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A B S T R A C T

The new model of interaction suggested by Cloud Comput-
ing has experienced a significant diffusion over the last years
thanks to its capability of providing customers with the illu-
sion of an infinite amount of reliable resources. Nevertheless,
the challenge of efficiently manage a large collection of virtual
computing nodes has just been partially moved from the cus-
tomer’s private datacenter to the larger provider’s infrastruc-
ture that we generally address as “the cloud”. A lot of effort – in
both academic and industrial field – is therefore concentrated
on policies for the efficient and autonomous management of
virtual infrastructures.

The research on this topic is further encouraged by the dif-
fusion of cheap and portable sensors and the availability of al-
most ubiquitous Internet connectivity that are constantly creat-
ing large flows of information about the environment we live in.
The need for fast and reliable mechanisms to process these con-
siderable volumes of data has inevitably pushed the evolution
from the initial scenario of a single (private or public) cloud
towards cloud interoperability, giving birth to several forms of
collaboration between clouds. The efficient resource manage-
ment is further complicated in these heterogeneous environ-
ments, making autonomous administration more and more de-
sirable.

In this thesis, we initially focus on the challenges of auto-
nomic management in a single-cloud scenario, considering the
benefits and shortcomings of centralized and distributed solu-
tions and proposing an original decentralized model. Later in
this dissertation, we face the challenge of autonomic manage-
ment in large interconnected cloud environments, where the
movement of virtual resources across the infrastructure nodes
is further complicated by the intrinsic heterogeneity of the sce-
nario and difficulties introduced by the higher latency medium
between datacenters. According to that, we focus on the cost
model for the execution of distributed data-intensive applica-
tion on multiple clouds and we propose different management
policies leveraging cloud interoperability.
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1 I N T R O D U C T I O N

As the advent of Cloud Computing has suggested a new
model of interaction between the Information Technology (IT)
provider and the customers, the computing infrastructure has
been turned into a service that the customer can exploit
according to her needs after a contract negotiation with the
provider. This paradigm experienced a significant diffusion
during the last few years thanks to its capability of relieving
companies of the burden of managing their IT infrastructures.
At the same time, the demand for scalable yet efficient
and energy-saving cloud architectures has made the Green
Computing area stronger, driven by the pressing need for both
greater computational power and restraint of economical and
environmental expenditures.

The challenge of efficiently managing a collection of
physical servers avoiding bottlenecks and power waste, is not
completely solved by the Cloud Computing paradigm, but it
is only partially moved from the customers’s IT infrastructure
to the provider’s data centers. Since cloud resources are
often managed and offered to customers through a collection
of Virtual Machines (VMs), a lot of efforts concerning the
Green Computing trend are now concentrating on finding the
best VM allocation to obtain efficiency without compromising
performances.

Furthermore, Cloud Computing is facing the challenge of
an ever growing complexity due to the increasing number of
users and their augmenting resource requests. This complexity
can only be managed by providing the cloud infrastructure
with an autonomic behavior, so that, it can autonomously
allocate and move VMs across the datacenter’s nodes without
the human intervention.

Recently, the cloud computing model has seen the evolution
from the initial scenario of a public cloud offering its resources
to customers through virtualization and Internet, toward
the concept of hybrid cloud, where the classic scenario is
enriched with a private (company owned) cloud e.g., for the
management of sensible data. The hybrid cloud paradigm has

1



2 introduction

gained further attraction as the attention to computationally
intensive applications increased. As a relevant example, we
consider the so-called big data scenario.

The trending evolution towards the “Internet of things”
and the general increase in broadband are constantly creating
large volumes of data that need to be processed for higher
intelligence. In this scenario, assuming a limited set of
computing resource available on-premise – i.e., in the private
Internal Cloud (IC) –, it is crucial to allow the dynamic
provision of additional computing nodes by relaying on the
resource availability of an External Cloud (EC), e.g. a public
cloud.

Similarly to the classic cloud paradigm, the hybrid scenario
would benefit from an autonomous management system
able to dynamically scale-up towards the public cloud when
further resources are requested (or scale-down to reduce the
infrastructure costs).

Nevertheless, in a hybrid setup, further issues emerge e.g.,
the benefits of accelerating the computation can be mitigated
(or even frustrated) by the challenges of data locality and
data movement crossing the on-premise boundaries – which is
usually over a higher latency medium, when compared to a
co-located servers scenario.

This thesis studies the policies and the mechanisms for
autonomic VM management in public and hybrid cloud
architectures. On one hand, in the context of a single
public cloud, we investigate both distributed and centralized
solutions by reviewing previous state-of-the-art works, and
by contributing with our own proposal to decentralize the
management of the virtual infrastructure.

On the other hand, we highlight the main challenges in
the field of multiple clouds by discussing the details and the
intricacies of executing intensive data processing over hybrid
environments. In this regard, we propose our contribution
to enable infrastructure scaling and overcome the drawbacks
introduced by the multiple cloud scenario.

In the rest of this chapter, we describe cloud architectures
(Chapter 1.1) as well as the issues related to VM management
(1.2) and we introduce the multiple cloud scenario in detail
(1.3).
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1.1 the cloud
As Information and Communications Technology (ICT) is getting
more and more important for business, a growing number of
modern companies is facing the need for dedicated hardware
and computing infrastructure. Nevertheless, the management
of a datacenter can be too expensive for a small enterprise.
Companies can autonomously buy the hardware and software
their business requires but they need the support of an
IT provider to firstly install and configure these complex
architectures. Moreover, the computational requirements of an
enterprise can dynamically change as its business grows or
decrease making the continuous intervention by IT providers
crucial to adapt the datacenter structure. The enterprise can
also decide not to relay on external IT companies but hire high
qualified personnel to manage the computer infrastructure.
However, the costs of all these solutions remain very high.

The effort of many IT companies concerning cloud
computing is to supply infrastructures that can be completely
managed in a rather simple way, not only by the provider,
but also by nontechnical employees of the customer enterprise.
From the cloud customer point of view, since no more specific
operations on hardware and operating systems are necessary,
no more high qualified staff is needed to deal with computing
infrastructure issues.

As Cloud Computing rewrite the rules of business model
involving IT providers and customers, it is sometimes
addressed as the "fifth generation of computing", because its
revolution comes after the Mainframe, the personal computer,
the client-server model and the web [3]. However, Cloud
Computing can be seen as a complex service: a set of
technologies allowing the customer to remotely use hardware
– storage, Central Processing Unit (CPU), network, etc. – and
software resources owned by the IT provider. As pointed out
by [3], there are three fundamental kinds of services related to
Cloud Computing:

• Software as a Service (SaaS) - Allow the remote use
of some softwares, usually web services, recalling the
Application Service Provider (ASP) philosophy.
• Platform as a Service (PaaS) - Similar to SaaS, but

involving more than one software. Usually refers to a
collection of services, programs and libraries utilized by
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a remote user as a platform for the deployment and
execution of his applications.
• Infrastructure as a Service (IaaS) - Addresses a remote

use of hardware resources to allow distributed parallel
computations. The IT infrastructure is a collection of
physical machines connected by a network and able to
cooperate and create clusters for elaborations with high
computational requirements. The physical resources are
allocated to the customer on request only when she
actually needs to use them.

Figure 1.1: The cloud paradigm involves different kinds of users, pro-
viding them with software, development platforms or in-
frastructural resources according to their needs.

As illustrated in figure 1.1, the cloud paradigm can
include all these service models because it refers to both
the applications delivered as services over the Internet and
the hardware and platforms that provide those services. The
services themselves have long been referred as SaaS. The
hardware and software of the datacenter hosting these services
is what now is commonly referred with the term "cloud" [4].



1.2 cloud management open issues 5

1.2 cloud management open issues
A cloud datacenter is typically composed of a large number
(hundreds or even thousands) of physical servers, hosting
a collection of VMs accessed remotely by customers. In this
scenario, a software component (e.g., OpenStack [5], Amazon
EC2 [6], Aptana Cloud [7], Aneka Cloud [8], etc.) is responsible
for the management of the cloud infrastructure, including the
migration of VMs and the allocation of physical resources to
customers.

Through the use of virtualization, multiple VMs can run
on a single physical machine. A widespread practice in this
scenario is to allocate the VMs on a machine such that the
total amount of virtual resources requested never exceeds the
physical resources available. Nevertheless, since the resource
requirements of the applications running on the VM are
highly dynamic, such a static allocation of resources can still
lead to a significant resource underutilization. To address
this, the resources can be oversubscribed – e.g., by promising
to a set of VMs more CPU than actually possessed by the
hosting physical machine. This can drastically increase the
utilization of individual hosts, however, it can also lead to
resource contention, and thus to VM performance degradation.
A dynamic approach to VM allocation is therefore required.
This can be achieved through the use of live migration, i.e.,
moving a running VM from one host to another facing a
minimal downtime.

The open issues of cloud management are strictly related
to the target to be achieved. Therefore, we can identify three
research directions according to the specific objective:

• power saving: since an idle server is demonstrated to
consume around 70% of its peak power [9], packing
the VMs into the lowest possible number of servers and
switching off the idle ones, can lead to a higher rate
of power efficiency, but can also cause performance
degradation in customers’s experience and Service Level
Agreement (SLA) violations. The operation of turning
back on a previously switched off host can be very
time-consuming. In modern data centers, in order to
obtain a more reactive system, the underloaded hosts
are never completely switched off, but only put into
sleep mode. This technique slightly increases the power
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consumption, but also speeds up the wake up process
when further computational power is needed;
• load balancing: allocating VMs in a way that the total

cloud load is balanced among nodes results in a higher
service reliability and less SLA violations, but forces the
cloud provider to maintain all the physical machines
switched on and, consequently, causes unbearable power
consumption and excessive costs;
• dynamic behavior: we must take into account that such

a system is continuously evolving. The demand for
application services, computational load and storage may
quickly increase or decrease during the execution, thus
further complicating management operations.

Due to these targets (often in contrast with each other)
the VM management in a Cloud Computing datacenter is
intrinsically very complex and can be hardly solved by a
human team of system administrators, especially when the
size of the datacenter is big. For this reason, it is desirable to
provide the infrastructure with the ability to operate and react
to dynamic changes without human intervention.

While the majority of the efforts in this regard relays on
centralized infrastructures (where a single cloud controller is
responsible for identifying and reacting to critical conditions),
we propose a solution to increase system scalability and
reliability by leveraging a distributed approach.

1.3 from the single cloud to cloud
interoperability

Over the years, several technologies – e.g., virtualization, grid
computing, etc. – have matured and significantly contributed
to enable the cloud paradigm. However, cloud computing still
suffers from lack of standardization: most cloud providers
propose their own solutions along with proprietary interfaces
to access resources and services. This heterogeneity is
a crucial obstacle to the realization of ubiquitous cloud
[1]. An unavoidable barrier at this stage is vendor lock-in
[10, 11]: customers using cloud services need to follow
cloud-specific interfaces when creating their own applications.
This complicates a future relocation and makes it expensive.
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A relevant survey on cloud interoperability scenarios and
challenges is presented in the work by Toosi et al. [1].

According to [1], cloud interoperability can be obtained in
two ways:

• with standard interfaces, to which providers must be
compliant;
• by using a service broker, which translates messages

between different cloud interfaces, makes customers able
to switch between different clouds and allow cloud
providers to interoperate.

However, since one comprehensive set of standards is
difficult to develop and hard to be adopted by all providers, a
combination of both these approaches is also possible.

There are several benefits of an interconnected cloud
environment for both cloud providers and customers, and
there are essential motivations for cloud interoperability
such as scalability, availability, low-access latency and energy
efficiency.

Without provider-centric solutions – such as the adoption
and implementation of standard interfaces, protocols, formats,
and architectural components that facilitate collaboration –
cloud interoperability is hard to achieve. Hybrid Cloud, Cloud
Federation, and Inter-cloud are the most remarkable scenarios of
provider-centric approaches [1].

The hybrid cloud is the result of the collaboration between
a private (company-owned) and a public (provider-owned)
cloud that enables cloud bursting (i.e., the dynamic provisioning
of provider-owned additional resources to an on-premise
architecture). This practice allows a customer application to
be executed in an on-premise private data center and burst
off-premise towards a public cloud when peaks in resource
demand occurr.

When providers share their cloud resources, we talk about
cloud federation. This paradigm is very similar to the hybrid
cloud model because the providers aim to overcome the
limited nature of their local infrastructure by outsourcing
requests to other members of the federation. Differently from
hybrid cloud, the actors of the cloud federation no longer
include the final users of the infrastructure, but only two or
more providers. Moreover, cloud federation allows providers
operating at low utilization to lease part of their resources
to other federation members in order to avoid wasting their
unused compute resources.
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Finally, in the Inter-cloud paradigm, all clouds are globally
interconnected, forming a worldwide cloud federation. This
paradigm supports the VM migration and dynamic scaling of
applications across multiple clouds.

In case cloud interoperability is not supported by cloud
providers, the customers can benefit from client-centric
interoperability facilitated by user-side libraries or third-party
brokers. Multicloud application deployment using adapter layer
provides the flexibility to run applications on several clouds
and reduces the difficulty in migrating applications across
clouds. Aggregated service by broker, a third-party solution in this
regard, offers an integrated service to users by coordinating
access and utilization of multiple cloud resources [1].

Cloud interoperability is a challenging issue and requires
substantial efforts to overcome the existing obstacles. These
include both functional and nonfunctional aspects. This
dissertation mainly focus on the hybrid cloud paradigm as a
first step towards the complete cloud interoperability realizable
through the Inter-cloud. We expect the middle step in this
road of innovation to be the federated cloud. Nevertheless,
Inter-cloud and federated cloud are out the scope of this
dissertation.

Combining both on-premise (company owned) and off-
premise (owned by a third party provider) cloud infrastruc-
tures, the hybrid scenario can capture a broader use-case than
the public cloud: e.g., using off-premise resources for being
able to guarantee a minimum Quality of Service (QoS), satisfy-
ing a predefined deadline for a data-processing application, or
partitioning computation between on- and off-premise zones
in compliance with security requirements (for instance, if part
of the data is not allowed to cross the boundary of the
on-premise infrastructure).

Usually, the on-premise cloud is owned and managed by the
customer company, while the off-premise cloud is a collection
of physical nodes owned by the cloud provider and reserved
(upon payment) to the customer, who can either decide to
manage the nodes by herself or pay for a provider managed
service.

Another possible hybrid scenario consist of the off-premise
cloud realized through a public cloud, where the customer
does not have any control on the physical allocation of the VMs
spawned off-premise.
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Offering the possibility to extend the company-owned cloud
by bursting towards an off-premise datacenter, the hybrid
cloud paradigm has gained particular attraction as the so-called
big data field has become more and more important. Indeed
nowadays, data is the new natural resource. The tremendous
increase in broadband and generally Internet penetration
is constantly creating large volumes of data that need to
be processed for higher intelligence. The trending evolution
towards an ’Internet-of-everything’ is further aggravating the
problem e.g. through the exponential increase in the use
of mobile devices and the deployment of sensors across
application/industrial domains (from surveillance cameras for
national security to biometric sensor in healthcare). All these
create a massive need for faster, affordable and reliable time
to insight; the latter depends in part on the availability of
large-scale analytics infrastructures and platforms.

The issues of VM management in a large datacenter for
public cloud are mirrored in the hybrid context and further
complicated by the constraints introduced by the limited
inter-cloud bandwidth and the inherent lack of functionality
in application level software (e.g., high level mechanisms to
efficiently face the infrastructure partitioning).

All these challenges, must be taken into account when
dealing with a hybrid scenario and especially when the
practice of spawning VMs towards off-premise cloud is used to
enable big data analysis.

1.4 thesis contributions and out-
line

In this dissertation, we investigate design and implementation
issues related to the autonomic management of VMs in
single data centers and hybrid clouds. In the latter case, we
particularly focus on techniques to enable the execution of
data-intensive applications deployed over multiple clouds.

Starting from deep technical analyses of existing and
state-of-the-art contributions from industry and academia, we
define a classification of the works in the field of autonomous
infrastructures and we propose two different approaches to
the problem – one for the single cloud datacenter and one for
the hybrid context.
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We validate our ideas by building prototypes of systems,
techniques, and algorithms and by evaluating them through
extensive experimental campaigns on simulated and physical
distributed deployments of realistic application scenarios.

This thesis proposes our contribution to the emergent
autonomous computing field through several works briefly
introduced in the following.

• Chapter 2. We propose a classification of the existing
works on autonomic infrastructure management in
the context of a single cloud and we describe the
architecture of our contribution as well as the proposed
VM management policies.
• Chapter 3. We focus on multiple clouds by clarifying

the classification of the existing interoperability scenarios
and we describe the proposed framework architecture
and policies to enable infrastructure management with
particular attention to the execution of data-intensive
applications.
• Chapter 4. We describe a novel declarative approach

to crucial elements of autonomic strategies: the
monitoring and recovery features. Leveraging the
previously described framework architecture, we depict
the main advantages of the approach when dealing with
complex distributed computations, such as data-intensive
applications.

The thesis is concluded by Chapter 5, where we summarize
the most important findings of our work and highlight
interesting and still open research directions.



2 A U TO N O M I C V M
M A N A G E M E N T I N A
S I N G L E C LO U DWhile the cloud computing paradigm has been extensively

used to enable the provisioning of elastic services (where
the demand for resources can rapidly change during the
month, or even the day), the problem of efficiently manage a
collection of physical servers hosting a virtual infrastructure
(in order to minimize the power waste without compromising
the performance) is still an open challenge for cloud providers.
Most of them prefer not to risk violating the SLAs with the
client and, therefore, suffer the extra-cost due to all the servers
turned on instead of putting some of them in sleep mode and
save power.

Nevertheless, both the academia and industry has dedicated
a lot of attention to the so-called Green Computing area and,
in particular, to the VM management problem as a possible way
to increase the efficiency of large scale data centers.

In this Chapter, we first propose a classification of the works
in the Green Computing area (Chapter 2.1). Then, in Chapter
2.2, we describe our approach in detail and finally (Chapters
2.3 and 2.4) focus on two policies for VM management relevant
to the proposed model. The last Chapter (2.5) is dedicated to
our conclusions and expectation for the future of this field.

2.1 positioning our contribution
Most of the efforts in the field of VM management relay
on centralized solutions [12–14]. Following this approach, a
particular server in the cloud infrastructure is in charge of
collecting information on the whole set of physical hosts, taking
decisions about VMs allocation or migration, and operating
to apply these changes on the infrastructure [15, 16]. The
advantages of centralized solutions are well known: a single
node with complete knowledge on the infrastructure can take
better decisions and apply them through a restricted number
of migrations and communications. However, scalability and

11
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reliability problems of centralized solutions are known as
well. Furthermore, as the number of physical servers and VMs
grows, solving the allocation problem and finding the optimal
solution can be time expensive, so some other approximation
algorithm is typically used to reach a sub-optimal solution in a
fair computation time [17–19].

The adoption of a centralized VM management is even
unfeasible in those contexts (like Community Cloud [20, 21]
and Social Cloud Computing [22]), in which both the demand
for computational power and the amount of offered resources
can rapidly – and even dramatically – change.

An alternative approach in VMs management is bringing
allocation and migration decisions to a decentralized level,
allowing the cloud’s physical nodes to exchange information
about their current VM allocation and self-organize to reach a
common reallocation plan.

Decentralized solutions [23–26] can positively face scalability
and reliability problems, providing the infrastructure with an
autonomic collective behavior. As in a swarm of insects or a
bird flock, each agent (running on a physical server or a VM) is
able to execute only simple reactions to events, but the sum of
these actions results in a complex emergent behavior. However,
the distributed management of VMs brings other challenges,
like coordination of the agent colony, loss in the policy efficacy
due to a partial local knowledge and difficult evaluation of the
policy evolution.

To better investigate the field of VM management in a cloud
infrastructure, we start focusing on the related works by
classifying them according to specific subproblems addressed
(as suggested by Beloglazov et al. in [17]):

• VM Placement solutions, focus on finding the best
allocation for a given collection of VMs;
• VM Selection, given a group of VMs allocated on a

collection of servers, the goal is to find which is the best
VM to relocate;
• Holistic solutions, focus on both selection and placement

of VMs at the same time.

As illustrated in Figure 2.1, orthogonally to this classification,
we can identify other categories related to the technology
adopted to solve problems:

• works exploiting some concepts from the autonomic
control theory, in order to maintain the system in balance;
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Figure 2.1: Classification of the main works about VM management
in single datacenters.

• works based on optimization algorithms: given the
current configuration and resource utilization, they can
determine the best VM relocation;
• distributed/agent-based solutions, able to manage the cloud

datacenter without centralized control.

In a cloud scenario, there are a lot of other related topics that
must be taken into account while applying a VM reallocation
plan. For example, VMs allocated on the same physical host
can be completely independent and unaware of each other, or
can collaborate to reach a common objective. For this reason,
the infrastructure management may also take into account
other challenges related to traffic-aware and memory-sharing
placement of VM [27, 28].

Furthermore, to save power is important to predict the
energy consumption of a single VM. While power metering of
a physical host is quite simple, a lot of work remains to do
to understand exactly how much energy is consumed by a
running VM [29, 30].

In the following section, we deepen the state-of-the-art
classification by providing some examples of solution to the
VM management problem.
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2.1.1 Automated Control-inspired Approaches

Some approaches to VM management are based on automated
control theory, treating the infrastructure as if it was a system
of sensors and actuators. The goal is to maintain the cloud in
a condition of equilibrium, in which the power consumption
is minimized, while limiting the SLA violations. Therefore,
these approaches need a method to estimate the power
consumption and a specific feedback control policy to keep the
infrastructure utilization levels inside two threshold values.

Many works on feedback-controlled adaptive resource
provisioning assume a central controller that combines
application control and arbitration policy (e.g., [31–33]).
Urgaonkar et al. [33] use queueing theory to model a multi-tier
application and to determine the amount of physical resources
needed by the application. Soundararajan et al. [32] present
control policies for dynamic provisioning by replication of a
database server, while Lim et al. [13] address the challenge of
building an effective controller as a customer add-on outside
of the cloud utility service itself. Such external controllers
must function within the constraints of the utility service
Application Programming Interfaces (APIs). It is important to
consider techniques for effective feedback control using cloud
APIs, as well as how to design those APIs to enable more
effective control. The work by Lim et al. [13] especially
explores proportional thresholding, a policy enhancement for
feedback controllers that enables stable control across a wide
range of guest cluster sizes using the coarse-grained control
offered by popular virtual compute cloud services as Amazon
Elastic Compute Cloud [6], Aptana Cloud [7] and Joyent [34].

While Soundararajan [32] approach is based on static
thresholds with a target range, Padala and Lim [13, 35]
dynamically adjust the CPU entitlement of a VM to meet
QoS goals by empirically modeling the relationship of CPU
entitlement and utilization to tune the parameters of an
integral control.

Static thresholding is indeed simple to use, but it may not
be robust to scale. Consider a simple motivating scenario in
which a small startup company runs a web application service,
e.g., a Tomcat [36] server cluster that serves dynamic content
to clients. Rather than purchasing its own infrastructure to
run its service, the company leases a slice of resources from a
cloud hosting provider to reduce capital and operating costs.
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The application is horizontally scalable: it can grow to serve
higher request loads by adding more servers. Since the Tomcat
cluster is request-balanced, going from 1 to 2 machines can
increase capacity by 100% but going from 100 to 101 machines
increases capacity by not more than 1%. The relative effect of
adding a fixed-sized resource is not constant, so using static
threshold values may not be appropriate.

Furthermore, considering the derivative component of a
feedback control to dynamically vary the thresholds [37], can
give an idea of the speed of change in the amount of resource
requests.

The feedback-controlled adaptive resource provisioning can
also take advantage of an integral component ([13, 35]) to add
memory in the feedback loop and to prevent oscillations in
resource provisioning.

2.1.2 Optimization algorithms

In the cloud scenario, a fundamental goal is to determine
the best allocation for a collection of VMs on a datacenter
composed by many hundreds or even thousands physical
servers, in a way that the number of active hosts is minimized
to save power.

The problem of finding the optimal allocation of VMs to
hosts can be seen as a Bin Packing Problem with variable bin
sizes and prices and, therefore, is known to be NP-hard [38].

A lot of works is now concentrating on the possibility to
provide the virtual infrastructure with the ability of quickly
calculate a sub-optimal solution to the bin packing problem
applied on the cloud scenario. These solutions are intrinsically
centralized because the state of each host of the datacenter is
supposed to be known by a central cloud manager responsible
for the computation of the best relocation plan.

Beloglazov et al. [39] faced the VM placement problem
developing a very simple and effective heuristic. They apply a
modification of the Best Fit Decreasing (BFD) algorithm that
is shown to use no more than (11/9 OPT+1) bins (where OPT
is the number of bins given by the optimal solution) [40]. In
the Modified Best Fit Decreasing (MBFD) algorithm [39] , the
authors sort all VMs in decreasing order of their current CPU
utilizations, and allocate each VM to a host that provides the
least increase of power consumption due to this allocation.
This allows leveraging the heterogeneity of resources by
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choosing the most power-efficient nodes first. The complexity
of the allocation part of the algorithm is O(nm), where n is the
number of VMs that have to be allocated and m is the number
of hosts.

When a host is detected to be in a critical overloaded
condition because of the oversubscription of resources, some
SLA violation can occur and the VMs running on that server
generally experience performance degradation. To face this
critical situation, some VMs must be migrated to another host.
The selection of the best VM to migrate can be done again with
an approach involving optimization research.

Beloglazov et al. [39] addressed this problem with the
Minimization of Migrations (MoM) algorithm that sorts the list
of VMs in the decreasing order of the CPU utilization. Then,
it repeatedly looks through the list of VMs and finds a VM
that is the best to migrate from the host. The best VM is the
one that satisfies two conditions. First, the VM should have
the utilization higher than the difference between the host’s
overall utilization and the upper utilization threshold. Second,
if the VM is migrated from the host, the difference between
the upper threshold and the new utilization is the minimum
across the values provided by all the VMs. If there is no such a
VM, the algorithm selects the one with the highest utilization,
removes it from the list of VMs, and proceeds to a new iteration.
The algorithm stops when the new utilization of the host is
below the upper utilization threshold. The complexity of the
algorithm is proportional to the product of the number of
over-utilized hosts and the number of VMs allocated to these
hosts.

In [17], authors suggest two other heuristic for VM selection
problem: the Minimum Migration Time (MMT) policy and the
Maximum Correlation (MC) policy.

