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Abstract

In recent years numerical simulations are becoming fundamental for the de-

sign of many engineering components. For this reason many multiphysical

and multiscale problems are investigated by coupling different existent soft-

ware created specifically for solving each single problem. However, because of

the intrinsic differences among these codes, such coupling is very challenging.

In this thesis we develop a computational platform that can be used to inte-

grate different computing tools into the common framework of the SALOME

platform. Inside this platform various codes are coupled through numerical

libraries with the purpose of exchanging data and melting intrinsic differences.

After a description of the generic code integration procedure into the numeri-

cal platform, we introduce three classes of problems where different codes have

been coupled and complex computational problems are studied. In the first

problem class, the computational platform is used to study a nuclear reactor

system. We study the dynamics of a multiscale primary loop of a liquid metal

reactor by coupling a mono-dimensional system code with the high resolution

three-dimensional full scale core components models. Also we investigate a

thermal-hydraulic-neutron multiphysics problem. The heat energy production

in the reactor core, obtained by solving the neutron code DRAGON-DONJON,

is coupled with the solution of the thermal-hydraulics conservative equations

implemented in a in-house code. In the second problem class, we consider
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multiscale multiphysics Fluid Structure Interaction problems implemented in

different modules of the FEMUs code. The mechanics of a three-dimensional

particular component of the cardiovascular system is coupled with a mono-

dimensional model that takes into account the remaining parts of a simplified

circulatory system. Finally, in the last class of problems, Multiphase Fluid

Structure Interaction problems are investigated by coupling the solution of a

multiphase fluid interface advection VOF module with a FSI solver.
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CHAPTER 1

Introduction

In these years the design and the control of an increasing number of engineering

devices is possible thanks to computer simulations. Recently we have seen the

development of many codes that are able to simulate and reproduce complex

system physics, helping the developers to better design large projects involving

technologies from nuclear to aerospace field. The design of engineering facili-

ties is a very difficult task. The different physics and scales of its components

leave unsolved many questions. From the engineering point of view, basically

two classes of software have been developed for this type of design: system

and CFD codes. The first ones are used to study the dynamics of highly com-

plex systems in which a huge amount of components such as pump, valves,

tank, pressurizer, etc. are considered. Because of the system complexity, all

the components cannot be represented in three dimensional full scale model.

The computational cost of this approach would be impossible to take, so re-

duced and simplified models must be used. In this way the dynamics of the

whole complex system can be studied but the full scale, detailed, behavior of

a specific component cannot be investigated because of the high resolution of

the problem. For this second type of simulation CFD codes are largely used.

In these programs the governing equations of the problem are discretized and
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solved on a three-dimensional computational grid that well represents, from

the geometrical point of view, the specific object. Then, based on these solu-

tions, one can investigate the problem at a component level scale neglecting

the dynamics of the whole system. Through the years CFD programs have

been specialized in different application fields such as neutron, fluid dynamics,

structural mechanics, fluid structure interaction, thermal dynamics, etc. De-

pending on the problem type, each code uses different discretization scheme

such as Finite Volume (FV), Finite Difference (FD) and Finite Element (FE)

methods. With this type of approximation one can study the specific prob-

lem at a small-scale resolution but, as the computational power increases, one

would also be able to consider more complex problems which involve multi-

physics phenomena where different equations should simultaneously be solved.

A typical and simple example is the study of stresses determined by heat

distribution in mechanical systems or components. This case, in a first ap-

proximation, can be investigated assuming a constant temperature field and

evaluating locally the Young Elastic modulus considering specific temperature

fields. A more realistic approach leads to solve the heat and the mechanical

problem in a coupled way in order to have a better comprehension of the partic-

ular phenomena and then to use this information in component design. As we

mention, nowadays, engineering codes have become very specific and, thanks

to years of experience and developing, have become very accurate. However

their use for studying multiphysics problems is a really difficult task. Most

difficulties arise from the intrinsic differences among different parts of the soft-

ware code such as input and output formats, programming languages, etc. In

this situation two approaches are possible: writing a new software or trying to

couple different software to solve the multiphysics problem. The first option,

writing a new code, is the hardest one and requires a huge knowledge of dif-

ferent problems from the theoretical and practical point of view together with

a large amount of time in order to reproduce the accuracy, reached through

years, of long time developed codes. The second strategy, codes coupling, is

trying to merge the knowledge buried into the original codes in order to better

investigate specific aspects. This type of coupling is usually achieved by using

scripts that launch different programs and read inputs from textual files. This
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approach usually requires a huge amount of computational time and leads to

a compound problem that is quite hard to be controlled. A more efficient way

to couple those codes is the inclusion of them into a computational platform,

which is a framework that can control the execution of the different codes and,

through a common interface, allows the software to exchange run-time data

with high reduction of the computational cost. In order to include a code into

a numerical platform it must be organized in a specific way that allows the

extraction and insertion data. A common interface between the specific results

and a common format must be provided. In this way the specific code can be

easily integrated into the computational platform and it can be easily used by

all the other software already integrated. In this work we describe a general

procedure for code inclusion into a particular numerical platform. We use this

computational tool to investigate complex problems such as the dynamics of

the primary loop of a lead cooled nuclear reactor, the aneurysm growth into the

cardiovascular system and a multiphase fluid structure interaction problem.

The work is organized as it follows. In the first Chapter we give an intro-

duction on the specific numerical platform SALOME, which is developed and

used in this work for coupling different codes. The general structure of the

computational platform is explained together with a general procedure for the

integration of different codes. In particular we explain how a code should be

structured to be included in the SALOME platform. We focus the attention on

the interfaces that must be introduced to allow the computational platform to

extract and impose computational fields in the integrated codes. This capabil-

ity is the essential feature so that different codes, integrated into the platform,

can mutually exchange data. In this work different CFD modules are used, all

them are based on Finite Element Method. The finite element notation and

basic mathematical tools are introduced in Section 2.3. Several computational

examples are then reported. In these examples introductory partial differential

equation problems (PDE) are solved with two different simple library codes

that solve the problem into different computational domains. These regions

share a common surface where the computational field, evaluated by the dif-

ferent codes, is exchanged until convergence is reached. In the first two tests,

computational grids are characterized by the same spatial dimensional while in
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the third test a three-dimensional problem is coupled with a mono-dimensional

one. We remark that the correct solution over the compound domain is reached

through a continue exchange of data among CFD programs. This exchange of

data is handled by the numerical platform that drives the two codes execution

by extracting and imposing computational run-time fields.

In the second Chapter the SALOME platform is used to study the dynamics

of the primary system of a LFR reactor. In the first part, an introduction over

the mathematical model used for the description of the reactor core and plena

is given. The energy, momentum and mass balance equations are solved on a

three-dimensional domain, while the boundary conditions are dynamically set

by a mono-dimensional system code that simulates the whole primary loop of

the reactor. In the last part of this Section a 3D core model of a PWR reactor

is coupled with a neutron code. The temperature field, evaluated with the

CFD code is exchanged with the neutron code that updates the cross section

according to the local temperature field. The neutron flux is then evaluated

and used for defining the new power density distribution in the CFD module.

In the third Chapter the coupling of codes into the numerical platform is used

to investigate another type of problem: the Fluid Structure Interaction (FSI)

of a particular component of the cardiovascular system. As in the previous

case, a multidimensional problem is coupled with a system code that takes

into account the remaining parts of a simplified model of the circulatory sys-

tem. After an introduction of the FSI problems the mathematical description

of the mono-dimensional and the three-dimensional system is given together

with the description of boundary conditions that allows the exchange of data

between the problems. The multidimensional FSI module uses a monolithic

approach which despite having a great stability, has huge computational cost.

In order to reduce this computational effort, a new algorithm for solving mono-

lithic FSI problems is introduced. Different test cases are then reported: the

first is a validation for the new FSI solving algorithm while the second is a

test for the stability of the coupling algorithm between the mono and multidi-

mensional FSI module. In the last two tests we consider an aneurysm in the

abdominal aorta in a steady state and a transient condition, respectively. In

the last Chapter, Multiphase Fluid Structure Interaction problems are intro-
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duced. Such problems are studied by coupling a FSI module with a geometric

solver for the convection of the multiphase fluid interface. Because of deep

differences between these two solvers, the computational grids are different

and the SALOME platform is used to create an interface that projects the

velocity field into the interface convection Cartesian cells. The new location

of the multiphase interface is projected back into the CFD mesh and the new

velocity field together with the structure domain are computed. The general

mathematical description of the problem is investigated by focusing on the in-

terface coupling these two modules. Different test cases are presented to verify

the coupling algorithm.
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CHAPTER 2

Numerical platform

In this Chapter we briefly describe the computational platform used in this

thesis. This work modifies an existing numerical platform, the NURESAFE

platform, developed by the CEA for coupling different codes in the study of

a new design of light water reactors. Clearly this software is not open-source

and its use is restricted to collaborative CEA studies. However the CEA plat-

form is based on SALOME platform, which is indeed an open-source software

that can be used for developing new applications with no restrictions. For

these reasons we have used the open-software platform to add new codes and

develop coupling interface compatible with open and not open-source codes.

After a general description of the SALOME platform structure we describe

the coupling procedure of a generic code into the platform. In particular we

introduce the principal elements that must be developed in order to exchange

data with another code that has been previously integrated into this platform.

2.1 SALOME Platform

The collaborative project NURESAFE for the development of reliable software

usable for safety nuclear reactor analysis, has been funded by the European

9



Study

Post-Pro Toolbox

Data Toolbox

MESH Toolbox

CAD Toolbox

S
u
p

erv
isor

Solvers

Figure 2.1: Layer structure of SALOME architecture.

Container

Component

Component

Container

Component

Component

Services

Comunication Layer (CORBA)

Client ApplicationUser

Figure 2.2: Layer structure of SALOME communication algorithm.

community based on the open-source SALOME platform. NURESAFE has

been created to improve the nuclear safety by developing high level of expertise

and collecting the most recent simulation tools in the nuclear field. The project

has started with the development of CATHARE, NEPTUNE and TRIO U

codes as independent software, with not compatible input and output formats

[1]. CATHARE is a Code for the Analysis of Thermal Hydraulics during an Ac-

cident of Reactor and safety Evaluation for LWR [2]. This system code is used

mainly for PWR safety analysis, accident management and definition of plant

operating procedures. It is also used to quantify conservative analysis margins

and for nuclear reactor licensing [3, 4]. TRIO U and NEPTUNE codes solve
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the flow equations in multidimensional geometries with particular attention to

two-phase flows [5]. CATHARE, NEPTUNE and TRIO U are developed by

CEA and EDF and they can be used only under NURESAFE project agree-

ment. The CATHARE system code, like other important nuclear codes, have

been developed with an interface on SALOME platform for coupling and inte-

gration [4, 6]. At the moment the platform is based on computational tools for

light water reactors but many of these codes can be adapted to a large range

of applications. SALOME architecture is based on CORBA technology that

uses distributed system model of computational resources. SALOME combines

several software components that allow the integration of solvers and existing

meshing algorithms along with the specification of physical properties. The

originality of this approach is that various components could cooperate dynam-

ically for the optimization of resources management. A sketch of the general

structure of the SALOME numerical platform is shown in Figure . SALOME

integrates a number of modules each having its own function: KERNEL, GUI,

GEOM, SMESH, MED, YACS and Paravis module. The KERNEL module

provides a common shell for all components, which can be integrated into the

SALOME platform. The GUI module provides visual representation: basic

widgets, viewers, etc. Very important is the GEOM module, which facilitates

the construction and the optimization of geometrical models using a wide

range of CAD functions. The SMESH module generates meshes on geometri-

cal models previously created or imported by the GEOM component, ParaVis

performs data visualization and post processing and finally MED allows to

work with highly compressed file files.

KERNEL module. SALOME architecture is based on the concept of mul-

tilayer client/server. The distributed system model exposes all functionality of

the application as objects, each of which can use any of the services provided by

other objects in the system, or even objects in other systems. The architecture

can also shadow the distinction between client and server because the client

components can also create objects that behave in server-like roles. This type

of architecture provides the most flexible solution. The distributed system ar-

chitecture achieves its flexibility by encouraging (or enforcing) the definition of
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specific component interfaces. The interface of a component specifies to other

components what services are offered by that component and how they are

used. As long as the interface of a component remains constant, that com-

ponent implementation can change without affecting other components. All

software components (GEOM, SMESH, etc) integrated into SALOME plat-

form implement predefined interfaces. Each component provides data for the

SALOME “study” in a form of links to the specific data created and stored

in the component. All components represent CORBA servers and it allows to

run them on different host computers as shown in Figure 2.2. It is equally

possible to create engine-independent modules that may not use CORBA at

all, and can have internal data structure which can be written in pure C++

(or python). Such modules are located inside SALOME GUI process and from

the point of view of the end user have no difference with standard components.

These modules, which do not use the standard tools of SALOME platform,

are defined on a special separated level named CAM. CAM component is the

basis for new SALOME GUI and contains all basic functionality for working

with modules. Another fundamental aspect of the SALOME architecture is

the use of the Interface Definition Language (IDL), which specifies interfaces

among CORBA components. The architecture of this platform for numerical

components has several advantages. First of all the creation and modification

of computation schemes may be easy, the developer can have easy access to

all modeling parameters to create domain-specific tools adapted to new sit-

uations or to test new numerical algorithms. The implementation of code is

simple for the user and the reuse of components is noticeably facilitated. SA-

LOME is also able to more finely simulate phenomena that is more complex in

scale by coupling different scale code allowing the investigation of a particular

phenomena at different resolution.

MED module. Above all the computational tools included in platform, the

MED module provides a library for storing and recovering computer data in

MED format, associating numerical meshes and fields allowing the exchange

between different codes and solvers. Inside SALOME these structures are ex-

changed between solvers at the communication level (CORBA or MPI) offering
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common read and write functions through MED files. The MED libraries are

divided into three groups of functions: MED File, MED Memory and MED

CORBA. The first group (MED File) is a C and FORTRAN API that imple-

ments mesh and read/write functions into files with med extension, these files

are in HDF5 format: a data model for storing and managing data. The mod-

ule supports an unlimited variety of data types, it is designed for flexible and

efficient input/output and for handle complex data. The MED Memory group,

which is a C++ and Python API, creates mesh and field objects in memory,

the mesh creation can be done using set functions, or by loading a file. Fields

are also created loading files or by initialization with user-defined functions.

Finally the group of functions called MED CORBA allows distributed compu-

tation inside SALOME [7].

GEOM module. In the SALOME platform there are modules which are

fundamental for multidimensional CFD computations and for system codes.

The geometry module (GEOM) of SALOME is destined for: import and export

of geometrical models in IGES, BREP, STEP, STL, XAO and VTK formats,

construction of geometrical objects using a wide range of functions, viewing

geometrical objects in the OCC viewer, transformation of geometrical objects

using various algorithms, optimization of geometrical objects, viewing informa-

tion about geometrical objects using measurement tools and designing shapes

from pictures. It is possible to easily set parameters via the variables pre-

defined in SALOME notebook. The GEOM module supplies data structures

to implement boundary representation (BRep) of objects in 3D. In BRep the

shape is represented as an aggregation of geometry within topology. The ge-

ometry is understood as a mathematical description of a shape, i.e. as curves

and surfaces (simple or canonical, Bezier, NURBS, etc). The topology is a data

structure binding geometrical objects together. Topology defines relationships

between simple geometric entities. A shape, which is a basic topological en-

tity, can be divided into components (sub-shapes): Vertex, a zero-dimensional

shape corresponding to a point; Edge, a shape corresponding to a curve and

bounded by a vertex at each extremity; Wire, a sequence of edges connected by

their vertices; Face, a part of a plane (in 2D) or a surface (in 3D) bounded by
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wires; Shell, a collection of faces connected by edges of their wire boundaries;

Solid, a finite closed part of 3D space bounded by shells and Compound solid,

a collection of solids connected by faces of their shell boundaries. Complex

shapes can be defined as assemblies of simpler entities.

MESH module. The main function of the MESH module of SALOME is to

create meshes, import and export meshes in various formats, modify meshes

with a large array of dedicated operations, create groups of mesh elements,

filter mesh entities (nodes or elements) using different functionality for creat-

ing groups and applying mesh modifications and viewing meshes in the VTK

viewer and, finally, get info on mesh and its sub-objects together with apply-

ing meshes quality controls. In particular computational grids can be created

by meshing geometrical models previously created or imported by the GEOM

component. The mesh can be constructed with a bottom-up approach by using

mesh edition operations, especially extrusion and revolution and by generation

of the 3D mesh from the 2D mesh. It is possible to use the variables prede-

fined in SALOME notebook to set parameters of operations. Almost all mesh

module operations are accessible via Python interface. To create a mesh on ge-

ometry, it is necessary to create a mesh object by choosing a geometrical shape

produced in the GEOM module and some meshing parameters, including mesh-

ing algorithms and hypotheses specifying constraints to be taken into account

by the chosen meshing algorithms. Then one can launch mesh generation by

invoking Compute command. The MESH module contains a set of meshing

algorithms, which are used for meshing entities (1D, 2D, 3D sub-shapes) com-

posing geometrical objects. An algorithm represents either an implementation

of a certain meshing technique or an interface to the whole meshing program

generating elements of several dimensions. For meshing of 1D entities (edges)

the Wire Discretization Meshing (WDM) and the Composite Side Discretiza-

tion (CSD) algorithms are available. The first one (WDM) splits an edge into

a number of mesh segments following an 1D hypothesis. CSD algorithm al-

lows to apply a 1D hypothesis to a whole side of a geometrical face even if it

is composed of several edges. For meshing of 2D entities (faces) two algorithm

are available: Triangle (Mefisto) and Quadrangle (Mapping) which splits faces
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into triangular and quadrangular elements, respectively. For meshing of 3D

entities (solid objects) two possible algorithm are considered. The first is the

Hexahedron (i,j,k) meshing algorithm in which solids are split into hexahedral

elements thus forming a structured 3D mesh. The algorithm requires that 2D

mesh generated on a solid could be considered as a mesh of a box, i.e. there

should be eight nodes shared by three quadrangles and the rest nodes should

be shared by four quadrangles. The second meshing algorithm is the Body Fit-

ting, where solids are split into hexahedral elements forming a Cartesian grid;

polyhedral and other types of elements are generated where the geometrical

boundary intersects Cartesian cells. Hypotheses represent boundary condi-

tions which will be taken into account by meshing algorithms. The hypotheses

allow you to manage the level of detail of the resulting mesh: when applying

different hypotheses with different parameters you can preset the quantity or

size of elements which will compose your mesh. So, it will be possible to gen-

erate a coarse or a more refined mesh. The choice of a hypothesis depends on

the selected algorithm. Hypotheses are imposed during creation and edition

of meshes and sub-meshes. Once created a hypotheses can be reused during

creation and edition of other meshes and sub-meshes. It is possible to open a

dialog to modify the parameters of a hypothesis from its context menu. This

menu also provides the Unassign command that does not assign the hypothesis

from all meshes and sub-meshes. Modification of any parameter of a hypoth-

esis and its unassignment leads to automatic removal of elements generated

using it.

ParaVis module. The ParaVis module is the integration of ParaView in-

side SALOME. SALOME uses by default the detached server mode of Par-

aView: the server is launched outside the main SALOME process and the

ParaVis module, or the PVViewer view connects to it. Following this logic,

the PVSERVER CORBA service has a very restrained role. Its only purpose

is to control the start and stop of the pvserver process and provide the URL

of the server, so that a client can connect to it. we remark that the CORBA

engine does not provide any access to the objects or the visualization results

themselves. It only serves to establish the link with the ParaView server. The
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latter can then be queried to retrieve those objects. A typical session sequence

is as follows: start of SALOME’s GUI, activation request of ParaVis, activation

of the PVSERVER CORBA service, invocation of the method FindOrStart-

PVServer, which launches the server process and returns its URL, and finally

invocation of the standard ParaView’s API to connect to the server. We re-

mind that ParaView works in a client/server mode. In two words, a server part

(the pvserver) takes care of the computations (filter, etc.) and a client part

serves to control this server, and obviously visualize the final rendering. The

pvserver represents the main visualization server, and can be either built-in or

detached. in the first case launching ParaView suffices to activate it automat-

ically while in the second case one has to launch the server first (possibly on

another host) and then connect to it from a client.

YACS module. The YACS module is a tool to supervise execution of com-

plex interconnected scientific applications on computer networks and clusters.

Interconnected scientific applications can be seen as a collection of computa-

tional tasks that are executed in a known order. In YACS this application

application is described by a calculation schema which can be defined with an

XML syntax and is mainly a graph of nodes that refer to computational tasks

or control structures. A calculation scheme can be built either using a graphic

tool, or by editing an XML file directly, or by using an application program-

ming interface (API) in Python. A calculation scheme is constructed based

on the calculation node concept which represents an elementary calculation

that can be the local execution of a Python script or the remote execution of

a SALOME component service. This assembly is made by connecting input

and output ports of these calculation nodes. Composite nodes: Block, Loop,

Switch are used to modularize a calculation scheme and define iterative pro-

cesses, parametric calculations or branches. Finally, containers can be used

to define where SALOME components will be executed (on a network or in a

cluster). Data exchanged between calculation nodes through ports are typed

in four categories: basic types, object references, sequences and structures.

User types can be defined by combining these basic elements. Many types

are predefined either by YACS or by the components used such as GEOM or
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SMESH.

Data exchange. This platform has been conceived not only to collect a

series of codes that have been extensively used in the field of thermal hydraulics

of nuclear reactors but also to harmonize them with the aim of solving complex

problems by exchanging information among different codes over a common

platform and on large multiprocessor architectures. SALOME can also be

used as a platform for the integration of external third-party numerical codes

to produce a new application with full pre and post processing management of

CAD models. The integration of a code on the SALOME platform is obtained

by generating an interface with functions available in the MEDMem library

that allows the data transfer from the platform to the code and vice versa. Two

different codes both with SALOME MEDMem interface can transfer data to

the interface and then from the interface to the other code. MED supports

different element shapes such as point, line, triangle, quadrangle, tetrahedron,

pyramid, hexahedron, polygon and polyhedron. Each element has a different

number of nodes, depending on linear or quadratic interpolation. In order

to have a working platform, common input and output formats should be

harmonized between different codes. This can be achieved by using SALOME

as the basic platform taking care of the data exchange between codes and

of the distributed computation between different clusters. In the following

Section we give a description of the general procedure that can be used for the

integration of a generic code into the computational platform.

2.2 Code integration

In this Section we describe the integration procedure of a CFD code into the

SALOME platform with the aim of using computational modules generated

with this library for multiscale coupling. The integration of an open-source

code into the a numerical platform, can be divided into three major steps:

the first is the generation of the code-library from the original code, the sec-

ond is the generation of the MEDMem interface and finally the generation

of SALOME-code interface integration. In a non open-source code such as
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CATHARE, the source code is not available but usually the binary version of

the library is provided, in this case the first step of generation of the code-

library is no longer needed.

2.2.1 Generation of the code-library

The generation of the dynamic library from a code is pretty straightforward for

modern codes since they are already built as libraries. The main code is simply

a collection of call functions to libraries where the algorithms are developed.

For old codes, especially in FORTRAN, sometimes a monolithic main program

is developed with a few functions in support with experimental data. In this

case it should be straightforward, for developers, to rebuild the code using a

library structure.

2.2.2 MEDMem interface

Stdc++, libc, system

MPI
InterpKernel

MEDCoupling

MEDLoader

ParaMEDLoader

Medfichier

hdf5

Remapper ParaMEDMEM

MEDCalc

Figure 2.3: Layer structure of the packages of the library.

Simulation studies require the manipulation of meshes and fields for data

processing or post processing. Corresponding computer codes can be viewed

as software components accessing input meshes and fields, with specific con-

straints, along with parameters and producing output meshes and fields. The

MED module aims at pooling operations on those items, facilitating their use

by various codes involved in a simulation process. This includes making codes

communicate while preserving as much as possible the integrity of their con-
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Figure 2.4: Operator that map the each node of a generic element (left) into

its duplicate in med format(right).

tent. In order to fulfill its objective, the MED module includes methods for:

handling meshes and fields to satisfy code input requirements, extraction of

field information and projections and serialization to exchange meshes and

fields between codes. The structure of the MEDMem libraries is shown in

Figure 2.3, the fundamental set (blue background) consists in three atomic

libraries: MEDCoupling that describes data structures used for cross process

exchange of meshes and fields, MEDLoader and ParaMEDLoader that pro-

vides input output functions to the med file format and interpolation tools

that provides mathematical structures and algorithms for interpolation and

localization. The main services offered by MEDCoupling are the manipulation

of fields and their support mesh and multidimensional interpolation on nodes,

cells, Gauss points and nodes by element.

Once the code has been build as a library we need to add methods that

can export the results into the MED format, in this way, in order to exchange

a computational field with another code, we can just extract the solution from

the MED file and project it into the different computational domain still in

MED format. For this purpose we build a duplicate of the original computa-

tional grid in the med format and create a map that associates each computa-

tional node from the original mesh to one of the MED duplicate and vice versa
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as shown in Figure 2.4. The generated map can be used both for projecting

a solution coming from the specific code into the MED support but also for

transfer a computational field from the MED mesh to the code specific com-

putational domain. The projection into the MED grid consist on a reordering

of the solution according to the generated map. When the solution is prepared

as just described, it can be attached to the med support and transferred to

any other med support using the methods of the med API. Once the field is

transferred into a different support it can be extracted and ordered according

to the particular map generated for the second program.

2.2.3 SALOME interface

driver problem

grids

equations methods

Figure 2.5: Collaboration diagram of generic CFD interface.

problem

laplace neutronicsmomentummechanics FSI

Figure 2.6: Inheritance diagram of the problem class.

The final step in the integration of a generic code into the numerical plat-

form, is the construction of different methods that allow the control of the

execution and the data input/output of the selected code. There are basically

five classes that must be introduced in the selected code: driver, problem, equa-

tions, grids and methods. The driver class is the top level class that interface

with the SALOME platform as it is shown in the collaboration diagram in Fig-

ure 2.5, where the basic structure of the code that we want to integrate into
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the platform is illustrated. This diagram show how the driver class transfers

data to the problem class which is specialized for different physics. This class

is inherited by all the physical modules used by the selected code as one can

see in Figure 2.6. The equations class, which uses only MEDMem functions,

inherits the system particular class which contains the assembly and solver of

the generic code. The data from the driver class can be transferred into the

assembly routine which is user accessible. The data should also be transferred

in the opposite direction from the equations to the MEDMem interface. The

data flow from parent to son class is ensured by the C++ inheritance rules wile

the flow in opposite direction is defined by a dynamic cast command that al-

lows to use son class functions from the parent class. For this reason the parent

class should be polymorphic with at least one virtual function. The grids class

is an extension of mesh class of the particular CFD code, it contains all the

routines for mesh handling together with MEDMem methods that are used to

extract and manage groups of nodes and cells from the original computational

grid. In particular the extension class contains the methods that allow the

data transfer from one format to another. As in the previous class, data from

the driver class can be transferred, by using a dynamic cast statement, into

the assembly routine which is user accessible. Data can also be transferred

in the opposite directions from the grids to the MEDMem interface through

parent to son class inheritance rules. All the code interfaces must have similar

commands to run the program. The mesh boundary names and their flags,

used for creating mesh groups, are stored in the driver interface class. Over

these groups, by using MEDMem functions and the map between the med sup-

port and the specific mesh, we are able to extract field from the med support

and project it from the MED support, coming from other SALOME platform

codes, into the problem specific mesh format. The basics commands that the

problem class must have are: setType, setMesh and solve. The first command

sets the problem type (Navies-Stokes, energy, etc.), the second one sets and

prepares the mesh which should be available in MED and code specific formats

for data exchange and, finally, the solve command controls the solution of the

discrete system. The boundary regions of the domain should be controlled for

input and output. For this purpose we have to introduce class methods that
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could set and get analytic and numerical solutions in these particular zones.

The interface to the selected code is obtained through the problem class. For

this reason it should access to both grids and equations classes as shown in the

collaboration diagram of the problem class in Figure 2.5.

While the grids class can only handle the data the specific code format,

the equations class contains two standard maps that associate to any zone of

the computational grid a methods so that a volumetric field can be extracted

and transferred to a methods with a MEDMem mesh format by using the

getSource and the setSource function. If the data transfer is between 3D and

1D the average source functions may be used. When codes are organized as

just described exchange data is easy. We just have to create a supervisor

that access the driver class from different problems and, after each solving

iteration the desired field is extracted from the first driver and projected into

the common format. This field is then projected by the second driver into

the computational grid of the second problem and can be taken into account

during its execution.

2.3 Finite element method

The principal purpose for code coupling into the numerical platform is to cou-

ple the solution of a three-dimensional problem with a simplified but more

comprehensive system. In the three-dimensional problem typically a Partial

Differential Equation system (PDEs) is solved on a complex three-dimensional

domain. The three classical choices for the numerical solution of PDEs are the

Finite Difference Method (FDM), the Finite Element Method (FEM) and the

Finite Volume Method (FVM). The FDM is the oldest and is based upon the

application of a local Taylor expansion to approximate the differential equa-

tions. The FDM uses a topologically square network of lines to construct the

discretization of the PDE. This is a potential bottleneck of the method when

handling complex geometries in multiple dimensions. This issue motivated the

use of an integral form of the PDEs and subsequently the development of the

finite element and finite volume techniques. Finite element methods and, the

closely related, boundary element methods nowadays belong to the standard
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routines for the computation of solutions to initial boundary value problems of

partial differential equations. They are used in many engineering field such as

elasticity and thermal-elasticity, fluid mechanics, acoustics, electromagnetic,

scattering and diffusion. These methods also stimulated the development of

corresponding mathematical numerical analysis. In all the computational ex-

ample presented in this work, multidimensional problems are solved with a

FEM method for this reason in this Section we give a general description of

this method together with the notation that is used in the rest of the work.

