
Alma Mater Studiorum – Università di BolognaAlma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

Economia

Ciclo  XXVIII

Settore Concorsuale di afferenza: 13/A1

Settore Scientifico disciplinare: SECS P/01

SOCIAL INFLUENCE IN NETWORKS

Presentata da: Ugo Bolletta

Coordinatore Dottorato Relatore

Matteo Cervellati Giulio Zanella

Esame finale anno 2016



2



Contents

1 Polarization through the endogenous network 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Network as given . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Endogenous network . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Dynamic setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Peer effects in schools 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Payoffs and Preliminary Results . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Endogenous Network . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 Two Cultures: a Majority and a Minority . . . . . . . . . . . . . . 38

2.4.2 Peer Effects in the Classroom . . . . . . . . . . . . . . . . . . . . . 40

2.4.3 Nash Equilibrium and Bonacich Centrality . . . . . . . . . . . . . . 44

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Search over the network 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Search over the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3



4 CONTENTS

3.4.1 Expected degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 A routine for the meeting process . . . . . . . . . . . . . . . . . . . . . . . 54

Appendices 63

A Polarization through the endogenous network 65

A.1 Payoff in equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.2 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 Payoff differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.4 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.5 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B Peer effects in schools: a model 71

B.1 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.2 Proof of Proposition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.3 Proof of Remark 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.4 Proof of Proposition 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.5 Proof of Proposition 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.6 Proof of Remark 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.7 Example - Three agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.8 Alternative utility function . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

C Search over the network 83

C.1 Expected Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.2 Stopping time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Introduction

In traditional economic analysis outcomes are often associated to a given social structure.

In particular they were often analyzed situations where they exist either two-by-two in-

teractions or global interactions. The study of networks focuses on all the other possible

intermediate cases. Research during the past 30 years brought in an outstanding amount

of facts documenting that the social structure is key in understanding real world phenom-

ena, especially when strategic interaction occurs. Yet, lot has to be done to have a better

understanding of the link between behavioral outcomes and the social structure, i.e. the

network. This dependence of behaviors to other individuals choices is broadly defined as

social influence.

In this thesis I focus in particular on this issue. My interest in research so far can be

summarized by the two following points: i) understanding the relation between network

formation and behavioral outcome, and ii) exploring the spillovers on multi-layered net-

works. In particular the first point is addressed through the first two chapters. The first

studies a model that introduces a micro-foundation of processes of polarization. The gen-

eral attitude of individuals to be associated with similar minded peers is a motive that may

lead to segregation. Thus, when this happen we can observe that multiple social norms

are adopted, although individuals share the same environmental and socio-political fea-

tures. The second chapter is a more specific application of the previous findings. It is

investigated more deeply the question about peer effects in the classroom. It is a mat-

ter of interest because through a deep knowledge of processes of peer effects we may be

able to design optimally the composition of classrooms to foster positive influence among

students. This would improve the overall achievement in the school, importantly keeping

the level of resources fixed.

Finally the third chapter departs from the first two in terms of methodology, but it

relates to the issue of multiplexing in network. By multiplexing we mean that there are

more layers of a networks, with links not necessarily overlapping. The matter of interest

in this context is what happens on a layer as a consequence of something happened on a

different one. The application explored here is real and virtual networks. The paper in

5



6

this topic is focused on a search process where agents want to find other agent. However

they do not know on which platform nodes to be found are searching on, so they have to

coordinate on a platform. This is one of the first attempts on this new frontier of research

on social networks, and lot has to be done in this direction yet.

Through this thesis I aim to contribute to the existing literature in several aspects.

The first chapter extends the current knowledge on polarization processes, as it proposes a

micro-foundation for observed patterns. Among the main implications is that it is crucial

to distinguish between transitional and long-run polarization. In the former case we can

observe polarization even if the process converges to a consensus in the long-run. The

latter will exhibit a reinforcement of polarization over time, reaching a maximum when

partial consensus happens.

This is relevant for several issues. Examples are provided by polarization of political

opinions in the U.S., which is documented both in the public, and in their representatives,

i.e. in the Congress and in Senate. A different kind of field of application may be inte-

grations of cultures. In this sense this paper stresses the importance of social interactions

to foster integration, and also helps understanding long-run processes, for which we have

only short evidence. Moreover, this chapters brings important theoretical contributions.

The literature on network games focuses on how equilibrium outcomes depend on the

network structures, which is exogenous. Literature on strategic network formation takes

outcomes as given, and study network configuration that may arise and stability issues.

In the first and second chapter I do both, merging this two streams of literature.

The insights are quite relevant as the implications on outcomes brought in by the

endogeneity of the network are non-negligible. The importance of that is stressed more

in the specific through a real world application of the model, which analyzes peer effects

in the classroom. As we know in econometrics we observe correlated outcomes, but we

can hardly distinguish whether this correlation depends on being connected, meaning

that individuals influence each other given social connections, or whether correlation in

behaviors is just a reason for individuals to form links. Having a proper model for that is

relevant because allows us to focus on the channels of the process, and also have a deeper

understanding of unexplained real world facts.

The final chapter is still within the range of issues covered by the topic of social

influence. However it differs substantially from the first two. While we have so far

described processes of influence between agents, we now move to study situation where

the activity of an individual into a layer of the network influences her own activity onto

a different layer of the same network. This case is analyzed in the framework of real and

virtual networks. These are two layers of an agent network. The social contacts in real
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life resemble the contacts in virtual life. But clearly either individuals are on-line, or they

are off-line. Therefore their activity on one network influence the other. It is discussed a

network formation stage here too, but I explore a stochastic process. One of the reasons

to do so is to give the due importance also to the randomness in meetings. Agents will

keep some control over links, since their preferences still matter, but their choices are

conditional on the meetings that took place, which follows a probabilistic scheme.

The main point of this chapter is to shed lights on intensity of usage of virtual social

networks. In principle this work is part of a larger research agenda of mine, as I intend

to further investigate this issue, both theoretically and empirically. The main insights so

far are that individuals with strong preferences for meeting similar-minded friends, that

face a static environment will likely spend lot of their time on virtual social networks,

sacrificing their real side of life. This is a matter of interest that goes beyond economics,

although it is a behavioral feature with potential influence on economic outcomes too.

The thesis is organized as follows. Each chapter is presented separately, but we col-

lected all the bibliography. Proofs and calculations behind the results are in the appendix,

that is organized by chapters. The section Conclusions collects some broader thoughts

and some punchline on the work that is presented below.
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Chapter 1

Polarization through the endogenous

network1

Processes of polarization have been documented in several applications. Nevertheless most

of the theories built so far show how herding behavior and convergence of opinions tend to

be a regularity in several contexts. In this paper we develop a model where agents correct

their heterogeneous initial opinions averaging the opinions of their neighbors. The key

contribution is to let the network take place endogenously. While the most known results

are derived assuming the network to be strongly connected, we show how this component

depends on the initial distribution of opinions. To do so, we characterize the process letting

naive learning be a best reply function for agents. This allows to study the incentives in

linking choices on the primitive process. Results show that, if opinions are not distributed

uniformly, there always exist conditions on the strength of the social influence to prevent

the network to be connected. This causes polarization both in the transition and in the

long run.

1This chapter is joint with Paolo Pin (Bocconi University).
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10 Chapter 1. Polarization through the endogenous network

1.1 Introduction

Understanding the processes of opinion formation is a matter of interest for several reasons.

In a society different social norms can coexist in contexts that share lot of cultural and

environmental features. Or similarly, political opinions tend to be concentrated around

two different poles. It has been documented also that in the latter specific case, looking

at the process dynamically we observe a reinforcement, and therefore opinions become

more polarized over time.2

Our approach is to explain this issue through strategic network formation. The idea

is that individuals are on one hand influenced by other opinions, but the choice of social

connections, i.e. sources of opinions, is not arbitrary. Thus whether a society ends up

having convergent opinions would strongly depend by the way individuals interact with

each other. Clearly if a society is split and there is no interaction between the several

groups, the evolution of social norm within subgroups is independent from the others,

and therefore is likely to exhibit disagreement.

We assume that evolution of opinions follows a process where agents are boundedly

rational, and then focus on structural conditions on the nature of social relations. Thus

we study a process known as naive learning, and we contribute to the existing stream

of literature endowing agents with additional rationality with respect to the fully myopic

scenario, letting them form the network optimally. Our approach could be described

through the formulation of the DeGroot learning dynamic (see DeGroot (1974)), which

simply states that at each point in time agents have an opinion equal to the average of

opinions in their neighborhood in the previous period. Formally denoting with xi the

opinion of an agent i, and with µi the average of the opinions of i’s neighborhood we have

xi,s = µi,s−1

This process has been studied in several papers, of which we mention among others

Hegselmann and Krause (2002), DeMarzo et al. (2003) and Golub and Jackson (2010).

In particular the latter shows that in order to have convergence some conditions on the

structure of the adjacency matrix are needed and, specifically, it has to be irreducible and

aperiodic. The former translates in a network being strongly connected3, while the latter

2See Pew Research Center, June, 2014, “Political Polarization in the American Public” for a study on
public in US, Andris et al. (2015) for evidence from the US House of Representatives, and how polarization
is in this case a dynamic process.

3See Brualdi and Ryser (1991) for a formal proof.
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is easily satisfied assuming agents posing positive weight on their opinions.4

On top of these results, we let agents weight positively their own opinions, focusing

therefore on conditions for which the network will be endogenously connected or discon-

nected. Thus the process that is going to be examined in this paper is

xi,s = fµi + (1− f)ti,s (1.1)

where f is a weight that we call flexibility, and we let ti,s = xi,s−1. Through that lot of em-

phasis on the first period, where agents have no connections and are endowed exogenously

with an opinion. Hence we have ti,1 = ti,0, since xi,0 = ti,0. Thus we let agents weight

their initial opinions. When the process is initialized the network is not yet formed, and

then afterwards we want it to update according to the evolution of opinions. Formally

the process embeds a strong inertia, because agents update the network according to the

opinion exhibited in the previous period and the opinion of new neighbors. The two are

clearly correlated. Nevertheless, if the original DeGroot process is taken into account,

there will be no evolution of the network, and therefore we need this modification. More-

over, this is the core of naive learning, because agents reinforce their bias over time. In

other words, they are not able to exploit all the information that is available.

We initialize the problem endowing agents with an opinion, and depending on that

they will form the network optimally. To achieve that we identify a payoff structure,

through reverse engineering, such that the averaging of opinions described by equation

1.1 is a best reply function of the game. This allows for an analysis of strategic network

formation, with opinions evolving accordingly.

Through this small change in the structure of the problem we are able to translate the

conditions on the connectedness of the network assumed in existing works, into conditions

on the ex-ante spectrum of opinions. This is a matter of interest because on top of this

process the literature may advance inquiring the possible sources of interference that could

either amplify or weaken the polarization process.

In term of results we first identify the possible equilibria of the network formation

stage. Given a distribution the process boils down to a unique equilibrium characterized by

agents ordered on the opinion space, forming connections with adjacent agents. Therefore

the network in equilibrium exhibits homophily, which is in line with broad evidence on

4The condition requires that the largest common divisor of the path length is 1. See Jackson (2008)
for a discussion of this issue.
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social networks, and more specifically with the literature on political opinions also, as

documented by Gentzkow and Shapiro (2010), among others.

Hence we derive conditions on the initial distribution of opinions, sampled from an

arbitrary distribution, such that in equilibrium the network will be either connected or

disconnected. In particular we detect conditions on how profitable are connections, and

how sensible are agents to others’ opinions so that, when the distribution of agents is such

that there is a mass of opinions that is relatively less represented than in its neighborhoods,

the network will be disconnected. This leads to persistent divergence of opinion into a

society. We believe it is an important contribution, especially considering that opinions

take initially place under the influence of external factors. This could be the case in

political opinions when considering media and politicians. Additional considerations could

be drawn letting these external entities act strategically with respect to the network. That

is another fundamental question that we leave for future work.

1.2 Literature Review

The literature has tried to explain disagreement using several techniques, clearly showing

different possible outcomes. We want to contribute to the understanding of this issue using

a network approach. This is not new, since research in networks has focused substantially

on these issues. We could broadly define two approaches within this field, the bayesian

learning and naive learning.

The former assumes fully rational agents that are thus able to exploit at best the

information in their possess. In this context herding behavior is a natural result, and

it is hard to escape from convergence of opinions. Therefore we should depart from

full rationality. In this context researchers have been focusing on minimal conditions on

bounded rationality such that non-convergence could be achieved as a result. One example

of that is given by Yildiz et al. (2013) which assumes the presence of stubborn agents which

do not pay attention to the information available, but simply stick to their own opinion.

Our approach differ from this stream of literature since we assume a boundedly rational

process, and add rationality on top of it.

Indeed this paper is closely related to the literature on naive learning, which began

with the paper by DeGroot (1974). More recently this framework has been investigated

in several other works that are a fortiori related to this paper.

DeMarzo et al. (2003) brings explicitly the network into the process of updating, and

assumes an environment with persuasion bias and uni-dimensional opinions. The former

means that agents hear the news, and then are influenced according to an exogenously
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given listening matrix, without accounting for repetition of information. This pushes to-

ward convergence since the sources of information are over-counted because of the social

structure brought in by the network. Uni-dimensional opinions instead means that opin-

ions can be summarized by a single opinion. Although this is a result in that paper, we

use here opinions that are uni-dimensional and can thus be summarized on an interval of

a line.

