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1. LIST OF ABBREVIATIONS 

Abbreviation Name Abbreviation Name 

Ahr Aryl-hydrocarbon receptor Cyr61 Axin2, cysteine rich protein 61 

Ao Aortic DAO D-aminoacid oxidase 

AL Alendronate DADS Diallyl disulfide 

ALP Alkaline phosphatase DATS Diallyl trisulfide 

AR-S Alizarin red staining DCF Dichlorofluorescein 

Axin2  Axin-related protein DM-22 H2S-releasing AL 

Bax BCL2-associated X protein DMSO Dimethyl sulfoxide  

Bcl2 B-cell CLL/lymphoma 2 EDHF Endothelium-derived 

hyperpolarizing factor 

BFR/BS Bone formation rate per bone surfaces EDRF Endothelium-derived relaxing 

factor 

BM Bone marrow FACS Flow cytometry 

BMD Bone mineral density FBS Fetal bovine serum 

BMMSCs m-MSCs GABABR Gamma-aminobutyric acidB 

receptor 

BV/TV Trabecular bone volume over total 

volume 

GAPDH Glyceraldehydes-3-phosphate 

dehydrogenase 

CAT Cysteine aminotransferase  GSH Glutathione 

CBS Cystathionine-β-synthase GYY GYY4137 

CFU-ALP Alkaline phosphatase positive colony 

forming unit-fibroblast 

h- Human 

CO Carbon monoxide HA Hydroxylamine hydroxychloride 

Col-1 Collagen type-1 H/A Haematoxylin-Eosin 

CSE (protein) 

CTH (gene) 

Cystathionine-γ-lyase HBF High bone formation 

μCT Micro-computed tomography H-CD High calcium deposing 

phenotype 

CTRL Control cells Hcy Homocysteine 

CTRL+ Positive control cells H2DCFDA Dichlorodihydrofluorescein 

diacetate 

Ct.Th  Cortical thickness H2O2 Hydrogen peroxide 

Ct.V Cortical volume HOCl Hypochlorous acid  

CTX C-terminal telopeptide of type 1 

collagen 

H2S Hydrogen sulphide 
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Abbreviation Name Abbreviation Name 

IRI Ischemia reperfusion injury N.Oc/BS Number of OCs per millimeter of 

bone surface 

KATP 

channels 

ATP-sensitive potassium channel NQO1 NAD(P)H dehydrogenase, 

quinone 1 

KEAP-1 Kelch-like ECH-associated protein 1 NON MIN Non mineralizing h-MSCs 

LBF Low bone formation NRF2 Nuclear factor (erythroid-derived 

2)-like 2 

L-CD Low calcium deposing phenotype NSAID Nonsteroidal anti-inflammatory 

drugs 

LDH Lactate dehydrogenase NT Non targeting 

LDL Low density lipoprotein OBs 

 

Osteoblasts 

Lef-1 Lymphoid enhancer factor-1 Ob.S/BS Percentage of bone surfaces 

covered by OBs 

LPS Lipopolysaccharide Ocn Osteocalcin 

LTP Long terminal potentiation OCs Osteoclasts 

m- Murine Oc.S/BS Percentage of bone surfaces 

covered by OCs 

MAR Mineral apposition rate OPG Osteoprotegerin 

MBF Modeling-based bone formation Osx Osterix 

M-CSF Macrophage colony-stimulating factor Ovx Ovariectomy / Ovariectomized 

MIN Mineralizing h-MSCs Ovx Veh Vehicle treated ovx mice 

MS/BS Percentage of bone surfaces covered 

by mineralized surfaces 

Ovx GYY GYY treated ovx mice 

MSCs Mesenchymal stem cells PAG  DL-Propargyglycine 

3-MST 3-Mercapto-pyruvate sulphur 

transferase 

PBMC Peripheral blood mononuclear cell 

NAC N-Acetyl-cysteine PBS Phosphate buffered saline  

NaHS Sodium hydrosulfide PCR  Polimerase chain reaction 

N-CD Non calcium deposing phenotype PDLC Periodontal ligament cells 

Nkd2 Naked cuticle 2 homolog PFA Paraformaldehyde 

NMDA N-methyl-D-aspartate PI Propidium iodide 

NO Nitric oxide PLP Pyridoxal phosphate  

N.Ob/BS Number of OBs per millimeter of bone 

surface 

P1NP N-terminal propeptide of type 1 

procollagen 
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Abbreviation Name Abbreviation Name 

PRDX1 Peroxiredoxin-1 T-BHQ tert-Butylhydroquinone 

RANKL Receptor activator of nuclear factor 

kappa-B ligand 

Tb. N Trabecular number 

RBF Remodeling-based bone formation Tb.SP Trabecular space 

ROS Reactive oxygen species Tb.Th Trabecular thickness  

RT Room Temperature Tcf T cell factor 

RT-PCR Reverse transcription polymerase 

chain reaction 

Tgfβ3 Transforming growth factor β3 

Runx2 Runt related transcription factor-2 Thbs1 Thrombospondin 1 

SEM Standard Error of the Mean Twist1 Twist gene homolog 1 

SF Silk fibroin TRAP Tartrate acid phosphatase  

SFN Sulphoraphane Trx Thioredoxin 

Sham GYY GYY treated sham operated mice UN Unstimulated 

Sham Veh Vehicle treated sham operated mice VGCCs Voltage-gated Ca2+ channels 

SMCs Smooth muscle cells VK Von Kossa 

SSCs Skeletal stem cells WT mice Wild Type mice 

Tagln Transgelin Wisp 1 Wnt1 inducible signalling 

pathway protein 1 
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2. INTRODUCTION 

 

2.1. Hydrogen Sulphide (H2S): foe but friend 

All of us certainly have experienced or have been told about sulphurous thermal sites and 

sulphurous springs. Probably we have been advised for a visit for their healthy properties but we 

could have been downhearted for the unpleasant smell of rotten eggs. However, little of us probably 

know that what confer this particular smell is a small gaseous compound named Hydrogen Sulphide 

(H2S).  

Given its broad-spectrum toxicity which leads to death, H2S has been traditionally considered 

only as a toxic agent for living organisms (H. Kimura 2013). H2S poisonings are classically 

reported in occupational settings such as for sewer workers (Christia-Lotter et al. 2007) but also in 

domestic situations (Sastre et al. 2013) (Daldal et al. 2010). H2S intoxications are lethal because 

high concentrations are odourless and heavier than air, therefore poisoning occurs also in 

colleagues, first aid helpers and professional rescue teams (Kage et al. 2002) (Kage et al. 2004) 

(Barbera et al. 2016). Acute intoxication causes an almost instantaneous cardiovascular failure, 

coma, and a rapid death, like in stroke of lightening (Oesterhelweg and Püschel 2008). The most 

affected organs are heart, brain and lungs (Shivanthan et al. 2013). Depending on the concentration 

of exposure, acute H2S poisoning can cause: sore throat, dizziness, nausea, airway and eyes 

irritation, respiratory depression and paralysis, pulmonary edema, fatal central apnea,  chronic 

neurological sequelae like memory problems, neurasthenic symptoms, rhabdomyolysis (Haouzi 

2012). The molecular mechanisms underlying H2S toxicity are still not clear, however it is widely 

believed that H2S targets mitochondria via reversible inhibition of cytochrome c oxidase (Khan et 

al. 1990) (Reiffenstein, Hulbert, and Roth 1992), leading to inhibition of mitochondrial respiration, 

cell anoxia and cell damage. Recently, it has been emerged that H2S toxicity may be due to 

interactions with cysteine residues of various protein such as ion channels (Haouzi, Sonobe, and 

Judenherc-Haouzi 2016). 
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Nowadays, H2S is regarded as the third endogenous gasotransmitter, alongside nitric oxide 

(NO) and carbon monoxide (CO). These molecules are defined gasotransmitters as: 1) they are 

small lipophilic molecules of gas that can easily spread through the plasma membrane without 

requiring membrane receptors; 2) their endogenous synthesis is strictly regulated; 3) they play a 

relevant role in the physiology; 4) their function is mediated by many molecular targets (Kasparek 

et al. 2008). However, it must be underscored that the term gasotransmitter is not acknowledged by 

many Authors who consider more appropriate the terms messengers or signaling molecules as they 

1) could not be stored in vesicles and released on demand like classic neurotransmitters and 2)  act 

as paracrine and systemically active molecules (Boehning and Snyder 2003). The three 

gasotransmitters have been demonstrated to work together displaying an important role in different 

pathologic and physiologic states such as: inflammation (Lo Faro et al. 2014), myocardial 

ischemia/reperfusion injury (IRI) (Andreadou et al. 2015), haemostasis and thrombosis (Olas 2015), 

cardiovascular function (L. Li, Hsu, and Moore 2009), gastrointestinal regulation (Magierowski et 

al. 2015) (Farrugia and Szurszewski 2014), sexual function (Yetik-Anacak et al. 2015), 

hypothalamic-pituitary axis (Ruginsk et al. 2015) (Mancuso, Navarra, and Preziosi 2010).  

 

2.2. Sources and metabolism of H2S 

The diet is the major source of H2S. Drinking water provides inorganic sulphide while plants and 

animals provide the two sulphur-containing amino acids: methionine (an essential amino acid) and 

cysteine (a semi-essential amino acid) (Benjamin Lee Predmore, Lefer, and Gojon 2012). These 

amino acids are the substrates of enzymes which endogenously produce H2S in mammalian cells 

(Szabó 2007). Sulphate-reducing bacteria (SRBs), belonging to the microbiota residing in the 

gastrointestinal tract (Rey et al. 2013), are another form of endogenous H2S synthesis. Finally, H2S 

can be non-enzimatically released from inorganic polysulphides in a redox or pH sensitive manner 

(it is released in the presence of a reducing agent and alkaline conditions) (Ishigami et al. 2009) 

(Kolluru et al. 2013).  
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The endogenous generation of H2S is mainly mediated by the enzymes cystathionine-β-

synthase (CBS; EC 4.2.1.22) and cystathionine-γ-lyase (CSE/CTH; EC 4.4.1.1), which catalyze 

the “transsulfuration” step within methionine / homocysteine (Hcy) metabolic pathway (Szabó 

2007), shown in Figure 1. H2S is also produced by L-cysteine aminotransferase (CAT; EC 2.6.1.3) 

and 3-mercapto-pyruvate sulphurtransferase (3-MST; EC 2.8.1.2) during the cysteine catabolic 

pathway. However 3-MST is considered more a sulphur carrier rather than a proper H2S producer as 

it generates sulphate sulphur (Wallace and Wang 2015) which can release H2S only after a redox 

reaction between RSSH and a biological thiol such as Thioredoxin (Trx). Similarly, CAT does not 

produce directly H2S.  Recently, some Authors have found another H2S-producing enzyme: D-

amino acid oxidase (DAO) (Shibuya and Kimura 2013), which produces H2S from D-cysteine. 

CBS, CSE and CAT are pyridoxal phosphate (PLP)-dependent enzymes, contrary to 3-MST and 

DAO.   

 

Figure 1: Scheme showing the various H2S generating reactions catalyzed by enzymes in the 

transsulfuration pathway (CBS and CSE) and the cysteine catabolic pathway (CAT and 3-MST). (Singh 

and Banerjee 2011) 
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CBS has been thought to be the primary physiological source of H2S in the brain (Abe and Kimura 

1996). Conversely, CSE has been described to be predominantly expressed in peripheral tissues 

appearing to be the main H2S producing enzymes in cardiovascular and respiratory system as well 

as in liver and kidney (R. Wang 2012). However, recent evidences demonstrated that CSE is 

expressed and plays a physiological role in brain (Paul et al. 2014). Similarly, CBS has been found 

to be modulated in uterine vasculature (Lechuga et al. 2015). Moreover, many recent publications 

showed the expression of both enzymes in the same organ, such as in liver (Mani et al. 2014) and 

kidney  (Xia et al. 2009). Therefore, we are still far from a comprehensive understanding of the 

differential expression of CBS and CSE as well as their role in the physiology and pathology.  

H2S concentrations are tightly regulated by its metabolism through: 1) scavenging; 2) oxidation and 

3) Methylation processes. H2S in the circulation is actively scavenged by different proteins 

(methaemoglobin, neuroglobin, cytochrome c oxidase, metallo- or disulfide-containing proteins) 

and by erythrocytes and is converted to sulphane-sulfur, the bound-sulphate pools (R. Wang 2002). 

H2S is methylated by thiol-S-methyltransferase within the cells and then converted to methanethiol 

and dimethylsulphide (R. Wang 2002) or oxidated in mitochondria by sulphide quinone 

oxidoreductase (SQR) which products of oxidation are thiosulfate (S2O3
2-

); sulfite (SO3
2-

); sulfate 

(SO4
2-

) (Mishanina, Libiad, and Banerjee 2015). For many years these mechanisms have been 

thought to play only a role in disposing of excess sulphide; however, recently it has been postulated 

that the oxidation of H2S may play a role in cellular signaling (Mishanina, Libiad, and Banerjee 

2015).  

Up to now, in the field of H2S biochemistry and signaling there are more questions than answers. In 

particular, there is little understanding of 1) how the catalysts switch between the Hcy metabolism 

and H2S production and 2) if and how the mitochondrial enzymes are regulated to increase or 

decrease H2S or sulphane-sulfur pools (Kabil and Banerjee 2014).   

H2S concentration in blood and tissue still remains a highly debated topic. For many years it has 

been considered to be in the range of 20-100 μM, recently these measurements have been thought to 
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be overestimated as new measurements were in the order of nM (Furne, Saeed, and Levitt 2008). 

This observation raised two important questions: 1) Does H2S exist in the circulation?; 2) Are the 

micromolar concentrations of H2S employed in many studies physiologically relevant? (Olson 

2009). In the absence of such a strong knowledge, many scientist think of being careful to assay 

physiological role of H2S and of predicting in vivo potency of their in vitro findings obtained with 

administration of ‘high’ doses of H2S (Wallace and Wang 2015). Some authors advanced that it 

may be conceivable that contrary to whole tissue or circulation where H2S is rapidly metabolized 

and remains low (nM range), the intracellular microenvironment may increase H2S concentration 

sufficiently to activate cellular function (μM range) (Furne, Saeed, and Levitt 2008). This may be a 

possible explanation for the discrepancy between H2S levels measured in circulation and tissue and 

H2S concentration necessary for induce an effect in vitro. Moreover, some authors think H2S of 

being poisonous to cells and tissues even at low concentrations (Bouillaud and Blachier 2011). 

Therefore the demarcation between effects reflecting a putative physiological function and those 

related to H2S poisoning remains, yet, to be established (Haouzi 2012). Therefore among the 

challenges facing the field is the accurate measurement of biologically active H2S (P. Nagy et al. 

2014) (Shen et al. 2012). The two most employed techniques for H2S measurement are methylene 

blue assay (a colorimetric assay which hold many limitation such as low sensitivity and inability to 

distinguish between H2S, HS
-
, S

2-
 species) and gas chromatography (high specificity and sensitivity 

but inability to perform real-time measurements) (Shen et al. 2011) (Kashfi and Olson 2013) 

(Nicholson et al. 2013). Growing research is currently under way to discover a sensitive technique 

which can allow real-time measurements of H2S. Recently, new methodologies have been 

developed: amperometric analyses (L. Nagy et al. 2014) (Citi et al. 2014); fluorescent probes (Peng 

et al. 2014); zinc trap spectrophotometry (Matthew Whiteman et al. 2010); H2S selective electrode 

(Mustafa et al. 2009). 
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2.3. Physiologic role of H2S 

H2S has been described in mammalian tissues for many years, however only recently it has been 

appreciated as a critical molecule for the homeostasis of tissues and organs (Vandiver and 

Snyder 2012). Figure 2 shows a schematic representation of the wide range of tissue and organs in 

which H2S plays an active role. 

 

Figure 2: Schematic representation of the tissues and organs in which H2S plays an active role. 

In first instance, H2S was identified as a neuromodulator (Abe and Kimura 1996). Indeed, H2S is 

able to enhance N-methyl D-aspartate (NMDA) receptor-mediated excitatory post synaptic currents 

and stimulates hippocampal long-term potentiation (LTP) (Abe and Kimura 1996). Moreover, it 

stimulates calcium signaling in astrocytes (Nagai et al. 2004).  

In the cardiovascular system it was found to exert an anti-hypertensive function acting both on 

vasodilatation (G. Yang et al. 2008) as well as affecting sodium renal handling (Ahmad et al. 2014). 

It has been defined both an endothelium derived releasing factor (EDFR) (R. Wang 2009) as an 
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endothelium derived hyperpolarizing factor (EDHF) (G. Tang et al. 2013). Moreover, it acts as an 

anti-atherogenic agent reducing lipid hydroperoxides to the less reactive lipid hydroxides (Muellner 

et al. 2009); it counteracts oxidation of low density lipoprotein (LDL) via hypochlorous acid (HOCl) 

scavenging, hydrogen peroxide (H2O2) scavenging, myerloperoxidase inhibition, inhibition of foam 

cells formation (Laggner et al. 2007) (Z.-Z. Zhao et al. 2011). 

In liver, H2S affects glucose metabolism, insulin sensitivity, lipoprotein synthesis, mitochondrial 

biogenetics and biogenesis (Mani et al. 2014). In pancreas, H2S activates ATP-sensitive potassium 

channels (KATP channels) in β-cells, increasing hyperpolarisation and decreasing insulin release (G. 

Yang et al. 2007). In kidney, H2S prevents fibrosis (Song et al. 2014) and exerts diuretic, natriuretic, 

kaliuretic effects (Ge et al. 2014) (Xia et al. 2009) (Ahmad et al. 2014). H2S regulates reproductive 

organs: mediates penile erection (d’Emmanuele di Villa Bianca et al. 2011) and decreases uterine 

contractility (Sidhu et al. 2001). H2S has been found to modulate immune system through 

regulation of regulatory T cells differentiation and function (R. Yang et al. 2015). 

Among various functions, H2S has been reported to be an oxygen sensor: H2S acts as an electron 

donor in the mitochondrial respiratory chain; promotes vasorelaxation and angiogenesis in hypoxic 

tissues or mediates hypoxic pulmonary vasoconstriction (allowing the diffusion of the blood stream 

from oxygen deprived areas to oxygen-supplied areas); increased lung ventilation through 

vasodilatation of airway smooth muscle cells (SMCs); mediates the response of carotid body to 

hypoxia through voltage-gated Ca
2+

 channels (VGCCs) (Makarenko et al. 2015). Moreover, H2S 

has been investigated for its ability to induce a hibernation-like metabolic state called 'suspended 

animation' (Blackstone, Morrison, and Roth 2005). 

One of the most recognized roles of H2S is as antioxidant. Indeed,  H2S has been found to inhibit 

reactive oxygen species (ROS)-induced levels by different stimuli: glutamate/peroxynitrite/HOCl-

induced ROS production in neurons (Y. Kimura, Goto, and Kimura 2010) (Matthew Whiteman et 

al. 2004) (Matthew Whiteman et al. 2005); methylglyoxal-induced ROS production in vascular 

SMCs (T. Chang et al. 2010); cytokines or hydrogen peroxide-induced ROS production in 
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pancreatic β-cells (Taniguchi et al. 2011); rotenone-induced ROS production in microglia (Du et al. 

2014); 1-methyl-4-phenylpyridinium/β-amyloid-induced ROS production in PC12 cells (Yin et al. 

2009) (X.-Q. Tang et al. 2008). However, underlying mechanisms for the antioxidant effect of H2S 

are still poorly comprehended.  

A common identified mechanism is S-sulfhydration of key proteins. One example is H2S-mediated 

S-sulfhydration of Kelch-like ECH-associated protein 1 (KEAP-1) (G. Yang et al. 2013) (Nguyen et 

al. 2003). KEAP-1 is the ubiquitine ligase-adaptor which drives Nuclear factor (erythroid-derived 

2)-like 2 (NRF2) toward degradation (Itoh et al. 1999). NRF2 is the master regulator of the 

intracellular antioxidant response (Venugopal and Jaiswal 1996) (Calvert et al. 2009) and in normal 

conditions, its activity is primarily controlled at the level of protein stability through the interaction 

with KEAP-1. Indeed, in its KEAP-1-bound form, NRF2 has a short half-life thereby restraining the 

homeostatic activation of antioxidant genes such as NAD(P)H dehydrogenase, quinone 1 (NQO1) 

and peroxiredoxin-1 (PRDX1) (Kensler, Wakabayashi, and Biswal 2007). H2S-mediated S-

sulfhydration of KEAP-1 dislocates KEAP-1 driving NRF2 stabilization, its nuclear translocation 

and transcription of antioxidant genes. Another mechanism that has been identified is the 

intracellular restoration of glutathione (GSH) levels (Y. Kimura and Kimura 2004). 

H2S production in cells was recently proposed as the unifying mechanism by which different 

calories restriction regimens triggers increased lifespan in diverse organisms
 
(Hine et al. 2015).   

Furthermore, H2S mediates cytoprotection to different insults in many cellular types. It is 

cardioprotective, as it inhibits myocardial IRI (Johansen, Ytrehus, and Baxter 2006). Interestingly, 

H2S confers resistance to hypoxia in SMCs by increasing ATP synthesis: under hypoxic conditions, 

CSE may translocate to mitochondria,  metabolize cysteine, produce H2S, and increase ATP 

production (Fu et al. 2012). In brain, H2S sulfhydrates the ubiquitin-ligase, parkin enhancing its 

catalytic activity (Vandiver et al. 2013); impairment in parkin activity is present in Parkinson's 

disease as well as in glioblastoma and other human malignancies (K. Liu et al. 2016). H2S protects 

neurons against glutamate-induced toxicity through activation of KATP channels. H2S alleviates the 
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hippocampal damage increasing the expression of gamma-aminobutyric acid B receptor 

(GABABR) (Han et al. 2005). Moreover, recently H2S has been found to promote wound healing in 

diabetic rats (G. Wang et al. 2015).  

However, controversies continue to exist on what is the real nature of this gaseous transmitter: 

a friend or a foe? Indeed, high concentrations of H2S induce β-cell apoptosis (G. Yang et al. 2007). 

Moreover, H2S has provided evidence for both: 1)   pro- (Stuhlmeier, Bröll, and Iliev 2009) and 

anti-inflammatory (Hu et al. 2007) (C. Yang et al. 2011) (Zanardo et al. 2006) (Mirandola et al. 

2007) effects; 2) pro- (Matsunami et al. 2009) and anti-nociceptive (Distrutti et al. 2006) effects in 

particular in colonic mucosa; 3) pro-cancer (S. Zhang et al. 2016) and anti-cancer effects (Lu et al. 

2014). The dual face of this molecule would suggest the existence of a threshold level able to 

discriminate between a beneficial and a detrimental effect (Martelli et al. 2012). 

 

2.4.  Relevance of H2S in pathology 

H2S levels in humans declines with age (Benjamin L Predmore et al. 2010). Moreover, several 

correlations were established between low or high levels of plasmatic H2S or H2S-generating 

enzymes and diseases, as shown in Table 1.  

Pathology H2S levels / H2S generating 

enzymes 

Reference 

Diabetes type 1 ↓ CSE activity (Manna et al. 2014) 

Diabetes type 2 ↓ H2S levels   (Jain et al. 2013) 

 (M. Whiteman et al. 2010) 

Proliferative diabetic retinopathy 

 

↑ H2S levels (Ran et al. 2014) 

Chronic haemodialysis in diabetic 

nephropathy 

↓ H2S levels 

 

(H. Li et al. 2014)
 

Hypertension ↑ H2S levels (Zheng et al. 2011) 

Congenital heart disease with pulmonary 

hypertension 

↓ H2S levels 

 

(Ling Sun et al. 2014) 

Preeclampsia ↓ H2S levels 

↓ CSE in placenta 

(K. Wang et al. 2013) 

Alzheimer disease ↓ H2S levels in brain (Eto et al. 2002) 
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Down syndrome Over-expression of CBS (Kamoun et al. 2003) 

Chronic renal failure ↓ H2S plasma levels (Perna et al.) 

Chronic obstructive pulmonary disease ↑ H2S levels  

↓ H2S levels in stage III vs I 

(Chen et al. 2005) 

Urothelial cell carcinoma of bladder ↑ H2S levels 

↑ CBS, CSE 

(Gai et al. 2016) 

Table 1: H2S, CBS or CSE levels in blood or tissues derived from patients with different disease.  

Furthermore, H2S and H2S-generating enzymes were found to be modulated in different animal 

models mimicking human pathologies, as shown in Table 2.  

Animal model H2S levels / H2S generating enzymes Reference 

Spontaneously hypertensive rats ↓ H2S levels 

↓ CSE expression 

(Yan, Du, and Tang 

2004) 

Pre-eclampsia ↓ H2S levels 

↓ CSE expression 

(K. Wang et al. 2013) 

Mouse model of atherosclerosis  ↓ H2S levels (Yanfei Wang et al. 

2009) 

Mouse model of cirrhosis  ↓ H2S levels in liver 

↓ CSE expression 

(Fiorucci et al. 2005) 

 

Rat model of hepatotoxicity, 

cirrhosis and portal hypertension 

↓ H2S levels in serum and liver 

↓ CSE expression in liver 

(Tan et al. 2011) 

Genetic diabetes type 1 rat models  ↓ H2S levels in liver 

↓ CSE expression in liver 

(Manna et al. 2014) 

Streptozotocin-induced diabetes rat 

models 

↑ H2S levels in pancreas and liver 

↑CSE, CBS in pancreas and liver  

(Yusuf et al. 2005) 

Non-obese diabetic mice ↓ H2S plasma 

Progressively decline as the severity of diabetes 

increases over-time. 

(Brancaleone et al. 

2008) 

Rat model of ischemic vascular 

dementia  

↓ H2S levels (L.-M. Zhang, Jiang, 

and Liu 2009) 

Mouse model of Parkinson disease ↓ H2S levels in substantia nigra and striatum (Hu et al. 2010) 

 

Mouse model of Huntington disease ↓ H2S levels in cell lines of Huntington disease 

↓ CSE expression in different brain regions 

(progressing depletion with increases severity of the 

disease) 

(Paul and Snyder 

2014) 

Mouse model of colitis ↑ H2S levels at the site of ulceration 

 

(Flannigan et al. 2013) 

Animal model of chronic renal ↓ H2S plasma levels (Perna et al.) 
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failure 

Rat model of chronic kidney disease ↓ H2S levels kidney and liver 

↓ CBS, CSE expression and activity in kidney and 

liver 

(Aminzadeh and 

Vaziri 2012) 

Table 2: H2S, CBS or CSE levels in blood or tissue derived from animal models of human pathologies. 

These findings lead to the hypotheses that dysregulation of H2S levels may be critical in the 

onset of different diseases. Knock out animal models for H2S-generating enzymes have 

demonstrated worsening of various diseases, as shown in Table 3, with some exception.  

Animal model Enhanced/Decreased pathology Reference 

CSE-knockout mice Pronounced hypertension and diminished 

endothelium-dependent vasorelaxation 

(G. Yang et al. 2008) 

Accelerated atherosclerosis (Mani et al. 2013) 

Reduced rate of gluconeogenesis (Untereiner et al. 2016) 

Exacerbated myocardial and hepatic IRI (King et al. 2014) 

Increased glucotoxicity in β-cells (Okamoto et al. 2013) 

Increased damage and mortality after renal IRI (Holwerda et al. 2012) 

Greater cardiac dilatation and dysfunction after 

aortic constriction 

(Kondo et al. 2013) 

Protection on caerulein-induced pancreatitis  (Ang et al. 2013) 

CBS-knockout mice Vascular and neurological complications (Beard and Bearden 2011) 

Table 3: Enhanced or decreased pathology in CSE or CBS knockout mice.  

Moreover, it must be underscored that the findings of dysregulated H2S levels in many pathologies 

focused the attention on the need of obtaining accurate measurements of the absolute concentration 

of H2S in the circulation and in tissues with the future perspective of using these levels as possible 

biomarkers for diagnosis, prognosis or therapies monitoring. 

 

2.5. H2S-based novel therapeutic agents 

Given the emerging role of H2S in human physiology, a number of pharmacological approaches 

have been developed to exploit the therapeutic potential of this molecule, alone or in combination 

with existing drugs (Szabó 2007). Because of its cytoprotective, antifibrotic, anti-apoptotic, 
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angiogenic properties, H2S has been proposed as a therapeutic choice in age-associated diseases (Y. 

Zhang et al. 2013). Moreover, H2S is thought to be the next powerful therapeutic agent for 

preventing and ameliorating the symptoms of pathologies such as renal-associated diseases (Pan et 

al. 2015) and erectile dysfunction (d’Emmanuele di Villa Bianca et al. 2011).  