2.3.1 Finite element space

Consider the two-point boundary value problem

− d2u

dx2
= f inx ∈ (0, 1) ,

u(0) = 0, u′(1) = 0 .

(2.1)

If u is the solution and v is any (sufficiently regular) function such that v(0) =

0, then integration by parts yields

(f, v) :=

∫ 1

0

f(x)v(x)dx =

∫ 1

0

u′′(x)v(x)dx

=

∫ 1

0

u′(x)v′(x)dx =: a(u, v) .

(2.2)

Let us define

V = v ∈ L2(0, 1) : a(v, v) <∞ ∧ v(0) = 0 . (2.3)

L2 is the second order Lebesgue spaces defined by

Lp(Ω) := f : ||f ||Lp(Ω) <∞ , (2.4)

where ||f ||Lp(Ω) is

||f ||Lp(Ω) :=

(∫
Ω

|f(x)|pdx : x ∈ Ω

)1/p

. (2.5)

With the definition (2.3) we can say that the solution u to (2.1) is characterized

by

u ∈ V such that a(u, v) = (f, u) ∀v ∈ V , (2.6)
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which is called the variational or weak formulation of (2.1). Let S ∈ V be any

(finite dimensional) subspace. Let us consider (2.6 ) with V replaced by S,

namely

uS ∈ S such that a(uS, v) = (f, v) ∀v ∈ S . (2.7)

Subtracting (2.7) from (2.6) implies

a(u− uS, w) = 0 ∀w ∈ S. (2.8)

Equation (2.8) and its subsequent variations are the key to the success of all

Ritz-Galerkin/finite-element methods. Now define

||v||E =
√
a(v, v) , (2.9)

for all v ∈ V , the energy norm. A critical relationship between the energy

norm and inner-product is Schwarz’ inequality

|a(v, w)| ≤ ||v||E||w||E ∀v, w ∈ V, (2.10)

then, for any v ∈ S,

||u− uS||2E = a(u− uS, u− uS)

= a(u− uS, u− v) + a(u− uS, v − uS)

= a(u− uS, u− v)

≤ ||u− uS||E||u− v||E .

(2.11)

If ||u − uS||E 6= 0, we can divide by it to obtain ||u − uS||E ≤ ||u − v||E, for

any v ∈ S. If ||u − uS||E = 0, this inequality is trivial. Taking the infimum

over v ∈ S yields

||u− uS||E ≤ inf||u− v||E : v ∈ S. (2.12)

Since uS ∈ S, we have

inf{||u− v||E : v ∈ S} ≤ ||u− uS||E. (2.13)

Therefore,

||u− uS||E = inf{||u− v||E : v ∈ S}. (2.14)
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Moreover, there is an element (uS) for which the infimum is attained, and we

indicate this by replacing infimum with minimum. Thus, we have proved the

following

||u− uS||E = min{||u− v||E : v ∈ S}. (2.15)

This is the basic error estimate for the Ritz-Galerkin method, and it says that

the error is optimal in the energy norm. We will use this later to derive more

concrete estimates for the error based on constructing approximations to u in

S for particular choices of S. Now we consider the error in another norm.

Define ||v|| = (v, v)2 = (
∫ 1

0
v(x)2dx)1/2, the L2 (0, 1)-norm. We wish to con-

sider the size of the error u− uS in this norm. To estimate ||u− uS||, we use

what is known as a duality argument. Let w be the solution of

− w′′ = u− uS on [0, 1] with w(0) = w′(1) = 0 . (2.16)

Integrating by parts, we find

||u− uS||2 = (u− uS, u− uS)

= (u− uS,−w′′)
= (u− uS, w)

= (u− uS, w − v) ,

(2.17)

for all v ∈ S. Thus, Schwarz’ inequality (2.10) implies that

||u− uS|| ≤ ||u− uS||E||w − v||E/||u− uS||
= ||u− uS||E||w − v||E/||w′′||

(2.18)

Thus, we see that the L2-norm of the error can be much smaller than the

energy norm, provided that w can be approximated well by some function in

S. It is reasonable to assume that we can take v ∈ S close to w, which we

formalize in the following approximation assumption

inf
v∈S
||w − v||E ≤ ε||w′′||. (2.19)

Of course, we envisage that this holds with ε being a small number. Applying

(2.19) yields

||u− uS|| ≤ ε||u− uS||E, (2.20)
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and applying (2.19) again, with w replaced by u, gives

||u− uS||E ≤ ε||u′′||. (2.21)

Combining these estimates, and recalling (2.1), yields

||u− uS|| ≤ ε||u− uS||E ≤ ε2||u′′|| = ε2||f ||. (2.22)

The key point of course is that ||u− uS||E is of order ε whereas ||u− uS|| is of

order ε2 and we have to consider a family of spaces S for which ε may be made

arbitrarily small. In order to explain how the FEM method can represent a

solution for the problem defined in (2.1) we have to introduce son functional

spaces and extend the definition of the derivative. First of all we introduce the

Banach space which is a normed linear space (V, || · ||) that is complete with

respect to the metric induced by the norm, || · ||. We recall that a norm || · || is
a function on a given linear (vector) space V with values in the non-negative

real having the following properties

(i) ||v|| ≥ 0 ∀v ∈ V (||v|| = 0⇐⇒ v = 0)

(ii) ||c · v|| = 0|c| · ||v|| ∀c ∈ R, v ∈ V and

(iii) ||w + v|| ≤ ||w||+ ||v|| ∀w, v ∈ V

A norm,|| · || , can be used to define a notion of distance, or metric, d(v, w) =

||v − w|| for points v, w ∈ V . A vector space endowed with the topology

induced by this metric is called a normed linear space. Recall that a metric

space, V , is called complete if every Cauchy sequence {vj} of elements of V

has a limit v ∈ V . The classic definition of derivative is:

u′(x) = lim
h−→0

u(x+ h)− u(x)

h
(2.23)

which is a local definition, involving information about the function u only

near the point x. The variational formulation developed (2.6) takes a more

global view, because point wise values of derivatives are not needed and only

derivatives that can be interpreted as functions in the Lebesgue space L2(Ω)

occur.
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It is natural to develop a global notion of derivative more suited to the

Lebesgue spaces, we can do so using a duality technique, defining derivatives for

a class of not-so-smooth functions by comparing them with very-very-smooth

functions. Given a domain Ω, the set of locally integrable functions is denoted

by

L1
loc(Ω) := {f : f ∈ L1(K)∀ compact K ∈ interior Ω}. (2.24)

Functions in L1
loc(Ω) can behave arbitrarily badly near the boundary (not-so-

smooth functions), although this aspect is somewhat tangential to our use of

the space. One notational convenience is that L1
loc(Ω) contains all of C0(Ω),

without growth restrictions. Finally, we can say that a given function f ∈
L1
loc(Ω) has a weak derivative, Dα

wf , provided there exists a function g ∈
L1
loc(Ω) such that∫

Ω

g(x)φ(x)dx = (−1)|α|
∫

Ω

f(x)φα(x)dx∀φ ∈ (D)(Ω) (2.25)

where (D)(Ω) is the set of C∞(Ω) functions with compact support in Ω. We

can now define the Sobolev spaces via

W k
p (Ω) :=

f ∈ L1
loc :

∑
|α|≤k

||Dα
wf ||pLp(Ω)

 . (2.26)

Let us introduce the bilinear form, b(·, ·), on a linear space V is a mapping

b : V × V −→ R, a (real) inner product, denoted by (·, ·), is a symmetric

bilinear form on a linear space V that satisfies

(v, v) ≥ 0 ∀v ∈ V and

(v, v) = 0⇐⇒ v = 0 .
(2.27)

A linear space V together with an inner product defined on it is called an inner-

product space and is denoted by (V, (·, ·)) and the quantity ||v|| :=
√

(v, v)

defines a norm in the inner-product space (V, (·, ·)) and if the associated normed

linear space (V, || · ||) is complete, then (V, (·, ·)) is called a Hilbert space (H).

As we introduce at the beginning of this Section, we are here interested to find

an approximate solution of the PDE problem that in the general case reads

a(u, v) = F (v) ∀v ∈ V. (2.28)
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For this purpose we can now build the finite-dimensional subspace S ∈ V in a

systematic, practical way. We recall Ciarlet’s definition of a finite element [8]

Let:

(i) K ⊆ Rn be a bounded closed set with non-empty interior and piecewise

smooth boundary (the element domain),

(ii) P be a finite-dimensional space of functions on K (the space of shape

functions) and

(iii) N = {N1, N2, . . . , Nk} be a basis for P ′ (the set of nodal variables).

Then (K,P ,N ) is called a finite element. It is implicitly assumed that the

nodal variables, Ni, lie in the dual space of some larger function space, e.g., a

Sobolev space. In this work we consider finite elements defined on rectangles.

Let Qk = {∑j cjpj(x)qj(y) : pj, qj polynomials of degree ≤ k}. One can show

that

dim Qk = ( dim P1
k)2 (2.29)

where P1
k denotes the space of polynomials of degree less than or equal to k in

one variable.

2.4 Codes coupling on SALOME

In Section 2.2 we describe the integration of a generic code into the SALOME

platform and how to build interfaces that allow the data transfer between dif-

ferent code libraries. In this way, by using a common computational platform,

a solution, computed from a code, can be transferred to another code through

these interfaces. In this Section we show three computational examples in

which a classic problem is solved into different computational grids that share

a boundary zone. In this zone the solution is exchanged run-time and the

error, due to the field projection, is investigated. In these examples we use

two different codes that have been integrated into the computational plat-

form with the procedure explained in the Section 2.2. The first code we use

is libMesh, a library that provides a framework for the numerical simulation
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of partial differential equations using arbitrary unstructured discretizations on

serial and parallel platforms. The second code used is FEMus an in house mul-

tiphysics multigrid finite element library that can use both serial and parallel

unstructured meshes. In the first and the second example, the Laplace and

Navier-Stokes equations are solved, respectively. In both cases the problem is

solved on a three-dimensional domain divided into two parts in which a dif-

ferent driver is considered. The solution on the common surface is exchanged

between the two driver through the MEDMem interface. In the last test a

Laplace problem is solved in a three-dimensional domain that is linked with

a mono-dimensional system, the solution extracted in the common surface is

then averaged over the interface and then set into the simplified problem.

2.4.1 Example 1. Laplace problem

Figure 2.7: Example 1. Coupling 3D-3D geometry. Domain Ω1 ∪ Ω2.

In this first example we consider the Laplace problem:

∇2u+ v∇u = f, (2.30)

defined into the hexaedral region [0, 1]× [0, 1]× [−1, 1] (Ω) and characterized

by a non homogeneous Dirichlet, homogeneous Neumann and homogeneous

Dirichlet boundary conditions in z = −1, z = 1 and the remaining boundary

zones, respectively. To formulate the variational equivalent of (2.30), we define
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Figure 2.8: Example 1. Problem global structure.

Figure 2.9: Example 1. Numbering of the same surface as Ω1 (left) and as Ω2

(right).

a variational space that incorporates the essential, part of boundary condition:

V := v ∈ H1(Ω) : v|Γ = 0 (2.31)

The appropriate bilinear form for the variational problem is determined by

multiplying Poisson’s equation by a suitably smooth function, integrating over

Ω and then integrating by parts obtaining:

(f, v) =

∫
Ω

(−∇2u)vdx =

∫
Ω

∇u · ∇vdx−
∫
∂Ω

v
∂u

∂n
uds

=

∫
Ω

∇u · ∇vdx := a(u, v)

(2.32)

The boundary term vanishes for v ∈ V because either v o ∂u/∂n is zero on

any part of the boundary. In order to verify the data transfer during the cou-

pling we consider two separate domains one in the region [0, 1]× [0, 1]× [−1, 0]
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Figure 2.10: Example 1. Solution over the coupled domain.

Figure 2.11: Example 1. Solution evolution over the coupled domain.

(Ω1) and the another in [0, 1] × [0, 1] × [0, 1] (Ω2) as shown in Figure 2.7.

The two meshes are created in a separate way and the common face has the

same number of points but different numbering order. Each mesh consists of

12× 12× 12 HEX20 quadratic elements. By dividing the complete volume Ω

into two sub-volumes we have to introduce new boundary conditions into the

common face, in order to close the problem. In particular we set homogeneous

Neumann boundary condition in the Ω1-problem and non homogeneous Dirich-

let boundary condition in the Ω2-problem which transfers the field computed in

Ω1-problem through the MEDMem interface. We start in parallel two different

problems and continuously transfer data from the Ω1 to the Ω2 region until the

steady state is found. In particular two libmesh Laplace problems are created
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on Ω1 and Ω2 with the proper boundary conditions in their boundary regions.

A single time step iteration of the whole problem, is composed by two part: a

time iteration of the Ω1 and Ω2 problems. After the first iteration the solution

on the surface share, from the Ω1 problem, is extracted and projected into the

Ω2 computational grid so that it can be set as a Dirichlet boundary condition

into the Ω2 solve step. In Figure 2.9 one can see the surface (labeled as share)

of the computational domain where the data transfer is allowed with solver

global numbering. The libmesh interface creates a map to connect this global

numbering to the surface mesh share of the region Ω1 and another surface map

share of the region Ω2. The surface mesh, in MEDMem representation, has

the same number of nodes but different numbering. It is necessary therefore at

the beginning of the computation to search point by point the correspondence

to build the map. Once the map is computed all field values on the surface

can be passed to the problems surface and vice versa. The detailed work flow

and structure of the problem and how the field can be exchanged between the

drivers, is shown in Figure 2.8: after a solve iteration of the Ω1 problem the

solution over the surface share is extracted, with the dedicated method (step

1), from the original computational grid. With another method this compu-

tational field is then projected into the duplicated Ω1.med file (step 2). The

supervisor can access all the data into the different problems and project the

solution just extracted, using the MEDMem library, from the Ω1.med into the

Ω2.med duplicated mesh (steps 3-4). Now the second problem can extract the

solution field from the its med duplicate (step 5) and project it into its specific

computational grid (step 6) using its class method, the field evaluated on the

surface share can now be taken into account during the solve iteration of the

Ω2 problem. The solution over the coupled domain is shown in Figure 2.10

where the domain is cut along the common interface. Finally in Figure 2.11

the evolution of the solution over the coupled domain is reported. For high

resolutions and small time steps the solution is continuous and the interface

discontinuity in the derivative that can be seen at the initial time steps vanish.

The data transfer from the nodes of the common face of the domain Ω1 to Ω2

seems efficient and reliable.
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2.4.2 Example 2. Navier-Stokes problem

Figure 2.12: Example 2. Coupling 3D-3D geometry for Navier-Stokes equation.

Domain Ω1 ∪ Ω2.

The coupling of a scalar over a surface common region between two codes

has been shown in the previous example. Now we consider a data transfer for

a vector in the Navier-Stokes equation which reads

∂ρv

∂t
+∇ · (ρvv) = −∇p+∇ · τ̄ + ρg , (2.33)

with the proper boundary conditions for closing and solving the problem. We

consider the geometry shown in Figure 2.12 which is similar to the geometry

presented in the previous case, with motion along the vertical z-axis. The

boundary has no slip boundary condition on the 110, 100 and 200 face. On

the 111 face we set non-homogeneous Neumann in the Ω1 problem and non-

homogeneous Dirichlet boundary conditions in the Ω2 problem imposing the

continuity of velocity field computed in the down problem. In the inlet 50

33



Figure 2.13: Example 2. Numbering of the same surface in MEDmesh (bot-

tom) and in MGMesh as Ω1 (left top) and as Ω2 (right top).

Figure 2.14: Example 2. Solution over the coupled interface as Ω1 (left) and

Ω2 (right).

we impose standard velocity boundary conditions with a constant field. In

the surface 150 outflow conditions are imposed. Again we start in parallel

two different problems on multiprocessor machines and the program structure

is similar to the one presented in the previous example. In this case on the

interface 111 of the problem on Ω2 we set a Dirichlet boundary condition
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Figure 2.15: Example 2. Axial component of the velocity on the left and

pressure over the axis on the right at t = 0.1s.
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Figure 2.16: Axial component of the velocity on the left and pressure over

the axis on the right at t = 0.3s.

imposing the boundary velocity field v of the problem on Ω1 which is passed

through the MEDMem interface function. In order to introduce the variational

formulation of the problem we can write the system 2.33 in a more compact

form which reads

−∇2v +∇p = −R(v · ∇v +
∂v

∂t
) ,

∇ · v = 0 ,

(2.34)

in Ω(Rd), where v denotes the fluid velocity and p denotes the pressure. The

expression v ·∇v is the vector function whose ith component is v ·∇vi. These
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Figure 2.17: Axial component of the velocity on the left and pressure over

the axis on the right at t = 0.5s.

equations describe both two and three dimensional flows (d = 2 and 3, respec-

tively); in the case of two dimensions, the flow field is simply independent of

the third variable, and the third component of v is correspondingly zero. The

parameter R in (2.34) is the Reynolds number and when this is very small, the

equations reduce to the Stokes equations. Numerical techniques for solving

(2.34) often involve different issues relating separately to the solution of the

Stokes (or Stokes-like) equations and to the discretization of the convection

term that R multiplies. We will focus here on particularly simple time step-

ping schemes, putting emphasis on the affect this has on the particular form of

the corresponding Stokes-like equations. A complete variational formulation

of (2.34) takes the form

a(v, φ) + b(v, φ) +R(c(v,v, φ) + (vt, φ)L2) = 0 ∀φ ∈ V
b(v, q) = 0 ∀q ∈ Π

(2.35)

where

a(v, φ) :=

∫
Ω

d∑
i=1

∇vi · ∇φi , (2.36)

and

b(v, φ) = −
∫

Ω

(∇ · v)qdx . (2.37)

Choosing V = H1(Ω)n and Π = {q ∈ L2(Ω :
∫

Ω
qdx = 0)} the solution

of (2.35) is unique [9]. When solving the problem on Ω1 the pressure field
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that is imposed on 111 is the one evaluated solving the Ω2 problem and also

passed using the interface MED function some non linear iteration, in which the

computational fields are exchanged between the two problems, are needed to

enforce the continuity of all the computational field at the domains interface.

In Figure 2.13 one can see the surface (labeled as 111) of the computation

domain where the data transfer is allowed with different global numbering.

The FEMus interface creates a map to connect this global numbering to the

surface mesh 111 of the region Ω1 and another surface map 111 of the region

Ω2. The surface mesh in MEDMem representation has the same number of

nodes but different numbering. It is necessary therefore to search point by

point the correspondence. Once the map is computed all field values on the

surface can be passed to the different solvers. The axial velocity over the

coupled interface on the region Ω1 and Ω2 at a certain time step can be seen

on the left and right of Figure 2.14, respectively. No differences can be noted

in this case. We remark that in this case the data are transferred points by

points and differences are negligible with respect to the case in which the

data are transferred cells by cells. From Figure 2.15 to Figure 2.17 one can

see the solution over the coupled domain Ω1 ∪ Ω2 at different time steps, in

particular in the left part of these Figures the axial velocity field is shown,

while in the right part the axial pressure profile is reported. We can notice

that, although no non-linear iterations were performed, the initial discontinuity

in the pressure field (Figure 2.15) is highly reduced after one time step (Figure

2.16) and vanished after few time steps (Figure 2.17). No discontinuities can

be observed in the axial velocity field during the simulation.

2.4.3 Example 3. FEMus-libMesh coupling

The multiscale coupling of the temperature over a 2D surface connecting a

3D module and 1D module can be done easily by using SALOME MEDMem

library. In this library many functions are available for averaging, finding

maximum or minimum of any field over a surface. We consider the geome-

try shown in Figure 2.18. The equations considered here are the energy and

momentum balance. The FEMus module is used for the 3D problem while
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Figure 2.18: Example 3. Coupling 3D-1D geometry. Domain Ω1 ∪ Γ2(BC).
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Figure 2.19: Example 3. Coupling 3D-1D geometry. Domain Ω1 ∪ Γ2(BC).

the mono-dimensional domain is handle by libMesh. The motion in the 3D

domain is along the z-axis from A to B. The 1D region is attached to the
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Figure 2.20: Example 3. Evolution over the coupled domain at different time

steps. On the left the three-dimensional solution and on the right the solution

over the mono-dimensional line BC.

three-dimensional region at the point B. The mono-dimensional domain goes

from B to C over a unitary length.

The boundary has Dirichlet boundary conditions on the 100, 50 and 110

faces. On the 110 face (B) we set Neumann in the down problem and non-

homogeneous Dirichlet boundary conditions at the point B problem imposing

the average temperature computed in the down problem. In the inlet 50 we

impose constant Dirichlet boundary conditions with a constant field. At the

end of the line (C) Dirichlet boundary conditions are imposed as at the face

(A). We start in parallel two different problems on multiprocessor machines:

a FEMus problem is solved in the down-region and a libMesh problem in the

line region. The FEMus and the libMesh problems are coupled. In this case on

the point B of the 1D-problem we set a Dirichlet boundary condition imposing

the boundary field of the 3D-problem. Since the point B is a single point we

need to take the average of the surface using the averaging MEDMem function

before imposing the Dirichlet boundary condition over the first point of the

line domain. The overall structure of the program is shown in Figure 2.19, the

first step is the extraction of the temperature field from the 111 surface (step

1) and its projection into the med duplicated (step 2). Now the supervisor can

access the temperature field (step 3) and through the MEMmem library can

average this field over the selected surface. The supervisor pass the average

temperature to the MED grid duplicated of the libmesh problem (step 4) and

finally the proper method set the average temperature in the libmesh problem.

This procedure is performed after a solve iteration of the multidimensional
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problem and before the libmesh solve. In Figure 2.20 the evolution of the

solution over the coupled domain is reported. The 1D solution follows the 3D

dimensional solution as expected. From left top to bottom right the solution is

reported for different time steps. In each figure on the left is reported the three-

dimensional domain while on the right the temperature along the central axis

of the cube domain (segment AB) and along the mono-dimensional domain

(BC). The temperature at B in the mono-dimensional domain is always below

the central point temperature of the coupling surface.
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CHAPTER 3

Nuclear Reactor analysis

The primary loop of a nuclear reactor is a complex system composed by a huge

number of components. The simulation of the entire loop, due to its complex-

ity, requires the use of simplified models while the investigation of the behavior

of a specific part requires complex and multidimensional models. In this Chap-

ter we investigate the thermodynamics of different nuclear reactors systems in

a multiscale and multiphysics framework. Different computational tools, that

can exchange data thanks to their inclusion into the computational platform

SALOME, are used to study different aspects of the problem. The Chapter

is organized as follows, after an introduction into the nuclear energy produc-

tion we give the geometrical description of a specific nuclear reactor core. We

study the reactor dynamics at different resolution scales (3D, 1D, etc.) and

we introduce the different mathematical models that are used together with

the structures needed to interface them. Some computational examples are

then presented. In the firsts two of them, we study the dynamics of the entire

primary loop of the nuclear system coupling a system code with a full-scale

model of the core, in particular two different coupling techniques are investi-

gated. In the last example, we couple the CFD model of the reactor core with

a neutron code and the specific energy production in core is evaluated taking

41



into account the local temperature field. In all cases codes can exchange data

thanks to their inclusion into the numerical platform SALOME.. Concerning

the CFD modules that are used, we remark that they are in-house developed

and solve the balance equations using a standard Galerkin Finite Element

Method based on the Taylor-hoods elements.

3.1 Introduction
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Figure 3.1: Total cross section for 235U .

CFD Porous System

Figure 3.2: CFD (3D), porous (3D) and system scale (1D).
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The reactor physics characteristics associated with the interaction of neu-

trons with all the material components of a nuclear reactor influence, and in

some cases determine, the design and operation of the system. One of the

most important parameter is the neutron reaction rate with 235U or other fis-

sile materials since it can be used for the evaluation of fission rate and the

consequent heat production in the specific core. This heat source determines

the power output of the reactor and strongly influences material temperatures

which in turn often determine the reactor’s safe operating conditions. The

reaction rate is determined from the material specific neutron cross sections,

which is the probabilities of various reactions occurring when neutrons interact

with the material nuclei. As an example, the energy dependent cross section

for a neutron reacting with 235U is shown in Figure 3.1. This parameter is the

microscopic cross section, usually denoted by σ, which applies to an individual

nucleus and has units of area and it is a problem independent property of the

nuclide. The macroscopic cross section applies to the specific material and it

is usually interpreted as the probability of interaction per cm of distance of a

free neutron. This cross section, usually denoted Σ, it is problem dependent

and is related to the microscopic cross section through the relationship

Σx(E) =
I∑
i=1

Niσi(E) (3.1)

where Ni represents the atom densities in the target and x represents a reaction

type. We can now describe the transport of neutrons through material with

the time independent neutral particle Boltzmann transport equation

∇ · J(r, E) + Σt(r, E)Φ(r, E) =
χ(r, E)

keff

∫ ∞
0

dE ′ν(E ′)Σf (r, E)Φ(r, E)

+

∫ ∞
0

dE ′Σs(r, E
′ → E)Φ(r, E)

(3.2)

where Φ(r, E), J(r, E) are the flux and current as a function of position and

energy, respectively and χ(r, E) is the distribution of fission neutrons in po-

sition and energy. This equation gives the balance of the different reactions

that can occur with neutrons at a given point and energy, along with the k-

effective eigenvalue, denoted by keff . Each of the terms in the equation (3.2)
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denotes a particular loss mechanism for the neutrons (on the left hand side

of the equation) or gain mechanisms for neutrons (on the right-hand side).

Computer codes that solve the time-independent, steady-state neutron flux

can be divided into two categories: deterministic and stochastic. Stochastic

(Monte Carlo) methods solve for the neutron flux by simulating particle trans-

port rather than by numerically solving the Boltzmann transport equation

(3.2). Monte Carlo particles simulations use an algorithm in which decisions

faced by a neutron during its lifetime in the reactor are are determined from

the mathematical probability densities. Deterministic methods involve the

numerical subdivision of the independent variables of space, energy and direc-

tion into computational subdivisions, with a subsequent reformulation of the

continuous-variable Boltzmann Equation (3.2) into a set of discrete variable

equations. Specialized deterministic computer codes solve these coupled lin-

ear algebra equations for the neutron flux in each phase cell, and the desired

flux integrals are approximated by summations over the appropriate cells to

get the engineering parameters (including k-effective) of interest in the anal-

ysis. The most common deterministic methods are: discrete ordinates and

diffusion theory. The discrete ordinates method subdivides all three indepen-

dent dimensions space, energy, and direction. Space is divided into a regular

one, two or three-dimensional grid, energy utilizes the multigroup method and

direction is handled by calculating the flux only in particular directions (dis-

crete ordinates). This is the slowest, but most accurate, of the deterministic

methods. It is generally used for pin-cell and fuel assembly calculations for

situations for which regular geometries either apply or can be reasonable ap-

proximated. The diffusion theory method subdivides only space and energy

ans simplifies the directional dependence by assuming a nearly isotropic flux.

The spatial treatment again utilizes a regular grid of spatial elements con-

nected to their immediate neighbors and the energy treatment again employs

the multigroup approach. This is the simplest and fastest of the deterministic

methods. The primary use of diffusion theory is for full-reactor calculations in

which reactor assemblies have been homogenized, so that strong absorbers and

fission/scattering sources have been mathematically spread out. A detailed de-

scription of the reactor physics and analysis can be found in [10, 11, 12].
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The technology used to control a fission chain reaction evolves during these

years, in particular nuclear reactor designs are usually categorized by genera-

tions: Generation I, II, III, III+, and IV. The key attributes characterizing the

development and deployment of nuclear power reactors illuminate the essen-

tial differences between the various generations of reactors. Three generations

of nuclear power systems, derived from designs originally developed for naval

use beginning in the late 1940s, are operating worldwide today. Generation I

refers to the prototype and power reactors that launched civil nuclear power.

