influence the 

expression of biotransformation enzymes (Figure 1).  

 

 

 

Figure 1. Determinantsof interindividual variability of xenobiotic metabolism. 

 

The structure (in terms of amino acid sequence) of a specific biotransformation enzyme 

may differ between two individuals, and this feature may be the cause of differences in the 

speed of xenobiotics transformation.  

Several genetic polymorphisms are known to easily explain large part of the different 

reactions to xenobiotics observed between individuals and between different populations. 

For example, in the 70s the administration of debrisoquine, antihypertensive drug, in a 

volunteer subject led to a dramatic reduction of the blood pressure. Through studies it was 

established that the increased hypotensive activity of the drug derived from a reduced 
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hydroxylation of the debrisoquine, and that was dependent, in that subject, on a low 

activity of the cit. P-450 isoform involved in its biotransformation [102]. Individuals with a 

genetically determined enzyme deficiency that can lead to a reduced xenobiotics 

biotransformation, are called slow metabolizers. 

Different enzyme isoforms have different physical properties and substrate specificity. To 

date, for example, in humans up to 21 families, 20 subfamilies and 57 genes of 

cytochrome P-450 have been described. Out of these CYP 1, 2 and 3 account for 70% of 

total hepatic CYPs content and are responsible for 94% of drugs metabolism in liver [103].  

The xenobiotics biotransformation dependent on a limited number of enzymes that have a 

wide substrate specificity, since they must be able to react on a wide variety of substrates.  

The enzyme systems involved in the biotransformation processes are called: Phase I and 

Phase II reactions. In some cases, however, the produced metabolites are more toxic than 

the parent compound and the set of these reactions is called bioactivation reactions or 

phase III reactions. 

 

2.1.2. Biotransformation reactions and related enzymes: distribution and 

localization  

 

The enzymes for xenobiotics biotransformation are widely distributed in the body and they 

are present in different subcellular compartments.  In vertebrates, the liver is the main site 

of biotransformation, and consequently presenting a high concentration of enzyme 

systems. Other tissues, such as those involved in the major routes of exposure to 

xenobiotics: skin, lungs, nasal mucosa, eye, gastrointestinal system, kidney, adrenal 

gland, pancreas, spleen, heart, brain, ovary, testicles, placenta, plasma, erythrocytes, 

platelets, intestinal microflora have biotransformation activity, however their metabolizing 

ability is somewhat limited, and in general their contribution to detoxification is low.  

At the subcellular level, enzymes (and their cofactors) involved in biotransformations are 

mainly located in the membrane of smooth endoplasmic reticulum (microsomes) or in the 

soluble fraction of the cytoplasm (cytosol), while smaller amounts are found in the 

mitochondria, nuclei and lysosomes.  

Biotransformation enzymes are therefore described as cytosolic or microsomal to indicate 

their specific subcellular localization. Phase I reaction enzymes are predominantly 

microsomal, this is because most of the xenobiotics are fat-soluble, so they easily dissolve 

in the lipid bilayer of the cell membranes where the interaction between the xenobiotic and 
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biotransformation enzymes takes place. The Phase II reaction enzymes interact with 

hydrophilic substrates and they are generally cytosolic.  

The reactions catalyzed by enzymes for xenobiotics biotransformation reactions are 

generally divided into four categories: hydrolysis, reduction, oxidation and conjugation 

(Figure 2).  

The reactions of hydrolysis, reduction and oxidation, called Phase I reactions, expose or 

introduce a functional group (-OH, -NH2, -SH or -COOH) into the xenobiotic and they 

usually determine only a modest increase of hydrophilicity. Most Phase I reactions consist 

in oxidation reactions catalysed by two groups of monooxygenases, i.e. cytochrome P450-

depending monooxygenases and flavin monooxygenases (FMN), as well as reductions 

catalysed by P450 reductase, other reductases and hydrolases (Table 1). 

 

 

Figure 2. Phases I and II of the metabolism of a lipophilic xenobiotic. 

 

 

Table 1. Main Phase I reactions and related enzymes  

REACTION ENZYME LOCALIZATION 

Function Mixed Oxidase Cyt. P-450 Microsomes 

Function Mixed Oxidase FMO Microsomes 

Oxidases/Dehydrogenases Various Cytosol/non-microsomal 

Co-oxidations 
Prostaglandin H 
Synthase Cytosol/non-microsomal 

Reductases Cyt. P-450 Microsomes 

Reductases Various Cytosol/gut microbiota 

Hydrolases Various Cytosol/microsomal 

 

 

The conjugation reactions, called Phase II reactions (Figure 2), consist in conjugation of 

products of Phase I transformation with endogenous molecules which determine a 
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substantial increase in hydrophilicity of the xenobiotic and making it easily removable 

through the urine, bile, faeces. 

The most important conjugation reactions are those with glucuronic acid, sulfuric acid, 

amino acids, and with glutathione. Also methylation and acetylation are conjugation 

reactions, although they generally result in a decreased hydrophilicity of the substrate. 

Phase II xenobiotic metabolizing enzymes are mostly transferases and include: UDP 

glucuronosyltransferases (UGTs), sulfotransferases (SULTs), N-acetyltransferases (NATs), 

glutathione S-transferases (GSTs) and various methyltransferases (mainly thiopurine S 

methyl transferase (TPMT) and catechol O-methyl transferase (COMT). 

This conjugation process requires energy, therefore, availability of highly energetic 

molecules such as ATP, both for substrate and co-factors activation. 

 

2.1.3. Cytochrome P450 

 

The cytochrome P450 (CYP450) is particularly studied. The term P450 is derived from the 

spectrophotometric peak at the wavelength of the absorption maximum of the enzyme 

(450 nm) when it is in the reduced state and complexed with CO.  

The cytochrome P450 constitutes a superfamily of enzymes presents in some prokaryotes 

and in all eukaryotes, and that has evolved and diversified during the transfer of primordial 

life from the aquatic to the terrestrial environment. During the evolutionary process, these 

enzymes specialized from the metabolism of endogenous substances, to metabolize 

xenobiotics that were present in plants and who could potentially create an hazard if 

ingested by a more complex organism.  

The cytochromes P-450 are heme proteins (containing ferroprotoporfirina IX) and they 

constitute a class of isoenzymes of molecular weight in the range 45-60 kDa. The 

cytochrome P450 system is actually a complex of two enzymes inserted into 

phospholipidic matrix of smooth endoplasmic reticulum: the NADPH-cytochrome P450 

reductase and cytochrome P-450, existing in different enzymatic isoforms. 

The oxidation via the microsomal system is characterized by two substrates: the molecular 

oxygen and the exogenous or endogenous compound. The complex is called mixed-

function oxidases because, from the oxigen molecule activated an atom is reduced to 

water and the other one is inserted into the substrate, oxidizing it. 

Cytochrome P450 is a transmembrane protein located in the smooth endoplasmic 

reticulum and it is attached to a type "channel" structure. In this way, the cytochrome P-
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450 may interact with the substrates that access to the channel with relative low specificity 

but high concentration.  

In presence of enzyme inducers the amount of cytochrome P-450 increases, also because 

of the concomitant proliferation of smooth endoplasmic reticulum, thus offering more 

targets to the different molecular species subject to biotransformation.  

Although the cytochrome P-450 is classified as an oxidase it also has reductase activity. 

The activity of the cytochrome P-450 is inhibited by carbon monoxide.  

 

2.1.4. Hydrolases 

 

The hydrolases are a class of enzymes that react with compounds which contain an ester 

bond and are classified into: arilesterasi, that hydrolyze aromatic esters, carboxylesterase 

that hydrolyze aliphatic esters, cholinesterase that hydrolyze esters in which the alcohol 

component is choline, and acetylcholine esterase that hydrolyze esters in which the acid 

component is constituted by acetic acid. In particular, the epoxide hydrolases play a crucial 

role in the detoxification of electrophilic epoxides, that otherwise might bind to proteins and 

nucleic acids, causing cellular toxicity and genetic mutations. Indeed, the epoxide 

hydrolases, which are virtually localized in all tissues, catalyze the hydration of aliphatic 

epoxides and arene oxides to their corresponding trans-1,2-dihydrodiol, compounds less 

electrophilic than the original ones.  

In some cases, however, the epoxide hydrolase may contribute to the bioactivation of 

xenobiotics, since the activity of these enzymes is stereoselective with respect to the 

formation of diols. One example is the combined activity of the oxidases and the epoxide 

hydrolases on benzo[a]pyrene (PAH), which involves the stereoselective formation of 

metabolites whose activity can be mutagenic (Figure 3). Benzo[a]pyrene undergoes 

epoxidation that can occur in three different ways with consequent formation of 

benzopyrene 4,5-oxide, 7,8-oxide and 7,8-dihydrodiol-9,10-epoxide. In the latter product 

the benzyl hydroxide in position 7 and the epoxide oxygen take on a trans position which 

makes the compound itself less attackable from epoxide hydrolases. The tumorigenic 

activity of this product is more powerful than all other stereoisomers and seems to depend 

on the ability of the carbon atom C10 to act as carbocation on the nucleophilic components 

of DNA. 

 



34 

 

 

 
 
Figure 3. Role of P450 in the bioactivation of the pre-carcinogen benzo[a]pyrene. Benzo[a]pyrene (BP) 
ismetabolis ed by P450 enzymes (CYP1A1 and CYP3A4) to BP-7,8-epoxide, which is subsequently 
converted into BP-7,8-diol by epoxide hydrolase (EH), and into BP-7,8-diol-9,10-epoxide by CYP1A1. BP-
7,8- diol-9,10-epoxide isa reactive metabolite that covalently interactswith DNA. 

 
 

In mammals there are five distinct forms of epoxide hydrolases: microsomal (mEH or 

EPHX1), soluble (sEH or EPHX2), cholesterol, the LTA4 hydrolases and epossiline 

hydrolases. The last three forms hydrolyze exclusively endogenous epoxides, they have a 

high substrate specificity and have no role in the metabolism of oxides xenobiotics. In 

contrast, the microsomal (mEH) and soluble (sEH) forms hydrolyze a wide variety of 

substrates, including many alkene epoxides and arene oxides. These two forms generally 

share the same cellular localization with the enzymes of the Cytochrome P-450 family, 

often responsible for the production of toxic epoxides. This likely ensures the rapid 

detoxification of alkene epoxides and arene oxides generated during oxidative 

biotransformation of xenobiotics. 

The epoxide hydrolase is one of many inducible enzymes in liver microsomes, and its 

induction is invariably associated with cytochrome P-450.  
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2.2.  PULMONARY METABOLISM OF FOREIGN COMPOUNDS 

 

2.2.1. Introduction 

 

While the liver has been recognized as the major site of drug and xenobiotic metabolism, 

increased attention is also paid to the metabolism of xenobiotics by extrahepatic tissues, in 

particular, those tissues, such as lung, intestine, and skin, which are markedly influenced 

by the environment, dietary status, and exposure to other chemicals.  

Inhalation represents one of the major routes by which the body enters in contact with 

gases, as well as solids and liquids suspended in the air. The very large surface area of 

the alveoli (about 70 m2), besides being ideally suited for the function of gas exchange, 

also facilitates the penetration into the body of potentially toxic agents, and since the entire 

cardiac output passes through the lungs, all chemicals present in the circulation must also 

traverse the lungs. The lung, therefore, is a primary target organ for toxic inhaled 

compounds, and many of these chemical substances pose a risk to the lung as they 

include specific pneumotoxins and carcinogens. 

Occupational, accidental or prolonged exposure to a great variety of exogenous chemicals 

may result in acute or delayed injury to cells of the respiratory tract. Some examples of 

harmful organic chemicals include polycyclic aromatic hydrocarbons (PAHs), aromatic 

amines, halogenated compounds, aliphatic compounds, aldehydes, and ketones. Many of 

those compounds can be found in significant concentrations in the air of urban and 

industrial settings (either the gas/vapour state or adsorbed onto respirable particles), and 

in cigarette smoke [104-106]. Not surprisingly, many of those foreign chemicals, and also 

biological agents to which the airways are exposed, have been implicated in a wide variety 

of diseases of the respiratory tract, for example, lung cancer (tobacco smoke, 

benzo(a)pyrene, nitrosamines, polonium-210, chromates, nickel and arsenic); chronic 

bronchitis and emphysema (cigarette smoking and air pollution); diffuse pulmonary fibrosis 

(busulfan, bleomycin, nitrofurantoin, methysergide, paraquat, methylphenylethylhydantoin, 

and diphenylhydantoin); and phospholipidoses (chlorphentermine).  

The lung has a significant capability of biotransforming many foreign compounds with the 

aim of reducing its potential toxicity by Phase I and Phase II reaction enzymes. 

While much of what is known about the xenobiotic metabolizing enzyme systems comes 

from studies on the liver, comparable work on the lung emphasizes the similarities rather 

than the diversities of this enzyme system in different tissues.These differences may, in 
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part, be due to the presence of different isozymes of cytochrome P-450.  

It is difficult to assess the contribution of pulmonary metabolism to the overall metabolism 

of a compound. In most cases, in vitro enzymic activities of liver are significantly higher 

than those of lung, but these differences may be offset in vivo by other factors such as 

blood flow and distribution.  

 

2.2.2. Lung Toxicity 

  

The mechanisms by which xenobiotics cause damage to pulmonary tissue is a complex 

and partially characterised issue. Complexity arises because of the heterogeneity of the 

lung, containing over 40 different cell types, and the remarkable variety in cell functionality 

[107].  

Functions range from gas exchange by epithelial alveolar cells, secretory cells with cilia, 

designed to move foreign particles up to tracheobronchial tract, to endothelial cells that 

line the pulmonary vasculature, providing a junction between bloodstream and respiratory 

cells. Each of these cells, and the function they sustain, is a potential target for toxic 

action. The most susceptible lung cells are capillary endothelial cells, pulmonary alveolar 

macrophages, non-ciliated bronchiolar epithelial cells (Clara cells), ciliated bronchiolar 

epithelial cells, and type I and type II alveolar epithelial cells [105] [108].  

The cellular heterogeneity of the lung presents enormnous difficulties to the isolation of all 

the many cell types in sufficient yield and viability required for metabolic studies. Another 

issue that make more complex understanding mechanisms involved in xenobiotics-

induced pulmonary tissue damage is the limited knowledge about the potential toxicity of 

many chemicals present in our environment. A significant number of chemicals produced 

in the range 2–100 ton/year and used in industrial processes are insufficiently known in 

terms of their potential toxicity. Among them, there are many compounds for which the 

available toxic information and potential human health risks associated with their inhalation 

is almost inexistent. Awareness on this problem has been raised by the European Union, 

by promoting the REACH-program 

(http://ec.europa.eu/environment/chemicals/reach/reach). 

Althought a complete understanding of how a compound may induce cell damage is 

lacking, there is a cumulative experimental evidence of the role of xenobiotic metabolism 

as a cause of lung toxicity.  
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In general, biotransformation reactions are beneficial, helping the pulmonary tissues to 

eliminate foreign compounds. Sometimes, however, these enzymes transform an 

otherwise harmless substance into a reactive form. Results of several studies indicate that 

P450-mediated oxidations frequently result in the generation of more reactive, and 

frequently more toxic, intermediates (i.e. electrophiles, pro-carcinogens), a process known 

as metabolic bioactivation (Figure 4). Thus, many compounds that elicit toxic injury to the 

lung are not intrinsically pneumotoxic, but cause damage to target cells following metabolic 

activation. Classic examples are the activation of benzo[a]pyrene, which is a constituent of 

tobacco smoke and combustion products, or N-nitrosamines into reactive forms capable of 

binding to DNA and eventually leading to cancer formation. As the resulting intermediates 

of biotransformation are highly reactive and unstable, they tend to exert toxicity in situ 

rather than in distant tissues.  

 

 

Figure 4. Metabolism and bioactivation of xenobiotics. Phase I reactionscan generate more reactive 

metabolitesthan the parent compound. Phase II reactions tend to render more water-soluble and less active 
metabolites, however, bioactivation can also occurs. GST: glutathione S transferase; UGT: UDP 
glucuronyltransferase; EH: epoxide hydrolase; ST: sulphotransferase; NAT: N acetyltransferase. 

 

The xenobiotic metabolic activation may take place in the lung or in another tissue such as 

liver. The possible contribution of extrapulmonary metabolic activation of chemicals to 

metabolites that are toxic to the lung will depend, in part, on the relative stability of such 

metabolites and the inherent susceptibility to toxicity of the lung compared to other tissues. 

Alternatively a stable, proximate, toxic metabolite may be formed in an extrapulmonary 

site, transported to the lung, and then metabolized to the ultimate toxic form. Finally, the 
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lung may be responsible for the formation of the toxic metabolite from the parent chemical 

(Figure 5).  

 

Figure 5. Toxicity mediated by reactive metabolites formed in the lung either from the parent chemical or 

from proximate toxic metabolite. If the toxic metabolite is chemically very reactive, it may have to be 
generated in situ in the lung in order to exert toxicity. Depending on the metabolic capability of the tissue, the 
metabolic activation by the parent chemical may be completely carried out in the lung. Alternatively, part of 
the metabolic activation may be carried out in other tissues, such as the liver, but the ultimate toxic 
metabolites are formed in situ in the lung. 

 

The site and importance of the pulmonary injury ultimately depends on factors such as the 

concentration of the reactive agent within lung, the existence of an adequate pulmonary 

detoxication pathway, and the bioactivation to a more toxic species. These factors also 

determine which specific type of lung cells will be preferentially damaged [109]. Toxicity in 

the target cell occurs when metabolic activation is followed by inappropriate detoxification 

of the reactive metabolite, which is normally achieved by Phase II reactions. In such 

cases, toxicity reflects the unbalance between activation and detoxification reactions [110]. 

Some of the activating and deactivating enzymes and their cofactors are shown in Table 

2. Obviously, the relative importance of these will differ for different chemicals. It is also 

important to note that many of these enzyme activities may be altered by various 

environmental factors such as air pollution, cigarette smoking and diet, thus potentially 

affecting the pulmonary metabolism of some chemicals and, thereby, possibly affecting 

their toxicity.  

Assessment of the potential toxicity of new chemicals for man is still largely based on data 

obtained from studies in vitro and in vivo with experimental animals. However, the well-

known species differences in biotransformation enzymes raises concerns about the 

suitability of animal data for predicting lung toxicity in humans as a result of bioactivation 



39 

 

reactions. The development of human relevant in vitro models (i.e. cell lines from human 

pulmonary origin), can notably contribute to better understanding the basis of chemical-

induced lung toxicity in man and, in particular, the role of pulmonary biotransformation 

enzymes in the bioactivation/detoxication processes. 

 

Table 2. Balance of activating and deactivating enzymes and their cofactors. 

Cytochrome P-450 NADH-cytochrome b5 reductase 

Prostaglandin synthetase Xanthine oxidase 

Flavin-containing monooxygenase Glutathione   

  Glutathione peroxidase 

  Glutathione S-transferase 

NADPH-cytochrome P-450 reductase UDP-glucuronosyltransferase 

Catalase Vitamin E 

Superoxide dismutase NAD(P)H Ascorbic acid 
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2.3.  GENETIC SUSCEPTIBILITY TO COPD  
 
 

2.3.1. Genetic polymorphisms 
 

The existence of variations in the DNA sequence among different individuals - the so-

called inter-individual genetic variability - is a phenomenon widely appreciated, proved and 

quantifiable in its qualitative and quantitative aspects thanks to the completion of the 

human genome sequencing, announced in 2000 by the Celera Genomics Group (The 

Human Genome Project). 

Currently, it is believed that about 80% of the genes in humans contain sequence 

variations among individuals, that means, that genes are present in the form of different 

allelic variants. The main types of sequence variation in the genome are: 

insertions/deletions (ins/del) and single nucleotide polymorphisms (SNP - Single 

Nucleotide Polymorphisms) (Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

SNPs consist of a single nitrogenous base variation in a DNA sequence, so two individuals 

may have in the same position of their respective genomes, two different bases [111]. So 

far, more than 3.1 million SNPs have been characterized, and they are responsible for 

90% of the genetic variability observed between individuals. 

SNPs are classified into three groups, according to the position they occupy in the genome 

(Figure 7): 

 

Figure 6. Single Nucleotide Polymorphism. 
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 cSNP - Variations in the coding regions, called exons; these SNPs may have 

different functional effects according to the involved nucleotide. If any change does 

not occur in the amino acid sequence of the protein, we talk about synonymous 

SNP, whereas if the nucleotide substitution changes the amino acid codon, it is 

called non-synonymous SNP, which can have effects on the structure, stability and 

function of the encoded protein; sometimes the cSNP may also lead to the 

introduction of a stop-codon, which leads to production of a truncated protein, 

generally inactive. 

 pSNP - It is a SNP in perigenic regions. It affects the regulatory regions, such as 

promoters, enhancers, and splicing junctions. The possible effects include 

alterations in the protein expression, (as a consequence of the effects (direct action) 

on transcription, stability and translatability of the mRNA) and, sometimes, 

variations in the structure of the protein by interference with splicing mechanisms. 

 rSNP - The random SNPs are located in intragenic regions, non-coding, which 

represent 90% of the whole genome. These SNPs have no direct effect on the 

protein but, considering the phenomenon of linkage disequilibrium, they can be 

employed for the identification of genes involved in different pathologies. The 

linkage disequilibrium is a key phenomenon for genome association studies in the 

human (associations between single-nucleotide polymorphisms and traits like major 

diseases), so, assuming that the association between the two is high, the presence 

of a given SNP can predict the presence of a second SNP associated with the 

onset of certain pathologies [112-113]. 

 
 

 
 

 

 
Figure 7. SNPs classification based on location inside genome. 
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2.3.2. Microsomal epoxide hydrolase (EPHX1) 

 

Human microsomal epoxide hydrolase (EPHX1) is an evolutionarily highly conserved 

biotransformation enzyme expressed in nearly all tissues and localized mainly in the 

microsomal fraction of the endoplasmic reticulum of eukaryotic cells.  

EPHX1 was the first characterized among the known epoxide hydrolases and it was first 

purified from rabbit liver by Watabe and Kanehira (1970). Human EPHX1 was then 

characterized by Oesch (1974) in human liver. Human EPHX1 gene orthologues have 

been found in 127 organisms. Humans possess two EPHX enzymes, namely microsomal 

EPHX1 and soluble EPHX2. 

EPHX1 is an important part of microsomal defense mechanisms against toxicity of 

xenobiotics and accumulating knowledge suggests that the enzyme also has essential 

physiological roles. EPHX1 has a broad substrate selectivity and does play an important 

role in the detoxification of many reactive epoxide intermediates [114]. It tipically catalyzes 

the hydrolysis of epoxides to trans-dihydrodiols [115], and it is responsible for the 

detoxification of a wide variety of suspected genotoxins [116].  