Golub and Jackson (2010) exploiting some of the results in the paper summarized

above, derive general conditions on the structure of the adjacency matrix such that con-

sensus may occur. One of the main results, among others, is that the network should be

strongly connected and its adjacency matrix be aperiodic, which means that the highest

common divisor of the cycles length must be one. This is easily satisfied allowing for

self cycles, with agent then taking into account their own opinion. Thus we keep this

assumption but we study conditions on the distribution of opinions such that the network

will be endogenously disconnected, which would then prevent consensus to happen. To

the best of our knowledge, no other works attempts to do so.

With a completely different approach, Krause (2000) and Hegselmann and Krause

(2002) do not analyze directly the network, but assume that the hearing matrix, which is

in fact a stochastic matrix that summarizes a Markov process, is such that agents exhibit

bounded confidence. This is implemented through an exogenous rule for the opinions to

be taken into account only if they are similar enough. Under this circumstances, if this

distance parameter is too relevant, consensus is not achieved. In our paper such a rule is

not exogenous but is a consequence of the endogenous network, although follows from the

payoff structure. The results are richer because they take into account relevant parameters

to analyze different scenarios, and are derived for arbitrary distributions of opinions.

Another closely related paper to ours is Melguizo (2015) where the evolutions of opin-

ions is based on salience of attributes, meaning the difference in behavior between in-

dividuals sharing a characteristic or lacking it. Agents are endowed with a vector of

characteristics, and if there is a unique most salient characteristic the agents will assign,

dynamically, growing weight to those who share the same trait. Since characteristics are

binary groups can at most be two, and that is the case in which disagreement occurs.

While this can be reasonable in several contexts, we believe the modeling explicitly the

strategic network formation allows for a better understanding of the drivers of such results,

and to derive richer results, too.

Most of the analysis of the model is here focused on the first period of the dynamic

process, since this will determine the full evolution of opinions in the society. Nevertheless

we contribute also to the existing literature on the speed of convergence to consensus. In
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this stream of literature we find Golub and Jackson (2012), among others. They study

a process with agents belonging to a finite set of groups, and assume that interactions

are more frequent toward same-type agents. In such a context convergence will always be

reached, and thus it is shown how the stronger the same-group interactions (homophily),

the slower the convergence to consensus. Here we show how, on top of this result, the

speed of convergence is non linear due to the endogeneity of the network. In particular

we identify thresholds on the diameter of the network such that the process speeds up

dramatically and converge. Thus more homophilous networks tend to exhibit slower

speed of convergence, but because of the endogenous network they will show also a more

prominent non-linearity in the latest stages.

For different reasons, this paper is also related on the literature of network games with

endogenous networks. On of the first attempts in this context is provided by Galeotti and

Goyal (2010), and followed by Kinateder and Merlino (Kinateder and Merlino). These

papers examine games of public goods and thus they differ substantially from the game

proposed here, which formally is a game of complements. A similar model to the one in this

paper is analyzed in Bolletta (2015). The main difference is that here we study directed

networks, following therefore a fully non-cooperative approach. In that paper instead the

model is solved under pairwise Nash stability, and the undirected network allows to focus

on the agents less prone to form links. Under a perspective of optimal policy design that

aim to foster interactions, the analysis identifies individuals more susceptible to incentives.

The rest of the paper is organized as follows. Next section describes the model,

analyzed in steps assuming exogenous network first in section 1.3.1, then letting it be

endogenous in section 1.3.2. The latter contains the main results of the paper. Thus we

analyze the full dynamic process and speed of convergence in section 1.4. Discussion in

section 2.5 concludes. Proofs are in Appendix.

1.3 The model

1.3.1 Network as given

Consider the following one-shot game between two players.5 Each player i is characterized

by an opinion (or type) ti ∈ [0, 1] and by a flexibility f ∈ [0, 1]. The action of each player

5The two players version of this game is similar to Bisin et al. (2006).
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i is xi ∈ R, and the payoff for agent i is, given the action xj of the other player,

πi(xi, xj) = V − f(xi − xj)2 − (1− f)(xi − ti)2 , (1.2)

V is the value from the interaction, and then there are some costs for adaptation and

coordination. V here could represent the idea that other agents have information that

is useful, and we assume that it is linear and symmetric across agents.6 The parameter

f weights these two components, and that is why we have called it flexibility. One can

already see that agents with low flexibility weigh more adaptation. High flexibility agents

weigh more the coordination term.

Now consider a directed network with n agents, where the neighbors of node i are

given by the set di, with cardinality ki = |di|. We let the network be directed for two

main reasons. In terms of interpretation we believe that in opinion formation, where the

structure of social interactions has been often represented through a “listening matrix” is

more consistent with what we observe. Moreover there is a technical reason, that is we

solve the model through a fully non-cooperative approach.7 The same game as above is

played on the network but now an agent must choose the same action as before, taking

into account all her neighbors’ choices. The payoff structure considering the network thus

become:8

πi(xi, ~xj) =
∑
j∈di

(
V − f(xi − xj)2 − (1− f)(xi − ti)2

)
= ki

(
V − (1− f)(xi − ti)2

)
− f

∑
j∈di

(xi − xj)2 . (1.3)

where the unique best response for agent i is

x∗i (~xj) = fµi + (1− f)ti , (1.4)

6This is a simplification. However introducing an extra layer of heterogeneity in this dimension would
only complicate the nature of the results, without delivering interesting insights.

7See Bolletta (2015) for the study of a similar model under undirected network. There it is shown
that it is still feasible to perform the analysis, although some extra conditions are required in terms of
rationality to refine multiplicity of equilibria in the network formation stage. In that paper farsightedness
is used as a refinement. We preferred here to stand to a more realistic assumption on individual’s
rationality, which in addition allows us to solve the model through the concept of Nash equilibrium.

8Note that although we focus on the following payoff structure, what really matters for the results
that follow is the best reply scheme. Indeed one could redirect the analysis that follows to a payoff
structure consistent with other parametric forms already used in the literature, such as Calvó-Armengol
et al. (2009) among others.
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where we have called µi ≡
∑

j∈di
xj

ki
. This is equation 1.1, already described in the in-

troduction. At this stage we analyze one period only, and in a later section we discuss

dynamics of the model.

The timing of the on period game is as follows.

Definition 1. TIMING:

Time 0: Opinions ~t are exogenously assigned to agents;

Time 1: agents form simultaneously and independently the directed network, which becomes

common knowledge;

Time 2: opinions are updated into x, according to the network and to best replies.

From the timing we introduce the equilibrium concept. Formally we see this as a

sequential game, that we can therefore solve by backward induction. In particular we

focus now in the solution of the system of best replies, when the network is given, and

therefore µi is uniquely defined for all i. Then in the next section we move to the previous

stage letting agents form the network, to finally move to the very initial stage on the

distribution of opinions to characterize the possible equilibria.

To proceed, let us introduce some more notation to rewrite the system of best replies

in matrix form. To do so we call:

• F the diagonal matrix of all flexibilities, so that F ≡


f1 0

. . .

0 fn

;

• ~t the vector of all types;

• and D the adjusted adjacency matrix such that Dij ≡

{
1
ki

if j ∈ di,
0 otherwise.

Note that we let f be homogeneous, although the model could account for heterogeneity

in this dimension. Moreover we underline once again that the entries into the matrix D

have to be determined in equilibrium. Then a compact way to write (1.4) is

(I − FD)~x = (I − F )~t . (1.5)

Lemma 2. Equation (1.5) has a unique solution ~x ∈ [0, 1]n.

Proof. See Appendix.
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This simple result states that for a given network there is a unique Nash equilibrium

of the game. This is crucial because we can now move forward and go study the network

formation. Before doing that we focus on the payoff structure and derive a formula for

the payoff in equilibrium, which dramatically helps us in the analysis of agents’ strategies.

Thus let us move back to the Nash equilibrium. From (1.3) and (1.4), the payoff in

equilibrium is9

πi = ki (V − f(1− f)(µi − ti)2 − fσ2
i ) (1.6)

where we have called σ2
i ≡

∑
j∈di

(xj−µi)2

ki
the variance of the actions of i’s neighbors. Given

that the payoff structure is quadratic, it is not surprising that second moments of the

distribution of behaviors appear in the analysis. Nevertheless, this is a result that is not

highlighted from previous works, although it is particularly meaningful. Interestingly, we

see how fully flexible agents (f = 1) have preferences only for homogeneous groups, and

they would not care about which opinion the group exhibits. Therefore they will form

the group with agents that share the most similar opinions. For agents that instead are

not prone to change their opinion (f = 0), others’ opinion are completely irrelevant, and

therefore connections are formed at cost 0. For intermediate values of flexibility (f = 1/2),

agents both care about having homogeneous and similar opinion groups. Next Remark

formally states some comparative statics on f on the payoffs.

Remark 3. The payoff of an agent in equilibrium depends:

• quadratically on µi, with a maximum when µi = ti – this effect is the most detri-

mental when f = 1
2
;

• linearly on σ2
i – this effect is the most detrimental when f → 1.

So, the payoff seems always maximum when f = 0, so that xi = ti (but it could be a

problem to find neighbors when the network is endogenous).

The first order effect (i.e. fixing others’ best responses) of increasing flexibility up to 1
2

decreases welfare, but when f > 1
2

an larger f could increase welfare if the actions of

neighbors have low variance.

9See Appendix for the complete derivation
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1.3.2 Endogenous network

The concept of equilibrium here is sub-game perfect Nash equilibrium. Since the network

is directed the solution is fully non-cooperative, and it is worked out in two stages, by

backward induction. In fact the agent will first choose their neighbors, and then will

update their behaviors according to equation 1.4. In the previous section we established

uniqueness of equilibrium for a given network and we can therefore focus now on the

network formation stage.

Before moving to the result, we propose here a definition that allows us to partially

characterize the equilibrium.

Definition 4. An equilibrium is ordered if each agent in a network g has an interval of

neighbors {i− ai, i+ bi} such that ai+1 ≤ ai + 1 and bi ≥ bi+1 + 1.

The above definition can be described as follows. We call an equilibrium to be or-

dered if agents are matched only with their closest neighbors. Clearly every agent will

have different bounds on their neighborhood, and we could characterize those only de-

parting from a given distribution of opinions. The following result formally states that

this configuration is the unique that can arise in equilibrium.

Proposition 5. An ordered equilibrium exists and every equilibrium is ordered.

Proof. See Appendix.

To get an intuition on this result, let us recall equation 1.6. In particular we could

broadly interpret the payoff deriving from a set of links as follows. First agents want

that the average behavior in their neighborhood is close enough to their initial opinion.

That is agents are homophilous. Therefore agents with similar opinions will tend to match

together. This already pushes strongly towards uniqueness of the equilibrium. In addition

to that we should consider the second term of equation 1.6, which shows how agents have

preference over the diversity of opinions inside their neighborhood. Therefore we can say

that agents will tend to match with their most similar agents, and the reference groups

are well defined since the variance term ensures sharp bounds on it.

Given the previous result we can now determine the conditions on the initial distribu-

tion of opinions such that the network will be disconnected. In particular we will have that

the spread of opinions is greater than the initial distribution of opinions if the network is

disconnected, while lower if instead the network is connected.

The model allows to define a triple 〈V, f, T 〉 which will map into a network configura-

tion and a distribution of opinions 〈G,X〉. Thus it is a matter of interest to understand
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under which condition the distribution of ex-post opinions is more polarized than the dis-

tribution of initial opinions. Simply defining a Gini type of measure, we can compare the

vector x with the vector t. As it turns out, the weighted adjacency matrix is all matters

here. Such a result is therefore comparable with all the literature on DeGroot processes.

We need to find condition on aperiodicity, irreducibility and other Markov Chain results

for the adjacency matrix.

To test for the polarization into the population of interest, we should first define a

Gini type coefficient for our specific context. To do so, let us introduce a vector

ξ̄′ = (−n+ 1,−n+ 3, ..., n− 1, n+ 1)

Thus, if we calculate ξ̄′x̄ with x̄ being the vector of actions in equilibrium, we have a

measure of dispersion of actions. Clearly this will not be between 0 and 1 as the typical

Gini index, since we would need to weight it, but we are rather interested in the difference

in dispersion between equilibrium behaviors x̄ and initial opinions t̄. We want then to

analyse the sign of our measure of polarization P (g, t) = ξ̄′(x̄ − t̄). If positive we would

have polarization, if negative we would have centralization, and if 0 then we would have

that the endogenous network would not matter at all. Interestingly, if we use equation

1.5, we could simplify this measure, as shown by the following simple algebra.

P (g, t) = ξ̄′(x̄− t̄)

= ξ̄′[I − f

1− f
(I − fD)]x̄

=
f

1− f
ξ̄′[D − I]x̄

(1.7)

From this we see clearly how the sign depends only on D, while it is independent of

f . In particular the equation above is going to be positive if D is disconnected, negative

otherwise. This is to put emphasis once more on the relevance of the network formation

stage in the process analyzed here. Provided that, we move now to the main result of the

paper, which provide sufficient conditions on the distribution of opinions such that the

network is going to be disconnected in equilibrium.

Proposition 6. If there exist two agents i, j such that j = i+ 1 and |ti− ti+1| > ξ(f, V ),

all equilibria are disconnected.

Such threshold is ξ =
(

(1+f)2

f(1−f)
V
) 1

2
, and is convex in f , with a minimum in 1

3
.

Equilibria exhibit a number of components |C| ≥ {i, j|ξ < |ti − ti+1|}+ 1

Proof. See Appendix.
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From the above result we learn that first of all there exists a threshold on distance of

types such that, for all rules of order in the network formation stage, the network will be

disconnected. This is therefore a sufficient condition.