The MMT policy migrates a VM that requires the minimum
time to complete a migration relatively to the other VMs
allocated to the host. The migration time is estimated as the
amount of Random Access Memory (RAM) utilized by the VM
divided by the spare network bandwidth available for the host.

The MC policy is based on the idea proposed by Verma et al.
[41]. The idea is that the higher is the correlation between the
resource usage by applications running on an oversubscribed
server, the higher is the probability of server overloading.
According to this idea, authors select those VMs to be migrated
that have the highest correlation of the CPU utilization with
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other VMs. To estimate the correlation between CPU utilizations
by VMs, they apply the multiple correlation coefficient [42]. It is
used in multiple regression analysis to assess the quality of the
prediction of the dependent variable. The multiple correlation
coefficient corresponds to the squared correlation between the
predicted and the actual values of the dependent variable. It
can also be interpreted as the proportion of the variance of the
dependent variable explained by the independent variables.

Some works in the field of management of a virtual cloud
infrastructure focus on both VM selection and placement
simultaneously. An example is the work by Jung et al. [12]
that presents Mistral, a controller framework able to optimize
power consumption, performance benefits, and the transient
costs incurred by various adaptations and the controller
itself to maximize overall utility. Mistral can handle multiple
distributed applications and large-scale infrastructures through
a multi-level adaptation hierarchy and scalable optimization
algorithm.

The idea is exploit a Performance-Power optimizer to find the
optimal capacities of VMs that can be packed in as few server
machines as possible while balancing performance and power
usage. It employs a heuristic bin-packing algorithm with a
classic gradient-based search algorithm to place VMs to hosts,
but extends the algorithm to deal with variable number of
active physical machines and their power consumption.

Furthermore Mistral takes into account a workload
prediction to deal with frequent changes in resource requests,
and the cost determined by the stated adaptation, considering
even the computational overhead generated by the algorithm
itself. The framework online builds an oriented graph where
the vertex are cloud configuration and the arches are the
costs of the adjustments necessary to go from a configuration
to another. A configuration can be either "intermediate" or
"candidate". A candidate satisfies the allocation constraint that
the sum of all VMs’s CPU and memory capacities on each host
must be less than 100%, while an intermediate does not satisfy
the constraint. For instance, Mistral may assign more CPU
capacity to a VM than available on a host. When a candidate ci
is determined to be the final optimal configuration, the shortest
path starting from the initial configuration c to configuration
ci denotes the optimal sequence of adaptation actions needed
to achieve optimal utility for a given control window.
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As all the holistic solutions, Mistral framework is
intrinsically very complex and can be applied only to a
centralized environment because it presumes that a single
physical server receives the state of the whole system and
operate to optimize it.

Nevertheless, we must notice the all that existing solutions
exploiting optimization theory focus on a centralized
architecture, requiring global knowledge of the datacenter
state. Given the large scale and highly dynamic nature of the
scenario, a centralized solution is unlikely to scale to meet
realistic demands. In the following section we discuss some
examples of distributed approaches to the VM management
problem.

2.1.3 Distributed/agent-based approaches for VM manage-
ment

Concentrating in a single physical machine all the responsi-
bilities for finding the best way to relocate all the VMs of
a cloud datacenter can lead to poor solutions in terms of
scalability and reliability. A possible answer is to provide
the infrastructure with a set of replicated servers which can
substitute the central controller in case of fault or can work
together with it in case the number of nodes is too high for
a single datacenter manager. Both this solutions requires to
face non trivial coordination challenges and do not solve the
problem in an absolute way, but only provide solutions for a
maximum number of nodes in the cloud.

Decentralized management solutions try to address both
scalability and reliability problems by spreading the control
of VM allocation and migration decisions to all the physical
nodes. The idea is to give each node a set of simple operation
to execute, thus to provide the whole system with an emergent
intelligent behavior.

The work of Babaoglu et al. [25] is one of the most complete
in this field. It is based on a simple gossip protocol [43] that
does not require any central coordinator or global shared data
structure and is completely VM and application agnostic. It
does not require any instrumentation of either the VMs or
the hosted applications. The distributed algorithm is executed
periodically to identify a new arrangement of existing VM
instances so that the number of empty servers is maximized.
Once the new allocation has been identified, it is possible to
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migrate VMs to their final destination using the live migration
feature provided by most VM monitors.

An overlay network is built and maintained using a peer
sampling service which provides each node with peers to
exchange information with. The peer sampling service is
implemented as follows: each node periodically sends its local
view (i.e., list of VMs currently hosted) to K neighbors (i.e.,
other peers hosting VMs), and builds a new local view by
merging the old one with those received by neighbors. Thus
Babaoglu implicitly assumes each node of the datacenter can
easily communicate with each other.

Each physical server has a map Hi of the current VM
allocated, a Passive and an Active Thread running on it.

The Active Thread is executed each δ time units; iterates
over each neighbor j, to which it sends the current number of
hosted VMs; it then receives an updated map Hi of allocation
(which is possibly different from the current one), and updates
it accordingly. Each server must keep track of the initial
location of each VM it receives, so that at the end it can pull the
assigned VMs from their original location.

The Passive Thread listens for messages coming from the
other peers. Upon receiving the allocation map Hj from peer
j, the server decides whether some VMs should be pushed to
j, or pulled from it. VMs are always transferred from the least
loaded peer to the most loaded one; the number of VMs to
transfer is limited by the residual capacity of the receiving
node.

This work does not address the important issues of deciding
which specific VM to migrate; probably it makes sense to
transfer those with smaller memory footprint, so that the
transferred image is smaller.

Since neighborhoods of physical servers are always changing
during the protocol execution, the information about needed
migrations are spread across the datacenter environment,
without a central management node required.

However, this approach does not take into account that in a
physical cloud datacenter the network is typically organized
in a tree configuration, with high level nodes prone to be
bottleneck in an intra-cloud communication. Thus, making
every node able to exchange information with each other may
congestionate the network.

The same issue can be pointed out in the work by Tighe et
al. [44] where an overloaded host determines the minimum
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amount of CPU required to be available on another host to
migrate out one of its VMs and relieve the stress situation. To
this purpose, the node broadcasts a resource request message
to all other hosts.

In [44], each host monitors its resource utilization on a
periodic interval, every 5 minutes, and performs a check
for stress or under-utilization by comparing average CPU
utilization over the last 5 monitoring intervals with threshold
values. Taking into account the past load conditions can give
to the monitoring system an idea of how much fast the
resource utilization is changing, thus recalling the advantages
of a derivative component in an automated controller.

An important element of Tighe study [44] is the idea
of reducing thrashing between highly utilized hosts, by
implementing a relocation freeze, preventing a host from
offering resources for a specified amount of time after the
same host evicts a VM. Indeed, this mechanism can give
memory to the system similarly to the integral component
in a feedback automated controller and prevent oscillations
between provisioning and de-provisioning of physical hosts.

We took inspiration from distributed management solutions
to build an alternative decentralized protocol of interaction
between physical hosts [45]. The goal is to find the best
interaction that maximize the information exchanged without
creating communication overhead and VM performance
degradation.

We propose a novel decentralized way [46] to apply a VM
migration policy to the cloud: we imagine the datacenter is
partitioned into a collection of overlapping neighborhoods, in
each of which a local reallocation strategy is applied. Taking
advantage from the overlapping, the VM redistribution plan
propagates on the global cloud.

We analyze the effects of this approach by comparing
them with the centralized application of the same policy.
In particular we focus on the definition of the Distributed
Autonomic Migration (DAM) protocol, used by cloud’s physical
hosts to communicate and get a common decision as regards
the reallocation of VMs, according to a predefined global goal
(e.g. power-saving, load balancing, etc.) [47].

Table 2.1 summarizes the main features of the referred
works in the field of VM management. The last two lines refer
to our contributions presented in the next section.
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2.2 the model
We propose a distributed solution for Cloud Computing
infrastructure management, with a special focus on VM
migration. A detailed description of the work presented in
this chapter was published in [49]. According to the model,
each physical node of the system is equipped with a software
module composed of three main layers (see Figure 2.2):

• the infrastructure layer, specifying a software rep-
resentation of the cloud’s entities (e.g., hosts, VMs,
etc);
• the coordination layer, implementing the DAM protocol,

which defines how physical hosts can exchange their
status and coordinate their work;
• the policy layer, containing the rules that every node

must follow to decide where to possibly move VMs.

The separation between coordination and policy layer allow us
to use the same interaction model with different policies. In
this way, different goals can be achieved by only changing the
adopted policy, while the communication model remains the
same. We describe each layer in more detail in the following
sections.

Figure 2.2: The three tiers architecture. The separation between lay-
ers ensures the possibility to test different policies and
protocols with the same infrastructure implementation.

2.2.1 Infrastructure Layer

The infrastructure layer defines which information must be
collected about each host’s status. To this purpose two
basic structures are maintained: the HostDescriptor and the
VmDescriptor.
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The HostDescriptor can be seen as a bin with a given capacity
able to host a number of VMs, each one with a specific
request for computational resources. We only take into account
the amount of computational power in terms of Millions
of Instructions Per Second (MIPS) offered by each host and
requested by a VM. An empty HostDescriptor represents an idle
server that can therefore be put in a sleep mode or switched-off
to save power.

The HostDescriptor contains not only a collection of
VmDescriptors really allocated on it (the current map), but also
a temporary collection (the future map) initialized as a copy
of the real one and exchanged between hosts according to
the defined protocol. During interactions only the temporary
copy is updated and, when the system reaches a common
reallocation decision, the future map is used to apply the
migrations.

In a distributed environment, where each node can be
aware only of the state of a local neighborhood of nodes,
the number of worthless migrations can be very high. Thus,
this double-map mechanism is used to limit the number of
migrations (as we describe in Chapter 2.2.2), by performing
them only when all the hosts reach a common distributed
decision.

Each VM is also equipped with a migration history keeping
track of all the hosts where it was previously allocated. For the
sake of simplicity, we assume that a VM cannot change its CPU
request during the simulation period.

The CPU model

The amount Uh of CPU MIPS used by the host h is calculated as
follows:

Uh =
∑

vm∈currentVmMaph

mvm
Tvm

100
(2.1)

where currentVmMaph is the set of VMs currently allocated
on host h; Tvm is the total CPU MIPS that a virtual machine vm
can request; and mvm is the percentage of this total that is
currently used.

Indeed, we consider a simplified model in which the total
MIPS executed by the node can be seen as the sum of MIPS
used by each hosted virtual machine. In fact, the model
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does not take into account the power consumed by the
physical machines to realize virtualization and to manage their
resources.

2.2.2 Coordination Layer

The coordination layer implements the DAM protocol, which
defines the sequence of messages that hosts exchange in order
to get a common migration decision and realize the defined
policy.

Figure 2.3: Example of "knows the neighbor" relation applied on a col-
lection of physical nodes. The relation is not symmetric,
thus if node "a knows the neighbor b", this means that b
is included in the neighborhood of a but, in general, a is
not in the neighborhood of b.

The protocol is based on the assumption that the cloud
is divided into a predefined fixed collection of overlapping
subsets of hosts: we call each subset a neighborhood. From an
operational point of view, we define a "knows the neighbor"
relation between the hosts of the datacenter, which allow us to
partition the cloud into overlapping neighborhoods of physical
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Figure 2.4: Schema of two overlapping neighborhoods. The VM de-
scriptor vmi is exchanged across physical hosts, crossing
the neighborhood boundaries, until the nodes agree with
a common reallocation plan i.e., a "stable" allocation hy-
pothesis for vmi is detected.

machines. As we can see in Figure 2.3 the relation is not
symmetric.

We assume that each physical host executes a daemon
process called SlaveServer, which owns a copy of the node’s
status stored into an HostDescriptor and can send it to other
nodes asking for that.

Each node can monitor its computational load and the
amount of resources used by the hosted VMs; according to the
chosen policy, it can detect either it is in a critical condition or
not. A node can, for example, detect to be overloaded, risking
to incur in SLA’s violations, or underloaded, causing possibile
power waste. If one of these critical conditions happens, the
node starts another process, the MasterClient, to actually make
a protocol interaction begin. We call rising condition the one
that turns on a node’s MasterClient.

Since there is a certain rate of overlapping between
neighborhoods, the effects of migrations within a neighborhood
can cause new rising conditions in adjacent ones.

To better explain the DAM protocol, Figure 2.4 shows an
example of two overlapping neighborhoods. Each node has
a SlaveServer (SS in Figure 2.4) always running to answer
questions from other node’s MasterClient (MC in Figure 2.4),
and optionally can also have a MasterClient process started
to handle a local critical situation. A virtual machine vm
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allocated to an underloaded node N1 can be moved out of it
on N2 and, as a consequence of the execution of the protocol
in the adjacent neighborhood of N3, it can be moved again
from N2 to N3. It is worth to notice that node N2, as each
node of the datacenter, has its own fixed neighborhood, but it
starts to interact with it (by means of a MasterClient) only if a
rising condition is observed.

Note that N1’s MasterClient must have N2 in its
neighborhood to interact with it, but the SlaveServer of N2

can answer to requests by any MasterClient and, if a critical
situation is detected (so that N2 MasterClient is started) its
neighborhood does not necessarily include N1.

As regards this environment, we must remark that the
migration policy should be properly implemented in order to
prevent never-ending cycles in the migration process.

Algorithms 1 and 2 reports the interaction code executed
by the MasterClient and the SlaveServer, respectively. The
MasterClient procedure takes as input the list of SlaveServer
neighbors ssNeighList and an integer parameter maxRound. The
SlaveServer procedure takes the HostDescriptor h of the node
on which it is running. If the SlaveServer detects a critical
conditions on the host, makes a MasterClient process start
(lines 1-2 in Algorithm 2).

We must ensure that the neighbors’s states the MasterClient
obtains, are consistent from the beginning to the end of the
interaction. For this reason, a two-phase protocol is adopted:

DAM Phase 1

As we can see in lines 5-9 of Algorithm1, the MasterClient
sends a message to all the SlaveServers neighbors ss to collect
their HostDescriptors h. This message also works as a lock
message: when the SlaveServer receives it, locks his state, so
that no interactions with other MasterClients can take place
(lines 5-11 in Algorithm 2). If a MasterClient sends a request
to a locked SlaveServer, simply waits for the SlaveServer to be
unlocked and to send its state.

DAM Phase 2

The MasterClient compares all the received neighbor’s
HostDescriptors with a previous copy he stored (line 10 in
Algorithm 1). If the future map is changed, performs phase 2A,
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Algorithm 1: MasterClient DAM protocol code

input : maxRound, ssNeighList

1 neighHDs← emptylist();
2 neighHDsPast← emptylist();
3 round← 0;
4 while true do
5 foreach ss ∈ ssNeighList do /* Phase 1 */

6 send(ss, "lock");
7 (h, ss)← receive();
8 neighHDs.add(h);
9 end

10 if neighHDs = neighHDsPast then /* Phase2 */

11 round++;
12 else
13 round← 0;
14 neighHDsPast← neighHDs;
15 end
16 if round < maxRound then /* Phase 2A */

17 optimize(neighHDs);
18 foreach ss ∈ ssNeighList do
19 send(ss,neighHDs.get(ss));
20 end
21 else /* Phase 2B */

22 foreach ss ∈ ssNeighList do
23 send(ss, "update_current_status");
24 end
25 break;
26 end
27 end

otherwise increments a counter and, when it exceeds a certain
maximum, performs phase 2B:

• Phase 2A: the MasterClient computes a VM reallocation
plan for the whole neighborhood, according to the
defined policy, and sends back to each SlaveServer
neighbor the modified HostDescriptor (lines 17-20 in
Algorithm 1). The "optimize(neighHDs)" operation in
line 17 of Algorithm 1 actually applies the specific chosen
policy on the neighborhood’s HostDescriptors (neighHDs).
Indeed, this method is the software connection between
the coordination layer and the policy layer.
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Algorithm 2: SlaveServer DAM protocol code

input : h

1 if checkRisingCondition() then
2 startMasterClient();
3 end
4 while true do /* Phase 1 */

5 (msg,mc)← receive();
6 if msg 6= "lock" then /* protocol error */

7 break;
8 else
9 lock();

10 send(mc,h);
11 end
12 (item,mc)← receive(); /* Phase 2 */

13 if item 6= "update_current_status" then
/* Phase 2A */

14 h← item;
15 else /* Phase 2B */

16 updateCurrentStatus(h);
17 end
18 unlock();
19 if checkRisingCondition() then
20 startMasterClient();
21 end
22 end

As we can see in line 14 of Algorithm 2, the state is
accepted passively by the slaves, without negotiation.
The migration decisions only change the future map of
VM allocation. No host switch-on/off or VM migration is
performed in this phase. After all new states are sent,
the SlaveServers are unlocked (line 18 in Algorithm 2) and
the MasterClient begins another round of the protocol
interaction by restarting phase 1.
• Phase 2B: when the number of round with unchanged

neighbor’s allocation exceeds a defined maximum (line
16 of Algorithm 1), the MasterClient sends an update-
current-status request (line 23 of Algorithm 1) to all
SlaveServers and terminates. This last message notifies
the SlaveServers that information inside the HostDescriptor
should be applied to the real system state (line 16 of
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Figure 2.5: Example of protocol interaction rounds. Node N2 is
shared by nodes N1 and N3. Therefore, their Master-
Clients must coordinate to ensure the consistency of status
information.

Algorithm 2). The SlaveServer again executes it passively
and unlocks his state.

Alternatives 2A and 2B come from the need for reducing
the number of migration physically performed. Looking at
example in Figure 2.4, if hosts only exchange and update the
current collection of VMs, every MasterClient can only order a
real migration at each round, so that vmi on N1 would be
migrated on N2 at first, and later on N3. Using the temporary
future map (initially copied from the real one) and performing
all the reallocations on this abstract copy, real migration are
executed only when the N3’s MasterClient exceeds a maximum
number of rounds and vmi can directly go from N1 to N3.
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The same example is represented in Figure 2.5. N2 is shared
by the MasterClients of nodes N1 and N3. Two concurrent
sessions of the protocol must synchronize in order to maintain
the status information consistent. Therefore, node N3 waits
until N2 status is updated and released by N1. If no concurrent
interactions are taking place in adjacent neighborhoods,
the MasterClient receives an unchanged HostDescriptor and
increments the value of the round counter.

As a result of DAM protocol, the consensus on migration of
VMs is not for the entire infrastructure, but is distributed across
the neighborhoods. This element must be taken into account
while implementing the policy layer.

2.2.3 Policy Layer

Depending on the algorithm implemented in the Policy layer,
different management goals can be achieved.

We used DAM infrastructure to study the performance of
two different policies: Mobile Balance (MB) and Mobile Worst
Fit (MWF). The following sections show the policies in detail as
well as their performance evaluation.

2.3 mobile balance policy
MB is a novel policy aiming to maintain the computational
load of physical nodes balanced. The content of this chapter
has been published in [48].

MB exploits a fixed threshold FTH_UP and a dynamic
threshold MTH_UP to detect rising conditions. The fixed
threshold identifies absolute risky situations: if the host is
more loaded than FTH_UP, SLA violations may occur. The
dynamic threshold MTH_UP represents the upper value that
cannot be exceeded in order to maintain the neighborhood
balanced.

According to the DAM coordination protocol, at each iteration
the MasterClient collects the temporary VM allocation map of
the neighbors and executes a MB optimization as detailed in
Algorithm 3: the MasterClient calculates the average of resource
utilization in his neighborhood (calculateNeighAverage() in
line 1 of Algorithm 3) and uses it to compute the dynamic
threshold (MTH_UP) by adding a tolerance interval t (line 2 of
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Algorithm 3: MB policy

input : h, t, FTH_UP

1 ave← calculateNeighAverage() ;
2 MTH_UP ← ave+ t ;
3 u← h.getLoad() ;
4 if u > FTH_UP or u > MTH_UP then
5 vmList← selectVms() ;
6 end
7 if vmList.size 6= 0 then
8 worstFitMigrateAll(vmList) ;
9 end

Algorithm 3). Then the MasterClient checks its HostDescriptor
h and collects the current computational load u by invoking
a specific getLoad() method on the HostDescriptor (line 3 of
Algorithm 3).

The computational load u of the host is compared to
fixed and dynamic thresholds: if it is detected to be higher
than FTH_UP or MTH_UP, then the selectVms() operation is
invoked to pick (from the host h temporary state) only the less
loaded VMs whose migration will result in the host load to go
back under both MTH_UP and FTH_UP. selectVm() applies
the MoM algorithm from Beloglazov et al. [39] and is detailed
in Algorithm 4. Differently from [39], we select the threshold
thr as the minimum between FTH_UP and MTH_UP.

The list of chosen VMs vmList is finally migrated
to neighbors by means of a modified worst-fit policy
(worstFitMigrateAll(vmList) in line 8 of Algorithm 3).

As shown in Algorithm 5, the worstFitMigrateAll

procedure takes as input the list of vm to move (vmList), the
host h where they are currently allocated, the list offNeighList
of switched-off hosts in h’s neighborhood (if any) and
wNeighList of all the working neighbors of h. The procedure
considers the VMs by decreasing CPU request and, according to
the principles of worst-fit algorithm, tries to migrate it to the
neighbor n with the highest value of free capacity (lines 5 to
13 of Algorithm 5). This ensure that neighbors with low CPU
utilization are preferred.

Finally, if no hosts in wNeighList can receive vm, but
h is more loaded than FTH_UP, then h is in a risky
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situation because performance degradation can occur. Thus, a
switched-off neighbor is woken up (line 15 of Algorithm 5).
worstFitMigrateAll(vmList) operates in a "all-or-none"

way, such that the migrations are committed on the future
maps (line 22 of Algorithm 5) only if it is possible to reallocate
all the VMs in the list (i.e., without making other hosts to
exceed FTH_UP), otherwise no action is performed (line 17 of
Algorithm 5).

As shown in Figure 2.6, suppose that a protocol execution by
hb’s MasterClient decides to migrate to hb a VM vmi currently
allocated on hc. When the SlaveServer of hb is unlocked, the

Algorithm 4: selectVms() procedure

input : h, MTH_UP, FTH_UP
output : vmsToMove

1 u← h.getLoad();
2 vmList← h.getFutureVmMap() ;
3 vmList.sortDecreasingLoad();
4 minU←∞;
5 bestVm← null;
6 thr← min{FTH_UP,MTH_UP};
7 vmsToMove = emptyList();
8 while u > thr do
9 foreach vm ∈ vmList do

10 var← vm.getLoad() − u+ thr;
11 if var > 0 then
12 if var < minU then
13 minU← var;
14 bestVm← vm;
15 end
16 else
17 if minU = ∞ then
18 bestVm← vm;
19 end
20 break;
21 end
22 end
23 u = u− bestVm.getLoad();
24 vmsToMove.add(bestVm);
25 vmList.remove(bestVm);
26 end
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Algorithm 5: worstFitMigrateAll() procedure

input : vmList, h, offNeighList, wNeighList

1 vmList.sortDecreasingLoad() ;
2 foreach vm ∈ vmList do
3 vmU← vm.getLoad();
4 maxAvail← 0;bestHost← null;
5 foreach n ∈ wNeighList do
6 if n /∈ vm.getMigrationHistory() then
7 avail← FTH_UP−n.getLoad() + vmU ;
8 if avail > maxAvail then
9 maxAvail← avail ;

10 bestHost← n ;
11 end
12 end
13 end
14 if bestHostnull and !empty(offNeighList) and

u > FTH_UP then
15 bestHost← offNeighList.get(0) ;
16 else

/* all-or-none behavior */

17 migrationMap← null ;
18 break;
19 end
20 migrationMap.add(vm,bestHost) ;
21 end
22 commitOnFutureMap(migrationMap) ;

policy execution on ha’s MasterClient can decide to put vmi

into ha. Now if hc has a MasterClient running, and decides to
migrate vmi back to hc, then hc can take the same decision as
before and a loop in vmi migration starts. If this happens, the
distributed system will never converge to a common decision.
In order to face this problem, the MB policy exploits the
migration history inside each VmDescriptor to avoid loops in
reallocation: a VM can be migrated only on a host that it never
visited before. Once the distributed autonomic infrastructure
reach a common decision, the migration history of each VM is
deleted.

To prevent the case in which a VM cannot be migrated away
because it visited all the nodes around her current allocation,
we implemented the migration history as an ever-updating list
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Figure 2.6: Example of three overlapping neighborhoods.

Figure 2.7: Distribution of servers on load intervals.

of Most Recently Used (MRU) hosts. This allow us to prevent
the permanent blacklisting of available destination hosts and
reduce the risk of thrashing in VM migration. Indeed, in order
to completely avoid migration oscillations, we should provide
a H-long MRU migration history inside each VM (where H is
the total number of hosts in the cloud). Since this solution can
considerably increase the number of messages exchanged, we
accept the risk of migration cycles by reducing the size of the
migration history inside each VM.

2.3.1 Experimental results

To understand the effectiveness of the proposed model we
used DAM Simulator (DAM-Sim)[47]: a Java simulator able to
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(a)

(b)

Figure 2.8: MB and WF-GLO performance comparison. 2.8a: Number
of migration performed for increasing number of simu-
lated hosts. We compare the performance of MB with tol-
erance interval 10.0 with centralized WF-GLO. 2.8b: Maxi-
mum number of messages exchanged (sent and received)
by a single host of the datacenter. MB significantly outper-
forms WF-GLO for high values of simulated hosts.
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apply a specific policy on a collection of neighborhoods
throughDAM protocol and compare the performance with a
centralized policy implementation.

We initially tested our approach on a simulated datacenter
of 500 physical nodes hosting around 15000 VMs (i.e., an
average value of 30 VMs on each host). We adopted a fixed
neighborhood dimension of 10 physical server and set FTH_UP
to 95%, while repeating the experiment with decreasing values
of the tolerance interval t. The length of the migration history
inside each VM is set to 10. This allow us to avoid up to
ten-hops cycles in VM migration.

We always started from the worst situation for load
balancing purposes, i.e., all the servers have different
computational loads, resulting in a strongly unbalanced
scenario. To understand the efficacy of our approach, we
partitioned the set of hosts into 20 intervals of computational
load (i.e., each interval is 5% wide).

As we can see in Figure 2.7, at the beginning (INI series) the
system is configured such that there are 25 servers in each load
interval. We apply the distributed MB policy with tolerance
interval t ∈ {5.0, 10.0, 15.0, 20.0} and compare the results with
a centralized implementation of a worst-fit reallocation policy
(WF-GLO in Figure 2.7).

