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Abstract

The continuous technological progress and the constant growing of information flow

we observe every day brought us an urgent need to find a way to defend our data

from malicious intruders; cryptography is the field of computer science that deals

with security and studies techniques to protect communications from third parties,

but in the recent years there has been a crisis in proving the security of cryptographic

protocols, due to the exponential increase in the complexity of modeling proofs.

In this scenario we study interactions in a typed λ-calculus properly defined to

fit well into the key aspects of a cryptographic proof: interaction, complexity and

probability. This calculus, RSLR, is an extension of Hofmann’s SLR for probabilistic

polynomial time computations and it is perfect to model cryptographic primitives

and adversaries. In particular, we characterize notions of context equivalence and

context metrics, when defined on linear contexts, by way of traces, making proofs

easier. Furthermore we show how to use this techniqe to obtain a proof methodology

for computational indistinguishability, a key notion in modern cryptography; finally

we give some motivating examples of concrete cryptographic schemes.
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Chapter 1

Introduction

Nowadays we live in a world in which we observe a continuous increase of information

flowing around us; indeed today we can find a PC in every house, and there often

happens that all members of the family own their personal laptops; furthermore the

use of smartphones allows us to remain connected to the web everywhere and every

time we want. Technological progress allows us to do lots of activities simply by

connecting to the web; by using our PC or smartphone we can get information, talk

with friends, connect ourself to other servers, make financial transactions, do home

banking and so on.

Unfortunately, such a great abundance of possibilities has negative consequences,

indeed the more we send information through the network, the more we show vulner-

abilities to potential malicious agents. Much of the information that runs through

the web are quite considerable, such as identities, passwords, financial transactions,

positions and so on; a contingent theft of information might have very bad conse-

quences, so the question that rises is: “How can we protect our personal data from

intruders?”. There will always be the possibility to avoid to do these considerable

activities, but that’s not what we are looking for; our purpose is to obtain secure

methods that we can trust, in order to do all our activities safely.
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1.1. CRYPTOGRAPHY: THE INSTRUMENT TO MAKE
COMMUNICATIONS SECURE

1.1 Cryptography: the instrument to make com-

munications secure

Cryptography is the field of computer science which deals with security and studies

techniques to guarantee secure communications in presence of third parties and then,

it is the instrument we use to achieve our purpose. The main goal of cryptography is

to allow a secure communication between two or more participants over an insecure

channel; the security of a communication is defined depending on what we want to

ensure about the information we want to protect: secrecy, integrity, authentication,

non-repudiation, privacy and so on. This goal is achieved by using the so called

cryptographic algorithms and protocols.

Cryptographic algorithms and cryptographic protocols are sequences of instruc-

tions for one or more participants; these instructions have to be performed sequen-

tially, a new step starts if and only if the previous one is concluded and obviously

the instructions of a protocol should not be ambiguous. For example, a protocol

that guarantees the secrecy of a confidential information is usually defined by giving

a triple pGEN,ENC,DECq where GEN,ENC,DEC are cryptographic algorithms such

that:

• GEN is used to generate the keys that will be used by the other two algorithms

to protect information.

• ENC is used to encrypt the confidential information by using the keys generated

by GEN so that they become unaccessible for a potential intruder which is not

in possession of the keys. These kind of algorithms take in input a key (the

encryption key) and a message and return a cyphertext.

• DEC is the algorithm used to decrypt the cyphertext generated by using the

encryption algorithm. These algorithms take in input a cyphertext and a key
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COMMUNICATIONS SECURE

(the decryption key) and return a plaintext.

The algorithms of a protocol, such as GEN,ENC,DEC, are called cryptographic prim-

itives ; if the encryption key is the same as the decryption key we call the algorithm

symmetric, otherwise asymmetric.

The continuous need for security guarantees we were talking about previously led

to a significant increase in the complexity of cryptographic protocols design; but how

can we say that a protocol satisfies the security property we are interested in? How

can we say that a protocol is secure? A common way used long ago was to propose

a new cryptographic scheme to the community and wait for some vulnerabilities to

be found. If someone found a potential attack to the scheme, the same had to be

corrected and reanalyzed; if none was able to find errors in the scheme it could be

developed and certified as secure.

Nowadays such a way of certification can’t be considered trustworthy; indeed,

we have lots of examples of cryptographic protocols which have been broken after

several years (For instance the Chor-Rivest cryptosystem was broken after 10 years).

So, what we really need is a way to analyze the cryptanalysis itself in addition to

the protocol; we need the security proof to be certifiable, we need for each protocol

a mathematical proof that all the possible adversaries are not able to break it.

The analysis of a cryptographic protocol can be done by two different points of

view: formal and computational. The formal point of view, also called the Dolev-

Yao model [20], assumes the perfect security of the primitives which are used in

the protocol, so every primitive is seen as a blackbox which works only if the agent

owns the required information. Messages and keys are seen as atomic elements

that can be combined during the protocol, so the purpose of a formal analysis is to

study the protocol and find all the possible bugs that could advantage a malicious

intruder. The computational way, on the other hand, sees primitives as functions

from bitstrings to bitstrings and also messages and keys are seen as concatenations

or lists of bits; so the analysis of a protocol from the computational point of view
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may result more correct, due to the fact that we don’t impose any condition on the

primitives, but in practice more complex and error prone.

The complexity of the computational analysis makes the study of an entire pro-

tocol really difficult; the cryptographers use to analyze protocols from the formal

point of view, whereas they prefer to use the computational point of view to analyze

primitives. An attempt to bridge the gap between these two different approaches

has been proposed by Abadi and Rogaway in 2000 [2]; their work is a first step

towards a reconciliation of the computational and the formal analysis in which it is

provided a computational justification for a formal treatment of an encryption. The

idea is that, under some assumption on the formal expression and on the primitives

used by an encryption scheme, it is possible to prove that the formal equivalence of

two expressions corresponds to computational indistinguishability and so a formal

proof is computationally sound. The difficulty in using this approach is that the

assumptions needed on the primitives of the encryption scheme are not trivial.

In this thesis we will focus our attention on the computational analysis.

1.2 The structure of security proofs

One of the most used methods to build a security proof from the computational

point of view can be described by four steps:

1. Define the security property we are going to prove.

2. Define a realistic model of a potential adversary.

3. Present the cryptographic protocol we are going to study.

4. Reduce the security property of the protocol to a particular assumption.
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This list of actions lead us to the setting of our proof, indeed our path will be

directed to prove the following statement: “If there exists an adversary which can

break the cryptosystem, then the same adversary is able to break the assumption with

little expedients”.

For example we choose secrecy as the security property we want to obtain from a

cryptographic scheme and we define the adversary as a probabilistic polynomial-time

algorithm (this is the most common definition); then we opt for the RSA protocol

and we try to reduce the secrecy property of the RSA protocol to a particular well-

known assumption, in this case the factorization of a large integers. It is possible to

prove that if there exists a PPT algorithm A that can decrypt a message encrypted

by the RSA protocol then the same algorithm can be used efficiently to build a PPT

algorithm A1 that factorize large integers; but, since we know that factorization is a

hard problem, the consequence is that the algorithm A can’t exists and so the RSA

protocol is secure from the secrecy point of view.

This proof is called by reduction and by this way we can establish that if the

assumption holds we have that the cryptosystem under control is secure, i.e. the

security property is proved. One of the most common ways to prove a security prop-

erty of a scheme by reduction is to use the game-based proof; such demonstrations

are buildt as a sequence of games or experiments G0,G1, ...,Gn. We will discuss

about it in Chapter 2.

In [13] Bellare and Rogaway express a concept clear and free from doubt: “Many

proofs in cryptography have become essentially unverifiable. Our field may be ap-

proaching a crisis of rigor”. As we said previously, with the passing of time, we notice

that cryptographic protocols have become more complex and it often happens that

the security proofs given by hand are error-prone, so we need new instruments to

face this situation. Unfortunately, we assist to a scenario in which the cryptog-

raphers community has not chosen a common path to expand; actually, we could

say that at the moment the cryptographers research is growing horizontally, that is
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proposing always different methods and approaches to this crisis of rigor in proving

cryptoschemes. We will observe some of these approaches, in Chapter 2.

As we said previously, a proof structured as a game sequence is one of the most

used standard to guarantee the security property of cryptographic constructions,

so we decided to remain on this path and to examine in depth the framework of

a game-based proof. A critical point in a game-based proof is the choice of the

calculus used to model the whole system, indeed we are looking for a language that

allows us to describe cryptographic primitives but also to model all the possible and

feasible adversaries that try to break the cryptosystem.

When we deal with cryptography there are three fundamental aspects that we

have to take into account:

• Interaction.

• Complexity.

• Probability.

Interaction is a key aspect, an adversary must be able to interact with the

cryptographic protocol: he must have the possibility to pass arguments (messages,

keys and so on) and to observe all the output of the primitives used; this is formalized

by saying that the adversary has the complete control of the network and it is

necessary to simulate a realistic scene, where we are not able to guarantee the

security of the channel used for communications.

Complexity is another key aspect in a security proof. It is very easy to observe

that an adversary with unbounded resources is able to break almost all cryptographic

schemes, it is so necessary to reduce the possibilities of an adversary in order to face

a realistic situation. The cryptographers assumption follows Cobham’s thesis [16],

that is the reduction of the feasible adversaries to the algorithms computable in

polynomial time.
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Finally we need to take care of Probability. Cryptosystems always deal with

probabilistic primitives, because it is necessary to guarantee the right amount of

randomness in the outputs of the protocols (it is possible to prove that a determin-

istic protocol is not semantically secure), furthermore adversaries are modeled as

probabilistic algorithms so we need a calculus that allows us to work with proba-

bilistic constructions. Moreover, when we propose a game we have a probabilistic

algorithm that plays against a probabilistic scheme, so in the moment we want to

say if the adversary wins or not the game in most cases we will have a probabilistic

answer and then we need a calculus that allows us to reason about this probability

and to evaluate it.

Summing up we are looking for a calculus that allows us to model the interaction

between probabilistic polynomial-time bounded (PPT in the following) programs.

1.3 Implicit Complexity

We decide to start from the λ-calculus, a formal system defined by Church to an-

alyze functions. The main features of λ-calculus are simplicity in description and

expressiveness, it is very useful to model programs and to study their evolutions

and behavior. Furthermore typed λ-calculus allows a certain degree of interaction

by the definition of higher-order types and, as we have seen, this is a key point when

we deal with cryptography.

Traditionally, complexity and probability are not aspects of λ-calculus, but there

have been recent progresses that fix these lacks. In the field of the polytime cal-

culus, Hofmann proposed a simply-typed lambda calculus called SLR (Safe Linear

Recursion), which generalizes the characterization of the polytime functions studied

by Bellantoni and Cook to higher order [12]. Hofmann improve Cobham’s charac-

terization of polytime functions applying the work of Bellantoni and Cook which
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allows the use of recursion by a separation of variables into ”safe” and ”normal”

ones [26]. This work offered the basis for the creation of several calculi applied to

cryptography and game-based proofs, indeed there were proposed many extension of

the syntax of SLR by adding probabilistic primitives, in order to obtain the features

required to deal with cryptosystems.

One of the first extension was OSLR, which extend SLR with a 0-1 valued ora-

cle, unfortunately it resulted difficult to build a logic upon the language [35]. Years

later a new extension was proposed by Zhang, CSLR; the most significant feature

of CSLR is the distinction at the type level between deterministic and probabilis-

tic computations [38]. Zhang used CSLR to define a proof system used to justify

computational indistinguishability in a direct way. This proof system may look

similar to the one proposed by Impagliazzo and Kapron, that introduced two log-

ical systems for reasoning about cryptographic construction [28]; the first logic is

based on a non-standard arithmetic model and is proved to capture probabilistic

polynomial-time computations, whereas the second one is focused on computational

indistinguishability and is used to prove the unpredictability of the pseudorandom

generator defined by Goldwasser and Micali [24]. Unfortunately, while the first sys-

tem can be considered quite wide and complete, the second results not precisely

defined and Zhang showed imprecisions in the proof of soundness [38].

An additional extension of CSLR has been developed in 2010, CSLR+; this ex-

tension allows for superpolynomial-time computations and also arbitrary uniform

choices [37]. This thesis is about the RSLR calculus, another SLR extension pre-

sented by Dal Lago and Parisen Toldin for probabilistic polynomial-time computa-

tion, that I will discuss in Chapter 3 [31].

In order to develop the game-based technique and to simplify the automation,

we need to analyze and implement new procedures that offer improvements with-

out loss of mathematical guarantees. The main contribution of this thesis will be a

characterization of Computational Indistinguishability (CI), a key concept in cryp-
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tography, in order to simplify the structure of a proof in a way that can be easily

automated.

1.4 My contribution: a characterization of CI

As already mentioned, indistinguishability plays a central role in cryptographic

proofs, but, what does it mean for two games (or more generally two programs) to

be computationally indistinguishable? Briefly speaking, we consider two programs

computationally indistinguishable if, for every Probabilistic Polynomial Time algo-

rithm A, the probability of A to distinguish between them is negligible, that means

that it can’t distinguish between them.

It is easy to see that the difficulty to establish if two programs are indistinguish-

able or not is focused on the quantification of all possible algorithms; the purpose

of this thesis is to give a characterization of computational indistinguishability that

allows to say if two programs are indistinguishable or not in a easier way, by using

traces instead of arbitrary algorithms.

In order to get this result we will start from Chapter 4 by defining an equivalence

relation based on contexts, terms of RSLR with a hole, that in our system take

the place of PPT algorithms and stand for the feasible adversaries; then we will

propose another equivalence relation based on traces: traces are elements with a

structure simpler than contexts and we will prove that, in our framework, these

two equivalence relations coincide. Furthermore we will propose another approach

to prove equivalence between RSLR terms based on coinduction. Such an approach

will be proved to be sound w.r.t. context equivalence but not complete; it is anyway

interesting to observe this different approach because it allows us to work without

universal quantifications and so in a very simple way.

Next step, in Chapter 5, will be a generalization of the techniques showed in

Chapter 4, by the definition of two different notions of distance, the former based
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on contexts and the latter on traces; we will show once again that the two definitions

are equivalent, but we need to make a small change in the definition of traces.

Finally, in Chapter 6, we will propose a parametric version of context equivalence

and we will show that when we compare base terms (i.e. strings), the parametric con-

text equivalence is equivalent to computational indistinguishability as normally used

by cryptographers; as in the previous cases we will give a definition of parametric

equivalence based on traces and we will prove that it coincides with the paramet-

ric context equivalence. We will conclude this thesis by showing some motivating

examples from cryptographic primitives and protocols (Chapter 7).



Chapter 2

Some Approaches to Computational

Cryptography

In the Introduction we talked about the difficulties and the crisis in proving the

security of a cryptographic scheme due to the exponential growing in the complexity

of the proofs. In order to fix this situation several approaches have been proposed

to help cryptographers to build cryptographic proofs easily: we will start talking

about formal methods that under particular conditions are computationally sound,

then we will talk about automated tools and finally we will describe some methods

based on process calculi and CI.

2.1 Computational Soundness of Formal Proof

Previously, we introduced two different approaches to study the properties of a se-

curity protocol: formal and computational. In the formal approach, also called

symbolic, messages and keys are seen as atomic elements and we assume the per-

fect security of the primitives used in a protocol, whereas in the computational one

messages and keys are bitstring and primitives are functions from bitstrings to bit-

strings; the formal analysis is simpler and easily mechanizable, the computational

one is more precise and therefore more complex, even a small protocol could need a

11
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very complicated proof.

These two approaches evolved separately for almost twenty years, but in 2000,

Abadi and Rogaway [2] opened a window onto the possibility to merge the two

different approaches, in order to give formal proofs that are computationally sound.

2.1.1 Reconciling Two Views of Cryptography

The goal of Abadi and Rogaway is to call attention to the gap between the com-

putational and the formal points of view and to start to bridge this gap; the main

theorem of their work states that if a symbolic notion of equivalence is proved in

the formal framework, then also the equivalent notion in the computational system

is proved.

The work starts with the description of the formal system and the definition of

the set of expressions that will be used:

M,N, ... ::� 0 | 1 | pM,Mq | K | tMuK

where 0, 1 P Bool and K P Keys with Keys fixed non empty set disjoint from

Bool. The expression pM,Nq is the pairing of two expressions and tMuK is the

encryption of M under K; it is important to notice that in this framework we work

only with symmetric encryptions.

The next step is a formal definition of equivalence: this definition starts from

the entailment relation M $ N that intuitively means that N can be deduced from

M , and so it is a way to represent what an adversary can deduce from an expression

M . For example we have pptMuK , tNuK1q, Kq $ K and pptMuK , tNuK1q, Kq $ M ,

but pptMuK , tNuK1q, Kq & N .

Once defined the relation $, two expressions M,N are defined formally equiv-

alent, written M � N , if patternpMq and patternpNq are equal. Patterns are

extensions of expressions with the add of the symbol �, that represents an expres-
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sion undecryptable by an adversary, so a pattern is an expression with some parts

that the adversary can’t see.

Given a set of keys T and a pattern M we define ppM,T q inductively as follows:

ppK,T q � K

ppi, T q � i, i P Bool

pppM,Nq, T q � pppM,T q, ppN, T qq

pptMuK , T q � tppM,T quK if K P T ,

� otherwise.

Intuitively, ppM,T q is the pattern that an attacker can see by using the keys included

in T . The expression patternpMq stands for ppM,T q, where T is the set of keys that

can be deduced from M itself.

When Abadi and Rogaway move to the computational point of view, they con-

sider a symmetric encryption scheme Π � pENC,DEC,GENq that is type-0 secure.

The type-0 security is a very strong assumption. Intuitively it means that the en-

cryption hides all the information about the plaintext and the encryption key used.

Another important request in this framework is to work only with acyclic expres-

sions. An expression is acyclic if it doesn’t admit encryption cycles. We have an

encryption cycle when the relation between keys K1 encrypts K2 (that is K1 en-

crypts an expression M that contains K2) is a cyclic relation, for instance tKuK or

ptK1uK2 , tK2uK1q; this possibility often lead to a weakness of the scheme and so it

is denied in Abadi and Rogaway framework.

At this point, given a formal expression M , we associate to M an ensemble JMKΠ,

so that we are able to reason on it from a computational point of view: each key

symbol K is mapped to a string τpKq by using the key generator GEN, the formal

bits 0,1 are mapped to their computational representation, a pair pM,Nq is encoded

by concatenating the images of M and N , ENCpτpKq,Mq is the computational

expression associated to tMuK and each string is tagged with its type (key, bool,
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pair, cyphertext) in order to avoid ambiguities.

So, once defined how associate a formal expression M to an ensemble JMKΠ the

main result of [2] is given by the following theorem:

Theorem 2.1 Let M,N be two acyclic expressions and let Π be a type-0 secure

symmetric encryption scheme. Suppose that M � N then JMKΠ � JNKΠ.

This result links the symbolic equivalence relation defined on patterns to the com-

putational indistinguishability, denoted by �, showing for the first time a sound

symbolic abstraction of CI.

As we can easily see the work of Abadi and Rogaway is just a starting point

and over time there have been several extensions of this framework, especially on

two points: logic and encryption. The first logic extensions have been made by

Micciancio and Warinschi, that proved by a counter-example that the logic proposed

by Abadi and Rogaway was not complete; indeed it could be possible to have cases

of false negative, i.e. M � N , but JMKΠ � JNKΠ.

In order to get completeness, Micciancio and Warischi showed that it is sufficient

to request that the encryption scheme is authenticated, that means that an adver-

sary is not able to produce valid cyphertexts [34]. A refinement of this complete-

ness result has been proposed by Gligor and Horvitz, that proposed a new security

definition both sufficient and necessary, weak key-authenticity test for expressions

(WKA-EXP) [27].

In [25] Herzog extends Abadi and Rogaway’s work to a framework independent

of the encryption scheme chosen, in particular he extends the result also to asym-

metric encryption schemes that satisfy the (IND-CCA2) security property, a case in

which the adversary is given access to a decryption oracle that can decrypt arbitrary

adversary’s requests. In [33] the result is extended to a system in which keys are not

elements of a set disjoint form the message set, but are arbitrary expressions. Both of

these extensions continue to present the problem of cyclic expressions; this is due to
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the fact that in formal frameworks key cycles are not considered a threat, whereas in

a computational model the presence of a key cycles can invalidate standard security

properties.

