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Abstrat

In this thesis the problem of trajetory planning for automati mahines is addressed,

onsidering in partiular the problem of vibration suppression and perfet traking.

In partiular two novel trajetory generators based on dynami �lters are developed

and implemented. The proposed trajetory planners are designed respetively for

residual vibrations suppression and perfet traking of periodi trajetories. Both so-

lutions are very e�etive and easy to implement, exploiting the realization of dynami

�lters by means of FIR �lters.

In the �rst part of the thesis the problem of residual vibrations in motion ontrol

of robots is addressed, pointing out the need to eliminate vibrations to ahieve high

performane. Chapters 1 to 4 report the most widespread feed-forward tehniques

for residual vibration suppression suh as Input Shaping, �ltering, system dynami

inversion and proper trajetory planning. In a review fashion all these tehniques

are analyzed in detail and implemented in simulation to verify the e�et of vibration

redution on a typial seond order system. Moreover all the analysis are performed

with a ontrol system perspetive in order to give a uni�ed point of view allowing to

ompare all the solutions despite their di�erenes.

Then in Chapter 5 a novel trajetory generator based on Exponential Filters is

presented, analyzed and ompared with the most ommonly used feed-forward teh-

niques for vibration suppression, proving omparable performanes with the state of

the art. The analysis and omparison proedure is performed both in simulation and

in experimental ativities. In partiular this new method is developed �rst for simple

SISO LTI systems and then extended to MIMO systems showing great e�etiveness

ranging from simple elasti transmissions up to roboti arms with ompliant joints.
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In Chapter 6 a new repetitive ontrol sheme based on B-Spline Trajetory Gen-

erator that exploits dynami �lters is presented. The novel sheme integrates the

trajetory generator and the repetitive ontroller in a single disrete time feedbak

loop ahieving perfet traking for periodi motions. Traking performane and stabil-

ity are demonstrate both analytially and experimentally showing also a onsiderable

ease of implementation even on ommerial roboti devies with unaessible fatory

ontroller.

In appendix A, a more tehnologially oriented ativity is reported, onerning on

the development of a 6-axis Fore/Torque sensor for underwater ativities based on

optoeletroni omponents. The desription overs the entire proess from the onept

to the development of a simulation model and �nally to the prototype realization.

Also the experimental ativities about alibration and performane evaluation are

presented, paying muh attention on how di�erent solutions adopted for sealing the

sensor a�et the performanes.

Thesis Supervisor: Prof. Claudio Melhiorri
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�Anyone who stops learning is old,

whether at twenty or eighty.

Anyone who keeps learning stays young.

The greatest thing in life is to keep your mind young.�

Henry Ford
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Chapter 1

Feed-Forward Tehniques for

Vibration Suppression

Reduing vibrations has always been a key issue in automation. In general, vibrations

are due to the motion itself sine moving any inertial load ould exite the resonant

frequenies of the body strutures. This is a very undesirable ondition sine it a�ets

both the auray of the ontrol system and the reliability of the strutures. Typially

this problem was roughly avoided by slowing down any motion, espeially in older

automati mahines whih handle large inertias. Obviously this was not su�ient,

also lightening of robot's strutures, reduing fritions and the introdution of elasti

elements in the transmissions have made vibrations a more and more relevant issue.

Moreover the demand for ever faster motions led to the development of methods that

aims to redue vibrations without ompromising performanes.

In literature both feedbak and feed-forward shemes have been proposed in order to

suppress vibrations and among these, methods based on feed-forward ation are of

great relevane. Feed-forward shemes are used to shape the ommand input, that

usually is a step, in order to provide a proper trajetory that minimizes both vibra-

tions and duration of the motion. The major advantage of this approah is that it an

be applied on any ontrolled system sine it doesn't need any hange on the ontrol

arhiteture or additional sensors.

Earliest forms of ommand shaping were mehanial design tehniques of high-speed
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ams. A huge literature refers to design methods of am pro�les based on proper

motion shaping in order to avoid the exitement of system resonanes [66℄.

Fousing on ontrol tehniques, one of the �rst attempts was the posiast ontrol de-

veloped in the 1950's [95, 100, 96℄. The method onsists of exiting several transient

osillations of the system, splitting up the input ommand into several fragments

properly delayed in time. In this way if the resultant sum of the transient osillations

is zero, one an obtain a deadbeat step response from a very lightly damped system.

Unfortunately at that time digital ontrollers were just born and the implementation

of posiast ontrol shemes ould only be arried out with disrete elements and delay

lines. As a result implementing those shemes was a hallenging task, mainly for lak

of robustness.

A well-known tehnique for minimizing the residual vibration in point-to-point mo-

tions is represented by input shaping [86, 106℄. Basially it is a �ltering tehnique

where the referene ommand is onvolved with a train of properly designed impulses,

resulting a shaped ommand that aims to redue or suppress residual vibration in a

ontrolled plant. The theory and the onept behind input shaping were exatly the

same of posiast ontrol, but only in late 1980's this tehnique beome very popular.

This was mainly due to a disrete time reformulation and analysis, plus the possi-

bility to easily implement input shapers with digital ontrollers. Input shapers have

been suessfully used in a number of pratial appliations, suh as redution of

rane osillations, [42℄, ontrol of industrial mahines like XY stages, [34℄, vibration

suppression in �exible roboti arms, [59℄. A deep review of input shapers is presented

in Chapter 2.

Alternative approahes for vibrations redution by means of ommand shaping are

based on low-pass and noth �lters, expressed either as �nite or in�nite impulse re-

sponse �lters. In this ase the method is quite simple and rely on �ltering those

spetral omponents of the ommand input that ould exite system resonanes, but

it is worth notiing that �lters do not guarantee omplete vibration anellation [90℄.

A tehnique that assures residual vibrations suppression exploits the dynami inver-

sion of a �exible plant [79℄. This approah lead to a vibration free motion but the
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need of the omplete knowledge on the plant system made it not so attrative for

pratial appliations.

More reently, methods for vibration redution diretly based on a proper de�nition

of the referene signal have been presented, see [52, 13, 7℄. These tehniques rely on

the limitation of jerk impulses, whose duration must be arefully hosen on the basis

of the dynamis harateristis of the resonant system. Constant jerk trajetories are

the simplest example of this approah, but they assure omplete vibration anella-

tion only in ase of totally undamped plants. An improvement has been presented in

[7℄, where asymmetri jerk pro�les are used to take into aount the damping oe�-

ient of the �exible system. This approah, whih has been generalized and improved,

will be disussed in Chapter 5.

1.1 Modelling Vibratory System

The problem of residual vibrations a�ets very di�erent kind of mahines. In order

to evaluate the features and the e�ets of any method for vibration suppression, the

motion system shown in Fig. 1-1 an been onsidered beause of its signi�ane in

the industrial �eld, where a number of appliations an be modeled in this way: a

properly ontrolled eletri motor is used to atuate an inertial load, whose inertial

oe�ient is Jl, by means an elasti transmission lightly damped, haraterized by an

elasti onstant kt and a damping oe�ient bt [55, 6, 60℄. By assuming that, beause

of the ontrol, the atuator behaves like an ideal position soure, i.e. qm(t) ≃ qref(t),

only the mathematial model of the system desribing the elasti linkage, whih auses

vibrations, and the load has been taken into aount. It is a SISO (Single Input Single

Output) LTI (Linear Time Invariant) system that an be modelled with the transfer

funtion

Gml(s) =
Ql(s)

Qm(s)
=

2δωns + ω2
n

s2 + 2δωns+ ω2
n

(1.1)

with

ωn =

√

kt
Jl

, δ =
bt

2
√
ktJl

3



PSfrag replaements

τle
Jl

ql

τm

Jm

qm

kt

bt

Motor ontrol

Controlled motor

(eletri dynamis)

qref

(a)

PSfrag replaements

τm

q̇m q̇l
ε̇

fk

−

−−

−

1

Jm s

1

s

qref qm

τel

1

Jl s

Gml(s)

kt
s
+ bt

Motor ontrol

Controlled motor

(eletri dynamis)

(b)

Figure 1-1: Lumped onstant model of a motion system with elasti linkage (a) and

related blok-sheme representation (b).

where Qm(s) = L{qm(t)} and Ql(s) = L{ql(t)} are the Laplae transforms of the

motor and load position, respetively. Note that the inertia Jm of the motor has no

in�uene on this model. From (1.1), it follows that the dynami relation between

the motor position, supposed to be equal to the referene trajetory qref(t), and the

traking error ε(t) is

E(s)

Qref(s)
=

−s2

s2 + 2δωns+ ω2
n

⇒ E(s)

Q̈ref (s)
=

−1

s2 + 2δωns+ ω2
n

(1.2)

and where E(s) = L{ε(t)}, Qref(s) = L{qref(t)} and Q̈ref(s) = L{q̈ref(t)}.
As a matter of fat it an be noted that both transfer funtions in (1.1) and (1.2) are

of the form

F (s) =
N(s)

s2 + 2δωns + ω2
n

that is, the di�erene between the above equations rely on the numerator only, while

the denominator refers always at the same omplex onjugate poles ouple. Indeed,
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Figure 1-2: Step response (a) and Pole-Zero diagram (b) of the onsidered plant

G(s), with ωn = 2π and with di�erent damping value.

in terms of impulse response it an be proven that in general

f(t) =
[
Me−δωn(t)

]
sin
(

ωn

√
1− δ2t+ φ

)

,

where M and φ only depends on the numerator N(s) that a�ets the amplitude

and the initial phase of the impulse response. Therefore in lieu of simpliity and

generality, an unoupled linear vibratory systems it an be assumed modelled as a

ommon seond order SISO (Single Input Single Output) LTI (Linear Time Invariant)

system plant

G(s) =
ω2
n

s2 + 2δωns+ ω2
n

(1.3)
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Suh a system fed with a unitary impulse, produes a deaying sinusoidal response

y(t) =

[
ωn√
1− δ2

e−δωnt

]

sin
(

ωn

√
1− δ2t

)

(1.4)

where ωn is the undamped natural frequeny of the plant, δ is the damping ratio of

the plant and t is time. Thus one the damping oe�ient δ and natural frequeny ωn

of the system are known, the system and aordingly its vibrating response is de�ned.

In pratial experiene when the parameters are unknown, with standard proedures

it is possible to diretly dedue their values from the response of the plant to input

signals that ause vibrations. For instane, the residual vibrations onsequent to a

step input are given by

εstep(t) = − 1√
1− δ2

e−δωnt cos
(

ωn

√
1− δ2 t+ ϕ0

)

where ϕ0 = arctan
(

δ√
1−δ2

)

. Therefore, if a measurement of the osillation is available,

it is su�ient to detet two subsequent peak values, as highlighted in Fig. 1-3(a), and

ompute the exponential deay and the time period of the osillation as

T0 = t2 − t1

α =
1

T0
ln

(
p2
p1

)

where the meaning of t1, t2, p1, p2 is explained in the �gure. Note that the period

of the osillation and its deay rate depend on the system, and they do not hange

also if di�erent type of referene inputs are onsidered. For instane, seond order

trajetories, with disontinuous aeleration, an be used in order to provide the

atuator with a feasible trajetory and to avoid an exessive strain on the plant (see

�g. 1-3(b)).
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Figure 1-3: Residual vibrations aused by the appliations of a step input to the

system (1.3) (a) and omparison between residual vibrations aused by the appliation

of a step input and of a seond order trajetory q2(t) to a vibratory system G(s) (b).

Finally the parameters δ and ωn an be made expliit by means of the relations

α = −δ ωn (1.5)

T0 = k
2π

ωn

√
1− δ2

k ∈ N.

1.2 Performane Measurement of Command Shapers

Evaluating performanes of any feed-forward tehnique, also referred as ommand

shapers (CS), is a key fator in order to hoose the proper solution for any given

problem. As well as the many design solutions, in literature are proposed several

review papers that suggest various points of view to ompare di�erent CS ([108,

47, 53℄ among many others). Besides the measurement of the magnitude of residual

vibrations, several approahes take into aount the duration of the shaped ommand

(distortion), while others for example introdue benhmarks based on the energy

ontent of residual vibrations.
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1.2.1 Robustness

Typially the most important feature to evaluate CS performanes is the robustness to

errors in parameters de�nition. Sine, usually, they are designed to nullify vibrations

at a ertain nominal frequeny, in this way the fous is on the behaviour of an CS in the

neighborhood of the nominal frequeny. This is ruial beause rarely the real plant

parameters math the model's. Moreover, CS are often applied to already ontrolled

plants whose parameters are unknown, and therefore to be estimated. Obviously

the estimation by means of proper identi�ation tehniques involves unertainties on

model parameters and CS design is required to assure a ertain level of robustness.

The analysis of the robustness omes diretly from the measurement of the residual

vibration and its redution by means of ommand shaping. First, Residual Vibration

(RV ) is de�ned as the measure of the maximum displaement of a response from

equilibrium, from the time when the ommand ends. Traditionally, as maximum

displaement is meant the magnitude of the dissipation envelope of the response,

so RV refers to the value of that deaying envelope at the time when the shaped

ommand ends. Starting from RV is possible to de�ne the Perent Residual Vibration

(PRV ) as the ratio between Residual Vibrations from a shaped ommand and from

an unshaped ommand

PRV =
RVs

RVu

. (1.6)

Finally robustness is evaluated aording to the PRV 's sensitivity funtion to errors

in parameters ωn and δ, that represents the level of vibrations indued by a shaped

ommand when applied to a system with di�erent values of natural frequeny or

damping

PRV (ω, δ) =
RVs(ω, δ)

RVu(ω, δ)
. (1.7)

It is worth noting that usually PRV refers diretly to the funtion in (1.7) that is

expressed in terms of perentage and normalized frequeny or damping.

In �g. 1-4 a ommon PRV funtion with respet to errors in natural frequeny is

shown: the plot easily highlight the behaviour of the shaper in nominal ondition

(ω = ωn) and for any other frequeny.
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Figure 1-4: Typial Perent Residual Vibration funtion with respet to frequeny

variations.

1.2.2 Filter Based Approah

In (1.6) the PRV is given for a generi CS. However, a part from partiular solutions

that lead to a proper formula, the PRV funtion needs to analyse responses in time

domain, therefore the alulation of the RV that ould be triky.

A very e�etive approah to evaluate the the PRV funtion exploits the analogy with

the �lter's theory. First, a ompletely undamped seond order system (δ = 0) is

onsidered, representing also the worst ondition in terms of vibrations

G(s) =
ω2
n

s2 + ω2
n

. (1.8)

Moreover, H(s) is the transfer funtion of a generi CS for the system in (1.8) and it

is assumed to ommand an impulsive input to the system G(s). From (1.6) in order to

de�ne the PRV funtion is required to alulate the value of RV in both shaped and

unshaped ase. Sine the unshaped ase is basially the impulse response and G(s) an

elasti undamped system, the result is simply a sinusoidal response with frequeny ωn,

see �g. 1-5(a). Therefore RVu is the amplitude of the sinusoidal response, RVu = X .
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Regarding the shaped ase, RVs refers to the amplitude of the vibration of the system

response, at the time when the shaping e�et of H(s) ends. However, in �g. 1-5(b)

is shown that the same system response ould be obtained from the shaper H(s),

fed by a sinusoidal signal of frequeny ωn, thanks to the ommutativity property of

linear systems. In this way, realling the theory on frequeny response funtion of

linear systems, is well known that for an asymptotially stable LTI system fed by a

sinusoidal input, the output is a sinusoidal funtion as well, one ompleted an initial

transient

y(t) = Y (ωn) sin[ωnt+ ϕ(ωn)], (1.9)

where

Y (ωn) = XH(ωn) (1.10)

with X the amplitude of the sinusoidal input and H(ωn) the frequeny response of

H(s) at frequeny ωn. This onsideration is very useful sine the mentioned transient

lasts exatly the duration of the shaping e�et, so the residual vibration an be

determined by the frequeny response, in partiular

RVs = Y (ωn)e
jϕ(ωn) = X|H(jωn)| (1.11)

where X is the amplitude of the sinusoidal response of G(s), but also RVu = X as

stated before, so from (1.6) holds that

PRV =
RVs

RVu
=

X|H(jωn)|
X

= |H(jωn)|. (1.12)

Finally the result result in (1.12) an be extended to the PRV 's sensitivity funtion

to errors in frequeny parameter

PRV (ω) = |H(jω)|. (1.13)

The relation in (1.13) although valid to evaluate robustness with respet to frequeny

variations only, is quite important sine it allows to onnet a widely used tool for

10
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evaluating and design CS suh as PRV funtion, and an analysis approah based on

ontrol system theory. Assuming to have a plant like in (1.8) and a ommon CS

H(z) whose PRV 's sensitivity funtion to ωn is like the one in �g. 1-4, if the ampli-

tude axis were expressed in terms of PRV (i.e. from 0 to 1) instead of perentage of

PRV, the result would be exatly the frequeny response H(jω) in �g. 1-6. Obviously

this equivalene allows to onsider CS like partiular �lters. Indeed, looking at the

problem in the omplex plane, the system (1.13) is desribed by a ouple of omplex

onjugate poles at frequenies ±jωn. Therefore in order to nullify vibrations aused

by the poles by means of a �lter, it should have at least a ouple of zeroes able to

anel the poles (see �g. 1-7), that is exatly what is desribed by H(jω).

It has to be noted that besides the assumption of undamped system, these onsid-

erations allow to use �ltering tehniques to design CS even for generi systems with

damping, sine the design method based on the zero plaement on the omplex plane

permit to easily adapt the shaper for any value of δ as will be disussed later. More-

over with respet to robustness, this disussion permit to assume frequeny response

as a preliminary tool for evaluation of ommand shapers. In fat it will be explained

that the e�et of damping on CS design is a simple frequeny translation of the CS

with δ = 0.

Looking at �g. 1-8 the di�erene between damped and undamped ase an be visual-

ized on the omplex plane with a ouple of omplex onjugate poles with δ = 0 and

δ 6= 0. It is well known that for a given natural frequeny, the e�et of damping is

simply a translation on a irular trajetory of radius ωn, suh that φ = arccos δ.
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Chapter 2

Input Shapers: a Review

2.1 Input Shaping Tehnique

Input shaping is one of the most popular ommand generation tehnique. Basially

it is a �ltering tehnique where the referene ommand is onvolved with a train

of properly designed impulses, resulting a shaped ommand that aims to redue or

suppress residual vibration in a ontrolled plant.

In order to understand how to anel vibrations, a typial vibratory system as in Se

1.1 has to be onsidered. In �g. 2-1 the system response to an impulse is reported

aording to the equation in (1.4), that is de fato the vibration that has to be

anelled. The easiest way to anel the vibration is to add the same vibration in

phase opposition, like as it is shown with a dashed line. Sine any impulse an provide

the same response in (1.4) with amplitude proportional to the impulse amplitude

itself, it is lear that a seond virtual vibration an be overposed to the �rst by

applying a seond ommand impulse properly delayed in time and with an amplitude

that assure to eliminate the �rst vibration. In this way the desired ommand is split

in two (or more) impulses that represents the shaped ommand. In partiular the

shaped ommand assures the ompletion of the motion within the end of the train of

impulses and the vibration suppression at the end of the ommand.

The same result an be obtained analitially by exploiting the superposition property

of linear systems. Being (1.4) the generi impulse response of a seond order system
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and known that for an LTI system holds that

B0 sin(ωt+ φ0) +B1 sin(ωt+ φ1) = Bres sin(ωt+ φres) (2.1)

it is lear that the resultant output depends on the amplitude of the impulses and the

time instants in whih they are ommanded. Moreover, in order to anel vibration

it is su�ient to assure that Bres = 0 after the last impulse. From (1.4) and (2.1)

and generalizing for N impulses, results

Bres =

√
√
√
√

(
N−1∑

j=0

Bj cos φj

)2

+

(
N−1∑

j=0

Bj sin φj

)2

where

Bj = Aj
ωn

√

(1− δ2)
e−δωn(tN−1−tj),

φj = ωn

√
1− δ2tj

(2.2)

with Aj the amplitude of the j-th impulse, tj the time of the j-th impulse and tN−1

the time of the last impulse of the shaped ommand. Further simpli�ations of (2.2)

lead to the following onditions that assure omplete residual vibration suppression

for an N-impulses IS [85, 86℄

N−1∑

j=0

Aje
−δωn(tN−1−tj) sin

(

tjωn

√

(1− δ2)
)

= 0

N−1∑

j=0

Aje
−δωn(tN−1−tj) cos

(

tjωn

√

(1− δ2)
)

= 0

(2.3)

2.1.1 Robustness Analysis

The robustness analysis of an Input Shaper (IS) is usually given by means of the PRV

funtion. However sine a generi IS produes a train of N impulses and being the

system response to any impulse of the type in (1.4), the RV an be easily alulated
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as

RV =
e−δωntN−1

√

(1− δ2)

√
C2 + S2

(2.4)

where

C =
N−1∑

j=0

Aje
δωntj cos

(

tjωn

√

(1− δ2)
)

,

S =

N−1∑

j=0

Aje
δωntj sin

(

tjωn

√

(1− δ2)
)

(2.5)

with Aj the amplitude of the j-th impulse, tj the time of the j-th impulse and N − 1

refers to the last impulse of the ommand. Starting from RV is possible to de�ne the

Perent Residual Vibration as in (1.6), in partiular PRV for IS is the ratio between

RV 's from a train of impulses and from a single unity magnitude impulse. From (2.4)

and (1.6) desends

PRV = e−δωntN−1

√
C2 + S2, (2.6)

where C and S are de�ned in (2.4).

Finally robustness is evaluated aording to (1.7)

PRV (ω, δ) = e−δωtN−1

√

[C(ω, δ)]2 + [S(ω, δ)]2. (2.7)

2.1.2 Vetor Diagram Desription of Input Shapers

Vetor diagrams are graphial representations of impulse sequenes, introdued in

early papers dealing with IS [94, 89℄. Basially a vetor diagram is a desription of

the impulse train in polar oordinates that results quite useful in both design and

evaluation of IS. In partiular the diagram is reated treating every impulse as a

vetor of norm equal to the impulse amplitude and angle θi suh that

θi = ωti, (2.8)

where ti is the time of the impulse, as an be seen in �g. 2-2.
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The vetor diagram turns into an important tool for the design of IS if ω is hosen

as the system frequeny. Suh a onstrution method permits to make interesting

onsiderations on residual vibrations for a seond order system fed by a shaped om-

mand from a generi N-impulses IS. That is, the resultant of the vetorial sum of

all impulses has magnitude proportional to the amplitude of residual vibrations and

angle equal to the phase of the vibratory response. Aordingly, both design and

evaluation of IS an be obtained by means of geometrial analysis on vetors.

The �rst ahievement is that for any train of N arbitrarily hosen impulses, it is

always possible to de�ne an IS with N + 1 impulses that guarantees zero residual

vibration. Being

|RN | =
√

|Rx|2 + |Ry|2,

θR = arctan
Ry

Rx

(2.9)

with

Rx =

N−1∑

i=0

Ai cos θi and Ry =

N−1∑

i=0

Ai sin θi (2.10)
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the resultant of a train of N impulses, vibration free motion is assured by adding one

more impulse suh that

|AN | = |RN |,

θN = θR + π.
(2.11)

It has to be noted that all these onsiderations are valid even in ase of damped

system by taking into aount the damping e�et on both angle and amplitude,

that is introduing the e�etive amplitude |Adamp| and frequeny θdamp in the above

relations

|Adamp| =
|A|
e−δθ

,

θdamp = ωnt
√
1− δ2.

(2.12)

In partiular the saling of the amplitude is referred to the deay of the response

to the �rst impulse at time zero, in order to take into aount the same e�etive

amplitude |Adamp| for any impulse at a ertain time t. Graphially the saling an be

represented on the vetor diagram by superimposing the spiral Ae−δθ
like in �g. 2-3.

Besides the alulation of a resultant that is proportional to the residual vibration

amplitude, vetor diagrams permit to easily work on robustness. This is thanks to

the assumption that θi = ωti whih desribes a rotation of the vetors depending

on the frequeny. In this manner the evaluation of robustness an be geometrially
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performed by rotation of the vetors, moreover the design for partiular sensitivity

behaviours (asymmetri, humped, . . . ) an be ahieved by imposing proper geomet-

rial onditions.

The vetor diagram approah also reveals a strong relationship between IS and �lters.

In fat onsidering δ = 0, and being the impulse train desribed as vetors in polar

oordinates it is possible to de�ne a generi impulse as

Âi = Aie
jθ = Aie

jωnt. (2.13)

Therefore the resultant from a train of N impulses of an IS beomes

RN = A0 + A1e
jωnt1 + A2e

jωnt2 + . . .+ AN−1e
jωntN−1 , (2.14)

so, from (2.9) and using Euler formula

|RN | =
∣
∣
∣
∣
∣

N−1∑

i=0

A1e
jωnti

∣
∣
∣
∣
∣
=

√
√
√
√

(
N−1∑

i=0

A1 cos(ωnti)

)2

+

(
N−1∑

i=0

A1 sin(ωnti)

)2

. (2.15)

This result beome relevant if approahing IS with a system theory perspetive. In

fat being a generi IS desribed by

h(t) = A0δ(t) + A1δ(t− t1) + A2δ(t− t2) + . . .+ AN−1δ(t− tN−1) (2.16)

where δ(t) is the Dira impulse, it is well known that the transfer funtion results

H(s) = A0 + A1e
−st1 + A2e

−st2 + . . .+ AN−1e
−stN−1 , (2.17)

therefore its frequeny response is

H(jω) = A0 + A1e
−jωt1 + A2e

−jωt2 + . . .+ AN−1e
−jωtN−1 , (2.18)
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and from (2.14) it is easy to a�rm that

RN = H⋆(jωn). (2.19)

Finally, assuming to vary the frequeny ω in (2.14) to evaluate robustness, it desend

that

|RN(ω)| = |H(jω)|. (2.20)

2.2 Zero Vibration Input Shaper

The Zero Vibration IS (ZV IS) is the simplest input shaper that assures omplete

residual vibration suppression at a given system frequeny of a seond order plant.

The de�nition of the ZV IS desends diretly from the onsiderations in Setion 2.1,

and in partiular is the simplest solution of the zero vibration onditions in (2.3), by

means of only two impulses

hZV (t) =
1

1 +K
δ(t) +

K

1 +K
δ(t− T ) (2.21)

with

K = e
−δπ√
1−δ2 ,

T =
π

ωn

√
1− δ2

,
(2.22)

where δ is damping, ωn is the natural undamped frequeny of the system and T the

time delay of the seond impulse. The e�et of the ZV IS is exatly that desribed in

�g. 2-1, in fat the delay T is half period of the vibration and the amplitude is suh

that vibration is eliminated in phase opposition. In �g. 2-4(a) is reported the e�et

of omplete vibration suppression with a shaped step ommand in both damped and

undamped ase. Also in �g. 2-4(a) and �g. 2-4(b) it an be noted the e�et of damping

in the design of the shaper, i.e. the ratio between the two impulses depends on δ. In

�g. 2-4() the PRV funtion has been reported with respet to natural frequeny ωn.
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In order to analyze the ZV IS with a �lter perspetive as proposed in Setion 1.2.2,

the de�nition in (2.21) an be easily rewritten in terms of transfer funtion

HZV (s) =
1 +Ke−sT

1 +K
. (2.23)

In �g. 2-5(a) analysis of (2.23) in the omplex plane shows the e�et of the ZV IS that

performs a Pole-Zero anellation of the pole's ouple that ause vibrations. Also in

�g. 2-5(b) and �g. 2-5() is reported the IS funtion with di�erent values of σ and jω

in order to obtain a desription of the ZV IS in the whole S-Plane. These representa-

tions of the ZV IS show the zeroing e�et of the shaper for nominal parameters, sine

the value of the response is null in orrespondene of the zeros position. However

sine ontour lines represent linearly spaed amplitude values, their proximity eah

other means a rapid grow of the response when small variations are present. This an

be easily seen also in the 3-dimensional representation of �g. 2-6.

Plots in �g. 2-4(a) and �g. 2-4() demonstrate that ZV IS really suppresses vibration

when it is designed with exat plant's parameters. Moreover it is very easy to imple-

ment and introdues very low distortion sine, being T0 the period of the vibration

at system frequeny ω0, the shaped ommand only lasts a time T = T0/2. However

from �g. 2-4() and �g. 2-5 it an be seen that the suppression e�et rapidly derease

as the real parameters di�ers from the nominal ones.
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Figure 2-4: Step response of the system with ZV IS (a), impulses desription by

means of vetor diagram (b) and PRV funtion of the ZV IS with respet to variation

of natural frequeny ().
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equal sale on x and y axis in order to better understand the behavior of the system

response. In (b) and () the ontour lines are equally spaed of 0.1 and the zeroes

position is highlighted with a blak ross.
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Figure 2-6: 3-D view of HZV (s) with δ = 0 as funtion of σ and jω . The ontour

lines are equally spaed of 0.1 and the zeroes position is highlighted with a blak

ross.

2.3 Zero Vibration Derivative Input Shaper

The Zero Vibration Derivative Input Shaper (ZVD IS) has been introdued in order

to inrease robustness of the ZV IS. As seen in Setion 2.2 the ZV IS su�ers from lak

of robustness in parameters de�nition whih makes it rather unsuitable for implemen-

tation in real ases. ZVD IS is the earliest form of robust IS and still desends from

the the zero vibration onditions in (2.3), but adds additional onditions on the be-

havior of the IS near the nominal parameters. That is, equations in (2.3) are enrihed

with the ondition on the derivative of PRV with respet to frequeny variations

∂

∂ω

(

e−δωtn

√

[C(ω, δ)]2 + [S(ω, δ)]2
)

= 0. (2.24)

The result from (2.3) and (2.24) is a three-impulses IS whose transfer funtion is

HZVD(s) =
1

1 + 2K +K2
+

2K

1 + 2K +K2
e−sT +

K2

1 + 2K +K2
e−s2T

(2.25)
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where

K = e
−δπ√
1−δ2 ,

T =
π

ωn

√
1− δ2

,
(2.26)

that are the same of (2.22). As an be seen in �g. 2-7(a) and �g. 2-7() the vibrations

are suppressed as well, but the robustness is signi�antly inreased resulting in a

smoother PRV funtion thanks to the derivative ondition. However, it has to be

noted that the introdution of an additional impulse doubles the time duration of the

shaping e�et, resulting in a total time 2T that equals the time T0 of the period of

the vibration at system frequeny ω0.

The inreased robustness an be explained by simply manipulating (2.25) that results

HZVD(s) =

(
1 +Kz−1

1 +K

)2

= (HZV (s))
2 , (2.27)

that is basially to double the e�et of a simple ZV IS. Also on the omplex plane,

looking at �g. 2-8(a) is visible that the e�et the derivative ondition is exatly to

double the zeroes of the ZV IS. Therefore, the zeroing e�et is wider as an be seen in

�g. 2-8(b) and �g. 2-8() where the ontour lines although at same levels of �g. 2-5,

appears muh more spread in the neighborhood of the zeroes of the ZDV IS.
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Figure 2-7: Step response of the system with ZVD IS (a), impulses desription by

means of vetor diagram (b) and PRV funtion of the ZVD IS ompared to ZV IS in

blak dotted line ().
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Figure 2-8: Pole-Zero diagram of the system with ZVD IS (a) and desription of

HZVD(s) as funtion of σ and jω (b,). In () the same plot of (b) is reported with

equal sale on x and y axis in order to better understand the behavior of the system

response. In (b) and () the ontour lines are equally spaed of 0.1 and the zeroes

position is highlighted with a blak ross.
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2.4 Zero Vibration n-Derivative Input Shapers

Starting from the ZVD IS an entire family of robust input shapers has been introdued

and de�ned by means of derivative methods. Basially adding to (2.3) and (2.24)

further derivative onditions of the type

∂n

∂ωn

(

e−δωtn

√

[C(ω, δ)]2 + [S(ω, δ)]2
)

= 0 (2.28)

with n the derivative order, an ever-inreasing level of robustness an be ahieved.

In this way it is possible to de�ne the so-alled Zero Vibration n-Derivative Input

Shapers (ZVD

n

IS), whose general transfer funtion results

HZVDn(s) =

(
1 +Ke−sT

1 +K

)n

. (2.29)

where K and the sample time T are de�ned as in (2.22) as well.

The e�et of adding onstraints on null derivatives is visible in �g. 2-9(b) where

the smoothness of the PRV funtion is greater as the degree of the null derivative

inreases, that is robustness inreases as well. Unfortunately for every additional

ondition, ie for every null derivative grade, an extra impulse is needed, resulting

in ever longer sequenes in terms of duration of the shaping e�et (see �g. 2-9(a)),

therefore ausing an undesirable distortion of the ommand input when a high order

of derivatives as set to zero. Moreover it has to be noted that robustness inreases

less and less as the number of impulses grows, so usually derivative methods are

not taken into aount over the seond or third derivatives. In partiular these are

the Zero Vibration Double Derivative IS (ZVDD IS) and the Zero Vibration Triple

Derivative IS (ZVDDD IS), whih are de�ned by means of onditions in (2.3) and

(2.24) plus the additional onstraint in (2.28) with n = 2 and n = 2, 3 respetively.

This is on�rmed also from a system theory point of view. Indeed looking at �g. 2-

10(a) it is lear that the e�et of any further onstraint on derivatives set to zero is

to inrease of one the multipliity of all zeroes in the omplex plane. This obviously

inrease the nullifying e�et of the zeroes as an be seen also in �g. 2-10(b) and �g. 2-
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Figure 2-9: Step response of the system with δ = 0 using ZVDD IS and ZVDDD IS

(a) and PRV funtion of the ZVDD IS and ZVDDD IS, ompared to ZV IS in blak

dotted line and ZVD IS in green dotted line (b).

10() where HZVDD(s) and HZVDDD(s) show large areas with very low amplitude.

However it has to be noted that the di�erene is appreiable only very lose to nominal

parameters while the overall funtion doesn't hange so muh with respet to �g. 2-

5() and �g. 2-8().
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Figure 2-10: Pole-Zero diagram of the system with derivative IS (a) and desription

of HZVDD(s) and HZVDDD(s) as funtion of σ and jω (b,). In () the same plot of

(b) is reported with equal sale on x and y axis in order to better understand the

behavior of the system response. In (b) and () the ontour lines are equally spaed

of 0.1 and the zeroes position is highlighted with a blak ross.
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Figure 2-11: Comparison of Pole-Zero diagram and transfer funtion desription on

the omplex plane of respetively ZV IS (a), ZVD IS (b) and ZVDD IS ().
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2.5 Extra Insensitive Input Shaper

In Setion 2.4 has been shown how robust IS based on derivative methods soon be-

ome too muh ompliated ompared with less and less e�etiveness in inreasing

robustness. Extra Insensitive IS (EI IS) instead are based on the onept of allowing

a ertain amount of residual vibration, in order to guarantee the vibration redution

e�et for a wider range of frequenies. This idea is mainly driven by pratial experi-

ene, sine it is known that real implementations rarely math the simulation models.

Moreover for many real appliations an augmented robustness with respet to vari-

ation of parameters is more important than the omplete suppression of vibration,

although within ertain limits.

EI IS has been introdued in [94, 89℄ by means of the vetor diagram approah for

a system with damping δ = 0. As said before the idea is to relax the null vibration

ondition for nominal parameters, assuming to allow a ertain level of PRV, typially

not more than 10%. Starting from a ZVD IS, it is proven that when the sum of the

three impulses at modelling frequeny is set equal to a vibration limit Vlim, the PRV

funtion presents an �hump� of amplitude Vlim that drops down to zero symmetrially

with respet to the nominal frequeny, as shown in �g. 2-12. Moreover by only modi-

fying amplitudes of a ZVD IS impulses, the 3-impulse sequene that yields maximum

robustness for a given vibration limit an be obtained.

By means of geometrial relationship between PRV and vetor diagram representa-

tion given in Setion 2.1.2, the behavior of the EI IS for δ = 0 in �g. 2-12(b) is easily

explainable. Unlike the ZVD IS, the amplitude of the three impulses is hosen suh

that the vetorial sum in �g. 2-13(a) is non null

|A0| − |A1|+ |A2| = Vlim(|A0|+ |A1|+ |A2|), ω = ωn. (2.30)

Being the angle of eah impulse in the vetor diagram related to frequeny by θi = ωiti,

it is straightforward that for eah value of ω the angle of the third vetor θ3 is always

twie the angle of the seond vetor θ2. Therefore by means of simple geometrial

onsiderations it an be demonstrated that the vetorial sum an be set to zero at
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Figure 2-12: Step response of the system with δ = 0 shaped by EI IS with Vlim = 0.05
(a) and PRV funtion of the EI IS ompared to ZV IS in blak dotted line and ZVD

IS in green dotted line (b).

ertain angles that represent two frequeny values equidistant from ωn as desribed

in �g. 2-13(b).

However realling the relationship between vetor diagram, PRV funtion and fre-

queny response with δ = 0, the same problem an be posed in a more formal way

looking at it in a �lter perspetive. First of all the EI IS an be desribed in Laplae

domain as

HEI(s) = A0 + A1e
−sT + A2e

−s2T
(2.31)

where

T =
π

ωn
(2.32)

being δ = 0. Then in order to obtain a frequeny response |HEI(jω)| shaped like

the PRV funtion in �g. 2-12(b), amplitudes A0, A1, A2 must satisfy the following

equations







|HEI(jω)| = 1 , ω = 0

|HEI(jω)| = Vlim , ω = ωn

|HEI(jω)| = 0 , ω = ωA

|HEI(jω)| = 0 , ω = ωB

(2.33)
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Figure 2-13: Vetor diagram representation of the EI IS in nominal ondition (a)

and for ω that ause zero vibration (b).
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where

|HEI(jω)| =
∣
∣
∣
∣
∣

2∑

i=0

Aie
−jiωT

∣
∣
∣
∣
∣

(2.34)

and

ωA = ωn(1− α), ωB = ωn(1 + α), (2.35)

being 2αωn the total frequeny width of the hump in terms of normalized frequeny.