In certain instances, the initial trans-dihydrodiol metabolites are further activated by 

subsequent P450 catalysis to form highly electrophilic and reactive dihydrodiol-epoxides 

that, in a stereoselective manner, form covalent adducts with DNA [117]. Thus, EPHX1 is 

important for its dual functional role in detoxication as well as bioactivation processes. In 

particular there is great interest in EPHX1 because of its potential involvement in the 

bioactivation of carcinogenic polycyclic aromatic hydrocarbons [118]. 

 

2.3.2.1 EPHX1 gene 

 

Human EPHX1 gene is located on chromosome 1 (1q42.12), consists of 9 exons, 

separated by 8 introns, and spans about 35 kb [119-122]. Exons 2–9 of EPHX1 encode 

three transcription variants differing in the 5′-untranslated region, while each translated 

protein product has 455 amino acids. 

The regulation of EPHX1 gene expression is complex. Human EPHX1 expression in the 

liver is selectively driven by the proximal E1 promoter, but an alternative promoter region 

(E1-b promoter) drives expression in other tissues from both adult and fetal sources [123]. 

The gene sequence contains several Sp1/Sp3 (transcription factors) binding sites and 

there are two DNAseI hypersensitive sites (HS-1 and HS-2) in the intronic region between 
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E1b and E1 [124]. These elements take part in cell- and tissue-specific transcriptional 

regulation of EPHX1. The complexity of EPHX1 gene regulation also derives from a vast 

and diverse array of transcriptional factors binding to regulatory sequences (Figure 8).  

 

 

Figure 8. EPHX1 gene sequence and regulatory elements on chromosome 1 at position 1q42.12. E=exons, 
HS=DNAseI hypersensitivity sites, kb=kilobases, rs=refence SNP ID number. Coding exons are marked in 
gray. 

 

Gene expression of EPHX1 in most tissues and anatomical compartments was 

demonstrated by microarray gene expression analysis and RNA sequencing 

(www.genecards.org). Human liver and skin express the highest EPHX1 transcript and 

protein levels. EPHX1 expression is tissue- [125], age-, and sex-specific [126], but also 

shows high inter-individual variation among humans [127-128]. EPHX1 transcripts were 

found in human primary bronchial epithelial cells, but not in alveolar macrophages [129]. 

Dysregulation of EPHX1 expression has been linked to several human pathologies 

including cancer. So, delineating the regulatory mechanisms of EPHX1 gene expression is 

key to understand the role of EPHX1 in human disease pathology and for predicting organ-

specific toxicities. 

Deleterious mutations and more common gene sequence variations such as single 

nucleotide polymorphisms (SNPs) can affect the physiological function of the protein 

product, and, in concert with environmental exposures, may have consequences for 

disease development or progression, especially in the lungs. 

There are 142 EPHX1 gene variations currently listed in the National Cancer Institute 

dbSNP database (http://www.ncbi.nlm.nih.gov/SNP), of which several may have clinical 

significance (http:// www.ncbi.nlm.nih.gov/clinvar/).  

The complexity of EPHX1 gene regulation, its expression pattern, and the presence of 

functional genetic variability suggest that individuals may considerably differ in the capacity 

of EPHX1 to metabolize diverse substrates with potential consequences for disease 
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pathophysiology. Transformation of this information into clinical application is, however, 

hindered by the lack of the crystal structure of human EPHX1 and by the complexity of 

unexplored relationships between its genotype and phenotype. 

 
 

2.3.2.2. EPHX1 protein structure and enzyme function 

 

EPHX1 is a member of the α/β hydrolases enzyme family, and comparisons of homologies 

among microsomal epoxide hydrolases from phylogenetically different organisms suggest 

their origin from a common ancestor [130-132]. The N-terminal part anchors the EPHX1 

protein into the membrane, while the C-terminus contains catalytic residues. Although the 

three dimensional structure of human EPHX1 has not been characterized so far, the 

crystal structure of its orthologue from Aspergillus niger is available [133-134]. Deciphering 

the crystal structure of human microsomal EPHX1 is very important for further elucidation 

of structure-function relationships and prediction of mechanistic implications of EPHX1 

gene variants. 

EPHX1 appears to play an important role in organ-specific human physiology, and it is 

generally accepted that, in contrast to EPHX2 and other epoxide hydrolases, EPHX1 is 

more oriented toward the metabolism of xenobiotics compounds than endogenous 

substrates and has mostly a detoxifying function.  

The mechanism of EPHX1 generally follows a mechanism similar to that of EPHX2, with 

the attack of the oxirane ring to yield an alkyl-enzyme intermediate followed by subsequent 

hydrolysis of the intermediate by water [135]. The EPHX1 catalytic cycle comprises a so-

called catalytic triad, consisting of a His431, Asp226, and a Glu404 [136-137], that consists of 

fast nucleophilic attack of the substrate by EPHX1-Asp226 residue forming an enzyme-

substrate ester intermediate and subsequent hydrolysis of the complex by water [138].  

EPHX1 plays a dual role in the biotransformation of xenobiotics. While it detoxifies certain 

carcinogenic compounds, e.g., butadiene, benzene, and styrene [139], it can also activate 

procarcinogens such as polycyclic aromatic hydrocarbons [140-141]. 

EPHX1 has a broad substrate specificity [142] [116]. Typical substrates include toxic and 

procarcinogenic compounds, such as epoxide derivatives of 1,3-butadiene, benzene, 

aflatoxin B1, chrysene, nitropyrene, naphthalene, and anthracene, as well as commonly 

used anticonvulsant drugs, such as phenytoin and carbamazepine.  

The most common environmental compound metabolized by EPHX1 are epoxide 

derivatives of polycyclic aromatic hydrocarbons (benzo[a]pyrene 4,5-oxide). The 
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dihydrodiol products of EPHX1 metabolism have been implicated as ultimate reactive 

carcinogens that are responsible for polycyclic aromatic hydrocarbon-initiated 

carcinogenesis. The importance of EPHX1 is underscored by data obtained from a EPHX1 

knockout mouse model that show reduced carcinogenicity of 7,12-

dimethylbenz[a]anthracene in knockout versus control animals [143].  

EPHX1 may also play an important role in the endocannabinoid signaling pathway [144] 

and modulate, through its regulation, energy metabolism and immunity. 

Enzyme induction and inhibition by both xenobiotics and endogenous substrates are an 

important phenomenon that may influence drug–drug interactions or disrupt important 

physiological processes. 

Mouse and rat EPHX1 were shown to be readily inducible by xenobiotics in several animal 

studies [145-146]. EPHX1 expression was induced by phenobarbital, β-naphthoflavone, 

benzanthracene, and trans-stilbene oxide in human fetal hepatocytes in vitro [147]. 

Several polycyclic aromatic hydrocarbons [148] were shown to induce EPHX1 in precision-

cut liver slices prepared from fresh human liver.  

Inhibitors of EPHX1 have been developed and characterized, and divalent heavy metals 

were shown to inhibit EPHX1 enzymatic activity [149]. The most potent of the inhibitors 

was Zn2+ and Hg2+. 

Enzyme stability is a potential source of variability in estimating the in vivo activity of 

EPHX1. The phenomenon of varying stability of polymorphic variants has been 

documented with other biotransformation proteins, including the soluble form of human 

epoxide hydrolase, EPHX2 [150]. Inherent allelic differences in protein stability may lead to 

altered rates of clearance of epoxide species in vivo. The relationship between EPHX1 

protein stability and epoxide metabolism in vivo remains unclear, although it is likely that 

potential differences in enzyme stability, together with polymorphisms in the 5-flanking 

region affecting transcriptional rates [151], may combine to modify metabolism and 

clearance of epoxides. Results from several studies suggest that interactions between 

specific polymorphic loci, such as between EPHX1 and the cytochrome P450s [152], 

and/or between EPHX1 and the glutathione-S-epoxide transferases [153], will likely 

determine unique genotypes that are most highly susceptible to chemically-initiated 

diseases. 

Further studies conducted on large population samples will required to thoroughly address 

these gene–gene interaction determinants. 
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Some investigators [154] provided evidence about substrate-specific variation for EPHX1 

activity among different species, supporting the hypothesis that individual EPHX1 variants 

may possess unique substrate preferences and associated activity differences. 

There exist certain well-characterized genetic polymorphisms in human EPHX1 [155-156]. 

The coding region of EPHX1 presents with two prominent genetic polymorphisms. The 

first, within exon 3, results in the substitution of Tyr with His at amino acid position 113; 

another, within exon 4, codes for the substitution of a His with Arg at amino acid position 

139. In vitro cDNA expression studies indicate that EPHX1 enzymatic activity is decreased 

by approximately 50% in subjects with the His 113 allele (slow allele) and is increased by 

at least 25% in subjects with the Arg 139 allele (fast allele). The rare occurrence of both 

mutations together produces an enzyme with normal activity [156]. These data, together 

with results from additional studies [151] [128], suggest that differences in protein stability 

among the variant EPHX1 proteins may factor into the basis of observed interindividual 

differences in EPHX1 phenotype. Additionally, seven other 5’-flanking region genetic 

polymorphisms have been described [157], and may also impact EPHX1 gene 

transcriptional activity and resulting cellular phenotype. 

 
2.3.2.3. EPHX1 and human diseases 

 

The presence of inherited genetic variability affecting EPHX1 activity or dysregulation of its 

expression may contribute to the development of human diseases.  

Mutations in EPHX1 may cause preeclampsia [158-159], hypercholanemia [160], and are 

suspected to contribute to fetal hydantoin syndrome [161] and diphenylhydantoin toxicity.  

The most frequently studied SNPs Tyr113His (T337>C) and His139Arg (A416>G) were 

previously used as markers to predict EPHX1 activity [162]. However, their effect on 

enzyme activity in vitro is modest towards cis-stilbene oxide, none towards 

benzo[a]pyrene-4,5-epoxide, and was not confirmed in human liver microsomes [156] 

[163]. A detailed study of mouse brains has also shown that EPHX1 contributes to the 

cerebral metabolism of epoxyeicosatrienoic acids which could interfere with neuronal 

signal transmission [164], vasodilation, cardiovascular homeostasis, and inflammation 

[165]. A significant association of the low EPHX1 activity diplotype harboring the 

rs1051740 and rs2234922 SNPs with alcohol dependence was recently found [166] 

supporting the previously suggested role of EPHX1 genotype in the risk of alcoholic liver 

disease [167]. From the reviewed information it can be concluded that there is a 
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convincing link between EPHX1 dysregulation and neurological pathologies, including both 

degenerative disorders such as Alzheimer's disease and various forms of drug-

dependence.  

Despite considerable research on EPHX1-related physiological and pharmacological 

consequences for human health, most investigations involving EPHX1 have focused on its 

contribution to gene-environmental susceptibility to genotoxicity and carcinogenesis using 

both human and animal model studies. Studies on gene knockout mice models (EPHX1-

null; EPHX1−/−) showed lack of bioactivation of 7,12-dimethylbenz[a]anthracene to the 

carcinogenic metabolite 3,4-diol-1,2-oxide by the EPHX1−/− mice consequently supporting 

the role of EPHX1 in bioactivation of certain polycyclic aromatic hydrocarbons [143].  

Polymorphisms in EPHX1 may lead to differences in host-mediated bioactivation of 

procarcinogens resulting in differential susceptibility to cancers of various tissues. Studies 

suggested that the presence of EPHX1 SNPs may significantly affect the risk of lung, 

upper aerodigestive tract, breast, bladder, and ovarian carcinomas [168-175]. Numerous 

human epidemiological studies have examined the role of the polymorphism in EPHX1 

and tumor formation [176-180]. These data suggest that mEH genotype is associated with 

altered risk of several types of cancers and pulmonary disease.  

The most convincing evidence is currently available for lung and colorectal cancers, for 

which environmental exposures and gene–environment interactions are proposed to play 

major etiological roles, but the relevance of EPHX1 genetic variability for susceptibility to 

colorectal carcinoma remains an open question. 

More convincing evidence exists in respect to exposure-related lung carcinoma risk. A 

recent meta-analysis on EPHX1 exon 3 SNP Tyr113His (rs1051740) has suggested an 

association of the His allele with increased lung carcinoma risk in Asian, but not Caucasian 

populations [181]. Another meta-analysis confirmed that this SNP may be a risk factor for 

lung carcinoma in Asians, but observed its protective effect in Caucasians as well [174]. 

Interestingly, genetically predicted (estimated using rs1051740 or rs2234922 SNPs) low 

EPHX1 activity was associated with an increased risk of developing tobacco-related 

cancer in smokers among 47,089 individuals from the Danish general population [182]. A 

further study reported that subjects exposed to environmental tobacco smoke and carrying 

low EPHX1 activity alleles had a significantly increased lung carcinoma risk [183]. Thus, 

the evidence for a link of tobacco exposure, EPHX1 genetic variability, genetic damage 

[184-185], and lung carcinoma risk seems particularly strong. 
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Besides cancers, there are interesting parallels with non-malignant diseases. A significant 

correlation between the two functional polymorphisms, rs1051740 and rs2234922, of the 

EPHX1 gene and the enzyme activity and the individual’s susceptibility to chronic 

obstructive pulmonary disease (COPD) was noted. COPD is more frequent in smokers 

and together with the above discussion of EPHX1 and lung carcinogenesis, it seems that 

EPHX1 plays a pivotal role in protecting the lung against environmental exposures.  

A comprehensive meta-analysis reports that EPHX1 113 mutant homozygote was 

significantly associated with an increased risk of COPD in Caucasian individuals, and the 

139 mutant heterozygote was significantly associated with dicreased risk of COPD in 

Asian populations, but not in Caucasian populations. Pooled analyses revealed that, 

similarly to lung cancer, the slow and extremely slow EPHX1 enzyme activity were 

associated with an increased risk of COPD, while the fast enzyme activity was not 

associated with dicreased risk of COPD. The stratified analysis demonstrated this 

association in Caucasian, but not in Asian individuals [186]. A number of studies and 

meta-analysis have assessed the association between EPHX1 polymorphisms and COPD 

in different populations, however, the results are still inconsistent and controversial. 

Genetic variability of EPHX1 is associated with several pathological phenotypes and may 

in concert with environmental exposures contribute to the development of malignancies, 

especially in the lungs. 
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2.4. AIM OF THE STUDY 

 

Pathogenesis of COPD is still poorly understood, but is generally accepted that the 

pathogenic triad of oxidative stress, protease–antiprotease imbalance, and inflammation is 

relevant in disease onset and progression. 

Lung damage can be attributed to an imbalance in the endogenous protease/antiprotease 

equilibrium, promoting tissue hydrolysis; examples of such imbalance include genetically 

determined alfa-1-antitrypsin deficiency, and the overexpression of elastases and 

collagenases that mimics the development of pulmonary emphysema [187-188]. The 

oxidant/antioxidant theory postulates that an excess of oxidants and free radicals in the 

lungs promotes cellular and tissue damage and it is the major initiator of the disease 

process [189-190]. Inflammation is not a separate entity by itself, but is integrally related to 

oxidative stress and protease–antiprotease imbalance. 

Cigarette smoke (CS), occupational exposure to solvents, and other chemicals and 

environmental pollutants are rich source of oxidants and highly toxic electrophiles can 

serve as a trigger or activator of oxidative stress and inflammation, inducing severe 

macromolecular, cellular, and tissue damage, cell death, and inhibition of cell repair, 

through direct cytotoxic effects, promotion of primary genotoxic events, or generation of 

reactive oxygen intermediates [191-192]. CS is certainly the main risk factor for COPD, 

but, although it accounts for   ̴80-90% of COPD cases worldwide, only a small proportion 

of smokers (15-20%) develop symptomatic disease [193]. This phenomenon, together with 

the familial clustering of patients with early-onset COPD [194], strongly suggests that 

COPD is a complex disease involving the interaction of genetic and environmental factors.  

As the only well-defined genetic factor of COPD, alfa-1-antitrypsin deficiency, is rare in 

worldwide populations, other genetic factors must be involved in the susceptibility and 

development of COPD. 

Polymorphisms in the genes controlling xenobiotic metabolism (hence oxidant-anti-oxidant 

balance) may explain some of the observed differences in susceptibility to various 

diseases caused by environmental factors, including COPD [195-197]. 

The microsomal epoxide hydrolase gene, EPHX1, is a good candidate for several reasons. 

First, it is strongly expressed in the lung bronchial epithelial cells, but downregulated in 

COPD [198]. Secondly, the enzyme product is a critical biotransformation enzyme that 

plays a dual role in the detoxification and activation of exogenous chemicals and smoking-

induced reactive substances, such as epoxides and polycyclic aromatic hydrocarbons 
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(PAHs), which may cause oxidative stress [199] [116]. Finally, there are two well-

characterised variants of the EPHX1 gene which have been shown to alter enzyme activity 

considerably [200]. This might account for some of the variety in susceptibility to COPD 

among smokers. Polymorphisms of the EPHX1 gene may be an important risk factor in 

lung disease associated with oxidative stress consistent with the direct effects of cigarette-

smoke components.  

Four distinct EPHX1 alleles exist, which arise because of the presence or absence of two 

point mutations in the gene. Among 11 polymorphic loci found in human EPHX1, two 

genetic polymorphisms have been reported within the coding region of the EPHX1 gene: 

the TAC to CAC transition in exon 3 (rs1051740), which changes tyrosine (Tyr) residue 

113 to histidine (His), and the CAT to CGT transition in exon 4 (rs2234922), which 

changes His residue 139 to arginine (Arg). In vitro cDNA expression studies indicate that 

EPHX1 enzymatic activity is decreased by approximately 50% in subjects with the His 113 

allele (slow allele) and is increased by at least 25% in subjects with the Arg 139 allele (fast 

allele). The rare occurrence of both mutations together produces an enzyme with normal 

activity [15]. Based on the polymorphism of EPHX1 gene, the population can be classified 

into four groups of putative EPHX1 phenotypes: normal, fast, slow and very slow. The 

genetic characteristics of these subgroups are: normal—homozygous wild type for both 

exon 3 and exon 4, or heterozygous for both exon 3 and exon 4; fast—at least one 

mutation in exon 4 and no exon 3 mutation; slow—heterozygous for exon 3 and 

homozygous for exon 4; very slow—homozygous mutation type for exon 3 [192] [200]. 

A number of studies have assessed the association between EPHX1 polymorphisms and 

COPD in different populations, however, the results are inconsistent and inconclusive.  

Aim of this study is to investigate, in a population based case-control study, whether 

aforementioned polymorphisms of EPHX1 gene had any bearing on individual 

susceptibility to the development of chronic obstructive pulmonary disease (COPD) and on 

the severity of the disease. Associations between disease group and specific genotypes 

and phenotypes will be assessed. The results of this study will provide a contribution to 

delineate the gentic signature responsible for COPD onset and progression. 
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2.5. MATERIALS and METHODS 

 

2.5.1. STUDY POPULATION 

 

Subjects were enrolled consecutively among outpatients who were undertaking respiratory 

function tests at the Pneumology Unit of the Sant’Orsola-Malpighi Hospital, Bologna, from 

October 2010 to July 2012. Patients are usually sent by the General Practitioners for a first 

diagnosis of COPD and subsequent checks.  

A case was defined as patient diagnosed with COPD (spirometry with post-bronchodilator 

ratio: FEV1/FVC<0.70), and it was classified according to GOLD guidelines (GOLD 

project) in: Mild (GOLD 1), Moderate (GOLD 2), Severe (GOLD 3) and Very Severe 

(GOLD 4). A control was defined as healthy subject without COPD or any other respiratory 

disease. In order to increase the number of potential controls we included subjects from 

Blood Transfusion Service, a group of healthy subjects with the common feature to be not 

affected by COPD. The study population includes 443 subjects: 229 affected by COPD 

and 214 healthy controls. 

This study was approved by the competent local ethics committee (protocol number: 

RE69/2015/U/OssN). 

 

2.5.2. SOCIO-DEMOGRAPHIC AND CLINICAL VARIABLES 

 

The COPD population has been well characterized by Pandolfi et al. in 2015, in order to 

assess the role of socio-demographic, lifestyle and clinical factors as predictors of acute 

events  [201]. 

Comprehensive socio-demographic, lifestyle and clinical data were collected by physician 

interviewers through the use of a predefined questionnaire during a routine clinical 

consultation. In particular, in addition to socio-demographic and lifestyle characteristics, 

the following information were collected: age, gender, educational status, smoking status 

(including n. packs of cigarettes/year) and physical activity. Moreover, for each participant 

a deprivation index was attributed. The deprivation index was developed by Caranci et al. 

using variables from the 2001 General Census of Population and Housing [202]. Five traits 

that represented the multidimensionality of the social and material deprivation concept 

were considered: low level of education, unemployment, non-home ownership, one-parent 
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family and household overcrowding. The index is calculated by summing standardized 

indicators [202].  

The following clinical characteristics were collected for each participant: Charlson index, 

Fraction Exhaled Nitric Oxide (FeNO), PaO2, PaCO2, FVC, FEV1, FEV1/FVC (%), FVC (% 

of total) and FEV1 (% of total). The Charlson Comorbidity Index contains 19 categories of 

comorbidity [203]. In this study this index is expressed in 3 categories: no comorbidity, one 

comorbidity and two or more comorbidities. FeNO levels were evaluated using a Niox 

chemiluminescence analyser (Aerocrine AB, Solna, Sweden). According to the American 

Thoracic Society (ATS) guideline, the subjects inhaled nitric oxide free air to total lung 

capacity and then exhaled at a constant flow rate against a valve connected to the nitric 

oxide analyzer [204]. The mean value of FeNO levels obtained in two tests was used. The 

measurements of PaO2 and PaCO2 were evaluated using arterial blood gas (ABG) 

analysis. FEV1 and FVC were obtained by spirometry (Model N 403; Monaghan, Littleton, 

CO), with the spirometer calibrated daily. 

In addition, two anthropometric characteristics were collected: BMI and waist 

circumference. BMI was determined from weight and height measured at the time of the 

first visit, and categorized into four groups: underweight (<18.5kg/m2), normal (18.5–

24.9kg/m2), overweight (25–29.9 kg/m2) and obese (>30kg/m2). 

 

2.5.3. GENETIC ANALYSIS 

 

2.5.3.1. DNA extraction 

 

The DNA was extracted from cell pellet obtained by arterial and venous blood sample, 

starting from a sample volume of 200 µL, after removal of plasma by centrifugation. Given 

the small amount of the starting sample, the extraction was performed using spin columns 

of the QIAamp® DNA Mini Kit (Qiagen™, Hilden, Germany), a silica-membrane-based 

nucleic acid purification. 