H2S replacement therapy may be based on different options: 1) hydroponic therapy with H2S rich 

water; 2) H2S donors; 3) H2S-releasing molecules; 4) H2S-releasing drugs (H2S releasing molecules 

combined with pharmacologically active compounds). According to the nature of acute or chronic 

pathologies, rapidly-acting compounds or slow-releasing compounds might be developed. To this 

end, it is important to point out that one of the major challenges for prolonged H2S treatments is its 

extremely short half-life. 

Hydroponic therapy with H2S-rich water (1) was found to improve the redox status in healthy 

subjects (Benedetti et al. 2009) and has been proposed as an innovative approach to slow down 

Alzheimer disease progression in humans (Giuliani et al. 2013).  

Many H2S donors (2), such as sodium hydrosulfide (NaHS) and GYY4137 (GYY), has been used 

in different animals models of human disease, as shown in Table 4. All these experiments 

highlighted the ability of H2S in preventing and counteracting the progress of various diseases. 

Furthermore approaches aiming to induce CSE expression revealed protective effects; it is the case 

of anti-atherogenic effect due to CSE overerexpression (Cheung et al. 2014).  

Animal model H2S treatments References 

CSE-knockout mice NaHS prevented the progress of hypertension and vascular 

remodeling; decreased vascular damage. 

(G. Yang et al. 2008) 

Spontaneously 

hypertensive rats 

 NaHS decreased blood pressure.  

 GYY improved myocardial fibrosis. 

 (W. Zhao et al. 2001)  

 (Meng et al. 2015) 

Rat model of 

renovascular 

hypertension 

NaHS prevented systemic hypertension and ameliorated 

endothelial dysfunction. 

(Xue et al. 2015) 

Preeclampsia mice and 

rat models 

GYY restored fetal growth. (X.-H. Wang et al. 2013) 

Mice model of  NaHS reduced thickening and stiffening of arteries.  (Yanfei Wang et al. 
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atherosclerosis   GYY reduced vascular inflammation and oxidative 

stress, improved endothelial function and reduced 

atherosclerotic plaque. 

2009) 

 (Z. Liu et al. 2013) 

Atherogenic diet fed 

CSE knock-out mice 

NaHS inhibited the accelerated atherosclerosis development (Mani et al. 2013) 

Mice model of cirrhosis   NaHS induced relaxation of hepatic microcirculation.  

 NaHS attenuates hepatotoxicity, liver cirrhosis and 

portal hypertension. 

 (Fiorucci et al. 2005)  

 (Tan et al. 2011) 

 

Genetic diabetes rat 

models 

NaHS prevented high glucose dependent endothelial 

dysfunction and relaxation. 

 

(Suzuki et al. 2011) 

Mice model of type 2 

diabetes 

NaHS accelerated would healing. (G. Wang et al. 2015) 

Rat model of ischemic 

vascular dementia  

NaHS prevented neuronal injury; improved learning and 

memory. 

(L.-M. Zhang, Jiang, and 

Liu 2009) 

Mouse model of 

Parkinson disease 

NaHS prevented neurodegeneration through inhibition of 

inflammation and apoptosis and activation of antioxidant 

defence mechanisms. Prevented the progression in 

movement dysfunction. 

(Hu et al. 2010) 

Rat model of colon-

rectal distension 

NaHS inhibited nociception. (Distrutti et al. 2006) 

Mice model of ethanol-

induced gastric damage. 

NaHS prevented gastric damage. (Medeiros et al. 2009) 

Mice model of 

oesophagitis 

NaHS reduced the severity of the injury and inflammation. (Zayachkivska et al. 2014) 

Mice model of 

myocardial infarction 

GYY preserves cardiac function, attenuates adverse 

remodeling and may exert post-ischemic cardioprotective 

(Lilyanna et al. 2015) 

Mice xenografts of 

tumor cells 

GYY exerts anti-cancer activity (Z. W. Lee et al. 2011) 

 

Table 4: H2S treatments mediate beneficial effect in many animal models of different human diseases. 

Among H2S-releasing molecules (3) there are DATS (diallyl trisulfide) and DADS (diallyl 

disulfide). Both DATS and DADS are components of natural compound such as garlic (Powolny 

and Singh 2008). They both were found to induce apoptosis in different cancers cells: 

neuroblastoma cells (Filomeni et al. 2003), prostate cancer cell lines (D. Y. Shin et al. 2012), human 

gastric cancer cell lines (H. Tang et al. 2013), lung adenocarcinoma cancer cell lines (Wu et al. 
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2009), glioblastoma cells (Das, Banik, and Ray 2007). Furthermore DATS was found to inhibit 

migration, invasion, angiogenesis of colon cancer cell lines (Lai et al. 2015).  

H2S-releasing drugs (4) have been originally generated to prevent the adverse reactions associated 

with the use of the original drugs; however, they later found application in other pathologies than 

the ones indicated for the original drug. One of the first applications was in combination with 

nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, naproxen and diclofenac, as their 

use is often associated with a number of side effects including gastrointestinal irritation and 

damage, development of cardio-, cerebrovascular- and renal- pathologies which are a significant 

clinical concern and a considerable economic burden (Wallace, de Nucci, and Sulaieva 2015). 

Therefore many hybrids have been developed to solve this clinical problem, as shown in Table 5, 

with the aim of deliver an endogenous, cytoprotective "rescue molecule" together with the original 

drug. More in general, the hybrids molecules demonstrated remarkable improvement in activity and 

tolerability as compared with the related parent compounds, suggesting an active pharmacological 

role for H2S (Sparatore et al. 2011). In particular, H2S-releasing-NSAIDs showed a greater anti-

inflammatory effect, lower gastrointestinal toxicity, marked reduction in pancreatitis-associated 

lung injury and cardioprotection over the parent NSAID (Sparatore et al. 2011) (Rossoni et al. 

2008). Moreover, H2S-releasing-NSAIDs found an application in inhibiting the growth of a variety 

of cancer cells.  

H2S-releasing 

drugs 

Application Effect compared to that of the parental 

drug 

Reference 

NBS-1120 (H2S- 

aspirin hybrid) 

Chemoprevention of 

cancer 

Similarly to aspirin: anti-inflammatory, 

analgesic, anti-pyretic, anti-platelet activities. 

Contrary to aspirin: did not cause stomach 

ulcers. Dose-dependently inhibited tumor 

growth and mass. 

(Kodela et al. 2015) 

ACS 14 (H2S- 

aspirin hybrid) 

Cardiovascular Much stronger antithrombotic effects than 

aspirin. 

(Pircher et al. 2012) 

ATB-346 (H2S-

naproxen hybrid) 

 

Gastric defence Similar to naproxen: anti-inflammatory 

properties. Contrary to naproxen: did not 

cause toxicity on gastrointestinal tract and 

(Wallace et al. 

2010) 
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accelerated the healing of pre-existing gastric 

ulcers. 

Spinal cord trauma Enhancement of the recovery of motor 

function and anti-inflammatory additional 

effects. 

(Campolo et al. 

2013) 

 

Arthritis 

 

Similar anti-inflammatory activity and 

reduction of edema and pain. Contrary to 

naproxen: no damage of gastrointestinal tract. 

(Ekundi-Valentim 

et al. 2013) 

ATB-337 or ACS 

15 (H2S- 

diclofenac hybrid) 

 

Osteolytic bone disease Inhibited OCs formation and activity; 

suppressed breast cancer cell support for 

osteoclastogenesis and prevented osteolysis. 

(Frantzias et al. 

2012) 

IRI Marked anti-ischemic activity. (Rossoni et al. 

2008) 

Acute pancreatitis and 

associated lung injury 

Marked reduction in severity of pancreatitis-

associated lung injury; greater anti-

inflammatory activity; much lower 

gastrointestinal toxicity than diclofenac. 

(Bhatia et al. 2008) 

GIC-1001 (H2S- 

trimebutine 

hybrid) 

 

Phase I clinical trial Safe, well tolerated. 

 

(Paquette et al. 

2014) 

 

Colonoscopy Significantly reduced nociceptive response 

compared to trimebutine. 

(Cenac et al. 2015) 

ACS83, ACS84, 

ACS85, ACS86 

(H2S - L-DOPA 

hybrid) 

Parkinson disease Superior to L-DOPA as neuroprotectants, anti-

inflammatory and antioxidant effects. 

(M. Lee et al. 2010) 

ACS67 (H2S- 

latanoprost acid 

hybrid) 

Retinal ischemia Attenuated ischemic damage in retina.  (Osborne et al. 

2010) 

AVT-18A (H2S- 

sulindac hybrid) 

Familial adenomatous 

polyposis 

Maintains the anti-inflammatory, analgesic, 

antipyretic, and antiplatelet properties. 

Inhibited the growth of cancer cells with 

higher potency. Contrary to sulindac: did not 

cause ulcers and bleeding.  

(Kashfi, 

Chattopadhyay, and 

Kodela 2015) 

ACS 6 (H2S –

sildenafril hybrid) 

 

Urology  Promoted erection and had an anti-oxidant 

effect. 

(Shukla et al. 2009) 

Table 5: H2S-releasing drugs demonstrated remarkable improvement in activity and tolerability as 

compared with the related parent compounds. 
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2.6. Bone homeostasis 

Bone is a dynamic tissue continuously remodelled throughout adult life. Indeed, bone remodeling 

exerts different functions such as: 1) regulation of calcium homeostasis (Felsenfeld, Rodriguez, and 

Levine 2013); 2) maintenance of mechanical strength (Iolascon, Resmini, and Tarantino 2013); 3) 

regulation of acid/base balance (Arnett 2003); 4) reservoir of labile mineral (Confavreux 2011); 5) 

acting as an endocrine organ (Gonciulea and de Beur 2015). During bone remodeling, a finely 

regulated process referred to as coupling  (Hattner, Epker, and Frost 1965) (Sims and Martin 2014) 

keeps in balance new bone formation by osteoblasts (OBs, the bone anabolic cells) and bone 

resorption by osteoclasts (OCs, the bone catabolic cells). This process occur within microscopic, 

basic multicellular units lying at the interface of bone and bone marrow (BM) (Hauge et al. 2001) 

(Parfitt 2001). Recently, has been formulated the concept of modeling-based bone formation (MBF) 

opposed to remodeling-based bone formation (RBF). During this process,  bone resorption and 

formation are thought to occur at different quiescent sites  in an independent way (Ominsky et al. 

2015). The biomolecular mechanism underlying MBF is still in its infancy, however, it has been 

proposed to occur primarily in response to changes in mechanical loading (Robling and Turner 

2009). Both osteoblastogenesis and osteoclastogenesis are essential for correct bone development, 

modeling/remodeling and function. An imbalance in any steps of bone formation or resorption 

leads to a net loss or gain of bone tissue (Feng and McDonald 2011). 

Excessive bone resorption by the OCs is the main cause of erosive diseases of bone, including 

osteoporosis, periodontal bone disease and inflammatory diseases of bone, thus making OCs the 

primary target of bone sparing therapies (Feng and McDonald 2011) (Haynes 2006) (Wiebe et al. 

1996).  OCs arise from circulating progenitor cells commonly known as osteoclasts precursors (pre-

OCs), bearing monocytic phenotype and expressing, among others, CD11b as a distinctive marker 

(Tanaka et al. 2014). The pool of circulating pre-OCs as well as their mobility towards the bone 

surface was proven to be critically linked to the onset and the development of erosive bone diseases 

(Ritchlin et al. 2003) (Ishii et al. 2009).  Genetically modified mouse models led to define receptor 
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activator of nuclear factor kappa-B ligand (RANKL) signaling as the crucial pathway in 

osteoclastogenesis (Edwards and Mundy 2011). The process, which results in MAPK, JNK, p38, 

ERK and NFκβ activation, is critically regulated by the redox balance (Wada et al. 2006). Indeed, 

RANKL induces a transient and rapid increase in ROS through activation of TRAF6, NOX1, RAC1 

(N. K. Lee et al. 2005). ROS are critically involved in the signaling leading to h-OCs 

production, as in vitro treatment with antioxidants such as N-Acetyl-cysteine (NAC) prevents the 

signaling cascade induced by RANKL (Ha et al. 2004) (N. K. Lee et al. 2005), and results in 

decreased OCs differentiation. Strategies aimed at reducing ROS-mediated signalling lead to an 

inhibition of OCs differentiation and were proven to successfully decrease bone erosion in bone 

wasting diseases such as osteoporosis (Grassi et al. 2007) (Lean et al. 2003) or disorders associated 

with elevated ROS levels (Tsay et al. 2010). Another important molecule for osteogenic 

differentiation is macrophage colony-stimulating factor (M-CSF) which increases the pool of 

osteoclast precursors (Trouvin and Goëb 2010). Conversely, osteoclastogenesis and bone resorption 

is inhibited by osteoprotegerin (OPG), a decoy receptor of RANKL, which is produced by OBs, 

endothelial cells, vascular SMCs, and lymphoid cells. The balance of RANKL/OPG is thus 

essential to modulate osteoclastogenesis and bone remodeling. 

In the last decade, increasing attention has been devoted also on the role of mesenchymal stromal 

cells (MSCs) due to their multipotent nature since they are able to differentiate toward 

osteogenic, adipogenic, chondrogenic lineages (Herzog, Chai, and Krause 2003) and due to their 

action as OCs supporting cells (D.-C. Yang et al. 2008) (Dalle Carbonare et al. 2009). Recently 

has been postulated the concept of skeletal stem cells (SSCs) which reside in the postnatal BM and 

have been proved to give rise to cartilage, bone, hematopoiesis-supportive stroma and marrow 

adipocytes in defined in vivo assays (Bianco and Robey 2015) (Bianco 2011). In healthy bone, 

osteogenic and adipogenic differentiation of MSCs is balanced in favour of osteogenic 

differentiation and bone formation. Aging and osteoporosis hamper this osteogenic potential in 
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favour of adipogenic differentiation (Rodríguez et al. 2008) and uncouple bone resorption and bone 

formation. Furthermore, aging decreased the BM-MSCs pool (H. Liu, Xia, and Li 2015).  

Like h-MSCs, OBs actively regulates OCs formation and function as well as hematopoietic stem 

cells homeostasis (Capulli, Paone, and Rucci 2014). Similarly, osteocytes are increasingly 

recognized as significant sources of RANKL (the OCs differentiation factor), of sclerostin 

(osteoblast differentiation inhibitory factor) (J.-H. Kim et al. 2014) and mineralization-related genes 

(Sapir-Koren and Livshits 2014). They are now known to integrate mechanical, local, and hormonal 

signals and orchestrate bone remodeling (Noble 2008).  

 

2.7. Postmenopausal osteoporosis 

Osteoporosis is defined as a quantitative and qualitative degeneration of bone tissue leading to 

increased risk of fracture (Italiana et al. 2009). It is classically divided into primary, secondary and 

idiopathic forms (Mirza and Canalis 2015). In the elderly there are mainly primary forms; 

conversely, in the juvenile osteoporosis the primitive forms are relatively rare, but the 

secondary forms are emerging given the much longer survival in chronic diseases. Indeed, different 

drug therapies have been found to play a role in inducing osteoporosis: examples are methotrexate 

therapy for rheumatic diseases (Westhovens and Dequeker 2000); immunosuppressive drugs for 

organ transplantation (Kulak et al. 2012) (Stein, Ebeling, and Shane 2007) and chemotherapies for 

cancer (Pfeilschifter and Diel 2000) (Vestergaard 2008). 

Postmenopausal osteoporosis is a common skeletal disease leading to fracture and disability that 

stems from the cessation of ovarian function at menopause and from genetic and non-genetic 

factors that heighten the impact of estrogen deficiency on the skeleton (Riggs and Melton 1983) 

(Riggs and Melton 1986). Etiopathogenetic mechanisms are estrogen depletion, aging of tissues, 

increased ROS levels and increased inflammatory factors (Sapir-Koren and Livshits 2013). 

Osteoporosis-related fractures are one of the major causes of morbidity and mortality in elderly 

people. Vertebral fractures are a source of significant pain and crippling, while hip fractures lead to 
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mortality rates of 24-30% in the first year alone. Furthermore, almost 50% of survivors suffer 

permanent disability (Johnell and Kanis 2006) (Burge et al. 2007) (Lewis et al. 2006) (Cummings 

and Melton 2002).  

Declining estrogen levels results in a potent stimulation of bone resorption and, to a lesser extent, 

bone formation leading to a period of rapid bone loss (Zaidi 2007). This initial phase is followed by 

a slower but more prolonged period of bone loss that affects mostly the cortical compartment of the 

skeleton.  The acute effects of menopause are modeled in animals by ovariectomy (ovx) that, like 

natural menopause, stimulates bone resorption by increasing OCs formation (Weitzmann and 

Pacifici 2006) (Li Sun et al. 2006) and lifespan (Nakamura et al. 2007) (Krum et al. 2008) (Martin-

Millan et al. 2010).  The net bone loss caused by ovx is limited by an increase in bone formation 

resulting from stimulated OBs formation (R L Jilka et al. 1998). This compensation is fueled by an 

expansion of the pool of MSCs, increased commitment of such pluripotent precursors toward the 

osteoblastic lineage (R L Jilka et al. 1998), and enhanced proliferation of early OBs precursors (Di 

Gregorio et al. 2001). Subsequent escalations in OBs apoptosis (Kousteni et al. 2001) (Almeida et 

al. 2007), extensions of OCs lifespan (Nakamura et al. 2007) (Krum et al. 2008), increased 

oxidative stress (Almeida et al. 2007) and increased secretion of inflammatory cytokines which 

suppress bone formation such as IL-7 and TNFα (Weitzmann and Pacifici 2006) contributes to 

explain why bone formation does not increase as much as resorption after ovx. However, the 

mechanism that prevents bone formation from increasing sufficiently to offset bone 

resorption is still largely unknown.  

  

2.8. Current therapies for osteoporosis 

OCs hold the unique property to resorb bone and strategies directed to specifically inhibit OCs 

function are the predominant approach to therapy for bone loss associated with high-bone 

turnover (Zaidi 2007). Today, the anti-resorptive therapy based on h-OCs inhibition is the first-line 

treatment of pathologies involving bone loss is. The gold standard treatment for post-menopausal 
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osteoporosis is bisphosphonates treatment. The mechanism that account for anti-resorptive action of 

bisphosphonates are: 1) suppressed OCs recruitment (Kimachi et al. 2011) (Hayami et al. 2004); 2) 

suppressed OCs survival (Cecchini et al. 1987) (Hughes et al. 1989); 3) direct suppressed OCs 

function (Neutzsky-Wulff et al. 2010); 4) indirect suppressed OCs function mediated by decrease of 

RANKL/OPG ratio in MSCs (Ohe et. Al. 2012). Among bisphosphonates, alendronate (AL) is 

one of the first-line treatment for primary and secondary osteoporosis (Drake, Clarke, and 

Khosla 2008). Due to its high trofism to bone and its potent anti-osteoclastic activity, AL increases 

bone mineral density (BMD) and bone quality and reduces the risk of bone fractures even if there 

are some contrasting evidences (Iwamoto et al. 2008). However, an important limitation of AL, as 

of other bisphosfonates, is that it do not restore the lost bone structure. Most importantly, AL has 

been reported to increase the risk for atypical bone fractures after long term administration probably 

due to severe suppression of bone turnover and inhibition of the coupling of bone formation and 

resorption (Odvina et al. 2005) (Armamento-Villareal et al. 2006). Another significant complication 

of AL and other bisphosphonates, is the osteonecrosis of the jaw (Paiva-Fonseca et al. 2014). This 

is a rare but painful complication of treatment characterized by infection, exposed bone, and poor 

wound healing (Faiman, Pillai, and Benghiac 2013). Another important clinical concenrn is the low 

adherence to therapy, resulting in a poor clinical outcome (Briesacher et al. 2007). Gastrointestinal 

adverse events, including severe events such as oesophageal ulcer, oesophagitis and erosive 

oesophagitis, are the primary reason for non-adherence (Segal, Tamir, and Ish-Shalom 2003) 

(Strampel, Emkey, and Civitelli 2007).  

In addition to the firmly established role of AL on OCs, it is emerging a growing role on 

MSCs and OBs, although it is still a high debated topic. Many experimental evidences suggest that 

AL induces osteogenic gene expression in MSCs of different species and sources (Soares et al. 

2016) (Duque and Rivas 2007) (H. K. Kim et al. 2009) (Yingjun Wang et al. 2010). Conversely, it 

was reported that high concentrations of AL alters cell viability and inhibits osteogenic 

differentiation of MSCs. The authors proposed that this disturbance of osteogenesis may lead to the 
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occurrence of atypical bone fractures and suggested both that anabolic bone-inducing agents may 

well be beneficial when prescrived with AL and that safer alternatives should be developed 

(Patntirapong, Singhatanadgit, and Arphavasin 2014). Currently, there is no explanation to account 

these opposing reports on AL function on MSCs; therefore it is mandatory to increase the 

shortcoming in such a knowledge for opening new therapeutic opportunities. Futhermore based on 

the important side effects of AL therapies, researchers are working to develop new formulations 

which could reduce adverse events and increase the adherence to therapy (Piscitelli et al. 2014) 

and increase the cost-effectiveness of drug therapy (Brandi and Black 2013). 

 

2.9. Development of scaffolds for bone regenerative medicine 

The field of regenerative medicine had steadily increased in the past few year as the need for 

replacing injured bone tissue has exponentially grown. Bone graft procedures are employed in a 

range of settings including dentistry, orthopaedics, and craniofacial medicine in order to regenerate 

large osseous defects caused by trauma, tumor resection, or congenital defects (Curry et al. 2016) 

(Larsson et al. 2016) (Gupta et al. 2015) (Baskin and Eppell 2013). Up to now there are only two 

alternatives to replace the damaged tissue: bone transplantation and prosthetic surgery. Bone 

transplantation include three procedures: autologous bone graft, which is the gold standard, and its 

alternatives, allogenic and xenogenic bone implants (Campana et al. 2014). Each of these 

approaches has its limits: 1) different surgeries and a lot of pain for patients for autologous bone 

graft; 2) high risk of pathologies transmission and the use of immunosuppressive agents for 

allogenic and xenogenic bone graft (Campana et al. 2014). Therefore bone substitutes are being 

increasingly used in surgery and the development of bone substitutes is become one of the major 

challenges in the field of bone tissue engineering. The development of a biomedical device has to 

fulfil specific requirements: (1) be biocompatible, (2) be biodegradable, (3) be osteoconductive, (4) 

be osteoinductive, (5) support angiogenesis and vasculogenesis and have (6) a shape that could fill 

relevant defects and (7) be resistant to mechanical load (Dumic-Cule et al. 2015) (Krishnan et al. 
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2011). In this context, silk fibroin (SF) has gained increased attention in the field. It holds unique 

mechanical properties, manageable biodegradation rate and the ability to support the differentiation 

of MSCs along the osteogenic lineage. Furthermore it can easily be processed into different scaffold 

forms, combined synergistically with other biomaterials to form composites and chemically 

modified, providing many potential areas for future research (Melke et al. 2016) (Riccio et al. 

2012). 

 

2.10. MSCs and bone regenerative medicine 

Many efforts have been attempted in the research for selecting MSCs population able to predict 

bone formation ability in vivo. Lineage specification has been defined as a highly complex 

hierarchical process (Phinney 2012). Different studies have evaluated the lineage differentiation 

potential and reported different percentage between the different progenitor frequencies (Phinney 

2012) (Russell et al. 2010). It has been postulated that difference in the function of MSCs accounts 

for distinct sub-populations and that selective pressure (imposed for example by long term and large 

scale expansion) has a great impact on the composition and function of MSCs population. Minimal 

expansion may fail to enrich the sub-population with the desired functional attribute; on the 

contrary large scale expansion may select a particular sub-population thereby enhancing or reducing 

potency (Phinney 2012). MSCs manufactured by different clinical trial protocols have been 

demonstrated to be different as for cell yield and colony forming capacity (Seeger et al. 2007). 

Knowledge of self-renewal and lineage specification could be exploited to produce more 

homogeneous and potent cellular products for cellular biology (Phinney 2012). Donor-to-donor and 

intra-population heterogeneity has been widely described and has been defined as a critically 

important aspect of MSCs biology (Patricia Janicki et al. 2011) (Pevsner-Fischer, Levin, and Zipori 

2011). Not all the cells maintained under standard culture conditions are capable of bone formation 

(Larsen et al. 2009). Moreover not all the clonally cells, obtained by clonally cultures of the same 
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MSCs population, are capable of bone formation. Larsen et. al. indentified, high-bone forming 

(HBF) and low-bone-forming (LBF) clones based on the amount of bone formed in vivo (Larsen et 

al. 2009). Moreover, they found a group of markers higher in HBF than in LBF which were able to 

prospectively identify different clones with different ability to form bone in vivo. Only few clones 

fulfilled the criteria of markers expression, evidence which limited the potential clinical application. 

Therefore a first step toward bridging the gap between basic research and clinical 

manufacturing is to understand heterogeneity of MSCs in order to find markers able to sort 

MSCs for their bone formation ability.  

 

2.11. H2S and bone tissue 

Up to now the role of H2S in the regulation of bone homeostasis has been scarcely investigated. 

Lessons from homocystinuria: May H2S be the link between CBS deficiency and bone loss? 

Homocystinuria or Hyperhomocysteinemia is a rare autosomal recessive disorder caused by CBS 

mutations (Mudd et al. 1985). This pathology is characterized by multisystem disorders including 

dislocated lenses, mental deficiency, premature atherosclerosis and thrombosis (Schedewie et al. 

1973) (Brenton 1977). While the most striking cause of morbidity and mortality is 

thromboembolism, patients develop a marked osteoporosis at early age along with many other 

skeletal abnormalities (including kyphoscoliosis, temporal shortening of long bones due to impaired 

cartilage differentiation, arachnodactyly).  

As CBS normally converts Hcy to cystathionine (Fig. 1), the result of CBS deficiency is an 

accumulation of Hcy. For many years Hcy accumulation, from which the pathology is named, has 

been proposed as the major determinant of the bone loss. Several lines of evidence indicated a role 

of Hcy on OCs compartment. In vitro treatments of Hcy on m-BM cells, m-BMMSCs and human 

peripheral blood mononuclear cells (h-PBMCs) increased OCs differentiation and function 
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(Herrmann et al. 2005) (Koh et al. 2006) (Y. Liu et al. 2014). Moreover experiments in the animal 

model of homocystinuria (CBS
-/-

 and CBS
+/- 

mice) further confirmed that Hcy levels may be 

associated with OCs activity (Y. Liu et al. 2014). Indeed, in both CBS
-/-

 and CBS
+/- 

mice, where 

Hcy levels were respectively 34 and 2 fold higher than in WT mice, the number of OCs were higher 

than WT mice and CBS
-/- 

exhibited a more significant increase in OCs than CBS
+/- 

mice (Y. Liu et 

al. 2014). Moreover Hcy has been proposed to cause defects in the collagen cross-linking (A. H. 

Kang and Trelstad 1973). However, the effect of high Hcy levels on OBs is still controversial. In 

vitro treatments of Hcy was shown to enhance apoptosis in h-MSCs and h-OBs cell line HS-5 (D. J. 

Kim et al. 2006) as in m-BMSCs (Cai et al. 2013). Conversely in vitro treatments of Hcy on h-

MSCs and h-Ao-SMCs (aortic SMCs) was found to enhance osteogenic differentiation (Van 

Campenhout et al. 2009) and OBs function (Herrmann et al. 2008). However, it seems to be 

conceivable that other mechanisms than high levels of Hcy cause the defect in bone 

homeostasis, as betaine, the gold standard therapy for thromboembolism, is unable to completely 

prevent osteoporosis (Gahl et al. 1988). Notably, betaine is used as a Hcy-lowering therapy as it is a 

methyl donor in Hcy remethylation (Olthof and Verhoef 2005). Recent studies on CBS
-/-

 and CBS
+/-

 

have demonstrated the relevance of H2S for skeletal development and bone homeostasis. These 

models displayed a delayed endochondral ossification and an osteopenic phenotype reminiscent of 

the human inherited genetic disorder homocystinuria. Robert et. al., first proposed the 

transsulfuration pathway as a candidate mechanisms that might account for the delay in the 

endochondral ossification not Hcy accumulation-dependent (Robert et al. 2005).  