The solution of (2.33) on�rms the one of the authors in [94, 89℄







A0 =
1+Vlim

4

A1 =
1−Vlim

2

A2 =
1+Vlim

4

cos(αωnT ) =
1−Vlim

1+Vlim

(2.36)

Moreover the last equation in (2.36) gives a diret orrespondene between the allowed

residual vibration Vlim and the width of the hump. In partiular it is interesting to

note that for α = 0 the hump ollapses in ω = ωn and the shaper beomes a simple

ZVD IS, while for α = 0.5 results Vlim = 1 that is no shaping e�et on vibration at

ω = ωn. In fat for α = 0.5 the EI IS behaves like a ZV IS designed for a frequeny

ω̂n = ωn/2. Therefore an EI IS for an undamped system is properly de�ned with

0 < α < 0.5. (2.37)

In �g. 2-14 the the Pole-Zero desription and the behavior in the omplex plane of

HEI(s) with proper amplitudes in (2.36) is shown. In partiular omparing �g. 2-

14() and �g. 2-8() for a ZVD IS, it is evident that the e�et of EI IS is to widen the

area of the S-Plane in whih the shaper is able to redue vibrations, using the same

number of impulses of a ZVD IS. Atually, has been already demonstrated that if a

ertain Vlim 6= 0 is assumed, the impulses of a ZVD IS hange in amplitude aording

to (2.36). This modi�ation has a lear impat on the zero plaement of the transfer

funtion HEI(s) in �g. 2-14(a) with respet to HZVD(s) in �g. 2-8(a). As told before
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Figure 2-14: Pole-Zero diagram of the system with δ = 0 shaped by EI IS with

Vlim = 0.05 (a) and desription of HEI(s) as funtion of σ and jω (b,). In () the

same plot of (b) is reported with full sale axis in order to better understand the

behavior of the system response. In (b) and () the ontour lines are equally spaed

of 0.1 and the zeroes position is highlighted with a blak ross.
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a ZVD IS an be onsidered as a partiular EI IS for Vlim = 0, therefore α = 0 and

HZVD(s) presents the typial omplex onjugate ouples of zeroes with multipliity 2.

On the ontrary for an EI IS the e�et of α 6= 0 is graphially explained in �g. 2-15 as

a split of the double zero of a ZVD IS into two single zeroes aordingly with α and

equidistant from ωn. However this is just a on�rm of the result given by the PRV

funtion and the frequeny response but again shows the onsisteny of the Pole-Zero

analysis for reduing vibrations, sine a null value of PRV orresponds to a zero of

the IS transfer funtion.

Unfortunately for damped system, an EI IS with a PRV like the one in �g. 2-7(b)

an't be easily de�ned or simply derived from the undamped problem (2.33). In fat

it is demonstrated that these onstraint equations an't be solved in losed form, only

numerial solutions are given for EI IS with 0 ≤ δ ≤ 0.3 and 0 ≤ Vlim ≤ 0.15, namely

A0 = 0.24968 + 0.24962 Vlim + 0.80008 δ + 1.23328 δVlim + 0.49599 δ2

+ 3.17316 δ2Vlim,

A1 = 1− (A0 + A2),

A2 = 0.25149 + 0.21474 Vlim − 0.83249 δ + 1.41498 δVlim + 0.85181 δ2

− 4.90094 δ2Vlim

(2.38)
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Figure 2-15: E�et of the introdution of an allowable amount of vibration in the

plaement of the zeroes of the transfer funtion HEI(s): as α inrease from 0 the

harateristi double zero of a ZVD IS is split into two single zeroes equally spaed

from jωn.
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with

T0 = 0,

T1 = T2(0.49990 + 0.46159 δVlim + 4.26169 δ2Vlim + 1.75601 δ3Vlim

+ 8.57843 δV 2
lim − 108.644 δ2V 2

lim + 336.989 δ3V 2
lim),

T2 = 2T =
2π

ωn

√
1− δ2

,

(2.39)

therefore the EI IS results

hEI(t) = A0δ(t− T0) + A1δ(t− T1) + A2δ(t− T2), (2.40)

that is in terms of transfer funtion

HEI(s) = A0 + A1e
−sT1 + A2e

−sT2 . (2.41)

In �g. 2-16() the PRV funtion of the IS designed in that way desribes exatly

the desired humped behavior like in �g. 2-12(b) and the step response in �g. 2-16(a)

shows the response of the system with an EI IS that allows a ertain level of vibration

Vlim. Also it has to be noted that like in ase of undamped system the total length

of the impulse train is the same of a ZVD IS but the three impulses are not anymore

equally spaed in time.

In �g. 2-17 the analysis ofHEI(s) in the S-Plane shows the same e�et of widening the

area in whih vibrations an be redued. Again, this result is obtained by splitting

the typial double zero of a ZVD IS aording to the amount of allowed vibrations.

Likewise the undamped ase, the zeroes are split in order to math the zero values of

the PRV funtion. Being the PRV de�ned as a funtion of ωn, with δ 6= 0 the split

results taking plae along a onstant damping diretion on the omplex plane.

Unfortunately this onstraint on the zeroes position, is the reason that makes the

design of the EI IS possible only with the numerial solution in 2.38 and 2.39.

However an easier solution an be found takling the problem with a system theory

perspetive. First of all it is proven that the EI IS is a partiular ZVD IS in whih
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Figure 2-16: Step response of the system with δ = 0.1 shaped by EI IS with Vlim =
0.05 (a), impulses desription by means of vetor diagram (b) and PRV funtion of

the EI IS ompared to ZV IS in blak dotted line and ZVD IS in green dotted line

().

the double zeroes are split in order to widen the zeroing e�et. Then the preise use

of the PRV funtion as a tool to de�ne the shaper for damped system, lead to a

di�ult solution. In partiular it an be proven that in all previous ases the e�et

of damping in IS design is a frequeny translation of the zeroes for the undamped

ase and a frequeny adjustment to the orret system frequeny. In fat, being for

example

HZVD(s) =

(
1 + e−sT

2

)2

(2.42)
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Figure 2-17: Pole-Zero diagram of the system with δ = 0.1 shaped by EI IS with

Vlim = 0.05 (a) and desription of HEI(s) as funtion of σ and jω (b,). In () the

same plot of (b) is reported with full sale axis in order to better understand the

behavior of the system response. In (b) and () the ontour lines are equally spaed

of 0.1 and the zeroes position is highlighted with a blak ross.

the transfer funtion of a ZVD IS for undamped system, and supposing σ̂ = δωn the

desired translation, holds that

HZVD(s+ σ̂) =

(
1 + e−sT e−σ̂T

2

)2

, (2.43)

where T is de�ned as usual

T =
π

ωn

√
1− δ2

, (2.44)
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therefore solving the produt σ̂T , results

HZVD(s+ σ̂) =




1 + e−sT e

− δπ√
1−δ2

2





2

. (2.45)

Finally realling from (2.3)

K = e
−δπ√
1−δ2 , (2.46)

HZVD(s+ σ̂) beomes

HZVD(s+ σ̂) =

(
1 +Ke−sT

2

)2

= HZVD(s) (2.47)

whih it is exatly the transfer funtion of a ZVD IS in (2.25), provided that the

stati gain is set to one.

Following the same approah it an be de�ned an IS whose behavior is very lose

to the EI IS, but without restritions on the damping value and avoiding numerial

solutions. In details, starting from the undamped ase in (2.36) a 3-impulse train IS

an be de�ned as follow

A0 =
1 + Vlim

4

A1 =
1− Vlim

2
K

A2 =
1 + Vlim

4
K2

(2.48)

where

T0 =0

T1 = T

T2 =2T

(2.49)

with K and T de�ned as in (2.3). Therefore the transfer funtion result

HEI⋆(s) =
A1 + A2e

−sT + A3e
−s2T

A1 + A2 + A3
. (2.50)
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Figure 2-18: Step response of the system with δ = 0.1 shaped by EI

⋆
IS with Vlim =

0.05 (a), impulses desription by means of vetor diagram (b) and PRV funtion of

the EI

⋆
IS ompared to EI IS designed by means of the numerial solution reported

with dotted line ().

The step response in �g. 2-18(a) shows that a small amount of vibrations are allowed

like in �g. 2-16(a), also the PRV funtion of the EI

⋆
IS in �g. 2-18() demonstrates

that residual vibrations are onstrained under the desired value Vlim for a wide range

of frequenies. In partiular it an be seen that the range of variation of ωn whih

satisfy the vibration limit it is omparable to the one of the EI IS designed by means

of 2.38 and 2.39. On the ontrary the EI

⋆
IS doesn't assure omplete vibration

suppression for any value of ωn, but anyway the purpose of an EI IS is to extend the

vibration redution e�et rather than nullify vibration.

In �g. 2-19 the analysis of EI

⋆
IS on the omplex plane ompared to the numerially
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de�ned EI IS shows a very similar e�et in terms of widening the plane's region in

whih the vibrations are onsistently redued, exept that the zeroes are split along

di�erent diretions. Even in this ase the relation that links the allowed residual

vibration Vlim and the frequeny split by means of the parameter α holds, provided

that the system frequeny is onsidered instead of the natural frequeny ωn

cos(αω0T ) =
1− Vlim

1 + Vlim
(2.51)

where

ω0 = ωn

√
1− δ2. (2.52)

Therefore for a given vibration limit Vlim, the zeroes are plaed at frequenies

ω⋆
A = ω0(1− α), ω⋆

B = ω0(1 + α). (2.53)

Also, being ω0 and T de�ned for both damped and undamped system, we an assume

the above equations as the general relationship between Vlim and the displaement of

the zeroes. Moreover it has to be noted that the produt ω0T is always equal to π, so

α is uniquely de�ned by Vlim and totally independent from the damping. That is α

is the ratio of the system frequeny that identify the displaement of the zeroes from

the system frequeny itself, and also for damped system must satisfy the ondition

in (2.37).
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Figure 2-19: Pole-Zero diagrams of the system with δ = 0.1 shaped by EI IS and EI

⋆

IS with Vlim = 0.05 (a) and desription of both transfer funtions in terms of σ and

jω variations (b,). In () the same plot of (b) is reported with equal sale on x and

y axis in order to better understand the behavior of the system response. In (b) and

() the ontour lines are equally spaed of 0.1 and the zeroes position is highlighted

with a blak ross.
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2.6 Multi-Hump EI Input Shaper

Multi-Hump Extra Insensitive Input Shaper (n-Hump EI) are the natural extension

of EI IS that are haraterized by a hump-shaped PRV funtion. In a manner similar

to ZVD

n

IS in Setion 2.4, the idea is to inrease robustness by adding n onstraint

equations and n impulses of the IS. In partiular, for the harateristi design approah

of EI IS adding a further onstraint means design an additional hump in the PRV

funtion. Usually multi-hump IS refers to EI IS with only two or three humps, sine

any additional hump implies the use of one more impulse and the omplexity of the

design proedure rapidly grows. In [92, 93℄ the design algorithm of single-hump EI

IS reported in Setion 2.5 is extended for a 2-Hump EI and a 3-Hump EI. Similarly

to EI IS the problem has been introdued for δ = 0 by means of vetor diagrams and

an be desribed by means of onstraints on frequeny response. For a 2-Hump EI

the transfer funtion of the shaper is

H2HEI(s) = A0 + A1e
−sT + A2e

−s2T + A3e
−s3T

(2.54)

with

T =
π

ωn

√
1− δ2

(2.55)

and amplitudes must satisfy







|H2HEI(jω)| = 1 , ω = 0

|H2HEI(jω)| = 0 , ω = ωn

|H2HEI(jω)| = Vlim , ω = ωH1

∂
∂ω
|H2HEI(jω)| = 0 , ω = ωH1

A0 = A3 and A1 = A2

(2.56)

where

|H2HEI(jω)| =
∣
∣
∣
∣
∣

3∑

i=0

Aie
−jiωT

∣
∣
∣
∣
∣

(2.57)

47



and

ωH1 = ωn(1− β) (2.58)

is the frequeny at whih the hump for ω < ωn has the maximum value. Basially the

onstraints in (2.56) impose null vibration at nominal frequeny, a residual vibration

limit Vlim at a frequeny ωH1 and that PRV (ωH1) is a loal maximum. Moreover the

last equation impose the symmetry of the PRV funtion with respet to ωn, therefore

for ω > ωn is impliitly de�ned an hump with a loal maximum Vlim at a frequeny

ωH2 = ωn(1 + β) (2.59)

where β, unlike α for EI IS, refers to the frequeny range between the maximum of

the two humps.

For a 2-Hump EI results







A0 =
3X2+2X+3V 2

lim

16X

A1 =
1
2
− A0

A2 = A3

A3 = A0

cos(βωnT ) =
1
3

(

1 + 1
4A0

)

(2.60)

where

X = 3

√

V 2
lim

(√

1− V 2
lim + 1

)

. (2.61)

In the same way a 3-Hump EI for an undamped system is de�ned as

H3HEI(s) = A0 + A1e
−sT + A2e

−s2T + A3e
−s3T + A4e

−s4T
(2.62)

with

T =
π

ωn

√
1− δ2

(2.63)
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provided that amplitudes satisfy







|H3HEI(jω)| = 1 , ω = 0

|H3HEI(jω)| = Vlim , ω = ωn

|H3HEI(jω)| = Vlim , ω = ωH1

∂
∂ω
|H3HEI(jω)| = 0 , ω = ωH1

A0 = A4 and A1 = A3

(2.64)

where

|H3HEI(jω)| =
∣
∣
∣
∣
∣

4∑

i=0

Aie
−jiωT

∣
∣
∣
∣
∣

(2.65)

and

ωH1 = ωn(1− γ) (2.66)

is again the frequeny at whih the hump for ω < ωn has the maximum value. However

in this ase the symmetry ondition makes that one hump is entered on ωn and the

other two are at both sides with maximum value Vlim at frequenies ωH1 and ωH2

that is

ωH2 = ωn(1 + γ) (2.67)

with γ again refers to the frequeny range between the maximum of the two outer

humps.

Amplitudes that solve (2.64) are







A0 =
1+3Vlim+2

√
2(V 2

lim
+Vlim)

16

A1 =
1−Vlim

4

A2 = 1− 2(A0 + A1)

A3 = A1

A4 = A0

cos(γωnT ) =
1−Vlim

16A0

(2.68)
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Figure 2-20: Step response of the system with δ = 0 shaped by 2-Hump EI and

3-Hump EI with Vlim = 0.05 (a) and PRV funtions of the IS ompared respetively

to ZVDD IS and ZVDDD IS (b).

In �g. 2-20(b) the PRV funtions of the EI IS with two and three humps are shown,

highlighting the robustness inrease with respet to the ZVDD IS and the ZVDDD

IS that have the same time length respetively. Also in �g. 2-20(a) the step response

of the shaped system with nominal parameters present di�erent behaviors aording

to the number of humps, sine for odd numbers of humps the PRV funtion present

a maximum in nominal onditions.

In �g. 2-21 the analysis of both the shapers on the omplex plane desribes the same

e�et of zero-splitting already seen for the single-hump ase. In this ase however it

an be seen a di�erent behavior depending on the number of zeros that are involved.

In fat, the 2-Hump IS that desend from a ZVDD IS present three zeroes that are
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Figure 2-21: Pole-Zero diagrams of the system with δ = 0 shaped by 2-Hump EI and

3-Hump EI with Vlim = 0.05 (a) and desription of both transfer funtions in terms

of σ and jω variations (b,). In () the same plot of (b) is reported with equal sale

on x and y axis in order to better understand the behavior of the system response.

In (b) and () the ontour lines are equally spaed of 0.1 and the zeroes position is

highlighted with a blak ross.
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split symmetrially to ωn a part from one zero that anel the system pole. On the

other hand the 3-Hump IS has four zeroes and the symmetri split doesn't anel the

system pole. This behavior obviously depend on the parity of the zeroes multipliity

and has a diret onsequene in the shape of the PRV funtion.

For damped system a numerial solution have been proposed for both 2-Hump IS

and 3-Hump IS, although only for Vlim < 0.05 and 0 ≤ δ ≤ 0.3. Coherently with the

simple EI IS, the numerial solution permits to split the zeroes in the same way of the

undamped ase, along a onstant damping diretion as shown in �g. 2-19(a). However

with the same approah of (2.48) based on frequeny translation of the zeroes, an

approximate solution an be derived for any values of δ starting from the amplitude

values in (2.60) and (2.68) that is

A0 =
3X2 + 2X + 3V 2

lim

16X

A1 =

(
1

2
−A0

)

K

A2 =A3K
2

A3 =A0K
3

(2.69)

for 2-Hump IS and

A0 =
1 + 3Vlim + 2

√

2(V 2
lim + Vlim)

16

A1 =
1− Vlim

4
K

A2 = (1− 2(A0 + A1))K
2

A3 =A1K
3

A4 =A0K
4

(2.70)

for 3-Hump IS. The step responses and PRV funtions in �g. 2-22 show that even if

the shapers are designed with the frequeny translation approah, the approximation

is quite good and the implementation of that IS is very e�etive in order to obtain a

vibration redution for a wide range of frequenies. This is on�rmed by the transfer
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Figure 2-22: Step response of the system with δ = 0.1 shaped by 2-Hump EI and

3-Hump EI with Vlim = 0.05 (a) and PRV funtions of the IS (b). Both are designed

with relations in (2.69) and (2.70).

funtions analysis on the omplex plane in �g. 2-23.

2.6.1 Approximate Design Tehniques

for Multi-Hump EI Input Shaper

The proposed approximate method of design EI IS for damped system based on fre-

queny translation in Setions 2.5 and 2.6 is validated also in some reent works.

The truth is that the rigorous de�nition that is given by the authors in [94, 89℄ for

a single-hump EI and in [92, 93℄ for a multi-hump EI, plaes limitations whih re-

due the attrativeness of these tehniques for damped systems. On the ontrary
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Figure 2-23: Pole-Zero diagrams of the system with δ = 0.1 shaped by 2-Hump

EI and 3-Hump EI with Vlim = 0.05 (a) and desription of both transfer funtions

in terms of σ and jω variations (b,). In () the same plot of (b) is reported with

equal sale on x and y axis in order to better understand the behavior of the system

response. In (b) and () the ontour lines are equally spaed of 0.1 and the zeroes

position is highlighted with a blak ross.
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Figure 2-24: Representation of the system pole and the zeroes for an EI IS with

respet to the system poles on the Z-Plane: in (a) the numerial solution let the

zeroes lying on a onstant damping spiral, in (b) the approximate solution plaes the

zeroes on the irle whose radius is e−δωnT
.

in a ontrol systems perspetive, methods that avoid numerial solutions are most

appreiable, albeit with a ertain degree of approximation.

In [74℄ a graphial approah based on zero plaement on the Z-Plane is proposed.

After a omplete analysis of IS in disrete time domain together with the represen-

tation of the shaping e�et on the Z-Plane, the authors ome to highlight that the

vibration suppression is due to a pole-zero anellation and that EI IS basially split

multiple zeroes in a proper way, as deeply disussed in previous setions. Moreover in

an equivalent manner to what reported in Setion 2.5, they assure that the numerial

solution of EI IS is suh that the zeroes are plaed along a onstant damping line that

is represented as a spiral in �g. 2-24(a). Therefore, in order to ahieve a losed form

solution the graphial method proposes to plae the zeroes on the irle whose radius

e−δωnT
is suh that the onstant damping spiral is interseted in orrespondene of

the system poles (see �g. 2-24(b)).

However is easy to demonstrate that this graphial method is exatly the same of the

one based on frequeny translation in the S-Plane. In fat from [74℄ the two zeroes
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are de�ned as

z1,2 = e−δωnT+j(1±∆ω
ωn
)π, (2.71)

then being atually

∆ω
ωn

= α with α de�ned as in 2.35 and realling T in (2.3), results

z1,2 = e−δωnT+jωn

√
1−δ2(1±α)T , (2.72)

and olleting T

z1,2 = e(−δωn+jωn

√
1−δ2(1±α))T . (2.73)

Finally being the relation between the disrete transfer funtion and the ontinuous

transfer funtion z = esT , from 2.73 it an be obtained

s1,2 = −δωn + jωn

√
1− δ2 (1± α) , (2.74)

that are the same zeroes of the solution in (2.48) reported in �g. 2-19.

In [48℄ instead, a partially analytial method is presented. First the three impulses

are de�ned to be equally spaed of T and suh that the vibration ratio for nominal

ondition is a ertain Vlim. As a onsequene the solution in (2.48) is derived. In

addition the authors de�ne an angle φ = απ through whih the onstraint PRV = 0

is given for just one side of the hump. In this way is obtained a losed form solution

for the amplitudes although it inludes one unknown parameter whih is a funtion

of φ and has to be numerially solved. However this solution is muh more simple

than the rigorous one and the unknown parameter an be numerially solved for any

value of Vlim and δ. Unfortunately the null-PRV ondition on one side only of the

hump does not assure that the PRV fall to zero either on the other side of the hump,

moreover it auses robustness degradation for high Vlim values. This behaviour an

be easily explained sine in terms of poles-zeroes this method basially plaes one

zero in order to be oinident to the numerial solution, while the other is left like

in the solution in (2.48). Therefore the PRV funtion is no more symmetri and for

large split of the zeroes the robustness degrades quikly.
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In onlusion it has to be noted that the ompliation of numerial solutions,

though partial, are motivated mostly by the fat that the PRV funtion is de�ned for

variation of the natural frequeny ωn. Pratially speaking is a fat that in evaluat-

ing parameters of an unknown damped system, what is atually measurable are the

system frequeny ω0 = ωn

√
1− δ2 and the deay rate −δωn of the vibratory response,

that is the oordinates σ and jω of the system poles on the S-Plane. Therefore po-

tential errors in parameters estimation typially a�et both δ and ωn and de�ning

the robustness for variation of ωn or δ only is more a ustomary desription than a

real need. In addition from the analysis of the IS as a funtion of σ and jω reported

in previous setions, it an be noted that in general the vibration suppression e�et

rapidly vanishes as σ dereases, then the atual ritial parameter in IS design is σ,

so ompliated numerial solutions are not so neessary.

2.7 IS Design for Multiple-Mode Vibrations

Suppression

In many real appliations, from ranes to �exible roboti arms, system modelling by

means of a ommon seond order LTI system as in Setion 1.1 is not su�ient sine

other vibratory modes besides the fundamental one may be signi�ant and then to

be suppressed. In general IS for multiple-mode vibration suppression refers to higher

order LTI system of the form

Gm(s) =
m∏

i=1

ω2
ni

s2 + 2δiωnis+ ω2
ni

(2.75)

where m is the number of vibratory modes and δi, ωni are the parameters of the i-th

mode. Basially in terms of poles of the transfer funtion,Gm(s) an be represented by

m ouples of omplex onjugate poles in the S-Plane. Therefore the natural approah

to suppress m modes of vibration is to onvolute m IS, eah of whih designed for
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one of the m modes

Hm(s) =
m∏

i=1

Hi(s) (2.76)

where Hi(s) is the IS for the i-th mode. In this way every IS ares to anel only

the poles for whih it is designed and the onvolution permits to ahieve an overall

pole-zero anellation of Gm(s).

Unfortunately this simple approah has a main drawbak in terms of distortion, in

fat the onvolved shaper has total time duration equal to the sum of the shaping

time of eah IS. This means that if eah IS is of the same kind and with a ertain

duration Ti, the worst ase is represented by m modes losed to eah other sine

results

Ttot =

m∑

i=0

Ti ≈ mTi. (2.77)

As a result the time dilatation may result in unfeasible solutions for some appliations,

therefore many approahes has been proposed that de�ne IS whih are designed to

solve simultaneously the onstraints for all the modes. The great advantage of all

these methods is that in this way is always possible to ahieve solutions with a time

duration shorter than the onvolved shaper.

2.7.1 Numerial Optimization Based Design

In [43, 87, 88℄ the design of IS for two or more vibratory modes is presented. Despite

di�erent assumptions related to the onstraints of the ase study in eah papers, a

general method an be dedued for the design of IS for multiple-modes vibration

suppression based on numerial solution. Typially for an m-modes system Gm(s)

an overall problem is onsidered whih ontains the residual vibrations onstraints

for eah mode along with additional onstraints with respet to amplitudes of the

impulses and robustness. Diret solving of suh problems usually results in in�nite

possible solutions, therefore the IS is ahieved hoosing one of the feasible solution

by means of optimization algorithms, typially for minimizing the shaper duration.

These kind of IS redue m vibratory modes and provide very low distortion, generally
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in terms of number of impulses, the optimization proedure results in impulse trains

of total 2m+ 1 impulses, where m is the number of the modes.

2.7.2 Zero-Plaement Based Design

A di�erent approah to ahieve a multiple-mode IS is reported in [106℄ exploiting the

zero plaement tehnique in the Z-Plane to suppress vibrations. The assumption is

that in order to suppress m vibratory modes of a given system Gm(s), the IS must

have at least 2m zeroes able to anel the system poles

Hm(z) =
m∏

i=0

(z − pi) (z − p⋆i ) , (2.78)

where pi, p
⋆
i are the i-th ouple of omplex onjugate poles of the system. In addition

the above relation an be generalized in order to ahieve augmented robustness for

some ritial modes by inreasing the zeroes multipliity ni

Hm(z) =
m∏

i=0

(z − pi)
ni (z − p⋆i )

ni . (2.79)

Then the IS is obtained in a disrete time fashion providing ausality and minimum

distortion of the ommand, that is equalize the degree of the zeroes with r poles at

the Z-Plane origin

Hm(z) =
C

zr

m∏

i=0

(z − pi)
ni (z − p⋆i )

ni , (2.80)

where

r =
m∑

i=0

ni (2.81)

and C will provide also unitary stati gain. Finally the impulse amplitudes are de�ned

by means of the impulse response

hm(t) = C

(

δ(t) +

r∑

i=1

aiδ(t− iT )

)

, (2.82)
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where the oe�ient ai results from the polynomial expansion of the disrete transfer

funtion Hm(z). It has to be noted that Hm(z) is derived assuming to know from

the beginning the sample time T of the IS, as a matter of fat T is a design hoie.

In fat the authors propose to alulate the oe�ients ai by means of the poles of

the ontinuous transfer funtion Gm(s), therefore the amplitudes ai are obtained as

funtion of the sample time T . In this way the amplitudes an be hosen aordingly

to the feasibility of a real implementation and minimizing T . At last C is hosen to

provide unitary stati gain.

This method allows to obtain suboptimal results for multiple-mode vibration sup-

pression. This is due to the use of equally time spaed impulses, as a result in ase of

widely spaed modes of vibration IS derived in this way result typially longer than

onvolved shapers.

2.7.3 An Appliation of EI IS for a Two-Mode

Vibratory System

In Setion 2.5 a losed form solution for an EI IS has been derived by means of its

frequeny response and a good approximation for damped systems has been given

by a frequeny translation approah. Moreover the e�et of zeroes split of EI IS has

been deeply disussed and haraterized. Namely the harateristi hump is due to

two zeroes plaed at frequenies in (2.53) whih are symmetri with respet to the

system frequeny and whose distane is expressed in terms of the parameter α that

is funtion of the system parameters and the desired vibration limit Vlim in (2.51).

Looking at the EI IS with a di�erent perspetive, the 3-impulse train ane be designed

in order to suppress two undamped vibratory modes or two damped modes with the

same deaying rate σ. In partiular, being ω1, ω2 the frequenies of the two modes

with ω1 < ω2, from (2.53) results

α =
ω2 − ω1

ω2 + ω1
(2.83)
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and obviously

ω⋆
0 =

ω2 + ω1

2
, (2.84)

where ω⋆
0 is a virtual system frequeny that de�nes also a virtual damping δ⋆, for a

given σ of the two modes. Then from (2.51), solving for the vibration limit desend

V ⋆
lim =

1− cos(αω⋆
0T

⋆)

1 + cos(αω⋆
0T

⋆)
(2.85)

with T ⋆
de�ned as usual in (2.22) by means of the virtual parameters ω⋆

0 and δ⋆.

Therefore an EI IS design for a virtual system haraterized by ω⋆
0, δ⋆ and V ⋆

lim

assures omplete vibration suppression of two modes at frequenies ω1, ω2. Moreover

sine the system poles are anelled by zeroes with multipliity of one, the robustness

of the shaper with respet to eah mode is omparable to a ZV IS.

This approah leads to a time optimal solution for suppression of two vibratory modes

with equal deay rate σ. However it has to be noted that for widely plaed modes

this IS ould introdue an undesirable e�et of ampli�ation between the two modes,

i.e. in undamped ase by means of the frequeny response it an be seen that if

ω2 ≫ ω1 then |HEI(jω
⋆
n)| > 1. Anyway this e�et an be avoided by imposing the

onstraint 0 < α < 0.5 from (2.37), sine as been told before for α = 0.5 results

|HEI(jω
⋆
n)| = Vlim = 1. Therefore in terms of frequenies, for a given ω1 the seond

mode must satisfy

ω1 > ω2 > 3ω1. (2.86)
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Chapter 3

Filtering Tehniques and

System-Inversion Based Planning

for Vibration Redution

3.1 Filter Based Methods for Vibration Redution

The problem of vibrations suppression is often addressed by means of �ltering teh-

niques. In literature many works propose approahes based on ommands shaped

by either low-pass (LPF) or noth �lters (BSF), as a solution to real ase studies

[2, 1, 4, 32, 33℄. The motivation relies on the analysis of the vibratory system in

terms of spetral omponents. In other words the plant is assumed to have one or

more resonant frequenies whih desribes the modes of vibration, therefore the �lter

has the duty of eliminating those spetral omponents of the ommand input able to

exite the system's resonanes. In this way, sine typial real ontrolled systems has

low-pass behavior and being the fous on avoiding ertain frequeny omponents of

the ommand, natural andidates for vibrations redution by means of �ters are LPF

or BSP when high dynamis are not expendable.
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3.1.1 Low-Pass Filters

In order to desribe the e�et of shaping ommands by means of �lters, the ase of a

typial seond order LTI system as in Setion 1.1 fed by a step �ltered by a LPF is

presented �rst. Three of the most ommon �lter's design tehniques are onsidered to

determine generalized onsiderations whih relate to the �ltering tehnique and not

only to a partiular design. Namely the �lters used in simulation are Butterworth

Filter, Chebyshev Filter and Ellipti Filter [107℄.

Butterworth �lter assures a maximally �at magnitude response in the pass-band and

an overall monotoni behavior. The design is ahieved by means of the normalized

Butterworth polynomials that are expressed in terms of the omplex variable s as-

suming a uto� frequeny ωc = 1

Bn(s) =

n
2∏

k=1

[

s2 − 2s cos

(
2k + n− 1

2n
π

)

+ 1

]

, n = even

Bn(s) = (s+ 1)

n−1

2∏

k=1

[

s2 − 2s cos

(
2k + n− 1

2n
π

)

+ 1

]

, n = odd

(3.1)

where n is the polynomial order. Therefore the transfer funtion of a Butterworth

�lter with uto� frequeny ωc and order n results

H(s) =
H0

Bn(γ)
, where γ =

s

ωc
(3.2)

where H0 is the stati gain of the �lter. In partiular the transfer funtion is om-

posed of n poles equally spaed around a irle of radius ωc in the left half plane.

Chebyshev �lter has steeper transition band than Butterworth's, but admits a on-

trolled amount of ripple of the gain amplitude in the pass-band or in the stop-band.

Commonly Chebyshev �lters refer to the ase with equiripple behavior in the pass-

band, whose frequeny response for a LPF is

|H(jω)| = 1
√

1 + ε2T 2
n

(
ω
ωc

) (3.3)
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where ε is the ripple fator, ωc is the uto� frequeny and Tn is a Chebyshev poly-

nomial of order n. The transfer funtion of this �lter an be de�ned analyzing the

denominator of (3.3), in partiular for an n-order �lter results 2n poles arranged on

an ellipse in the omplex plane entered at the origin, with a real semi-axis of length

sinh

(
1

n
sinh−1

(
1

ε

))

(3.4)

and an imaginary semi-axis of length

cosh

(
1

n
sinh−1

(
1

ε

))

. (3.5)

Moreover the 2n poles are symmetrially arranged on the ellipse with respet to the

two axis, therefore in order to guarantee the stability of the �lter the transfer funtion

onsiders the poles of the left half plane p− only. As a result the transfer funtion of

a Chebyshev �lter is

H(s) =
1

2n−1ε

n∏

i=1

1
(
s− p−i

) . (3.6)

The Ellipti �lter has faster transition between pass-band and stop-band ompared

to Chebyshev and Butterworth, and admits equiripple behavior in both pass-band

and stop-band. It an be seen as a kind of generalization of both Chebyshev and

Butterworth �lters, sine setting null ripple in one band de�nes a Chebyshev �lter

and setting null ripple in both bands de�nes a Butterworth �lter. The frequeny

response of a low-pass ellipti �lter is

|H(jω)| = 1
√

1 + ε2R2
n

(

ξ, ω
ωc

) (3.7)

where Rn is the ellipti rational funtion of order n, ωc is the uto� frequeny, ε is

the pass-band ripple fator and ξ is the seletivity fator whih de�ne the ripple in

the stop-band as a funtion of ε. The transfer funtion of an Ellipti �lter an be

derived in a similar way to Chebyshev �lter, that is the poles of the transfer funtion

are the poles of the frequeny response funtion and the zeroes result the poles of the
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Figure 3-1: Magnitude and phase response of the onsidered �lters with respet to

frequeny: in blue is reported the Butterworth �lter, in red the Chebyshev �lter and

in green the Ellipti �lter. The dashed lines identify the uto� frequeny ωc and the

system frequeny ω0.

ellipti rational funtion Rn.

In �g. 3-1 the Bode plots of the three LPF are reported to highlight the di�erent

behavior in terms of frequeny response. All �lters are of the �fth order and designed

assuming a uto� frequeny one otave lower than the system frequeny, ω0 = 2ωc,

amplitude of the stop-band ripple equal to −50 dB for the Ellipti �lter and ampli-

tude of the pass-band ripple equal to 1 dB for both Ellipti and Chebyshev �lter.

In �g. 3-2 also are reported the responses of an undamped seond order system to

a step ommand �ltered by the three LPF. As an be seen the settling time of the

�ltered system is very long, moreover the vibration is redued but not suppressed.

In fat, �lters does not assure vibration suppression and this an be explained by

looking the pole-zero diagram of the �lters in �g. 3-3 where it is lear that there is no

zero able to anel the system poles. Butterworth and Chebyshev ases are glaring

sine there are no zeroes at all, while the Ellipti �lter has two ouples of omplex

onjugate zeroes, but it has to be noted that usual design proedures do not refer

expliitly to the plaement of that zeroes.

As a matter of fat the �ltering e�et intended as by means of �lters, doesn't rely

on the presene of zeroes but in redistributing the residues of the system poles. This
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Figure 3-2: Response of the system G(s) with δ = 0 to a step �ltered by means

of Butterworth �lter (a), Chebyshev �lter (b) and Ellipti �lter (). Respetive fre-

queny responses of the onsidered �lters are reported in linear sale on the right

olumn.
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Figure 3-3: Pole-Zero diagrams of the system with δ = 0 shaped by Butterworth

�lter (a), Chebyshev �lter (b) and Ellipti �lter (). On the right the desription of

the �lters in terms of σ and jω variations is reported with equal sale on x and y
axis. The ontour lines are equally spaed of 0.1 and the �lter's Pole-Zero position is

highlighted with a blak ross.
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Figure 3-4: Residue assoiated to the system pole in ase of a step �ltered by a

Butterworth �lter. In (a) the amplitude of the residue is reported as a funtion of the

order n of the �lter with uto� frequeny suh that ωn = 2ωc. In (b) the amplitude

of the residue is reported as a funtion of the uto� frequeny ωc in a seond order

�lter. In red dashed line the un�ltered value of the residue is reported.

partiular interation an be explained assuming for example to �lter a step refer-

ene ommanded to an undamped seond order system G(s) by means of a simple

Butterworth �lter HBn(s). In this way the Laplae transform of the step response

results

R(s) =
G(s)HBn(s)

s
(3.8)

then analyzing the residue of the poles of the vibratory system G(s) it an be noted

that the �lter's parameters determine the redution of the residue, therefore the

derease of the amplitude of that frequeny omponent.

In �g. 3-4 is reported the amplitude of the residue of the system poles that ause the

vibration as funtion of the �lter's design parameters. Namely in �g. 3-4(a) is shown

the e�et of inreasing the order n of the �lter with a �xed uto� frequeny. In terms

of frequeny response this an be seen in a faster transition between pass-band and

stop-band, therefore an augmented seletivity of the �lter, that is a sharp redution

of the residue. In �g. 3-4(b) instead the e�et of hanging the uto� frequeny ωc is

reported for a given seond order �lter. In this ase it is lear that the lower is the

uto� frequeny the more the system frequeny is �ltered. This is exatly the behavior

69



−80

−70

−60

−50

−40

−30

−20

−10

0

10
0

10
1

−270

−180

−90

0

90

180

270

PSfrag replaements

M

a

g

n

i

t

u

d

e

[

d

B

℄

P

h

a

s

e

[

d

e

g

℄

ω [rad/s℄

ωcHω0ωcL

Figure 3-5: Magnitude and phase response of the onsidered noth �lters with respet

to frequeny: in blue is reported the Butterworth �lter, in red the Chebyshev �lter

and in green the Ellipti �lter. The dashed lines identify the uto� frequenies ωcL

and ωcH and the system frequeny ω0.

desribed in �g. 3-4(b) where the residue grows as the uto� frequeny inreases, in

partiular when ωc > ωn the residue approahes to its un�ltered value.

3.1.2 Noth Filters

In many �ltering approah to redue vibrations, noth �lters are onsidered instead

of LPF. This is due to the possibility to redue spetral omponents only in a limited

frequeny band without ompromising eventual higher dynamis. Even in this ase

are onsidered BSF designed by means of Butterworth, Chebyshev and Ellipti �lter

prototypes. In partiular all �lters are of the third order and designed assuming a

symmetri stop-band with respet to the system frequeny ω0 and a stop-band width

of an otave

ωcL =
ω0√
2
, ωcH = ω0

√
2. (3.9)

Also the amplitude of the stop-band ripple is set equal to −50 dB for the Ellipti

�lter and the amplitude of the pass-band ripple equal to 1 dB for both Ellipti and

Chebyshev �lter.
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Figure 3-6: Response of the system G(s) with δ = 0 to a step �ltered by means of

Butterworth BSF (a), Chebyshev BSF (b) and Ellipti BSF (). Respetive frequeny

responses of the onsidered �lters are reported in linear sale on the right olumn.
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Figure 3-7: Pole-Zero diagrams of the system with δ = 0 shaped by Butterworth

BSF (a), Chebyshev BSF (b) and Ellipti BSF (). On the right the desription of

the �lters in terms of σ and jω variations is reported with equal sale on x and y
axis. The ontour lines are equally spaed of 0.1 and the �lter's Pole-Zero position is

highlighted with a blak ross.
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In �g. 3-5 the Bode plots of the three BSF are reported showing the attenuation

e�et in the designed stop-band while outside the stop-band it an be noted that the

magnitude of approximately 0 dB assures the substantial transpareny of the �lter

for frequeny omponents in the pass-band.