Kit contents: 

1. QIAamp mini spin columns, extractive spin columns containing a silica resin 

2. Collection tubes; 
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3. Proteinase K, lyophilized dissolved in 1.2 mL of solvent with 0.4% sodium azide, at 

the time of kit opening; 

4. Buffer AL; 

5. Buffer AW1, in concentrated solution, it has been diluted with 25 mL of absolute 

ethanol at the opening time; 

6. Buffer AW2, in concentrated solution, it has been diluted with 30 mL of absolute 

ethanol at the opening time; 

7. Buffer AE (elution buffer). 

 

Experimental Procedure - To 200 µL of arterial or venous blood (Figure 9), treated with 

the common anticoagulants (heparin or EDTA) and deprived of plasm, were added 20 µL 

of Proteinase K, which lyses the cell components making DNA accessible. 

The sample was shaken well to ensure the homogeneity of the solution 

and centrifuge briefly to collect all of the solution at the bottom of the tube. 

200 µL of Buffer AL were added to promote cell lysis and, after stirring at 

the vortex for 15 seconds, the samples were incubated in the heating block 

at 56 °C for at least 10 minutes, allowing the Buffer AL to work. After 

incubation, the samples were briefly centrifuged to collect the drops formed 

on the tube wall, then I added 200 µL of cold absolute ethanol (4°C), to 

facilitate DNA precipitation. After shaking well for 15 seconds, the solution 

(about 600 µL) was transferred into the appropriate column (QIAamp spin 

columns) inserted into a collection tube, and it was centrifuged at 8000 rpm 

for one minute. The column contains a resin of silica gel with a high affinity 

for the DNA which is retained while the other components pass through the 

resin into the collection tube. The column was washed with 500 µL of 

Buffer AW1 and centrifuge at 8000 rpm for one minute: the DNA remains 

bound to the resin, the collection tube is discarded, and the column is 

inserted into a new collection tube. At this point, the DNA was washed with 500 µL of 

Buffer AW2, then centrifuged at 1400 rpm for three minutes. AW1 and AW2 are saline 

buffers for washing the DNA extracted from contaminants, proteins and other cellular 

components present in solution. After centrifugation, the column was transferred into a 

new collection tube. I added 200 µL of Buffer AE (elution baffer) and the column was 

incubated at room temperature for five minutes. Finally, the column was centrifuged at 

 
 
Figure 9. Experimental 

Procedure. 
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8000 rpm for one minute and the eluate was collected and transferred into sterile vial 

suitably encoded. The DNA has a greater affinity for the buffer AE respect to the resin 

silica column and this allows that the nucleic acid itself is detached from the resin and 

elute in the collection tube. 

The extraction using commercial kits allows to extract DNA from minimal sample volumes 

(200 µL), with short experimental time, allowing you to process many samples 

simultaneously, but with low yields (proportionate to the amount of starting biological 

material). 

 

2.5.3.2. DNA quantification 

 

The dosage of the DNA was measured using the NanoVue® 

technology (Figure 10), based on the principle of classical 

spectrophotometry, whereby nucleic acids absorb ultraviolet light 

and absorption is directly proportional to the concentration. The 

absorption spectrum of DNA ranges between 230 and 290 nm, but 

the absorbance is read at 260 nm, the wavelength at which DNA 

has maximum absorption of UV-light.  

The NanoVue is an innovative UV-visible spectrophotometer, 

capable of working with micro-volumes of sample, from 0.5 to 5 μL, 

and at high concentrations (linearity range: 2-3700 ng). 

Quantification is accurate and fast. Modern NanoVue 

technology uses the surface tension exerted by small 

volumes when placed between two adjacent surfaces 

(Figure 11). This surface tension is developed by the 

reading plates of the instrument on which are directly 

loaded 1 or 2 μL of sample. The reading plates are 

connected to two optical fibers and the light source of the 

instrument is made up of a xenon lamp. The sample concentration and purity are directly 

calculated by the software and displayed on the instrument interface. 

The nucleic acid concentration (ng/μL) is calculated by the following formula: 

 

[Nucleic acid ng/μL] = (Abs260 - Abs280) x K 

 

Figura 10. 
Spectrophotometer 

NanoVue® 

 
 

Figura 11. Surface tension exerted 
by small volumes. 
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K is the factor of reading, specific for each type of nucleic acid 

(DsDNA = 50; ssDNA = 37; RNA = 40).  

The purity determination is very important. The proteins are the main source of 

contamination for extracted DNA sample. For this reason, the absorbance is read also at 

280 nm, the wavelength at which the proteins absorb UV-light. The Abs 260/Abs 280 ratio 

provides a measure of the purity of the extracted nucleic acid sample: a pure DNA should 

have a ratio of approximately 2. In general, DNA solutions with a ratio greater than 1.6 are 

considered to have a good degree of purity for analysis of SNPs.  

 

2.5.3.3. Genotype analysis 

 

The analysis of the SNPs was carried out using two different methods: Polymerase chain 

reaction (PCR) analysis associated with restriction enzyme (RFLP: Restriction Fragment 

Length Polymorphism) and Real-Time PCR with TaqMan probes (Applied Biosystems™, 

Foster City, USA). 

 

PCR-RFLP - The PCR reaction was carried out with a BioRad thermocycler (BioRad 

Laboratories™, Herculres, CA, USA) in a final volume of 10 μL, containing 1 μL of DNA 

template (10 ng/μL) and 9 μL of PCR buffer containing 2 mM magnesium chloride, 1x 

buffer 10x, 0.30 µM of each primer, 5% dimethyl sulphoxide (DMSO), 0.11 mM of dNTPs, 

and 0.03 U/µL of AmpliTaq® Gold Polymerase (Applied Biosystem™) that catalyzes the 

amplification reaction.  

The amplification program, performed with thermocycler (Figure 12) is characterized by 

alternation of three different temperature segments for 30-40 cycles: 

 

 Denaturation: 95°C for 30 seconds: separation of the two strands of DNA; 

 Annealing: 50-60°C for 30 seconds: specific temperature for each primer 

(depending on the length and the ratio GC/AT) that determines the pairing of 

primers with the respective complementary regions within the denatured DNA 

strands; 

 Elongation: 72°C for 30 seconds, that allows DNA synthesis by Taq polymerase 

using the single strand as a template. 
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At the end of the 30/40 cycles, the temperature of 72 °C is kept for 5 minutes, to allow the 

elongation of the final amplified fragments. This results in the exponential amplification of 

the DNA segment of interest. 

After successful amplification, the analysis is 

performed by cutting the portion of the amplified 

DNA containing the SNP of interest with 

restriction enzyme. This involves the 

consequent formation of fragments of different 

lengths that are separated by electrophoresis 

(180V, for 30-35 minutes), through a non-

denaturing 8% polyacrylamide  

gel containing TBE buffer (Tris/Borate/EDTA,  

0·09 mol/L Tris-borate and 0·002 mol/L edetic acid). The gels were prepared just before 

use, using 5 mL of 8% polyacrylamide, 50 μL of ammonium persulfate and 5 μL of 

tetramethylethylenediamine. After the electrophoresis, the gels were dipped in a dilute 

solution of ethidium bromide, planar molecule which intercalates between the bases of 

DNA. The DNA, intercalated by ethidium bromide, absorbs ultraviolet light (260-360 nm) 

and consequently emits fluorescent light (590 nm). The emitted light is detected by the 

system CHEMIDOC™ MP imaging system (BIO-RAD) tool with digital camera through 

which captures an image of the gel, which is transferred directly to the analysis software 

dedicated “ImageLab”.  

The human genome is diploid, so, as result of the cleavage reaction with restriction 

enzyme, it is possible to discern three different situations on the scanned image: 

 

 Homozygous for the common allele wild-type (Ho wt); 

 Heterozygosity (He) in which one allele has the SNP while the other is wt; 

 Homozygous for the SNP (Ho SNP), in which both alleles exhibit the polymorphism 

 

 

 

 

 

Figura 12. Thermocycler for polymerase 
chain reaction (PCR). 
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The gel allow to identify, for the same SNP, three different fragments: 

 

 uncut/cut homozygous (aa) 

 heterozygous with both fragments (aA or Aa) 

 cut/uncut homozygous (AA) 

In this study, the SNP EPHX1 exone 4 rs2234922 was analyzed by PCR-RFLP. The table 

below (Table 3) shows the sequences of specific primers for the amplification reaction, the 

annealing temperature, the size of the amplified fragment, and the restriction enzyme used 

with the relative cutting conditions (Figure 13). 

 

 

 

 

 

 

EPHX1 

 

Exone 4 A139>G 

 

His139Arg (H139R) 

 

rs2234922 

 

 

Primer Forward: AGG GTG GCA GGA CTC AAT 

Primer Reverse: AGG GCA GAT GAC TTC AAA AAC 

  

Thermocycler steps:  
 

 95°C for 5 min  
 95°C for 30s (denaturation)  

 57°C for 30s (annealing)             34 cycles 

 72°C for 30s (elongation) 

 72°C for 7 min (elongation) 

  

 

Restriction Enzyme: RsaI (o Afa I) 37°C o/n (16h) 

Cutting Sequence: 5’…G T▼ A C…3’ 

                                    3’…C A▲ T G…5’  

  

 

 

Fragments Pattern 

 

Omozigote Wild Type (AA): 285 bp 

Eterozigote (AG): 131 bp + 154 bp + 285 bp 

Omozigote SNP (GG): 131 bp + 154 bp 

 

Table 3 - PCR-RFLP analysis for EPHX1 exone 4 rs2234922 polymorphism 
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Figure 13. Result from PCR-RFLP of EPHX1 exone 4 rs2234922 polymorphism; samples: 1-4, 7, 8, 10, 12-15, 17, 19-

22, 25 Ho WT; 5, 9, 11, 16, 18 He; 6 Ho SNP. 

 

 

Real-time PCR - The Real-Time PCR allows to determine the presence of a SNP in the 

target sequence, using fluorescent oligonucleotide probes (Taqman, Applied Biosystem) 

able to hybridize specifically to the sequence of interest (Figure 14). In particular, in the 

allelic discrimination analysis to determine the presence of polymorphism, the Real-Time 

PCR technique involves two fluorescent oligonucleotid probes, each having a 

complementary sequence to one of the two alleles: a probe pairs with the wild type allele, 

the other with the SNP allele. The two probes are differently labeled on 5' end with two 

different fluorophores reporters: VIC for the wt (wild type) allele and FAM for the SNP 

allele, or vice versa. 

TaqMan probes are short 

oligonucleotides (about 20-

30 bp) characterized by 

having linked at the 3' 

molecule minor groove 

binder (MGB) which binds 

the minor groove of DNA, 

thus increasing the affinity 

of the probes for the DNA 

Figure 14.  Application of TaqMan format for allelic discrimination. 
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itself. The probes are "dual-labeled," because in addition to being labeled the 5' end with 

the fluorophore reporter (Vic or Fam), the 3' end has a quencher, which "switches off" the 

fluorescence of the reporter, absorbing photons (Förster energy transfer type) when they 

are near (distance of 20 to 30 bases). The probe binds very specifically the 

complementary DNA sequence in the region between the forward and reverse primers 

used in the annealing step for the amplification reaction. Subsequently, during the 

extension phase, the probes are cut by the 5'-3' exonuclease activity of the Taq 

Polymerase. Once the probe is cut by Taq polymerase, the released reporter, no longer 

suffering influence from the quencher, it is capable of emitting fluorescence. The 

exponential amplification of the target sequence during PCR is accompanied by a 

corresponding increase in the signal emitted by the fluorophore. This analysis system is 

highly specific, in fact the two probes do not interfere with each other and the signal is 

output only when there is the correct pairing of the probe to the target sequence.  

Real-Time PCR has several advantages compared to PCR-RFLP. First of all, enormous 

material and time saving. With Real-Time PCR results are ready in few minutes, 

immediately after the amplification process, so restriction enzyme and electrophoresis are 

unecessary;  

The allelic discrimination reaction was performed in a volume of 10 μL containing: 

 

 DNA at a concentration of 10 ng/μL; 

 SNP Genotyping Probe 20X (or 40X), containing two primers and the specific probe 

for the SNP in study (Applied Biosystem™, Foster City, CA, USA); 

 TaqMan® Universal Master Mix II, no Uracil N-Glycosylase (UNG) containing the 

components of the PCR reaction: AmpliTaq Gold® DNA Polymerase Ultra Pure, 

dNTPs with dUTP, ROX™ Passive Reference, Optimized buffer components 

(Applied Biosystem™, Foster City, CA, USA); 

 Nuclease-free water. 

 

The 10 μL are pipetted in 96-well plate, and at least 3 wells are free of DNA template 

(NTC) and serve as negative controls. 

The following table (Table 4) shows the sequence of the labeled probe, for the SNP 

EPHX1 exone 3 rs1051740 analyzed with Real Time-PCR. 
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GENE e SNP PROBE SEQUENCE 

 

EPHX1 

Exone 3 T113>C 

 

Tyr113His (Y113H) 

rs1051740 

 

 

 

 

 

GAAGCAGGTGGAGATTCTCAACAGA [Cvic/Tfam] ACCCTCACTTCAAGACTAAGATTGA 

 

Table 4 - REAL TIME-PCR analysis for EPHX1 exone 3 rs1051740 polymorphism 

 

 

 

The experimental procedure, performed on the platform Real-Time 7900HT System 

(Applied Biosystem™), consist in three steps: 

 

1. reading of the basal fluorescence due to the components of the starting mixture 

(Pre-read); 

2. amplification reaction (consisting of denaturation at 95 °C for 10 minutes, followed 

by 40 cycles at 92 °C for 15 seconds and 1 minute at 60 °C);  

3. fluorescence signal detection (VIC and/or FAM), which is subtracted from the initial 

signal (Post-read).  

 

The instrument, through the dedicated software Applied Biosystem program, after the 

analysis subtracts the background signal (pre-read) from the final reading and 

automatically elaborates the chart that enables to distinguish the genotype of the analyzed 

samples. The presence of VIC flourescence signal indicates homozygosity for one allele, 

the FAM flourescence signal indicates homozygous for the other one; the presence of the 

fluorescence from both the probes, indicates the status of heterozygosity. At the end of 

analysis the instrument processes the chart (Figure 15). 
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Figura 15. Result from REAL TIME-PCR of EPHX1 exone 3 rs1051740 polymorphism; blue dot represents 
Homozygous Wild Type (allele Y, 63, TT), green dot represents Heterozygosity (Both, TC), red dot 
represents Homozygous SNP (allele X, 66, CC), black dot represents blank (NTC). 
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2.5.3.4. Phenotype analysis 

 

Based on the polymorphism of EPHX1 gene, the population can be classified into four 

groups of putative EPHX1 phenotypes: normal, fast, slow and very slow. The genetic 

characteristics of these subgroups are: normal—homozygous wild type for both exon 3 

and exon 4, or heterozygous for both exon 3 and exon 4; fast—at least one mutation in 

exon 4 and no exon 3 mutation; slow—heterozygous for exon 3 and homozygous for exon 

4; very slow—homozygous mutation type for exon 3 [192] [200] (Table 5). 

 

 

  EXON 4 (A>G) His139Arg 

  Ho wt = 0 He = 1 Ho SNP = 2 

EXON 3  
(T>C)  

Tyr113His 

Ho wt = 0 N (0 - 0) F (0 - 1) F (0 - 2) 

He = 1 S (1 - 0) N (1 - 1) S (1 -2) 

Ho SNP = 2 VS (2 - 0) VS (2 - 1) VS (2 - 2) 

Ho wt=homozygous wild type; He=heterozygous; Ho SNP=homozygous SNP; 
 N= normal; F=fast; S=slow, VS=very slow 

 

 

 

2.5.3.5. STATISTICAL ANALYSIS 

 

Continuous variables are presented as mean ± standard deviation (SD), while categorical 

variables as absolute frequency (relative frequency).  

Student T Test, analysis of variance (ANOVA), Pearson’s chi-square and Fisher’s exact 

tests were used to compare variables between COPD cases and controls and among 

COPD stages as appropriate. Same tests were used, as appropriate, to assess 

association between genotype/phenotype and gender and anthropometric characteristics 

(BMI and waist circumference). 

Genotype and phenotype distribution among cases and controls, and among COPD 

stages was evaluated with Pearson’s chi-square and Fisher’s exact tests.  

Logistic regression analysis was applied to assess the relationship between 

genotype/phenotype and COPD. Only in the COPD population, logistic regression analysis 

was performed to study the association between genotype/phenotype (outcome 1: death, 

outcome 2: hospitalization for respiratory causes) and acute events. The association 

Table 5. Four groups of putative EPHX1 phenotypes: normal, fast, slow and very 
slow. 
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between genotype/phenotype and COPD stages (mild= reference category) was evaluated 

with multinomial regression model. All multivariate analysis were adjusted for age at blood 

draw and sex. The results of models are presented as odds ratio (OR) and 95% 

confidence interval (95% CI). All P-values are based on 2-sided tests and P-values<0.05 

were considered significant. Statistical analysis was performed using statistical package 

Stata Intercooled for Windows, version 12.0. 

For each analyzed polymorphism we calculated the allele frequency (q). The Hardy-

Weinberg equilibrium (HWE) was applied to ensure that the frequency of the genotype 

observed was in accordance with the expected. The chi-square test was applied to check 

for differences in the genotype distribution observed in comparison with the expected. 

A P-value <0.05 was considered statistically significant. 
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2.6.  RESULTS and DISCUSSION  

 

2.6.1. SOCIO-DEMOGRAPHIC, LIFESTYLE, CLINICAL AND ANTHROPOMETRIC 

CHARACTERISTICS OF THE STUDY POPULATION 

 

229 patients (129 male and 100 female; mean age 73.74±9.46 years) affected by COPD, 

and 214 healthy controls (120 male and 94 female; mean age 47.94±14.12) were enrolled 

in the study (Table 6).  

According to the GOLD Guideline COPD patients were classified into four severity stages 

as follows: 44 mild (COPD, GOLD1), 68 moderate (COPD, GOLD2), 52 severe (COPD, 

GOLD3) and 65 very severe (COPD, GOLD4). Table 7 shows the results regarding social 

and lifestyles characteristics observed in the COPD population, and it shows that more 

than 60% were ex-smokers and more than 50% turned out to be deprived or very 

deprived. Significant differences within COPD stage, in terms of smoking status, were 

detected.  

Table 8 provides the details of clinical and anthropometric characteristics of the COPD 

population. There were non-significant differences in BMI (body mass index) and waist 

circumference among COPD stage. On the contrary, the stage was significantly 

associated with the values of all clinical tests (spirometry and arterial blood gas analysis) 

and with presence of comorbidities. The highest percentage of patients (42.2%) who had 

two or more comorbidities was observed in the group suffering from very severe COPD.  

 

 

 

Table 6.  
Demographic 

characteristics of  
study population 

CONTROLS COPD 

p-value 
n % n % 

n° SUBJECTS 214   229     

AGE, mean ± sd* 47.94 ± 14.12   73.74 ± 9.46   >0.001 

GENDER           

male 120 56.07 129 56.33   

female  94 43.93 100 43.67 0.957 

*information not available for all subjects 
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Table 7.  
Social and lifestyle 
characteristics in 
COPD population 

COPD GOLD STAGES    

MILD MODERATE SEVERE VERY SEVERE TOTAL 
p-value 

n % n % n % n % n % 

n° SUBJECT 44 19.21 68 29.69 52 22.71 65 28.38 229     

AGE, mean ± sd* 73.80 ± 9.06   74.15 ± 11.77   72.83 ± 7.86   74.03 ± 8.30   73.74 ± 9.46   0.8816 

GENDER                       
male 21 47.73 36 52.94 32 61.54 40 61.54 129 56.33   

female  23 52.27 32 47.06 20 38.46 25 38.46 100 43.67 0.402 

SMOKING STATUS*                       
never smoker 15 34.09 22 32.35 7 13.46 6 9.38 50 21.93   

smoker 9 20.45 7 10.29 8 15.38 8 12.5 32 14.04   
ex-smoker 20 45.45 39 57.35 37 71.15 50 78.13 146 64.04 0.003 

DEPRIVATION INDEX*                       
very rich 9 21.95 11 16.92 9 18.00 9 14.75 38 17.51   

rich 8 19.51 8 12.31 4 8.00 6 9.84 26 11.98   
medium 3 7.32 12 18.46 10 20.00 11 18.03 36 16.59   

deprivated 9 21.95 13 20.00 10 20.00 9 14.75 41 18.89   
very deprivated 12 29.27 21 32.31 17 34.00 26 42.62 76 35.02 0.73 

*information not available for all subjects 

 

 

 

 

Table 8.  

Clinical and 
anthropometric 

characteristics in 
COPD population 

COPD GOLD STAGES    

Mild Moderate Severe Very Severe TOTAL 
p-value 

n % n % n % n % n % 

BMI*                       
underweight 2 4.55 0 0.00 3 5.77 3 4.69 8 3.52   

normal 17 38.64 16 23.88 17 32.69 25 39.06 75 33.04   
overweight 17 38.64 32 47.76 21 40.38 22 34.38 92 40.53   

obese 8 18.18 19 28.36 11 21.15 14 21.88 52 22.91 0.337 
WAIST 

CIRCUMFERENCE 
(cm) 

96.4 ± 12.5   101.6 ± 12.3   101.0 ± 14.6   100.1 ±15.0   100.0 ± 13.7   0.39 

CHARLSON INDEX*                       
no comorbidity 32 72.73 33 49.25 24 46.15 20 31.2 109 48.02   

one comorbidity 3 6.82 16 23.88 9 17.31 17 26.6 45 19.82   
two or more 
comorbidity 

9 20.45 18 26.87 19 36.54 27 42.2 73 32.16 0.003 

FeNO (ppm)* 16.7 ± 5.9   19.5 ± 6.7   20.1 ± 7.2   27 ± 10.3   21.1 ± 8.6   >0.001 

PaO2 (mmHg)* 79.72 ± 8.89   73.83 ± 10.02   69.88 ± 10.09   71.10 ± 14.80   73.12 ± 12.16   >0.001 

PaCO2 (mmHg)* 38.34 ± 4.12   40.37 ± 5.56   41.81 ± 6.90   49.70 ± 10.50   43.04 ± 8.72   >0.001 

FVC (L)* 2.80 ± 0.84   2.19 ± 0.78   2.04 ± 0.62   1.61 ± 0.62   2.20 ± 0.82   >0.001 

FEV1 (L)* 1.88 ± 0.58   1.27 ± 0.38   1.03 ± 0.29   0.71 ± 0.27   1.18 ± 0.56   >0.001 

FEV1/FVC (%)* 67.59 ± 6.63   59.93 ± 11.14   51.86 ± 12.91   45.50 ± 11.80   55.60 ± 13.62   >0.001 

FVC (% of total)* 102.93 ± 19.51   81.28 ± 14.51   69.62 ± 16.25   57.10 ± 17.80   76.04 ± 23.21   >0.001 

FEV1 (% of total)* 87.80 ± 13.49   61.39 ± 7.54   44.77 ± 9.64   32.80 ± 12.15   54.68 ± 22.28   >0.001 

*information not available for all subjects 

FeNO=Fraction Exhaled Nitric Oxide; PaO2=partial pressure oxygen; PaCO2=partial pressure carbon dioxide; FVC=Forced Vital Capacity; FEV1=Forced 
Expiratory Volume in 1 second. 
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2.6.2. GENOTYPE and PHENOTYPE IN RELATION TO GENDER AND 

ANTHROPOMETRIC CHARACTERISTICS (BMI, WAIST CIRCUMFERENCE) 
 

ASSOCIATION BETWEEN GENOTYPE AND GENDER AND ANTHROPOMETRIC CHARACTERISTICS 

(BMI and waist circumference) 

 

Table 9. Genotype distribution among male and female in the study population. 