According to worst-fit principals [50], WF-GLO considers the
VMs by decreasing load request and always selects the host
with the higher value of free capacity as migration destination.
Relying on a global knowledge of the state of each server, the
centralized WF-GLO policy can make each node loaded at 55%
while the MB policy cannot perform as good. But, as we can see
in Figure 2.7, we can significantly improve MB performance by
reducing the tolerance interval t. Table 2.2 shows decreasing
values of standard deviation when reducing t.

At the moment, the simulator is not able to give trustworthy
results about execution time for distributed environments
because the CPU executing the simulator code can only
sequentialize intrinsically concurrent processes of the protocol.
For this reason, no test about execution time is reported.

In order to test the scalability of the distributed approach,
we analyzed MB behavior while increasing the number of
simulated servers and VMs up to 2000 and 60000 respectively.
Figure 2.8a shows the number of migrations stated by MB and
compare it with that of WF-GLO policy. Since the number of
VMs increases with the number of hosts, we actually compare
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Table 2.2: Values of standard deviation σ of traces in Figure 2.7 for
decreasing values of tolerance interval t.

t σ

20 12,9716625

15 10,19978781

10 8,089993572

5 5,972641366

the ratio between migrations and number of VMs in the
scenario. WF-GLO policies does not take into account the
current allocation while performing the optimization, therefore
it results in a very high number of migration, near to the total
of VMs. Conversely MB distributed policy only operates on
overloaded nodes (with CPU utilization higher than FTH_UP)
or on those hosts that are unbalanced in respect to the average
of their neighborhood (CPU utilization higher than MTH_UP).
For this reason, as shown in Figure 2.8a, the number of
resulting migrations is significantly lower for MB.

In Figure 2.8b we consider the maximum number of
messages exchanged by a single host. Since WF-GLO is
centralized, the coordinator node must collect the state of the
all other nodes before starting the optimization and finally
return the new configuration to each node. Therefore, as
shown in Figure 2.8b, the number of messages exchanged
by the coordinator is always proportional to the number of
the nodes it manages. Conversely, the behavior of MB policy
is rather constant. This comes from the fact that, according
to MB, each node of the datacenter always comunicate with
a predefined number of neighbors (10 in this simulation).
Therefore, considering the maximum number of messages
exchanged by a node, for high values of simulated hosts, we
can conclude that MB distributed approach performs better
than the centralized WF-GLO algorithm.

2.4 mobile worst fit policy
Given the good load balancing performance of MB, we enriched
the policy with the ability of switching off the underloaded
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hosts to save power. The result is MWF policy, which exploits
two fixed thresholds (FTH_UP and FTH_DOWN) and two
dynamic (mobile) thresholds (MTH_UP and MTH_DOWN)
used to detect rising conditions. This policy is also depicted in
[51]

Similarly to MB, the fixed thresholds identify risky situations:
if the host is less loaded than FTH_DOWN an energy waste
is detected, while, if the host is more loaded than FTH_UP,
SLA violations may occur. The dynamic thresholds (MTH_UP
and MTH_DOWN) represents the upper and lower values that
cannot be exceeded in order to maintain the neighborhood
balanced.

Algorithm 6: MWF policy

input : h, t, FTH_DOWN, FTH_UP

1 ave = calculateNeighAverage() ;
2 MTH_DOWN = ave− t ;
3 MTH_UP = ave+ t ;
4 u = h.getLoad() ;
5 if u < FTH_DOWN or u < MTH_DOWN then
6 vmList = h.getFutureVmMap() ;
7 else if u > FTH_UP or u > MTH_UP then
8 vmList = selectVms() ;
9 end

10 if vmList.size 6= 0 then
11 migrateAll(vmList) ;
12 end

As detailed in Algorithm 6: the MasterClient calculates
the average of resource utilization in his neighborhood
(calculateNeighAverage() in line 1 of Algorithm 6) and uses it
to compute the two dynamic thresholds (MTH_DOWN and
MTH_UP) by adding and subtracting a tolerance interval t
(lines 2, 3 of Algorithm 6). Then the MasterClient checks its
HostDescriptor h and collects the current computational load u
by invoking a specific getLoad() method on the HostDescriptor
(line 4 of Algorithm 6).

The computational load u of the host is compared to fixed
and dynamic thresholds: if it is less than the lower thresholds,
the MasterClient attempts to put the host in sleep mode by
migrating all the VMs allocated; otherwise, if the host load
exceeds the upper thresholds, only a small number of VMs
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Algorithm 7: migrateAll() procedure

input : vmList, h, offNeighList, underNeighList,
otherNeighList

1 vmList.sortDecreasingLoad() ;
2 foreach vm ∈ vmList do
3 vmU = vm.getLoad(); maxAvail = 0 bestHost = null;
4 foreach n ∈ otherNeighList do
5 if n /∈ vm.getMigrationHistory() then
6 avail = FTH_UP−n.getLoad() + vmU;
7 if avail > maxAvail then
8 maxAvail = avail;
9 bestHost = n;

10 end
11 end
12 end
13 if bestHost == null then
14 minU = ∞ ;
15 foreach n ∈ underNeighList do
16 if n /∈ vm.getMigrationHistory() then
17 avail = FTH_UP−n.getLoad() + vmU;
18 if avail >= 0 and avail < minU then
19 minU = avail;
20 bestHost = n;
21 end
22 end
23 end
24 end
25 if bestHost == null and !empty(offNeighList) and

u > FTH_UP then
26 bestHost = offNeighList.get(0) ;
27 else

/* all-or-none behavior */

28 migrationMap = null ;
29 break;
30 end
31 migrationMap.add(vm,bestHost) ;
32 end
33 commitOnFutureMap(migrationMap) ;
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are selected for migration. As we can see in lines 5, 6 of
Algorithm6, if the computational load u is less than the
fixed (FTH_DOWN) or the dynamic (MTH_DOWN) lower
thresholds, all the VMs of the host are collected for migration
into an array vmList. h.getFutureVmMap() in line 6 is the
method to collect the temporary allocation. Indeed in this
phase, the policy only works on a copy of the real VM allocation
map, because according toDAM protocol, all the migrations
will be performed only when the whole datacenter reach a
common decision.

As suggested by MB, if the load u is detected to be
higher than the fixed (FTH_UP) or dynamic (MTH_UP)
upper thresholds, then the selectVm() operation is invoked
(Algorithm 4).

The list of chosen VMs vmList is finally migrated to neighbors
by means of a modified worst-fit policy (migrateAll(vmList)
in line 11 of Algorithm 6). As shown in Algorithm 7, the
migrateAll procedure takes as input the list of vm to move
(vmList), the host h where they are currently allocated, the list
offNeighList of switched-off hosts in h’s neighborhood, the
underNeighList of h’s neighbors with load level lower than
FTH_DOWN, and otherNeighList of all the other neighbors
of h. The procedure considers the VMs by decreasing CPU
request and, according to the principles of worst-fit algorithm,
tries to migrate it to the neighbor n with the highest value
of free capacity (lines 2-12 of Algorithm 7). If no neighbor in
otherNeighList can receive the vm, the underNeighList is
considered with a best-fit approach (lines 13-24 of Algorithm
7), thus allocating vm on the most loaded host of the list. This
ensure that neighbors with CPU utilization near to FTH_DOWN
are preferred, while less loaded ones remain unchanged and
will be hopefully switched-off by other protocol’s interactions.
Finally, if neither hosts in underNeighList can receive vm (e.g,
because the list is empty), but h is more loaded than FTH_UP,
then h is in a risky situation because SLA’s violations can occur.
Thus, as in MB, a switched-off neighbor is woken up (line 26 of
Algorithm 7).

Similarly to worstFitMigrateAll(vmList) of MB policy,
migrateAll(vmList) operates in a "all-or-none" way (line 33 of
Algorithm 7).
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2.4.1 Experimental results

To understand the effectiveness of MWF, we tested it on DAM-Sim
[52]. In this case, we evaluated the approach on a set of 100

physical nodes hosting around 3000 VMs (i.e., an average value
of 30 VMs on each host), repeating every experiment with an
increasing average load on each physical server.

According to the tuning tests of MoM algorithm [17], the
FTH_DOWN and FTH_UP thresholds have been fixed at 25%
and 95%, respectively, while we initially set the tolerance
interval t for load balancing at 8%.

We start from the worst situation for power-saving purposes,
i.e., all the servers are switched on and have the same
computational load within the fixed thresholds. To make the
DAM protocol start we need some lack of balance in the
datacenter, so we forced 20 hosts to be more loaded and
20 hosts to be less loaded than the datacenter average value.
These hosts are randomly chosen in every experiment.

In Figure 2.9, we compare the MWF performance with 5

and 10 nodes in each neighborhood (MWF5 and MWF10 series),
with the application of a centralized best fit policy (BF-GLO
in Figure 2.9a) [47]. We also show the performance of BF: a
best fit policy applied in a distributed way by means of DAM
protocol. BF exploits the two-phase lock protocol, therefore,
each time a server detects to be underloaded or overloaded,
it start reconsidering the current VM allocation for the whole
neighborhood. Details about BF implementation can be found
in [47].

Figures 2.9a and 2.9b show the number of servers switched
on at the end of the MWF and BF executions. As we
expected, the DAM protocol cannot perform better than a
global algorithm. Indeed, the global best fit policy (BF-GLO)
can always switch off a higher rate of servers resulting in
the lower trend. Furthermore, as regards the power saving
objective, we can see that BF perform better than MWF for all
the selected neighborhood dimensions. This comes from the
different objectives of the two policies: MWF tries to switch-off
the initially underloaded servers to save power, while keeping
the load of the working servers balanced; BF brings into
question all the neighborhood allocation at each MasterClient
interaction, considering only power-saving objectives.

Figures 2.9c and 2.9d show the number of migrations
executed. Since the number of VMs can vary a bit from a
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: MWF end BF performance comparison for various values
of average load on each physical server (LOAD% on the
x-axis).
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Figure 2.10: Distribution of servers on load intervals. In the initial
scenario (INI) all the servers have 50% load except for
20 underloaded and 20 overloaded nodes.

scenario to another and the number of switched off servers
influences the result, in the graph we show the following rate:

nMig
onServers

nVM
(2.2)

where nMig is the number of migrations performed,
onServers is the number of working servers at the end of
the simulation and nVM is the number of VMs in the initial
scenario.

Since no information about the current allocation of a VM
is taken into account during the policy computation in a
global environment, the number of migrations can be very
high. Indeed is high the resulting trend of migration for the
global policy, while DAM always outperforms it. In particular,
MWF performs better than BF for every selected neighborhood
dimension. Nevertheless, for high values of computational
load the performance of MWF in terms of number of switched
off server are comparable to those of the global best fit policy,
while the migration rate is significantly lower.

Figures 2.9e and 2.9f show the number of messages
exchanged between hosts during the computation. As we
expected, it significantly increases as the number of servers in
each neighborhood grows. Although the number of messages
for low values of neighborhood dimension is comparable to
the one of the global solution, when it grows, the number of
messages exchanged significantly increases.

Figure 2.10 clarifies MWF performance for one of the
previous experiments: in the initial scenario (INI in Figure
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2.10) all the servers have 50% load except for 20 underloaded
and 20 overloaded nodes. Figure 2.10 show the distribution of
number of servers along load intervals before and after the
intervention of MWF.

The application of a global best fit (BF-GLO) switches-off a
large number of servers to save power, but packs too much
VMs on the remaining hosts. This results in the red distribution
in Figure 2.10, where almost all the switched-on servers are at
95% of utilization, creating an high risk of SLAsviolations. The
BF algorithm applied by means of DAM protocol suffers of the
same problem: a large number of servers is switched-off, but a
part is forced to have 95% load. MWF is more effective from the
load balancing perspective: it can switch-off less servers than
BF, but is able to decrease the load of the overloaded nodes
leaving all the working servers balanced.

As we expected, Figure 2.10 reveals that the median of
the MWF distribution is augmented respect to the initial
configuration. This is due to the fact that a certain number of
servers is switched-off, thus the global load of the remaining
servers results increased.

In order to provide a clearer idea of the efficacy of our
approach, we separately tested MWF performances in terms of
energy efficiency and load balancing. To this purpose, we built
three different scenarios.

Scenario 1: load balancing test

Considering MWF from the load balancing perspective only,
we created a collection of 50 initially unbalanced scenarios
satisfying the constraint:

UTOT > FTH_UP(N− 1) (2.3)

where UTOT is the total CPU utilization of the datacenter and N
is the number of simulated servers. In this way, we can ensure
that no server switch-off is possible, and we can test the MWF
load balancing performance only.

By defining UAVG_N = UTOT/N the average load over N
servers, the relation 2.3 can be rewritten as follows:

UAVG_N > FTH_UP
N− 1

N
(2.4)

and the initial scenarios can be built such that each server h
has a CPU utilization Uh uniformly distributed in the interval:

Uh ∈ [UAVG_N − q,UAVG_N + q] (2.5)



2.4 mobile worst fit policy 45

Figure 2.11: Distribution of servers on load intervals. In the initial
scenario (INI) all the servers are on average loaded
around the value of FTH_UP.

where q expresses the degree of imbalance in the initial
scenario. We tested the MWF performance with FTH_UP = 90%,
q = 10% and averaged the results over 50 simulations.

In each scenario the topology of the neighborhoods is
generated randomly.

Figure 2.11 shows the distribution of servers over load
intervals. In the initial scenario (INI) all the servers are on
average loaded around the value of FTH_UP. We show the
distribution after a global WF optimization (WF-GLO in Figure
2.11) and the application of MWF by means of DAM protocol
with 10 as neighborhood size.

MWF shows good performance from the load balancing
perspective even if, as we expected, relying on a global
knowledge of status of each server, the centralized application
of a worst fit policy clearly outperforms the distributed
approach.

Scenario 2: power saving test

In order to mainly test the energy saving performance of MWF,
we create a collection of scenarios satisfying this constraint:

UTOT = FTH_UP ·M, s.t.M < N (2.6)

where M is the number of servers that remains switched-on at
the end of the optimization. Relation (2.6) can be rewritten as
follows:

UAVG_N = FTH_UP ·M
N

(2.7)
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Therefore, given a certain UAVG_N we can calculate the
minimum number Mopt of servers that can execute the
datacenter’s workload:

Mopt =
UAVG_N ·M
FTH_UP

(2.8)

We create a collection of scenarios with increasing values of
UAVG_N, having the load Uh of each server again uniformly
distributed in the interval (2.5) and q = 20%, and we use Mopt

to evaluate the performance of MWF.
Figures 2.12a, 2.12b and 2.12c show the number m of

working servers at the end of different MWF distributed
executions. These values are compared to the minimum
possible number Mopt of running servers in each scenario.

Each point in the graphs of Figure 2.12 represents an initial
scenario with different value for UAVG_N.

We repeated the experiment with three different values of
the rate q/t. Figure 2.12a shows the energy saving performance
with q = 15% of imbalance in the initial scenario and t = 5%
as MWF tolerance interval. The number of switched-off servers
is far from the optimum value (expressed by the blu line)
for every generated scenario, while decreasing the ratio q/t
to 20/5 and 20/3 (as reported by Figures 2.12b and 2.12c) the
performance of MWF significantly increases.

For low values of UAVG_N the algorithm seems to perform
significantly better for every value of the rate q/t, This
effect is due to the FTH_DOWN, which is fixed at 25%
in every scenario and can therefore contribute to make
some MasterClients start if the hosts are detected to be
underloaded (Uh < FTH_DOWN).

Scenario 3: scalability test

In order to test the scalability of the distributed approach,
we analyzed MWF behavior while increasing the number of
simulated servers and VMs up to 2000 and 60000, respectively.
Figure 2.13a shows the number of migrations stated by MWF
and compare it with that of WF-GLO policy.

Since the number of VMs increases with the number of hosts,
we actually compare the ratio between migrations and number
of VMs in the scenario.

WF-GLO policies does not take into account the current
allocation while performing the optimization, therefore, it
results in a very high number of migrations, near to the total
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(a)

(b)

(c)

Figure 2.12: MWF power saving performance test. The number m of
working servers at the end of different MWF executions
is compared to the minimum possible number Mopt of
running servers in each scenario. The experiments are
repeated with different values of the ratio q/t.
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(a)

(b)

Figure 2.13: MWF and WF-GLO performance comparison. 2.13a:
Number of migrations performed for increasing num-
ber of simulated hosts. We compare the performance
of MWF with tolerance interval 10.0 with centralized WF-
GLO. 2.13b: Maximum number of messages exchanged
(sent and received) by a single host of the datacenter.
MWF significantly outperforms WF-GLO for high values
of simulated hosts.
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of VMs. Conversely, MWF distributed policy only operates on
underloaded or overloaded nodes (with CPU utilization lower
than FTH_DOWN or higher than FTH_UP, respectively) or
on those hosts that are unbalanced in respect to the average
of their neighborhood (CPU utilization out of the interval
[MTH_DOWN,MTH_UP]). For this reason, as shown in Figure
2.13a, the number of resulting migrations is significantly lower
for MWF.

In Figure 2.13b, we consider the maximum number of
messages exchanged by a single host. Since WF-GLO is
centralized, the coordinator node must collect the state of all
the other nodes before starting the optimization and finally
return the new configuration to each node. Therefore, as
shown in Figure 2.13b, the number of messages exchanged
by the coordinator is always proportional to the number
of the nodes it manages. The behavior of MWF policy is
again proportional to the number of nodes but the trends is
significantly lower. This comes from the fact that, according to
MWF, each node of the datacenter always communicate with a
predefined number of neighbors (5 in this simulation).

Therefore, considering the maximum number of messages
exchanged by a node, for high values of simulated hosts, we
can conclude that MWF distributed approach performs better
than the centralized WF-GLO algorithm.

2.5 conclusions and future work
We contributed to the autonomic VM management field
by presenting a decentralized solution for cloud virtual
infrastructure management (DAM), in which the hosts of the
datacenter are able to self-organize and reach a global VM
reallocation plan according to a given policy. Relying on DAM
protocol, we investigated two VM migration approaches (MB
and MWF) suitable for a distributed management in a cloud
datacenter.

We tested MB and MWF behaviors by means of DAM-Sim
simulator. The policies show good performance for various
data centers dimensions in terms of both number of migrations
requested and maximum number of messages exchanged by
a single host. Therefore, we can assert that the decentralized
nature of our approach can intrinsically contribute to increase
the scalability of the cloud management infrastructure.



50 autonomic vm management in a single cloud

MB is also able to achieve an appreciable load balancing
among working servers, even if, as we expected, the distributed
MB policy cannot outperform a centralized global worst-fit
policy.

MWF inherits from MB the good load balancing performance,
while still some work remain to do to decrease the total
number of messages exchanged.

As we expected, the distributed MWF policy cannot
outperform a centralized global best-fit policy (especially
in terms of number of switched-off hosts and exchanged
messages), but further investigations of performance on
increasing size datacenters has shown that the decentralized
nature of our approach can intrinsically contribute to augment
the scalability of the cloud management infrastructure.

The current version of DAM-Sim is not able to cover all the
aspects of real cloud data centers: it can only simulate CPU
resources and is not able to derive the optimal neighborhood
structure from a real cloud network. Since our approach
benefits from a richly connected data center, a possible future
work could be the automatic definition of neighborhoods over
a VL2 network [53], while DAM-Sim needs to be extended in
order to take into account not only computational resources,
but also memory and bandwidth requirements. This will allow
us to test different and more elaborated reallocation policies.
We also need to introduce variations of VM load requests at
simulation time to better mirror real datacenter environments.

Further investigation will be necessary to address issues
caused by message losses: the algorithm needs a recovery
strategy to avoid the physical servers never-ending blocked
while they wait for "unlock" messages.

Finally, since the simulator can only represent a snap-shot of
the datacenter workload, it must be extended in order to apply
the distributed policy to a dynamically changing scenario and
make a benchmark comparison of our approach focusing on
time performance. At latter stage, the frequency of variations
in VM load requests will be increased to better mirror real
datacenter environments.



3 A U TO N O M I C
M A N A G E M E N T I N
M U LT I P L E C LO U D SOffering “the illusion of infinite computing resources

available on demand” [4], cloud computing is the ideal
enabler for high computing power demanding applications.
For example, when a company deals with data-processing and
it is hard to predict the volumes involved, the elasticity of the
public cloud can be very useful to dynamically provide the
required computational resources.

While the first hype cycle of the cloud model primarily
explored the public cloud scenario, many organizations are
now focusing on a scenario composed of multiple clouds
as the one shown in Figure 3.1. Indeed, albeit one of the
most important features of cloud computing is the illusion
of unlimited resources, the capacity in cloud providers’ data
centers is finite and eventually can be fully utilized [54, 55].

Figure 3.1: Multi-cloud scenarios.

For example, the increase in the demand for a service
or the growth in scale of an application may result in the

51
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need for additional capacity in the data center. Since actual
resource utilization of many real-world application services
vary unpredictably with time, a single cloud provider may
be overburden by unexpected load leading to unreliable and
interrupted services [1]. In order to handle this issue, a
widespread choice by cloud providers is the overprovisioning
of data center capacity. That is, maintain the computing
infrastructure several times bigger than the average demand
of the system, even if this strategy can lead to a waste of
resources and consequently large expenses for cloud owners.

Conversely, if cloud providers were able to dynamically
scale up or down their data center capacity relaying on
interoperation of the clouds, they could overcome this issue
saving a substantial amount of money. Cloud interoperability
can help to handle the peak-load of services on the cloud
through resource sharing, avoiding the cost of provisioning
and administration of any additional hardware[10].

Public cloud providers usually relay on large scale data
centers and can therefore easily give the perception of
unlimited resources. In this scenario, one may argue that
cloud providers never need immediate external additional
capacity. However, this assumption does not hold in case of
small-size private clouds and for those applications requiring
expansion across geographically distributed resources to meet
QoS requirements of their users [56].

Another important motivation for cloud interoperability is
the necessity to improve availability, which is a key feature of
cloud services. In fact, unexpected failures are always possible
and can easily result in service interruption in a single cloud
system, while a multiple cloud infrastructure can implement
flexible mechanisms to relocate resources and continue the
delivery of guaranteed service levels. If the physical allocation
(on a specific cloud) of the application-level services is not
transparent to the cutomers, this knowledge can also be used
to intentionally build multiple cloud deployments in order to
improve the availability and disaster recovery capabilities.

Furthermore, in order to meet the low-latency access
requirement of some applications, a single cloud provider
should have a data center in all geographic locations of the
world. This is highly unlikely to happen but cloud federation
can provide a similar solution allowing the cloud systems to
complement each other by sharing their resources. As pointed
out by Toosi et al. [1], “utilizing multiple clouds at the same
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time is the only solution for satisfying the requirements of
the geographically dispersed service consumers who require
fast response time”. Nevertheless, in this scenario, a further
mechanism to dynamically coordinate load distribution among
different cloud data centers is required. As some customers
have specific restrictions about the legal boundaries in which
their data can be hosted, cloud interoperability could also
represent an opportunity for the provider to identify other
providers able to meet the regulations due to the location of
their data centers [1].

Finally, cloud interoperability can give a further improve-
ment to the Green Computing area. The necessity to save
energy by avoiding the problem of the idle capacity without
losing the capability to respond to peaks in demand, can be
managed through the leasing of underutilized computational
power or on-demand purchasing additional resources from
other providers. In this way, we would experience an overall
increase in the efficiency of resource utilization.

In the following chapters, we consider – as a case study
– the execution of data-intensive applications over multiple
clouds. Indeed, the exponential increase in the use of mobile
devices, the wide-spread employment of sensors across various
domains and, in general, the trending evolution towards the
Internet of things, is constantly creating large volumes of data
that must be processed to extract knowledge. This pressing
need for fast analysis of large amount of data calls the attention
of the research community and fosters new challenges in the
big data research area [57]. Since data-intensive applications
are usually costly – in terms of CPU and memory utilization
–, and often require the execution to satisfy constraints
such as deadlines or reliability, facing huge and sometimes
unpredictable amounts of input data, a lot of work has
been done to simplify the distribution of computational load
among several physical or virtual nodes and take advantage of
parallelism.

For example, MapReduce [58] programming model and
its popular open-source implementation Apache Hadoop [59]
allow to transparently partition the input data-set into an
arbitrary number of parts, each exclusively processed by a
different computing node. Nevertheless, the fulfilling of a
given time constraint requires a high degree of elasticity in
resource provisioning: if an unexpected data peak appears, it is
necessary to quickly provide additional computing resources
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to maintain the execution time within the given deadline. In
this scenario, a widespread choice is to relay on a cloud
infrastructure to take advantage of its elasticity in virtual
resource provisioning. Furthermore, the on-premise (company-
owned) cloud can be combined with the resources of an
off-premise (owned by a third party provider) cloud to further
improve the elasticity of the virtual infrastructure. Indeed,
many organizations are now focusing on a multiple cloud
scenario to enable the execution of data-intensive applications
and, in general, to take advantage of the numerous benefits
that cloud interoperability can bring to both cloud provider
and customer.

In the following, we mainly focus on the enhancements that
cloud interoperability can bring to the big data research area
if coupled with the autonomic ability to scale-up/-down the
computing infrastructure when the resource demand changes.
We firstly provide a classification of the cloud interoperability
scenarios and a overview of main existing contributions
to enable data-intensive computation over multiple clouds
(Chapter 3.1). Later (Chapters 3.2 and 3.3), we describe our
solution as well as the leveraged infrastructure and application-
level tools. In Chapter 3.4, 3.5 and 3.6 we describe the adopted
approaches in detail by focusing on the policies and models to
enable MapReduce in multi-cloud environments. We provide
our conclusions and a vision of possible evolutions of the
works in this field in Chapter 3.7.

3.1 positioning our contribution
As integration and aggregation of cloud services have recently
received the attention of the research community, several
different terms have been used to define cloud interoperability.
A precise understanding of these terms and definitions,
including differences and similarities, clarifies the position of
our contribution.

The term Inter-cloud has been introduced by Cisco [60] as an
interconnected global “cloud of clouds” that recalls the known
term Internet, “network of networks”. The Inter-cloud refers to
a mesh of clouds that are unified by open standard protocols
to provide a cloud interoperability. The Inter-cloud final goal is
to create a web of computing element ubiquitously connected
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together in a multi-provider infrastructure (similarly to the
Internet model and telephone system).