This generation consists of early prototype reactors from the 1950s and 1960s,

such as Shippingport (1957–1982) in Pennsylvania, Dresden-1 (1960–1978) in

Illinois, and Calder Hall-1 (1956–2003) in the United Kingdom. The only re-

maining commercial Gen I plant, the Wylfa Nuclear Power Station in Wales,

was scheduled for closure in 2010. However, the UK Nuclear Decommissioning

Authority announced in October 2010 that the Wylfa Nuclear Power Station

will operate up to December 2012. Generation II refers to a class of commer-

cial reactors designed to be economical and reliable. Designed for a typical

operational lifetime of 40 years, 2 prototypical Gen II reactors include pressur-

ized water reactors (PWR), CANada Deuterium Uranium reactors (CANDU),

boiling water reactors (BWR), advanced gas-cooled reactors (AGR), and Vodo-

Vodyanoi Energetichesky Reactors (VVER). The Generation II BWR primary

coolant system, the steam water mixture, first enters the steam separators af-

ter exiting the core. After subsequent passage through a steam separator and

dryer assembly located in the upper portion of the reactor vessel, dry saturated

steam flows directly to the turbine. Saturated water, which is separated from

the steam, flows downward in the periphery of the reactor vessel and mixes

with the incoming main feed flow from the condenser. This combined flow

stream is pumped into the lower plenum through jet pumps mounted around

the inside periphery of the reactor vessel. The jet pumps are driven by flow

from recirculation pumps located in relatively small-diameter ( 50cm) exter-

nal recirculation loops, which draw flow from the plenum just above the jet

pump discharge location. The primary coolant system of a PWR consists of

a multi-loop arrangement arrayed around the reactor vessel. Higher power

reactor ratings are achieved by adding loops of identical design. Designs of
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two, three, and four loops have been built with three and four loop reactors

being the most common. In a typical four loop configuration, each loop has

a vertically oriented steam generator and coolant pump. The coolant flows

through the steam generator within an array of U tubes that connect the inlet

and outlet plena located at the bottom of the steam generator. The system

pressurizer is connected to the hot leg of one of the loops. Gen II systems

began operation in the late 1960s and comprise the bulk of the world’s 400+

commercial PWRs and BWRs. These reactors, typically referred to as light

water reactors (LWRs), use traditional active safety features involving elec-

trical or mechanical operations that are initiated automatically and, in many

cases, can be initiated by the operators of the nuclear reactors. Some engi-

neered systems still operate passively (for example, using pressure relief valves)

and function without operator control or loss of auxiliary power. The design

of such reactors require relatively large electrical grids, have a defined safety

envelope based on Western safety standards, and produce significant quantities

of used fuel that require ultimate disposition in a high-level waste repository

or reprocessing as part of a partially or fully closed fuel cycle. The economics

of existing Gen II plants and of those under construction or in the planning

stage are generally favorable, particularly in Asia. The extraordinary events

unfolding at the Fukushima Daiichi and Daini nuclear power plants are being

assessed by the technical and regulatory experts both in the United States

and across the world. At press time, a full assessment is not possible. We

have learned that an increased safety focus will likely be required and, at a

minimum, will focus on four safety systems: BWR containment structures,

common-mode emergency core cooling capability resulting from loss of emer-

gency backup power, the performance of mixed-oxide fuel in Gen II reactor

designs and critical safety analyzes of the various extant used fuel cooling pool

designs. Generation III nuclear reactors are essentially Gen II reactors with

evolutionary, state-of-the-art design improvements. These improvements are

in the areas of fuel technology, thermal efficiency, modularized construction,

safety passive systems, and standardized design. Improvements in Gen III re-

actor technology have aimed at a longer operational life, typically 60 years of

operation, potentially to greatly exceed these years, prior to complete overhaul
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and reactor pressure vessel replacement. The Westinghouse 600 MW advanced

PWR (AP-600) was one of the first Gen III reactor designs. On a parallel track,

GE Nuclear Energy designed the Advanced Boiling Water Reactor (ABWR)

and obtained a design certification from the NRC. The first of these units

went online in Japan in 1996. Other Gen III reactor designs include the En-

hanced CANDU 6, which was developed by Atomic Energy of Canada Limited

(AECL); and System 80+, a Combustion Engineering design. Only four Gen

III reactors, all ABWRs, are in operation today. Generation III+ reactor de-

signs are an evolutionary development of Gen III reactors, offering significant

improvements in safety over Gen III reactor designs certified by the NRC in the

1990s. Manufacturers began development of Gen III+ systems in the 1990s by

building on the operating experience of the American, Japanese, and Western

European LWR fleets. Perhaps the most significant improvement of Gen III+

systems over second-generation designs is the incorporation in some designs of

passive safety features that do not require active controls or operator interven-

tion but instead rely on gravity or natural convection to mitigate the impact

of abnormal events. The inclusion of passive safety features, among other

improvements, may help expedite the reactor certification review process and

thus shorten construction schedules. These reactors, once on line, are expected

to achieve higher fuel burn up than their evolutionary predecessors (thus re-

ducing fuel consumption and waste production). Nuclear scientists have left

implementation of the Gen III+ and SMR designs and have instead focused

on nuclear alternatives commonly called Gen IV that still require considerable

fundamental research. Conceptually, Gen IV reactors have all of the features of

Gen III+ units, as well as the ability, when operating at high temperature, to

support economical hydrogen production, thermal energy off-taking, and per-

haps even water desalination. These reactors are cooled by a wide variety of

coolants liquid metal sodium, lead or lead-bismuth, helium, and super critical

carbon dioxide gas, liquid salt, and super critical water. They were identified

through an international evaluation based on a set of sustainability, safety, eco-

nomic, proliferation resistance, and physical protection criteria. Their individ-

ual development is led by the interested countries that coordinate their efforts

through the Generation IV International Forum[13, 14]. The missions of these
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reactors include production of electricity, process heat including hydrogen as

well as waste management by transmutation of actinides (neptunium, pluto-

nium, americium, and curium). Principal reactor characteristics are therefore

the average neutron energy and primary system outlet temperature. Among

all the rectors type, the Lead Fast Reactor (LFR) is one of the most promising

options. The central part of a LFR consists of several components and their

accurate simulation cannot be performed in three-dimensional space with the

actual computational power. For this reason it seems reasonable a multiscale

approach where different components are studied on different scales based on

a well defined computing resource plan. As shown in Figure 3.2, one can see

three representative different scales: DNS - CFD, porous and system scale.

The scale where the Navier-Stokes can be solved in order to define completely

the physics of the system is called DNS or Direct Numerical Simulation scale.

The CFD scale is the scale where the usual Computational Fluid Dynamics

codes can approximate satisfactory the system evolution. This includes tur-

bulence models that usually cannot be simulated in the DNS scale. In the

porous model scale the geometrical details are so numerous that a detailed

simulation cannot be possible in the DNS scale. In this scale the introduction

of a unique fictitious porous material with average properties must be consid-

ered. Finally, in the system scale, all the components are considered through

a mono-dimensional or zero-dimensional model in order to study the global

behavior of several components against desired plant control. System codes

for nuclear reactors have been developed for many years and some of them,

such as RELAP and CATHARE are certified by international agencies since

they provides transient solutions reliable for safety analysis. However they

cannot be used for studying three-dimensional behavior, so they cannot re-

produce all the three-dimensional physical phenomena in the core and plenum

regions. A multiscale strategy combines the CFD approach in the region of

interest with time dependent boundary conditions computed by system codes.

Further modeling is necessary in the core region since the real geometry of a

reactor core is made up of an extremely large number of fuel rods, packed in

several fuel assemblies. Instead of simulating each flow sub-channel between

the pins, the core is considered to be a porous media, where average velocity
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and temperature fields are computed. The three-dimensional porous module is

equipped with appropriate power heat and pressure loss sources that reproduce

the space dependent characteristics of the system. In particular the thermal

source and the pressure losses can be loaded by data files at the assembly level

in all the space domain by using neutron computations and according to the

mechanical structural design of the reactor. The lower and upper plenum can

be simulated with a traditional CFD approach, as there is no fine geometry to

take into account. In order to respect the balance of momentum and energy

through the 3D-CFD and 3D-porous media the velocity field is discontinuous

due to reduction of the fluid cross area. Appropriate interfaces are also intro-

duced in order to solve the three-dimensional and mono-dimensional equations

through a unique non-linear coupled solver.

In the following Sections after a geometrical description of a selected reac-

tor core we describe the different mathematical models that are used in the

different zones of the reactor primary loop together with several computational

examples.

3.2 Geometrical model

Steam Generator Steam Generator

Fuel Assemblies

Axial Flow
Primary Pump

Figure 3.3: Schematic of the reactor.
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Figure 3.4: On the left, computational domain. On the right, modules used

in the multiscale LFR modelization.

Parameter Value

Power [MWe] 600

Conversion Ratio ∼ 1

Thermal efficiency [%] 42

Primary coolant Lead

Circulation type Forced

Core inlet temperature [K] 673.15

Core outlet temperature [K] 753.15

Fuel MOX (Nitrides)

Fuel cladding material T91 (aluminized)

Peak cladding temperature [K] 823.15

Fuel pin diameter [mm] 10.5

Active height/diameter [m] 0.9/4.32

Primary pumps 8 integrated in the SG

Working fluid Water-superheated at 18 MPa, 450◦C

Table 3.1: Main characteristics of the ALFRED reactor.

The LFR model considered in this part, is the type-pool LFR reactor AL-

FRED, shown in Figure 3.3. The nuclear reactor is characterized by a very

compact design and its main characteristics are illustrated in Table 3.1. One

important feature of this reactor is that it uses lead as basic coolant. This
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Figure 3.5: Schematic of primary loop with heat exchanger.

is due to its good chemical behavior and its thermodynamic properties. The

main disadvantages of this coolant are the high solidification temperature of

600.15K and the oxidation and corrosion behavior. The thermal power of

one unit at nominal conditions is 1500MW at a total mass flow rate of about

126000Kg/s. The LFR vessel has 8 primary loops with 8 steam generators

(SG) and 8 integrated primary pumps. At nominal conditions the coolant

enters the core at T = 673.15K to reach the outlet at temperature of about

753.15K. For the secondary loop superheated water-steam is used to reach a

thermal efficiency of about 43%. This converts the 1500MW heat power into

600MW of electrical power. A detailed description of the ALFRED reactor

is presented in [15]. As shown on the right part of Figure 3.4 we consider

the LFR system basically divided into three regions: heat exchange loop (1D-

porous), plenum (3D-CFD) and core (3D-porous) region. The computational

mesh is shown in the left part of Figure 3.4. If we set the zero vertical co-

ordinate at the lowest point, the core region goes from 1.3m to 3.24m. The

active core (upper core) where heat is generated ranges between Hin = 2.25m

and Hout = 3.15m. Below the core we have the lower plenum with the inlet
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between 0 and Hlp = 1.3m. The lower plenum has an approximate hemispher-

ical form with the lowest region at Hbot = 0 (reference point). Above the core

for a total height of Hup = 1.24m there is the upper plenum with the coolant

outlet. The generation of this mesh is not trivial, every assembly must be ex-

actly discretized by entire cells. In this way all the data attributes related to

a given assembly may be easily associated. For details we refer to [16]. In the

design of this LFR reactor there are 8 primary loops, each of them contains

a steam generator and a pump. We model each of this reactor segment as a

1D-porous module. The schematic of this module is defined in the left part of

Figure 3.5 where one can find the upper plenum from UP1 to UP2, the steam

generator from GV1 and GV2 together with the pump P. The point with label

LP2 indicates the entrance in the lower plenum. Since the interface between

the 3D and 1D module is defined by a single point, the primary loop starts at

the lower point of the upper plenum outlet and ends at the upper point of the

lower plenum inlet as one can see on the right part of Figure 3.5 where the

seal path of the primary loop are shown.

3.3 3D-CFD scale

Figure 3.6: Two level solution scheme: geometrical fine (left), fine (middle)

and coarse (right) level.

On 3D-CFD scale the three-dimensional conservative incompressible equa-

tions in velocity, pressure and enthalpy (or temperature) field (v, p, h(T )) over
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a domain Ω with boundary Γ are the following

∇ · (ρv) = 0 , (3.3)

∂ρv

∂t
+∇ · (ρvv) = −∇p+∇ · τ̄ + ρg , (3.4)

∂ρ h

∂t
+∇ · (ρv h) = Φ +∇ ·

(
kf
Cp
∇h
)

+ Q̇ , (3.5)

where ρ is the density, g the gravity acceleration vector, Cp is the pressure

specific heat, kf the effective heat conductivity, Q̇ the volume heat source and

Φ the dissipative heat term. The enthalpy h is defined by

h = Cp T , (3.6)

with Cp constant in the liquid region. The use of h or T is completely indif-

ferent. We use the temperature T as a main variable but we refers to enthalpy

when the liquid and the solid phase are present at the same time. We as-

sume pressure solution in the space P (Ω), velocity in V(Ω) and temperature

in H(Ω). For details see [16, 1, 17]. The viscous stress tensor τ̄ is defined by

τ̄ = 2µfD̄(u) , Dij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

where µf is the liquid viscosity. For details see [1, 17]. The incompressibility

constraint (3.3) is assumed to be valid even if the density is supposed to be

dependent on temperature. These equations should be averaged in space de-

pending on the scale. In the simulation of the primary loop of the LFR reactor,

the active core and the lower and upper plena are modeled with 3D models,

while the rest of principal remaining parts such as pumps, pool, steam gener-

ator etc. are taken into account with simplified models. In many components

the simulation of internal flows is very complex and simplifying assumptions

must be introduced, for example let us consider the core case where there are

hundreds of assemblies and each assembly has hundreds of fuel rods. The com-

plexity of this geometry asks for domain homogenization. As shown in Figure

3.6 on the left one can see the geometrical fine grid of the fluid domain where

the rod fuel is defined by the circle in the middle of the square region. The

multiscale procedure extends the original solution from the fluid region to the

solid zone and then projects it on the coarse grid considering a new mixture

material.
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3D-porous mass equation In order to illustrate this multiscale procedure

one can consider the mass conservation equation in strong (left) and variational

(right) form over the domain Ω

∇ · ρv = 0

∫
Ω

∇ · ρvψ dx = 0 . (3.7)

In the first step the domain is extended Ω→ Ω̂ and the (3.7) written as∫
Ω̂

∇ · ρvψ dx = 0 , (3.8)

with density and velocity field extended on Ω̂. Now we project the equation

on the fine grid over test base function ψh(k)∫
Ω̂h

∇ · ρvh ψh(k) dx = 0

and consider the solution (v̂, p̂, T̂ ) on the coarse grid with test functions ψ̂h(j).

If the fine test base function ψh(k) is a complete set in the coarse grid then

we have

ψ̂h(j) =
∑
k

Ckj ψh(k) v̂h =
∑
j

vj
∑
k

Ckj ψh(k) .

The sum over the equation involving v̂h on a coarse level becomes∑
k

Ckj

∫
Ω̂h

∇ · ρvh ψh(k) dx =

∫
Ω̂h

∇ · ρvh ψ̂h(j) dx = 0

or ∫
Ω̂h

∇ · ρ(vh + v̂h − v̂h) ψ̂h(j) dx = 0 .

Therefore the incompressibility constraint can be written as∫
Ω̂h

∇ · ρ v̂h ψ̂h(j) dx =

∫
Ω̂h

P c
ef (v̂h, vh) ψ̂h(j) dx ∀ψ̂h(j) ,

with the mass fine-coarse transfer operator P c
ef defined by

P c
ef (v̂h,vh) = ∇ · ρ(v̂h − v) .
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Usually one assumes

Rc
ef =

∫
Ω̂h

P c
ef (v̂h, vh) ψ̂h(j) dx ≈

∫
Ω̂h

∇ · ζ ρv̂h ψ̂h(j) dx ∀ψ̂h(j) ,

where ζ is the fraction of the structural material in the volume. In final form

we can write ∫
Ω̂h

∇ · (1− ζ)ρ v̂h ψ̂h(j) dx = 0 . (3.9)

The (3.9) implies that the velocity in the porous media is (1 − ζ) v̂h while

the real velocity in the fluid is v̂h. The velocity (1 − ζ) v̂h is called reduced

velocity. The liquid mass flux is ρ v̂h · nAf with Af the fluid area and n the

unit normal. If we add the area Am of the structural material then the liquid

mass flux through the porous media area A = Af + Am is ρ v̂h · nA which is

(1− ζ) times greater than the real one.

3D-porous momentum equation In a similar way we can write the mo-

mentum equation as [18, 16]∫
Ω

∂ ρ v̂h
∂t

· φ̂hj dx +

∫
Ω

(∇ · ρ v̂hv̂h) · φ̂hj dx−∫
Ω

p̂h∇ · φ̂h(k) dx +

∫
Ω

¯̂τh : ∇φ̂hj dx−
∫

Ω

ρg · φ̂hj dx =∫
Ω

Rm
cf (ph,vh, p̂h, v̂h) · φ̂hj dx ,

where the fine-coarse transfer operator Rm
cf (ph,vh, p̂h, v̂h) is defined by

Rm
cf (ph,vh, p̂h, v̂h) = Pm

cf (p̂h − ph, v̂h − vh) +Km
cf (vh) ,

where ∫
Ω

Pm
cf (p̂h − ph, v̂h − vh) · φ̂hj dx (3.10)

is the volume fine-coarse term and∫
Ω

Km
cf (vh) · φ̂hj dx =

∫
Γ

(−ph ~n+ τh · ~n) · φ̂hj ds (3.11)

the pressure term. For details see [18, 16, 1, 17].
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3D-porous energy equation For the energy equation, by applying the

same procedure, we have [18, 16]∫
Ω

∂ ρCp T̂h
∂t

ϕ̂hj dx +

∫
Ω

ϕ̂hj∇ · ρCpv̂h T̂h dx∫
Ω

k∇T̂h · ∇ϕ̂hj dx−
∫

Ω

Qh ϕ̂hj dx =

∫
Ω

Re
cf (Th) ϕ̂hj dx

where the energy source from the fine scale is Re
cf , i.e.,

Re
cf (Th) = Secf (Th) + P e

cf (T̂h − Th, v̂h − vh) + T ecf (v̂h,vh)∫
Ω

Secf (Th) ϕ̂hj dx =

∫
Γ

k (∇Th · ~n) ϕ̂hj dx fuel heat source∫
Ω

P e
cf (T̂h − Th, v̂h − vh) ϕ̂hj dx = volume term.

For details see [18, 16]. This leads to the 3D-porous system of equations strong

form to take the following form

∇ · r ρ v̂ = 0 , (3.12)

∂r ρ v̂

∂t
+ (∇ · r ρ v̂v̂) = −∇(r p̂+ p̂l) +∇ · (r (τ̂)) + rρg , (3.13)

∂ r ρCp T̂

∂t
+∇ · (r ρCpv̂ T̂ ) = ∇ ·

[
r

(
k +

µt
Prt

)
∇T̂
]

+ r Q+W , (3.14)

where r = 1−ζ. We remark that the main terms coming from the fine grid are

the surface terms W (x) and p̂l. We note that the system (3.12-3.14) resembles

the system of conservative equations for two-phase flow.

3.3.1 Plenum model − > 3D-CFD module

In the reactor there are two plena: the upper plenum and the lower plenum

located below and above the core, respectively. The module that describes

a plenum module is basically a standard 3D-CFD module. In these regions,

the coolant flows in a quite open three-dimensional domain and the coolant

state, defined by velocity v, pressure p and temperature T , can be determined

by: the mass conservation equation Eq. (3.3), the momentum conservation

equation Eq. (3.4) and the energy equation Eq. (3.5). In this region the

density, the viscosity, the thermal conductivity and specific thermal capacity
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Figure 3.7: Schematic of the plenum volumes (in green).

can be a function of temperature. For example the density can be a function

defined as ρ = ρ(T ) = a + bT . The equations (3.3-3.5) are stabilized with a

standard up-wind for finite element method (FEM).

3.3.2 CORE model (3D-porous module)

Figure 3.8: Core model. Schematic of the core volume (in green).

Mathematical model In the core region the geometry is so complex and

detailed that a porous model approximation is necessary since a direct simu-

lation of the velocity, pressure and temperature distributions is not possible.
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Figure 3.9: Core model. Core power distribution.

Figure 3.10: Core model. Computational vertical and horizontal core power

distributions.

The 3D-porous module consists of the following equations: the mass conserva-

tion equation defined in (3.12), the momentum conservation equation defined

in (3.13) and the energy equation defined in (3.14). As shown in Figure 3.8 the

3D-porous module is connected with the 3D-CFD modules of the lower plenum

and upper plenum. At these interfaces the fluid must flow from one module

to the other and conserve the flow momentum. The 3D-CFD module in the

plenum is different from the 3D-porous module since in the porous medium

consists of fluid and solid material. This issue is going to be discussed in the

interface model Section.
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Figure 3.11: Core model. Reactor fuel distribution, on the left, and axial peak

factor, on the right.

35.13mm

13.9mm

294mm area (m2)

Pin area 370.606× 10−4

Corner box area 5.717× 10−4

Central box beam 2.092× 10−4

Channel central area 12.340× 10−4

Coolant area 473.605× 10−4

Assembly area 864.360× 10−4

Coolant/Assembly ratio 0.5408

Figure 3.12: Schematic of the assembly on the left and its main characteristics

in the Table on the right.

Fuel distribution The space heat power distribution is defined in two steps.

First one must define the average power value and then the fuel peak factors.

The average value heat source q̇v should be set independently of a space-

dependent configuration. In order to obtain the assembly averaged specific q̇v

and linear q̇l heat power, the total core power is to be divided over Na−8. We

obtain

q̇l =
Q̇

(Na − 8)Lcore

where Acore is

(Na − 8)Aassembly

q̇v =
Q̇

(Na − 8)LcoreAassembly
,
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Inner Intermediate Outer

A11/2* 8.606 A16/2* 10.775 A17/2* 10.036

A12/2* 8.801 A25 10.188 A27 10.908

A13/2* 9.043 A26 10.269 A28 7.842

A14/2* 9.301 A34 9.943 A37 8.465

A15/2* 9.560 A36 9.249 Aa7 8.520

A21/2* 8.678 A45 10.132 A55 10.962

A22 8.759 A46 9.399 A56 8.621

A23 8.943 A52 9.696 A65 9.766

A24 9.112 A53 9.857 A66 7.776

A3l 8.811 A54 10.400 A72 9.746

A32 8.921 A62 9.410 A73 8.833

A33 9.071 A64 9.057 A74 7.699

A41/2* 8.850 A71 9.318 A81/2* 8.029

A42 8.903 A82 7.806

A43 9.043 A83 6.922

A44 9.218

A5l 8.790

A61/2* 8.725

Power Pavg

MWth # FA MWth ffrad

Inner 501.41 56 8.95 1.07

Intermediate 489.23 50 9.78 1.10

Outer 491.60 56 8.78 1.25

Total 1482.24 162 9.15

Table 3.2: Core model. Horizontal fuel distribution. The value labeled with

star (*) are referred to the entire assembly.

where Q̇ is the total heat thermal power, Lcore the active core length. Then

the space configuration of the heat source is taken into account by using peak

factors. The power distribution over the horizontal quarter section of the core

for the ALFRED reactor is shown in Figure 3.9. Each fuel assembly consists

of a np × np pin lattice. The overall number of assembly positions in the core

is Na. Eight of these positions are dedicated to house special control rods

and therefore the global number of fuel assemblies is Na−8. For details one

can see [19, 20]. The transverse core area is approximately circular but not

axial symmetric. Therefore, in order to predict accurately the behavior of

the reactor, a three-dimensional simulation should be performed. The model

sets the fuel assemblies in three radial zones: Na1 fuel assemblies in the inner

zone, Na2 fuel assemblies in the intermediate zone and the remaining Na3 fuel

assemblies in the outer one. We label the assemblies as in Figure 3.9. The

first row is labeled A1-i for i = 1, . . . , 8, the second row A2-i for i = 1, . . . , 7

and so on. We remark that the fuel assembly configuration is not based on a

Cartesian grid but rather on a staggered grid. The power distribution factors,

i.e. the power of each single fuel assembly over the average fuel assembly

power, are mapped based on their row-column location. In order to obtain

the horizontal power distribution of Figure 3.10 we must be reported the pick

factors in the double-indexed array in which every assembly in the quarter of
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reactor is denoted by two indexes, both ranging from 0 to 7. The fuel area is

divided into different zones, classified as inner core (I), outer core (O), control

zone with no fuel (C) and reflector area (D). These are written in the a matrix

with the corresponding horizontal power factor reported as

A1

A2

A3

A4

A5

A6

A7

A8



fpA11 fpA12 fpA13 fpA14 fpA15 fpA16 fpA17 0

fpA21 fpA22 fpA23 fpA24 fpA25 fpA26 fpA27 fpA28

fpA31 fpA32 fpA33 fpA34 R fpA36 fpA37 0

fpA41 fpA42 fpA43 fpA44 fpA45 fpA46 fpA47 0

fpA51 fpA52 fpA53 fpA54 fpA55 fpA56 0 0

fpA61 fpA62 R fpA64 fpA65 fpA66 0 0

fpA71 fpA72 fpA73 fpA74 0 0 0 0

fpA81 fpA82 fpA83 0 0 0 0 0


1 2 3 4 5 6 7 8 .

We remark that in the control area the pick factor is set to zero. The vertical

power factor can be assumed to have any distribution g(z). This discrete

profile is written as 

Z1 gI(Z1) gO(Z1)

Z2 gI(Z2) gO(Z2)

Z3 gI(Z3) gO(Z3)

Z4 gI(Z4) gO(Z4)

Z5 gI(Z5) gO(Z5)

Z6 gI(Z6) gO(Z6)


(3.15)

height I O ,

where Zi are the discrete vertical coordinates and gI(z) and gO(z) are the

values in the INNER and OUTER zones. In particular for the ALFRED

reactor each fuel assembly consists of a np × np = 21 × 21 pin lattice and

the coolant/assembly ratio r is 0.548. The design of the assembly and its

characteristics are shown in Figure 3.12. Each assembly has a square section

with a side length of L = 0.294m and this completely defines the horizontal

core structure. For The overall number of assembly positions in the core is

170[15, 19, 20]. Eight of these positions are dedicated to house special control
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rods and therefore the global number of fuel assemblies is 162. The transverse

core area is approximately circular but not axial symmetric. However, we

can argue from the left part of Figure 3.11 that two symmetry planes passing

through the reactor axis can be identified so that only a quarter domain has

to be taken into account for the simulations. The model design distributes the

fuel assemblies in three radial zones: Na1 = 56 fuel assemblies in the inner

zone, Na2 = 62 fuel assemblies in the intermediate zone and the remaining

Na2 = 44 fuel assemblies in the outer one. The power distribution factors, i.e.

the power of a fuel assembly over the average fuel assembly power, are mapped

in the right part of Figure 3.11 and the Table 3.2. The maximum power factor

is 1.17, while the minimum is 0.74. In the computational model the following

constant matrix of fuel pick factor is assumed

A1

A2

A3

A4

A5

A6

A7

A8



0.941 0.962 0.989 1.017 1.045 1.178 1.097 0.

0.949 0.958 0.978 0.996 1.114 1.123 1.193 0.857

0.963 0.975 0.992 1.087 R 1.011 0.925 0.

0.967 0.973 0.989 1.008 1.108 1.028 0.931 0.

0.961 1.060 1.078 1.137 1.198 0.943 0. 0.

0.954 1.029 R 0.990 1.068 0.850 0. 0.

1.019 1.066 0.966 0.842 0. 0. 0. 0.

0.878 0.853 0.757 0. 0. 0. 0. 0.


1 2 3 4 5 6 7 8

Pressure loss source In a similar way the pressure drop distribution, due

to the spacer grids and the inlet and outlet of the core region, can be reported

in a matrix and in a vector. The matrix defines the pressure losses in each

assembly as show in the top part of Table 3.3. The vertical pressure loss factor

can be assumed to have any distribution q(z). This discrete profile is written

as shown in the bottom part of Table 3.3. where Zi are the discrete vertical

coordinates and q0 and q1 are the values in the INNER and OUTER zones.

The pressure loss distribution defined by the spacer grids, shown in Figure

3.13, can be easily written by defining the modulus of the vector function |β̄|
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Figure 3.13: Pressure loss source due to spacer grids.

A1 βA11 βA12 βA13 βA14 βA15 βA16 βA17 βA18

A2 βA21 βA22 βA23 βA24 βA25 βA26 βA27 βA28

A3 βA31 βA32 βA33 βA34 βA35 βA36 βA37 βA38

A4 βA41 βA42 βA43 βA44 βA45 βA46 βA47 βA48

A5 βA51 βA52 βA53 βA54 βA55 βA56 βA57 βA58

A6 βA61 βA62 βA63 βA64 βA65 βA66 βA67 βA68

A7 βA71 βA72 βA73 βA74 βA75 βA76 βA77 βA78

A8 βA81 βA82 βA83 βA84 βA85 βA86 βA87 βA88

1 2 3 4 5 6 7 8

Z1 qI(Z1) qO(Z1)

Z2 qI(Z2) qO(Z2)

Z3 qI(Z3) qO(Z3)

Z4 qI(Z4) qO(Z4)

Z5 qI(Z5) qO(Z5)

Z6 qI(Z6) qO(Z6)

height I O

Table 3.3: Radial and axial pressure loss peak factor on the top and the bottom,

respectively.

where the discrete pressure drops are defined by

1

2
β̄(x) · v|v| . (3.16)
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If we assume the flow to be approximately vertical then β̄(x) · v|v|/2 =

|β̄||v|2/2. This is the result of the usual mono-dimensional approximation.

3.4 1D-CFD scale

In order to derive the mono-dimensional set of conservation equations we in-

troduce the variational form of equations (3.3-3.5). The variational form of

the incompressible mass conservation equation can be obtained by multiplying

by ψ ∈ P (Ω) the (3.3) as∫
Ω

ψ∇ · v dx = 0 ∀ψ ∈ P (Ω) . (3.17)

In a similar way the momentum and energy equation in variational form

can be obtained by multiplying the (3.4) and (3.5) by φ ∈ V(Ω) and ϕ ∈ H(Ω),

respectively. For the momentum equation we have∫
Ω

∂ ρv

∂t
· φ dx +

∫
Ω

(∇ · ρvv) · φ dx = −
∫

Γ

(p~n− τ̄ · ~n) · φ ds +(3.18)∫
Ω

p∇ · φ dx−
∫

Ω

τ̄ : ∇φ dx +

∫
Ω

ρg · φ dx ∀φ ∈ V(Ω) .

For the energy equation we have∫
Ω

∂ ρCp T

∂t
ϕ dx +

∫
Ω

∇ · (ρvCp T )ϕdx =

∫
Ω

Φϕdx (3.19)

−
∫

Ω

kf ∇T · ∇ϕdx +

∫
Ω

Q̇ϕ dx +

∫
Γ

(kf∇T · ~n)ϕds ∀ϕ ∈ H(Ω)

The surface integrals are defined by the boundary conditions. The test func-

tions ψ, φ, ϕ are the weight to average the equation over the scale.

If we consider a domain discretization and the corresponding subspaces

of P (Ω), V(Ω) and H(Ω) parametrized by the element length h, the system

(3.17-3.19) can be identified with its numerical approximation. We remark that

setting P (Ω) = Ph ⊂ L2
0(Ω), V(Ω) = Xh ⊂ H1(Ω) and H(Ω) = Xh ⊂ H1(Ω)

gives finite dimensional solution with the Finite Element Method (FEM). If one

sets P (Ω) = Ph ⊂ L2
0(Ω), V(Ω) = Xh ⊂ L2(Ω) and H(Ω) = Xh ⊂ L2(Ω) then

one has a finite dimensional solution with the Finite Volume Method (FVM).