 

H2S regulation of OBs differentiation 

The study of Liu et al. (Y. Liu et al. 2014), first indicated depleted of H2S levels as a molecular 

mechanism driving osteoporosis in homocystinuric patients. They first reported a link between 

the activities of CBS, CSE; H2S levels; the osteogenic differentiation of MSCs in vitro; and the 

stimulation of bone formation in vivo. Both CBS
-/-

 mice and CBS
+/-

 mice are characterized by 
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osteopenic phenotype. While CBS
-/-

 mice and CBS
+/-

 have respectively 34 and 2 fold higher Hyc 

levels, they both have 50 % reduction of serum H2S levels. Therefore,  Liu et al. hypothesized that 

H2S levels, but not Hcy, may account for the osteopenic phenotype and the aberrant differentiation 

of m-MSCs (BMMSCs) in CBS
-/-

 and CBS
+/-

 mice (Y. Liu et al. 2014). 

In particular, when BMMSCs isolated from CBS
-/-

 and CBS
+/-

 mice were characterized, they 

showed 1) increased proliferation rates and 2) reduced mineralization ability in vitro and in vivo. 

When BMMSCs isolated from WT mice were pharmacologically inhibited or silenced for CBS and 

CSE, aiming at reducing H2S levels, they displayed a similar phenotype to the one observed in 

CBS
+/-

. Coherently, the exogenous administration in CBS
-/-

 and CBS
+/-

 BMMSCs of an H2S donor 

(NaHS) rescued both the proliferation rates and mineralization ability in vitro and in vivo. Moreover 

m-MSCs isolated from H2S-treated CBS
-/-

 and CBS
+/-

 mice showed similar proliferation rates and 

mineralization ability in vitro and in vivo similar to the ones of WT mice. Those data suggested that 

H2S actively regulates proliferation and function of BMMSCs.  

Interestingly, beside the fact that patients affected by CSE deficiency seems not to have 

involvement on bone tissue, the pharmacological inhibition of CSE function, alongside the 

pharmacological inhibition of CBS, caused an osteopenic phenotype due to defective bone 

formation in mice, similar to that of CBS knockout mice (Y. Liu et al. 2014).  

Moreover, they found that the mechanism underlying the H2S-deficiency-induced reduction of 

osteogenic differentiation is based on Ca
2+

-associated regulation of osteogenic differentiation. H2S 

sulfhydrates Ca
2+ 

channels, inducing Ca
2+ 

levels elevation and activation of pPKC and β–actin while 

inhibition of pERK.   

Moreover, they demonstrated that H2S levels did not influence the BMMSCs adipogenic 

differentiation, as this capacity was shown to be similar between WT, CBS
-/-

 and CBS
+/-

 mice, WT 

mice-inhibited for CBS and CSE, WT mice-silenced for CBS and CSE, H2S treated CBS
-/-

 and 

CBS
+/- 

BMMSCs. 
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Currently, it is unknown whether pathologies with bone loss caused by mechanisms other 

than CBS deficiency display H2S, CBS or CSE impairments.  Further investigations will clarify 

whether H2S may ultimately be the link between CBS, CSE expression and the osteogenic 

differentiation of MSCs and the unifying mechanism in different pathologies with bone loss.  

                                                          

H2S regulation of OCs differentiation 

Loss of estrogens or androgens has been proposed to accelerate the effects of aging on bone by 

decreasing defence against oxidative stress (Almeida et al. 2007) (Manolagas 2010). Conversely, 

antioxidants such as NAC, ascorbate or catalase was shown to prevent ovx-induced bone loss in 

rodents (Grassi et al. 2007) (Lean et al. 2003). As H2S levels decrease with aging (Benjamin L 

Predmore et al. 2010) and H2S prevents oxidative stress (Y. Kimura, Goto, and Kimura 2010) it is 

conceivable that H2S decrease in both age and estrogen deficiency may intensify the effects of 

oxidative stress on bone tissues. However to our knowledge, this hypothesis has never been 

investigated. In this context, has been published that garlic oil can prevent the development of 

osteoporosis in mice (Mukherjee et al. 2004). However authors did not provided the mechanism of 

action of garlic oil on bone mass. Interestingly, recently garlic oil has been shown to be an H2S-

donor (Benjamin L Predmore et al. 2012).  

To date, the effect of H2S on OCs differentiation is still elusive and conflicting evidences have been 

reported. One day topical application of NaHS in a rat model of periodontal disease, was associated 

to higher number of OCs in the periodontal tissue (Irie et al. 2009). Additive effects were found 

with the concomitant treatment of lipopolysaccharide (LPS) (Irie et al. 2012). Analysis in the 

nearby gingival tissue, revealed higher expression of RANKL (Irie et al. 2009) (Irie et al. 2012). 

Conversely, 15 days of systemic administration of NaHS in a rat model of periodontitis (Toker et al. 

2014) was associated to a dose-dependently decrease of OCs in alveolar bone. Moreover down-

regulation of H2S levels in CBS
-/-

 and CBS
+/- 

mice, was associated to an higher number of OCs than 

WT mice (Y. Liu et al. 2014). Further in vitro experiments showed conflicting evidences on H2S 
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role in regulating OCs differentiation. NaHS was reported to stimulate OCs differentiation  in 

mouse macrophages (Ii et al. 2010). Conversely, several lines of evidence indicate that H2S can play 

a role in inhibiting OCs differentiation. NaHS inhibited (S. K. Lee et al. 2013) in vitro OCs 

differentiation in mouse macrophages; H2S inhibited nicotine- and LPS-induced mRNA expression 

of cytokines promoting osteoclastogenic differentiation (S. K. Lee et al. 2013); H2S increased the 

expression of OPG and the OPG/RANKL expression in  human periodontal ligament cells 

(hPDLCs) (Liao and Hua 2013). Furthermore, whether NaHS can affect the osteoclastogenic 

differentiation of h-pre-OCs as well as the mechanisms underlying the regulation is still 

unknown.  
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3. AIMS  

 

The main objective of this study was to increase the basic knowledge of the role of H2S in bone 

tissue through in vitro and in vivo studies and to propose novel therapeutic approaches for bone 

diseases. In order to reach these objectives, we followed three specific aims: 

1) Elucidating the role of exogenous administration of H2S in modulating bone remodelling. 

To this end, we aimed to investigate the in vitro effects of H2S on the two main pathways involved 

in bone remodelling: osteoclastogenesis and osteoblastogenesis. In a second phase we aimed to a) 

investigate whether H2S is able to modulate bone formation or resorption in vivo and to b) exploit 

the therapeutic potential of H2S in a murine model of post-menopausal osteoporosis. 

2) Gaining new insights on the role of endogenous H2S in bone tissues. 

In this section we aimed to investigate whether: a) CBS and/or CSE may be the major producers of 

H2S in bone tissues (ex vivo analysis); b) osteogenic and estrogenic stimulations modulate CBS and 

CTH/CSE expression (in vitro analysis); c) CBS and CSE activities may in turn modulate 

osteogenic differentiation (in vitro analysis). In a second phase we aimed to verify whether: i) H2S 

may be a molecule regulating bone homeostasis and ii) post-menopausal osteoporosis is associated 

to dysregulation of H2S and H2S generating enzymes.  

3) Translating in vitro and in vivo findings to possible applications of clinical interest.  

In this context, we considered two major clinical challenges: a) the development of improved drugs 

for post-menopausal osteoporosis and b) the development of more efficient bone substitutes. The 

study followed two lines of investigation: the development and analysis of the biological effects of 

a) DM-22, an H2S-releasing drug based on alendronate (AL) and b) SF_GYY, an H2S-releasing 

scaffolds based on silk fibroin (SF).  
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4. MATERIALS AND METHODS 

 

4.1. Methods for cellular biology 

 

h-monocytes (CD11b+ cells) isolation 

h-monocytes were isolated from peripheral blood of healthy donors,  by Ficoll gradient separation 

(Lympholite-H, Cederlane, Burlington, Ontario, Canada) followed by immunomagnetic positive 

selection of CD11b
+
 cells (MACS system, Miltenyi Biotech; Calderara di Reno, Italy), according to 

procedures well established in our laboratory (Grassi et al. 2011) and after having obtained 

informed consent by each donor. Contaminant, non-adherent, cells were washed off after the first 

medium change and the purity of the cell population was verified by Flow cytometry (FACS) 

analysis (please refer to ‘FACS analysis’ section). 

 

h-OCs differentiation 

For osteoclastogenesis assays, h-monocytes were seeded into 96 well-plates at a concentration of 

1x10
6
 cells/ml. For the functional assays, h-monocytes were seeded on synthetic hydroxyapatyte-

coated 16-well slides (Osteologic slides, BD Pharmingen, Franklin Lakes, NJ, USA), which mimics 

in vitro bone matrix, at the density of 5x10
5
/cm

2
.  

h-pre-OCs and h-OCs were obtained by culturing h-monocytes respectively for 3 and 6 days in 

osteoclastogenic medium: α–MEM medium supplemented with 10% FBS and 1% 

penicillin/streptomycin, in the presence of M-CSF (10 ng/ml) and RANKL (75 ng/ml). α–MEM 

medium was purchased from Euroclone (Milan, Italy); Fetal bovine serum (FBS) Australian was 

purchased from Lonza (Basel, Switzerland); RANKL and M-CSF were purchased from Miltenyi 

Biotech.  

Cells were cultured in osteoclastogenic medium in the presence or absence of different stimuli. 

NaHS working solution (500 mM stock solution) was prepared immediately before the use and 

added to cell cultures at concentrations ranging from 50 to 300 μM. NRF2 activators were added at 
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medium culture in concentrations as following: sulforaphane (SFN; 0,2-1-5 µM) and tert-

Butylhydroquinone (t-BHQ; 5-10-15 µM) (B. Y. Shin et al. 2012) (Vauzour et al. 2010). Both 

Alendronate (AL) and the H2S releasing AL (DM-22) were added at medium culture in 

concentrations 1-3,3-10-33 µM. In experiments of silencing during osteoclastogenic differentiation 

cells were treated with NT siRNA and NRF2 siRNA ± NaHS (please refer to the ‘RNA interference 

assay’ section). NaHS, t-BHQ, SFN, AL were purchased from Sigma Aldrich (St. Louis, MO, 

USA).  

Cells were cultured in 37°C, 5% CO2 and 95% O2 and medium and stimuli were replaced three 

times per week.  

 

Evaluation of h-OCs differentiation and function 

At the end of the osteoclastogenic differentiation (day 6), tartrate acid phosphatase (TRAP) assay 

(Acid Phosphatase, Leukocyte (TRAP) Kit, Sigma Aldrich) was performed to evaluate h-OCs 

differentiation. Mature h-OCs (TRAP positive cells containing at least three nuclei) were manually 

counted in duplicate using an inverted microscope; ten microscope fields at 20X magnification were 

considered for each well and the h-OCs count was expressed as average h-OCs number/fields.  

Pit assay was performed as functional assays for h-OCs function. Osteologic slides were washed 

with bleach to eliminate cells. Afterwards, pits formed on the Osteologic slides upon matrix 

breakdown by OCs, were acquired at microscope Eclipse 90i and NIS software (Nikon Instruments 

Europe BV, Amstelveen, the Netherlands).  

 

ROS quantification in h-pre-OCs 

Macrophagic h-pre-OCs were obtained in black 96-wells plates by stimulating with M-CSF (25 

ng/ml) alone for 3 days. Then, for evaluating ROS production during RANKL stimuli, cells were 

treated with RANKL (100 ng/ml) or H2O2 (100 M), the positive control, for 30 minutes. NaHS 

(100-200 M) was added 10 minutes before RANKL. Cells were then loaded with 5 M 2', 7’-
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dichlorodihydrofluorescein diacetate (H2DCFDA, Life Technologies, Carlsbad, CA, USA) and kept 

in the dark for 15 minutes for the formation of oxidized fluorescent 2′, 7′-dichlorofluorescein (DCF) 

molecule by ROS, according to manufacturer instructions. DCF fluorescence was measured with 

Spectramax Fluorimeter (Molecular Devices, Sunnyvale, CA, USA) at 520 nm and by FACS 

analysis.  

 

h-MSCs and h-OBs isolation and culture 

A total of 76 samples of h-MSCs and 28 samples of h-OBs were employed in this study. Surgical 

procedures were all performed at the Rizzoli Orthopedic Hospital (Bologna) after having obtained 

patients’ informed consent and approval form the Ethic Committee. Tybial plateau from patients 

undergoing surgical knee replacement was the source for both h-MSCs and h-OBs isolation 

(Manferdini et al. 2011). Briefly, bone fragments were mechanically removed from tybial plateau 

and fragmented into small pieces. The bone fragments were, subjected to enzymatic digestion in 

“Enzyme medium” (Roche, Basel, Switzerland) at 37°C in rotation. h-OBs were allowed to sprout 

from the small pieces of bone fragments and grow until confluence in “Medium complete”. h-MSCs 

were obtained throught a Ficoll-density (Lympholite-H, Cederlane) gradient isolation protocol as 

previously reported (Torreggiani et al. 2012) (Cristino et al. 2005) from two different sources: a) 

tybial plateau (we derived h-MSCs from the cell suspension produced during the mechanical 

isolation of h-OBs); b) iliac crest (we derived h-MSCs from bone marrow aspirated during ankle 

replacement surgery). After 1 week, non-adherent cells were removed and the adherent h-MSCs 

were expanded in vitro in α–MEM medium supplemented with 15% FBS and 1% 

penicillin/streptomycin. When stimulated with 17β-estradiol cells were cultured in α–MEM 

medium supplemented with 5% FBS and 1% penicillin/streptomycin without phenol red (Gibco).  

Cells were cultured in 37°C, 5% CO2 and 95% O2 and medium was replaced twice per week. Then, 

cells were harvested and seeded, depending on the experimental settings at different passage of 
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culture. In selected experiments they were treated with NaHS (6 μM-3,5 mM) and 17β-Estradiol 

(10
-8

 to 10
-9

 M; Sigma Aldrich).  

“Enzyme medium” was prepared as following: 50:50 Ham’s F12 without calcium and DMEM 

without calcium, penicillin/streptomycin (100U/100 μg), L-glutamine 4 mM, calcium chloride 

dehydrate 2 mM supplemented with collagenase P (0,7 U/ml). “Medium complete” was prepared as 

following: 50:50 Ham’s F12 without calcium and DMEM without calcium, penicillin/streptomycin 

(100U/100 μg), L-glutamine 4 mM, 11% heat inactivated FBS, ascorbic acid 25 μg/ml. Ham’s F12 

without Calcium, DMEM without Calcium and penicillin/streptomycin were purchased from Gibco 

(Life Technologies Italia, Monza MB, Italy). Calcium chloride dehydrate, L-glutamine and 

Ascorbic acid were purchased from Sigma Aldrich (St. Louis, MO, USA). Collagenase P was 

purchased from Roche (Basel, Switzerland). 

 

Viability and toxicity assays 

Annexin V/propidium iodide (PI) staining assays (Annexin V-FITC apoptosis detection kit, Roche, 

Molecular Biochemicals, Mannheim, Germany) and lactate dehydrogenase (LDH) assays 

(Cytotoxicity detection kit (LDH), Roche) were performed according to manufacturer instructions, 

to test cellular apoptosis and acute toxicity respectively. While Annexin V/PI assay was performed 

only in h-OCs precursors, LDH assay was performed on both h-OCs and h-MSCs. h-monocytes 

were seeded  into 96 well-plates at a concentration of 2x10
5
 cells/ml; h-MSCs were seeded into 96 

well-plates at a concentration of 1x10
4
 cells/ml. h-monocytes were cultured in unstimulated 

medium (α–MEM 10% FBS for Annexin V/PI assays and α–MEM 5% FBS depleted of phenol-red 

for LDH assays), h-MSCs were cultured in α–MEM 7,5% FBS depleted of phenol-red for LDH 

assays. h-OCs and h-MSCs were cultured for 24-72 h in the presence or absence of increasing 

concentrations of NaHS (50-300 μM); AL and DM-22 (1-33 μM). Briefly, apoptotic cells were 

identified as Annexin V+/PI-/+ by FACS analysis. LDH measurements on supernatants of cell culture 

medium were performed at 492-620 nm on TECAN Infinite® 200 PRO (Tecan Italia S.r.l., 
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Cernusco Sul Naviglio, Italy). Photos of morphology were taken using Nikon Instruments Europe 

BV (Amstelveen, the Netherlands) after having performed Toluidine blue staining. To this end, 

cells were firstly fixed with formalin 10% for 20 min and then stained with toluidine blue for few 

seconds. Toluidine blue positive cells were measured as absorbance at 560 nm on TECAN (Tecan 

Italia Srl). 

 

Cell proliferation assay 

h-MSCs were seeded in quadruplicates in 96-well plates at 1x10
4
 cells/well in α-MEM 15% FBS. 

Eighteen hours before each time point, 5 µCi of 
3
H-thymidine (Perkin Elmer, Boston, MA, USA) 

was added to each well and radioactivity was then measured using a beta-counter (Perkin Elmer).  

 

Osteogenic differentiation of h-MSCs in static condition 

For osteogenic assays and quantification of mineralization capacity, 2x10
5 

h-MSCs were plated on 

12-well plate in osteogenic medium and cultured for  7, 14, 21 and 28 days. Osteogenic medium 

was prepared with α-MEM 20% FBS in the presence of 0,1 µM Dexamethasone, 100 µM Ascorbic 

Acid and 10 mM β-glicerolphosphate (Sigma Aldrich). In specific experimental settings were 

performed additional treatments with NaHS (6-200μM); CBS, CTH, NT siRNA (please refer to 

“RNA interference assay” section); DL-propargylglycine (PAG), Hydroxylamine hydroxychloride 

(HA) which were purchased from Sigma Aldrich and administered in combination respectively at 

10 mM and 100 μM concentration; AL and DM-22 (1-3.3-10-33 μM). 

 

Evaluation of h-OBs differentiation in vitro 

To assess the extent of mineralization we performed Alizarin Red S (AR-S) staining (Sigma 

Aldrich). Briefly, cells were firstly fixed with 10% buffered formalin formaldehyde (Kaltek, 

Padova, Italy) for 20 minutes at room temperature (RT), washed twice with phosphate buffered 

saline (PBS), and then stained with 40 mM AR-S for 20 minutes at RT. AR-S-positive nodules 
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were measured as absorbance at 510 nm using spectrophotometric analysis with TECAN Infinite® 

200 PRO (Tecan Italia S.r.l.). This technique allowed us to evaluate a great number of case studies 

obtained over time and discriminate cells with different behaviour in response to osteogenic stimuli.  

 

Osteogenic differentiation of h-MSCs in dynamic condition 

1x10
6
 cells were seeded in scaffolds placed in the U-CUP perfusion bioreactor device (CELLEC 

BIOTEK AG, Basel, Switzerland) in α–MEM 15% FBS at 1,2 ml/min. The day after the seeding 

cells were induced with osteogenic medium and were cultured for 14 days at 0,3 ml/min. Medium 

was replaced twice per week; cells were cultured in 37°C, 5% CO2 and 95% O2.  

 

4.2. Methods for molecular biology 

RNA interference Assay 

RNA interference was used to down regulate the expression of CBS, CSE in h-MSCs and of NRF2 

in h-OCs.  

In h-MSCs gene silencing was achieved by transfecting with control, non-targeting siRNA (NT 

siRNA, ON-TARGETplus, Non-targeting pool, FE5D0018101005) or CTH siRNA (ON-TARGET 

plus SMARTpool siRNA, J-003481) or CBS siRNA (ON-TARGET plus SMARTpool siRNA, J-

008617), with a pool of four sequences to ensure high level of silencing. Each transfection was 

performed according to manufacturer instructions and using 20 nM siRNA (purchased from 

Dharmacon, ThermoScientific) and 6 μl INTERFERin, the siRNA transfection reagent (Polyplus 

Transfection, Illkirch France, 409-10). The first transfection was performed in h-MSCs reaching 

60% confluency in α–MEM 15% FBS. Afterwards, cells were induced with osteogenic medium. 

Transfection was repeated at every medium change until mineralization was observed in control 

cells. Afterwards AR-S and RT-PCR analyses for CBS and CSE were performed.  
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Macrophagic h-pre-OCs were obtained in 96-wells plates by stimulating with M-CSF (25 ng/ml) 

alone for 3 days before transfection with NT siRNA (ON-TARGETplus Non-targeting pool) and 

NRF2 siRNA (ON-TARGET plus SMART pool Human NFE2L2), both purchased by Dharmacon 

(Thermo Scientific). Each transfection was performed according to manufacturer instructions and 

using 10 nM siRNA (Dharmacon) and 0,75 μl INTERFERin. The day after transfection, cells were 

induced with osteoclastogenic medium in presence or absence of 200 μM NaHS. Transfection was 

repeated every 3 days of culture to ensure maximal suppression of NRF2, until the end of 

osteoclastogenic differentiation, when TRAP assays, RT-PCR and WB analyses for NRF2, NQO1, 

PRDX1 were performed. The percentage of silencing was measured by comparative CT method 

(ΔΔCT) according to the following formula: ΔΔCT = ΔCT- NRF2 siRNA - ΔCT- NT siRNA. 

 

Reverse transcription-Polymerase chain reaction (RT-PCR) 

RNA was extracted with RNApure (Euroclone), and purified from DNA with DNA-free™Kit 

(Ambion, Life Technologies) according to manufacturer instructions. RNA concentration was 

measured by Nanodrop 2000c (Thermo Scientific, Rockford, IL, USA) and RNA quality was 

assessed through 260/280 and 260/230 nm absorbance ratio. Only samples showing a 260/280 ratio 

>1.8 were sent to the transcription step. Reverse transcription (SuperScript® VILO™ cDNA 

Synthesis Kit; Invitrogen, Life Technologies) was performed utilizing 0,5-1 µg of RNA according 

to manufacturer instruction and as following: 25°C for 10 minutes, 42°C for 60 minutes, 85°C for 5 

minutes and 4°C for 30 minutes on 2720 Thermal cycler (Applied Biosystem, Life Technologies). 

Polymerase chain reaction (PCR) (SYBR Premix Ex Taq, TaKaRa Biomedicals, Tokyo, Japan; 

LightCycler Instrument, Roche) was performed on 20 ng cDNA as following: one cycle at 95°C for 

10 seconds and 45 cycles at 95°C for 5 seconds and at 60°C for 20 seconds.  

All primers designed by us were purchased from Life Technologies Italia (primers sequences are 

reported in Table 6 and 7, respectively for human and mouse). The other murine primers were 

designed by our collaborators using Primer Express Express® Software v2.0 (PE Biosystems) and 
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validated in previous investigations (Terauchi et al. 2009) (Gao et al. 2008) (J.-Y. Li et al. 2011) (J.-

Y. Li et al. 2014). 

The specificity of the PCR products was confirmed by standard melting curve analysis with the 

following thermal cycling profile: 95°C for 10 seconds, 65°C for 15 seconds and 95°C in one-

degree increments. Relative quantification of PCR products was obtained with the comparative CT 

method, comparing to the housekeeping mRNA expression of glyceraldehyde-3 phosphate 

dehydrogenase (GAPDH).  

Approved Name Approved 

symbol 

 5’-Sequence-3’ Product 

size (bp) 

Accession 

number 

Glyceraldehyde-3 

phosphate 

dehydrogenase 

GAPDH   Forward CGGAGTCAACGGATTTGG 218 NM_002046 

Reverse CCTGGAAGATGGTGATGG 

Cystathionine-β 

synthase 

CBS  Forward AATGGTGACGCTTGGGAA 107 NM_000071 

Reverse TGAGGCGGATCTGTTTGA 

Cystathionine-γ 

lyases 

CTH  Forward AAGACGCCTCCTCACAAGGT 170 NM_001902 

Reverse ATATTCAAAACCCGAGTGCTGG 

Alkaline 

phosphatase 

ALP  Forward GGAAGACACTCTGACCGT 152 NM_000478 

Reverse GCCCATTGCCATACAGGA 

NFE2-related factor 

2 

NRF2 Forward GCCCAGCACATCCAGTCA 153 NM_006164 

Reverse CGTAGCCGAAGAAACCTCATT 

Kelch-Like ECH-

Associated Protein 1 

KEAP-1  Forward GTCCTTGGAGGCTATGA 162 NM_012289 

Reverse GTTCTGCTGGTCAATCTG 

NAD(P)H 

dehydrogenase, 

quinone 1 

NQO1  Forward ACCTTGTGATATTCCAGTTCCCC 107 NM_001286137 

Reverse TGGCAGCGTAAGTGTAAGCA 

Peroxiredoxin 1 PRDX1  Forward TTGAACCCCAAGCTGATAGGAA 176 NM_181697 

Reverse CACAAAGGTGAAGTCAAGAGGG 

Receptor activator of 

nuclear factor 

kappa-B ligand 

RANKL Forward ATCAGAGCAGAGAAAGCGATG 133 NM_003701 

Reverse GACTCACTTTATGGGAACCAG 

Osteoprotegerin OPG  Forward TCTTTGGTCTCCTGCTAACTC 207 NM_002546 

Reverse CACTCTCTGCGTTTACTTTGG 

Bonesialoprotein BSP 

 

Forward CAGTAGTGACTCATCCGAAG 158 NM_004967 

Reverse CATAGCCCAGTGTTGTAGCA 

Table 6. The human primer sequences for RT-PCR 
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 Name  5’-Sequence-3’ Product size 

(bp) 

Accession 

number 

m-cystathionine-β 

synthase 

m-

Cbs 

Forward GCTGGGCACACTCTCTCAC 189 NM_144855.3  

Reverse CAGGCCTGGTCTCGTGAT 

m-cystathionine-γ 

lyases 

m-

Cth 

Forward ATAGTCGGCTTCGTTTCCTG 187 NM_145953.2 

Reverse TCGGCAGCAGAGGTAACAAT 

 

Table 7. The murine primer sequences for RT-PCR 

 

Levels of murine mRNA expression were also analyzed at Atlanta according to an established 

protocol.  Briefly, RT-PCR was performed using an ABI Prism 7000 or One Step Plus Sequence 

Detection System and SYBR GREEN PCR Master Mix (Applied Biosystems, Foster City, CA). 

Changes in relative gene expression between groups were calculated using the 2 –ΔΔCT method 

with normalization to 18S rRNA as previously described.  

 

PCR Arrays 

mRNA expression in mice whole BM lysates was analyzed for a cluster of pathway-focused Wnt-

signaling related genes by means of PCR Array (Mouse Wnt signaling pathway Kit, Qiagen, Milan, 

Italy), according to the manufacturer's instructions. Briefly, total cellular RNA was isolated using 

the RNeasy Mini Kit (Qiagen, Milan, Italy) and contamination of genomic DNA was removed from 

total RNA samples by treating with DNase I (DNA-free Kit,Ambion, Austin, TX, USA). 

Complementary DNA (cDNA) synthesis was performed from 0.8 g RNA using the RT2 PCR 

array First Strand Kit (Qiagen, Milan, Italy). Amplification was carried out on a Rotor Gene 

Thermal Cycler (Corbett Research, Qiagen) equipped with a 100-well rotor, under cycling and 

thermal conditions suggested by the manufacturer. The data were analyzed using the web-based 

RT2 PCR array Data Analysis tool provided by the manufacturer. 

 

 

http://www.ncbi.nlm.nih.gov/nucleotide/405778330?report=genbank&log$=nucltop&blast_rank=4&RID=CNTRJKVP015
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Gene expression profiling of h-MSCs and h-OBs 

A subset of 6 h-MSCs and 6 h-OBs obtained from tybial plateau were screened for CBS and CSE 

expression within a database of Gene Array obtained in previous analysis performed in our 

laboratory (Lisignoli et al. 2009). Total RNA from h-MSCs and h-OBs at passage 1 in culture were 

hybridzated to biotin labeled cRNA on GeneChip® Human Genome U133A Arrays (Affimetrix, 

Inc., Santa Clara, CA, USA). Scanning of the chip was carried out according to manufacturer 

instruction (GeneChip® Scanner 3000 7G, Affimetrix Inc.). Probe level data were converted to 

expression values using the Bioconductor function for robust Multi-array average procedure. dChip 

software (DNAChip analyzer) and Significant Analysis of Microarrays software version 3.00 were 

used respectively to cluster and generate dendograms and for a supervised analysis as described in 

Lisignoli et. al. 2009 (Lisignoli et al. 2009). In the analysis, genes with at least a 1.5 average change 

in the expression from the mean across the whole panel were selected (2AVEFC).  

 

FACS analysis  

FACS analysis was performed on FACS canto II (BD bioscience, San Jose, California, USA) to 

assess: 1) the purity of CD11b
+
 enriched population obtained in the procedure of isolation of h-

monocyte.  CD11b
+
 cells were on average 92% of the total cell population; 2) the surface markers 

expression of h-MSCs and h-OBs as detailed in Manferdini et. Al. (Manferdini et al. 2011); 3) The 

measurement of h-OCs positive to NRF2 after 24 h of 100-200 μM NaHS stimulation in 

osteoclastogenic culture medium. Briefly, cells were fixed with paraformaldehyde (PFA) 4%, 

permeabilized with PBS 0,2% tween (only for NRF2 measurement), resuspended at 1x10
6
 cells/ml 

in FACS buffer (0.1% NaN3, 2% di FBS in PBS 1X) and incubated with primary antibody and 

secondary antibody anti-rabbit-FITC (DAKO, Milan, Italy), which are shown in Table 8. The 

analysis and measurement of signal intensity was performed by FACS analyses. 
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Antibody Name Antibody Code and 

Producer 

Application / Concentration 

Anti-Nrf2 IgG H-300, Santa Cruz 

Biotechnology, Santa Cruz, 

CA, USA. 