  MALE FEMALE  

 n % n % p-value 

EPHX1 rs1051740*           

Ho wt 120 48.19 102 52.85   

He 110 44.18 77 39.90   

Ho SNP 19 7.63 14 7.25 0.618 

EPHX1 rs2234922*           

Ho wt 163 65.99 131 68.23   

He 78 31.58 55 28.65   

Ho SNP 6 2.43 6 3.13 0.749 

*information not available for all subjects 

Ho wt: homozygous wild type; He: heterozygous; Ho SNP: homozygous SNP 

 

In the study population the genotype distribution among males and females (Table 9) is 

mostly similar for each analyzed SNP and any statistically significant difference was 

observed, even by merging He and Ho SNP into a single group (data not shown).  

 
 

Table 10. Genotype distribution among the 4 classes of BMI in COPD group. 
 

 BODY MASS INDEX  

 UNDERWEIGHT NORMAL OVERWEIGHT OBESE  

 n % n % n % n % p-value 
EPHX1 
rs1051740* 

                  

Ho wt 5 62.50 38 50.67 48 52.17 26 50.00   

He 3 37.50 33 44.00 41 44.57 23 44.23   

Ho SNP 0 0.00 4 5.33 3 3.26 3 3.26 0.971 
EPHX1 
rs2234922* 

                  

Ho wt 7 87.50 49 67.12 57 61.96 35 67.31   

He 1 12.50 23 31.51 32 34.78 15 28.85   

Ho SNP 0 0.00 1 1.37 3 3.26 2 3.85 0.780 

*information not available for all subjects 

Ho wt: homozygous wild type; He: heterozygous; Ho SNP: homozygous SNP 
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In the COPD group the genotype distribution among the four classes of BMI (Table 10) for 

each analyzed SNP did not show any statistically significant difference, even by merging 

He and Ho SNP, or oveweight and obese, into a single group (data not shown). 

 

Table 11. Association between genotype and waist circumference in COPD group. 

 WAIST CIRCUMFERENCE (cm)  

 mean ± sd p-value 

EPHX1 rs1051740*     

Ho wt 100.128 ± 14.750   
He 100.162 ± 12.485   

Ho SNP 98.600 ± 14.089 0.8589 

EPHX1 rs2234922*     

Ho wt 99.449 ± 12.957   
He 101.465 ± 15.556   

Ho SNP 102.167 ± 89.98 0.4962 

*information not available for all subjects 

Ho wt: homozygous wild type; He: heterozygous; Ho SNP: homozygous SNP 

 
In the COPD group the association between genotype and waist circumference (Table 

11), for each analyzed SNP, did not show any statistically significant difference, even by 

merging He and Ho SNP into a single group (data not shown). 

 

ASSOCIATION BETWEEN PHENOTYPE AND GENDER AND ANTHROPOMETRIC CHARACTERISTICS 

(BMI and waist circumference) 

  
 

Table 12. Phenotype distribution among male and female in the study population. 

 

 MALE FEMALE  

  n % n % p-value 

Phenotype*           

normal 92 48.17 195 44.52   
fast 31 16.23 78 17.81   

slow 54 28.27 132 30.14   

very slow 14 7.33 33 7.53 0.594 

*information not available for all subjects 
NORMAL: homozygous wild type for both exon 3 and exon 4, or heterozygous for both exon 3 and exon 4; FAST: 
at least one mutation in exon 4 and no exon 3 mutation; SLOW: heterozygous for exon 3 and homozygous for exon 
4; VERY: homozygous mutation type for exon 3 
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In the study population the phenotype distribution among males and females (Table 12) 

did not show any statistically significant difference, even by merging slow and very slow 

phenotypes into a single group (data not shown). 

 

Table 13. Phenotype distribution among the 4 classes of BMI in COPD group. 

 BODY MASS INDEX  

 UNDERWEIGHT NORMAL OVERWEIGHT OBESE  

  n % n % n % n % p-value 

Phenotype*                   
normal 4 50.00 50 54.35 45 42.86 23 40.35   

fast 1 12.50 14 15.22 22 20.95 11 19.30   
slow 3 37.50 23 25.00 34 32.38 20 35.09   

very slow 0 0.00 5 5.43 4 3.81 3 5.26 0.806 

*information not available for all subjects 
NORMAL: homozygous wild type for both exon 3 and exon 4, or heterozygous for both exon 3 and exon 4; FAST: at least one mutation in exon 4 and no 
exon 3 mutation; SLOW: heterozygous for exon 3 and homozygous for exon 4; VERY: homozygous mutation type for exon 3 
 
 

In the COPD group the phenotype distribution among the four classes of BMI (Table 13) 

did not show any statistically significant difference, even by merging slow and very slow 

phenotypes, or oveweight and obese, into a single group (data not shown). 

 

Table 14. Association between phenotype and waist circumference in COPD group. 
 

 

 

 

 

 

 

 

 

 

 

In the COPD group the association between phenotype and waist circumference (Table 

14) did not show any statistically significant difference, even by merging slow and very 

slow phenotypes into a single group (data not shown). 

 

 

 WAIST CIRCUMFERENCE (cm)  

 mean ± sd p-value 

Phenotype*     

normal 97.451 ± 14.506   
fast 102.149 ± 16.269   

slow 99.633 ± 13.437   

very slow 94.250 ± 16.608 0.2369 

*information not available for all subjects 
NORMAL: homozygous wild type for both exon 3 and exon 4, or heterozygous 
for both exon 3 and exon 4; FAST: at least one mutation in exon 4 and no exon 
3 mutation; SLOW: heterozygous for exon 3 and homozygous for exon 4; VERY: 
homozygous mutation type for exon 3 
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2.6.3. CASE-CONTROL STUDY  

 

GENOTYPE ANALYSIS COMPARING COPD PATIENTS WITH CONTROLS 

The genotype distribution of EPHX1, into the group of COPD patients and the control 

group (Table 15), is in Hardy-Weinberg equilibrium for all the analyzed SNPs (data not 

shown). 

Table 15. A. Genotype distribution among cases and controls in the study population and assessment of 

COPD risk; B. same analyses merging He and Ho SNP. 

 

 

                        B. COPD CONTROLS   Model unadjusted  Model adjusted** 

 n % n % p-value OR (95% CI) p-value OR (95% CI) p-value 

EPHX1 rs1051740*                  
Ho wt 118 51.53 104 48.83   1.000   1.000   

He+Ho SNP 111 48.47 109 51.18 0.634 0.898(0.618-1.304) 0.570 1.001(0.558-1.800) 0.995 

EPHX1 rs2234922*                   
Ho wt 150 66.08 144 67.92   1.000   1.000   

He+Ho SNP 77 33.92 68 32.08 0.686 1.087(0.730-1.619) 0.681 1.491(0.789-2.819) 0.219 

*information not available for all subjects; **adjusted for age at blood draw and sex 

 

Considering the SNP rs1051740, the univariate analyses show a significant difference in 

the genotype distribution among cases and controls: 51.5% of COPD patients is wt vs 

48.8% in the control group, 44.10% is He vs 40.4% in control group and 4.4% is Ho SNP 

vs. 10.8% in control group. Note that the univariate association and the unadjusted model 

give a significant result, but this result is not more significant when adjusted for sex and 

age (multivariate logistic regression analysis), so we can not attribute this significant result 

to the genotype since there is a difference by sex and age. The difference that is observed 

                    A. COPD CONTROLS   Model unadjusted  Model adjusted** 

 n % n % p-value OR (95% CI) p-value OR (95% CI) p-value 

EPHX1 rs1051740*                  
Ho wt 118 51.53 104 48.83   1.000   1.000   

He 101 44.10 86 40.38   1.035(0.701-1.529) 0.862 1.122(0.610-2.066) 0.711 
Ho SNP 10 4.37 23 10.80 0.036 0.383(0.174-0.842) 0.017 0.440(0.121-1.596) 0.212 

EPHX1 rs2234922*                 
Ho wt 150 66.08 144 67.92   1.000   1.000   

He 71 31.28 62 29.25   1.099(0.729-1.657) 0.651 1.613(0.835-3.118) 0.155 

Ho SNP 6 2.64 6 2.83 0.892 0.96(0.303-3.045) 0.945 0.583(0.086-3.936) 0.580 

*information not available for all subjects; **adjusted for age at blood draw and sex 

Ho wt: homozygous wild type; He: heterozygous; Ho SNP: homozygous SNP; OR: odds ratio; CI: confidence interval 
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may be due to gender difference, or age difference between cases and controls. Any 

significant results was observed even by merging He and Ho SNP into a single group 

(Table 15 B).  

Although any results is statistically significant, considering both SNPs, in adjusted model 

genotypes He show a tendency to increase the COPD risk compare to wt, while Ho SNP, 

especially for rs1051740, seems to protect from COPD risk. 

 

GENOTYPE ANALYSIS IN RELATION TO COPD SEVERITY  

The genotype distribution of EPHX1 (Table 16), in COPD patients according to the four 

stages of disease severity, is in Hardy-Weinberg equilibrium for all the analyzed SNPs in 

each stage, with exception of mild stage for SNP rs1051740 (data not shown).  

 

 

 

Table 16. A. Genotype distribution among different COPD stages; B. Assessment of COPD risk among 

different stages of severity. 

 

 
 
 

 

 

 

 

 

 

 

            A. MILD MODERATE SEVERE VERY SEVERE  

 n % n % n % n % p-value 

EPHX1 rs1051740                   
Ho wt 23 52.27 36 52.94 25 48.08 34 52.31   

He 21 47.73 27 39.71 25 48.08 28 43.08   
Ho SNP 0 0.00 5 7.35 2 3.85 3 4.62 0.658 

EPHX1 rs2234922*                 
Ho wt 27 61.36 49 72.06 38 73.08 36 57.14   

He 16 36.36 18 26.47 11 21.15 26 41.27   
Ho SNP 1 2.27 1 1.47 3 5.77 1 1.59 0.160 

*information not available for all subjects 

Ho wt: homozygous wild type; He: heterozygous; Ho SNP: homozygous SNP 
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         B. Model unadjusted  Model adjusted** 

 OR (95% CI) p-value OR (95% CI) p-value 

MODERATE vs MILD 

EPHX1 rs1051740        

Ho wt 1.000  1.000   

He+Ho SNP 0.974(0.456-2.080) 0.945 0.920(0.427-1.983) 0.831 

EPHX1 rs2234922        

Ho wt 1.000  1.000   

He+Ho SNP 0.616(0.275-1.378) 0.238 0.629(0.28-1.412) 0.262 

SEVERE vs MILD 

EPHX1 rs1051740        

Ho wt 1.000  1.000   

He+Ho SNP 1.183(0.530-2.642) 0.682 1.114(0.494-2.511) 0.795 

EPHX1 rs2234922        

Ho wt 1.000  1.000   

He+Ho SNP 0.585(0.247-1.386) 0.223 0.568(0.238-1.357) 0.203 

VERY SEVERE vs MILD 

EPHX1 rs1051740        

Ho wt 1.000  1.000   

He+Ho SNP 0.999(0.464-2.148) 0.997 0.999(0.458-2.177) 0.997 

EPHX1 rs2234922        

Ho wt 1.000  1.000   

He+Ho SNP 1.191(0.543-2.613) 0.663 1.181(0.533-2.618) 0.682 

*information not available for all subjects; **adjusted for age at blood draw and sex 
Ho wt: homozygous wild type; He: heterozygous; Ho SNP: homozygous SNP; OR: odds ratio; CI: confidence 
interval 

 

 

The genotype distribution among different COPD stages (Table 16 A) did not show any 

statistically significant difference, even by merging He and Ho SNP in a single group (data 

not shown). 

Since there are not subjects with genotype Ho SNP and mild stage (reference category) 

for the SNP rs105170, and there is only 1 subject with genotype Ho SNP for the SNP 

rs2234922, the multinomial regression analysis to assess the risk of developing more 

severe COPD at different stages of disease severity was carried out by merging genotype 

He and Ho SNP into a single group (Table 16 B). The analysis did not show any 

statistically significant result. 
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PHENOTYPE ANALYSIS COMPARING COPD PATIENTS WITH CONTROLS 

Table 17. Phenotype distribution among COPD patients and controls in the study population and 

assessment of COPD risk; 

 

 COPD CONTROLS   Model unadjusted  Model adjusted** 

 n % n % p-value OR (95% CI) p-value OR (95% CI) p-value 

Phenotype*                  

normal 106 46.7 89 42.18   1.000   1.000   

fast 42 18.5 36 17.06   0.980(0.578-1.659) 0.939 1.284(0.566-2.912) 0.550 

slow 69 30.4 63 29.86   0.920(0.591-1.432) 0.711 0.857(0.430-1.708) 0.660 

very slow 10 4.41 23 10.9 0.080 0.365(0.165-0.808) 0.013 0.421(0.115-1.545) 0.192 

*information not available for all subjects; **adjusted for age at blood draw and sex 
NORMAL: homozygous wild type for both exon 3 and exon 4, or heterozygous for both exon 3 and exon 4; FAST: at least one mutation in exon 4 and 
no exon 3 mutation; SLOW: heterozygous for exon 3 and homozygous for exon 4; VERY: homozygous mutation type for exon 3; OR: odds ratio; CI: 
confidence interval 

 

 

In the study population the phenotype distribution among cases and controls did not show 

any statistically significant difference, even merging slow and very slow phenotypes into a 

single group (data not shown). Also the multivariate logistic regression analysis didn’t 

show any statistically significant result.  

 

PHENOTYPE ANALYSIS IN RELATION TO COPD SEVERITY  

 

Table 18. A. Phenotype distribution among different COPD stages; B. Assessment of COPD risk within the 

different stages of severity 

 

 

       A MILD MODERATE SEVERE VERY SEVERE  

 n % n % n % n % p-value 

Phenotype*                   

normal 22 50.00 34 50.00 18 34.62 32 50.79   

fast 9 20.45 10 14.71 10 19.23 13 20.63   
slow 13 29.55 19 27.94 22 42.31 15 23.81   

very slow 0 0.00 5 7.35 2 3.85 3 4.76 0.374 

*information not available for all subjects 
NORMAL: homozygous wild type for both exon 3 and exon 4, or heterozygous for both exon 3 and exon 4; FAST: at least 
one mutation in exon 4 and no exon 3 mutation; SLOW: heterozygous for exon 3 and homozygous for exon 4; VERY: 
homozygous mutation type for exon 3; OR: odds ratio; CI: confidence interval 
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            B Model unadjusted  Model adjusted** 

 OR (95% CI) p-value OR (95% CI) p-value 

MODERATE vs MILD 

Phenotype*         

normal 1.000   1.000   

fast 0.719(0.252-2.051) 0.537 0.718(0.252-2.045) 0.536 

slow+very slow 1.195(0.504-2.829) 0.686 1.122(0.469-2.683) 0.796 

SEVERE vs MILD 

Phenotype*        

normal 1.000  1.000   

fast 1.358(0.454-4.059) 0.584 1.359(0.452-4.084) 0.585 

slow+very slow 2.256(0.901-5.653) 0.082 2.227(0.88-5.636) 0.091 

VERY SEVERE vs MILD 

Phenotype*        

normal 1.000  1.000   

fast 0.993(0.362-2.722) 0.989 0.941(0.337-2.629) 0.908 

slow+very slow 0.952(0.388-2.333) 0.914 0.929(0.375-2.303) 0.873 

*information not available for all subjects; **adjusted for age at blood draw and sex 
NORMAL: homozygous wild type for both exon 3 and exon 4, or heterozygous for both exon 3 and 
exon 4; FAST: at least one mutation in exon 4 and no exon 3 mutation; SLOW: heterozygous for exon 3 
and homozygous for exon 4; VERY: homozygous mutation type for exon 3; OR: odds ratio; CI: 
confidence interval 

 

 

 

In the COPD group the phenotype distribution among the various COPD stages did not 

show any statistically significant difference (Table 18. A), even by merging slow and very 

slow phenotypes into a single group (data not shown). 

Since there are not subjects with very slow phenotype and mild stage (reference 

category), the multinomial regression analysis was carried out by merging slow and very 

slow phenotypes into a single group (Table 18. B). The univariate and multivariate 

analysis did not show any statistically significant result in regard to the risk of developing 

more severe COPD at different stages of disease severity. Anyway, the slow+very slow 

phenotype group shows a tendency to increase the risk to develop severe COPD than 

normal phenotype, compare to mild stage.  
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2.6.4. GENOTYPE AND PHENOTYPE ANALYSIS IN RELATION TO ACUTE EVENTS 

(mortality and hospitalization for respiratory causes) 

 
GENOTYPE ANALYSIS IN RELATION TO DEATH IN COPD GROUP  

 

Table 19. Genotype distribution among dead and not dead COPD patients and assessment of death risk; 

 

 DEAD      

 YES (n=93) NO (n=136)   Model unadjusted  Model adjusted* 

 n % n % p-value OR (95% CI) p-value OR (95% CI) p-value 

EPHX1 rs1051740                  

Ho wt 47 50.54 71 52.21   1.000   1.000   

He 40 43.01 61 44.85   0.991(0.576-1.705) 0.973 0.989(0.561-1.746) 0.971 

Ho SNP 6 6.45 4 2.94 0.442 2.266(0.607-8.463) 0.224 2.266(0.582-8.818) 0.238 

EPHX1 rs2234922*                  

Ho wt 57 61.96 93 68.89   1.000   1.000   

He 33 35.87 38 28.15   1.417(0.800-2.508) 0.232 1.552(0.852-2.827) 0.151 

Ho SNP 2 2.17 4 2.96 0.456 0.816(0.145-4.597) 0.817 0.564(0.094-3.379) 0.530 

 *adjusted for age at blood draw and sex 

Ho wt: homozygous wild type; He: heterozygous; Ho SNP: homozygous SNP; OR: odds ratio; CI: confidence interval 

 
 

 

The univariate analysis did not show any statistically significant difference in the genotype 

distribution among dead and not dead COPD patients, even by merging He and Ho SNP in 

a single group (data not shown). Regarding the multivariate analysis, the association 

between genotype and risk of death did not show any statistically significant result, even 

by merging He and Ho SNP in a single group (data not shown). Anyway, Ho SNP and He 

in SNP rs1051740 and SNP rs2234922, respectively, show a tendency to increase the risk 

of death compare to wt in COPD patients 
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GENOTYPE ANALYSIS IN RELATION TO HOSPITALIZATION IN COPD GROUP 

 

Table 20. A. Genotype distribution among hospitalized - at least one time for respiratory causes - and never 

hospitalized COPD patients, and assessment of risk of hospitalization; B. same analyses merging He and 

Ho SNP. 

 

 
 
 
 

       B HOSPITALIZATION      

 YES (n=69) NO (n=160)   Model unadjusted  Model adjusted* 

 n % n % p-value OR (95% CI) p-value OR (95% CI) p-value 

EPHX1 rs1051740                   
Ho wt 29 42.03 89 55.63  1.000   1.000   

He+Ho SNP 40 57.97 71 44.38 0.063 1.729(0.977-3.060) 0.060 1.679(0.937-3.010) 0.082 

EPHX1 rs2234922                  
Ho wt 49 73.13 101 63.13  1.000   1.000   

He+Ho SNP 18 26.87 59 36.88 0.168 0.629(0.335-1.179) 0.148 0.610(0.321-1.162) 0.133 

 *adjusted for age at blood draw and sex 

Ho wt: homozygous wild type; He: heterozygous; Ho SNP: homozygous SNP; OR: odds ratio; CI: confidence interval 

 
 
The univariate analyses and the multivariate analysis (Table 20 A) did not show any 

statistically significant result regarding the genotype distribution among hospitalized and 

not hospitalized COPD patients and the association between genotype and risk of 

hospitalization, respectively, even by merging He and Ho SNP in a single group (Table 20 

B). Anyway, considering the SNP rs1051740 in multivariate analysis, genotypes with at 

least one allele variation (He, Ho SNP and He+Ho SNP) show a tendency to increase the 

risk of hospitalization in COPD patients compare to wt. Note that, regarding the SNP 

rs1051740, merging He and Ho SNP (Table 20 B), the univariate analysis, the unadjusted 

model, and the adjusted model, show a borderline not significant trend with p=0.063, 

       A HOSPITALIZATION      

 YES (n=69) NO (n=160)   Model unadjusted  Model adjusted* 

 n % n % p-value OR (95% CI) p-value OR (95% CI) p-value 

EPHX1 rs1051740                   
Ho wt 29 42.03 89 55.63   1.000   1.000   

He 35 50.72 66 41.25   1.627(0.906-2.925) 0.103 1.571(0.862-2.862) 0.140 
Ho SNP 5 7.25 5 3.13 0.101 3.069(0.829-11.357) 0.093 3.075(0.824-11.475) 0.095 

EPHX1 rs2234922                   
Ho wt 49 73.13 101 63.13   1.000   1.000   

He 16 23.88 55 34.38   0.6(0.312-1.152) 0.125 0.588(0.300-1.149) 0.120 
Ho SNP 2 2.99 4 2.50 0.298 1.031(0.182-5.821) 0.973 0.873(0.151-5.045) 0.879 

 *adjusted for age at blood draw and sex 

Ho wt: homozygous wild type; He: heterozygous; Ho SNP: homozygous SNP; OR: odds ratio; CI: confidence interval 
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p=0.060 and p=0.08 respectively, that underline how SNP rs1051740 could be involved in 

the risk of hospitalization in the COPD group. 