Importantly, the result holds for any distribution but the uniform. To see that, it is

enough to point out that we must check among all couple of agents, and determine the

couple characterized with the maximum distance. Then we can check that there always

exist a pair of V, f such that that distribution may exhibit disconnectedness. Finally note

that every distribution that is not-uniform, grants the existence of a couple of agents

characterized by maximal distance in types.

Interestingly the threshold is convex in f , with a minimum for f = 1/3. The intuition

behind this result is that agents have to weight enough the variance term. However, there

is a non monotonic effect for larger f since agents will also be more influenced by neighbors,

so overall variance would be lower. Nevertheless this implies also that in the first place

agents prefer to have homogeneous neighborhood, and that is why in equilibrium they are

likely to take place locally, with segregation arising.

In the next example we show simulations of the model for several distributions, showing

how the uniform would be strongly connected, while other distributions, namely a bimodal

and a normal, favor the arousal of more groups not inter-connected.

1.4 Dynamic setting

In this section we extend the result shown before to a dynamic setting. In particular

we let that at any point in time an agent’s opinion correspond to her ex-post opinion,

determined in equilibrium in the previous period. Formally we have then ti,s = xi,s−1,

where s ∈ {0, 1, .., S} denotes discrete time and with ti,0 = ti. Clearly we want the process

to be myopic. In fact agents at every step s will only maximize utility at that given point

in time. Intuitively, the previous analysis focus on what happens within a time step, and

now we consider multiple time steps.

Formally the timing is now given by:

• Agents get types s = 0

• Then form the network and update them s = 1

• At every following stage they inherit the type from previous period ti,s = xi,s−1

• Keep on updating the network and opinions
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In this way we are able to initialize the model with a distribution of times and study

both the long-run behavior of the society and the step-by-step evolution of the process.

In particular we are able also to see deeper how the result obtained before relate to the

well known results found in DeMarzo et al. (2003) and Golub and Jackson (2010). This

papers show how if the network is strongly connected and weighted adjacency matrix is

primitive and aperiodic (as it turns out the latter implies the former), consensus is always

reached.

Our model could be in fact compared to the model by Krause (2000) and Hegselmann

and Krause (2002), where he shows that if agents give weight only to those who have

similar opinions, convergence of opinions will be ensured only within each component,

even if the network is strongly connected. Somehow in these models connections do not

matter, as it matter instead the agents to which it is given weight in the process of opinions

updating. The rule to determine the closest neighbors to which pay attention is imposed

exogenously, while again our model generate that in equilibrium through the endogenous

formation of the network.

The dynamic process is characterized by the one-step transition already analyzed, and

after initializing the process at xi0 = ti the process is described by the following.

xi(S) =
S∑
s=1

f(1− f)S−sµi(s) + (1− f)Sti

where both xi(s) and µi(s) are determined at each point in time according to the above

process.

Remark 7. The dynamic model exhibit the following properties:

• For each k ∈ C, xk(s) converges to a x∗k.

• For each h, k, either x∗h = x∗k or |x∗h − x∗k| ≥ ξ.

• For each k ∈ C, gk(s) is the complete graph.

The result follows from the analysis in Hegselmann and Krause (2002), with the only

difference brought in by the endogenous network (the third point), and therefore we omit

a formal proof.

To see convergence to the complete network it is easy to observe that along the path

behaviors tend to condense, and therefore locally there will be less dispersion. This feeds

into more link formation, which again brings additional inertia to the whole process.

Nevertheless, we have that if the network is disconnected at the first time step it will
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remain disconnected, and viceversa. Consensus will take place only partially within every

component that arouse from the network.

Accommodating our model to a dynamic version we see that all that matters for con-

vergence is the formation of the network in the first period. Then one or more components

arise accordingly, and over time we observe a contraction of opinions toward a unique one,

in each component that has arouse. At the same time, the network will become more and

more connected over time, converging to the complete one.

The endogenous network shapes the adjacency matrix into blocks, and then over time

there is an increase in density of positive entries because the actions are closer and closer.

As a result we get a reinforcement over the process of convergence. We can surely say that

an increase in V and in f would push both over a faster convergence. This is intuitive,

but considering the flexibility, we know also that it makes easier to break up the network.

1.4.1 Simulations

In this section we provide some numerical results for the dynamic version of the model.

We provide results for two different distributions of types, keeping all the other parameters

fixed. In particular we fix the following choice of parameters. Given the parameter choice

Parameter Value

N 100
f 0.3
V 0.0007

the threshold is identified with ξ = 0.078.

Then we are interested in one-shot and long-run behavior of different distributions.

We first analyze as a benchmark a uniform distribution. As we learn from the above result

such network is strongly connected and it will eventually converge to a consensus over time.

The second distribution instead uses a distribution generated from a truncated bimodal,

defined as the mixture of a truncated normal g1(t) ∼ N [0, 0.4] and g1(t) ∼ N [0.48, 1].

Thus we forced the data to exhibit at least two components.

Let us comment first the figure 1.1. The top graph show the equilibrium network

selected by the solution algorithm, and we see that it is connected. So the process must

converge in the long run. The most interesting remark is observing the transition toward

the convergence point, evidenced by the two figures below. In the bottom left figure

we represent the evolution of behaviors over time. We observe mainly two things: i)

the process takes a remarkable amount of time to get to consensus, and ii) there is a
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Figure 1.1: Uniform distribution

condensation of opinions on the tails of the distribution. More and more agents will

get toward extreme behaviors, although the extremes themselves get closer over time.

We call this feature transitional polarization. This is documented by the figure in the

bottom right, where indeed we notice that from the initial uniform distribution, where by

definition polarization is absent, there is a consistent polarization process over time. In

the very long run it will disappear and eventually the system converges toward a unique

behavior. However, over the path it is remarkable how polarization may arise. We believe

this result is novel and particularly interesting for several applications.

Figure 1.2 differently show a distribution that we forced to exhibit at least two com-

ponents. Random sampling of data ended out exhibiting 4 of them. What we observe

is how partial convergence takes place within every component, and how also here the

process in the end will exhibit a maximal amount of polarization given the averages of



24 Chapter 1. Polarization through the endogenous network

Figure 1.2: Random sampling from bimodal distribution

each subgroup. What is remarkable to notice is also that here the process is consistently

faster than in the previous case.
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1.5 Discussion

In this paper we showed how through the endogenous network tend to be disconnected.

In particular this happens when forming connections is not too profitable, and agents are

particularly sensible to social influence from their neighborhoods. This conditions lead

opinions in the long run to diverge, and thus consensus is never reached.

In several real world examples the choice from the agents of their neighbors is non-

negligible. From this results we learn therefore that considering a network formation

process has dramatic results on several dimensions, namely the network configuration,

equilibrium behaviors, long run opinions and speed of convergence.

We wanted to contribute in this sense to the existing literature on opinion forma-

tion processes, because this could really open new research questions. In particular it

comes natural the question regarding possible nuisances that may alter the distribution

of opinions at any given point in time. This could explain cyclic behavior of political par-

ties, strategic provision of information from media and evolution of social norms. These

are relevant questions well explored in the literature, but we believe that this work can

consistently contribute having a richer understanding of them.
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Chapter 2

Peer effects in school: a model1

In this paper I develop a model of network formation that exhibits peer effects. Students

form friendships, and their academic outcomes will depend on the acquaintances they cre-

ated within the class. I allow for the presence of role models, to identify the students

with more popular characteristics. Therefore I model the problem of a school, who gets

a number of freshmen and must decide to assign students to classrooms. The school’s

objective is to maximize student’s outcomes. Numerical results, consistently with experi-

mental evidence, show that if there are positive role models the school must create uniform

classrooms, isolating negative role models.

1I would like to thank in particular my supervisor Giulio Zanella, Paolo Pin and Andrea Galeotti
for their insightful comments. Moreover a special thanks goes to my Ph.D. colleagues in University of
Bologna for the great time spent together, the attendants of the Internal seminar series in University of
Bologna, as all the participants to the NEXT Workshop in Budapest (2014), the Winter Workshop on
Networks in Economics and Finance in Louvain-là-Neuve (2014) and the Networks Discussion Group in
Stanford University for their constructive questions that helped me improving this work. All errors and
mistakes remain my own.

27
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2.1 Introduction

In a society men are supposed to interact together, and to internalize the needing and

the characteristics of surrounding agents. Otherwise we would be only islands. On the

other hand we choose to be surrounded by specific individuals, and even though casualties

play certainly a role, most of the social relation are part of the decision process of the

individual. The main source of complexity, and at the same time its own beauty, is due

by the fact that we are all endowed with our own identities.

Among the first to introduce the role of identities into game theoretical settings there

is the paper by Akerlof and Kranton (2000). The authors have emphasized with several

examples how individual heterogeneity in the feelings with the self could build interesting

extensions to the already existing models of strategic choice. In this paper I want to

explore the role of this dimension both in the shape of agent’s behaviors and in the choice

of their connections.

The main findings are that agents in equilibrium will exhibit homophilous behavior,

and this depends on the best replies structure. The intuition behind is that agents enjoy

behaving according to their identity, therefore choosing an action in line with that, but at

the same time they have to mediate their actions in order to be a member of a reference

group. To accomplish these findings I derive a characterization result that holds for all

pairwise equilibria in this context, and reduce the set of feasible networks to those that

show patterns described in Watts and Strogatz (1998) as regular networks. However we

know that pairwise stability is a subtle equilibrium concept, as it usually identifies a large

number of networks, and cannot avoid the existence of cycles, as proved in Jackson and

Watts (2002). Especially to avoid the latter I refine multiplicity of equilibria applying the

concept of farsightedness, applying the definitions of Herings et al. (2009). In this context

this refinement tool is particularly effective in avoiding cycles, even though in principle it

is not a refinement of pairwise stability. Nevertheless, farsighted pairwise stable networks

turn out to be unique.

To achieve these results I developed a network formation model with simultaneous

determination of equilibrium behaviors. Actions are defined through a continuous vari-

able, that is determined as a function of other players’ behaviors and agent’s own type.

In particular the agents that enter in the utility function are those with which a link

is formed, which in turn is the initial endogenous choice. The model is solved as in two

stages, given that the subgame delivers a unique Nash prediction and therefore agents can

choose the preferred network updating their behavior according to that. Again the main

forces are that agents want to stick to their identity, but forming some social relations,
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which is profitable, they have to adapt to other agents’ actions. These ingredients lead

agents to form connections with more similar agents.

Just to make an intuitive example, imagine a group of friends that really love rock

music. When they meet they will talk a lot about that and how good it is. If one of these

individuals hates rock music, she would feel bad both if she ends up talking about rock

music, but also if she would say that rock music sucks. This would be why, in the first

place, it is extremely unlikely that the individual who hates rock would hang out with

rock music enthusiasts. These are all mechanics explained by the model.

Then the model is studied under particular frameworks, so to suggest some appli-

cations. First I study a case in which there are two cultures in a society, and there is

a majority and a minority. I focus on conditions under which the two societies would

ever form a connection between themselves. As a result the willingness of forming con-

nections depends on the relative shares of the two groups in the whole population. If

the minority is “small enough”, then we may have that the majority is willing to form

connections with the minority, because it is profitable for them, but the minority refuses

such connection. Therefore by pairwise stability, the two cultures will not be connected,

and no transmission of culture takes place. I believe this result is novel, and even though

it sounds counterintuitive there is lot of anecdotal evidence of minorities refusing to ab-

sorb the social norms of their hosting countries. Some suggesting evidence is provided,

and it derives the policy implication that in some cases it would be preferable to open

boundaries, rather than close them, because it could foster integration of communities.

However, this is a result that calls for more empirical evidence.

As a second application, I analyze a context of peer effects in the classroom. There

are lot of factors behind this particular effects, but I want to focus on the mechanics of

the proposed model. Nevertheless, to improve interpretative power, I differentiate this

exercise letting the benefit from the interaction be a monotonically increasing function of

types, that reflects the idea for which better students receive more friendship requests, as

agents may strategically want to link with them to exploit their influence in succeeding

in school. The results in this context are quite rich of implications. If the distribution of

student abilities is smooth (for instance as in a randomized classroom) connections are

likely to arise, and low ability students would benefit from indirect transmission of positive

peer effects, while best achievement students would not suffer from negative influence. If

instead the students’ abilities are not evenly distributed, segregation is likely to arise,

and low ability students would not benefit from peer interactions. The results in this

section are discussed benefiting from existing experimental literature, which proves also

real world relevance of the model developed.
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Being a context of peer effects I also show that the best replies system captures the

main ingredients of the linear-in-means model by Manski (1993). Moreover from Calvó-

Armengol et al. (2009) we know that peer effects may strongly depend on Bonacich

centrality, and I show that this is also a feature of the model, with the main difference

that here agents choose how to be central in the network, because the link formation is

fully strategic. To favor the comparison with existing literature I also discuss how the

results hold under the functional form used by Calvó-Armengol et al. (2009),2 with the

due modifications to allow identities enter the model. Best replies are the same exploited

in the main specification of the model, and in fact they are the main characterizing

ingredient of this framework.

The rest of the paper is organised as follows. Section 2.2 review the existing related

literature. Then in Section 2.3 the model is extensively discussed, and all results are

shown. Section 2.4 shows the three exercises mentioned above. Finally Section 2.5 dis-

cusses the main implications of the model as well as possible extensions. All proofs are

in the Appendix A.