As h → 0 we have the continuous solution, for details the interested reader
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can see [18, 16, 1, 17]. The 1D-CFD module used in FEMUs is obtained by

integrating (3.17-3.19) with mono-dimensional weight functions. Briefly one

can set ψ = ψ(s), φ = φ(s) and ϕ = ϕ(s) implying that the test functions are

only a function of the mono-dimensional coordinate s. This module is properly

used for mono-dimensional flows such as channels with single fluid.

1D-CFD mass equation Let A be a surface perpendicular to the center-

line. Over the surface A we define average density and average velocity as

ρ̄ =

∫
A
ρ dA

A
v̄ =

∫
A
ρ v dA

ρ̄A
. (3.20)

With this definition we write∫ L

0

ψ(s)
∂

∂s
(ρ̄ v̄ A) ds =

∫ L

0

ψ(s)Ss ds ∀ψ ∈ P (0, L) , (3.21)

where Ss is the mass source from surface integral. Usually Ss ≈ 0.

1D-CFD momentum equation In a similar way for the average quantities

(ρ̄, v̄, p̄) and φ ≈ φ(s) the momentum equation becomes∫ L

0

ρ̄ A (
∂

∂t
v̄)φ(s) ds+

∫ L

0

ρ̄v̄ A (
∂

∂s
v̄)φ ds =

∫ L

0

p̄ A
∂

∂s
φ ds (3.22)∫ L

0

Aρ̄g · îs φ ds+

∫ L

0

φ(s) (Ms +Mv) ds ∀φ ∈ V (0, L) ,

where Ms is from surface integral and Mv from volume contributions. Usually

Ms ≈ − k ρ
2
ū|ū| (pressure loss). The volume contribution Mv consists of sev-

eral terms. Is is easy to see that Mv = Mv,τ (τ̄) +Mv,vv(v̄v− v̄v̄) with obvious

definition of the terms Mv,τ and Mv,vv. For details see [18, 16].

1D-CFD energy equation For the Energy equation the average quantities

involved are (ρ̄, v̄, p̄, T̄ ) and the equation becomes∫ L

0

∂ A ρ̄Cp T̄

∂t
ϕ(s) ds+

∫ L

0

(
∂

∂s
(A ρ̄ v̄Cp T̄ )ϕds = (3.23)

−
∫ L

0

Q̇sϕdx +

∫ L

0

Q̇vϕds ∀ϕ ∈ H(Ω) .
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We have a contribution from the boundary and a contribution from the volume.

From surface integrals we define Qs (heat exchange through surfaces). From

volume integral (volume interaction) we define

Qv = Qv,q(τ̄) +Qv,vv(v̄T− v̄T̄ ) +Qv,Φ(Φ) (3.24)

with Qv,q internal heat conduction and Qv,vv turbulent term. For details see

[18, 16].

1D-CFD scale model In standard form (non variational form) the 1D-CFD

scale model, defined by (3.21-3.23), can be written as follows

∂

∂s

(
ρ̄ v̄ A

)
= 0 . (3.25)

∂

∂t
Aρ̄v̄ + ρ̄ A v̄

∂

∂s

(
v̄
)

+ A
∂

∂s
P = − k ρ̄

2
v̄|v̄|+ ρ̄ A gs +Mv . (3.26)

∂

∂t
A ρ̄Cp T̄ +

∂

∂s
A ρ̄ v̄ Cp T̄ = ρA v̄ gs + Q̄s + Q̄v . (3.27)

The first equation states that the mass flux ṁ = ρ̄ v̄ A is constant in space.

The second equation is the transient Bernoulli equation and with no sources

(Ms = Mv = 0) it states that P + ρv2/2 + ρgs is constant in space.

3.5 Interfaces

3.5.1 3D-CFD < − > 3D-porous interface

As shown in Figure 3.14 the three-dimensional CFD and porous interfaces are

the inlet and the outlet of the core. The core inlet, shown in yellow, is the

interface between the lower plenum and the core while the core outlet is the

interface between the upper plenum and the core. At these interfaces the fluid

must flow from one module to the other and conserve the momentum. The

3D-CFD module in the plenum is different from the 3D-porous module since in

the porous model the fluid and solid material are together inside the considered
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Figure 3.14: 3D-CFD < − > 3D-porous interfaces in a reactor model

schematic diagram.

volume. The fluid flow is clearly reduced with respect to the total area. The

flow reduction is defined by the volume ratios

ζ =
Vm
Vtot

r = 1− ζ , (3.28)

where ζ and r are the ratio between no-fluid material and total volume and

between fluid and total volume, respectively. The problem of the continuity of

the velocity field through the interface 3D-CFD and 3D-porous modules can

be solved by defining a new velocity field variable

v̂∗ = v̂ 3D-CFD , (3.29)

v̂∗ = r v̂ 3D-porous . (3.30)

With this definition the system (3.12-3.13) becomes

∇ · ρ v̂∗ = 0 , (3.31)

∂ρ v̂∗

∂t
+ (∇ · ρ v̂∗v̂) = −∇(p̂+ p̂l) +∇ · (τ̂ ∗) + ρg . (3.32)

The system (3.31-3.32) is valid in the plenum and in the core region and main-

tain velocity and pressure fields continuous. The temperature field remains

continuous at the 3D-CFD < − > 3D-porous interface and therefore the equa-

tion (3.14) can be applied in both regions with the appropriate value of r and
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the corresponding coefficients. With this approach the use of a unique equa-

tion in both region allows a strong and robust coupling between the velocity

pressure and temperature fields.

3.5.2 3D < − > 1D interface

Figure 3.15: 3D-CFD < − > 1D-porous interfaces in a reactor model

schematic diagram.

As shown in Figure 3.15 the 3D-CFD < − > 1D-porous interfaces are the

inlet and the outlet of the plenum regions. The lower plenum inlet, shown as

yellow sphere, is the interface between the lower plenum and the primary loop

while the plenum outlet is the interface between the upper plenum and the

primary loop. At these interfaces the fluid must flow from one-dimensional

module to a three-dimensional one. In this interface the mass, momentum and

the temperature field must be conserved. There are many sophisticated tech-

niques to define a numerical algorithm able to identify the values to set on the

interfaces for example one can use algorithms based on Mortar or Lagrangian

multiplier. The one-dimensional module is essentially a hyperbolic differential

equation and therefore it requires boundary conditions only in inflow regions.

The interface 1D-porous < − > 3D-CFD that links the 1D-porous module to

3D-CFD module of the lower plenum is an outflow region for the reactor and

therefore it does not require boundary conditions. The surface of the lower

plenum is an inlet region for the core/plenum system and therefore the average

temperature, velocity and pressure must set as boundary conditions. This is a
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very challenging situations. From the mono-dimensional primary loop we have

the mass flux (or velocity in the normal direction), pressure and temperature.

In three-dimensional domains if the vector of the velocity is fully specified on

boundaries then the pressure is determined. The pressure can be specified only

if the normal component of the velocity field is not imposed. Imposing pres-

sure with brute force on the inlet surface leads to large oscillations and velocity

discontinuities. For this reason we compute, with a non linear algorithm, the

velocity field that matches the pressure of the plenum and the primary loop.

The velocity field is kept continuous and the two pressures (in the plenum

and in the primary loop) matches iteratively. This approach substantially re-

duces the time step of the core/plenum system to 1/4 or 1/5 of the step of the

primary loop.

3.6 Test 1. Direct coupling

Figure 3.16: Test 1. Geometry and reference points.

In the first test we study the evolution of the primary loop of a LFR when

the circulation pumps are switched off and the heat source of the reactor is kept
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in nominal working conditions. This test allows us to evaluate the nature of

the natural convection and the temperature that can be reached in the system

under this particular operating conditions. The principal part of the primary

loop, such as the core and the plena, are modeled with three-dimensional

models, while the remains part, pumps, heat exchanger, etc. are considered

with a simplified mono-dimensional module

We use the in-house developed code (FEMUs) and the open-source code

libmesh to solve the multidimensional and the mono-dimensional part, respec-

tively. The two modules are integrated into the computational platform with

the procedure explained in the Section 2.2. In this test the two computational

domains do not overlap and they share only two junction points where the

boundary conditions are updated with the data coming from the other code,

thanks to the MEDmem interface as described in 2.4.3. The performance of

this one-way coupling between two codes is analyzed. In Figure 3.16 we see

the reactor and its reference points. The left and right outlet surface of the

upper plenum are labeled with A and B, respectively. The points over the

inlet of the lower plenum are indicated with D. have D1 below the A surface

and D2 below the B surface. The points on the horizontal plane at z = 3m

in the core are labeled by C. The point C1 is located in the assembly A11,

the point C3 in the assembly A54, C2 in A26 and C4 in A62. The points L1,

L2 and L3 indicate the location of the vertical lines along the diagonal of the

upper plenum. In this test the mono-dimensional loop start from the upper

plenum of the reactor and finish in the lower plenum. We remark that the

two meshes do not overlap so new boundary conditions must be introduced as

explained in Section 3.5.2. The mono and the three-dimensional problem are

solved with finite element codes that are coupled through the MED interface

of the computational platform as exposed in the Chapter 2.

3.6.1 Initial conditions

In this test the initial conditions of the reactor is the steady solution in fully

working condition with core average velocity of about v̄ = 1.56m/s. The

corresponding average reduced velocity v̄∗ is ' 0.85 with r = 0.548. The non-
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Figure 3.17: Test 1. Reduced velocity field in the reactor and plenum at

t = 0.

Figure 3.18: Test 1. The w,v and u-component of the reduced velocity field

in the reactor at t = 0.

dimensional mass flux m∗ = m/ρ0A in the left outlet of the upper plenum

is 1.24886 and the corresponding mass flux m ' 16150Kg/s (A ' 1.23m

and ρ0 = 10563Kg/m3). Since there are 4 × 2 exits the total mass flux is

' 128000Kg/s. We remark that the mass flux of the left and right outlet of

the upper plenum are slightly different due to the fact that the reactor is not

symmetric with respect to the diagonal. The velocity field of the initial solution

is shown in Figure 3.17. In Figures 3.18 the three components w,v and u of the

reduced velocity field are shown in the various part of the reactor at the initial

time. The u and v component of the velocity field have a strong component in

the lower plenum and almost vanishing inside the core to gain again its value

in the upper plenum. In Figure 3.18 we note that the inlet velocity of the lower

plenum is vertical and uniform with value set to w = w∗ = −1.02m/s. The

inlet velocity boundary conditions are defined by the primary loop velocity
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Figure 3.19: Test 1. Temperature distribution in the reactor (left) and along

the vertical at the center of the reactor (right) at time t = 0.

Figure 3.20: Test 1. Temperature distribution over the plane at z = 3m (left)

and z = 3.3m (right) at time t = 0.

based on pressure values. The primary loop variables are defined as a unique

point since the 1D-porous module is mono-dimensional. In Figure 3.19 the

temperature distribution in the reactor at the initial time is shown. On the

left of Figure 3.19 the temperature distribution is over all the reactor. The

average temperature Tin over the inlet is 673.15K and average temperature in

the left and right outlet of the upper plenum is Tout = 754.9K for a inlet/outlet

temperature difference of 81.75K. In Figure 3.20 the temperature distribution

over the plane at z = 3m (left) and z = 3.3m (right) at time t = 0 sec are

shown. Over the plane at z = 3m (core exit) the maximum temperature is

near the assembly with higher peak factor. Over the plane obtained by a

cut at z = 3.3m the maximum temperature (762K) is in the region between
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Figure 3.21: Test 1. Temperature distribution in the primary loop A-D (left)

and B-D (right) at time t = 0.
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Figure 3.22: Test 1. Non-dimensional mass flux m∗ in the primary loop A-D

(left) and B-D (right) at time t = 0.

the left and right exit of the upper plenum where a stagnation zone does

not allow efficient cooling. In Figures 3.21-3.23 the temperature, the pressure

and the mass flow rate initial conditions are shown in the primary loop for the

branch A-D (left) and B-D (right) as a function of the local mono-dimensional

coordinate system. The GV1 and GV2 labels refer to the steam generator. In

the steam generator area GV1-GV2 the gravity is neglected.

3.6.2 Reactor evolution in natural convection flow

After the initial time the pumps are switched off and the system is moved only

by natural convection. The distribution of power remains the same as shown

in Figure 3.24. In Figure 3.25 one can see the average temperature T̄ and non-

dimensional mass flux m∗ on left exit surface A and on the right exit surface B
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Figure 3.23: Test 1. Non-dimensional ∆P ∗ in the primary loop A-D (left)

and B-D (right) at time t = 0.

Figure 3.24: Test 1. Power distribution for t > 0.

as a function of time. The average temperature is reported on the left where,

after the pumps are switched off, it easy to note that there is a substantial

increase to reach constant value after 30s. The difference between the surface

A and B is not large but it implies that the system is not symmetric with

respect to the diagonal and it is fully three-dimensional. The non-dimensional

mass flux m∗ = m/ρ0A is reported on right of Figure 3.25. We recall that the

area A ' 1.23m and ρ0 = 10563Kg/m3. Due to the lack of pump pressure

the mass flux drops to a constant value, which is 1/3 of the nominal mass

flux, after approximately after 30s. In Figure 3.26 the temperature and the

reduced w-component of the velocity field is reported on the point D1 and

D2 as a function of time. The points D1 and D2 are located in the inlet of

the lower plenum. The values are the same since the boundary conditions

are imposed uniformly from the primary loop. We recall that m∗ = v∗ if the
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Figure 3.25: Test 1. Average temperature (left) and mass flux m∗ = m/ρ0A

(right) on left exit surface A and on the right exit surface B as a function of

time.
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Figure 3.26: Test 1. Temperature (left) and velocity w∗ (right) on D1 and

D2 as a function of time.

temperature is the reactor inlet temperature 673.15K and the density is the

reference density ρ0. The non dimensional pressure drop ∆P ∗ = p∗−pref on D1

and D2 is shown as a function of time in the left part of Figure 3.27. The non-

dimensional pressure is defined by p/ρref uref where ρref = ρ0 = ρ(673.15K).

The reference pressure pref is the value of the pressure at the lowest point

of the upper plenum exit. The non-dimensional pressure ∆p∗ initially at 7.3

drops to approximately 1.1. This implies that the pressure loss ∆P initially t

0.76bar drops to 0.12bar. In this case we neglect the accidental pressure losses
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Figure 3.27: Test 1. On the left, non dimensional pressure drop ∆P ∗ on D1

and D2 as a function of time. On the right, the temperature profile at the

point C1 as a function of time.

Figure 3.28: Test 1. Temperature profile on section at z = 3.0m (defined by

C1, C2, C3, C4) for t = 8, 10, 16 and 26 s.

due to reactor grids. In the right part of Figure 3.27 the temperature is shown

over the plane at z = 3m of the reactor at the point C1 as a function of time.

The point C1 is at the center of the reactor. We note that in this point the

temperature reach 1000K to come back to 900K after 15sec. In Figure 3.28
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Figure 3.29: Test 1. Pressure profile on section at z = 3.0m (defined by

C1, C2, C3, C4) for t = 8, 10, 16 and 26 s.

Figure 3.30: Test 1. Velocity profile on section at z = 3.0m (defined by

C1, C2, C3, C4) for t = 8, 10, 16 and 26 s.

one can see the temperature over the plane section at z = 3.0m for t = 8, 10,

16 and 26 sec. In time there is a large initial temperature oscillation and then
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Figure 3.31: Test 1. Density profile on section at z = 3.0m (defined by

C1, C2, C3, C4) for t = 8, 10, 16 and 26 s.
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Figure 3.32: Test 1. Temperature profile on a vertical line passing through

the point C3 on the right, and C1 on the left, for t = 8 (t1), 10 (t2), 16 (t3)

and 26 (t4) s.

small fluctuations around an asymptotic distribution. The initial fluctuation

leads to very high temperature above 1000K after approximately 8s. In Figure

3.28 it is easy to note that in all these oscillations the distribution of the fuel

assembly defines the hot and cold spots of the reactor. At t = 8 more than
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hundred degree difference can be found between different regions. However at

t = 26s there is still a ninety degree difference between the hot and cold spots

over the section. In Figures 3.29-3.30 the pressure and velocity distributions

over the plane section at z = 3.0m are shown for t = 8, 10, 16 and 26s. Large

pressure variations imply the unstable nature of the natural convection flow.

For each temperature distribution corresponds a distribution of density.The

density profile on section at z = 3.0m for t = 8, 10, 16 and 26 sec is shown in

Figure 3.31. On the right and left part of Figures 3.32 the temperature profile

on a vertical line passing through the point C3 and C1 are shown, respectively,

for t = 8 (t1), 10 (t2), 16 (t3) and 26s (t4).

3.6.3 Primary loop evolution in natural convection flow
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Figure 3.33: Test 1.Temperature (left) and non-dimensional mass m∗ =

m/ρ0A (right) distribution in the primary loopA-D on the top and in the

primary loop B-D on the bottom, and as a function of time.

In Figures 3.33-3.34 one can see the evolution of the primary loop witch

is composed by two branches: A-D and B-D. The reactor is not completely
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Figure 3.34: Test 1. Pressure distribution in the primary loop A-D (left) and

B-D (right) at time t = 0.

symmetric and there are differences between the loop A-D and B-D. However

the differences are very small and can be ignored according with the solutions

shown in the top and the bottom part of Figure 3.21. In the top part of

Figure 3.33 one can see the inlet and the outlet of the primary loop labeled

A1 (B2) and D1 (D2), respectively. The mass fluxes from all the loops add

up to the inlet of the lower plenum. In Figure 3.34 the pressure at the inlet

and outlet of the primary loop is shown for the branch A-D on the left and

B-D on the right. The pressure from the A-D loop defines the velocity in

the left part of the plenum inlet while the pressure of the B-D loop defines

the velocity in the right one. If the pressure is the same on both branches

then the inlet velocity is uniform. Otherwise greater is the pressure greater is

the velocity in the corresponding area. The large oscillation in the pressure

and, as a consequence in the velocity field, are imposed into the inlet region of

the multidimensional domain, this oscillation leads to a large instability and

several non linear iteration are needed in order to ensure the convergence of

the resolution. Different coupling scheme can be considered in order to obtain

a more robust algorithm.

3.7 Test 2. Defective coupling

In this Section another technique for code coupling, which can be classified

as a defective method, is tested. The mono-dimensional system equation is
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solved taking into account he entire primary loop Γ. The mono-dimensional

circuit gives the boundary conditions to the three-dimensional problem and the

three-dimensional code corrects the system solutions through the appropriate

sources in the momentum and energy equations. The sources, located in the

overlapping region Γ2, are feedback control devices that increase or decrease

the source intensity based on the variable state matching at the 1D and 3D

interface S1 and S2. For the three-dimensional part the FEMUs code is used

while the mono-dimensional system is modeled with CATHARE.

3.7.1 General description

In this test we couple a three-dimensional model for a LFR reactor which

consists of a core, an upper and a lower plenum with a mono-dimensional

primary loop defined through an input deck of the CATHARE code. On

the top of Figure 3.35 a general sketch of the reactor and primary loop is

shown. Details about the coupling between the mono and three-dimensional

domain geometry are illustrated on the bottom. In particular on the left

bottom the mono-dimensional mesh is shown. This circuit consists of three

pieces: a point volume (UPLENUM), and two AXIAL modules (CORE and

LOOP). In the mono-dimensional circuit the fluid flows from the VOLUME

module and moves downward then horizontally and finally vertically to enter

again into the VOLUME module. On the right bottom the three-dimensional

domain, which consists of the reactor plena and core, is drew together with

the mono-dimensional one. In this coupled geometry, the fluid flows from

the Upper Plenum FEMUs module and moves downward from point P1 to

P2 through the LOOP CATHARE AXIAL module then enters to the Lower

Plenum FEMUs module. The three-dimensional region is overlapped to the

mono-dimensional one along the horizontal LOOP and the vertical CORE

module. The mono-dimensional mesh can be generated by using GUITHARE,

the graphical user interface on Salome platform. An overall sketch is shown

in Figure 3.36. As said before in the mono-dimensional circuit the fluid exits

from the point volume VOL enters the axial DOWNWARD, flows into the UP-

WARD branch and returns to the volume point VOL. There is only one circuit
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Figure 3.35: Test 2. On the top sketch of the coupling. On the bottom

the mono-dimensional circuit (on the right) and the coupling 3D-1D domain

geometry (on the left).

which consists of 4 modules: UPWARD, VOL3D, DOWNWARD, CIEL. The

UPWARD and DOWNWARD are axial mono-dimensional modules. VOL3D is

a 0-dimensional volume module and CIEL is a BCONDIT module which is used

to define pressure boundary condition in VOL3D. The key word CALOPORT

is needed to identified the fluid. We define at the beginning of the file to have

lead as a coolant fluid. VOL3D is a VOLUME module (0-dimensional) with

3 junctions JUPVOL (USTREAM), JVOLDOWN (DSTREAM) and JCIEL

(DSTREAM). The USTREAM and DSTREAM label indicates the circuit ori-

entation. The geometry of VOL3D is defined by the key. We have two points
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Figure 3.36: Test 1. Sketch of the primary loop components.

Figure 3.37: Test 2. Geometry and main mesh groups.

at level z = 0 and z = 2m with constant section of 2.14m2. The junction

JCIEL is connect to the BCONDIT CIEL module. The boundary condition

model for CIEL is BC5A. The BC5A type of boundary conditions is an ex-

ternal outlet where one must specify only the pressure P. The pressure P is

defined over three intervals of time [0, 0.1], [0.1, 100] and [100, 1.E + 11]. In

these three intervals the pressure is assumed to be constant at 1.01 × 105bar

by the REALLIST command. DOWNWARD is an AXIAL module with two

junctions: JVOLDOWN (USTREAM) and JDOWNUP (DSTREAM). This
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location name component

inlet 4000 Lower Plenum

outlet 1 1200 Upper plenum

outlet 2 110 Upper plenum

top reactor 2100 Upper plenum

bottom 4100 Lower plenum

wall plenum 0 4200 Lower plenum

wall plenum 1 1300 Upper plenum

wall plenum 2 1400 Upper plenum

wall plenum 3 1500 Upper plenum

ctrl rods 1 200 core

ctrl rods 2 300 core

ctrl rods 3 400 core

Table 3.4: Test 2. Table of geometry and mesh groups.

component consists of 4 points: DOW01 (x = 0), DOW02 (x = 7), DOW03

(x = 9) and DOW04 (x = 9.4). It stars at the point DOW01 with 3 segments

with 15 20 and 5 elements, respectively. The section, perimeter and size of the

pipe are define with the key directive GEOM. The UPWARD component is

an AXIAL connected between two junctions: JDOWNUP (USTREAM) and

JUPVOL (DSTREAM). The USTREAM and DSTREAM label indicates the

circuit orientation. The components has two points: UPW01 (x = 9.4) and

UPW02 =(x = 16). We remark that we have kept a unique coordinate system

along the line for the UPWARD and DOWNWARD branch. There a unique

segment with 15 element in the upward vertical (COS = 1) direction. The

geometry is the same as the other AXIAL one. The pump model, which is lo-

cated at the coordinate x = ix p, is very simple. In the pump point we impose

a constant pressure with DP= .75× 105Pa is the pump gain in pressure. The

CATHARE code is a two-phase code and even if we use only fluid coolant ini-

tial and boundary conditions for the other phase should be given. In this case

we assume gas with the same temperature and velocity with gas fraction irrel-

evant (ALFA=1.0D-5). In order to exchange data from the three-dimensional

84



simulation to the mono-dimensional one we need to define interface in the 3D

problem, in Table 3.4 a brief list of marked surfaces, and in Figure 3.37 the

corresponding between the number and the location can be seen. From Figure

3.37 we can see the location of the groups defined from mesh generator. With

the first and second line the groups 1200 and 1100 are associated with outlet

of the reactor. We recall that in this reactor we have multiple exits. However

on the top surface we need to transfer data for the temperature and pressure

fields. The bottom surface is the inlet of the reactor where we need to ex-

change temperature, velocity and pressure. In order to set the temperature we

use a feedback algorithm. Let Toutr be the average temperature that flows out

from the three-dimensional reactor and t21/h21 be the temperature/enthalpy

on the other side of the interface on the CATHARE mono-dimensional mesh

(point 2). The temperature t21 is corrected until it reaches Toutr. The pressure

coupling is obtained by imposing the three-dimensional average pressure drop

P [0] − P0[0] to the mono-dimensional part of the circuit between the point

1 and point 2. In this case the average is obtained simply by weighting the

pressure value on the node number on the interfaces. In this way we correct

the mono-dimensional drop with the correct one. On the inlet section of the

reactor we need to set temperature and velocity field. Since we do not know

the field distribution at the reactor we assume a constant distribution. The

temperature T1 from the point 1 of CATHARE should be imposed to the inlet

reactor. The boundary conditions for temperature and velocity are imposed

directly by using the FEMUs interface functions write Boundary value directly

on the old solution vector x old. The reactor temperature Toutr on the outlet

is compute as average 0.5(To1 + To2) on the surface 110 and 110 The average

value 0.5(Po1 +Po2) can be storage as reference top pressure P [0] for the tree-

dimensional reactor. At the bottom we have a single face and therefore the

three-dimensional reference pressure at inlet is P0[0] = Pin.

3.7.2 Initial conditions

In order to compute the solution at nominal condition we start the computation

from uniform initial velocity condition v = 0m/s and temperature T = 400C.
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Figure 3.38: Test 2. Global domain overview and reference elements.

We apply an inlet velocity of 0.1m/s and the value of the pump pressure

DP= 0.75 × 105Pa. The pressure from the pump increases the velocity until

this matches the total pressure losses of the circuit with velocity and temper-

ature transient. The transient is rather long and CPU consuming. Even if

CATHARE cannot be run in parallel in this configuration the FEMUs prob-

lem can be run in a multiprocessor cluster. In this way each processor runs a

CATHARE copy. This is not very efficient but the CATHARE solving time

can be considered almost negligible in comparison with the three-dimensional

code solver. However FEMUs and CATHARE codes can run independently

with a different number of time steps. If one is interested only the steady

state solution in working condition the code CATHARE can be run until the

velocity has reached the steady state saving a lot of the computational time.

In next parts we report the results for the three and mono-dimensional do-

main when the steady state is reached. We also report the evolution of the

key points, shown in Figure 3.38, that define the interface between the dif-

ferent codes. The evolution of the solution in these points let us investigate

the numerical behavior of the feedback control at the single point and of the

defective coupling approach described in the previous Section.
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3.7.3 Reactor evolution

Figure 3.39: Test 2. FEMUs partial pressure field in the three-dimensional

domain.

Figure 3.40: Test 2. FEMUs partial pressure field over different planes for

z = 2, 3 and 3.4.

Figure 3.41: Test 2. FEMUs temperature field, on the left and normalized

velocity field w∗, on the right, in the three-dimensional domain.
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Figure 3.42: Test 2. FEMUs temperature field at z = 2, 3 and 3.4m.

Figure 3.43: Test 2. FEMUs normalized velocity field w∗ at z = 2, 3 and 3.4.

The three-dimensional solutions are obtained by solving the FEMUs mod-

ules. The boundary conditions are enforced by the CATHARE mono-dimensional

code at the inlet of the reactor. The real distribution of the velocity and tem-

perature at the inlet is a two-dimensional profile that cannot be known. Only

the average value of temperature and velocity fields are defined and there-

fore we impose a constant field. The pressure field (p) is reported in Figures

3.39-3.40. p in a Navier-Stokes system can be always written as

p = −ρg(z − z0) + p′ (3.33)

by including the potential of the gravity term inside the pressure gradient. ρ

is the density, g the gravity acceleration, z the vertical coordinate and z0 the

reference pressure point. The quantity p′ = dp is called partial pressure and it

is defined as the difference between the total pressure and the pressure gravity

term. Over the 3D/1D coupling interface the definition of the location of z0,

where the reference pressure should be imposed, is not a trivial problem. The

reactor takes the pressure imposed from the CATHARE code at the outlet of

the AXIAL CORE module. Since the outlet of the reactor is over different

values of the coordinate zeta it is difficult to impose constant pressure over

all the outlet surfaces. The decomposition in (3.33) solves this problem fixing
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the pressure at a well defined height. On the Figure 3.39 the partial FEMUs

pressure field dp = p′ in the three-dimensional domain is shown. In Figure

3.40 details on the same pressure field over different planes for z = 2, 3 and 3.4

are reported. On the left part of Figure 3.41 the FEMUs temperature field T

is shown over the whole three-dimensional domain. In Figure 3.42 one can see

details on the same temperature field over horizontal sections for z = 2, 3 and

3.4 the planes shown in Figure 3.38. Inside the three-dimensional reactor the

temperature increases and its pattern over these sections is clearly determined

by the fuel distribution (z = 2). The velocity field inside the reactor is not

continuous since we have the plenum and the core that satisfy different form

of the Navier-Stokes equations. In the core the assembly contains fluid and

solid material. The geometric dimensions are real, comprehensive of the solid

material, while in the simulation we allow the fluid to flow to occupy the

whole assembly section. For this reason in order to maintain the same mass

flow in the core and in the plenum, over different flowing area the velocity

field should be discontinuous. In order to have a continuous variable to solve

we consider the normalized velocity field v∗ = rv where r is the assembly

occupancy factor. Substantially we rewrite the Navier-Stokes equation with

the mass flow variable. On the right part of Figure 3.41 the vertical component

w∗ of the FEMUs normalized velocity field v ∗ is shown over the whole three-

dimensional domain. In Figure 3.43 one can see details on the same w∗ field

over horizontal sections for z = 2, 3 and 3.4.

3.7.4 Primary loop evolution

We show the results for the mono-dimensional mesh and for the whole circuit.