In �g. 3-6 the responses of an undamped seond order system to a step ommand

�ltered by the three BSF are reported, showing better results in terms of both vibra-

tion redution and delay, with respet to LPF in �g. 3-2. However some additional

onsiderations have to be done by means of the pole-zero analysis in �g. 3-7. First of

all the �lters are designed in order to exploit the harateristi zeroes of noth �lters

to anel the vibratory poles of the system G(s). Therefore this an be onsidered the

best ondition to �lter an undesired frequeny. Also the redued delay of BSF is in�u-

ened by the hoie of third order �lters while the onsidered LPF in Setion 3.1.1 are

of order 5. Anyway the delay introdued by BSF remains large with respet to other

shaping tehniques. This an be easily demonstrated by onsidering for example a

ZVDD IS as reported in Setion 2.4, whose e�et is to anel the vibratory poles with

a ouple of omplex onjugate zeroes of multipliity 3 like the BSF in �g. 3-7. In fat

assuming to express the distortion introdued by the shapers in terms of periods of

system vibration, while the ZVDD IS lasts 1.5 periods, the �lters in �g. 3-7 last from

about 8 to 12 times longer.

3.1.3 Considerations on Command Shaping

by means of Filters

In Setion 3.1.1 and 3.1.2 the e�et of ommand shaping by means of typial �ltering

tehniques has been presented, showing that �lters basially an not assure vibrations

suppression. Although the presene of zeroes, even BSF an not be onsidered as

vibration suppressors, mainly beause the typial design proedures doesn't rely on

the omplete suppression of a partiular frequeny, but in the attenuation of a band of

frequenies. This behavior is even more evident in ase of damped system as reported

in �g. 3-8. It is well known that in ase of a seond order system G(s) with δ 6= 0 the
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vibratory poles no more lie on the imaginary axis of the omplex plane, therefore the

pole-zero anellation is impossible.

In several papers �lters are ompared to input shapers by means of deep experimental

analysis showing a relevant performane gap in terms of vibration suppression [84, 90,

91℄. In addition to the mentioned inability to assure omplete vibration suppression,

an other notieable disadvantage is the large time delay introdued by the �lters. This

is one of the side e�ets of the mehanism of residues modi�ation of �lters. In fat, a

part from the onsiderations on the uto� frequeny whih has diret onsequene on

the overall dynamis, it an be seen that in general the higher is the �lter order, the

more e�etive is the �lter. However raising the order of the �lter means to inrease the

number of the poles introdued by the �lter. As a result the poles introdued by means

of usual �ltering tehniques add undesired dynamis visible as large overshoots in the

presented step responses, and also imply a large phase delay therefore an undesired

distortion.

In Setion 3.1.1 and 3.1.2 only analog �lters have been onsidered for brevity. As a

matter of fat same results an be ahieved with digital implementations by means

of In�nite Impulse Response Filters (IIR). Moreover as reported in details in [84,

90, 91℄ even Finite Impulse Response Filters (FIR) designed by means of typial

methods (windowing and Parks -MClellan above all) doesn't reah the benhmark

of IS, although FIR �lters shows better performanes than analog and IIR in reduing

vibrations.
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Step Response Pole-Zero Diagram
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Figure 3-8: Response of the system G(s) with δ = 0.1 to a step �ltered by means of

Butterworth BSF (a), Chebyshev BSF (b) and Ellipti BSF (). Respetive Pole-Zero

diagram of the onsidered �lters are reported in the right olumn.
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3.2 System Inversion Based Tehniques

for Vibration Suppression

In Setion 3.1.3 has been reported that usual �lter design tehniques have no aim of

vibration suppression. Roughly speaking, this is due to the fat that poles and zeroes

are mainly exploited in terms of their harateristi behavior to redue or inrease

the gain of the frequeny response. In fat, �lter designs by means of polynomials

whih basially de�ne a pole-zero plaement in order to ahieve a desired shaping of

the frequeny response of the �lter.

However onsidering BSF in Setion 3.1.2, some additional onsiderations an be done

by analyzing the pole-zero diagram in �g. 3-7 from another point of view. As said

the partiular design parameters hoie in the treated �lters, permitted to ahieve a

perfet anellation of the undesired vibratory dynami. Therefore assuming that the

fous of a �lter is to eliminate a ertain frequeny omponent indeed and the order

n of the �lter is the multipliity of the zeroes devoted to that anellation, then the

polynomial prototypes may be intended as partiular onstraints by means of whih

n additional stable dynamis are introdued in order to guarantee ausality of the

�lter. In theory aording to this system inversion based perspetive, the poles plae-

ment an be ahieved in a more onvenient way than by means of usual polynomials,

suh as by plaing n arbitrarily fast stable real poles. As a matter of fat this trivial

solution as some drawbaks, that is it doesn't take into aount the atuator limits

and there is no onstraint on the gain of the frequeny response, a part from the

stati gain.

Anyway the system inversion approah under reasonable onditions results very ef-

fetive and several works in literature report methods that assure omplete residual

vibration suppression. In partiular in [78, 79, 80℄ a method based on system inversion

assures omplete absene of osillations during and at the end of a point-to-point mo-

tion, providing also a time minimization. This tehnique onsists in a proper motion

planning whih takes into aount the transfer funtion of a seond order vibratory

system and a desired vibration-free motion pro�le. Namely the authors propose to
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de�ne a priori and impose a polynomial of lass C(h)
as target funtion for the system

output, in order to ahieve monotoniity and h ontinuous derivatives. Therefore a

family of C(h−1)
-lass funtions is obtained by means of dynami inversion of the vi-

bratory system and the target funtion. Finally by means of a numerial optimization

algorithm the minimum time solution is seleted.

This approah provides a very good motion assuring vibration suppression and also

an arbitrary smoothness avoiding the typial step-like behavior of input shaping. In

addition presents a time delay omparable to a ZVD IS that is the most ommon

input shaper. However the main drawbak is related to robustness sine in general

system inversion tehniques require the omplete knowledge of the system that has

to be inverted. Obviously this an not be assured in general in real ases, where often

feed-forward tehniques are implemented to enhane performanes of servo systems

whose transfer funtion is unknown and then to be estimated.
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Chapter 4

Filters for Online Trajetory Planning

Planning motion laws and trajetories for the atuation system of a robot has a key

role not only from a funtional point of view but also regarding the performane

level ahievable by a given system. During deades plenty of tehniques have been

presented for trajetory planning in order to meet many di�erent requirements suh

as timing, physial limitations of the atuators, energy parameters but also other

features related to the reliability like vibration redution. In step with planning,

many methods have been proposed regarding the generation of suh trajetories and

the implementation on real mahines of proper trajetory generators, possibly apable

of online generation of the motion pro�les.

4.1 Analytial Trajetories for Point-to-Point

Motions

Trajetories for point-to-point motions are of great importane as they are the basis

for more omplex movements. Some of these are very ommon in pratial indus-

trial appliations sine they allow to satisfy several mehanial requirements while

maintaining a good ease of use.
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4.1.1 Trapezoidal Veloity Trajetory

Trajetories with trapezoidal veloity are very ommon method to obtain trajetories

with a ontinuous veloity pro�le. In terms of position set-point are haraterized

by linear motions joined with paraboli blends, in partiular a single point-to-point

motion an be divided into three parts. Assuming a positive displaement, i.e. q1 > q0,

duration Ta of the aeleration phase equal to the duration Td of the deeleration

phase, and time t0 = 0, the trajetory is de�ned as follows:

1. Aeleration phase, t ∈ [0, Ta]. The position, veloity and aeleration are

expressed as 





q(t) = a0 + a1t+ a2t
2

q̇(t) = a1 + 2a2t

q̈(t) = 2a2

(4.1)

that is the aeleration is positive and onstant, and therefore the veloity is

a linear funtion of time and the position is a paraboli urve. The three

parameters a0, a1, and a2 are de�ned aordingly to the onstraints on the

initial position q0 and veloity v0, and on the onstant veloity vv desired at the

end of the aeleration phase. Assuming initial veloity set to zero, results







a0 = q0

a1 = 0

a2 =
vv
2Ta

(4.2)

therefore the onstant aeleration is vv/Ta.

2. Constant veloity phase, t ∈ [Ta, t1 − Ta]. The position, veloity and ael-

eration are expressed as





q(t) = b0 + b1t

q̇(t) = b1

q̈(t) = 0

(4.3)
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that is the aeleration is null, the veloity is onstant and the position is a

linear funtion of time. Also for ontinuity reasons results that b1 = vv and

q(Ta) = q0 +
vvTa

2
= b0 +

vv
Ta

, (4.4)

therefore

b0 = q0 −
vvTa

2
. (4.5)

3. Deeleration phase, t ∈ [t1 − Ta, t1]. The position, veloity and aeleration

are expressed as







q(t) = c0 + c1t + c2t
2

q̇(t) = c1 + 2c2t

q̈(t) = 2c2

(4.6)

that is a onstant negative aeleration is present, the veloity dereases linearly

and the position is again a polynomial funtion of degree two. The parameters

c0, c1, and c2 are by means of the onditions on the �nal position q1 and veloity

v1, and on the onstant veloity vv at the beginning of the deeleration phase.

Assuming a null �nal veloity, results







c0 = q1 −
vvt

2
1

2Ta

c1 =
vvt1
Ta

c2 = − vv
2Ta

(4.7)

In onlusion, the position trajetory q(t) in the general ase t0 6= 0, an be de�ned

as

q(t) =







q0 +
vv
2Ta

(t− t0)
2, t0 ≤ t < t0 + Ta

q0 + vv

(

t− t0 −
Ta

2

)

, t0 + Ta ≤ t < t1 − Ta

q1 −
vv
2Ta

(t1 − t)2, t1 − Ta ≤ t ≤ t1

(4.8)

In order to univoally determine the trapezoidal trajetory, some additional onditions

must be spei�ed. A typial ondition onerns the time length of the aeleration
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Figure 4-1: Position, veloity and aeleration of a point-to-point motion from 0 to

q1 by means of trapezoidal veloity trajetory.

and deeleration periods Ta, that must satisfy the obvious ondition Ta ≤ T/2 where

T is the total duration of the motion. In addition some other onstraints on the

maximum veloity and aeleration of the atuation system an be imposed as deeply

disussed in [9℄. Obviously, these onditions a�et the feasibility of the trajetory,

therefore the given onditions must satisfy some geometri onstraints. In partiular,

from the veloity ontinuity ondition one an obtain the relation

aaTa =
qm − qa
Tm − Ta

, where







qa = q(t0 + Ta)

qm =
q1 + q0

2
= q0 +

h

2

Tm =
t1 − t0

2
=

T

2

(4.9)

where aa is the onstant aeleration value in the �rst phase. Then by substituting

results that

aaT
2
a − aa(t1 − t0)Ta + (q1 − q0) = 0 (4.10)

whih is the geometri onstraint that any ouple (aa, Ta) must satisfy in order to
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ahieve a feasible trapezoidal veloity trajetory.

4.1.2 Double-S Veloity Trajetory

Double-S veloity trajetories are an improvement of trapezoidal veloity trajetories

of Setion 4.1.1 in terms of smoothness and therefore on the stress and the vibrational

e�ets generated on the transmission hain and on the load by the motion pro�le. A

double-S trajetory is haraterized by a ontinuous, linear piee-wise, aeleration

pro�le instead of the typial disontinuous aeleration pro�le of trapezoidal one.

In this manner, the resulting veloity is omposed by linear segments onneted by

paraboli blends, thus the reason of the name double-S for this trajetory. It is known

also as seven segments trajetory, beause it is omposed by seven di�erent trats with

onstant jerk, and it is preisely the typial step pro�le of the jerk whih makes this

trajetory muh less stressful for the mehanial systems with respet to trapezoidal

veloity trajetories whih are haraterized by an impulsive jerk pro�le.

Usually the double-S trajetory is de�ned assuming symmetrial atuator limits that

is

jmin = −jmax, amin = −amax, vmin = −vmax, (4.11)

where jmin/max, amin/max, vmin/max, are the minimum and maximum values of respe-

tively jerk, aeleration and veloity. Moreover in the usual de�nition the ase q1 > q0

with t0 = 0 is onsidered, and generi initial and �nal values of veloity v0, v1 are

assumed, while aelerations a0, a1 are seto to zero. In addition the trajetory is

reported by means of the following de�nitions:

Tj1 : time interval in whih the jerk is onstant (jmin or jmax) during the aeleration

phase;

Tj2 : time interval in whih the jerk is onstant (jmin or jmax) during the deeleration

phase;

Ta : aeleration period;

Tv : onstant veloity period;
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Td : deeleration period;

T : total duration of the trajetory (= Ta + Tv + Td).

In the same manner of Setion 4.1.1 the trajetory an be easily desribed by dis-

tinguishing three phases, namely aeleration phase, maximum veloity phase and

deeleration phase.

1. Aeleration phase, t ∈ [0, Ta]. The aeleration phase an be split aording

to the three segments of the jerk pro�le

(a) t ∈ [0, Tj1]







q(t) = q0 + v0t+ jmax
t3

6

q̇(t) = v0 + jmax
t2

2

q̈(t) = jmaxt

q(3)(t) = jmax

(4.12)

(b) t ∈ [Tj1, Ta − Tj1]







q(t) = q0 + v0t+
amax

6
(3t2 − 3Tj1t + T 2

j1)

q̇(t) = v0 + amax

(

t− Tj1

2

)

q̈(t) = jmaxTj1 = amax

q(3)(t) = 0

(4.13)

() t ∈ [Ta − Tj1, Ta]







q(t) = q0 + (vmax + v0)
Ta

2
− vmax(Ta − t)− jmin

(Ta − t)3

6

q̇(t) = vmax + jmin
(Ta − t)2

2

q̈(t) = −jmin(Ta − t)

q(3)(t) = jmin = −jmax

(4.14)
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2. Constant veloity phase, t ∈ [Ta, Ta + Tv]. The position, veloity and ael-

eration are expressed as







q(t) = q0 + (vmax + v0)
Ta

2
+ vmax(t− Ta)

q̇(t) = vmax

q̈(t) = 0

q(3)(t) = 0

(4.15)

3. Deeleration phase, t ∈ [T − Td, T ]. Again, the deeleration phase an be

split aording to the three segments of the jerk pro�le

(a) t ∈ [T − Td, T − Td + Tj2]







q(t) = q1 − (vmax + v1)
Td

2
+ vmax(t− T + Td)− jmax

(t− T + Td)
3

6

q̇(t) = vmax − jmax
(t− T + Td)

2

2

q̈(t) = −jmax(t− T + Td)

q(3)(t) = jmin = −jmax

(4.16)

(b) t ∈ [T − Td + Tj2, T − Tj2]







q(t) = q1 − (vmax + v1)
Td

2
+ vmax(t− T + Td)+

+
amin

6

(
3(t− T + Td)

2 − 3Tj2(t− T + Td) + T 2
j2

)

q̇(t) = vmax + amin

(

t− T + Td −
Tj2

2

)

q̈(t) = −jmaxTj2 = amin

q(3)(t) = 0

(4.17)
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Figure 4-2: Position, veloity, aeleration and jerk of a point-to-point motion from

0 to q1 by means of double-S veloity trajetory.

() t ∈ [T − Tj2, T ]






q(t) = q1 − v1(T − t)− jmax
(T − t)3

6

q̇(t) = v1 + jmax
(T − t)2

2

q̈(t) = −jmax(T − t)

q(3)(t) = jmax

(4.18)

Even in this ase the orret exeution of the double-S trajetory is subjet to fea-

sibility onditions, that is the existene of the mentioned phases, in partiular it is

required to perform the trajetory by means of a double jerk impulse. Moreover it

an be demonstrated that a trajetory planned in order to reah, when possible, the

maximum (minimum) value for jerk, aeleration and veloity, it is a minimum time

trajetory. However the parameters de�nition of a double-S trajetory an be sub-
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jeted to several onstraints in pratial implementations, suh as presribed time

length of some phase and di�erent ondition on initial and �nal veloity values. In [9℄

the planning of double-S trajetories with various onstraints is addressed in details.

4.1.3 Harmoni Trajetory

Harmoni trajetories are haraterized by an aeleration pro�le whih is propor-

tional to the position pro�le, with opposite sign. Geometrially the trajetory q(t)

an be desribed as the projetion of a point p moving on a irle with onstant

veloity, on the diameter of the irle itself. In general form results

q(t) =
q1 − q0

2

(

1− cos
π(t− t0)

T

)

+ q0, (4.19)

where T is the total duration of the motion. Then by deriving

q̇(t) =
πh

2T
sin

(
π(t− t0)

T

)

q̈(t) =
π2h

2T 2
cos

(
π(t− t0)

T

)

q(3)(t) = −π3h

2T 3
sin

(
π(t− t0)

T

)

(4.20)

Harmoni trajetories are often used in more omplex trajetories de�nition, hara-

terized in general by polynomial segments onneted by means of sinusoidal blends.

This beause the use of trigonometri funtions permit to uniquely de�ne all the

requested derivative order of a trajetory by means of integration or derivation op-

erations, given a single pro�le. Thus it may be of interest to plan trajetories by

diretly speifying the veloity or aeleration pro�le as a omposition of onstant

segments onneted by sinusoidal pro�les, then the position, jerk, and so on, an be

simply obtained. In partiular trajetories with onstant veloity/aeleration and

harmoni blends are of rather used and desribed in [9℄.
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Figure 4-3: Position, veloity, aeleration and jerk of a point-to-point motion from

0 to q1 by means of harmoni trajetory.

4.2 Analytial Trajetories for 3D Motions:

Uniform B-Spline Trajetory

Spline funtions are extensively used in planning trajetories for robots beause of

their �exibility. Tasks demanded to robots often require position pro�les with omplex

shapes whih are usually de�ned by means of a number of via-points. These via-

points are then interpolated or approximated with smooth funtions to be optimized

in order to omply with the onstraints imposed by the spei� robot appliation,

i.e. kinemati onstraints (suh as limit values of veloity, aeleration, jerk, et.) or

dynami onstraints on the maximum torque available. In general, suh interpolation

tasks are performed by means of ubi splines sine they assure the ontinuity of

veloity and aeleration and prevent large osillations of the trajetory that an
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result with high order polynomials [9℄. That is when n + 1 points are given, in lieu

of a unique interpolating polynomial of degree n it is possible to use n polynomials

of degree d = 3, eah one de�ning a segment of the trajetory. The overall funtion

q(t) de�ned in this manner is alled ubi spline and results

q(t) = {qk(t), t ∈ [tk, tk+1] , k = 0, . . . , n− 1} ,

qk(t) = ak0 + ak1 (t− tk) + ak2 (t− tk)
2 + ak3 (t− tk)

3 .
(4.21)

In this way a omplex motion omposed of n + 1 via-points is ompletely de�ned

by solving a linear system of n equations with a total number of 4n oe�ients to

be determined. In partiular the solution is given by means of imposing several

onditions whih has to be satis�ed:

• 2n onditions for the interpolation of the given via-points, sine eah ubi

funtion must ross the points at its extremities;

• n− 1 onditions for the ontinuity of the veloities at the transition points;

• n− 1 onditions for the ontinuity of the aelerations at the transition points.

The remaining two degrees of freedom permit to impose two additional onstraints

that usually refer to boundary onditions of the spline derivatives. Moreover in lit-

erature several tehniques have been presented in order to minimize some quantities,

suh as aeleration, jerk or the total traveling time of robot trajetories subjet to

onstraints of veloity aeleration and jerk.

In some appliations the requirement of planning trajetories with ontinuous deriva-

tives up to a given order r makes preferable the adoption of splines in the so-alled

B-form, i.e. B-splines. Also the attrativeness of B-spline is beause they are muh

simpler from the omputational point of view, and beause a loal modi�ation an

be made quikly and easily without reomputing the entire trajetory.

A generi B-spline trajetory is de�ned as

q(t) =

m∑

j=0

pj B
d
j (t), tmin ≤ t ≤ tmax (4.22)

89



PSfrag replaements

q(t)

Tk

vn

v0

tt0 t1 t2 tk tk+1 tn−2 tn−1 tn

q0

q1

q2

qk

qk+1

qn−2

qn−1

qn

Figure 4-4: Spline trajetory through n + 1 points.

where Bd
j (t) is a B-spline basis funtion of degree d, and pj are the ontrol points,

whih are salar parameters that determine the shape of the urve and must be

omputed by imposing interpolation onditions on the given data points qk. That is

�nding the values of the unknown parameters pj , j = 0, . . . , m, whih guarantee that

given n+ 1 via-points to be interpolated at their respetive n+ 1 time instants (also

alled knots), the B-spline funtion satis�es

q(tk) = qk, k = 0, . . . , n. (4.23)

In partiular the ontrol points pj an be de�ned by means of a linear system om-

posed of n + 1 equations in m+ 1 unknown of the form

q(tk) =
[
Bd

0(tk), B
d
1(tk), . . . , B

d
m−1(tk), B

d
m(tk)

]














p0

p1

.

.

.

pm−1

pm














. (4.24)

Then, being the number of ontrol points m + 1 = (n + 1) + d − 1 (for odd values

of d, m + 1 = (n + 1) + d when even value of d is onsidered), in order to ahieve a
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unique solution further d− 1 (or d) equations of the form

q(i)(tk) =
[

B
d(i)
0 (tk), B

d(i)
1 (tk), . . . , B

d(i)
m−1(tk), B

d(i)
m (tk)

]














p0

p1

.

.

.

pm−1

pm














(4.25)

has to be added imposing d − 1 (or d) onditions on higher order time derivatives

of the urve. Alternatively d − 1 (or d) further equations an be added to impose

ontinuity of the urve and its derivative at initial and �nal time instants (periodi

B-spline).

Regarding the j-th B-spline basis funtion of degree d, is de�ned in a reursive manner

as

Bd
j (t) =

t− tj
tj+d − tj

Bd−1
j (t) +

tj+d+1 − t

tj+d+1 − tj+1
Bd−1

j+1(t) (4.26)
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with

B0
j(t) =







1, if tj ≤ t < tj+1

0, otherwise.

(4.27)

Therefore a B-spline basis funtion de�ned by means of (4.26) and (4.27) presents

the following properties:

• Bd
j (t) is a pieewise polynomial, de�ned for all t ∈ [tmin, tmax];

• Bd
j (t) is equal to zero everywhere exept in the interval t ∈ [tj , tj+d+1);

• The interval [tk, tk+1) is alled k-th knot span and an be of zero length in ase

of oinident knots;

• The B-spline basis funtions are normalized so that

m∑

j=0

Bd
j (t) = 1, tmin ≤ t ≤ tmax (4.28)

• In every knot span [tk, tk+1) at most d+ 1 basis funtions are not null, namely

Bd
k−d, . . . ,B

d
k.

A partiular ase of B-splines is represented by uniform B-splines, that are de�ned

for an equally-spaed distribution of the knots, i.e. tj+1 − tj = T, j = 0, . . .m − 1.

In this ase, the basis funtions for a given degree d are onsistent under shifts:

Bd
j+1(t) = Bd

j (t− T ), j = 0, . . . , m− 1.

Therefore, for uniform B-splines it is possible to express the (j + 1)-th basis funtion

Bd
j in terms of the �rst basis funtion Bd

0, hereafter simply denoted by Bd
:

Bd
j (t) = Bd(t− jT ), j = 0, . . . , m

and the B-spline an be rewritten as

qu(t) =

m∑

j=0

pjB
d(t− jT ), 0 ≤ t ≤ mT. (4.29)
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Moreover, for uniform B-splines, the de�nition (4.26) of the basis funtion Bd(t) of

degree d is equivalent to

Bd(t) =
1

T
Bd−1 ∗B0

=
1

T
B0 ∗ 1

T
B0 ∗ . . . ∗ 1

T
B0

︸ ︷︷ ︸

d times

∗B0,
(4.30)

with

B0(t) =







1, if 0 ≤ t < T

0, otherwise.
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4.3 Dynami Filters for Trajetory Generation

4.3.1 Filter-Based Generator for Multi-Segment Polynomial

Trajetories

The need of planning trajetories online has led to the development of a number of

�lters able to produe motion pro�les with the desired degree of smoothness simply

starting from rough referene signals, suh as step funtions, whih set the desired

�nal position. In [13℄ a very simple and e�etive approah based on dynami �lters

is presented and allows to plan minimum-time trajetories for robots or automati

mahines under onstraints of veloity, aeleration, et. In this ase, the advantages

of the �ltering tehniques, that allow to properly shape the frequeny spetrum of

a motion law, are ombined with the features of multi-segment trajetories, whose

parameters are generally de�ned with the only purpose of making the trajetories

ompliant with given bounds on veloity, aeleration, jerk, et as reported in Setion

4.1. The key point is the equivalene between time-optimal multi-segment polynomial

trajetories with onstraints on the �rst d derivatives and the output of a hain of d

moving average �lters, where the number d is the order of the trajetory. Therefore,

in this ase the �lters are not used for making a given trajetory smoother but for

online generating a trajetory starting from initial and �nal positions.

As desribed in Setion 4.1, multi-segment trajetories are motion laws omposed

by several trats, eah one haraterized by a spei� analytial expression, prop-

erly joined in order to guarantee the desired degree of smoothness. In partiular,

time-optimal trajetories under onstraints of veloity, aeleration, jerk, et. are

haraterized by segments in whih the veloity, the aeleration, and higher deriva-

tives are saturated to the maximum allowed value. Thus in general, by imposing

onstraints on the �rst d derivatives one obtains a trajetory q(t) of lass Cd−1
, that

is with the �rst d− 1 derivatives that are ontinuous, while the d-th derivative q(d)(t)

is a piee-wise onstant funtion whose values belong to the set {q(d)min, 0, q
(d)
max}. With
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the additional ondition of symmetri onstraints:

q
(i)
min = −q(i)max, i = 1, . . . , d

one an show that suh a kind of trajetories an be obtained by �ltering a step input

with a asade of d dynami �lters, eah one haraterized by the transfer funtion

Mi(s) =
1

Ti

1− e−sTi

s
(4.31)

where the parameter Ti (in general di�erent for eah �lter omposing the hain) is

a time length, see Fig. 4-7. The possibility of obtaining time-optimal trajetories

with the system of Fig. 4-7 fed by step input funtions an be proved by exploiting a

property of the onvolution produt (denoted with ∗) on the di�erentiation, i.e.

d

dt
(f ∗ g) = df

dt
∗ g = f ∗ dg

dt
. (4.32)

Consider the ase of a single �lter with a step input of generi magnitude h, i.e. h u(t),

being u(t) the unit step funtion

u(t) =







1, t ≥ 0

0, t < 0.

In this ase the output trajetory an be omputed as

q1(t) = h u(t) ∗m1(t) (4.33)
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where

mi(t) = L−1{Mi(s)} =
1

Ti

(
u(t)− u(t− Ti)

)
, i = 1

is the impulse response orresponding to Mi(s). Note that mi(t) is a retangular

funtion of duration Ti and magnitude 1/Ti, see Fig. 4-8. This implies that, as

well known, for any hoie of Ti the area of the retangular funtion is unitary, and

aordingly the stati gain of the orresponding funtion Mi(s) is unitary as well:

Mi(0) =

∫ ∞

0

mi(τ) dτ = 1.

By applying (4.32) to (4.33) one obtains

q1(t) = h u(1)(t) ∗m1(t)

= h δ(t) ∗m1(t) = hm1(t)

where δ(t) is the unit impulse funtion. Therefore, by adopting a single �lter M1(s)

fed by a step funtion of amplitude h, the output onsists in a trajetory q1(t) whose

veloity has a retangular pro�le with magnitude v = h/T1. Then, it is immediate to

obtain the value of the parameter T1 whih permits to impose a value of the veloity:

v =
|h|
T1

= q(1)max → T1 =
|h|
q
(1)
max

. (4.34)

Aordingly, when a step input of amplitude h is applied, the output of M1(s) will

hange from the initial to the �nal value (given by h) with a linear pro�le whose

duration is exatly T1.

If one adds a seond �lter M2(s), haraterized by the parameter T2, the resulting

trajetory is

q2(t) = q1(t) ∗m2(t)

= h u(t) ∗m1(t) ∗m2(t). (4.35)

96



q0(t) m1(t) → q1(t) m2(t) → q2(t) m3(t) → q3(t)

Position

qi(t)
t

h

tT

1
T1

→

t tT2

1
T2

→

t tT3

1
T3

→

t

d

dt

Velocity

q
(1)

i
(t)

t tT1

1
T1

→

tT1 tT2

1
T2

→

t tT3

1
T3

→

t

d

dt

Acceleration

q
(2)

i
(t) tT1 tT2

1
T2

→ T1T2 T1 + T2 tT3

1
T3

→ t

d

dt

Jerk

q
(3)

i
(t) T1T2 T1 + T2 tT3

1
T3

→ t

1

PSfrag replaements

∗

∗∗

∗∗∗

∗∗∗

∗∗∗

∫ t

0

dτ

∫ t

0

dτ

∫ t

0

dτ

∫ t

0

dτ

∫ t

0

dτ

∫ t

0

dτ

h δ(t) =

Figure 4-8: Relationships among the pro�les of trajetories obtained by iterated

averaging operations. Note that in the �rst row the algebrai relation qi(t) = qi−1(t)∗
mi(t), i = 1, 2, 3 is reported, while in the remaining rows a pitorial representation
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Therefore, the �rst derivative is

q
(1)
2 (t) = q

(1)
1 (t) ∗m2(t) (4.36)

= hm1(t) ∗m2(t)

and, by taking into aount that

m
(1)
1 (t) =

1

T1

(
δ(t)− δ(t− T1)

)

it is possible to dedue the seond derivative

q
(2)
2 (t) = hm

(1)
1 (t) ∗m2(t)

=
h

T1

(
δ(t)− δ(t− T1)

)
∗m2(t)

= v
(
m2(t)−m2(t− T1)

)
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whih is omposed by two retangular funtions, one positive and one negative, of

magnitude a =
v

T2

and duration min{T1, T2}. Therefore the maximum value of the

aeleration an be freely set by imposing

a =
v

T2
= q(2)max → T2 =

v

q
(2)
max

=
q
(1)
max

q
(2)
max

. (4.37)

Sine the stati gain of bothM1(s) andM2(s) is unitary, the �nal value of the response

of M1(s)·M2(s) to a step input of magnitude h remains h. The system output q2(t)

reahes suh a value with a trapezoidal veloity pro�le as desribed in Setion 4.1.1,

obtained by integrating q
(2)
2 (t).

The maximum aeleration of the trajetory is q
(2)
max, and the veloity is still limited

by q
(1)
max. In fat, by de�ning for a generi funtion f(t)

peak

(
f(t)

)
= max

t≥0
|f(t)|

from (4.36) one an prove that

peak

(

q
(1)
2 (t)

)

≤ peak

(

q
(1)
1 (t)

)

·
∫ ∞

0

|m2(τ)|dτ

≤ peak

(

q
(1)
1 (t)

)

= q(1)max (4.38)

where

∫∞
0

|m2(τ)|dτ =
∫∞
0

m2(τ)dτ = 1 sine m2(t) ≥ 0, ∀t. In this ase, if T1 ≥ T2

then the maximum veloity q
(1)
max is atually reahed, i.e. peak

(
q
(1)
2 (t)

)
= q

(1)
max and

q2(t) is a minimum-time trajetory ompliant with the given bounds q
(i)
max, i = 1, 2.

Conversely, if T1 < T2 then peak

(
q
(1)
2 (t)

)
= |h|

T2
< |h|

T1
= q

(1)
max, and the trajetory, that

still meets the proposed onstraints, is not of minimum duration. In partiular, when

T1 < T2, the roles of the two time onstants Ti are swithed, in the sense that the

duration of the aeleration period is T1 and the maximum veloity is h/T2. In any

ase the total duration of the trajetory q2(t) is given by the sum of the durations of

the impulse responses of M1(s) and M2(s), i.e.

Ttot = T1 + T2.
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Note that the maximum veloity q
(1)
max is atually reahed if and only if

T2 ≤
1

2
Ttot =

1

2
(T1 + T2) ⇔ T2 ≤ T1.

that is if and only if the (planned) duration T2 of the aeleration/deeleration period

is not greater than half of the total duration of the trajetory.

As shown in Fig. 4-8, the seond order trajetory q2(t) an be made smoother by

adding a further �lter M3(s) (haraterized by the parameter T3), obtaining in this

way a double S veloity trajetory

q3(t) = q2(t) ∗m3(t)

whose veloity, aeleration and jerk are respetively

q
(1)
3 (t) = q

(1)
2 (t) ∗m3(t)

q
(2)
3 (t) = q

(2)
2 (t) ∗m3(t)

q
(3)
3 (t) = q

(3)
2 (t) ∗m3(t). (4.39)

Sine q
(2)
2 (t) is omposed by two retangular funtions, its derivative is a sequene of

four impulsive funtions of amplitude a properly shifted in time, see Fig. 4-8. There-

fore, from (4.39) it desends that q
(3)
3 (t) is omposed by four retangular funtions

of amplitude j = a/T3 and aordingly it is possible to selet T3 on the basis of the

desired value of the jerk:

j =
a

T3
= q(3)max → T3 =

a

q
(3)
max

=
a

q
(3)
max

=
q
(2)
max

q
(3)
max

. (4.40)

Moreover, by the same argument as in (4.38) one an prove that

peak

(

q
(2)
3 (t)

)

≤ peak

(

q
(2)
2 (t)

)

= q(2)max (4.41)

peak

(

q
(1)
3 (t)

)

≤ peak

(

q
(1)
2 (t)

)

≤ peak

(

q
(1)
1 (t)

)

= q(1)max. (4.42)
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In partiular, if the trat with onstant jerk is at most half of the aeleration/deeleration

period, that is

T3 ≤
1

2
(T2 + T3) ⇔ T3 ≤ T2, (4.43)

in (4.41) the sign equal holds true and the maximum aeleration q
(2)
max is atually

reahed by the third order trajetory q3(t). Analogously, if the aeleration/deeleration

period does not exeed half of the total duration of the trajetory, i.e.

T2 + T3 ≤
1

2
(T1 + T2 + T3) ⇔ T2 + T3 ≤ T1 (4.44)

then peak

(
q
(1)
3 (t)

)
= peak

(
q
(1)
2 (t)

)
(and obviously peak

(
q
(1)
2 (t)

)
= peak

(
q
(1)
1 (t)

)
sine

((4.44)) implies T2 ≤ T1), therefore the trajetory q3(t) reahes the maximum veloity

q
(1)
max. If, both onditions (4.43) and (4.44) are met, the veloity and the aeleration

reah the maximum values q
(i)
max and q3(t) is a minimum-time double-S veloity tra-

jetory as in Setion 4.1.2. Conversely, when one (or both) of the two onditions is

not true, the trajetory is ompliant with the given bounds but it is not time-optimal.

The proedure shown so far an be iterated by adding further �lters Mi(s). In the

general ase, the expression of the minimum-time trajetory ompliant with given

onstraints on the �rst d derivatives, and therefore of order d, is

qn(t) = h u(t) ∗m1(t) ∗ . . . ∗md−1(t) ∗md(t) (4.45)

or with a reursive formulation

qd(t) = qd−1(t) ∗md(t) (4.46)

where q0(t) = h u(t). As already pointed out, the smoothness of the trajetory, that is

the order of ontinuous derivative, is stritly tied to the number of �lters omposing

the hain. If one onsiders d �lters, the resulting trajetory will be of lass Cd−1
.

By inreasing the smoothness of the trajetory, the duration augments as well. As

a matter of fat the total duration of a trajetory planned by means of d dynami
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systems Mi(s) is given by the sum of the lengths of the impulse response of eah �lter,

i.e.

Ttot = T1 + T2 + . . .+ Td.

The parameters Ti an be set with the purpose of imposing desired bounds on veloity,

aeleration, jerk and higher derivatives, i.e.

|q(i)d (t)| ≤ q(i)max, i = 1, . . . , d (4.47)

by assuming

T1 =
|h|
q
(1)
max

(4.48)

Ti =
q
(i−1)
max

q
(i)
max

, i = 1, . . . , d

with the onstraints

Ti ≥ Ti+1 + . . .+ Td, i = 1, . . . , d− 1. (4.49)

that guarantee that the trajetory, ompliant with (4.47), is of minimum duration.

Finally in lieu of implementing a proper trajetory generator on ontrolled system,

not only the position pro�le of the trajetory but also the related pro�les of veloity,

aeleration, jerk, et. have to be provided. The omputation of the derivatives of

a trajetory of generi order d, that is obtained by a asade of d �lters, is straight-

forward by onsidering the de�nition (4.45) and the property of onvolution produt

(4.32). In fat,

q
(1)
d (t) = qd−1(t) ∗m(1)

d (t)

= qd−1(t) ∗
1

Td

(

δ(t)− δ(t− Td)
)

(4.50)

=
1

Td

(

qd−1(t)− qd−1(t− Td)
)

.
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Figure 4-9: System omposed by d �lters for the omputation of an optimal trajetory

of lass Cd−1
and of all the derivatives of order i = 1, . . . , d.

The generi derivative of i-th order, an be alulated in a reursive manner as

q
(i)
d (t) =

1

Td

(

q
(i−1)
d−1 (t)− q

(i−1)
d−1 (t− Td)

)

(4.51)

with q
(0)
d−i(t) = qd−i(t). Figure 4-9 shows the blok-sheme representation of the �lter

for the omputation of the trajetory and its derivatives, obtained by iterating and

Laplae transforming (4.51). Note that the �lter of Fig. 4-9 gives a losed form

expression (in terms of Laplae transform) of the derivatives and does not simply

provide their numerial value.

4.3.2 Filters for Trigonometri Trajetories Generation

In [12℄ this method is extended exploiting dynami �lters to plan motion pro�les

haraterized by veloity, aeleration, or jerk (or higher derivatives, depending on

the order of the trajetory) omposed only by sinusoidal funtions (see Setion 4.1.3,

leading to the so-alled modi�ed trapezoidal veloity trajetory, modi�ed double-S

veloity trajetory, et., see [9℄. In this ase, it is su�ient to onsider in the hain

of averaging �lters Mi(s), haraterized by a retangular impulse response, a single
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Figure 4-11: System omposed by d+ 1 �lters for the omputation of the trajetory

qd,h(t) of lass Cd+1
, whose d-th derivative is only omposed by sinusoidal funtions.