2.2 Literature Review

This paper aims to contribute to the literature on strategic network formation. In the first

place the paper by Jackson and Wolinsky (1996) proposed a framework to work with, and

introduced the notion of pairwise stability. From that paper I took inspiration from the so

called connections model, which elicits strategic behaviors through an extremely reduced

form of benefit and costs deriving from interactions. Here I go beyond this reduced form

and I let the costs deriving from interactions be determined by an underlying coordination

game. The structure of the problem characterizes a network game. The usual practice in

the literature was to study games in this category keeping the network exogenous. For

instance Ballester et al. (2006) studies a game of strategic complements, while Bramoullé

and Kranton (2007) and Bramoullé et al. (2014) focus on strategic substitutes. Making

the network endogenous is instead relatively new, and to the best of my knowledge few

works attempt to do so. Among these there is the paper by Galeotti and Goyal (2010)

which is the first contribute into the literature in this direction. More recently there is

Kinateder and Merlino (Kinateder and Merlino). Both these works analyze public good

games, and therefore games with strategic substitutes.

2See Appendix B for the discussion of this aspect.
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Among the main implications of the model is that homophilous behavior arises in

equilibrium. This is a topic that was largely investigated in the literature on networks, as it

is one of the features that characterizes complex networks, and that do not arise in random

networks. Among the several works there is the paper by Currarini et al. (2009) which

evidences out the role both of preferences in link formation process, and of randomness.

Agents have preferences in linking with same-type agents, but also chances of meetings

(i.e. relative availability of same-type agents into a larger population) matter. Using a

really different approach, Golub and Jackson (2012) show how homophily can influence

best-response dynamics and learning processes. For higher importance of homophily into

a society, it is less likely that such society will reach consensus. More recently Boucher

(2015) developed a network formation model, where homophily is a key component and

enters the analysis through a distance function on agents’ characteristics. The paper

proposed here extends this framework adding equilibrium behaviors on top of a linking

formation framework, and homophily arises endogenously.

Regarding the methodology this paper provides an application of the concept of far-

sightedness in networks, introduced by the works by Page Jr et al. (2005) and Herings

et al. (2009). The latter is the paper I strongly rely on in terms of definitions. The

application of such concept is, to the best of my knowledge, rare. One of the reasons why

it is so, I believe on the strong rationality that imposes to agents. In fact, through this

concept, agents must be able not only to take into account others’ strategies, but also

to internalize reactions to their actual choices. In fact agents can strategically undertake

a non optimal action if this leads, through optimal adjustments from other players, to

a preferred outcome. Especially when the network is large this implication may not be

credible. Nevertheless, one could obtain comparable results through an ad hoc dynamic

process of best response learning, which is much more frequent to observe.

I finally mention some related literature on the applications I propose in this paper.

The latest works on peer effects in the classroom exploit composition of classrooms. Keep-

ing randomized classrooms as benchmark, the treatment consists of specific compositions

of students’ body that are expected to enhance transmission of peer effects. Nevertheless,

no theory is behind those treatments, and moreover they have not delivered the expected

results in some cases. For instance the work by Carrell et al. (2013) identified “bimodal

distribution” of students as those more likely to foster peer effects, targeted on low achieve-

ment students. The results showed that students reacted endogenously to this treatment

in terms of group composition, and the two group of students (low achievement and high

achievement) remained segregated. In this paper I propose a theoretical framework that

could be exploited in that direction, and therefore could guide further experiments having
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clearcut predictions as a benchmark. Other examples in this literature are Li et al. (2014)

which to favor interaction among high achievement and low achievement students through

monetary transfers. This is interpretable in the framework of this paper as an increase

on the benefits deriving from the interactions.

2.3 The Model

2.3.1 Notation

Let N = {1, 2, ..., n} be a finite set of agents with n ≥ 3. Every player is endowed with a

type θ drawn from a distribution with θ ∈ [θ, θ̄]. This is to introduce a dimension of het-

erogeneity of players. Potentially it could represent a vector of idiosyncratic characteristics

that makes every agent different from another, but here we let θ be mono-dimensional.

The network relationships are reciprocal and the network is represented through a non-

directed graph. A network g is a list of which pairs of individuals are linked to each other.

We write ij ∈ g to indicate that i and j are linked under network g. The set of all possible

network or graphs is denoted by G. The network obtained adding link ij to the existing

network g is denoted with g+ij, and the resulting network deleting link ij is denoted with

g− ij. For any network g let N(g) = {i| there is j such that ij ∈ g} be the set of players

who have at least one link in the network g, and for every i let Ni(g) = {j|ij ∈ g ∀ j 6= i}
be the set of links for an agent i, i.e. her neighbourhood. |N(i)| is the cardinality of

the set of peers of agent i, i.e. their degree3, denoted throughout the paper with di(g).

A path in a network g ∈ G between i and j is a sequence of players i1, ..., ik such that

ikik+1 ∈ g for each k ∈ {1, ..., K − 1} with i1 = 1 and ik = j.

2.3.2 Payoffs and Preliminary Results

The choice of agents is an action defined x on a continuous space X , that we can interpret

here as an ex-post action, after social interactions took place. Under this framing the

identities would be the ex-ante behavior.4 As standard in a local interaction framework

there is a mapping of actions and types into utilities. Formally we have that (xi, xj, θi) 7→
Ui(xi, xj, θi). A parametric representation of such an environment is given in Bisin et al.

3Since the network is undirected there is no need to distinguish between in-degree and out-degree,
because in such context they coincide.

4This is not an assumption, but as later discussed equilibrium behavior in isolation is that an agent
responds only to her identity, and no social influence takes place.
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(2006), through the following utility function

Ui(xi, xj, θi) = −α(xi − xj)2 − (1− α)(xi − θi)2 (2.1)

where i, j indicate agents with i 6= j, and α is a weighting parameter exogenously given to

all players. In order to avoid multiplicity of equilibria at this stage we need that α ∈ [0, 1),

because otherwise behaviours may be driven only by social interactions.5

This function, though, allows only to consider bilateral relations among players, while

here I am interested in multilateral connections and their strategic formation. For-

mally I want that also the network is in the utility function, and so (xi, xj, θi, g) 7→
Ui((xi, xj, θi, g)). Therefore I will change slightly this utility function in a way that it

can represent (i) the benefit agents can get from direct and indirect links, a la Jackson

and Wolinsky (1996) and denote it with δ, (ii) a sum of cost agents pay from deviating

from peer’s behaviour, allowing then for multiple links (cost of conformism), and (iii) a

weight players give to their peers, which in this paper we assume to be equal among all

agents and to 1
di(g)

. This choice can be interpreted as the intensity of the interactions. If

an agent has relatively few links, she would be more influenced from her links than any

other agent having more links.

The preferences of an agent i ∈ N can therefore be described through the following.

Ui(xi, {xj}j∈N(i), θi) =
∑
j∈Ni

δ − α 1

di(g)

∑
j∈Ni

(xi − xj)2 − (1− α)(xi − θi)2 (2.2)

where α ∈ [0, 1), and it is homogeneous among agents. δ ≥ 0 is equal for all agents.

The chosen utility function is an isomorphic transformation of the equation 2.1, and

therefore the introduction of the benefit is irrelevant to the choice of actions, allowing

us to evaluate the best replies easily, because they are linear. Although, I am not able

in this way to determine simultaneously also the reference groups, neither in their size

nor composition. To do that we need to workout the full equilibrium of this game in two

stages. Note that for any given reference group, the second and third terms of the right

hand side of equation 2.2 are determined and fixed, and therefore can be considered as the

cost of keeping links, that as standard agents would pay only for every direct link they are

willing to form. In this sense this paper extends the standard framework of Jackson and

Wolinsky (1996), as it allows for optimal behaviours to be simultaneously determined,

5See Lemma 8 for a formal statement of this result.
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and studied in the equilibrium.

Best replies here are simply given by the following.

x?i = α{x̄j}j∈Ni(g) + (1− α)θi (2.3)

The existence and uniqueness of the equilibrium in the coordination game represented

above is guaranteed by linearity of best replies. Next Lemma formalizes the result.

Lemma 8. For all 0 ≤ α < 1 there exist a unique Nash equilibrium of the coordination

game with x∗i ∈ [θ, θ̄] for all i ∈ N .

Proof. See Appendix.

This result basically states, that for every possible exogenous network, the vector of

equilibrium behaviors is unique. Provided that we can now move to the endogenous

network.

2.3.3 Endogenous Network

Allowing the network to be endogenous, agents would then choose the set of links, and

then update their behaviors according to the findings of equation 2.3, which are unique

thanks to Lemma 8. We have that Xi = [θ, θ̄], and gi = {gi1, gi2, ..., giN} = Gi. Therefore

the individual strategy is represented by a couple si = (xi, gi) ∈ Si = [θ, θ̄] × {0, 1}N .

However the network is undirected, therefore we cannot rely on perfect subgame Nash

equilibrium, but I will look at pairwise Nash stability as defined in Calvó-Armengol and

İlkılıç (2009). This definition extend the standard pairwise stability framework introduced

by Jackson and Wolinsky (1996) because it allows the agents to sever multiple links at

once. In fact, the rigidity implied by pairwise stability does not allow to refine enough,

and basically too many networks are selected as possible equilibria, not allowing any

characterizing pattern to emerge.

To approach the result on stability I first focus on characterizing the equilibrium,

which will also be useful in the further analysis. Studying equilibrium behaviours we

see that, first of all, every agent has a strict preference in interacting with most similar

agents. Therefore, agent 1 would never make a link with agent n if there is not already

an existing link with agent n − 1, because in such a case, 1 would strictly prefer to link

with n− 1. These features are stated formally in the following Proposition.

Proposition 9. For any δ,Θ, α ∈ [0, 1), every pairwise Nash equilibrium is characterized

by the following linking scheme:
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• if gi,i+k = 1 (gi,i−k = 1), then gi,i+(k−1) = 1 (gi,i−(k+1) = 1),

• if gi,i+k = 1 (gi,i−k = 1), then every j ∈ {i+1, ..., i+(k−1)} (j ∈ {i−1, ..., i−(k−1)})
are such that gj,i+k = 1 (gj,i−k = 1),

∀i ∈ N and ∀k.

Proof. See Appendix.

From this result we learn that the network, if driven by the underlying game described

above, will exhibit a particular structure. In fact this is the network obtained by Watts

and Strogatz (1998) when having the “regular network”.

Figure 2.1: The regularity of the network.

Proposition 9 provides a strong characterization and, moreover, because reduces dra-

matically the set of possible networks we could study. Intuitively it shows that there is a

sort of sequentiality in choosing peers, depending on social distance. This mechanism is

also known as inbreeding homophily.

The parameter α turn out to be particularly relevant, because it is among the main

driving forces. Therefore next result states that it is more interesting to focus on middle

values of the parameter, since at the boundaries the predictions of the model ar rather

stark.

Remark 10. When α→ 1 or α→ 0 the complete network is strongly efficient for any δ

and for every distribution of θ.

In such cases the complete network is also uniquely pairwise Nash stable.

Proof. See Appendix.

Previous Remark states that analysis with extreme values of the weighting parameter

α becomes trivial. For such extreme values it is like the cost of connections are null, and

therefore adding a connection is always beneficial.6

6Note that if we would have added a fixed cost into the utility function we would have replicated
exactly the results in Jackson and Wolinsky (1996).
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Thanks to the results presented above we obtained a characterization of the set of

possible pairwise stable equilibria. Nevertheless, we cannot state anything about unique-

ness, yet. In particular we know that a pairwise stable network can fail to exist when

a cycle arise. Therefore studying the static environment we can fail to have a pairwise

stable equilibrium. However I want to achieve uniqueness as it would allow to perform

comparative statics exercises and to study specific contexts. To do so, I will move towards

a definition of stability that uses dynamic reasoning, letting the system to be static. In

simple words we could say that agents performs the dynamics in their mind, allowing then

to undertake links choices out of the pairwise stable scenario, if that leads to a network

that leads them better off. This is what we mean by farsighted agents.7 Note that this is

not a refinement of pairwise stability, as it can determine an equilibrium in presence of a

cycle, where pairwise stability fails to exist. The following part of this section is devoted

to the derivation of the result on equilibria, which ensures that there are no cycles.

I introduce here some definitions needed for the result. First of all I report the defini-

tion of farsighted improving paths,8 found in Herings et al. (2009)9

Definition 11. A farsighted improving path F (g) from a network g to a network g′ 6= g

is a finite sequence of graphs g1, ..., gK with g1 = g and gK = g′ such that for any k ∈
{1, ..., K − 1} either:

• gk+1 = gk− ij for some ij such that Ui(gK , θi) > Ui(gk, θi) or Uj(gK , θi) > Uj(gk, θi)

or

• gk+1 = gk + ij for some ij such that Ui(gK , θi) > Ui(gk, θi) and Uj(gK , θi) >

Uj(gk, θi).

Now we introduce the concept of pairwise farsightedly stable set. The formal definition

is found in Herings et al. (2009)10, and I report it to accomodate the slightly different

notation.

7Other equilibrium concepts have been explored. Among others, Strong Stability would have been
a strong equilibrium condition. However strong stability relies on the existence of a potential function.

As shown in Monderer and Shapley (1996) such function exists if and only if ∂2Ui

∂xi∂xj
=

∂2Uj

∂xj∂xi
. It is

straightforward to check that identities prevent existence of a potential function in this context, and
therefore we cannot rely on this stronger concept of equilibrium.

8The concept of improving path is introduced by Jackson and Watts (2002), then the definition is
a refinement of that concept following the seminal work by Chwe (1994) and the adaptation of the last
paper to network context given by Page Jr et al. (2005).