Two different way to handle key cycles have been proposed, the first one based

on giving to the adversary more power, in order to make it able to deduce a key

when it is inside a key cycle [32], the second one based on giving a new security

property, called key-dependant message (KDM), strictly stronger than (IND-CCA2)

and sufficient to ensure soundness even in presence of key cycles [3].

Other extensions can be found in [4], where Adão et al. study which-key and

length-key encryption schemes, [21] where the logic is extended with hash functions

and [15], where the logic is extended with modular exponentiation.

2.1.2 Static Equivalence Soundness

A different approach to computational soundness of symbolic methods is proposed

by Baudet, Cortier and Kremer in [10, 11]; this approach is more general, because

it is independent from the set of primitives chosen in the protocol. The idea is

to express the symbolic secrecy by using the static equivalence instead of patterns.

How does this approach work?

• The first step is the definition of an abstract algebra, a term algebra defined

on a first-order signature with sorts and equipped with an equational theory;

for instance, one of the simplest example of equational theory is EENC, the

equational theory of a symmetric encryption system, generated by the rule:

DECpENCpm, kq, kq �EENC
m.

• The second step is the definition of two different equivalence relations based

on deducibility, $E, and static equivalence, �E, in order to catch the capability

of a symbolic adversary to distinguish between terms. Deducibility is used to

define the terms that can be evaluated by an adversary from a sequence of
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terms and static equivalence to state if two sequence of terms are equivalent

or not.

• At this point a method is proposed to turn the abstract algebra into a concrete

computational algebra in order to reason about the relations between symbolic

and computational model.

• Finally, they start from the equational theory �E and from the hypothesis that

�E is a reasonable abstraction of the primitives, that means that it is sound

and faithful w.r.t. computational indistinguishability (faithfulness is a stronger

version of completeness); the main contribution of this work is the proof that

also deducibility and static equivalence are two sound and faithful equivalence

relations w.r.t. the computational algebra. Furthermore it is showed that for

many equational theories �E soundness is a sufficient criterion for all the other

notions of faithfulness and soundness.

This framework has been used by Abadi, Baudet and Warinschi in [1] for applications

on offline guessing attacks.

Another definition of formal indistinguishability has been proposed by Bana,

Mohassel and Stegers, that found out that static equivalence is a definition too

rough to reason about many equational theories; for instance they proved that static

equivalence is not sound when working with a framework that uses modular expo-

nentiation [7].

2.1.3 Unconditional soundness

Differently from the approaches we talked about hitherto, the framework proposed

by Bana and Comon-Lundh in [5, 6] starts from a different concept: they are not

interested in defining symbolic properties or adding computational constraints to

obtain soundness anymore, but the goal is to define a model in which an adversary is

able to perform any action that does not contradict the computational assumptions.
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This purpose is reached by giving a list of axioms that reproduces the compu-

tational properties of the protocol under study (for instance IND-CCA); once given

the axioms, we can consider the greatest symbolic model that satisfies this list and

reason formally about its security properties. This way we can obtain the compu-

tational soundness almost by definition, because the computational constraints are

included in the axioms and so a computational attacker can be modeled symbolically.

The main feature of this framework is to reduce the security of protocols to an

inconsistency proof for a set of first order formulas: “If the negation of the security

formula is inconsistent with the set of axioms, then the protocol is secure in any

model of the axioms ” [6]. This approach lead to several advantages, for instance:

• The proofs are built in a symbolic setting, so they are simpler and, if possible,

automated.

• It is very simple to add cryptographic primitives, because it is only necessary

to write the corresponding axiomatization.

• It is possible to prove the security properties by using weaker assumption,

simply using a weaker axiomatization.

• The use of an axiomatization makes the assumptions needed to ensure security

properties very clear.

• In order to strengthen the security assumptions, i.e. when an attack is found,

it is sufficient to add an axiom so that we express stronger hypothesis on the

computational implementation of the primitives.

• It is possible to handle many situations that previously had been discarded,

such as key cycles, dynamic corruption and XOR.

However, this approach has been developed recently, so we don’t have concrete

applications of this method yet, but the authors are confident that inconstency

checks could be implemented efficiently.
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2.2 Automated Tools

A significant help in the construction of cryptographic proofs has come from the

creation of tools that, given a security protocol try to elaborate (in a automatic or

semi-automatic way) a proof that can be easily verified. In the following subsections

I will talk about three different tools which are used to demonstrate the security of

a protocol by using game-based proofs: CertyCrypt, EasyCrypt and Cryptoverif.

Game-based security proofs are built as a sequence G0,G1, ...,Gn of games or

experiments. The first game G0 encodes the interaction between a generic algorithm

A that stands for the potential adversary and the last one Gn encodes the adversary

that tries to break the assumption we choose. All the games are in the same prob-

ability space, successive games are very similar and for each game we can evaluate

the probability of the adversary to win the game and we call it the advantage; so,

by using this method we are able to put in relation the probability of an adver-

sary to break the cryptosystem with the probability of an adversary to break the

assumption. The game-based proof structure succeeds in combining the intuition

of a game in describing a security protocol to the accuracy and the formalism of a

mathematical demonstration.

2.2.1 CertiCrypt

CertiCrypt is a machine checked framework, which is used to construct crypto-

graphic proofs structured as sequences of games; the pecularity of the CertyCrypt

framework is that the proofs are built on top of the Coq proof assistant, thus we

have the mathematical guarantee of a certified proof assistant and the possibility to

study these proofs and their verification step by step [8]. Some of the features of

this framework are:

• It is used an imperative programming language with probabilistic assignments,
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structured data types and procedure calls. The choice of such a language is

made in order to be closer to the cryptographer standards in game description.

• The framework doesn’t return asymptotic results, but it focuses on exact secu-

rity; this decision is due to the fact that in this way we can set our parameters

to obtain concrete security bound.

• Every proof yields a proof object which can be checked automatically and

separately.

• The framework is equipped with automated reasoning methods, it’s formalized

as relational Hoare logic and a theory of observational equivalence.

The probabilistic programming language follows this construction:

C ::= skip nop

| C;C sequence

| VÐ E assignment

| VÐ$ DE random sampling

| if E then C else C conditional

| while E do C while loop

| VÐ PpE, ...,Eq procedure call

where V represents the set of variables, E the set of expressions, DE the set of

distribution expression and P the set of procedures.

In the CertyCrypt framework we have that programs are seen as functions start-

ing from an initial memory m to sub-probability distribution over final memories. To

describe the semantics of programs a distribution that maps a [0,1]-valued random

variable, i.e. a function in A Ñ r0, 1s to its expected value, is used. This function

is defined of type DpAq � pA Ñ r0, 1sq Ñ r0, 1s. Given a distribution µ P D and

a function f : A Ñ r0, 1s we have that µpfq represents the expected value of the
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function f .

So we can consider a program as a function which maps an initial memory m to

a distribution on final memories and write its semantics as:

Jc P CK : MÑ DpMq

Where M is the set of memories.

When we study a security protocol we don’t know how an adversary could rea-

son and which strategies he could use to break the cryptosystem; the only way to

model an adversary without loss of generality is giving him an interface and a set

of rules which specify what he can or can’t do. An adversary interface consists in a

triplepO,RW,Rq, where O represents the set of procedures he can call, RW repre-

sents the set of variables the adversary can read and write, R represents the set of

variables the adversary can only read. The rules are generic, they are only given in

order to be sure that the adversary makes a correct use of variables and procedures.

2.2.2 Game transitions in CertyCrypt Framework

The CertyCrypt framework follows Shoup classification, and divides transitions be-

tween games in a proof into three categories:

1. Transition which are based on indistinguishability.

2. Transition based on failure event.

3. Transition based on bridging steps.

All these transitions are justified by using a probabilistic Relational Hoare Logic

(pRHL); such approach is useful because it generalizes observational equivalence

and allows us to reason about probabilities of events into different games [8]. A

pRHL judgment has the following structure:
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Definition 1 We define two programs c1, c2 equivalent with respect to pre-condition

Ψ and post condition Φ iff:

$ c1 � c2 : Ψ ñ Φ
def
� @ m1,m2.m1Ψm2 ñ pJc1Km1qΦ

#pJc2Km2q

This definition means that given two arbitrary initial memories m1,m2 that satisfy

the pre-condition Ψ, i.e. m1Ψm2, we have that two programs c1, c2 are equiva-

lent if their evaluation from the initial memories satisfies the post condition Φ, i.e.

pJc1Km1qΦ
#pJc2Km2q.

By using this kind of judgment we can derive the observational equivalence �,

a particular case of the equivalence defined above and a key property in game tran-

sitions; two programs c1, c2 are observationally equivalent if they can be proved

equivalent by using pre- and post- conditions restricted to �I ,�O, i.e. equalities

over a subset of program variables (Input and Output). So we have:

$ c1 �
I
O c2

def
� $ c1 � c2 : �Iñ�O

CertyCrypt takes advantage of the observation equivalence property because it re-

sults easily mechanizable.

CertyCrypt settles the case of a game transition which depends on what cryp-

tographers call failure event, by using the following fundamental lemma. This case

occurs when we have two games G1, G2, two events A,B and we face with a situation

in which the probability that the event A occurs in G1 is the same as the proba-

bility the event B occurs in G2 unless the verification of an exact event F , which

is called failure event. The fundamental lemma allows to bound the difference of

probability of an event in two different games, it tells us that the difference between

the probabilities that A occurs in G1 and B occurs in G2 is bounded by the greatest

probability that F occurs in G1 or G2.

Theorem 2.2 (Fundamental Lemma) Let G1, G2 be two games and A,B, F three

events.
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If PrrG1 : A^ F s � PrrG2 : B ^ F s, then we have:

|PrrG1 : As � PrrG2 : Bs| ¤ maxpPrrG1 : F s, P rrG2 : F sq

This theorem is important because it states that we can reduce the probability

to observe difference between two programs to the probability of the occurence

of a sigle event. Roughly speaking, we can say that a program that returns a

cyphertext is indistinguishable from a program that returns a random message unless

the adversary is able to figure out the key of the cryptographic scheme; so the

probability for the adversary to distinguish between the two programs is equal to

the probability to get the key.

Finally we have game transition based on bridging steps: it occurs that a frag-

ment of code c1 in a game G1 is replaced by an observational equivalent fragment

c2 in a game G2.

These substitutions are implemented by using techniques such a deadcode elimina-

tion, constant folding and propagation, procedure call inlining, swapping statement,

common prefix/suffix elimination.

In conclusion, we have a fully automated verification tool based on Coq with an

understandable semantics, which uses a clear set of techniques (that are proved to

be sound) to obtain verifiable proofs of security property of cryptoprotocols. These

tools needs only few Coq lines to establish the security statements and allows the

user to study the proof step by step, without being an expert of Coq.

2.2.3 EasyCrypt

In the last years a new automated tool for elaborating security proofs of cryptopro-

tocols has been developed; indeed, despite the similarity between the CertyCrypt

language and the usual cryptographers standards in describing games, the frame-

work didn’t achieve resounding success between the community. The reason of the

lacking use by the community may be related to the fact that even if CertyCrypt
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offers security proofs with high guarantees, building a machine-checked proof results

hard and expertise necessary. In order to fill this gap, a new tool has been presented,

which is supposed to be easier to use than his predecessors but trustworthy in the

same way [9].

EasyCrypt is an automated tool which elaborates security proofs of cryptosys-

tem from proof sketches, that are checked by using off-the-shelf SMT solvers and

automated theorem provers. These proofs are given in form of games and the idea

behind is the same as in CertyCrypt, that is to study and evaluate relations between

game transitions such as:

PrrG : As ¤ PrrG1 : A1s �∆

where G,G1 are games, A,A1 are events and ∆ is a quantity which depends on the

oracle calls made by an adversary.

The structure of EasyCrypt is similar to CertyCrypt, indeed the transitions

between games are justified firstly by proving the logical relations using the proba-

bilistic Relational Hoare Logic and then by applying information-theoretic reasoning

to derive probability claims about the occurring of events. In order to increase the

speed of the calculation EasyCrypt implements a procedure that produces a set

of verification conditions that are sufficient to establish the validity of a certain

judgment. This feature is a key point of the effectiveness of EasyCrypt, indeed a pe-

culiarity of this tool is that the verification conditions are expressed in a first-order

logic as follows:

Ψ,Φ :� b |  Ψ | Ψ^ Φ | Ψ_ Φ | Ψ Ñ Φ | Ψ Ø Φ | pΦq | @x.Φ | Dx.Φ

This kind of expressions avoid the reasoning about probabilities and allow the use

of SMT solvers and theorem provers to discharge automatically their validity; prob-

abilities of events are evaluated by additional automated mechanism by using some
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elementary rules. Furthermore the procedure that generates the verification con-

dition also adds Coq files which can be checked separately (For instance by using

CertyCrypt).

The strategy used to generate the set of verification conditions bases on the

following points:

1. The procedures which aren’t called by the adversary are canceled from games

by inlining their definitions, so that only adversary calls remain.

2. The random assignments are moved upfront, so that the code is divided into

two parts, the random and the deterministic one.

3. The deterministic part of the code is studied by a relational weakest precondi-

tion calculus by using relational specification to deal with the adversary calls.

4. A map f is used to generate the verification condition Ψ ñf Φ, defined as:

@m1,m2 t1, ...tl. m1Ψm2 ñ m1t~t{~xu Φ m2tfpt1, ..., tlq{~yu

The injectivity of the map f is generally a sufficient condition to guarantee

that the validity of Ψ ñf Φ entails the validity of the corresponding pRHL

judgment.

5. Off-the-shelf tools establish the validity of the first-order formula Ψ ñf Φ.

EasyCrypt generates its verification conditions in Why tool format and then

uses the Simplify prover and the alt-ergo SMT solver to discharge the condi-

tions.

As happens in CertyCrypt, a fundamental lemma is given in order to justify transi-

tion based on a failure event.

Lemma 2.1 (Fundamental Lemma): Let G1, G2 be two games and A,B, F

events such that:

|ù G1 � G2 : Ψ ñ pF x1y Ø F x2yq ^ p F x1y Ñ pAx1y Ø Bx2yqq
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Then if m1Ψm2

1. PrrG1,m1 : A^ F s � PrrG2,m2 : B ^ F s

2. |PrrG1,m1 : As � PrrG2,m2 : Bs| ¤ PrrG1,m1 : F s � PrrG2,m2 : F s

EasyCrypt presents a limitation in the language, which lacks loops, recursive

procedures and drawing from skewed distributions; furthermore it only generates

partial verifiable evidences and, as said previously, EasyCrypt only generates proof

skeletons for claims about probabilities rather than fully-machine checked proofs.

2.2.4 CryptoVerif

CryptoVerif is a computational sound mechanized prover for cryptographic proto-

cols; it returns results about secrecy and correspondence properties of protocols

and also provides generic methods for specifying properties of cryptographic primi-

tives [14]. CryptoVerif works for a bounded number of sessions N, which is polyno-

mial in the security parameter, in presence of active adversaries. As the precedent

tools, CryptoVerif focus its goal in results of exact security, so it returns a bound of

the probability of a successful attack against the protocol under study.

As seen previously, CryptoVerif gives proofs as sequences of games, so we have

that the first game represents a real protocol, while the last stands for an ideal pro-

tocol, where the occurring of a security property or not results obvious. We can find

the first difference from the two previous tools in the formalization of games, indeed

CryptoVerif uses a process calculus inspired from the pi calculus (substantially it

uses an extension of the pi calculus); the semantics is pure probabilistic, instead of

non-deterministic, and we have an extension which allows us to work with arrays,

that replaces lists in cryptographic proofs.
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The transitions between games are made by using two techniques: the obser-

vational equivalence and the syntactic transformation. We say that two games are

observationally equivalent, and we write G � G1 if every adversary has a negligible

probability to distinguish them. We define in CryptoVerif an adversary as a context,

and we have that G � G1 ñ CrGs � CrG1s for all acceptable evaluation context. So

our purpose is to obtain a sequence of this form:

G0 � G1 � � � � � Gm

that implies G0 � Gm.

Transition based on observational equivalence are given as axioms and come from

security properties of the primitives inside the protocol. On the other hand syntactic

transformation are substantially simplifications of the code and expansions of the

arguments: for instance there happens a renaming of variables which are assigned

several times, a merge of several variables into a single array variable, a replace of

variables with its value and so on.

A particular feature of CryptoVerif is the possibility of making a syntactic trans-

formation manually: it is possible to insert manually an event or an instruction and

also to replace a term with another term the the tool verifies to be really equal,

before continuing the demonstration.

The results obtained by CryptoVerif are encouraging beyond any doubt, but the

tools presents evident limitations; indeed it sometimes happens that the prover fails

in proving a particular security property when it doesn’t hold. Furthermore some-

times (In some public-key protocols) the tool stops and waits for manual instruction

to continue the demonstration. In order to go beyond these limits there will be

improved extension turned towards improvements in the proof strategy and handles

of more equations.
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Summing up, we recalled three different tools that return cryptographic proofs

in the form of sequences of games; despite the giant steps made recently these tools

have evident limitations, so it is necessary to find new methods that are easily

mechanizable in order to enlarge the power of these tools and to extend the set of

primitives and protocols that can be analyzed automatically.

2.3 Computational Indistinguishability, Logics, and

Calculi

In this section we will talk about a kind of approach that is quite close to the one

we expose in this thesis. The idea is to propose a method to reason about CI in a

framework based on a process calculus suitably defined to handle cryptographic con-

structions and to model all and only feasible adversaries. The goal of this approach

is to increase the means of cryptographers in building security proofs by showing

new methods to prove computational indistinguishability.

2.3.1 A Process Calculus

In [36] Mitchell et al. studied properties of a process calculus designed to analyze

security protocols; this calculus is a variant of CCS, where bounded replications and

Probabilistic Polynomial-Time (PPT) expressions in messages are allowed. A feature

of this calculus is that all the processes evaluate in polynomial time; this choice is

obviously made to reason about security problems, where adversaries have a limited

power of calculus. Moreover, we have that messages are scheduled probabilistically,

rather than nondeterministically in order to avoid inconsistency between security

and nondeterminism.



2.3. COMPUTATIONAL INDISTINGUISHABILITY, LOGICS, AND CALCULI

Expressions in this calculus are defined by the following grammar:

P ::�H | νpcq.P | inpc, xq.pPq | outpc,Tq.pPq | rTs.pPq | pP|Pq | !qpνq.pPq

where T is a term that could be a variable or the security parameter η or a random

coin or a probabilistic polynomial time function θ of arity k, applied to k terms

T1, ..,Tk.

H is the empty process, νpcq.P is the channel binding of the channel c in the process

P, inpc, xq.pPq is the input expression, it waits for an input from the channel c and

then performs P, outpc,Tq.pPq is the output expression, it reduces T in atoms and

sends in output the results through the channel c, rTs.pPq is the match expression, it

proceeds with P if the guarding term T reduces to 1, pP|Pq is the parallel composition

and !qpνq.pPq is the bounded replication of P. Context expressions are defined by the

following grammar:

Cr�s ::�H | inpc, xq.pCr�sq | outpc,Tq.pCr�sq | rTs.pCr�sq

| pCr�s|Pq | pP|Cr�sq | !qpνq.pCr�sq

In this framework security properties are expressed by the use of observational

equivalence. Two processes P,Q are said to be observational equivalent, we write

P � Q if for all contexts Cr�s the behavior of CrPs is asymptotically computationally

indistinguishable from the behavior of CrQs. This is formalized by the following

definition:

Definition 2 Let P,Q be two process and let ValpP,Qq be the set of all valuations

of free variables of P and Q. We say that P � Q if:

@ξ P ValpP,Qq. @Cr�s : ξpCrPsq � ξpCrQsq

The expression P � Q it is used to state that P,Q are asymptotically close, it means

that the probability for P and Q to generate a different observable is negligible in

the security parameter.
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The observational equivalence is proved to be a congruence and it is also devel-

oped a form of probabilistic bisimulation that works as a sound method for demon-

strating observational equivalence and is also used to prove the soundness of a proof

system for reasoning about protocols. Furthermore it is proved that two processes

are asymptotically observationally equivalent if and only if they are computationally

indistinguishable. The idea is that observational equivalence tells us that if we want

to analyze a protocol P and we have a protocol Q which is an idealized form of P

where all channels are secure, then proving P � Q means that P is secure.