The term cloud federation, on the other hand, refers a group
of aggregated providers that share their resources in order to
improve each other’s services [61].

The terms Inter-cloud and cloud federation are often used
interchangeably in the literature. The primary difference
between the two is that the Inter-cloud is based on open
interfaces (derived from standards), while the federation
implies to make interoperable a provider’s version of the
interfaces. Therefore, cloud federation can be considered as a
prerequisite toward the ultimate goal of the Inter-cloud, where
interoperability of different cloud platforms is transparently
achieved by users [1]. According to Chen et al. [62],
interoperability can be obtained by adhering to published
interface standards, or developing a broker of services that can
“on the fly” convert one cloud interface into another.

As asserted by Toosi et al. [1], the “transition toward
Inter-cloud has already started and it is an inevitable need
for the future of cloud computing”. In this regard, we
present different scenarios for cloud interoperability in the
next chapter.

3.1.1 Cloud interoperability scenarios

Since “cloud computing refers to both the applications
delivered as services over the internet and the hardware
and systems software in the data centers that provide those
services” [63], cloud services can be sold by providing IaaS
– like Amazon EC2 [6] – or at a higher level, realizing the
PaaS and SaaS – like Google AppEngine [64]. When a cloud
is available to the public in a pay-as-you-go manner, it is
called public cloud, and when a cloud belongs to a company
or organization and not made available to the public, it is
called private cloud. Cloud environments include a multitude
of independent, heterogeneous, private, and public clouds.

The main actors of cloud computing scenarios are
cloud users and providers. Cloud users can be either
software/application service providers, who have their service
consumers or end-users utilizing the cloud computing
services directly. Service providers offer their services using
hardware resources provisioned by cloud providers. Different
combinations of cloud providers and cloud users (service
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Figure 3.2: Classification of interoperability solutions for clouds as
suggested in the work by Toosi et al [1]. This dissertation
mainly focus on solutions to enable the hybrid cloud sce-
nario in grey.

providers or end-users) give rise to several plausible use cases
between clouds [65]:

• if cloud interconnection is performed at different levels of
cloud stack layers, for example, a PaaS and IaaS provider,
the scenario is often referred as delegation or vertical
federation;
• if interconnection between clouds is at the same layer

(e.g., IaaS to IaaS), it is called horizontal federation.

As pointed out by Villegas et al. [66], a federated cloud
structure is a vertical stack analogous to the layered cloud
service model. At each layer, a service request can be served
either through local resources using delegation or by a partner
cloud provider through federation.

An exhaustive classification of the different scenarios of
cloud interoperation can be found in [1]. According to this
classification, if cloud interoperability is realized by cloud
providers, who adopt and implement standard interfaces,
protocols, formats, and architectural components to facilitate
collaboration, we have a provider-centric interoperability.
Provider-centric scenarios are categorized as hybrid and
federated cloud scenarios (as depicted in Figure 3.2). On
the contrary, client-centric interoperability is not supported
by cloud providers. The customers are required to initiate
it by themselves or via third-party brokers. This kind of
interoperability does not require an a priori business agreement
among cloud providers and allows multiple cloud scenarios
without (or with minimal) adoption of common interfaces and
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protocols[1]. We consider multicloud and aggregated service by
broker as client-centric interoperability scenarios.

In multicloud scenario in particular, the customers are
responsible for the management of resources across multiple
clouds. Service deployment, negotiation, and monitoring of
each cloud provider during service operation are performed
by end-user applications. In this case, the use of an adapter
library with different APIs to run services on different clouds is
required.

In aggregated service by broker scenario, a new actor, the broker,
aggregates services from multiple cloud providers and offers
to the final customers an integrated single entry point to the
services. In this way, from the point of view of the customer an
abstraction layer is created for the management of components
deployed on different clouds.

The federated cloud scenario is a case of provider-centric
approach to interoperability. Here, a group of cloud providers
are federated and trade their surplus resources among each
other to gain economies of scale and a higher level of efficiency.
Therefore, the customer establishes a contract with a cloud
provider that is a member of a federation, and the computing
utility is delivered to him using resources of either one cloud
provider or a combination of different cloud providers. The
customer might be aware or unaware of the federation and his
contract is with a single cloud provider.

In hybrid cloud architectures, an organization that owns
its private cloud moves part of its virtual infrastructure to
external cloud providers. This extension of a private cloud to
combine local resources with those of a remote off-premise
cloud allows the end-user applications to scale-up (cloud
burst) through public clouds when the local infrastructure
is insufficient. When the emergency is solved the customer
can scale the application back down in the private cloud
to minimize the cost of the public infrastructure utilization.
Furthermore, this scenario can be extended if the organization
offers capacity from its private cloud to others when that
capacity is not needed for internal operations. In fact, as
suggested by the overlapping areas in Figure 3.2, federated
and hybrid scenario shows common aspects from the point of
view of the technologies to enable interoperation.

In the following, we focus on the hybrid cloud model as a
method to overcome the limits of a single on-premise cloud
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infrastructure when dealing with heavy computing tasks such
as data-intensive applications.

3.1.2 Enabling data-intensive applications over multiple clouds

MapReduce programming model is a widespread choice when
dealing with data-intensive tasks because it simplifies the
implementation of distributed application for data processing.
According to this approach, the user must specify two
functions: the mapper and the reducer. The mapper extracts from
the given input data a series of intermediate key/value pairs,
while the reducer merges all the intermediate values associated
with the same key. The programs implemented according
to this model can be automatically parallelized and easily
executed on a distributed infrastructure [58].

MapReduce model is implemented and supported by several
platforms [59, 67–69]. In this work, we opted for Apache
Hadoop [59], one of the most used and popular frameworks
for distributed computing.

MapReduce success is primarily due to its simple
parallelization model, graceful degradation in case of partial
system failures and good horizontal scalability. Nevertheless,
data-intensive applications require a high degree of elasticity
to deal with unpredictable data peaks or execution deadlines.
This requirement has inevitably directed the attention
of the big data research area towards the cloud. In
particular, combining both on-premise and off-premise cloud
infrastructures, the hybrid scenario is the ideal enabler for
data-intensive applications. The rationale behind employing
a hybrid approach can be manyfold, e.g. using off-premise
resources for being able to guarantee a minimum QoS,
satisfying a predefined deadline constraint, or partitioning the
computation between on- and off-premise zones as mandated
by security compliance requirement (for instance, if part of the
data is not allowed to cross the boundary of the on-premise
infrastructure).

In fact, among the various widely used and trending
platforms that leverage the hybrid cloud delivery model
[70, 71], data-intensive analytics at large scale is one of the
most challenging cases, especially when large volumes of data
are involved.

Conventional big data analytics frameworks – such as
Hadoop [59] – assume physical co-location of IT resources with
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high-speed interconnection among servers. This assumption
is lifted in hybrid cloud environments comprising physically
separated datacenters that are interconnected via a network
that is at least an order of magnitude slower (either dedicated
connectivity or the open Internet).

Furthermore, due to the size of the data being analyzed,
most big data analytics techniques make heavy use of data
locality by shipping the computation close to the data. This
aspect is particularly challenging when boosting a private
cloud with extra temporary VMs from a public IaaS cloud to
finish a big data analytics job faster: the newly provisioned
VMs do not hold any data and as such it is necessary to send
large amounts of data over the slow link in order to be able to
leverage the extra computational capability.

Therefore, we can claim that data movement is elevated to a
major challenge in hybrid cloud big data analytics.

3.1.3 MapReduce over cloud environments: state of the art

Recently, a lot of work has focused on cloud computing
for the execution of big data applications: as pointed out
in [72], the relationship between big data and the cloud
is very tight, because collecting and analyzing huge and
variable volumes of data require infrastructures able to
dynamically adapt their size and their computing power to the
application needs. For this reason, several efforts to improve
the MapReduce performance leverage cloud technologies
[73–76], with the assumption of having unlimited computing
resources. These efforts are complemented by works on
storage elasticity [77, 78], which explore how to deal with
the explosion of the costs related to the storage capacity and
the Input/Output (I/O) bandwidth, and are highly relevant for
MapReduce applications.

The work by Chen et al. [79] presents an accurate model for
optimal resource provisioning useful to operate MapReduce
applications in public clouds. Similarly, Palanisamy et al.
[80] deal with optimizing the allocation of VMs executing
MapReduce jobs in order to minimize the infrastructure cost in
a cloud datacenter. In the same single-cloud scenario, Rizvandi
et al. [81] focus on the automatic estimation of MapReduce
configuration parameters, while Verma et al. [82] propose a
resource allocation algorithm able to estimate the amount of
resources required to meet MapReduce-specific performance
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goals. However, these models assume an unlimited amount
of available resources (as in the classic public cloud) and are
not intended to address the challenges of the hybrid cloud
scenario, which is the target environment of our work.

According to the classification in [1], our work mainly deals
with the hybrid cloud approach for cloud interoperability,
because the main motivation of our system is to allow cloud
bursting to EC. However, our proposal could also be classified
as a Federation mechanism for cloud aggregation because –
as in federated clouds – the interoperation between clouds is
completely transparent to end-users.

The choice of primarily relay on a small (e.g., private) cloud
and then use the extra-capacity offered by a public cloud
for opportunistic scale-out has been investigated by several
authors in the past [83, 84].

The work in [85] and [86] focus on enabling cloud bursting
through inter-cloud migration of VMs, which is generally a
time and resource expensive mechanism. The system described
in [86], in particular, optimizes the overhead of migration
using an intelligent pre-copying mechanisms that proactively
replicates VMs before the migration. Our work doesn’t take
into consideration the VM migration, but only dynamic
instantiation of new compute nodes on EC, thus to avoid
the unnecessary movement of the whole VM snapshot across
the cloud boundaries. This technique is particularly suitable
for the MapReduce model because the Hadoop provisioning
and decommissioning mechanism intrinsically contributes to
simplify the cloud bursting process.

The hybrid scenario is also investigated in the works by
Zhang et al. [70, 87] by focusing on the workload factoring
and management across federated clouds. More similarly to
our approach, cloud bursting techniques has been adopted
for scaling MapReduce applications in the work by Mattess
et al. [88], which presents an online provisioning policy to
meet a deadline for the Map phase. Differently from our
approach, [88] only focuses on the prediction of the execution
time for the map phase but does not take into account the
resource utilization, nor provides an autonomic mechanism
to reconfigure the cluster if a future deadline exceeding is
predicted. Furthermore, [88] relies on the assumption that the
distributed filesystem is persistently deployed and loaded with
data throughout the execution of MapReduce workloads. As
such, it does not capture the initial phase of cross-cloud data
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distribution and data-balancing, a vital phase in high value
hybrid cloud use cases, such as cloud-bursting.

Also the work presented by Kailasam et al. [89] deals
with cloud bursting for big data applications. It proposes an
extension of the MapReduce model to avoid the shortcomings
of high latencies in inter-cloud data transfer: the computation
inside IC follows the batch MapReduce model, while in
EC a stream processing platform called Storm is used. The
resulting system shows significant benefits. Differently from
[89], we chose to keep complete transparency and uniformity
with respect to the allocation of working nodes and their
configuration.

Several recent efforts are focused on improving the perfor-
mance of MapReduce frameworks for hybrid environments.
HybridMR [90] proposes a solution for executing MapReduce
in a hybrid desktop grids and external voluntary nodes, but
does not consider expanding and shrinking a MapReduce
setup dynamically. HadoopDB [91] proposes a a hybrid system
comprising Hadoop and parallel database systems to yield the
resilience, and scalability of Hadoop and the performance and
efficiency of parallel databases. Similarly, hybrid scheduling
techniques [92–94] uses GPUs to improve the performance of
MapReduce applications in accelerator-enabled clusters. These
techniques uses hybrid computing to improve the performance
of MapReduce applications, but the hybrid aspect is on the
computational side rather than the networking side.

Specifically to workload performance prediction and
optimization in hybrid clouds, Van den Bossche et al. [95]
have proposed a linear/integer programming model for
relevant workloads, showing substantial improvement over
naive executions. Albeit valuable from a bounds perspective,
such models are typically hard to scale and also fail to capture
framework-specific intricacies, such as data-movement and
data locality. Imai et al. [96] explore hybrid cloud prediction
patterns from the perspective of selection of resource units
(VM sizing types) with prediction techniques. This work could
be used to enrich the performance of our proposed models
(depicted in Chapters 3.3 and 3.6) by selecting matching VM
sizes for hosting MapReduce daemons.

The fallowing tables (3.1, 3.2 and 3.3) summarize the main
features of the referred works in the field of VM management
over multiple-clouds. Table 3.4 refers to our contributions
presented in the next section.
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3.2 enabling tools
In order to better clarify our solution for enabling data-
processing over the hybrid cloud, we start by introducing
the infrastructure and application level tools we relay on:
OpenStack [5] (one of the most popular open-source platforms
for cloud computing) and MapReduce [58] (a programming
model for distributed data-intensive applications).

3.2.1 OpenStack architecture

OpenStack [5] is an open-source platform for cloud computing
released under the terms of the Apache License. It was
developed in 2010 during a project lead by Rackspace in
collaboration with NASA. Similarly to other free open-source
platforms in this field [101–103], it owes its notoriety not only
to the economical benefits derived from the open-source license
but also to the possibility to adapt the solution to specific
requirements. This characteristic is particularly relevant in
order to support the implementation of multi-cloud solutions.
Furthermore, as open-source cloud platforms mostly support
standard interfaces such as Open Grid Forum (OGF) [104]
and Open Cloud Computing Interface (OCCI) [105], applications
deployed on these architectures can be easily moved from one
IaaS provider to another, without having to be modified [1].

OpenStack currently constitutes the basis of several public
deployment – e.g., Rackspace public cloud [106], HP Helion
cloud [107], etc. – and is extensively used by the research
departments of large companies (e.g., IBM), thus revealing the
maturity of this open-source product.

Thanks to its modular architecture, OpenStack is particularly
handful when a customization of the cloud solution is required.
It can be configured either to realize a small private cloud or
to control large pools of compute, storage, and networking
resources in big data centers. If some functionalities are
not relevant to the considered domain, we can avoid the
installation and configuration of the correspondent modules,
saving disk space and preventing the risk of failures in unused
portions of code.

OpenStack has a centralized architecture composed by a
single cloud machine (the cloud controller) that orchestrates
all the physical machines hosting the VMs (the cloud compute
nodes). In large datacenters, OpenStack can also give support
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Figure 3.3: Schema of main OpenStack modules interactions [2].

to a multi-layer organization of the physical nodes, thus
to realize a “tree” infrastructure. This kind of deployment
is particularly useful when we deal with geographically
distributed clouds that must coordinate to realize a single
public service. In this case the traditional controller-computes
architecture is replicated in each cloud and the controllers are
coordinated by a single upper level controller.

The main OpenStack modules are depicted in Figure 3.3 and
described in the following list.

• Horizon Dashboard enables the resource management
through a web portal that acts like a command board.
Similarly to the OpenStack project, the interface has a
modular architecture, thus to show only the Global User
Interface (GUI) of the installed components. For example,
Horizon interacts with all the other modules to enable
the creation of VMs, IP address assignment, management
of VM images, access control, etc.
• Keystone Identity service is the authentication and

authorization service. It manages the users, the tenants
(groups of users that map a customer company) and
their roles for each offered service. After the login with
username and password, a token mechanism is used to
grant or deny the access to specific services. Keystone
is also responsible for storing the list of the endpoints
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that must be involved for each service offered – e.g. the
Horizon dashboard URL.
• Glance Image service provides support to memorization

and discovery of images for VM instances. Thanks to this
service is also possible to easily create a snapshot of the
VM and store it into a database for future use.
• Nova Compute is the crucial module for the management

and deployment of VMs. It interacts with the hypervisors
of the physical machines (e.g., KVM, XenServer, etc.)
and all the other modules to provide or delete VMs
with specific functionalities. It also offers the possibility
to configure the policy of the instance scheduler, by
defining which allocation criteria should be taken into
account when creating or migrating an instance.
• Neutron Networking enables the Internet connectivity

on VM instances and allows the user to create several
different network functionalities and configurations
through the virtualization of network devices (switch,
router, firewall, etc.).
• Cinder Block Storage service manages the creation,

deletion and attachment to VM instances of storage
volumes supporting different protocols (e.g., iSCSI, NFS,
GlusterFS, etc.). Thanks to this module, the data
memorized inside the virtual volumes can be saved as
snapshots for future restore and attachment to other
instances.
• Swift Object Storage service offers a distributed platform

for data storage and discovery. It is not a traditional
file system but a distributed object storage service,
thanks to which the physical machines realizing the
cloud can share static data, like VM images, backup
archives, multimedia files, etc. Swift is able to guarantee
redundancy without any central control system. This
decentralized architecture contributes to improve the
module scalability.
• Heat service implements an orchestration engine to

launch multiple VMs eventually organized in clusters
for the execution of a predefined application. The
provisioning mechanism is based on templates in the
form of text files that can be treated like code.
• Sahara service is the OpenStack module specific to

data-processing. Leveraging the functionalities offered by
Heat module, allow the user to rapidly create clusters
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of VMs configured to execute various data-intensive
execution models. It offers the possibility to install
several MapReduce platforms on the newly provided
VMs, easily launch jobs and scale-up/down the virtual
infrastructure at runtime. All these operations can be
executed by simply using the Horizon interface.
• Ceilometer service is a monitoring module. It periodically

checks the utilization of virtual resources and stores
the monitoring information in a specific database for
subsequent retrieval and analysis.

Although not specifically designed for either interoperability
or portability, OpenStack is very close to being a standard
in the cloud ecosystem thanks to its open-source nature and
modular architecture. For these reasons, we chose OpenStack
as a base for the implementation of our architecture.

3.2.2 MapReduce theory and implementation

Over the last few years, the big-data research area has gained
importance thanks to the increase in the use of mobile devices
and the adoption of sensors networks in various fields. These
technologies have created the pressing need for fast analysis of
large volumes of data. The MapReduce programming model
[58] and its open-source implementation through the Apache
Hadoop runtime [59] have gained significant traction for the
purpose of enabling data-intensive applications by distributing
the computational load among several servers and taking
advantage of parallelism.

MapReduce principals were firstly enunciated in 2004 in the
work by Dean and Ghemawat [108] as a solution to simplify
the execution of data-intensive applications over a collection
of physical servers. Indeed, when the volumes of data to be
processed are large, even the execution of simple algorithms
(e.g. grep, URL access count, inverted index, etc.) can be
highly time-consuming. Before the adoption of the MapReduce
model, a popular solution for the problem was to reformulate
the algorithm in a distributed form (i.e., in a form that can be
executed by multiple servers in a coordinated way), divide and
distribute the input data and, eventually, implement disaster
recovery mechanisms to avoid that failures on a single node
affect the whole computation. In these circumstances, even the
implementation of simple algorithms turned into a difficult
problem where concurrency must be carefully managed.
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Figure 3.4: Execution of a generic MapReduce application. The map
and reduce tasks can be distributed on different comput-
ing nodes.

MapReduce model suggests the user to reformulate her
program in terms of two functions: map and reduce. As shown
in Figure 3.4, the map function takes as input a portion of
the data and emits a collection of <key, value> pairs, while the
reduce function merges the different values associated with the
same key. The output of the reduce function is again composed
of <key, value> pairs. The program implemented according
to this model have the advantage of being intrinsically
parallelizable.

A classic example of application that can be easily
implemented according to the MapReduce model is the word
count problem. The goal is to count the number of occurrences
of each word in a collection of documents. The solution
schema of this case is depicted in Figure 3.5. Each map task
takes as input a document of the collection (or a part of
a single input document), analyze the content and, for each
occurrence of the word w, emits a <w, 1> pair as output. These
intermediate pairs are then partitioned by key and sent to the
reduce tasks (i.e., every reducer receives all the pairs with the
same key) that sums all the different values associated with
the same key. The output dataset is therefore composed of <w,
n> pairs, where w is a word and n is number of occurrences of
w in the documents.
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Figure 3.5: Execution schema of a word count application imple-
mented according to the MapReduce model.

Algorithm 8 shows the map and reduce functions through
pseudo-code. Since each map task works on a subset of the
input data and each reduce task works on a key (by merging
its values), these function do not share any data and can be
executed in parallel, possibly on different machines. The only
constraint is that the reduce tasks should execute after the map
output is produced. This characteristic makes the MapReduce
model intrinsically parallelizable. Further details about the
deployment of MapReduce tasks are illustrated in Figure 3.6.

As suggested in [108], MapReduce model can be used
to parallelize several other common problems of big data
analysis:

• Grep procedure – i.e., filtering the rows of a document
that contains a specific string given as input – can be
realized by submitting to each map task a portion of the
input text. The map performs the grep operation, while
the reduce tasks are identity functions.
• URL access frequency: given a log containing a list of

recently visited URLs, count the number of accesses for
each URL. This operation is similar to the word count
example and can be implemented in the same way.
• Inverted index procedure: given a list of documents, we

want to extract for each word the ordered list of
documents containing it. Each document is parsed by a
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(a) (b)

(c)

Figure 3.6: Example of task deployment over a four-node architec-
ture for a word count application. The allocation of the
tasks is controlled by a coordinator process. The input
dataset is partitioned across the nodes and each map task
is responsible for the execution over a particular subset
of the input (Figure 3.6a). The intermediate pairs are then
sent to the reduce tasks (shuffle phase) as in Figure 3.6b.
Finally the reducers process merges the received pairs
and emit the output (Figure 3.6c).
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Algorithm 8: Word count map and reduce functions

/* key:document name. value:document content */

1 function map(String key, String value)
2 foreach word ∈ value do
3 EmitIntermediate(word, "1") ;
4 end

/* key: a word. values: a list of counts */

5 function reduce(String key, Iterator values)
6 int result = 0 ;
7 foreach v ∈ values do
8 result += ParseInt(v);
9 Emit(key,AsString(result)) ;

10 end

map task (or split to several map tasks if the size is
relevant), such that for every word w in the document
docY, the map emits a <w, docY> pair. Each reduce task
takes as input all the pairs associated to the same key w,
sorts the document names and emits a <w, list(docName)>
pair.
• Sort procedure: the map tasks extract the ordering feature

from each record of the input data, save it in the key and
emits a list of <key, record> pairs, while the reduce tasks
are identity functions. This procedure is realized thanks
to the ordering guarantee feature – i.e., each reducer must
process and emit its pairs in key order – and a custom
partitioning function described in the following.

Furthermore, MapReduce can also be used to implement
procedures that requests more than one map and one reduce
phase, the so-called Iterative MapReduce problems, such as
K-means and Iterative grep. Other examples of programs
implemented according to the MapReduce model can be found
in [58].

As suggested in [108], if the operation executed in the
reduce phase is commutative and associative (as for the sum
in the word count algorithm), it can be partially anticipated by
executing it on the same machines of the map tasks. Another
function, the combiner, is therefore admitted after the map
phase. In the word count problem for example, this function
takes as input all the <w,1> pairs, calculates the sum S of the
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occurrences and emits <w,S>. Then, the reduce task finalize
the sum and emits <w,sum(S)>.

When possible, the introduction of the combiner function is
particularly useful because it shrinks the volumes of data sent
from map to reduce tasks and partially relieve the work of the
subsequent reduce phase.

Partitioning function and shuffle phase

As shown in Figure 3.4, between map and reduce tasks a
particular phase, called shuffle phase, is needed in order to
correctly send the list of intermediate pairs with the same key
to the same reduce task.

This operation needs to be performed in a fast way,
balancing the amount of data that must be processed by each
reducer and without introducing further complexity.

The solution proposed by Dean and Ghemawat [108] is
to relay a simple hash function of the keys. The destination
reduce task DR for each key k is therefore determined by the
output of the following expression:

DR = (hashcode(k)&MaxInteger)%NR (3.1)

where NR is the number of the reduce task in the architecture
and MaxInteger is the maximum integer value supported by
the language. The bitwise AND operation in Equation 3.1 is
necessary to always obtain positive values, while the module
operation (%) produces a value in the interval [0,NR − 1], thus
to suggest the destination reducer for the key k. Thanks to
the hash function properties, this operation always produces
the same result for each key and has the further advantage
of being very fast to execute. Furthermore, the hash function
guarantees a certain degree of balancing in the distribution of
the <key,values> pairs.

When the program to be implemented through MapReduce
is the sort function, the default hash partitioning must be
substituted with a partitioning based on the first byte of the
key. According to the ordering guarantee principle indeed,
each reducer processes (and emits) its pairs in key order. This
custom partitioning function also guarantees that no other
ordering operation is needed after the reduce phase.



3.2 enabling tools 75

Apache Hadoop

Apache Hadoop [59] is an open-source platform developed
by the Apache Software Foundation to enable the execution
of MapReduce jobs. It is characterized by a relatively
simple Command Line Interface (CLI) and two main components
with master-slave architecture: Hadoop Distributed File System
(HDFS) and MapReduce Runtime.

HDFS is a distributed file system whose content is not,
generally, replicated but only split between the computing
nodes. The master machine runs a Namenode daemon that
coordinates a collection of Datenode daemons executing on
the slave nodes. Thanks to this architecture, when a file is
copied in HDFS, it is transparently split into blocks distributed
to the slaves. The Hadoop CLI offers a collection of shell-like
commands to manage the distributed file system and always
shows the elements inside as if they were memorized over a
single storage device. To improve the recovery ability in case
of node failures, HDFS can also be configured to autonomously
manage the replication of the memorized data.

MapReduce Runtime is the Hadoop component responsible
for the execution of MapReduce programs. It generates
and coordinates the map/reduce processes by means of a
master-slave architecture. The master machine executes a
JobTracker daemon that assigns specific tasks to the slave
machines by interacting with the TaskTraker daemon (one for
each slave) and generally preferring a data-local computation.
Figure 3.7 clarifies the allocation of the daemons to the nodes
and the general map/reduce task assignment strategy.