9Corresponds to Definition 3, in page 531 of the paper.
10Corresponds to Definition 4, in page 532 of the paper.
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Definition 12. A set of networks G ⊆ G is pairwise farsightedly stable with respect to U

and a distribution of θ if

• ∀g ∈ G,

– ∀ij /∈ g such that g+ij /∈ G, ∃ g′ ∈ F (g+ij)∩G such that (Ui(g
′, θi), Uj(g

′, θj)) =

(Ui(g, θi), Uj(g, θj)) or Ui(g
′, θi) < Ui(g, θi) or Uj(g

′, θi) < Uj(g, θi),

– ∀ij ∈ g such that g − ij /∈ G, ∃ g′, g′′ ∈ F (g − ij) ∩ G such that Ui(g
′, θi) ≤

Ui(g, θi) and Uj(g
′′, θj) ≤ Uj(g, θj),

• ∀g′ ∈ G \G, F (g′) ∩G 6= ∅

• @G′ ⊆ G such that G′ satisfies previous conditions.

Proposition 13. Under farsightedness there are no cycles.

Proof. See Appendix.

Result in Proposition 13 are crucial, because we can now exploit the avoidance of

cycles to explore better some applications. Moreover, among the main implication, I

think is particularly relevant the role of peripheral agents. They are in fact those who

will shape the equilibrium networks. The reason for that is that they would get the

lowest utility in the network given a same set of links. In simple words, we could say

that other agents would not like to be peripheral, and therefore they are prompt to not

disappoint them. This behavior is partly driving the result of uniqueness. Moreover

analyzing their behavior solely, would be quite informative if we combine the result of the

two Propositions presented in this section. To make the simplest example, if we observe

that the two peripheral agents of a distribution of characteristics are connected, we should

expect the network to be complete. If they are both connected with the median agent

the network would be surely connected, meaning that there exists an undirected path

between any couple of agents.

2.4 Applications

Given the result obtained through Proposition 13, we have now a framework that allows

for any comparative statics exercise on the parameters. I will do that exploring three

different applications of the model. In any of these I will focus the attention on the role

of some specific parameters, restricting the parameters not of interest. The first exercise

refers to a threesome (restriction on N) and I will focus on conditions on types such that
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the possible network configurations are stable. Then I will move on a case that I called

“a majority and a minority” (restriction on number of identities) showing conditions such

that the two societies are ever connected, and exploring the role of parameters of benefit

δ, the sensibility α, numerosity of the two societies and finally equilibrium behaviors.

Finally I will move on a case where the model is interpreted in terms of peer effects in the

classroom where I discuss the latest findings of the empirical literature about the “optimal

policy” and the compositional treatments in classrooms. Related to that also the relation

of the best reply structure with the Bonacich centrality, discussed in section 2.4.3. Then a

different utility function is discussed, showing that the main characteristics of the model

rely on best reply, rather than a specific parametric choice of the utility function.

2.4.1 Two Cultures: a Majority and a Minority

Through this example I wish to highlight the role of connections on equilibrium behaviors.

To make the things as simple as possible I assume that there are only two cultures, and

call them θ1, θ2, with θ1 < θ2. Then, we further assume that there are N agents, with

N = n1 + n2 and n1 < n2. Therefore there is a majority and a minority. The main focus

here is on conditions under which the two cultures would ever form a link between them.

We could interpret this situation with two cultures in same physical space, such as

atheist and religious, or oriental and western cultures, or black and white. Therefore

the results are interpreted as the conditions for the two cultures to be connected, which

would translate into a melt down of cultures. The first thing we observe is that forming

connection with agents belonging to the same culture is costless, and therefore all agents

in a culture i with i ∈ {1, 2} will be connected with all the ni − 1 agents that share the

same cultural traits. This is an application of Remark 10. The scenario would be then

x∗i = θi

Ui = δ(ni − 1)
(2.4)

for all i ∈ {1, 2}. Now we consider adding an extra link for all players toward the rival

culture, and we provide conditions on “how distant” the two cultures must be in order

to be connected. The first step in addressing this point is to consider the equilibrium

behaviors. The more natural way to proceed would be to evaluate equilibrium behaviors

under the two scenario, and then analyze the differential in utility before and after the

addition of the link. However this is not straightforward, since this would be equivalent in

evaluating the marginal utility of adding a further link from the scenario described above,

but utilities are discrete in links, and non linear in all other terms.
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To overcome these difficulties I study behaviors considering the size of the majority

group going to infinity. Then the assumption of n1 < n2 would translate in n2 approaching

the limit, while n1 remains finite. Moreover, without loss of generality we assume that

θ1 = 0, such that we can focus on the value of θ2 under which forming links among

the two cultures is profitable for both. Next Proposition shows the results under these

assumption, the proof explains the mechanisms behind, and the this section is concluded

discussing possible implications.

Proposition 14. For all δ, α, n1, there exists a threshold θ̃2 = ξ(δ, α, n1) above which the

majority would form links, but the minority refuses to.

When links are refused, x∗i = θi, for i = {1, 2}.
When links are accepted x∗2 = θ2, while x∗1 = α

n1−α(n1−1)
θ2.

Proof. See Appendix.

The intuition is that when a group is large, adding a link would influence mildly

the average behavior of the group with an associated culture. On the contrary, when

the group is small adding one link toward a different culture would modify consistently

average behavior of agents’ reference group and therefore in the former case agents are

willing to do so, while in the latter they do not.

Remark 15. The threshold ξ(δ, α, n1) is increasing in δ and n1 for all values of α. The

effects of α are non monotonic.

To provide visual representation of the behavior of the threshold ξ(δ, α, n1), I show

through the next figure a plot of the threshold as a function of α, considering different

values of n1. From this result we see the interesting implication that it could be the

case, in seeking cohesion, that a country population is more than willing to welcome

immigrants, but those would refuse to form such connections, harming the cohesion in

the first place. The counter-intuitive result, and policy implication would be to provide

incentives to minorities in participating to initiatives of the hosting country. As a parallel

prediction, cohesion would be easier to achieve if the size of the minority is relatively big.

As an example we may think to the Turkish community in Germany. They are a large

minority and they successfully integrated into the German culture, even though they were

quite diverse under several dimensions.

Finally, we saw as a result in Proposition 14 that when the link takes place agents

in the minority are influenced by the hosting culture. We could interpret that as the

“melting pot”, meaning that different cultures tend to melt down into a unique one,

over time. In an overlapping generation scenario we would then get that there will be
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Figure 2.2: This figure shows the threshold values of θ2 above which forming a connection is not

profitable for the minority. It was assumed δ = 1. Intuitively these values depend on α, represented on

the horizontal axis. The three curves show from the bottom values of n1 respectively of 20, 50 and 100.

We see how the greater the minority the greater the propensity to form a link with the majority, for given

values of θ2.

convergence toward a unique culture, with characteristics of both the majority and the

minority, only if the two cultures are linked in the first place. Otherwise the minority

would remain segregated over time.

2.4.2 Peer Effects in the Classroom

This example attempts to provide some insights on the effects of endogenous network

on peer effects. In particular, the literature on peer effects has focused recently on com-

positional treatments, meaning that experimentalists have changed the composition of

the classrooms in terms of previously observed outcomes of the students. For instance

there is the paper by Carrell et al. (2013) which in the first place states how peer ef-

fects affect heterogeneously students according to their grade; Low achievement students

(LAS, from now on) are those who benefit more from the exposition to high achievement

students (HAS) in a fully randomized classroom. Provided that, the authors develop a

linear programming optimization whose outcome attempts to be the best composition of

students’ ability according to the heterogeneous effects detected in the first place. As a

result the algorithm generated a partition of classes such that roughly half of them where

composed by all medium achievement students (MAS), and the others by LAS and HAS.

The latter are defined as bimodal classrooms. Peer effect turned out not only to be lower
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than expected, but even lower in the comparison with the control group, composed by

randomized classrooms. Post experimental evidence showed that this was due to lack of

interactions. In other words, agents formed endogenously a network composed by two

segregated components.

In order to let the model being able to provide interpretation on these dimensions, I

introduce some modifications to the version proposed in the main section. First of all we

let the action xi represents a student grade. This may be resulting from student’s ability,

with more able students having a lower cost for effort, which would justify the result

that more able students are also more incline in exerting effort. However I think to that

as a more complicated process, that could derive from a combination of characteristics,

including work values, family background and so on. Therefore we could think to the

type as θi =
K∑
k=1

λkθi,k, with λk representing a weight to any characteristic, and we let

these weights be homogeneous among population.11 For this reason this would be an

extreme reduced form of the true data generating process, but we can study the network

formation. Yet, assortative matching over grades is a relevant dimension to explore as

documented by Barnes et al. (2014).

Moreover in the linking process it is reasonable to think that agents may have a pref-

erential attachment over higher types, as they could strategically benefit from interacting

with the smarter students. To accomplish that we could simply let the benefit be an

increasing function over types. Therefore δ = f(θ) with f ′ > 0.12 We do not need as-

sumptions on the curvature of this function, as it would only affect thresholds, without

harming the mechanics behind the results. In this environment we have not defined yet

how to measure peer effects. Next Definition formalizes it.

Definition 16. In this context peer effects are measured as the difference of equilibrium

behaviour with connections and equilibrium behaviour in isolation. Denoting peer effects

as πi we have that πi = x?i (g
′
i)− x?i (g◦i ), where g◦i is the empty network of agent i and g′i

is every other network different from g◦i .

Before going into the analysis of this twist of the model, I would spend few words

justifying this application. To further convince that the model can be accommodated to

11Although would be probably more interesting, letting the weights be individual specific would sub-
stantially complicate the analysis. Considering a more general framework with multi-dimensional types
is left for future work.

12Note that the analysis here would be robust to the linear structure of the benefit assumed so far.
Nevertheless, I believe this is a more realistic representation of facts, and also reduces the effect of negative
peer effects, for which there is low evidence in the literature.
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explain peer effects we show that the best replies structure can in fact be considered as

a credible data generating process for peer effects. As a first step, recall the best reply

functions. Given that in equilibrium all agents would respond to this best reply, we can

rewrite 2.3 as follows

xi = α
1

d(i)

∑
j∈N(i)

(α{x̄k}k∈N(j) + (1− α)θj) + (1− α)θi

Now assume that all agents share the same set of peers, meaning that we are in the

complete network. Therefore all average values are defined for a size of population of

N(i) = n− 1. Collecting terms we can write it as

xi = α2x̄N(i) + α(1− α){θ̄j}j∈N(i) + (1− α)θi

where x̄N(i) = 1
d(i)

∑
j∈N(i)

{x̄k}k∈N(j). Note that it is exactly the linear in means model of

Manski (1993). In fact, taking the expected value of both sides we have that

E(x) = α2E(x) + α(1− α)E(θ) + (1− α)θi + ε̃g

from which we get

E(x) = β1θi + β2E(θ) + ε̃g

where β1 = 1−α
1−α2 and β2 = α

1+α
.

It is worthy to note that x̄N(i) 6= x̄j−i, and x̄N(i) = x̄j−i if and only if we are in the

complete network. Otherwise averaging the values would wash out the heterogeneity in

reference groups, which is a key source of information in this setting.

I have shown in previous sections that there exist thresholds on the “distance” on

types such that agents will not form a link, because too costly. Nevertheless, let us see

the distributions of types used in Carrell et al. (2013).

Figure 2.3: The figure shows two suggestions of possible distribution of students under the compositions

assigned in Carrell et al. (2013). This is not a rigorous representation. On the axis I measure grades,

from 7 to 12.

The scope of this figure is purely to suggest the possible mechanics that took place

in the experiment mentioned above. The careful reader should already have understood

the direction I am willing to undertake in this section of the paper. Next Remark should
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definitely wipe out any doubt on that.

Remark 17. To have peer effects for LAS the network must be connected. Under segre-

gation LAS are not positively influenced by other agents.

Note that the assumptions on the benefit increasing with θ would yield here, as a

result, that HAS gather together always, as almost all other students are willing to form

links with them. Nevertheless, HAS would refuse links to LAS. If the distribution is

however smooth enough, connectivity can be achieved, and peer effects would flow into

the network. Since HAS are strongly connected among them, they would not be harmed

by negative influence, while LAS would benefit from indirect exposure to better students.

Remark 18. If HAS are willing to form links with LAS, the latter are willing to.

The contrary is not necessarily true.

The last remark is a weak result, that follows directly from the results above and the

further assumption on non-linearity in the benefit from interactions. Therefore a formal

proof is omitted. The first point in the result could be motivated through the paper by

Li et al. (2014). In that paper authors run a field experiment where they ask HAS to

interact with LAS. To foster these interactions experimenters paired HAS with LAS in

the same desk, and monetary incentives were provided, conditional on achievement of

LAS. The results were successful. A different treatment provided such incentives to only

LAS, but they were not able to improve their schooling outcomes, with respect to the

control group, to whom no incentives were provided. I interpret this as clear evidence of

the effectiveness of the model in the context of peer effects.

The further implication of the result could be drawn integrating the evidence with the

paper by Carrell et al. (2013). The authors found out that the treatment with bimodal

classrooms showed less positive influence for LAS than in the randomized, control group

classrooms. Post experimental evidence showed also that in fact segregation arouse in

bimodal classrooms, with HAS interacting among them, and the LAS left therefore behind

in homework tasks. As occasionally happens, this was an example of how the natural

variation dominated the optimal policy, if the latter was designed without much theoretical

understanding of the mechanics behind both the observed results, and those one is willing

to obtain.

I believe that similar considerations could be applied to other relevant contexts. For

instance I could mention the experiment by Kling et al. (2007). In this paper, which is

part of a longer series of works, they are shown results on so called neighborhood effects.