 WB (2,9 μg/ml) 

 Immunocytochemical 

analysis (2,9 μg/ml) 

 FACS analysis (2,9 μg/ml) 

Anti PRDX1 IgG ab109498, Abcam, 

Cambridge, UK 

WB (0,06 μg/ml) 

Anti Nqo1 IgG Ab28947, Abcam WB (1 μg/ml) 

Anti β–actin IgG A228, Sigma Aldrich WB (0,5 μg/ml) 

Anti CBS IgG H00000875-A01 

(polyclonal), Abnova, Taipei 

City, Taiwan 

WB (dilution 1:300) 

Immunocytochemical analysis 

(dilution 1:250)  

Immunohystochemical analysis 

(dilution 1:400) 

Anti CSE H00001491-M02, Abnova WB (1,7 μg/ml) 

Immunocytochemical analysis 

(2,5 μg/ml) 

Immunohystochemical analysis 

(5 μg/ml) 

 Anti CD11b a-human CD11b PE, Beckton 

Dickinson, Milan, Italy 

FACS analysis (2,9 μg/ml) 

Anti-rabbit and Anti-

mouse IgG HRP 

211-032-171,115-035-174, 

Jackson ImmunoResearch, 

West Grove, PA,  USA 

WB (0,03 μg/ml) 

Anti-rabbit-FITC  F0054 DAKO, Milan, Italy FACS analysis (10 μg/ml) 

 

Table 8. List of antibodies used in the study, for each antibody the code and application of use is reported. 

 

Immunocytochemical analysis  

h-pre-OCs were cultured in osteoclastogenic medium in 8 wells Permanox chamber slides and 

treated as occurs with NaHS (100-200 μM) or  NRF2 activators (0,2-1-5 µM SFN  and 5-10-15 µM 

t-BHQ). For NaHS two treatments were compared: 1. standard treatments, performed for the whole 

duration of the culture (treatments were renewed during each medium change); 2. single dose 

treatment, 2h before the analysis. h-MSCs and h-OBs were cultured respectively in α–MEM 
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15%FBS and Medium complete. h-pre-OCs, h-MSCs and h-OBs were then fixed with 4% 

PFA/PBS. Only for NRF2 staining h-pre-OCs were permeabilized 0,25% Triton X-100 (Sigma 

Aldrich)/PBS. Cells then were incubated with primary antibody to NRF2, CBS or CSE as listed in 

Table 8 and revealed with Universal AP Detection kit (Biocare Medical, Concord, CA, USA). 

Slices were counterstained with haematoxylin, subjected to tap-water activation and finally 

mounted in glycerol gel.  Negative and isotype-matched controls were performed. CBS, CSE and 

NRF2 staining were evaluated with  Eclipse 90i microscope and NIS-Elements Software (Nikon). 

For NRF2 staining we performed additional immunocytochemical quantification. As 

osteoclastogenic cultures of h-monocytes give rise to a mixed population of cells at a different stage 

of differentiation, we pursued the quantification of nuclear translocation of NRF2 by manually 

counting nuclear NRF2 staining in cells showing homogenous phenotypical features of h-pre-OCs. 

The frequency of nuclear translocation was manually counted, in duplicates, by an investigator 

blind as for the nature of the specimen, on 16 pictures at 200X magnification for each duplicate, 

captured by NIS software (Nikon).  

 

Western blot (WB) analyses 

30 μg of total proteins were separated under denaturing conditions in NuPAGE® Novex® 4-12% 

Bis-Tris Gels (Invitrogen, Life Technologies) mounted on XCell SureLock® Mini-Cell device 

(Invitrogen) and transferred to a PVDF membrane (Millipore, Billerica, MA, USA) through iBlot® 

Gel Transfer Device (Invitrogen). The immunodetection was performed by SNAP i.d.™ Protein 

Detection System  (Millipore) using as occurred the antibody reported on Table 8.  

Signal detection was revealed using Amersham ECL Select WB detection reagent (RPN2235, GE 

Healthcare Italia, Milan, Italy) and acquired through KODAK Image Station 4000R Digital Imaging 

System (Kodak, Rochester, NY, USA). CARESTREAM and Image J software were used 

respectively to confirm the correct size of bands and to relatively quantify bands’ intensities. 
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Immunohystochemical analysis  

Tybial plateau biopsies were obtained from 10 osteoarthritic patients undergoing surgical knee 

replacement. Biopsies were fixed in a freshly prepared 9:2 mixture of B2% solution (mercuric-

chloride containing fixative)/40% formaldehyde (Kaltek) at RT for 2 h. The biopsies were then 

decalcified in 0.1M EDTA-bisodic salt (Sigma), dehydrated and embedded in paraffin as previously 

described (Lisignoli et al. 2002) and sectioned with microtome in 3-4 μm thick slices. 

Immunostainings for CBS and CSE were performed on deparaffinized and rehydrated slices for the 

primary antibody listed in Table 8, as well as for negative and isotype-matched controls. Positive 

staining was revealed with Universal AP Detection kit (Biocare Medical). Slices were 

counterstained with haematoxylin and mounted in glycerol gel. The staining was evaluated on 

Eclipse 90i Microscope (Nikon) and pictures at 200X or 400X magnification were captured by NIS 

software (Nikon, Firenze, Italy).  

 

Histological analysis 

At D0, D7, D14 scaffolds placed in the U-CUP perfusion bioreactor device, were harvested and 

fixed with PFA 4%, processed, embedded in paraffin and sectioned with microtome in 3-4 μm thick 

slices for histological assessments. Then, Haematoxylin-Eosin (H/E) and Von Kossa (VK) staining 

were performed on deparaffinized and rehydrated sections. Briefly, for H/E staining, slices were 

stained with CAT haematoxylin (BioCare Medical, Concord, USA), activated with tap-water and 

then stained with eosin (Honeywell Riedel de haen, Seelze, Germany), rinsed in water and 

dehydrated. For VK staining, slices were incubated in silver nitrate solution 1% (Carlo Erba, Milan, 

Italy) for 30 min under UV light, rinsed in water, incubated in sodium thiosulphate 5% (Sigma) for 

5 min, rinsed in water, counterstained with haematoxylin (BioCare Medical), rinsed with water and 

dehydrated. For both staining, slices were then mounted with Entellan (Merk, New York, USA).The 

staining was evaluated on Eclipse 90i Microscope (Nikon) and pictures at 200X or 400X 

magnification were captured by NIS software (Nikon, Firenze, Italy). 
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4.3. Methods for in vivo murine study  

It should be noted that the experiments which methods are reported in this section have been 

performed by our collaborators (Prof. Pacifici and Dr Tyagi) at Emory University, Atlanta. 

All animal procedures were approved by the Institutional Animal Care and Use Committee of 

Emory University. Adult female C57BL/6 mice (9–10 weeks old) were used for this study. All mice 

were housed at 25°C, in 12-hour light: 12-hour dark cycles. Normal chow diet and water were 

provided ad libitum. Mice were ovariectomized (ovx) or sham operated (surgically operated as for 

ovariectomy –ovx- while leaving ovary intact). In mice ovx induces rapid bone loss since 4 weeks. 

The treatment was given as intraperitoneal injections of 1mg/mice of the slow-releasing H2S donor, 

GYY, or of vehicle every other day. Two types of study were performed: 1) a preventive and 2) a 

therapeutic study. In the former, mice were treated with vehicle or GYY for 4 weeks starting the 

day of surgery; in the latter vehicle or GYY were administered for 4 weeks starting 4 weeks after 

surgery. Therefore, in both experiments we compared vehicle treated sham operated mice (SHAM 

Veh), GYY treated sham operated mice (SHAM GYY), vehicle treated ovx mice (OVX Veh) and 

GYY treated ovx mice (OVX GYY).  

 

H2S measurements  

0.1 mL of serum was collected after sacrifice. H2S and bound sulfur levels were measured by gas 

chromatography, according to previously described methods (Nicholson et al. 2013). The 

concentrations of free H2S and H2S released by bound sulfur in the samples were calculated using a 

standard curve of Na2S as a source of H2S. Chromatographs were captured and analyzed with 

Agilent ChemStation software (B.04.03).  

 

μCT measurements  

μCT scanning and analysis was performed as reported previously (Terauchi et al. 2009) (Tawfeek et 

al. 2010) using a Scanco µCT-40 scanner (Scanco Medical, Bassersdorf, Switzerland). Voxel sizes 
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were 8 μm
3
. For the femoral trabecular region we analyzed 140 slices from the 50 slices under the 

distal growth plate. Femoral cortical bone was assessed using 80 continuous CT slides located at the 

femoral midshaft. X-ray tube potential was 70 kVp, and integration time was 200 ms. Percentage 

trabecular bone volume over total volume (BV/TV %), trabecular thickness (Tb.Th: μm), trabecular 

number (Tb.N: 1/mm), trabecular space (Tb.Sp: μm), cortical volume (Ct. V: mm
3
), cortical 

thickness (Co.Th: m) were measured. 

Quantitative bone histomorphometry  

Mice were injected subcutaneously with calcein (25 μg/g) 10 and 3 days before sacrifice. Vertebras 

and femurs were fixed in 10% neutral‐buffered formalin for 48 hours, dehydrated and defattened at 

4°C, and embedded in methyl methacrylate resin.  5‐mm non-consecutive longitudinal sections 

were cut using a Leica RM2155, stained with Goldner’s trichrome stain and used for analysis of 

static indices of bone formation: number of OCs per millimeter of bone surface (N.Oc/BS), 

percentage of bone surfaces covered by OCs (Oc.S/BS), number of OBs per millimeter of bone 

surface (N. Ob/BS), percentage of bone surfaces covered by OBs (Ob.S/BS). 

Additional sections were cut at 10 μm, and left unstained for dynamic (fluorescent) measurements. 

Longitudinal sections of L4 were obtained in the frontal midbody plane. Measurements were 

obtained in an area of cancellous bone that measured ~2.5 mm
2
 and contained only secondary 

spongiosa, which was located 0.5–2.5 mm proximal to the epiphyseal growth cartilage of the 

femurs or of the L4 vertebrae. Measurements of single-labeled and double-labeled fluorescent 

surfaces, and interlabel width were made in the same region of interest using unstained sections. 

Mineral Apposition Rate (MAR: mm/day), Bone Formation Rate (BFR/BS: mm
3
/mm

2
/day) and 

percentage of bone surfaces covered by mineralized surfaces per bone surfaces (MS/BS: %) were 

calculated by the software by applying the interlabel period. Histomorphometry was done using the 

Bioquant Image Analysis System (R&M Biometrics). Measurements, terminology and units used 
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for histomorphometric analysis, were those recommended by the Nomenclature Committee of the 

American Society of Bone and Mineral Research (Parfitt et al. 1987).  

 

Markers of Bone Turnover  

C-terminal telopeptide of type 1 collagen (CTX) and N-terminal propeptide of type 1 procollagen 

(P1NP) were measured, according to manufacturer instructions, by a rodent specific ELISA assay 

and a Rat/Mouse ELISA kit (Immunodiagnostic Systems, Scottsdale, AZ) respectively.  

 

BM harvesting and murine stromal cells (m-SCs) purification  

BM was harvested at the end of the treatment period and was investigated for expression of a 

cluster of 17 Wnt ligands (Wnt1, Wnt2, Wnt3, Wnt5a, Wnt7a, Wnt 7b, Wnt8b, Wnt9, Wnt10a, 

Wnt10b, Wnt11, Wnt16, Wnt2b, Wnt3a, Wnt4, Wnt5b, Wnt6, and Wnt8a) by using an approach 

based on PCR Array technology. 

m-SCs were purified  from BM as previously described (Gao et al. 2007) (Bedi et al. 2012).  

Briefly, BM was cultured for 7 days in α-MEM medium containing 10% FBS, to allow the 

proliferation of m-SCs. After discarding non-adherent cells, adherent macrophages were eliminated 

by positive immunoselection by MACS Microbeads
 
(Miltenyi Biotec, Auburn, CA) coupled to anti-

CD11c antibody. m-SCs were then purified and utilized to assess the levels of CBS and CSE 

mRNAs; of osteoblastic genes mRNAs (Runx2, Col-1, Osx and Ocn); of WNT target genes 

mRNAs (Ahr, Axin2, Cyr61, Nkd2, Tagln, Tgfβ3, Thbs1, Twist1, Wisp1, Tcf, Lef-1). 

 

CFU-ALP Assays  

BM was harvested at the end of the treatment period and cultured for 1 week to assess the formation 

of alkaline phosphatase positive colony forming unit-fibroblast (CFU-ALP), an index of m-SCs 

commitment to the osteoblastic lineage, as previously described (Gao et al. 2008). Briefly, BM m-

SCs were cultured in α-MEM medium containing 10mM β-glycerophosphate and 50 μg/mL 
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ascorbic acid at a density of 2 × 10
6
 cells/cm

2
. After 7 days, the cells were fixed and stained for 

ALP and the number of colonies positive for ALP was counted. 

 

4.4. Methods for scaffolds production and characterization  

It should be noted that the experiments which methods are reported in this section have been 

performed by our collaborators (Prof. Motta and Dr Raggio) at University of Trento. 

 

Preparation of silk fibroin (SF) and H2S releasing based on silk fibroin (SF_GYY) scaffolds 

A certain amount of silk cocoons, produced by poly-hybrids silkworms of the species Bombyx 

mori, were opened, reduced to small pieces and manually defoliated. Boiling in aqueous alkaline 

solutions in Na2CO3 allowed the solubilization of the external coating of the fibers of silk, 

composed by sericin. Then, the fibers were degummed in concentrated aqueous solutions of LiBr, 

under a slight heating, for several hours. Afterwards, LiBr was completely removed dializing in 

water for 3-4 days. This procedure allowed obtaining an aqueous solutions of a single skein of 

fibroin to 6-8% (w/V).Then porous scaffolds were obtained through the method of salt leaching, 

using NaCl as a porogen agent sieved in grain size in the range between 425 and 1180 pM (weight 

ratio of porogen to silk 25:1). This protocol has been developed and optimized gradually, over the 

years, at the Department of materials engineering and industrial technology (Univesity of Trento) 

and ensures the formation of pores of size suitable for host and promote the growth and 

proliferation of h-MSCs. NaCl was then removed with water and the solid dry products were 

achieved by freeze-drying. The layer of scaffold produced was conveniently punched for obtaining 

small cylinders of 10 mm in diameter, 3 mm thick and around 20 mg in weight.  

Different methods were evaluated and tested for the adhesion GYY to the scaffolds. Finally, the 

method selected was dipping in dimethyl sulfoxide  (DMSO; Sigma Aldrich) which avoided the use 

of aqueous environment that can induce an early GYY decomposition, and the H2S release. 
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Solutions of GYY in DMSO were prepared and dropped onto the scaffolds till sponge saturation. 

To remove the solvent, sponges were immediately frozen at -50°C and freeze-dried over night and 

stored in desiccator for the analysis. The native (SF) and modified fibroin scaffold (SF_GYY) were 

characterized for their morphology by SEM (Scanning Electron Microscope analyses) analyses and 

for indentifying components of the scaffold by FTIR (Fourier Transform Infrared Spectroscopy).  

 

H2S release measurements  

H2S release from SF_GYY was measured by methilene blue assay as detailed elsewhere (Shen et al. 

2011). Each sample was immersed in an eppendorf tube containing 1 ml of bidistilled water, and the 

release of H2S in aqueous solution was monitored at established time points. A calibration curve for 

H2S was obtained measuring different concentration of NaHS (between 0 and 80 μM). 

Spectrophotometric analysis measuring absorbance at 670 nm detected the methylene blue 

generated by the reaction of H2S with sulphate of N, N-dimethyl-p-phenylenediamine. 

 

4.5. Statistical analyses 

 

GraphPad Prism 5 software (La Jolla, CA, USA) and IBM SPSS Statistics (New York, USA) were 

used for statistical analyses. All values are expressed as mean ± Standard error of the mean (SEM). 

Kolmogorow Smirnow Test was performed for the analysis of normality in each data set. 

Depending on the experimental set data were analyzed: 1) two-way Anova and Bonferroni posttest; 

2) Kruskal-Wallis test and Dunns positive test; 3) one-way ANOVA and Tukey or Dunnett multiple 

comparison tests; 4) ANOVA for repeated measures; 5) Mann-Whitney t-test and non parametric 

Wilcoxon test (exact method for small samples) for simple comparisons; 6) two-tailed unpaired 

Student’s t test. Values of p<0.05 were considered significant. Correlation between marker 

expression and levels of mineralization was performed with Spearman correlation and represented 

with Loess curves.  
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5. RESULTS 

 

5.1. Elucidating the role of exogenous stimulation of H2S in modulating bone 

remodelling. 

 

5.1.1. In vitro H2S exogenous administration regulates osteoclastogenesis 

 

NaHS dose-dependently inhibits h-OCs differentiation and function in vitro 

To investigate the hypothesis that H2S regulate h-OCs differentiation, h-monocytes were 

differentiated into mature h-OCs in the presence of increasing concentrations of NaHS a rapid-

releasing H2S donor able to readily generate solutions containing known quantities of H2S. 

Functional assays for osteoclastogenic differentiation revealed that NaHS dose-dependently 

decreases the total number of TRAP positive mature h-OCs, resulting into a statistically significant 

inhibition at the concentrations of 100-300 M (*** p<0.001) (Fig. 3A). Besides this effect, we 

found that h-OCs function was also regulated. In fact, the ability of mature h-OCs to break down a 

mineral substrate as tested in vitro by a ‘pit assay’, was strongly prevented by NaHS treatments and 

virtually completely inhibited at the concentration of 200 M (Fig. 3B f-j). Fig. 3B compares the 

number of TRAP-stained h-OCs with the amount of matrix actively resorbed by h-OCs. Both the 

number of h-OCs and the number of pits formed, were dose-dependently inhibited in treated 

samples (Fig. 3B, b-e and g-j, respectively) compared to control untreated cells (Fig. 3B, a; f).  
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Figure 3: NaHS dose-dependently inhibits h-OCs differentiation and function in vitro. h-OCs were 

differentiated from CD11B+ h-monocytes and were grown for 6 days on either plastic well-plates or 

osteologic slides in osteoclastogenic medium in the presence or absence of increasing concentrations of 

NaHS. A, Histogram showing the average of h-OCs number/field. Data are expressed as mean ± SEM of 

N=9 independent experiments. ANOVA and Dunnett’s test were performed for statistical analyses (*** 

p<0.001 vs control cells). B, Representative pictures of TRAP staining (a-e) and pit assay (f-j) showing the 

effects of NaHS on h-OCs differentiation (a-e) and function (f-j). Magnification 20X. 

 

As the low number of h-OCs and their inhibited function may be the result of NaHS-dependent 

impairment in the viability of h-OCs precursors, we assayed the potential cytotoxicity and apoptosis 

induction of NaHS within a time-range of 72 h from the stimulation. Annexin V/PI assays showed 

absence of apoptosis induction even at the highest dose employed in our experiments (300 M) 

(Fig. 4A-B). Furthermore, quantification of LDH release indicated no significant cytotoxicity 

throughout the concentrations range of NaHS employed (Fig. 4B-C). Taken together these data 

demonstrate that NaHS-dependent inhibition on h-OCs differentiation and function was not 



55 
 

dependent on impaired viability of h-OCs precursors, under the culture conditions used in this 

study.  

 

Figure 4: Lack of toxicity of NaHS on h-OCs precursors. h-OCs precursors were cultured in unstimulated 

medium (UN) in the presence or absence of increasing concentrations of NaHS for 24 (A,C) or 72 h (B,D). 

A-B, Histograms showing the percentage of Annexin V+/PI-/+ cells obtained by FACS analysis. Data are 

expressed as mean ± SEM of N=3 independent experiments. ANOVA and Dunnett’s test were performed for 

statistical analyses (ns = non significative). C-D, Histograms showing LDH measurement; data are 

expressed as fold increase compared to unstimulated cells (UN) and refers to arbitrary units obtained by 

colorimetric detection of LDH activity. Data are expressed as mean ± SEM of N=3 independent experiments. 

One sample t-test was performed for statistical analyses (ns = non significative). 

 

NaHS dose-dependently inhibits RANKL-induced ROS production in macrophagic h-pre-OCs  

To investigate potential mechanisms of action of H2S donors in h-OCs development, we focused on 

100 and 200 M NaHS, the two concentrations showing anti-osteoclastogenic activity most closely 

resembling physiologic and pharmacologic levels of H2S. Since ROS-mediated signaling is one of 

the potential targets of H2S (Y. Kimura, Goto, and Kimura 2010), we performed FACS analysis by 
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DCF staining to analyze whether short-term NaHS treatment affects RANKL-dependent 

intracellular ROS generation in macrophagic h-pre-OCs. As expected, unstimulated cells showed 

the same lack of positivity as unstained cells (Fig. 5A, a-b); on the contrary, 30 minutes RANKL-

stimulation was able to increase intracellular ROS levels compared to unstimulated cells (Fig. 5A, 

b-c). Interestingly, the RANKL-dependent increase in ROS levels was actively inhibited in a dose-

dependent fashion when cells were pre-treated for 10 minutes with 100 or 200 μM  NaHS (Fig. 5A, 

c-e). Fluorimetric quantification of intracellular ROS intensity confirmed that RANKL induced a 

significant increase in intracellular ROS (*** p<0.001), which was dose-dependently inhibited by 

NaHS treatment (* p<0.05, *** p<0.001; Fig. 5B). As expected, H2O2 treatment, used as a positive 

control, caused a marked increase in intracellular ROS levels (Fig. 5B).  

 

Figure 5: NaHS dose-dependently inhibits RANKL-induced ROS production in macrophagic h-pre-OCs. 

To generate macrophagic h-pre-OCs, h-monocytes were grown in M-CSF for 3 days. DCF staining was then 

performed after treating cells with RANKL (30 minutes) and 100-200 µM NaHS 10 minutes before RANKL 

stimulation. A, Representative dot-plots obtained by FACS analysis showing the frequency of DCF-positive 

cells as detected by DCF staining. The percentage of DCF-positive cells is shown above the gate. a, 
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unstained cells; b, unstimulated cells (UN); c, cells stimulated with RANKL alone (CTRL); d-e, cells 

stimulated with RANKL and treated with 100-200 μM NaHS. B, Histogram showing fluorimetric 

quantification of ROS production as detected by DCF staining comparing unstimulated cells (UN), cells 

stimulated with RANKL alone (CTRL), and cells stimulated with RANKL and treated with 100-200 μM 

NaHS; H2O2 was used as positive control (CTRL +). Data are expressed as mean ± SEM of triplicates of 

N=3 independent experiments. ANOVA and Tukey’s multiple comparison test were performed for statistical 

analyses (* p<0.05, *** p<0.001 vs unstimulated cells and control cells). 

 

NaHS-dependent inhibition of osteoclastogenic differentiation is mediated by NRF2 nuclear 

translocation and transcription of antioxidant target genes  

Next we investigated whether H2S can induce long-term modifications of redox-buffering proteins 

related to h-OCs differentiation. In this context, a master regulator of the intracellular antioxidant 

response is NRF2 (Venugopal and Jaiswal 1996) which has been recently found to affect 

osteoclastogenic differentiation in mice (Kanzaki et al. 2013). 

Therefore, to investigate whether ROS inhibition by NaHS is associated to the activation of NRF2, 

we analyzed the expression of NRF2 at both mRNA and protein level in h-pre-OCs treated with 

NaHS. RT-PCR showed that 24 h of NaHS treatment did not significantly increase NRF2 mRNA 

levels (Fig. 6A). Similarly, NaHS did not affect the expression of KEAP-1 (the ubiquitine ligase-

adaptor which drives NRF2 toward degradation; data not shown) or the NRF2/KEAP-1 ratio at the 

transcriptional level (Fig. 6B). On the contrary, NRF2 protein expression at 24 h by FACS analysis 

in h-pre-OCs revealed that both 100 and 200 µM NaHS induced a significant increase in the 

percentage of cells positive to NRF2 (** p<0.05, Fig. 6C-D). These data indicate that NaHS 

promotes accumulation of NRF2 in h-pre-OCs by a mechanism that does not involve up-regulation 

of NRF2 mRNA or transcriptional down-regulation of KEAP-1.  
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Figure 6: NaHS increases NRF2 protein expression in h-pre-OCs. h-pre-OCs were obtained culturing h-

monocytes in osteoclastogenic medium in the presence or absence of increasing concentrations of NaHS for 

24 h. A, Histogram showing NRF2 mRNA expression. B, Histogram showing NRF2/KEAP1 mRNA 

expression ratio. Data are expressed as fold increase compared to control sample and as the mean ± SEM of 

N=7 independent experiments. One sample t-test was performed for statistical analyses (ns = non 

significative). C, Representative dot-plots obtained by FACS analysis showing the frequency of h-pre-OCs 

positive to NRF2 protein intracellular staining. D, bar graph showing the average frequency of NRF2-

positive h-pre-OCs as measured by FACS analysis. Data are expressed as fold increase compared to control 

sample and as the mean ± SEM of N=3 independent experiments. One sample t-test was performed for 

statistical analyses (** p<0.05 vs control cells).  
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To validate the hypothesis of KEAP-1 dislocation, NRF2 stabilization and NRF2 nuclear 

translocation (Nguyen et al. 2003) under NaHS treatments, we performed immunocytochemical 

analysis in h-pre-OCs. In these experiments, h-pre-OCs were grown for 72 h in osteoclastogenic 

medium and standard NaHS treatment (100-200 M) was compared to a short-term 2 h stimulation. 

The NRF2 nuclear localization was then evaluated. When the frequency of nuclear NRF2-positive 

cells was counted over three independent experiments, we found that in control cells approximately 

14% of h-pre-OCs showed positive nuclear staining to NRF2. This frequency was dose-dependently 

increased by NaHS during standard treatments. In particular, 100 μM and 200 μM NaHS induced, 

respectively, a significant, 43% and 86% increase (** p<0.05; *** p<0.01) relative to control 

samples (Fig. 7A). Moreover, for the highest dose of 200 M, a short term pre-treatment of 2 h was 

sufficient to induce a significant nuclear translocation of NRF2 (*** p<0.01; Fig. 7A). These 

findings show that 200 M NaHS significantly increase NRF2 nuclear translocation as soon as 2h 

after the stimulation, while 100 μM NaHS required, in our experimental model system, repeated 

stimulations to induce NRF2. Fig. 7B compares NRF2 nuclear translocation to h-OCs 

differentiation. Interestingly, the higher is NRF2 nuclear translocation the lower is the number of h-

OCs formed.  
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Figure 7: NaHS dose-dependently increases NRF2 nuclear translocation in h-pre-OCs. h-pre-OCs were 

obtained from h-monocytes in osteoclastogenic medium for 72 h in the absence or presence of NaHS. 100-

200 µM NaHS was added throughout the experiment or only for 2h before the assay. h-OCs were obtained 

from h-monocytes in osteoclastogenic medium for 6 days in presence or absence of 100-200 NaHS. A, 

Histogram showing the average frequency of cells with positive nuclear staining for NRF2 (red staining). 

Data are expressed as mean ± SEM of N=3 independent experiments of the percentage of nuclear NRF2-

positive cells vs total cell per microscope field. ANOVA and Dunnett’s test were performed for statistical 

analyses (**  p<0.05;***  p<0.001  vs control cells). B, Representative pictures showing NRF2 nuclear 

translocation on h-pre-OCs at 3 days of differentiation (a-c, magnification 600X) and TRAP positive staining 

at 6 days of differentiation (d-f, magnification 20X).  