 

PHENOTYPE ANALYSIS IN RELATION TO DEATH IN COPD GROUP  

 

Table 21. Phenotype distribution among dead and not dead COPD patients and assessment of death risk; 

 

 

 

 

 

The univariate analysis did not show any statistically significant difference in the 

phenotype distribution among dead and not dead COPD patients, even by merging slow 

and very slow phenotypes into a single group (data not shown). Regarding the association 

between phenotype and risk of death, also the multivariate analysis did not show any 

statistically significant result, even by merging slow and very slow phenotypes into a single 

group (data not shown). Anyway, fast and very slow phenotypes shows a tendency to 

increase the risk of death compare to normal phenotype in COPD patients. 

 

 

 

 

 

 

 

 

 

 

 DEAD      

 YES (n=93) NO (n=136)  Model unadjusted  Model adjusted* 

 n % n % p-value OR (95% CI) p-value OR (95% CI) p-value 

Phenotype*                   

normal 40 43.48 66 48.89   1.000   1.000   

fast 19 20.65 23 17.04   1.363(0.661-2.81) 0.401 1.357(0.636-2.897) 0.430 

slow 27 29.35 42 31.11   1.061(0.569-1.977) 0.853 1.003(0.524-1.921) 0.993 

very slow 6 6.52 4 2.96 0.495 2.475(0.658-9.309) 0.180 2.429(0.619-9.537) 0.203 

*adjusted for età al prelievo and sex 
NORMAL: homozygous wild type for both exon 3 and exon 4, or heterozygous for both exon 3 and exon 4; FAST: at least one mutation in exon 4 and no exon 3 
mutation; SLOW: heterozygous for exon 3 and homozygous for exon 4; VERY: homozygous mutation type for exon 3; OR: odds ratio; CI: confidence interval 
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PHENOTYPE ANALYSIS IN RELATION TO HOSPITALIZATION IN COPD GROUP 

 
Table 22. A. Phenotype distribution among hospitalized - at least one time for respiratory causes - and never 
hospitalized COPD patients, and assessment of risk of hospitalization; B. same analyses merging slow and 
very slow phenotypes. 
 
 

         A HOSPITALIZATION      

 YES NO  Model unadjusted  Model adjusted* 

 n % n % p-value OR (95% CI) p-value OR (95% CI) p-value 

Phenotype*                   

normal 27 40.30 79 49.38   1.000   1.000   

fast 9 13.43 33 20.63   0.798(0.339-1.878) 0.606 0.696(0.285-1.697) 0.425 

slow 26 38.81 43 26.88   1.769(0.920-3.403) 0.087 1.591(0.817-3.100) 0.172 

very slow 5 7.46 5 3.13 0.094 2.926(0.786-10.891) 0.109 2.821(0.752-10.584) 0.124 

*adjusted for età al prelievo and sex 
NORMAL: homozygous wild type for both exon 3 and exon 4, or heterozygous for both exon 3 and exon 4; FAST: at least one mutation in exon 4 and no exon 3 
mutation; SLOW: heterozygous for exon 3 and homozygous for exon 4; VERY: homozygous mutation type for exon 3; OR: odds ratio; CI: confidence interval 

 

 

         B HOSPITALIZATION      

 YES NO  Model unadjusted  Model adjusted* 

  n % n % p-value OR (95% CI) p-value OR (95% CI) p-value 

Phenotype*                   

normal 27 40.30 79 49.38  1.000   1.000   

fast 9 13.43 33 20.63   0.798(0.339-1.880) 0.606 0.696(0.285-1.697) 0.426 

slow+very slow 31 46.27 48 30.00 0.057 1.890(1.008-3.542) 0.047 1.720(0.908-3.257) 0.096 

*adjusted for età al prelievo and sex 
NORMAL: homozygous wild type for both exon 3 and exon 4, or heterozygous for both exon 3 and exon 4; FAST: at least one mutation in exon 4 and no exon 3 
mutation; SLOW: heterozygous for exon 3 and homozygous for exon 4; VERY: homozygous mutation type for exon 3; OR: odds ratio; CI: confidence interval 

 

The univariate analyses and the multivariate analysis (Table 22 A) did not show any 

statistically significant result regarding the phenotype distribution among hospitalized and 

not hospitalized COPD patients and the association between phenotype and risk of 

hospitalization, respectively.  

Note that the univariate association and the unadjusted model show a border line not 

significant p-value (p=0.057) and a significant p-value (p=0.047), respectively, by merging 

slow and very slow phenotypes into a single group (Table 22 B), with the percentage of 

slow+very slow phenotype higher in hospitalized patients than in not hospitalized. Anyway, 

this result is not more significant when adjusted for sex and age (multivariate logistic 

regression analysis), so we can not attribute this significant result to the phenotype since 

there is a difference by sex and age. The difference that is observed may be due to gender 

or age difference inside the COPD group. 
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2.7. CONCLUSION  

 

In this study, the socio-demographic, lifestyle and clinical factors of the population affected 

by COPD show a population consisted mostly of men, ex-smokers, not practicing any 

physical activity, obese or overweight, and with regard to the deprivation index, the 

majority of patients were deprived or very deprived, regardless of COPD stage. 

Results from previous studies show that smoking, aging, gender, and socio-economic 

factors are well established risk factors for COPD development [205] [201]. A systematic 

review and meta-analysis of studies carried out in 28 countries between 1990 and 2004 

[206], provide evidence that the prevalence of COPD is appreciably higher in smokers and 

ex-smokers than in nonsmokers, in those over 40 years of age than those under 40, and in 

men than in women. 

This study shows a significant association between age and COPD risk (Table 6), but this 

is because the control subjects enrolled are much younger than cases. 

Taking into account the COPD GOLD stages, a significant association between the 

smoking status and severity of disease was detected. Smoking certainly represents the 

main risk factor for COPD and the risk of developing COPD among smokers is dose-

related, while the age at which they start smoking, the number of cigarettes smoked, and 

current smoking status are predictive of COPD mortality. In the COPD study population 

can be observed that while the distribution of smokers in the four stages remains almost 

constant, the number of ex-smokers increases, while that of non-smokers decreases with 

increasing severity of the disease (Table 7). 

The role of sex in the risk of developing COPD is not yet entirely clear. In the past, most of 

the studies reported a higher incidence of COPD and related mortality in men than women. 

Also in the our study population regression analysis showed a higher incidence of the 

disease in men than women, but association between gender and COPD risk was not 

significant. In fact, as can be seen from Table 7, we see that as the degree of disease 

severity increases, decreases the number of females and increases that of males. 

Anyway, based on WHO analyses, because of increased tobacco use among women in 

high-income countries and the higher risk of exposure to indoor air pollution (such as 

biomass fuel used for cooking and heating) in low-income countries, the disease now 

affects men and women almost equally. 

COPD often coexists with other diseases and the scientific literature highlights that they 

may significantly impact on prognosis. Table 8 shows the highest percentage of patients 
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with two or more comorbidities suffer from very severe COPD and the analyses confirms 

that the Charlson index is a risk factor associated to COPD severity. 

According to the literature, FeNO values are normal or mildly increased in stable COPD 

[207] and measurement of FeNO represents a non-invasive marker that may be useful to 

detect exacerbations and inflammation reduction in small airway disease [208]. In this 

study population FeNO and spirometric values are significantly associated with the 

severity of COPD. 

Although some studies highlighted a role of low BMI as an important risk factor for acute 

events, in particular showing that underweight and low skeletal muscle mass are 

significant determinants of mortality in COPD [209-211]. In our COPD population any 

significant association was observed between COPD stage and BMI, as well waist 

circumference. The heterogeneous distribution of underweight among patients with 

different characteristics (e.g. deprivation) and the sample size may explain the not 

significant results of BMI as a risk factor in the bivariate analyses. 

Previous studies have examined the association between socio-economic status and 

COPD health outcomes but results are controversial, possibly due to the different 

accessibility to health care. Eisner et al. [212] found that socio-economic status represents 

a risk factor for adverse COPD health outcomes. In contrast, in the present study the 

deprivation index does not influence disease evolution, probably because the accessibility 

to the Italian National Health Service, countervails the effects associated to socio-

economic status. 

COPD is more frequent in smokers and it seems that EPHX1 plays a pivotal role in 

protecting the lung against environmental exposures. Genetic variability of EPHX1 is 

associated with several pathological phenotypes and may in concert with environmental 

exposures contribute to the development of malignancies, especially in the lungs. Several 

studies and meta-analysis have assessed the association between EPHX1 polymorphisms 

and COPD in different populations, however, the results are still inconsistent and 

controversial. In our study population, the statistical analysis did not show any significant 

result about the potential relationship between analyzed EPHX1 SNPs, and related 

phenotypes, and gender, BMI, waist circumference and the risk to develop COPD and 

disease severity. Moreover, any statistically significant result in the COPD group was 

observed in regard to the associations between analyzed EPHX1 SNPs, and related 

phenotypes, and acute events (mortality and hospitalization for respiratory causes).  
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In contrast with literature, the 113 mutant homozygote (rs1051740) shows a tendency to 

protect from COPD risk (Table 15 A), not to increase the COPD risk. 

Limitation of this study are the small sample size and the huge age difference between 

cases and controls, consequently it is not possible to exclude that predictors investigated 

in the present study might result significantly associated with the outcomes under 

investigation in larger studies. 
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CHAPTER 3 

 Pilot study about the application of stable isotope-resolved 

metabolomics to explore tissue glycolytic pathway alterations 

induced by chronic cigarette smoke exposure in emphysema 

mouse model 

 

3.1  INTERMEDIARY METABOLISM: ENERGY SOURCE FOR THE CELL 

 

The word metabolism comes from the greek term “μεταβολή” (“metabolē”, "change") which 

means "transformation".  

Metabolism is the set of life-sustaining chemical transformations within the cells of living 

organisms that convert nutrients (the raw material required for sustenance of the living 

beings), in energy or chemically complex cellular substances.  

The metabolism consists of hundreds of enzymatic reactions organized in separate paths. 

These metabolic pathways involve consecutive transformations of substrates in end 

products through the formation of many chemical intermediates. The metabolism is 

sometimes referred by the term “intermediary metabolism” to emphasize this aspect of the 

process. In the metabolic maps (point = chemical intermediate, line = enzyme) almost all 

the major reactions of intermediary metabolism of carbohydrates, lipids, amino acids, 

nucleotides and their derivatives are represented (Figure 1). 

 

Figure 1. Metabolic Map 
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Many metabolic pathways (about 80%) tend to proceed only in one direction (essentially 

irreversible reactions under physiological conditions). However, many intermediates are 

subject to a variety of fates. In these cases the chosen metabolic pathway entails an 

important choice of adjustment. Thus, each substrate is directed along a particular 

metabolic pathway in response to a regulative choice adopted in response to the 

temporary energetical or nutritional needs of the cell (or organism). 

All organisms show a marked similarity in terms of the major metabolic pathways, 

according to the hypothesis that all living organisms descend from a common ancestral 

form. 

All the forms of nutrition and almost all metabolic pathways have evolved in primitive 

prokaryotes before the appearance of eukaryotes, a billion years ago. For example, 

glycolysis, the metabolic pathway through which energy is released from glucose and 

stored in ATP under anaerobic conditions, it is common to almost all cells. For this reason 

glycolysis is supposed to be the anciest among the metabolic pathways and it has been 

originated before the onset of significant traces of oxygen in the atmosphere. All 

organisms, including those able to synthesize their own glucose, are able to degrade the 

glucose and to synthesize ATP via glycolysis. Other important metabolic pathways are 

widely distributed in all living organisms. 

 
 
3.1.1. CATABOLISM AND ANABOLISM 
 
The metabolism fulfills two fundamentally different purposes: the production of energy 

which supplies the vital processes, and the synthesis of the molecules necessary for the 

structure and function of the cells. To accomplish these goals, metabolism consists mainly 

of two opposing processes: catabolism and anabolism. The catabolic pathways produce 

energy, while the anabolic pathways require energy.  

Catabolism involves the oxidative degradation of complex nutrient molecules 

(carbohydrates, lipids, proteins) obtained from both the environment and the cellular 

reserves. The degradation of these molecules through the catabolism leads to the 

formation of more simple molecules such as lactic acid, ethanol, carbon dioxide, urea and 

ammonia. The catabolic reactions are generally exoergonic, and often the energy released 

is captured in form of ATP (free energy of ATP hydrolysis = -30.5 kJ / mol). 

Since catabolism is oxidative, part of the chemical energy can be stored through the 

reduction of coenzyme NAD+ (nicotinamide adenine dinucleotide) and NADP+ 
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(nicotinamide adenine dinucleotide phosphate) forming NADH and NADPH, respectively, 

which have very different metabolic roles. The reduction of NAD+ to NADH accompanies 

many oxidative reactions which occur during the catabolism, especially during glycolysis 

with 2 mole NADH produced for each mole of glucose metabolized to pyruvate (e.g. 

glyceraldehyde-3-phosphate oxidation to 1,3-bisphosphoglycerate). In aerobic cells, the 

NADH oxidation can be coupled to the ADP phosphorylation, and so the NADH reoxidation 

to NAD+ is used to generate more ATP via the mitochondrial electron transport chain. In 

contrast, the NADPH is the source of the reducing power necessary to carry out the 

reductive biosynthetic reactions. The oxidation of NADPH is therefore a feature of 

anabolism. 

The anabolism is the process of synthesis during which the different and complex 

biomolecules (proteins, nucleic acids, polysaccharides and lipids) are assembled starting 

from simple precursors. These biosynthesis involve the new covalent bonds formation and 

require energy input to allow these endoergonic chemical processes. ATP is produced by 

catabolism to provide this energy. Moreover, the NADPH is an excellent electron donor for 

the anabolic reductive reactions (Figure 2). 

Catabolism and anabolism occur simultaneously within the cell and, despite the divergent 

roles, the cell is able to simultaneously manage the catabolism and anabolism since the 

products of one provide substrates for the other one. First, the cell keeps under close and 

separate control both anabolism catabolism, so that the metabolic needs are fulfilled in an 

immediate and tidy way. Second, contrasting metabolic pathways are often located in 

different subcellular compartments. The isolation of opposite activities within separate 

compartments, prevents interferences between them. For example, the enzymes 

responsible for the catabolism of fatty acids are localized in the mitochondria (beta-

oxidation), while the biosynthesis of fatty acids takes place in the cytosol. 
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Figure 2. Energy relationships between the pathways of catabolism and anabolism. Oxidative and 
exoergonic pathways of catabolism release free energy and reducing power that are captured in the form of 
ATP and NADPH, respectively. Anabolic processes are endoergonic, consuming chemical energy in the form 
of ATP and using NADPH as a source of high energy electrons for reductive purposes. 

 
 
ATP and NADPH represent the two primary cellular products with high energy. In 

heterotrophs, the catabolic pathways have the main purpose to release free energy, so 

that it can be captured in the form of high-energy phosphoanidridic bonds in ATP. In turn, 

the ATP provides the energy that allows the multiple activities common to all living cells: 

the synthesis of complex biomolecules, the osmotic work involved in the transport of 

substances within the cell, the work required by the cell motility and muscle contraction. 

These activities are all powered by the release of energy due to hydrolysis of ATP to ADP 

and Pi. 

Into the cells it is created an energy cycle in which the ATP has the function of energy 

carrier from the catabolism to the processes that require energy. 

The substrates of catabolism (proteins, carbohydrates and lipids) are good sources of 

chemical energy, because the carbon atoms in these molecules are relatively reduced 

(Figure 3). During the catabolic oxidative reactions these substrates release reducing 

equivalents, often in the form of hydride ion (a proton coupled with two electrons, H:-, the 

dehydrogenation). These hydride ions are transferred (in enzymatic reactions catalyzed by 

dehydrogenase) from the substrates to molecules of NAD+, which are reduced to NADH 

(e.g.: the dehydrogenation reaction catalyzed by alcohol dehydrogenase where Ethyl 

Alcohol is oxidized to acetaldehyde and a hydride ion is transferred to NAD+ that becomes 

NADH). A second proton, which appears in the equation of the total reaction such as H+ is 

involved in these reactions (NADH + H+). The NADH is reoxidized to NAD+ when its 
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reducing equivalents are transferred to electron acceptors which are part of the 

mitochondria metabolic apparatus. The final oxidizing agent (the final electron acceptor) is 

the oxygen which is reduced to H2O. 

 

 

 

Figure 3. Comparison of the state of reduction of carbon atoms in biomolecules: -CH2 (fats) > CHOH- 
(carbohydrates) > C=O (carbonyls) > CO2 (carbon dioxide, the final product of catabolism) 

 
 
Oxidation reactions are exoergonic, and the released energy is coupled to the formation of 

ATP in a process called oxidative phosphorylation. The system NAD+/NADH can be seen 

as a shuttle system that transports electrons, released by catabolism of substrates, to the 

mitochondria where they are finally transferred to oxigen, the final metabolic acceptor. 

During this process the released free energy is trapped in ATP.  

Mitochondrial membranes are impermeable to NADH which, therefore, must be transferred 

into the mitochondrial matrix via "hydrogen shuttle" mechanisms. The shuttle mechanisms 

for the transfer of reducing equivalents from cytoplasm to mitochondria are the glycerol-3-

phosphate pathway in which dihydroxyacetone phosphate is reduced to glycerol-3-

phosphate in the cytoplasm and reoxidized in the mitochondria, and the other one is the 

malate-aspartate shuttle which requires influx of malate and efflux of asparate from the 

mitochondrial space. 

The NADH cycle plays an important role in the transformation of the chemical energy of 

carbon compounds in the energy present in chemical phosphoanidridic bonds (ATP). 

These energy transformations from one form into another are known as “energy 

transduction”. Oxidative phosphorylation is a cellular mechanism of energy transduction. 

While catabolism is basically an oxidative process, anabolism, on the contrary, is a 

reductive process.  

The biosynthesis of complex cellular components starts at the level of intermediates that 

come from degradative pathways of catabolism. For example, when the hydrocarbon 

chains of fatty acids are assembled from units of acetyl-CoA, activated hydrogen atoms 

are necessary for reducing the carbonyl carbons (C=O) of acetyl-CoA into groups -CH2-, 

in all positions along the chain. The reducing equivalents necessary for the reductive 



86 

 

processes are provided by NADPH, the common source of hydrogens for the reductive 

biosynthesis. NADPH is formed when the NADP+ is reduced by the electrons, in the form 

of hydride ions. In heterotrophic organisms, these electrons are removed from the fuel 

molecules by specific dehydrogenases for NADP+. In these organisms NADPH can be 

seen as a carrier of electrons from catabolic reactions to anabolic reactions (Figure 4). 

 
 

 

 

Figure 4. Transfer of reducing equivalents fron catabolism to anabolism via the NADPH cycle. 

 
 
 

Nicotinamide coenzymes (also known as pyridine nucleotides) are electron carriers and 

are involved in many and important redox reactions catalyzed by enzymes (reductive 

biosynthesis, detoxification reactions, generation of ATP). The ratios of NAD+/NADH and 

NADP+/NADPH determine the intracellular redox state of cell, which influences the 

thermodynamic driving force of many reactions in vivo and reflects both the metabolic 

activities and the health of cells. 
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3.1.2. GLUCOSE: THE MAIN CELLULAR ENERGY SOURCE  

 

The name "glucose" comes from the Greek word γλυκος, meaning "sweet wine, must". 

Glucose (Figure 5) is a sugar (carbohydrate) with the molecular formula C6H12O6, has six 

carbon atoms and it is classed as a hexose. It is used as an energy source in most 

organisms, from bacteria to humans, through either aerobic respiration, anaerobic 

respiration, or fermentation. 

Glucose is the human body's key source of energy and within the cell the major pathways 

for catabolism of glucose include the glycolytic and pentose phosphate pathways. These 

reactions produce lactate and CO2 as major end products and generate glycerol-3-

phosphate, ribose and pyruvate which can be utilized as intermediates for synthesis of 

lipids and nucleic acids, transamination to amino acids, and oxidation via the Krebs cycle. 

The catabolism of glucose also generates reduced pyridine nucleotides (NADPH and 

NADH), reducing potential which is essential in the extramitochondrial compartment for 

reductive biosynthesis and after transfer into the mitochondria, can be utilized for energy 

generation via the electron transport chain. Finally, the catabolism of glucose results in 

synthesis of high energy compounds (ATP).  

 

 

Figure 5. Molecule of glucose 
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3.1.3. GLYCOLYSIS 

 

Almost all living cells perform a metabolic process known as glycolysis, sequential 

oxidative degradation of glucose, and other simple sugars.  

Glycolysis (Figure 6) is a metabolic pathway carried out in the cytosol of cells in anaerobic 

condition. 

Millions of years ago, living beings evolved in an oxygen-free environment and glycolysis 

likely was premature and important metabolic pathway to extract energy from nutrient 

molecules. It played a central role in the anaerobic metabolism during the first two billion 

years of biological evolution on Earth.  

Currently, the organisms are still using glycolysis to provide the precursors of the aerobic 

metabolic pathways (the tricarboxylic acid cycle), and as a short term energy source when 

oxygen is present in limited amount.  

Most of the steps of this pathway (the first pathway to be elucidated) were discovered in 

the first half of the twentieth century by biochemical German Otto Warburg, G. Embden 

and O. Meyerhof (glycolysis is also called Embden-Meyerhof metabolic pathway). 

Glycolysis has two phases. The first one, the glucose is converted into two molecules of 

glyceraldehyde-3-phosphate through five reactions; the second one, five subsequent 

reactions convert the two molecules of glyceraldehyde 3-phosphate into two molecules of 

pyruvate. The phase one consumes two molecules of ATP, the final stages result in the 

production of four molecules of ATP. The net balance is 4 - 2 = 2 molecules of ATP 

produced per molecule of glucose. 

Metabolic control of the glycolytic pathway can be achieved by agents that exert regulation 

over the long or over the short term. Long-term regulation occurs chiefly through the effect 

of hormones (e.g. insulin, glucagone) and other mediators on the enzymes involved in 

glucose uptake and metabolism. Short-term control occurs by regulation of enzyme activity 

through changes in concentration of important reactants and modifiers. Two important 

glycolytic regulators of the second class are the cellular ATP concentration (ATP/ADP 

ratio, the energy state of the cell) and the cellular NAD+ concentration (the NAD+/NADH 

ratio, redox state of the cell). In many cells and tissues, glycolytic flux increases in 

response to ATP depletion (assuming sufficient ATP for glucose phosphorylation) and 

decreases as NAD+ is depleted. Reoxidation of the cytoplasmic pyridine nucleotide is 

essential to permit glycolysis to proceed. NAD+ can be regenerated through utilization of 
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NADH in production of lactate from pyruvate or production of glycerol-3-phosphate from 

dihydroxyacetone phosphate. 