The authors have performed an experiment where they could move some individual from
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distressed neighborhoods to richer areas of the city, randomizing the participation into

the experiment. As a result, those who moved showed no increase in any economic and

psychological outcome. This was interpreted as non-relevance of neighborhood effects. In

the light of the results shown here, this would rather be a consequence of segregation,

arouse becuase of the endogenous network formation.

2.4.3 Nash Equilibrium and Bonacich Centrality

Recent papers show that peer effects are conceptually connected with Bonacich centrality

measures. Since in this environment we are actually studying peer effects, we should

expect that here also results can be expressed in terms of Bonacich centrality. Although,

the interpretation of it is less informative than it is, for instance, in Ballester et al.

(2006), because the position into the network, and consequently the Bonacich centrality,

is endogenous. On the other hand we can show that, since agents can choose location

into the network, they will have in equilibrium different preferences on how much to be

central, in one sense. Contrarily to other findings, here there is not a monotonic relation

between centrality and strength of peer effects, but it is non linear, and it depends on the

distribution of types.

First of all, we have to find an explicit relation of best replies and Bonacich centrality.

To do that, we can represent in compact form the system of best replies of the agents,

that is as following.

x = αWx + (1− α)t (2.5)

where x is the vector of best replies, W is the weighted adjacency matrix, where the

weights are equal to 1/di(g), and they are different for every agent, meaning that every

row is made of the same coefficients that sum up to one, but every row may differ, since

agents will choose differently number of links. Finally, t is the vector of types. Given

that, it is easy to derive the relation with Bonacich centrality. Results are summarized in

the next remarks, and derivation of such result is reported below.

Remark 19. Best replies can be expressed as a linear combination of the Bonacich cen-

trality, and they are equal to

x = (I− αW)−1(I + (1− α)t) (2.6)

where (I− αW)−1 is the Bonacich centrality measure.

Proof. See Appendix.
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Given this simple result we end up with an equation composed only by observable

parameters. Therefore we could bring this equation to the data, and study, for instance

the relevant characteristics for a given population (e.g. students) that agents take into

account when deciding to form a link. This sort of analysis could contribute to the paper

by Marmaros and Sacerdote (2006), in which the authors could explain the relevance

of characteristics behind friendships formation processes, through a unique data set and

experimental context. Here instead the econometrician would only need information on

the network to retrieve Bonacich centrality, and a bunch of explanatory variables to test

which are the relevant ones.

2.5 Discussion

We have seen a framework of endogenous network formation taking into account optimal

behaviors of agents simultaneously. Payoff depend in particular on identities of agents and

social influence that they would get under a feasible network configuration. Agents would

form the network exhibiting homophilous behavior, but at the same time there is some

degree of diversity they are able to accept. In other words, identities can be interpreted

as optimal behavior prior to the interaction with other players, while the outcome would

be the ex-post behavior of agents. In these terms, the identity would be a reduced form

of more complicated process able to determine.

When we observe segregation, one of the key implications is on which of the two parties

involved in the choice of the link may refuse it. This component is particularly relevant

in policy experiments that aim to target specific branches of population. In the paper I

have discussed mainly the case of peer effects in the classroom. This is relevant, since it

is widely recognized that compositional treatment may be able to improve the condition

of targeted group of students. Policies of this kind, moreover, allow for interventions

that keep the amount of resources constant, and therefore do no call for additional costs.

Thus I showed how we should take care of the right design of incentives to make such

policies effective. Another example consistent with the model is provided by the Moving to

Opportunity experiment.13 Recent evidence provided by Chetty et al. (2015), shows that

segregation patterns were relevant when exposing agents to neighborhoods with different

characteristics. Thus a proper incentive scheme may have increased the likelihood of

matches between subjects endowed with different socio-economic backgrounds. In such a

13See Kling et al. (2007).
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way the conclusions of that experiment may be reverted.

Among the assumptions that I have used to obtain results, there is perfect information.

I believe that it could be extremely interesting to let identities be private information.

A dynamic setting would then give room for players to strategically choose the current

network to falsify their identity, if it would ever be profitable for them. In this version

of the model this cannot happen since the game is static, and therefore agents have

all interests in revealing truthfully their identities. However extending the setting to

a dynamic one, with imperfect information would be both challenging and relevant in

unveiling several real world mechanisms.
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Search over the network

Agents in each period choose how much time to spend on-line and off-line. Off-line life

delivers utility conditional on having found nodes active. On-line activity instead is char-

acterized by a benchmark level of utility proportional to existing degree on the virtual

platform, plus a level of utility increasing with number of agents active on the platform.

New links are assumed to be formed only in real life, and only a proportion of them is

transferred to the virtual network too. Choices are represented through optimal stopping

rules. As results agents with low probability of meetings are more prone to use virtual

social networks, while agents living in dynamic and rich environments will tend to spend

more time in the real life.

47
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3.1 Introduction

Social Networks have spread around the globe surprisingly. Users also uses these tools

quite often. This simple observation raises a point: there is a real network and a virtual

network. The point of this paper is to explore why and when people log in into their

virtual life, which implies that they log out from the real one. Agents spend a portion

t of their time in the real life, and the rest of the time 1 − t is spent in the virtual life.

Links that took place in the real life are automatically transferred as links in the virtual

life, while the opposite is not necessarily true. However in real life the network is local,

meaning that agents have geographical constraints. This can be represented either with

a cost of meeting a link which depends on distance, or through a probability of meeting

an active link, again decreasing with distance. This clearly does not apply to the virtual

network.

An interesting observation that naturally arises is that if agents have a probability of

meeting a link in one of the two networks, this will depend also on the choice of agents

of being logged in or logged off. Therefore we can find the optimal choice for t for the

agents, assuming some preferences for having some active contacts.1 It will depend on

the degree of agents and on the choices of other agents. Clearly there are two interesting

equilibria, one where all agents spend lot of time in real life, and one other where agents

are on-line most of their time.

It is interesting to investigate conditions on the structure of probabilities of meetings

for which such states can coexist. It is indeed well documented that people uses social

network differently. For some it is only a mean to enhance real connections, for other it is

truly a substitute, and develop their existing social relationship mainly on-line sacrificing

their real relationships.

Possibly a way to achieve that is to enrich the model with a dynamic evolution of the

network. If we imagine a friend of friend type of network as in Jackson and Rogers (2007),

we should have that there are basically two equilibria of the system: one where agents

use the virtual network as an ancillary device, and spend most of their time on the real

network. The reinforcement comes from the fact that agents in this type of equilibrium

are more likely to meet new agents of the same kind. On the other hand agents with low

degree are stuck in an equilibrium where they spend lot of time logged in, and therefore

1We can think of it as living experiences, which can happen only if two or more agents have an active
link in one of the two networks.
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they miss the chance to meet people in the real life.

The model can be summarized as follows. Agents in each period choose how much

time to spend on-line and off-line. Off-line life delivers utility conditional on having found

nodes active. On-line activity instead is characterized by a benchmark level of utility

proportional to existing degree on the virtual platform, plus a level of utility increasing

with number of agents active on the platform. New links are assumed to be formed only

in real life, and only a proportion of them is transferred to the virtual network too. This

is to reflect that not all individuals use the platform, or at least not the same, although

we assume here that there is only one virtual platform.

The analysis is on two dimensions, within period and between periods. The process

is largely history dependent, so we will bring comparative statics results mainly on two

parameters of interest, the probability of meetings, which is individual specific, and the

proportion of adoption of the virtual platform which is global. Agents will thus choose

a platform depending on the activity of other players. In the beginning of the period

agents will spend mostly their time off-line, so to form social contacts. Once their level of

degree in virtual life is high enough agents will begin considering to spend an increasing

fraction of time on-line. However having real life activities is always desirable since it

would represents an investment on future utilities.

3.2 Literature review

In general the paper contributes to the young literature on multiplexing in networks. By

that we mean that networks interact with each other. Thus, choices on one network

will determine spillover effects on other layer of the same network. Little is known in

economics about this issue. To the best of my knowledge there are no papers discussing

this issue, yet.2 We know a substantial amount of results for single-layered networks,

but how a multi-layer analysis may change existing results is yet to be determined. In

principles it complicates the analysis, but it will surely deliver a better understanding of

the reality.

Another stream of literature, purely economic, is about search models. Such literature

was initialized during ’70s by the paper McCall (1970) which brought the knowledge on

optimal stopping rules on economic decisions, mainly in job search. For the methodologies

the paper here reminds the stream of literature associated to that paper, although the

2A remarkable example is still a work in progress by Banerjee et al. (2016).
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process here differs for several reasons. First of all the search here is a cumulative process

of nodes, while those paper analyze independent job offers that arrive exogenously. Here

instead agents will search for nodes, and their choices are interdependent.

Another literature related regards the topic of virtual social networks. Such thing

is deeply studied in fields other than economics, such as psychology, computer science,

physics and political science. Some of the insights on overall research can be found in

Wilson et al. (2012), which provide a broad overview of all articles that have been written

on Facebook and similar issues. Here we contribute to these papers, too, because we aim

to shed light on some of the mechanism of adoption and some of the observed patterns of

consumption of on-line social networks.

The rest of the paper is organized as follows. First we discuss the model and the

assumptions behind it. Thus we describe the process of search over the network and how

to solve the model.

3.3 The Model

We assume that there is an infinite number of time steps S of length T . Time within

blocks is discrete and indexed by t ∈ {1, 2, ..., T} with a finite horizon T < ∞. Agents

get utility from a function f of their number of friends met. This function is increasing

in the degree d and the amount of time available (T − t). For the time being we do not

need any assumption on the second derivatives of this function. Now we analyze behavior

within time step S, so we drop the subscript to not abuse with notation. Thus utility of

an agent i at time t is given by the following

Uit = f(di, t) + 1g(αdi, t)

=
∑
t

(f(di) + g(αdi))
(3.1)

where α denotes the fraction of user in the population that have adopted the social net-

work, and 1 is an indicator function assuming value 1 if adopted, 0 otherwise. We assume

that the representative agent we solve for has adopted the social network. Alternatively

agents can spend their time on a virtual social network, which yields a fixed level of utility

V (t) which depends only on time. The available time to agents can also be invested in

a search activity, where they are intended to organize an event. They can do that both

on-line and off-line. This choice is made at any time step depending on the expected

probability of meeting in real world, and meeting on the social network. This probability

is an outcome of the coordination game. In principle agents would like to coordinate on a
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search platform. The following set of assumptions together with the preferences explained

before, fully describe the model.

Definition 20. An agent i continues searching whenever f(di, t) ≤ EUit+1 and EUit+1 ≥
g(αdi).

So any agent at the beginning of the period they have to choose whether to search

or not. Something that follows immediately from the definitions of the model is that

the probability of meeting should be high enough, or the reward for meeting, measured

with the function f should be high enough, otherwise search is not at all profitable, and

agents may prefer to enjoy their reservation utility for the whole period. In other words,

investing in search is not profitable in expectation, so agents may not engage in search at

all.

3.4 Search over the Network

The meetings are random and we denote them with p(m). Preferences are over degree

and time spent with agents. The idea is that there repeated windows of time where agents

perform the search and after it they spend the remaining time with the nodes they found.

At the end of the period the process start again.

Note that we are assuming that there is no benefit spending time alone, i.e. the

search period does not pay off the agents any utility. Nevertheless this is without loss of

generality since we could assume a benefit deriving from the search without altering the

second order effects of the optimization.3

At any point in time t an agent faces the choice of certain versus uncertain. She knows

the utility she would get stopping the search, and formulate rational expectations over

the utility of continuing the search. Here we further assume that the meeting occurs only

if both agents are searching. This is to introduce a complementarity between search. To

see this let me show the optimal stopping rule.

The process is defined such that the search continues until the martingale condition

3This would be the equivalent of the unemployment benefit b used in most of the models of job search.
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is met. Given the preferences in equation 3.1 we have that

Uit ≤ EUit+1

(T − t)f(dit) ≤ [f(dit) + p(m)p−i(s)](T − t− 1)

f(dit) ≤ p(m)p−i(s)(T − t− 1)

(3.2)

and therefore solving for t we obtain

t∗i = T − f(dit)

p(m)p−i(s)
− 1 (3.3)

As interesting remarks we see that the search duration depends positively both on the

probability of meetings and on the probability of other agents’ search time. These two

terms are not explicit yet, but we could see how the process changes assuming different

random meetings models. That would yield a closed form solution to equation 3.3.

3.4.1 Expected degree

In the first period we can calculate the expected degree of agents. This is given in fact

by the probability of finding a node through the search, and this is given by p. Then

every node has a certain probability to be found by other nodes, through their search.

However, he can be searched by all agents if the link formation with the first agent is

not successful. This happens with probability 1 − p. If instead the direct connection is

successful the agent cannot be found by the agent with which she is already linked with.

Therefore all together the expected degree of an agent i in the first period is given by

E(di1) = p+ p2N − 2

N − 1
+ p(1− p)

= p(2 + p
N − 2

N − 1
− p)

= p(2− p

N − 1
)

(3.4)

What the previous formula says is that agent i at period 1, can pick an agent through her

search, and the probability to do that in expectation is the average probability of meeting

Ei(pij) = 1
N−1

∑
j∈N\i

pij. However i can also be found through other agent’s search activity.