 

To further confirm the strong relationship between NRF2 translocation and inhibition of h-OCs 

differentiation, we performed additional experiments treating h-OCs precursors with two NRF2 

inductors (SNF and t-BHQ) reported to induce NRF2 nuclear translocation (K. W. Kang et al. 
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2002). Quantification of TRAP positive h-OCs showed that SFN significantly inhibited h-OCs 

formation at 5 μM (** p<0.01), while t-BHQ inhibited h-OCs at all the concentrations tested (* 

p<0.05) (Fig. 8A). Immunocytochemical analysis confirmed that NRF2 translocation was increased 

in h-pre-OCs treated with SFN and t-BHQ compared to control cells (Fig. 8B d-f). Comparison of 

the number of h-OCs (by TRAP assay; Fig. 8B a-c) with NRF2 nuclear translocation (by 

immunocytochemical analysis; Fig. 8C d-f) showed that higher is the NRF2 nuclear translocation 

lower is the number of h-OCs formed. These data showed that, similar to NaHS, treatment with two 

prototypical NRF2 activators (SFN and t-BHQ) inhibited h-OCs differentiation. 
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Figure 8: SFN and t-BHQ increase NRF2 nuclear translocation in h-pre-OCs and inhibit h-OCs 

differentiation. h-monocytes were differentiated in osteoclastogenic medium in the presence or absence of 

increasing concentrations of NRF2 activators. A, Histogram showing average h-OC-s number/well for the 

indicated concentrations of NRF2 activators. Data are expressed as mean ± SEM of  N=3 independent 

experiments. ANOVA and Dunnett’s t test were performed for statistical analyses (*  p<0.05;**  p<0.01 vs 

control cells). B, Representative pictures showing TRAP positive staining at day 6 of differentiation (a-c, 

magnification 20X) and NRF2 nuclear translocation on h-pre-OCs at day 3 of differentiation (d-f, 

magnification 600X).   

 

NRF2 controls the activation of over 200 antioxidant genes through the interaction with antioxidant 

response elements (ARE). To further validate that NRF2 accumulation and translocation to the 

nucleus results in increased expression of ARE-responsive genes, we analyzed the expression of 

NQO1 and PRDX1 genes on h-pre-OCs. As expected, SFN, used as a positive control, caused a 

significant increase in NQO1 and PRDX1 mRNA levels (** p<0.01; Fig. 9A,B). Similarly, NaHS 
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stimulation induced a significant up-regulation of the two genes at both 100 and 200 M (* p<0.05; 

Fig. 9A,B). At the protein level, WB analysis revealed that, while NQO1 was dose-dependently up-

regulated by NaHS (Fig. 9C), PRDX1 did not undergo to a detectable up-regulation in our 

experimental conditions (Fig. 9D). These findings evidenced that NaHS treatment up-regulates the 

transcription of endogenous antioxidant genes downstream of NRF2 activation in h-pre-OCs while 

differentially regulating their protein expression levels. 

 

Figure 9: NaHS induces NRF2-target genes expression in h-pre-OCs. h-pre-OCs were obtained from h-

monocytes cultures in osteoclastogenic medium for 72 h in the presence or absence of NaHS or NRF2 

activator SFN (5 M). Cells were harvested 6h after the latest stimulation. A-B, Histograms showing NQO1 

and PRDX-1 mRNA expression. Data are expressed as fold increase compared to control sample and as the 

mean ± SEM of N=3 independent experiments. Wilcoxon Test was performed for statistical analyses (*  

p<0.05, **  p<0.01 vs control cells); C-D, WB analyses of NQO1, PRDX1; upper panel shows 

representative WB analysis for target proteins and control -actin; lower panels shows quantification by 

Image J software where target proteins were normalized by -actin band intensity.  
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NaHS fails to inhibit h-OCs differentiation under NRF2-silencing conditions in h-OCs  

To address the question of whether NaHS inhibition of h-OCs differentiation is mechanistically 

linked to NRF2 activation, we investigated the effects of NaHS stimulation on h-OCs silenced for 

NRF2.  

First, we validated the NRF2 silencing at both mRNA and protein level, as shown in Fig. 10.  

Analyses of mRNA and protein expression, by means of RT-PCR and WB analyses, confirmed the 

silencing of NRF2 in our system. NRF2 silencing resulted into a 70% suppression of NRF2 mRNA 

expression as compared to control NT siRNA (** p<0.05; Fig. 10A), which resulted into an 

approximately 35% down-regulation at the protein level (Fig. 10B). Consistent with NRF2 

silencing we found a marked and significant down-regulation of NQO1 mRNA (** p<0.05; Fig. 

10C) confirmed at the protein level (Fig. 10D). On the contrary, PRDX1 was not significantly 

regulated at both mRNA and protein level after NRF2 silencing (Fig. 10E-F). These data validate 

our protocol of silencing and suggest that two different ARE target genes, NQO1 and PRDX1, are 

differentially regulated by NRF2 in our cell culture system. 
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Figure 10: Validation of NRF2 silencing during h-OCs differentiation. h-OCs precursors were treated 

with NT and NRF2 siRNA during osteoclastogenic differentiation. Panels A-C-E: Histograms showing 

mRNA expression for NRF2 (A), NQO1 (C), PRDX1 (E) in control (NT) vs NRF2-silenced samples. Data are 

expressed as mean ± SEM of N=6 independent experiments. Paired t-test was performed for the statistical 

analyses (** p<0.05 vs NT siRNA). B-D-F: WB analyses of NRF2 (B), NQO1 (D), PRDX1 (F) protein 

expression; upper panel shows representative WB analysis for target proteins and control -actin; lower 

panels shows quantification by Image J software where target proteins were normalized by -actin band 

intensity.  

 

Further analyses of mRNA and protein expression, performed during NaHS treatments, revealed 

that NaHS failed to induce NRF2, NQO1 or PRDX1 mRNA (Fig. 11A-C) and protein (Fig. 11D-F) 

expression under conditions of NRF2 silencing. Altogether, these data suggest that NRF2 is 

necessary for NaHS to induce NQO1 and PRDX1 during h-OCs.  

 



66 
 

 

Figure 11: NaHS fails to induce NRF2 target genes expression under NRF2-silencing conditions in h-

OCs. h-OCs precursors were treated with NRF2 siRNA during osteoclastogenic differentiation in the 

presence or absence of NaHS. Panels A-C: Histograms showing mRNA expression for NRF2 (A), NQO1 (B), 

PRDX1 (C) in NRF2-silenced samples treated or untreated with NaHS. Data are expressed as mean ± SEM 

of N=6 independent experiments. Paired t-test was performed for the statistical analysis (ns = non 

significative). D-F: WB analyses of NRF2 (D), NQO1 (E), PRDX1 (F) protein expression; upper panel 

shows representative WB analysis for target proteins and control -actin; lower panels shows quantification 

by Image J software where target proteins were normalized by -actin band intensity.  

   

TRAP staining was found to be in agreement with findings obtained in Fig. 3, as NT silenced cells 

showed an inhibition of h-OCs formation by 200 M NaHS (Fig. 12A a,b). However, NaHS 

completely failed to inhibit h-OCs formation in cells silenced for NRF2 (Fig. 12A c,d). Coherently, 

h-OCs counts confirmed a significant inhibition of h-OCs in NT transfected cells during NaHS 

treatments in comparison to both NT untreated cells as well as both NaHS-treated and untreated 

NRF2 transfected cells (*** p<0.0001). 
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As a result, we can state that NRF2 expression in h-pre-OCs cells is essential for H2S-mediated 

inhibition of h-OCs differentiation.  

 

Figure 12: Silencing NRF2 mRNA in h-pre-OCs prevents inhibition of h-OCs differentiation by NaHS. h-

monocytes precursors were treated with NT siRNA or NRF2 siRNA during osteoclastogenic differentiation in 

the presence or absence of 200 μM NaHS.  A, Representative pictures showing TRAP positive staining at day 

6 of differentiation (magnification 20X). B, Histogram showing average h-OCs number/field. Data are 

expressed as mean ± SEM of N=3 independent experiments. ANOVA and Tukey’s  multiple comparison test 

were performed for statistical analyses (***  p<0.0001 vs NT siRNA or NRF2 siRNA ± NaHS).   

 

NaHS downregulates the RANKL/OPG mRNA ratio in h-MSCs  

To understand whether NaHS inhibits h-OCs formation also via indirect mechanisms, we sought to 

analyze the RANKL/OPG mRNA expression ratio in h-MSCs, one of the key OCs supporting cells 

(D.-C. Yang et al. 2008) (Dalle Carbonare et al. 2009). RANKL mRNA expression was not 

modulated by NaHS treatments in our culture system. Conversely, a trend of increase of OPG was 

shown by RT-PCR after 12 h of treatment, resulting in a significant down-regulation of 

RANKL/OPG mRNA ratio (Fig. 13 A-C). Therefore, NaHS not only directly inhibits h-OCs but it 

is also capable of an indirect inhibition of osteoclastogenesis through down-regulation of the 

RANKL/OPG mRNA ratio in h-MSCs.  
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Figure 13: NaHS downregulates RANKL/OPG mRNA ratio in h-MSCs. h-MSCs were cultured in α-MEM 

15 %FBS in the presence or absence of 100-200 μM NaHS for 12 h. A-C, Histograms showing RANKL (A) 

and OPG (B) mRNA expression and RANKL/OPG (C) mRNA expression ratio. Data are expressed as fold 

increase compared to control sample and as the mean ± SD of N=3 independent experiments. One sample t-

test was performed for statistical analyses (* p<0.05 vs control cells). 
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5.1.2. In vitro H2S exogenous administration regulates osteoblastogenesis 

AR-S staining reveals heterogeneous response of h-MSCs to osteogenic stimulation 

h-MSCs are known to be an heterogeneous population with high variability both in terms of 

subpopulation  and of donor-dependence (Rada et al. 2012) (Phinney 2012) (Russell et al. 2010). In 

an attempt to describe the donor-dependent variability during osteogenic differentiation of h-MSCs, 

we performed AR-S quantification of mineral deposition through spectrophotometric measurement 

at 510 nm. According to a statistical multivariate analysis, cell source was not an independent factor 

for the differentiation of h-MSCs, therefore data obtained from bone marrow and tybial plateau h-

MSCs were pooled in these analyses. h-MSCs displayed on average a significant mineralization 

capacity starting at D14 in culture (Fig. 14A; *** p<0.001). However, h-MSCs from an 

approximate 30% of the donors failed to display any positive staining to AR-S at the end of the 

culture, revealing a heterogeneous response to osteogenic stimuli in vitro. Based on their 

differential AR-S quantification, we segregated h-MSCs into ‘mineralizing’ or ‘non mineralizing’ 

groups. Mineralizing h-MSCs displayed a mineralization capacity sufficient to raise AR-S 

absorbance levels above the threshold of 0.3 nm, at least at D28 of differentiation. h-MSCs with no 

mineralization capacity showed absorbance levels below 0.3 nm anytime during the osteogenic 

culture and were defined as non mineralizing h-MSCs (Fig. 14B). Comparing the two groups, the 

mineralizing population showed significantly higher AR-S absorbance at the time points D21 and 

D28 compared to the non mineralizing group (° p<0.05; Fig. 14C). Moreover, the most significant 

increase in AR-S values occurred between D14 and D21 (as compared to D7-D14 and D21-D28) 

within the mineralizing group (***  p<0.01; Fig. 14C). These data suggest that the most relevant 

time points for evaluating the osteogenic differentiation are D0, D14, D21.  

When we investigated whether there was a difference in the age between the two groups we found 

no significant difference (47±24 and 48±24, respectively, for mineralizing and non mineralizing 
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group). In an attempt to further describe the heterogeneous time course of mineral deposition in the 

mineralizing group, we segregated h-MSCs based on their phenotype of calcium deposition, 

through AR-S quantification. Non calcium deposing cells (N-CD), low calcium deposing cells (L-

CD) and high calcium deposing cells (H-CD) showed, respectively, absorbance values below 0.3; 

between 0.3 and 1; and higher than 1. Non mineralizing donors exhibited N-CD phenotype 

throughout all the time course of differentiation; conversely, mineralizing donors exhibited N-CD, 

L-CD and H-CD phenotype depending on the time point of the analysis (Fig. 14E). Interestingly, 

among mineralizing group we found a donor-dependent variability in the response to osteogenic 

stimuli both in the time of beginning of mineralization and in the amount/time of calcium produced. 

As a results, while all mineralizing cells, regardless to the time points, were changing from a N-CD 

to a L-CD and/or a H-CD phenotype, the percentage of donors at each time point with a specific 

phenotype of mineralization resulted very different: N-CD phenotype (89% at D7, 61% at D14 and 

13% at D21), a L-CD phenotype (11% at D7, 27% at D14, 53% at D21, 33% at D28) and an H-CD 

phenotype (12% at D14, 34% at D21, 67% at D28) (Fig. 14F).  
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Figure 14: AR-S staining identifies different mineralization behaviour of h-MSCs during osteogenic 

differentiation.  h-MSCs were cultured in osteogenic medium for 28 days. A, Histogram shows the overall 

quantification of AR-S in the whole population of MSCs. Data are expressed mean ± SD of 60 independent 

experiments. Kruskal-Wallis test + Dunns multiple comparison test was performed for statistical analyses 

(*** p<0.0001). B, Table representative of how we segregated h-MSCs in mineralizing and non 

mineralizing group, based on absorbance values. C, Histogram showing the different mineralization 
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behaviour of h-MSCs selected for mineralization behaviour. Data are expressed mean ± SD of 42 

mineralizing and 18 non mineralizing cells. Two-way Anova + Bonferroni post-test (*** p<0.001) and 

Kruskal-Wallis test + Dunns multiple comparison test (° p<0.05) were performed for statistical analyses. D, 

Table representative of how we segregated h-MSCs in N-CD, H-CD, L-CD cells, based on absorbance 

values. E, Representative picture showing the different mineralization behaviour between the two 

populations. F, Table representative of the percentage of donors at N-CD, L-CD or H-CD phenotype at D7, 

D14, D21, D28. 

 

NaHS promotes osteogenic differentiation in vitro 

Recently, H2S has been found to maintain MSCs function and bone homeostasis via regulation of 

Ca
2+

 channel sulfhydration. In particular, NaHS rescued impaired osteogenic differentiation of 

CBS
-/-

 and CBS
+/-

 m-SCs both in vitro and in vivo (Y. Liu et al. 2014). Here, we addressed the 

question of whether NaHS treatment modulates osteogenic differentiation in h-MSCs.  

When h-MSCs were differentiated toward h-OBs lineage in the presence of NaHS, we first found 

that treatments with micromolar concentrations of NaHS did not appear to cause a significant 

decrease in cellularity. Quantification of LDH release indicated no significant cytotoxicity 

throughout the concentrations range of NaHS employed in this study (6-200 µM NaHS). 

Interestingly, we found that LDH release was lower in NaHS-treated h-MSCs compared to control 

cells both at 24 and 72 h (* p<0.05) (Fig. 15A-B). Moreover, in a restricted set of experiments, we 

tested millimolar (1-3,5 mM NaHS) concentrations of NaHS, in order to define whether 

“supraphysiologic” concentrations impaired h-MSCs viability. Toluidine blue staining (Fig. 15C) 

and quantification (Fig. 15D), confirmed that higher levels of NaHS did not cause a significant 

decrease in cellularity. All these data taken together demonstrate that micromolar and millimolar 

NaHS treatment did not affect h-MSCs viability under the culture conditions used in this study.  
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Figure 15: Lack of toxicity of NaHS on h-MSCs precursors. h-MSCs were cultured in α–MEM 15% FBS in 

the presence or absence of increasing concentrations of NaHS for 24 (A) or 72 h (B). A-B, Histograms 

showing LDH measurement; data are expressed as fold increase compared to control cells (CTRL) and 

refers to arbitrary units obtained by colorimetric detection of LDH activity. Data are expressed as mean ± 

SEM of N=3 independent experiments. One sample t-test was performed for statistical analysis  

(*  p<0.05;***  p<0.001 vs control cells); C, Representative pictures of toluidin blue staining comparing 

200 μM and 3,5 mM NaHS to control cells; D, Bar graph showing toluidine blue staining quantification. 

Data are expressed as mean ± SEM of N=4 independent experiments. One sample t-test was performed for 

statistical analysis (ns = non significative). 
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When we performed osteogenic differentiation of h-MSCs during NaHS treatments, we first 

observed that the treatment contributed to increase the amount of calcium deposition by h-MSCs. In 

particular, while untreated h-MSCs displayed a L-CD phenotype, NaHS-treated h-MSCs displayed 

H-CD phenotype, as shown by a representative figure of AR-staining (Fig. 16A). AR-S 

quantification on a large set of h-MSCs further confirmed a significant induction of mineralizing 

activity in the range between 25-200 M NaHS (* p<0.05; Fig. 16B). Second, we found that NaHS 

treatment induced calcium deposition in N-CD h-MSCs. In particular, while untreated h-MSCs 

displayed a N-CD phenotype, NaHS-treated h-MSCs displayed H-CD phenotype, as shown by a 

representative figure of AR-staining (Fig. 16C). AR-staining quantification in h-MSCs cells yet 

non-responsive to stimuli present in osteogenic medium (N-CD h-MSCs) confirmed that NaHS 

significantly induced osteogenic differentiation at all the concentrations tested, between the range of 

6-200 M (* p<0.05) (Fig. 16D). Finally, the ability to induce mineralization was further confirmed 

by mRNA expression of BSP, a marker of osteogenic differentiation. NaHS dose-dependently 

increased BSP expression (Fig. 16E), confirming NaHS –induced osteogenic differentiation. Taken 

together these data demonstrate that NaHS is able on one hand to induce mineralization in N-CD h-

MSCs and moreover, it can increase the amount of mineralization in L-CD h-MSCs. Although the 

setting of these experiments did not allow us to clarify this hypothesis, our data argue in favour of a 

role of NaHS in anticipating the mineralization. 
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Figure 16: NaHS induced and increased h-MSCs osteogenic differentiation. h-MSCs were cultured in 

osteogenic medium in the presence or absence of NaHS stimulation. A, Representative figure of AR-staining 

in L-CD h-MSCs treated with NaHS; B, Histogram showing AR-staining quantification. Data are expressed 

as fold increase compared to control sample and as the mean ± SD of N=18 independent experiments. One 

sample t-test was performed for statistical analyses (* p<0.05 vs control cells); C, Representative figure of 

AR-staining in N-CD h-MSCs treated with NaHS; D, Histogram showing AR-staining quantification. Data 

are expressed as fold increase compared to control sample and as the mean ± SD of N=15 independent 

experiments. One sample t-test was performed for statistical analyses (* p<0.05 vs control cells); E, 

Histogram showing BSP mRNA expression. Data are expressed as fold increase compared to control sample 

and as the mean ± SD of N=23 independent experiments. One sample t-test was performed for statistical 

analyses (* p<0.05 vs control cells). 

 

 

 



76 
 

5.1.3. In vivo H2S administration improved bone formation preventing bone loss 

 

Our in vitro data indicated a possible H2S-mediated modulation of bone formation in vivo. 

Therefore, we took  advantage of the established expertise of our collaborator, Prof. Pacifici (Emory 

University, Atlanta) (Ryan et al. 2005) (Gao et al. 2007) (Grassi et al. 2007) for testing this 

hypothesis in ovx mice, an animal model of post-menopausal osteoporosis. As we modeled a 

chronic pathology, a slow-releasing compound, as GYY, was preferable to a rapid-releasing donor, 

as NaHS, for testing potential targets for the therapy. Most of these data were obtained at the Emory 

University. 

 

Effect of GYY treatment on the H2S serum levels  

In order to monitor the effectiveness of H2S administration we evaluated serum H2S levels at the 

end of the preventive study (please refer to materials and methods section 4.3).  

 This can be revealed as free H2S or bound sulfur, the stored form of sulfur, which can release free 

H2S in physiological conditions (Ishigami et al. 2009). Interestingly, we found that vehicle treated 

ovx mice had lower serum free H2S (~67%, ** p<0.01) and bound sulfur levels (~52%, * p<0.05) 

than sham operated mice (Fig. 17A,B). Treatment with GYY increased serum H2S (~129%, * 

p<0.05) and bound sulfur levels (~95%, * p<0.05) in ovx mice. As a result, GYY treated ovx mice 

and vehicle treated sham operated mice had similar H2S and bound sulfur levels. Those data 

demonstrate that the regimen used for GYY administration was able to normalize/balance the sulfur 

deficiency caused by ovx (Fig. 17A,B), realizing a pharmacological replacement of H2S levels. 

Moreover treatment with GYY in sham mice increased above the baseline free H2S levels (~32%, * 

p<0.05). As a result, GYY treated sham operated mice displayed the highest H2S serum levels, 

resulting in the highest significant increase compared to vehicle treated ovx mice (~303%, **** 

p<0.0001; Fig. 17A). Interestingly, this implied that there was still a significant difference in the 
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H2S levels between GYY treated sham operated mice and GYY treated ovx mice (~76% higher, 

**p<0.01; Fig. 17A). On the contrary, treatment with GYY in sham mice did not significantly 

increase bound sulfur levels, although it increased the significance in the difference between GYY 

treated sham operated mice and vehicle treated ovx mice (*** p<0.001; Fig. 17B). 
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Figure 17: Effect of GYY treatment on the serum levels of free H2S and bound sulfur in sham and ovx 

mice. Mouse serum was collected at the end of preventive study and measurements of H2S and bound sulfur 

were performed by gas chromatography. A, Histogram showing serum levels of free H2S. B, Histogram 

showing bound sulfur serum levels. Data are expressed as mean ± SEM. N=10 mice per group. Two way 

anova + Tukey’s multiple comparison test were performed for statistical analyses (* p<0.05, ** p<0.01,  

*** p<0.001, **** p<0.0001 vs the indicated group).  

 

GYY-treatment prevents Ovx-induced bone loss and increases bone mass in mice  

To understand the preventive value of GYY administration on ovx-induced bone loss we first 

performed μCT analysis in femur harvested at sacrifice at the end of the preventive study. 

Representative µCT images of femur trabecular bone from all the four groups are shown in Fig. 

18A. Our data first confirmed that 4 weeks after ovx were sufficient for inducing bone loss in mice. 

Indeed, vehicle treated ovx mice had lower BV/TV (~30%, **** p<0.0001; Fig. 18B), Tb.N 

(~13%, **** p<0.0001; Fig. 18C), Tb.Th (~8%, * p<0.05 in femur; Fig. 18D), Ct.V (10%, ** 
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p<0.01; Fig. 18F), Ct. Th (9%, ** p<0.01; Fig. 18G) and higher Tb. SP (~18%, **** p<0.0001; 

Fig.18E) than vehicle treated sham operated mice.  

Conversely, GYY treatment prevented ovx-induced changes in bone volume and structure. Indeed, 

GYY treated ovx mice had higher BV/TV (~32%, ***p<0.001; Fig. 18B), Tb.N (~14, **** 

p<0.0001; Fig. 18C), Tb.Th (~9%, * p<0.05; Fig. 18D), Ct.V (7%, *p<0.05; Fig. 18F), Ct.Th (5%, 

**p<0.01; Fig. 18G) and lower Tb. SP (~15%, ** p<0.01; Fig. 18E) than vehicle treated ovx mice. 

As a result, GYY treated ovx mice and vehicle treated sham operated mice had similar BV/TV, Tb. 

N., Tb. Th., Tb. SP, Ct. V and Ct.Th values (Fig. 18B-E).  

When we investigated GYY effect in sham operated mice we found significantly higher BV/TV 

(~18%, * p<0.05; Fig. 18B) and Tb.Th (~9%, * p<0.05; Fig. 18D) in GYY treated mice compared 

to vehicle treated sham operated mice.  As a result, GYY treated sham operated mice displayed the 

highest BV/TV (~68%, **** p<0.0001; Fig. 18B) and Tb. Th (18%, * p<0.05; Fig. 18D) compared 

to vehicle treated ovx mice. Those data demonstrated that GYY exerted an anabolic role in sham 

operated mice.  

Importantly, we noticed that GYY treated ovx mice had still lower BV/TV, CT. V., Ct. Th and 

higher Tb. SP compared to GYY treated sham operated mice. This data could imply that ovx 

continued to cause significant changes in bone volume and structure even after GYY 

administration. However, we assumed that this difference accounts arise from the difference in H2S 

levels. Interestingly, higher are H2S levels (Fig. 17A), higher is BV/TV (Fig.18B). In particular, 

GYY treatment simulated a sulfur replacement therapy in ovx mice but increased H2S levels above 

the baseline in sham operated mice (Fig. 17A). These data shed important light on the physiological 

and therapeutic value of H2S in bone tissue.  
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Figure 18: GYY-treatment prevents Ovx-induced bone loss and increases bone mass in mice.  µCT 

analysis was performed on femur harvested at sacrifice at the end of the preventive study in order to assess 

femoral trabecular and cortical bone volume. A, Representative images of 3D image reconstruction of 1 

representative femur per group. B-G, Histograms showing (B) Trabecular bone volume over total volume 

(BV/TV), (C)  Trabecular number (Tb.N), (D) Trabecular thickness (Tb.Th), (E) Trabecular space (Tb.Sp), 

(F) Cortical bone volume (Ct.V) and (G) Cortical thickness (Ct.Th) in femur. Data are expressed as mean ± 

SEM. Two way anova + Tukey’s multiple comparison test  were performed for statistical analyses (* p<0.05, 

** p<0.01, *** p<0.001  **** p<0.0001 vs the indicated group). N=10 mice per group.  
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GYY-treatment reverses Ovx-induced bone loss and increases bone mass in mice 

To further verify the therapeutic value of GYY on ovx-induced bone loss we performed μCT 

analysis of femur harvested at sacrifice at the end of the therapeutic study.  

Ovx induced a sustained change over time in femoral volume and structure: at 8 weeks vehicle 

treated ovx mice had lower BV/TV (~30%, * p<0.05; Fig. 19A), Tb.N (24%, **** p<0.0001; Fig. 

12B), Ct.V (8%, ** p<0.01; Fig. 19E) and Ct. Th (9%, **** p<0.0001; Fig. 19F) and an higher Tb. 

SP (~36%, **** p<0.0001;  Fig. 19A, D). Conversely, GYY treated ovx mice had higher BV/TV 

(~47 %, ** p<0.01; Fig. 19A), Tb.N (~22%, * p<0.05;  Fig. 19B), Ct.V (8%,*p<0.05; Fig. 19E), 

Ct.Th (7%, **p<0.01; Fig. 19F) and reduced Tb. SP (~17%, ** p<0.01; Fig. 19D) than in vehicle 

treated ovx mice. As a result, GYY treated ovx mice and vehicle treated sham mice had similar 

values of BV/TV, Tb. N., Tb. SP, Ct. V and Ct.Th values. Unexpectedly, neither ovx nor GYY 

treatment affected Tb.Th (Fig. 19C) in this experiment. Moreover, GYY treated sham operated 

mice had significantly higher BV/TV (~27%, * p<0.05; Fig. 19A), Tb. N (~27%, * p<0.05; Fig. 

19B) and Ct.V (7%, *p<0.05; Fig. 19E) than vehicle treated sham mice. As a result, GYY treated 

sham operated mice displayed the highest BV/TV (~82%, **** p<0.0001; Fig. 19A), Tb. N (~47%, 

**** p<0.0001; Fig. 19B) and Ct. V (~16%, **** p<0.0001; Fig. 19E) compared to vehicle treated 

ovx mice. Those data demonstrated that the regimen of GYY administration was able not only to 

prevent but to reverse the femoral trabecular bone loss and confirmed the anabolic role of H2S in 

sham mice. 
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Figure 19: GYY-treatment reverses Ovx-induced bone loss and increases bone mass. µCT analysis was 

performed on femur harvested at sacrifice at the end of the therapeutic study in order to assess femoral 

trabecular and cortical bone volume. A-F, Histograms showing (A) Trabecular bone volume over total 

volume (BV/TV), (B)  Trabecular number (Tb.N), (C) Trabecular thickness (Tb.Th), (D) Trabecular space 

(Tb.Sp), (E) Cortical bone volume (Ct.V) and (G) Cortical thickness (Ct.Th) in femur. Data are expressed as 

mean ± SEM. Two way anova + Tukey’s multiple comparison tests were performed for statistical analyses (* 

p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 vs the indicated group). N=10 mice per group 
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GYY-treatment partially prevents and reverses Ovx-induced bone loss 

To investigate whether GYY exerts a differential effect at different bone sites, we performed μCT 

analysis of spine. 