Finally, in the last section of the work, there are several application of the cal-

culus and the proof system to well-known cryptographic constructions.

2.3.2 First-Order Logic

In [28], Impagliazzo and Kapron propose two systems to reason about cryptographic

construction; the goal of this work is to propose a framework that is sufficiently

powerful to study most of the primitives commonly used in cryptography, but also

simple enough to be used in the analysis of combinations or changes of primitives

when applied in protocols. It can be easily noticed that the difficulties in developing

such system are in formulation of security definitions, reasoning about probability

and randomness, quantification of the computational power of adversaries, wrong

use of induction in security proofs, and in order to overcome this issues concepts from

cryptography, implicit computational complexity and proof complexity are mixed

together.

The first logic system, called T , is a first-order logic system whose aim is to

reason about probabilities, asymptotic and polynomial time functions. The system

is composed by:
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• A security parameter, that is essential to reason about cryptographic construc-

tions and it is assumed to be large enough to handle asymptotic statement.

• Strings, used to represent inputs, outputs and random tapes. Strings must be

of polynomial length and they can be seen as integers so that it is possible to

work with arithmetical operations.

• Moderate integers, that is polynomially bounded by the security parameter.

They are used for instance to express negligible functions.

• Feasible functions, that is polynomial time functions from strings to strings.

They can be defined by composition or (particular) recursion.

• Counting integers, used to represent sizes of set of strings. These integers are

useful when we want to determine the size of the set of strings that satisfy a

particular formula and so it is functional when we reason about probabilities.

• Formulas, defined from the atomic formulas: t � s, t ¤ s by the connectives

 ,^,_,Ñ,� and quantifiers @, D .

Once given the syntax of the system it is proposed an axiomatizations made of

a list of axioms divided in: logical, security parameter, basic, poly-time functions,

counting and induction; this axiomatizations is necessary to introduce the notion of

derivation.

Given two formulas ϕ, ψ, we write T, ϕ $ ψ if ψ can be derived from ϕ and instances

of the axioms in T ; so we get the soundness theorem:

Theorem 2.3 Suppose that ϕ1, ϕ2, ψ are bounded formulas such that:

T, ϕ2p~f, ~f
1q @g@~zϕ1p~f, g, ~z, sq $ @g@~zψp~f

1, g, ~z, sq

where ~f, ~f 1 are sequences of function variables and s is the security parameter. We

then have the following for all sequences ~α, ~α1 of poly-tyme functions: if ~α, ~α1 satisfy
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ϕ2 in N and for every poly-time function β, ϕ1 holds asymptotically in N, then for

every poly-time function β, ψ holds asymptotically in N.

The meaning of this theorem is that f is a cryptographic primitive and f 1 is built

from f , we use the formula ϕ2 to define f 1 in function of f . The formulas ϕ1 and ψ

formalize the security of f and f 1 respectively, whereas g is a function that stands

for a poly-time adversary. The soundness theorem tells us that if it is possible to

derive ψ from ϕ1 then we have a sound proof of the security of f 1 by using the

assumption on the security of f .

The T system is quite wide and general, it is conceived to reason about arbitrary

cryptographic constructions, however it doesn’t avoid any explicit reasoning about

probabilities. This is why Impagliazzo and Kapron propose a second logic system

focused on computational indistinguishability. This system is composed by the rules

in Figure 2.1.

T $ Q1, ..., Qkps � tq
UNIV

let b1in ...let bkin s � let b1in ...let bkin t

u � u1 (SUB)
vtu{xu � vtu{xu

let iÐ randpppnqq in u � letiÐ randpppnqq in uti�1{iu
(H-IND)

ut0{iu � utpp1
nq{iu

(EDIT)

let

�
� ~iÐ randp~ppnqq

xÐ rsp
°k
j�1ppjpnq � ijqq

�
in x �

�
� ~iÐ randp~ppnqq

xÐ rspppnqq

�
in ©k

j�i xjt1...pjpnq�iju

Figure 2.1: Rules for CI (Impagliazzo, Kapron)

We don’t go into details of the second system syntax, we just explain the meaning

of each rule. In the rule (UNIV), each Qi is a universal quantifier and bi a random

bitstring, the aim of this rule is to relate the universally quantified equality statement

provable in T to �. The (SUB) rule tells us that we are able to substitute terms

that are computationally indistinguishable into PPT contexts. The (EDIT) rule
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allows us to merge, split and/or shorten random strings and we get a result that is

indistinguishable from a random string of the appropriate length. Finally (H-IND)

can be seen as an induction rule.

The soundness proof of this system is made by analyzing each rule and interpret-

ing it in the general system. Finally this system is used to prove the correctness of

a pseudorandom generator built by using the property of next-bit unpredictability.

2.3.3 A λ-Calculus

A similar approach to computational indistinguishability has been made by Zhang,

that developed a logic for reasoning about CI starting from a language called com-

putational SRL(CSLR) [38]; this language is an extension of Hofmann’s SRL and its

main feature is to capture the class of probabilistic polynomial time computation so

that it is very useful to model cryptographic constructions and adversaries.

The syntax of CSLR is defined starting from terms of SLR:

e1, e2, ... ::� x | nil | B0 | B1 | caseτ | recτ | λx.e | e1e2

xe1, e2y | proj1e | proj2e | e1 b e2 | let xb y � e1in e2

and adding terms for probabilistic computations as:

e1, e2, ... ::� ... | rand | valpeq | bind x � e1in e2

In this syntax we have that nil is the empty string, B0,B1 are bitstring constructors,

caseτ is the term for case distinction, recτ is for safe recursion, λx.e is a lambda

abstraction, e1e2 is an application, xe1, e2y is a product, proji are product projections,

e1be2 is a tensor product and let xby � e1in e2 is a tensor projection. Furthermore,

rand is an oracle bit that returns 0 or 1 with probability 1{2, valpeq is the deterministic

computation and bind x � e1in e2 is a sequential computation.
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The type system, necessary to ensure the polytime soundness, is also inherited

from SLR; types are defined by:

τ, τ 1, ... ::� Bits | τ � τ 1 | τ b τ 1 | � τ Ñ τ 1 | τ Ñ τ 1 | τ ( τ 1 | Tτ

Bits is the base type, τ � τ 1 is the cartesian product, τ b τ 1 is the tensor product;

�τ Ñ τ 1 is for modal function with no restrictions on arguments, τ Ñ τ 1 is for

non-modal functions where the arguments must be safe arguments and τ ( τ 1 is

for linear functions. The type Tτ is part of the extension and it is called monadic

or computation type; it is used for computations that return a value of type τ .

The proof system developed by Zhang is composed by two different set of rules:

the first one is used to reason about semantic equivalence, denoted with �, whereas

the second is made by rules to justify computational indistinguishability, denoted

with �. We focus now our attention to the second one, in figure 2.2, that is is quite

similar to the one proposed by Impagliazzo and Kapron.

$ ei : �BitsÑ τ pi � 1, 2q e1 � e2
EQUIVe1 � e2

$ ei : �BitsÑ τ pi � 1, 2, 3q e1 � e2 e2 � e3
TRANS-INDISTe1 � e3

x : Bits, y : τ $ e : τ 1 $ ei : �BitsÑ τ pi � 1, 2q e1 � e2
SUB

λx.ere1pxq{ys � λx.ere2pxq{ys

x : Bits, nBits $ e : τ λn.eru{xs is numerical for all bitstrings u

λx.eripxq{ns � λx.erB1ipxq{ns for all canonical polynomial i such that |i| ¤ |p|
H-IND

λx.ernil{ns � λx.erppxq{ns

Figure 2.2: Rules for CI (Zhang)

One of the difference of this system from the one proposed by Impagliazzo and

Kapron is the absence of a rule (EDIT); this is due to the fact that in CSLR there
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are no primitives that modify bitstrings, except for the two bitstring constructor.

Another difference can be found in the H-IND rules, because in this logic there

is not a primitive that returns uniformly a number smaller than a polynomial. It

is finally important to notice that the TRANS-INDIST rule does not break any

assumption about the complexity constraint. By the add of some useful lemmas,

Zhang shows how this proof system can be used to analyze cryptographic examples

of pseudorandom generators.

In his joint work with Nowak, Zhang propose CSLR+, an extension of the lan-

guage realised to allow the possibility to work with games that use superpolynomial

time computations or arbitrary uniform distributions [37]; this feature is necessary

to handle security definitions, but the construction of adversaries and cryptographic

primitives is still bounded polinomially. This add lead Nowak and Zhang to intro-

duce the notion of game indistinguishability, a definition that is not stronger than

computational indistinguishability, but it is more appropriate in a game-based proof

framework.

One of the contribution of this work is the proof that computational indistin-

guishability implies game indistinguishability, so it is still possible to use the proof

system in [38] in proof. Nowak and Zhang also show concrete applications of the

proof system, by implementing in CSRL the public key encryption scheme of El-

Gamal and proving it secure; this proof relies on the formalization of the decisional

Diffie-Hellmann assumption, i.e. the nonexistence of a computational algorithm

able to distinguish between the triples pγx, γy, γxyq and pγx, γy, γzq when x, y, z are

chosen randomly. Another contribution is the implementation and the security def-

inition of the Blum-Blum-Shub pseudorandom generator.

In this chapter we discussed some of the approaches used to enlarge the set of

primitives and protocols that can be studied by the computational point of view:

we started from formal methods computationally sound, then we talked about dif-
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ferent authomated tools and we end with the description of some process calculi

endowed with a proof system to reason aboun computational indistinguishability,

an approach very close to the one proposed in this thesis. In the following chapter

we will introduce the calculus we will use to model our framework, RSLR, a typed

λ-calculus for PPT computations, that we will use to model cryptographic schemes

and adversaries.
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Chapter 3

A Calculus for PPT Computation: RSLR

In this first section we present RSLR, a λ�calculus for probabilistic polynomial

time computations. The choice to use RSLR is based on the fact that the final

goal of this thesis is to offer a method to study computational indistinguishability,

where an adversary A, an algorithm with a polynomial power of calculus, takes

in input two different programs once each and tries to distinguish between them;

as we will see in the following, the main feature of this calculus is that the set

of probabilistic functions that can be computed by RSLR terms coincides with the

polytime computable ones, so essentially, the idea behind this choice is that we

can use an RSLR term to describe whatever algorithm A. We will formalize this

concept when we will talk about contexts, RSLR terms with a hole, that represent

in this system the adversaries that takes in input a term and, once studied, return

an output.

The other feature of RSLR that pushed us to this choice is the presence of a

probabilistic operator. The possibility to work with probability and to write proba-

bilistic programs is crucial when we deal with cryptography, indeed it is well-known

that a deterministic cryptographic primitive is not semantically secure.

RSLR, which stands for Random Safe Linear Recursion, is obtained by extending

Hofmann’s SLR with an operator for binary probabilistic choice. One of the dif-

37
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ferences between RSLR and other languages obtained from Hofmann’s SLR is that

polynomial time soundness is proved operationally instead of semantically and so it

brings to some necessary restrictions from the original SLR. Furthermore in SLR we

have two different function spaces, whereas in RSLR these two spaces collapse into

one; this difference comes from the fact that, in presence of higher-order duplication,

it results very difficult to control the size of reducts when we normalize. Thus, as

a consequence, RSLR merges the two function spaces and, by using a strict type

system, prevents the duplication of arguments of higher-order type.

In this work we will use a version of RSLR which is slightly different from the

original one proposed in [31]: we consider a version in which base terms are bistring

instead of natural numbers and a call-by-value reduction; this way we obtain a

simpler exposition of the theory without losing expressiveness.

3.1 Syntax and Semantics

As we disclosed, RSLR is a typed lambda calculus for probabilistic polynomial time

computation; the type system adopted by RSLR is crucial to ensure the polynomial

complexity and it is based on the idea that variables of a certain type can appear in

a term only once. We introduce the type system by defining the category of type.

Definition 3 (Types) Types in RSLR are defined as follows:

A ::� Str | �AÑ A | � AÑ A

We can easily see that we have one base type Str which stands for bitstrings and two

different function spaces: the first one, characterized by the type �AÑ A describes

all the function that are evaluated in constant time whereas the the one, �AÑ A is

for the functions that require a time of computation that is polynomial in the size

of the argument.
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In order to highlight the fact that �A Ñ A is a subtype of �A Ñ A, RSLR

provides for a notion of aspects, denoted with metavariables a, b, which is used to

formalize the concept of subtyping.

Definition 4 We define an aspect as � or �; we define a partial order between

aspects by using the binary relation tp�, �q, p�,�q, p�,�qu, that is noted with  :.

Now we are able to give the system of subtyping rules, as described in figure 3.1.

A  : A
A  : B B  : C

A  : C
B  : A C  : D a  : b

aAÑ C  : bBÑ D

Figure 3.1: Subtyping Rules

At this point we go into the core of the language by describing the syntax of

RSLR.

Definition 5 The synctatical categories of values and terms are defined by the

following grammar:

v ::� m | λx : aA.t;

t ::� x | v | 0ptq | 1ptq | tailptq | tt | caseApt, t, t, tq | recApt, t, t, tq | rand;

As we can see we have that values are given by strings, denoted with m, which range

over the set of finite binary strings t0, 1u� and by lambda abstractions; terms are

given by variables, where x ranges over a denumerable set of variables X, two string

constructors 0, 1 and a string destructor tail. Furthermore we have applications

and a nonstandard constant rand that returns 0 or 1 with probability 1{2. The terms

caseApt, t0, t1, tεq and recApt, t0, t1, tεq are terms for case distinction and safe recursion,

in which the first argument specifies the term (of tipe Str) which guides the process.
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We give in figure 3.2 a one step semantics in order to explain better the behaviour

of terms in RSLR; we use ε to denote the empty string, b P t0, 1u to denote a single

bit, and t0
1
2 , 1

1
2 u for the distribution that assigns the values 0, 1 with probability 1

2
.

xÑ x; v Ñ v;

0pmq Ñ 0m; 1pmq Ñ 1m;

tailpεq Ñ ε; tailpbmq Ñ m;

pλx.tqv Ñ ttv{xu; randÑ t0
1
2 , 1

1
2 u;

caseApε, t0, t1, tεq Ñ tε; recApε, t0, t1, tεq Ñ tε

caseAp0m, t0, t1, tεq Ñ t0; recAp0m, t0, t1, tεq Ñ pt00mqprecApm, t0, t1, tεqq

caseAp1m, t0, t1, tεq Ñ t1; recAp1m, t0, t1, tεq Ñ pt11mqprecApm, t0, t1, tεqq

Figure 3.2: RSLR One-Step Semantics Rules

The presence of the probabilistic term rand in the syntax of RSLR makes the

operational semantics probabilistic; indeed we have that any closed term does not

evaluate to a single value but to a value distribution. A value distribution is a

function D : V Ñ Rr0,1s such that
°
vPV Dpvq � 1; if

°
vPV Dpvq   1 then D is

called value sub-distribution. The evaluation of a term t to a value distribution D is

expressed by using the judgment t ó D; the set of the values v such that Dpvq � 0

is called the support of D and it’s denoted by SpDq. We denote a value distribution

D with tpviq
piuiPI where tviuiPI � SpDq and pi � Dpviq for all i P I. Given two value

distributions (or sub-distribution) D,E and a number p P r0, 1s we denote:

D� E � tpvqDpvq�EpvquvPSpDqYSpEq

p �D � tpvqp�DpvquvPSpDq
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v ó tv1u rand ó t0
1
2 , 1

1
2 u

t ó D s ó E trtv{xu ó Fr,vuλx.r,v
ts ó

°
λx.r,vDpλx.rq � Epvq � Fr,v

t ó tpmiq
piu

0ptq ó tp0miq
piu

t ó tpmiq
piu

1ptq ó tp1miq
piu

t ó D Tpmiq � t0mi, 1miu

tailptq ó tpmiq
DpTpmiqqu

t ó D t0 ó D0 t1 ó D1 tε ó Dε

caseApt, t0, t1, tεq ó
°

m Dp0mq �D0 �
°

m Dp1mq �D1 �Dpεq �Dε

t ó D

tε ó Dε

tpt0mqprecApn, t0, t1, tεqq ó Dmum�0n

tpt1mqprecApn, t0, t1, tεqq ó Dmum�1n

recApt, t0, t1, tεq ó
°

m DpmqDm

Figure 3.3: Big-Step Semantics Rules

The operational semantics of a term in RSLR is given by the rules in figure 3.3.

Now we can go into details and illustrate the whole type system that is used

in RSLR. First of all we define a typing context Γ as a finite set of assignments of

an aspect and a type to a variable, where every variable occurs at most once; an

assignment is indicated with x : aA. We use the expression with a simple comma

Γ,∆ for the disjoint union of two typing contexts Γ and ∆; when we want emphasize

that Γ only involve variables of base type Str we use the semicolon as in Γ; ∆. Typing

judgment are in the form Γ $ t : A and the complete type system is given by the

rules in figure 3.4. It is easy to observe how this type system enforces variables of

higher order type to occur free at most once and outside the scope of a recursion;

moreover the type of a term that serves as step-function in a recursion is assumed to

be �-free and these are key points that allow the calculus to characterize polytime

functions. We define TA
Γ,V

A
Γ as the sets of terms and values of type A under the

typing context Γ. In particular, we are interested in TA
H,V

A
H, the sets of closed terms

and closed values (i.e. without free variables).
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x : aA P Γ
Γ $ x : A Γ $ m : Str

Γ $ t : Str
Γ $ 0ptq : Str

Γ $ t : Str
Γ $: 1ptq : Str

Γ $ t : Str
Γ $ tailptq : Str $ rand : Str

Γ $ t : A A  : B
Γ $ t : B

Γ; ∆1 $ t : Str Γ; ∆3 $ t1 : A

Γ; ∆2 $ t0 : A Γ; ∆4 $ tε : A

Γ; ∆1,∆2,∆3,∆4 $ caseApt, t0, t1, tεq : A

Γ; ∆1 $ t : aAÑ B

Γ; ∆2 $ s : A Γ,∆2  : a
Γ; ∆1,∆2 $ ts : B

Γ1; ∆1 $ t : Str Γ1,Γ2,Γ3; ∆2 $ tε : A

Γ1,Γ2 $ t0 : �StrÑ �AÑ A Γ1,∆1  : �

Γ1,Γ3 $ t1 : �StrÑ �AÑ A A is �-free

Γ1,Γ2,Γ3; ∆1,∆2 $ recApt, t0, t1, tεq : A

Γ, x : aA $ t : B
Γ $ λx : aA.t : aAÑ B

Figure 3.4: RSLR Typing System

Lemma 3.1 (Subject reduction) Given a term t such that $ t : A, if it reduces

to t1, ..., tn, we have that $ ti : A.

Proof: This is proved by induction on the type derivation [31]. l

Lemma 3.2 For every term t P TA
H there is a unique value distribution D such that

t ó D and we denote it with JtK. Moreover, if v P SpDq then v P VA
H.

Proof: We proceed by induction on the structure of t.

• If we have a value v, then by the rules it converges to tv1u.

• Similarly if we have a term rand the only distribution it can converge is t0
1
2 , 1

1
2 u.

• Suppose now to have t1t2, and suppose t1t2 ó D, t1t2 ó D1, i.e. that two
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distributions exist for t1, t2. By construction we have:

D �
¸
λx.t,v

D1pλx.tq �D2pvq �Dt,v D1 �
¸

λx.t1,v1

D1
1pλx.t

1q �D1
2pv

1q �D1
t1,v1

But, by induction hypothesis we have D1 � D1
1,D2 � D1

2 and so also Dt,v �

D1
t1,v1 and this means D � D1.

• All the other cases are similar.

The second point comes from the RSLR property of subject reduction, so by com-

bining the fact that the type is preserved by reduction and the uniqueness of D we

have that for all v P SpDq,$ v : A. l

The main feature of RSLR is the polytime soundness and completeness; before

presenting this result, we define a probabilistic function on t0, 1u� as a function

F : t0, 1u� Ñ Pt0,1u� , where Pt0,1u� is the set of probabilistic distributions. A term

t P TaAÑB
H is said to compute F if for every string m P t0, 1u� it holds that tm ó D,

where Dpnq � F pmqpnq, for every n P t0, 1u�. This means that tm evaluates to the

same probability distribution of Fm, so, the probability to get the value n as result

of tm is the same as the probabilty to have n as result of Fm. Now we can recall

the main characteristic of RSLR, a result which is well-known and can be proved in

various ways.