Thus if i found a node, there are other N − 2 nodes available. They will find agent i

with a given probability, which is weighted down by N − 1 since they can still find any

other agent rather than i. This happens with probability Ei(pij). With the remaining

probability, agent i has not found anybody, so the full set of agents can find him.
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This formula however is non general, so we can see a more general one below, denoting

with Ei(pij) = 1
N−1

∑
j∈N\i

pij

E(di1) = Ei(pij) + Ei(pij)
∑

k∈N\i,j

pki
N − 1

+ (1− Ei(pij))
∑
j∈N\i

pji
N − 1

=

= Ei(pij) + Ei(pij)
∑

k∈N\i,j

pki
N − 1

+ (1− Ei(pij))Ei(pji)
(3.5)

For large N , we can approximate
∑

k∈N\i,j

pki
N−1
≈ Ei(pji), such that 3.5 can be rewritten as

E(di1) = Ei(pij) + Ei(pji) (3.6)

In the non general case where pij = p for all i, j, we would simply have E(di1) = 2p.

Iterating the formula we can calculate the expected degree in any period t + 1, which

depends on the expected degree in period t, since this is a cumulative process.

E(dit+1) = E(dit) + p(2− p

N − E(dit)− 1
) (3.7)

However, we have still to take into account the agents that may have left the search

process, because that would enter in the denominator of the second term in the right

hand side of equation 3.7.

The general formula for the optimal stopping time t∗, given a degree dit∗ is

E(t∗i |dit∗) = T − dit∗

p(2− p
N−dit∗−1

)
− 1 (3.8)

From this we can determine the degree such that the optimal stopping rule holds, as

a function of t. As a result it is uniquely determined for each t.4 Call ¯dit∗ the degree that

allows equation 3.8 to hold true. We have now a sequence of ¯dit∗ , since for every t it is

identified one value for the degree.

Now the process is binomial (is it?). Therefore we can calculate thanks to the sequence

of d̄it∗ , the probability that an agent is still searching, that is the probability that an

agent would have a degree higher than d̄it∗ , in any given t. We represent it through the

cumulative distribution function of degrees.

4Being precise, solving for dit∗ yields two solutions. Nevertheless we are interested only in the first
solution, since the other is not consistent with the model.
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Thanks to the binomial formulas we get

F (stop|t) = 1−
d̄it∗∑
k=1

(
t(N − 1)

k

)
pk(1− p)t(N−1)−k (3.9)

For the whole sequence of time, we will have a vector of probabilities that is roughly

0 in the beginning, since all agents will be searching. Over time though, the probability

that an agent stops searching increases, as well as the d̄it∗ decreases over time. This yields

a cumulative distribution function of the agents that have stopped searching.

3.5 A routine for the meeting process

First we have to characterize the network depending on the two relevant dimensions

explored in this paper, which is randomness and homophily.

The network formation stage is fairly general, and the main drivers for the different

configurations that arise are described by two parameters, that represent respectively the

nature of meeting, i.e. how random they are, and the tolerance of agents with respect

to diversity, i.e. a measure of homophily. Particular combinations of these parameters

let the process reconcile the standard random graph theory (Erdös and Rényi (1960)),

the friend-of-friends type of networks as in Jackson and Rogers (2007), and other existing

models of percolation (see DSouza and Nagler (2015) for a review of such models).

Each agent is endowed with a vector of m characteristics, and we call it θ ∈ Rm.

When considering a link we let each agent compare her vector of characteristics with the

agent who may potentially be her friend (a link). Such a rational rule would generate a

score that agent i uses to evaluate whether the link is worth to be formed or not. Calling

such vector θi and θj respectively, we could generally say that the score would be given

by f(θi − θj), where f denotes a generic function, on which for the moment with put

no restrictions, for the sake of generality. Agents will then pick a link from a set of

potential links if f(θi− θj) ≤ α, with α denoting the threshold of tolerance for differences

in characteristics.5

Lot of the process would depend on the meeting structure. To represent that, I analyze

5Although several functions are considered, I developed examples using a specific function f , given
simply by the absolute value. The rule of selection therefore becomes |θi − θj | ≤ α. However we
could accommodate the model to exhibit different preference structures, depending on the application
of interest. The rule assumed here though, remains the more interesting in this case, because it would
matter how homophilous networks ware.
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a process that is flexible enough to embed both randomness and friend-of-friends type of

meetings. To achieve that we could describe the process according to the following routine.

1. pick an agent

2. then pick at random a set of k links

(a) c/k are selected at random with a given probability p

(b) (k− c)/k are selected from the set of indirect links. Thus, if
∑
j

dj > k− c then

all the k− c are picked. If
∑
j

dj ≤ k− c then the difference of nodes are picked

at random.6

3. the agent chooses best link to form, i.e. arg minθj f(θi − θj) ≤ α

4. iterate

Such a process is flexible enough to embed the classical Erdos-Renyi random network

model,7 if we set c = k. On the contrary, if c = 0 the meetings will happen only through

friends-of-friends a-la Jackson and Rogers (2007), and for intermediate values of c we

would have a hybrid scenario.

The model is then analyzed assuming heterogeneity in the two key parameters, namely

c and α. Those will map into a network configuration, which in turns shapes the choice in

equilibrium of the intensity of the activity. This implies to solve a coordination problem,

where all agents simultaneously choose the intensity x depending on other agents’ choices.

Note that while x represents a key dimension, but at the same time other statistics of the

network topology will provide additional insights on the nature of meetings the agents

have, and on the network characteristics that would bring to the several possible outcomes.

6Note that such a rule would allow to initiate a network composed in the first period by N empty
nodes. Thus, in the beginning the first meetings happen at random, and over time the bias would gain
importance until it would completely wipe out the randomness.

7See Erdös and Rényi (1960).



56 Chapter 3. Search over the network



Conclusions

Through this thesis I showed how the process of formation of connection matters for social

influence processes. I showed that in two ways: a context where agents have full decisional

power on which connections to form, and a context where meetings follow a stochastic

process, still with preferences that matter. I stressed the importance of these concepts,

because this is a missing feature of current works on the field.

One interesting feature is to bring all the results proposed here to some empirical

investigation. All theoretical implication have the potential to be tested on data. Clearly

how successful would be the empirical analysis would depend on quality of data, but this

is clearly an important direction of my research agenda.

Moreover I believe that important extensions may follow from the current state of

these three papers. We could both relax some of the assumptions to make the models

better fit given applications, or extend adding more structure. An example of that is

to have some strategic agents that can interact with the network and that have specific

preferences on the network structure. Therefore it would be interesting to characterize

their behavior and study the change in outcomes, given this interference.
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Appendix A

Polarization through the endogenous

network

A.1 Payoff in equilibrium

From (1.3) and (1.4), the payoff in equilibrium is

πi = ki
(
V − f 2(1− f)(µi − ti)2

)
− f

∑
j∈di

(x∗i − xj)2

= ki
(
V − f(1− f)(µi − ti)2

)
− f

∑
j∈di

[
(x∗i − xj)2 + (1− f)2(µi − ti)2

]
= ki

(
V − f(1− f)(µi − ti)2

)
− f

∑
j∈di

(xj − µi)2

= ki
(
V − f(1− f)(µi − ti)2 − fσ2

i

)
, (A.1)

where we have called σ2
i ≡

∑
j∈di

(xj−µi)2

k
the variance of the actions of i’s neighbors.

A.2 Proof of Lemma 1

There is clearly a unique solution to the unconstrained equation (1.5), because (I − F )

and (I − FD) are always full rank matrices.

Now suppose that the maximum element of ~x, call it xm is such that xm > 1. Then, by

(1.4), it is a convex combination of
∑

j∈dm xj

`m
and tm. But since tm < 1, it must be that∑

j∈dm xj

`m
> xm, which contradicts the initial assumption.

In the same way it is impossible that the minimum element of ~x is less than 0.
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A.3 Payoff differential

Recall the payoff in equilibrium

πi = ki(V − f(1− f)(µi − ti)2 − fσ2
i ) (A.2)

From which we can define the additional payoff deriving from the addition of a link with

an agent j

πi→j = (ki + 1)(V − f(1− f)

(
µiki + xj
ki + 1

− ti
)2

− fσ2
i→j) (A.3)

Given equation A.3, we can now define the payoff differential, simply given by the differ-

ence ∆πi→j = (πi→j − πi)

∆πi→j = V − f(1− f) ((ki + 1)θ′ − kiθ)− f
(
(ki + 1)σ2

i→j − kiσ2
i

)
(A.4)

where θ′ =
(
µiki+xj
ki+1

− ti
)2

and θ = (µi − ti)2. Let us now focus on this difference. Thus

(ki + 1)θ′ − kiθ =

= (ki + 1)

(
µiki + xj
ki + 1

− ti
)2

− ki(µi − ti)2

= (ki + 1)

(
(µi − ti)−

1

ki + 1
(µi − xj)

)2

− ki(µi − ti)2

= (µi − ti)2 +
1

ki + 1
(µi − xj)2 − 2(µi − ti)(µi − xj)

= (ti − xj)2 − ki
ki + 1

(µi − xj)2

(A.5)
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Now let us focus on the term
(
(ki + 1)σ2

i→j − kiσ2
i

)
(
(ki + 1)σ2

i→j − kiσ2
i

)
=

=
ki + 1

ki + 1

(∑
h

(xh − µ′i)2 + (xj − µ′i)2

)
−
∑
h

(xh − µi)2

=

(∑
h

(
xh −

kiµi + xj
ki + 1

)2

+

(
xj −

kiµi + xj
ki + 1

)2
)
−
∑
h

(xh − µi)2

=
∑
h

(
xh −

kiµi
ki + 1

− xj
ki + 1

)2

−
(

ki
ki + 1

(xj − µi)
)2

−
∑
h

(xh − µi)2

=
∑
h

(
xh − µi +

µi
ki + 1

− xj
ki + 1

)2

− k2
i

(ki + 1)2
(xj − µi)2 −

∑
h

(xh − µi)2

=
∑
h

(xh − µi)2 +
∑
h

(
1

ki + 1
(µi − xj)2

)
− 2

∑
h

(
1

ki + 1
(xh − µi)(µi − xj)

)
+

− k2
i

(ki + 1)2
(xj − µi))2 −

∑
h

(xh − µi)2

=
ki

ki + 1
(1− ki

ki + 1
)(µi − xj)2

(A.6)

Therefore combining the two previous results we get

∆πi→j = V − f(1− f)

(
(ti − xj)2 − ki

ki + 1
(µi − xj)2

)
− f

(
ki

ki + 1
(1− ki

ki + 1
)(µi − xj)2

)
= V − f(1− f) (ti − xj)2 − f ki

ki + 1

(
f − ki

ki + 1

)
(µi − xj)2

(A.7)

A.4 Proof of Proposition 1

Proof. We proceed by steps, first addressing existence constructing the equilibrium. In

particular we show that any equilibrium configuration must be ordered, as defined in 4,

which then partially characterizes the equilibrium, too. Finally we show that it is also

unique.

It is easy to check that if the equilibrium is ordered we have that

xi > xj ↔ ti > tj

xi < xj ↔ ti < tj

xi = xj ↔ ti = tj

(A.8)



68 Chapter A. Polarization through the endogenous network

Given that, we show that it cannot exist another equilibrium different from a ordered

one, such that any of the above conditions hold true. Consider now the minimum xi in

the population, and call it x0. Without loss of generality we let x0 ≤ x1 ≤ ... ≤ xN , and

to prove the result basically we want to match every action with a type such that ti 7→ xi

for all i ∈ N . Thus we claim that i is such that ti is the minimum initial opinion in the

population, calling it t0. We can see this through the payoff in equilibrium, which we

recall

ki
(
V − f(1− f)(µi − ti)2 − fσ2

i

)
Recalling the equation we see that the highest utility can be achieved minimizing the

value of µi, given that we are considering t0, and the variance term ensures sharp bounds

on it. To see it rigorously we derive the payoff differential deriving from the addition of

a link, and which is given by

∆πi→j = V − f(1− f) (ti − xj)2 − f ki
ki + 1

(
f − ki

ki + 1

)
(µi − xj)2 (A.9)

Therefore links are added as long as the equation above is positive. Moreover any non-

ordered scenario would let profitable deviation for t0, and thus that would not be an

equilibrium. Note that this holds for any f ∈ (0, 1). Indeed if f < ki
ki+1

the second term

on the right hand side would be positive. Nevertheless if f < ki
ki+1

then f(1 − f) >

f ki
ki+1

(
f − ki

ki+1

)
is always true, and thus this does not alter the scheme we have built. If

f = 0 all links would be added, and if instead f = 1 then f > ki
ki+1

. This shows that in

equilibrium the lowest ti will exhibit the lowest xi. Similarly this holds for xN and tN .

Now let us focus on the second lowest value of x, x1. Following a similar argument, we

claim that it should belong to the agent with the second lowest opinion in the population,

t1. This is slightest more tedious to prove, since agent i can form links both at her right

and left. We can in fact reproduce the procedure we used to prove that t0 7→ x0, with

the extra step set by the presence of agent t0. Similarly with respect to agent t0, agent

t1 would form links with agents x2 ≤ x3 ≤ ... ≤ xb1 , where b1 is the optimal threshold as

in the definition of ordered equilibrium. Moreover it is likely that agent t1 would form a

link with t0. To see this we should see again payoff in equilibrium. The addition of such

link would generate an increase in σ2
1, but a decrease of the term (µ1 − t1)2. Clearly it

can happen that such a link is not optimal, but in either case it would not contradict the

ordered equilibrium scenario. Symmetrically this holds for tN−1.

Therefore we showed that in equilibrium ti 7→ xi for i ∈ {0, 1, N − 1, N}. Iterating

the reasoning, with the due differences because of the availability of agents at both sides,
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the result holds for all other agents.