�lter whose impulse response is

si(t) =







π

2Ti
sin

(
π

Ti
t

)

if 0 ≤ t ≤ Ti

0 otherwise

(4.52)

=
π

2Ti

[

sin

(
π

Ti
t

)

u(t) + sin

(
π

Ti
(t− Ti)

)

u(t− Ti)

]

where u(t) denotes again the step funtion, and Ti is a parameter that de�nes the

time duration of the response, whih is �nite as shown in Fig. 4-10. By Laplae

transforming (4.52), the transfer funtion of the �lter an be readily obtained:

Si(s) =
1

2

(
π

Ti

)2
1 + e−sTi

s2 +

(
π

Ti

)2 . (4.53)

Note that the system Si(s) has a unitary d gain.
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The generation of a trajetory qd,h(t) whose d-th derivative is only omposed by

sinusoidal funtions (and therefore is of lass Cd+1
) an be ahieved by adding the

�sinusoidal� �lter Sd+1(s) at the end of a hain of d �lters Mi(s), as shown in Fig. 4-

11. With this on�guration, it is possible to �nd the following relation between the

maximum values of q(d)(t) and q(d+1)(t) and the harateristi parameter Td+1 of the

�lter:

q(d)max(t)
π

2Td+1
= q(d+1)

max (t).

As a onsequene, if onstraints on the d-th and (d + 1)-th derivative are given, the

time-length Td+1 an be omputed as

Td+1 =
q
(d)
max

q
(d+1)
max

π

2
. (4.54)

Thus, for instane, for a modi�ed trapezoidal veloity trajetory with d = 1 one

obtains

T1 =
h

vmax
, T2 =

π

2

vmax

amax

while for a modi�ed double-S veloity trajetory with d = 2

T1 =
h

vmax
, T2 =

vmax

amax
, T3 =

π

2

amax

jmax

Note that the time onstant Td+1 always orresponds to the sinusoidal �lter.

4.3.3 Uniform B-spline Trajetory Generator

The use of dynami �lters proves to be very simple and e�etive in trajetory gen-

eration. In [13℄ the same �lters of the form of (4.31) are exploited to implement

a trajetory generator for uniform B-spline. As reported in Setion 4.2 a uniform

B-spline trajetory of degree d passing through m points an be de�ned as

qu(t) =

m∑

j=0

pjB
d(t− jT ), 0 ≤ t ≤ mT, (4.55)
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Figure 4-12: Position, veloity, aeleration and jerk of a time optimal motion from 0
to q1 by means of modi�ed trapezoidal veloity trajetory (a), and modi�ed double-S

veloity trajetory (a).

where pj are the ontrol points, T is the uniform knot span and Bd(t) is the spline

basis funtion of degree d whih is de�ned in a reursive manner, but also exploiting

the onvolution produt (denoted with ∗) results equivalent to

Bd(t) =
1

T
Bd−1 ∗B0

=
1

T
B0 ∗ 1

T
B0 ∗ . . . ∗ 1

T
B0

︸ ︷︷ ︸

d times

∗B0,
(4.56)

with

B0(t) =







1, if 0 ≤ t < T

0, otherwise.
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Figure 4-13: System omposed by d �lters for the omputation of the B-spline basis

funtion Bd(t) of degree d.

Therefore looking at the basis funtionsBd(t) obtained for di�erent values of d shown

in Fig. 4-6 and analyzing the onvolution produt of (4.56) in a �ltering perspetive,

it an be noted that (4.56) an be interpreted as the funtion B0(t) �ltered by a

asade of d �lters, eah one performing an averaging operation on the input signal

over an interval of duration T and haraterized by the transfer funtion

M(s) = L
{
1

T
B0(t)

}

=
1

T

1− e−sT

s
, (4.57)

see Fig. 4-13. Moreover by Laplae transforming the general expression of the uniform

B-spline (4.55) and substituting (4.56) one obtains

Qu(s) =
m∑

j=0

L
{

pjB
0 ∗ 1

T
B0 ∗ 1

T
B0 ∗ . . . ∗ 1

T
B0

}

e−jsT .

Exploiting the linearity of the above expression and the fat that

1
T
B0

is not a funtion

of the index j, the B-spline expression beomes

Qu(s)=

(
m∑

j=0

L
{
pjB

0
}
e−jsT

)

·M(s) ·M(s) · . . . ·M(s)

=L
{

m∑

j=0

pjB
0(t− jT )

}

·M(s)·M(s) · . . . ·M(s)
︸ ︷︷ ︸

p �lters

. (4.58)

This expression suggests that a uniform B-spline an be evaluated by feeding the

asade of d moving average �lters M(s), reported in Fig. 4-13, with the pieewise
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onstant funtion

p(t) =
m∑

j=0

pjB
0(t− jT ) (4.59)

that in the generi interval jT ≤ t < (j + 1)T assumes the onstant value pj of the

j-th ontrol point of the related analyti B-spline.

Finally, in order to �nd the ontrol points whih de�ne the pieewise onstant funtion

pj, one an exploit lassial tehniques derived by B-spline interpolation/approximation

methods.

For example, if one onsiders the interpolation of a set of n+1 points {q0, q1, q2, . . . , qn−1, qn}
it is neessary to impose the onditions

q(ti) = qi, i = 0, . . . , n (4.60)

where ti is the time instant at whih the spline q(t) rosses the given point qi.

The �rst step onsists in seleting the degree d of the spline aording to the desired

degree of smoothness. Stritly related to d is the hoie of time instants ti:

• if d is odd, the ti are assumed oinident with the knots, ti = iT ;

• if d is even, the time instants ti should be seleted in the midpoint of eah knot

span, ti =
2i+1
2

T .

One the interpolation time instants ti have been hosen, it is possible to make the

system of equations (4.60) expliit with the substitution of the values of basis funtions

at ti in the spline de�nition (4.22). In partiular the values of Bd
for d odd and d

even, omputed at points ti = iT and ti =
2i+1
2

T respetively, is independent from T

beause of the hoie of the interpolation time instants, as a result Bd
only depends

on the index i, and obviously on the degree d, see [10℄.

Then in order to obtain a system of equations well onditioned from a mathematial

point of view, it is neessary to onsider symmetrial B-splines qs(t), i.e. uniform B-

splines whose basis funtion βd(t) is symmetri with respet the origin. The funtion

βd(t) an be dedued from Bd(t) with a simple time shift, βd(t) = Bd
(
t + d+1

2
T
)
. As
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a onsequene symmetrial B-splines are related to standard uniform B-splines by

qs(t) =

m∑

j=0

pjβ
d(t− jT )

=
m∑

j=0

pjB
d(t+ d+1

2
T − jT ) = qu(t+

d+1
2
T ),

that is, given the ontrol points, uniform B-splines are equal to symmetrial B-splines

delayed by

d+1
2
T . Obviously, the theory of Se. 4.2 ould be based on symmetrial

B-splines but this would imply the presene of a temporal antiipation leading to

nonausal �lters for the evaluation of the B-splines.

For eah point to be interpolated, with the only exeption of the �rst and last points,

the equation (4.60) beomes

qs(ti) =
m∑

j=0

pjB
d(ti +

d+1
2
T − jT ) = qi (4.61)

where the unknowns are the ontrol point pj. The interpolation of the �rst and last

points, with zero veloity and aeleration, is ahieved by exploiting the harateristis

of the dynami system used to generate the spline. Sine all the �lters M(s) have

unitary stati gain, the output of the �lters asade will reah and maintain the desired

value q0 or qn if the same value is applied to the input

d+1
2
T seonds before. In other

words, in order to smoothly start from q0 and end to qn, the �rst/last d ontrol

points must be equal to q0/qn. The n− 1 internal ontrol points are then omputed

by solving the system of equations obtained by staking (4.61) for i = 1, . . . , n − 1

and the pieewise onstant funtion p(t) in (4.59) an be �nally built by maintaining

the value of eah ontrol point pj for the entire period jT ≤ t < (j + 1)T by means

of a zero order hold as shown in �g. 4-14.
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Figure 4-14: System omposed by d mean �lters and by a zero-order hold H0(s) for
the omputation of ontinuous-time B-spline trajetories of degree d.
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2
= 2 obtained with the dynami �lter of Fig. 4-14.

4.4 Frequeny Analysis of Trajetory Generators

4.4.1 Multi-Segment Polynomial Trajetories

In Setion 4.3 very simple approahes have been desribed in order to plan some of

the most ommon types of trajetory by means of dynami �lters. Basially all the

methods rely on the implementation of a hain of a ertain number of mean �lters

Mi(s) as in (4.31) whose duration Ti has to be set in order to omply to the desired

trajetory spei�ations. In partiular in Setions 4.3.1 and 4.3.2 eah Ti of the hain's

�lters is used as a design parameter to impose kinemati onstraints on the trajetory,
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while in Setion 4.3.3 the hain is omposed of identi �lters of duration T , where T

is the knot span of a uniform B-spline trajetory.

In addition, de�ning trajetories by means of �lters is very useful to analyze the

frequeny ontent of a presribed motion and therefore the e�et of a given trajetory

on a vibratory system. Beause of the hain struture of the generators, and being

the hains (mainly) omposed of mean �lters M(s), the frequeny analysis an be

performed by taking into aount the �lterM(s) at �rst, intended as the basi element

of a trajetory generator

M(s) =
1

T

1− e−sT

s
(4.62)

In partiular, assuming to have an undamped vibratory system G(s) as onsidered

in Setion 1.1, it has to be noted that the implementation of the �lter M(s) as a

ommand shaper assures omplete vibration suppression, provided that the duration

T of the �lter is equal to the period of the vibration T0 of the system G(s)

T = T0 =
2π

ωn

, (4.63)

where ωn is the natural undamped frequeny of the vibratory system. In lieu of the

possibility to suppress vibrations by means of M(s), in �g. 4-16(b) the PRV funtion

of the mean �lter is ompared to a ZV IS and a ZVD IS that are standard tools for

vibration suppression, as deeply disussed in Chapter 2. The reason for whih this

omparison is meaningful appears more lear in �g. 4-17(a) where the �lter M(s) is

analyzed in terms of pole-zero diagram. As an be seen the e�et of the �lter is to

provide in�nite zeroes on the imaginary axis, equally spaed of kωn, k ∈ N, plus a

pole in the axis origin whih is anelled by the zero assoiated with k = 0. Therefore

the suppression of the vibratory mode is again due to a pole-zero anellation as

already stated in previous hapters. Also with respet to the omparison of �g. 4-

16(b), the robustness of M(s) is omparable to that of a ZV IS due to the single

multipliity of the zeroes of both M(s) and ZV IS. Anyway the redued distane of

the zeroes of M(s) makes that the overall redution e�et of the �lter is greater, at

least for frequeny variation only (see �g. 4-17(a) and �g. 4-17(b). On the other hand
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Figure 4-16: Step response of the system with δ = 0 shaped by M(s) (a) and PRV

funtion of the mean �lter ompared to ZV IS in blak dotted line and ZVD IS in

green dotted line (b).

M(s) lasts twie the ZV IS, being the duration of a ZV IS half period of vibration,

and doesn't assure vibration suppression for system with damping δ 6= 0.

Despite the onsideration on M(s) used as an input shaper, it is lear that the

frequeny analysis of a trajetory of order d de�ned by means of a hain of d mean

�lters Mi(s), an be easily performed by omposing the e�ets of the d �lters. The

ases of trapezoidal veloity trajetory and double-S veloity trajetory of Setion

4.3.1 are straightforward, sine both planners are atually omposed of mean �lters

only. In general from (4.45) to (4.49) a lass Cd−1
trajetory is de�ned by means of d

�lters Mi(s) where respetive Ti are hosen in order to impose desired bounds on d

derivatives of the trajetory

Ti =
q
(i−1)
max

q
(i)
max

, i = 1, . . . , d,

resulting in a total duration of the motion

Ttot = T1 + T2 + . . .+ Td

that is the minimum time trajetory for the given kinemati bounds provided that
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Figure 4-17: Pole-Zero diagram of the system with δ = 0 shaped by the mean �lter

(a) and desription of M(s) as funtion of σ and jω (b,). In () the same plot of

(b) is reported with full sale axis in order to better understand the behavior of the

system response. In (b) and () the ontour lines are equally spaed of 0.1 and the

zeroes position is highlighted with a blak ross.

the generi Ti satisfy

Ti ≥ Ti+1 + . . .+ Td, i = 1, . . . , d− 1.

In that ase the generi trajetory planner has a transfer funtion of the form

Hd(s) = M1(s) ·M2(s) · . . . ·Md(s), (4.64)

and results quite simple to analyze by adding the ontribution of eah single �lter.

In �g. 4-18(a) the point to point motion obtained by means of a time optimal trape-

zoidal veloity trajetory generator H2(s) is reported for example. In partiular the

112



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−1

0

1

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

1

PSfrag replaements

q(
t)

q1

q̇(
t)

q̈(
t)

Time

vmax

amax

−amax

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

PSfrag replaements

ω

H
2
(j
ω
)

(b)

Figure 4-18: Position, veloity and aeleration of a time optimal motion from 0 to

q1 by means of trapezoidal veloity trajetory with desired bounds on veloity and

aeleration. On the right the frequeny response of the trajetory is reported.

generator is

H2(s) = M1(s) ·M2(s),

where M1(s), M2(s) are mean �lters as in (4.62) with

T1 =
|h|
vmax

,

T2 =
vmax

amax

,

being vmax, amax presribed kinemati onstraints for the trajetory. Also in �g. 4-

18(b) the frequeny ontent of the trajetory q(t) is given by simply deriving the

frequeny response of the trajetory generator H2(jω). In addition, in �g. 4-19 the

pole-zero analysis of the planner is presented, showing that the diagram of the planner

H2(s) is nothing but the merge of the pole-zero diagrams of the �lters M1(s), M2(s)

in �gs. 4-19(a) and 4-19(b) as expeted. This is very onvenient in terms of fre-

queny haraterization of a trajetory sine it results in omposition of quite simple

ontributions given by the generi mean �lter Mi(s). In partiular permits to make

interesting onsiderations with respet to the possibility of reduing or suppressing

vibrations by means of suh trajetories.
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Figure 4-19: Pole-Zero diagram of a trapezoidal veloity trajetory generatorH2(s) =
M1(s) ·M2(s) (): in (a) and (b) the pole-zero diagrams of respetively M1 and M2,

being ω1 = 2π/T1 and ω2 = 2π/T2 are reported. In (d) the desription of H2(s) as
funtion of σ and jω is shown, the ontour lines are equally spaed of 0.1 and the

zeroes position is highlighted with a blak ross.

In �g. 4-20 the the time optimal trajetory in �g. 4-18 is used to ommand an un-

damped vibratory system G(s) with damping δ = 0 and natural frequeny ωn. As

an be seen the vibration is redued but not suppressed, aording to both frequeny

response and pole-zero diagrams in �gs. 4-20(b) and 4-20() that point out the fat

that the anellation of the of the vibratory omponent doesn't our. As a matter

of fat it is worth noting that the design method reported in Setion 4.3.1 leads to

de�ne a trajetory generator for time optimal trajetories given bounds on veloity,

aeleration, jerk, et., without any partiular spei�ation on frequeny.

However realling the onsiderations on vibration suppression by means of a mean �l-

ter reported before, one may be interested in using one of the generator's �lter Mi(s)
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Figure 4-20: Response of the system G(s) with δ = 0 fed by a trapezoidal veloity

trajetory generated by means of H2(s) (a) and frequeny response H2(jω) with the

vibrating frequeny highlighted in red dashed line(b). In () the pole-zero diagram

of H2(s) is reported along with the poles of the vibratory system G(s) in blue.

in order to suppress vibrations, that is setting Ti equal to the period of vibration T0 as

in (4.63). With respet to the onsidered trapezoidal veloity trajetory for example,

T1 or T2 must be set to T0. In order to properly hose the whih �lter modify it has

to be reminded that the given kinemati bounds are mandatory and also the relation

for the generi Ti

Ti ≥ Ti+1 + . . .+ Td, i = 1, . . . , d− 1

must be satis�ed in any ase. Therefore for a given vibratory period T0 there ould

be three di�erent situations:
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1. T0 > T1 ≥ T2

In this ase the �rst mean �lter must be used to suppress the vibration, that

is T ⋆
1 = T0. As a onsequene the veloity will be limited under the presribed

bound, namely

v⋆max =
|h|
T ⋆
1

< vmax. (4.65)

Then in order to minimize the time duration of the trajetory the seond �lter

must be reomputed taking into aount the new veloity limit v⋆max

T ⋆
2 =

v⋆max

amax
. (4.66)

2. T1 > T0 > T2

In this ase the �rst mean �lter is de�ned as usual by means of the veloity

limit

T1 =
|h|
vmax

, (4.67)

while the seond �lter must be used to suppress the vibration, that is T ⋆
2 = T0.

Therefore, being the veloity limit unaltered the aeleration will be limited

under the presribed bound, that is

a⋆max =
vmax

T ⋆
2

< amax. (4.68)

3. T1 ≥ T2 > T0

In this ase setting one of the �lter's length to T0 means shorten the time

duration of M1 or M2 therefore exeeding the kinemati bounds. Sine the

trajetory must be still ompliant to that bounds, the only possibility is to

add a mean �lter M3 with T3 = T0. This solution lead to de�ne a double-S

trajetory with unaltered limits on veloity and aeleration and jerk limited as

a onsequene to

jmax =
amax

T0

. (4.69)

The proposed algorithm has been applied to the system in �g. 4-18 in order to sup-
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press the vibration of the system G(s) visible in �g. 4-20. In partiular the time

optimal trajetory is obtained imposing vmax = 0.75 [rad/s] and amax = 1.5 [rad/s2],

thus for a step motion of 1 [rad] results T1 = 1.33 [s] and T2 = 0.5 [s]. The system

G(s) instead is haraterized by a natural undamped frequeny ωn = 2π [rad/s],

therefore T0 = 1 [s]. In this ase, being T1 > T0 > T2, the solution is to impose

T ⋆
2 = T0 that means to impose a lower aeleration bound a⋆max = 0.75 [rad/s2].

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

PSfrag replaements

Time

A

m

p

l

i

t

u

d

e

(a)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

PSfrag replaements

ω/ωn

H
2
(j
ω
)

(b)

−2 −1.5 −1 −0.5 0 0.5 1
−20

−15

−10

−5

0

5

10

15

20

PSfrag replaements jω

σ

×2
+jωn

−jωn

()

Figure 4-21: Response of the system G(s) with δ = 0 fed by a trapezoidal veloity

trajetory generated by means of H2(s) designed for vibration suppression (a) and

frequeny response H2(jω) with the vibrating frequeny highlighted in red dashed

line(b). In () the pole-zero diagram of H2(s) is reported along with the poles of the

vibratory system G(s) in blue.

In �g. 4-21 is shown the e�et of the modi�ed generator, in partiular it has to be

noted that the poles that ause vibrations are atually anelled by the zeroes of the
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Figure 4-22: Position, veloity and aeleration of the motion from 0 to q1 obtained
by means of trapezoidal veloity trajetory designed in order to suppress a vibrating

mode.

seond �lter (in green) whose duration T2 has been modi�ed. However in �g. 4-22 it

an be noted the redued limit of aeleration espeially if ompared to the time op-

timal one in �g. 4-18(a), this obviously a�ets the duration of the trajetory resulting

longer.

The same algorithm an be easily extended for double-S veloity trajetories by on-

sidering three �lters, therefore one more possible hoie in terms of �lter that has

to be modi�ed. The reason that lead to modify a double-S veloity trajetory is

that despite the augmented smoothness and the limited jerk there is no assurane

of vibration suppression beause even in this ase the design of the planner takes

into aount only kinemati onstraints without aring at dynami onstraints, i.e.

vibrations that has to be suppressed. For example in �g. 4-23 is shown the e�et

of a double-S trajetory generated by means of a �lter hain H3(s) on the vibratory

system G(s) onsidered in the previous ase. As an be seen the additional onstraint

on the jerk does not eliminate the residual vibration. This behavior is explained even

more learly in �g. 4-24 where the pole-zero diagram of the trajetory generator H3(s)
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Figure 4-23: Position, veloity, aeleration and jerk of a time optimal motion from

0 to q1 by means of double-S veloity trajetory with desired bounds on veloity,

aeleration and jerk (a). On the right the response of the seond order system G(s)
fed by q(t) is shown (b) and the frequeny response of the trajetory is reported below
(). In () the frequeny of the vibration is reported in red dashed line.

reports that even in this ase there is no zero able to anel the ouple of poles that

ause the residual vibration.

The algorithm for a double-S generator is straightforward to the one of trapezoidal

generator, it just takes into aount an additional parameter T3 but remains on-

strained to both kinemati bounds and minimizing time onditions as in the previous

ase.

1. T0 > T1 ≥ T2 +T3

The �rst mean �lter must be used to suppress the vibration, that is T ⋆
1 = T0. As
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a onsequene the veloity will be limited under the presribed bound, namely

v⋆max =
|h|
T ⋆
1

< vmax. (4.70)

Then in order to minimize the time duration of the trajetory the seond �lter

must be reomputed taking into aount the new veloity limit v⋆max

T ⋆
2 =

v⋆max

amax

. (4.71)

In this ase sine T ⋆
2 6= T2 the ondition T ⋆

2 ≥ T3 must be veri�ed in order to

ahieve minimum time feature. From [13℄ the ondition holds true if

amax ≤ alim =
√

v⋆maxjmax, (4.72)
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otherwise even the aeleration must be limited under the bound, that is

âmax = alim < amax (4.73)

therefore T2 and T3 must be reomputed as

T ⋆
2 =

v⋆max

âmax
, T ⋆

3 =
âmax

jmax
. (4.74)

2. T1 > T0 > T2 ≥ T3

In this ase the �rst mean �lter is de�ned as usual by means of the veloity

limit

T1 =
|h|
vmax

, (4.75)

while the seond �lter must be used to suppress the vibration, that is T ⋆
2 = T0.

Therefore, being the veloity limit unaltered the aeleration will be limited

under the presribed bound, that is

a⋆max =
vmax

T ⋆
2

< amax. (4.76)

Aordingly the duration of the �lter M3 must be reomputed taking into a-

ount the new aeleration limit a⋆max, that is

T ⋆
3 =

a⋆max

jmax
. (4.77)

3. T2 > T0 > T3

In this ase the �lters M1 and M2 are de�ned as usual by means of kinemati

onstraints while T3 must be set equal to T0. Therefore,

j⋆max =
amax

T ⋆
3

< jmax, (4.78)

being T ⋆
3 = T0
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Figure 4-25: Position, veloity, aeleration and jerk of the motion from 0 to q1
obtained by means of double-S veloity trajetory designed in order to suppress a

vibrating mode (a). On the right the response of the seond order system G(s) fed
by q(t) is shown (b) and the frequeny response of the trajetory is reported below

(). In () the frequeny of the vibration is reported in red dashed line.

4. T3 > T0

In this ase in order to omply to the kinemati onstraint the only possibility

is to add a mean �lter M4 with T4 = T0. This solution lead to de�ne a lass

C3
trajetory generator with unaltered limits on veloity, aeleration and jerk

with the additional feature of the vibration suppression.

The proposed algorithm has been applied to the system in �g. 4-23 where the time

optimal trajetory is obtained imposing vmax = 0.75 [rad/s], amax = 1.5 [rad/s2] and

jmax = 7.5 [rad/s3], thus for a step motion of 1 [rad] results T1 = 1.33 [s], T2 = 0.5 [s]

and T3 = 0.2 [s]. The system G(s) instead is haraterized by a natural undamped

frequeny ωn = 2π [rad/s], therefore T0 = 1 [s]. In this ase, being T1 > T0 > T2,
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the solution is to impose T ⋆
2 = T0 that means to impose a lower aeleration bound

a⋆max = 0.75 [rad/s2]. Aordingly T3 has to be reomputed taking into aount a⋆max,

therefore T ⋆
3 = 0.1 [s]. In �g. 4-25 the response of the system G(s) to the trajetory

provided by the modi�ed planner is presented. As an be seen the trajetory generator

designed taking are of dynami onstraints atually suppress vibrations, in partiular

in �g. 4-25() the drop of the frequeny response H3(jω) in orrespondene of the

frequeny of vibration ωn denotes a proper pole-zero anellation. On the other hand

the trajetory results longer by omparing it to the one in �g. 4-23(a) sine the

aeleration an't reah the kinemati bound.

It has to be noted that in any ase the design of the planner for vibration suppression

as proposed, imply to loose the time optimality feature of the trajetory, sine at

least one of the derivative bounds is further limited. However allowing a slight time

extension of the motion it has been proved that the trajetory generator an atually

suppress vibrations. Nevertheless by means of the proposed algorithm one may obtain

a time minimum trajetory generator with vibration suppression.

4.4.2 Trajetories with Sinusoidal Blends

In Setion 4.3.2 has been desribed the method whih permit to ahieve a modi�ed

trapezoidal/double-S veloity trajetory generator by means of dynami �lters. That

is, in order to obtain multi-segment polynomial trajetories with sinusoidal blends

(i.e. desribed by harmoni funtions in Setion 4.1.3, the �lter hain desribed in

Setion 4.3.1 must be modi�ed by substituting the last mean �lter with the so-alled

sinusoidal �lter Si(s) in (4.53)

Si(s) =
1

2

(
π

Ti

)2
1 + e−sTi

s2 +

(
π

Ti

)2 .

Aordingly to the disussion in the previous setion, the frequeny analysis of a

modi�ed trapezoidal/double-S veloity trajetory an be performed by merging the

e�ets of the mean �lters of the hain and that of the sinusoidal �lter above. In
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Figure 4-26: Frequeny response of the sinusoidal �lter Si(s) (a) and respetive

pole-zero diagram (b).

partiular the analysis of the sinusoidal �lter shows a di�erent behavior with respet

the mean �lter in �gs. 4-16 and 4-17. In �g. 4-26(a) the frequeny response Si(jω)

drop to zero slower than a mean �lter with the same duration T . Namely it results

|Si(jω)| = 0 if ω =
2k + 1

2
· 2π
T

, being k ∈ {N\0}, (4.79)

while the mean �lter is zero for 2πk/T . Moreover from the pole-zero diagram in

�g. 4-26(b) it is shown that the �lter introdues a ouple of omplex onjugate poles

that are anelled by a ouple of zeroes of the �lter itself, enlarging the �rst lobe

of the frequeny response aordingly. Anyway the presene of in�nite zeroes on the

imaginary axis permit to assume the �lter Si as a andidate to suppress a vibration of

an undamped system, spei�ally being T0 the period of vibration, it an be proven

that Si suppress the vibration if its duration T is set to T = 1.5T0.

Despite that, the use of the sinusoidal �lter to suppress vibration when inserted in a

trajetory generator as desribed in Setion 4.3.2 may not be an optimal solution. In

lieu of an example it an be onsidered the ase of a modi�ed trapezoidal trajetory

with 





vmax = 0.75 [rad/s],

amax = 1.5 [rad/s2],
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and a desired step motion of 1 [rad], feeding a vibratory system G(s) whose vibration

period is T0 = 1 [s]. From the approah in Setion 4.3.2 the duration of mean �lter

M1(s) and that of S2(s) results results







T1 = 1.33 [s],

T2 = 0.785 [s].

Then by applying the proposed algorithm of Setion 4.4.1 and taking into aount

the zeroing a�et of S2(s), the duration of the sinusoidal �lter has to be modi�ed as

T ⋆
2 = 1.5T0. Unfortunately in this ase T1 < T ⋆

2 , then even T1 has to be modi�ed in

order to respet the onstraint T1 ≥ T2, that is

T ⋆
1 ≥ T ⋆

2 = 1.5 [s],

therefore the total duration would be T ⋆
1 +T ⋆

2 = 3 [s]. As a matter of fat this solution

it is de�nitely not a minimum time solution sine it an be proven that a trajetory

whih satisfy the same onstraints (both kinemati and dynami) an be ahieved

by means of a modi�ed double-S trajetory generator of shorter duration. Namely,

assuming 





vmax = 0.75 [rad/s],

amax = 1.5 [rad/s2],

jmax = 7.5 [rad/s2],

the duration of the �lters M1, M2, S3 beome







T1 = 1.33 [s],

T2 = 0.5 [s],

T3 = 0.314 [s].
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Then by setting T ⋆
2 = T0 = 1 the aeleration is limited to a⋆max < amax and the

duration of the sinusoidal �lter must be reomputed beoming

T ⋆
3 =

a⋆max

jmax

π

2
= 0.157 [s].

Therefore the total duration of the trajetory is T1 + T ⋆
2 + T ⋆

3 = 2.49 [s] that is

onsistently shorter than the modi�ed trapezoidal one.

4.4.3 Uniform B-Spline trajetories

In Setion 4.3.3 a method for the implementation of a uniform b-spline trajetory

generator based on dynami �lters is reported. The generator exploit the equivalene

between a b-spline trajetory of degree d and the output of a hain of d identi mean

�lters of duration T , fed by a proper stairase signal built by means of the ontrol

points pj of the desired spline trajetory. In [11℄ the hain of d �lters has been

analyzed in terms of frequeny response and ompared to the most ommon input

shaping tehniques, leading to a design proedure that takes into aount the dynami

onstraint of a given plant in order to minimize residual vibrations. In partiular the

analysis points out the low-pass behavior of the �lter hain and a zeroing e�et at

frequeny ω = 2π/T (and multiple frequenies kω, k ∈ N), being T the knot span

of the b-spline trajetory. Also, for growing degree d of the spline both the low-pass

behavior and the zeroing e�et are enhaned, making the b-spline generator even

more robust of n-derivative input shapers (see Chapter 2) with respet to vibration

redution. Therefore a proper hoie of the knot span T and aordingly the duration

of the �lters permits to greatly redue vibrations without the addition of ommand

shapers.

The disussion in [11℄ an be further extended inluding the onsiderations given in

Setion 4.4.1 with respet to the mean �lter M(s). In partiular has been already

stated that the mean �lter an atually suppress a vibration of period T0 = 2π/ωn

given that the duration of the �lterM(s) is set to T = T0. Also, it has been shown that

the frequeny analysis of a trajetory generator based on a hain of dynami �lters,
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Figure 4-27: Uniform ubi b-spline trajetory applied to an undamped seond order

system G(s) with T0 = 2π/ωn. In (a) the motion law is provided by means of a

�lter-based generator assuming a knot span T = 1.25T0. In (b) the same motion

law is provided assuming T = T0. Pitures below denoted with ε(t), desribe the

error between the set-point given by the generators (red dashed line) and the atual

position of the system G(s) (in blue).

an be easily performed by omposition of the ontribution of eah single element

of the hain, i.e. in terms of pole-zero diagram it results the merge of the diagrams

of eah �lter. Therefore for a b-spline generator of order d with knot span T the

pole-zero diagram results equal to that of �g. 4-17(a) onsidering every poles/zeroes

of multipliity d. This also makes the omparison in [11℄ with respet to derivative-

based input shapers onsistent, sine the e�et in terms of pole-zero diagram of an

n-derivative IS is to augment the multipliity of the zeroes of a ZV IS to an order

n + 1. In addition the vibration suppression onditions for the asade of �lters

diretly desend from that of the single �lter Mi(s), that is being G(s) an undamped

seond order system whose period of vibration is T0, the b-spline trajetory generator

an provide a vibration-free motion if the knot span T is hosen suh that T = T0.

However the hoie of the knot span for a uniform b-spline trajetory planner has a

diret in�uene on the dynamis of the set-point that an be provided to the plant.

In partiular being the knots equally spaed, the span T is usually hosen aordingly

to the frequeny ontent of the desired motion law in a sampling fashion. That is the

lower is the allowed interpolation error between desired motion and spline trajetory,
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the lower is the knot span T (whih assumes the meaning of a sample time for the

desired motion) and therefore the greater is the number of via-points qj. These

onsiderations lead to de�ne two di�erent ases, respetively when the motion law is

disretized by means of a sample time T whih is longer or shorter than the period

of vibration T0.

The ase T > T0 is reported in �g. 4-27 for a uniform b-spline trajetory of order

3 feeding an undamped vibratory system G(s). It an be noted that aordingly to

what said before, even if the hoie of T > T0 ats as a onservative solution to redue

the amplitude of the vibrations, it doesn't assure the omplete suppression beause

the anellation of the poles of G(s) that ause the vibration doesn't ours. In

partiular the traking error ε(t) of �g. 4-27(a) highlights a residual vibration during

the whole motion. In �g. 4-27(b) however, the same motion law is given by means

of a generator omposed of �lters whose duration T ⋆ = T0 ompletely suppress the

vibration. It is worth noting that in general the hange of the duration T must be

aompanied with the reomputing of the via-points of the trajetory, in �g. 4-27(b)

for example the motion law has been sampled again with the sample time T ⋆
. In

this way the total number of via-points qj has grown (up-sampling) but the resulting

trajetory maintains the same harateristis in terms of kinemati onstraints, i.e.

veloity, aeleration, et..

In �g. 4-28 instead the dual ase is shown, that is when the spline trajetory is

omputed with a knot span T < T0. As an be seen in �g. 4-28(a) this is an undesirable

ondition that may auses large vibrations. In order to suppress the vibration one

has to raise the �lters duration to T ⋆ = T0, however in this ase reomputing the set

of via-points may not be desirable. In fat this would be a down-sampling proedure

that a�ets the interpolation error with respet to the desired motion law, whih

typially grows as the sampling beome less dense. Therefore when reomputing via-

points is unsatisfatory the only solution is to assume an overall slow-down of the

trajetory by ating only on the duration of the �lters as shown in �g. 4-28().
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Figure 4-28: Uniform ubi b-spline trajetory applied to an undamped seond order

system G(s) with T0 = 2π/ωn. In (a) the motion law is provided by means of a

�lter-based generator assuming a knot span T = 0.75T0. In (b) the same motion

law is provided assuming T = T0 and reomputing the via-points aordingly, in

order to maintain the same dynamis of the trajetory. In () the spline trajetory

is generated assuming T = T0 but using the same via-points of (a) avoiding down-

sampling. Pitures denoted with ε(t), desribe the error between the set-point given

by the generators (red dashed line) and the atual position of the system G(s) (in
blue).

129



4.5 FIR Filters for Online Trajetory Generation

The expression of a generi trajetory is usually provided in the ontinuous-time

domain by means of an analyti funtion of time t. On the other hand, for being used

as a referene signal for a omputer ontrolled system, it needs to be evaluated at

disrete-time instants tk = kTs, being Ts the sampling period. For this reason, it is

onvenient to diretly express the trajetory in the disrete-time domain, obtaining

a system able to provide at eah time instant kTs the value q(k).

4.5.1 Multi-Segment Trajetory Generator

In 4.3.1 a planner for multi-segment trajetories is obtained by onneting d �lters

Mi(s) in a asade on�guration fed by a step funtion

Qd(s) =
h

s
·M1(s) ·M2(s) · . . . ·Md(s). (4.80)

Starting from the above equation it is possible to dedue an equivalent disrete-time

system by disretizing the �lters with one of the tehniques available in the literature

and providing as input the sequene obtained by sampling with a period Ts the

ontinuous step funtion. In partiular in [13℄, the adoption of bakward di�erenes

method leads to a disrete-time system omposed by a hain of FIR �lters, whose

transfer funtion results

Mi(z) = Mi(s)|s= 1−z−1

Ts

=
Ts

Ti

1− z−Ni

1− z−1

=
1

Ni

1− z−Ni

1− z−1

(4.81)

where

Ni =
Ti

Ts
(4.82)

is the number of samples (not null) of the �lter response, whih is also equal to

the number of elements omposing the FIR �lter as they appear in the equivalent
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Figure 4-29: System omposed by d moving average �lters for the omputation of

an optimal trajetory of lass Cd−1
at disrete time-instants kTs.

(nonreursive) formulation

Mi(z) =
1

Ni
+

1

Ni
z−1 +

1

Ni
z−2 + . . .+

1

Ni
z−Ni−1. (4.83)

Note that (4.83) is the expression of a moving average �lter, whih averages the last

Ni samples. Finally, the expression of Qn(z) representing the disrete-time trajetory

qn(k) in the Z-domain results

Qn(z) =
h

1− z−1
·M1(z) ·M2(z) · . . . ·Mn(z) (4.84)

where

1

1− z−1
is the Z-transform of

u(k) =







1, for k = 0, 1, 2, . . .

0, for k < 0.

(4.85)

It is worth highlighting that the temporal sequene qn(k) = Z−1Qn(z) only approxi-

mates the orresponding ontinuous-time trajetory qn(t). However, it is possible to

prove that when Ts goes to zero, suh an error vanishes. From a pratial point of

view, this means that, for su�iently small sampling periods, the sequene qn(k) an

be used in lieu of the orresponding funtion qn(t) without appreiable di�erenes.

The bank of d FIR �lters shown in �g. 4-29, fed with sampled step funtions (de�n-

ing the desired �nal positions), an be therefore adopted to generate the trajetory

of order d. Also the struture proposed in �g. 4-29 for the generation of time-optimal

trajetories results very e�ient from a omputational point of view. In fat, the i-th
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FIR �lter is haraterized by the di�erenes equation

qi(k) = qi(k − 1) +
1

Ni
(qi−1(k)− qi−1(k −Ni)) , i = 1, . . . , d (4.86)

and, for the evaluation of qi at the i-th sampling instant, only two additions and one

multipliation are neessary. Therefore the trajetory of order d requires d multipli-

ations and 2d additions. It is worth nothing that the order of omplexity of the hain

of FIR �lters and of the equivalent polynomial expression is omparable, but in ase

of diret evaluation of the analyti expression of the trajetory it is also neessary a

searh algorithm to determine whih segment must be onsidered at a spei� value of

time t and a swith statement to apply a di�erent expression for eah trat. For this

reason, espeially for high values of the order d, the expression based on FIR �lters

may be preferable to the standard analyti expression of multi-segment trajetories

both in terms of implementation omplexity and omputational osts.

4.5.2 Disrete-Time Filter for Trigonometri Blends

In Setion 4.3.2 the generation of a Cd+1
lass trajetory with �sinusoidal� blends has

been ahieved by adding a proper �lter Sd+1(s) at the end of a hain of d moving

average �lters Mi(s) as in �g. 4-11. Moreover in Setion 4.5 the disretization of a

multi-segment trajetory generator has been reported leading to a hain of FIR �lters.