The number of map tasks NM to be launched is determined
automatically by the Hadoop platform depending on the
volume of the input data. Generally a map task is created to
process a 64MB chunk of input data. Nevertheless, the user can
control the number of tasks that can be executed concurrently
on the cluster. This value is expressed by configuring the
number of map/reduce slots hosted by each computing node.
A slot can be seen as a container where a map/reduce task
is placed after being launched. For example, on a dual-core
machine with hyperthreading a popular solution is to specify
four map slots (SM = 4) and four reduce slots (SR = 4), because
4 is the maximum number of tasks that can be concurrently
executed by the hardware without context switches. Actually,
SM = SR because the reducers use the output of the mappers
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Figure 3.7: When the execution command is issued to the Hadoop
cluster through the CLI, the JobTracker on the master node
is involved. It interacts with the Namenode daemon to
create a number of map/reduce tasks consistent with the
number of data blocks to be processed. The JobTracker
also allocates the tasks preferring a data-local computa-
tion. For example, the map working on block 001 is likely
to sent to machine 2 containing that block on its portion
of HDFS.

and, therefore, the executions of these two phases do not
overlap.

The number of reduce task NR to be launched is controlled
by the user with a specific option of the CLI. Hadoop
developers suggests two possible values (obtained through
statistical analysis [59]) for NR depending on the hardware
characteristics. In particular, if the computing nodes have
similar performance, the number of reduce tasks to be
launched should be set to NR = 0.95× SR. In case of cores
with different performance, Hadoop developers suggests
NR = 1.75× SR.

The rational behind these two values is intuitively in the
attempt to obtain the maximum degree of parallelism in the
execution. In case of similar cores performance, the value is
close to 1 because this will assure to allocate a reduce task
to each reduce slot thus to complete the reduce phase in one
round. When the core performance are different, the execution
time for a given task can vary depending on the slot/core to
which the task is assigned. The multiply factor 1.75 makes
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NR higher than SR, so that while the slower cores continue to
execute the reduce tasks of the first round, the faster ones have
already completed their task and can start a second round of
reducers.

MapReduce fault tolerance and elasticity

Thanks to its distributed architecture MapReduce program-
ming model is particularly useful when a certain level of fault
tolerance is required. Indeed, independently from the specific
implemented algorithm, two different error situations can be
identified and (partially) solved:

• if the master node identifies a fault on a slave – e.g.,
the salve is no longer responding – but the data are
accessible (or replicated elsewhere in the distributed file
system), the master can restart the map/reduce task of
the faulty slave on another machine;
• if the master identifies errors on some data blocks, can

decide to skip them and continue.

These fault tolerance mechanisms are implemented on all main
MapReduce platforms and contribute to improve the QoS of
the data-parallel approach.

Alongside these mechanisms, Hadoop also implements
strategies to improve the scalability of the computing cluster
at runtime. If a new slave is added to the infrastructure while
some MapReduce job is executing, Hadoop is able to assign
pending tasks to it, thus to relieve the other machines and
speed up the computation.

This elastic behavior is particularly useful when Hadoop is
executed on a scalable infrastructure i.e., an infrastructure that
allows the user to easily add or remove computing resources
to the cluster, such as the cloud. In this environment VMs can
be provisioned (or de-provisioned) on demand, to support the
need for additional (or less) computing resource in a Hadoop
cluster.

3.3 framework architecture
Our contribution to enable MapReduce over hybrid cloud is
a framework architecture [48] based on two separated cloud
installations:
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• the on-premise IC, owned and managed by a private
company;
• and the off-premise EC, a collection of resources owned

by a cloud provider and rented to customers according
to a predefined price plan.

Having their own cloud management software and offering
their virtualized resources to final users (e.g., customers,
company employees, etc...), both IC and EC implement the
cloud paradigm at IaaS level.

As a case study, we consider the execution of data-intensive
applications over clusters of VMs initially deployed on IC.
Since the private cloud can be used by multiple users for
different goals at the same time, it is likely to happen that
a physical machine simultaneously hosts VMs designed for
different application domains.

In this scenario, if a physical node hosting a VM for
data-processing becomes overloaded in terms of CPU, memory
or disk utilization (e.g., as a result of other computations
carried on the same physical machine by VMs belonging to
other application domains/projects), the performance of the
hostedVM may dramatically decrease, thus slowing down the
whole virtual cluster for data-processing.

In this case, if another less loaded physical machine is
available on-premise, the best solution would be to move the
VM on that physical node. The progresses in the techniques for
VM migration has brought the possibility to move a VM from a
physical machine to another without need to suspend it and
suffering a minimal downtime. The fault tolerance features
offered by all MapReduce platforms can help to overcome this
downtime an make the data analysis continue.

However, the private cloud has a finite amount of resources
and it may happen that all the physical machines in IC are
too loaded to receive the VM: in this case, we can provide
additional resources on EC and perform a redistribution of
the computational load. Automating this mechanism – by
arranging an autonomous infrastructure able to detect the
occurrence of a critical condition on a physical machine and
react to that by providing additional off-premise resources
to the application level cluster involved – can represent a
key advantage for data-processing computation on hybrid
environments.

To this purpose we defined a platform for the autonomic
management of VMs in hybrid clouds: System for HYbrid
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Figure 3.8: Layer architecture of SHYAM system.

clusters with Autonomic Management (SHYAM). In particular,
we designed and implemented a software layer able to
manage virtual clusters using both on-premise (i.e., computing
nodes in a private IC) and off-premise (i.e. in a public EC)
hardware resources. The system is able to dynamically react
to load peaks – due, for instance, to VM contention on
shared computing nodes – by redistributing the VMs on less
loaded nodes (either migrating inside IC or crossing the cloud
boundaries towards EC).

As shown in Figure3.8, the key component of SHYAM is
Hybrid Infrastructure as a Service (HyIaaS), a software layer
that enables the integration between IC and EC infrastructures.
The layer interacts with both on- and off-premise cloud with
the goal of providing hybrid clusters of VMs. Each cluster
is dedicated to the execution of a particular distributed
application (e.g., distributed data-processing). If there are
enough resources available, all the VMs of a cluster are
allocated on-premise to minimize the costs introduced by the
public cloud and the latency of data transferred between the
virtual nodes. If on-premise resources are not sufficient to host
all the VMs, a part is provisioned on IC and the others on EC.
This partitioning should be transparent to the final user of the
virtual cluster, allowing her to access all the VMs in the same
way, regardless to the physical allocation. We call hybrid cluster
the result of this operation.

HyIaaS is also responsible for autonomously handling to
changes in the current utilization level of the on-premise
physical machines hosting the VMs of the cluster. To avoid
the application slowdown due to the poor performance of
these VMs, HyIaaS layer is in charge of dynamically spawning
new VMs on EC and providing them to the above Application
layer (Figure 3.8). This layer is responsible for installing and
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Figure 3.9: Hybrid cloud scenario. SHYAM is an on-premise software
component able to collect information about the current
status of IC and dynamically add off-premise resources if
needed.

configuring a specific distributed application on the newly
provided VMs.

SHYAM’s main goal is to unify on- and off-premise resources.
As shown in Figure 3.9, it must be installed on IC, so that it can
collect monitoring information about the utilization level of
the on-premise machines. According to a specific user-defined
policy, the HyIaaS layer can perform cloud bursting toward
EC by translating generic spawning and scale-down requests
into specific off-premise provisioning and de-provisioning
commands.

We assume both IC and EC have a centralized architecture, as
such SHYAM makes them able to cooperate by communicating
with the central controllers of IC and EC.

In the following, we will use the term compute nodes to refer
all the physical machines (of IC or EC) able to host VMs and not
in charge of any cloud management task.

Therefore, HyIaaS layer consists of three components (depicted
in Figure 3.10): the Monitoring Collector, the Logic and the
Translation component.

• The Monitoring Collector is in charge of fetching
information about the current resource utilization level
of the on-premise compute node.
• The Logic component uses the information read by

Monitoring Collector and implements a custom-defined
spawning policy. Given the current status of the
on-premise cluster and additional constraints possibly
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Figure 3.10: Hybrid Infrastructure as a Service layer. The subcompo-
nents are displayed in grey.

introduced by the customer (e.g., deadline for the
execution of a certain job), the output of the Logic
component is a new allocation of the VMs over the
physical nodes, possibly including new VMs spawned
off-premise.
• The Translation component converts the on-premise

commands into the API specific to the off-premise cloud
platform.

The Logic component has been split into two subcompo-
nents:

• the Node Logic (one for each compute), responsible
for analyzing the monitoring data from the Monitoring
Collector, detecting if a critical situation occurred on that
physical machine (e.g., the compute node is to loaded) and
sending notifications to the Cloud Logic;
• the Cloud Logic (installed on IC’s controller node),

in charge of autonomously taking spawning/migration
decisions given the received monitoring alerts from Node
Logic.

The alerts from Node Logic and the policy of Cloud Logic
can be defined by the IC system administrator. The rational
behind splitting the Logic component into two parts is to
minimize the amount of information exchanged between the
on-premise cloud controller and the physical nodes hosting
VMs: the Node Logic sends notifications to the Cloud Logic
only if a critical condition at node-level is detected. Having a
wider vision of the state of the cloud, Cloud Logic can combine
the received information to implement a more elaborate policy.
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If the new VM allocation produced by the Logic involves EC,
the Translation component is used to convert the directives
into EC-specific APIs.

As a case study, we focus on the data-intensive scenario,
where the applicative load can be distributed among several
computing nodes. In order to control the complexity of
parallelization, we adopt the MapReduce model [58] and its
open-source implementation platform Apache Hadoop [59].

We execute the Hadoop workload over a virtual cluster that
can be deployed on the hybrid cloud (partitioned between
IC and EC) in case the on-premise resources are not enough.
Therefore, the first application layer we implement for SHYAM
is responsible for installing and configuring Hadoop on the
newly provided VMs and allows us to evaluate the performance
of operating MapReduce in a hybrid cloud setup.

3.3.1 General Cost Model

In the following, we investigate the cost model of a generic
application running on the hybrid cluster. The model we
obtain is used for the implementation of the Logic component
to guide the dynamic resource provisioning mechanism.

Although we expect the cost model to mainly depend
on the specific application-level workload executed by the
virtual cluster, we can nevertheless point out some general
relation that must be specialized depending on the particular
application.

Considering all the execution tasks and input data initially
distributed over X virtual nodes on IC and a predefined
deadline T for the computation to be completed, we want to
investigate under which hypothesis we can take advantage
from spawning and how many VMs we need to provide on EC
in order to satisfy the deadline constraint. The number Y of
off-premise VMs to be spawned can be expressed as follows:

Y = fA(D,X,L, T), (3.2)

where D is the amount of data to be processed, L is the
inter-cloud bandwidth and fA is a function strictly related to
the running application A. The deadline T must be compared
to the predicted total time Ttot_H needed for the computation
to take place on the hybrid cluster. As we start from a fully
on-premise cluster of VMs, Ttot_H can be expressed as follows:

Ttot_H = Tp + Tc + Te, (3.3)
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where Tp is the time to have Y VMs provided on EC up and
running, Tc is the time to configure these newly provided VMs
and Te is the effective time to execute the job on the resulting
hybrid cluster.

Depending on the EC IaaS layer only, the provisioning time
Tp can be estimated regardless to the specific application
running on the hybrid cluster. When a spawning command
is issued to EC, the scheduler of the off-premise cloud
infrastructure must determine which physical machine can
host each newly provided VM. Intuitively, we expect the
provisioning time to be as follows:

Tp = o(Y) + ts_ov, (3.4)

where o(Y) is a component of Tp directly proportional to the
number Y of spawned VMs and is strictly connected to the
EC infrastructure performances. On the other hand, ts_ov is
a constant overhead introduced by the EC scheduler. Tp can
be seen as an application-independent lower bound for Ttot_H
because no computation can start on the off-premise VMs
before the provisioning operation is completed.

Unlike Tp, the configuration and execution times (Tc and Te)
depend on the application-level tasks operated by the hybrid
cluster. In the following section we describe Tc and Te with
reference to the particular execution scenario of MapReduce
data-intensive applications.

3.3.2 Hybrid MapReduce Cost Model

Focusing on Hadoop implementation of MapReduce, the
Job-Tracker on the master node assigns jobs to the workers
according to the part of data currently allocated on the
worker’s portion of HDFS.

Having no data initially allocated on the newly provided
off-premise workers, they will be scarcely useful for the
computation, because the Job-Tracker will not assign any
task to them. Therefore, in case of Hadoop application, the
configuration time Tc in Equation 3.3 must include the time to
perform the distribution of the data (and the consequent task
allocation) across all the virtual nodes.

Hadoop platform offers a data balancing feature called
Hadoop Balancer [59] that can be requested on-demand with
a specific command or continuously executed by a daemon
process. Whenever needed, the Balancer analyze and compare
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the utilization of the portion of HDFS on each worker. If
the utilization differs from the average such that it exceeds
a tolerance interval (default set to [-10,10]%), the balancing
process starts to move data blocks from the workers with
higher HDFS utilization to the underutilized ones.

We call "balancing time" Tb the amount of time needed for
this operation and we express Tc as follows:

Tc = Tb + tc_ov (3.5)

where tc_ov is the constant overhead introduced by generic
configurations (e.g., changes in the configuration files, daemon
start-up, etc.)

In a hybrid scenario, Tb is strictly influenced by the
bandwidth L between IC and EC and can be expressed as:

Tb =
δ(X, Y,D)

L
+ τ(X, Y,D,L) (3.6)

where δ is a function expressing the amount of data crossing
the on-/off-premise boundaries and τ addresses the time
requested by Hadoop Balancer to detect which blocks of data
must be moved and perform additional data transfer.

While it is rather simple to estimate the minimum amount
of data we need to transfer from on- to off-premise cloud
(to have input data balanced across all the VMs), it is harder
to determine how much time is needed by Hadoop Balancer
as it performs additional data movement. Hence, τ must be
estimated through testing. However, this estimation has the
advantage of being independent from the specific MapReduce
workload going to be issued to Hadoop framework.

As regards the Te parameter in Equation 3.3, we can note
that the execution phase of MapReduce application over a
Hadoop hybrid cluster has no conceptual differences from the
execution on a set of on-premise VMs (assuming the same
number of virtual servers with the same computing power in
both the scenarios). Nevertheless, it is crucial to consider that
in the hybrid case, Y off-premise VMs are reachable through a
lower bandwidth medium.

We expect the execution time Te_H(Z) in a hybrid scenario
with Z VMs to be higher than the execution time Te_I(Z) on a
fully on-premise cluster of Z co-located VMs, resulting in the
following:

Te_H(Z) > Te_I(Z) (3.7)
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In the case of a Hadoop application, the mapper tasks mainly
work on local data, while the reducers collect input data from
mappers’ output. For this reason the delay of hybrid execution
is mainly due to Hadoop’s shuffle phase (i.e., when the
intermediate output from the mappers is sent to the reducers).
Since the amount of data shuffled depends on the workload
and the particular data set involved, the execution time Te in
Equation 3.3 can only be experimentally estimated.

3.3.3 Implementation details

We implemented HyIaaS by extending OpenStack Sahara [109]
component to allow cluster scaling operations in a hybrid
scenario.

As described in Chapter 3.2.1, OpenStack [5] is an
open source platform for cloud computing with a modular
architecture and Sahara is the OpenStack module specific to
data processing.

OpenStack Sahara allow the user to quickly deploy,
configure and scale virtual clusters dedicated to data intensive
applications like MapReduce. We modified Sahara scaling
mechanism to allow the spawning of new VMs on a remote
cloud.

The Monitoring Collector component is a simple daemon
process running on each compute node and collecting the
percentage of physical resource utilization. It checks the CPU,
RAM and disk usage on the compute nodes and sends this
information to the Logic component where it is used to detect
the need for new resources. The monitoring data can be further
coupled with those collected by the OpenStack Ceilometer
module [110] (i.e., utilization of virtual resources on each VM).

When the virtual cluster needs to be scaled by providing
new off-premise VMs, the command is issued through the
Translation component to EC. In our test scenario, the off-
premise cloud runs another OpenStack installation, therefore
the Translation component simply forward the provisioning
command to EC’s OpenStack component in charge of VM
management – i.e., OpenStack Nova Compute module.

The MapReduce Application layer finally configures Hadoop
and launches its daemons by connecting to the newly provided
VMs.
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Name VCPUs RAM(GB) Disk(GB)

m1.small 1 2 20

m1.medium 2 4 40

m1.large 4 8 80

m1.xlarge 8 16 160

Table 3.5: Characteristics of the VMs considered for Tp evaluation de-
picted in Figure 3.11a

3.3.4 Experimental Results

We relay on SHYAM to conduct a first set of tests in order
to better understand Hadoop behavior when executed on
a hybrid cluster. Further in this dissertation (Chapters 3.4
and 3.5), we describe and evaluate two different policies we
implemented for the Logic component with the aim to improve
the hybrid cluster performance.

Our setup is composed of two OpenStack clouds to emulate
IC and EC. The on-premise cloud has five physical machines,
each one with a Intel Core Duo CPU (3.06 GHz), 4GB RAM
and 225GB Hard Disk Drive (HDD). EC is composed of three
physical machines, each one with 32 cores Opteron 6376 (1.4
GHz), 32GB RAM and 2.3TB HDD.

On both IC and EC we provide VMs with two Virtual Central
Processing Units (VCPUs), 4GB RAM and 20GB of disk. The
intra-cloud bandwidth of IC and EC is 1000Mbit/s while the
inter-cloud bandwidth L is at most 100Mbit/s.

Our initial scenario is composed of five VMs (one master
and four workers) allocated on IC. In order to characterize the
computation performance on the hybrid cluster, we separately
study the times in Equation 3.3.

As regards the time Tp to provide a new VM on EC, we can
easily verify in Figure 3.11a that it is independent from the
characteristics (number of VCPUs, RAM and disk size) of the
specific VM spawned (detailed in Table 3.5).

Figure 3.11a shows the provisioning time for a single VM
as we vary the number N of VMs spawned at a time on
EC. As we expected, the trend of the curve suggests that
there is a constant overhead caused by the cloud provisioning
mechanism, thus verifying the assumption of Equation 3.4.
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(a)

(b)

(c)

Figure 3.11: Performance of HyIaaS in a hybrid scenario.
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We assume to have four on-premise VMs already configured
to be Hadoop workers and provided with a certain amount of
data D on HDFS. We use HyIaaS to add a new VM to the cluster
by spawning it on EC.

The new VM is configured to be an Hadoop worker but,
since it will initially have no data on its portion of HDFS, it will
be scarcely useful to improve the performance of the existing
cluster. A data balancing phase is therefore necessary.

Figure 3.11b shows the time TbY=1 to balance the cluster
after the provisioning of a single (Y = 1) off-premise VM
for increasing amount of data. According to Hadoop default
configuration, we assume a node balanced if it is loaded as the
average of the cluster considering a 10% tolerance threshold.

Having a fixed value L=100Mbit/s for inter-cloud bandwidth,
we can calculate the time Tb_LB to send the minimum amount
of data to the off-premise VM as follows:

Tb_LB =
Y

L
(
D

X+ Y
−
C

100
t) (3.8)

where X and Y are the number of on- and off-premise VMs
respectively (X = 4 and Y = 1 in this testbed), D is the total
amount of data, C is the disk capacity of each VM provided
and t is the balancing threshold (10% in our setup).
Tb_LB is linear in the total amount D of data involved but,

as we can see in Figure 3.11b, for high values of D, it is
not the main component of the balancing time. This is due
to additional balancer computation and additional data to be
transferred inter- and intra-cloud. Considering Equation 3.6,
we can therefore conclude that Tb is non-linear in the amount
of data D and its value is mainly due to the contribute of τ.

On top of Tp and Tb we must consider the time Te to execute
a specific MapReduce application. We chose the word count
application [59] as a benchmark workload for the following
test and we apply it on wikipedia datasets of different size D
[111]. We force the hybrid cluster to have a single reducer task
physically allocated on one of the on-premise VMs. With this
configuration, after the mapper phase (mainly involving local
data), the off-premise mappers’ output must cross the cloud
boundaries to be processed by the single reducer.

We compare the time to execute on a fully on-premise
cluster (4 VMs) with the total time Ttot_H to deal with the same
amount of data over a hybrid cluster with increasing number
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of off-premise VMs. The values on the y-axis of Figure 3.11c are
calculated as follows:

Gain(%) =
Te_I − Ttot_H

Te_I
100 (3.9)

Figure 3.11c underlines that we can obtain a significant
gain in time for low amount of data but for high values of
D the execution over a lower number of co-located nodes is
effectively less time consuming. To fully understand Figure
3.11c, we investigate the Te contribute to Ttot_H separately.

Figure 3.12 compares the time Te_I to execute wordcount
over 4 on-premise nodes with that of a hybrid cluster
(including 4 IC VMs and up to 4 EC VMs).

In case of a limited inter-cloud bandwidth (L=10Mbit/s in
Figure 3.12a), we see that there is no advantage in adding
off-premise nodes to the cluster because the data exchange
during the shuffle phase is too time consuming.

On the other hand, if the inter-cloud bandwidth is higher
(L=100Mbit/s as in Figure 3.12b), we can see a significant gain
in execution time when the off-premise nodes are added to the
virtual cluster. As shown in Figure 3.12b, when the bandwidth
is not a bottleneck for the system, the more is the number of
VMs provided on EC, the higher is the gain in the execution
time. However, is relevant to notice that, while over a fully
on-premise cluster Te is linear in D, on a hybrid cluster this
relation is no longer linear and for high values of D a fully
on-premise execution can save more time.

3.3.5 Discussion

In this chapter we presented HyIaaS, a software component
to allow VM management and configuration in a hybrid
cloud scenario. We illustrated the architecture of the HyIaaS
component and its internal structure. Finally, we tested our
system by executing a Hadoop data-intensive application on
hybrid clusters, where some of the worker nodes are located
off-premise and might be reachable through a higher latency
medium. Our results show that, although the total cost to
execute a benchmark application over a hybrid cluster is
strongly influenced by the workload, some components of this
cost model are independent from the application running and
can therefore be a priori estimated.
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(a)

(b)

Figure 3.12: Comparison of times Te to execute on IC and EC varying
the volumes of data D and the number Y of off-premise
spawned VMs. 3.12a shows the case of a limited inter-
cloud bandwidth (L=10Mbit/s), while 3.12b illustrates
the behavior with a higher bandwidth (L=100Mbit/s)
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This work represents a first step towards the implementation
of an autonomic "Hybrid Infrastructure as a Service" system,
able to forecast the computing resources needed by each
on-premise application and to autonomously request them to
EC. We used HyIaaS for the quick deploy of hybrid clusters of
VMs aiming to execute a MapReduce workload by means of the
Hadoop framework.

The execution time model needs to be refined by analyzing
other MapReduce workloads and studying the connections
with the volumes of data exchanged during the Hadoop
shuffle phase. Since the processing time of a MapReduce
application in a hybrid cluster is also influenced by the number
and the allocation (on- or off-premise) of the reducers, further
investigations of the performance are needed when more then
one reduce task is running.

Nevertheless, the results of this work are useful to clarify
the trends of execution times for MapReduce applications over
an interconnected multiple cloud scenario. The study shows
that the main obstacle to the final goal of enabling MapReduce
over an hybrid cluster of VMs is the limitation introduced
when the inter-cloud bandwidth is saturated. Indeed, this
factor is responsible of the evolution in the execution time
from a linear trend (proportional to the volumes of data
involved) on a fully on-premise cluster to a non-linear trend
on a hybrid environment. It is therefore necessary to contain
the amount of data flowing through the on-/off-premise
boundaries, eventually avoiding to appeal to Hadoop Balancer
process for the initial redistribution of the input data.

Focusing on the scenario described in Chapter 3.3, we
continue this dissertation by providing two management
policies for HyIaaS Logic component aiming to both perform
cloud bursting when needed and contain the volumes of data
spawned off-premise.

3.4 the span policy
We consider the scenario of a private cloud used for
MapReduce data-processing and for various other goals at
the same time. In this case, it is likely to happen that
a physical machine simultaneously hosts VMs designed for
different application domains. If a compute node hosting a
MapReduce worker VM becomes overloaded as a result of
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other computations carried on the same physical machine
by VMs belonging to other projects, the performance of the
MapReduce worker may dramatically decrease, thus slowing
down the whole virtual cluster for data-processing.

For this reason, we implemented a first example of policy
for the Logic component executed on every compute node of
IC: the SPAN policy (Algorithm 9). The work included in this
chapter was published in [98].

SPAN aims to maintain the load of each compute node
under parametric threshold THRU. It periodically checks the
resource utilization of the compute node h (line 2 in Algorithm
9). If the load exceeds THRU, the procedure selects to move
a subset of the VMs currently on h (line 3 in Algorithm 9).
The selectToMove function is implemented according to MoM
algorithm from Beloglazov et al. [39]. This policy ensures
to always move the minimum number of VMs that brings h
utilization back under THRU.

For each vm selected, if there is another on-premise node
that can host the VM, a migration is performed (line 7 in
Algorithm 9). Otherwise, if no IC’s compute node can host
the VM, a new one is spawned off-premise and the specific
application level operation is performed (swap() in line 10 of
Algorithm 9).

We chose Hadoop as an example of distributed data-
processing platform. For this reason, swap procedure
(Algorithm 10) simply consists of performing an Hadoop
installation on vmnew and including it in the cluster while
the old on-premise vm is excluded by performing Hadoop
decommissioning procedure [59]. This operation automatically
copies to the other workers of the cluster the portion of
HDFS data on vm and marks it to be excluded from task
assignment. However, Hadoop does not really delete the
data on the decommissioned worker: they remain on the
old vm unless it is actually remove. Hence, we perform
ONmanager.remove(vm) in the SPAN algorithm once the
swap procedure has competed (line 11 in Algorithm 9).

Focusing on the cl.include(vmnew) operation in line 3 of
Algorithm 10, we must consider that Hadoop’s Job-Tracker
(running on the master node) assigns jobs to the workers
according to the part of data currently allocated on the
worker’s portion of HDFS. Having no data initially allocated on
the newly included off-premise workers, they will be scarcely
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Algorithm 9: SPAN policy

input :h,ONmanager,OFFmanager, THRU,∆t

1 while true do
2 if h.getUtil() > THRU then
3 vmsToMove = selectToMove(h.getVMs()) ;
4 foreach vm ∈ vmsToMove do
5 d = ONmanager.getAnotherAllocation(vm) ;
6 if d != null then
7 ONmanager.migrate(vm,d) ;
8 else
9 vmnew = OFFmanager.provideLike(vm);

10 swap(vm, vmnew) ;
11 vmnew = ONmanager.remove(vm);
12 end
13 end
14 end
15 sleep(∆t);
16 end

useful for the computation, because the Job-Tracker will not
assign any task to them.