In Figure 3.44 the key points of the mono-dimensional mesh are shown. In red

the UPLENUM CATHARE VOLUME module and in blue the LOOP AXIAL

module. The CORE AXIAL module is in black. In Figure 3.45 the pressure

along the line r1 of Figure 3.38, is shown on the left. In this Figure we report

the partial pressure p′, namely the pressure without the gravity contribution.

The gravity term is dominant and, if shown, it covers the accidental pressure

losses. We can see two large jumps in pressure due to the inlet and outlet
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Figure 3.44: Test 2. Reference points in the mono-dimensional mesh.
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Figure 3.45: Test 2. Total pressure p∗ along the central line of the three-

dimensional domain (left) and along the plenum-core-plenum-primary loop

(right).

grids. In particular the inlet grid has also the duty to steer the flow in the

vertical direction. It is possible also to see the pressure losses of the four

internal grids. On the right the total pressure in the circuits is shown. The

mono-dimensional coordinate starts at the point P1, defined in Figure 3.44,

enters the reactor lower plenum at x = 1.95m and levels horizontally from

2.35m and 5m. At x = 5.4m enters the core and reaches the upper plenum

at 7.35m. Between x = 1.95m and 7.35m this mesh overlaps with the three-

dimensional mesh. On the right of Figure 3.45 the initial pressure at x = 0m

is imposed by the BCONDIT CATHARE module and increases linearly due

to the gravity term. The pressure has a jump, defined by the pump, and then
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Figure 3.46: Test 2. Temperature along the central line of the three-

dimensional domain (left) and average temperature along the plenum-core-

plenum-primary loop (right).
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Figure 3.47: Test 2. Normalized velocity along the central line of the three-

dimensional domain (left) and average normalized velocity along the plenum-

core-plenum-primary loop (right).

it starts to increase linearly again. At the bottom the pressure line is almost

horizontal since only the distributed pressure losses are taken into account. In

the last part the circuit reaches the core where the mono-dimensional pressure

behavior is substituted with the three-dimensional one. On the left of Figure

3.46 the temperature along the central line of the three-dimensional domain

is shown. On the right the average temperature along the circuit is reported.

The average temperature at exit of the the reactor is about 478C. The fluid

flow goes through the pump and the heat exchanger. In the exchanger the

temperature drops to 400C. The temperature remains the same until it reaches
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the core. In the core we plot the average temperature of the three-dimensional

simulation. Finally the normalized average velocity is shown in Figure 3.47.

On the left the normalized vertical velocity for a case of open assembly is

reported. On the left the normalized velocity on the circuit and its average on

the three-dimensional domain are shown.
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Figure 3.48: Test 2. Evolution of the state variables at the interface 1D/3D

P2: circuit (A) and three-dimensional (B) solution values.

Solution at the coupling interfaces. In Figures 3.48- 3.49 pressure, tem-

perature and the velocity field at the 1D and 3D interfaces are shown as a

function of time when no internal iterative algorithm is used. Since we use a

defective coupling approach every state variable is matched by using sources

in the mass, momentum and energy equation. These sources are in form of
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Figure 3.49: Test 2. Evolution of the state variables at the interface 1D/3D

P1: circuit (A) and three-dimensional (B) values.

feedback terms, namely

Sk+1
i = Ski + wi(φ3D − phi1D) , (3.34)

where k indicates the k-step of the iterative algorithm. The index i indicates

the equation where the source is applied (i = 0 mass, i = 1 momentum, i = 2

energy). The under-relaxation parameter wi can be tuned to get fast conver-

gence. The state variable from the mono-dimensional solution is indicated as

φ1D and for the three-dimensional domain as φ3D. For the k that tends to

infinity Ski tends to Si that implies φ3D = phi1D. However if a steady solution

is considered the number of iterations for this feed back control algorithm can

be set to one. In this case we say that no internal iterative algorithm is used.

In Figure 3.49 the evolution of the state variables at the interface 1D/3D P2
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are shown. On the top we have the pressure and on the bottom the average

temperature and velocity. The interface P2 is the inlet of the reactor. Over this

interface there is no need of the feedback algorithm on temperature and mass

flow since they are simply boundary conditions imposed from the circuit to

the three-dimensional simulation. During the evolution, the three-dimensional

values follow the transient determined by the pump. However the pressure is

determined with the feedback control algorithm. As one can see the matching

is almost perfect. The difference is due to the fact that the transfer of data

in these two codes is passed with one step delay. In Figure 3.48 the evolution

of the state variables at the interface 1D/3D P2 is shown. The state variables

are pressure on the top and average temperature and velocity on the bottom.

The interface P2 is the outlet of the reactor. The reactor has multiple exits

which are the points pt1− pt2 of Figure 3.38, where the state variables takes

no constant values. The value imposed to the mono-dimensional simulation is

imposed by using sources located in the CORE AXIAL module that overlaps

the three-dimensional domain. The pressure is set quickly at the beginning of

the evolution. The two exits B1 and B2 and the mono-dimensional inlet keep

the fixed pressure dictated by the BCONDIT module. At t = 0 the tempera-

ture is T = 400C. This point starts to feel the increasing in temperature t ≈ 3s

when the reactor warm up. The average temperature increases till reach its

steady value. Two points in two different exits B1 and B2 are shown together

with the average temperature imposed to the circuit. The same happens for

the velocity. The pump pressure defines the circuit flow rate which increases

till it reaches the steady state at the mean velocity of approximately 1.48m/s.

It is worth while to note how smooth is the numerical convergence at the in-

terface when the coupling defective approach is used. If compared with the

simple coupling boundary approach used in previous reports we can say that

this approach is more computational efficient.

3.8 Test 3. Neutron CFD coupling

In this last example, we focus our attention on the energy production into the

core region. In all previous tests, we investigate the dynamics of the entire
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primary loop of a LFR reactor, under the assumption that the power distri-

bution in the reactor remain constant. In this condition the average heat rate

production and its peak factor is an input for the problem and cannot change

during the simulation. With this approach the effect of the temperature field

on the cross section of the nuclear fuel is neglected. In this third test we inves-

tigate the thermal-hydraulics behavior of a PWR nuclear reactor evaluating

the power generation distribution taking into account the local temperature

field. The neutron code used in this example is DONJON-DRAGON, an open

source framework developed by the Institute of Nuclear Engineering of the

École Polytechnique de Montréal that as been integrated into the numerical

platform SALOME. The software is composed by two modules: DRAGON and

DONJON. The DRAGON code [21] results from a concerted effort to unify

inside a single code various numerical techniques and calculation methods that

can be used to solve the neutron transport equation (3.2) both with the col-

lision probability technique and the method of characteristics. The lattice

code DRAGON is divided into modules which transfer information through

well defined and documented data structures. The geometry module repre-

sents a versatile geometry analysis technique available in DRAGON, it can

process 2D clusters geometry as well as Cartesian and hexagonal lattices of

cells in both two and three dimensions. The second code (DONJON) contains

a collection of modules that solve the neutron multigroup diffusion equation

on realistic complex reactor core modeling. It includes all the functions that

characterize a reactor core. DRAGON performs transport calculations using

a microscopic library based on different nuclear libraries and then, the diffu-

sion code DONJON, is used to compute fluxes and multiplication factor. The

computer codes DRAGON and DONJON are set up in a modular form which

allows the user to break up his calculation in procedures having a smaller

number of steps. Relevant data can then be easily exchanged from one pro-

cess to the other through hierarchical data files and/or its sequential export

facilities. The standard calculation procedure we carry is in two steps. In the

first one we perform critical transport calculations on the transport model and

generate a consistent set of multigroup properties such as the various cross sec-

tions and diffusion coefficients for each different material. In the second step
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we introduce these nuclear properties in the DONJON full core model and

compute the macroscopic flux distribution and the multiplication factor of the

core. The DRAGON generated macroscopic properties are stored in COMPO

files. This type of file has been developed to unify output storage and to be

able to keep macroscopic as well as microscopic cross sections with a variable

number of energy groups and eventually for different steps of evolution. The

COMPO files will be directly accessed in the DONJON computation to ensure

adequate communications between transport and diffusion calculations. One

of the most important properties needed for simulating the operating reactor

is its temperature reactivity coefficients and DONJON calculations can de-

termine the temperature reactivity coefficients of the different components, in

temperature ranges. The dominant effect is due to the coolant water which

has an important negative reactivity. The effects of fuel temperature are not

negligible because of the Doppler reactivity caused by large presence of 238U

and the low conductivity of the ceramic fuel. The execution of DONJON is

controlled by the generalized GAN driver [22] which it is modular and has been

integrated into the SALOME platform so that it can be easy controlled by a

supervisor so that the actual temperature field in the core region, evaluated

using the same FEMUs module used in the previous examples, is exchanged,

through a MEDmem interface, to the DONJON code. The material macro-

scopic cross sections are then updated according the new temperature field

using the COMPO object previously generated with the DRAGON and, the

consequent neutron flux, is computed. From the updated neutron flux the new

peak factor is evaluated and projected, again through the MEDmem interface,

into the FEMUs problem that evaluate the new temperature field.

3.8.1 General Description

The geometry of the reactor used in this example, is show in Figure 3.50, we

consider an annular reactor characterized by a diameter (d) of 3.23m and an

height (a) of 6.6m. The active part of the core start form c = 2.5m and ends

at b = 4.5m. The coolant (water) flows from the lower inlet region to the

outlet on the top. The models and the algorithms that are used for solving
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Figure 3.50: Test 3. Geometry of the reactor.

the mass, momentum and energy balance equations from the 3D-CFD scale

point of view, are similar to the ones described in Sections 3.2-3.3 they only

differs for some geometrical aspect, for this reason in this Section we focus our

attention in the description of the active zone of the reactor explaining how

it has been considered into the neutron code. The first step in the execution

of the neutron code is the generation of the macroscopic cross section library

needed for solving the multigroup diffusion equation, this operation is per-

formed by the code DRAGON which solve the transport equation in a single

pin fuel element taking into account its particular geometry and composition.

The input parameter for this specific case are reported in Table 3.8.1. The

transport equation is integrated over a lot of tiny energy interval and the re-

sults are then condensed into the energy groups considered into the multigroup

diffusion diffusion. The macroscopic cross section are evaluated for different

fuel compositions and for different average temperatures according to a range

defined by the user. This operation allows the interpolation of the macro-
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Figure 3.51: Test 3. DONJON computational grid on the left and active zone

of reactor core on the right.
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Figure 3.52: Test 3. Fuel pin geometry on the right and composition parame-

ters on the left.

scopic cross section between the range values that has been set. We remark

that this first step, the generation of macroscopic cross section library, depends
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Figure 3.53: Test 3. Three possible mix (A, B and C) of materials 1, 2 and 3

in a reactor plane.

only on the fuel pin composition and geometry, the possibility to evaluate the

cross section in a range of composition and temperature is meant for avoiding

the generation of this library every time iteration during a simulation. DON-

JON, which is the program the solves the multigroup diffusion problem, is the

software that gets the new temperature field coming from the CFD module,

update the cross section according with the local temperature and evaluate

the new neutron flux and so the energy production in the active core region.

Since the DONJON code can handle only Cartesian structured mesh we have

to embed the computational domain shown in Figure 3.50 into a Cartesian

three-dimensional grid specified by a characteristic length u. In our case we

choose u = 0.215m and the computational domain is show in left part of Figure

3.51. In the right part of the same Figure we mark the active core region in the

domain, in this zone the neutron flux and the peak factor are evaluated con-

sidering the particular composition of every fuel element of the computational

grid. In particular the domain is composed by 31 sections made of 17×17 cells

and the composition of each cell is specified in a 17×17 matrix. In this example

we consider three material types: 0 is a dummy material that mark a zone in

which the neutron flux is zero and must not be evaluated, 1 is the fuel material

which has the composition shown in the left part of Figure 3.8.1 and finally 2

is the reflector material. In the right part of Figure 3.8.1 a sketch of the fuel

pin element is reported, from that Figure one can appreciate the geometrical

complexity that can be considered in the evaluation of the macroscopic cross
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sections. The firsts and the lasts 10 planes of the neutron computational grid,

has the A configuration show in Figure 3.53, the 11th and 22th planes has the

B configuration show in Figure 3.53 and finally the remaining planes, the ac-

tive core, has the C configuration shown in Figure 3.53. Now that we have

specified the composition of all the elements of the computational grid we can

solve the two groups diffusion equation evaluating the neutron flux inside the

domain. Concerning the CFD module geometry, the computational domain

for this problem is shown on Figure 3.50. A porous three dimension module

is used in the active zone of the reactor (c < z < b) as described in Section

3.3. The coolant flows inside the domain from the inlet surface on the bottom

part of the geometry with a fixed axial velocity of 1m/s, and exit from the

top outlet surface where an homogeneous Neumann condition is imposed. In

the lateral surfaces the flow is allowed only in the axial dimension. Regarding

the energy balance problem the refrigerant enter into the domain with a fixed

temperature of 500C while in all the remaining zones an homogeneous Neu-

mann condition is imposed. At the initial time step the temperature and the

axial velocity field are set in the whole domain to a value of 500C and 1m/s,

respectively.

3.8.2 Interface

As in the previous cases the interface between the neutron and CFD module

is created by the construction of a duplicated mesh of the two computational

domains in the MEDmem format and creating a map between them. In this

example the two meshes have different geometry as we can see in Figure 3.54.

In particular in the left part of that Figure the two computational domains are

shown, the bounding box mark the Cartesian structured mesh mesh and the

intern grid is the CFD mesh. In the right part of Figure 3.54 we can see the

overlapping between the active core zone in the Cartesian mesh and the CFD

domain. The map between the two MEDmem meshes couple all the elements

of the CFD computational grid in the nearest cell into the Cartesian grid. Af-

ter a solve iteration of the CFD problem the temperature field is taken from

the problem ad projected, through the MEDmem meshes duplicates and the
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Figure 3.54: Test 3. FEMUs (solid color) and DONJON (outline box) meshes.

Whole meshes on the left and heated zone on the right.

map operator, to the neutron code. The neutron flux is then calculated by

DONJON updating the cross section according according to the new temper-

ature field. From the updated neutron flux the new peak factor is evaluated

and projected back to the CFD code which can evaluate the new temperature

field.

3.8.3 Core evolution

The temperature field in the initial condition is set to a constant value of 500C

while the axial velocity field to a constant value of 1m/s. The velocity field

remains equal to the initial field during the whole simulation because of the

boundary condition and the geometry of the problem. For these reasons is not

reported. Due to the energy production in the active zone of the core, the

temperature increases from the initial value until the steady state is reached.

The temperature field at different time steps t1, t2 and t3 ( 0.1, 2.5 and 10s,

respectively) over the 3D domain is shown in Figure 3.55. We can notice that
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Figure 3.55: Test 3. Temperature overview at different time steps t1, t2 and

t3.
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Figure 3.56: Test 3. Neutron flux and temperature profile over the center line

of the domain at different time steps.

the temperature field increases in the active zone of the reactor in the initial

time steps (t1 and t2 ) and then, because of the velocity field, all the upper

zone is heated until the steady state is reached (t3). In Figure 3.56 the peak

factor (on the left) and the temperature field (on the right) over the center line

of the domain at different time steps (t1, t2 and t3) is shown. We can notice

that as the temperature field increase the peak factor i changes because of the
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different cross section. This effect cannot be considered without the usage of

the neutron code.
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CHAPTER 4

Fluid structure Interaction

Problems

In this Chapter after an introduction, we present the mathematical formula-

tion of the fluid structure problem in a multiscale framework and then the

algorithm is used to investigate the behavior of different components in the

cardiovascular system. The Fluid Structure Interaction (FSI) module has been

developed in house and it has been validated against the most common FSI

benchmarks for large deformation problems [23] such as the one proposed by

Turek [24] and the ones proposed by Bathe [25]. The system code is also an in

house program and, as in the previous Chapter, the coupling of the modules

is achieved with the computational platform SALOME following the proce-

dure explained in the Chapter 2. In particular using the MEDmem libraries

the velocity field is projected into a simplified model of the circulatory system

which sets the inlet velocity for the multidimensional system. The software

that are used are in-house codes and have been integrated into the SALOME

platform following the procedure explained in the Chapter 2. This Chapter is

organized as follows: After the mathematical description of both the multidi-

mensional and the mono-dimensional FSI problems the MED interfaces needed
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for coupling the two codes are described. Since the solution of a monolithic

FSI problem is highly CPU-time expensive a decoupling algorithm is used and

is largely explained in Section 4.3. Four tests cases are then reported: in the

first the decoupling algorithm is validated with a benchmark case in which a

pipe like system is considered, in the second test a similar FSI problem is cou-

pled, through the MEDmem interface, with the simplified mono-dimensional

circulatory system code. Finally an aneurysm in a blood vessel is considered

and the dynamics of the system is investigated in the case of a stationary and

transient aneurysm in Test 3 and 4, respectively.

4.1 Introduction

Fluid Structure Interaction (FSI) is a class of problems with mutual depen-

dence between the fluid and structural mechanics parts. The flow behavior

depends on the shape of the structure and its motion, and the motion and

deformation of the structure depend on the fluid mechanics forces acting on

the structure. We see FSI almost everywhere in engineering, sciences, and

medicine, and also in our daily lives. The FSI effects become more signifi-

cant and noticeable when the dependence between the influence and response

becomes stronger. The fluttering of aircraft wings[26], flapping of an airport

windsock[27], deflection of wind-turbine blades[28], inflation of auto mobile air-

bags[29], dynamics of spacecraft parachutes[30], rocking motion of ships[31],

pumping of blood by the ventricles of the human heart[32], accompanied by the

opening and closing of the heart valves, and blood flow and arterial dynamics in

cerebral aneurysms, lubrication studies [33], are all FSI examples. In engineer-

ing applications, FSI plays an important role and influences the decisions that

go into the design of systems of contemporary interest. Therefore, truly predic-

tive FSI methods, which help address these problems of interest, are in high

demand in industry, research laboratories, medical fields, space exploration,

and many other contexts[34]. The inherently non-linear and time-dependent

nature of FSI makes it very difficult to use analytical methods in this class

of problems. Only a handful of cases have been studied analytically, where

simplifying assumptions have been invoked to arrive at closed-form solutions
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of the underlying partial differential equations. While we see some use of ana-

lytical methods in solution of fluid-only or structure-only problems, there are

very few developments in solution of FSI problems. In contrast, there have

been significant advances in computational FSI research, especially in recent

decades, in both core FSI methods forming a general framework and special

FSI methods targeting specific classes of problems. Computational methods,

which are robust, efficient, and capable of accurately modeling in 3D FSI with

geometrically complex configurations at full spatial scales, have been the focal

point of these advances. The challenges involved in computational FSI can be

categorized into three areas: problem formulation, numerical discretization,

and fluid–structure coupling. The problem formulation takes place at the

continuous level, before the discretization. In a typical single-field mechanics

problem, such as a fluid-only or structure-only problem, one begins with the

classic set of governing differential balance equations in the problem domain

and a set of boundary conditions on the domain boundary. The domain may or

may not be in motion. The situation is more complicated in an FSI problem.

The sets of differential equations and boundary conditions associated with the

fluid and structure domains must be satisfied simultaneously. The domains

do not overlap, and the two systems are coupled at the fluid–structure inter-

face, which requires a set of physically meaningful interface conditions. These

coupling conditions are the compatibility of the kinematics and traction at

the fluid–structure interface. The structure domain is in motion and, in most

cases, its motion follows the material particles, or points, which constitute the

structure. This is known as the Lagrangian description of the structural mo-

tion. As the structure moves through space, the shape of the fluid sub-domain

changes to conform to the motion of the structure. The motion of the fluid

mechanics domain needs to be accounted for in the differential equations and

boundary conditions. There are two major classes of methods for this, which

are known in the discrete setting as the non-moving-grid and moving-grid ap-

proaches. Furthermore, the motion of the fluid domain is not known a priori

and it is a function of the unknown structural displacement. This makes FSI

a three-field problem, where the third unknown is the motion of the fluid do-

main. All the issues related to the numerical discretization of a single-field
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problem, such as the accuracy, stability, robustness, speed of execution, and

the ability to handle complex geometries, are likewise present in an FSI prob-

lem. The additional challenges in FSI come from the discretization at the

fluid–structure interface. The most flexible option is, of course, to have sepa-

rate fluid and structure discretizations for the individual sub-problems, the so

called partitioned approach, which results in non matching meshes at the inter-

face. In this case, one needs to ensure that, despite the non matching interface

meshes, the fluid and structure have the correct coupling of the kinematics and

traction. Another option is to used a monolithic approach in which we have

a matching discretizations at the fluid–structure interface. In this case, the

satisfaction of the FSI coupling conditions is much less challenging. However,

this choice leads to a lack of flexibility in the discretization choices and mesh

refinement levels for the fluid and structure sub-problems. That flexibility

becomes increasingly important as the complexity of the fluid–structure inter-

face geometry increases. On the other hand, there are situations where having

matching discretizations at the interface is the most effective approach. There

are two major classes of FSI coupling techniques: loosely-coupled and strongly-

coupled, which are also referred to as staggered or partitioned and monolithic,

respectively. Monolithic coupling often refers to strong coupling with matching

interface discretizations. In loosely-coupled approaches, the equations of fluid

mechanics, structural mechanics, and mesh moving are solved sequentially. For

a given time step, a typical loosely-coupled algorithm involves the solution of

the fluid mechanics equations with the velocity boundary conditions coming

from the extrapolated structure displacement rate at the interface, followed

by the solution of the structural mechanics equations with the updated fluid

mechanics interface traction, and followed by the solution of the mesh mov-

ing equations with the updated structural displacement at the interface. This

enables the use of existing fluid and structure solvers, a significant motivation

for adopting this approach. In addition, for several problems the staggered

approach works well and is very efficient. However, convergence difficulties

are encountered sometimes, most-commonly when the structure is light and

the fluid is heavy, and when an incompressible fluid is fully enclosed by the

structure. In strongly-coupled approaches, the equations of fluid, structure,
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and mesh moving are solved simultaneously, in a fully-coupled fashion. The

main advantage is that strongly-coupled solvers is that they are more robust

with respect to the loosely-coupled ones [35, 36] and many of the problems

encountered with the partitioned approaches are avoided. However, strongly-

coupled approaches necessitate writing a fully-integrated FSI solver, virtually

precluding the use of existing fluid and structure solvers. There are three cate-

gories of coupling techniques in strongly-coupled FSI methods: block-iterative,

quasi-direct, and direct coupling. The methods are ranked according to the

level of coupling between the blocks of the left-hand-side matrix [37, 38, 39]. In

all three cases, iterations are performed within a time step to simultaneously

converge the solutions of all the equations involved. Another computational

challenge in some FSI applications is the need to accommodate very large struc-

tural motions. In this case, one needs a robust mesh moving technique and

the option to periodically regenerate the fluid mechanics mesh (i.e., re-mesh)

to preserve the mesh quality and consequently the accuracy of the FSI com-

putations. The re-meshing procedure requires the interpolation of the solution

from the old mesh to the new one. Re-meshing and data interpolation are also

necessary for fluid-only computations over domains with known motion. The

difference between that and FSI is that the re-meshing can be precomputed

in fluid-only simulations, while in the case of FSI the fluid mechanics mesh

quality depends on the unknown structural displacements, and the decision to

re-mesh is made during run-time. Above all the applications of FSI problem,

the biomedical field is becoming of great interest [40, 41, 42, 32]. In particular

we assist to a huge increase of FSI studies of different part of the cardiovascular

system. The general motivation for cardiovascular modeling is the prevalence

of cardiovascular diseases, the single largest cause of death worldwide, which

is responsible for more than half of mortality in the developed countries. For

example, atherosclerosis is responsible for both heart attacks and stroke. It is a

complex disease that generally takes decades to develop. There is widespread

study of its origins, its treatment and, hopefully, its reversal. Of the many

risk factors that have been identified blood cholesterol and triglyceride levels,

smoking, obesity, genetics, etc., only haemodynamic and mechanical factors

can explain the focal nature of the disease. A better understanding of these
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factors is essential to our understanding of the disease[43]. Another example is

the studying of an aneurysm which is a gradual dilation of an arterial segment

over a period of years. The aneurysm wall stretches and becomes thinner and

weaker than normal arterial walls. Consequently, untreated aneurysms can

rupture causing massive haemorrhage, except in the brain where rupture leads

to possibly lethal vasospasm. The plastic deformation of the arterial wall is

associated with structural changes in the connective tissue. Modeling and sim-

ulations of blood flow through arterial grafts, through reconstructed vascular

segments and through vessels with implanted medical devices, have been car-

ried out by many groups in order to provide knowledge of flow behavior and

the applied stress fields. These investigations are useful to optimize surgical

procedures or the design of medical devices. Most of the studies have been

performed in idealized geometries but there is a growing interest in computa-

tions carried out in realistic geometries determined from medical imaging[43].

Many problems of the investigated problems, such as composite materials,

porous media, turbulent transport in high Reynolds number flows, etc., have

multiscale solutions. A complete analysis of these problems is extremely chal-

lenging since a direct numerical solution of the multiscale problems is difficult

even with modern supercomputers due to different characteristic temporal and

spatial scale of problem. Direct solutions provide quantitative information of

the physical processes at all scales, on the other hand, from an engineering

point of view, it is often sufficient to predict the macroscopic properties of the

multiscale systems, such as the effective conductivity, elastic moduli, perme-

ability and eddy diffusivity. Therefore, it is desirable to develop a method that

captures the small scale effect on the large scales, but does not require to solve

all the small scale features.

In the previous Chapter we show how coupling different codes into the

computational platform SALOME can be used to investigate the dynamics of

the primary loop of a nuclear reactor. Another example where this coupling

is useful, is into biomedical applications, where usually the system of interest

is a component of the vascular circulatory system and, in order to study the

dynamics of that problem, one has to take into account the effects of the en-

tire connected loop. Because of the complexity of the system it is not possible

110



consider the circulatory system as a unique three-dimensional domain and it

is indeed necessary to use multiscale models. In particular a multiscale tech-

nique allows us to use multidimensional complex model to represent some part

of the circulatory system, such as a valve, and a simplified mono-dimensional

model for the rest of the system. The coupling between those modules repre-

sents a fundamental topic with regard to stability issues. Multiscale approach

is clearly extremely attractive and can be achieved using the computational

platform in the development of any complex system simulation. This Chapter

is organized as follows: In the first Section we introduce the mathematical

description of a Fluid Structure Interaction problem in particular in the first

part we derive the monolithic formulation of the FSI set of balance equation

(mass, balance). In the second part we introduce the mono-dimensional sim-

plified model for the cardiovascular system and in the third part we give a

description of the interfaces used to couple those two modules. In this case

the 3D and 1D modules are both in-house code that have been integrated into

the computational platform SALOME according to the procedure described in

2.2. In the second Section there is a description of the solution algorithm for

the monolithic 3D FSI problem. Due to the large displacement involved into

the simulation, the monolithic approach represent the best solution in terms

of numerical stability [36, 38], but maybe the worst int term of computational

cost. In order to reduce the cost we use a new projection scheme with an it-

erative penalty correction algorithm which is deeply investigated into Section

4.3. In the third Section we show some numerical results for different test

cases. In particular the first one is a validation test for the new penalty pro-

jection algorithm where we reproduce the results of the classic FSI benchmark

proposed by Bathe in [25]. In the second Test we couple a 3D blood vessel

model with the simplified mono-dimensional model of the cardiovascular sys-

tem in order to test the robustness and the stability of the coupling between

the different-scales problems. Finally, in the last two Tests, the presence of

an aneurysm into the cardiovascular system is investigated in both a steady

state and a transient conditions. In both cases the aneurysm is modeled with

a multidimensional FSI model while the rest of the simplified cardiovascular

system is taken into account with a mono-dimensional system code.

111



As in the previous Chapter, in all the examples the two modules exchange

computational fields, through the computational platform, during the execu-

tion.

4.2 Mathematical Model

4.2.1 FSI problem

Ω̂f
0

Ω̂s
0

Γ̂1,s
0

Γ̂2,s
0

Γ̂1,f
0

Γ̂2,f
0

Γ̂3,f
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0

Ω̂f
t

Ω̂s
t

Γ̂1,s
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t

Γ̂2,f
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Γ̂3,f
t

Γ̂3,s
t

Γ̂i
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Γ̂i
t

Af

X s

Γ̂2,s
t

Figure 4.1: Reference and current configuration where a vessel wall interacts

with a fluid.

In this Section we introduce the mathematical model for a generic fluid

structure interaction problem. We denote by Hs(O), s ∈ <, the standard

Sobolev space of order s with respect to the set O, which is either the flow

domain Ω, or its boundary Γ, or part of its boundary. Whenever m is a non

negative integer, the inner product over Hm(O) is denoted by (f, g)m and

(f, g) denotes the inner product over H0(O) = L2(O). Hence, we associate

with Hm(O) its natural norm ‖f‖m,O =
√

(f, f)m. For 1 ≤ p <∞ the Sobolev

space Wm,p(O) is defined as the closure of C∞(O) in the norm

‖f‖pWm,p(O) =
∑
|α|≤m

∫
O
|
( ∂
∂x

)α
f(x)|p dx .

The closure of C∞0 (O) under the norm ‖·‖Wm,p(O) will be denoted by Wm,p
0 (O).

Whenever possible, we will neglect the domain label in the norm. For vector-

valued functions and spaces, we use boldface notation. For example, Hs(Ω) =

[Hs(Ω)]n denotes the space of <n-valued functions such that each component
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belongs to Hs(Ω). Of special interest is the space

H1(Ω) =

{
vj ∈ L2(Ω)

∣∣∣ ∂vj
∂xk
∈ L2(Ω) for j, k = 1, 2

}
equipped with the norm ‖~v‖1 = (

∑2
k=1 ‖vk‖2

1)1/2. For details concerning the

function spaces we have introduced, one may consult [44, 8].