The provision of mitochondrial (Krebs cycle) substrate can also have a regulatory effect on 

glycolysis. This effect is not due to alteration of redox ratio, but most likely reflects 

increased citrate synthesis by the mitochondria with subsequent inhibition of cytosolic 

phosphofructokinase.  

 

 

 

 

 

Figure 6. Glycolysis 
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3.1.4. PENTOSE PHOSPHATE PATHWAY 

 

The cells require a constant supply of NADPH for reductive biosynthesis. Most of this 

demand is met by a metabolic pathway that starts from glucose, known as the pentose 

phosphate pathway (Figure 7). In addition to supplying the NADPH for biosynthetic 

purposes, this pathway produces ribose-5'-phosphate, essential for the nucleotides and 

nucleic acids synthesis, whereas several metabolites can be directed to glycolysis. 

The pentose phosphate pathway begins with the glucose-6-phosphate (six carbon sugar) 

and produces sugars with three-, four-, five-, six- and seven-carbon. Two subsequent 

oxidative reactions lead to the reduction of NADP+ to NADPH and the release of CO2. The 

five subsequent non-oxidative reactions produce a variety of carbohydrates, some of 

which can enter into glycolytic pathway.  

The pentose phosphate pathway enzymes are localized in the cytosol of the cells, which is 

the site of fatty acid synthesis and also detoxification reactions, two ways strictly 

dependent on NADPH for reductive reactions. Moreover, the pentose cycle enzymes are 

particularly abundant in the cytoplasm of the liver, adipose tissue and lung cells, whereas 

are lacking in the muscle, where glucose-6-phosphate is used mainly to obtain energy by 

glycolysis and TCA cycle. 

The use of glucose-6-phosphate depends on the cellular demands of ATP, NADPH and 

ribose-5-P.  

Glucose-6-phosphate is shared between glycolysis and the pentose phosphate pathway. 

The entry in one or other metabolic pathway depends on the energy needs (ATP/AMP 

ratio) of the cell and the relative concentrations of NADP+ and NADPH (NADP+/NADPH 

ratio). Whether within the cell are occurring reductive reactions or biosynthesis with 

consumption of NADPH, NADP+ levels increase. The glucose-6-phosphate 

dehydrogenase (the pentose phosphate pathway key enzyme) is activated allosterically by 

NADP+, resulting in activation of pentose phosphate pathway. Whether, on the other 

hand, the levels of NADP+ decrease, the pentose phosphate pathway is slowed and 

glucose-6-phosphate is used for the glycolysis.  

Glucose-6-phosphate can be used as substrate either in glycolysis either in pentose 

phosphate pathway and within the cell the choice of one pathway rather than the other is 

determined based on the cellular metabolic needs of energy and biosynthesis. ATP can be 

produced in abundance if the glucose-6-phosphate is addressed to glycolysis. On the 

other hand, if it is required NADPH and ribose-5-phosphate, glucose-6-phosphate can be 
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directed toward the pentose phosphate pathway. The molecular basis of this regulatory 

decision depends on the enzymes that metabolize glucose-6-phosphate in glycolysis and 

in pentose phosphate pathway. In glycolysis, the fosfoglucoisomerase converts glucose-6-

phosphate into fructose-6-phosphate, which is used by phosphofructokinase (highly 

regulated enzyme) to produce fructose-1,6-bisphosphate. In the pentose phosphate 

pathway, glucose-6-phosphate dehydrogenase (also highly regulated) produces glucono-

lactone from glucose-6-phosphate. The fate of the glucose-6-phosphate is therefore 

determined in large part by the activity of phosphofructokinase (PFK) and glucose-6-

phosphate dehydrogenase (G6PDH). PFK is inhibited by an increased ATP/AMP ratio and 

by citrate. So, when the energy charge is high, the glycolytic flow is reduced. The glucose-

6-phosphate dehydrogenase, on the other hand, is inhibited by high levels of NADPH and 

also by fatty acids biosynthesis intermediates. Both of these compounds indicate that 

requests biosynthetic were met. In this case, the glucose-6-phosphate dehydrogenase and 

the the pentose phosphate pathway are inhibited. If the levels of NADPH go down, the 

pentose phosphate pathway is restarted and NADPH and ribose-5-phosphate are 

produced for biosynthetic purposes. However, even when it is operated this latter choice, 

the cell must still be able to cope with the demands of ribose-5-phosphate and NADPH 

(such as ATP). Depending on the entity of these demands, the glycolysis and the pentose 

phosphate pathway reactions can be combined in new ways to increase the synthesis of 

the required metabolites. 

 

Figure 7. Pentose Phosphate Pathway 
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In summary the Pentose Phosphate Pathway has three main functions: 

1. Supply the cell with NADPH in order to: 

 Provide reducing power for biosynthetic reactions; 

 Serve as a biochemical reductant (e.g. maintaining glutathione levels); 

 Be utilized by the cytochrome P450 monooxygenase system; 

 Serve as electron source for reduction of ribo- to deoxyribonucleotides, for 

DNA synthesis; 

2. Convert hexoses into pentoses (which are essential components of ATP, CoA, 

NADP+, FAD, RNA and DNA); 

3. Enable the complete oxidative degradation of pentoses by converting them into 

hexoses and trioses which can then enter the glycolytic pathway. 

 

3.1.5. LUNG INTERMEDIARY METABOLISM 

 

The lung is a metabolically active organ that is engaged in secretion, clearance and other 

maintenance functions that require reducing potential, energy and substrates for 

biosynthesis. Alterations in lung intermediary metabolism may depress amine clearance, 

alter lung permeability, and influence the lung response to oxidant stress. 

Based on studies on rat perfused lung tissue, lung metabolic requirements are met in part 

through uptake and catabolism of glucose which represents the major fuel utilized by lung 

tissue. Glucose is catabolized in the lung by cytoplasmic and mitochondrial pathways that 

are responsive to regulatory mechanisms that are qualitatively similar to those in other 

tissues [213]. 

In addition to generating carbon substrates for further oxidation or for biosynthetic 

reactions, the catabolism of glucose generates reducing equivalents which in turn are used 

for reductive biosynthesis, detoxification reactions, and generation of ATP via the 

mitochondrial electron transport chain. 

Cytoplasmic reducing equivalents are generated as NADH during glycolysis and NADPH 

from the reactions of the pentose shunt pathway. Mitochondrial reducing equivalents, 

which are generated as NADH and reduced flavins (FADH2, FMNH2) from reactions 

including pyruvate dehydrogenase and Krebs cycle, are linked directly to the mitochondrial 

electron transport chain. 
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Reactions that generate NADPH in the cytoplasm include the pentose pathway (glucose-6-

phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), conversion of 

malate to pyruvate by malic enzyme, and conversion of isocitrate to a-ketoglutarate by 

isocitric dehydrogenase (IDH1). Therefore, the major source of NADPH in the lung 

cytoplasm is assumed to be the pentose pathway. The major mitochondrial sources of 

NADPH are NADP+-linked isocitric dehydrogenase (IDH2, IDH3) and nicotinamide 

nucleotide transhydrogenase (NNT). 

The lung, portal of entry into the body and organ of gas exchanges, is the seminal point of 

exposure to oxidants and many environmental toxicants. Therefore, reducing and 

detoxification reactions have a key role in the lung homeostasis. 

Generation of NADPH appears to be of primary importance in protection of the lung tissue 

against oxidative damage and xenobiotics. Several studies have shown that oxidants and 

toxic free radicals [213-215] stimulate pentose cycle activity in order to meet the increased 

demand for cytoplasmic reducing equivalents. Indeed, the elimination of toxic free radicals, 

by their further reduction to water, requires reducing equivalents generated intracellularly 

from intermediary metabolism. 

NADPH is the major biological reductant utilized for biosynthetic reactions, and to maintain 

the redox status of the cell by regenerating thiol-based redox couples, GSH and 

thioredoxin, thus protecting the cell from oxidative damage. This reducing power is also 

utilized in double-bond reduction in fatty acid biosynthesis, which is involved in surfactant 

synthesis, as well as in detoxification reactions (e.g. NADPH-cytochrome P450 reductase).  

Regarding energy consumption, lung tissue per se is a relatively modest consumer of 

energy in comparison to muscles of respiration or other working tissues [216]. 

Nevertheless, the lung has energy-dependent functions that for the most part have been 

relatively poorly defined. Some of these energy-requiring functions include lung clearance 

(phagocytosis and ciliary activity), bronchial gland secretion, contraction of 

tracheobronchial smooth muscle, surfactant synthesis and secretion, and maintenance of 

normal transcellular ion gradients. Efficient functioning of these energy-dependent systems 

requires the maintenance of tissue energy stores, that are determined by the balance 

between rates of ATP generation and utilization. In most metabolically active tissues, the 

bulk of ATP is generated from mitochondrial oxidation while glycolysis is only 

supplemental. In the lung, the ATP content is maintained by oxidative metabolism at levels 

comparable to other metabolically active organs [213]. 
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Lung tissue carries out important metabolic activity, but much remains to be accomplished 

before we gain complete understanding of the relationships between cellular metabolic 

activity and overall lung function, including the mechanisms by which intermediary 

metabolism is altered in the presence of disease. 

The relationship of intermediary metabolism to lung pathophysiology has been examined 

in detail for only a limited number of conditions, but studies of this sort are particularly 

vulnerable to problems with interpretation because of cellular heterogeneity of the normal 

lung and heterogeneity of cellular response to toxic insults.  

 

3.1.6. LIVER INTERMEDIARY METABOLISM  

 

The liver is a key metabolic organ which governs body energy metabolism. Glucose is 

metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely 

oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the 

mitochondria. 

Liver acts as a hub to metabolically connect to various tissues, including skeletal muscle 

and adipose tissue. Food is digested in the gastrointestinal (GI) tract, and glucose, fatty 

acids, and amino acids are absorbed into the bloodstream and transported to the liver 

through the portal vein circulation system. 

In the fed state glucose is condensed into glycogen (glycogenesis) and/or converted into 

fatty acids (de novo lipogenesis) or amino acids in the liver. In hepatocytes, long chain 

fatty acids are incorporated into triacylglycerol (TAG), phospholipids, and cholesterol 

esters and these complex lipids are stored in lipid droplets and membrane structures, or 

secreted into the circulation as VLDL particles. Amino acids are metabolized to provide 

energy or used to synthesize proteins, glucose, and/or other bioactive molecules. 

In the fasted state or during exercise, the liver secretes glucose through both breakdown 

of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). Fuel 

substrates, as glucose and TAG, are released from the liver into the circulation and 

metabolized by muscle, adipose tissue, and other extrahepatic tissues. Adipose tissue 

produces and releases nonesterified fatty acids (NEFAs) and glycerol via lipolysis. Muscle 

breaks down glycogen and proteins and releases lactate and alanine. Alanine, lactate, and 

glycerol are delivered to the liver and used as precursors to synthesize glucose 

(gluconeogenesis). NEFAs are oxidized in hepatic mitochondria through fatty acid β 
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oxidation and generate ketone bodies (ketogenesis). Liver-generated glucose and ketone 

bodies provide essential metabolic fuels for extrahepatic tissues during starvation and 

exercise. 

Liver energy metabolism is tightly controlled. Multiple nutrient, neuronal and hormonal 

systems have been identified to regulate liver metabolic processes. The sympathetic 

system stimulates, whereas the parasympathetic system suppresses, hepatic 

gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses 

gluconeogenesis; glucagon counteracts insulin action. 

Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and 

nonalcoholic fatty liver diseases (NAFLD). 

Hepatocytes are the main cell type in the liver (~80%). Blood glucose enters hepatocytes 

via a plasma membrane glucose transporter (GLUT). Glucose is phosphorylated by 

glucokinase in hepatocytes to generate glucose-6-phosphate (G6P), that - because of the 

negative charge of phosphate group - is unable to be transported by glucose transporters, 

so it is retained within hepatocytes. In the fed state, G6P acts as a precursor for glycogen 

synthesis. It is also metabolized to generate pyruvate through glycolysis. Pyruvate is 

channeled into the mitochondria and completely oxidized to generate ATP through the 

tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Alternatively, pyruvate is 

used to synthesize fatty acids through lipogenesis. G6P is also metabolized via the 

pentose phosphate pathway to generate NADPH. NADPH is required for lipogenesis and 

biosynthesis of other bioactive molecules. In the fasted state, G6P is transported into the 

endoplasmic reticulum (ER) and dephosphorylated by glucose-6-phosphatase (G6Pase) to 

release glucose. 
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3.2.  METABOLOMICS 

 
 
3.2.1. WHAT IS METABOLOMICS? 
 
 

A cell can be thought of as a factory in which different assembly lines - the metabolic 

pathways of the cell - interact to build the finished products that fulfill the cell’s role in an 

organism. 

Living cells are maintained under non-equilibrium conditions, which requires constant input 

of energy. The cells must also maintain their infrastructure, and perform tissue-specific 

tasks, all of which need energy and raw material. Metabolism is the set of processes that 

convert exogenous compounds to metabolic energy, which drives biochemical reactions 

within the cell, maintains homeostasis, provides the means to do work (e.g. contraction, 

movement, action potentials, secretion and so forth), for cellular repair, and to divide. 

Metabolomics is the scientific study of chemical processes involving metabolites. 

Specifically, metabolomics is the "systematic study of the unique chemical fingerprints that 

specific cellular processes leave behind", the study of their small-

molecule metabolite profiles. 

The metabolites are small molecules that represent the end products of cellular processes 

and give a picture of the here-and-now of how cells and tissues are functioning. The 

collection of all metabolites in a biological system (cell, tissue, organ or organism), 

represents the metabolome, the intersecting systems chemistry of life processes, that is 

the functional outcome of the activity of the genome (functional genome) and the 

proteome. 

Metabolism, as functional activity of all living cells, reflects the health status of an 

organism. Therefore, the ability to measure global metabolism in quantitative detail is of 

fundamental importance in all aspects of biology. Metabolomics provides the technical 

means to carry out global analyses of metabolism, by identifying and quantifying a large 

fraction of all of the metabolites present in a cell, and how they change in response to 

perturbations within relevant metabolic networks. 

Metabolomics requires high-end analytical instrumentation, of which mass spectrometry 

(MS) and nuclear magnetic resonance (NMR) together are the most appropriate 

technologies. 

 
 

https://en.wikipedia.org/wiki/Metabolite
https://en.wikipedia.org/wiki/Metabolite
https://en.wikipedia.org/wiki/Metabolome
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3.2.2. HISTORY OF METABOLOMICS 
 
 

"Both the body and its parts are in a continuous state of dissolution and nourishment, so 
they are inevitably undergoing permanent change." 

[Ibn al-Nafis in his 1260 AD work titled “Al-Risalah al-Kamiliyyah fil Siera al-Nabawiyyah” - The Treatise of Kamil on the Prophet's Biography] 

 

The idea that biological fluids reflect the health of an individual has existed for a long 

time. Ancient Chinese doctors used ants for the evaluation of urine of patients to detect 

whether the urine contained high levels of glucose, and hence detect diabetes [217]. In the 

Middle Ages, "urine charts" were used to link the colours, tastes and smells of urine to 

various medical conditions, which are metabolic in origin [218]. The first controlled 

experiments in human metabolism were published by Santorio Santorio in 1614 in his 

book “Ars de statica medicina” [219]. He described how he weighed himself before and 

after eating, sleep, working, sex, fasting, drinking, and excreting. He found that most of the 

food he took in was lost through what he called “perspiratio insensibilis” ("insensible 

perspiration of the body"), already known to Galen and ancient physicians, and originated 

the study of metabolism. 

The concept that individuals might have a “metabolic pattern” that could be reflected in the 

components of their biological fluids was first developed and tested by Roger Williams and 

his associates during the late 1940s and early 1950s [220]. Williams used paper 

chromatograms to examine samples from a variety of subjects, including alcoholics, 

schizophrenics, and residents of mental hospitals, producing suggestive evidence that 

there were characteristic metabolic patterns associated with each of these groups [221]. 

The term "metabolic profile" was introduced by Horning, et al. in 1971 after they 

demonstrated that gas chromatography-mass spectrometry (GC-MS) could be used to 

measure compounds present in human urine and tissue extracts [222-226]. 

The Horning group, along with that of Linus Pauling and Arthur B. Robinson led the 

development of GC-MS methods to monitor the metabolites present in urine through the 

1970s [227]. Commenting on the potential usefulness of this type of technique, the Horings 

suggested that: “profiles may prove to be useful for characterizing both normal and 

pathologic states, for studies of drug metabolism, and for human developmental studies”. 

Concurrently, NMR spectroscopy, which was discovered in the 1940s, was also 

undergoing rapid advances.  

https://en.wikipedia.org/wiki/Ibn_al-Nafis
https://en.wikipedia.org/wiki/Al-Risalah_al-Kamiliyyah_fil_Siera_al-Nabawiyyah
https://en.wikipedia.org/wiki/History_of_medical_diagnosis#Ancient_China
https://en.wikipedia.org/wiki/Experiment
https://en.wikipedia.org/wiki/Santorio_Santorio
https://en.wikipedia.org/wiki/Sleeping
https://en.wikipedia.org/wiki/Metabolism
https://en.wikipedia.org/wiki/Gas_chromatography-mass_spectrometry
https://en.wikipedia.org/wiki/Linus_Pauling
https://en.wikipedia.org/wiki/Arthur_B._Robinson
https://en.wikipedia.org/wiki/NMR_spectroscopy
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In 1974, Seeley et al. demonstrated the utility of using NMR to detect metabolites in 

unmodified biological samples [228].  As sensitivity has improved with the evolution of 

higher magnetic field strengths and magic angle spinning, NMR continues to be a leading 

analytical tool to investigate metabolism. Efforts to utilize NMR for metabolomics have 

been largely driven by the laboratory of Dr. Jeremy K. Nicholson at Birkbeck College, 

University of London and later at Imperial College London. In 1984, Nicholson showed 1H 

NMR spectroscopy could potentially be used to diagnose diabetes mellitus, and later 

pioneered the application of pattern recognition methods to NMR spectroscopic data [229-

232]. 

In 2005, the first metabolomics web database, METLIN [233] for characterizing human 

metabolites was developed in the Siuzdak laboratory at The Scripps Research 

Institute and contained over 10,000 metabolites and tandem mass spectral data. As of 

September 2015, METLIN contains over 240,000 metabolites as well as the largest 

repository of tandem mass spectrometry data in metabolomics. 

On 23 January 2007, the Human Metabolome Project, led by Dr. David Wishart of 

the University of Alberta, Canada, completed the first draft of the human metabolome, 

consisting of a database of approximately 2500 metabolites, 1200 drugs and 3500 food 

components [234-235].  

As late as mid-2010, metabolomics was still considered an "emerging field". Further, it was 

noted that further progress in the field depended in large part, through addressing 

otherwise "irresolvable technical challenges", by technical evolution of mass 

spectrometry instrumentation [236]. 

In 2012, in order for the full potential of metabolomics to be realized, the United States NIH 

Common Fund Metabolomics Program (https://commonfund.nih.gov/metabolomics) was 

initiated and six metabolomics resource centers were established nationwide. The 

program is meant to increase the national capacity for metabolomics and to catalyze 

research by creating new tools, infrastructure, and data to fuel this relatively new field of 

study.   

In 2013, as part of the NIH Common Fund’s Metabolomics program, Dr. Teresa Fan, Dr. 

Andrew Lane, Dr. Richard Higashi and Dr. Hunter Moseley established the Resource 

Center for Stable Isotope-Resolved Metabolomics (RC-SIRM) at the University of 

Kentucky (Lexington, KY, USA). The Dr. Teresa Fan’s laboratory has been developing the 

SIRM approach for translational research from cells through mouse models to human 

patients offering an unprecedented opportunity to elucidate in large-scale altered 

https://en.wikipedia.org/wiki/Magic_angle_spinning
https://en.wikipedia.org/wiki/Jeremy_K._Nicholson
https://en.wikipedia.org/wiki/Birkbeck_College,_University_of_London
https://en.wikipedia.org/wiki/Birkbeck_College,_University_of_London
https://en.wikipedia.org/wiki/Imperial_College_London
https://en.wikipedia.org/wiki/METLIN
https://en.wikipedia.org/wiki/The_Scripps_Research_Institute
https://en.wikipedia.org/wiki/The_Scripps_Research_Institute
https://en.wikipedia.org/wiki/Human_Metabolome_Project
https://en.wikipedia.org/wiki/University_of_Alberta
https://en.wikipedia.org/wiki/Mass_spectrometry
https://en.wikipedia.org/wiki/Mass_spectrometry
https://commonfund.nih.gov/metabolomics
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metabolic networks in various model systems and human subjects in vivo. This approach 

couples the use of stable isotope tracers with NMR and MS-based metabolomic analyses 

[237]. The overall goals of the RC-SIRM are to facilitate and promote metabolomics 

research with an emphasis on stable isotope tracing for pathway elucidation in studies 

ranging from laboratory bench cell cultures, model animals, to human subjects, and to 

provide the state-of-art analytical and informatics resources, education, and training for the 

biomedical research community. 

In April 2014, representatives from Australia, Canada, Germany, Japan, the Netherlands 

and the United States NIH Common Fund Metabolomics program met to discuss an 

international data exchange in metabolomics. The participants agreed to create a portal 

that would provide a network of coordinated and freely accessible metabolomics data 

collected from repositories around the world. As a result of this meeting and in 

collaboration with the European Bioinformatics Institute, the MetabolomeXchange was 

launched as an international index of freely accessible metabolomics data from around the 

world. As of December 2015 nearly 300 datasets are now available 

(http://metabolomexchange.org/) from three different repositories including the Common 

Fund Metabolomics Workbench (http://www.metabolomicsworkbench.org/) 

In 2015, real-time metabolome profiling was demonstrated for the first time [238]. 

 
3.2.3. TRACING THE METABOLISM OF DISEASES 

Since metabolism responds to environmental factors both at the extrinsic level 

(macroenvironment), as represented by diet, pollutants and drugs for example, and local 

environments (microenvironment), as represented by the prevailing tissue conditions 

outside cells, metabolism is a sensitive indicator of altered physiological state, thus 

pathology. Understanding which metabolites are present under certain circumstances can 

provide valuable information about the health and well-being of an organism, allowing to 

expand the knowledge of human health and disease.  

Metabolomics [239], through minimally invasive techniques, allows to study cell 

metabolism in conditions of disease, by identifying and quantifying a large fraction of all of 

the metabolites present in a cell, and how they change in response to perturbations within 

relevant metabolic networks. The resulting metabolic profiling can give an instantaneous 

snapshot of the physiology of that cell. 