Theorem 3.1 The set of probabilistic functions which can be computed by RSLR

terms coincide with the polytime computable ones.

3.2 Examples of Programs in RSLR

We use this section to propose some programs written as RSLR terms; the purpose

is to describe the calculus and to introduce some programs that will be useful in the

following when we’ll deal with security examples.
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We start with two programs t, s that receive a string in input. The first one is

the identity. The second one, instead, produces a random string and compare it to

the one received in input; if they are different it is the identity, otherwise it returns

the opposite.

t :� λx : �Str.x s :� λx : �Str.caseStrpx � pRBG xq, x, x, xq

Where:

RBG :� λy : �Str.recStrpy, fRBG, fRBG, εq

fRBG :� λw : �Str.λz : �Str.caseStrprand, 0pzq, 1pzq, εq

Notice that, even if we haven’t defined = and  , they are easily implementable in

RSLR.

We give now a simple example of how the big step semantics of a RSLR term is

evaluated; we observe the term RBG applied to a string 01.

JRBG 01K �JRBGKpλy.recStrpy, fRBG, fRBG, εqq � J01Kp01q � JrecStrp01, fRBG, fRBG, εqK

�1 � 1 � JrecStrp01, fRBG, fRBG, εqK �

�J01Kp01q � JpfRBG01qprecStrp1, fRBG, fRBG, εqqK � JpfRBG01qprecStrp1, fRBG, fRBG, εqqK

We can easily say that JfRBG01K � JfRBGt01{wuK � tpλz.caseStrprand, 0pzq, 1pzq, εqq1u.

Furthermore we have:

JrecStrp1, fRBG, fRBG, εqK �J1Kp1q � JpfRBG1qprecStrpε, fRBG, fRBG, εqqK

So, by the fact that JrecStrpε, fRBG, fRBG, εqK � tε1u we have:

JrecStrp1, fRBG, fRBG, εqK �JcaseStrprand, 0pεq, 1pεq, εqK �

JrandKp0q � J0pεqK� JrandKp1q � J1pεqK � t0
1
2 , 1

1
2 u
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So, by substituting we have:

JRBG 01K �JpfRBG01qprecStrp1, fRBG, fRBG, εqqK �

�
1

2
� JcaseStrprand, 0p0q, 1p0q, εqK�

1

2
� JcaseStrprand, 0p1q, 1p1q, εqK �

�
1

2
� t00

1
2 , 10

1
2 u �

1

2
� t01

1
2 , 11

1
2 u �

�t00
1
4 , 01

1
4 , 10

1
4 , 11

1
4 u

Summing up, in this section we have introduced the calculus we will use in the

following of the thesis: RSLR; we showed its properties and so we have a calculus for

probabilistic polynomial time computation that is perfect to model cryptographic

primitives, protocol and potential adversaries. Now we are interested in observing

relations between terms of RSLR, in particular we want to find out a method that

proves the impossibility to observe differences between two terms.

So, we start from the following chapter, where we will talk about equivalence of

terms in RSLR and how to prove them in way easier than the quantification over all

possible observers.
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Chapter 4

Equivalences

In the previous chapter we described a calculus to probabilistic polynomial time

computation, RSLR; in this section we introduce different methods to compare pro-

grams written in RSLR, in particular we observe when we can say that to terms are

equivalent.

Why is this important? As we have seen in the introduction studying if two

programs are equivalent or not is a key point in security game-based proof, indeed

equivalence can be used to justify transitions from a game to another one. Intuitively,

we can say that two programs are equivalent if no one can distinguish between them

by observing their external visible behavior; a formalization of this intuition is given

by proposing the concept of context. A contexts is defined by taking the syntax of

terms and allowing one or more subterms to be a special variable r�s that is called

hole.

In this thesis we will focus our attention on contexts with at most one hole, we

will work particularly on linear contexts, that are contexts in which the hole lies

outside the scope of any recursion operator; once defined the syntax of contexts we

will give a definition of context equivalence and then we will propose two different

methods that characterize it.

47
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The first method is based on traces; we will define how a term evolves by perform-

ing a trace and then we will observe the differences between two terms performing

the same trace. Even if this method does not solve the problem of a universal quan-

tification, it allows us to work with traces that have a structure which is simpler

than contexts.

The second method is based on a coinductive approach; we will define a labeled

transition system by using a Markov chain and then we will define a binary relation

called applicative bisimulation on it. The strong point of this method is that we

don’t have a universal quantification, furthermore this is a method that is sound

w.r.t. all contexts, even if they are not linear; the weak point is that this method is

sound but not complete as we will see later.

4.1 Linear Contexts

Definition 6 A context is a term with a unique hole, defined by the following gram-

mar:

C ::� t | r�s | λx.C | Ct | tC | 0pCq | 1pCq | tailpCq

| caseApC, t, t, tq | caseApt, C, C, Cq | recApC, t, t, tq.

As we said before we focus our attention on linear contexts, indeed in order to

get a nonlinear context we have to extend the grammar above with the constructs

recApt, C, t, tq, recApt, t, C, tq, recApt, t, t, Cq, but, at the moment, this is not our inter-

est.

The purpose of contexts is to test terms and to find some difference between

them, so, given a term t we define Crts as the RSLR term we obtain by substituting

all the occurrences of r�s, if any, with t. We consider only contexts that are non-

binding, it means that they can be filled only by closed terms, so, in order to be
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more precise we give a typing system for contexts as happens as for terms, by the

rules showed in figure 4.1. A judgment of the form Γ $ Cr$ As : B means that C

Γ $ t : A

Γ $ trHs : A $ r$ As : A
Γ $ Cr$ As : Str

Γ $ 0pCr$ Asq, 1pCr$ Asq, tailpCr$ Asq : Str

x : bB,Γ $ Cr$ As : C

Γ $ λx.Cr$ As : bBÑ C

Γ; ∆1 $ Cr$ As : bBÑ C

Γ; ∆2 $ t : B Γ,∆2  : b

Γ; ∆1,∆2 $ Ctr$ As : C

Γ; ∆1 $ t : bBÑ C

Γ; ∆2 $ Cr$ As : B Γ,∆2  : b

Γ; ∆1,∆2 $ tCr$ As : C

Γ; ∆1 $ Cr$ As : Str Γ; Γ3 $ t1 : B

Γ; ∆2 $ t0 : B Γ; ∆4 $ tε : B

Γ; ∆1,∆2,∆3,∆4 $ caseBpC, t0, t1, tεqr$ As : B

Γ; ∆1 $ t : Str Γ; ∆3 $ C1r$ As : B

Γ; ∆2 $ C0r$ As : B Γ; ∆4 $ Cεr$ As : B

Γ; ∆1,∆2,∆3,∆4 $ caseBpt, C0, C1, Cεqr$ As : B

Γ1; ∆1 $ Cr$ As : Str Γ1,Γ2; Γ3; ∆2 $ tε : B

Γ1,Γ2 $ t0 : �Str Ñ �BÑ B Γ1,∆1  : �

Γ1,Γ3 $ t1 : �Str Ñ �BÑ B B � -free

Γ1,Γ2,Γ3; ∆1,∆2 $ recBpC, t0, t1, tεqr$ As : B

Figure 4.1: Context Typing Rules

must be filled only by a term of type A and, given t P TA we have Crts P TB
Γ.

Now that the notion of a context is properly defined, we can give one of the

central notions of this thesis, the definition of context equivalence.

Definition 7 (Context Equivalence) Given two terms t, s such that $ t, s : A,

we say that t and s are context equivalent iff for every context C such that $ Cr$

As : Str we have that:

JCrtsKpεq � JCrssKpεq
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.

What we are intuitively doing is taking all contexts and saying that two terms are

context equivalent if the probability that they return the empty string when filled

with the first one is the same than when they are filled with the second one; notice

that it is not restrictive to observe only the empty string as output, because we are

quantifying over all the contexts. Indeed if we suppose there exists a context C such

that JCrtsKpmq � JCrssKpmq for a certain string m, then we can immediately build

a context C 1 such that JC 1rtsKpεq � JC 1rssKpεq. By using some syntactic sugar we

have:

C 1r�s :� if pCr�s � mq then ε else 0

and so:

JC 1rtsKpεq � JCrtsKpmq � JCrssKpmq � JC 1rssKpεq

As we said before, it is obvious that a quantification over all contexts, even if only

linear, requires an huge amount of resources, so we need to find a simpler method

to prove this kind of equivalence.

4.2 Traces

The first method we propose to characterize context equivalence is based on traces,

so first of all we give a definition of trace.

Definition 8 A trace is a sequence of actions of the form a1 � a2 � � � an such that

ai P tpasspvq, viewpmq | v P V,m P VStru. Traces are indicated with metavariables

like T, S.

Given a term t : A, what a trace intuitively does is to pass a value if the term is

a function or to observe it if the term is a string; for this reason we give a notion of

compatibility of a trace with a type.
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Definition 9 The compatibility of a trace T with a type A (we write T : A) is

defined inductively on the structure of A. The empty trace ε is compatible with

every type; if A � Str then T � viewpmq, with m P VStr, or T � ε, otherwise, if

A � bB Ñ C then traces compatible with A are in the form T � passpvq � S with

v P VB and S is itself compatible with C.

With a slight abuse of notation, we often assume traces to be compatible to the

underlying type; furthermore we say that a trace is complete if it ends with the

action viewp�q or incomplete otherwise.

But, what does it mean for a term t to perform a compatible trace T? By the

probabilistic nature of our calculus we know that a term evolves to a distribution of

values, so when a trace passes a value or observes a string what it is actually doing is

passing a value to a distribution of functions or observing a distribution of strings.

By these reasons we think that it is more convenient to work directly with term

distributions, i.e. distributions whose support is a set of closed term of a certain

type A. We denote term distributions with metavariables like T, S and we formalize

the effect that traces have on term distributions by introducing the following binary

relations:

• The first relation is defined between term distributions and is called V; intu-

itively T V S iff T evolves to S by performing some internal moves.

• The second relation is defined between term distributions and is called ñ�; it

models internal and external moves.

• Finally we define a third relation ÞÑ� between term distributions and real num-

bers, it captures the probability of a term distribution to accept a certain trace.

Furthermore we will sometimes use the relation Ñ to indicate a single internal or

external move. These three relations are defined inductively by the rules in figure
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T ñε T
T ñS tpλx.tiq

piu

T ñS�passpvq tptitv{xuq
piu

T ñS S SV U

T ñS U

T ñS tpmiq
piu

T ÞÑS�viewpmq
°

mi�m pi

tÑ tptiq
piu

T � tptqpuV T � tptiq
p�piu

Figure 4.2: Binary Relations Rules

4.2.

The following gives basic, easy, results about the relations we have introduced:

Lemma 4.1 Let T be a term distribution for the type A. Then, there is a unique

value distribution D such that T V� D. As a consequence, for every trace T com-

patible for A there is a unique real number p such that T ÞÑT p. This real number is

denoted as PrpT,Tq.

Proof:

• Suppose that T is normal, i.e. all elements in the support are values, then we

have T � D and then the thesis.

• If T is not normal then there exists a set of indexes J such that tptjq
pjujPJ � T

aren’t values. We know by a previous lemma that for all j P J there exists a

unique Dj, value distribution, such that tj ó Dj in a finite number of steps.

So, if we set D � Tztptjq
pjujPJ �

°
jPJ pj �Dj we have T V� D with D normal

and we can say that for all T there exists T1 normal such that T ñε T1.

For example if we consider T � tpcaseStrprand, 0, 1, εqq
1
2 , p0q

1
2 u we have that

caseStrprand, 0, 1, εq is not a value, but we know:

caseStrprand, 0, 1, εq ó tp0q
1
2 , p1q

1
2 u



4.2. TRACES

so if we set

D � tp0q
1
2 u �

1

2
� tp0q

1
2 , p1q

1
2 u � tp0q

3
4 , p1q

1
4 u

we have T V� D, with D value distribution.

• Given T � S � passpvq we have by induction hypothesis that T ñS tpλx.tiq
piu.

Then, by performing the action passpvq we have T ñS�passpvq tptitv{xuq
piu, but,

by applying the previous point there exists T1 normal such that tptitv{xuq
piuV�

T1 and then by the binary relations rules we have T ñS�passpvq T1 normal distri-

bution.

• Suppose now that T � S � viewpmq then we have by induction hypothesis

T ñS T1 � tpmiq
piu with T1 unique; so, if we perform the action viewpmq we

have T ÞÑS�viewpmq p �
°
i;mi�m pi, that is unique by construction.

l

Now that we have defined the meaning of a term distribution to perform a trace

we are able to give the definition of trace equivalence.

Definition 10 Given two term distributions T, S we say that they are trace equiv-

alent (and we write T �T S) if, for all traces T it holds that:

PrpT,Tq � PrpS,Tq

In particular, then, two terms t, s are trace equivalent when tt1u �T ts1u and we

write t �T s in that case.

It is easy to prove that �T is an equivalence relation.

Proposition 4.1 Trace equivalence is an equivalence relation.

Proof: We have to prove that trace equivalence is reflexive, symmetric and transi-

tive.
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• �T is Reflexive:

For all T we have PrpT,Tq � p and p is unique. So for all T compatible,

PrpT,Tq � PrpT,Tq and then T �T T.

• �T is Symmetric:

For all T, S, if T �T S for all T compatible, PrpT,Tq � PrpS,Tq, then

PrpS,Tq � PrpT,Tq and so S �T T.

• �T is Transitive:

For all T, S,U if T �T S, S �T U then for all compatible traces T we have

PrpT,Tq � PrpS,Tq and PrpS,Tq � PrpU,Tq. But this means PrpT,Tq �

PrpU,Tq and so T �T U

l

We list now some of the properties of trace equivalence, that will be useful in

the following.

Lemma 4.2 Given two term distributions T, S such that T �T S then we have:

1. If T V T1 then T1 �T S.

2. If T Ñpasspvq T1 and SÑpasspvq S1 then T1 �T S1

Proof:

1. If T V T1 then by the binary relations rules we have T ñε T1. But, for all

traces T we have that PrpT,Tq � PrpT, ε � Tq, this means:

PrpT,Tq � PrpT, ε � Tq � PrpT1,Tq

and so we have that if PV P1 then for all traces T:

PrpT1,Tq � PrpT,Tq � PrpS,Tq

and so T1 �T S.
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2. This point comes by the fact that we quantify over a smaller set of traces.

Indeed if we suppose by contradiction that T1, S1 are not trace equivalent then

there exists a trace T such that PrpT1,Tq � PrpS1,Tq, but if this is true then:

PrpT, passpvq � Tq � 1 � PrpT1,Tq � 1 � PrpS1,Tq � PrpS, passpvq � Tq

so we have that T, S are not trace equivalent and then a contradiction.

l

4.3 Full Abstraction

As we have seen, it is easy to prove that trace equivalence is an equivalence relation.

The next step, then, is to prove that trace equivalence is compatible, thus paving the

way to a proof of soundness w.r.t. context equivalence. Unfortunately, the direct

proof of compatibility (i.e., an induction on the structure of contexts) simply does

not work: this happens because the operational semantics we defined does not allow

to observe how a term behaves in a context and so we have a lack of information

that makes the proof impossible. Following [19], we proceed by considering a refined

semantics, defined not on terms but on pairs whose first component is a context and

whose second component is a term distribution.

Definition 11 A context pair is a pair of the form pC,Tq, where the first term is

a context Cr$ As : B and the second is a term distribution such that all terms are

of type A. We define a (context) pair distribution P � tpCi,Tiq
piu as a distribution

over context pairs such that for all i we have $ Cir$ As : B and Ti : A.

We say that a pair distribution P � tpCi,Tiq
piuis normal if for all i and for all

t P SpTiq we have that Cirts is a value.

The purpose of using this approach based on pairs is to separate the reduction

of the contexts and the evolution of the term distributions in order to observe that
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the trace equivalence is preserved; by this reason we will observe how a pair pC,Tq

evolves following a trace step-by-step, and so we give a one-step semantics, defined

by the rules in figure 4.3. and a small-step semantics, by the rules in figure 4.4.

The following tells us that working with context pairs is the same as working

with terms as far as traces are concerned:

Lemma 4.3 Given a context C and a term distribution T if CrTs Ñ tpCirTisq
piu

then pC,Tq Ñ tpCi,Tiq
piu

Proof: The proof is given by observing the possible reductions.

• Suppose C to be term t, so we have CrTs � t. If it reduces t Ñ tptiq
piu, then

we have by the one step rules pt,Tq Ñ tpti,Tq
piu.

• If C � r�s then CrTs � T so if T reduces, we have T Ñ T1, By the one step

rules we have pr�s,Tq Ñ tpr�s,T1q1u.

• If the context is in the form Cv, we have that if C � λx.C 1 then

CrTsv Ñ tpC 1tv{xurTsq1u

Similarly:

pCv,Tq Ñ tpC 1tv{xu,Tq1u

Otherwise if C � r�s then:

rTsv Ñ tpT1q1u

but, similarly:

pr�sv,Tq Ñ tpr�s,T1q1u

• The other cases are similar, a simple application of the one step rules.

l
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T Ñpasspvq T1

pr�s,Tq Ñpasspvq tpr�s,T1q1u pλx.C,Tq Ñpasspvq tpCtv{xu,Tq1u

pm,Tq ÞÑviewpmq 1 pm1,Tq ÞÑviewpmq 0
T � tpmjq

pju

pr�s,Tq Ñ tpmj ,Tjq
pju

pC,Tq Ñ tpCi,Tiq
piu

p0pCq,Tq Ñ tp0pCiq,Tiq
piu

pC,Tq Ñ tpCi,Tiq
piu

p1pCq,Tq Ñ tp1pCiq,Tiq
piu

pC,Tq Ñ tpCi,Tiq
piu

ptailpCq,Tq Ñ tptailpCiq,Tiq
piu

tÑ tptiq
piu

pt,Tq Ñ tpti,Tiq
piu

T Ñ T1

pr�s,Tq Ñ tpr�s,T1q1u

pC,Tq Ñpasspvq tpC 1,T1q1u

pCv,Tq Ñ tpC 1,T1q1u

pC,Tq Ñ tpCi,Tiq
piu

pCt,Tq Ñ tpCit,Tiq
piu

tÑ tptiq
piu Crvs value, @v P SpTq

pCt,Tq Ñ tpCti,Tiq
piu

pC,Tq Ñ tpCi,Tiq
piu

pvC,Tq Ñ tpvCi,Tiq
piu

tÑ tptiq
piu

ptC,Tq Ñ tptiC,Tiq
piu

ppλx.Cqv,Tq Ñ tpCtv{xu,Tq1u
pC,Tq P V

ppλx.tqC,Tq Ñ tpttC{xu,Tq1u

tÑ tptiq
piu

pcaseApt, C0, C1, Cεq,Tq Ñ tpcaseApti, C0, C1, Cεq,Tiq
piu

(C,Tq Ñ tpCi,Tiq
piu

pcaseApC, t0, t1, tεq,Tq Ñ tpcaseApCi, t0, t1, tεq,Tiq
piu

pcaseAp0m, C0, C1, Cεq,Tq Ñ tpC0,Tq
1u pcaseAp1m, C0, C1, Cεq,Tq Ñ tpC1,Tq

1u

pcaseApε, C0, C1, Cεq,Tq Ñ tpCε,Tq
1u

pC,Tq Ñ tpCi,Tiq
piu

precApC, t0, t1, tεq,Tq Ñ tprecApCi, t0, t1, tεqq
pi ,Tiq

piu

Figure 4.3: Context Pairs: One-Step Semantics
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Pñε P
PñS P1 P1 V P2

PñS P2

PñS tpCi,Tiq
piu pCi,Tiq Ñ

passpvq tpC 1
i,T

1
iq

1u

PñS�passpvq tpC 1
i,T

1
iq
piu

PñS tpmi,Tiq
piu

P ÞÑS�viewpmq
°
i;mi�m pi

pC,Tq Ñ tpCi,Tiq
piu

P� tpC,TqpuV P� tpCi,Tiq
p�piu

Figure 4.4: Small-Step Rules

Lemma 4.4 Suppose given a context C, a term distribution T, and a trace S. Then

if pC,Tq ñS tpCi,Tiq
piu then CrTs ñS tpCirTisq

piu. Moreover, if pC,Tq ÞÑS p, then

PrpCrTs, Sq � p.