Therefore in order to provide a disrete-time trigonometri trajetory generator it

is neessary to disretize the sinusoidal �lter Si(s) in (4.53). In [12℄ the disrete

transfer funtion Si(z) of the sinusoidal �lter has been omputed by z-transforming

the sequene obtained by sampling (4.52) with a periods Ts:

Si(z) =
(1− cos( π

Ni
))(z−1 + z−(Ni+1))

1− 2z−1 cos( π
Ni
) + z−2

where Ni = Ti/Ts In this way, the impulse response of the disrete-time �lter oinides

exatly with ontinuous one at disrete time instants kTs, and is therefore zero for

kTs > Ti. Note that, being cos( π
Ni
) a onstant to be omputed only one, the digital
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implementation of Si(z) is omputationally e�ient, requiring four additions and two

multipliations.

4.5.3 FIR Filters for Uniform B-spline Trajetory Generation

A uni�ed transformation to onvert analyti B-splines in the disrete domain does not

exist yet. In partiular, with referene to ardinal B-splines it is possible to �nd in

the literature di�erent tehniques to obtains disrete B-splines. In general, they are

de�ned by diretly sampling analyti B-splines with Z-transform, bilinear transform,

et.

In [10℄ the disrete B-spline qk is de�ned as the sequene that equals the orresponding

analyti uniform B-spline qu(t) at the disrete-time instants kTs:

qk = qu(kTs). (4.87)

where it is assumed that T = N Ts, N ∈ N, i.e. that the generi knot span T ontains

a whole number N of sampling periods. Sine a B-spline is nothing but a linear

ombination of basis funtions properly translated in time, the exat disretization of

the basis funtion Bd(t) is onsidered at �rst. In partiular the disrete basis funtion

Bd
k = Bd(kTs) an be expressed as

Bd
k=

1

N
B0

k∗
1

N
B0

k∗. . .∗
1

N
B0

k
︸ ︷︷ ︸

d times

∗Z−1
{
Fd(z

−1)
}
∗B0

k (4.88)

where ∗ denotes the disrete onvolution produt, Z the Z-transform,

B0
k = B0(kTs) =







1, if k = 0, 1, . . . , N − 1

0, otherwise.

(4.89)

and Fd(z
−1) is a FIR �lter de�ned by

Fd(z
−1) =

z−1Qd−1(z
−1)

d!
, (4.90)
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F1(z
−1) = z−1

F2(z
−1) = 1

2z
−1 + 1

2z
−2

F3(z
−1) = 1

6z
−1 + 4

6z
−2 + 1

6z
−3

F4(z
−1) = 1

24z
−1 + 11

24z
−2 + 11

24z
−3 + 1

24z
−4

F5(z
−1) = 1

24z
−1 + 26

24z
−2 + 66

24z
−3 + 26

24z
−4 + 1

24z
−5

Table I

Expression of the �lter Fd(z
−1) for di�erent values of d.

with the polynomial

Qr(z
−1) = cr,0 + cr,1z

−1 + . . .+ cr,r−1z
−(r−1) + cr,rz

−r
(4.91)

whose oe�ients (for r ≥ 2) an be omputed in a reursive way as

cr,0 = cr,r = 1

cr,r−i = cr−1,r−i−1 · (i+ 1) + cr−1,r−i · (r − i+ 1)

with i = 1, . . . ,
[
r
2

]
, being

[
·
]
the integer part operator. In Tab. I the expression of

the FIR �lter Fd(z
−1) de�ned in (4.90) is reported for several values of the B-spline

degree d. From (4.88) it follows that, analogously to analyti B-splines, a generi

disrete basis funtion Bd
k of degree d an be omputed by applying the sequene B0

k

to a hain of d mean �lters. In the disrete-time ase, it is neessary to onsider the

PSfrag replaements
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Figure 4-30: System omposed by d moving average �lters and by the FIR �lter

Fd(z
−1) de�ned in (4.90) for the omputation of the disrete B-spline basis funtion

Bd
k of degree d.
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additional �lter Fd(z
−1) as illustrated in Fig. 4-30. Therefore the disrete B-spline

qk =
m∑

j=0

pjB
d
k−jN (4.92)

of degree d an be obtained as output of the dynami system omposed by a asade

of d moving average �lters

M(z) =
1

N

1− z−N

1− z−1
(4.93)

=
1

N

(
1 + z−1 + z−2 + . . .+ z−(N−1)

)

and by the additional FIR �lter Fd(z
−1) feeded with the pieewise onstant funtion

pk =
m∑

j=0

pjB
0
k−jN (4.94)

where pj are the ontrol points of the related analyti B-spline. In Fig. 4-31 the

funtion pk is reported along with the values of the analyti B-spline orresponding

to the given ontrol points pj at the disrete time instants kTs.

The proedure desribed so far leads to an exat disretization of the basis funtion

of uniform B-splines of generi degree d that an be reursively de�ned starting from

B0(t), and therefore the disrete B-spline an be obtained. However in this ase

it is neessary to take into aount the presene of the FIR Fd(z
−1) whih makes

the relation more omplex. On the other hand, one would expet that a disrete

B-spline basis funtion of a given degree d ould be de�ned as a asade of d mean

�lters that reeives as input the disrete-time funtion B0
k = B0(kTs) similarly to

the ontinuous ase. This is equivalent to neglet the term Z−1 {Fp(z
−1)} in (4.88)

and leads to the de�nition of approximated disrete B-spline basis funtions and

approximated disrete B-splines, that do not share the same values of analyti basis

funtions Bd(t) and analyti B-splines qu(t) at disrete points kTs but approximate

suh values within a presribed tolerane that depends on N . In partiular it an be

proved that when N reahes an high value, the di�erene is onsiderable redued (for
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Figure 4-31: Samples of the pieewise onstant funtion pk (a) generating the spline

pro�le qk that interpolates the given points qj (b).

instane for N = 500 the error is less than 1%) and the use of disrete B-spline basis

funtions with or without Fd(z
−1) is nearly the same.

Anyway, although a hain omposed only by running average �lters is partiularly

attrative (and simple), it is worth notiing that, the FIR �lter Fd(z
−1) involves only

a slight additional omplexity. Namely this �lter only depends on the last d samples

of the input but relaxes onstraints on N .

4.5.4 Uniform B-spline Online Trajetory Generator

Based on FIR Filters

In setions 4.3.3 and 4.5 the methods for design and implementation of a uniform

B-spline trajetory generator are reported showing that this kind of splines an be

e�iently generated by means of a hain of linear �lters properly fed with the se-

quene of the ontrol points that determine the shape of the urves in the spae. The

trajetory generator shown in �g. 4-33(a) is omposed by d moving average �lters of
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order N and an algorithm that transforms the desired points qj in the set of ontrol

points pj used for de�ning the sequene p(k) whih is the input for the �lter hain.

Note that the B-spline is de�ned by adopting a sampling period Ts, that generally

oinides with the sampling time of the overall ontrol system, while p(k) is a piee-

wise onstant sequene, in whih the generi value pj is maintained for T = N · Ts
seonds. Moreover, it is worth notiing that, while the spline evaluation is performed

online, its de�nition (i.e. the omputation of the ontrol points) is made o�-line.

In partiular in [10℄ it is shown that by adopting B-splines of generi degree d, the

systems to be solved for obtaining the ontrol points will be haraterized by banded

matries, whose inversion an be arried out in a very e�ient way.

Anyway it is lear that suh a solution an only be found one all the via-points qj

are known, i.e. the solution must be performed o�-line. However, when the via-points

are given progressively, it may be desirable that ontrol points are alulated runtime

by approximating, if possible, the ideal solution. To this purpose, in [14℄ it is demon-

strated that the relationship (4.61) between ontrol points and via-points an be seen

as a dynami relationship between via-points and ontrol points, that in the domain

of the Z-transform an be expressed as

P (z)

Q(z)
=

6

z + 4 + z−1
(4.95)

for ubi B-splines, and

P (z)

Q(z)
=

120

z2 + 26z + 66 + 26z−1 + z−2
(4.96)

for quinti B-splines for example. Unfortunately, both �lters (4.95) and (4.96) are

unstable system and onsequently they annot be used for omputing the sequene

pj from qj . This is a diret onsequene of the fat that the interpolation proedure

is a global problem that involves all the points qj. Thus in order to implement suh

a �lter, the most straightforward method is to trunate the ideal impulse response by

windowing. In other words it is possible to approximate the interpolation proess by

taking into aount only a small set of points qi. This approah leads to a FIR �lter
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Figure 4-32: Impulse response h(n) of the �lter (4.95) (a) and of the �lter (4.96) (b).

de�ned by

H(z) =

r∑

n=−r

h(n) z−n
(4.97)

that approximates the impulse response of (4.95) and (4.96) within a presribed

tolerane aording to the value of r. The sequenes h(n) for d = 3 and d = 5 are

reported in Fig. 4-32 and in both ases it an be noted that the value of h(n) beomes

extremely small as |n| grows. Namely the hoie r = 4 for example guarantees an

approximation error with respet to the exat solution of the interpolation problem,

smaller than 0.5%.

Moreover, sine H(z) is not a ausal �lter, in order to pratially implement the

transformation between via points and ontrol points it is neessary to introdue a

delay equal to r whih makes the �lter feasible, that is

H ′(z) = z−r H(z) =
2r∑

n=0

h(n− r) z−n. (4.98)
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By means of H ′(z) it is possible to replae the o�-line interpolation leading to a

omplete on-line trajetory generator that assume an arbitrarily small interpolation

error. The hain is then omposed by two main elements a FIR �lter H ′r
d(z) of

order 2r + 1 that omputes the ontrol points from desired via-points and a asade

of d moving average �lters. The former element is omputed with a sample time

T , multiple of the basi sample period Ts (T = N · Ts), that represents the time

distane among the points to be interpolated/approximated. The average �lters are

implemented with a period Ts, and they have an impulse response of length equal to

T , being of order N . Between the two elements, it is neessary a rate transition from

T to Ts, that maintains the value pj for T seonds, see �g. 4-33(b).
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Figure 4-33: Overall struture of the �lter for B-spline trajetories planning. In (a) is shown the solution with o�-line inter-
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Chapter 5

Optimal Trajetories

for Vibration Redution

Based on Exponential Filters

5.1 Filter for Exponential Jerk Trajetory

In Setion 4.4.1 the onsiderations upon the frequeny analysis of multi-segment poly-

nomial trajetory generators based on dynami �lters leaded to a tehnique for the

optimal seletion of the parameters of a standard d-order trajetory, when dynami

onstraints are taken into aount aside from kinemati ones. In partiular for a third

order trajetory generated by means of three linear �lters

Mi(s) =
1− e−sTi

sTi
,

as shown in �g. 5-1, the parameters of the trajetory generator (i.e. time duration of

the �lters Ti) are hosen suh that

T1 =
|h|
vmax

, T2 =
vmax

amax
(5.1)
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Figure 5-1: Struture of a standard third order trajetory generator.

guarantee that the trajetory from q0 to q1 (h = q1 − q0) omplies with the veloity

limit vmax and the aeleration limit amax, and the hoie

T3 =
2π

ωn
(5.2)

assures that the frequeny ontent of the trajetory is able to anel the residual vi-

bration when the trajetory is applied to an undamped resonant system haraterized

by natural undamped frequeny ωn and δ = 0.

Unfortunately, if the damping oe�ient is not zero, the e�etiveness of the �lter

output (and therefore of standard onstant jerk trajetories) in vibration suppres-

sion onsiderably dereases. In �g. 5-2 the traking errors of a resonant system with

δ = 0.0083 and δ = 0.083 to a standard third order trajetory are ompared. Note

that if δ grows, when the motion stops (that is for t ≥ Ttot), the peak value of the

osillations of the mehanial system aordingly inreases. Moreover, also very small

values of δ ause vibrations. The e�ets of damping are analyzed in �g. 5-3, where

PRV, the perent residual vibration, is shown as a funtion of δ. The inreasing of

vibration's amplitude is onsequene of the fat that in the design of the �lter M3(s)

the damping oe�ient is not onsidered. The only way to take into aount δ is in

the seletion of the time onstant T3, and therefore the duration of the onstant jerk

segment, whih an be assumed as

T3 =
2π

ωn

√
1− δ2

.

Unfortunately this hoie mitigates but does not solve the problem, as shown in

�g. 5-3.

In order to suppress vibrations in systems whose damping is not negligible, in [7℄

the use of a nononstant limited jerk pro�le is proposed. In partiular, a dynami �lter
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Figure 5-2: Residual vibration due to a third order trajetory q3(t) with h = 30 rad,
vmax = 250 rad/s, amax = 5000 rad/s

2
, applied to a seond order system with ωn =

260.43 rad/s and δ = 0.0083 (a) and δ = 0.083 (b).
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Figure 5-3: Perent residual vibration as a funtion of damping oe�ient δ of a

seond order �lter system whose input is �ltered by M3(s).

to be applied to seond order trajetories is devised. The �lter produes asymmetri

jerk segments, haraterized by a linear derease, as shown in �g. 5-4. The slope of

these segments is omputed by solving an optimization problem aiming at minimizing

the residual vibration. This approah seems very promising as shown in �g. 5-5, where

the same onditions of �g. 5-2 are onsidered: in both ases the residual vibrations

are ompletely suppressed.

However, it is worth notiing that some weak points still exist in this tehnique:

• A losed-form solution for the omputation of the �lter parameters is not avail-
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Figure 5-4: Asymmetri jerk trajetory q2,a for h = 30 rad, vmax = 250 rad/s,

amax = 5000 rad/s

2
, and δ = 0.083 (a) and δ = 0.45 (b).

able and the numerial approximation provided in the paper is valid only for δ

su�iently lose to 0. For instane, if δ = 0.45 the trajetory does not anel

residual vibrations, as shown in �g. 5-6.

• For high values of δ, it may happens that the sign of jerk hanges within the

same segment. As a onsequene the aeleration pro�les exhibits undesirable

overshoots, see �g. 5-4(b).

In order to avoid the above mentioned problems, a shaping tehnique based on ex-

ponential funtions has been proposed in [15℄. Given a seond order trajetory q2(t),

obtained for instane with the asade of two �lters M1(s) ·M2(s), a multi-segment

trajetory with jerk segments de�ned by exponential funtions an be obtained by
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Figure 5-5: Residual vibration due to a third order trajetory with asymmetri jerk

q2,a(t) under the same onditions of �g. 5-2.
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Figure 5-6: Residual vibration due to a third order trajetory with asymmetri jerk

q2,a(t) when the value δ = 0.45 is onsidered.

adding in the hain the �lter

Fexp(s) =
α

eαTJ − 1

1− eαTJ e−TJ s

s− α
(5.3)

where α and Tj are proper parameters that determines the deay rate and the time

duration of impulses omposing the jerk pro�le. As a matter of fat, the impulse

response of Fexp(s), shown in �g. 5-7, is

fexp(t) =
α

eαTJ − 1
eαt m(t), m(t)=







1, 0 ≤ t ≤ TJ

0, otherwise

.
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Figure 5-7: Impulse response of �lter Fexp(s) for negative values of parameter α.

Therefore when applied to the trajetory q2(t) haraterized by a piee-wise onstant

aeleration, the �lter transforms the jerk signal omposed by impulsive funtion

±amaxδ(t − ti) in a sequene of exponential segments, see �g. 5-8. Note that the

maximum value of the jerk an be omputed as jmax = amax
α

eαTJ−1
.

The �lter Fexp(s), whih does not modify the limit values of veloity and aelera-

tion of the original trajetory q2(t), an be pro�tably applied to suppress residual

vibrations in those resonant systems that are haraterized by signi�ant damping

oe�ient in lieu of standard third order trajetories with limited, but onstant, jerk.

Theorem 1. The �lter Fexp(s) in (5.3) guarantees the omplete residual vibration

suppression for a vibratory systems G(s) desribed by (1.3) in Setion 1.1 fed by step

inputs if

α = −δ ωn (5.4)

TJ = k
2π

ωn

√
1− δ2

k = 1, 2, . . . (5.5)

Proof. When a step input �ltered by Fexp(s) is applied to the system (1.3), the trak-

ing error between the load position and the motor position an be omputed as

E(s) =
−s2

s2 + 2δωns+ ω2
n

· Fexp(s) ·
1

s
. (5.6)
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Figure 5-8: Seond order trajetory q2(t) with h = 30 rad, vmax = 250 rad/s, amax =
5000 rad/s2, and orresponding exponential jerk trajetory q2,e for ωn = 260.43 rad/s
and δ = 0.083 (b).

By inverse Laplae transforming E(s) and assuming t ≥ TJ , the analyti expression

of residual vibrations desends:

ε(t)=A
[
αe−δωnt

(
cos(Ωt)− cos(Ω(t− TJ))e

(δωn+α)TJ
)

−Be−δωnt
(
sin(Ωt)− sin(Ω(t− TJ))e

(δωn+α)TJ
)]

with

A =
α

(eαTJ − 1)(α2 + 2δωnα+ ω2
n)
, (5.7)

B =
αωnδ + ω2

n

ωn

√
1− δ2

,

Ω = ωn

√
1− δ2.
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Therefore, in order to assure that ε(t) = 0, ∀ t ≥ TJ it is su�ient that

δωn + α = 0 ⇔ α = −δωn

ΩTJ = 2π k ⇔ TJ = k
2π

Ω
= k

2π

ωn

√
1− δ2

, k = 1, 2, . . .

Note that Fexp(s) is a generalization of a standard �lters with retangular impulse

response, whih produe pieewise onstant jerk pro�les. As a matter of fat, when

δ = 0 and onsequently α = 0, the straightforward appliation of the l'H�pital's rule

leads to

lim
α→0

α

eαTJ − 1
=

1

TJ

and therefore

lim
δ→0

Fexp(s)= lim
α→0

α

eαTJ − 1

1− eαTJ e−TJ s

s− α
=

1

TJ

1− e−sTJ

s
.

Di�erently from asymmetri jerk trajetories, whose ability to anel vibrations for

systems with δ = 0 leaded to de�ne a proper design algorithm in Setion 4.4.1, the

parameters of Fexp(s) that assure the omplete vibrations anellations are easily

alulable in the whole range of δ ∈ [0, 1[, and the problems tied to hanges in the

jerk sign are never present.

Theorem 2. Third order trajetories with the jerk pro�le omposed by exponential

segments satisfying (5.4) and (5.5) guarantee that no residual vibrations are present

in the resonant system (1.3).

Proof. Third order trajetories with exponential jerk, whose analytial expression is

reported in Chapter 4, an be obtained by �ltering a step signal of amplitude h (where

h is the desired displaement) with the asade of linear �lters M1(s) ·M2(s) ·Fexp(s).

Therefore, when the trajetory is applied to the system G(s), the traking error
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Figure 5-9: Residual vibrations due to a third order trajetory with exponential jerk

q2,e(t) under the same onditions of �g. 5-2, but with δ = 0.083 (a) and δ = 0.45 (b).

between the load position and the motor position is given by

Eq2e(s) =
−s2

s2 + 2δωns+ ω2
n

·
(

M1(s) ·M2(s) · Fexp(s) ·
h

s

)

= h ·M1(s) ·M2(s)·
( −s2

s2 + 2δωns+ ω2
n

· Fexp(s) ·
1

s

)

= h ·M1(s) ·M2(s) · E(s) (5.8)

where Eq2e(s) is the Laplae transform of the traking error to an exponential jerk

trajetory, and E(s) is the transform of the error ε(t) to a step input, onsidered

in (5.6). If the onditions (5.4) and (5.5) are met, e(t) 6= 0 only for t ≤ TJ and,

beause the �lters M1(s) and M2(s) are haraterized by a �nite length impulse

response of duration T1 and T2 respetively, from (5.8) it follows that eq2e(t) 6= 0 for

t ≤ T1 + T2 + TJ and eq3(t) = 0 otherwise. This means that after the end of the

referene trajetory (whose duration is Ttot = T1 + T2 + TJ) residual vibrations are

ompletely anelled.

In �g. 5-9 the traking errors obtained with exponential jerk trajetories are

shown by onsidering resonant systems with quite di�erent damping oe�ients, i.e.

δ = 0.083 (a) and δ = 0.45 (b). In both ases residual vibrations are ompletely

suppressed.
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5.2 Sensitivity to Errors in Parameters De�nition

Sine the identi�ation of the optimal values of the �lter parameters does not require

an expliit knowledge of the damping oe�ient and of the natural frequeny of the

plant, the robustness of Fexp(s) is evaluated �rst by onsidering errors in σ and TJ

with respet to their nominal values, while the sensitivity with respet to hanges in

δ and ωn will be analyzed in Se. 5.4 in order to ompare di�erent types of solutions

to the problem of vibrations suppressions. In �g. 5-10 the perent residual vibration

PRV% due to errors in the estimation of the parameters α and TJ are reported for

di�erent values of the damping oe�ient and natural frequeny of the plant. In

partiular the ranges [α̂/2, 2α̂] and [T̂J/2, 2T̂J ] about the nominal values (δ̂, T̂J) are

onsidered. From the �gure, it is possible to onlude that

• the nominal value of the natural frequeny of the plant does not in�uene the

robustness of the �lter Fexp(s) while the damping oe�ient does;

• the hoie of TJ is de�nitely more ritial than the hoie of α;

• an underestimation of TJ leads to large osillations; onversely, a value of TJ

higher than the nominal one produe limited vibrations espeially for high

damping oe�ients.

5.2.1 Sensitivity to Unmodeled Dynamis of the Plant

Aording to Theorem 1 the �lter Fexp(s) in (5.3) and onsequently the exponential-

jerk trajetory obtained when the �lter is applied to a seond order trajetory q2(t),

like in �g. 5-8, guarantees a omplete anellation of the vibrations if the plant an be

modelled as a seond order system suh as (1.3). However, typial industrial plants

inlude additional dynamis that may modify the e�ets of the proposed �lter. If the

model of the plant inludes additional stable dynamis ∆G(s), e.g.

GP (s) = G(s)∆G(s), (5.9)
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Figure 5-10: Sensitivity of Fexp(s) to hanges in σ and TJ for di�erent values of δ and
ωn of the plant: δ = 0.0083 (1), δ = 0.083 (2) and δ = 0.45 (3); ωn = 260.53 rad/s

(a) and ωn = 2.6053 rad/s (b).
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Figure 5-11: Response of a resonant system with an additional real pole, GP (s) =
G(s) 1

τ s+1
with ωn = 260.43 rad/s, δ = 0.0083 and τ = 0.0046s, fored by a step input

of amplitude h = 30 rad (a) and a step input �ltered by the �lter Fexp(s) (b).

it is possible to show that the properties of Fexp(s) remain unaltered. As a matter of

fat, beause of the linearity the response of the system (5.9) to a �ltered step input

is

Ql(s) = GP (s)Fexp(s)
1

s
= ∆G(s)

(

G(s)Fexp(s)
1

s

)

.

Therefore, the ideal response obtained with the nominal model G(s) whih, aording

to Theorem 1, does not have residual vibration, is simply �ltered by ∆G(s). Note

that the dynamis∆G(s) will introdues additional modes in the response, but annot

exite again the resonant mode of G(s) damped by the �lter Fexp(s).

In partiular, if ∆G(s) represents a dynamis faster than the nominal model G(s)

and ompletely damped, for instane a real pole with time-onstant τ = 1
10

1
δωn

, the

response of the system to a step input without and with the �lter Fexp(s) is the one

shown in �g. 5-11: the presene of the additional pole involves an inreased duration

of the response that in the nominal ase reahes the steady-state ondition in TJ

seonds, but the residual vibration is ompletely suppressed.

Also, if the onvergeny rate of the additional pole is omparable with the rate of the

undamped (omplex) poles that haraterize G(s) the result is similar, that is the use

of Fexp anel the osillations that otherwise will a�et the response. See �g. 5-12

where the unmodeled dynamis ∆G(s) = 1
τs+1

with τ = 1
δωn

has been onsidered.

In ase of systems with multiple vibratory modes, a single �lter Fexp(s) is only

able to anel the osillations due to a spei� mode. As a onsequene, the use of a
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Figure 5-12: Response of a resonant system with an additional real pole, GP (s) =
G(s) 1

τ s+1
with ωn = 260.43 rad/s, δ = 0.0083 and τ = 0.046s, fored by a step input

of amplitude h = 30 rad (a) and a step input �ltered by the �lter Fexp(s) (b).
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Figure 5-13: Response of a resonant system with 2 vibrational modes haraterized

by ωn,1 = 260.43 rad/s, ωn,2 = 389.2971 rad/s and δ = 0.0083 fored by a step input

of amplitude h = 30 rad (a), a step input �ltered by the �lter Fexp(s) designed to

take into aount ω1 (b) and a step input �ltered by two �lters Fexp(s) whih onsider

both ω1 and ω2 ().
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Figure 5-14: Response of a resonant system with 2 vibrational modes haraterized

by ωn,1 = 260.43 rad/s, ωn,2 = 389.2971 rad/s and δ = 0.0083 fored by a seond

order trajetory q2(t) with h = 30 rad, vmax = 250 rad/s, amax = 5000 rad/s

2
(a),

an exponential jerk trajetory q2,e(t) taking into aount ω1 (b) and the trajetory

q2,2e(t) of �g. 5-15 whih onsiders both ω1 and ω2 ().
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�lter Fexp(s) does not guarantee the omplete residual vibration suppression but it is

neessary to onsider the asade of two or more �lters, eah one related to a spei�

mode. In �g. 5-13 the step response of a plant haraterized by two modes with

the same damping oe�ient δ but di�erent natural frequenies ωn,1 and ωn,2, with

ωn,2 =
1
2
ωn,1 without and with �ltering ation is shown. A single �lter FJ,1(s) onsid-

erably redues residual vibration but does not anel all the osillations. Therefore,

a seond �lter FJ,2(s) is neessary to ompletely suppresses undesired vibrations with

the onsequent inrease of the delay aused by the �lters. If the two �lters are not

applied to a step signal but to a seond order trajetory q2(t), like in �g. 5-14, the

apability of suppressing residual vibrations an be merged with the ompliane to

kinemati onstraints but in this ase the �nal trajetory is not haraterized by a

jerk pro�le omposed by trats of exponential funtion, see �g. 5-15.
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Figure 5-15: Pro�les of the trajetory q2,2e(t) obtained by applying to the trajetory

q2(t) of �g. 5-8(a) two exponential �lters with ωn,1 = 260.43 rad/s, ωn,2 = 389.2971
rad/s and δ = 0.083 (b).
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5.3 Digital Implementation of the Exponential Filter

Sine the generation of exponential jerk trajetories is based on the dynami �lters

fed by step funtions, i.e.

Q2e(s) = M1(s) ·M2(s) · Fexp(s) ·
h

s

it an be easily performed online by modifying the input signal. However, the pratial

use of the proposed �lter requires its transformation in the disrete time domain (Ts

denotes the sampling period) beause trajetory planning is generally performed by

digital ontrollers. This onversion an be obtained with two main tehniques, being

the impulse response of Fexp(s) of �nite length:

1. it is possible to obtain the oe�ients of a FIR �lter by sampling the impulse

response fexp(t) with period Ts;

2. it is possible to dedue the IIR transfer funtion orresponding to Fexp(s) by

means of usual disretization tehniques.

In order to obtain a losed form expression of Fexp(z) the seond approah has been

preferred. By Z-transforming the �lter Fexp(s) given in (5.3) and imposing a unitary

stati gain, the following expression desends

Fexp(z) =
1− eαTs

1− eαTs eαNJ

1− eαTs eαNJ z−NJ

1− eαTs z−1
(5.10)

where NJ = round(TJ/Ts). In �g. 5-16 the omplete struture of the disrete-time

�lter for online generating exponential jerk trajetories is shown. Note that in order

to guarantee that the sequene of values of the disrete time-trajetory oinides with

the ontinuous-time pro�le at sampling times, its expression should be obtained by
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Z-transforming the overall hain of ontinuous �lters with a step input, i.e. Q2e(z) =

Z {Q2e(s)}. Therefore, the following expression an be dedued

Q2e(z) =
h

1− z−1
·M1(z) ·M2(z) · Fexp(z) · F ′(z) (5.11)

where F ′(z) is a FIR �lter with unitary stati gain, whose expression is

F ′(z) = f0 z
−1 + f1 z

−2 + f2 z
−3

(5.12)

being

f0 =
−2 + 2eρ − 2ρ− ρ2

2(eρ − 1)ρ2

f1 =
4− 4eρ + 2ρ+ 2ρeρ − ρ2 + ρ2eρ

2(eρ − 1)ρ2

f2 =
−2 + 2eρ − 2ρeρ + ρ2eρ

2(eρ − 1)ρ2

and ρ = αTs. By omparing (5.11) with the disrete-time generator of �g. 5-16, it

omes out that the di�erene between the two output sequenes is only aused by

the �lter F ′(z), whose main e�et onsists in a time delay of two sampling intervals

1

.

By negleting this �lter, a time antiipation is therefore introdued in the generator,

as shown in �g. 5-17, where the step response of the ontinuous-time �lter and the

sequenes obtained with the exat disretization and with the approximated gener-

ator of �g. 5-16 are reported. In order to emphasize the approximation error the

sampling period has been intentionally assumed very large (Ts = 0.1 s). In this way

it is possible to appreiate that, besides the time antiipation, the disrete-time �lter

provides an exellent approximation of the desired trajetory. Obviously, when the

sampling period dereases, the di�erene between q2e(t) and the approximated q2e(k)

1

Sine the sampling frequeny ωs is generally hosen by assuming that ωs ≥ 10ωn, the parameter

ρ = −δωn
2π
ωs

results quite small in magnitude, i.e. −0.6283 ≤ ρ ≤ 0. As a onsequene, the range

of variation of the oe�ients de�ning F ′(z) is rather limited (0.1412 ≤ f0 ≤ 0.1667, 0.6666 ≤
f1 ≤ 0.6656, 0.1667 ≤ f2 ≤ 0.1932). Moreover, f1 is onsiderably higher than other oe�ients and

therefore a rough approximations of F ′(z) an be obtained by negleting f0 and f2, and assuming

that that F ′(z) ≈ z−2
.
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Figure 5-17: Comparison between the trajetories produed by exponential jerk

trajetory �lters de�ned in the ontinuous- and disrete-time domain with T1 = 1 s,
T2 = 0.6 s (Ni = eil(Ti/Ts)), TJ = 0.2 s and α = −3.

tends to vanish.

A last remark onerns the omputation omplexity of the proposed trajetory gen-

erator. As illustrated in Tab. I, where the di�erene equations of the trajetory

generator shown in �g. 5-16 are reported, at eah sampling time the omputation of

the output of the the asade of �lters requires a total of 6 additions and 5 multi-

pliations. If the �lter F ′(z) is onsidered, 2 more additions and 3 multipliations

must be performed. Moreover three memory areas are neessary, in order to store the

last N1 values of q1(k), the last N2 values of q2(k) and the last NJ values of q2e(k).

Note that the trajetory generation based on the asade of dynami �lters is onsid-

erably more e�ient than the diret alulation of the losed form equations of the

Table I

Di�erene equations orresponding to the trajetory generator of �g. 5-16. The

values of the onstant parameters ai are:
a1 =

1
N1
, a2 =

1
N2
, a3 = eαTs

, a4 =
1−eαTs

1−eαTs eαNJ
, a5 = eαTs eαNJ

.

q1(k) = q1(k) + a1

(

r(k)− r(k −N1)
)

q2(k) = q2(k) + a2

(

q1(k)− q1(k −N2)
)

q2e(k) = a3 q2e(k) + a4

(

q2(k)− a5 q2(k −NJ)
)
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Figure 5-18: Complex motion pro�le q2e(k) with vmax = 250 rad/s, amax =
5000 rad/s

2
, ωn = 260.43 rad/s and δ = 0.083, obtained by applying to the sys-

tem in �g. 5-16 a referene signal r(k) omposed by several step funtions applied at

generi time instants.

trajetory, whih, besides a larger number of additions and multipliations, requires

2 divisions and the omputation of an exponential funtion depending on t.

When a referene signal r(k) omposed by several step funtions starting at generi

time instants is applied to the trajetory generator of �g. 5-16, the pro�les shown

in �g. 5-17 are obtained. If the time-instants in whih a new trajetory is triggered

omply with the onditions reported in [13℄ a omplex motion pro�le q2e(t) that meets

veloity and aeleration onstraints and anels residual vibrations is obtained. Note

that in this ase the jerk pro�les is no longer omposed by trats de�ned by an ex-

ponential funtion beause of overlaps between adjaent jerk impulses. However,

the apability of suppressing vibrations remain unaltered. See �g. 5-19 where the

residual vibrations obtained with a seond order trajetory q2(k) and with q2e(k) are

ompared.
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Figure 5-19: Comparison between the residual vibration aused by the appliation

to a resonant system G(s) of a seond order trajetory q2(k) (ε2(t)) and the orre-

sponding exponential jerk trajetory q2e(k) shown in �g. 5-18 (ε2e(t)).

5.4 Comparative Analysis with Alternative Tehniques

for Vibration Suppression

As mentioned in the introdution, the main tehniques for omplete residual vibration

suppression based on a proper �ltering of the referene signal are input shaping and

inversion of the plant dynamis. A �rst important di�erene between these tehniques

and the proposed �lter Fexp(s) is that they do not inrease the smoothness, i.e. the

order of ontinuous derivatives, of the �ltered input. They are generally applied to

referene trajetories with bounded veloity and aeleration and therefore at least

C1
, that is with ontinuous �rst-order derivative, and provide as output a trajetory

of the same lass in ase of input shapers or even of lower lass if �lters based on

system inversion are applied. In �g. 5-20 the referene signals obtained by �ltering the

seond order trajetory q2(t) with a ZVD input shaper and with a system-inversion-

based �lter are shown. Note that the trajetory q
2,zvd

(t) remains C1
, i.e. with

disontinuous aeleration, and is ompliant with the desired bounds imposed to the

original trajetory q2(t). The trajetory q2,inv(t) �ltered by the inverse dynamis of

the plant beomes C0
, beause some disontinuities appears in the veloity pro�le.

Moreover the bounds on the trajetory derivatives are not met anymore, see the

aeleration pro�le of q2,inv(t). This behavior of the system-inversion-based �lter
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Figure 5-20: Referene signals obtained by �ltering the seond order trajetory q2(t)
of �g. 5-8(a) with a ZVD input shaper (a) and with the inverse dynamis of the plant

(b).

an be rather troublesome, sine as shown in �g. 1-1 the system G(s) that auses

vibrations models only the load and the elasti transmission of a more omplex system

whih inludes also the atuator, supposed to be able to perfetly trak the referene

trajetory qref(t). Therefore the referene sheme of a standard motion system with

elasti linkage results as in �g. 5-21. Unfortunately, any kind of atuation system is

haraterized by physial limitations on veloity and aeleration and if these bounds

are not met the trajetory beomes unfeasible. Moreover, the requirement of perfet

PSfrag replaements
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Figure 5-21: Complete model of a motion system with elasti linkage.
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traking relates the smoothness of the referene trajetory, supposed Cp
, with the

relative degree r of the linear time-invariant system desribing the atuation system

[30℄, i.e

p ≥ r − 1.

As a onsequene, in ase of an eletri atuator, with r = 3, the referene position

for the motor

2

must be at least C2
. This implies that if an input shaping �lter is

used for vibrations suppression, the seond order trajetory q2(t) is not su�ient but

a C2
funtion is required. With an inverse dynamis �lter a C3

trajetory must be

used. Conversely, the proposed �lter Fexp(s), that inreases the smoothness of the

input trajetory, needs a simple C1
funtion, like the funtion q2(t) whih leads to the

exponential jerk trajetory of �g. 5-8.

From a funtional point of view, input shapers, system-inversion-based �lter and

the proposed �lter Fexp(s) guarantee the omplete vibrations suppression in nominal

onditions. However as already pointed out in previous hapters, one of the most

important features for a ommand shaper is the robustness with respet to errors

in model parameters, i.e. δ and ωn in of the onsidered plant. Aordingly to the

disussion about the other tehniques, the robustness of the proposed exponential

�lter is investigated by means of the analysis of the transfer funtion Fexp(s).

In partiular, assuming to have a vibratory system G(s) as onsidered in Setion

2

Note the the transfer funtion of a standard DC motor is

Ga(s) =
Qm(s)

V (s)
=

Ki

LaJms3 + (RaJm +BmLa)s2 + (KbKi +RaBm)s

where Ki is the torque onstant, Kb the bak-emf onstant, Ra the armature resistane, La the

armature indutane, Jm the rotor inertia, Bm the visous-frition oe�ient and V (s) denotes the
Laplae transform of the input voltage [54℄. A feed-forward ontrol that in nominal ase assures

perfet traking is

Vff (s) = G−1
a (s)Qref (s) =

(
LaJm

Ki

s3 +
RaJm +BmLa

Ki

s2 +
KbKi +RaBm

Ki

s

)

Qref (s)

whih orresponds to

vff (t) =
LaJm

Ki

q
(3)
ref (t) +

RaJm +BmLa

Ki

q
(2)
ref (t) +

KbKi +RaBm

Ki

q
(1)
ref (t).

The ontrol ation vff (t) is feasible, that is vff (t) < ∞, only if q
(3)
ref (t) is limited and aordingly

the referene trajetory qref (t) ∈ C2
.
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Figure 5-22: Step response (a) and Pole-Zero diagram (b) of the system with δ = 0.1
shaped by Fexp(s).

1.1, the exponential �lter assures omplete vibration suppression, provided that the

onditions in (5.4) and (5.5) are satis�ed. In �g. 5-22 the vibration-free step response

of a seond order system with natural frequeny ωn and damping δ = 0.1 is reported

along with the pole-zero diagram of the shaped system Fexp(s) ·G(s), demonstrating

that the vibration is suppressed sine the zeroes of the exponential �lter atually

anel the poles of the system G(s) that ause vibrations. In addition it has to

be noted that the e�et of the �lter is to provide in�nite zeroes loated on a line

parallel the imaginary axis, plus a pole on the real axis whih is anelled by the

zero assoiated with the multipliity k = 0. Realling the pole-zero diagram of the

mean �lter M(s) in �g. 4-17 it is lear that the two transfer funtions di�ers only

by a frequeny translation that depends on the value of the damping δ. Therefore

the exponential �lter an be onsidered the frequeny translated version of a mean

�lter, in partiular Fexp(s) preserves the frequeny behavior of M(s) (i.e. frequeny

response) and permit to exploit it in the whole deaying sinusoidal domain, that is

with δ 6= 0.

This onsideration is not so surprising sine has been already demonstrated that

the exponential �lter Fexp(s) is a generalization of standard �lters with retangular

impulse response, whih produe pieewise onstant jerk pro�les. Namely in �g. 5-

7 it is shown that the impulse response fexp(t) varies aordingly to |α|, and the
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exponential-like shape degenerates into a retangular impulse of length TJ for |α| = 0.