In 2013, Dr. Teresa Fan, Dr. Andrew Lane, Dr. Richard Higashi and Dr. Hunter Moseley 

established the Resource Center for Stable Isotope-Resolved Metabolomics (RC-SIRM) at 
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the University of Kentucky (Lexington, KY, USA). The SIRM approach offers the 

opportunity to elucidate in large-scale altered metabolic networks in various model 

systems (in vitro, ex vivo, in vivo) and human subjects in vivo, coupling the use of stable 

isotope tracers with NMR and mass spectrometry (MS)-based metabolomic analyses [240-

248]. This kind of technique is like “tracing breadcrumbs in the forest”, using the words of 

Dr. Teresa Fan. “Breadcrumbs” are traced metabolites, and “forest” is the model system 

and human patient studied. In fact, using stable isotope tracers, it is possible to label 

certain types of metabolites and watch as they move through the complicated and 

interconnected network of biological reactions that contribute to cell metabolism [249]. 

Dr. Fan and her research team use stable isotope tracing for pathway elucidation in 

studies ranging from laboratory bench cell cultures [250], model animals [249] [251-252], 

to human subjects [249] [252-255].  

Researchers can probe the metabolic network of particular diseases in these systems to 

identify new cell processes that could be targeted with drugs and discover diagnostic 

markers. 

One of the major roadblocks to metabolomics use is that it remains difficult to identify the 

tens of thousands of metabolites that exist at any given time within the cells. In addition, 

many metabolites are present in low concentrations or are unstable, making them difficult 

to detect. Careful sample preparation and processing is the often the first critical 

component in metabolomics, which is necessary to prevent excessive perturbation and 

degradation of the observed metabolites [256-257]. It is very important to develop ways to 

treat samples before analyzing them to increase sensitivity and stability, using chemical 

agents that can modify particular parts of certain metabolites, so making them easier to 

detect. This approach could also enhance a researcher’s ability to identify previously 

unknown metabolites. Data analysis/informatics [258-260] is another critical component of 

metabolomics to interpret the observations in a biological context. 

Although metabolomics is often considered more representative of the functional state of a 

cell than other ‘omics measures such as genomics or proteomics, one of the challenges of 

systems biology and functional genomics, is to integrate proteomic, transcriptomic, and 

metabolomic information to provide a better understanding of cellular biology. 
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3.2.4. STABLE ISOTOPE-RESOLVED METABOLOMICS (SIRM) 

 

Global metabolomics, through the quantification of a large number of metabolites in tissue 

or biofluids, can identify disease states or response to therapeutics and xenobiotics by 

reference to the normal condition. However, determining specific mechanisms, such as 

detecting which pathways are impacted in particular cell types within a tissue by 

measuring metabolic fluxes, requires additional information as many metabolites are 

present in different amounts in different cell types or within compartments of cells, as well 

as participating in several pathways simultaneously. Most metabolic pathways are in fact 

part of complex and intersecting networks with a given metabolite participating in multiple 

pathways. For example, Glutamate can be involved in up to 55 pathways, such as the 

synthesis of glutathione (GSH), amino acids, proteins, and some 200 reactions [249].  

Thus, it is impractical to resolve complex metabolic networks based on the steady-state 

metabolite levels alone. This is further complicated by the exchange of metabolites 

between different cellular compartments, such as the shuttling of citrate, oxaloacetate 

(OAA), Aspartate (Asp), and malate between the mitochondrion and the cytoplasm.  

Metabolism is a complex network of metabolic pathways and to identify the precursor-

product relationships, it is necessary to distinguish different sources of carbon, nitrogen 

etc. which necessitates some means of “labeling” individual atoms so that their fate can be 

traced through metabolic pathways. This allows the reconstruction of perturbed pathways 

based on the incorporation of the labeled atoms into metabolites. 

Traditionally this was achieved using radioisotopes (e.g. 14C, 13N, 15O). However, stable 

isotopes (e.g. 13C or 15N) have several advantages. They are wholly biocompatible, non-

radioactive, thereby eliminating concerns of safety to the biological models and 

researchers. In addition, they do not degrade during storage by autoradiolysis, another 

important disadvantage of radioisotopoes. The isotopes 13C and 15N are commonly used 

because they correspond to atoms that make up the bulk of most metabolites and because 

the mass change of one neutron compared to the mass of the more abundant 12C and 14N 

is relatively small.  

In addition to the mass difference that makes 13C and 15N discernable from 12C and 14N by 

MS, 13C and 15N have magnetic moment (possess 1/2 spin), which makes them 

observable by NMR.  

SIRM approach is implemented by administering stable isotope tracers such as uniformly 

13C-labeled glucose (13C6-Glc, 13C natural abundances 1.1 %) or uniformly 13C,15N-labeled 
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glutamine (13C5,15N2-Gln, 15N natural abundance 0.37%) to cell cultures, excised tissues or 

whole organisms including human subjects. Therapeutic agents or exposure to xenobiotics 

can be included in the treatment to observe their impact on the metabolic networks. The 

tracers are allowed to be metabolized for a duration which can range from 15 min. (for 

mice) to 24 h or longer (for cells and tissues), followed by cell harvest or tissue resection 

via surgery. Polar and lipophilic metabolites are extracted using a solvent partition method.  

Extracted metabolites are analyzed by NMR (positional isotopomers) and MS (mass 

isotopologues) for mapping the labeling patterns of various metabolites, for reconstruction 

of metabolic networks (Figure 8). Positional isotopomers and mass isotopologues refer 

respectively to a given metabolite with different labeled atomic positions (e.g. 13C1-1-Ala 

versus 13C1-2-Ala) and different numbers of labeled atoms (e.g. 13C1-Ala versus 13C3-Ala) 

(Figure 9). 

 

 

 

 

 

 
Figure 8. SIRM approach workflow 
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The specific isotopomer and isotopologue distributions in the various product metabolites, 

along with the total amounts of the metabolites, provide detailed information about the 

relative importance of intersecting and parallel pathways. For example, lactate can be 

produced directly from glucose by lactic fermentation, as well as by glutaminolysis; the 

relative contributions from these independent pathways is readily determined from the 

isotope distributions in the lactate using either 13C-enriched glucose or glutamine as 

labeled sources. At the same time such labeling schemes provide simultaneous 

information about the flow of carbon through the glycolysis, pentose phosphate pathway, 

hexosamine pathway, the Krebs cycle and lipid biosynthesis among others (Figures 10-

11). The information on pathway dynamics and compartmentation not only needs to be 

acquired for deciphering metabolic reprogramming in response to disease pathogenesis, 

but also is valuable to exploit for the discovery of diagnostic biomarkers as well as 

chemopreventive and therapeutic targets. 

 

 

 

 

 

 

Figure 9. Positional isotopomers and Mass Isotopologues 
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Figure 10. The use of labeled tracers such as 13C6 glucose or 13C5 glutamine allows the tracking of 
atoms through metabolic networks. A. If a biological sample is given 13C6-glucose (13C atoms shown in 
purple), the labeled carbon can be monitored through various routes of glucose metabolism. Several 
example pathways are shown. The pentose phosphate pathway will produce 13C5-ribose (purple) that can be 
incorporated into nucleotides and glycolysis will produce 13C3-pyruvate (purple) that can be reduced to 
lactate or transaminated to alanine. In addition, further oxidation of 13C3-pyruvate through the TCA cycle via 
pyruvate dehydrogenase (PDH, red) or pyruvate carboxylase (PC, blue) will produce characteristic labeling 
patterns in TCA cycle intermediates. Those TCA cycle intermediates can then participate in biosynthetic 
pathways; B. Glutamine carbons can be tracked in a similar manner. Abbreviations: PPP: pentose 
phosphate pathway, PDH: pyruvate dehydrogenase, PC: pyruvate carboxylase, GLS: glutaminase, ME: 
malic enzyme, αG3P: α glycerol 3-phosphate, OAA: oxaloacetate, UMP: uridine monophosphate. Half circles 
indicate two possible label patterns due to fumarate’s symmetry. 
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Figure 11. Stable isotope tracing can reveal metabolic pathways occurring in different cellular 
compartments. The fate of 13C6-Glc is tracked from glycolysis in the cytoplasm, lactate excretion into the 
medium, to the Krebs cycle in the mitochondria without and with the input of pyruvate carboxylation (PC), 
and then to lipid biosynthesis in the cytoplasm. The expected 13C labeling patterns for various representative 
metabolites are deduced based on known enzyme reaction mechanisms [261]. The labeling patterns for the 
Krebs cycle metabolites are drawn for 1 cycle turn only, which will change with additional turns of the cycle 
[262]. Dashed arrows: multi-step reactions; double-headed arrows: reversible reactions; double vertical 
dashed lines: membrane separation; BLACK: carbon-12; RED: carbon-13; GREEN: carbon-13 derived from 
PC; { }: scrambled 13C labeling patterns due to the molecular symmetry of succinate; R1, R2: fatty acyl 
chains of lipids; R3: fatty acyl chains for neutral lipids or polar head groups of phospholipids; Glc: glucose; 
AcCoA: acetyl CoA; OAA: oxaloacetate; αKG: α-ketoglutarate; LDH: lactate dehydrogenase; PDH: pyruvate 
dehydrogenase; PCB: pyruvate carboxylase. 
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3.2.4.1. Metabolite detection by Mass-Spectrometry (MS) and Nuclear Magnetic 

Resonance (NMR)  

 

MS enables monitoring of label incorporation of 13C into metabolites because of the mass 

difference between the naturally abundant atom 12C and the heavier isotope 13C. A mass 

spectrum of a metabolite provides the mass isotopologue distribution.  

Isotopologue distribution may not be sufficient to deconvolute complex pathways. For 

example, if a biological sample is given unifomely labeled 13C6-glucose, glutamate mass 

isotopologue with two 13C atoms (Glu m+2) is produced by both PC (pyruvate carboxylase) 

and PDH (pyruvate dehydrogenase), however the position of the label is distinct with PDH 

labeling at C4 and C5 and PC labeling C2 and C3 (Figures 10-11).  

By using a nuclear editing technique such as 1H-13C HSQC (Heteronuclear Single 

Quantum Coherence spectroscopy) which allows the detection of only protons attached to 

carbons enriched in 13C, NMR analysis reveals the position of the labeled atoms within in 

the metabolites structure, allowing one to distinguish positional isotopomers (Figure 12). 

1H-NMR spectrum, in turn, allows the detection of all protons attached both to 13C and 12C 

(Figure 13).  

Therefore, by employing a combination of NMR and MS approaches, label information is 

maximized as well as metabolite coverage. 

 

 

Figure 12. Lung tissue 1H-13C HSQC spectra from mouse injected with labeled glucose show the specific 

positions of label incorporation within a metabolite, allowing to distinguish positional isotopomers. 

Lac=lactate; Ala=alanine; Glu=glutamate; Gly=glycine; Glc=glucose; G6P=glucose-6-phosphate; 
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Figure 13. Lung tissue 1H-NMR spectra from mouse injected with labeled glucose show the labeled 

metabolites, and the specific positions of label incorporation within a metabolite, but also the unlabeled 

metabolites (detection of protons attached to 12C). Lac=lactate; Ala=alanine; Glu=glutamate; Gln=glutamine; 

GSH=reduced glutathione; GSSG=oxidized glutathione. 
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3.3. AIM OF THE STUDY 

 

Cigarette smoke (CS) is a miscellaneous of more than 4,000 chemicals [263], such as 

acrolein, nicotine, nitric oxide, nitrogen dioxide, polycyclic aromatic hydrocarbons, and 

nitrosamines [264], and it is a rich source of oxidants and electrophiles, so much so that it 

is estimated to contain 1017 radicals/g in the tar phase and 1015 radicals/g in the gaseous 

phase. Exposure to CS (and other environmental pollutants) leads to an 

oxidant/antioxidant imbalance in the lung that forms the basis for the development of 

COPD [265]. This oxidant-antioxidant imbalance is likely caused by inflammatory 

processes that potentiate proteolytic damage, induce cell death, and inhibit cell repair 

[266-268]. 

By the definition of GOLD (Global Initiative for Chronic Obstructive Lung Diseases) COPD 

is characterized by airflow limitation that is not fully reversible. The airflow limitation 

characteristic of COPD, is usually progressive and associated with abnormal inflammatory 

responses of the lungs to noxious particles or gases. So, CS-induced lung inflammatory 

processes are likely to be preceded by changes in energy metabolism and in the redox 

status of the cell. Few studies have highlighted the importance of intermediary metabolism 

events preceding redox and inflammatory changes. 

In the lungs, after CS exposure, oxidative stress leads to redox changes in cytosolic and 

mitochondrial metabolic events. A number of glycolytic enzymes are sensitive to CS-

induced oxidative stress along with inhibition of the mitochondrial respiratory chain 

complexes and consequent impairment of energy homeostasis and cell death [269]. 

Acrolein, one of the major constituents of CS, has been shown to inhibit Complexes I and 

II in hepatocytes [270] and in brain mitochondria [271]. Nicotine is a competitive inhibitor 

for Complex I [272], and nitric oxide is known to react with superoxide anion in 

mitochondria to yield peroxynitrite, a species known to modify irreversibly mitochondrial 

proteins by nitration and/or oxidation [273]. The susceptibility of mitochondrial proteins to 

oxidative damage and subsequent dysfunction after exposure to free radicals from CS is 

well documented [274-275]. 

Glucose is the principal substrate utilized by the lung and other organs for the generation 

of energy. Energy metabolism and ATP content in lungs are maintained by oxidative 

metabolism at levels comparable to those in other metabolically active organs, and any 

alteration may depress amine clearance, alter lung permeability, and influence lung 

response to oxidative stress [276]. Metabolism of glucose is encompassed by its 
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conversion to pyruvate (anaerobic glycolysis) and supply of the latter to mitochondria 

(aerobic glycolysis) for the generation of reducing equivalents and oxidative 

phosphorylation.  

It has been observed that short-term CS exposure led to metabolic alterations in 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent glycolysis and glucose-

6-phosphate dehydrogenase (G6PDH)-dependent pentose phosphate pathway [269]. 

Alveolar type II cells increase the utilization of fatty acids after the inhibition of glycolysis in 

response to acrolein exposure [277]. 

GAPDH is a central glycolytic enzyme that in consequence of posttranslational 

modifications such as S-thiolation (usually following S-nitrosylation), is inhibited and, 

consequently, there is a rerouting of the metabolic flux from glycolysis to the pentose 

phosphate pathway [278-279], which accounts for 10–20% of glucose metabolism. For 

example, inactivation of GAPDH due to oxidative stress has been shown to reroute the 

metabolic flux to the pentose phosphate pathway in Caenorhabditis elegans [278]. 

NADPH, generated in the pentose phosphate pathway by the only regulatory step 

catalyzed by glucose-6-phosphate dehydrogenase (G6PDH), is utilized to maintain the 

redox status of the cell by regenerating thiol-based redox couples, GSH and thioredoxin, 

and, thus, protecting the cell from oxidative damage. This reducing power is also utilized in 

double-bond reduction in fatty acid biosynthesis, as well as in detoxification reactions. 

GSH is the most abundant, low-molecular-weight, nonprotein thiol that is synthesized in 

the cytosol from glycine, glutamate, and cysteine in a two-step process by the enzymes γ-

glutamylcysteine synthase and GSH synthase [280] and plays a central role in the 

maintenance of the cellular redox status [281]. 

Metabolic (energy) and redox (oxidative stress) components are interdependent pathways 

that control cell function. Thus, impairment of intermediary metabolism is expected to play 

a decisive role in the development of COPD.  

Patients with COPD experience low energy metabolism associated with decline in lung 

function [282], however, the cellular mechanisms underlying low energy metabolism in 

response to CS are not known.  

This study examines the role of chronic CS exposure in the impairment of energy 

metabolism, specifically in glycolysis in tissues of an in vivo model. In particular this study 

aims to explore and to elucidate the glycolytic pathway alterations induced by chronic 

cigarette smoke exposure in mouse lung and liver tissue. This is achieved by using a novel 

experimental approach called stable isotope-resolved metabolomics (SIRM). The 
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experimental model consists of mice exposed to CS under controlled conditions for 6 

months, then injected with glucose tracer containing a stable isotope of carbon (13C6-

glucose). After tissues harvesting, the incorporation of the isotope into metabolites of 

biological samples is assessed by mass spectrometry (MS) and nuclear magnetic 

resonance spectroscopy (NMR), comparing the metabolic profile of mice exposed to CS to 

that of mice exposed to air. 
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3.4. MATERIAL AND METHODS  

 

3.4.1. EMPHYSEMA MOUSE MODEL - Animals and cigarette smoke exposure 

 

C57BL/6J mice (Jackson Lab originally, but maintained at the Johns Hopkins Bloomberg 

School of Public Health lab) were housed under controlled conditions for temperature and 

humidity, using a 12-h light/dark cycle. At 8 weeks of age, 5 mice were exposed to 

cigarette smoke (CS) 5 h/day, 5 days/week, for 6 months, using a TE-10z smoking 

machine (Teague Enterprises™) and 3R4F reference cigarettes (Tobacco and Health 

Research Institute, University of Kentucky, Lexington, KY, USA). This system employs a 

whole-body exposure, in which the entire mouse cage is placed in the smoking chamber. 

The TE-10z is a microprocessor-controlled cigarette smoking machine that produces a 

mixture of sidestream smoke (89%) and mainstream smoke (11%).  Each cigarette is 

puffed for 2 seconds, once every minute for a total of 8 puffs, at a flow rate of 1.05 l/min, to 

provide a standard puff of 35 cm3. The smoke chamber was monitored daily for total 

suspended particles and carbon monoxide, with concentrations of 150 mg/m3 and 350 

ppm, respectively [283-284]. All experimental protocols were performed in accordance with 

the standards established by the U.S. Animal Welfare Acts, as set forth in National 

Institutes of Health guidelines and in the Policy and Procedures Manual of the Johns 

Hopkins University Animal Care and Use Committee. 

 

3.4.2. STABLE ISOTOPE-RESOLVED METABOLOMICS (SIRM) MATERIAL AND 

METHODS 

 

3.4.2.1. U-13C6-Glucose tracer infusion 

 

The day after the final exposure, both mice exposed to air and CS were injected with 

uniformly labeled glucose tracer (U-13C6-Glucose, Cambridge Isotope, Tewksbury, MA, 

USA). A 20% solution of U-13C6-Glucose in PBS (Stock: 200mg/mL in PBS) was sterile-

filtered and 100 µL of this solution (i.e. 20 mg of U-13C6-Glucose) were injected via 

intraperitoneal (IP) injection without anesthesia, 3 times at 15 minutes interval.  

 

3.4.2.2. Blood and tissues harvest 
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Two aliquots of blood sample, approximately 50 µL each one, were taken by retroorbital 

puncture at timed intervals from each mouse: one aliquot was collected immediately 

before the glucose tracer injection (time=0h), the other one 1 hour after the first glucose 

tracer injection (time=1h). The blood was separated into plasma and blood cells by 

centrifugation at 4°C, 3,500xg for 15 minutes. Plasma was immediately flash-frozen in 

liquid nitrogen for storage prior to metabolites extraction.  

One hour after the first glucose tracer injection the mice were sacrificed via CO2 

euthanasia chamber, then liver and lungs were dissected sequentially and flash-frozen in 

liquid nitrogen within 2-6 minutes of euthanasia. 

 

3.4.2.3. Sample preparation 

 

The frozen tissue samples were pulverized to less than 10 μm particle size in liquid 

nitrogen using a Spex Freezer Mill (SPEX SamplePrep™, Metuchen, NJ, USA). 

Metabolites were extracted from the ground powder with a 2:1.5:1 ratio of 

acetonitrile:H2O:chloroform followed by centrifugation for 20 minutes at 4,000 g and 4°C. 

This afforded a two-phase partition (top polar, bottom lipidic), separated by insoluble 

protein residue (tissue debris layer). The polar and lipidic layers were recovered 

sequentially and the remaining tissue debris (mainly denatured proteins) was extracted 

again with 0.5 mL chloroform:methanol:butylated hydroxytoluene (BHT) (2:1:1 mM) and 

centrifuged at 4°C, 22,000xg (or 14,000 rpm) for 20 minutes to separate the three phases 

again. The dry weight of tissue debris was obtained for normalization of metabolite 

content. The residual polar and lipid fractions were pooled with respective main fractions, 

then the polar fractions were aliquoted and lyophilized for NMR and GCMS analysis.  

The NMR fractions underwent to an additional “clean up” step in order to precipitate 

proteins and enhance NMR analysis. The NMR aliquots were dissolved in 80% acetone 

solution (100 µL ice-cold nanopure water and 400 µL ice-cold 100% pure acetone), which 

is critical for efficient protein precipitation. The samples were stored into -80°C freezer for 

30 minutes to facilitate the precipitation. After centrifugation at 4°C, 14,000 rpm for 20 

minutes, the supernatant was transfered to another tube and the protein pellet was 

extracted again with 60% acetonitrile solution. The samples were freezed in liquid nitrogen 

and lyophylized using liquid nitrogen trap. 

For NMR measurement, each dried polar extract was reconstituted in 50% D2O:H2O 

(deuterated water) solution, that contains d6-DSS (deuterated 2-2’-dimethyl-2-silapentane-
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5-sulfonate) (Cambridge Isotope Laboratories, Andover, MA, USA), as internal calibration 

standard (final concentration 50 nmoles/100 µL), and d12-EDTA (deuterated 

Ethylenediaminetetraacetic acid) (Cambridge Isotope Laboratories, Andover, MA, USA) to 

remove the influence of paramagnetic ions (final concentration 1 mM). Each polar extract 

was reconstituted in 55 µL of aforementioned solution, to get 27.5 nmoles of d6-DSS each 

sample. After vortexing and centrifugation at 4°C, 14,000 rpm for 20 minutes, samples 

were loaded into 1.7 mm NMR glass tubes ready for NMR analysis. 

The dried GC-MS aliquots were acidified with 5 nmoles of internal standard Norleucine 

(1mM) in 10% trichloroacetic acid (TCA) and were immediately frozen in liquid nitrogen to 

minimize acid hydrolysis. The samples were re-lyophilized, then brought up in 50 μL of 1:1 

(v/v) acetonitrile:N-(t-butyldimethylsilyl)-N methyltrifluoroacetamide (MTBSTFA, Regis 

Chemical, Morton Grove, IL, USA) for derivatization and sonicated for 3h, followed by 

overnight incubation at room temperature. 