Preventive and therapeutic studies confirmed that ovx induced, respectively, in 4 weeks or 8 weeks 

spinal trabecular bone loss in mice. Indeed, vehicle treated ovx mice had lower BV/TV (~28%, 

**** p<0.0001, Fig. 20A; ~40%, * p<0.05, Fig. 20B), Tb.N (~9%, ** p<0.01, Fig.20C; 13%, *** 

p<0.001, Fig. 20D), Tb.Th (~15%, **** p<0.0001, Fig.20E; 20%, **** p<0.0001, Fig. 20F) and 

higher Tb. SP (~13%, ** p<0.01, Fig.20G; 17%, **** p<0.0001, Fig. 20H) than vehicle treated 

sham operated mice respectively in preventive and therapeutic study. GYY treated ovx mice had 

higher BV/TV (~11%, ** p<0.01, Fig.20A; ~59%, * p<0.05, Fig. 20B), Tb. N (~7%, * p<0.05, 

Fig.20C; ~16%, * p<0.05, Fig. 20D), Tb. Th (~9%, ** p<0.01, in therapeutic, Fig. 20F) and lower 

Tb. SP (~12%, * p<0.05 in therapeutic, Fig. 20H) than vehicle treated ovx mice. However, GYY 

treated ovx mice still had less BV/TV (~20%, **** p<0.0001, in preventive, Fig. 20A) and Tb.Th 

(~21%, **** p<0.0001, Fig.20E; ~5%, ** p<0.01, Fig. 20F) than vehicle treated sham operated 

mice respectively in preventive and therapeutic study. Moreover it still had high Tb. SP (~9%,         

* p<0.05, Fig.20H) than vehicle treated sham operated mice, in therapeutic study. Conversely, Tb. 

N and Tb.SP (in preventive study) were found to be similar in GYY treated ovx mice and vehicle 

treated sham operated mice (Fig. 20C,G). Spine cortical bone volume was not considered in our 

analyses as the cortical compartment in spine is thinner and less homogeneous than in femur. These 

findings demonstrate a differential effect of GYY at different bone sites, as μCT analysis of spine 

revealed that GYY treatment only partially prevented and reversed Ovx-induced changes in bone 

volume and structure. 
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Figure 20: GYY-treatment partially prevents and reverses Ovx-induced bone loss. A-H, Histograms 

showing (A-B) Trabecular bone volume over total volume (BV/TV), (C-D) Trabecular number (Tb.N), (E-F) 

Trabecular thickness (Tb.Th), (G-H) Trabecular space (Tb.Sp) in spine after preventive (A,C,E,G) or 

therapeutic study (B,D,F,H). Data are expressed as mean ± SEM. Two way anova + Tukey’s multiple 

comparison tests were performed for statistical analyses (* p<0.05, ** p<0.01, ***  p<0.001,  **** 

p<0.0001 vs the indicated group). N=10 mice per group. 
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GYY stimulates bone formation in mice 

Serum CTX and P1NP have been designated as reference standard markers respectively of bone 

resorption and  formation (Vasikaran, Chubb, and Schneider 2014). As they provide an estimate of 

the rate of bone remodeling, they have been increasingly recognized to monitor treatments of 

osteopenia and osteoporosis (Inaba 2014). Therefore, we measured P1NP and CTX in serum to 

verify how GYY modulates bone turnover. 

As expected, ovx induced a negative bone turnover balance due to an increase in bone resorption 

(~70% increase in CTX serum levels, p<0.05, Fig. 21A) and a low/ineffective compensatory 

increase in bone formation (~49% increase in P1NP serum levels, p<0.01, Fig. 21B).  

GYY did not modulate serum CTX levels, although it displayed a downward trend (Fig. 21A).  

Conversely, treatment with GYY induced a further increase in P1NP in ovx mice (~23%, * p<0.05, 

Fig. 21B). As a result, GYY treated ovx mice had higher levels of P1NP than all the other groups of 

sham operated and ovx mice. In particular, P1NP was found to be increased by ~23% (* p<0.05) 

compared to vehicle treated ovx mice; by ~43% (*** p<0.001) compared to GYY treated sham 

operated mice; by ~84% (**** p<0.0001) compared to vehicle treated sham operated mice (Fig. 

21A). As a result, P1NP/CTX ratio increased both in sham and ovx mice after GYY treatment 

confirming a shift in the bone turnover balance toward bone formation in sham mice and a decrease 

in the negative bone turnover balance in ovx mice, thus reducing the gap between bone resorption 

and formation (Fig. 21C).   
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Figure 21:  GYY stimulates bone formation in mice as evidenced by measurements of biochemical indices 

of bone turnover. Measurement of serum markers of bone turnover was performed at the end of the 

preventive study. Histograms showing: (A) serum levels of CTX, a marker of bone resorption; (B) serum 

levels of P1NP, a marker of bone formation; (C) P1NP/CTX ratio. Data are expressed as mean ± SEM. Two 

way anova + Tukey’s multiple comparison test (A,B) and simple comparison by Unpaired t-test with Welch’s 

correction (C) were performed for statistical analyses. (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 

vs the indicated group). N=10 mice per group. 

 

Histomorphometric analysis in spinal cancellous bone further evidenced that ovx increased static 

indices of bone resorption, N.Oc/BS (~153%, **** p<0.0001; Fig. 22A) and Oc.S/BS (~106%, 

**** p<0.0001; Fig. 22B), and of bone formation, N.Ob/BS (~19%, ** p<0.01; Fig. 22C) and 

Ob.S/BS (~12%, * p<0.05; Fig.22D), while did not increase dynamic indices of bone formation 

BFR/BS (Fig. 22E), MAR (Fig. 22F), and MS/BS (Fig. 22G). 

Treatment with GYY increased both static and dynamic indices of bone formation: N.Ob/BS 

(~16%, ** p<0.01; Fig. 22C), Ob.S/BS (~13%, ** p<0.01; Fig. 22D),  BFR/BS (~83%,  **  p<0.01; 

Fig. 22E), MAR (~27%, ** p<0.01; Fig. 22F), and MS/BS (~57%, * p<0.05; Fig. 22G) in ovx mice. 
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Conversely, GYY did not modulate N.Oc/BS and Oc.S/BS. Taken together these data evidenced a 

role of GYY in modulating bone formation but not bone resorption in vivo. 

Moreover treatment with GYY increased N.Ob/BS (~31%, **** p<0.0001; Fig. 22C), Ob.S/BS 

(~34%,**** p<0.0001; Fig. 22D)  and MAR (~21%, ** p<0.01; Fig. 22F) in sham operated ovx 

mice, confirming the anabolic action of GYY in control animals.  
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Figure 22: GYY stimulates bone formation in mice as evidenced by on spinal histomorphometric indices 

of bone turnover. Histomorphometry was performed at the end of the preventive study. Histograms showing: 

(A) Number of OCs per millimeter of bone surface (N.Oc/BS); (B) Percentage of bone surface covered by 

OCs (Oc.S/BS); (C) Number of OBs per millimeter of bone surface (N. Ob/BS); (D) Percentage of bone 
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surfaces covered by OBs (Ob.S/BS); (E) Bone formation rate/bone surface (BFR/BS); (F) Mineral 

apposition rate (MAR); (G) Percentage of bone surfaces covered by mineralized surfaces (MS/BS). Data are 

expressed as mean ± SEM.  Two way anova and Uncorrected Fisher’s LSD were performed for statistical 

analyses (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 vs the indicated group). n=10 mice per group.  

 

Differently to spine, analysis of femoral cancellous bone by histomorphometry revealed that ovx 

did not alter most of the indices of bone resorption and bone formation. Indeed, N.Oc/BS (Fig. 

23A), Oc.S/BS (Fig. 23B), N.Ob/BS (Fig. 23C), Ob.S/BS (Fig. 23D), BFR/BS (Fig. 23E) and 

MS/BS (Fig. 23F) were not modulated by ovx. Ovx increased only MAR by 32% (**** p<0.0001) 

in vehicle treated mice (Fig. 23G). GYY treated ovx mice had increased N.Ob/BS (~18%, * p<0.05; 

Fig. 23C) and Ob.S/BS (~19%, * p<0.05; Fig. 23D) as compared to vehicle treated ovx mice. 

Although GYY did not increase BFR/BS compared to vehicle treated ovx mice, GYY treated ovx 

mice had significant higher BFR/BS, as compared to vehicle (~25%, * p<0.05) and GYY treated 

(~34%, ** p<0.01) sham-operated mice (Fig. 23E). GYY did not modulate any of these indices in 

sham operated mice (Fig. 23A-G). These data indicate that GYY induced bone formation in femur 

during ovx. 
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Figure 23: GYY stimulates bone formation in mice as evidenced by femur histomorphometric indices of 

bone turnover. Histograms showing: (A) Number of OCs per millimeter of bone surface (N.Oc/BS); (B) 

Percentage of bone surface covered by OCs (Oc.S/BS); (C) Number of OBs per bone surface (N. Ob/BS); 

(D) Percentage of bone surfaces covered by OBs (Ob.S/BS); (E) Bone formation rate/bone surface 
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(BFR/BS); (F) Mineral apposition rate (MAR); (G) Percentage of bone surfaces covered by mineralized 

surfaces (MS/BS). Data are expressed as mean ± SEM.  Two way anova and Uncorrected Fisher’s LSD were 

performed for statistical analyses (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 vs the indicated 

group). n=10 mice per group.  

 

GYY inhibits apoptosis in m-SCs  

OBs apoptosis (Kousteni et al. 2001) (Almeida et al. 2007) is one of the key factors which limits the 

compensatory increase in bone formation (R L Jilka et al. 1998) (Di Gregorio et al. 2001) 

contributing to explain why bone formation does not increase as much as resorption after ovx.  

Here, we investigated whether GYY treatment was able to prevent ovx mediated apoptosis in m-

SCs. Caspase-3 activity, which plays a central role in the execution-phase of cell apoptosis, and 

mRNA expression of BCL2-associated X protein (Bax), a pro-apoptotic gene, and B-cell 

CLL/lymphoma 2 (Bcl2), an anti-apoptotic gene, were measured as indices of apoptosis. We found 

that ovx increased Caspase-3 activity (Fig.24A) and Bax expression (Fig. 24B) while had no effect 

on Bcl2 expression (Fig. 24C) in m-SCs. GYY treatment inhibited caspase-3 activation and ovx-

induced expression of Bax, reducing their activity/expression to a level similar to that of the sham 

mice (Fig. 24A-B). Moreover, GYY was found to increase the expression of Bcl2 compared to both 

ovx mice and sham operated mice (Fig. 24C). Overall, we showed with three different assays that 

the treatment with GYY decreases the rate of apoptosis induced by ovx in m-SCs. 
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Figure 24: GYY inhibits apoptosis in m-SCs. Histograms showing: A, Caspase-3 activity. B-C, Bax and 

Bcl2 mRNA expression. Data are expressed as mean ± SEM. Two way anova + Tukey’s multiple comparison 

test were performed for statistical analyses (* p<0.05,** p<0.01,*** p<0.001, **** p<0.0001 vs sham 

operated control). N=5 mice per group.  

 

GYY increases m-SCs commitment to the osteoblastic lineage  

Based on the evidences that GYY induced in vivo bone formation and NaHS induced h-MSCs 

mineralization in vitro, we further investigated ex vivo m-SCs differentiation after GYY treatment 

in ovx and sham mice. m-SCs differentiation was evaluated by CFU-ALP formation and mRNA 

expression of osteogenic markers. Ovx induced in vehicle treated mice both CFU-ALP formation 

(~57 %; **** p<0.0001; Fig. 25A) and mRNA expression of each of the four analyzed genes (Fig. 

25B; * p<0.05 for Runx2, Osx, Ocn; ** p<0.01 for Col-1). 

Moreover, we found that GYY treatment in ovx mice further increased CFU-ALP (~28%, **** 

p<0.0001; Fig. 25A) and the mRNA expression of all the osteogenic genes analyzed (*p<0.05 for 

Runx2, Osx; ** p<0.01 for Ocn; *** p<0.001 for Col-1; Fig.25B). Accordingly, GYY treated ovx 

mice displayed the highest number of CFU-ALP per plate (Fig.25A), as well as the highest mRNA 

levels of Runx2, Col-1, Osx and Ocn (Fig.25B). Together, these findings demonstrate that 

increasing m-SCs commitment to the osteoblastic lineage is one of the mechanisms by which GYY 

treatment prevented ovx-induced bone loss. Moreover, GYY significantly increased the number of 

CFU-ALP (~43%, **** p<0.0001; Fig.25A) and the expression of osteogenic genes in sham-
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operated (* p<0.05; Fig.25B) mice. Further confirming that the anabolic action of GYY is mediated 

by increased osteoblastogenic differentiation of m-SCs.  

 

Figure 25:  GYY increases m-SCs commitment to the osteoblastic lineage. At the end of the preventive 

study CFU-ALP and  mRNA expression of osteogenic markers were performed on m-SCs. Histograms 

showing: A, CFU-ALP, B, mRNA expression levels of markers of osteogenic differentiation in m-SCs. Data 

are expressed as mean ± SEM. Two way anova + Tukey’s multiple comparison test were performed for 

statistical analyses (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 vs sham operated control). N=10 

mice per group. 

 

GYY increases Wnt targets in m-SCs and up-regulates Wnt ligands in the BM  

Since OBs differentiation is induced by Wnt activation, we sought to investigate the effects of ovx 

and GYY treatment on Wnt signaling. Analysis of Wnt signaling in purified m-SCs revealed that 

the levels of mRNA for the 11 tested genes were all increased by ovx as compared to sham operated 
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controls  (* p<0.05 for Ahr, Axin2, Cyr61, Nkd2, Tgfβ3, Thbs1, Wisp1, Tcf, Lef1; ** p<0.01 

Tagln, Twist1; Fig. 26A).  Moreover, treatment with GYY caused a further increase in the mRNA 

levels of the 11 measured genes in the ovx group (* p<0.05 Tagln, Thbs1, Wisp1, Tcf, Lef1; ** 

p<0.01 for Ahr, Axin2; *** p<0.001, Twist1; **** p<0.0001 Cyr61, Nkd2, Tgfβ3), and increased 

the mRNA expression of 8 genes in the sham operated group (* p<0.05 Ahr, Tagln, Tgfβ3, Wisp1, 

Lef1; ** p<0.01 Axin2, Cyr61, Twist1), suggesting that GYY stimulate bone formation by 

activating Wnt signaling in m-SCs (Fig. 26A).  

Next we investigated WNT ligands in whole BM. Regulatory effects of ovx and GYY were 

detected for four Wnt ligands (Wnt16, Wnt2b, Wnt6 and Wnt10b; Fig. 26B-E). In vehicle treated 

mice ovx decreased the mRNA levels of Wnt10b (** p<0.01; Fig. 26E), while had no effects on 

Wnt16, Wnt2b, and Wnt6. Moreover, we found GYY treatment to increase the BM mRNA levels of 

Wnt16, Wnt2b, and Wnt10b in both sham operated (* p<0.05 for Wnt16 and Wnt2b; **** 

p<0.0001) and ovx mice (* p<0.05 for Wnt10b; *** p<0.001 for Wnt16 and Wnt2b) (Fig. 26B-C-

E). The mRNA level of Wnt6 was increased by GYY in ovx (** p<0.01; Fig. 26D) but not sham 

mice. The largest changes in the expression of Wnt ligands in response to GYY were noted for 

Wnt16 and Wnt2b, as shown in Fig. 26B-C.  The levels of these 2 ligands  were in fact found to be 

higher in GYY treated ovx mice than in vehicle treated sham operated mice (respectively ~120% 

and ~67%; **** p<0.0001).  
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Figure 26:  GYY increases Wnt targets in m-SCs and up-regulates Wnt ligands in the BM. At the end of 

the preventive study BM was harvested and m-SCs were isolated. mRNA analysis was then performed on 

both BM and m-SCs. A, Histogram showing mRNA expression of Wnt-signaling target genes in m-SCs. B-E, 

Histograms showing  mRNA expression of Wnt ligands in BM. Data are expressed as mean ± SEM. Two way 

anova and un-corrected Fisher’s LSD were performed for statistical analyses (* p<0.05,** p<0.01,***  

p<0.001, **** p<0.0001 vs sham operated control).  N=5 mice per group.  
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5.2 Gaining new insights in the role of endogenous H2S in bone tissues 

 

CBS and CSE are differently expressed in bone biopsies  

Firstly, we aimed to verify H2S-generating enzymes expression in bone tissue. We performed 

immunohystochemical analysis for CBS and CSE in human bone biopsies. Representative pictures 

are reported in Fig. 27. We found that both antigens were expressed broadly in bone. However, 

CBS and CSE showed a markedly different pattern of expression; CBS showed intense positive 

staining in bone lining cells, osteocytes, BM cells as well as vascular cells (Fig. 27a,b). Coherently 

with existing evidence from vascular biology, CSE was found to be mainly present in the 

perivascular cells while it was only occasionally positive in bone lining cells and it was mainly 

negative in osteocytes (Fig. 27d,e). Matched isotype control confirmed the specificity of the 

staining (Fig. 27c,f). These findings suggest that H2S is enzymatically generated in bone and BM.   

 

Figure 27: CBS and CSE are differently expressed in bone biopsies: Immunohistochemistry showing CBS 

and CSE expression in bone tissue. Figure shows representative pictures at low magnitude - 200x (a,c,d,f)  

or high magnitude - 600x (b,e) for CBS (a,b), CSE (d,e) or matched isotype control (c,f).   
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CBS and CTH/CSE expression and activity regulates h-MSCs osteogenic differentiation 

Experiments in CBS
-/-

 mice and WT mice pharmacologically treated with CBS and CSE inhibitors 

showed impaired m-SCs osteogenic differentiation (Y. Liu et al. 2014). Here, we investigated 

whether endogenous H2S production regulates h-MSCs differentiation into h-OBs. CBS and CTH 

siRNA decreased CBS and CTH mRNA expression by ~75% as compared NT siRNA (Fig. 28A; 

*** p<0.0001). When subjected to osteogenic stimulation, h-MSCs silenced for CBS and CTH 

showed a dramatic reduction in mineralized nodule formation in vitro (~53%, ** p<0.01; Fig. 28B). 

Similar decrease in mineralization was found after treatment with CBS inhibitor (HA) and CSE 

inhibitor (PAG) (~56%, * p<0.05; Fig. 28C). These data confirmed that endogenous H2S is 

necessary for osteogenic differentiation and mineralization of h-MSCs.  
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Figure 28: CBS and CTH/CSE expression and activity regulates osteogenic differentiation of human h-

MSCs. h-MSCs were cultured in osteogenic medium in the presence or absence of siRNA CBS/CTH (A-B) or 

CBS inhibitor (HA) / CSE inhibitor (PAG) (C).  A, Histogram showing CBS and CTH mRNA expression after 

CBS and CTH silencing (N=5); B, Histogram showing AR-S staining quantification after CBS and CSE 

silencing (N=5); C, Histogram showing AR-S quantification after CBS and CSE functional inhibition (N=3). 

Data are expressed as mean ± SEM. One way Anova + Tukey’s multiple comparison test and Mann-Whitney 

test were performed for statistical analyses. * p<0.05, ** p<0.01, *** p<0.001 vs the respective NT siRNA 

or CTRL cells.  
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CBS and CTH expression is modulated by osteogenic stimuli and CBS and CTH are selectively 

up-regulated in mineralizing h-MSCs 

Based on our observation suggesting that H2S levels promotes osteogenic differentiation (Fig. 16), 

we aimed to first verify whether CBS and CTH, the gene codifying for CSE, were modulated by 

osteogenic process. In a second instance we aimed to verify whether their expression was 

differentially modulated in mineralizing and non mineralizing cells (based on data shown in Fig. 

15). As a reference marker for osteogenic differentiation, we analyzed ALP expression in the same 

populations. When analyzed in the whole, unsegregated population of h-MSCs, CBS mRNA 

expression significantly increased at D14 and D21 compared to baseline levels (***p<0.0001; Fig. 

29A); CTH mRNA expression significantly increased at D14 (*p<0.05; Fig. 29B), while ALP 

mRNA expression increased both at D14 and D21 (***p<0.0001; Fig. 29C). However, when h-

MSCs were divided into mineralizing and non mineralizing, CBS and CTH showed a different 

pattern of expression. Mineralizing h-MSCs showed a time-dependent up-regulation of CBS, CTH 

and ALP (Fig. 29D,E,F). In particular, CBS mRNA expression was up-regulated both at D14 and 

D21 (***p<0.0001; Fig. 29D), CTH was up-regulated at D14 and D21 (*p<0.05; **p<0.01; Fig. 

29E). Similarly, ALP expression retained the up-regulation shown in the unselected population, 

although at a lower significance (*p<0.05, **p<0.01; Fig. 29F). However, in non mineralizing h-

MSCs, osteogenic stimulation failed to induce any up-regulation of CBS or CTH (Fig. 29G,H), 

while ALP expression was still significantly up-regulated at both D14 and D21 (**p<0.01, *p<0.05; 

Fig. 29I). Therefore, CBS and CTH were found to be selectively up-regulated during osteogenic 

differentiation only in the subset of h-MSCs undergoing complete differentiation toward osteogenic 

lineage. 
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Figure 29: CBS, CTH, ALP mRNA expression in h-MSCs during osteogenic differentiation. h-MSCs were 

cultured in osteogenic medium for 21 days. A-I, Histograms showing mRNA expression on 26 independent 

experiments and divided  in 17 mineralizing cells (D-F) and 9 non mineralizing cells (G-I). Kruskal-wallis 

test + Dunns multiple comparison test was performed for statistical analyses (*  p<0.05; ** p<0.01; *** 

p<0.001).  

 

Increased expression of CBS and CSE in mineralizing h-MSCs was further confirmed at the protein 

levels by WB analysis. A representative WB obtained from a mineralizing h-MSCs is reported in 

Fig. 30. 
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A B

  

Figure 30: CBS and CSE protein expression in h-MSCs during osteogenic differentiation. h-MSCs were 

cultured in osteoblastogenic medium for 21 days. A-B, Representative pictures of WB analyses showing 

CBS, CSE and -actin protein expression in h-MSCs during osteogenesis.  

 

CBS expression is differentially expressed in mineralizing and non mineralizing cells and 

correlates to mineralization 

A cross-sectional statistical analysis of gene expression was performed for data obtained at D14 and 

D21 (Fig.31), it was found that CBS expression was higher in the mineralizing group of h-MSCs as 

compared to non mineralizing h-MSCs at both time points (*p<0.05; Fig. 31A,D). On the contrary, 

CTH and ALP expression were not significantly different between the two groups (Fig. 31B,C,E,F).  

 

Figure 31: Cross-sectional analysis of CBS, CTH, ALP mRNA expression in mineralizing vs non 

mineralizing h-MSCs. h-MSC were cultured in osteogenic medium for 21 days. A-F, Histograms showing 
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CBS (A-D), CTH (B-E), ALP (C-F) mRNA expression levels in h-MSCs at D14 (A,B,C) and D21 (D,E,F) 

during osteogenic stimulation. Data compare 17 mineralizing h-MSCs to 9 non mineralizing h-MSCs. Mann-

Whitney test was performed for statistical analyses (*  p<0.05). 

 

To further investigate if the expression profile of CBS and CTH is associated with the progression 

of h-MSCs through the osteoblastic phenotype, we performed analysis of correlation between 

mRNA expression values and mineralization as expressed by AR-S absorbance values, independent 

of time. Again, ALP expression was used as a reference. As shown in Table 9, CBS expression was 

positively correlated (Rs 0.358, p<0.0001) with in vitro mineralization. Moreover, CBS strongly 

correlated with CTH but not ALP expression (Rs 0.735, p<0.0001). ALP expression positively 

correlated with CTH (Rs 0,261, p < 0.01).  

 Correlation coefficient  P value  

Min vs CBS  

N=97 

0,358**  0.0001 

Min vs CTH  

N=97 

0,199     0.05 

Min vs ALP  

N=97 

0,086 0.403 

CBS vs CTH 

N=97  

0,735** 0.0001 

CBS vs ALP  

N=97 

0,176 0.084 

CTH vs ALP 

N=97  

0,261** 0.01 

 

Table 9: Table shows correlation coefficient and P value for correlation between AR-S absorbance value 

and CBS, CTH or ALP mRNA expression or the correlation between CBS, CTH and ALP mRNA 

expression. 
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In Fig. 32, a graphical representation of the correlation between CBS, CTH and ALP mRNA 

expression to AR-S absorbance value is reported through the non-parametric regression curve 

obtained with the Loess model. 

 

Figure 32: Graphical view of the correlation of CBS, CTH, and ALP mRNA expression with AR-S 

absorbance value during osteogenesis. Correlation is drawn through Loess curves for non-parametric data. 

 

Ex vivo analysis of CBS and CTH mRNA and protein expression reveals higher expression in h-

OBs than h-MSCs from same patients 

To gain further insights into in vivo relevance of our in vitro findings, we analyzed the expression of 

CBS and CTH in ex-vivo specimens constituted by h-MSCs and h-OBs isolated from the same 

tybial plateau in different donors. We performed this analysis by multiple approaches:  first, we 

analyzed the expression at passage 0 in culture, a condition where cells undergo minimal 

manipulation and therefore are closer to the in vivo profile of markers expression. As shown in 
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Fig.33A,B the paired analysis of data from 6 patients confirmed that CBS expression is 

significantly higher in h-OBs than in h-MSCs (*p<0.05; Fig.33A), while CTH mRNA expression 

revealed high donor variability and did not show any significant difference between the two cell 

types (Fig.33B). Second, to expand the pool of donors we analyzed the expression of CBS and CTH 

comparing h-MSCs and h-OBs at passage 1 in culture. Data obtained from 16 patients revealed that 

both CBS and CTH displayed significantly higher expression in h-OBs compared to h-MSCs (*** 

p<0.001 for both, Fig.33C,D). Finally, CBS and CTH expression levels were analyzed within a 

dataset of whole genome microarray analysis that we previously generated in our laboratory 

(Lisignoli et al. 2009). Further confirming our previous findings, CBS and CTH were found to be 

between the genes significantly up-regulated in mature h-OBs as compared to h-MSCs. In 

particular, CBS and CTH were expressed, respectively, 4.9 and 1.7 fold higher as compared to h-

MSCs (Fig.33E, F; ° p<0.0001).  
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Figure 33: CBS and CTH mRNA expression is higher in h-OBs than in h-MSCs. A, B, Box plots 

(Whiskers min to max) showing CBS and CTH expression by RT-PCR of cells at passage 0 isolated from 

tybial plateau of 6 donors. Wilcoxon matched paired test was performed for statistical analyses (* p<0.05). 

C, D. Box plots (Whiskers min to max) showing CBS and CTH expression by RT-PCR of cells at passage 1 

isolated from tybial plateau of 16 donors. Wilcoxon matched paired test was performed for statistical 

analyses (***  p<0.0001). E, F, Box plots (Whiskers min to max) showing CBS and CTH expression of cells 

by microarray analyses at passage 1 isolated from tybial plateau of 6 donors. Mann Whitney test was 

performed for statistical analyses (***  p < 0.05).  
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Then, we performed immunocytochemistry and WB analyses for CBS and CSE in h-MSCs and h-

OBs isolated from tybial plateau. As shown in  Fig. 34A, h-MSCs cultured in monolayer broadly 

expressed both CBS and CSE; moreover, h-OBs displayed a marked increase in the positive 

staining to both antigens. This protein expression was further confirmed in pairs of h-MSCs and h-

OBs isolated from the same bone biopsy obtained from 3 different donors by WB analysis (Fig. 

34B). While basal expression of CBS varied in h-MSCs among different donors, h-OBs consistently 

showed a much stronger expression levels compared to their respective h-MSCs counterpart, which 

resulted into a significant difference upon densitometric quantification (3.3 fold higher, ** p<0.01;  

Fig. 34C). CSE expression showed a similar trend of increased expression in h-OBs, which resulted 

into a significant difference upon densitometric quantification (2.4 fold higher, ** p<0.01; Fig. 

34D). However, contrary to CBS, CSE showed higher variation among different donors in h-OBs 

counterpart (Fig. 34C). 

Altogether these ex-vivo findings reveals that CBS and CTH/CSE are indeed differentially 

expressed in bone tissue between the osteoprogenitor cells and the terminally differentiated 

osteoblastic cells confirming increased expression during transition toward mature osteogenic 

phenotype revealed by in vitro data. 
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Figure 34: Immunocytochemical staining and WB analyses of CBS and CSE in h-MSCs and h-OBs. A, 

Representative pictures showing immunocytochemical staining for CBS (a,c) and CSE (b,d) in h-MSCs (a,b) 

and OBs (c,d) isolated from the  tybial plateau of different donors; B, WB analyses showing CBS and CSE 

protein expression in h-MSCs vs h-OBs obtained from the tybial plateau of the same patient; data were 

obtained from 4 different donors. C, Histogram shows densitometric quantification of WB protein expression 

showed in panel 6B; quantification was performed by Image J software and target proteins were normalized 

by -actin band intensity. Data were analysed by Un-paired t-test. (*  p<0.05; ** p<0.01).  

 

Ovx is associated with impaired H2S-generating enzymes expression  

Based on the evidences that a) ovx is associated with aberrant OCs activity and limited 

compensatory increase in OBs formation; b) H2S inhibited OCs function in vitro and induced OBs 

differentiation both in vitro and in vivo; c) ovx blunted H2S levels; d) GYY administration 

prevented ovx-induced bone loss, we prompted to investigate whether estrogen depletion is 

associated to a down-regulation of H2S-generating enzymes. 