Moreover, being α = −δωn and known that for a typial seond order system the

harateristi omplex onjugate ouple of poles is lying on a vertial line interseting

the real axis in σ = −δωn, it is straightforward to assume the deay rate α as the

required frequeny translation needed to suppress a damped vibration by means of a

mean �lter M(s). In fat, being

MJ(s) =
1

TJ

1− e−sTJ

s
,

and α = −δωn the desired frequeny translation, results

MJ (s− α) =
1

TJ

1− e−sTJeαTJ

s− α
= AFexp(s),

where A takes into aount the fat that the proposed exponential �lter has unitary

stati gain.

Finally this disussion permits to highlight a strong onnetion between the design

proedure of the exponential �lter and input shapers. In setion 2.5 has been ad-

dressed that the e�et of δ 6= 0 in the design of IS result in a frequeny translation of

the transfer funtion for the undamped ase. In partiular in equations from (2.42) to

(2.47) it is shown that the parameter K de�ned in (2.3) takes into aount the value

of the damping δ providing the shift of the zeroes of the IS. In a similar way for the

exponential �lter, the translation of α in the above equation, enrih the numerator of

MJ(s) of the term

eαTJ = e
− 2πδ√

1−δ2 .

By realling from (2.3)

K = e
− πδ√

1−δ2 ,

it turns out that the analogy is evident.

In order to ompare the exponential �lter to the other tehniques for vibration

suppression, in �g. 5-23 the analysis of Fexp(s) on the omplex plane is reported along
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Figure 5-23: Comparison of transfer funtion desription on the omplex plane of

respetively exponential �lter Fexp(s) (a), ZV IS (b) and ZVD IS (). On the right

the diagrams are reported with equal sale to the one of �g. 5-22 in order to better

understand the behavior of the system response. The ontour lines are equally spaed

of 0.1 and the zeroes position is highlighted with a blak ross
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Figure 5-24: Perent residual vibration as a funtion of the damping oe�ient δ
about the nominal value δ̂ = 0.081 (a) and δ̂ = 0.45 (b).

with that of ZV IS and ZVD IS. As already notied from the PRV funtion of the

mean �lter in �g. 4-16 the robustness of the proposed �lter Fexp(s) is at an interme-

diate value between ZV and ZV D input shapers. This is due to two main aspets,

on the one hand the multipliity of the zeroes is one, like ZV IS, on the other hand

the redued distane between the zeroes of Fexp(s) has a grater overall �ltering e�et.

In partiular it an be noted that for frequenies higher than the nominal one, the

response of the exponential �lter is onsiderably lower than that of IS. That is for

example in lieu of an approximate design solution, one may pro�tably takes into a-

ount an approah based on underestimating the frequeny parameter, while in ase

of IS this assumption an't be onsidered sine the response of IS is always symmetri

to the zeroes.

Also to the aim of omparing all the mentioned di�erent approahes in vibration sup-

pression, an extensive simulation ativity has been arried out in order to evaluate the

perent residual vibration of system G(s) as a funtion of the errors in the estimation

of its parameters, when applying di�erent tehniques. In partiular sine the inverse-

dynamis �lter requires a ontinuous input funtion, the omparative analysis has

been onduted by using the trajetory q2(t) as test funtion in lieu of the standard

step signal. By means of extensive simulations, the urves reported in �g. 5-24 and

�g. 5-25 have been obtained. For the sake of larity, the variations of parameters
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Figure 5-25: Perent residual vibration as a funtion of the ratio ωn/ω̂n, where ωn is

the atual natural frequeny of G(s) and ω̂n is the nominal value used to de�ne the

�lter, for δ = 0.081 (a) and δ = 0.45 (b).

δ and ωn with respet to their nominal values are onsidered separately. In �g. 5-24

the perent residual vibration is shown as a funtion of δ. Sine the nominal value δ̂

in�uenes the results, two di�erent values have been onsidered in order to show the

behavior of the di�erent �lters for small and large damping oe�ients (δ̂ = 0.081

and δ̂ = 0.45 respetively). For the natural frequeny, the nominal value ω̂n = 260.53

rad/s has been assumed, but it is worth notiing that the perent residual vibration

does not depends on this partiular value.

The relationship between atual value of natural frequeny and perent residual vi-

bration is shown in �g. 5-25, where the ratio ωn/ω̂n has been onsidered. Also in this

ase two di�erent values of δ have been taken into aount.

These urves highlight that the proposed �lter Fexp(s) is haraterized by an interme-

diate robustness between ZV and ZV D input shapers, and results muh more robust

than system-inversion-based �lters. Moreover, for high values of ωn, Fexp(s) o�ers the

best performanes, see �g. 5-25. As already disussed in Chapter 4, the �lter M3(s)

that produes onstant jerk trajetories, provides similar results for small values of δ

(see �g. 5-25(a)), but annot ompletely suppress residual vibrations.

Finally, a fair omparison between these methods requires also an estimation of the

time-delay that the �lters introdue and of the onsequent inrease of the motion
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duration. With this respet, it is well-known that an higher robustness of Input

Shapers is obtained by inreasing the number of impulses that form the shapers and

aordingly the delay introdued in the motion generation.

System-inversion-based �lters do not ause any delay in the referene signal traking.

However, the need for smoother trajetories implies higher durations of the motion

with respet to lower order trajetories, the bounds on veloity, aeleration, and

higher derivatives being equal. Input shapers, like ZV and ZVD �lters, introdue in

the system time-delays similar to that aused by the Fexp(s) �lter; in partiular the

additional delays are TJ/2 for ZV and TJ for ZVD, but also in this ase the need

for higher order input trajetories with respet to the �lter Fexp(s) may inrease the

total duration of the motion.

5.5 Experimental Validation of the Exponential Fil-

ter

In order to experimentally test the proposed method the setup of �g. 5-26 has been ar-

ranged. This simple system is haraterized by a linear motor, LinMot PS01-37x120,

whose slider is onneted to an inertial load by means an elasti transmission obtained

with a oil spring. The load is plaed on a liner guide in order to guarantee the axial

alignment with the motor slider and to redue stati frition. The ontrol system

is based on the servo ontroller LinMot E2010-VF that performs the basi urrent

ontrol, while the position ontrol (based on a PID ontroller and a feedforward a-

tion) has been implemented on a standard PC with a Pentium IV 3 GHz proessor

and 1 GB of RAM, equipped with a Sensoray 626 data aquisition board, used to

both ommuniate with the servo ontroller and aquire the sensors signals. The po-

sition of the motor is measured by an inremental enoder with a resolution of 1µm

integrated in the stator, and the monitoring of vibrations is obtained via a load ell

onneted between the slider and the elasti transmission. As a matter of fat, the

fore fk exerted by the spring is proportional to the error ε between motor position
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Figure 5-26: Experimental setup.

and load position, and, if the inherent damping of the transmission is onsidered, like

in �g. 1-1, fore fk is simply a saled, low-pass �ltered version of ε.

The real-time operating system RTAI-Linux on a Debian SID distribution with Linux

kernel 2.6.17.11 and RTAI 3.4 allows the position ontroller to run with a sampling

period Ts = 500µs. For the design of the ontrol sheme and of trajetory generator,

the MatLab/Simulink/RealTime Workshop environment has been used.

In Tab. II the main harateristis

3

of the mehanial system are reported. The

value of the internal damping bt is unknown, but it an be easily dedued from the

parameters α and TJ of the �lter Fexp(s). The value of these parameters is obtained

as desribed in Se. 5.2 but the osillation is indued by physially bloking the mo-

3

The symbols refer to the model of �g. 1-1(b).
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Table II

Motion system parameters.

Parameter Symbol Value Unit

Slider mass Jm 0.599 kg

Load mass Jl 0.623 kg

Spring sti�ness kt 6490 Nm

tor slider and applying an initial deformation to the spring. In �g. 5-27, the fore

fk(t) reorded during an experiment is shown together with the fore of the identi�ed

system haraterized by δ̂ = 0.0246 and ω̂n = 101.3724 rad/s, whih orrespond to

α̂ = −2.4958 and T̂J = 0.0620 s (indeed, several tests have been performed and the

mean value of the parameters has been assumed). Note that the value of ωn found

in the experiments is onsistent with the theoretial value

√

kt/Jl = 102.0653 rad/s.

The main di�erene between the responses of real and ideal system lies in the man-

ner in whih the osillation vanishes, see �g. 5-27 for t ≥ 0.9 s: the model's output

goes to zero asymptotially while the real system suddenly stops probably beause

of the (unmodeled) stati frition. Moreover, besides the vibratory dynamis Gml(s)

the model of the real system should inlude the poles of the ontrolled atuator, but

sine the ontrol feedbak has been designed with a very high bandwidth these poles

have been negleted. As a matter of fat, as already noted in Se. 5.2.1 unmodeled

poles faster than the mehanial dynamis that indues vibrations do not modify

signi�antly the results of the appliation of the �lter Fexp(s) and of the exponential

jerk trajetories.

In �g. 5-28, the response of the system to seond-order trajetory q2(t) used as basi

motion pro�les is reported. This trajetory, haraterized by a total displaement h

of 30 mm, has been obtained by means of the two �lters of �g. 5-16 with Ni = Ti/Ts,

i = 1, 2, being T2 = 1.5 T̂J = 0.0930 s and T1 = 2 T2 = 0.1860 s. With these param-

eters, the maximum veloity and the maximum aeleration are vmax = 0.1613m/s

and amax = 1.7343m/s

2
respetively. Obviously the behavior of the system at the

end of motion (highlighted in the plots with the white bakground) is very similar to

that of the unontrolled system of �g. 5-27.

When the �lter Fexp(z) is added and the exponential jerk trajetory is applied to
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Figure 5-27: Osillations of the system of �g. 5-26 used for the identi�ation of the

parameters of �lter Fexp(s).
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Figure 5-28: Residual vibrations indued in the system of �g. 5-26 by the appliation

of a seond order trajetory q2(t).

the resonant system, the residual vibration is onsiderably redued, see �g. 5-29(a).

However, it is not ompletely anelled. Note that the residual vibration seems not

due to additional unmodelled (linear) dynamis of the plant sine its period is exatly

T̂J . Instead, the ause must be probably sought in nonlinear phenomena (i.e. the

stati and Coulomb frition on the motor slider) and external disturbanes (suh as

the ogging whih is present in the linear motor) a�eting the system. These e�ets

are probably not ompletely ompensated by the motor ontroller and the atuator

does not behaves like an ideal position soure.

In order to evaluate the bene�ts of the proposed method in real appliations, its
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Figure 5-29: Comparison between residual vibrations indued in the system of �g. 5-

26 by the appliation of an exponential jerk trajetory (a), a seond order trajetory

�ltered by a ZVD input shaper (b) and a seond order trajetory �ltered by the

system inverse dynamis ().
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Figure 5-30: Residual vibrations indued in the system of �g. 5-26 by the appliation

of a seond order trajetory q2(t) with T2 = 0.1137s.

behavior has been ompared with those of the alternative approahes mentioned in

Setion 5.4, whih should lead to a omplete anellation of residual vibrations. In

partiular, in �g. 5-29(b) the response of the experimental setup to the trajetory

q2(t) �ltered by a ZVD input shaper is shown, and in �g. 5-29() the result with the

inverse dynamis �lter is reported. The atual apabilities of the exponential jerk

trajetory and of the input shaper in vibrations suppression are omparable, while

the �lter based on the dynamis inversion shows a lower robustness with respet to

the above mentioned non-idealities: the level of vibrations dereases with respet to

those obtained with the diret appliation of q2(t) only for a positive displaement

of the motor, while it remains pratially unhanged if the motion ours along the

negative diretion. Note that several tests have been performed but the result was

always the same.

Note that the vibrations redution shown in �g. 5-29 with respet to �g. 5-28 is

marginally aused by the inrease of the time-duration of the trajetory beause of

the additional �lters. As a matter of fat, both for exponential jerk trajetory and for

the input shaper �ltered trajetory the duration of the motion is Ttot = T1+T2+ T̂J =

0.3410 s. Therefore, in order to perform a more preise omparison, a seond-order

trajetory q2(t) with the same total duration (that is T2 = 0.1137 s T1 = 2 T2 and

Ttot = T1 + T2 = 0.3410 s) has been applied to the mehanial system. The result,
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Figure 5-31: Residual vibrations indued in the system of Fig. by an exponential jerk

trajetory with TJ = 0.5T̂J (a) and TJ = 1.5T̂J (b), and by a seond order trajetory

�ltered by a ZVD input shaper with TJ = 0.5T̂J () and TJ = 1.5T̂J (d).

illustrated in �g. 5-30, on�rms that the redution of the residual vibration obtained

with a simple time-saling is rather limited if ompared with the proposed approah,

for equal time duration of the overall trajetory.

Finally, the robustness of the �lter Fexp with respet to errors in the parameter TJ has

been experimentally tested. In �g. 5-31(a) and �g. 5-31(b) the responses of the system

to the exponential jerk trajetory omputed with the parameter TJ equal to 0.5T̂J and

1.5T̂J are reported, and on�rm that an underestimation of TJ makes the �lter Fexp

less e�etive while an overestimation of TJ lead to small residual vibrations. Con-

versely, with ZVD input shapers only the nominal values of the parameters produe

good performanes. In fat, both underestimation and overestimation of TJ ause

large residual vibrations, see �g. 5-31() and (d). Note that in the test reported in
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�g. 5-31(b) the residual vibration is even smaller than the vibration obtained with the

nominal value of parameter TJ and shown in �g. 5-29(a). This is probably due to the

fat that the higher duration of the trajetory, i.e. Ttot = T1 + T2 + 1.5T̂J = 0.3808 s,

with respet to the nominal trajetory, for whih Ttot = 0.3410 s, mitigates the above

mentioned non-ideal phenomena, like frition and ogging, and allows the motor to

better trak the given pro�le qref(t).

5.6 Feedforward Control of an Elasti Joint

for Vibrations Suppression

In the previous Setions it has been shown that the use of exponential jerk trajetories,

whih an be e�iently generated by �ltering standard trapezoidal trajetories, allows

to redue onsiderably the vibrations level in motion systems with elasti transmis-

sion. In partiular a dynami �lter Fexp(s) has been de�ned and haraterized both

analytially and experimentally. In order to further exploit the apability of the ex-

ponential �lter, in [18℄ has been proposed as a feedforward ontroller for Variable

Sti�ness Atuators (VSAs).

VSAs are trend topi in robotis sine two deades ago. The development of servie

robots lose ooperating with humans has driven the designers towards novel me-

hanial solutions aiming at inreasing the mehanial ompliane and reduing the

apparent inertia of robot manipulators [20℄. Unfortunately, an high level of mehan-

ial ompliane deteriorates the performane of the plant, in partiular with respet

to preision. For this reason, in order to solve simultaneously safety and performane

issues, VSAs, whih introdue a mehanial ompliane in the joint atuation that

an be altered via ontrol ation, have been proposed [23, 110, 104, 22℄. Unfortu-

nately, the performane of Variable Sti�ness Joints (VSJ) robots are still far from

those of standard rigid joints manipulators, beause of the high order nonlinear dy-

namis of the system, due to the additional sti�ness variation mehanism, and the

strongly nonlinear harateristis of VSAs. Moreover, a major problem of VSAs is the
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very low intrinsi damping that usually haraterizes this type of devies, whih may

ause vibrations and undesired osillations, [3℄. Aordingly, injeting damping into

the system is one of the main ontrol goal in this �eld. Several ontrol approahes for

VSJ robots are presented in the literature. While many ontrollers are oneived for

single-joint systems (see [103, 3℄ among many others), the multi-joint ase is treated

less frequently. A feedbak linearization algorithm is designed and validated in sim-

ulations in [69℄. A state feedbak ontroller aiming at obtaining the desired level of

damping is presented in [76℄, while, more reently, in [77℄ a bakstepping approah

has been proposed in order to manage the omplexity of a VSA system.

The hoie of a feed-forward ontrol for VSAs is motivated by a twofold reason:

• the goal of the ontrol is to anel the osillations that a�et point-to-point

motions of the robot joints, onneted to the motors by the (variable sti�ness)

elasti transmissions with low damping, while stati performanes, in terms of

preision, are not addressed;

• the proposed open-loop ontrol does not alter the sti�ness seen at the link side,

while a losed-loop ontrol does it [3℄.

Note that, in the literature a number of feedforward ontroller has been applied to

roboti system with elasti elements. In [5, 59, 65℄ the ommand shaping tehnique

has been used for robots with �exible links in order to redue vibrations. The same

goal has been ahieved for robot manipulators with elasti joints, in [52℄, where an

input shaping tehniques is ombined with an iterative learning mehanism that up-

dates the parameter of a Zero Vibration (ZV) input shaper in order to take into

aount nonlinear and time-varying harateristis of the plant.

The ontrol of a single roboti joint with elasti transmission, like the one depited

in �g. 5-32, an be easily performed by onsidering only variables at the motor side.

It is well known, see e.g. [27℄, that, in absene of gravity, a PD ontrol based on mo-

tor's position qm and veloity q̇m is stable for any positive value of the proportional

and derivative gains. Therefore, it is possible to obtain a ontrolled system that in

priniple is arbitrarily fast and preise. Unfortunately, even if the motor is able to
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trak the desired referene signal qref(t) with small errors (and therefore it is possible

to assume qm(t) ≈ qref (t)) the link position may be a�eted by undesired osillations

and vibrations. As a matter of fat, the relationship between the motor position and

the link position an be modelled as a typial seond order system G(s) like the one

in (1.3). Thus the use of the exponential �lter Fexp(s) in (5.3) as a ommand shaper

for the ontrolled motor has been already proven to be a simple and e�etive way

to redue/suppress the osillation. This onsideration allow to generalize the results

in previous Setions to any type of Single Input Single Output (SISO) Linear Time-

Invariant (LTI) system, haraterized by one or more osillating dynamial modes.

Therefore, given a dynami system modelled as

G(s) =
N(s)

D(s)(s2 + 2δωns+ ω2
n)

where N(s) and D(s) are generi polynomial (D(s) Hurwitz), it is possible to show

that the ontribution to the response of the osillating mode haraterized by (δ, ωn)

an be ompletely nulli�ed TJ seonds after the appliation of the input signal by

inserting between the input and the system a properly tuned �lter Fexp(s).
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5.7 Feedforward Control of MIMO LTI Systems

for Residual Vibration Suppression

The extension of the results for SISO systems to Multiple Input Multiple Output

(MIMO) systems is straightforward. As a matter of fat, for MIMO LTI systems,

usually modelled in the state spae domain as







ẋ = Ax+Bu

y = Cx+Du
(5.13)

where x ∈ Rn
is the state vetor, u ∈ Rr

is the input vetor, y ∈ Rm
is the output

vetor, and {A, B, C, D} are matries of appropriate dimensions, it is possible to

dedue the transfer matrix, i.e. the matrix of the transfer funtion between the r

inputs and the m outputs,

H(s) =
CAdj(sIn −A)B + |sIn −A|D

|sIn −A| (5.14)

where Adj(X) is the adjoint matrix assoiated with X and |X| denotes the deter-
minant of X. The term |sIn −A| is an n-th polynomial, whose roots are the poles

4

of the transfer funtions that ompose H(s). Note that, if no anellations our

between the numerator and the denominator of these transfer funtions, they share

the same poles. Therefore, in order to suppress the e�ets of a poorly damped mode

(δ, ωn) on the outputs, it is neessary to insert a �lter Fexp(s) before eah of the r

inputs.

5.8 Feedforward Control of Roboti Manipulators

with Elasti Joints

In order to apply the tehnique proposed in Setion 5.1 to a roboti system aordingly

to the MIMO ase extension in Setion 5.7, it is neessary to onsider the omplete

4

As well-known, if no anellations our the poles oinide with the eigenvalues of matrix A.
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model of the manipulator. The redued model

5

of a viso-elasti joints robot is

M(ql)q̈l +C(ql, q̇l) q̇l + g(ql)+Kt · (ql − qm)

+Bt · (q̇l − q̇m) = 0 (5.15)

where M(ql), and C(ql, q̇l) are the inertia and entrifugal/Coriolis fores matries,

g(ql) represents the gravity term, Kt = diag{kti}, Bt = diag{bti} are the matries

of the transmission sti�ness and visous frition, ql and qm denote the vetor of

the joint positions at the link side and at the motor side, respetively [28℄. Note

that the motors' dynamis that usually aompanies (5.15) has been negleted sine,

aording to a standard deentralized ontrol of robot manipulators, it is assumed that

the motors behave like ideal position soures able to impose any desired on�guration

qm.

The model of VSJ robots an be ideally obtained from (5.15) by assuming that the

sti�ness matrix is not a onstant but a funtion of time, i.e.

Kt = Kt(t).

The sti�ness modi�ation is generally obtained with extra ommand inputs to the

robot system that allow to hange eah joint sti�ness independently, i.e.

kti = kti(si)

where si denotes the ativation signal of the sti�ness of the i-th joint. Therefore,

it is possible to rewrite the transmission sti�ness matrix as Kt = Kt(s). In many

ases, in partiular when the variable sti�ness mehanism is obtained with a ouple

of antagonisti atuators (like in the experiments proposed in this paper) [69℄, the

elasti torque not only depends on the external signal s(t) but is a nonlinear funtion

of the motors displaement. As a onsequene, the general expression of the elasti

5

This model is based on the assumption that the angular kineti energy of the motors is only due

to their own spinning [99℄.
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transmission torque should be τ
el

= τ
el

(ql−qm, s) where τ el

(∆q, ·) denotes a vetorial
nonlinear funtion whose elements are odd stritly monotonially inreasing funtions

of ∆q and τ
el

(0, ·) = 0. Finally, it is worth notiing that often the variable sti�ness

mehanism makes also the damping torques not onstant but variable as a funtion

of the time. Therefore, a quite general expression that desribes the dynamis of VSJ

robots is

M(ql)q̈l +C(ql, q̇l) q̇l + g(ql)+τ el(ql − qm, s)

+τ
damp

(q̇l − q̇m, s) = 0 (5.16)

where, similarly to τ
el

, τ
damp

(∆q̇, ·) denotes a vetorial nonlinear funtion whose

elements are odd stritly monotonially inreasing funtions of∆q̇ and τ
damp

(0, ·) = 0.

5.8.1 Linearized Model of a VSJ Robot and Feed-Forward

Design

In order to �nd the parameters of the proposed �lter for feed-forward ontrol for a

given value s = s⋆, it is neessary to linearize (5.16) around the desired equilibrium

state (ql, q̇l) = (q⋆
l , 0) with q⋆l related to the equilibrium input (qm, q̇m) = (q⋆

m, 0) by

g(q⋆
l ) + τ

el

(q⋆
l − q⋆

m) = 0. (5.17)

Note that, for the sake of larity, sine the input s is supposed to be a onstant the

dependane of τ
el

and τ
damp

on it has been omitted. The approximation of (5.16) by

Taylor series expansion up to the �rst order provides the following expression

M (q⋆
l )∆q̈l + g(q⋆

l ) +
∂g(ql)

∂ql

∣
∣
∣
∣
ql=q

⋆
l

∆ql + τ
el

(q⋆
l − q⋆

m)

+
∂τ

el

(∆q)

∂∆q

∣
∣
∣
∣
∆q=q⋆

l
−q⋆

m

(∆ql −∆qm) +
∂τ

damp

(∆q̇)

∂∆q̇

∣
∣
∣
∣
∆q̇=0

(∆q̇l −∆q̇m) = 0 (5.18)

where ∆ql = ql − q⋆
l , ∆qm = qm − q⋆

m, et. represent small variations with respet

to the orresponding equilibrium values. Note that entrifugal/Coriolis terms, that
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are quadrati with respet to the veloity, disappear in the linearized model. By

substituting (5.17) in (5.18) and denoting

G⋆ =
∂g(ql)

∂ql

∣
∣
∣
∣
q

l
=q⋆

l

K⋆
t =

∂τ
el

(∆q)

∂∆q

∣
∣
∣
∣
∆q=q⋆

l
−q⋆

m

B⋆
t =

∂τ
damp

(∆q̇)

∂∆q̇

∣
∣
∣
∣
∆q̇=0

the expression of the linearized model beomes

M(q⋆
l )∆q̈l +G⋆∆ql +K⋆

t (∆ql −∆qm) +B⋆
t (∆q̇l −∆q̇m) = 0 (5.19)

whih an be rewritten in the state-spae form suh as (5.13) with

A =




0n In

−M−1(q⋆
l )K

⋆
t −M−1(q⋆

l )G
⋆ −M−1(q⋆

l )B
⋆
t





B =




0n 0n

M−1(q⋆
l )K

⋆
t M−1(q⋆

l )B
⋆
t





where the state and input vetor are x =




∆ql

∆q̇l




and u =




∆qm

∆q̇m




respetively. By

analyzing the eigenvalues of the matrix A it is possible to �nd the values of the reso-

nant modes that a�et the roboti plant. A n degrees-of-freedom robot manipulator

with undamped or poorly damped elasti joints will be haraterized by n pairs of

omplex onjugate eigenvalues with (δi, ωni), i = 1, . . . , n. In order to suppress the

osillations at a onstant on�guration q⋆
l it is su�ient to �lter the referene signals

of the motors, and onsequently the motor positions qm(t) supposed to be equal to

qref(t), with a hain of �lters Fexpi(s), one for eah mode of the system.
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5.9 Experimental Results

The method desribed in previous setions has been tested on a real soft roboti

arm build with QBMove - Maker Pro VSAs by QBRobotis [81℄. These atuators

implement the onept of variable sti�ness servo motors, i.e. motor units that inlude

also (position) sensing and ontrol system allowing the user to ommand both the

position and the sti�ness of the output shaft with an external signal. For these reason,

these atuators are very suitable for rapid prototyping robots with variable sti�ness

joints [22℄. QBMove VSAs are provided with an easy to use Matlab/Simulink toolbox

that an runs without partiular restrition even on standard operating system and

ommuniates with the atuators via USB. In the experiments reported in this setion

Matlab ran with a �xed step size Ts = 2 ms. For this reason, the �lter Fexp(s) has

been disretized aording to the tehniques reported in Setion 5.3.

The mehanial struture of these VSAs is based on an antagonisti on�gurations

with two servomotors onneted to the output shaft by tendons that are �xed to

springs. The working priniple is quite simple: the shaft position is the mean of the

servos position so it is due to the onordant motion of the servo motors, while the

sti�ness grows as the displaement between the servos inreases. Therefore, when the

user spei�es a give shaft position ql and a sti�ness preset s, these values, related to

the motor position by

ql =
qm,1 + qm,2

2
, s =

qm,1 − qm,2

2
,

are translated by the QBMove ontroller in the motor positions qm,1 and qm,2, that

are atuated by the two servomotors. As a onsequene, a feedforward ontroller that

�lters the inputs ql and s is atually plaed before the motor position qm,1 and qm,2,

as supposed in Se. 5.8.
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Parameter Value Unit

Peak (Maximum) Torque 1.5 Nm

Maximum Speed 9.5 rad/s

Maximum Sti�ness 13 Nm/rad

Minimum Sti�ness 0.5 Nm/rad

Figure 5-33: CAD view of the setup for parameters evaluation and main data of the

servomotor.

5.9.1 Charaterization of a Single Atuator

In order to test the proposed method, an intensive experimental analysis on a single

atuator has been arried out to estimate the parameters α and TJ whih harater-

ize the �lter Fexp(s). In order to better appreiate the osillations due to the elasti

transmission, a known inertial load represented by an iron disk of diameter 10 m

and weight 1 kg has been attahed to the atuator shaft, as shown in �g. 5-34. Then

a step of 45o have been ommanded to the atuator with a �xed sti�ness preset value

and the response has been evaluated.

Several tests has been performed with various sti�ness values in order to analyze

di�erent step responses. As an be seen from the responses of �g. 5-34, the system

behaves like a seond order system. This means that the dominant dynamis is the

mehanial dynamis of the inertia with the elasti transmission, while the dynamis

of the two servo motors inside the atuators an be negleted. For eah sti�ness
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Figure 5-34: Step response ql(t) of the servomotor with an inertial load with di�erent

sti�ness values k⋆
t . In red the step set-point of 45o is reported.
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Figure 5-35: Estimated parameters ωn (a) and δ (b) for di�erent values of sti�ness

presets s⋆. Di�erent equilibrium points have been onsidered.

preset s⋆, and therefore for eah values of the sti�ness k⋆
t , the values of the damp-

ing oe�ient δ and natural frequeny ωn of the system have been determined, and

are reported in �g. 5-35. It is worth notiing that, as expeted, ωn inreases as the

sti�ness grows but it is also visible a slight inrease of δ, due to frition e�ets of

the partiular transmission of the QBMove. Sine Jl is known, from δ and ωn it is

possible to immediately dedue the values of the sti�ness and damping (k⋆
t , b

⋆
t ) about

the equilibrium point.

In a �rst stage of this experimental ativity, the proposed feedforward ontrol based

on the exponential �lter Fexp(s) has been applied to a single atuator and its per-

formane have been ompared with those of ZVD Input Shapers, that are the most

widespread �ltering methods for residual vibration suppression, see [95, 86, 106℄. In

order to appreiate the e�etiveness of the proposed method, only very low sti�ness

values have been onsidered as they represent a more hallenging situation in terms

of vibrations. With the parameters derived by means of the proedure desribed

above, the appropriate parameters of the exponential and ZVD �lters have been de-

rived for every sti�ness preset that has been onsidered. Then a �ltered step input

has been provided to the atuator. The obtained results are shown in �g. 5-36: the

performanes of the two methods in terms of residual vibration redution and time
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Figure 5-36: Response of the system with sti�ness preset s⋆ = 5 to a step input of

45o, shaped by exponential jerk �lter (a) and ZVD input shaper (b).

duration of the motion are similar and in general very good. However, it is interesting

to notie the di�erene between the motions qm,1(t) and qm,2(t) performed by the two

servo motors. While the motors with the ZVD input shaper are fed by several steps,

exponential �lter provide a smoother trajetory that an be easily traked.

5.9.2 Appliation of the feed-forward ontrol to a planar robot

The proposed tehnique has been applied to the 3-dofs planar roboti arm made of

QBmove VSAs shown in �g. 5-37. For our purpose the arm has been ontrolled only

in position without aring about orientation, therefore the disussion refers only to

the �rst two joints. The atuator parameters (k⋆
t , b

⋆
t ) derived in previous setion for

a given sti�ness preset s⋆ have been used to determine the values (δi, ωni) of the two

vibratory modes that haraterize the robot model, linearized about the desired �nal

on�guration. From these values the parameters of two exponential �lters, whih are

arranged in a asade on�guration on the referene inputs of the motor, are obtained,

see �g. 5-38. Also in this ase the behavior obtained with the proposed exponential

�lter is ompared with the those obtained with ZVD Input Shapers.

In the test shown in �g. 5-39, only the �rst joint is moved, aording to a step signal

of 30o. In this ase the preset sti�ness signal has been set to 5. Despite the large

variations, the �lters, designed for linear systems, are able to anel the osillation
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Figure 5-38: Blok-sheme representation of the feedforward ontrol.

on the �rst joint and also to avoid the mutual in�uene with the seond joint, see

�g. 5-39(b). In �g. 5-40 a simultaneous motion of 30o is required to both joints. It is

quite evident that the proposed method eliminates residual vibrations. Moreover, it

guarantees a smoother motion with respet to the ZVD input shaping tehnique with

the same time performane. In both the experiments it is evident a notieable position

error due to the fat that feedforward ontrol is not able to ompensate for frition
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e�ets (the gravity does not a�et the system whih move on the horizontal plane).

Anyway, the fat that even without �lters the stati error is omparable proves that

this problem is not related to the spei� trajetory generation, but rather to the

small value of the sti�ness.

In �g. 5-41 the same experiment of �g. 5-40 but with an higher value of the sti�ness

(s⋆ = 30) is shown. The onlusions do not hange with respet to the previous test,

that is the use of exponential �lters on the referene inputs anels the osillations

on the joints positions. In this ase, the stati preision slightly improves, beause of

the higher sti�ness.
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Figure 5-39: Response of the atuators (ql,2(t) and ql,2(t)) that ompose the 2-dofs

roboti arm to a step input trajetory with a sti�ness preset s⋆ = 5. In dashed red the
atual trajetory is reported. �g. 5-39(a) is a pure step, �g. 5-39(b) is an exponential

�ltered step, �g. 5-39() is a ZVD shaped input.
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Figure 5-40: Response of the atuators (ql,1(t) and ql,2(t)) that ompose the 2-dofs

roboti arm to a step input trajetory with a sti�ness preset s⋆ = 5. In dashed red the
atual trajetory is reported. �g. 5-40(a) is a pure step, �g. 5-40(b) is an exponential

�ltered step, �g. 5-40() is a ZVD shaped input.
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Figure 5-41: Response of the atuators (ql,1(t) and ql,2(t)) that ompose the 2-dofs

roboti arm to a step input trajetory with a sti�ness preset s⋆ = 30. In dashed

red the atual trajetory is reported. �g. 5-41(a) is a pure step, �g. 5-41(b) is an

exponential �ltered step, �g. 5-41() is a ZVD shaped input.
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Chapter 6

A Repetitive Control Sheme

for Industrial Robots

Based on B-Spline Trajetories

6.1 Motivations

In pratial appliations, desired tasks are often repetitive or yli in nature. This

is partiularly true in industrial robotis and in automati mahines, where many

tasks simply imply the ontinuous repetition of a given motion. From a ontrol point

of view, it is therefore required to trak and/or rejet a periodi exogenous signal

that an be onsidered known sine it refers to planned trajetories or disturbanes

whose yle time is easily measurable or known in advane. In order to improve the

traking auray, Repetitive Control (RC) represents a simple and e�etive method,

sine it aims at anelling traking errors over repetitions by learning from previous

iterations. RC was �rst developed by Inoue et al. [45, 44℄ to improve the ontrol

of the power supply in a proton synhrotron aelerator, but soon was applied to

many other di�erent systems. Many surveys, see e.g. [25℄, [109℄, report the suessful

use of RC in a number of appliations, suh as high auray trajetory traking of

servomehanism, torque vibration suppression in motors, noise anellation in power

189



supply, industrial robotis, and so on. The theoretial foundation of the RC is due

to the internal model priniple (IMP) [35℄ whih states that to trak or rejet a

ertain signal without steady-state error, the signal an be regarded as the output

of an autonomous generator that is inside the ontrol system. The IMP with the

well known fat that any periodi signal with period T an be generated by a time-

delay positive feedbak system with an appropriate initial funtion, are the basis of

a Repetitive Controller.

Stabilizability of a RC system is not a trivial problem due to the presene of a time-

delay in the positive feedbak loop. In order to address this issue, several solutions

have been presented providing neessary and/or su�ient onditions for stability and

error onvergene to zero.

In [17, 16℄, a novel repetitive ontrol sheme is presented. The sheme is based on a

proper modi�ation of the referene trajetory for the plant, whih is supposed to be

already ontrolled. A similar idea has been already proposed in the ontinuous-time

domain in [37℄, where a two-degree-of-freedom loal ontrol, and a plug-in type RC is

used to update the referene trajetory. The novelty of this ase onsists in assuming

that the referene trajetories are de�ned by spline funtions, whih are de-fato the

standard tool used in the industrial �eld for planning omplex motions interpolating a

set of given via-points [9℄. Thanks to the possibility of generating B-spline trajetories

by means of dynami �lters as reported in Chapter 4, the trajetory planner has

been inserted in an external feedbak ontrol loop that modi�es in real-time the

ontrol points of the B-spline urve so that the traking error at the desired via-points

onverges to zero. The proposed ontrol sheme has been diretly developed in the

disrete time-domain, and is haraterized by a very low omputational omplexity.

Moreover, the appliation of this ontrol sheme is independent by the partiular

ontrol law of the plant, whih is seen as a servo-system able to trak a spline urve.
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6.2 B-spline Curves and B-spline Filters for Set-point

Generation

In a number of pratial appliations the referene signal for dynamial systems is

de�ned by using spline funtions that interpolate a set of desired via-points qj, j =

0, . . . , n − 1 at time instants tj. By assuming a B-spline form of the trajetory, as

reported in Setion 4.2 results

q(t) =
n−1∑

j=0

pj B
d
j (t), t0 ≤ t ≤ tn−1 (6.1)

where Bd
j (t) is a B-spline basis funtion of degree d, the ontrol points pj must be

omputed by imposing interpolation onditions on the given data points qj , see [9℄.

Note that, as shown in �g. 6-1, the ontrol points alone determine the geometri shape

of the B-spline urve, whih represent a sort of smooth approximation of the so-alled

ontrol polygon.

6.2.1 B-spline Evaluation

In order to evaluate the spline (6.1) for a given value t ∈ [t0, tn−1] it is neessary

to ompute the basis funtions Bd
j (t) via numerial proedures, whih are usually

based on reursion. As desribed in Setion 4.3.3 if uniform B-splines are onsidered,

i.e. B-splines haraterized by an equally-spaed distribution of the knots tj i.e.

tj+1 − tj = T j = 0, . . . n − 2, the generation of the trajetory an be obtained by

means of a hain of d dynami �lters de�ned as

M(s) =
1− e−sT

Ts

fed by the stairase signal p(t) obtained by maintaining the value of eah ontrol

point pj for the entire period jT ≤ t < (j + 1)T . See the sheme of �g. 6-2 and

the signals shown in �g. 4-15, where the generation of a ubi B-spline is onsidered.

Note that p(t) is obtained by applying a zero-order hold to the train of impulses of
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amplitude pj . Moreover, it is worth notiing that the output trajetory is delayed

with respet to the appliation of ontrol points of mT seonds, where m = d+1
2
. For

omputer ontrolled systems equipped with digital ontrollers with sampling period

Ts, the B-spline referene trajetory must be omputed at time-instants kTs. It is

therefore neessary to disretize the �lter of �g. 6-2. By Z-transforming the hain of

d �lters M(s) with a zero-order hold the system of �g. 6-3 is obtained, where Fd(z
−1)

is a FIR �lter de�ned by

Fd(z
−1) =

z−1Qd−1(z
−1)

d!
, (6.2)
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as reported in Setion 4.5. The samples of the B-spline sequene are then generated

by the �lter denoted by Md(z) and oinide with the value of the ontinuous-time

trajetory at time instants kT , i.e qk = q(kT ), see �g. 6-4.