 The protein residues were extracted by homogenization in a 2% sodium dodecyl sulfate 

(SDS), 62.5 mM Tris, and 1 mM DTT, pH 6.8 buffer for protein determination using the 

Pierce BCA method (Thermo Fisher Scientific, Rockford, IL). The kit enables to measure 

protein concentration in samples that contain thiol-reductants dithiothreitol (DTT). 

Bicinchoninic acid (BCA) is used for the colorimetric detection and measurement of 

protein, using a standard spectrophotometer or plate reader (wavelenght 562 nm). 

 

3.4.2.4. NMR AND GC-MS ANALYSIS 

 

 NMR analysis 

 

NMR spectra were acquired at 20°C on a Varian Inova 14.1 T system (Varian, Inc., Palo 

Alto, CA) equipped with a 5 mm HCN cold probe. One-dimensional (1D) proton spectra 

were recorded with presaturation of the solvent resonance, an acquisition time of 2 sec, 

and a recycle time of 5 sec. 1D 1H-13C HSQC spectra were recorded with acquisition times 

of 0.15 s in t2. Spectral analysis was performed with MestReNova software (Mestrelab 

Research, Santiago de Compostela, Spain). Spectra were zero filled to 128 K points and 

apodized with an unshifted Gaussian function and 1 (1H NMR) or 6 Hz (1D 1H-13C HSQC) 

line broadening exponential. Chemical shifts were referenced to DSS at 0 ppm. After 

manual phase and baseline correction, peaks were integrated using the global 

deconvolution method of the software.  Metabolites were assigned based on their 1H 
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chemical shift, were identified using in-house databases and comparisons to standards 

[253], and quantified using the intensity of –Si-(CH3)3 DSS peak at 0 ppm (for 1H NMR), 

or the C-3 lactate peak at 1.32 ppm (for 1H-13C HSQC) as a reference. Results from NMR 

measurement were normalized to the total dry protein weight determined by the 

Bicinchoninic acid assay as previously described [251]. 

 

 GC-MS ANALYSIS  

 

Samples were analyzed on Thermo Scientific TRACE 1310 Gas chromatograph-Mass 

spectrometer (GC-MS) (ThermoFinnigan, Austin, TX, USA) [248]. 

One μL of sample was directly injected and it was separated on a SGE Forte (Victoria, 

Australia) 5% phenyl capillary column (50m x 0.15mm, 0.25μm film thickness), which was 

directly inserted into the ion source. The injector and transfer line temperatures were 

280°C. The oven temperature was programmed to hold at 60°C for 2 min and increase to 

150°C at a 20°C/min ramp rate and from 150°C to 300°C at a 6°C/min ramp rate. The flow 

rate of helium carrier gas was set at 1.5 mL/min. The MS was operated in the segment 

scan mode. The scan ranges were 140-206, 209-280, and 283-650 m/z and scan-rate was 

one scan per 0.97 sec. [285] [251]. Metabolites were identified by matching their retention 

times and fragmentation patterns with commercially available standards. Metabolite peaks 

were integrated at each isotopologue m/z using Xcalibur software (ThermoScientific, 

Rockford, Il). Peak areas were quantified based on peak areas of known standards and 

using norleucine as an internal standard for normalization. Identities were extensively 

verified by manual inspection of analytes of interest, to ensure that the processing method 

is working properly. Results from GC-MS measurements were normalized to the total 

protein weight determined by the BCA assay previously described. 

 

3.4.2.5. Statistical Analysis 

 

Metabolite quantities were normalized to protein mass. Data from GC-MS analysis show 

the fractional enrichment (max of intensity) of isotopologues comparing cigarette smoke 

group and air group. Error bars represent standard error. P values were calculated by the 

two-tailed Student’s ttest using the Excel version of the t-test. P-value<0.05 was 

considered significant. The False Discovery Rate (FDR) approach was used to determine 

adjusted p-values (q-values) for each test.  
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3.5.  RESULTS and DISCUSSION  
 
 
3.5.1. LUNG and LIVER TISSUE NMR and GC-MS ANALYSIS 
 
Unlabeled metabolites were measured by 1H-NMR (Figures 14-16,18), while 13C-labeled 

metabolites were measured by 1H-13C HSQC NMR (Figure 17,19). Flux analysis was 

performed measuring the fractional enrichment of isotopologues (m+1, m+2, and m+3) of 

glycolytic intermediates using GC-MS (Charts 1-10).  

Regarding NMR analysis for both lung and liver tissue, here I will show the NMR spectra, 

providing only a qualitative and theoretical interpretation of results (not quantitative). Data 

are not complet 

 
 
 

3.5.1.1. LUNG TISSUE NMR ANALYSIS 
 
Considering data that show the biggest change among all replicates, comparison of 1H-

NMR spectra of CS group and air group (Figures 14-16) shows slight increased 

accumulation of unlabeled glucose and slight decreased accumulation of unlabeled lactate 

and unlabeled alanine in lung tissue of mice exposed to cigarette smoke. The levels of 

pyridine nucleotides (NAD+ and NADP+), adenosine-containing nucleotides pool (AXP) 

and glutathione (GSH+GSSG) were similar in both groups (Figures 14-16). 1H-13C HSQC 

NMR spectra (Figure 17) show increased accumulation of 13C-glucose, 13C-lactate and 

13C-glycine in lung tissue of mice exposed to cigarette smoke.  

Although variations between replicates generally both the lung tissue exposed to CS and 

lung tissue exposed to air show similar accumulation of main metabolites of glycolytic 

pathway, both labeled and unlabeled. 
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Figura 14. Lung tissue 1H NMR spectra; 

 

Ile=isoleucine; Val=valine; Glu=glutamate; Suc=succinate; Gln=glutamine; GSH= reduced glutathione; GSSG= oxidized 

glutathione. 

 

Figura 15. Lung tissue 1H NMR spectra 

 
UDPGlc=Uridine diphosphate glucose; NAD=Nicotinamide adenine dinucleotide; AXP= adenine-containing nucleotides; 
Fum=fumarate 

 

Figura 16. Lung tissue 1H NMR spectra 

 
Tyr=tyrosine; Phe=phenilalanine; UXP= uridine-containing nucleotides; AXP= adenine-containing nucleotides; NAD+= nicotinammide 
adenina dinucleotide; NADP+=nicotinammide adenina dinucleotide fosfato 
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Figura 17. Lung tissue 1H-13C HSQC NMR spectra 

 
Glu=glutamate; Suc=succinate; Gln=glutamine; GSH= reduced glutathione; GSSG= oxidized glutathione; Asp=aspartate 

 

 
3.5.1.2. LUNG TISSUE GC-MS ANALYSIS – GLYCOLYSIS FLUX ANALYSIS  
 
Fractional enrichment of isotopologues of glycolytic intermediates (Charts 1-5) show very 

slight increased incorporation of 13C in glycerol-3-phosphate (m+3), lactate (m+3), alanine 

(m+3), serine (m+3) and a decreased incorporation of 13C in glycine (m+2), in lung tissue 

of mice exposed to CS compare to lung tissue of mice exposed to air. The percentage 

enrichment is almost equal between two groups of mice and the flux analysis did not show 

any statistically significant result. 

 

 

 

Chart 1. Fractional enrichment glycerol-3-phosphate          Chart 2. Fractional enrichment lactate 

 

                                              

 

 



118 

 

Chart 3. Fractional enrichment alanine                                  Chart 4. Fractional enrichment serine 

 
 

                                                     Chart 5. Fractional enrichment glycine 
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3.5.1.3. LIVER TISSUE NMR ANALYSIS 

 

Considering data that show the biggest change among all replicates, comparison of 1H-

NMR spectra of CS group and air group (Figures 18) shows slight decreased 

accumulation of unlabeled lactate and unlabeled alanine and slight increased 

accumulation of glutamate-GSH+GSSG and cysteine-GSSG in liver tissue of mice 

exposed to CS. Interestingly, the 1H-13C HSQC NMR spectra (Figure 19) reveal increased 

accumulation of 13C-glucose, 13C-lactate, 13C-alanine and 13C-glycogen in liver tissue of 

mice exposed to CS. 

Increased level of labeled glucose in liver exposed to CS suggests an increased uptake of 

glucose, while increased levels of 13C-lactate and 13C-alanine in CS group, may suggest 

an increased flux through glycolysis. Anyway, it's not straightforward to interpret CS effect 

on glycolysis based on labeled lactate alone due to the fact that the majority of lactate is 

released into the plasma, and liver receives lactate, alanine and glycerol released by other 

tissues and organs, then used as precursors to synthesize glucose (gluconeogenesis). To 

better understand this data and to confirm CS effect on glycolysis based on lactate level it 

is necessary to analyze plasma data of mice exposed to CS. 

NMR data suggest glycogen is a possible source of glucose in liver tissue of mice expose 

to CS. Increased levels of labeled glycogen (Figure 19) suggest an increased glycogen 

synthesis (glycogenesis), and together with depletion of unlabeled glycogen level (from 1H 

NMR, data not shown), it suggests an increased glycogen turnover under CS effect. It is 

possible that CS induces synthesis of glycogen and glycogenolysis. Thus liver tissue in CS 

group may take up as much glucose as it has access and store it as glycogen or 

metabolize it via glycolysis. 

Increased levels of unlabeled Glu-GSH+GSSG and Cys-GSSG in liver exposed to CS 

(Figure 18), point out the CS-induced redox status imbalance. Glutamate and cysteine 

availability is needed for GSH (reduced glutathione) synthesis to counteract the oxidative 

stress induced by CS, with consequent increased levels of GSSG (oxidized glutathione). 

Once the cell takes up glucose it is converted to glucose-6-phosphate by hexokinase using 

ATP. In addition to entering glycolysis and glycogen synthesis pathways glucose 

converted to glucose-6-phosphate can also enter the pentose phosphate pathway (PPP, 

Figure 20). The oxidative phase of the PPP supplies the cell with ribose, which is needed 

for nucleotide synthesis, and two molecules of NADPH per glucose oxidized. Among 

several roles of NADPH, it is required for combating oxidative stress as the ultimate source 
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of electrons for reducing ROS. Thus, it is possible that, in liver of mice exposed to CS, 

glucose-6-phosphate is rerouted from glycolysis to PPP, in order to increase NADPH 

synthesis necessary to counteract oxidants, through GSSG reduction and consequent 

GSH regeneration. The increase in 13C-ribose-ATP (data not shown) points towards effect 

on PPP. 

 

Figure 18. Liver tissue 1H NMR spectrum 

 
 
 
Figure 19. Liver tissue 1H-13C HSQC NMR spectrum 
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Figure 20. Atom-resolved map of glucose metabolism - Once glucose is taken up by a cell, it is 

phosphorylated by hexokinase. The resulting glucose 6-phosphate can be used to synthesize glycogen (red 

arrow), enter glycolysis (purple arrow), or go through the pentose phosphate pathway (PPP, green arrow). In 

addition, glucose could be produced by the breakdown of glycogen by glycogen phosphorylase or via 

gluconeogenesis. Purple circles, red, and green circles represent atoms derived from 13C glucose entering 

glycolysis, glycogenesis, and PPP, respectively and black circles represent unlabeled carbon. The white 

circles outlined in green originating from xylulose 5-phosphate are meant to differentiate carbons from 

xylulose 5-phoshpate versus ribose 5-phosphate, as both can be labeled via the oxidative PPP. 

Abbreviations: TIM: triose phosphate isomerase, G3PDH: glycerol 3-phosphate dehydrogenase, GAP: 

glyceraldehyde 3-phosphate, DHAP: dihydroxyacetone phosphate, PEP: phosphoenolpyruvate, OAA: 

oxaloacetate, PEPCK: phosphoenolpyruvate carboxykinase, PC: pyruvate carboxylase, LDH: lactate 

dehydrogenase, ALT: alanine transaminase. 
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3.5.1.4. LIVER TISSUE GC-MS ANALYSIS – GLYCOLYSIS FLUX ANALYSIS  
 

Fractional enrichment of isotopologues of glycolytic intermediates (Charts 6-10) shows a 

statistically significant increased incorporation of 13C in glycerol-3-P (m+2, m+3), lactate 

(m+2, m+3) and alanine (m+2, m+3) in liver tissue of mice exposed to CS compare to that 

of mice exposed to air. This points towards increased glycolytic flux in consequence of CS 

exposure.  

Fractional enrichment of serine and glycine isotopologues is similar among the two group 

of mice and any statistically significant result was observed. 

 
   Chart 6. Fractional enrichment glycerol-3-phosphate          Chart 7. Fractional enrichment lactate 

     
                                        
                                                  Chart 8. Fractional enrichment alanine 

                                                
 
Chart 9. Fractional enrichment serine                      Chart 10. Fractional enrichment glycine                              
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3.6.  CONCLUSION 
 

The respiratory tract is the first target of cigarette smoke (CS) inhalation and cigarette 

smoking is a major risk factor for diseases of the airways such as COPD and head, neck, 

and lung cancers. It is well established that cigarette smoking is also a risk factor for many 

systemic diseases, including cardiovascular disease and numerous cancers (e.g. bladder 

or pancreas), suggesting significant pathogenicity of circulating toxic components or 

metabolites of absorbed CS. However, not all smokers develop disease and progression 

of diseases such as COPD may persist despite smoking cessation. These observations 

suggest a critical need for determining pathways through which smoking can lead to 

disease and for the discovery of useful biomarkers of disease phenotype, severity, and 

progression. 

CS is a miscellaneous of more than 4,000 chemicals and it is a rich source of oxidants and 

electrophiles. Exposure to CS (and other environmental pollutants) leads to an 

oxidant/antioxidant imbalance and inflammatory processes that potentiate proteolytic 

damage, induce cell death, and inhibit cell repair, in the lung and other organs.  

CS-induced lung inflammatory processes are likely to be preceded by changes in energy 

metabolism and in the redox status of the cell. After CS exposure, oxidative stress leads to 

redox changes in cytosolic and mitochondrial metabolic events. A number of glycolytic 

enzymes are sensitive to CS-induced oxidative stress along with inhibition of the 

mitochondrial respiratory chain complexes and consequent impairment of energy 

homeostasis and cell death. It has been observed that short-term CS exposure led to 

metabolic alterations in glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent 

glycolysis and glucose-6-phosphate dehydrogenase (G6PDH)-dependent pentose 

phosphate pathway [269]. Moreover, alveolar type II cells increase the utilization of fatty 

acids after the inhibition of glycolysis in response to acrolein exposure [277].  

Metabolic (energy) and redox (oxidative stress) components are interdependent pathways 

that control cell function. Thus, impairment of intermediary metabolism is expected to play 

a decisive role in the development of COPD.  

Glucose is the principal substrate utilized by the lung and other organs for the generation 

of energy. Disturbances in glucose metabolism are more common in COPD patients than 

in COPD free individuals. However, the pathogenesis of glucose metabolism dysregulation 

is likely to be much more complex, whereby myriads of pathways are likely to be 

implicated, and much is still to be discovered and clarified. 
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Patients with COPD experience increasing muscle weakness, reduction in lean body mass 

and low energy metabolism associated with decline in lung function [282], however, the 

cellular mechanisms underlying these processes, especially low energy metabolism in 

response to CS are not known. 

There are currently few published studies exploring tissue metabolome changes due to 

smoking. Using state-of-the art instrumentation for stable isotope-resolved metabolomics 

applied to a cigarette smoking model in mice, this study sought to examine changes that 

are induced by chronic CS exposure in lung and liver tissue glycolysis. 

This work demonstrates the value of using 13C6-glucose as a tracer to better understand 

how the metabolism change in tissues after exposure to environmental factor such as CS.  

Although lung tissue NMR and GC-MS analyses did not reveal any significant difference in 

lung tissue glycolysis of mice exposed to CS compared with mice exposed to air, on the 

other hand, liver tissue analyses suggest that CS induces alterations in liver tissue 

glycolysis. Concentration and labeling patterns of metabolites involved in glycolytic 

pathway demonstrate increased flux through glycolysis and glycogen metabolism, in mice 

exposed to CS compare to those expose to air.  

Labeling patterns of glycerol-3-phosphate, alanine and lactate suggest enhanced glycolytic 

flux in liver tissue, even though to interpret CS effect on glycolysis based on labeled 

lactate alone it is necessary to analyze plasma data of mice exposed to CS, because the 

majority of lactate is released into the plasma and liver receives lactate released by other 

tissues and organs to synthesize glucose. The increase in 13C-ribose-ATP (data not 

shown) points towards effect on PPP. In addition to glycolysis and PPP, increased 13C 

incorporation into glycogen and dicreased unlabeled glycogen (data not shown) in liver 

tissue point towards an increased glycogen turnover under CS effect. The polysaccharide 

glycogen serves as one of the primary energy storage molecules in animals, and the bulk 

of glycogen is primarily stored in liver and muscle tissue. In the current study, liver tissue 

of mice exposed to CS seems to contain and synthesize more glycogen than the paired 

liver tissue of mice exposed to air. 

In conclusion, this study shows that CS may contribute to dysregulated glycolysis, PPP, 

glycogen synthesis and utilization in liver tissue in emphysema mouse model. These 

pathways can provide cells with the energy, biosynthetic precursors, and reducing 

equivalents needed to proliferate and survive, if disregulated they can contribute to 

development of pathological conditions. More accurate and specific studies on CS-induced 

intermediary metabolism alterations are necessary to elucidate new pathways through 
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which smoking can lead to disease, in order to discover useful biomarkers of disease 

phenotype, severity, and progression.  

Metabolomics and Stable Isotope-Resolved Metabolomic approach can provide good 

instruments to reach that goal and contemporary contributing to increase and to develop 

our knowledge about metabolism in health and disease state. 
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4. GENERAL CONCLUSION 
 
The main respiratory diseases among the ten leading causes of death worldwide are: 

pneumonia, Chronic Obstructive Pulmonary Disease (COPD), lung cancer and 

tuberculosis. Lung cancer is the leading cause of respiratory death, followed by COPD, 

lower respiratory infections and tuberculosis.  

In Italy respiratory diseases represent the third leading cause of death (after cancer and 

diseases of the circulatory system), and they account for 12% of all deaths (~70.000). 

Asthma and COPD account for 55% of all death caused by respiratory diseases. 

More than half of all the deaths from respiratory disease are due to diseases caused by 

smoking. Based on WHO data tobacco smoke represents the single greatest preventable 

cause of death in the world today. It kills 6 milion people every year, among them 600.000 

are non-smokers exposed to second-hand smoke (SHS or environmental tobacco smoke, 

ETS). In Italy 18% of total population smokes tobacco, that every year kills 70.000-80.000 

people.  

Among respiratory diseases, COPD represents a global health problem. It ranks as the 

fourth leading cause of death in the world with a prevalence of 5% in the general 

population. In coming decades COPD is projected to increase, and it is estimated that will 

be the third leading cause of death worldwide in 2030. In Italy, COPD affects about 14% of 

the older population (65 years or more), and it is the fifth cause of hospital admission in 

this age group. The prevalence of COPD shows a growing trend that varies from 2.5% in 

2005 to 3% in 2013 and rising values as age increases, with a significant increase in male 

reaches the peak in the over 85 (18%). 

COPD is a multifactorial, heterogeneous disease characterized by airflow obstruction that 

is usually progressive and associated with an abnormal inflammatory responses of the 

lungs to noxious particles and gases. COPD is a life-threatening lung disease that 

interferes with normal breathing. Many people suffer from this disease for years, and die 

prematurely from it or its complications. 

The identification of risk factors is an important stage in the development of strategies for 

prevention and treatment of any disease. Identification of cigarette smoking as the most 

common environmental risk factor for COPD has led to the incorporation of smoking 

cessation programs, a key element, essential in the prevention of COPD, as well as an 

important intervention for patients that have already developed the disease.  
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Cigarette smoke (CS) through xenobiotics and oxidants activity can lead to changes in 

redox status and intermediary metabolism of the cell, and oxidative stress and 

inflammatory processes that potentiate proteolytic damage, induce cell death and inhibit 

cell repair, inducing severe cellular and tissue damage. Inflammation and oxidative stress, 

play a critical role in pathogenesis of chronic respiratory diseases as COPD.  

However, although cigarette smoking is the most studied risk factor for COPD, it is 

certainly not the only one factor involved. There are epidemiological evidence that only a 

small proportion of smokers (15-20%) develop symptomatic COPD and non-smokers may 

develop chronic airflow obstruction, which suggests that there are individual susceptibility 

factors involved in disease onset and progression. In other words, two individuals 

characterized by the same history of smoking, only one may develop COPD due to 

differences in genetic predisposition.  

COPD is a polygenic disease and a classic example of gene-environment interaction. The 

best documented genetic risk factor is hereditary severe deficiency of alpha-1-antitrypsin, 

an important inhibitor of serine proteases. Although this rare recessive trait is relevant only 

for a small part of the world population (more common in individuals of Northern European 

origin), it illustrates the interaction between genes and environmental exposures leading to 

COPD. Through genetic linkage analysis, several regions of the genome that likely contain 

COPD susceptibility genes have been identified, including the chromosome 2. Genetic 

association studies have implicated a variety of genes in COPD pathogenesis, including 

antioxidants genes (e.g. SOD), microsomal epoxide hydrolase (EPHX1), transforming 

growth factor beta (TGF-β1), and tumor necrosis factor alpha (TNF-α). So there may be 

other factors of susceptibility to the disease. 

Considering the impact of environmental and genetic risk factors in COPD onset, 

development and severity, this dissertation sought to uncover new genetic susceptibility 

biomarkers in a population affected by COPD, with focused attention on microsomal 

epoxide hydrolase (EPHX1) genotype and related phenotype, and, using state-of-the art 

instrumentation for stable isotope-resolved metabolomics applied to a cigarette smoking 

model in mice, this study sought to examine and explore tissue metabolic alterations 

underlying oxidative stress and inflammatory processes induced by chronic CS exposure, 

in order to uncover metabolic biomarkers of exposure.  

None of the EPHX1 SNPs and related phenotypes analyzed in the study were associated 

to the disease onset and severity, probably due to small sample size of the study 

population and the huge age difference between cases and controls, but some interesting 
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data came out from metabolomic study on tissues of mice chronically exposed to CS, 

suggesting that metabolomics could give an important contribution to elucidate the 

complexity of COPD.  

While many questions remain unanswered, recent years have witnessed an explosion in 

our knowledge of how to characterize and treat patients with COPD. The main goal of this 

study is to further our understanding of the molecular basis of COPD, and to determine 

how this relates to the gross pathophysiological defects seen in COPD patients, thus 

leading to new targeted therapeutic strategies in COPD. 

Long is the way to understand clinical and pathological complexity of COPD, but 

integration of genomic, transcriptomic, proteomic and metabolomic informations is 

necessary to provide a better understanding of cellular biology, and thus of pathological 

alterations involved in disease state.  
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