Proof:

• If S � ε, we know that if CrTs ñε tpCirTisq
piu also pC,Tq ñε tpCi,Tiq

piu

because the correspondence is preserved by internal reductions.

• If S � S1 � passpvq then we have CrTs ñS1 tpCirTisq
piu and, by induction

hypothesis pC,Tq ñS1 tpCi,Tiq
piu. For all i, if Ci � r�s then

CirTs � Ti Ñ
passpvq tpT1iq

1u

but, similarly:

pCi,Tiq � pr�s,Tiq Ñ
passpvq tpr�s,T1iqu

Otherwise, if CirTis � λx.C 1
irTis then

λx.C 1
irTis Ñ

passpvq tC 1
itv{xurTis

1u

Similarly:

pλx.C 1
i,Tiq Ñ

passpvq tpC 1
itv{xu,Tiq

1u
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and so the thesis.

• If S � S1 � viewpmq with S1 incomplete trace, by the previous point we have

that CrTs ñS1 tpmiq
piu and pC,Tq ñS1 tpmi,Tiq

piu. So we have

PrpC, Sq �
¸

pi � pmirTis ÞÑ
viewpmqq �

¸
pi �

1, if mi � m;

0, if mi � m;
�

�
¸

pi � ppmi,Tiq ÞÑ
viewpmqq � pC,Tq ÞÑS

l

But how could we exploit context pairs for our purposes? The key idea can be

informally explained as follows: there is a notion of “relatedness” for pair distri-

butions which not only is stricter than trace equivalence, but can be proved to be

preserved along reduction, even when interaction with the environment is taken into

account.

Definition 12 (Trace Relatedness) Let P,Q be two pair distributions. We say

that they are trace-related, and we write POQ if there exist families tCiuiPI , tTiuiPI ,

tSiuiPI , and tpiuiPI such that P � tpCi,Tiq
piu,Q � tpCi, Siq

piu and for every i P I, it

holds that Ti �
T Si.

The first observation about trace relatedness has to do with stability with respect

to internal reduction; before going into the details of the proof we observe the

different cases in which a couple pC,Tq reduces to a distribution tpCi,Tiq
piu.

In the following we analyze the four situations in which a couple reduces and the

basic cases.

1. Term Distribution Reduction

This is the case in which we have a reduction inside the hole without interaction

between the term distribution and the context, that is the case in which the
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derivation starts from the premise T Ñ T1:

T Ñ T1

pr�s,Tq Ñ tpr�s,T1q1u
T Ñ T1

pvr�s,Tq Ñ tpvr�s,T1q1u

T Ñ T1

pr�st,Tq Ñ tpr�st,T1q1u
T Ñ T1

pcaseApr�s, t0, t1, tεq,Tq Ñ tpcaseApr�s, t0, t1, tεq,T
1q1u

T Ñ T1

precApr�s, t0, t1, tεq,Tq Ñ tprecApr�s, t0, t1, tεq,T
1q1u

2. Mixed Reduction

This is the case in which the context passes some value v to the term distri-

bution. These derivations start from the premise T Ñpasspvq T1.

T Ñpasspvq T1

pr�sv,Tq Ñ tpr�s,T1q1u
T Ñpasspvq T1

pcaseApr�sv, t0, t1, tεq,Tq Ñ tpcaseApr�s, t0, t1, tεq,T
1q1u

T Ñpasspvq T1

precApr�sv, t0, t1, tεq,Tq Ñ tprecApr�s, t0, t1, tεq,T
1q1u

3. Reduction Without Observation

This is the case in which the context reduces without interacting with the term

distribution. These reductions starts from the premise tÑ ttpii u.

tÑ ttpii u

pt,Tq Ñ tpti,Tq
piu

tÑ ttpii u

ptC,Tq Ñ tptiC,Tq
piu

tÑ ttpii u C is a value

pCt,Tq Ñ tpCti,Tq
piu

tÑ ttpii u

pcaseApt, C0, C1, Cεq,Tq Ñ tpcaseApti, C0, C1, Cεq,Tq
piu

4. Reduction with Observation

This is the case in which the term distribution is a string distribution and so
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the context is allowed to observe it. These reductions start from the premise

T � tm
pj
j u.

T � tm
pj
j u

pr�s,Tq Ñ tpmj,Tq
pju

T � tm
pj
j u

p0pr�sq,Tq Ñ tp0pmjq,Tq
pju

T � tm
pj
j u

p1pr�sq,Tq Ñ tp1pmjq,Tq
pju

T � tm
pj
j u

ptailpr�sq,Tq Ñ tptailpmjq,Tq
pju

T � tm
pj
j u

pλx.tr�s,Tq Ñ tpλx.t mj,Tq
pju

T � tm
pj
j u

pcaseApr�s, t0, t1, tεq,Tq Ñ tpcaseApmj, t0, t1, tεq,Tq
pju

T � tm
pj
j u

precApr�s, t0, t1, tεq,Tq Ñ tprecApmj, t0, t1, tεq,Tq
pju

Notice that, after the observation, the context becomes a family of simple

terms.

Now we can go into details and prove that relatedness between two pair distri-

butions is preserved by internal reductions.

Lemma 4.5 (Internal Stability) Let P,Q two pair distributions such that POQ,

then if PV P1 there exists Q1 such that Qñε Q1 and P1OQ1.

Proof: Let’s see all the possible reductions of a pair distribution P

1. Term distribution reduction, pC,Tq Ñ tpC,T1q1u.

By definition we know that, given pC,Tqp P P, there exists pC, Sqp P Q such

that T �T S. Then by the trace equivalence properties we know T1 �T S, so

we have:

PV P1 � PztpC,Tqpu Y tpC,T1qpu

and obviously P1OQ
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2. Mixed Reduction pC,Tq Ñ tpC 1,T1q1u

This is the case in which the context passes a value to the hole, then we have

a transition with probability 1. Suppose P Q pC,Tqp Ñ tpC 1,T1qpu then there

exists Q Q pC, Sqp Ñ tpC 1, S1qpu, because the context are the same by definition

and T1 �T S1 by the trace equivalence properties. Then we have:

PV P1 � PztpC,Tqpu Y tpC 1,T1qpu

QV Q1 � QztpC, Sqpu Y tpC 1, S1qpu

with P1OQ1.

3. Reduction without observation pC,Tq Ñ tpCi,Tq
piu.

By definition we know that there exists pC, Sqp P Q that reduces the same way,

so we have:

PV P1 � PztpC,Tqpu Y tpCi,Tq
p�piu

QV Q1 � QztpC, Sqpu Y tpCi, Sq
p�piu

and obviously P1OQ1.

4. Observation Reduction pC,Tq Ñ tptj,Tq
pju.

Suppose that T � tpmjq
pju, then we can also suppose that S � tm

qj
j u and

T �T S (Otherwise we have S Ñ� S1 � tm
qj
j u with T �T S1 by the trace

equivalence properties). Then we have:

PV PztpC,Tqpu Y tptj,Tjq
p�pju

QV QztpC, Sqpu Y tptj, Sjq
p�qju

but T �T S so we have pj � qj for all j and so the thesis.

l

Once Internal Stability is proved, and since the relation V can be proved to be

strongly normalizing also for context pair distributions, one gets that:
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Lemma 4.6 (Bisimulation, Internally) If P,Q are pair distributions, with POQ

then there are P1,Q1 normal distributions such that Pñε P1, Qñε Q1 and P1OQ1.

Proof: The proof comes from the fact that, given P if it is not normal, there is P1

normal such that P V� P1, and by the previous lemma we have P1OQ. Then if Q

isn’t normal we can repeat the procedure and get Q1 such that QV� Q1 and P1OQ1.

l

The next step consists in proving that context pair distributions which are trace

related are not only bisimilar as for internal reduction, but also for external reduc-

tion:

Lemma 4.7 (Bisimulation, Externally) Given two pair distributions P,Q with

POQ, then for all traces S we have:

1. If P ñS R, with R normal distribution, then Q ñS W, where ROW and W is a

normal distribution too.

2. If P ÞÑS p and Q ÞÑS q then p � q.

Proof: We act by induction on the length of S.

• If S � ε then by lemma 4.6 we get the thesis. Suppose now S � S1 �passpvq then

we have by induction hypothesis: PñS1 tpCi,Tiq
piuiPI and QñS1 tpCi, Siq

piuiPI

with Ti �
T Si for all i P I and the two pair distributions normal. But, by the

one-step rules we have only two possible derivations for an action passpvq:

pλx.C,Tq Ñpasspvq tpCtv{xu,Tq1u
T Ñpasspvq T1

pr�s,Tq Ñpasspvq tpr�s,T1q1u

So if we set J � tj P I | Cj � λx.C 1
ju, K � tk P I | Ci � r�su we have:

PñS1 tpλx.C 1
j,Tjq

pju � tpr�s,Tkq
pku QñS1 tpλx.C 1

j, Sjq
pju � tpr�s, Skq

pku

At this point, if Tk Ñ
passpvq T1k and Sk Ñ

passpvq S1k we know T1k �
T S1k for all k,

so by using the one step rule we set:

P1 � tpCjtv{xu,Tjq
pju � tpr�s,T1kq

pku Q1 � tpCjtv{xu, Sjq
pju � tpr�s, S1kq

pku
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and we have P ñS1�passpvq P1, Q ñS�passpvq Q1 with P2OQ2; and so by applying

lemma 4.6 we get the (1) thesis.

• Suppose now S � S1 � viewpmq.

By induction we know that PñS1 tpmi,Tiq
piu,QñS1 tpmi, Siq

piu with Ti �
T Si

for all i P I and that the two pair distributions are normal. So we know:

PñS1 tpmj,Tjq
pju QñS1 tpmj, Sjq

pju

So we have:

P ÞÑS1�viewpmq p �
¸

mj�m

pj Q ÞÑS1�viewpmq q �
¸

mj�m

pj

and so p � q

l

Lemma 4.8 Given two term distributions T, S such that T �T S, then for all con-

texts C, for all traces S we have: PrpCrTs, Sq � PrpCrSs, Sq

Proof:

• If the trace S doesn’t end with the action viewp�q then PrpCrTs, Sq � 1 �

PrpCrSs, Sq.

• Otherwise we know that pC,Tq ÞÑS p, we can write PrppC,Tq, Sq � p, and by

Lemma 4.7 we know pC, Sq ÞÑS p. But by Lemma 4.4 we know PrpCrTs, Sq �

PrppC,Tq, Sq � PrppC, Sq, Sq � PrpCrSs, Sq and then the thesis.

l

We are now in a position to prove the main result of this section:
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Theorem 4.1 Trace equivalence is a congruence.

Proof: We have to prove that, given two terms t, s such that t �T s then for all

contexts C, we have that Crts �T Crss, i.e., for all traces S we have PrpCrts, Sq �

PrpCrss, Sq. But by Lemma 4.4 and Lemma 4.7 we have, indeed, that PrpCrts, Sq �

PrppC, tt1uq, Sq � PrppC, ts1u, Sq � PrpCrss, Sq, because the two pair distributions

tpC, tt1uq1u and tppC, ts1uqq1u are trace-related. l

Corollary 4.1 (Soundness) Trace equivalence is included into context equivalence.

Proof: If t �T s, then by the previous theorem we have that for all contexts C

we have Crts �T Crss and this means that if we choose a trace T � viewpεq then

we have JCrtsKpεq � PrpCrts, viewpεqq � PrpCrss, viewpεqq � JCrssKpεq, and so the

thesis. l

Theorem 4.2 (Full Abstraction) Context equivalence coincides with trace equiv-

alence

Proof: For any admissible trace T for A, there is a context CTr�s such that Prpt,Tq �

JCTrtsKpεq, which can be proved by induction on the structure of A. l

4.4 Typed Relations and Applicative Bisimula-

tion

As we already discussed, the quantification over all contexts makes the task of prov-

ing two terms to be context equivalent burdensome, even if we restrict to linear

contexts and we cannot say that trace equivalence really overcomes this problem:

there is a universal quantification anyway, even if contexts are replaced by objects

(i.e. traces) having a simpler structure. It is thus natural to look for other tech-

niques. The interactive view provided by traces suggests the possibility to go for
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coinductive techniques akin to Abramsky’s applicative bisimulation, which has al-

ready been shown to be adaptable to probabilistic λ-calculi [30, 17].

Applicative bisimulation is a typed relation defined on a Labeled Transition

System, so in this section we will start by introducing the concept of typed relation

and some useful propertis, then we will present the Labeled Transition System on

which we define the applicative bisimulation and we will show that it is a sound

method to prove that two terms are context equivalent (even if the context is not

linear), but not complete.

Definition 13 We define a typed relation R as a family R � tRA
ΓuΓ,A, where each

relation RA
Γ is a binary relation on TA

Γ.

Given two terms t, s P TA
Γ we write Γ $ t R s : A to say that they are in relation

RA
Γ.

Definition 14 Let R be a typed relation, we say that R is:

• Reflexive: If for all t P TA
Γ we have Γ $ t R t : A.

• Symmetric: If Γ $ t R s : A implies Γ $ s R t : A.

• Transitive: If Γ $ t R s : A and Γ $ s R r : A imply Γ $ t R r : A

The other concept which plays a key role in typed relations and then in this work

is compatibility.

Definition 15 We define a typed relation R compatible if it satisfies the the fol-

lowing conditions:

1. For all x : aA P Γ:

Γ $ x R x : aA

2. For all t, s, x

Γ, x : aA $ t R s : B ñ Γ $ λx.t R λx.s : aAÑ B
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3. For all t1, t2, s1, s2:

Γ; ∆1 $ t1 R t2 : aAÑ B ^ Γ; ∆2 $ s1 R s2 : A ñ

ñ Γ; ∆1,∆2 $ t1s1 R t2s2 : B

4. For all t, t0, t1, tε, s, s0, s1, sε:

Γ; ∆ $ t R s : Str ^ Γ; ∆0 $ t0 R s0 : A

Γ; ∆1 $ t1 R s1 : A ^ Γ; ∆ε $ tε R sε : A ñ

ñ Γ; ∆,∆0,∆1,∆ε $ caseApt, t0, t1, tεq R caseApt, t0, t1, tεq

5. For all t, t0, t1, tε, s, s0, s1, sε:

Γ1; ∆1 $ t R s : Str ^ Γ1,Γ2 $ t0 R s0 : �StrÑ �AÑ A ^

Γ1,Γ3 $ t1 R s1 : �StrÑ �AÑ A ^ Γ1,Γ2,Γ3; ∆2 $ tε R sε : A ñ

ñ Γ1,Γ2,Γ3; ∆1,∆2 $ recApt, t0, t1, tεq R recApt, t0, t1, tεq

A relation R is said a precongruence relation if it is transitive and compatible; if a

precongruence relation is symmetric we call it a congruence relation.

Another important concept when we talk about binary relations is the open

extension of a relation R; in order to define it we need to introduce the Γ-closure of

a term.

Definition 16 Given a typing context Γ � x1 : a1A1, ..., xn : anAn, we call a map

ξ : txiui�1,...,n Ñ tVAiui�1,...,n that assigns a value vi P VAi to each variable xi a

Γ-closure.

Given a term t such that Γ $ t : A then we write tξ to indicate the term obtained by

subsitituting the free varibles of t by the Γ-closure ξ.

Definition 17 If R is a typed binary relation, we define the open extension R�, by

saying that two terms t, s, such that Γ $ t, s : A are in relation R�, we write t R� s,

iff for all Γ-closures ξ we have $ tξ R sξ : A.
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As we said before, applicative bisimulation is defined on a Labeled Transition

System, so now we introduce the LTS we choose: the Labeled Markov Chain.

Definition 18 We define a Labeled Markov Chain as a triple M � pS, L,Pq where:

• S � tpt,Aq | t P TAu
�
tpv,Aq | v P VAu is the set of states and it is composed

by the disjoint union of the set of terms and values coupled with their type.

• L � teval, passp�q, viewp�qu is the set of labels. The labels passp�q, viewp�q rep-

resent the same concept we used in traces, the eval label is the evaluation of

a term to a value (It will be more clear when we will define the probability

measure P).

• P : pS,Aq�L�pS,Aq Ñ Rr0,1s is a probability measure; it returns the probability

to pass from a state of the Markov chain to another by a certain label. It is

defined as follows:

Pppt,Aq, eval, pv,Aqq � JtKpvq

Pppλx.t, aAÑ Bq, passpvq, pttv{xu,Bqq � 1

Pppm, Strq, viewpmq, pm, Strqq � 1

Pppm, Strq, viewpmq1, pm, Strqq � 0

Now we are able to give the definition of applicative bisimulation.

Definition 19 Given a Labeled Markov Chain M � pS, L,Pq a probabilistic ap-

plicative bisimulation is an equivalence relation R between the states of the Markov

Chain such that, given two states t, s we have t R s : A if and only if for each

equivalence class E modulo R we have:

Pppt,Aq, l, Eq � Ppps,Aq, l, Eq

We say that two terms are bisimilar if there exists a bisimulation between them.
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We give an alternative definition of applicative bisimulation which is equivalent

to the previous one but it will be more useful in the congruence proof.

Definition 20 A probabilistic applicative bisimulation is defined to be any type-

indexed family of relations tRAuAPA such that for each A, RA is an equivalence rela-

tion over the set of closed terms of type A, and moreover the following holds:

• If t RA s, then for every equivalence class E modulo the relation RA, it holds

that JtKpEq � JsKpEq, where JtKpEq �
°
vPEJtKpvq.

• If pλx.tq RaAÑB pλx.sq, then for every closed value v of type A, it holds that

pttv{xuq RB pstv{xuq.

• If m RStr n, then m � n.

It is possible to prove that the greatest applicative bisimulation exists [30, 17],

it consists of the union (at any type) of all bisimulation relations and it is denoted

with �. We call � (applicative)bisimilarity and we can generalize it to a relation

�� on open terms by the usual open extension.

How do we prove that bisimilarity is included in context equivalence? We prove

that �� is a congruence by using the so called Howe’s method, a general way for

establishing congruence properties of a relation. Given a binary relation R, Howe’s

method consists in defining a lifting of this relation RH , which is easy to prove that

is compatible; it is simple to see that R � RH so, by showing that RH � R we will

prove that R � RH and so if RH is a congruence also R is.

Definition 21 We define Howe’s lifting �H� of the bisimilarity �� by the rules in

the following:

m �� t

m �H� t

x �� t

x �H� t
t �H� s λx.s � r

λx.t �H� r

t1 �
H
� s1

t2 �
H
� s2 s1s2 � r

t1t2 �
H
� r
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t �H� s

t0 �
H
� s0 tε �

H
� sε

t1 �
H
� s1 caseAps, s0, s1, sεq � r

caseApt, t0, t1, tεq �
H
� r

t �H� s

t0 �
H
� s0 tε �

H
� sε

t1 �
H
� s1 recAps, s0, s1, sεq � r

recApt, t0, t1, tεq �
H
� r

It is easy to prove that for every binary relation R in RSLR the following results are

valid.

Lemma 4.9 If R is reflexive, then RH is compatible. Moreover if Γ $ t R s : A

then Γ $ t RH s : A and so RH is reflexive.

Proof: This is proved by induction on the structure of t. l

Definition 22 We define pRH
� q

� as the transitive closure of RH
� by the following

rules:
t RH

� s

tpRH
� q

�s

tpRH
� q

�s spRH
� q

�r

tpRH
� q

�r

Proposition 4.2 If R is reflexive and compatible then also pRq� is compatible

Proof: The proof is given by induction on the derivation of p�H� q
�. l

So we know that �� is an equivalence relation, so is reflexive and then �H� is com-

patible; but �H� is also reflexive and then p�H� q
� is compatible. Our goal is now to

show that p�H� q
� ���, but since we defined �� as the union of all bisimulations it

is sufficient to prove that p�H� q
� is a bisimulation to obtain that inclusion. The first

step to reach this result is given by the following lemma.