In an ordinary FSI problem we consider a mechanical system composed by a

laminar Newtonian fluid region and a solid one which defines a moving domain

Ωt. A schematic geometry of the problem is shown in Figure 4.1. Let Ωf
t and

Ωs
t be the fluid and the solid region at t ∈ (0, T ], respectively. At t = 0

the fluid and solid region are defined by Ω̂f
0 and Ω̂s

0. Let Γit = Ω̄f
t ∩ Ω̄s

t and

Γ̂i0 = Ω̄f
0 ∩ Ω̄s

0 be the interface where solid and fluid interact. Γkt , k = 1, 2, 3 and

Γ̂k0, k = 1, 2, 3 are defined to be the remaining external boundaries at t ∈ (0, T ]

and t = 0, respectively. The evolution of the solid and fluid domain Ω̂f
0 and

Ω̂s
0 are defined by

X s : Ω̂s
0 × R+ → R3 ,

Af : Ω̂f
0 × R+ → R3 ,

such that the range of X s(·, t) and Af (·, t) define Ωs
t and Ωf

t , respectively. X s

maps any material point x̂s0 from the given fixed reference configuration Ω̂s
0

to the current solid material configuration Ωs
t . The solid displacement is then

defined as

ûs(x̂s0, t) = X (x̂s0, t)− x̂s0 . (4.1)

The mapping Af is such that Af (x̂f0 , t) = x̂f0 + ûf (x̂f0 , t), where ûf (x̂f0 , t) is

defined as an arbitrary extension operator over the fluid domain Ω̂f
0 and given

by

ûf (x̂f0 , t) = Ext(ûs|Γ̂i
0
) in Ω̂f

0 . (4.2)

The extension operator used to evaluate the fluid region displacement is the

harmonic or Laplace operator. Other similar operators can be employed as

described in [45, 46, 47, 48]. The velocity ŵf is defined by

ŵf =
∂ûf

∂t
in Ω̂f

0 . (4.3)
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This quantity represents the velocity in terms of the reference coordinate x̂f0 .

The behavior of the fluid is described by the Navier-Stokes equations for incom-

pressible flows. For details the interested reader can also see [49, 50, 51, 52].

ρf
∂vf

∂t

∣∣∣∣
Ã

+ρf
(
vf −wf

)
·∇vf −∇ · σf = 0 in (0, T )× Ωf

t ,

∇ · vf = 0 in (0, T )× Ωf
t ,

vf |t=0 = v0 in Ω̂f
0 , (4.4)

vf |Γ1,f
t,D∪Γ2,f

t,D
= gf in (0, T ) ,

σf · nf |Γ1,f
t,N∪Γ2,f

t,
= hf in (0, T ) ,

where ρf is the constant density, vf is the fluid velocity, Ã denotes the ALE

application that maps the reference fluid configuration Ω̂f
0 onto the current

fluid configuration Ωf
t and wf denotes the fluid domain velocity. n is the unit

normal vector that points outward from the boundary ∂Ωf
t and gf , hf , v0 are

given data. The flow state variables in the incompressible case are the pressure

pf and the velocity vf . The contribution of external forces such as gravity is

assumed to be negligible. The constitutive relation for the stress tensor in the

Newtonian incompressible case reads

σf = −pfI + τ f = −pfI + 2µfε
(
vf
)
, (4.5)

where µf is the dynamic viscosity of the fluid, pf the Lagrange multiplier

associated to the incompressibility constraint and ε
(
vf
)

the strain rate tensor

defined as

ε
(
vf
)

=
1

2

(
∇vf +

(
∇vf

)t
)
. (4.6)

The total time derivative is related to the adopted reference systems. The gov-

erning equations for structural mechanics are the following momentum equa-

tions

ρs
∂vs

∂t
−∇ · σs(us) = 0 in Ωs

t , (4.7)

where ρs is the density of the solid material, vs is the velocity field and σs

its Cauchy stress tensor, which is a function of the solid region displacement

us. Since the constitutive law for the solid stress tensor is expressed in terms
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of displacements one must solve both the balance equations (4.7) and the

kinematic relation

vs =
∂us

∂t
. (4.8)

For the reference configuration we can introduce the right Cauchy-Green de-

formation tensor C as

Cij = FkiFkj ∀ i, j = 1, . . . , 3 , (4.9)

where F is the deformation gradient tensor defined by F = I + ∇us. In a

similar way in the current configuration we can introduce the left Cauchy-

Green deformation tensor, b, as

bij = FikFjk ∀ i, j = 1, . . . , 3 . (4.10)

According with this notation we can now express the Cauchy stress tensor, σs,

as [49]

σsij =
2

J

[
bij (I bij − bimbmj)

Jδij
2

]


∂W
∂I

∂W
∂II

∂W
∂J


, (4.11)

where I = Cii, II = 1/2 (I − CijCji) are the first and second invariant of

the right Cauchy-Green strain tensor C and J its determinant. The quantity

W = W (I, II, J) is the strain energy of the system which depends on the

constitutive law of the considered material. For example for a Neo-Hookian

material, with respect to the current configuration, the energy function is

defined by

W (I, J) =
1

2
µs
(
J−2/3trC− 3

)
+

1

2

(
λ+

2

3
µs

)(
1

2
(J2 − 1)− ln J

)
.

(4.12)

In the case of incompressible solid, the third invariant is equal to one so the

energy density function becomes

W (I, J) =
1

2
µs (trC− 3) (4.13)
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and the Cauchy stress tensor is defined by

σs = −psI + σs∗ , (4.14)

where σs∗ is the tensor obtained by using the equations (4.11) and (4.13).

The problem defined by (4.4)-(4.7) is not well posed since we have not yet

prescribed any boundary conditions at the interface Γit. The coupling between

the fluid and the solid model determines the missing boundary conditions,

which consist of imposing the continuity of velocity and stress at the interface

Γit as

vf |Γi
t

= vs|Γi
t
, (4.15)

σf · nf |Γi
t
+ σs · ns|Γi

t
= 0 . (4.16)

In order to write the weak formulation of the coupled problem, let us consider

the following functional spaces

Vt = {φ ∈ H1(Ωf
t ) : φ|Γ1,f

t,D∪Γ2,f
t,D

= 0} ,

Vt
g = {φ ∈ H1(Ωf

t ) : φ|Γ1,f
t,D∪Γ2,f

t,D
= gf} ,

Qt = L2(Ωf
t ) ,

M0 = {ψ ∈ H1(Ω̂s
0) : ψ|Γ̂1,s

0,D∪Γ̂2,s
0,D∪Γ̂3

0,D
= 0} ,

M0
g = {ψ ∈ H1(Ω̂s

0) : ψ|Γ̂1,s
0,D∪Γ̂2,s

0,D∪Γ̂3
0,D

= gs} ,

D0 = L2(Ω̂s
0) .

In addition, let us introduce the following bilinear form

af (vf ,φ) =

∫
Ωf

τ f (vf ) : ∇φ dx = µ(∇vf + (∇vf )T ,∇φ) , (4.17)

where we denote with τ f the fluid viscosity tensor. The variational formulation

of the fluid equations can be obtained through the usual method by multiplying

the equations (4.4) with appropriate test functions, performing integrations

on the whole domain and keeping into account the boundary and interface

conditions. This procedure leads, for the velocity field v ∈ Vt
g and pressure
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p ∈ Qt, to the following fluid momentum equation

ρf
(
∂vf

∂t

∣∣∣∣
Ã
,φ

)
+ a(vf ,φ)− ρf ((∇ ·wf )vf ,φ) + ρf (

(
vf −wf

)
·∇vf ,φ) =

(pf ,∇ · φ) +

∫
Γi
t

(σf · nf ) · φ dγ +

∫
Γf
N

hf · φ dγ , (4.18)

(q,∇ · vf ) = 0 ,

vf |t=0 = vf0 ,

for all φ ∈ Vt and q ∈ Qt. In a similar way, we define the following bilinear

form

as(us,ψ) = (σs(us),∇ψ) . (4.19)

By following the procedure briefly described above, we obtain at each time t,

for the velocity us ◦ X s ∈M0
g and pressure ps ◦ X s ∈ D0, the following weak

formulation for the solid problem

ρs
(
∂2

∂t2
us,ψ

)
+ as(us,ψ)− (ps,∇ ·ψ) =

∫
Γi
t

(σs · ns) ·ψ dγ +

∫
Γs
N

hs ·ψ dγ ,

(d,∇ · us) = 0 ,

us|t=0 = us0 , vs|t=0 = vs0 ,

for allψ◦X s ∈M0 and d◦X s ∈ D0. Let us introduce a global weak formulation

for the fluid-structure problem. If we define the functional space

St = {(φ,ψ ◦ X s) ∈ Vt ×M0 : ψ|Γi
t

= φ|Γi
t
} , (4.20)

from (4.15), (4.16), (4.18) and (4.20), we can write the FSI problem in the

coupled formulation as

ρf
(
∂vf

∂t

∣∣∣∣
Ã
,ϕ

)
+ a(vf ,ϕ)− ρf ((∇ ·wf )vf ,ϕ) + ρf (

(
vf −wf

)
·∇vf ,ϕ)−

(pf ,∇ ·ϕ) + ρs
(
∂2

∂t2
us,ϕ

)
+ as(us,ϕ)− (ps,∇ ·ϕ) (4.21)

−
∫

Γs
N

hs ·ϕ dγ −
∫

Γf
N

hf ·ϕ dγ = 0 , ∀ϕ ∈ St

(q,∇ · vf ) = 0 (d,∇ · us) = 0 , (4.22)

vf |t=0 = vf0 us|t=0 = us0 vs|t=0 = vs0 .
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It is worth noting that by using the coupling conditions (4.15), (4.16) and this

particular choice of the fluid-structure test functions, the boundary terms that

appear in the fluid-solid interface Γit cancel out. This assures that forces at

the interface are always computed in an exact way.

4.2.2 The mono-dimensional FSI model

The mono-dimensional model combines the incompressible Navier-Stokes equa-

tion system and a shell model for the vessel walls. This implies that only radial

displacements are considered. Under the assumption of axial symmetry of the

system we may use a mono-dimensional set of equation. We can integrate (4.4)

with no ALE velocity field over the transverse surface and obtain [53, 47]
∂A

∂t
+
∂v

∂x
= 0 ,

∂Q

∂t
+

∂

∂x

(
αQ2

A

)
+
A

ρf

∂p

∂x
= −2πν(α + 2)

Q

A
,

(4.23)

where A is the transverse surface of the system, Q is the flow rate and p the

pressure of the system, α the momentum flux correction coefficient, ν the fluid

dynamic viscosity and ρf is the fluid density. The system (4.23) is not closed

unless we introduce a constitutive relation for the pressure [53, 47]

p = βψ(A) + pref = β

√
A

A0

− γ
√
A0

A0

, (4.24)

where A0 is the initial transverse surface of the system with β and γ appropriate

coefficient related to the solid Young modulus E. With the area equation (4.24)

the system (4.23) turns into an hyperbolic closed problem which can be solved

by imposing the following appropriate boundary conditions
A = A0 on Γi ∪ Γo

u = u0 on Γi

∂u/∂x = 0 on Γo

. (4.25)

where Γi and Γo are the inlet and outlet of the domain, respectively. The

variational formulation of the mono-dimensional problem, is obtained by in-

tegrating the system (4.23) with mono-dimensional weight functions. Briefly
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one can set ψ = ψ(s) and φ = φ(s) assuming that the test functions are only a

function of the mono-dimensional coordinate s. This module is properly used

for mono-dimensional flows such as channels with single fluid. Let A be a

surface perpendicular to the center-line. Over the surface A we define average

density and average velocity as

ρ̄ =

∫
A
ρ dA

A
v̄ =

∫
A
ρ v dA

ρ̄A
. (4.26)

With this definition the first equation of the system (4.23) becomes∫ L

0

ψ(s)
∂

∂s
(v̄) ds +

∂

∂t
(A) ds =

∫ L

0

ψ(s)Ss ds ∀ψ ∈ P (0, L) ,(4.27)

where Ss is an area deformation source from surface integral. In a similar way

for the average quantities (ρ̄, v̄, p̄), Q̄ = ρ̄v̄A and φ ≈ φ(s) the momentum

equation becomes∫ L

0

(
∂

∂t
Q̄

)
φ(s) ds+

∫ L

0

(
∂

∂s

Q̄2

A

)
φ ds =

∫ L

0

∂p̄

∂s
φ ds (4.28)∫ L

0

Aρ̄g · îs φ ds+

∫ L

0

φ(s) (Ms +Mv) ds ∀φ ∈ V (0, L) ,

where Ms is from surface integral and Mv from volume contributions. Usually

Ms ≈ − k ρ
2
ū|ū| (pressure loss). The volume contribution Mv consists of sev-

eral terms. It is easy to see that Mv = Mv,τ (τ̄) +Mv,vv(v̄v− v̄v̄) with obvious

definition of the terms Mv,τ and Mv,vv.

4.2.3 Interfaces

As shown in Figure 4.2 the 3D/1D interfaces are the inlet and the outlet of

the multidimensional regions. The interface between the outlet of the mono-

dimensional system and the inlet of the more complex domain is marked with

the letter A while the letter B marks the other corresponding interface. Over

these interfaces the fluid must flow from one-dimensional module to a three-

dimensional one. In this interface the mass and momentum must be conserved.

There are many sophisticated techniques to define a numerical algorithm able

to identify the values to set on the interfaces for example one can use algorithms
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Figure 4.2: 3D/1D interfaces in a schematic diagram

based on Mortar or Lagrangian multiplier method [18, 16, 54], in this Chapter

we use a direct coupling algorithm for the data exchange between the differ-

ent models. Concerning the computational structure of the coupled problem

and the generation of the MEDmem interface one can refer to the analogues

case explained in Section 3.6. The one-dimensional module is essentially a

hyperbolic differential equation and therefore it requires boundary conditions

only in inflow regions. In the inlet region of the multidimensional system the

average velocity must be set as boundary conditions. This imposition is a

very challenging situations since from the mono-dimensional system we have

the propagation of mass flux Q (or velocity in the normal direction) and cross

section area A. In three-dimensional domains if the velocity vector is fully

specified on boundaries, the pressure is determined so it can be specified only

if the normal component of the velocity field is not imposed. Imposing time

dependent pressure value on the inlet surface leads to large oscillations and ve-

locity discontinuities. For these reasons the pressure is expressed as a function

of the cross section dimension so that we avoid the coupling between the two

systems pressure values and obtain the continuities of this field by imposing

a fixed cross section dimension at the boundary of the system. The interface

3D-CFD and 1D that links the 3D-CFD module to the the mono-dimensional

module is an outflow region for the system and therefore the pressure field,
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evaluated in the simplified domain is imposed in the outflow region. In this

region, since the velocity profile is not imposed, the pressure can be easily set

and the flow rate, evaluated with this boundary condition, is imposed as a

inflow boundary condition in the mono-dimensional problem.

4.3 Solution technique of FSI

The most common solution strategy implemented in software packages for

a FSI problem, is the so-called partitioned approach, which decouples the

problem into two separate sub-problems and uses dedicated software for each

different region [55, 56]. According to this solution strategy the coupling is

achieved by enforcing continuity conditions along the fluid-solid interface. For

details the interested reader can see [55, 57, 58, 59]. However in applications

where large displacements may occur, one can see that explicit partitioned al-

gorithms show instabilities due to the poor fluid-solid coupling matching where

the solid-fluid power remains unbalanced at the interface. In order to overcome

this limit one could implicitly enforce coupling conditions. These algorithms

are called fully coupled or monolithic [60, 36]. A monolithic algorithm solves

simultaneously for the fluid and structure unknowns, so that the solid and

fluid regions are treated as a single continuum and the interface conditions are

automatically enforced [24, 61]. Numerical experiments, with similar fluid and

solid density, show that only fully coupled algorithms exhibit good stability

properties [60, 62]. Monolithic fully-coupled algorithms are always more sta-

ble and robust but they are also CPU-time expensive [63, 64, 65, 66, 67]. In a

monolithic fully-coupled approach for numerical simulations of incompressible

fluid-structure bodies the velocity and the pressure fields are coupled. This is-

sue is enhanced by the saddle-point character of the incompressible Lagrange

multiplier formulation and by multidimensional geometries where one has to

deal with a high number of degrees of freedom [43, 64, 63, 68]. The reduction of

the computational cost for such problems motivate many papers published in

recent years [69, 70, 50, 71]. Projection methods, which split the velocity from

the pressure field, are very popular in fluids since the boundary error gener-

ated by the projection method does affect mainly the boundary layer but in the
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solid region the projection error propagates quickly in the interior leading to

non acceptable solutions [72, 51]. In all the examples presented in this work,

we use iterative penalty-projection algorithm for a generic monolithic fluid

structure interaction solver based on unstructured computational grids devel-

oped in [23]. In particular our strategy is to use a one-step penalty-projection

method in the fluid domain and a iterative penalty-projection method in the

solid region. The most attractive feature of projection methods is that, at

each time step, one only needs to solve a sequence of decoupled advective and

elliptic equations for the velocity and the pressure field, making it very effi-

cient for large scale time-dependent numerical simulations [50]. However, it

is well known that standard one-step projection methods produces pressure

solutions that are not exact near the domain boundary where velocity fields

should be imposed and they must be integrated with iterative algorithms able

to correct the projection boundary conditions and the corresponding incom-

pressible constraint. The iterative algorithm considered here is the iterative

penalty method which can be proved to be convergent under simple conditions

[73]. The combination of the penalty and the projection method in the fluid

and solid region leads to good performance. The solution of the system (4.21),

due to its saddle-point nature, is CPU-time expensive and many authors have

proposed different strategies to reduce the computational effort. Some of the

most popular ones are decoupled fractional step strategies, domain decomposi-

tion methods and reduced models which try to decrease the degrees of freedom

by splitting the discrete matrix or using boundary integral techniques [73]. As

we exaplain, projection methods are widely used in fluid dynamics but they

are not popular in incompressible structural mechanics due to the poor per-

formance of the projection step itself over rigid media. A possible solution of

this problem is to split the computation of the velocity and pressure field by

introducing an iterative penalty-projection method. The standard projection

method consists of two steps: a predictor step and a corrector one [74]. In

the predictor step an auxiliary discrete velocity ṽh, which does not satisfy the

free-divergence condition, is computed, while, in the corrector step, an itera-

tive correction δps,n+1
h,proj is introduced to enforce the incompressibility constraint.

This projection allows us to solve the pressure and the velocity field separately
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but, at the same time, it does not recover the original boundary conditions

on pressure which are defined implicitly in the original momentum equation

[72]. This issue is particular relevant on solid boundaries when incompressible

hyper-elastic materials are considered. In this case the boundary conditions

involve the whole stress tensor and not only the pressure components. An

error on the solid boundary, which deforms the solid surface in the wrong

way, is introduced by setting to zero the pressure or its normal derivative.

This is particular relevant when large displacements and moving meshes are

considered. The iterative penalty procedure begins with the evaluation of an

auxiliary velocity field ṽh and a pressure correction term δps,n+1
h,pen . The quantity

ṽh = (ṽfh, ṽ
s
h) is the solution of the following momentum balance equation

∂t(ṽ
f
h,ϕh) + ∂t(ṽ

s
h,ϕh) + c(ṽfh,ϕh) + ds(ṽsh,ϕh)− (pf,kh ,∇ ·ϕh)

− (δpf,kh,proj,∇ ·ϕh)− (r1δp
s,k+1
h,pen ,∇ ·ϕh) = 0 ∀ϕh ∈ St . (4.29)

where ∂t(ṽ
·, ·) is the Eulerian time discretization of the velocity field defined

by

∂t(ṽ
s
h,ψh) =

ρs

∆t
(ṽs,n+1

h ,ψh)−
ρs

∆t
(ṽs,nh ,ψh) . (4.30)

The operator c(ṽfh,φh) is the fluid advection term modified by the ALE cor-

rection as

c(ṽfh,φh) =a(ṽf,n+1
h ,φh)−

(
ρf
(
∇ ·wf,n

h

)
ṽf,n+1
h ,φh

)
+ ρf

((
ṽf,nh −wf,n

h

)
·∇ṽf,n+1

h ,φh

)
−
∫

Γf
N

hf · φh dγ (4.31)

and ds(ṽsh,ψh) is

ds(ṽsh,ψh) = ∆t as(ṽs,n+1
h ,ψh) + as(us,nh ,ψh)−

∫
Γs
N

hs ·ψh dγ . (4.32)

The update of the penalty correction is obtained by using

δpk+1,n+1
h,pen = δpk,n+1

h,pen + r2(∇ · ṽkh) , (4.33)

where r1, r2 are real values that satisfy the following constraint [73]

0 < r1 < 2r2 . (4.34)
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It is important to remark that in case of large penalty values the numerical

convergence may deteriorate quickly [73]. In order to accelerate the conver-

gence a projection step can be introduced.

The projector algorithm computes the L2 orthogonal projection of ṽn+1
h onto

the space of divergence free vectors fields, which reads

ρ
vn+1 − ṽn+1

∆t
+ ∇δp̃n+1

proj = 0 in Ωt ,

∇ · vn+1 = 0 in Ωt .

(4.35)

Now we reformulate this Darcy system by taking the divergence of the first

expression in order to obtain a Poisson problem for δp̃n+1
proj. The pressure varia-

tions δp̃f,n+1
h,proj and δp̃s,n+1

h,proj are the solutions of the following weak elliptic problem

(∇δp̃f,n+1
h,proj,∇ζ)Ωf

n
+ (∇δp̃s,n+1

h,proj,∇ζ)Ωs
n

= − ρ
f

∆t
(∇ · ṽf,n+1, ζ)Ωf

n

− ρ
s

∆t
(∇ · ṽs,n+1, ζ)Ωs

n
,

(4.36)

for all ζ in H1
Γ0

, where Γ0 is the region where the pressure is imposed. In the

rest of the boundary Γ−Γ0, where normal velocity are imposed, homogeneous

Neumann boundary conditions must be applied. After solving these two sub-

problems we project the predicted velocity onto the space of solenoidal vector

fields as

vf,n+1
h = ṽf,n+1

h − ∆t

ρf
∇δp̃f,n+1

h,proj in Ωf
t , (4.37)

vs,n+1
h = ṽs,n+1

h − ∆t

ρs
∇δp̃s,n+1

h,proj in Ωs
t , (4.38)

and update both the pressure pf,n+1
h and ps,n+1

h

pf,n+1
h = pf,nh + δpf,n+1

h,proj + δpf,n+1
h,pen in Ωf

t , (4.39)

ps,n+1
h = ps,nh + δps,n+1

h,proj + δps,n+1
h,pen in Ωs

t . (4.40)

We remark that the projection pressure field, on the boundary where the veloc-

ity field is imposed, has zero normal pressure derivative instead of the normal

component of the Cauchy stress. This leads to a wrong representation of the

pressure and stress components for an incompressible solid material which
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tends to reduce the bending displacement field. The iterative penalty correc-

tion is meant to reduce this boundary error and provide a stable behavior.

In the rest of this Section we use the following FSI penalty-projection algo-

rithm:

1. set the initial domain Ωt=0 = Ω0 = Ωs
0 ∪ Ωf

0 and an ini-

tial velocity-pressure-displacement state (v0, p0,u0) for n = 0.

Also set ṽ0 = v0, δp0
h,proj = 0.;

2. compute the auxiliary velocity field ṽn+1
h = (

˜
vf,n+1
h , ṽs,n+1

h ) and

the update for the pressure penalty term δpk,n+1
h,pen at time n+ 1:

(a) set the value of the penalty iteration nk, initialize the

counter k = 0 and δp0,n+1
h,proj = 0;

(b) solve the following iterative equation for k = 1, 2, · · · , nk
ρ

∆t
(ṽk,n+1

h ,φh)Ωn + c(ṽk,n+1,φh)Ωf
n

+ d(ṽk,n+1,φh)Ωs
n
− r1(∇ · ṽk,n+1)π,∇ · φh)Ωn =

ρ

∆t
(ṽk,nh ,φh)Ωn + (pnh + δpk,n+1

h,pen + δpnh,proj,∇ · φh)Ωn

∀φh ∈ Sh(Ωn) ;

δpk,n+1
h,pen = δpk−1,n+1

h,pen + r2(∇ · ṽk−1,n+1) ;

(4.41)

(c) if ‖ṽk+1,n+1
h − ṽk,n+1

h ‖ > tol and k < nk return to b);

3. compute the projection term δp̃n+1
h,proj at time n + 1 from the

auxiliary velocity field

(∇δp̃n+1
h,proj,∇ζ) = − ρ

∆t
(∇ · ṽn+1, ζ) ∀ζh ∈ Sh(Ωn) ; (4.42)

4. compute the velocity and pressure as

vn+1
h = ṽn+1

h − ∆t

ρ
∇δp̃n+1

h,proj ,

pn+1
h = pnh + δpn+1

h,proj + δpn+1
h,pen in Ωn ;

(4.43)

5. solve for the displacement on the solid domain with

un+1
h = unh + ∆tvn+1

h ; (4.44)
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6. update the domain of the solid Ωf
t = Ωf

n+1 by using the solid

displacement field;

7. return to step 2 and compute the next time step until the final

time step is reached.

In the next Sections after a validation of the proposed model, we use this

solution strategy in an arterial like geometries and we couple this solution

with the simplified scheme of the cardiovascular system model.

4.4 Test 1. Mass conservation test.

γS2 , γS1 v = 0; u = 0

Γw σ · n = 0; ∇u · n = 0

ΓL2 v × n = 0; pin = 1500t

ΓL1 v × n = 0; pout = 1300t

ρf = 1Mg/m3 µf = 1.Kg/ms

ρs = 1Mg/m3 E = 1.57 · 106Pa

ks = 109Pa t = 0.1, 0.4, 1.0.1.6

C1 = 2× 105Pa C2 = 105Pa

Figure 4.3: Test 1. Domain overview (left), boundary conditions and physical

properties (right).

In the second test we reproduce the benchmark mass conservation test

proposed in [25]. The domain overview of the simulation is shown in Figure

4.3 where the fluid flows inside a cylindrical thin structural domain which

deforms due to the pressure fluid field. According to the labels shown in Figure

4.3 we impose an homogeneous Dirichlet boundary condition on ΓS2 and ΓS1

while a stress free boundary condition is set in the outer part of the solid

domain Γw. On the liquid surfaces ΓL2 and ΓL1 the pressure pout and pin are

imposed, respectively. In this test we consider incompressible material by using
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Figure 4.4: Test 1. Domain deformations and vertical component of the

velocity field w for t = 1 and t = 1.6.
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0
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l x
 (

m
)

A

B

Figure 4.5: Test 1. Transverse displacement lx for t = 0.4(A) and 1(B) with

r1 = 1000 (r2 = r1/2).

pressure MR model/div-0 model

s Pin(Pa) Pout(Pa) Re Flow rate

z = 0 0.5 1

0.1 150 130

0.4 600 520 31.2/30.1 2.452/2.305 2.452/2.305 2.452/2.305

1.0 1500 1300 121.1/120.8 9.512/9.25 9.512/9.25 9.512/9.25

1.6 24000 20800 361.7/343.9 28.41/26.32 28.41/26.32 28.41/26.32

Table 4.1: Test 1. Mass conservation test.

a divergence free vector field algorithm while the original test was performed

with Mooney-Rivlin hyper-elastic material model. Further information about

127



the geometrical details and the material constitutive model of the simulation

can be found in [25]. At the inlet and outlet we assume constant inflow and

outflow boundary conditions as

v × n = 0 pin = 1500× t pout = 1300× t , (4.45)

where the parameter t is set to 0.1, 0.4, 1. and 1.6. During the inflating

process the fluid must fill the domain defined by the solid walls and therefore

more liquid should enter through the inlet section. In order to have exact

mass conservation through different sections one needs steady or quasi steady

solutions. We compute solutions by using standard time dependent algorithm

and reach the steady solution with fixed pressure defined by the parameter t.

We set the penalty parameter r1 to 1/dt, where dt is the constant time step.

This choice is suggested by the considerations reported in [73]. In Figure 4.4

for t = 1 (on the left) and t = 1.6 (on the right) we show the deformed domain

and the vertical component of the velocity field w through the inlet, middle

and outlet section. The transverse displacement along the x-direction lx in

the central section are reported in Figure 4.5 for r1 = 1000 (r2 = 2r1). The

parameter t is set 0.4(A) and 1.0(B). We remark that the coupled and the

penalty results are very close already for r1 = 100. The numerical results in

Table 4.1 are reported for the Mooney-Rivlin hyper-elastic material model and

for the zero-divergence algorithm with penalty parameter set to r1 = 1/dt =

1000.