Coherently to results previously shown in Fig. 17, in this experiment ovx blunted both free H2S and 

bound sulfur serum levels indicating a physio-pathological role of H2S levels in the development of 

osteoporosis due to estrogen deficiency. We further extended this investigation to the expression of 



107 
 

H2S generating enzymes. We found that mRNA expression of CBS and CTH were significantly 

down regulated in both m-SCs (Fig. 35C,D) and total BM cells of ovx mice (Fig. 35E,F) compared 

to sham-operated mice. Therefore, ovx blunts the expression levels of CBS and CTH mRNA in 

bone confirming a physio-pathological role of transsulfuration pathway in bone homeostasis. 

 

Figure 35: Effects of ovx on serum levels of H2S and mRNA expression of CBS, CTH in BM m-SCs and 

total BM cells.  Mouse serum was collected at the end of preventive study and measurements of H2S and 

bound sulfur were performed by gas chromatography. mRNA expression was evaluated by RT-PCR in whole 

BM and m-SCs.  Histograms showing: (A) Serum levels of free H2S and (B) bound sulfur measured 4 weeks 

after surgery. (C-D) mRNA expression of CBS and CTH in total BM cells.  (E-F) mRNA expression of CBS 

and CTH in BM m-SCs. Mann-Whitney (A-B) and unpaired t test (C-F) were performed for statistical 
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analysis. Data are expressed as mean ± SEM.  N=10 mice per group. ** p<0.01, *** p<0.001 vs sham-

operated mice. 

 

CBS and CTH mRNA expression is up-regulated by estrogen 

Furthermore, to investigate whether estrogen directly regulates CBS and CTH in human bone cells, 

we stimulated h-MSCs with 17-β estradiol. After 24 hours stimulation, 17-β estradiol significantly 

up-regulated CBS and CTH expression (** p<0.01; * p<0.05; Fig. 36A,B) suggesting that the 

endogenous pathway leading to H2S production is, at least in part, directly induced by estrogen.  

 

Figure 36: 17-β estradiol regulates CBS and CTH mRNA expression. h-MSCs were cultured in α–MEM 

5% FBS without phenol red for 24 h. A-B, Histograms showing CBS and CTH mRNA expression. One 

sample t test was performed for statistical analysis.** p<0.01  * p<0.05 vs CTRL cells. Data are expressed 

as mean ± SEM of N=5 independent experiments. 
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5.3 Translating in vitro and in vivo findings into possible applications of clinical 

interest 

 

5.3.1 Development of DM-22, an H2S-releasing drug for post-menopausal 

osteoporosis 

 

Our data demonstrated an anabolic action of H2S-donors in vitro and in vivo and an anti-catabolic 

action in vitro. Based on this dual action exerted by H2S on bone homeostasis, we sought to exploit 

these findings into a pharmaceutical tool aiming at treating post-menopausal osteoporosis. Our 

strategy has been to develop an hybrid drug, based on the molecular structure of alendronate (AL), 

an anti-catabolic drug widely used in the clinic but with several limitations (Armamento-Villareal et 

al. 2006) (Piscitelli et al. 2010) (Faiman, Pillai, and Benghiac 2013) (Paiva-Fonseca et al. 2014). To 

achieve the manufacture of DM-22, a novel H2S-releasing AL, we established a collaboration with 

the group of professor Calderone and Dr Rapposelli (University of Pisa), who has a great expertise 

in developing NO-hybrids drugs for cardiovascular pathologies (Breschi et al. 2006) (Calderone et 

al. 2009) (Digiacomo et al. 2015). By in vitro study comparing DM-22 to AL function we expected 

DM-22 to be more cytocompatible, exerts both anti-catabolic and anabolic action compared to the 

parent drug. 

 

DM-22 is a slow-releasing H2S donor 

Fig. 37 shows that DM-22 is a compound capable of releasing H2S in the presence of organic thiols 

such as L-cysteine. It exhibited a slow-H2S-release reaching a maximum concentration of 45 μM 

H2S after 20 min. Conversely, incubation of DM-22 without organic thiols supplementation caused 
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a slow and modest release of H2S. The concentration of H2S detected after 20 minutes of incubation 

was equal to about 1.5 μM. 

 

Figure 37: H2S release from DM-22 as detected by amperometric measurements. 1 mM DM-22 in 

phosphate buffer was incubated with (blacks squares) or without (white squares) 4 mM L-cysteine which 

allows H2S release.  

 

DM-22 inhibits h-OCs differentiation and function without inducing cytotoxicity and preserving 

a residual h-OCs   

AL has been widely used in medical practice to treat osteoporosis (Piscitelli et al. 2014) for its 

inhibition on OCs differentiation and function (Azuma et al. 1995) (Rogers et al. 1996).  

Here, we first aimed to investigate whether DM-22 retained the AL-dependent inhibition on 

osteoclastogenesis and AL toxicity on h-OCs. To investigate whether DM-22 and AL differentially 

regulate of h-OCs differentiation, h-monocytes were differentiated into mature h-OCs in the 

presence of increasing concentrations of the two compounds. Functional assays for osteoclastogenic 

differentiation revealed a different pattern of inhibition of DM-22 compared to AL. Fig. 38A 

compares the number of TRAP-stained h-OCs after AL or DM-22 treatment. DM-22 showed a less 
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potency in inhibiting h-OCs differentiation. Fig. 38B-C show quantification of the number of h-OCs 

obtained after 5 days of AL (Fig. 38B) or DM-22 (Fig. 38C) treatment. AL dose-dependently 

decreases the total number of TRAP positive mature h-OCs, resulting into a high statistically 

significant inhibition at all the concentrations tested 1-33 M (*** p<0.001) (Fig. 38B). In 

particular AL decreased the number of h-OCs by 62% and 77% respectively in 1 and 3.3 M; and 

virtually abolished h-OCs differentiation starting from the 10 M concentration. Conversely, DM-

22 was found to highly inhibit h-OCs differentiation only at the highest dose, 33 μM (~37%, *** 

p<0.001); while in the lowest doses (1-10 M) slightly inhibited h-OCs differentiation (~15%; ** 

p<0.01, *** p<0.01). These data suggested that DM-22 could preserve a residual h-OCs, important 

for OCs-OBs communication.   

Coherently, h-OCs function was also differentially regulated by the two molecules. Fig. 38D 

compares the amount of matrix actively resorbed by h-OCs during DM-22 or AL treatment. The 

ability of mature h-OCs to break down a mineral substrate as tested in vitro by a ‘pit assay’, was 

strongly prevented by 1 μM AL treatments and virtually completely inhibited by 3,3-10-33 μM AL. 

Conversely, h-OCs function was dose-dependently inhibited by 1-3,3-10-33 μM DM-22. 

When we performed LDH assay for evaluating the cytotoxicity at the end of differentiation, we 

observed that DM-22 displayed lower absorbance values than AL (* p<0.05, ** p<0.01, *** 

p<0.001). The similarity of effect between NaHS and DM-22 further confirm the specificity of our 

in vitro data on H2S-mediated h-OCs inhibition. Based on these data, it is tempting to propose that 

H2S moiety in DM-22 could have protected cells from toxicity, contrary to AL, and could have 

retained H2S-dependent h-OCs inhibition ability previously reported in Fig. 1.  
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Figure 38: DM-22 inhibits h-OCs differentiation and function without inducing cytotoxicity and 

preserving a residual h-OCs. h-OCs were differentiated from h-monocytes and  grown for 5 days on either 
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plastic well-plates (A,B,C,E) or osteologic slides (D), in osteoclastogenic medium in the presence or 

absence of increasing concentrations of AL or DM-22. A, Representative pictures of TRAP staining 

(magnification 20X), showing the effect of DM-22 and AL on h-OCs differentiation. B-C, Histograms 

showing average h-OCs number/field. Data are expressed as mean ± SEM of triplicates of N=3 independent 

experiments. ANOVA and Dunnett’s test were performed for statistical analyses (** p<0.01, *** p<0.001 vs 

control cells). D, Representative pictures of pit assay (magnification 20X), showing the effect of DM-22 and 

AL on h-OCs function. E, Histogram showing LDH measurement. Data are expressed as percentage of 

cytotoxicity and refers to arbitrary units obtained by colorimetric detection of LDH activity. Data are 

expressed as mean ± SEM of triplicates of N=3 independent experiments. Two way Anova + Bonferroni 

post-test was performed for statistical analysis (* p<0.05, ** p<0.01, *** p<0.001 vs CTRL). 

 

DM-22 is devoid of AL-like cytotoxicity and inhibition of proliferation on h-MSCs 

Given the absence of such a firmly established knowledge of AL function on MSCs (Soares et al. 

2016) (Duque and Rivas 2007) (H. K. Kim et al. 2009) (Yingjun Wang et al. 2010) (Patntirapong, 

Singhatanadgit, and Arphavasin 2014), we aimed to perform viability assay on bone derived h-

MSCs treated with AL or DM-22.  

Treatments with micromolar concentrations of AL appeared to cause a sustained significant 

decrease in cellularity since 72 h of treatment. Fig. 39A, shows representive pictures of toluidin 

blue assay stained h-MSCs at 72 h of treatment. The highest dose of AL tested (33 μM) induced a 

noticeable decrease in cellularity and a change toward globular-like appearance in h-MSCs 

morphology, similar to those of Tryton 10X treated samples (the positive control of cellular 

toxicity, CTRL+). On the contrary the morphology of DM-22 treated cells was similar to those of 

control cells. Quantitative measurements of toluidin blue intensities evidenced the statistical 

decrease in cellularity for AL, but not DM-22, treatment (Fig. 39B; *** p < 0.001). We next 

assayed the potential acute toxicity within a time-range of 72 h from the stimulation. Quantification 

of LDH confirmed the absence of toxicity up to 10 µM concentration at both 24h and 72h (Fig. 

39C,D) in both compounds. Conversely, 33 µM AL induced cellular toxicity starting from 72 h 

after the treatment (Fig. 39D). DM-22 significantly lowered LDH release at both 24 h (13%; Fig. 
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39C) and 72 h (22%, Fig. 39D) compared to AL. It is important to note that at 24 h both DM-22 and 

AL did not induce cytotoxicity; conversely, at 72 h AL displayed high cytotoxicity compared to 

both control and DM-22 samples. It is tempting to therefore propose that H2S moiety in DM-22 

could have protected against AL-dependent toxicity in h-MSCs as in h-OCs (Fig. 38).  

Recently, has been emerged a role of AL in inhibiting MSCs proliferation (Patntirapong, 

Singhatanadgit, and Arphavasin 2014). Here we aimed to compare DM-22 and AL effects on the 

proliferation of bone derived h-MSCs within a time-range of 72 h from the stimulation. We found 

that at both 24h and 72h neither AL nor DM-22 affected cells proliferation at 1-3,3-10 µM 

concentrations (Fig. 39E,F). Conversely, the concentration of 33 µM  AL inhibited the proliferation 

by 22% at 24h and by 47% at 72h. Although DM-22 induced a significant inhibition of cell 

proliferation at the highest concentration, it showed a markedly lower inhibition of cell proliferation 

compared to AL (19%, 72 h; Fig. 39G).  
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Figure 39: DM-22 is devoid of AL-like cytotoxicity and inhibition of proliferation on h-MSCs. h-MSCs 

were cultured in α-MEM 15% FBS in the presence of increasing concentrations of AL and DM-22 (1-3,3-10-

33 µM). A, Representative pictures of toluidin blue staining showing the morphology of AL/DM-22 treated 

h-MSCs (33 µM) compared to untreated cells (CTRL) and cells treated with Triton 10x (CTRL+). 

Magnification 20X. B, Histogram showing toluidin blue staining quantification (absorbance 560 nm). Data 

are expressed as mean ± SEM of N=3 independent experiments (each one in quadruplicate). One way Anova 

and Tukey’s multiple comparison test were performed for statistical analyses. C-D, Histograms showing 

LDH measurement; data are expressed as percentage of cytotoxicity and refers to arbitrary units obtained 
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by colorimetric detection of LDH activity. Data are expressed as mean ± SEM of N=3 independent 

experiments (each one in quadruplicate). Two way anova + Bonferroni post test was performed for 

statistical analyses. E-F, Histograms showing 3H-thymidine detection for DM-22 and AL compared to CTRL 

cells at 24 h (E) and 72 h (F). Data are expressed as fold increase compared to control sample and are 

expressed as mean ± SEM of N=3 independent experiments (each one in quadruplicate). ANOVA and 

Tukey’s multiple comparison test were performed for statistical analyses.  

 

DM-22 stimulates mineralization both compared to AL as CTRL cells  

The role of AL in modulating the differentiation of MSCs toward the OBs lineage is still a highly 

debated topic (C. H. Chang et al. 2014) (Lindtner et al. 2014) (Patntirapong, Singhatanadgit, and 

Arphavasin 2014) (Zhou et al. 2013). Therefore, we aimed to investigate the role of AL, compared 

to that of DM-22, in bone resident h-MSCs during osteogenic differentiation. We found that 

treatments with micromolar concentrations of AL during osteogenic differentiation, led to a 

significant decrease in cellularity since 72 h of treatment, similar to that shown in Fig. 39A in 

unstimulated medium. When AR-S quantification was performed for evaluating the amount of 

mineral matrix produced, we observed that concentration higher than 1 μM AL abolished the 

mineralization, while all concentrations tested for DM-22 were able to induce mineralization 

compared to control cells. Fig. 40A shows representing pictures of each concentration at D21 of 

mineralization. We first found that AL dose-dependently inhibited the mineralization of h-MSCs 

(Fig. 40B). 1 μM AL slightly decreased the mineralization (19%), without statistical significance. 

Higher concentrations of AL abolished the mineralization both at non toxic concentrations (3,3 and 

10 μM; * p<0.05) and at the toxic concentration (33 μM; *** p<0.001). On the contrary, DM-22 not 

only did not inhibit mineralization, but also highly increased the mineralization at each 

concentration tested in respect to control cells (72, 91, 110, 106% respectively; * p<0.05 for 3,3 

μM; ** p<0.01 for 1, 10, 33 μM).  As a results DM-22 displayed higher AR-S quantification 

compared to AL (* p<0.05 for 1 μM; *** p<0.001 for 3,3-10-33 μM). We next evaluated mRNA 

expression of osteogenic markers in order to validate AR-staining data. We limited the analysis to 
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the concentration with the highest difference at AR-S levels (33 μM). AL significantly inhibited the 

mRNA expression of ALP (Fig. 40C) and BSP (Fig. 40D). Moreover, DM-22 treated cells and 

control cells had similar mRNA expression values. Taken together these data evidenced that AL, 

but not DM-22, inhibited osteogenic differentiation of h-MSCs. 



118 
 

 

Figure 40: Contrary to AL, DM-22 stimulates mineralization compared to CTRL cells. h-MSCs were 

cultured in osteogenic medium in the presence of increasing concentrations of AL and DM-22 (1-3,3-10-33 
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µM). A, Representative pictures of AR-S staining. Magnification 20X. B, Histogram showing AR-S staining 

quantification. Data are expressed as mean ± SEM of N=8 independent experiments. Mann Whitney for 

simple comparison was used for statistical analyses. C-D, Histograms showing ALP and BSP mRNA 

expression.  Data are expressed as mean ± SEM of fold increase of N=3 independent experiments. One 

sample t-test was performed for statistical analyses. 

 

5.3.2. Development of SF_GYY, a novel H2S-releasing scaffold based on silk fibroin  

 

Based on the dual action exerted by H2S on bone homeostasis, we sought to exploit these features 

for the development an innovative tool aiming at treating critical bone defects. Our strategy has 

been to develop an H2S-based scaffold for bone regenerative medicine. To achieve the manufacture 

of silk fibroin (SF) H2S releasing scaffold (SF_GYY), we established a collaboration with the 

Laboratory of Prof. Motta (University of Trento) who has a great expertise in developing SF 

scaffolds (Jones et al. 2009) (Riccio et al. 2012). Here, we present some preliminary results on 

scaffolds’ characterization and cells integration into the scaffolds comparing SF_GYY to the native 

SF. 

 

Scaffolds’ characterization 

Scanning Electron Microscope (SEM) analysis revealed a porous structure suitable for OBs growth 

and migration. Fig. 41A,B compares representative pictures of SF scaffold (Fig. 41A) and SF_GYY 

(Fig. 41B). The images revealed that the incorporation of GYY did not alter the native structure of 

the scaffold. Both SF (Fig. 41A) and SF_GYY (Fig. 41B) shows high porosity and the presence of 

interconnected pores. Pore sizes were found to be in between 200 to 400 μm. Fourier transform 

infrared spectroscopy (FTIR) spectroscopy further confirmed the presence of GYY in SF_GYY 

scaffold (Fig. 41C). Indeed, FTIR curves related to sample SF_GYY, showed, together with the 

typical peaks of silk fibroin, peaks with strong absorption of GYY, which are not present in the 
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spectrum of pure SF sponge (Fig. 41C). In order to preliminary evaluate H2S release from the 

scaffolds spectrophotometric measurement of methylene blue generation was performed (Fig. 41D). 

 

Figure 41: Characterization of SF and SF_GYY scaffolds. A-B, Representative pictures of SEM analysis. 

C, Representative FTIR curves obtained by FTIR spectroscopy analyses. D, Representative curves of H2S 

release obtained by methylene blue assay. 
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Both SF and SF_GYY demonstrates osteoconductive properties 

h-MSCs derived from tybial plateau were allowed to colonize and growth within the scaffolds. 

Cells were cultured in perfusion in U-cup bioreactor. Fig. 42a,c and b,d, respectively shows 

representative pictures of haematoxylin-eosin and Von Kossa stains, performed for evaluating cells 

integration and osteoconductivity of the scaffold. We found that GYY incorporation did not 

interfere with cell colonization and we did not evidence any signs of toxicity in cells (Fig. 42a,c). 

Moreover, cells grown both in SF and SF_GYY scaffold were able to differentiate toward 

osteogenic lineage confirming that both scaffolds are osteoconductive (Fig. 42b,d).  

 

Figure 42: SF and SF_GYY are osteoconductive scaffolds. Figure shows representative pictures at 4X (a,c) 

or 10X (b,d) magnification of haematoxylin-eosin (a,c) staining or Von Kossa (b,d) staining. Pictures 

compares native scaffold (SF; a,b) to the scaffold incorporating GYY (SF_GYY; c,d). 
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6. DISCUSSION 

We hypothesized a role of H2S in bone physiology and in the pathophysiology of post-menopausal 

osteoporosis based on two important considerations. Firstly, H2S has been found to exert important 

organ-specific functions such as regulation of vasodilatation (G. Yang et al. 2008) (Weimin Zhao 

and Wang 2002), neuronal excitability (Nagai et al. 2004), lipid metabolism (Namekata et al. 2004) 

or insulin production (Yusuf et al. 2005). However, whether it plays a role in the physiology of 

bone tissue was yet to be established. Secondly, patients affected by homocystinuria, the disorder 

caused by CBS deficiency, show severe osteoporosis (Mudd et al. 1985) and increased fracture risk 

(van Meurs et al. 2004) (McLean et al. 2004). As the pathophysiologic mechanisms underlying this 

bone phenotype were still largely unknown, we hypothesized a correlation between depleted H2S 

levels and bone loss. Therefore, within this study we took several independent but connected 

approaches for investigating the role of H2S in bone tissue evaluating: 1) CBS and CSE expression 

in human bone tissue and bone derived cells ex vivo; 2) exogenous and/or endogenous role of H2S 

in bone cells in vitro; 3) CBS, CSE and H2S levels in homeostatic condition or in post-menopausal 

osteoporosis in vivo; 4) the effect of H2S exogenous administration in homeostatic condition or in 

post-menopausal osteoporosis in vivo and ex vivo. In a second phase we aimed to translate the gain 

of knowledge on H2S regulation in bone tissue in order to: 1) validate the efficacy of H2S treatments 

in the prevention or therapy post-menopausal osteoporosis; 2) develop H2S-based drugs and 

scaffolds for the treatment of bone erosive diseases or traumatic bone lesions. 

 

CBS and CSE are known to be the major mediators of H2S production in mammalian cells (Szabó 

2007). However the state-of-the-art highlights a poor understanding of the pattern of CBS and CSE 

expression in tissues and cells. It had long been assumed that CBS activity and CSE activity are, 

respectively, the primary source of H2S in the brain and in peripheral tissues (R. Wang 2012). 

However, new findings (Paul and Snyder 2014) (Mani et al. 2014) (Xia et al. 2009) demonstrated 

that both enzymes are expressed and produce H2S in many tissues. Moreover, to the best of our 
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knowledge the expression of CBS and CTH/CSE in bone tissue has never been investigated in deep. 

Our immunohystochemical analyses revealed, in agreement with the recent evidences in other 

tissues, that both CBS and CSE produces H2S in human bone tissue. Moreover we found a peculiar 

pattern of expression: CBS is broadly expressed, while CSE expression seem to be more confined 

to perivascular region and negligibly expressed in bone lining cells. Interestingly, bone lining cells 

have been described as the region that harbours late osteoprogenitor cells and mature osteoblasts 

(Everts et al. 2002), while the perivascular area of BM microvasculature has been described as the 

region which gives rise to the earliest bone stem cells (Sacchetti et al. 2007). Recent evidences 

found CBS and CSE to be expressed in h-MSCs and m-SCs (Y. Liu et al. 2014). Our data 

confirmed that bone derived h-MSCs express both CBS and CTH/CSE. Furthermore a combination 

of data derived from RT-PCR, immunohystochemical and WB analyses first revealed that CBS and 

CTH/CSE not only are expressed in mature h-OBs but are highly expressed compared to h-MSCs. 

Moreover analyses of CBS and CTH/CSE expression during osteogenic differentiation of h-MCSs  

revealed how CBS and CTH/CSE up-regulation appears to be a distinctive feature of the h-

MSCs transition towards the osteogenic phenotype. To our knowledge this is the first study 

reporting that during osteogenesis H2S-producing enzymes are regulated at the transcriptional and 

translational level, suggesting a role of both enzymes in the differentiation process. Further analysis 

of correlation suggested that CTH may be mostly involved in the early phases of osteogenic 

differentiation (initiation phase), as it tightly correlates with ALP expression a marker of early 

osteogenesis (Koch, Jadlowiec, and Campbell 2005); while CBS may be involved in both early and 

late phases of osteogenic differentiation (late maturation phase) as it correlates to both CTH and 

mineralization levels.  

 

One finding of special interest is that CBS and CTH mRNA expression was differentially regulated 

during osteogenic stimulation in two groups of h-MSCs segregated for their heterogeneous response 

to osteogenic medium and hereby named as mineralizing or non mineralizing. This donor-to-donor 
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heterogeneity was not unexpected as it has been widely reported and described as a critical 

important aspect of MSCs biology (Phinney 2012) (P Janicki et al. 2011) (Pevsner-Fischer, Levin, 

and Zipori 2011). Interestingly, the ratio we observed between mineralizing and non mineralizing 

cells is similar to that reported by others (Siddappa et al. 2009). Intense research is currently under 

way to discover mechanisms leading to ineffective osteogenic differentiation, aiming to find a way 

to select h-MSCs with greater bone formation ability. In keeping with findings reported by others 

(Hoemann, El-Gabalawy, and McKee 2009), we found ALP up-regulation during osteogenic 

differentiation not proportional to the extent of mineralization. Conversely, we found that the lack 

of up-regulation of CBS and CTH mRNA expression is typical of non mineralizing cells, first 

suggesting that may exist a threshold of CBS-CSE-H2S levels above which mineralization occurs. 

This hypothesis was further validated by loss-of-function experiments (CBS and CTH gene 

silencing or CBS and CSE enzyme pharmacological inhibition) on h-MSCs during osteogenic 

differentiation, which revealed a marked inhibition of h-MSCs ability to produce mineralized 

matrix. Finally, we first found that exogenous administration of low micromolar 

concentrations of NaHS, a common H2S donor in vitro was sufficient to promote mineral 

apposition by h-MSCs. Of special interest is the finding that the same range of NaHS 

concentrations induced the mineralization in N-CD h-MCSs. This observation led us to consider 

the possibility that NaHS exogenous administration could have restored H2S intracellular levels in 

N-CD h-MSCs changing their fate of differentiation. Interestingly, other authors independently 

showed that NaHS exogenous administration in CBS
-/-

 and CBS
+/-

 m-SCs partially rescued their 

impaired mineralization ability both in vitro and ex vivo (Y. Liu et al. 2014). 

 

Taken together these data revealed that H2S plays an active role on osteogenic differentiation of h-

MSCs. Interestingly, we found that H2S exogenous administration modulates another important h-

MSCs function. As, h-MSCs are known to be h-OC-supporting cell population in vivo (D.-C. Yang 

et al. 2008) (Dalle Carbonare et al. 2009), we evaluated the effect of NaHS treatments on regulation 
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of RANKL and OPG mRNA expression. Our data first revealed an ability of NaHS to suppress the 

osteoclastogenic potential in the bone microenvironment. While a similar effect was described in 

cells from other tissues (Liao and Hua 2013), these are the first evidence of down-regulated 

RANKL/OPG expression ratio in bone derived h-MSCs.  

 

In an attempt to draw a comprehensive picture of the effect of exogenous H2S on bone cells, we 

conducted a series of investigations on h-OCs aimed to clarify the conflicting evidences existing in 

the literature (Irie et al. 2012) (Irie et al. 2009) (Ii et al. 2010) (S. K. Lee et al. 2013) (Y. Liu et al. 

2014) (Frantzias et al. 2012) and to identify downstream targets of H2S. To this regard, we first 

demonstrated that high micromolar concentration of NaHS were necessary to induce an 

inhibitory signal of h-OCs differentiation and function in vitro, as revealed by TRAP and Pit 

assays. After having assessed that this inhibition was not due to apoptosis and/or toxicity processes, 

we took into consideration the role of ROS as a potential target of H2S since they play a prominent 

role in determining the fate of h-OCs differentiation (Reddy 2004). Despite H2S was found to 

mediate the down-regulation of ROS levels induced by many stimulation in different cell types (Xu 

et al. 2011) (Hourihan, Kenna, and Hayes 2013), to our knowledge  our results represent the first 

evidence suggesting that short-term treatment with NaHS is able to dose-dependently prevent 

the increase in ROS induced by RANKL-stimulation. As NaHS is known to have a rapid 

disappearance from culture medium (Hu et al. 2009), the scavenging effect of NaHS on ROS can be 

short-lasting. We therefore have been interested in verifying whether the H2S inhibition was 

dependent on a sustained activation of NRF2, the master regulator of the antioxidant defence 

system (Kensler, Wakabayashi, and Biswal 2007). We took in consideration NRF2 as a potential 

target of H2S based on two recent evidences. First H2S has been demonstrated to displace NRF2 

from KEAP-1 by inducing S-sulfhydration of specific cysteine residues on KEAP-1, triggering 

NRF2 stabilization and increasing the expression of its antioxidant target genes (Hourihan, Kenna, 

and Hayes 2013) (G. Yang et al. 2013). Second, NRF2 up-regulation has been recently reported to 
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actively inhibit mouse macrophage OCs differentiation in vitro and inhibit LPS-mediated RANKL-

dependent osteoclastogenesis in vivo (Kanzaki et al. 2013). We showed, through a combination of 

data obtained by FACS, RT-PCR and immunocytochemical analyses, that NaHS stimulation on h-

pre-OCs caused NRF2 increased protein expression without any modulation at the gene 

transcription level but rather by an increase of nuclear translocation, suggesting that H2S is 

increasing NRF2 protein stability in our system. Further attesting the activation of NRF2 we 

evidenced the up-regulation of two key target genes, NQO1 and PRDX1, which are known to be 

activated by NRF2 through the ARE sequences (Taguchi, Motohashi, and Yamamoto 2011) 

(Wakabayashi et al. 2010) (Bergstrom et al. 2011). Further experiments performed with two 

molecules (SFN and t-BHQ) which were shown to increase the nuclear translocation of NRF2 

through electrophilic modification of KEAP1 (Abiko et al. 2011) (B. Y. Shin et al. 2012), evidenced 

that they actively inhibited the differentiation of h-OCs. Thus, it appears that the stabilization of 

NRF2 in h-pre-OCs, induced by various compounds, is sufficient to suppress their ability to 

differentiate into h-OCs. Finally, we demonstrated that NRF2 is necessary to H2S for mediating h-

OCs inhibition. Notably, NRF2 silencing abrogates both H2S-mediated inhibition of h-OCs and its 

up-regulation of NQO1 and PRDX1.  