6.2.2 Control Points Computation

The ontrol points pj are omputed by imposing the interpolation onditions on

the via-points at the time-instants de�ned by knots whih for uniform B-spline are

multiple of the fundamental period T , i.e.

q(jT ) = qj, j = 0, . . . , n− 1. (6.3)

As well-known the de�nition of the interpolating B-spline is a global problem, that

an be performed only when the entire set of via-points is provided. However, it is

possible to approximate this global mapping between via-points and ontrol points

within a smaller set of data, see Setion 4.5.4. The system H(z) is a FIR �lter that

approximates the relation between via-points and ontrol points assuming to treat

the interpolation problem as a dynami relationship between via-points and ontrol

points, i.e.

P (z)

Q(z)
=

6

z + 4 + z−1
(6.4)
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Figure 6-4: Control points sequene pj de�ning a ubi B-spline and related referene

trajetory qk−mN with m = 2 obtained with the dynami �lter of �g. 6-3.

for a ubi B-spline. This approah leads to a FIR �lter de�ned by

H(z) =

r∑

n=−r

h(n) z−n
(6.5)

that approximates the interpolation problem within a presribed tolerane aording

to the value of r. The oe�ients h(n) for d = 3 an be omputed as

h(n) =
1− α

1 + α
α|n|

where α = −2+
√
3 is the stable pole of (6.4). The sequene h(n) is shown in �g. 4-32.

Note that the value of h(n) beomes extremely small as |n| grows (for more details
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see [14℄).

In the sheme of �g. 6-7, the �lter H(z) is used to transform the interpolation errors

q̃j in an error in the ontrol points position p̃j . Sine H(z) is not a ausal �lter, it is

neessary to introdue a delay equal to r to make it feasible, that is

H ′(z) = z−r H(z) =
2r∑

n=0

h(n− r) z−n. (6.6)

The referene trajetory generated by the disrete B-spline �lter is then provided

to the plant, as illustrated in �g. 6-5. Sine this sheme has a standard asade

struture without ontrol ations but with the only purpose of generating arbitrarily

omplex trajetories for the plant G(z), the apabilities of G(z) to trak suh a kind

of signals are impliitly assumed. Therefore, the system G(z) is assumed to be a

ontrolled plant, with a standard losed-loop struture, whose frequeny response is

haraterized by a typial low-pass behavior with a stati gain as lose as possible to

the unity. In order to follow the input signal aurately, the bandwidth of system must

be large enough [67℄, and in partiular larger than the maximum spetral omponents

of the input. In ase of uniform B-splines generated by the linear �lter Md(z), the

spetrum of the resulting trajetories an be determined by analyzing the frequeny

response of Md(z). In partiular the magnitude of Mp(e
jωTs) is

|Mp(e
jωTs)| =

∣
∣Fp(e

−jω)
∣
∣ ·

∣
∣
∣
∣
∣
∣

sin

(
ω
ω0

)

sin

(
ω
ωs

)

∣
∣
∣
∣
∣
∣

d

, ω ≤ ωs

2
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Figure 6-6: Magnitude of the frequeny response of the B-spline �lter Mp(z) for

p = 3 (and N = 25) ompared with the frequeny response of the ontinuous-time

generator Md(s).

where sin(·) denotes the normalized sin funtion de�ned as sin(x) = sin(πx)
πx

and

ω0 =
2π
T
, ωs =

2π
Ts
. The FIR �lter Fp(e

−jω) has a standard low-pass behavior, therefore

|Md(ejωTs)| is a low-pass �lter as well, and its magnitude dereases rather quikly as

ω grows, espeially for high values of p. In �g. 6-6, the frequeny response of the

ubi (p = 3) B-spline �lter is reported. Obviously, the frequeny response of Mp(z)

is a good approximation of that of the ontinuous time generator (the approximation

level depends on the ratio N between T and Ts). Fig. 6-6 highlights that spetrum

omponents of the referene trajetory qr(t − mT ) at the output of this �lter are

signi�ant only in the frequeny range [0, ω0], while the redution of the omponents

for ω > ω0 is at least of two order of magnitude (-40 db). From ommon pratie, it is

known that in order to obtain good traking performanes, the ontrolled plant G(z)

must have a uto� frequeny ωc ≫ ω0 (typial values are ωc ≥ αω0, with α = 5÷10).

Consequently, sine the sampling frequeny ωs is hosen as ωs ≥ βωc with β = 5÷10,

the minimum value of N may range between 25 and 100.
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Unfortunately, even if the onsiderations on G(z) above mentioned are veri�ed, that

is

G(ejωTs) ≈ 1 for ω ≤ 2π

T
≪ ωc (6.7)

the traking error e = q − qr
between plant output and referene B-spline trajetory

an be not negligible, beause G(ejωT ) is equal to one only approximatively and may

be a�eted by external disturbanes.
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Figure 6-7: Disrete-time repetitive ontrol sheme based on disrete-time B-spline

�lter.

6.3 Repetitive Control Sheme Based on Disrete-

Time B-spline Filter Generator

We assume here that the tasks to be performed are yli, and therefore that the

trajetories to be traked are repetitive. Moreover, we assume that also �external�

disturbanes have the same property, i.e. that there might be either external loads

or unmodeled dynamis depending on the urrent state of the system. In �gs. 6-8

and 6-9 is depited the typial situation of a robot traking a given trajetory q⋆(t)

whih interpolates a set of desired via-points q⋆
j . Being the robot subjet to a ertain

traking error, the atual robot position q(t) doesn't math the given trajetory,

thus the desired via-points. In this ase, it is possible to implement a proedure for

modifying the referene signal in order to guarantee that the interpolation error at
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Figure 6-8: Two-dimensional B-spline trajetory interpolating a set of via-points q⋆
j .

the given via-points q⋆
j asymptotially vanishes as highlighted in �g. 6-9.

The sheme of �g. 6-7 shows the mehanism for B-spline modi�ation based on the

RC approah. In this sheme, both the trajetory generator and the plant G(z) are

inserted in a disrete-time ontrol loop that, on the basis of the interpolation error

q̃j = q⋆
j − qj , modi�es in real-time the ontrol points sequene (denoted by pr

j) from

the initial value p⋆
j . It is a typial dual rate system with the feedbak loop running at

a sampling time T onsiderably higher than the period Ts of the trajetory generator

and of the ontrolled plant G(z).

The sequene p̃j multiplied by the onstant Kp, assumed to be equal to one, and

properly delayed in time is provided to the �lter

1

1 + z−n
(6.8)

used to ompute the referene sequene of points pr
j for the disrete-time interpolator

based on B-splines and the ontrolled plant. Note that the initial value of the output
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Figure 6-9: Two-dimensional B-spline trajetory interpolating a set of via-points q⋆
j .

of �lter in (6.8) has been set to p⋆
j , that is the sequene of the ontrol points de�ning

the ideal trajetory.

Theorem 1. The ontrol sheme of �g. 6-7, subjet to periodi disturbanes, guaran-

tees that the interpolation error q̃j = q⋆
j − qj between the desired via-points and the

plant output at time tj = jT = kNTs asymptotially onverges to zero provided that

the plant G(z) meets the trajetory traking ondition (6.7).

Proof. Aording to the theory of disrete-time repetitive ontrol [105℄, that exploits

the internal model priniple [35℄, the presene in the ontrol loop of the transfer

funtion (6.8) assures asymptoti perfet traking of a periodi signal with period n

(in this ase the sequene of desired via points q⋆
j) if the stability of the whole system

is assured.

Beause of the struture of the ontrol sheme, the stability analysis of the system at

the slow sampling rate (T ) an be dedued by neutralizing the e�ets of up-sampler

and down-sampler. By onsidering the asade of the �lter H(z) and of the system
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with period Ts omposed by plant and trajetory generator, as shown in �g. 6-10(a),

it is possible to simplify the sheme by means of some formal manipulations:

• Sine the ontrolled plant G(z) is supposed to have a standard low-pass stru-

ture, in a worst ase perspetive, in lieu of the transfer funtion G(z) the (on-

stant) omplex number

G
w

= max
ω≤ω0

|G(ejωTs)| e
jmin

ω≤ω0

{argG(ejωTs)}

an be onsidered in order to take into aount the maximum gain variation and

the maximum (negative) phase displaement aused by G(z). The use of the

B-spline �lter allows to restrit the range of variation of ω to the interval [0, ω0]

beause, as already noted, the referene signal for the plant an be onsidered

null outside this interval. In this way, the blok desribing the plant and the

down-sampler an be exhanged, as shown in �g. 6-10(b).

• the �lter H(z) whih approximates the relation between via-points q⋆
j and on-

trol points p̂⋆
j is followed by the B-Spline generator whih, fed by the ontrol

points p̂⋆
j , provides at knots jT the desired via-points q̂⋆

j−m delayed of mT in-

stants

1

. As onsequene this asade an be redued to a simple time-delay

z−m
, as shown in �g. 6-10().

Finally, the sheme of �g. 6-7 an be redued to the one shown in �g. 6-11, that

runs with a sampling period T . It is a quite standard repetitive ontrol sheme whose

stability an be inferred by analyzing its harateristi equation

1 +
z−n

1− z−n
Kp Gw

= 0. (6.9)

By following the approah proposed in [102℄, it is possible to see that the asymptoti

stability of (6.9) is equivalent to the stability of the feedbak system with loop-transfer

1

Note that p̂
⋆
j , and onsequently q̂

⋆
j−m, is only an approximation of the real value p⋆

j , beause

of the �lter H(z). However, the level of the approximation an be arbitrarily improved by assum-

ing larger values of r. If the interpolation of n via-points with B-spline trajetory of degree p is

onsidered, the optimal (highest) value of r is r = n−m, being m = p+1
2 .
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Figure 6-10: Model redution of the disrete-time repetitive ontrol sheme based on

B-spline �lter.

funtion

L(z) = z−n(KpGw

− 1).

Therefore, by applying the Nyquist riterion it desends that all the poles of (6.9) are

within the unit irle if and only if the polar plot of L(ejωT ) for − π
T
≤ ω ≤ π

T
does

not enirle or touh the ritial points −1. This an be assured by imposing that

||KpGw

− 1|| < 1. (6.10)

Being Kp ≤ 1 (usually Kp = 1), the stability ondition (6.10) holds if ondition (6.7)

is met (in this ase G
w

≈ 1). �
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from the dual-rate sheme of �g. 6-7 based on disrete-time B-spline �lter.

Note that from (6.7) results

Kp <
2 cos

(
minω≤ω0

{argG(ejωTs)}
)

maxω≤ω0
|G(ejωTs)| . (6.11)

Thus, in ase of ideal systems, the omplex number G
w

= 1 then suitable values

for the gain are Kp ∈ ]0, 2[. As a matter of fat real plants doesn't assure null

traking error presenting stati gain just lose to unity, therefore one may onsider

maxω≤ω0
|G(ejωTs)| < 1, and then values Kp > 2 may be aeptable. In this ase

however, the argument of the plant plays a key role sine it an be shown that for

inreasing values of the argument, the maximum value allowed for Kp dereases. At

least for argG(ejωTs) = π
2
, Kp ollapses to zero therefore the system with RC beomes

unstable.

6.4 Experimental analysis on a single atuator

In order to experimentally test the proposed method the setup of Fig. 6-12 has been

arranged. This system reprodues the typial behavior of a roboti joint without the

risk of strutural damages even if instability onditions our, and is the ideal tool

for analyzing limits and performanes of the proposed approah.

The test bed is haraterized by two linear motors, LinMot PS01-37x120, rigidly

onneted along the axis of motion. Linear motor A is ontrolled by means of a

position ontroller properly set up to trak a desired periodi motion de�ned by a

uniform B-spline trajetory. On the other side, the linear motor B, equipped with
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Figure 6-12: Experimental setup.

a fore/urrent ontroller, is used to generate an external periodi disturbane that

emulates a mehanial load onneted to the atuator A or the inertial oupling that

exists among di�erent axes of a robot manipulator. In partiular, in the experiments

the simple relation

Fdist = −k qm(t)− c q̇m(t)

that reprodues a spring-damper system has been assumed, with the parameters

k = 500 [Nm℄ and c = 100 [Nm s

−1
℄. The ontrol system is based on the servo

ontroller LinMot E2010-VF that performs the basi urrent ontrol, while the posi-

tion ontrol (based on a standard veloity/position asade ontrol sheme) and the

fore ontrol have been implemented on a standard PC with a Pentium IV 3 GHz

proessor and 1 GB of RAM equipped with a Sensoray 626 data aquisition board,

used to ommuniate with the servo ontroller. The position of the motor is mea-

sured by an inremental enoder with a resolution of 1µm integrated in the stator.

The real-time operating system RTAI-Linux on a Debian SID distribution with Linux
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Figure 6-13: Response of the servo system of �g. 6-12 to a step input of amplitude

10mm.

kernel 2.6.17.11 and RTAI 3.4 allows the position ontroller to run with a sampling

period Ts = 500µs. For the design of the ontrol sheme and of trajetory generator,

the MatLab/Simulink/RealTime Workshop environment has been used.

In order to better highlight the behavior of the RC mehanism, the integral ontrol

term whih is present in the position ontrol loop of the atuator has been disabled.

The response of the plant to a step input of amplitude 10 mm is shown in �g. 6-13

where it is ompared with that of a model based on a seond order system harater-

ized by a stati gain of 0.915 and a natural frequeny ωn = 63 rad/s. Note that the

real system is a�eted by not negligible nonlinear phenomena due to the very high

level of stati and oulomb frition.

In order to test the performanes of the system with the RC sheme, a trajetory

passing through n = 20 via-points is onsidered. One that the shape of the B-spline

trajetory and its ontrol-points, whih depend only on the given via-points, have

been �xed, the only parameters of the trajetory generator that an be hanged are

the knot span T (and aordingly the total duration of the trajetory) and the or-

der d of the spline. In �g. 6-14, the behavior of the system with and without RC

modi�ation of the trajetory is shown, along with the interpolation errors q̃j, for

di�erent values of the degree d. When the RC is not ativated the traking error,
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Figure 6-14: Referene trajetory and atual position of the motor A and related

interpolation error q̃j without and with RC mehanism as a funtion of d (T = 0.25
s).

intentionally quite large due to the notieable external disturbane, seems to be not

in�uened by d. On the ontrary, when the RC is ativated (after 15 yles), even if

the interpolation error q̃j at sampling time jT is negligible, during the inter-samples

the traking error is strongly a�eted by d. The same onlusions an be dedued

from the results illustrated in �g. 6-15, where the traking errors obtained with the

RC for di�erent values of T and d are shown. It has to be noted that in these exper-

iments the gain Kp has been maintained equal to one, therefore the stability of the

overall ontrol system only depends on T , as stated in Setion 6.3. In fat the system

is stable until ω0 is smaller than the uto� frequeny of the plant (ωc ≈ ωn = 63

rad/s). But when T = 0.05 s and aordingly ω0 = 125.6637 rad/s overomes ωc the

ontrol system beomes unstable, independently of d. Also by analyzing �g. 6-15,

it is lear that the amplitude of the inter-sample osillation depends on d, and in

partiular it dereases as d grows. This appear reasonable, sine pratial experiene

suggests that smoother referene signals, represented by B-spline of higher degree d,

are usually better traked by physial plants.

Finally, the role played by the gain Kp has been investigated. As a matter of fat,
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Figure 6-15: Interpolation error q̃j at sampling instants jT as a funtion of d and

T . On the x-axis, t/TTOT , being TTOT = nT the total duration of the desired spline

trajetory, represents the number of iterations.
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Figure 6-16: Interpolation error q̃j at sampling instants jT as a funtion of Kp.

On the x-axis, t/TTOT , being TTOT = nT the total duration of the desired spline

trajetory, represents the number of iterations.

despite the e�et on the rate of onvergeny of the error q̃j whih is visible in �g. 6-16,

Kp has a role even on the stability of the system as stated in Setion 6.3. In �g. 6-17

the experiments whih denoted stable onditions in �g. 6-15 has been tested with

di�erent values of Kp, showing that the system remains stable even with Kp = 2.

This an be explained by realling that the stati gain of the experimental system is

0.915, therefore Kp = 2 still veri�es the stability ondition in (6.10), while Kp = 2.5

leads to instability. On the ontrary the ase with T = 0.05, whih was unstable with

Kp = 1, an be stabilized only with very low values of Kp as reported in �g. 6-18.
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Figure 6-17: Interpolation error q̃j at sampling instants jT as a funtion of Kp and

T . On the x-axis, t/TTOT , being TTOT = nT the total duration of the desired spline

trajetory, represents the number of iterations.
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Figure 6-18: Interpolation error q̃j at sampling instants jT as a funtion of Kp

for system lose to instability. On the x-axis, t/TTOT , being TTOT = nT the total

duration of the desired spline trajetory, represents the number of iterations.
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6.5 Appliation of the RC sheme to a Comau Smart5

Six industrial manipulator

In a real senario involving an industrial manipulator, like the Comau Smart5 Six,

the proposed ontrol an be used aording two di�erent shemes and purposes:

a) the iterative modi�ation of the robot trajetories de�ned in the joint-spae

is obtained on the basis of the measurements provided by the proprioeptive

sensors of the robot, i.e. motors enoders;

b) the robot trajetories are diretly de�ned in the workspae and are modi�ed on

the basis of an external sensor that detet the position of the end-e�etor in the

3-D spae, i.e. a RGB-D amera [38℄.

In the ase a) the goal of the repetitive ontrol is improving the robot preision

by ompensating the errors that the internal ontroller of the robot is not able to

orret, while in ase b) the external sensor allows the ompensation of errors that

are not sensed by the motors enoders, e.g. position errors due to the elastiity of

the transmission hain.

6.5.1 Senario a

In order to experimentally evaluate the proposed method the setup of Fig. 6-19 has

been arranged. The system is omposed of a COMAU Smart5 Six industrial roboti

Payload

Real Time PC

Position, 

Velocity,

Current controlCu

COMAU Smart5 SiX

COMAU C4G Controller

Trajectory

Generation

Figure 6-19: Experimental setup.
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arm, a COMAU C4G Controller and a standard PC with an Intel Core 2 Duo 2.4

GHz proessor and 1 GB of RAM. The COMAU Smart5 Six is a 6 DOF robot with

anthropomorphi struture, with a payload of 6 Kg. The robot is driven by the

COMAU C4G Controller that performs both the position/veloity ontrol (adaptive

ontrol) and the power stage management with urrent ontrol of eah joint. The

C4G Controller also implements a software option alled �C4G OPEN� that allows

the integration of the robot ontrol unit with the external personal omputer, in or-

der to develop omplex ontrol systems at high hierarhial level. The C4G Open

arhiteture is based on a real time ommuniation on Ethernet network between the

ontroller and the real time PC. In partiular the PC runs on the real-time operating

system RTAI-Linux on a Ubuntu NATTY distribution with Linux kernel 2.6.38.8 and

RTAI 3.9 that allows the trajetory generator to run with a sampling period Ts = 1ms.

For the design of the ontrol sheme and of trajetory generator, the MatLab/Simulink

RealTime Workshop environment has been used.
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Figure 6-20: Traking performane of the system due to the fatory ontroller without

RC (a) and with RC ontroller ativated (b). In the middle, the modi�ed referene

trajetory qr(t) for the third joint is reported in blue, as a result of the implementation

of the RC ontroller.
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Figure 6-21: Response of the system at the ativation of the Repetitive Control

(t = 0). Errors at sampling instants T are highlighted in blue.

For sake of simpliity, the RC of Fig. 6-7 has been implemented on the third joint

only, while the seond joint has been atuated in order to disturb the third joint

beause of the dynami oupling. Obviously, both joints are required to trak two

di�erent yli spline trajetories with the same period. In partiular, eah traje-

tory interpolates 12 via-points q⋆
i with uniform knot span T = 1s. In Fig. 6-20(a)

the performane of the system is shown. As an be seen, the third joint is a�eted

by a quite evident traking error, due to both the seond joint movement and a 3 Kg

payload represented by the UBHand IV roboti hand [64℄. It is worth noting that

the traking error is relevant even in orrespondene of the points q⋆
i that de�ne the

spline trajetory.

In Fig. 6-21 the traking performane of the third joint is presented when the RC

is swithed on. It an be noted that the error dereases in overall terms, but mainly,

in orrespondene of the points q⋆
i the deay is drasti and ours in a few yles.

In Fig. 6-20(b) a detail of the trajetory traking with RC (after 5 yles) is shown:

in this ase the referene trajetory qr(t) is di�erent from the theoretial spline q⋆(t),

as it is modi�ed by the ontroller in order to suppress traking error at instants T . By

omparing Fig. 6-20(a) and Fig. 6-20(b) the redution of the traking error is evident,

partiularly in orrespondene of the points q⋆
i .
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Figure 6-22: Experimental setup based on a Comau Robot with an external RGB-D

sensor.

6.5.2 Senario b

In a number of pratial appliations the motion of the robot is de�ned with respet

to its workspae rather than to the joint spae. In this ase, yli motions ould

be a�eted by errors that ome from either external loads or unmodeled dynamis.

Sometimes also the kinemati inversion ould be a soure of errors due to parameters

variation and numerial roundings. In this senario, RC an be e�etively used to

nullify the position traking error of the end-e�etor that is required to ross a number

of via-points, usually used for de�ning omplex motions. Furthermore, if a preise

position measurement in the workspae is available, like a vision system, errors due

to unertainties on the displaement between robot and the surroundings an be

anelled.

In this experiment, the robot with the ontrol arhiteture shown in �g. 6-22 has been

equipped with an external sensor, that is a simple vision system, based on ASUS Xtion

PRO Live RGB-D amera, whih detets the position of a marker loated at the robot

end-e�etor. For the sake of simpliity, the desired path has been de�ned by means

of 60 via-points q⋆
i disposed on y − z plane and the robot is moved with a �xed

orientation. In �g. 6-23 the view of the amera, whih is disposed in front of the
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Figure 6-23: Overposed snapshots of the amera view of the omau. The desired

trajetory is reported in blue.

robot, and the desired trajetory are reported. The image elaboration system runs

on a dediated standard desktop PC running Ubuntu Operating System and provides

position of the marker with respet to the amera framework within a resolution of

about 1 mm. Note that the preision of the amera, whih is a low ost devies, is

lower than the preision of the industrial robot (whose repeatability is 0.05 mm) but

the proposed experiment is only a proof of onept aiming at demonstrating how real

appliations an bene�t from the RC sheme. The desired trajetory is de�ned in the

amera spae and the (large) initial traking error, shown in �g. 6-24(a) for the y-axis,

is probably due to a misalignment between robot and amera and to a non-perfet

alibration of the amera. In any ase, whatever the ause of the traking error is,

the position feedbak diretly provided in the workspae is able to asymptotially

anel the error between via-points and end-e�etor position, as shown in �g. 6-24(b)
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for the y-axis. In �g. 6-25 the workspae trajetory of the robot q(t) along with the

modi�ed referene trajetory qr(t) are shown. The traking error deay as a funtion

of time is reported in �g. 6-26. Despite the noise, due to the position estimation with

the amera, the repetitive ontrol sheme is able to onsiderably redue the errors

between via-points and geometri path.
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Figure 6-24: Traking performane of the system due to the fatory ontroller without

RC (a) and with RC ontroller ativated (b). In the middle, the modi�ed referene

trajetory qr(t) for the y oordinate is reported in blue, as a result of the implemen-

tation of the RC ontroller.
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Figure 6-25: y − z planar view of the traking performane of the system with RC

ontroller ativated. The modi�ed referene trajetory qr(t) is reported in blue, as a

result of the implementation of the RC ontroller, while the atual trajetory of the

end-e�etor is in red. Colors are reported with inreasing intensity as the time goes

on.
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Figure 6-26: Error deay in the y and z diretions after the ativation of the RC

mehanism (t = 0).

215



6.6 Conlusions

In [17, 16℄, motion planning and reative ontrol have been integrated in order to

obtain a perfet traking of a desired set of via-points. By onsidering tasks performed

ylially, whih are quite ommon in the industrial and robotis �eld, a trajetory

generation based on B-spline has been enhaned with a RC-type mehanism that

modi�es in real-time the ontrol points de�ning the spline in order to nullify the

traking error at the desired points. The e�etiveness of the proposed approah

has been demonstrated both analytially and experimentally. In partiular, tests

performed on an industrial manipulator have shown that this sheme an be used

to enhane the performane of the original position ontroller of the robot. Finally,

the proposed approah ould be used to re�ne the omputation of the ontrol points

for a given motion trajetory in order to ompensate for yli disturbanes that

haraterize the plant. After an initial �training� the modi�ed ontrol points pr
i

that take into aount the dynami behavior of the plant ould be used without the

adaptation mehanism in lieu of the theoretial values p⋆
i .

216



Chapter 7

Conlusions

In this thesis the most widely used tehniques for planning trajetories in industrial

�eld have been revised in order to meet spei� dynami requirements of a given

plant, and two novel trajetory generators based on dynami �lters have been devel-

oped and implemented.

In the �rst part of the thesis, besides the onventional desription, all the mentioned

methods have been deeply analyzed in terms of their respetive transfer funtions

within a �lter-based framework. As a matter of fat, traditional tehniques for vi-

bration suppression address the problem of residual vibrations under di�erent points

of view: input shapers are de�ned by means of the impulse response of the system

(i.e. time domain), traditional �lters relates to the frequeny response of the system,

tehniques based on system inversion mainly fous on the transfer funtion of the

modelled plant (i.e. poles/zeroes ontent) and analyti trajetory planning is usually

performed in order to omply with kinemati onstraints of the atuators, providing

a ertain level of smoothness.

As a result it has been demonstrated how di�erent tehniques suh as input shaping

and analyti trajetory planning for example, are atually losely related if treated as

dynami �lters. Therefore the design proedure of a trajetory planner for vibration

redution an bene�t from a uni�ed framework, whih allows to properly ompare

and hose the optimal solution for any need. In partiular the analysis performed

in this thesis permits to uniquely haraterize the two fundamental parameters for a
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generi ommand shaper:

• E�etiveness, whih is related to the ability of the onsidered method to

perform a proper anellation of the pair of omplex onjugate poles whih ause

the vibrations, under nominal onditions of the harateristi parameters of the

plant. Note that the possibility to anel vibrations needs to be aompanied

by a proper design tehniques, that is a diret de�nition of the anelling zeroes.

• Robustness, whih is the e�et of the given tehnique when a parameters

mismath ours between modelled and real plant, and relates to the overall

response of the �ltering method in the proximity of the nominal onditions.

In partiular the robustness is a�eted by both the overall ontent in terms of

those poles/zeroes whih are not involved in the anellation, and the eventual

augmented multipliity of the anelling zeroes.

Moreover the desription by means of dynami �lters allows to easily analyze eah

method using well known ontrol systems tehniques, in order to ahieve signi�ant

features suh as time delay, sensitivity and smoothness of the resulting trajetory.

In addition, the use of a ommon framework to desribe various tehniques al-

lows not only to make bridges between those methods but also to merge valuable

features. For example, in Chapter 4 ommonly used trajetories de�ned by means

of analyti funtions and ompliant to kinemati bounds have been desribed as �l-

ter hains. On the other hand the �lter-based analysis applied on standard tools

for vibration suppression, suh as input shapers, led to de�ne preise onditions for

ahieving vibration-free motion in Chapter 2. Then, tehniques proposed in both

Chapters 4 and 5 an be seen as methods for planning optimal trajetories whih

omply to hybrid onstraints, that is both kinematis and dynamis.

With respet to analyti trajetory also, the use of dynami �lters results very

onvenient in terms of implementation and integration in more omplex systems. In

partiular the repetitive ontrol sheme proposed in Chapter 6 demonstrates that the
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integration of widespread tehniques for trajetory generation into a reative feedbak

system for perfet traking an be easily ahieved thanks to the de�nition of an on-line

trajetory generator based on disrete time �lters.
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Appendix A

Development of an Optoeletroni

6-axis Fore/Torque Sensor

for Roboti Appliations

A.1 Introdution

Nowadays, one of the most hallenging goals in robotis is the development of au-

tonomous devies able to interat with dynami environments and ooperate with

humans in every-day life. Either in a domesti or an industrial environment, a robot

must be able to sense what surrounds it in order to operate safely and autonomously.

For this reason, robots are equipped with many sensors in order to ahieve a rea-

sonable autonomy level for performing several tasks in unstrutured environments.

In partiular, the availability of Fore/Torque (F/T) sensors is a ommon require-

ment in roboti systems designed for interating with unknown environments and

with humans, and are also useful for the manipulation of unertain objets, allowing

the online adaptability of the robot to the real harateristis and onditions of the

objet, environment or person.

Commerial F/T sensors are mostly based on strain-gauges. The motivation be-

hind this fat an be asribed to the reliability of this solution, to the wide literature
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Figure A-1: A prototype of the optoeletroni 6-axis Fore/Torque sensor.

about the optimization of this sensing priniple [19, 98℄, to the relatively simple nu-

merial methods for the estimation of strain in multi-axis F/T sensors [57℄ and to

the large sti�ness of the sensor that does not introdue destabilizing e�ets when ap-

plied on onventional industrial manipulators. As a onsequene, this tehnologial

solution has been used in a wide number of di�erent roboti appliations, e.g. in

[97℄ where a 4-axis strain-gauge sensor has been developed for measuring interation

fores in hapti devies or in [51℄ where a 6-axis F/T sensor has been embedded in

an intelligent roboti foot.

Fousing on grasping and manipulation tasks, the sense of touh is essential to

proper manipulation of objets. Indeed, the huge amount of work in tatile sensing

literature is justi�ed by the importane of having a proper sensing of the ontat

fores exerted during manipulations. A reent and omplete review on tatile sensor

tehnologies and features is reported e.g. in [26℄. Despite this, a relatively limited

number of ommerial tatile sensors are urrently available, mainly due to high man-

ufaturing omplexity and ost. Even if many di�erent design solutions have been

proposed and several physial transdution priniples have been exploited, the design

of reliable and aurate tatile sensors has proven to be very hard, then the use of

F/T sensors as intrinsi tatile sensors [21℄ has been investigated beause of the sim-

pliity of the devie (if ompared to tatile sensors). In this senario, the adoption of

optial-based F/T sensors may introdue several advantages, as shown by the many

di�erent implementations proposed in literature. While strain-gauge based F/T sen-
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sors measure the strain indued on the mehanial struture by the an external fore

and/or torque, optoeletroni sensors exploit the sattering or the re�etion of a light

beam emitted by a soure and reeived by suitable detetors to diretly measure the

deformation of a ompliant struture or the relative displaement between elastially

oupled elements aused by the external fore and/or torque. The appliations of

optoeletroni-based fore sensors range from onventional mono-axial measurements,

like in [73℄ where disrete optoeletroni omponents are used to measure the fores

in a tendon based transmission system, to 6-axis F/T sensors, as in [56℄ where the

authors adopt optoeletroni devies mounted on a ompliant struture to measure

human-robot interation fores. The researh arried out by Hirose and Yoneda [40℄

in the �eld of optial F/T sensors is partiularly notieable: they implemented an op-

tial 6-axis F/T sensor adopting a 2-axis photosensor for measuring the deformation

aused by the external load on a ompliant struture. In the �eld of tatile sensors, a

quite ommon optial tehnology is based on Fibre Bragg Gratings (FBG), exploiting

the relationship between the variations of the FBG wavelength and the external fore

applied to the FBG [39℄. Other optoeletroni solutions are based on CCD or CMOS

amera to aquire the deformation of a surfae aused by external fore [46℄. Both

these solutions are quite expensive and introdue serious design problems if their in-

tegration in omplex roboti strutures like anthropomorphi hands and roboti arms

is onsidered. In [31℄ and [36℄ the light beam of a Light Emitting Diode (LED) is

sattered by a silion dome and a urethane foam avity respetively: the ompression

of the dome or the avity due to applying an external fore, auses a sattered energy

density variation that is deteted by several PhotoDetetors (PDs). In [29℄ another

interesting example of optial tatile sensors based on a matrix of LED/PD ouples

overed by a deformable elasti layer an be found. This sensor exploits both the

avity sattering priniple mentioned before and taxel-based reonstrution typial of

CMOS sensors. In [101℄ an example of tatile/fore sensor exploiting the re�etion

of the light one emitted by an LED on a silion rubber dome is reported. The mea-

suring priniple of this sensor is based on the measurement of the radiation intensity

spatial distribution variation after the light re�etion on the deformable dome above
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the optial omponents aused by the deformation of the dome itself under the e�et

of the external ontat fore.

The main advantages of optial F/T sensors with respet to the ones based on

strain-gauges are: the easier assembly proedure; the adaptability to mehanial

strutures haraterized by limited sti�ness; the simpler onditioning eletronis; the

intrinsi robustness with respet to eletromagneti noise; the possibility of integrat-

ing a large number of sensing elements on the same devie, e.g. in CCD and CMOS

sensors; the redued ost of the sensing devies. On the other hand, strain-gauge

based F/T sensors ensure better reliability and sensitivity.

In [72℄ is reported the development of a 6-axis F/T sensor

1

based on the optial

re�etion onept mentioned above. Due to the already mentioned advantages, this

solution allows to obtain an easily salable and low-ost F/T sensor, suitable also to

be used as an intrinsi tatile sensor. Moreover, beause of the adoption of optial

omponents, the proposed sensor requires an extremely simple onditioning eletron-

is. Finally, with a proper exploitation of the light re�etion, the sensor design an be

signi�antly simpli�ed sine all the required eletroni omponents an be alloated

in a single Printed Ciruit Board (PCB), making it easier the sensor integration into

omplex roboti strutures suh as roboti hands.

A.2 Sensor Conept and Mathematial Modeling

The basi working priniple of the proposed sensor is based on the modulation of

the urrent �owing through a PD aused by the power variation of the reeived light

generated by an infrared soure suh as an LED. The light power modulation is mainly

due to variations both of the angle of view and of the length of the optial path [50℄.

The sensor is omposed by an LED, a ertain number of PDs arranged on the same

plane (mounted on the PCB) and a Re�etive Surfae (RS), e.g. a mirror, loated

above the PCB. The frame supporting the PCB and the one supporting the RS are

mehanially onneted by a ompliant struture that allows the relative motion of

1

Patented [63℄.
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Figure A-2: Re�etion of an ideal light one under the ation of a moving mirror.

the RS with respet to the PCB under the e�et of an external fore. As seen in

the ase of tatile sensors, the applied fore an be reonstruted by measuring the

motion of the RS on whih the light re�etion or sattering ours. In this ase, the

RS is not deformable as in [29℄, but it an move if an external fore is applied thanks

to a suitably designed ompliant struture. Therefore, the basi idea is use the light

intensity measured by the PDs to reonstrut the position and orientation of the RS

and, as a onsequene, the applied fore and torque.

Figure A-2 reports a shemati view of the basi elements that ompose the pro-
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posed sensor: one LED is mounted in the enter of a square PCB, and 4 PDs are

symmetrially arranged around the LED at a proper distane. In front of the PCB,

a rigid RS deviates the light oming from the LED bak to the PDs. The PCB with

the optoeletroni omponents is �xed to a base frame, while the RS is onneted to

the base frame by means of a suspension system that allows the mirror to hange its

relative position and orientation with respet to the PCB. A shemati view of the

re�eted light behavior when basi movements (translation or rotation) are applied

to the RS is shown in �g. A-2. From this �gure it is possible to see that eah basi RS

movement auses a variation of both the light path length and the re�etion angle.

Sine the light re�etion is invariant with respet both to RS translations along dire-

tions tangent to the RS itself (up to the dimension of the RS) and rotations around

the RS normal axis, it is lear that the devie shown in �g. A-2 is sensible only to

translations normal to the RS, and rotations around RS tangent axes. Then, three

parameters desribing the atual RS on�guration (1 translation and two rotations)

an be estimated by using a minimum number of three PDs. In our implementation,

four PDs have been used to introdue a ertain redundany in the measure, fat that

an improve the quality of the measure itself from the point of view of the prei-

sion and noise rejetion, reduing also the issues related to the non-ideal omponent

assembly. The PD photourrents an be then simply measured by means of proper

resistors and diretly aquired by an Analog-to-Digital Converter (ADC) as shown in

�g. A-3.
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A.2.1 Theoretial Model of the LED-PD Interation

With the aim of olleting useful information for the sensor design, a mathematial

model desribing how the light propagates from the LED to the PD under the ation

of the moving RS has been developed. To derive the theoretial model, let us �rstly

reall the basi working priniple of the devie by means of the simpli�ed represen-

tation of a LED-PD interation reported �g. A-4. In this sheme, the LED and the

PD are supposed to be mounted on parallel planes, suh that their optial axes are

parallel and lie on the same plane. This assumption is made beause in the pratial

implementation of the devie, the optial axes of the optoeletroni omponents are

normal to the PCB, but the height of the LED and the PD are di�erent. In �g. A-4,

α represents the angle between the LED optial axis and the segment denoting the

light path, while β represents the angle between the PD optial axis and the light

path. From this sheme, it is lear that α and β depend on the re�etion angle θ, that

in turn depends on the RS orientation ϕ and distane d. Moreover, also the length l

of the light path hanges with the RS orientation and distane. In this onditions, a

ertain amount of light emitted by the LED reahes the PD and it is proportionally

onverted into an eletrial urrent, that onsidering the others as onstant param-

eters, an be expressed as a funtion of α and β, i.e. Ip(α, β) (also referred to as

photourrent). When the RS orientation ϕ and its distane d experiene a variation

with respet to their initial values, the light path hanges and a di�erent amount of

light power will be sensed by the PD, and then a photourrent variation ours. The

radiant intensity pattern of the LED L(·) and the responsivity pattern of the PD
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R(·) are available from the data-sheets of the omponents. Aording to the general

theory on the interation between the optoeletroni omponents [50℄, given the LED

radiant intensity I(I
LED

) as a funtion of the LED bias urrent I
LED

, the radiant

intensity pattern of the LED, evaluated in α (denoted as L(α)) and the responsivity

pattern of the PD, evaluated in β (denoted as R(β), the intensity that irradiates the

PD, Ir, is:

Ir = I(I
LED

)L(α) IR{R}R(β) [mW/sr℄ (A.1)

where IR{R} is the real part of the re�etivity R of the mirror, that is determined

by the angle of inidene of the ray with respet to the normal of the mirror (θ in

�g. A-4) and the omplex refrative indies of air (n1) and the RS (n2):

R = (RS +RP )/2

RS =

∣
∣
∣
∣
∣
∣

n1 cos(θ)− n2

√

1− (n1

n2
sin(θ))2

n1 cos(θ) + n2

√

1− (n1

n2
sin(θ))2

∣
∣
∣
∣
∣
∣

2

RP =

∣
∣
∣
∣
∣
∣

n1

√

1− (n1

n2
sin(θ))2 − n2 cos(θ)

n1

√

1− (n1

n2
sin(θ))2 + n2 cos(θ)

∣
∣
∣
∣
∣
∣

2

The relation between the LED radiant intensity and urrent I(I
LED

) an be derived

from the omponent datasheet. As a simplifying assumption, we assume this relation

is almost linear

I(I
LED

) = K
LED

I
LED

(A.2)

where K
LED

is a proper onstant (this assumption holds for the seleted devie in a

wide range of the urrent I
LED

). The problem is then to de�ne the relation between,

on one side, the orientation ϕ and the distane d of the RS and, on the other side, the

angles α, β, θ and the light path length l. By simple geometrial relations it follows
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that (a detailed analysis is reported in [72℄):

α = aos

(BA)z
BA

, β = aos

(CA)z
CA

, (A.3)

θ = aos

(

aTRS

−→
BA
)

, l = BA+ CA (A.4)

where aRS is the unit vetor orthogonal to the RS plane, the position of a point with

respet to the origin of the referene system is denoted by apitol letter, e.g. A,

AB = A−B denotes the segment onneting A and B, AB = ||AB|| is the length of

AB,
−→
AB = AB/AB is the unit vetor denoting the diretion of AB pointing from A

to B and the subsript z denotes the z-oordinate of the relative vetor.