4.5 Test 2. Blood vessel

l

l
10

l
100

Ω̂f
0

Ω̂s
0

Γ̂0f
0

Γ̂1f
1

Γ̂2,f
0

Γ̂0s
0 Γ̂1s

1 Γ̂2s
0

Figure 4.6: Test 2. Geometry (left) and boundary condition (right).
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Figure 4.7: Test 2. Overview displacement and velocity field at t = 0, 2, 4, 6,

8 and 10s.
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Physical parameters Fluid solid Units

Poisson module – 0.5 –

Young module – 400000 Pa

Viscosity 1 – Pa · s

Density 1000 1000 kg m−3

Table 4.2: Test 2. Physical parameters of the numerical simulation.
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Figure 4.8: Test 2. Cross section dimension (left) and velocity field (right) in

the mono-dimensional system at t = 0 (t0), 2 (t1), 4 (t2), 6 (t3) and 8s (t4).
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Figure 4.9: Test 2. Axial velocity in fluid domain at t = 2 (t1), 4 (t2), 6 (t3), 8

(t4), 10 (t5) and 12s (t6) (left) and displacement field over time in solid domain

in x1 = (0.165, 0.375)[m], x2 = (0.165, 0.75)[m] and x3 = (0.165, 1.125)[m]

(right).
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In this test we consider a pipe type system coupled with a mono-dimensional

circuit in which a component moves a certain mass and inject the flow peri-

odically. This example is performed to test the stability and the robustness

of the algorithm in a system in which large deformation in the structure and

an highly transient velocity field are present. In Figure 4.5 the geometry of

the system is shown. We consider an axial symmetric system with l = 1.5m,

radius r = 0.15m and thickness s = 0.015m. With reference on the labels

shown in Figure 4.5 the boundary conditions imposed for the fluid (Ω̂f ) are

u1 = um on Γ̂0,f
0 ,

u2 = 0 on Γ̂0,f
0 ,

∂ui
∂xi

= p∗i on Γ̂2,f
0 i = {1, 2} ,

∂u1

∂x2
= 0 on Γ̂1,f

1 ,

u2 = 0, on Γ̂1,f
1 ,

(4.46)

where um is the velocity coming from the mono-dimensional system. For the

solid domain (Ω̂s) the boundary conditions becomes
u1 = 0 on Γ̂0,s

0 ∪ Γ̂2,s
0 ,

∂u2

∂x2
= 0, on Γ̂0,s

0 ∪ Γ̂2,s
0 ∪ Γ̂1,s

1 i = {1, 2} ,
∂u1

∂x2
= 0 on Γ̂1,s

1 .

(4.47)

The fluid physical parameters are µf = 2 Pa · s and ρf = 1000 kg/m3, whereas

for the solid we have ρs = 1000 kg/m3, E = 400000 Pa and ν = 0.5. These

parameters are summarized in Table 4.2.

In Figures 4.7 the fluid velocity field and the solid displacement are shown

at t = 0, 2, 4, 6, 8 and 10 sec. We can clearly see the propagation and the

attenuation of the displacement wave through the three-dimensional domain.

In Figure 4.8 on the left the cross section A is plotted against the spatial

coordinate and the mono-dimensional velocity at different time t = 0, 2, 4,

6 and 8s is shown on the right. We can remark that the ratio A/A0 never

reaches values lower than 0.7, and the velocity field oscillates inside the interval

[−0.2, 0.2]m/s. In Figure 4.9 on the left the axial fluid velocity (x = 0.25m)

is plotted at different time t = 2 (t1), 4 (t2), 6 (t3), 8 (t4), 10 (t5) and 12s
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(t6). In a similar way on the right of Figure 4.9 the displacement field is shown

over time at different points of the solid domain. The considered points are

set at (0.165, 0.375), (0.165, 0.75) and (0.165, 1.125) and labeled by x1, x2 and

x3, respectively. From the first plot we can see the time variation of the inlet

velocity and his space propagation. In the plot on the right we can observe

the delay of the deformation wave at different points and its dumping due to

the viscosity of the fluid.

4.6 Test 3. Stable Aneurysm

Figure 4.10: Test 3. Configurations of the aneurysm (left) and healthy aorta

(right) together with the mono-dimensional domain.

A multiscale, axisymmetric, multidimensional simulation is performed to

investigate the behavior of a stable aneurysm inserted in the whole cardiovas-

cular loop. We couple the inlet and the outlet surfaces of the domain with the

outlet and the inlet boundary of a mono-dimensional system as shown in Figure

4.10. The inlet velocity of the multidimensional domain is the one coming from

the the simplified system and the out flow of the complex domain is imposed in

the inlet region of the 1D system. This coupling represents the first step for a

detailed multiscale approach that could lead to obtain realistic simulations of

the whole cardiovascular loop with a reasonable computational cost. The same

simulation are performed considering a non-deformed blood vessel in order to
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t = 58.7s t = 58.9s

Figure 4.11: Test 3. Velocity along the y-axis. Aneurysm (on the left) and

healthy aorta (on the right) at t = 58.7 and 58.9s.

compare the obtained results. The Young modulus, as is common in literature

for this type of problems, is set to 103Pa and the Poisson ratio to 0.4. We also

take into account a simplified effect of hearth contraction by adding a periodic

momentum source in the simplified system in the form Hsin(πt)4. The multi-

scale approach allows the study of the effects of the presence of the aneurysm

on a simplified closed loop. When the flow becomes periodic stabilized a pe-

riod of 1 s is observed. In Figure 4.11 the velocity field in the axial direction,

for a normal and a deformed domain, is shown at different time steps. In

particular we can observe that in the deformed case the inlet velocity of the

domains undergoes to large variation, this effect could not be seen without

using a multidimensional approach. In Figure 4.12, the pressure field in the

three-dimensional domain and the area distribution in the mono-dimensional

pipe are shown at different time steps. In Figure 4.13 one can appreciate the

increasing of axial stresses in the in the presence of an aneurysm at different

time steps. In the healthy aorta interface stresses are negligible and in the

presence of the aneurysm the stresses increase near the inlet and the outlet

region of the aneurysm itself possibly causing the rupture of the blood vessel.

In Figure 4.14 the pressure field along the axis at different time step. We plot

in dashed line the values for the healthy aorta and in solid line the values for

the aneurysm. We can notice that several differences can be observed between
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t = 58.7s t = 58.9s

Figure 4.12: Test 3. Pressure in the 3D domain and area variation on the 1D

domain. Aneurysm (on the left) and healthy aorta (on the right) at t = 58.7

and 58.9s.

t = 58.7s t = 58.9s

Figure 4.13: Test 3. Stress component in the 3D domain. Aneurysm (on the

left) and healthy aorta (on the right) at t = 58.7 and 58.9s.

the two cases. Such differences are mostly due to the recirculation phenomena

that occurs in the presence of the aneurysm. In Figure 4.15 the radial dis-

placement, at y = 0.07m is shown together with the axial velocity. We plot

in dashed style the values for the healthy aorta and in solid line the values for

the aneurysm. One can notice that in the presence aneurysm displacements

becomes greater that the ones evaluated in a straight blood vessel. The large

deformation that occurs in the presence of the aneurysm reduces the overall
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Figure 4.14: Test 3. Pressure along the axis for the 3D domain. presence of

aneurysm (in solid line), and healthy aorta (in dashed line) at t = 58.7 and

58.9s.
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Figure 4.15: Evolution of the displacement (on the left) and of the velocity

(on the right). in the presence of an aneurysm (in solid line) and of an healthy

aorta (in dashed line).

magnitude of velocity field and the characteristic frequency of the structure,

as we can see in the right part of Figure 4.15.

4.7 Test 4. Growing Aneurysm

In this test we simulate the growing of an aneurysm and we show the evolution

of the velocity field. The formation of the aneurysm is caused by a progressive,

localized loss of elasticity in the aorta wall. The mono-dimensional loop is

treated with the model described previously. The boundary and the coupling

conditions are the same imposed in the previous Section for the healthy aorta

in order to compare the velocity profile obtained. A progressive localized loss

of elasticity is simulated and the Young modulus is progressively decreased
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Figure 4.16: Test 4. Formation of the aneurysm. Velocity along the axis in

the 3D domain and cross section variation in the 1D domain after time t = 5 s

t = 35 s t = 65 s t = 80 s .
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Figure 4.17: Test 4. Formation of the aneurysm. Pressure as a function of the

axial coordinate for 3D domain in the case of aneurysm formation (solid style)

and an healthy aorta (dashed style) at t = 5 , 35 and 80 s.

Figure 4.18: Test 4. Formation of the aneurysm. ∂v/∂y for 3D domain after

t = 5 , 35 and 80 s.

during time using the following relation:

E = E0(1− 80t(x− 0.04)(0.1− x))4 ∀x ∈ [0.04; 0.1] ,

E = E0 ∀x /∈ [0.04; 0.1] .
(4.48)

136



 0

 0.05

 0.1

 0.15

 0.2

 0  10  20  30  40  50  60  70  80  90

V
e

lo
c
it
y
[m

/s
]

Time[s]

Monodimensional velocity along time

Figure 4.19: Test 4. Formation of the aneurysm. Mono dimensional velocity

as a function of time at the inlet of the 1D mono-dimensional domain, in the

case of aneurysm formation (solid style) and healthy aorta (dashed style).

The simulation is performed with a time range of 400 s in which the aneurysm

is formed and reaches the steady state. As in the previous example a multiscale

approach is used in order to study the effects of an aneurysm developing on a

connected loop. This class of simulation is used to study the evolution of an

aneurysm and investigate the behavior of the whole circulatory system when

an aneurysm is growing in a certain blood vessel. In Figure 4.16 the velocity

profile and the cross section dimension of the multidimensional and the mono-

dimensional domain are shown respectively at different time steps. We can

notice that the velocity field In Figure 4.17 we show the pressure distribution

along the axis of the multidimensional domain at different time steps. In

Figure 4.18 the axial stresses are shown at different time steps. In Figure

4.19 we can observe the variation of the inlet velocity in the mono-dimensional

domain in the normal and the deformed case. We can notice that the average

velocity field is not constant over time, this effect is a consequence of the huge

deformation multidimensional domain. We remark that this feedback could

not be taken into account without considering the simplified coupled domain.
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CHAPTER 5

Multiphase Fluid Structure

Interaction

In this Chapter we study the deformation of solid structures induced by a two-

phase flow by coupling, through the computational platform SALOME, a FSI

problem with a multiphase interface tracking problem. We use the FSI solver

introduced in the previous Chapter, while the two-phase interface advection

and reconstruction is computed in the framework of a Volume of Fluid (VOF)

method. An unstructured computational grid and a fine Cartesian mesh are

used for the FSI and the VOF problem, respectively. The interaction between

the two different grids is obtained by projecting the velocity field into the

Cartesian grid and the Color function into the unstructured grid. This opera-

tion is performed with the MEDmem libraries included in the Salome platform.

Some numerical results are then reported in order to show the robustness and

stability of this numerical approach.
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5.1 Introduction

The interaction between solid and fluid may give rise to very complex phenom-

ena driven by mutual dependence between the fluid and deformable solid parts.

In this Chapter we extend the study of the interaction between a solid domain

and a fluid to a multiphase flow with the inclusion of thermal effects. The

study of two-phase flows is itself very challenging. In recent years this interest

has inspired a great number of numerical algorithms for the solution of the two-

phase problems involving efficient solvers of the incompressible Navier-Stokes

equations, stable and accurate techniques for the description of the interface

evolution, and surface tension models for the representation of the capillary

force. These algorithms can be divided mainly into two different groups de-

pending on the grid type. In the first case moving grids are used [75, 76]. The

interface between the two phases always coincides with the cell boundaries,

which are continuously advected by following the flow motion. This repre-

sentation allows a precise modeling of the fluid property discontinuities, and

also a correct location of the capillary force, which is a singular term in the

Navier-Stokes equations. Despite these good properties, moving grid methods

can be used only in simulations with small changes in topology, since severe

grid stretching brings inevitably some loss of accuracy in the discretization of

the Navier-Stokes equations. Furthermore, since breaking or merging of drops

and bubbles are almost impossible, a continuous re-meshing of the compu-

tational domain is required. In the second group fixed grids are used. The

interface does not coincide necessary with the cell boundaries, and a numeri-

cal algorithm is then required to reconstruct its motion in the computational

domain. The fluid properties are evaluated within the interface cells as an

average between the properties of each phase. The capillary force, which is

physically located only on the interface, is redistributed inside the cells cut by

the interface. With this representation, severe stretching and deformation of

the interface can be tracked. For these reasons fixed grid methods are widely

used. Fixed-grid methods for two-phase flows can be either Eulerian or La-

grangian. Eulerian front capturing schemes include volume-of-fluid (VOF),

level set and phase field methods [77, 78, 79]. The multiphase flow motion
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satisfies the Navier-Stokes equations and it should be determined while taking

into account the discontinuities of the fluid properties across the interface. This

discontinuity, together with the high Reynolds numbers, may induce several

numerical instabilities. The solution of the equations is then achieved only if

the problem is well modeled, and if efficient and accurate solvers are used. In

this Chapter we study the behavior of a solid structure that interacts with a

multiphase flow. We consider a Fluid Structure Interaction problem in which

the fluid part is composed of a multiphase flow, the interface between these

two phases is moved with a VOF algorithm[61, 80, 81]. The VOF algorithm

is implemented in two steps: in the first one the color function is moved with

an explicit Lagrangian advection method by using the fluid velocity which has

been computed by the FSI solver. In the second step the interface is recon-

structed based on the color function gradient and on the conservation of volume

constraint. For detailed information on this method the interested reader can

consult [82, 83]. In this work we use a Piecewise Linear Interface Calculation

(PLIC) reconstruction scheme together with an ELVIRA method for the com-

putation of the interface normals, [82, 84]. The coupling between a FSI and a

VOF solver allows to increase dramatically the range of problems that can be

studied. In this work we use this coupling for studying the thermal stresses

of a fluid-structure interaction system. In order to couple the two problems

many strategies can be employed. As in the previous Chapters, we use the

computational platform SALOME where two-phase flow and FSI code have

been developed while a dedicated MEDmem libraries is used to exchange data

between a Cartesian structered and a non structured mesh [7]. In the next

Section the mathematical model for a Multiphase Fluid Structure Interaction

problem is presented. In Section 5.3 we focus the attention at the interfaces

that are needed to couple the FSI code, used in the previous Chapter, to a

VOF module. In the last Section some numerical results are shown.

5.2 Mathematical Model

In this Section the mathematical model of the Multiphase Fluid Structure

Interaction (MFSI) problem is presented. Before considering the full MFSI
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Ωl

Ωg
Ωs

Γs Γi

Figure 5.1: Computational domain. The fluid in Ωg and Ωl are the reference

primary and secondary fluid phases, respectively. The boundary between the

two fluid phases is denoted by Γs. Ωs marks the solid region and the interface

between the solid and the multiphase fluid region is labeled with Γi.

problem we have to introduce a two-phase system and the mathematical model

that governs its evolution. Let us consider a domain show in Figure 5.1, where

Ω marks the whole domain. Ωl is the portion of the domain occupied by the

secondary fluid phase, while Ωg ⊂ Ω marks the configuration of the primary

phase. The boundary between the two immiscible fluids phases is denoted by

Γs and its topology can vary during the evolution of the system since each

sub-domain evolves in time. The solid domain is labeled with Ωs and the

interface between the fluid phases and the solid region is marked with Γi.

As explained in the Section 4.2.1 the balance equations form a classic Fluid

Structure Interaction problem are

ρf
∂vf

∂t

∣∣∣∣
Ã

+ρf
(
vf −wf

)
·∇vf −∇ · σf = f in (0, T )× Ωf

t ∪ Ωg
t , (5.1)

ρs
∂vs

∂t
−∇ · σs(us) = 0 in (0, T )× Ωs

t , (5.2)

∇ · v = 0 in (0, T )× Ωt , (5.3)

vf |t=0 = v0 in Ω̂0 , (5.4)

v|Γt,i
= gf in (0, T ) , (5.5)

σ · n|Γt,i
= hf in (0, T ) . (5.6)

In order to consider a multiphase fluid that interact with a structural domain,

we have only to modify the fluid momentum balance equation (5.1). while the
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rest of the system is treated as described in the Section 4.2.1. The momentum

balance equations system is formally written as in single phase formulation

ρf
∂vf

∂t

∣∣∣∣
Ã

+ρf
(
vf −wf

)
·∇vf −∇ · (µf (∇vf + (∇vf ᵀ)) +∇p = f ,

∇ · vf = 0 , x ∈ Ω, t ∈ [0, T ] ,

(5.7)

but the difference, between the single phase case, is hidden in the definition of

the density ρ, the viscosity µ and the force f . If we denote with l the properties

of the reference phase and with g the values associated to the secondary phase,

we define the physical properties ρf and µf as

ρf = ρlχ+ ρg(1− χ) , (5.8)

µf = µlχ+ µg(1− χ) , (5.9)

where χ is the characteristic function or indicator function. This function

describes the distribution of the two phases in the domain. It is equal to 1 in

the secondary phase and 0 in the primary phase. We note that the function is

discontinuous on the interface Γs. We can define χ as

χ(x, t) =

∫
Ωl(t)

δ(x′ − x) dx′ ∀x ∈ Ω . (5.10)

The indicator function is therefore a multidimensional Heaviside function that

changes value on Γs. We can also write that

∇χ = −
∫

Γs

δ(x′ − x)n′ dS ′ = −n

∫
Γs

δ(x′ − x) dS ′ = −nδs(x) , (5.11)

where δs(x) is the Dirac delta function that is discontinuous on Γs. Under

the hypotheses of immiscible fluids with no phase change, the characteristic

function behaves like a passive scalar and is purely transported by the velocity

field, following the simple advection equation

∂χ

∂t
+ (vf · ∇)χ = 0 , in Ω× [0, T ] . (5.12)

The force term presents a sensible difference with respect to the single phase

formulation, where it indicates only body forces such as gravity or electro-

magnetic fields. Here we must take into account also the surface tension, that

is modeled as a force applied only on the interface

fs(x) =

∫
Γs

σκn δs(x) dS , (5.13)
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where σ is a constant surface tension coefficient, as we do not consider tem-

perature gradients or varying concentration of surfactants, κ the sum of the

principal curvatures (in our convention κ < 0 for a liquid drop), n the unit

external normal to Γs and xs a point on Γs.

5.2.1 Volume-of-Fluid (VOF) method for interface cap-

turing

The Volume-of-Fluid method is one of the most popular techniques adopted

to model numerically an interface of separation between two phases. In this

approach we define a color function C on each of the cells that are part of

the computational domain. The value of C is taken as the integral of the

characteristic function χ on the cell

Ci(t) =
1

meas(Ωi)

∫
Ωi

χ(x, t) dV , (5.14)

where Ωi is one of the cells of the partition Th of Ω, and meas(Ωi) =
∫

Ωi
dV .

It is easy to see that 
Ci(t) = 1 if Ωi ⊂ Ωl ,

Ci(t) = 0 if Ωi ⊂ Ωg ,

0 < Ci(t) < 1 if Ωi ∩ Γs 6= ∅ .

The interface of separation is located on the mixed cells. Once introduced the

color function, we can define the physical properties at cell level

ρi = ρlCi + ρg(1− Ci) , (5.15)

µi = µlCi + µg(1− Ci) . (5.16)

In each mixed cell, the interface is represented by a single segment that is

oriented and positioned in order to approximate as well as possible the real

interface. The overall reconstruction of the interface is therefore piece-wise

linear. In order to advance in time the interface reconstruction, we integrate

(5.12) on the cell Ωi to get

meas(Ωi)
∂Ci
∂t

+

∫
Γi

χvf · ndS = 0 , (5.17)
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where the integral is extended to the boundary Γi of Ωi. Since this equation

is still discontinuous, it can not be integrated with standard partial differen-

tial equation methods, that tend to diffuse the interface, and a geometrical

approach is usually preferred. In summary, a VOF advection algorithm will

require two steps: a reconstruction and an advection one. In the first step a

segment, that reproduces the interface, is placed into every mixing cell, the

normal to the segment is determined from the color function distribution and

the position is evaluated imposing the constraint that the underlying volume

is equal to the color function value in the cell. A great number of schemes

has been proposed, often based on finite differences. Once we have a recon-

struction segment in each cell, the interface is advanced in time using (5.17)

and the color function is updated in each cell. Since the volume in each cell is

constrained to be the integral of the indicator function in that cell, the VOF

method shows excellent mass conservation properties. We will now analyze in

detail each step.

5.2.2 Interface reconstruction

i− 1 i i+ 1

j − 1

j + 1

j

Figure 5.2: Cell stencil used for the reconstruction.

The most simple reconstruction techniques available for VOF method is

called Single Line Interface Calculation (SLIC) and only provided segments

parallel to one of the edges of the cell boundary. In two-dimensions, this leads
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Figure 5.3: The reference phase occupies the area of the pentagon ABFGD.

to an equation for the segment in the form

x = α1 , or y = α2 , (5.18)

where α1 and α2 are set by the volume fraction conservation. Recent techniques

allow the segment to be freely oriented inside the cell and are therefore know

as Piecewise Linear Interface Calculation (PLIC) methods. Sticking to the

two-dimensional case, the segment line can be represented by

mxx+myy = α , (5.19)

where m = (mx,my) is a vector normal to the reconstruction segment. The

volume conservation constraint sets the value of α. It is important to note

that this imposition leads to an interface reconstruction that is not continuous

across cell boundaries. Some of the most used techniques for the determination

of m rely on a discretized derivation of the color function distribution. The

Parker-Youngs method is a more sophisticated method and is here illustrate

for a two dimensions domain subdivided into a Cartesian grid where each cell
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is identified by the couple of indices (i, j) of integer values. Let us consider a

3× 3 stencil of cells around the cell (i, j), as shown in Figure 5.2. The normal

m is first computed on the four cell vertices. For example, in the upper right

corner, identified by the indices (i+ 1
2
, j + 1

2
), we get

mx, i+ 1
2
, j+ 1

2
= − 1

2hx
(Ci+1,j − Ci,j + Ci+1,j+1 − Ci,j+1) ,

my, i+ 1
2
, j+ 1

2
= − 1

2hy
(Ci,j+1 − Ci,j + Ci+1,j+1 − Ci+1,j) ,

(5.20)

where hx and hy are the grid steps in the two coordinate directions. When

hx = hy the normal at the cell center is obtained by taking the average of the

four vertex values

mij =
1

4
(mi+ 1

2
, j− 1

2
+ mi− 1

2
, j− 1

2
+ mi+ 1

2
, j+ 1

2
+ mi− 1

2
, j+ 1

2
) , (5.21)

while the averaging changes slightly when hx 6= hy. This method is quite simple

and has the great advantage of being easily extended to three-dimensional

domains. Furthermore, when the resolution is low it shows better performances

then many other methods which are more complex [85]. The ELVIRA method

(Efficient Least-squares Volume-of-fluid Interface Reconstruction Algorithm

[83]) uses the same stencil of cells of the previous method. We can calculate

a discretized value of the height y on each of the columns of the stencil as

the sum of the volume fractions on that column, hxyi =
∑1

k=−1Ci, j+khxhy.

If we consider the approximation y = mx x + α on the central cell (i, j), we

can choose for mx between the three values obtained with a backward (mxb),

centered (mxc) or forward (mxf ) finite difference method given by

mxc =
1

2hx
(yi+1 − yi−1) =

1

2hx

1∑
k=−1

(Ci+1,j+k − Ci−1,j+k) , (5.22a)

mxf =
1

hx
(yi+1 − yi) =

1

hx

1∑
k=−1

(Ci+1,j+k − Ci,j+k) , (5.22b)

mxb =
1

hx
(yi − yi−1) =

1

hx

1∑
k=−1

(Ci,j+k − Ci−1,j+k) . (5.22c)

We can also repeat the argument for the horizontal direction and approximate
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the interface with the line x = my y + α. In this case we get for my

myc =
1

2hy
(xj+1 − xj−1) =

1

2hy

1∑
k=−1

(Ci+k,j+1 − Ci+k,j−1) , (5.22d)

myf =
1

hy
(xj+1 − xj) =

1

hy

1∑
k=−1

(Ci+k,j+1 − Ci+k,j) , (5.22e)

myb =
1

hy
(xj − xj−1) =

1

hy

1∑
k=−1

(Ci+k,j − Ci+k,j−1) . (5.22f)

We consider each of the six cases (5.22) and use them to reconstruct the line

on the whole 3×3 stencil of cells defining in this way an approximated volume

fraction distribution C̃. We consider the discretized error E in L2 between the

real data C and the approximated values C̃

E(m̃) =

(
1∑

k=−1

1∑
l=−1

(C̃i+k,j+l(m̃)− Ci+k,j+l)2

) 1
2

, (5.23)

where m̃ is one of the coefficients defined in (5.22). The value of m̃ that min-

imizes E is chosen as the normal of the segment. This technique reproduces

exactly any linear interface [83] and shows better convergence rates in basic

VOF tests when the resolution is not too small. The three-dimensional equiv-

alent of this algorithm requires however a stencil of cells that extends to 5

cells in each direction, in order to reproduce exactly any planar interface. The

correct positioning of the segment in the cell can be obtained by geometrical

considerations, that lead to a unique relation between α and the color func-

tion value Cij. With reference to Figure 5.3, we want to calculate the area of

the pentagon ABFGD. We can suppose that mx and my are both positive,

even if this is not the case we can apply some mirror reflections to go back to

the reference situation. The area of the triangle AEH is α2/(2mxmy). If the

points E and H are inside the cell, the reference phase occupies exactly the

area of this triangle. When the points move outside the cell, we must subtract
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the areas of the triangles BEF and DGH. Therefore we get

A1(α) =
α2

2mxmy

[
1−H(α−mxhx)

(
α−mxhx

α

)2

−H(α−myhy)

(
α−myhy

α

)2
]
,

(5.24)

where H(x) is the Heaviside function and A1 = hx hy Cij. The second term is

different from zero when E is outside the cell, namely α > mxhx, while the

third appears when H is beyond D, α > myhy. The area of this two smaller

triangles can be easily computed noting that they are similar to AEH. We

get

meas(BEF )

meas(AEH)
=

(
α−mxhx

α

)2

,
meas(DGH)

meas(AEH)
=

(
α−myhy

α

)2

.

We remark that (5.24) is a strictly monotonic function, and is a polynomial

of first or second order depending on the Heaviside functions into play. The

properties of (5.24) guarantee that the inverse function α = α(C) exists and

can be determined easily.

5.2.3 Multiphase Interface advection

(a) (b)

Figure 5.4: Eulerian implicit method: (a) SLIC reconstruction of the interface,

(b) implicit step fluxes.

The algorithms to propagate the interface can be divided in two broad cate-

gories. Split algorithms decompose the motion along the coordinate directions

and advance the color data separately, by creating an intermediate field C̃ after
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(a) (b)

Figure 5.5: Lagrangian explicit method: (a) SLIC reconstruction of the inter-

face, (b) final configuration.

each of the steps, while unsplit algorithms define two-dimensional fluxes and

advance the volume fraction distribution in a single step. Three dimensional

algorithm of this type are still too complex geometrically. We recall (5.12) and

rewrite it in the conservative form

∂χ

∂t
+∇ · (χvf ) = χ∇ · vf = 0 . (5.25)

For a split algorithm we can consider the mono-dimensional case in the x

direction and write for the cell (i, j)

hx hy
∂Cij(t)

∂t
+

∮
Γij

χ(x, t) v · n d` = hx hy Cij
∂vfx
∂x

, (5.26)

that is the integration of (5.25) on the cell. The term ∂vfx/∂x can be assumed

as a mean value of the derivative and is different from zero even when the

two-dimensional field is incompressible. If we consider two temporal steps tk

e tk+1 = tk + ∆t, use nondimensional variables and approximate the spatial

derivative with centered finite differences we get

Ck+1
ij = Ck

ij − Φ̃i+1/2, j + Φ̃i−1/2, j + C̃ij(ui+1/2, j − ui−1/2, j) , (5.27)

where Φ̃ is the normalized flux and it depends on the choice of C̃. We will

assume hx = hy to simplify the notation. The Eulerian implicit (EI) method

sets C̃ij = Ck+1
ij , therefore (5.27) becomes

Ck+1
ij = a

(
Ck
ij − Φ̃i+1/2, j + Φ̃i−1/2, j

)
, (5.28)

where a = 1/(1 − ui+1/2, j + ui−1/2, j) is the expansion/contraction coefficient

of the Eulerian step. The geometrical procedure is shown in Figure 5.4. The
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Lagrangian explicit (LE) method derives also from (5.27) setting C̃ij = Ck
ij to

get

Ck+1
ij = bCk

ij − Φ̃i+1/2, j + Φ̃i−1/2, j , (5.29)

where b = (1 + ui+1/2, j − ui−1/2, j) is the Lagrangian expansion/contraction

coefficient. The procedure is shown in Figure 5.5. When the reconstruction

is made with a SLIC method as in the Figures, the Eulerian method and the

Lagrangian one produce the same result, but this is clearly not true for PLIC

reconstructions that lead to a different value for Ck+1
ij . If the fluxes are not

computed using these two schemes the final volume fraction distribution can

be not consistent, with values of C that exceed one or are less then zero.

5.2.4 Multilevel VOF technique

VOF methods show their weaknesses when dealing with structures with char-

acteristic length comparable to the grid spacing. In particular, thin filaments

or drops that have a characteristic length of three to four cells can still be

reproduced accurately, but for smaller dimensions the interface reconstruction

method is not able to describe accurately the shape of the interface. This

feature may lead to artificial changes of topology that are non physical. The

formation of a pinch and the subsequent detachment of a drop should be driven

by a physical model and not dictated by the computational grid. However, this

model can be very complex and the physical process is still not fully under-

stood. To mitigate this effect, we use an approach that tries to increase the

resolution achievable with the VOF method, while the overhead induced on

the FSI solver is kept to a minimum. The basic idea is to separate the grid

used for the momentum balance equation system from the one used for inter-

face evolution, in particular we use a finer grid obtained from the coarser one

with repeated mid-point refinement. In this way, the number of segments in

each cell is increased without the necessity to solve the velocity and pressure

fields in a greater number of nodes. We will now describe the equations on

these grids with detail, suppressing the h subscript that should appear on all

the discretized variables. Starting from the coarse level (c) we refine up to a

fine level (f) with f = c+ l. We indicate with Vc, Sc and Vf , Sf the families
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of subspaces defined at the coarse and fine levels and with Ωc
i and Ωf

i the cor-

responding generic cell. We can also introduce some transfer operators from

the fine to the coarse levels, that take into account the different resolution at

which the equations are solved. If some phase structure is present only at the

fine level (f), the solution (pc,uc) at the coarse level is different from (pf ,uf ),

which satisfies the momentum balance equations with different test functions.