Lemma 4.10 (Key Lemma) Given two terms t, s, we have:

• If $ t �H� s : aAÑ B, then for all E P TB
x:aA{�H

�
equivalence class modulo �H�

it holds that JtKpλx.Eq � JsKpλx.Eq.

• If $ t �H� s : Str, then for all m P VStr we have JtKpmq � JsKpmq.
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Proof: We work by induction on the derivation of JtK.

• Suppose t is a value. If t � m1 by Howe’s derivation rules we know that

$ m1 �H� s iff:

$ m1 �� s

$ m1 �H� s

that means m1 �� s and then for all m P VStr,

Jm1Kpmq � JsKpmq

So the thesis. Similarly, if t � λx.t1, by Howe’s derivation rules we know:

t1 �H� s1 λx.s1 �� s

λx.t1 �H� s

So, given E P TB
x:aA{�H

�
we have:

Jλx.t1Kpλx.Eq �

$&
%

1, if t1 P E;

0, otherwise.
�

$&
%

1, if s1 P E;

0, otherwise.
�

�Jλx.s1Kpλx.Eq � JsKpλx.Eq

• Suppose now t � caseaAÑBpt
1, t10, t

1
1, t

1
εq, then: $ caseaAÑBpt

1, t10, t
1
1, t

1
εq �

H
� s :

aAÑ B, which is derived from:

t1 �H� s1

t10 �
H
� s10 t1ε �

H
� s1ε

t11 �
H
� s11 caseaAÑBps

1, s10, s
2
1, sεq � s

caseaAÑBpt
1, t10, t

1
1, t

1
εq �

H
� s
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Then for all E P TB
x:aA{�H

�
we have by induction hypothesis:

JtKpλx.Eq �JcaseaAÑBpt
1, t10, t

1
1, t

1
εqKpλx.Eq �

�Jt1KpεqJt1εKpλx.Eq �
¸
m

Jt1Kp0mqJt10KpEq �
¸
m

Jt1Kp1mqJt11KpEq �

�Js1KpεqJs1εKpλx.Eq �
¸
m

Js1Kp0mqJs10KpEq �
¸
m

Js1Kp1mqJs11KpEq �

�JsKpλx.Eq

If t � caseStrpt
1, t10, t

1
1, t

1
εq : Str the proof is similar to the previous case.

• Suppose now t � t1t2 : aA Ñ B and so we have $ t1t2 �
H
� s : aA Ñ B that is

derived from:

t1 �
H
� s1

t2 �
H
� s2 s1s2 � r

t1t2 �
H
� r

We have to face two different cases: t2 P TStr and t2 P TcCÑD. If t2 P TStr then

for all E P TB
x:aA{�H

�
we have:

JtKpλx.Eq �Jt1t2Kpλx.Eq �

�
¸

m1PVStr

Jt2Kpm1q

�
� ¸
ErPVaAÑB

y:aStr

¸
rPEr

Jt1Kpλy.rqJrtm1{yuKpλx.Eq

�
�

�
¸

m1PVStr

Jt2Kpm1q

�
� ¸
ErPVaAÑB

y:aStr

Jt1Kpλy.ErqJErtm1{yuKpλx.Eq

�
�

�
¸

m1PVStr

Js2Kpm1q

�
� ¸
ErPVaAÑB

y:aStr

Js1Kpλy.ErqJErtm1{yuKpλx.Eq

�
�

�Js1s2Kpλx.Eq � JsKpλx.Eq
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If t2 P TcCÑD then we have:

JtKpλx.Eq � Jt1t2Kpλx.Eq �

�
¸

EvPVD
z:cC

¸
vPEv

Jt2Kpλz.vq

�
� ¸
ErPVaAÑB

y:cCÑD

¸
rPEr

Jt1Kpλy.rqJrtλz.v{yuKpλx.Eq

�
�

�
¸

EvPVD
z:cC

Jt2Kpλz.Evq

�
� ¸
ErPVaAÑB

y:cCÑD

Jt1Kpλy.ErqJErtλz.Ev{yuKpλx.Eq

�
�

�
¸

EvPVD
z:cC

Js2Kpλz.Evq

�
� ¸
ErPVaAÑB

y:cCÑD

Js1Kpλy.ErqJErtλz.Ev{yuKpλx.Eq

�
�

� Js1s2Kpλx.Eq � JsKpλx.Eq

The case t � t1t2 : Str is similar to the previous one.

• Finally, if t � recaAÑBpt
1, t10, t

1
1, t

1
εq then we have $ recaAÑBpt

1, t10, t
1
1, t

1
εq �

H
� s

which is derived from:

t1 �H� s1

t10 �
H
� s0 t1ε �

H
� s1ε

t11 �
H
� s1 recaAÑBps

1, s10, s
1
1, s

1
εq � s

recaAÑBpt
1, t10, t

1
1, t

1
εq �

H
� s
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then for all E P VB
x:a{�H

�
we have:

JtKpλx.Eq � JrecaAÑBpt
1, t10, t

1
1, t

1
εqKpλx.Eq �

� Jt1KpεqJtεKpλx.Eq�

�
¸

mPVStr

Jt1Kp0mqJpt100mqprecaAÑBpm, t
1
0, t

1
1, tεqqKpλx.Eq�

�
¸

mPVStr

Jt1Kp1mqJpt111mqprecaAÑBpm, t
1
1, t

1
1, tεqqKpλx.Eq �

� Js1KpεqJsεKpλx.Eq�

�
¸

mPVStr

Js1Kp0mqJps100mqprecaAÑBpm, s
1
0, s

1
1, sεqqKpλx.Eq�

�
¸

mPVStr

Js1Kp1mqJps111mqprecaAÑBpm, s
1
1, s

1
1, sεqqKpλx.Eq �

� JsKpλx.Eq

The case t � recStrpt
1, t10, t

1
1, t

1
εq is similar to the previous one.

So we have the thesis. l

Theorem 4.3 p�H� q
� is a bisimulation.

Proof: We work by induction on the derivation of p�H� q
�, proving that p�H� q

�

satisfies the three points of the definition above. This, in particular, relies on the

Key Lemma. l

Theorem 4.4 Bisimilarity is a congruence.

Proof: The proof comes easily from the fact that p�H� q
� is a congruence. Indeed it

is transitive and symmetric by definition and also compatible. By the definition of

p�H� q
� we have that ����

H
� � p�

H
� q

�, but the theorem above tells us that p�H� q
�

is a bisimulation, and that it must be included in ��, the symmetric and transitive
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closure of all the bisimulations. So we have ��� p�
H
� q

� ^ p�H� q
� ��� which means

that ��� p�
H
� q

�, and we get the thesis, namely that �� is a congruence. l

As usual, being a congruence has soundness as an easy corollary:

Corollary 4.2 (Soundness) Bisimilarity is included in context equivalence.

Is there any hope to get full abstraction? The answer is negative: applicative

bisimilarity is too strong to match context equivalence. A counterexample to that

can be built easily following the analogous one from [30]. Consider the following

two terms:

t � λx.if rand then true else false

s � if rand then pλx.trueq else pλx.falseq

where we have used some easy syntactic sugar. It is easy to show that t and s are

trace equivalent, thus context equivalent. On the other hand, t and s cannot be

bisimilar. This, however, is not the end of the story on coinductive methodologies

for context equivalence in RSLR. A different route, suggested by trace equivalence,

consists in taking the naturally definable (deterministic) labeled transition system

of term distributions and ordinary bisimilarity over it. What one obtains this way

is a precise characterization of context equivalence. There is a price to pay however,

since one is forced to reason on distributions rather than terms.

Summing up, in this chapter we started to compare RSLR terms, discussing

about equivalences; we showed how we can use traces to compare terms instead of

arbitrary contexts and obtain the same results. Furthermore we propose a different

approach based on coinduction, the applicative bisimulation, which is easier, due

to the fact that eliminates the universal quantifications, but too strict; indeed we

propose an example that reveals that this method is not complete. In the following

chapter we will relax our constraints and observe a method to evaluate distances

between terms, so that we are able to say how different two terms are.
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Chapter 5

Metrics

In this section we move from equivalences to metrics. As we have seen we consider

two programs t, s equivalent when for all linear contexts C we have that the proba-

bility that Crts outputs the empty string is exactly the same of Crss; we also proved

that this is equivalent to observe the probability to perform all traces.

Actually, we can easily notice that asking exactly for the same probability is a

constraint which is too strong; in security and cryptography what we are requested

to prove is that an adversary is not able to distinguish between two program, so

this means that if the adversary is provided of a limited power of calculus it is not

necessary that two programs behave exactly in the same way, what we need is that

they are similar enough so that he can’t distinguish between them.

For this reason, in this section we generalize the concept of equivalence by defin-

ing a notion of distance between programs so that we can evaluate how far two

programs are, and this will be useful to declare how an adversary is able to separate

them. The first step will be the definition of two distances, the first one based on

contexts and the second of traces; then, in order to prove that the two distances are

the same we will show that it is necessary to make a small change on the structure

of traces, in particular we will show that it is necessary to modify the argument of

the action viewp�q.

77
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5.1 Context and Trace Metrics

Definition 23 The context distance is a function δCA : TA�TA Ñ Rr0,1s defined for

every type A such that, given two terms t, s P TA we have:

δCpt, sq � sup
$Cr$As:Str

| JCrtsKpεq � JCrssKpεq |

For every type A the function δCA is a pseudometric on the space of closed terms,

indeed it is obvious that:

• δCpt, sq � 0 iff t �C s,

because for all C we have JCrtsKpεq � JCrssKpεq.

• δCpt, sq � δCps, tq,

by the property of absolute value.

• δCpt, sq ¤ δCpt, rq � δCpr, sq,

indeed we have:

δCpt, sq � sup
$Cr$As:Str

| JCrtsKpεq � JCrssKpεq | �

� sup
$Cr$As:Str

| JCrtsKpεq � JCrrsKpεq � JCrrsKpεq � JCrssKpεq | ¤

¤ sup
$Cr$As:Str

| JCrtsKpεq � JCrrsKpεq | � sup
$Cr$As:Str

| JCrrsKpεq � JCrssKpεq | �

�δCApt, rq � δ
C
Apr, sq

With δC we refer to the family tδCAuAPA.

Now by using a similar reasoning we can give the definition of trace distance.

Definition 24 For every type A we define trace distance the function δT such that

δTA : TA � TA Ñ Rr0,1s and, given t, s P TA:

δTApt, sq � sup
T:A
| Prpt,Tq � Prps,Tq |
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It is easy to realize that δT is a pseudometric; we have:

• δTApt, sq � 0 iff t �T s,

because for all T we have Prpt,Tq � Prps,Tq.

• δTpt, sq � δTps, tq,

by the property of the absolute value.

• δTpt, sq ¤ δTpt, rq � δTpr, sq.

Indeed we have:

δTpt, sq � sup
T
| Prpt,Tq � Prps,Tq | �

� sup
T
| Prpt,Tq � Prpr,Tq � Prpr,Tq � Prps,Tq | ¤

¤ sup
T
| Prpt,Tq � Prpr,Tq | � sup

T
| Prpr,Tq � Prps,Tq | �

�δTApt, rq � δ
T
Apr, sq

We refer to δT to the family tδTAuAPA and now we show some properties of the

trace distance δT applied on term distributions.

Lemma 5.1 Given two term distributions T, S such that δTpT, Sq � d then we have:

1. If T V T1 then δTpT1, Sq � d.

2. If T ñpasspvq T1, Sñpasspvq S1 the we have δTpT1, S1q ¤ d

Proof:

1. If T V T1 we have by the small-step rules that T ñε T1 and then:

PrpT,Tq � PrpT, ε � Tq � PrpT1,Tq

so, if for all traces T we have that PrpT,Tq � PrpT1,Tq then we have the thesis,

δTpT, Sq � δTpT1, Sq.



5.2. FULL ABSTRACTION

2. It comes from the fact that the quantification is over a smaller set of traces,

so the distance can’t be greater.

l

5.2 Full Abstraction

How do we proceed if we want to prove that trace metric coincides with context

metric? Could we proceed more or less like in the equivalences case? The answer

is positive, but we need to be careful, let’s observe the following example. Suppose

T, S be two string distributions such that:

T �tp00q
1
4
�d, p01q

1
4
�d, p10q

1
4
�d, p11q

1
4
�du

S �tp00q
1
4 , p01q

1
4 , p10q

1
4 , p11q

1
4 u

It is easy to evaluate the trace distance between T and S that is: δTpT, Sq � d, but,

what about the context distance δC?. Let’s consider the context Cr$ Strs : Str:

C :� caseStrpr�s, ε, 0, 0q

We have:

JCrTsK �tpεq
1
2
�2�d, p0q

1
2
�2�du

JCrSsK �tpεq
1
2 , p0q

1
2 u

ando so: δCpT, Sq ¥ 2 � d ¡ δTpT, Sq.

The solution is a slight change on the definition of traces, in the action viewpq

instead of observing a single trace, we need to observe a finite set of strings M. Fur-

thermore we need to find something that plays the role of compatibility, since the

latter is a property of equivalences and not of metrics ; in metrics the corresponding

of compatibility is non-expansiveness. A distance δ is said to be non-expansive iff for
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every pair of terms t, s : A we have that δpCrts, Crssq ¤ δpt, sq for every Cr$ As : B.

The way we prove δT is non-expansive is similar to the way we prove that �T

is a congruence, that is by using pairs of the form pC,Tq, pC, Sq; what we need to

change is the notion of relatedness, we need to adapt it to the case of distance.

Definition 25 Given two pair distributions P,Q, we say that they are d�related,

we write POdQ, if there exist:

• tCiuiPI contexts, tTiuiPI , tSiuiPI term distributions.

• ttjujPJ terms, tTjujPJ , tSjujPJ term distributions,

• triuiPI , tpjujPJ , tqjujPJ with

¸
iPI

ri � 1�R,
¸
jPJ

pj �
¸
jPJ

qj � R

such that:

P � tpCi,Tiq
riuiPI Y tptj,Tjq

pjujPJ

Q � tpCi, Siq
riuiPI Y tptj, Sjq

qjujPJ

and:

δTpTi, Siq ¤ d |
¸
jPJ̄

pj � qj| ¤ R � d

For all i P I, J̄ � J .

So now, the goal is to prove that this relation is preserved by internal and external

reductions.

Lemma 5.2 (Internal d-stability) Given two pair distributions P,Q with POdQ

then if there exists P1 such that P V P1 then there exists Q1 such that Q ñε Q1 or

QV Q1 and P1OdQ1.
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Proof: The pair distribution P can reduce to P1 in different ways: let’s prove the

statement for all the cases. The first two cases are simple, because they represent

transitions that happens with probability 1. The other two cases are more compli-

cated, because they involve probabilistic reductions and so we have to check that

d-relatedness is preserved evaluating the differences between the variuos probabili-

ties.

1. Term distribution reduction, pC,Tq Ñ tpC,T1q1u.

By definition we know that, given pC,Tqr P P, there exists pC, Sqr P Q such

that δTpT, Sq ¤ d. Then by the trace metric properties we know δTpT1, Sq ¤ d,

so we have:

PV P1 � PztpC,Tqru Y tpC,T1qru

and obviously P1OdQ

2. Mixed Reduction pC,Tq Ñ tpC 1,T1q1u

This is the case in which the context passes a value to the hole, then we have

a transition with probability 1.

Suppose P Q pC,Tqr Ñ tpC 1,T1qru then there exists Q Q pC, Sqr Ñ tpC 1, S1qru,

because the contexts are the same by definition and δTpT1, S1q ¤ d by the trace

distance properties.

Then we have:

PV P1 � PztpC,Tqru Y tpC 1,T1qru

QV Q1 � QztpC, Sqru Y tpC 1, S1qru

with P1OdQ1.

3. Reduction without observation.

We have to consider two different cases: a context reduction and a term re-

duction.
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(a) Context reduction pC,Tq Ñ tpCk,Tq
rkukPK .

By definition we know that there exists pC, Sqr P Q that reduces the same

way, so we have:

PV P1 � PztpC,Tqru Y tpCk,Tq
r�rkukPK

QV Q1 � QztpC, Sqru Y tpCk, Sq
r�rkukPK

and obviously P1OdQ1.

(b) Term reduction pt,Tq Ñ tptk,Tkq
rku.

In this case we need to be careful, we have:

P � tpCi,Tiq
riuiPI Y tptj,Tjq

pjujPJ

Q � tpCi, Siq
riuiPI Y tptj, Sjq

qjujPJ

With
°
iPI ri = 1�R.

Suppose that there exists j1 P J such that tj1 Ñ tptkq
rkukPK (it is the

index of the term that reduces), then, if we set J 1 � Jztj1u we have:

PV P1 � tpCi,Tiq
riuiPI Y tptj,Tjq

pjujPJ 1 Y tptk,Tkq
pj1 �rkukPK

QV Q1 � tpCi, Siq
riuiPI Y tptj, Sjq

qjujPJ 1 Y tptk, Skq
qj1 �rkukPK

Now, if we take J̄ � J 1 YK we have:

|
¸
jPJ̄

pj � qj| �|
¸

jPJ̄XJ 1

pj � qj �
¸

jPJ̄XK

pj � qj| �

�|
¸

jPJ̄XJ 1

pj � qj �
¸

kPKXJ̄

pj1 � rk � qj1 � rk| �

�|
¸

jPJ̄XJ 1

pj � qj � ppj1 � qj1q �
¸

kPKXJ̄

rk| ¤

�|
¸

jPJ̄XJ 1

pj � qj � ppj1 � qj1q| � |
¸

jPJ̄XJ

pj � qj| ¤ R � d
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4. Observation Reduction pC,Tq Ñ tptj,Tq
pjujPJ 1 , where pj � Tpmjq.

Suppose there exists i1 P I such that Ti1 � tm
pj
j ujPJ 1 .

We can also suppose that Si1 � tm
qj
j ujPJ 1 (Otherwise we have Si1 Ñ

� S1i1 �

tm
qj
j ujPJ 1 with δTpTi1 , S

1
i1q ¤ d by the trace distance properties).

So, if we set I 1 � Izti1u, we have:

PV P1 � tpCi,Tiq
riuiPI 1 Y tptj,Tjq

pjujPJ Y tptj,Ti1q
pj �ri1ujPJ 1

QV Q1 � tpCi, Siq
riuiPI 1 Y tptj, Sjq

qjujPJ Y tptj, Si1q
qj �ri1ujPJ 1

We know
°
iPI 1 ri � 1� pR � ri1q, so, given J̄ � J Y J 1 we have:

|
¸
jP{J̄

pj � qj| �|
¸

jPJ̄XJ

pj � qj �
¸

jPJ̄XJ 1

ri1 � pj � ri1 � qj| ¤

¤d �R � |ri1
¸

jPJ̄XJ 1

pj � qj| ¤ d �R � d � ri1 � pR � ri1q � d

because if we set M � tmjujPJ̄XJ 1 we have

|
¸

jPJ̄XJ 1

pj � qj| � |PrpTi1 , viewpMqq � PrpSi1 , viewpMqq| ¤ d

l

Lemma 5.3 (d-Relatedness, internally) Given two pair distributions P,Q with

POdQ then there exist P1,Q1 normal pair distributions with P ñε P1 and Q ñε Q1

such that P1OdQ1.

Proof: The proof comes from the fact that, given P if it is not normal, there is P1

normal such that P V� P1, and by the previous lemma we have P1OdQ. Then if Q

isn’t normal we can repeat the procedure and get Q1 such that QV� Q1 and P1OdQ1.

l

Lemma 5.4 (d-Relatedness, Externally) Given two pair distributions POdQ then

for every trace S:
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1. If S is incomplete then there exist P1,Q1 normal pair distributions such that

PñS Q1 and QñS Q1 with P1OdQ1.

2. If S is a complete trace then if PñS p and QñS q we have | p� q| ¤ d.

Proof: We act by induction on the length of S first by proving the first case and

then the second one.

1. If S � ε then we get the thesis by the previous lemma.

If S � S1 � passpvq then by the small-step rules we have

PñS1 P1 � tpCi,Tiq
riuiPI Y tpλx.tj,Pjq

piujPJ

QñS1 Q1 � tpCi, Siq
riuiPI Y tpλx.tj, Sjq

qjujPJ

and by induction hypothesis we have P1OdQ1.

By the small step rules we know that the action passpvq is allowed only if

C � λx.C 1 or C � r�s and T � tpλx.thq
phu.