The PD output photourrent Ip is then omputed as a funtion of the spetral

�ux density Ee, that is the power inident on the PD surfae (in mW/m

2
)

Ip = f(Ee, VPD) (A.5)

where VPD is the voltage drop aross the PD and the funtion f(·, ·) is reported on

the PD datasheet. Sine in the proposed implementation the PD works far from the

saturation region, eq. (A.5) an be approximated as

Ip = K
PD

Ee (A.6)

where K
PD

is a proper onstant. It is worth notiing that while eq. (A.1) expresses

the LED radiant intensity in mW/sr, in eq. (A.6) the light power density in mW/m

2

is onsidered. This implies a onversion from the PD surfae to the LED solid angle

(i.e. the solid angle delimited by the one with vertex in the LED enter and as base

the PD sensitive area), that involves the path length l. To perform this onversion,

the PD sensible area is �rstly supposed to be normal to the light path diretion (AC

segment) and with irular shape. Then, the radius r of the PD area, i.e. the solid

angle aperture, is simply r =
√

APD/π, where APD is the PD sensitive area, while

the radius R of the sphere entered on the LED and ontaining the LED solid angle

is R =
√
l2 + r2. The the LED solid angle ω an be then omputed from the ratio
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between the areaAz = 2 π R(R−l) of the sphere portion bounded by the PD sensitive

area and the whole sphere area

ω =
4 πAz

4 π R2
=

8 π2R(R− l)

4 πR2
= 2 π

(

1− 1
√

1 + (r/l)2

)

(A.7)

The power inident on the PD surfae an be then obtained from the LED radiant

intensity

Ee =
APD

ω
Ir cos β [mW/m

2] (A.8)

where the term cos β takes into aount the redution of the PD area due to the angle

between the light path diretion and the PD surfae itself. It is also impliitly assumed

that the LED radiant intensity pattern L(·) and the PD responsivity pattern R(·)
present onstant values, orresponding to the ones evaluated in α and β respetively

(i.e. along the light path ABC), within the solid angle ω. From (A.7) and (A.8) it an

be noted that the light power Ee inident on the PD is related to the light path length

l by an inverse-square relation. Finally, the photourrent Ip an be simply measured

by means of a resistor, as shown in �g. A-3, onverting the photourrent into an

output voltage, the ADC then onverts it into a digital signal that is transmitted

through the digital bus.

Summarizing, the mathematial model of the LED-PD interation is desribed

by eq. (A.1), (A.3), (A.6) and (A.8). The numerial evaluation of this model has

been developed taking as basi omponents an infrared LED with a narrow viewing

angle and with a typial peak wavelength of 860 nm (Osram SFH4451), and as PD a

silion NPN phototransistor (Osram SFH3010) with a maximum peak sensitivity at

860 nm wavelength. The LED radiant intensity pattern L(·) and the PD responsivity

pattern R(·) have been derived by ubi interpolation of a suitable point set taken

from the datasheet of the devies, while the parameters of the seleted optoeletroni

omponents are reported in Tab. I. Considering a LED-PD ouple arranged on a

printed iruit board at a distane of 6 mm, �g. A-5 reports the PD output voltage

for di�erent values of the distane and orientation of the RS. The plot reports a

limited range of d and ϕ variations beause to redue at most as possible the overall
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Figure A-5: Theoretial Output voltage as a funtion of angle and distane of the

RS.

devie dimensions, these parameters should be as small as possible. This �gure shows

a quite omplex behavior of the PD output voltage modulated by the RS motion.

Indeed, it is lear from the previous analysis that the RS distane and orientation

a�ets the angles α, β, θ and the light path length l in a quite omplex and non-

linear way. The seletion of a LED with narrow viewing angle avoids that the PD is

illuminated by diret light from the LED (without being re�eted �rst). Moreover,

a narrow viewing angle is ruial to boost the e�et of the α and β variations on

the output voltage, providing a good sensitivity also on very small angular and linear

displaements, as shown in �g. A-5. Moreover, due to the amplitude of the output

voltage variation, this signal an be diretly digitalized without introduing any signal

ampli�er, allowing a signi�ant simpli�ation of the sensor onditioning eletronis.

Table I

LED and PD Parameters.

Desription Symbol Value Unit

PD Sensitive Area APD 0.04 mm

2

PD Sensitivity K
PD

280 µA m

2
mW

−1

LED Radiant Intensity K
LED

600 mW sr

−1
A

−1
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Figure A-6: Comparison between the theoretial model (blue) and experimental data

(red).

A.2.2 Theoretial Model Validation

The results of the model presented in the previous setion have been ompared with

experimental data aquired from a purposely developed setup, in whih the posi-

tion of the RS (both translations and rotations) with respet to the optoeletroni

omponents an be aurately measured. Some of the results are shown in �g. A-6.

The experimental setup is omposed by three linear motors LinMot P01-23Sx80

(see �g. A-7) driven by two servo ontrollers LinMot E210-VF (eah servo ontroller

an drive up to two linear motors). The ontrol system is based on a standard PC

with Pentium IV 3GHz proessor, equipped with a Sensoray 626 data aquisition

board used both to ommuniate with the servo ontrollers and to aquire the PD

output signal. Eah motor is provided with an integrated linear position enoder

with a resolution of 1µm. The RTAI-Linux realtime operating system has been

used for ontrolling the system, while the MatLab/Simulink/RealTime Workshop

environment has been used for the development of the ontrol sheme and as user

interfae. The linear motors are driven by a low-level ontrol system that allows

preise regulation of the motor slider positions ompensating for the frition, motor

ogging and external disturbane fores [68℄. Figure A-7(a) shows the top view of this

experimental setup, in whih the upper over has been removed to allows a better

vision of the internal struture, whereas �g. A-7(b) provides a better view of the
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Figure A-7: Experimental setup (without upper over) for the validation of the LED-

PD theoretial interation model.

LED, PD and RS arrangement. In this experimental setup, the RS is mounted on

a planar element (RS plane) that an slide along a linear guide aligned with the

LED optial axis, moreover the rotation of the RS plane along an axis orthogonal

to the linear guide is allowed. The RS is moved by two linear motors, and its linear

and angular displaements are reonstruted by means of the linear motor integrated

enoders. The LED is mounted on a �xed element, while the PD is mounted on a

sliding element whose position is ontrolled by the third linear motor. This allows to

evaluate also the theoretial model for di�erent values of the LED-PD distane, but

for the sake of brevity the disussion reported in this paper is restrited to the ase

of minimum LED-PD distane ompatible with the devie implementation (3mm)

for ahieving the minimum overall devie dimension. As shown in �g. A-6(b) where

the olormap representation of the relative error is reported, the maximum error

between the model and the experimental data is about 10% over the whole range

under investigation. Anyway, these results are quite satisfatory sine they allow

to investigate in advane, by exploiting the developed theoretial model desribed in

Setion A.2.1, the design and the harateristis of the devie taking into onsideration

the optoeletroni omponent parameters, their arrangement and the RS range of

motion. In �g. A-8 the ombined output voltage sensitivity (normalized within the
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Figure A-8: Evaluation of the normalized output voltage ombined sensitivity with

respet to both linear and angular RS displaement.

range [0, 1℄) with respet to both the linear and angular RS displaement is reported:

the higher the ombined sensitivity is, the higher is the output voltage variation in

ase of both the linear and angular RS motions, while a lower ombined sensitivity

means that the output voltage is less sensitive with respet to that motions or is

sensitive to one motion type only (linear or angular). For symmetry reasons, and

sine more than one PD will be mounted on the same PCB, we are interested in

the investigation of an angular working range entered on 0 deg (the RS is parallel

to the PCB in rest onditions), then �g. A-8 suggests the seletion of a working

range for the proposed devie of [-1, +1℄ deg and [0.0097, 0.0117℄mm, resulting in a

distane between the RS and the LED enter in rest onditions of 10.7mm. In this

working range, the output voltage ombined sensitivity is almost homogeneous at the

maximum value, as shown in �g. A-8, and the model error is also limited to about

5%, as reported in �g. A-6(b).

Aiming at measuring the distane and the orientation of the RS with respet to

the LED-PD plane, the experimental setup shown in �g. A-7 has been modi�ed as

reported in the CAD drawing �g. A-9(a), where the element supporting the LED

and the PD has been replaed with the one shown in �g. A-9(b) (the linear motor

for adjusting the LED-PD distane is not used anymore). In this devie two pairs

of PDs are symmetrially arranged with respet to the LED, reproduing the LED-
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Figure A-10: Mean absolute error vs. Polynomial interpolation order.

PD arrangement shown in �g. A-2, and a mask for reduing the e�ets of spurious

re�etions on the PD output voltages has been mounted over the PCB. Sine in the

experimental setup the RS an be rotated along one axis only, the output voltages of

only two PDs (over the available four) will be used for reonstruting the RS position

and orientation. In partiular, the output voltage of the two PDs arranged along the

diretion normal to the RS rotation axis are used for this purpose. Although the

obtained harateristi is strongly nonlinear, it is interesting to investigate the usage

of a polynomial map of the output harateristi, at least in a region surrounding the

enter of the working range (angle = 0 deg, distane 10.7mm), for the reonstrution

of the PDs and both the linear and angular RS displaements. This will allow the

adoption of a quite simple estimation proedure for reonstruting the RS motion by

means of the devie output voltage. The mapping between the PD output voltages

and the RS position and orientation is then ahieved by the following polynomial
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Figure A-11: Reonstrution of linear and angular displaement using a LED and

two PDs.

interpolation: 


d

ϕ



 = M v (A.9)

where

v =
[

vn1 vn2 vn−1
1 vn−1

2 · · · v1 v2 1 1
]T

is the vetor of the output voltages of the two PDs, v1 and v2 respetively, and the

orresponding powers up to the order n (the two ones at the end of the vetor are

used to remove the output voltage o�set), and M is the alibration matrix that an

be derived from experiments as

M = ΛΣ+
(A.10)

where Σ+
denotes the pseudoinverse of matrix Σ and

Λ =




d1 d2 · · · di · · · dm

ϕ1 ϕ2 · · · ϕi · · · ϕm





Σ =
[

v1 v2 · · · vi · · · vm

]

are the matries of the m experimental measures of the RS position and orientation

and of the PD output voltages. Figure A-10 reports the mean absolute error in the

estimation of the RS position and orientation from the PD output voltages over the
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whole set of experimental measures for di�erent order of the polynomial map: it

an be noted that no signi�ant improvement is obtained with an order greater than

three, then this order is seleted as a valid trade-o� between estimation error and

omputational omplexity. The results reported in �g. A-11 show that, within the

seleted working range, this devie allows to reonstrut the RS distane and the

orientation with an estimation error less than the 10% of the measurement.

A.3 Sensor Prototype

The basi element for building up the proposed 6-axis F/T sensor is a PCB with

a LED mounted in its enter and four PDs symmetrially arranged around it on a

irle of radius 3mm. In the implemented devie, the PCB is a 10×10mm eletroni

board (1 m

2
). Furthermore, to measure fores and torques along the three axes with

a proper redundany, 3 of these basi elements have been plaed on three faes of

a ube. Despite three of these PCBs mounted on non parallel planes are su�ient

to disriminate all the omponents of fores and torques along the 6-axis, this PCBs

arrangement intuitively allows to ahieve the maximum sensitivity and deoupling

of the measurements. A prototype of the sensor is shown in �g. A-12 and �g. A-

13. Note that the geometry of the sensor and the plaement of the PCB may vary

depending on the spei� appliation for whih the sensor is designed. A spei� mask

with suitable hollows has been designed in order to avoid ross-disturbanes (light

re�etions) between the three boards, as also detailed in �g. A-9(b). The relative

motion of the RS with respet to the PCBs is ahieved by means of a ompliant

frame, whose design is detailed in Setion A.3.1, onneting the internal part of the

sensor (where the PCBs are �xed) to the external ontat surfae, the over (where

the RSs are attahed). The ompliant frame deforms in an elasti way when a ontat

fore is applied to the external ontat surfae. Note that, by a suitable design of

these elasti elements, the sensor working ranges (in the fore domain) an be freely

adjusted aording to the appliation requirements. The onditioning eletronis

is extremely simple, as the iruit shemati in �g. A-3 shows. This aspet is quite
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Figure A-12: Coneptual design of the sensor prototype.

12 m
m

Figure A-13: Internal view of the sensor: the ube with the three PCBs and the over

with the RS.

important beause it allows a simple integration of the sensor in mehanially omplex

struture, sine the whole iruit in �g. A-3 an be implemented in the same PCB

where the LED and the PDs are hosted. The three PCB shown in �g. A-13 are

then onneted through the SPI digital bus to a miroontroller board loated into

the sensor base that elaborates the PDs output signals to perform noise �ltering and

providing the fore estimation on the base of the alibration data (the alibration

proedure is desribed in Setion A.4). The miroontroller is then able to transmit

the estimated fores and torques via digital bus using di�erent protool and bus

types: the CAN bus and CanOpen protool have been adopted for the developed

sensor prototype.

The external surfae of the sensor, in this spei� prototype, is a spherial ap
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with radius R = 44 mm. This partiular design has been developed sine the sensor

is going to be plaed on the �ngertips of an underwater three-�ngered robot gripper,

[8℄, and both the dimension and some of the design hoies (e.g. the o-rings for water

insulation as reported in A.5) derive from this spei� appliation. In partiular,

the overall dimension of the sensor ould be drastially redued for other types of

appliations.

A.3.1 Compliant Frame Design

Figure A-14(a) shows the struture of the ompliant frame used for onneting the

ontat surfae, and then the RS rigidly onneted to it, to the base frame of the

sensor where the PCB with the LEDs and the PDs are loated. In partiular, the

ompliant frame is omposed by an inner frame, rigidly onneted to the sensor base,

an outer frame onneted to the ontat surfae and a set of �exible links (three in

the spei� ase) that onnet the inner and the outer frames. Suitable elements to

limit the maximum deformation and to avoid damage to the deformable struture

itself an also be added to the ompliant frame, but this issue is not addressed here

to simplify the disussion. It the following analysis, it is supposed that only the links

are deformed by the e�ets of the external fore, while both the inner and the outer

frames are treated as rigid bodies. Moreover, all the links are onsidered equal (with

the same physial dimension and material) to ahieve a symmetri deformation of the

ompliant frame. Figure A-14(a) reports also the referene frame of the sensor base,

of eah link of ompliant frame and the one of the ontat surfae.

Aording with the Timoshenko beam theory, the sti�ness of eah link an be
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expressed as [75℄

KL =
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(A.11)

where E and G are the modulus of elastiity (Young modulus) and the shear modulus

respetively, that are equal for all the links, L, Iy, Iz, A and J are the length, the

area moment of inertia about the y- and z-axis, the ross setion area and the torsion

onstant (polar moment of inertia) of the i-th link respetively. The matrix KL rep-

resents the sti�ness of a 6-dimensional spring that allows to ompute the fore/torque

vetor w = [fT , mT ]T generated at the link referene frame when the ross setion in

the yz-plane experienes a displaement p = [δxT , δγT ] (translations and rotations)

with respet to the other link end. To larify the proposed analysis, it is important to

introdue the dependene of the terms in eq. (A.11) from the physial dimensions of

the links. �g. A-14 shows the simpli�ed struture of a link together with the position

of the referene frame used to de�ne the link's sti�ness matrix (A.11). With referene

to �g. A-14(b), the partiular geometry of the links allows the omputation of the

parameters appearing in (A.11) in a very straightforward way:

A = a b, Iy =
1

12
a3 b, Iz =

1

12
a b3, J = Iy + Iz

The subsript L means that this sti�ness matrix is de�ned with respet to a referene

frame attahed at one link end and with the x-axis along the link length and the y-

and z-axis normal to the lateral surfae, as shown in �g. A-14(b). A suitable hange of

oordinates is used to represent the sti�ness matrix of eah link in the referene frame

of the ontat surfae. It is supposed that the ontat surfae referene frame Fe is

translated along the z-axis by pz with respet to the base referene frame F0, while
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Figure A-14: Detailed view of the ompliant frame and of the links.

the referene frame attahed to eah link Fi, i = 1, · · · , k, where k is the number of

links, are rotated along the z-axis by φi = −2 (i − 1)π/k and then translated along

the x-axis by −px. So the homogeneous transformation matrix

eT0 expressing the

position of F0 with respet to Fe is

eT0 =







1 0 0 0
0 1 0 0
0 0 1 −pz
0 0 0 1







(A.12)

while

0Ti expressing the position of Fi with respet to F0 is

0Ti =







cosφi − sin φi 0 −px
sinφi cosφi 0 0
0 0 1 0
0 0 0 1







(A.13)
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It is important to say that this oordinate transformation is performed by means of

the veloity transformation matrix

eGi and the fore/torque transformation matrix

eGT
i [83℄. Realling the general form of homogeneous transformations

bTa =

[

bRa
apab

0 1

]

, apab =
[

px py pz 1
]T

,

aPab =






0 −pz py
pz 0 −px
−py px 0






where

bRa and

bpa are respetively the rotation matrix and the origin translation

between Fa and Fb, it results

eGi =

[

eRi −eRi
iPie

0 eRi

]

Then the sti�ness matrixKe seen from the (external) ontat surfae an be omputed

as the sum of eah link sti�ness expressed in the frame Fe:

Ke =
k∑

i=1

eGT
i KL

eGi (A.14)

In the same way, it is possible to de�ne the ompliane matrix as Ce = K−1
e that

maps the fore applied to the ontat surfae into its displaement.

The ompliant frame design problem is now to selet the link parameters a, b, L

(within a suitable range ompatible with the implementation of the devie) and the

the link number k in suh a way to obtain the desired sti�ness along the di�erent

diretions aording to the appliation requirements and taking into aount the

maximum displaement range disussed in Setion A.2.2. The parameters of the

ompliant frame used in the experiments here reported an be found in Tab. II: note

that these parameters have been seleted to obtain a ompliant frame with similar

linear sti�ness and similar torsional sti�ness along all the diretions for sensor testing

purposed, but are not seleted aording to any partiular appliations.
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Table II

Compliant frame parameters.

Desription Symbol Value Unit

ABS Young Modulus E 2900 MPa

ABS Shear Modulus G 1050 MPa

Link Thikness a 1.5 mm

Link Width b 4.8 mm

Link Length L 16.5 mm

Link x-axis O�set px 21.5 mm

Number of Links k 4

Surfae z-axis O�set pz 20 mm

A.4 Calibration and Charaterization

A.4.1 Sensor Calibration

The alibration proedure has been performed by using as referene sensor an ATI

Gamma SI-130-10 F/T sensor. The developed sensor prototype has been mehanially

onneted to the referene ATI sensor in suh a way that, apart form a suitable

hanges in the referene frame and in the point where the fore is applied, the sensor

are subjet to the same fores and torques. Then a variable load in terms of both

fores and torques has been applied to the sensor prototype and the data from both

sensors have been aquired. As mentioned in Setion A.2.2, being the ompliant frame

working within the elasti regime, it an be assumed that a linear funtion exists

between the applied fore/torque vetor w = [fT , mT ]T and RS displaement. Then,

similarly to what is desribed is Setion A.2.2, the mapping between the PD output

voltages and the applied fore and torque an be done by polynomial interpolation as

w = C v (A.15)

where

v =
[

vn1 · · · vn12 · · · v1 · · · v12 1 · · · 1
]T

is the vetor of the sensor output voltages (12 PD output voltages), and the orre-

sponding powers up to the order n (the 12 ones at the end of the vetor are used to
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remove the output voltage o�set), and C is the alibration matrix that an be derived

from experiments as

C = ΩΣ+
(A.16)

where Σ+
denotes the pseudoinverse of the matrix Σ and

Ω =
[

w1 w2 · · · wi · · · wm

]

Σ =
[

v1 v2 · · · vi · · · vm

]

are the matries of the m experimental measures of the external fores/torques ap-

plied to the optoeletroni sensor and of the PD output voltages respetively. For the

derivation of the alibration matrix, the fore and torque omponents are aquired

by the referene sensor and preliminary onverted to the optoeletroni sensor refer-

ene frame by means of a suitable transformation matrix. As desribed in Setion

A.2.2, a 3rd-order interpolation polynomial has been adopted for deriving the external

fore/torque vetor from the sensor output signals.

Beause of the spei� mehanial design

2

, the operating range of the sensor is

[−50÷50] N along the linear axes, while torques are limited to [−1÷1] Nm about the

rotational axes. �g. A-15 shows a test in whih fores are measured by the referene

sensor and by the proposed optoeletroni sensor after alibration; fore and torque

estimation errors are reported as well.

A.4.2 Cross Coupling Analysis

The analysis of the ross oupling error is usually performed to verify the properties of

strain-gauge based F/T sensors, espeially in ase of mehanially deoupled sensors

[98, 58, 111℄, and it an be onsidered as an index of the sensor quality. Aording

to the de�nition given in [49℄, the ross oupling error is de�ned as the ratio of

unfavorable signals to the intended one at a given output of the sensor aording to

pure fore omponents. In the ase of the proposed sensor, sine we are not interested

2

As already mentioned, the mehanial and elasti parts of the sensor an be tailored for spei�

appliations, and therefore di�erent performanes an be ahieved if desired.
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Figure A-15: Performane of the optoeletroni F/T sensor: Fore and Torque reon-

strution.

in measuring the strain indued on the mehanial struture and sine there are

several output signals that are expeted to hange when a pure fore omponent

is applied to the sensor, the analysis of the ross oupling error is performed by

taking into aount the output voltages variations of the PD onditioning iruit

when a pure fore or torque is applied along the sensor referene axes. Assuming

that the PCBs are mounted orthogonally to the sensor referene axes, due to the

struture of the proposed measuring iruit, a pure fore omponent along a referene

axis will produe, in ideal onditions, a variation of the PD output voltages in the

PCB orthogonal to the fore diretion only, while a pure torque omponent will

produe a variation of the PD output voltages in the PCBs that are parallel to the

torque diretion only. Any deviation from this expeted behavior an be asribed to

misalignment between the referene axes and the PCBs (and the RS), defets in the

PCB assembly that ause deviation of the LED and PD optial axes with respet to

the PCB plane or to spurious light re�etions.

The ross oupling error has been then evaluated by onsidering the maximum load

(50N fore or 1Nm torque) along the sensor referene axes and the orresponding

PD output voltage variations. The ross oupling errors ci are de�ned in this ase as

the ratio between the absolute value of eah PD output variation, denoted as |∆Vi|,
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and the maximum one, denoted as |∆Vi|max

, i.e.

ci =
|∆Vi|

|∆Vi|max

(A.17)

In Tab. III the ross oupling errors evaluated on the experimented sensor prototype

are reported: note that the PDs numbered from 1 to 4 are mounted on the PCB

orthogonal to the x axis, the ones numbered from 5 to 8 are mounted on the PCB

orthogonal to the y axis and the ones numbered from 9 to 12 are mounted on the

PCB orthogonal to the z axis. From these results it an be stated that, even if a

onsiderable oupling error exists, probably due to the aforementioned defets in the

sensor implementation, the variation of the output signals are onsistent with the

expeted behavior.

Table III

The ross oupling errors evaluated on the experimented sensor prototype.

ci Fx = 50N Fy = 50N Fz = 50N Mx = 1Nm My = 1Nm Mz = 1Nm
c1 0.996 0.324 0.109 0.211 1 0.990

c2 1 0.215 0.080 0.129 0.772 0.872

c3 0.993 0.199 0.170 0.132 0.951 0.940

c4 0.884 0.235 0.122 0.190 0.698 0.761

c5 0.141 1 0.059 0.901 0.054 0.847

c6 0.120 0.971 0.166 0.764 0.184 0.798

c7 0.195 0.899 0.098 1 0.045 0.604

c8 0.208 0.910 0.119 0.655 0.101 1

c9 0.210 0.351 0.891 0.689 0.804 0.129

c10 0.207 0.103 0.989 0.872 0.922 0.032

c11 0.181 0.099 0.889 0.541 0.799 0.007

c12 0.190 0.177 1 0.967 0.985 0.150

A.4.3 Charaterization as Intrinsi Tatile Sensor

Among the variety of possible F/T sensor appliations, several authors reported how

to use them in robotis as intrinsi tatile sensors, i.e. for the omputation of the

ontat point between e.g. the �ngers of a robot hand and the grasped objet, see

[21, 82, 24, 61℄. Considering an �hard �nger� ontat hypothesis (i.e. only fores and
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not torques an be applied at the ontat point), the use of the proposed devie as

an intrinsi tatile sensor has been investigated. As desribed e.g. in [21℄, in ase of a

sensor with spherial surfae (with radius r) the position pc of the ontat point an

be obtained from the fore f and torque m measured by the F/T sensor from

λ = − 1

‖f‖

√

r2 − ‖f ×m‖2
‖f‖4

r0 =
f ×m

‖f‖2
pc = r0 + λf

These equations admit up to two possible solutions (the intersetion of a line with

a spherial surfae), then the right solution an be seleted assuming that the on-

tat fore an only push on the sensor external surfae. Some experimental tests

are reported in �g. A-16, where the measured fores and the orresponding on-

tat point position on the sensor surfae are represented by blue lines and red dots

respetively. In this tests, the estimated [x, y, z] oordinates have been omputed

as [−2.4, −1.7, 43.9] mm, [−5.1, −10.5, 42.4] mm, [−10.6, −7.2, 42.1] mm and

[13.6, −0.6, 41.8] mm. For the sake of omparison, in �g. A-16 also the fores mea-

sured by the ATI referene sensor and the orresponding ontat point positions are

reported with green lines and blak dots respetively. These results allow to state

that the proposed optoeletroni devie an be used as intrinsi tatile sensor.

A.4.4 Slip Detetion

A slip detetion algorithm exploiting the information gathered from the proposed

optoeletroni sensor has been implemented and experimentally tested. Figure A-17

shows the experimental setup omposed by two linear motors LinMot-37x160: the

�rst motor (Motor 1) is mounted with its motion axis aligned with the sensor z-axis

and is used to hold an objet against the optoeletroni sensor by means of a rounded

tip (to simulate the ontat between the objet and a seond �ngertip); the seond

motor (Motor 2) is positioned perpendiularly to Motor 1 and is equipped with a
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Figure A-16: Contat point reonstrution tests: fore diretions (blue lines) and

ontat point positions (red dots) measured by the optoeletronis F/T sensor; for

omparison, fore diretions (green lines) and ontat point positions (blak dots)

measured by the referene ATI sensor.

preision load ell. Motor 2 is used both to apply to the objet a tangential fore and

to measure the objet displaement during slip by means of the integrated enoder.

Figures A-18 and A-19 show the typial behavior of the objet in ase of slow and

fast inreasing of the tangential fore respetively. In partiular, referring to �g. A-

18(a), the tangential fore is slowly inreased and the measured motion of the objet

is mostly due to the elasti deformation of the sensor and of the silion rubber on

the ontat surfae during the �rst part of the experiment, while in the seond part

of the experiment (at about 65 s) it is possible to see that the objet speed suddenly

inreases when the tangential fore reah a ertain threshold. This event shows that

the objet slip ours, fat that an also be noted from the FFT analysis of the

tangential fore signal. In this tests, the FFT has been performed onsidering N =

256 samples eah iteration, that onsidering a sensor sampling frequeny of 100 Hz,

results in a fundamental FFT frequeny of 0.39 Hz. It is possible to note from the blue

plot in Fig.A-18(a) reporting the seond harmoni of tangential fore signal, that its

value is quite small during the hold phase, while a peak emerges when the objet start

to slip. As also widely reported in literature [41℄, this information an be extrated
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Figure A-17: Laboratory setup for alibration and experimental validation.

from the sensor measure and an be used for objet slip detetion and prevention. A

zoom over the region where the slip ours is reported in �g. A-18(b). As a possible

implementation of the slipping detetion algorithm, a suitable threshold it has been

assumed: beyond this PSD threshold the slipping ompensation should be ativated

inreasing the normal fore used to hold the objet to inrease the frition fore. In

�g. A-18(b) the time instants at whih the identi�ation ours are highlighted by red

irles: this points are in the proximity of the hange of slope of the plots of the objet

position, whih learly indiates that the objet is slipping. To test the algorithm

under di�erent onditions, the test has been exeuted with di�erent tangential fore

variation rates. Figure A-19 reports the test results in ase of a fast tangential fore

variation: in �g. A-19(a) the whole experiment is reported, whereas in �g. A-19(b)

the region over the objet slipping and the instant in whih the PSD threshold is

exeeded are shown.
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Figure A-18: Slippage detetion algorithm: slow tangential fore variation.

0

20

40

F
t [

N
]

−0.04

−0.02

0

D
is

pl
ac

em
en

t [
m

]

0

100

200

A
m

pl
itu

de

 

 

2−nd 3−rd 4−th 5−th

0 2 4 6 8 10 12 14 16 18
0

5000

Time [s]

A
m

pl
itu

de

(a) Slow tangential fore variation. From top to

bottom: tangential fore, objet displaement,

harmonis amplitude, produt between the se-

ond and the third harmoni.

−0.02

−0.015

−0.01

−0.005

0

D
is

pl
ac

em
en

t [
m

]

8 9 10 11 12 13 14
0

1000

2000

3000

4000

5000

Time [s]

A
m

pl
itu

de

(b) Detail of the slippage test. Top: objet dis-

plaement; bottom: produt between the seond

and the third harmoni. The dashed line shows

the slip detetion threshold, the red irles high-

light when the PSD exeeds the threshold.

Figure A-19: Slippage detetion algorithm: fast tangential fore variation.
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A.5 Waterproof Prototype for Underwater Robotis

Figure A-20: A prototype of the sealed optoeletroni 6-axis Fore/Torque sensor and

internal design of the sensor.

As already mentioned in Setion A.3, one of the key features of this sensor is the

possibility to easily adapt the mehanial design to the spei� use, provided that

the geometrial onstraints of photo-omponents and re�etive surfaes are satis�ed.

In �g. A-12 two di�erent implementations are shown, in partiular it an be noted

that they di�er from the top over and the ompliant frame design. While the top

over has no in�uene on the sensor performanes, the ompliant frame has diret

in�uene on the measurement range. Moreover it is a ruial setion of the sensor

when the insulation of the sensor from the environment is ompulsory. This is the

ase addressed in [62, 70, 71℄ in whih the 6-axis F/T sensor is exploited as an intrinsi

tatile sensor for underwater appliations.

In this partiular version of the sensor the relative motion of the RS and the PCBs

is ahieved by exploiting the o-ring seals ompliane, that elastially deform when an

external fore is applied to the external over of the sensor, but also guarantee the

sensor sealing as an be seen in �g. A-20.
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Figure A-21: Displaement/fore harateristi of silion rubber (top) and �uoroar-

bon rubber (bottom) o-rings for di�erent ompression rates.

A.5.1 Charaterization of O-ring Materials

The harateristis of two di�erent o-ring materials have been evaluated by means of

suitable experiments to �nd whih material is better suited for our appliation. In

these experiments, silion rubber and �uoroarbon rubber o-rings have been ompared

by applying a sinusoidal ompression with frequeny range from 0.1 to 5Hz and

measuring the orresponding reation fore. The o-rings have the same dimensions

in both the ases, with a thikness of 3.53mm and an internal diameter of 47.62mm,

and both the materials present an hardness of 70 Shore A. The results reported in

�g. A-21 shows that, while silion rubber presents a quite linear response within

the displaement and frequeny range of our interest, �uoroarbon rubber presents a

large hysteresis for high value of the ompression rate. Sine we are interested in a

implementing a sensor whit an as wider as possible onstant frequeny response, the

silion o-rings are more suitable for the implementation of the proposed sensor.
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Figure A-22: Fore reonstrution after alibration.

A.5.2 Calibration of the Waterproof Sensor

For the alibration and the experimental haraterization of the sensor, the same

setup of �g. A-17 has been used and the same proedure of Setion A.4 has been

followed. �g. A-22 shows a test in whih fores are measured by the referene sensor

and by the new sensor after alibration, and the di�erene among them. From the

plots, and in partiular from the plot of the di�erene, it an be notied that there

are some �peaks� when the applied fore has a sudden hange. These peaks are due

to the di�erent elasti properties of the two sensors (the o-rings have a more evident

viso-elasti behaviour).

A.5.3 Dynami Performane of the Sensor

In order to fully haraterize from a stati and dynami point of view the sensor,

other experiments have been performed. In partiular, the sensor has been installed

on the setup of �g. A-23 in order to apply preise axial fores (z diretion).

For example, �g. A-24 shows a test in whih a sinusoidal fore with onstant frequeny

(0.1 Hz) and inreasing amplitude is applied by the motor along the z axis. It is

possible to see an inreasing error when the fore gradient beomes larger and larger.

As a matter of fat, beause of the viso-elasti properties of the rubber used to
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Figure A-23: Laboratory setup for alibration and experimental validation.
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Figure A-24: Appliation of a sinusoidal fore signal with inreasing amplitude at 0.1

Hz.

seal the optial sensor, this is `slower' than the referene sensor in reovering the

unloaded position. This e�et is more evident in �g. A-25 where a 20 N sinusoidal

fore is applied at inreasing frequenies, from 0.01 to 3 Hz. The error inreases with

the frequeny of the input signal.

However, it has to be pointed out that this e�et is not due to some intrinsi

limitations of the basi priniple of the sensor, but rather to the partiular mehanial

design employing rubber sealing. To verify this fat, the fore/displaement response

of the sensor without and with o-ring sealing has been measured and analyzed. In

�g. A-26 it is lear that the introdution of the sealing elements redue the frequeny

range of the sensor, reduing in this way also the sensitivity of the sensor. Then,

in partiular in ase frequeny based detetion tehniques are used, the e�et of the

sealing material needs to be onsidered during the alibration of the system for a
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proper identi�ation of the slip events. It also possible to see that no signi�ant

di�erene exists in the sensor response in ase of rubber or silion sealing.
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Figure A-25: Appliation of a sinusoidal fore signal (20 N) at inreasing frequenies.

Figure A-26: Frequeny response of the sensor with respet to the ATI referene

sensor, without sealing and with sealing.
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Figure A-27: Measurement of the normal and tangential fores.

A.5.4 Evaluation of the Frition Coe�ient

Another experiment is reported in and �g. A-27, where a onstant fore along the z

diretion is applied to an objet. On the objet, an external inreasing fore is applied

as well (by means of some weights) and therefore the sensor measures both the normal

(z axis) and tangential (x−y plane) fores (fn, ft). In the experiment, the objet was

overed by a silion rubber to inrease frition (the surfae of the sensor, built with

3D printing tehnology, has a very low frition oe�ient), and the applied tangential

fores were ft = 3, 8, 13, 18 N, while the normal fore was fn = 30 N. Notie that

with the load of ft = 13 N, the objet starts to slide. The derease of the normal

fore fn when the tangential omponent is ft = 13 N is due to the non negligible

deformation of the silion rubber overing the objet. This type of experiment allows

also to estimate the frition oe�ient µ = ft/fn and to implement some ontrol

strategies in order to avoid slippage of the objet.

A.5.5 Tatile Sensing Test

Finally the sensor has been haraterized as intrinsi tatile sensor following the

proedure in Setion A.4.3 Typial results are reported in �g. A-28, where the applied

fores are shown as lines and the ontat points are measured on the surfae of the

sensor. In this test, three fores are applied at three di�erent points, whose [x, y, z]

oordinates have been omputed as [1.2, 2.1, 21.1] mm, [−1.4, 10.7, 18.1] mm and
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Figure A-28: Measurement of the applied fores and of the ontat point.

[17.6, −7.8, 5.4] mm, orresponding to radii of 21.2, 21.1 and 20.0 mm respetively

(the radius of the spherial surfae is 21.5 mm).

A.6 Conlusions

Thanks to the adoption of disrete optoeletroni omponents, the proposed sensor is

haraterized by a low-ost and a simple and reliable implementation. As additional

remarkable advantages, the ompat and ustomizable eletronis of the implemented

sensor allow an easy mehanial and eletroni integration into relatively omplex

roboti systems. As a preliminary evaluation of the sensor harateristis, several

experiments have been performed to validate the mathematial model of the devie.

These experiments on�rmed that the mathematial model of the sensor an be used

for seleting a suitable devie working range. The reported experiments show satis-

fatory performane of the proposed devie not only for the estimation the applied

fore and torque, but also for deteting the ontat point loation and objet slip.

This result allows to state that the proposed devie an be used as an `intrinsi tatile'

sensor.
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Moreover the same devie has been exploited in order to be integrated in a three-

�ngered gripper for underwater appliations. A di�erent mehanial on�guration of

the ompliant frame has been developed by means of o-rings seals, in order to ahieve

a waterproof sensor. An extensive experimental ativity has been arried out in order

to both haraterize di�erent elasti materials and analyze their e�ets on the sensor's

performanes. Despite the limited dynami range due to the o-rings based sealing,

the experimental results on�rm the satisfatory benhmarks of the original sensor

even for the waterproof version.
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List of Personal Pubbliations

Here follows the list of ahievements arising from the researh ativities reported in

this thesis.

B.1 Publiations in Journals
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2014
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