Altogether, these findings demonstrated that NaHS micromolar concentrations are required for 

directly and indirectly inhibit h-OCs differentiation on one hand, and promoting osteoblast 

differentiation on the other.  

 

Taking in consideration a possible physiological role of H2S we can speculate that in BM niche a 

local increase in H2S concentration may be important in directing the fate of differentiation of bone 

cells. However, we did not further investigated this hypothesis our in vivo data revealed that CBS, 

CSE and H2S levels play a role in the maintenance of bone homeostasis. Indeed, our findings are 

the first to link sex steroid deficiency and the resulting bone loss to suppression of CBS/CSE 

expression in whole BM and m-SCs and down-regulation of H2S serum levels. The difference 
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in serum H2S levels between sham operated and ovx mice was similar to that found between CSE
-/- 

mice (G. Yang et al. 2008)
 
or CBS

+/-
 mice and their respective WT controls

 
(Y. Liu et al. 2014), 

suggesting the relevance of sex steroids as regulators of H2S biosynthesis. Moreover in vitro data of 

estrogen administration on h-MSCs evidenced up-regulation of CBS and CTH transcription, further 

confirming this statement. In keeping with our findings altered H2S levels (Brancaleone et al. 2008) 

(Perna et al.) (Matthew Whiteman et al. 2004) and CBS and CSE expression levels (Huang and 

Moore 2015) (L. Zhang et al. 2015) (Hwang et al.) have been found in many pathologies. 

Furthermore, recently depletion in H2S levels has been found to cause osteoporosis in 

homocystinuric patients (Y. Liu et al. 2014). It is tempting to propose H2S depleted levels as one 

of the unifying mechanisms which account for the bone loss occurring in different pathologies. 

In an attempt to further establish whether H2S is essential for the proper function of bone tissue and 

in particular for preserving bone mass, we achieved replenishment of systemic H2S levels in ovx 

mice through administration of GYY, as assessed by gas-chromatographic analyses. Notably, in 

sham mice GYY increased H2S levels above the baseline. Our data on one hand demonstrated 

that H2S levels modulates bone mass and on the other hand provided a proof of principle that 

a sulfur replacement therapy is a conceivable novel therapeutic option for preserving and 

restoring bone mass after menopause. In particular we found that in femur, GYY prevented bone 

loss induced by ovx when it was administered before the onset of the disease, and reversed bone 

loss when it was administered after the four week necessary for the induction of bone loss by ovx, 

as evidenced by μCT analysis. Conversely, we found that GYY administration only partially 

prevented and reversed trabecular bone in spine of ovx mice. We hypothesize that these differential 

regulation accounts for the different nature of femur and spine. Moreover, based on our knowledge, 

our data are the first indicating a GYY-mediated anabolic action in the femur of healthy mice. 

Notably, GYY treated sham operated mice had the highest level of bone mass as well as the highest 

levels of free H2S, presumably because of the cumulative effects of estrogen on H2S synthesis and 

of GYY-mediated H2S release. The existence of a relationship between H2S levels and bone volume 
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suggest that it may be possible to increase bone volume above baseline and achieve a net bone 

anabolic effect by treating ovx mice with doses of GYY higher than the dose used in the current 

study.  

 

Despite these advantages, whether H2S modulates the balance between bone formation and 

resorption in vivo was still unknown. In order to fill this gap on the knowledge we first performed 

histomorphometric analyses. This assay demonstrated a different behaviour in femur and spine in 

responding to ovx-induced changes in bone turnover. Only in spine we found the expected increase 

of static indices of bone resorption and bone formation by ovx; while dynamic indices of bone 

formation were not affected by ovx neither in spine nor in femur. We hypothesize that these 

unexpected results are due to the intrinsic low sensitivity and high variability of bone 

histomorphometry. Measurements of serum markers of bone resorption and formation further 

confirmed the changes occurring in bone turnover following ovx. Indeed, both CTX, an accurate 

marker of bone resorption, and P1NP, a sensitive marker of bone formation, were higher in ovx 

mice than in sham-operated mice. The increase was higher for CTX confirming that the 

compensatory bone formation is ineffective in balancing bone resorption during ovx. GYY 

treatment increased all spinal histomorphometric indices of bone formation in ovx mice and 

induced a further increase in P1NP serum levels. As a results, GYY treated ovx mice had the 

highest levels of P1NP. Conversely, we did not observe any down-regulation of static indices of 

bone resorption or CTX levels after GYY administration. Moreover we found that spinal 

histomorphometric static indices of bone formation and MAR were up-regulated by GYY in sham 

operated mice, further confirming an anabolic action of H2S in control mice.  

In our experimental model, ovx mice showed increased OCs number, Interestingly, elevated 

numbers of OCs were found in femur of CBS
−/−

 and CBS
+/−

 mice where circulating levels of H2S 

were lower. Therefore we might speculate that blunted H2S levels may hamper the compensatory 

inhibition on OCs differentiation and be part of the mechanism by which OCs number is increased 
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in different pathologies with bone loss. However, the sulphur-replacement therapy did not 

significantly down-regulate OCs number and the serum index of bone resorption. It is unknown 

whether H2S treatments in CBS
+/−

 mice down-regulated OCs number or lowered the serum index of 

bone resorption (Y. Liu et al. 2014). Up to now, we were unable to explain the discrepancy between 

in vitro and in vivo data regarding osteoclastogenesis. A possible explanation is that higher 

micromolar concentrations are necessary to inhibit OCs differentiation while even lower 

micromolar concentration can induce osteogenic differentiation. Regimen of H2S administration 

higher than the ones used in the current study may elucidate whether H2S therapy may inhibit OCs 

differentiation and function in vivo. Although we were unable to demonstrate inhibited bone 

resorption in vivo, these data demonstrated that GYY acts in the physiological and 

pathological balance by increasing bone formation in vitro and in vivo. 

 

Two important aspects have emerged by our in vitro studies on the biological effects of H2S: its 

positive role in promoting cell viability and its osteoinductive properties. Thus, we decided to 

elucidate whether these aspects may account for the increase of bone formation in vivo. Our 

experimental evidences demonstrated that GYY treatment: 1) inhibited apoptosis in h-MSCs; 2) 

increased the production of Wnt ligands in the BM; 3) further potentiates osteoblastogenesis 

induced by ovx as evidenced by increased number of CFU-ALP and mRNA expression of 

osteogenic markers and Wnt signaling in m-SCs. Canonical Wnt signaling is induced by Wnt 

ligands produced by bone and hematopoietic cells (Famili et al. 2015) and is known to induce OB 

proliferation (Kato et al. 2002), differentiation (Robert L Jilka 2007) (Bodine and Komm 2006), and 

promotes OB survival (Almeida et al. 2005) (Tobimatsu et al. 2006) (Bodine et al. 2005). During 

ovx Wnt signaling is activated in osteoblastic cells (J.-Y. Li et al. 2013), contributing to explain 

increased commitment and the differentiation of SCs into OBs (R L Jilka et al. 1998) during ovx.  

This compensatory increase in bone formation is known to be limited, among other factors, by m-

OBs apoptosis (R L Jilka et al. 1998) (Di Gregorio et al. 2001). This partially explain why bone 
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formation does not increase as much as resorption after ovx (Kousteni et al. 2001) (Almeida et al. 

2007). In this light, our data suggest that both a protective action on h-MSCs survival and 

induction of osteogenic differentiation of h-MSCs may account for the increased bone 

formation which contributes in reducing the gap with bone resorption in vivo by GYY treatments. 

 

In summary, this work has shed new light into the mechanisms regulating bone homeostasis and the 

pathogenesis of osteoporosis. Beside this aspects, our data suggested a potential pharmacological 

relevance of H2S in bone-wasting diseases and critical bone defects, as it modulated the two main 

processes involved in bone homeostasis: osteoclastogenesis (in vitro) and osteoblastogenesis (both 

in vitro and in vivo). Taken together the above findings led us to develop new therapeutic 

approaches with the aim of bridging the gap between basic research and clinics. Originally, 

H2S-hybrid drugs have been developed in order to combine H2S-inflammatory and anti-oxidant 

effects (Kodela et al. 2015) (Wallace, de Nucci, and Sulaieva 2015) to that of the original drug, 

mainly with the aim of preventing their side effects. However, recently, tanking to the wide range of 

function which H2S plays in many organ targets they were developed in order to improve the effects 

of parent drug (Frantzias et al. 2012b) (Shukla et al. 2009) beyond anti-inflammatory and anti-

oxidant effects.  

With the aim of developing new pharmaceutical approaches for bone loss we took inspiration of the 

observation, postulated by others, that anabolic bone-inducing agents may be beneficial when 

prescribed with AL, one of the most currently used drugs in clinics (Patntirapong, Singhatanadgit, 

and Arphavasin 2014). Thus, we developed an original hybrid molecule of H2S and AL, hereby 

named DM-22, with the aim of obtaining an H2S-releasing drug displaying: a) anti-catabolic action 

similar to AL; b) pro-anabolic action similar to NaHS; and c) cytoprotective function due to H2S 

moiety. First, we found DM-22 to be devoid of toxicity on h-OCs and inhibit with a less potency h-

OCs differentiation compared to AL. Up to now, we did not  investigate the mechanism underlying 
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this differential inhibition, but we could speculate that this difference may account to that DM-22 is 

not toxic for h-OCs. A growing attention towards the crosstalk between OBs-OCs is increased in 

the last years (Matsuo and Irie 2008) (Ikeda and Takeshita 2014) (Sims and Martin 2014), leading 

to the idea that AL inefficacy in preventing fragilities fractures might be due to the absence of bone 

turnover. In this light, we could speculate that DM-22 may leave a residual of h-OCs for mantaining 

bone turnover and preserving h-OCs to h-OBs communications.  

Second, our data showed an unexpected negative aspect of AL treatment. Indeed, we found that 

high concentrations of AL induced h-MSCs acute toxicity at higher concentrations and inhibited h-

MSCs proliferation and differentiation. To date the role of AL on h-MSCs and h-OBs is still a 

highly debated topic. An abundance of experimental evidence suggests that AL induced osteogenic 

gene expression in MSCs of different species and sources (Duque and Rivas 2007) (H. K. Kim et al. 

2009) (C.-Z. Wang et al. 2010). Besides the above, it was reported that high concentrations of AL 

altered cell viability and inhibited osteogenic differentiation of MSCs (Patntirapong, 

Singhatanadgit, and Arphavasin 2014). Currently, there is no explanation to account for these 

opposing reports; however authors suggested that this controversy may account to cell types, stages 

of cell differentiation and AL concentrations (Patntirapong, Singhatanadgit, and Arphavasin 2014). 

AL-dependent inhibition of mineralization is regarded to be partly due to the drug effect on the 

viability (Patntirapong et. Al., 2014), however we found inhibition even in absence of toxicity. 

Interestingly, we found that the same concentrations of DM-22 exibited a lower inhibition of 

proliferation, did not induce h-MSCs cytotoxicity and increased h-MSCs differentiation even at the 

lowest concentration compared to the parental drug. It is tempting to propose that the H2S moiety of 

DM-22 could have prevented AL-dependent acute toxicity and induced osteogenic differentiation of 

h-MSCs.  

Interestingly, the ability of DM-22 to inhibit h-OCs differentiation and function and inducing h-

MSCs differentiation while not impairing h-OCs and h-MSCs viability, resembles NaHS-mediated 

modulation of osteoclastogenesis and osteoblastogenesis. In summary, our in vitro data revealed 
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that the incorporation of H2S into AL molecule might provide effective treatments for 

osteoporosis. 

Besides the development of new drugs targeted for bone loss pathologies, the biological insights 

obtained from this study might be translated in the field of bone tissue engineering. To this end, the 

anabolic action and the anti-catabolic action of H2S could be used in orthopaedic application to 

increase osteoinductivity of scaffolds currently employed in bone regenerative medicine. 

Preliminary experiments demonstrated that SF_GYY, is permissive for cells colonization and 

supported the osteogenic differentiation in a dynamic system of culture in perfusion in 

bioreactor. Further experiments for improving GYY adhesion and its release are in progress. 
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7. CONCLUSIONS 

Our findings firstly highlighted a crucial role of H2S role in bone tissue. In particular, we evidenced 

that: 1) CBS and CSE are expressed in human bone tissues and human bone derived cells; 2) CBS 

and CSE expression is a distinctive feature of h-MSCs transition toward mature h-OBs; 3) loss-of-

function of CBS and CSE resulted in impaired osteogenic differentiation in vitro; 4) CBS, CSE and 

H2S levels played a critical role in the maintenance of bone homeostasis in vivo; in particular we 

found that H2S replacement therapy in ovx mice, where CBS, CSE and H2S levels are blunted, 

prevented ovx-induced bone loss.  

Secondly, our data validated the use of H2S-donors as novel potential candidates for the treatment 

of bone pathologies since: 1) exogenous administration of H2S modulated bone remodeling both in 

vitro as well as in vivo; 2) H2S replacement therapy reversed ovx-induced bone loss in vivo.  

Based on these evidences, we developed a) an H2S-hybrid with AL to improve the therapy of bone 

loss; b) an H2S-releasing SF scaffold to improve bone regenerative medicine. We demonstrated in 

vitro that DM-22 has improved biological properties compared to the parent drug in terms of h-OCs 

and h-MSCs cellular viability, h-MSCs cellular proliferation and h-MSCs osteogenic differentiation 

and may preserve a residual h-OCs function fundamental for h-OCs to h-OBs communications. 

Finally, we provided preliminary evidence that SF_GYY, the H2S-releasing SF scaffold, is 

permissive for cells colonization and supported the osteogenic differentiation.  
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8. FUTURE DIRECTIONS 

Our data opened new lines of investigation in the field...: 

... of OBs-OCs communications.  One intriguing aspect of H2S regulation that will be very 

interestingly to investigate is whether OCs and OBs may communicate and direct the transition 

between the different phases of bone remodeling through H2S or H2S downstream targets.  

... of gaining knowledge on post menopausal osteoporosis. It will be of interest to evaluate CBS-

CSE-H2S levels in estrogen replacement therapy.  

... of the search of valuable markers able to predict bone formation ability. We should direct 

our efforts into first verify whether the population identified by increased CBS and CTH expression 

have improved bone formation ability in vivo. Further investigations of downstream target of H2S 

activation during osteogenesis may hopefully reveal surfaces markers able to make a perspective 

isolation of cells with improved capacity of bone formation in vivo.  

... of the development of therapies for bone loss. First we need to test DM-22 compared to AL 

and GYY in the mice model of postmenopausal osteoporosis. Besides μCT, histomorphometric and 

serum marker measurements will be of interest assaying the potential prevention on gastric 

cytotoxicity. Indeed the cytotoxic induction on gastric cells is one of reason of the side effects due 

to AL therapy (Segal, Tamir, and Ish-Shalom 2003) (Strampel, Emkey, and Civitelli 2007) which 

lowered the adherence to therapy. It is conceivable that is H2S is devoid of toxicity even in gastric 

cells, DM-22 is likely to be more tolerated than AL and we can speculate that DM-22 could 

ameliorate the compliance of AL therapy. Third as the primary aim of pharmacological therapy is to 

reduce the risk of osteoporotic fractures, one of the main questions to address in the main future is 

whether H2S therapy may be beneficial into reducing the risk of fractures. Furthermore we may test 

whether regimen of GYY higher to that used in the current study may achieve a net bone anabolic 

effect and may reduce the number of osteoclasts in ovx mice. 
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... in the diagnosis / monitoring of therapies. An important field of investigation should be in 

verifying whether CBS, CSE and H2S levels may be used as diagnostic, prognostic factors for 

identifying individuals prone to osteoporosis and fracture risk and for monitoring efficacy of 

therapies. Further investigations are needed to determine whether CBS, CSE and H2S levels down-

regulation may be involved other pathologies characterized by bone loss. 

... of the development of scaffolds for bone regenerative medicine. Of great importance is to 

clearly define the amount and the time course of H2S release from the scaffolds. Moreover we are 

planning to make a better tuning, controllable and distributed in time, of H2S release from scaffolds. 

A strategy we will investigate will be creating a system that can protect donors from water. Next 

step will be directed in test the osteoinductivity of those scaffolds in vitro and in vivo. 
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no, che potremmo seguire per poco o lungo tempo; che è molto facile sbagliare la strada, che la 

vetta viene raggiunta dopo innumerevoli sforzi e fatiche… Ma che soddisfazione quando la si 

raggiunge!!; quindi ora elencherò la top-ten (non in ordine di rilevanza) dei dieci momenti 

lavorativi più belli di questi anni di Dottorato: 1) Emozione di presentare i propri dati all’ECTS 

doctoral program con tutti i complimenti che ne sono venuti. 2) Il progetto SMARTBONE arriva 

primo tra i progetti proposti!! Questo per me vuol dire una sola parola: finalmente Dottorato!!!! 3) Il 

lavoro di OCs viene accettato!! Dopo tanta tanta tanta fatica… 4) Vinciamo la Ricerca Finalizzata!! 

Il nostro lavoro dà i suoi frutti!! 5) Ho vinto la (mia prima e ultima?) short oral presentation e il 

New investigator Award!! Impensabile!!! 6) La mia presentazione di laboratorio su CBS e la mia 

presentazione al kick off meeting hanno riscosso successo! 7) L’articolo su JBMR viene accettato!! 

Evvai! 8) Il feedback positivo è vero!! Non è solo un sogno! 9) DM-22 induce mineralizzazione, il 
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fatta e non ce la farei. Sei la mia ancora di salvataggio che m’impedisce di naufragare nei miei vari 

momenti di tristezza e la mia bussola che mi ricorda quando vengo dirottata nella direzione 

sbagliata. Grazie infinite per il tuo elevato grado di sopportazione. Grazie per le risa, gli abbracci. 

Grazie perché cerchi sempre di proteggermi…  

Ringrazio infinitamente anche Giovanna, grazie per tutte le serate in cui torniamo a casa insieme, 

grazie per tutti gli sfoghi, per me è un momento ormai irrinunciabile e catartico. Grazie per le 

granite al baretto nei miei momenti di più grande disperazione. Grazie per i pomeriggi passati 

all’acquagym… Grazie infinitamente anche per quest’ultimo periodo di follia, mi hai aiutata 

moltissimo. Grazie insomma per esserci sempre…  

Grazie infinite anche a Elena e Cri, che insieme a Francesca, sono le mie GL girls. Ragazze non 

potevo sperare di capitare in un gruppo migliore. Ognuna di voi è veramente speciale. Anche voi 

devo ringraziare per la sopportazione, sono una grande testona! So di essere insopportabile alle 

volte! Grazie per le risate che ogni giorno mi regalate! Perché il lavoro al Rizzoli sarebbe un po’ più 

grigio senza tutte voi. 

Grazie Manu… mi sento tanto tanto vicina a te, per tanti motivi che sappiamo bene solo io e te. 

sono davvero felice che tu sia tornata perché mi sei mancata troppo… grazie mille per il tuo 

appoggio, per il tuo incoraggiamento, per la tua amicizia, irrinunciabile… 

Grazie a Mariassunta… Grazie a Ylenia… Grazie soprattutto a Marli… Insegnare è sempre un 

motivo di crescita e spero con tutto il cuore di esservi stata utile. Cara Sung, ti rimpiangiamo molto, 

da quando non ci sei il lab. è molto più triste, mi mancano tantissimo i tuoi sorrisi, la tua gioia di 

vita!! Marli, spero che il tempo consolidi questa amicizia che sta nascendo, penso che tu sia proprio 

una persona speciale e penso che non potesse capitarmi di meglio come ragazza da seguire… 

Grazie a tutto il laboratorio… Tutti voi in diversi momenti mi avete regalato un sorriso, una frase 

che mi è stata di gran supporto e aiuto! Grazie anche a chi mi ha messo i bastoni tra le ruote… A chi 
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non mi apprezza… Perché alla fine si è chiusa una porta ma si è aperto un portone! E poi non si può 

piacere a tutti e va bene così… 

Un grazie in particolare a Isa, Vale, Carol, Mauro… Grazie per rendere speciale e gradevole quella 

mezzora-oretta che dedichiamo al pranzo!! Grazie infinite anche per il vostro supporto ed 

incoraggiamento di quest’ultimo periodo! 

Ora non voletemene ma arrivo ai ringraziamenti più speciali… quelli alla famiglia… 

Negli ultimi anni, pensando alla professione di ricercatore e avvicinandomi al mondo dei congressi, 

mi è frullata sempre più per la testa la parola “mentore”. Si dice che ognuno di noi abbia avuto 

almeno un mentore nella propria vita. Credo che non me ne possa volere nessuno per questo, ma il 

mio vero e unico mentore è il MIO PAPA’. Perché per me il mentore è qualcuno da cui hai appreso 

tanto e di cui vorresti ripercorrere le orme. Definire il mio amore per te è molto difficile, 

impossibile da rendere a parole. Io a te devo tutto. Lo sai… Ho sempre avuto una venerazione per 

te… e non importa quanto mi provochi scherzosamente o quanto tu possa commettere 

(eventualmente) errori tu per me sei e sarai sempre perfetto!! Ti voglio un bene dell’anima… Grazie 

anche perché ci sei sempre quando ho bisogno di un consiglio o aiuto anche sul piano lavorativo. 

Grazie Mami, per anni so che ti sei sentita come con la medaglia d’argento, e di questo mi dispiace 

moltissimo; ma credimi, amo infinitamente lui quanto te. Siete i miei modelli di vita. A te devo tanti 

lati speciali del mio carattere… la dolcezza, la testardaggine, la precisione, la cura verso gli altri… e 

tanto altro… 

Vi amo infinitamente, non avrei potuto volere genitori migliori. Siete la mia forza… Siete la mia 

certezza… Siete la mia guida… Siete il mio equilibrio… Siete tutto per me… Siete e sarete sempre 

la mia ragione di vita… 

Grazie ai miei ANGELI. Grazie al mio piccolo Tommy, al mio fratellino a cui dedico ogni respiro. 

Quando ti abbiamo perso il mio cuore si è spezzato e non tornerà mai del tutto a battere. Ho perso la 

luce che rischiarava le mie giornate. Mi manchi da morire ogni giorno…  

Grazie ai miei nonni (Mauro e Marisa; Renato e Liliana) che hanno cresciuto con amore i miei 

genitori e che hanno condiviso con me momenti felicissimi che porto ogni giorno nel cuore… 

Grazie anche a Nonna Laura che non ho potuto conoscere personalmente ma che ho sentito molto 

vicina…  

Grazie a MariaLuisa che ci hai lasciato da così poco, lasciando un nuovo vuoto nel nostro 

cuore…Grazie a Freezer, l’amore della mia vita, l’altro mio fratello che non è più qui. Sei unico e 

indimenticato… Grazie a Fred che ho amato infinitamente e che mi ha salvato la vita… Grazie a 

Cippo, Cippa, Pappi, Galla, Artù, Merilin, Maya, William e Ginervra. Vi ho voluto tanto bene!!! Vi 

voglio tanto bene!!!  

 

Grazie all’AMORE MIO, il MIO FRANCESCO… non mi stancherò mai di dirti che sei la luce che 

illumina il mio buio, sei il sole che riscalda il mio inverno… Ti amo immensamente… Grazie per 

essere “caduto dal cielo” ed avermi trovata. Hai cambiato la mia vita regalandomi “nuovamente” la 

felicità, la speranza… Senza di te ormai sarei persa… Grazie per la tua infinita pazienza in generale 
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e soprattutto per la cura e l’amore con cui mi hai supportata in questo ultimo periodo. Per avermi 

servita e riverita mentre studiavo ininterrottamente… Grazie perché in questa lunga notte prima 

della consegna stai dormendo a fianco a me con la luce accesa per farmi studiare… Ti amo… 

Grazie infinite alla mia famiglia acquisita. Sono stata estremamente fortunata ad incontrarvi. Grazie 

ad Anna, Andrea, Nonna Gina, Lorenzo, Elena, Giuliano, Patrizia,  

Martina, Zia Giovanna, Lula, Susi e Mosè. Grazie per avermi accolto da sempre con tanto affetto. 

Grazie per rendere ogni momento passato insieme sereno e speciale. Grazie anche per aver reso 

Francesco la persona speciale che è, ve ne sarò sempre infinitamente grata. Si dice che dietro ogni 

grande uomo c’è sempre una grande donna, dietro questo grande uomo c’è una grande famiglia! 

Grazie infinite… Vi voglio bene! 

Grazie zietto (Davide), grazie per le risate, grazie per la dolcezza con cui mi abbracci e mi coccoli, 

come se fossi ancora (ed ancora di fatto lo sono) quella piccola bambina spaurita che da piccola 

sollevavi fino quasi a raggiungere il soffitto! Momenti irrinunciabili che mi riempiono il cuore. 

Grazie per esserci SEMPRE stato. Grazie per quello che hai fatto per me, per la nonna e che ora fai 

per la zia Marta. Te lo dico a maggior ragione perché pensi di non esserlo: sei veramente una 

persona d’oro! Ti voglio bene! 

Grazie zietto (Cesare), grazie per essere stato sempre un mio grande sostenitore. Grazie infinite per 

avermi incoraggiato sempre ad essere più sicura di me stessa. Grazie per le chiacchierate. Grazie 

per avermi fatta sempre sentire al centro del tuo mondo. Da quando ti sei trasferito qui da noi, ho un 

motivo di felicità in più! Ti voglio bene! 

Grazie zietti (Stefano e Daniela), grazie per essere la mia seconda famiglia. Grazie per aver reso 

sempre indimenticabili i momenti (sempre troppo pochi) passati insieme. Quando tornate a casa 

dalle vacanze estive si crea sempre un vuoto… La casa è vuota e più triste senza di voi. Grazie per 

esserci sempre stati… Per avermi amata come una figlia… Vi voglio bene! 

Grazie zietto (Paolo), grazie per essere entrato in punta di piedi, insieme alla zia, nella mia vita. 

Purtroppo la lontananza non ci ha permesso di condividere molti momenti. Tutto è cambiato, però, 

da quella lettera che mi mandasti per la laurea… per me è stata come un dono dal cielo… in te vedo 

i miei nonni che non posso più vedere. Nei tuoi racconti vedo gemme preziose di un passato che 

altrimenti non potrei conoscere. Grazie per avermi dato la tua stima… Grazie per i regali che mi 

avete fatto sempre perfetti, così ricercati e speciali… Primo fra tutti perché condiviso con Tommy, 

l’orso gigante di peluches…  

Grazie Zio Massimo (Roma) perché ti ho conosciuto un po’ tardi ma mi sei entrato subito nel 
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Grazie “sorella” mia (Ilaria). Il nostro legame è indistruttibile e indissolubile… sei stata e sarai 

sempre fondamentale per me… il mio bastone della vecchiaia! 

Grazie cugini… A Giovanni, Carlotta a Caterina va il mio sincero ringraziamento per un dolce 
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condivisi. A Marco va il mio sincero ringraziamento perché seppur nella distanza ho sentito una 
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Forse anche voi mi siete state un po’ mandate dal cielo perché sono certa che ognuna di voi abbia 

avuto un ruolo insostituibile nella mia vita. Grazie perché sono creciuta e continuerò a crescere con 

voi… Purtroppo non riusciamo a vederci spesso ma vi ho sempre accanto a me. Grazie ai miei 

nipotini: Gioele, Daniele ed al piccolo Leonardo che sta ancora nella pancia della mamma… Grazie 

per la gioia che mi avete dato e che mi darete! Un ringraziamento speciale va alle vostre famiglie 

che mi hanno sempre accolta a braccia aperte. Un particolare ringraziamento va a Katia, Marco, 

Nicola e Christian che mi hanno sempre fatto sentire a casa, vi porto sempre nel cuore. Grazie di 

cuore anche a Vanes ed Albi per il vostro affetto. 

Grazie ai miei amici Andrea, Matte, Ando, Velli, Monica, Daniele. Grazie per i bei momenti passati 

insieme e per il vostro affetto.  

Grazie a Marco, Paolo, Nata, Enrico, Maurizio, Elena, Valentina, Simona, Fabio, Riccardo, per i 

momenti passati insieme. 

Grazie ai vecchi amici che porto nel cuore… Tommy, Manu, Ele, Anto, Costy, Lucia, Fede, Erica, 

Alice, Totta, Silvia, Margherita… Grazie a Rosi, Francesco, Lorena… e sicuramente mi starò 

scordando qualcuno…Con voi ho passato momenti veramente speciali ed indimenticabili… 

Mi sarò sicuramente dimenticata qualcuno o avrei potuto esprimermi meglio… Quindi scusate per 

questo…  

Ed infine un ringraziamento a me… testona, permalosa, integerrima, dolce, sensibile, protettiva… 

perché nonostante mi critico tanto… penso di meritarmi un po’ di felicità… 