So if we set

I1 � ti P I | Ci � λx.C 1
iu, I2 � ti P I | Ci � r�su

by the small-step rules we have:

P1 ñpasspvq P2 � tpC 1
itv{xu,Tiq

riuiPI1 Y tpr�s,T
1
iq
riuiPI2 Y tptjtv{xu,Tjq

pjujPJ

Q1 ñpasspvq Q2 � tpC 1
itv{xu, Siq

riuiPI1 Y tpr�s, S
1
iq
riuiPI2 Y tptjtv{xu, Sjq

qjujPJ

but by a previous lemma δTpT1i, S
1
iq ¤ d so we have evidently P2OdQ2 and by

applying the previous lemma we get the thesis.

2. If S � S1 � viewpMq is a complete trace then we have by induction hypothesis

PñS1 P1 � tpmj,Tjq
pjujPJ , QñS1 Q1 � tpmj, Sjq

qjujPJ
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with P1OdQ1 and R � 1 (Because there are no ri).

By the small-step rules we know that

P1 ÞÑviewpMq p �
¸

j;mjPM

pj Q1 ÞÑviewpMq q �
¸

j;mjPM

qj

So if we set J̄ � tj P J | mj P Muwe have:

|p� q| � |
¸
jPJ̄

pj � qj| ¤ 1 � d

by definition of d-relatedness

l

Now we can prove the result of non-expansiveness.

Theorem 5.1 (Non-expansiveness) Given two term distributions such that δTpT, Sq �

d then for all contexts C we have that δTpCrTs, CrSsq ¤ d.

Proof: In order to get the thesis we have to prove that for all traces S we have that

| PrpCrTs, Sq � PrpCrSs, Sq | ¤ d

• If S doesn’t end with the viewp�q action then we have: | PrpCrTs, Sq�PrpCrSs, Sq | �

| 1� 1 | � 0 ¤ d

• Otherwise we have that pC,Tq ÞÑS p1 � PrpCrTs, Sq and similarly pC, Sq ÞÑS

p2 � PrpCrSs, Sq. But it is clear that tpC,Tq1uOdtpC, Sq1u, and so by lemma 5.4

we have: | p1 � p2 | ¤ d and then the thesis.

l

Once proved that the trace metric δT is non-expansive w.r.t. linear contexts we

can prove that the context metric δC is less or equal than δT, that is:

Theorem 5.2 For all t, s, we have: δCpt, sq ¤ δTpt, sq.



5.2. FULL ABSTRACTION

Proof: By the previous theorem we know that, if δTpt, sq � d then for all context

C, we have δTpCrts, Crssq ¤ d; so:

δCpt, sq � sup
C
| JCrtsKpεq � JCrssKpεq | � sup

C
| PrpCrts, viewpεqq � PrpCrss, viewpεqq | ¤

¤ sup
C
δTpCrts, Crssq ¤ d

l

As a corollary of non-expansiveness, one gets that:

Theorem 5.3 (Full Abstraction) For all t, s, δTpt, sq � δCpt, sq.

Proof: δTpt, sq ¤ δCpt, sq because by the full abstraction lemma for all traces T

there exists a context CT such that JCTrtsKpεq � Prpt,Tq and so the quantification

over contexts catches the quantification over traces.

The other inclusion, δCpt, sq ¤ δTpt, sq, is a consequence of non-expansiveness.

l

Summing up, in this section we propose two different notions of distance between

terms, based on context and traces, in order to evaluate how different two RSLR

terms are; we proved that these two definitions of distance actually coincide but we

had been forced to slightly modify the definition of the action viewp) on traces, and

we showed why by using a concrete example.

The results of this chapter are the basis of the following one, where we will pro-

pose a characterization of Computational Indistinguishability by a parametrization

of context and trace distance.
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Chapter 6

Computational Indistinguishability

In this section we show how our notions of equivalence and distance relate to com-

putational indistinguishability (CI in the following), a key notion in modern cryp-

tography. This is the core point of my thesis, because this characterization is the

first step towards the simplification of cryptographic proofs, by the use of adversary

in the form of traces, rather than the more complex use of a PPT algorithm A.

First of all we will give the formal definition of computational indistinguishabil-

ity then, after having observed the similarities with context distance we will give

a parametric definition of context equivalence that, in the case of terms of type

Str, coincides with CI. At this point we will offer a parametric definition of trace

equivalence that will be proved to be the same of parametric context equivalence.

6.1 Parametric Context Equivalence

Definition 26 Two distribution ensembles tDnunPN and tEnunPN (where both Dn

and En are distributions on binary strings) are said to be computationally indis-

tinguishable iff for every PPT algorithm A the following quantity is a negligible1

1A negligible function is a function which tends to 0 faster than any inverse polynomial (see [22]

for more details).

89
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function of n P N:
���� Pr
xÐDn

pApx, 1nq � εq � PrxÐEnpApx, 1
nq � εq

����
It is a well-known fact in cryptography that in the definition above, A can be

assumed to sample from x just once without altering the definition itself, provided

the two involved ensembles are efficiently computable ([22], Theorem 3.2.6, page

108). This is in contrast to the case of arbitrary ensembles [23].

The careful reader should have already spotted the similarity between CI and

the notion of context distance as given in Chapter 5. There are some key differences,

though:

1. While context distance is an absolute notion of distance, CI depends on a

parameter n, the so-called security parameter.

2. In computational indistinguishability, one can compare distributions over strings,

while the context distance can evaluate how far terms of arbitrary types are.

The discrepancy Point 1 puts in evidence, however, can be easily overcome by turn-

ing the context distance into something slightly more parametric.

Definition 27 (Parametric Context Equivalence) Given two terms t, s such

that $ t, s : aStr Ñ A, we say that t and s are parametrically context equivalent,

we write t �C
n s iff for every context C such that $ Cr$ As : Str we have that:

|JCrt1nsKpεq � JCrs1nsKpεq|

is negligible in n.

This way, we have obtained a characterization of CI:

Theorem 6.1 Let t, s be two terms of type aStr Ñ Str. Then t, s are paramet-

ric context equivalent iff the distribution ensembles tJt1nKunPN and tJs1nKunPN are

computationally indistinguishable.
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6.2 Parametric Trace Equivalence

How could traces capture the peculiar way parametric context equivalence treats

the security parameter? First of all, observe that, in Definition 27, the security

parameter is passed to the term being tested without any intervention from the

context. The most important difference, however, is that contexts are objects which

test families of terms rather than terms. As a consequence, the action viewp�q does

not take strings or finite sets of strings as arguments (as in equivalences or metrics),

but rather distinguishers, namely closed RSLR terms of type aStr Ñ Str that we

denote with the metavariable D.

So now, given a term t : aStr we define the probability of t to satisfy the action

viewpDq as t ÞÑviewpDq
°

mJtKpmq � JDmKpεq. Roughly speaking, the term t evaluates

to a string distribution and the observation of this distribution is performed by the

distiguisher; the probability that it outputs the empty string ε is the probability that

the term t satisfies the action viewpDq. Furthermore, a trace T is said parametrically

compatible with a type A � aStrÑ B if T � passpmq � S with S : B.

Definition 28 Two terms t, s : A are parametrically trace equivalent, we write

t �T
n s, iff for every trace T which is parametrically compatible with A, there is a

negligible function ε : NÑ Rr0,1s such that:

|Prpt, passp1nq � Tq � Prps, passp1nq � Tq| ¤ εpnq

The fact that parametric trace equivalence and parametric context equivalence are

strongly related is quite intuitive: they are obtained by altering in a very similar

way two notions which are already known to coincide (by Theorem 5.3). Indeed:

Theorem 6.2 Parametric trace equivalence and parametric context equivalence co-

incide.
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The first inclusion is trivial, indeed every trace can be easily emulated by a context.

The other one, as usual is more difficult, and requires a careful analysis of the be-

havior of terms depending on parameter, when put in a context. Overall, however,

the structure of the proof is similar to the one we presented in Chapter 4.

The first change comes from the fact that the behavior of the terms we want

to analyze depends on the security parameter, so basically we will not test a term

distribution as in the equivalence and metric, but a we will work with a family of

term distribution. This means that, if we want to compare two term t, s : aStrÑ A

what we did before was to consider the term distributions T � tptq1u, S � tpsq1u,

what we do now is to consider two families that we call parametric term distributions

T̄ � tTnunPN, S̄ � tS
nunPN, where Tn � tpt1nq1u, Sn � tps1nq1u for all n. Notice that

T̄, S̄ are families of distributions of type A; so, given a trace T, compatible with

A we have that a family of term distributions T̄ ÞÑT ξ, where ξ : N Ñ Rr0,1s and

ξpnq � PrpTn,Tq.

At this point, the definition of parametric trace equivalence can be lifted to

parametric term distributions: we say that two parametric term distributions T̄, S̄

are parametrically trace equivalent, if for all trace T such that T̄ ÞÑT ξ, S̄ ÞÑT µ then

there exists a negligible function ε : NÑ Rr0,1s such that for all n P N we have

|ξpnq � µpnq| ¤ εpnq

We write T̄ �T
n S̄.

Lemma 6.1 If T̄ �T
n S̄ then:

1. If T̄ Ñ T̄1 then T̄1 �T
n S̄.

2. If T̄ ñpasspvq T̄1, S̄ñpasspvq S̄1 then T̄ �T
n S̄.
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6.3 Full Abstraction

So now, in order to obtain the full abstraction, our goal is to prove that parametric

trace equivalence is a congruence w.r.t. linear contexts, that is to prove that, for all

contexts CrAs : B, if t, s : aStr Ñ A; are parametrically trace equivalent, than also

λy.Crtys �T
n λy.Crsys. As we disclosed before the way we prove it is similar to the

previous cases: we work with pairs of the form pC, T̄q and we want to prove that if

T̄ �T
n S̄ then also pC, T̄q �T

n pC, S̄q. Notice that a pair pC, T̄q is actually a parametric

pair, indeed pC, T̄q � tpC,TnqunPN. In order to prove the property of congruence we

will work with parametric pair distributions as P̄ � tpCi, T̄iq
piu; given a trace T we

have that P̄ ÞÑT ξ if tpCi, T̄
n
i q
piu ÞÑT ξpnq for all n P N. The definition of parametric

trace equivalence is naturally extended to parametric pair distributions.

The first step towards the congruence proof is to show that if C is an evaluation

context then, given T̄ �T
n S̄, such that T̄, S̄ : Str, then we have pC, T̄q �T

n pC, S̄q; we

prove it by using the following lemmas.

Lemma 6.2 Given a parametric term distribution T̄ : Str Ñ A and a context Cr$

As : B then for all traces T � passpv1q � passpv2q � � � passpvnq � viewpDq we have:

pC, T̄q ÞÑT ξ ðñ pCv1v2 � � � vn, T̄q ÞÑ
viewpDq ξ

Proof: We work by induction on the length of T. If T � viewpDq then it is obvious.

Suppose now T � passpvq � S � viewpDq, then we have two different cases:

1. If C � λx.C 1 then we have pC, T̄q Ñpasspvq tpC 1tv{xu, T̄q1u.

Similarly pCvS, T̄q Ñ tpC 1tv{xuS, T̄q1u.

But now, by the induction hypothesis we know

pC 1tv{xu, T̄q ÞÑS�viewpDq ξ ðñ pC 1tv{xuS, T̄q ÞÑviewpDq ξ

and so the thesis.
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2. Suppose now C � r�s then we have pr�s, T̄q Ñpasspvq tpr�s, T̄1q1u.

Similarly pr�svS, T̄q Ñ tpr�sS, T̄1q1u.

Then by the induction hypothesis we have:

pr�s, T̄1q ÞÑS�viewpDq ξ ðñ pr�sS, T̄1q ÞÑviewpDq

and so the thesis.

l

Lemma 6.3 Given two parametric term distributions T̄, S̄ of type string with T̄ �T
n S̄

then for all evaluation contexts C such that $ Cr$ Strs : B we have pC, T̄q �T
n pC, S̄q.

Proof: Given a trace T � passpv1q � passpv2q � � � passpvnq � viewpDq if we consider the

distinguisher D1 � λx.Crxsv1v2 � � � vn then we have:

pC, T̄q ÞÑT ξ ðñ T̄ ÞÑviewpD1q ξ

pC, S̄q ÞÑT µ ðñ S̄ ÞÑviewpD1q µ

l

We can extend this result to parametric pair distributions.

Proposition 1 Given P̄ � tpCi, T̄iq
piu, Q̄ � tpCi, S̄iq

piu, two parametric pair distri-

butions such that, for all i, Ci are evaluation contexts, T̄i, S̄i : Str and T̄i �
T
n S̄i then

we have P̄ �T
n Q̄.

Proof: For all i we know that pCi, T̄iq �
T
n pCi, S̄iq; it means that, given a trace

T, if pCi, T̄iq ÞÑ
T ξi, pCi, S̄iq ÞÑ

T µi there exists a negligible function εi such that

|ξipnq � µipnq| ¤ εipnq.

So we have by definition P̄ ÞÑT ξ �
°
i pi � ξi, Q̄ ÞÑ

T µ �
°
i pi � µi � and then for all

n:

|ξpnq � µpnq| �|
¸
i

pi � ξipnq �
¸
i

pi � µipnq| � |
¸
i

pi � pξipnq � µipnqq| ¤

¤
¸
i

pi � |ξipnq � µipnq| ¤
¸
i

pi � εipnq ¤ εpnq
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for a certain negligible function ε. l

The last step is proving that the previous proposition is valid for all context

C, so, before giving the proof we we give, as in the previous cases, a definition of

relatedness between pair distributions.

Definition 29 Given P̄ � tpCi, T̄iq
piuiPI , Q̄ � tpCi, S̄iq

qiuiPI , we say that they are

parametrically related, and we write P̄OnQ̄ if they can be written as:

P̄ �
¸
jPJ

rj � P̄j � tpCk, T̄kq
rkukPK

Q̄ �
¸
jPJ

rj � Q̄j � tpCk, S̄kq
rkukPK

Where for all j we have P̄j �
T
n Q̄ and for all k we have T̄k �

T
n S̄k.

The idea behind this definition is that we say that two pair distributions P̄, Q̄

are parametrically related if we can split each one into two subdistributions, P̄ �

P̄1 � P̄2, Q̄ � Q̄1 � Q̄2 such that P̄1 and Q̄1 are parametrically trace equivalent and

P̄2, Q̄2 are made by couples where the contexts are the same with the same probabil-

ity and the term distributions are parametrically trace related. Notice that, by this

definition, if pC,Tq, pC, Sq are two couples where C is an evaluation context with the

hole of type Str and T �T
n S, then by lemma 6.2 pC,Tq and pC, Sq are parametrically

trace equivalent and so included in P̄1 and Q̄1 respectively. The same happens if C is

a term; indeed we have that for every trace T, Prppt,Tq,Tq � Prpt,Tq � Prppt, Sq,Tq,

so pt,Tq �T
n pt, Sq and then pt,Tq and pt, Sq are included in P̄1, Q̄1 respectively.

Our goal is now to prove that parametric relatedness is preserved by internal

and external reduction.

Lemma 6.4 (Internal Parametric Stability) Given P̄, Q̄ such that P̄OnQ̄ then

if P̄V P̄1 then P̄1OnQ̄ or there exists Q̄1 such that Q̄V Q̄1 and P̄1OnQ̄
1.
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Proof: As in the previous case we study all the possible reduction of P̄.

If the reduction is made by one of the P̄h V P̄1
h with h P J then we have:

P̄V P̄1 �
¸

jPJzthu

rj � P̄j � rh � P̄
1
h � tpCk, T̄kq

rkukPK

Q̄ �
¸

jPJzthu

rj � Q̄j � rh � Q̄h � tpCk, S̄kq
rkukPK

but we know P̄1
h �

T
n Q̄h and so P̄1OnQ̄.

Suppose now that the reduction is made by a pair pCh, T̄hq with h P K. As ob-

served before Ch is not an evaluation context of the form $ Cr$ Strs : B, so we can

exclude reductions with observation from the possible cases. Then we have these

possibilities:

• Term distribution reduction.

Suppose T̄h Ñ T̄1h. Then we have:

P̄V P̄1 �
¸
jPJ

rj � P̄j � tpCk, T̄kq
rkukPKzthu � tpCh, T̄

1
hq
rhu

Q̄ �
¸
jPJ

rj � Q̄j � tpCk, S̄kq
rkukPKzthu � tpCh, S̄hq

rhu

We know T̄1h �
T
n S̄h and so P̄1OnQ̄.

• Mixed Reduction.

In this case we have pCh, T̄hq Ñ tpC 1
h, T̄

1
hq

1u, so, by the fact that Ch is the same

for P̄ and Q̄ we can say that pCh, S̄hq Ñ tpC 1
h, S̄

1
hq

1u and T̄1h �
T
n S̄1h.

So we have:

– If C 1
h is a term or an evaluation context and T̄1h, S̄

1
h : Str, if we set J 1 �

J Y thu, P̄h � tpC
1
h, T̄

1
hq

1u, Q̄h � tpC
1
h, S̄

1
hqu then by lemma 6.3, P̄h �

T
n Q̄h,

so:

P̄V P̄1 �
¸
jPJ 1

rj � P̄j � tpCk, T̄kq
rkukPKzthu
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Q̄V Q̄1 �
¸
jPJ 1

rj � Q̄j � tpCk, S̄kq
rkukPKzthu

– Otherwise:

P̄V P̄1 �
¸
jPJ

rj � P̄j � tpCk, T̄kq
rkukPKzthu � tpC

1
h, T̄

1
hq
rhu

Q̄V Q̄1 �
¸
jPJ

rj � Q̄j � tpCk, S̄kq
rkukPKzthu � tpC

1
h, S̄

1
hq
rhu

and so the thesis.

• Reduction without observation.

Suppose now pCh, T̄hq Ñ tpC 1
l , T̄lq

r1lulPL; by definition we have pCh, S̄hq Ñ

tpC 1
l , S̄lq

r1lulPL where T̄l � T̄h, S̄l � S̄h for all l P L.

So now:

– If T̄h, S̄h : Str, then we set:

L1 � tl P L | C
1
l is an evaluation context or a termu

L2 � LzL1

P̄l � tpC
1
l , T̄lq

1u with l P L1

Q̄l � tpC
1
l , S̄lq

1u with l P L1

and we have:

P̄V P̄1 �
¸
jPJ

rj � P̄j �
¸
lPL1

rh � r
1
l � P̄l � tpCk, T̄kqukPK � tpC

1
l , T̄lq

rh�r
1

lulPL2

Q̄V Q̄1 �
¸
jPJ

rj � Q̄j �
¸
lPL1

rh � r
1
l � Q̄l � tpCk, S̄kqukPK � tpC

1
l , S̄lq

rh�r
1

lulPL2

– Otherwise we make a similar procedure but we set L1 � tl P L | C
1
l is a termu.

so by the fact that for all l P L1, P̄l �
T
n Q̄l and for all l P L2, T̄l �

T
n S̄l, we have

that P̄1OnQ̄
1.
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l

Lemma 6.5 (Parametric relatedness, Internally) Given P̄, Q̄ such that P̄OnQ̄

then there exists P̄1, Q̄1 normal, such that if P̄ñε P̄1 and Q̄ñε Q̄1 then P̄1OnQ̄
1.

Lemma 6.6 (Parametric Relatedness, Externally) Given P̄, Q̄ : A with P̄OnQ̄,

then for all incomplete traces T, there exist P̄1, Q̄1 normal, such that P̄ñT P̄1, Q̄ñT

Q̄1 and P̄1OnQ̄
1.

Proof: We work by induction on the length of the trace.

If T � ε then by lemma 6.5 we get the thesis.

If T � S � passpvq the we have:

P̄ñS
¸
jPJ

rj � P̄j � tpCk, T̄kq
rkukPK

Q̄ñS
¸
jPJ

rj � Q̄j � tpCk, S̄kq
rkukPK

with P̄j �
T
n Q̄j for all j P J and T̄k �

T
n S̄k for all k P K.

Then we know P̄j Ñ
passpvq P̄1

j, Q̄j Ñ
passpvq Q̄1

j but P̄1
j �

T Q̄1
j by the properties of �T

n.