A first idea to solve this problem, could be to provide
vmnew on EC, maintain the old vm on IC and simply
launch Hadoop Balancer process [112], which is in charge
of equally redistributing data across the workers. However,
it is possible to verify that the balancing mechanism is
highly time-consuming [113] because it does not simply move
the data from the overloaded IC worker towards the newly
provided off-premise VM, but also tries to balance the amount
of data across all the workers, causing further balancing

Algorithm 10: swap(vm, vmnew) procedure for Hadoop
virtual cluster

input : vm, vmnew

1 installMR(vmnew) ;
2 cl = vm.getVirtualCluster() ;
3 cl.include(vmnew) ;
4 cl.decommission(vm) ;
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computation and additional data to be transferred inter- and
intra-cloud.

Another solution cloud be to perform an inter-cloud
migration by transferring off-premise a snapshot of the
overloaded VM. This operation would ensure to move the
minimum portion of HDFS to EC, but will also cause other parts
of the VM (operating system, configurations, applications,
etc.) to be transferred. Furthermore, given the intrinsic
heterogeneity of the hybrid cloud environment, the inter-cloud
live mobility is currently a challenging field [85], and can have
poor performance due to the large size or the VM snapshot
involved and the limited inter-cloud bandwidth.

For this reason, our solution is to relay on a well
known Hadoop behavior: when the on-premise vm is
decommissioned and its data are replicated, Hadoop prefers
the workers with low utilization of HDFS as destinations.
Initially having 0% HDFS utilization, off-premise vmnew is
likely to be preferred and no other data balancing is needed
to give vmnew an effective role in computation. Therefore,
cl.decommission(vm) in line 4 of Algorithm 10 is enough to
trigger the data replication process and avoid the drawbacks of
Hadoop data balancing process. It also produces the benefits
of an inter-cloud VM migration (i.e., the minimum portion
of HDFS is moved to EC) without performing the whole VM
snapshot transfer.

3.4.1 Experimental results

In order to test the performance of SPAN policy, we relay on
the same infrastructure used for the validation of the cost
model (Chapter 3.3.4).

In this scenario, we assume to have four on-premise worker
VMs already configured to run Hadoop jobs and provided with
a certain amount of data D on HDFS.

We consider the time to execute a word count Hadoop
job [108] over Wikipedia datasets of different size D [111].
Figure 3.13a compares the execution time trends of three
scenarios. The first one (Te_I in Figure 3.13a) represents
the ideal situation of having each Hadoop VM allocated on
an on-premise dedicated physical machine. Since no other
physical or virtual load is affecting the execution, we can
obtain good performance (execution time is linear in D).
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(a)

(b)

Figure 3.13: Performance of HyIaaS in a hybrid scenario. Figure 3.11a
shows the time to provide new off-premise VMs with dif-
ferent characteristics. Figure 3.13a compares the time to
perform a Hadoop word count workload on a fully on-
premise cluster - with (Te_I) or without (Te_I_stress) a
stressing condition on a physical node -, with the per-
formance on a hybrid cluster created by the HyIaaS layer.
Figure3.13b shows the percentage gain obtained by our
solution.

The second scenario (Te_Istress in Figure 3.13a) shows
the performance degradation when one of the four Hadoop
workers is running on a overloaded physical machine and no
VM redistribution mechanism is adopted. As we can see in
Figure 3.13a, the execution time is considerably higher when
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compared to Te_I because the VM on the stressed physical
node sensibly slows down the whole distributed computation.

The third scenario (Te_Hstress in Figure 3.13a) repeats the
second scenario and uses SHYAM infrastructure with SPAN
policy. THRU is fixed at 90%. In this case, a new VM is
spawned off-premise and the on-premise worker running on
the stressed machine is decommissioned (i.e., excluded from
Hadoop cluster after its data have been copied on other
worker nodes). This operation causes a part of data to cross
on-/off-premise boundaries.

As we can see in Figure 3.13a, the adoption of SPAN policy
can considerably improve the performance for low values of D.
However, (as already noticed in Chapter 3.3.4) the trends show
that in the hybrid scenario the execution time is no longer
linear in the volume of data involved and, for high values of
D, the time gain determined by the off-premise resources is
considerably reduced. This is mainly due to data movement
across the on-/off-premise boundaries, which is usually over a
higher latency medium when compared to a fully on-premise
computation.

Figure 3.13b shows the gain in execution time obtained
with SHYAM. Although for high volumes of data crossing
on-/off-premise boundaries the gain is low, the graph suggests
that the autonomic provisioning and configuration of VMs on
EC can represent a good solution to face critical conditions of
stress in private clouds.

3.4.2 Discussion

Relaying on SHYAM system, we developed a new policy for the
management of data-processing clusters of VMs in a hybrid
cloud environment.

We evaluate SPAN policy performance by executing a
Hadoop application on a virtual cluster and stressing one
of the IC’s physical machines. In the given scenario, SHYAM
autonomously spawns new VMs on EC and configures them as
workers of the Hadoop cluster.

Our results show that the hybrid cluster obtained can
sensibly improve the performance of a benchmark Hadoop
word count application. However, for high volumes of data
crossing on-/off-premise boundaries, the performance of the
hybrid cluster decreases as the inter-cloud bandwidth is
saturated. Since this drawback could be also influenced by the



3.5 the hymr policy 97

kind of application executed (e.g., word count in our case
study), we need to further investigate SHYAM performance with
different Hadoop workloads.

Furthermore, in SPAN policy we trigger the spawning/mi-
gration mechanism if the physical machine’s CPU utilization
exceeds THRU. In the following chapter, we modify the policy
to take into account the utilization of other resources (RAM and
disk.).

In case of spawning new VMs towards EC, SPAN approach
lacks a mechanism for “bringing back" on IC the off-premise
VMs once the critical condition is solved. Therefore, as a natural
evolution of SPAN, the policy in the next chapter implements
a symmetric threshold mechanism to detect underloaded hosts
in IC.

Finally, as SPAN policy is actually performed only on the
compute nodes, it lacks a mechanism to coordinate the whole
infrastructure. This can result in inconsistent evolutions of
the algorithm, specially if we deal with further complicated
policies. Such kind of situations are avoided in the following
by introducing a policy central controller that coordinates the
reactions of the compute nodes to critical condition.

3.5 the hymr policy
Given the limits of SPAN policy depicted in the previous
chapter, we improved the HyIaaS Logic component policy to
address the scale-down issue and take into account other
hardware resources in addition to CPU utilization.

The result is Hybrid MapReduce (HyMR) [99], a policy in
charge of the autonomic scaling of Hadoop clusters over the
hybrid cloud. Similarly to SPAN, this policy also performs
application level tasks, such as installing and configuring
Hadoop on the newly provided VMs. HyMR is split into two
parts: the HyMR Node and HyMR Cloud policies, as suggested
by the Logic component implementation (Figure 3.10).

HyMR Node policy (Algorithm 11) is executed on every
compute node of IC and aims to maintain the resource
utilization between two parametric thresholds. It periodically
checks the CPU, RAM and disk utilization of the compute node
h (line 3 in Algorithm 11) and, if one of these values exceeds
the correspondent threshold, the procedure selects to move
a subset of the VMs currently on h (line 5 in Algorithm 11).
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Algorithm 11: HyMR Node policy

input :h,CloudL,ONmanager,OFFmanager, tdU, tcU,
trU, tdD, tcD, trD,∆t

1 while true do
2 (d, c, r) = h.getDiskCpuRamUtil();
3 if d > tdUorc > tcUorr > trU then
4 CloudL.notifyCritical(c, r,d,h) ;
5 vmsToMove = selectToMove(h.getVMs()) ;
6 foreach vm ∈ vmsToMove do
7 hnew = ONmanager.migrate(vm) ;
8 if hnew = h then
9 vmnew = OFFmanager.provideLike(vm);

10 swap(vm, vmnew) ;
11 if d > tdU then
12 vmnew = ONmanager.remove(vm) ;
13 end
14 end
15 end
16 (d, c, r) = h.getDiskCpuRamUtil() if

d < tdUandc < tcUandr < trU then
17 CloudL.solved(c, r,d,h) ;
18 end
19 else if (d < tdDandc < tcDandr < trD) and

OFFmanager.VMs.length > 0 and
CloudL.getScaleDownPermit(h) then

20 vmsToMove = selectToMove(OFFmanager.VMs) ;
21 foreach vm ∈ vmsToMove do
22 vmnew = ONmanager.provideLikeOn(vm,h);
23 swap(vm, vmnew) ;
24 vmnew = OFFmanager.remove(vm);
25 end
26 end
27 sleep(∆t);
28 end
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The selectToMove function is implemented according to the
MoM algorithm from Beloglazov et al. [39]. This policy ensures
to always move the minimum number of VMs that brings h
utilization back under the exceeded threshold.

Furthermore, if we assume that the VMs are “small" –
in terms of CPU, RAM and disk characteristics – when
compared to the physical machine hardware and their resource
utilization does not substantially obscillate, the Minimization
of Migration policy also guarantees to avoid glitches in the
scale-up/-down mechanism, i.e., constantly moving VMs back
and forth between IC and EC.

For each vm selected, if there is another on-premise node
that can host the VM, a migration is performed (line 7 in
Algorithm 11). Otherwise, if no IC’s compute node can host
the VM, a new VM is spawned off-premise and the swap

procedure is called in order to reconfigure the Hadoop cluster
(Algorithm 10). As clarified in the previous chapter, the swap
procedure trigger the data replication process avoiding the
drawbacks of Hadoop data balancing process and produces
the benefits of an inter-cloud VM migration (i.e., the minimum
portion of HDFS is moved to EC) without performing the whole
VM snapshot transfer. Note that, swap operation automatically
copies the portion of HDFS currently on vm to the other
workers of the cluster and marks vm to be excluded from task
assignment. However, Hadoop does not really delete the data
on the decommissioned worker: they remain on vm in case it
will be included back in the cluster in the future.

For this reason, after the swap procedure, if the critical
condition that caused the spawning was a disk overloading,
we need to instruct the on-premise cloud controller to actually
remove the vm (line 12 in Algorithm 11). On the other hand,
if the critical condition was related to RAM or CPU overloading,
we prefer to maintain vm and its data on IC (although it
has been decommissioned) to speed up future scale-down
operations.

When the Monitoring Collector component detects that
either the CPU, RAM or disk utilization of the compute node
is under the corresponding threshold and some VMs of the
current virtual cluster are allocated on EC, an analogous set of
operations is performed (lines 19-25) to bring back all (or part
of) the off-premise VMs, thus to minimize the cost of public
cloud resource utilization.
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In this scale-down scenario, if a copy of the data on the
off-premise VMs going to be decommissioned is also available
on-premise, the operation can be performed fastly. We refer
it as Fast Scale Down (FSD). On the contrary, if the portion
of HDFS off-premise is not replicated on IC – e.g., if we were
obliged to perform a remove(vm) to satisfy the disk utilization
constraint as in line 12 of Algorithm 11 –, the scale down
will cause all the data on the off-premise VM to be copied
on-premise before the decommissioning process can end. We
refer this case as Complete Scale Down (CSD) in the following.

Since HyMR Node policy is executed in a decentralized
way on each compute node, we need a mechanism to
coordinate scale-up and -down decisions in order to avoid the
underloaded physical hosts of IC to receive off-premise VMs
when some other IC’s host is overloaded (and would therefore
benefit from an intra-cloud migration). This mechanism is
realized by the HyMR Cloud policy (running on the cloud
controller), which receives the notification of critical condition
occurred and solved from each physical hosts of the cloud
through notifyCritical() and solved() operations in line 4

and 17 of Algorithm 11. The Cloud policy temporary stores
this information and uses it to grant or deny the scale-down
permission to underloaded hosts (getScaleDownPermit(h) in
line 19)

3.5.1 Experimental results

The performance of the cluster are evaluated on the
infrastructure described in Chapter 3.3.4 by executing three
different Hadoop workloads: word count, inverted index (over
Wikipedia datasets of different size D [111]) and tera sort
(over a collection of rows randomly generated with teragen
application [59]).

In order to obtain the best performance for the reduce phase
in a hybrid setup, we chose to launch 8 reduce tasks (one for
each core in the cluster) in all the experiments, making sure
that they are executed both on- and off-premise, as suggested
by the results of the work in [88].

When the Monitoring Collector installed on a physical
machine detects a critical condition according to HyMR policy,
one or more VMs are spawned off-premise. As proven in
Chapter 3.3.4 (and detailed in [46]) the provisioning time
is linear in the number of provisioned VMs (a part from a
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constant overhead introduced by HyIaaS) and independent from
their characteristics. Therefore, in the following, we overlook
provisioning and investigate the execution and decomissioning
time only.

Graphs in Figure 3.14a, 3.14b and 3.14c respectively show
the performance of word count, inverted index and terasort. In
particular, each graph compares the execution time trends of
three scenarios: Te_I, Te_Istress and Te_Hstress.

The first one (Te_I) represents the ideal situation of having
each Hadoop VM allocated on an on-premise dedicated
physical machine. Since no other physical or virtual load is
affecting the execution, we can obtain an execution time linear
in D for all the workloads.

The second scenario (Te_Istress) shows the performance
degradation when one of the four Hadoop workers is running
on a overloaded physical machine and no VM redistribution
mechanism is adopted. As we can see in Figure 3.14a, 3.14b
and 3.14c, the execution time is considerably higher when
compared to Te_I (particularly for word count and inverted
index) because the VM on the stressed physical node sensibly
slows down the whole distributed computation.

The third scenario (Te_Hstress) repeats the second scenario
and adopts HyIaaS infrastructure with HyMR policy. tcU, trU and
tdU are set at 90%, while tcD, trD and tdD are 10%. In this
case, a new VM is spawned off-premise and the on-premise
worker running on the stressed machine is decommissioned
(i.e., excluded from Hadoop cluster after its data have been
copied on other worker nodes). This operation causes a part of
data to cross the on-/off-premise boundaries.

All the stress tests in 3.14 are conducted by artificially
stressing the RAM of the physical machine but analogous
results can be obtained by stressing the RAM or disk.

Figure 3.15 shows the gain in execution time obtained by
our solution (Te_Hstress compared to Te_Istress) in case of
one physical machine stressed. This graph is useful to better
clarify the trends of Figure 3.14a, 3.14b and 3.14c. For all
the workloads, the gain decreases as we augment the volume
of input data D. This is mainly due to data movement
across the on-/off-premise boundaries, which is usually over a
higher latency medium when compared to a fully on-premise
computation.

In particular, both word count and inverted index show
a stronger gain when compared to terasort. This is due to
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(a)

(b)

(c)

Figure 3.14: Performance of HyMR policy and HyIaaS system with dif-
ferent MapReduce workloads.
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Figure 3.15: HyMR gain in execution time for word count, inverted
index and tera sort workloads.

different volumes S of data exchanged during Hadoop shuffle
phase (when intermediate data are sent from mappers to
reducers [59]). Effectively, while the mappers usually work
on local blocks of data, the reducers collect information
from other workers and are therefore more influenced by the
network latency.

Given the standard implementation of word count (with
Combiner function) and inverted index in [108], it is easy to
understand that the intermediate keys generate a reduced
amount S of data to be shuffled (and possibly crossing cloud
boundaries) when compared to the input data D. On the other
hand, terasort implements the mapper as an identity function
resulting in S to be equal to D.

Since in a hybrid scenario a part of the shuffled data S must
cross the on-/off-premise boundaries facing a higher latency,
the difference between word count/inverted index and terasort
results in different trends of the gain function in Figure 3.15.

Finally, we evaluate the scale-down performance of HyMR
policy in Figure 3.16 considering both FSD and CSD processes.
As we expected, since the CSD causes all the portion of HDFS
on the decommissioning node to cross the cloud boundaries,
the process is much more time consuming than FSD.
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Figure 3.16: HyMR scale-down performance.

3.5.2 Discussion

In this chapter we presented HyMR, an evolution of SPAN
policy for HyIaaS component that enables VM cluster autonomic
scaling in a hybrid cloud scenario dedicated to MapReduce
workload execution. We evaluated the policy performance in
the same scenario illustrated in Chapter 3.4 (i.e., by executing
a Hadoop data-intensive application on a virtual cluster and
stressing one of IC’s physical machines).

HyMR policy autonomously spawns new VMs on EC and
configures them as workers of the Hadoop cluster. It is
also able to scale-down the cluster by bringing back the
VMs previously spawned towards EC once the on-premise
critical condition is solved. The double threshold mechanism,
the introduction of the Cloud Logic algorithm and the
adoption of the MoM [17] contribute to reduce glitches in the
scale-up/-down process.

Albeit for high volumes of data crossing on-/off-premise
boundaries, the performance of the hybrid cluster inevitably
decreases as the inter-cloud bandwidth is saturated, our
results show that the hybrid cluster obtained can sensibly
improve the performance of benchmark Hadoop applications.
The percentage of gain determined by SHYAM with HyMR policy
is influenced by the MapReduce workload executed as it
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determines the volumes of data crossing the on-/off-premise
boundaries.

In HyMR policy, we trigger the spawning/migration
mechanism as a consequence of a threshold constraint
violation in the percentage of resource utilization of every
IC’s physical machine. However, the policy could be easily
modified to take into account more complex constraints (e.g.,
the speed in resource utilization change).

For the future, SHYAM system would benefit from a further
evaluation of the strength of our approach through testing on a
larger scale (i.e., more than 10 workers and 100GB input data).

From the infrastructure point of view, while HyIaaS layer is
mainly focused on OpenStack cloud, we plan to adapt our
solution to OCCI standards [105], in order to further improve
the system interoperability with other cloud platforms.

3.6 iterative map reduce over the
hybrid cloud

Another applicative scenario is represented by Iterative
Map Reduce workloads. This specific class of data-intensive
applications iteratively reuses the same map and reduce
functions multiple times with slight alterations such as change
of input and output files. Each iteration proceeds using a
simple loop condition and can use the previous iteration’s
output as its input.

Iterative MapReduce is particularly suitable for hybrid cloud
big data analytics. As the management of data volumes is
the more influencing element of data-processing in a hybrid
environment, having a method to treat the input data that is
significantly different from the classical MapReduce scenario,
the execution of iterative MapReduce on hybrid clouds worths
to be treated separately.

For this class of applications, data locality can be leveraged
over and over again once the input data was replicated
off-premise. However, given the large initial overhead of
the data movement, an efficient solution that facilitates data
locality is non-trivial.

Furthermore, since the extra off-premise resources incur
pay-as-you-go costs, it is crucial to estimate the performance
gains in advance, in order to be able to decide whether it is
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worthwhile to commit any extra resources at all, and, if so, how
many of them in order to achieve the desired cost-performance
trade-off. This work aims to address both these directions.

We propose a novel technique that minimizes data movement
over the inter-cloud network and thus guarantees elevated
levels of data locality, while preserving cross-cloud data
replication. We achieve this is a completely transparent fashion,
without invasive changes to the MapReduce framework or the
underlying storage layer by adapting existing features to the
hybrid setup (Chapter 3.6.2).

Furthermore, we propose a performance prediction method-
ology that combines analytical modeling with micro-
benchmarking to estimate time-to-solution in a hybrid setup,
including any data movement and computation (Chapter
3.6.3).

Finally, we evaluate our approach in a series of experiments
that involve two representative real-life iterative MapReduce
applications exhibiting a highly intensive map phase that
processes large input datasets. Our experiments demonstrate
both the ability to achieve strong scalability using our data
movement technique, as well as small prediction errors
(Chapter 3.6.4). The content of this chapter was published in
[100].

3.6.1 Challenges of data locality in hybrid IaaS clouds

MapReduce applications typically exhibit a high degree of
data parallelism: massive amounts of data are transformed
in parallel fashion during the map phase, after which they
are aggregated in a reduce phase. This approach puts a high
burden on the storage layer: it needs to serve a large number
of concurrent read requests corresponding to the input data of
the map phase, as well as a large number of concurrent write
requests corresponding to the output of the reduce phase.

In this context, using a conventional distributed file system
that is decoupled from the MapReduce runtime is not enough
to deal with such highly concurrent I/O access patterns:
this would incur a massive amount of network traffic,
overwhelming the networking infrastructure and offsetting the
benefits of storing the data in a distributed fashion.

For this reason, a key design choice of MapReduce is the
ability to take advantage of data locality: the storage layer is
colocated with the MapReduce runtime on the same nodes
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and is specifically designed to expose the location of the
data blocks, effectively enabling the scheduler to bring the
computation close to the data and avoid a majority of the
storage-related network traffic. By replacing the nodes with
VMs, a similar configuration that can efficiently exploit data
locality can be obtained in an IaaS cloud as well.

However, in a hybrid cloud setup, there are two major
challenges. First (as underlined in the previous chapters), the
storage layer and all data is deployed initially only on-premise.
Thus, when additional off-premise VMs are provisioned from
the external cloud provider to boost the initial setup, they
cannot benefit out-of-the-box from data locality and need to
fetch/write their data to/from the on-premise VMs.

Second, the link between the on-premise infrastructure
and the external cloud provider is typically of limited
capacity. Thus, off-premise VMs that need to communicate with
on-premise VMs create a network bottleneck much faster than
the case when all VMs are located within the same cloud.

These two challenges are even more exacerbated in the
context of iterative applications: in many cases, a majority of
the input data needed for the first iteration will be needed for
the subsequent iterations (such data is called the invariant).
Thus, adopting a naive solution where the off-premise VMs
read the input data from the on-premise VMs over and over
again over a weak link is not feasible.

Furthermore, for the data that changes from iteration to
iteration, off-premise VMs need to constantly write their output
remotely, then read it back in the subsequent iteration, again
over the weak link. Given these circumstances, exploring a
better solution that improves the ability to take advantage of
data locality in a hybrid setup is critical.

3.6.2 Asynchronous data rebalancing technique

This chapter describes our proposal to enable efficient
execution of iterative MapReduce jobs in a hybrid IaaS cloud
setup. It focuses on defining a strategy to address the technical
challenges mentioned in the previous Chapter.

At first sight, the problem of avoiding remote data transfers
over the weak link seems to be easily addressable by using a
conventional caching solution: the invariant data and the newly
written data can simply be stored locally on the off-premise
VMs for faster subsequent access. However, adopting such a
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caching strategy is non-trivial, because it needs to integrate
well into the whole MapReduce framework.

More specifically, since the scheduling of tasks is deeply
linked with the data locality, the MapReduce scheduler will
prefer on-premise VMs over off-premise VMs, which leads to a
scenario where the off-premise VMs are underutilized.

Furthermore, even if the scheduler would not exhibit such
preference and would rather aim for load balancing, it is
not enough to simply cache the data blocks off-premise and
expose their location, because the storage layers fills other roles
as well: replication support for resilience and high availability,
load balancing of the data distribution, etc. Thus, in order to
scale and properly take advantage of all these features, it is
important to extend the storage layer beyond the on-premise
VMs and re-balance the data blocks so that they are spread
both over the on-premise VMs as well as the off-premise VMs.

Also important are other non-functional aspects: users prefer
to use a standard MapReduce distribution (e.g. Hadoop) that
was tested and tuned in their on-premise cloud, rather than
switch to a dedicated solution specifically written for a hybrid
setup. Furthermore, switching to a custom storage layer may
not always be feasible: for example, if a huge amount of
data is already stored in a regular on-premise MapReduce
deployment, the overhead of migrating to a custom storage
layer might offset the benefits of enabling the hybrid support
altogether.

For these reasons, we propose a non-invasive solution
that solves the aforementioned issues without deviating
from the standard storage layer. Our key idea is to
leverage rack awareness, a feature typically implemented in
production-ready MapReduce storage layers, such as HDFS
[114]. Originally intended as a mechanism to enhance fault
tolerance, rack awareness enables the user to specify for each
HDFS node that is part of the deployment a logical group,
typically corresponding to a physical rack of the cluster where
Hadoop is deployed. Using this information, HDFS replicates
each data block at least once outside of the group where it was
written, under the assumption that such a behavior improves
the ability to resist catastrophic failures where a whole rack
would fail at once.

In our context, we leverage rack awareness from a novel
perspective. Specifically, we create two logical groups: one
for the on-premise VMs and another for the off-premise VMs.
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Thus, when new off-premise VMs are provisioned to boost
the capability of the already running on-premise VMs, we
extend the HDFS deployment in a rack-aware fashion on the
off-premise VMs.

Using this approach, whenever an off-premise VM writes a
new data block, it actually writes both local copies (solving the
locality issue) as well as at least a remote copy, which enables
efficient storage elasticity: off-premise VMs can be simply killed
as desired without having to worry about transferring the data
back to the on-premise side.

The only remaining issue is that the HDFS data nodes
running on the off-premise VMs are initially empty, which
prompts the need to re-balance the initial data blocks in order
achieve load balancing and enable the scheduler to fully take
advantage of the off-premise VMs.

However, re-balancing has its own overhead and as such
is subject to a trade-off: at one extreme one can wait until
all invariant data is balanced, which enables a maximum
acceleration of the iterations from the beginning; at the
other extreme one can run the re-balancing asynchronously,
which eliminates the initial overhead at the cost of gradual
acceleration of the iterations as the data balancing progresses.

We opted for the second option, since the initial overhead
of re-balancing is significant and the ability to overlap the
computation with the data transfers is crucial. While more
elaborate balancing strategies (e.g. wait until a certain number
of blocks was transferred off-premise then switch to the
asynchronous strategy) are possible to explore, this is outside
the scope of this work.

3.6.3 Performance prediction model

In some cases, using a hybrid cloud is a functional requirement:
there are simply not enough resources on-premise to run the
application with the desired level of complexity. However,
most of the time, users are interested in a hybrid solution
because they intend to accelerate their application by renting
extra off-premise VMs. Since a hybrid solution incurs additional
costs, it is important to understand how much the hybrid
solution can accelerate the application, given a number of extra
off-premise VMs. Ideally users would like to have the answer
in advance, in order be able to decide apriori whether it is
worthwhile to commit the extra off-premise VMs or not. In this
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chapter, we propose a performance prediction methodology
that addresses this issue.

Assumptions

We assume a MapReduce deployment that initially spans N
on-premise VMs where all initial invariant data is distributed.
These N on-premise VMs are complemented by M extra
off-premise VMs, where we extend the MapReduce deployment
using the asynchronous rack-aware rebalancing strategy
mentioned in the previous chapter and then run the iterative
application on the resulting hybrid setup. For simplicity, we
assume the on-premise VMs are identical in capabilities to the
off-premise VMs. Furthermore, we assume that the user has
access to the historical traces of the application or can estimate
important MapReduce metrics: total number of map/reduce
tasks (pM and pR); total number of map/reduce slots (kM
and kR ); average map/reduce/shuffle duration (AM,AR,AS),
average data/shuffle sizes per map/reduce task (DM,DR,DS).
Also, we assume that the iterative applications exhibit a
well-defined behavior: the number of iterations (I) is known in
advance and the map/reduce tasks do not change in terms of
number, amount of input data and computational complexity
from one iteration to another.