We can start from the continuity equation, the second of (5.7), and assume

that it is satisfied by the velocity field at both levels,

b(qc,uc) = 0 , b(qf ,uf ) = 0 , (5.30)

where qc now designates the test function on Sc. We substitute in the relation

at the fine level the coarse velocity field uc to get

b(qf ,uc) =

∫
Ω

qf Rfc(uc,uf ) dV , (5.31)

where we introduce the fine-to-coarse mass transfer operator Rfc, defined by

Rfc(uf ,uc) = ∇ · (uf − uc) . (5.32)

The meaning of this operator is to quantify the residual error of the mass

conservation equation when we assume that the coarse level solution uc is

valid at fine level. Even if the discrete solutions are divergence-free functions

over the finite element mesh, the point-wise divergences ∇·uf and ∇·uc may

be different from zero for all x ∈ Ω, because the divergence-free constraints are

imposed in an integral fashion, i.e.
∫

Ω
qf ∇·uf dV = 0 and

∫
Ω
qc∇·uc dV = 0,

but
∫

Ω
qf ∇ · uc dV = 0 is not imposed. Since the fine mesh is obtained by

mid-point refinement, Sc(Ω) ⊂ Sf (Ω) and therefore any test function qc can

be written as a linear combination of the test functions qf at the fine level,

qc(x) =
∑
i

aiq
f
i (x) . (5.33)

From this we get b(qc,uf ) =
∑

i aib(q
f
i ,u

f ) = 0 and therefore

0 = b(qc,uc) = b(qc,uc − uf ) =

∫
Ω

qcRfc(uc,uf )dV . (5.34)
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Under the above assumptions, there is no net mass transfer from the fine

to the coarse level. Therefore, if we implement a projection of the velocity

that preserves the divergence-free constraint, such as the one shown in Section

5.2.6, the transfer operator is identically equal to zero. We repeat the same

argument for the momentum conservation equation shown in the first of (5.7).

Let (pf ,uf ) be the solution of the Navier-Stokes equation at the fine level(
ρ
∂ uf

∂t
,vf
)

+ c(ρ,uf ,uf ,vf ) + b(pf ,vf ) + a(µ,uf ,vf ) = (f ,vf ) + (f fs ,v
f ) ,

(5.35)

with vf the test function in Vf . Here the density ρ and the viscosity µ are

explicitly written since they are now discontinuous across the interface. Now

we substitute the solution (pc,uc) of the coarse grid in (5.35)(
ρ
∂ uc

∂t
,vf
)

+ c(ρ,uc,uc,vf ) + b(pc,vf ) + a(µ,uc,vf ) =

= (f ,vf ) + (f fs ,v
f ) + (P fc(pc, pf ,uc,uf ),vf ) + (T fc(uc,uf ),vf ) , (5.36)

and introduce the fine-to-coarse momentum transfer operator P fc defined by

(P fc(pc, pf ,uc,uf ),vf ) =

(
ρ
∂ uc

∂t
,vf
)

+ b(pc,vf ) + a(µ,uc,vf )+

− c(ρ,uc − uf ,uc − uf ,vf )−
(
ρ
∂ uf

∂t
,vf
)
− b(pf ,vf )− a(µ,uf ,vf ) ,

(5.37)

and the fine-to-coarse turbulent transfer operator T fc defined by

(T fc(uc,uf ),vf ) = c(ρ,uc−uf ,uc−uf ,vf )+c(ρ,uc,uc,vf )−c(ρ,uf ,uf ,vf ) .
(5.38)

We split the contribution from the fine grid to the coarse one in two terms to get

a term that can be associated to the well-known turbulence contribution from

the sub-grid velocity field. The other term summarizes the difference of virtual

work between the two levels. When the spaces are embedded, Vc(Ω) ⊂ Vf (Ω),

(5.36) holds for any test function on the coarse grid and(
ρ
∂ uc

∂t
,vc
)

+ c(ρ,uc,uc,vc) + b(pc,vc) + a(µ,uc,vc) =

= (f ,vc) + (f fs ,v
c) + (Sfc(pc, pf ,uc,uf ),vc) . (5.39)

153



The operator Sfc models the whole residual between the fine grid FSI solution

and the coarse one and depends only on the variables of the coarse grid

(Sfc,vf ) = (P fc(pc, pf ,uc,uf ),vf ) + (T fc(uc,uf ),vf ) =

=

(
ρ
∂ uc

∂t
,vf
)

+c(ρ,uc,uc,vf )+b(pc,vf )+a(µ,uc,vf )−(f fs ,v
f )−(f ,vf ) .

(5.40)

When Sfc is small it means that a further refinement of the VOF grid does

not modify the velocity and pressure fields, and the capillary force calculated

on the fine grid is well-resolved. When this is not true, Sfc can be directly

calculated with (5.40) and projected on the coarse grid, or can be modeled

in some way at the coarse grid level. The fine grid is used only to get a

higher resolution on interface reconstruction, while the relevant physics must

be resolved completely at the coarse level. In the simulations presented in the

next chapter, the value of Sfc has been monitored and kept small at any point

of the simulations.

5.2.5 Numerical implementation

We consider a few features of the multilevel in order to describe the algorithms

that keep the induced overhead to a minimum. In particular, the fine grid is

used to compute the surface tension force f fs that is then inserted in the coarse

grid equations. Since each level of refinement multiplies by a factor of four

in two dimensions (or eight in three dimensions) in the number of points and

cells, the complete memorization of the VOF data would increase the memory

footprint quickly. For this reason we have developed a storage scheme that

compresses the VOF data and show an example of its implementation in Figure

5.6. The figure shows a coarse level with 24 × 16 cells, and the sparse color

function matrices at the two levels f = c+2 and f = c+4. At the intermediate

level of refinement each cell of the coarse grid is divided in 16 sub-cells with

the interface clearly marked on the grid. At the highest level of refinement

each coarse cell is subdivided into 256 smaller cells, with matrix entries about

16 times those of the coarse grid. The VOF interface at this level can be
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Figure 5.6: The color function distribution on different meshes (top left) and

on the coarse mesh (top right). The compact data memorization with two

(bottom left) and four (bottom right) levels of grid refinement.

compared in resolution to a front tracking representation with markers. The

format used for data storage can be compared to the Compressed Row Storage

(CRS) and we show a two-dimensional example in Figure 5.7. We consider a

5 × 5 stencil of cells and the associated color function data. For each row

we memorize only the number of entries nc, the C data and their column

number. All empty cells are discarded, while a sequence of n consecutive

full cells is stored as a single one, with its color function value equal to n

in the first position, e.g. the third row of Figure 5.7 where we memorize in

the second position the integer 3 to represent the sequence of full cells. With

this technique we can use a large number of refinement levels while keeping

the storage requirements proportional to the length of the interface divided
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0 0.22 0.31 0.14 0

0.130.8710.99

1 1 1

0 0 0 0 0

0.25

0.140.04 0.63 0.77 0.71

0.39

0.33

row nc C column

1 3 0.22 0.31 0.14 2 3 4

2 5 0.33 0.99 1 0.87 0.13 1 2 3 4 5

3 3 0.39 3 0.25 1 2 5

4 5 0.04 0.63 0.77 0.71 0.14 1 2 3 4 5

5 0

Figure 5.7: The C data distribution on a 5 × 5 Cartesian mesh (top) and

the compressed stored data (bottom): row number, number of cells nc, color

function in the mixed and consecutive full cells and column position.

by the fine grid spacing. This representation requires an efficient numerical

algorithm to extract and compress the relevant data. To further improve the

performances when we consider high-resolution fine grids, we do not perform

the reconstruction cell by cell, extracting the block of cells needed for every

mixed cell. The implementation includes an algorithm that extracts a stripe of

3×n cells, where n is the length of one full line, and computes the new normals

and the fluxes simultaneously for the whole block. After these operations, one

line of cells is updated and the procedure is repeated. The normal values are

stored in the same compressed way of the VOF data.

5.2.6 Velocity refinement

When dealing with a multilevel VOF method, we need to project the ve-

locity field from the coarse grid to the fine one, since the advection of the
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color function needs a velocity value on each node of the fine grid. Since the

divergence-free constraint is imposed on the coarse grid, we want to preserve

it on the fine grid. If we consider a simple approach in which the velocity

on the added points are calculated as a simple averaging of the value on the

coarse grid, we can easily see that the fine velocity field is not divergence-free.

We stress again that in this context the mass conservation constraint is satis-

fied only in an integral fashion. We introduce an optimal control problem to

get a divergence-free preserving projection operator for the velocity field. We

rewrite the refined velocities as a combination of all the velocities on the coarse

grid, and impose the divergence-free constraint with a Lagrangian multiplier

approach. The set of fine velocity values that satisfies these hypotheses is not

unique, so we can also impose, as the target of the optimal approach, that the

resulting velocities are the closest to the averaged values. Let us consider the

0 1

23

0 1

23

4

5

6

7 8

Figure 5.8: The coarse element with four nodes (left) and the refined one with

nine nodes (right).

coarse cell shown in Figure 5.8, where we already know the velocities in the

points 0, 1, 2 and 3. The midpoint refinement puts in the five new nodes 4,

5, 6, 7 and 8. Therefore we need to compute 10 velocity components, number
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that clearly outnumbers the constraints of mass conservation, given by

u4 + u8 − u7 − u0 + v8 + v7 − v4 − v0 = 0 , (5.41a)

u1 + u5 − u8 − u4 + v5 + v8 − v1 − v4 = 0 , (5.41b)

u8 + u6 − u3 − u7 + v6 + v3 − v8 − v7 = 0 , (5.41c)

u5 + u2 − u8 − u6 + v2 + v6 − v5 − v8 = 0 , (5.41d)

that represent the divergence values in each of the fine cells created from the

given coarse cell. Therefore, we set some of them to the averaged value

v4 = (v0 + v1)/2 , u5 = (u1 + u2)/2 ,

v6 = (v2 + v3)/2 , u7 = (u3 + u0)/2 , (5.42)

u8 = (u0 + u1 + u2 + u3)/4 , v8 = (v0 + v1 + v2 + v3)/4 .

We are left with u4, v5, u6 and v7 as unknowns. We can now introduce our

functional J as

J =
1

2
(u4 − ũ4)2 +

1

2
(v5 − ṽ5)2 +

1

2
(u6 − ũ6)2 +

1

2
(v7 − ṽ7)2 , (5.43)

where the target values are indicated by a tilde. We choose them to be the

averaged values,

ũ4 = (u0 + u1)/2 , ṽ5 = (v1 + v2)/2 , (5.44a)

ũ6 = (u2 + u3)/2 , ṽ7 = (v3 + v0)/2 . (5.44b)

We now build the augmented Lagrangian functional P as

P = J +
3∑
i=0

γiDi , (5.45)

where γi are the Lagrangian multipliers associated with the four discrete diver-

gence on the l.h.s. of (5.41) and indicated here as Di. We can now solve our

problem by determining the minimum of P . We set to zero its first variation

δP

δP = (u4− ũ4)δu4 +(v5− ṽ5)δv5 +(u6− ũ6)δu6 +(v7− ṽ7)δv7 +γ0(δu4 +δv7)+

+ γ1(−δu4 + δv5) + γ2(δu6 − δv7) + γ3(−δu6 − δv5) +
3∑
i=0

δγiDi . (5.46)
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All variations in (5.46) are independent from each other, so we can put to zero

each of them singularly to get a minimum of P . We obtain a linear system of

eight equations in the eight variables u4, v5, u6, v7 and the four Lagrangian

multipliers. Since the four relations (5.41) are not linearly independent, there

are an infinite number of solutions. If we take a 7 by 7 minor with full rank,

we get the solution desired by leaving one of the Lagrangian multipliers as

undefined. In this way, however, we would get that 3 of the (5.41) are sat-

isfied, while the fourth is not. In general, the value of the divergence on the

coarse grid is not zero, since we integrate an iterative solver. If we proceed

as described, the whole error on divergence would be transferred to one fine

cell, the one corresponding to the divergence constraint that we have removed.

Alternatively, we can try to split beforehand the divergence error on all four

sub-cells, in order to get a balanced solution on the fine cells. The previous

derivation leads to

u4 =
2u0 + 2u1 + v0 − v1 + v2 − v3

4
, (5.47a)

v5 =
u0 − u1 + u2 − u3 + 2v1 + 2v2

4
, (5.47b)

u6 =
2u2 + 2u3 + v0 − v1 + v2 − v3

4
, (5.47c)

v7 =
u0 − u1 + u2 − u3 + 2v3 + 2v0

4
. (5.47d)

We remark that now the optimized velocities will depend on both u and v

components on the coarse grid. The extension to the three-dimensional case

is straightforward and does not present any difficulty. We note that, if in

three dimensions we start from a two-dimensional coarse grid velocity field,

the resulting fine field will be fully three-dimensional.

5.3 FSI< − >VOF Interface

The interaction between the FSI and VOF system is two-way coupling because

the VOF method needs the fluid velocity on the whole fluid domain to com-

pute the advection of the color function, while the FSI system needs the color
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P1 C P2

Figure 5.9: In the center a certain configuration of a multiphase FSI problem.

Projection into the VOF computational grid with standard (P1) and modified

(P2) algorythm on the left on the right, respectively.

function to compute the generic fluid property τ f as

τ f = τ1C + τ2(1− C) , (5.48)

where τ1 is the parameter value of the primary phase while τ2 is the value in

the other one. Two computational meshes are used for the FSI and VOF solu-

tions and the data exchange between these two meshes is obtained through the

MEDmem libraries following the procedure explained in Section 2.4. As usual

we create a duplicate of the original meshes, then the velocity field, computed

by the FSI module, is projected in the med duplicate, the supervisor which can

control both the FSI and the VOF problems, project the velocity field from the

FSI med duplicate into the VOF duplicated computational grid. This velocity

field is then projected from the VOF med mesh into the original grid so that it

can be used to compute the new position of the interface. After the secondary

phase has been advected, the new color function is configuration is projected

back into the FSI grid with a similar procedure. This coupling procedure is

accomplished every time step and needs a specific operator that maps every

computational element of the FSI mesh into a computational element of the

VOF grid. The MEDmem library are here used to evaluate the center of mass

every computational element of the first grid and pair it with the element, in

the other grid, that has the nearest center of mass. While the VOF algorithm

is a geometric solver, it can only be used on structured meshes, highly reduc-

ing the computational effort in the evaluation of the nearest element of the

FSI problem. In order to have a good coupling between the computational
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grids the characteristic dimension of the two meshes must be similar. In FSI

problems where the displacement field is smaller than the characteristic length

of the VOF mesh, the map operator that transfers the computational fields

into the different meshes is fixed. In the case of displacement larger than the

characteristic dimension of the Cartesian grid, the map operator must be up-

dated in order to take into account the movement of the unstructured grid.

Let us consider the example in Figure 5.9. In the central part of Figure 5.9

a general configuration, labeled as C, of a MFSI problem is shown. In the

left and right part of this Figure two possible projections of the configuration

C into the same Cartesian grid are reported: P1 and P2, respectively. We

mark in dark gray the cells from which the advection velocity is interpolated

in the two cases.. The configuration P1 is the simple projection and as we can

see, because of the large deformation, the secondary phase is advected with

the velocity of the solid domain leading to wrong evaluation of the multiphase

interface position. In the second case, P2 the projection is performed consid-

ering the grid displacement. Also this correction leads to wrong evaluation

of the multiphase advection due to the deformation of the computational cell

that is not taken into account by the VOF algorithm. These difficulties in this

Chapter are overcome by considering small displacement FSI problems where

the map pairing between the computational cells is constant during the sim-

ulation. In the following Sections we report some numerical results obtained

with the mathematical model just introduced. Dedicated solvers for the FSI

and the VOF problems are coupled in the computational platform SALOME

and the projection of the computational fields into different meshes is obtained

through the MEDmem libraries in a fast and efficient way.

5.4 Test 1. Dam break

In this first test case we simulate a dam break problem in which two fluid phases

and a solid region are considered. The initial configuration of the problem is

shown in Figure 5.10, due to the different densities of the two fluid phases (Ωl

and Ωg) and the gravitational field, Ωl fall down into the solid container Ωs

which deforms to to the interaction with both the fluid phases.
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Γs3
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Ωl
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Figure 5.10: Test 1. Domain overview. On the left some reference points: A =

(0m, 0m), B = (0m, 0.6), C = (1m, 1m), D = (0.2m, 0.2m), E = (0.5m, 0.7m)

and α = (0.2m, 0.5m). On the right labeling of the surfaces.

the domain overview is shown in Figure 5.10, in particular in the right part

of that Figure one can see the solid,the primary and secondary fluid region

marked as Ωs, Ωl, Ωg, respectively. The global domain Ω = Ωs ∪ Ωl ∪ Ωg is

a square with a surface of 1m2. The geometries of the different parts of the

domain are specified by giving the coordinate of some reference points. Accord-

ing to the nomenclature shown in the left part of Figure 5.10, the coordinate

of the reference points are: A = (0m, 0m), B = (0m, 0.6), C = (1m, 1m),

D = (0.2m, 0.2m) and E = (0.5m, 0.7m). The computational grid, both for

the FSI and VOF module, is generated subdividing Ω into 400 cell (20 subdivi-

sion per edge) and it is shown in the left part of Figure 5.11. According to the

surface labeling show in Figure 5.10, we impose a vanishing velocity field on

Γl1∪Γl2 and at the boundary fluid structure interface {Γl1∩Γs1}∪{Γl2∩Γs2}.
An homogeneous Neuman condition is imposed of the fluid region Γl3 and

on the solid boundary Γs3. The physical properties of the different phase of

the problem are summarized in the Table on the right part of Figure 5.11,

in particular both of the fluid phases are modeled as a Newtonian incom-

pressible fluid while the solid is represent by a compressible linear elastic ma-

terial. In Figure 5.12 the solution overview is show at different time step

t = 0.005, 0.04, 0.08, 0.095, 0.16s and t = 0.2s, the axial displacement field

is shown in the solid region (Ωs) while in the fluid part we mark in red the
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Parameter Value

ρl, ρs 500 Kg/m3

µl 0.005 Pa s

ρg/ρl 0.001

µg/µl 0.01

Young modulus 4 · 104 Pa

Poisson coefficient 0.4

Figure 5.11: Test 1. Computational grid on the left. Physical parameters on

the right.

interface between the primary and the secondary phase and in light gray the

streamline of the fluid velocity field. From the initial configuration the sec-

ondary phase fall off into the solid container that is deformed due to the weight

of the different phase. We can observe that the secondary phase Ωl follows the

velocity streamlines proving that the projection of the different computational

fields into the different grids is consistent. The transverse and axial displace-

ment of point α (see left part of Figure 5.10) over time is shown in the left

part of Figure 5.13 in the cure A and B respectively. We can notice the the

displacement field after some initial oscillation reach a steady state solution

and it is always smaller than the characteristic length of the computational

grid. In this condition the displacement field can be neglected in the projection

of the velocity the color function in the FSI and VOF mesh, respectively. In

order to check the performance of the interfaces between the two modules we

can evaluate ∫
Ω(t)

Cdx = k. (5.49)

We remark that the fluid is represented with and incompressible model and

because of the free divergence constrain of the velocity field k must remain

constant unless a wrong projection of the velocity field in the different grid.

The expression (5.49) along time is shown in the right part of Figure 5.13 we

can notice that, despite some smalls numerical oscillation, the values remains

constant around the unit value.
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t1 t2 t3

t4 t5 t6

Figure 5.12: Test 1. Solution overview at different time steps: t1 = 0.005s,

t2 = 0.04s, t3 = 0.08s, t4 = 0.095s, t5 = 0.16s and t6 = 0.2s.

5.5 Test 2. Tank filling

In the second test case we consider a filling problem, in which, as in the

previous case, two fluid phases and a solid region are considered. The initial

configuration of the problem is shown in Figure 5.14, due to the different
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Figure 5.13: Test 1. On the left, transverse (A) and axial (B) displacement

over time. On the right, color function integral over the computational domain

over time.
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Figure 5.14: Test 2. Domain overview. On the left reference point: A =

(0m, 0m), B = (0.5m, 0.15, ), C = (0.5m, 0.5m) and D = (1m, 1m). On the

right part labeling of the surfaces.

densities of the two fluid phases (Ωl and Ωg) and the gravitational field, Ωl

fall down over the solid plate Ωs which deforms to to the interaction with

both the fluid phases. The secondary phase flows inside the domain until

it cover the inlet region which is the circular region Ωl that is shown in the

right part of Figure 5.14. The domain overview is shown in Figure 5.14, in

particular in the right part of that Figure one can see the solid, the primary and

secondary fluid region marked as Ωs, Ωl, Ωg, respectively. The global domain

Ω = Ωs ∪ Ωl ∪ Ωg is a square with a surface of 1m2. The specific geometries

of the different parts of the domain are specified by giving the coordinate of

some reference points. According to the nomenclature shown in the left part

of Figure 5.14, the coordinate of the reference points are: A = (0m, 0m),

B = (0.5m, 0.15, ), C = (0.5m, 0.5m) and D = (1m, 1m). The computational

grid, both for the FSI and VOF module, is generated subdividing Ω into 400

cell (20 subdivision per edge). According to the surface labeling show in Figure

5.14, we impose a vanishing velocity field on Γl1 ∪ Γl2 ∪ Γl3 ∪ Γs1 ∪ Γs2. An

homogeneous Neuman condition is imposed of the solid region Γs3. Concerning

the multiphase advection problem, the color function is set to 1 in the Ωl region.

The physical properties of the different materials present in the problem are

the same used in the previous case and can be seen in the Table on the right

part of Figure 5.11, in particular both of the fluid phases are modeled as a
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t1 t2 t3

t4 t5 t6

Figure 5.15: Test 2. Solution overview at different time steps: t1 = 0.005s,

t2 = 0.09s, t3 = 0.2s, t4 = 0.3s, t5 = 0.4s and t6 = 2s.

Newtonian incompressible fluid while the solid is represent by a compressible

linear elastic material. In Figure 5.15 the solution overview is show at different

time step t = 0.005, 0.09, 0.2, 0.3, 0.4 and t = 2s, the axial displacement field

is shown in the solid region (Ωs) while in the fluid part we mark in red the

interface between the primary and the secondary phase and in light gray the

streamline of the fluid velocity field. We can notice that as the heavy phase

falls because of the gravitational field, more secondary phase is injected in the

domain until it cover the inlet region. The axial displacement of the central

point of the solid region over time is shown in the left part of Figure 5.16. We

can notice the the displacement field shows a great oscillation due to the first

contact between the secondary phase and the solid region, after this impact the

average axial deformation decrease and reach a constant negative value when

the injection of the secondary phase stops. Also in this case is worth to notice
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Figure 5.16: Test 2. On the left, axial displacement over time. On the right,

color function integral over the computational domain over time.

the the deformations that occurs are always smaller than the characteristic

length of the computational grid. In this condition the displacement field

can be neglected in the projection of the velocity the color function in the

FSI and VOF mesh, respectively. As in the previous case, in order to check

the performance of the interfaces between the two modules, we can evaluate

the expression (5.49). In this case because of the inlet of the second phase

and because of the free divergence free constrain of the velocity field k must

increase over time. The expression (5.49) along time is shown in the right part

of Figure 5.16, we can notice that the value increases as the secondary phase

is injected into the domain and remains constant as the injection is blocked.

5.6 Test 3. River flow

In this third test we consider the flows of a multiphase fluid around a solid

obstacle. The domain overview is shown in the left part of Figure 5.17, as

in the previous case the global domain is a cube characterized by a edge of

1m, the obstacle is placed in the center of the cube base, it has a square

transverse section a2 of 0.01m2 and a height b of 0.5m. The specific boundary

condition of the problem can be seen in Figures 5.18, in particular in the

colored surface of a we set an homogeneous Neuman boundary condition, this

region is the outlet of the domain. In the colored surfaces in b of Figures

5.18 we impose a no slip condition while in the colored surface of c a non
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Parameter Value

ρl, ρs 500 Kg/m3

µl 0.005 Pa s

ρg/ρl 0.001

µg/µl 0.01

Young modulus 4 · 104 Pa

Poisson coefficient 1/2

Figure 5.17: Test 3. Domains overview on the left and material parameters on

the right.

a b c

Figure 5.18: Test 3. Boundary condition overview: a homogeneous Neuman,

b homogeneous Dirichlet and c non homogeneous Dirichlet.

homogeneous Dirichlet is set. In that surface we impose a vanishing transverse

velocity and a non-vanishing axial flows. In particular the fluid flows into the

domain with a constant velocity of 1m/s. Concerning the multiphase fluid

part in the inlet region of the domain (see c of Figures 5.18) in the upper

(height of 0.7m )and lower (height of 0.3m ) regions the color function is set

to 0 and 1, respectively. In this test we consider the obstacle as a deformable

solid rod, so the impact with the heavy phase, displaces the rod with a force

based on the weight and inertia of the fluid phase. The interesting feature
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Figure 5.19: Test 3. Solution overview.

t1 t2 t3

t4 t5 t6

Figure 5.20: Test 3. Simulation of a dam break over a bending rod, side view.

From left to right three different time steps: t1 = 0.01s, t2 = 0.2s, t3 = 0.4s,

t4 = 0.6s, t5 = 0.8s and t6 = 1s.

of the coupled FSI-VOF solver is that the displacements of the solid can be

precisely evaluated together with the stresses inside the structure. Moreover

the bending of the solid has an influence on the flow field which could not

be taken in consideration without the FSI solver. The physical parameters of

the material involved in the problem are reported in the Table in the right
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Figure 5.21: Displacement dx in the main flow direction on the most stressed

point of the rod, reported as a function of time.

part of Figure 5.17. In this Table we seen that the fluid and the solid have

the same density, while the density ratio between the primary and secondary

phase is close to the water over air ratio. The solid has been modeled as an

incompressible solid and the fluids with an incompressible Newtonian model.

In Figure 5.19 an overview of the solution is shown, from that Figure we can

view how the multiphase mixture enters into the computational domain and

how it deforms the bending rood. In Figure 5.20 the solution overview is

show at different time steps: t = 0.01, 0.2, 0.4 0.6 0.8 and t = 1s. From that

sequence we can appreciate the evolution of the secondary phase together with

the deformation of the bending rod in particular the color of the rod represents

the displacement in the main flow direction. The liquid phase is represented

with a transparent surface. It can be seen that, due to the impact with the

secondary phase, the rod bends and begins to oscillate. In Figure 5.21 the

displacement of the central point of the top surface of the solid part, in the

main flow direction is reported as a function of time. The oscillating damped

behavior of the rod in the main direction (x axis) can be clearly seen together.

We remark that although the deformation in the top part of the rod are large,

where the solid interact with the secondary phase the deformation field is still

small and smaller the characteristic length of the VOF grid. In this condition

the displacement can be neglected in the projection of the computational fields

into the different grids.
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CHAPTER 6

Conclusion

In this work we have investigated the potentiality of the code coupling on mul-

tiphysics and multiscale problems implemented into an in-house computational

platform. In all of the studied classes of problem, different codes, that address a

specific aspect of a multiphysics problem, were able to exchange computational

fields in a common format over the original computational grid and a proper

supervisor that controls its execution. We have focused the attention on the

specific open-source numerical platform, SALOME, and we have described the

structure that a code should have in order to be included in this platform. We

have shown how this code coupling, can be used for the investigation of differ-

ent multiscale or multiphysics problems. Concerning the first class of problems,

multiscale, we have shown how a complex system such as the primary loop of

LFR reactor or a simplified cardiovascular system can be studied at different

resolutions. Different principal components (core, plena, aneurysm, etc.) were

investigated with complex three-dimensional models while the remaining parts

of the system were considered with a simplified mono-dimensional model. The

two different computational modules were able to exchange data thanks to an

operator, based on the MEDmem library, that handles the projection of the

computational fields between the different computational grids. The coupling

171



of a system code with a 3D module, has allowed the detailed investigation of a

particular component without loosing the dynamic effect of the entire system.

Two coupling schemes have been tested: direct and defective coupling. In

the first case the three-dimensional and the mono-dimensional domain share

common junctions where computational fields were exchanged. In the second

case, defective coupling, the mono-dimensional domain consist on the whole

system and the three-dimensional computational grid overlaps in some parts.

In these regions the boundary conditions were imposed by the system code

while the 3D solution were used to evaluate some correction terms that are

introduced into the mono-dimensional model so that the two different solu-

tions were consistent. For single equation mono-dimensional model, used in

the LFR reactor, the defective coupling has shown a greater stability than

the first coupling scheme, while for more complex mono-dimensional models,

used in the cardiovascular system, the direct coupling has shown enough ro-

bustness. In all these examples only a single component has been represented

with a full-scale model, in future works we are planning to consider multiple

components with full-scale models in order to investigate more complex dy-

namics. Concerning the multiphysics class of problems, we have shown that

the computational platform can be used for studying a specific problem con-

sidering more physical phenomena simultaneously. This approach has allowed

a more sophisticate and complete description of a particular problem taking

into account the different influences among the physical quantities involved. In

particular we have investigated the temperature feedback in the energy produc-

tion density in a PWR core. This effect has been studied coupling the solution

of the neutron diffusion problem with the solution of the mass, momentum

and energy balance equations system in the reactor core region. Two different

computational tools have been used for the solution of this problem, a neutron

code a thermal-hydraulics model. The exchange of data between those mod-

ules, has been again handled by an operator, based on the MEDmem libraries,

that projects a computational field from a computational grids to the other.

Finally we have coupled the solution of a Fluid Structure Interaction problem

with a multiphase tracking algorithm studying the structure deformation due

to the interaction with a multiphase fluid. In this case the SALOME platform
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has handled the projection of the velocity field between the structured and

the unstructured computational grids. All the computational problem classes,

presented in this work, have shown how the computational platform an the

inclusion of computational tools in it, can be used to improve the simulation

quality in different engineering fields. The improvement arises from the con-

sideration of different physics phenomena of the problem simultaneously. Such

improvement can be reached with a relatively small amount of time by the

integration of different well developed codes into the common computational

framework instead of new software developing.
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