Similarly pCk, T̄kq Ñ
passpvq tpC 1

k, T̄
1
kq

1u, pCk, S̄kq Ñ
passpvq tpC 1

k, S̄
1
kq

1u with T̄1k �
T
n S̄1k for

all k P K.

So we have:

P̄ñS�passpvq P̄1 �
¸
jPJ

rj � P̄
1
j � tpC

1
k, T̄

1
kq
rkukPK

Q̄ñS�passpvq Q̄1 �
¸
jPJ

rj � Q̄
1
j � tpC

1
k, S̄

1
kq
rkukPK

But P̄1OnQ̄
1 so by applying lemma 6.5 we get the thesis. l

Now we are able to prove this result.

Theorem 6.3 Given P̄, Q̄ such that P̄OnQ̄, then P̄ �T
n Q̄.
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Proof: We want to show that for every trace T � S � viewpDq we have PrpP̄,Tq �

PrpQ̄,Tq.

By lemma 6.6 we know that there exist P̄1, Q̄1 normal, such that P̄ñS Q̄1, Q̄ñS Q̄1

and P̄1OnQ̄
1.

So we have P̄1 � tpCi, T̄iq
piu, Q̄1 � tpCi, S̄iq

qiu, but both distributions are normal

and of type Str, that means Ci � r$ Strs and T̄i, S̄i normal or Ci � mi.

If P̄1OnQ̄
1 then we have P̄1 � P̄1

1�P̄
1
2 and Q̄1 � Q̄1

1�Q̄
1
2, but all the contexts are strings

or evaluation contexts with the hole of type Str, so we can say that P̄1
2 � Q̄1

2 � H,

that means P̄1 � P̄1
1 �

T
n Q̄1

1 � Q̄1. l

Corollary 6.1 Parametrically trace equivalence is a congruence w.r.t. linear con-

text.

Proof: Given t, s : aStrÑ A, such that t �T
n s, we want to show that for all context

Cr$ As : B then λy.Crtys �T
n λy.Crsys.

We set T̄ � tTnunPN, S̄ � tSnunPN, with Tn � tpt1nq1u, Sn � tps1nq1u, and P̄ �

tpC, T̄q1u, Q̄ � tpC, S̄q1u, with Pn � tpC,Tnq1u,Qn � tpC, Snq1u.

It is obvious P̄OnQ̄, so for every trace T such that P̄ ÞÑT ξ, Q̄ ÞÑT µ there exists a

negligible function ε such that for all n P N we have |ξpnq � µpnq| ¤ εpnq.

So we get:

|Prpλy.Crtys, passp1nq � Tq � Prpλy.Crsys, passp1nq � Tq| �

� |PrpCrt1ns,Tq � PrpCrs1ns,Tq| � |ξpnq � µpnq| ¤

¤ εpnq

and so the thesis. l



6.3. FULL ABSTRACTION



Chapter 7

Applications

In this chapter we will give some applications of our method to real cryptographic

situations. As we talked in the introduction, in order to analyze a cryptographic

primitive or a protocol, we need to use a standard approach based on four points:

we need to define the security property we want to prove, we need to define a

realistic model of a potential adversary, then we need to present a formalization of

the cryptographic primitive or protocol under study and finally we need to prove

that the security property reduces to a particular assumption.

7.1 A Simple Encryption Scheme

The first case we are going to analyze is a cryptographic primitive for the encryption

of a message; first of all we need to define the security property we want to prove,

that is secrecy. We formalize this property by saying that the encryptions of two

different messages are indistinguishable.

This is a common assumption in cryptography and it is called IND-CPA (Indis-

tinguishability against Chosen-Plaintext Attack), indeed if an adversary is not able

to distinguish between the encryption of two different messages, that are chosen

by himself, it means that he can’t take any information of the plaintext from the
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cyphertext and so secrecy is certain. The second step is the definition of a real-

istic model of the adversary, so we consider all the probabilistic polynomial time

algorithm A, that are encoded in our system by linear context C.

Now, we introduce the cryptographic system under study. Consider, as an ex-

ample, the two terms

t � λn.pλk.λx.λy.ENCpx nq kqpGEN nq s � λn.pλk.λx.λy.ENCpy nq kqpGEN nq

where ENC is meant to be an encryption function, GEN is a function generating a

random key and x, y are two deterministic function that return a string whose length

depends on the security parameter. We can prove that the two terms are paramet-

rically context equivalent if ENC is the cryptoscheme induced by a pseudorandom

generator. We propose:

ENC � λm.λk.m` pG kq : aStrÑ bStrÑ Str

where G : StrÑ Str is a pseudorandom generator.

Now, in order to prove our security property, that is that t and s are indistin-

guishable, we need to reduce to a particular assumption. We will prove that the

indistinguishability between t, s can be reduced to the indistinguishability between

the pseudorandom generator G and a real random generator R. Going into detail

we consider:

PRG :� λn.pλk.G kqpGEN nq RND :� λn.pλk.R kqpGEN nq

where PRG is a pseudorandom generator, RND a random generator.

We will show that if we are able to distinguish between t and s then we are able to

distinguish between PRG and RND; but, by the fact that a pseudorandom generator

and a random generator are indistinguishable by definition, we get a contradiction

and so it can’t be possible to distinguish between t and s.
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Suppose t, s aren’t indistinguishable; then there exists a trace T � passpfq �

passpgq � viewpDq, with f, g : aStrÑ Str, such that:

|Prpt, passp1nq � Tq � Prps, passp1nq � Tq| ¡ εpnq

for all ε negligible function.

If GEN 1n Ñ tpkqpkukPSpG 1nq we have:

tñpassp1nq�passpfq�passpgq tpf1n ` pG kqpkukPSpG 1nq

sñpassp1nq�passpfq�passpgq tpg1n ` pG kqqpkukPSpG 1nq

and then we have:

εpnq ¤| Prpt, passp1nq � Tq � Prps, passp1nq � Tq| �

�|
¸

kPSpGEN 1nq

pk � JD pf1n ` pG kqqKpεq �
¸

kPSpGEN 1nq

pk � JD pg1n ` pG kqqKpεq| �

�|ξpnq � µpnq|

for all ε : NÑ R negligible functions.

Given a random generator R, we can say by the properties of one-time-pad that

JDpf1n ` pR kqKpεq � JDpg1n ` pR kqqKpεq � νpnq

So we have that for all n:

εpnq   |ξpnq � µpnq| � |ξpnq � νpnq � νpnq � µpnq| ¤ |ξpnq � νpnq| � |νpnq � µpnq|

This means that at least one between |ξpnq � νpnq| and |νpnq � µpnq| is more than

negligible. Now, we call GEN�1 : aStrÑ Str the inverse function of GEN, that given

a string k returns the security parameter string 1n; this way we can build

Df � λz.D p pfpGEN�1zqq ` z q Dg � λz.D p pgpGEN�1zqq ` z q
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At this point, we consider:

PrpPRG, passp1nq � viewpDfqq �
¸

kPSpGEN 1nq

pk � JDfpG kqKpεq �

�
¸

kPSpGEN 1nq

pk � JDpf1n ` pG kqKpεq �

�ξpnq

PrpRND, passp1nq � viewpDfqq �
¸

kPSpGEN 1nq

pk � JDfpR kqKpεq �

�
¸

kPSpGEN 1nq

pk � JDpf1n ` pR kqKpεq �

� νpnq

and we have:

| PrpPRG, passp1nq � viewpDfqq � PrpRND, passp1nq � viewpDfqq | � | ξpnq � νpnq |

Funrthermore:

PrpPRG, passp1nq � viewpDgqq �
¸

kPSpGEN 1nq

pk � JDgpG kqKpεq �

�
¸

kPSpGEN 1nq

pk � JDpg1n ` pG kqKpεq �

� µpnq

PrpRND, passp1nq � viewpDgqq �
¸

kPSpGEN 1nq

pk � JDgpR kqKpεq �

�
¸

kPSpGEN 1nq

pk � JDpg1n ` pR kqKpεq �

� νpnq

and we have:

| PrpPRG, passp1nq � viewpDgqq � PrpRND, passp1nq � viewpDgqq | � | µpnq � νpnq |

so we have that at least one trace between passp1nq � viewpDfq and passp1nq � viewpDgq

separates PRG and RND and this is a contradiction.
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7.2 El-Gamal Encryption Scheme

We propose now another example to test our approach: the El-Gamal Encryption

Scheme.

In order to describe the El-Gamal encryption scheme we have to introduce some

different functions that are necessary to explain how the system works; we won’t give

in details the terms that represent these functions, but we know by the properties

of RSLR that they can be easily implemented.

• The first function we introduce is zrpnq; this function takes in input the se-

curity parameter n and returns a random string lesser or equal than n (every

string can be seen as the binary representation of an integer). This function

is necessary because we will work with a finite cyclic group whose cardinality

can be different from a power of 2.

• The second function is the concatenation of bitstrings that we indicate with

�; this function takes in input two strings and return a string that is the

concatenation of the two received in input. We will use the notation m � n for

� m n.

• The last two function are π1, π2: these functions take in input a string m and

the security parameter n and returns the string received in input without the

first (or the last in the case of π2) rlog2 ns bit of the string. For example we

have π1pm � nq Ñ n and π2pm � nq Ñ m

• Finally we have to suppose that we have the possibility to encode a function

that evaluates the exponential, we will write gm for g raise to the power m and

a function that encodes multiplication ,we will write g1 � g2 for g1 times g2.

Now we are able to introduce the El-Gamal encryption scheme. Given a cyclic group

G of order n and generator g the El-Gamal encryption scheme is defined by the triple



7.2. EL-GAMAL ENCRYPTION SCHEME

pGEN,ENC,DECq, where:

GEN �λn.pλx.gx � xqpzr nq

ENC �λn.λm.λpk.pλy.pgy � pky �mnqqpzr nq

DEC �λn.λc.λsk.pπ1pcq � π2pcq
�skq

where m : aStrÑ Str is a varaible for a function that returns a bitstring distribution

depending on the security parameter.

We can consider a cyphertext obtained by the El-Gamal cryptosystem as:

c � λn.λm.pλpk.λy.ppk � gy � pky �mnqqpπ2GENpnqqpzrpnqq

that is the concatenation of the public key pk with gy and with the encryption of

the message pky �m. In order to ensure the security of the cryptosystem we want

to prove that a cyphertext buildt by this system is indistinguishable from a string

where the final part (i.e. the encryption of the message) is chosen randomly, that

is:

rm � λn.λm.pλpk.λy.λz.ppk � gy � gzqqpπ2GENpnqqpzrpnqqpzrpnqq

The security proof of the El-Gamal encryption system is based on the DDH as-

sumpion: it says that an adversary in unable to distinguish between pgx, gy, gxyq and

pgx, gy, gzq, with x, y, z chosen randomly. We convert this assumption in our language

by saying that, if:

DDH1 �λn.pλx.λy.g
x � gy � gxyqpzrpnqqpzrpnqq

DDH2 �λn.pλx.λy.λ.z.g
x � gy � gzqpzrpnqqpzrpnqqpzrpnqq

then DDH1 � DDH2.

Now, in order to prove that c �T
n rm we will show that if this is not true then

we will be able to distinguish between DDH1 and DDH2. So, suppose there exists T

such that:

|Prpc, passpnq � Tq � Prprm, passpnq � Tq| ¡ εpnq
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for all ε negligible functions.

We have T � passpfq � viewpDq and, if fn Ñ tpgmqpmumPSpfnq then:

cñpasspnq�passpfqtpgx � gy � gxy�mq
1
n2 �pmux,yPG,gmPSpfnq

rmñpasspnq�passpfqtpgx � gy � gzq
1
n3 ux,y,zPG

that means:

Prpc, passpnq � Tq �
¸

x,yPG,gmPSpfnq

1

n2
� pm � JDpgx � gy � gxy�mqKpεq � ξpnq

Prprm, passpnq � Tq �
¸

x,y,zPG

1

n3
� JDpgx � gy � gzqKpεq � µpnq

So if we consider T1 � viewpD1q with:

D1 � λw.Dppπ2wq � pπ1ppπ1wqq � fpGEN
�1wqqq

we have:

DDH1 ñ
passpnqtpgx � gy � gxyq

1
n2 ux,yPG

DDH2 ñ
passpnqtpgx � gy � gzq

1
n3 ux,y,zPG
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and so:

PrpDDH1, passpnq � T
1q �

¸
x,yPG

1

n2
� JD1pgx � gy � gxyqKpεq �

�
¸

x,yPG,gmPSpfnq

1

n2
� pm � JDpgx � gy � gxy�mqKpεq � ξpnq

PrpDDH2, passpnq � T
1q �

¸
x,y,zPG

1

n3
� JD1pgx � gy � gzqKpεq �

�
¸
x,yPG

1

n2
�

¸
zPG,gmPSpfnq

1

n
� pm � JDpgx � gy � gz�mqKpεq �

�
¸

x,y,zPG

1

n3
�
¸

gmPSpfnq

pm � JDpgx � gy � gzqKpεq �

�
¸

x,y,zPG

1

n3
� JDpgx � gy � gzqKpεq � µpnq

So we have :

|PrpDDH1, passpnq � T
1q � PrpDDH2, passpnq � Tq| � |ξpnq � µpnq| ¡ εpnq

for all ε negligible and so a contradiction.



Chapter 8

Conclusions

In this thesis we started from an overview of the actual scenario in the field of

cryptographic proofs; as we said cryptographic proofs are becoming more and more

complex so it is very difficult to give it by hand, furthermore, by this reason, it is

necessary to give the possibility to analyze the proof itself.

In order to help the cryptographer community, there have been developed several

approaches: we presented three of them based on formal methods, automated tools

and process calculi. As we have seen, the game-based proof is one of the most

used standard to give a cryptographic proof. A key point in such proofs are game

transitions, that needs to be justified; these transitions are often justified by saying

that the two games are computationally indistinguishable and this is the key point

of this thesis. We focus our attention on computational indistinguishability, and we

give a characterization of CI by using traces instead of arbitrary algorithms.

We started by studying notions of equivalences and metrics in a language for

higher order probabilistic polynomial time computation, that is very useful to model

primitives and adversaries. More specifically, we have shown that the discriminating

power of linear contexts can be captured by traces, both when equivalences and

metrics are considered. Moreover, we gave evidence on how applicative bisimilarity

is a sound, but not fully abstract, methodology for context equivalence.
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We believe, however, that the main contribution of this work is the new light

it sheds on the relations between computational indistinguishability, linear contexts

and traces. In particular, this approach, which is implicitly used in the literature on

the subject [38, 37], is shown to have some limitations, but also to suggest a notion

of higher-order indistinguishability which could possibly be an object of study in

itself.

Finally we gave concrete cryptographic examples in which we proved the secrecy

of an encryption induced by a pseudorandom generator, by using the parametric

trace equivalence we defined; the result we offer is a formal reduction proof in which

each step is mathematically justified without external assumptions.

For what concerns real cryptographic applications, the careful reader should have

spotted some limitations to the method we propose. One of the doubt that arises is

about the linearity of the contexts; roughly speaking, this constraint doesn’t permit

to an adversary to copy the term he is testing. Endowing the observer with this

capability would allow him to pass different arguments to the same term and observe

multiple outputs; by this way it would be impossible for a simple trace to catch the

differences seen by the observer. This faculty is a common standard in cryptography,

where an adversary is allowed to do multiple (polynomially bounded) queries to an

oracle that implements a cryptographic primitive.

Another limitation can be found in the calculus itself, that doesn’t admit pairs

and projections. As seen in the El-Gamal example, we can overcome this restriction

in the case of terms of base type Str by postulating the existence of functions that

concatenate and separate bitstrings, but we are not able to manage the case of pairs

where terms are of higher order type.

A possible solution for both problems is the definition of a different framework,

a framework in which we don’t consider single terms but we rather work on tuples

of indexed terms rt11, ..., t
n
ns [18]. In this framework traces are modeled so that they

take into account the index of the term we want to perform the action, for instance



if we want to pass a value v to the j-th term λx.tj the action will be in the form

passpj, vq; the observation can be performed only of all the elements of the tuple are

strings and it is made on the whole tuple, not on single values. Another feature of

this framework is the management of pairs by giving the possibility to split them

into new tuples; suppose to have a tuple of the form r..., xs1, s2y
j, ..s, then we insert

a new action unfold that split the pair into two different terms such that:

r..., xs1, s2y
j, ..s Ñunfoldj r..., sj1, s

k
2, ..s

so that we have a new tuple and we are able to pass argument to both terms of the

pair.

We conclude with a final consideration: Theorem 6.1 and Theorem 6.2 state

that two terms t, s : aStr Ñ Str are computational indistinguishability if and only

if they are parametrically trace equivalent, but there is a question that naturally

becomes apparent: what happens if the type of the terms is a generic aStr Ñ A

with A of higher order type? Actually, we don’t have a definition of higher order

computational indistinguishability present in literature (at any rate, we don’t have

a formal and precise one), so a comparison with parametric context equivalence is

difficult.

Furthermore, it seems that linear contexts do not capture equivalence as tradi-

tionally employed in cryptography already when A is a first-order type bStr Ñ Str.

The simplest example can be found in the definition of pseudo-randomness which

can be spelled out for functions, giving rise to the concept of pseudorandom func-

tions [29]. Formally, a function F : t0, 1u� Ñ t0, 1u� Ñ t0, 1u� is said to be a

pseudorandom function iff F psq is a function which is indistinguishable from a ran-

dom function from t0, 1un to t0, 1un whenever s is drawn at random from n-bit

strings. Indistinguishability, again, is defined in terms of PPT algorithms having

oracle access to F psq. Having access to an oracle for a function is of course different



than having linear access to it. Indeed, building a linear pseudorandom function

is very easy: Gpsq is defined to be the function which returns s independently on

the value of its input. G is of course not pseudorandom in the classical sense, since

testing the function multiple times a distinguisher immediately sees the difference

with a truly random function. On the other hand, if s is a term that returns n bits

drawn at random, the RSLR term tGs that implements the function G above can

be proved trace equivalent to a term r that returns a truly random function from

n�bitstrings to n�bitstrings.

However, investigating into higher-order computational indistinguishability is

out of the scope of this thesis, but we believe that these argumentations could be a

first step towards a formal analysis of this theme.



References

[1] Mart́ın Abadi, Mathieu Baudet, and Bogdan Warinschi. Guessing attacks and

the computational soundness of static equivalence. In Foundations of Software

Science and Computation Structures, 9th International Conference, FOSSACS

2006, Held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2006, Vienna, Austria, March 25-31, 2006, Proceedings,

pages 398–412, 2006.

[2] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the

computational soundnessof formal encryption). In Theoretical Computer Sci-

ence, Exploring New Frontiers of Theoretical Informatics, International Con-

ference IFIP TCS 2000, Sendai, Japan, August 17-19, 2000, Proceedings, pages

3–22, 2000.

[3] Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness

of formal encryption in the presence of key-cycles. In Computer Security -

ESORICS 2005, 10th European Symposium on Research in Computer Security,

Milan, Italy, September 12-14, 2005, Proceedings, pages 374–396, 2005.

[4] Pedro Adão, Gergei Bana, and Andre Scedrov. Computational and information-

theoretic soundness and completeness of formal encryption. In 18th IEEE Com-

puter Security Foundations Workshop, (CSFW-18 2005), 20-22 June 2005, Aix-

en-Provence, France, pages 170–184, 2005.

113



References

[5] Gergei Bana and Hubert Comon-Lundh. Towards unconditional soundness:

Computationally complete symbolic attacker. In Principles of Security and

Trust - First International Conference, POST 2012, Held as Part of the Eu-

ropean Joint Conferences on Theory and Practice of Software, ETAPS 2012,

Tallinn, Estonia, March 24 - April 1, 2012, Proceedings, pages 189–208, 2012.

[6] Gergei Bana and Hubert Comon-Lundh. A computationally complete symbolic

attacker for equivalence properties. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, Scottsdale, AZ, USA,

November 3-7, 2014, pages 609–620, 2014.

[7] Gergei Bana, Payman Mohassel, and Till Stegers. Computational soundness

of formal indistinguishability and static equivalence. In Advances in Computer

Science - ASIAN 2006. Secure Software and Related Issues, 11th Asian Com-

puting Science Conference, Tokyo, Japan, December 6-8, 2006, Revised Selected

Papers, pages 182–196, 2006.
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