Performance model for on-premise jobs

Using these metrics, techniques to estimate the runtime of
MapReduce jobs on a single cluster have been proposed
before and can be used in our case for the N on-premise
VMs. In particular, Verma et. al. propose a model based on
the make-span theorem [115], which states that for a greedy
assignment of p tasks on k workers, the lower and upper
bound for the execution time is p ·A/k and, respectively,
(p− 1) ·A/k+ λ, with A the average execution time of the
tasks and λ the execution time of the slowest task. Intuitively,
the lower bound corresponds to an ideal scenario where there
is perfect load balancing, while the upper bound corresponds
to a worst case scenario where the slowest task is scheduled
last, after all other p− 1 tasks finished in at most (p− 1) ·A/k
time. Since MapReduce does not overlap the map phase with
the reduce phase, both can be treated separately using the
make-span theorem. For simplicity, we focus in this work on
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the lower bound only. The upper bound can be estimated in a
similar fashion.

T lowM = AM ·
pM
kM

T lowR = AR ·
pR
kR

(3.10)

More complexity is introduced by the shuffle phase, for
which the first wave overlaps with the map phase and thus
the resulting overhead needs to be considered separately
(denoted AS1). For the rest of the shuffle waves (pR/kR − 1), the
make-span theorem can be applied as usual:

T lowS = AS · (
pR
kR

− 1) +AS1 (3.11)

Thus, the estimated completion time for a single iteration is:

T low = T lowM + T lowR + T lowS (3.12)

Considering all iterations, the total estimated completion
time is:

T low =

I∑
i=1

(T lowMi
+ T lowRi + T lowSi ) (3.13)

Performance model for hybrid jobs

In a hybrid setup, two important aspects affect the estimations
discussed above: (1) while the asynchronous rebalancing
progresses in the background, it generates extra overhead,
which will slow down the map/shuffle/reduce (2) due to the
weak link between the on-premise and off-premise VMs, the
data transfer during the shuffle may experience a slowdown.

Due to the fact that (2) is highly complex and dependent
on the nature of the application, we focus in this work on
(1), leaving (2) as future work. Thus, we propose to amend
the equations above such that they reflect the rebalancing
aspect. Specifically, two important factors characterize this
aspect. First, while the rebalancing is in progress, the mappers
become slower due to the additional background activity. We
denote this slowdown as α. It remains greater than 1 while
the rebalance is in progress and equals 1 after the rebalance
is complete. Second, as more data is transferred off-premise
during the rebalancing, more locality can be exploited by
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the scheduler, which effectively translates to more mappers
that are scheduled off-premise. For simplicity, we adopt
a simple heuristic to account for this effect that assumes
only rack-local mappers will be executed the scheduler. This
roughly corresponds to real life: only a negligible fraction of
mappers are not scheduled rack-local. Furthermore, we make
another simplifying assumption: all mappers are scheduled at
the beginning of the iteration. Under these circumstances, the
total number of parallel mappers during iteration i (denoted
kMi

) depends on the progress of the rebalancing at the
beginning of the iteration, ranging from the map slots available
on-premise only (kM1

) to the map slots available both
on-premise and off-premise after the rebalancing is complete.

For the rest of this chapter, we refer to α and kMi
as the

hybrid rebalance factors. Thus, for the hybrid case, the estimated
completion time for the map phase is:

T lowM =

I∑
i=1

α ·AM ·
pM
kMi

(3.14)

T
up
M =

I∑
i=1

α ·AM ·
pM − 1

kMi

+ λ (3.15)

Methodology to leverage the hybrid performance model

In order to make use of the hybrid performance model
introduced above for actual predictions, we need to estimate
the hybrid rebalance factors. However, due to the complex
inter-play between the system, the virtualization layer and
the MapReduce framework that depends on a variety
of parameters (i.e., point-to-point bandwidth between VMs,
aggregated bandwidth of the weak link between on-premise
and off-premise VMs, I/O pressure on the local storage, etc.), it
is not easy to determine them analytically.

Thus, we propose to establish them experimentally, by
using a series of micro-benchmarks that are executed on
the hybrid setup independently of the application. More
specifically, given N on-premise VMs and a desired number of
M off-premise VMs, we create a similar setup as if running
the actual application (i.e. same data size, number of mappers,
etc.). However, instead of running the application, we run
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an I/O intensive benchmark that approximates the application
behavior for the duration of the re-balancing.

To obtain α, we simply divide the result of the hybrid
benchmark by the baseline (i.e. same I/O intensive benchmark
running on-premise only). To obtain kMi

, we correlate the
rebalance progress observed during the I/O benchmark with
the moment when each iteration starts for the real application
as follows:

kMi
= min(kmaxM ,BM(TMi−1

)/DM) (3.16)

In the equation above, BM(t) denotes the amount of data
transferred off-premise at moment t,kmaxM denotes the total
number of mapper slots available from the N+M VMs both
on-premise and off-premise, while DM denotes the data size
processed by each mapper. By convention, TM0

= 0.
Note that it is not necessary to run the I/O intensive

micro-benchmarks for before running every real application:
these results can be cached and reused later if the off-premise
setup is unchanged (e.g. same type of VMs, same aggregated
throughput between the off-premise and on-premise nodes).
Since in many cases it is possible to use historical micro-
benchmark results to calculate the hybrid rebalance factors, we
differentiate the running of the I/O micro-benchmarks from the
actual calculation of the factors, which we henceforth refer to
as micro-calibration.

Once the micro-calibration is done, T low and Tup can be
estimated as described in Chapter 3.6.3. To find an optimal
configuration, one can simply take a set of representative
values for M and calculate T low for each M. Armed with the
knowledge of how long the execution time is likely to be for
a variable M, it is easy to estimate whether a speed-up is
possible in the first place, and, if so, how much extra cost
would be necessary to achieve it. Furthermore, since we target
iterative applications, we can estimate the completion times for
an arbitrary number of iterations, which aids in choosing the
right trade-off between cost and precision of results.

3.6.4 Evaluation

Experimental setup

The experiments for this work were performed on the Kinton
testbed of the HPC&A group based at Universitat Jaume I.
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It consists of 8 nodes, all of which are interconnected with
1 Gbps network links and split into two groups: four nodes
feature an Intel Xeon X3430 CPU (4 Cores), HDD local storage
of 500 GB, and 4 GB of RAM. These less powerful nodes
(henceforth called thin) are used for management tasks. The
other four nodes feature two Intel Xeon E5-2630v3 (2 x 8

Cores), HDD local storage of 1 TB, and 64 GB of RAM. These
more powerful nodes (henceforth called fat) are used to host
the VMs.

In order to get as close as possible to a real-life hybrid cloud,
we configure two separate IaaS clouds based on OpenStack
Icehouse and QEMU/KVM 0.12.1 as the hypervisor. One of
the OpenStack deployments acts as the on-premise cloud,
while the other one acts the off-premise cloud. A fully-featured
OpenStack deployment requires two management nodes: one
controller node that manages the compute nodes where the
VMs are hosted and one network node that manages the
cloud networking, which is managed separately due to the
complexity of the networking technologies involved.

More specifically, in a typical configuration based on neutron
(the standard OpenStack network management service), there
are three conceptually separated communication domains:
the management network (i.e., used for control messages
and administrative traffic), the internal network (i.e., traffic
between the VM instances using private IP addresses) and
the external network (i.e., traffic between the VM instances
and the outside of the cloud). In this configuration, the VM
instances are configured to directly communicate with each
other via the links of their compute node hosts. However,
all communication with the outside of the cloud is routed
through the network node, which is equipped with three NICs,
each dedicated to a communication domain. Thus, in a real-life
hybrid cloud setup that involves two OpenStack deployments,
any communication between on-premise and off-premise VMs
will pass through the network nodes, which become the weak
link (i.e., total aggregated throughput between all on-premise
and off-premise VMs is 1 Gbps).

For our experiments, we created a new VM flavor: i2.xlarge.
This flavor features 4 VCPUs, HDD local storage of 100 GB and
16 GB of RAM. Thus, each compute node has the capacity to
host 4 VMs simultaneously. Since two VMs that are co-located on
the same compute node can communicate at much higher rate
that two VMs that are hosted on different compute nodes, we



3.6 iterative map reduce over the hybrid cloud 115

Figure 3.17: Hybrid IaaS OpenStack cloud example: one fat node on-
premise and two fat nodes off-premise

limit the network capacity of this flavor to 1 Gbps to obtain a
close-to-uniform environment where all VMs can communicate
with each other at the same rate, regardless where they are
located. This setup is illustrated in Figure 3.17, using one
fat on-premise node and two fat off-premise nodes. On the
on-premise part we provision 4 VMs in which Hadoop version
2.6.0 was deployed. One of these VMs is used as Hadoop master
and the others as Hadoop slaves. Specifically, each Hadoop
slave is configured both as a HDFS DataNode and as a YARN
slave, with enough capacity to run 4 mappers and reducers
simultaneously. On the off-premise part, we provision 4 VMs
on each fat node, with a variable number of fat nodes ranging
from one to three. In order to extend the Hadoop deployment
over the off-premise VMs, we start the relevant services (i.e.,
HDFS DataNodes and YARN runtime) on the off-premise VMs.
These services will report to the master, which integrates them
into the Hadoop deployment. Rack-awareness is achieved
by creating two groups corresponding to the on-premise an
off-premise VMs and assigning each HDFS DataNode to the
appropriate group.

Overview

We run extensive experiments with two real-life MapReduce
iterative applications, described in greater detail in Chapter
3.6.2. Both applications exhibit a reduction phase that involves
a negligible amount of data compared with the map phase,
which is a frequent real-life scenario that emphasizes the
map phase. The goal of these experiments is two-fold: (1) to



116 autonomic management in multiple clouds

demonstrate the feasibility of our re-balancing proposal; (2) to
validate the hybrid performance prediction model introduced
in Chapter 3.6.3. against the results observed in real life.

First, we run a series of I/O intensive benchmarks that
correspond to the micro-calibration mentioned in Chapter
3.6.3. To this end, we rely on the TestDFSIO microbenchmark,
which is a standard Hadoop tool that measures the HDFS read
and write throughput under concurrency.

Second, we run a series of experiments that study the strong
scalability of the application on a single OpenStack cloud. Since
there is no weak link in this setup, these experiments reveal the
maximum theoretical potential for speed-up in a hybrid setup.
We refer to this series of experiments as Baseline. Then, we
run the same experiments in a hybrid setup, where we fix the
number of on-premise VMs and vary the number of off-premise
VMs. We refer to these experiments as Hybrid-real. We discuss
these results in comparison with Baseline to address goal (1).
Forth, based on the results from Baseline experiments and the
micro-calibration, we extract the relevant application metrics
and compute the hybrid rebalancing factors to estimate T lowM
and TupM using the equations described in Chapter 3.6.3. Since
the reduce phase is negligible compared with the map phase,
T low ≈ T lowM and Tup ≈ TupM . We then discuss these results in
relationship with Hybrid-real to address goal (2).

Micro-calibration

In this chapter we illustrate how to perform the micro-
calibration. To demonstrate how to reuse the results of the
micro-benchmarking for multiple applications, we fix the
application input data at 20 GB and the HDFS chunk size
(corresponding to the size of data per mapper DM ) at 64 MB,
which means a total of 300 map tasks (pM) are needed.

First, the data is generated by running TestDFSIO in
write mode in an HDFS deployment spanning 3 on-premise
VM instances. After the initial data was written, the HDFS
deployment is extended by a variable number of additional
off-premise VM instances. Then, the hybrid rebalancing is
started at the same time with another TestDFSIO that runs
this time in read mode. While the experiment is running,
we monitor the amount of data that accumulates off-premise
during the rebalancing. We record both this progress and the
metrics reported by TestDFSIO, which is run repeatedly in an
iterative fashion until the rebalancing is complete.
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Figure 3.18: TestDFIO micro-calibration: rebalance progress for 20

GB total data.

The results of the rebalancing progress are depicted in
Figure 3.18. As can be observed, the off-premise HDFS data
accumulates steadily in all configurations. Furthermore, there
is little difference between the various hybrid configurations,
which enables an estimation of BM(t) (introduced in Chapter
3.6.4) even when micro-benchmarking results are not available
for a particular configuration.

The average completion time per concurrent read iteration
for TestDFSIO is illustrated in Table 3.6. By convention,
we denote a configuration with N on-premise VMs and M
off-premise VMs as N-on-M-off. 3-on-0-off is the baseline
for which no re-balancing is present. Both the baseline and
the hybrid TestDFSIO experiments are repeated 10 times.
These results are then used to calculate α, included in
the table. As can be observed, the re-balancing introduces
significant background overhead that reduces the concurrent
read throughput and lowers the overall completion time per
iteration by up to 75%. Also, interesting to observe is that
α remains very close for all hybrid configuration except
3-on-12-off. Thus, the previous observation about a rough
estimation being possible even when no micro-benchmarks are
available for a particular configuration holds for α too.
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Configuration Time / iteration α

3-on-0-off 276s N/A

3-on-3-off 472s 1.70

3-on-6-off 471s 1.70

3-on-9-off 485s 1.75

3-on-12-off 416s 1.5
Table 3.6: TestDFSIO Agerage completion time per iteration

KMeans

Our next series of experiments focus on K-Means [116],
a widely used application in a multitude of contexts:
vector quantization in signal processing, cluster analysis in
data mining, pattern classification and feature extraction
for machine learning, etc. K-Means partitions a set of
multidimensional vectors into k sets, such that the sum of
squares of distances between all vectors from the same set
and their mean is minimized. This is typically done by using
iterative refinement: at each step the new means are calculated
based on the results from the previous iteration, until they
remain unchanged (with respect to a small epsilon). K-Means
was shown to be efficiently parallelizable and scales well using
MapReduce [117], which makes it a popular tool to analyze
large quantities of data at large scale.

For the purpose of this work, we use the MapReduce
K-Means implementation that is part of the Mahout 0.10

collection of machine learning algorithms. This implementation
generates only a minimal amount of intermediate data at each
iteration (i.e., the mean for each of the k sets), however it
typically analyses a large amount of input data that remains
unchanged between the iterations. Thus, it is classified as a
map-intensive job. We generate 20 GB worth of input that is
processed in 10 iterations. The data is generated using the data
generator included in Mahout and is uploaded to HDFS before
starting each experiment. For comparison, the shuffle data for
each iteration is in the order of several MB, which is why we
can consider the reduction phase negligible (i.e., T low ≈ T lowM
and Tup ≈ TupM ).
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Figure 3.19: K-Means of a 20GB dataset. Strong scalability: predicted
vs. real total completion time for 10 iterations for a single
cloud and a hybrid cloud setup. The measured comple-
tion time observed on the single cloud is the Baseline.
Lower is better.

Figure 3.20: K-Means of a 20GB dataset. Iteration analysis: comple-
tion time per iteration for an increasing number of off-
premise VM instances. Lower is better.
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First, we run the Baseline experiment by deploying a
single OpenStack cloud where we vary the number of VMs
allocated to the Hadoop deployment. As can be observed
in Figure 3.19, with an increasing size of the Hadoop
deployment, K-Means experiences a steady drop in the
total completion time, confirming its potential to achieve
strong scalability. Furthermore, applying the performance
model for on-premise jobs introduced in Chapter 3.6.3
reveals a good estimation of the total completion time: the
Baseline stays within the lower (Single-prediction-low) and
upper (Single-prediction-up prediction bounds at all times.
Furthermore, there is almost a perfect overlap between
Single-prediction-up and Baseline, while Single-prediction-low
provides an over-optimistic estimation that deviates by at most
20%.

Next, we run the Hybrid-real experiment, where we deploy
a hybrid setup consisting of 3 on-premise VMs and a variable
number of off-premise VMs (X axis depicts total number of
VMs). Initially, Hadoop is deployed only on the on-premise VMs
and is extended as described in the Chapter 3.6.4, with the
asynchronous rebalancing and the application being started
simultaneously. The total completion time can be observed in
Figure 3.19. Interesting to note is the drop in completion time
with increasing number of off-premise VMs. As expected, the
rebalancing overhead in the hybrid case has a negative impact
on the strong scalability when compared with Baseline (up
to of 40% increase in execution time), however the scalability
trend is clearly visible, confirming the viability of adopting our
proposal to extend iterative MapReduce jobs using additional
VMs leased from an off-premise cloud. Furthermore, by using
the relevant application metrics extracted from the Baseline
experiments (i.e., AM, λ) and the micro-calibration results
from Chapter 3.6.4 in the equations described in Chapter
3.6.3, we obtain the lower (Hybrid-prediction-low) and upper
(Hybrid-prediction-up) total estimated hybrid completion time.
As can be observed, we can see again a good prediction: the
real result stays within the lower and upper bound, while the
error is at most 8% for the lower bound and 4% for the upper
bound.

To understand these results better, we zoom in Figure 3.20 on
the completion time per iteration. We use the same N-on-M-off
notation for each configuration as explained in Chapter 3.6.4.
As expected, for the 3-on-0-off case, the completion time per
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iteration remains constant. However, in the 3-on-M-off cases,
a large gap between the first and the rest of the iterations
is visible. This is explained by the fact that the re-balancing
finishes during the first iteration, such that beginning with the
second iteration, the data locality can be fully exploited. Since
the invariant input data is reused at each iteration, most of
the increase in the total completion time is due to the first
iteration. Thus, if more than 10 iterations are needed, this
initial overhead will be better amortized.

Iterative Grep

The second application we evaluate is iterative grep, which is
a popular analytics tool for large unstructured text. Iterative
grep consists of a set of independent grep jobs that find all
string matches of a given regular expression and sorts them
according to the number of matches. The iterative nature is
exhibited in the fact that the input data remains the same, but
the regular expression changes as a refinement of the previous
iteration. For example, one may want to count how many
times a certain concept is present in the Wikipedia articles, and,
depending on the result, prepare the next regular expression
in order to find correlations with another concept. Since the
regular expression is typically an exact pattern, the output of
the mappers is very simple and consists of a small number
of key-value pairs that are reduced to a single key-value
pair. Thus, it can be classified as a typical map-intensive
MapReduce job.

For the purpose of this work, we use the standard grep
implementation that comes with the Hadoop distribution. We
use 20 GB worth of Wikipedia articles as input data and 10

keywords to run 10 iterations over this input data, which is
uploaded to HDFS before each experiment. The shuffle data
for each iteration is less than one MB, which is why we can
consider the reduction phase negligible (i.e., T low ≈ T lowM and
Tup ≈ TupM ).

As can be observed in Figure 3.21, for the Baseline
experiment (measured total completion time for a single
cloud), there is again evidence of strong scalability. This is
understandable, since grep is almost embarrassingly parallel.
However, there is a slight degradation of scalability for an
increasing number of VMs, due to the increasing overhead
of parallelization. Applying the performance model for
on-premise jobs (Chapter 3.6.4), we observe the following
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Figure 3.21: IGrep of a 20GB dataset. Strong scalability: predicted vs.
real total completion time for 10 iterations for a single
cloud and a hybrid cloud setup. The measured comple-
tion time observed on the single cloud is the Baseline.
Lower is better.

Figure 3.22: IGrep of a 20GB dataset. Iteration analysis: comple-
tion time per iteration for an increasing number of off-
premise VM instances. Lower is better.
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estimations for the total completion time: the lower bound
(Single-prediction-low) under-estimates by up to 24% and the
upper bound over-estimates by up to 15%, which places the
measured total completion time within the lower and upper
bound.

For the Hybrid-real experiment, we deploy a hybrid setup
that keeps 3 on-premise VMs and adds a variable number of
off-premise VMs. The total completion time can be observed
in Figure 3.21 (total number of VMs on X axis). Again, we
observe a drop in completion time with increasing number
of off-premise VMs, which confirms the viability of adopting
our re-balancing proposal. Furthermore, the lower (Hybrid-
prediction-low) and upper (Hybrid-prediction-up) estimated
hybrid completion time keep the measured result within their
limits up until 6 off-premise VMs. However, when increasing
the number of off-premise VMs beyond 6, both the lower and
upper bound under-estimate the measured completion time:
by up to 25% and 12% respectively.

These results are better understood by analyzing the per
iteration completion times, which are depicted in Figure 3.22.
Surprisingly, for the 3-on-0-off case, the completion time per
iteration remains constant only after a few iterations, which
hints at possible OS caching effects for the input data read
from HDFS at each iteration. In the hybrid configurations, it
can be observed that the rebalancing does not finish during the
first iteration for the case when a large number of off-premise
VMs is used (i.e. 9 and 12). This increased complexity may
explain why the hybrid estimations exhibit larger errors than
in the case of K-Means. In fact, when compared with the
single cloud estimations, it can be observed that the errors are
similar in magnitude, which hints that the hybrid aspect was
accurately factored into the estimation.

3.6.5 Discussion

This work contributed to the autonomic management of VMs
over hybrid clouds with a novel proposal that addresses
this challenge for iterative MapReduce applications. It
transparently manages data movements asynchronously in an
efficient fashion without invasive changes to the MapReduce
framework or the underlying storage layer. At the same time,
it is able to predict the runtime of the application for a variety
of hybrid configurations, by combining analytical modeling
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with micro-calibration. The results using two real-life iterative
MapReduce applications show excellent hybrid scalability
potential that follows a similar trend as the single-site
scalability except for an initial overhead during the first few
iterations, whose impact on the overall execution time is
diminished with increasing number of iterations.

Furthermore, our prediction of the execution time for a
hybrid setup matches the accuracy of the techniques used in
single-site setups, with maximum upper/lower bound errors
of 4%/8% and, respectively, 12%/25%.

Encouraged by these results, we plan to broaden the scope
of our work in future efforts. In particular, we focused
on map-intensive applications where the reduce phase is
negligible in comparison. Thus, one interesting direction
is to complement the current work with an analysis of
reduce-intensive jobs in a hybrid setup: study of the weak
link and interferences with the rebalancing, refined prediction
equations, etc.

3.7 conclusions and future work
In this chapter we highlighted the numerous kinds of cloud
interoperability scenarios and we particularly focused on the
hybrid environment as a promising mechanism to leverage
both on-premise private and off-premise public clouds.

Hybrid cloud opens an entire new horizon in the big data
analytics landscape, effectively enabling on-premise resource
owners to extend complex workloads beyond the capacity of
their infrastructure by leasing off-premise resources. However,
the need to transfer large data sizes from the IC toward
off-premise through a higher latency medium poses a difficult
challenge to the ability to exploit data locality efficiently.

In this scenario, the infrastructure management must be
combined with a sapient application-level strategy to transfer
off-premise the minimum amount of data that enable a
consistent off-premise computation without saturating the
limited inter-cloud bandwidth.

This work particularly focused on MapReduce applications
and contributed to the autonomic hybrid infrastructure
management in this field by proposing a layered framework
architecture to enable the dynamic provisioning and
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configuration of off-premise VMs that extend the capacity of
the private cloud.

We also proposed two different policies (SPAN and HyMR)
to enable the execution of a classical MapReduce job when
on-premise physical machines are in a stressed condition
and a solution to boost iterative MapReduce leveraging the
off-premise resources.

The proposed layered architecture needs to be extended and
adapted to OCCI standards [105], in order to further improve
the system interoperability with other cloud platforms.

As the map phase generally has a simpler and more
standardizable execution schema when compared to the
reduce phase – thanks to the possibility to leverage more the
data locality –, several works in this field focus on the analysis
and performance prediction of the mappers. Nevertheless, the
state of the art would benefit from studying of the reduce
phase in a hybrid setup. Therefore, the prediction model in
Chapter 3.6 needs to be extended/refined to evaluate the
performance of reduce-intensive jobs when some of the data
are transferred through a limited bandwidth.

Finally, considering a classic MapReduce computation over
hybrid cloud, the management policies depicted in Chapters
3.4 and 3.5 would benefit from the definition of a more
complex strategy to anticipate the identification of a stressing
condition going to occur on the physical nodes. For this reason,
in the next chapter, we overlook the information about the
current utilization level of physical machine resources (coming
for the monitoring component of our management system)
and focus on what can be inferred by analyzing the runtime
behavior of the application.





4 M O N I TO R I N G T H E
A R C H I T E C T U R E W I T H
P R O C E S S M I N I N GDistributed architectures, such as MapReduce, are providing

technical answers to the challenge of big data analytics.
Especially when coupled with a cloud infrastructure, these
solutions can be enriched of additional features, such as
the dynamic provisioning of computational nodes – e.g., to
ensure that processing tasks are performed within a temporal
deadline or to deal with data peaks. As deepen in the previous
chapters, good results can be achieved at infrastructure level
by monitoring the resource utilization and spawning new VMs
– eventually on an off-premise public cloud – to boost the
execution.

Nevertheless, the factors that can slow down a MapReduce
computation are not only related to the limited amount of
resources available but they can also be connected with the
specificities of the infrastructure configuration or processed
data itself. For example, the time to execute a MapReduce
job on the same volume of data can vary depending on the
percentage of data local computation obtainable, the quality
of the link between the computing nodes, the content of the
processed data itself, etc.

For this reason, the autonomic management of a (hybrid)
cloud infrastructure can also benefit from the implementation
of advanced monitoring systems taking into account not only
the physical resource utilization, but also domain specific
information derived by the application level computation.

The applicative software running over the cloud is an
example of system that must comply to a set of contract terms
and functional and non-functional requirements specified by a
SLA. The complexity of the resulting overall system, as well as
the dynamism and flexibility of the involved processes, often
require an on-line operational support checking compliance.
Such monitor should detect when the overall system deviates
from the expected behavior, and raise an alert notification
immediately, possibly suggesting/executing specific recovery
actions. This run-time monitoring/verification aspect – i.e. the
capability of determining during the execution if the system
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exhibits some particular behavior, possibly compliance with
the process model we have in mind – is still matter of an
intense research effort in the emergent Process Mining [118]
area. As pointed out by Van Der Aalst et al. in [118], applying
Process Mining techniques in such an online setting creates
additional challenges in terms of computing power and data
quality.

Starting point for Process Mining is an event log. We assume
that in the architecture going to be analyzed it is possible to
sequentially record events. Each event refers to an activity (i.e.,
a well-defined step in some process/task) and it is related to a
particular process instance. Note that, in case of a distributed
computation, we also need extra information such as, for
instance, the resource/node executing, initiating and finishing
the process/task, the timestamp of the event, or other data
elements.

While, in an cloud architecture, several tools exists for
performing a generic, low-level monitoring task [110, 119],
we advocate also the use of an application/process oriented
monitoring tool in the context of Process Mining in order
to run-time check the conformance of the overall system.
Essentially, the goal of the work presented in this chapter
is to apply the well-known Process Mining techniques to
the monitoring of complex distributed applications, such as
MapReduce in a cloud environment.

As suggested by the previous chapters, if we assume that the
performance of the overall computing infrastructure is stable
and a minimum QoS is guaranteed, MapReduce parallelization
model makes relatively simple to estimate a job execution
time by on-line checking the execution time of each task in
which the application has been split. This estimation can be
compared to the deadline and used to predict the need for
scaling the architecture [79, 88, 100].

Nevertheless, the initial assumptions may be not always
satisfied and the execution time may differ from what expected
depending on either architectural factors (e.g., the variability in
the performance of the machines involved in the computation
or the fluctuation of the bandwidth between the nodes), or
domain-specific factors (e.g., a task is slowed down due to the
input data content or location). This unpredictable behavior
could be run-time corrected if the execution relays on an
elastic set of computational resources as that provided by
cloud computing systems.
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In this chapter, we focus on the step of monitoring
MapReduce applications, to detect situations where additional
resources are needed to meet the deadlines. To this end, we
exploit some techniques and tools developed in the research
field of Business Process Management [120]: in particular, we
focus on declarative languages and tools for monitoring the
execution of business processes. Inside SHYAM framework, we
introduce a logic-based monitor able to detect possible delays,
and trigger recovery actions such as the dynamic provisioning
of further resources.

Since MapReduce applications typically operate in dynamic,
complex and interconnected environments demanding high
flexibility, a detailed and complete description of their behavior
seems to be very difficult, while the elicitation of the (minimal)
set of behavioral constraints/properties that must be respected
to correctly execute the process, and that cannot be directly
incorporated at design time into the system can be more
realistic and useful.

Therefore, in this context, we will adopt the Event Calculus
[121], logic-based formalism for representing actions and their
effects, in particular we relay on a verification framework
based on constraints, called Mobucon EC (Monitoring
business constraints with Event Calculus [122]), able to
dynamically monitor streams of events characterizing the
process executions (i.e., running cases) and check whether
the constraints of interest are currently satisfied or not.
Mobucon is an extension of the constraint-based Declare
language [123] and is data aware. It allows us to specify
properties of the system to be monitored using a logic-based
syntax involving time constraints and task data. The Event
Calculus formalization has been proven a successful choice for
dealing with runtime verification and monitoring, thanks to its
high expressiveness and the existence of reactive, incremental
reasoners [122].

This chapter presents an on-line monitoring system to check
the compliance of each node of a distributed infrastructure
for data processing running on a cloud environment. The
resulting information is used for taking scaling decisions
and dynamically recovering from critical situations with a
best effort approach by means of an underlying previously
implemented infrastructure layer. This could be considered
as a first step towards a MapReduce engine with autonomic
features either in run-time detecting undesired task behaviors,
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or in handling such events with dynamic provisioning of
computational resources in an hybrid cloud scenario.

Chapter 4.1 provides a first introduction to the Event
Calculus formalization and Mobucon framework. Later, in
Chapter 4.2, we describe the implemented architecture in
detail, while in Chapter 4.3, we focus on the data-intensive
use case scenario and we provide a first evaluation of the
performance of our contribution. Chapter 4.4 summarize the
novelties introduced by our approach and suggests future
related work. The content of this chapter is also presented in
the work [124].

4.1 positioning our contribution
As regards the use of Event Calculus for verification and
monitoring, several examples can be found in litterature in
different application domains but we are not aware of any
work applying it to the monitoring of MapReduce jobs in a
cloud environment. Event Calculus has been used in various
fields to verify the compliance of a system to user-defined
behavioral properties. For example, [125], [126] exploit ad-hoc
event processing algorithms to manipulate events and fluents,
written in JAVA. Differently from Mobucon , they do not have
an underlying formal basis, and they cannot take advantage
of the expressiveness and computational power of logic
programming.

Several authors – [127], [128] – have investigated the use of
temporal logics – Linear Temporal Logic (LTL) in particular – as
a declarative language for specifying properties to be verified
at runtime. Nevertheless, these approaches lack the support
of quantitative time constraints, non-atomic activities with
identifier-based correlation, and data-aware conditions. These
characteristics – supported by Mobucon – are instead very
important in our application domain.

Our approach takes inspiration from the work by Mattess et
al. [88], which presents an online provisioning policy to meet a
deadline for the Map phase. In order to check the compliance
of the application, [88] takes into account the execution time
of each map tasks but, differently from our approach, the
deadline compliance prediction for the Map phase is computed
with a traditional approach to monitoring, which introduces
complexity in the implementation and tuning, whereas our
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solution can benefit from a simple enunciation of the system
properties relaying on the declarative approach offered by
Mobucon .

4.2 mapreduce auto-scaling engine
We relay on HyIaaS system presented in Chapter 3.3 to develop
MapReduce Auto-scaling Engine, an application-level software
component to online detect user-defined critical situations
in a MapReduce environment. The resulting framework
architecture autonomously react by providing or removing
resources according to high-level rules definable in declarative
language.

consists of three main subcomponents (grey blocks in Figure
4.1): the Monitoring, Recovery and Platform Interface. These
elements interacts with the MapReduce platform to detect and
react to anomalous sequences of events in the execution flow.

The Monitoring component takes as input a high-level
specification of the system properties describing the expected
behavior of a MapReduce workflow and the on-line sequence
of events from the MapReduce platform’s log. Given these
input data, the Monitoring component is able to rise alerts
whenever the execution flow violates user-defined constraints.
The alarms are evaluated by the Recovery component in
order to estimate how many computational nodes must be
provisioned (or de-provisioned) to face the critical condition
according to user-defined rules taken as input.

Finally, the Platform Interface is in charge of translating
the requests for new MapReduce nodes into VM provisioning
requests to the infrastructure manager. The Platform Interface
is also responsible for the installation of MapReduce-specific
software on the newly provided VMs. The output of this
subcomponent is a new configuration of the computing cluster
with a different number of working nodes.

As shown in Figure 4.1, MapReduce Auto-scaling Engine
relays HyIaaS component presented in Chapter 3.3 for the
provisioning of VMs [113]. This layer encapsulates the cloud
functionality and interacts with different infrastructures to
realize a hybrid cloud: if the resources of the company-owned
cloud are no longer enough, HyIaaS redirects the scale-up
request to an off-premise public cloud. Therefore, thanks to
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Figure 4.1: Framework architecture of MapReduce Auto-scaling En-
gine

HyIaaS, the resulting cluster for MapReduce computation can
be composed by VMs physically deployed on different clouds.

The hybrid nature of the resulting cluster is often very
useful (especially if the on-premise cloud has limited capacity)
but can also further exacerbate the problem of MapReduce
performance prediction. If part of the computing nodes is
available through a higher latency, the execution time can be
substantially afflicted by the allocation of the tasks and the
amount of information they trade with each other. Despite the
complexity of the scenario, we want the monitoring system
to offer a simple interface for the elicitation of the properties
to be respected. Nonetheless, it should be able to rapidly
identify critical situations. To this end, we apply the Mobucon

framework to the monitoring component and benefit from the
application of well-known Process Mining techniques to our
environment.

4.2.1 Monitoring the system execution w.r.t.
declarative constraints

Monitoring complex processes such as MapReduce approaches
in dynamic and hybrid clouds has two fundamental
requirements: on one hand, there is the need of a language
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expressive enough to capture the complexity of the process
and to express the key properties that should be monitored.
Of course, for practical applications, such language should
come already equipped with sound algorithms and reasoning
tools. On the other hand, any monitor must produce results
in a timely fashion, being the analysis carried out on the fly,
typically during the system execution.

Declarative languages are one of the solutions proposed in
the field of Business Process Management to answer the above
requirements. In particular, they have been adopted to model
business rules and loosely-structured processes, mediating
between support and flexibility.

Among the many proposals, we focused on the Declare
language [123], a graphical, declarative language for the
specification of activities and constraints. The Declare
language has been extended with temporal deadlines and
data-aware constructs in [122, 129], where also the Mobucon

tool has been presented, together with some figures about its
performances in a run-time context.

Declare is a graphical language focused on activities
(representing atomic units of work), and constraints, which
model expectations about the (non) execution of activities.
Constraints range from classical sequence patterns to loose
relations, prohibitions and cardinality constraints. They are
grouped into four families:

• existence constraints, used to constrain the number of
times an activity must/can be executed;
• choice constraints, requiring the execution of some

activities selecting them among a set of available
alternatives;
• relation constraints, expecting the execution of some

activity when some other activity has been executed;
• negation constraints, forbidding the execution of some

activity when some other activity has been executed.

Table 4.1 shows few simple Declare constraints.
The Declare language provides a number of advantages:

being inherently declarative and open, it supports the modeler
in the elicitation of the (minimal) set of behavioral constraints
that must be respected by the process execution. Acceptable
execution courses are not explicitly enumerated, but rather,
they are implicitly defined by the execution traces that comply
with all the constraints. In this sense, Declare is indeed a



134 monitoring the architecture with process mining

Table 4.1: Some Declare constraints

0

a
1..∗

b Absence The target activity a cannot be executed
Existence Activity b must be executed at least once

a •−−−I b
Response Every time the source activity a is exe-
cuted, the target activity b must be executed after
a

a −−−I• b Precedence Every time the source activity b is exe-
cuted, a must have been executed before

a •−−−I‖ b Negation response Every time the source activity
a is executed, b cannot be executed afterwards

notable example of flexibility by design. Moreover, Declare (and
its extensions) supports temporal deadlines and data-aware
constraints, thus making it a powerful modeling tool. The
Mobucon tool fully supports the Declare language; moreover,
being based on a Java implementation of the Event Calculus
formalism [130], it provides a further level of adaptability:
the system modeler can directly exploit the Event Calculus
– as in [131] – or the Java layer underneath for a fully
customizable monitoring. Finally, Mobucon and the extended
Declare support both atomic and non-atomic activities.

4.3 use case scenario
The architecture shown in Figure 4.1 has been implemented
and analyzed using a testbed framework. In particular, a
simulation approach has been adopted to create specific
situations, and to verify the run-time behavior of the whole
architecture. To this end, synthetic data has been generated,
with the aim of stressing the MapReduce implementation.

4.3.1 Testbed architecture and data

As in the works presented in Chapter 3.3, we opted for Apache
Hadoop [59] framework for MapReduce.

Our Hadoop testbed is composed of 4 VMs: 1 master and 3

worker nodes. Each VM has 2 VCPUs, 4GB RAM and 20GB disk.
At the cloud level we use 5 physical machines, each one with
a Intel Core Duo CPU (3.06 GHz), 4GB RAM and 225GB HDD.
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We allocated a VM on each compute node. Since a dual core
machine (without hyperthreading) can concurrently execute at
most two tasks, we assigned two map slot (and two reduce
slots) to each worker. Our MapReduce platform can therefore
execute up to six concurrent tasks. See Chapter 3.2.2 for further
details about Hadoop architecture.

As for the task type, we opted for a word count job,
often used as a benchmark for assessing performances of a
MapReduce implementation. In our scenario, we prepared a
collection of 20 input files of 5MB each. Consequently, Hadoop
MapReduce Runtime launches 20 mappers to analyze the
input data. In this testbed we would like to complete the map
phase in 20 minutes, so every map task should not exceed one
minute execution.

According to the default Hadoop configuration, the output
of all these mappers is analyzed by a single reducer.

In order to emulate the critical condition of some tasks
showing an anomalous behavior, we artificially modified 8

input files, so has to simulate a dramatic increase of the time
required to complete the task. The mappers analyzing these
blocks resulted to be 6 times slower than the normal ones.

4.3.2 Properties to be monitored

In this work we mainly focus on time-constrained data insight:
the aim is to identify as soon as possible the critical situation of
the MapReduce execution going to complete after a predefined
deadline. Practically speaking, this correspond to situations
where the total execution time of the MapReduce is expected
to stay within some (business-related) deadline: e.g., banks
and financial bodies require to perform analyses of financial
transactions during night hours, and to provide outcomes at
the next work shift.

The Mobucon framework already provides a model of
activities execution, where a number of properties to be
monitored are already directly supported. In particular, a
support for non-atomic activities execution is proposed within
the Mobucon framework, where for each start of execution
of a specific ID, a subsequent end of execution (with same
ID) is expected. This feature has been particularly useful
during the verification of our testbed, to identify a number
of exceptions and worker faults due to problems and issues
not directly related to the MapReduce approach. For example,
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Map start
(0..60)
•−−−−−I Map end

Figure 4.2: Declare Response constraint, with a metric temporal
deadline

during our experiments we ignored fault events generated by
power shortages of some of the PC composing the cloud. The
out-of-the-box support offered by Mobucon was exploited to
identify these situations and rule them out.

To detect problematic mappers, we decided to monitor a
very simple Declare property between the start and the end
of the elaboration of each mapper. Declare augmented with
metric temporal deadlines as in [122] was exploited to this end,
and the constraint shown in Figure 4.2 illustrates the Response
constraint we specified in Mobucon. It simply states that after
an event Map start, a corresponding event Map end should be
observed, within zero and 60 seconds 1.

Notice that Mobucon correlates different events on the basis
of the case: i.e., it requires that every observed event belongs
to a specific case, identified by a single case ID. To fulfill
such requirement, we fed the Mobucon monitor with the
events logged by the Hadoop stack, and exploited the Map
identifier (assigned by Hadoop to each mapper) as a case ID.
This automatically ensures that each Map start event is indeed
matched with the corresponding Map end event.

The constraint shown in Figure 4.2 allows us to detect
mappers that are taking too much time to compute their task.
The deadline set to 60 seconds has been chosen on the basis of
the total completion time we want to respect while analyzing
the simulation data. Naturally, some knowledge about the
application domain is required to properly set such deadline.
Mappers that violate the deadline are those that, unfortunately,
were assigned a long task. This indeed would not be a problem
for a single mapper. However it could become a problem if all
the mappers get stuck on long tasks: having all the mappers
busy on long tasks might undermine the completion of the
whole bunch of data within a certain deadline. Note that, if the
user doesn’t have any knowledge of the volume of data to be
processed – and consequently, the number of map tasks to be
launched is not known a priori –, this methodology allow him

1 Mobucon accepts deadlines at different time units. In this work we opted
for expressing the time unit in terms of seconds, although depending on the
application domain minutes or milliseconds might be better choices.
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to still detect anomalies in the data that can require additional
resources to speed up the computation. For example, the
deadline for each map task can be computed at execution time
by taking into account the average completion time for each
completed mapper.

Besides supporting the monitoring of Declare constraints,
Mobucon supports also the definition of user-specific
properties. We exploited this feature and expressed a further
property by means of the Event Calculus language. The
property, that we named long_execution_maps, aims to capture
all the mappers that have already violated the deadline, and
that are still active (i.e., a start event has been seen fo that
mapper, and no end event has yet been observed). Such
definition is given in terms of an Event Calculus axiom:

initiates(

deadline_expired(A, ID),
status(i(ID, long_execution_maps), too_long),
T

) ←
holds_at(status(i(ID,waiting_task),pend), T),
holds_at(status(i(ID,A),active), T).

We do not provide here all the details about the axiom (the
interested reader can refer to [130] for an introduction to Event
Calculus). Intuitively, the axiom specifies that at any time
instant T , the happening of the event deadline_expired(A, ID)

initiates the property long_execution_maps with value
too_long for the mapper ID, if that mapper was still active
and there was a constraint waiting_task still not fulfilled. The
waiting_task constraint is indeed the response constraint we
discussed in Figure 4.2.

With the long_execution_maps property we can determine
within the Mobucon monitor which are the mappers that got
stuck on some task. However, to establish if a problem occur
to the overall system, we should aggregate this information,
and consider for each time instant how many mappers are stuck
w.r.t. the total number of available mappers. Exploiting the
Mobucon feature of supporting also a healthiness function, we
provided the following function:

System health = 1−
#long_execution_maps
#total_maps_available

(4.1)
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In other words, the system health is expressed as the fraction
of mappers that are not busy with a long task, over the total
number of launched mappers. The lower the value, the higher
the risk that the overall Hadoop framework gets stuck and
violates some business deadline.

In order to make the health function more responsive, we
can define a window of map task to be considered in the
computation of system health.

4.3.3 The output from the Mobucon monitor

In Figure 4.3 we show what happens when we analyze a run
of the Hadoop architecture described in Chapter 4.3.1, with
respect to the properties discussed in Chapter 4.3.2.

Figure 4.3 is composed of four strips, representing the
evolution of different properties during the execution. From top
to bottom of the figure we have: the health function, graphical
representation of the Declare constraint, long_execution_maps
property and description of the events occurred in each time
interval. In the latter in particular (bottom part of Figure 4.3)
the observer events has starting labels ts or tc to represent the
start and the completion of a task, respectively. There are also
a number of events starting with the label time: these events
represent the ticking of a reference clock, used by Mobucon to
establish when deadlines are expired.

The health function on top of Figure 4.3 is the one
defined in Eq. 4.1: indeed, the system healthiness dramatically
decreased when six over seven of the first mappers launched
in our testbed got stuck in a long execution task. The
long_execution_maps strip (third strip from the top in Figure
4.3) further clarifies the intervals during which the long map
tasks exceed their time deadline.

Finally, the Declare response constraint strip (second strip
from the top in Figure 4.3) shows the status of each mapper:
when the mapper is executing, the status is named pending
and it is indicated with a yellow bar. As soon as there is
information about the violation of a deadline (because of a tick
event from the reference clock), the horizontal bar representing
the status switched from pending to violated, and the color is
changed from bright yellow to red. Notice that once violated
(red color), the response constraint remains as such: indeed,
this is a consequence of the Declare semantics where no
compensation mechanisms are considered.
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Figure 4.3: The output of the Mobucon monitor for the execution of
word count job on the given testbed.

For reasons of space, we provide in Figure 4.4 the evolution
of our test (subsequent to what shown in Figure 4.3). As
expected, the total number of mapper violating the deadline
constraint is 8, as we provided 8 modified files in the input
dataset. Mobucon is therefore able to suddenly and efficiently
identify any anomaly in the Hadoop execution (according to
simple user-defined constraints).

The health function values in the output of Mobucon

monitor can be used to determine when a recovery action
is needed. The intervention can be dynamically triggered by
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a simple threshold mechanism over the health function or
by a more complex user-defined policy (e.g., implementing
an hysteresis cycle), possibly specified with a declarative
approach.

Figure 4.4: Output of the Mobucon monitor subsequent to Figure
4.3.

Once the number of additional Hadoop workers needed is
determined, MapReduce Auto-scaling Engine relays on HyIaaS



4.4 conclusions and future work 141

for the provisioning of VMs over a single public cloud or
federated hybrid environment.

4.4 conclusions and future work
In this chapter, we presented a framework architecture that
encapsulates an application level platform for data-processing.
The system lends the MapReduce infrastructure the ability to
autonomously check the execution, detecting bottlenecks and
constraint violations through Business Process Management
techniques with a best effort approach.

Focusing on activities and constraints, the use of Declare
language has shown significant advantages in the monitoring
system implementation and customization.

Although this work represents just a first step towards an
auto-scaling engine for MapReduce, its declarative approach to
the monitoring issue shows promising results, both regarding
the reactivity to critical conditions and the simplification in
monitoring constraint definition.

For the future, we plan to employ the defined framework
architecture to test various diagnosis and recovery policies and
verify the efficacy of the overall auto-scaling engine in a wider
scenario (i.e., with a higher number of MapReduce workers
involved).

Finally, particular attention must be given to the hybrid
cloud scenario, where the HyIaaS component is employed
to transparently perform VM provisioning either on an
on-premise internal or an off-premise public cloud. In case of a
hybrid deploy, several additional constraints can be taken into
account by expressing them through declarative constraints.
For example, the case of the limited inter-cloud bandwidth
slowing-down the computation can be easily detected by
the declarative monitoring engine that processes Hadoop
logs thus on-line identifying the incidence of non-data-local
computations.

While the monitoring policy implemented in this work is
rather simple and can calculated on-the-fly during MapReduce
job execution, we expect the introduction of additional
constraints to further increase the computational complexity
of the resulting monitoring and recovery policies. Therefore,
an accurate study of the performance of our approach will be
necessary. Nevertheless, we believe that a declarative approach
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to the problem can contribute to significantly simplify the
the work of the system administrator as he implements the
monitoring policy by simply enunciating the set of properties
the system must be compliant to.



5 C O N C L U S I O N S A N D
F U T U R E D I R E C T I O N S

A lot of effort – in the academic as well as industrial
research field – is concentrated on the autonomic management
of virtual infrastructures and further encouraged by the rising
need for enabling data-intensive applications leveraging a
multiple-cloud environment.

5.1 summary
In this dissertation, we have presented our work on policies
and mechanisms to enable the autonomic management of
virtual infrastructures in cloud environments.

We initially focused on the single-cloud scenario, were
the need for VM management is mostly determined by
the fulfillment of two contrasting targets: restrain power
waste and avoid performance degradation due to limited
physical resource contention. After introducing the main
works conducted in this filed, we presented our contribution
to autonomic VM management: a decentralized solution for
cloud virtual infrastructure, in which the physical hosts of
the datacenter are able to self-organize and reach a global
VM reallocation plan, according to a specific predefined
goal. The implemented policies show good performance for
various data centers dimensions in terms of both number of
migrations requested and number of messages exchanged in
order to converge to a common reallocation plan. Nevertheless,
although very promising to improve the scalability of a single
cloud scenario, decentralized solutions have shown substantial
shortcomings from the performance point of view when
compared to centralized solutions.

This finding has also influenced our latter research
when dealing with autonomic management in the hybrid
cloud scenario. Aiming to combine the virtual infrastructure
administration strategies of both on- and off-premise cloud,
the developed framework architecture presented in Chapter 3.3

143
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has indeed a centralized nature. In fact, as regards the policy
implementation, the proposed architecture partially distribute
on the cloud compute nodes the monitoring and management
logic duties (by arranging the correspondent components on
each physical node). Nevertheless, we introduced a central
coordination of the migration/spawning decisions, thus to
prevent inconsistent evolutions of the strategy.

In this work, we also focused on the topic of data-intensive
applications and, in particular, on the strategies to enable
MapReduce execution over the hybrid cloud. The challenges
of this field are due to the complexity of both the applicative
scenario and the infrastructure level specificities.

For this reason, we focused on different policies aiming to
autonomously manage the virtual clusters avoiding further
complexity. A declarative approach in particular, has been
employed in Chapter 4 in order to simplify the monitoring
constraint definition for a MapReduce application running on
a virtual infrastructure. The adopted approach has shown
interesting and promising results.

5.2 conclusions
The autonomic management of virtual resources in cloud
datacenters is intrinsically complicated by the scale of the
infrastructure, the variety of resources that need to be
monitored and the contrasting goals (load balancing versus
consolidation) to be pursued.

Decentralized solutions can be a good way to face this
complexity by partitioning the management duties among
different machines of the datacenter. Each node executes
simple operations – according to a predefined policy –
resulting in a complex emergent self-managing behavior of the
infrastructure as a whole. Albeit the scalability and reliability
of the system is improved when compered to centralized
management architectures, our research has highlighted
inevitable performance drawbacks in distributed solutions.

For this reason, when the scenario is further complicated
by the presence of multiple interoperable clouds (such as in
a hybrid cloud scenario), a combination of both centralized
and distributed coordination techniques can represent a good
choice to manage the complexity without compromising the
performance.
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Nevertheless, data-intensive tests conducted on hybrid
infrastructures have highlighted the necessity to enrich
the management system with application level monitoring
information to a priori evaluate the performance improvements
derived from VM migration/spawning decisions. The intricacies
of taking into account both low- and high-level monitoring
informations make essential the introduction of novel
techniques – such as those borrowed from Business Process
Management (BPM) area – to simplify the elicitation of the
constraints to be runtime fulfilled by the system. Our research
has shown that declarative methods can bring substantial
improvements in this regard.

5.3 future research directions
In this dissertation, we have explored several important
research aspects of the autonomic infrastructure management
problem but we have also identified many still open research
questions worth pursuing. In this final chapter, we summarize
the primary directions that, in our opinion, should drive future
research efforts:

• Improve cloud interoperability. The cooperation between
multiple clouds in order to offer an integrated resource
provisioning service raises many more challenges than
cloud computing. Beyond the challenge of enabling the
cooperation through the adoption of common interfaces,
other issues need to be faced. For example, the
publication, discovery and selection of the services and
resources offered by cooperating clouds is complicated
by the scale of the environment, as well as the definition
of a common set of SLAs that can be guaranteed to
the customers by different providers. Another important
challenge in this field is enabling inter-cloud migration,
as it is complicated by the absence of a shared storage and
the necessity to transfer memory, status and storage of
the VMs trough a high latency medium. Furthermore, the
monitoring systems of different clouds must implement
strategies to cooperate in order to enable the autonomic
management of the resulting whole set of resources.
• Enhance decentralized techniques for management. Although

the performance of these strategies are still limited
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when compared to those of centralized architectures, we
believe that the benefits in terms of system scalability
that a decentralized approach can bring to the autonomic
management of a multiple clouds environment, justify
further research in this field – especially if we consider
the vision of an Inter-cloud environment, where each
user can leverage and offer resources to a common
“cloud of clouds”.
• Combine different monitoring/recovery approaches. An inter-

esting research direction in the field of federated/hybrid
cloud computing is the definition of novel strategies for
monitoring in order to combine the current status of the
infrastructure (physical and virtual resource utilization)
with information about the application level computation
taking place (e.g., execution logs, applicative monitors,
etc.). These challenge can be faced leveraging both classic
optimization algorithms and declarative approaches.
Substantially simplifying the definition of the expected
system behavior (instead of focusing of all the possible
error/undesired situations), we believe that declarative
approaches are particularly promising to model both the
monitoring and recovery of multiple-cloud management
systems.
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