The set of relations described by A.8 is always true in equilibrium. We have shown that

if the above set of condition holds the equilibrium must be ordered and that in equilibrium

the ordered scenario is the only possible outcome. This thus addresses existence and the

partial characterization.

This concludes the proof.

A.5 Proof of Proposition 2

Proof. The proof is built on the intuition that if two agents would never connect together

if isolated, they would not do a fortiori whenever they are surrounded by other agents.

So if we consider two nodes i, j, we have it will never be profitable for them to form a

connection whenever the following holds

|ti − tj| ≥
(

(1 + f)2

f(1− f)
V

) 1
2

(A.10)

To see that this is indeed a sufficient condition we may observe that the link will never

be a profitable deviation under any possible scenario.

• We are in sub-game perfect Nash

• We want two nodes i, i+ 1 that form respectively groups such that

1. Ni(g)|{i− ai, ..., i− 1}

2. Nj(g)|{j + 1, ..., j + bj}

• Assume i is in that scenario, and consider a single-deviation from that equilibrium.

• If Ni(g) ∈ ∅, whenever
(

(1+f)2

f(1−f)
V
) 1

2
< |ti − ti+1|, then πi < 0.

• For all Ni(g) /∈ ∅ payoff are even lower given

∆πi→j = V − f(1− f) (ti − xj)2 − f ki
ki + 1

(
f − ki

ki + 1

)
(µi − xj)2

• It is easy to check that the same holds for j, too, because of symmetry.

Through this we have proved the first two points of the proposition. It remains the third.

However it simply states that there will be a number of components |C| is going to be at

least equal to the number of couples of agents that do not satisfy the sufficient condition
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for the network to be connected, which means that it exhibits a single component. Easily

if there is a single couple ij, then |C| = 2. It is a lower bound, since we cannot control

the components that took place because of the rule of order chosen to select one of the

equilibria.



Appendix B

Peer effects in schools: a model

B.1 Proof of Lemma 8

Proof. The problem is represented by a system of N equations in N unknown variables.

By linearity of equations and restrictions on the parameter α the solution of the system

is always unique. If α = 1 there is a continuum of equilibria, but I am not interested

in such a case because of triviality of the results, and the restriction on the parameter

is assumed throughout the rest of the paper. To show that x∗i ∈ [θ, θ̄] we could use a

simple contradictory argument. For instance just assume that there is an agent ` such

that x` > θ̄ and that it is the maximum value among all x∗i . Given that behavior in

equilibrium is a convex combination of {xj}j∈N`
and θ`, as stated in equation 2.3, that

θ` ∈ [θ, θ̄], x` > θ̄ if and only if {xj}j∈N`
> x`, which contradicts the initial assumption.

Same argument can be applied to show that x∗i ≥ θ.

B.2 Proof of Proposition 9

Proof. To verify this Result we can draw agents as ordered on a line according to their

type, and this is without loss of generality. Now suppose an agent i is considering to form

a link with an agent that is distant two steps from i. Recalling best reply functions, x?i =

α{x̄j}j∈N(i)+(1−α)θi, and that 0 ≤ α < 1 we have that in equilibrium action is chosen as a

linear combination of type θi and average behaviour of the reference group. The restriction

on the parameter α rules out situations in which actions overlaps in equilibrium, unless

there are two agents i, j such that θi = θj. In such environment there are no benefits from

possible deviations, and therefore we have that

71
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i) xi > xj ⇔ θi > θj

ii) xi < xj ⇔ θi < θj

iii) xi = xj ⇔ θi = θj

(B.1)

To prove these claims, we could use a contradictory argument. Take for instance i), and

assume that the inequality does not hold and therefore xj ≥ xi. This can only be possible

if {x̄h}h∈Nj
> {x̄h′}h′∈Ni

. Now take j = θ and let i be the next player on the line of types

and further assume that agent j is in a PS scenario. We then analyze the case in which

xj > xi

xj − xi > 0
(B.2)

and using equilibrium behaviors to rewrite

α{x̄h}h∈Nj
+ (1− α)θ − α{x̄h′}h′∈Ni

− (1− α)θi > 0

α({x̄h}h∈Nj
− {x̄h′}h′∈Ni

) > (1− α)(θi − θ)
(B.3)

Now we focus on {x̄h}h∈Nj
and {x̄h′}h′∈Ni

. In particular {x̄h}h∈Nj
= 1

k

H∑
h=1

xh. The

lowest possible value that {x̄h′}h′∈Ni
can take is {x̄h′}h′∈Ni

= 1
k

H′∑
h′=1

with H ′ = H. Both

agents have the same number of connections, but j is linked with i (implying i is linked

with j). It is easy to note how any H ′ > H would increase {x̄h′}h′∈Ni
, contradicting the

fact that it is the lowest value that it can take. On the other hand any H ′ < H would

not be pairwise stable, given that we assumed j is in a PS scenario and that this would

mean that the latter agents ignored agent i in the linking formation process. Nevertheless,

deleting a link with agent j and adding a link with agent i would yield them a higher

utility, which contradicts the pairwise equilibrium conditions. Therefore H ′ = H. Now

getting back to the inequality

α({x̄h}h∈Nj
− {x̄h′}h′∈Ni

) > (1− α)(θi − θ) (B.4)

we see that the left hand side simplifies to

1

k
(xi − xj)

since the sets of links differ only by one connection. Given the initial assumption of

xj ≥ xi is never positive. On the other hand the right hand side of B.4 is always positive,
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since θi > θ and α ∈ [0, 1). Therefore equation B.4 is impossible, unless xi > xj, which

contradicts the initial assumption.

Using a similar argument we can show ii) and iii), and we can iterate the reasoning

to see that this applies to all i ∈ N . Moreover now it is easy to check that if an agent i

finds beneficial to form a link with an agent distant two steps from his/her position (call

it i+ 2), it must be, a fortiori, that i formed a link with the adjacent player (call it i+ 1).

Indeed

Ui(g + i(i+ 2)) > Ui(g)⇒ Ui(g + i(i+ 1)) > Ui(g)

The reverse is not necessarily true. It is also that for any θi+2 > θi+1, everything else

equal

Ui(g + i(i+ 1)) > Ui(g + i(i+ 2))

Moreover by symmetry

Ui(g + i(i+ 1)) > Ui(g)⇒ Ui+1(g + (i+ 1)(i+ 2) > Ui+1(g)

.

Note that we have not used any additional assumption on δ,Θ and α with respect to

those stated in the very beginning of the exposition of the model. this characterization is

therefore independent by the values assumed by these variables. This concludes the proof

of this Proposition.

B.3 Proof of Remark 10

Proof. Consider first the case with α → 1. In such case we have that agent’s behaviours

are driven (almost) solely by social interactions. In equilibrium it will arise a unique

action by all agents, and this can be easily checked studying best replies. Note that if

α is even an ε smaller than 1, uniqueness of the Nash equilibrium is ensured. Precisely

therefore there would not be a unique action, but the set of actions clearly shrinks toward

a singleton for ε sufficiently small. Nevertheless, the cost of bearing links approaches 0,

and therefore forming a link is beneficial for every δ > 0. The complete network yields

the maximum level of utility for every agent, and also the society as a whole experiences

the highest level of welfare achievable. Clearly this network is pairwise stable, since no

agent would delete any link, while connections are formed with all other agents.



74 Chapter B. Peer effects in schools: a model

Now we pass to the case with α → 0. It is rather the opposite case with respect to

the previous one in terms of equilibrium behaviors, even though the resulting network is

the same. However agents now do not care about conformism, i.e. they do not pay cost

for deviations from other’s behaviours. In equilibrium then every agent would respond

to their identity (θ) and therefore xi = θi for all i. Cost of forming links is again 0 and

previous reasoning applies here as well.

Note that in both cases the result hold for every possible distribution of θs.

B.4 Proof of Proposition 13

Proof. I prove the result by induction.

To proceed with the proof we have to show that there is a network g that is a pairwise

farsightedly stable set. This could be if and only if for every g′ ∈ G \ {g} we have that

g ∈ F (g′), which denotes that network g belongs to an improving path departing from g′.

Moreover it is uniquely pairwise farsightedly stable if and only if G = {g ∈ G|F (g) = ∅}
and for every g′ ∈ G \G,F (g′) ∩G 6= ∅.1 In other words we have to show that there is a

unique pairwise farsightedly stable set, and it is composed by singletons.

It is useful in the first place to set the definition for single-peaked preferences in own

links.

Definition 21. We have single-peaked preferences in own links when for all G′′, G′ ∈
G such that G′′ and G′ are the set of networks that involve |N(i;G′′)| > |N(i;G′)| or

|N(i;G′′)| < |N(i;G′)|, and such that G′′ < G′ ≤ GBi or G′′ > G′ > GBi we have that

Ui(G
′′, θi) < Ui(G

′, θi), for all i ∈ S, where GBi denotes the bliss point for all agents i in

a coalition S.

The definition states that agents have single-peaked preferences if they have a bliss

point in preferences in own links, regardless of other agents choices.2 Therefore this is a

concept that involves set of networks, because we are able to fix only choices of links for

agents with such bliss point. Note that the definition is reported allowing for coalitions,

but in the present framework coalitions are composed by single agents. Coalition in the

present context may arise allowing for more than one agent to be endowed with a same

type.

1These are results found in Herings et al. (2009), in particular in Propositions 4 and 5, pag. 533.
2This is a novel concept in networks, although it is simply an adaptation of the previously known

definition of single peaked preferences.
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If there is a coalition with single-peaked preferences in own links, the set of networks

GBi is a pairwise farsightedly stable set, meaning that all possible deviations from a

network in g ∈ G are deterred by a credible threat of ending worse off, and there exist a

farsighted improving path from any network outside the set leading to some network inside

the set. Presence of agents with single-peaked preferences is ensured by construction,

because of peripheral players, endowed with extremes of the support of the distribution

of θ. Such agents could have only asymmetric groups. Denoting such players with 1 and

N , respectively for the agent in the left and the right of the distribution, we have that

them would not deviate from their bliss point, and therefore this set constitutes an ending

point. Indeed for any g /∈ GBi we have that F (g) ∩ GBi 6= ∅. This is because for every

network that involves the peripheral agents, it is possible to select those that belong to

the set, because farsightedly they are the ones from which they are not willing to deviate.

If otherwise there are networks where such peripheral players are not involved, they will

be deleted from the network and other peripheral agents will be present.

Given the existence of such stable set of networks, we are able to refine more the

configuration through equilibrium behaviours described in Proposition 9. In particular we

have to show that the set is composed by a singleton, and therefore for every g ∈ G\g∗ we

have g∗ ∈ F (g), meaning that there is a farsightedly improving path from every network

g 6= g∗ that leads to g∗. We show that proving that g∗ can be reached (1) from an empty

network by addition of links and (2) from the complete network through deletion of links.

Results follows from single-peakdness of preferences of peripheral agents.

(1) Consider the empty network. Agents add sequentially links towards a complete

network. Sequentiality is due to Lemma 9, and therefore closest neighbours will be consid-

ered. The process ends for the peripheral players because for them would not be beneficial

to add further links. Closest nodes to peripheral will always be willing to form links with

peripheral because this would reduce the cost of forming further links. Iterating the rea-

soning we end up to g∗ that is pairwise Nash stable. There exist coalitions for which it

would be profitable to add further links, but always exist agents for which the result-

ing network configuration would not be profitable. By pairwise stability they cannot be

reached.

(2) Now consider the complete network. Peripheral players are always willing to delete

links, unless their bliss network is the complete network. In such case it is the only pairwise

stable network. Given this deletion, the other agents will adjust their link configuration

reaching again to a pairwise stable network g∗.

Through (1) and (2), we have that for all g 6= g∗, g∗ ∈ F (g). Therefore checking

definition 12 it is easy to see that g∗ satisfies all conditions.
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B.5 Proof of Proposition 14

Proof. In this proof I show how equilibrium behaviors are shaped when lim
n2→∞

while we let

n1 < ∞. Then I plug the obtained results into the utility functions, take the difference

with utility after forming the link and before the link is formed, and find conditions on

θ2 such that this difference is positive, which means that forming new connections is

profitable.

Trivially, we let lim
n2→∞

x2 = x2, meaning that no matter how large is n2, behaviors will

not depend on that, and are always defined. However we know that x∗2 = α{x̄j}j∈N2 +

(1− α)θ2, with {x̄j}j∈N2 = 1
n2

∑
j∈N2

xj = 1
n2

n2−1∑
k=1

x2 + 1
n2
x1. Therefore we have that

lim
n2→∞

x∗2 = αx2 + (1− α)θ2 = θ2 (B.5)

where we applied the Cesàro Mean Theorem to derive that 1
n2

n2−1∑
k=1

x2 = x2. The argument

follows directly from the fact that lim
n2→∞

x2 = x2 as we stated in the beginning. Then 1
n2
x1

clearly vanishes, and it is how equation B.5 is found. Pasting B.5 into the utility function

we get

U2 = δn2 − α
1

n2

n2∑
j=1

(x2 − xj)2 − (1− α)(x2 − θ2)2

= δn2 − α(
1

n2

n2−1∑
j=1

(x2 − x2)2 +
1

n2

(x2 − x1)2 − (1− α)(θ2 − θ2)2

= δn2

(B.6)

the second term on the right hand side vanishes because x2 = x2, the third vanishes since
1
n2

= 0 at the limit, and the last vanishes since we used equilibrium behavior x2 = θ2.

This result allows to simplify consistently the analysis, without losing the intuition

behind the exercise. We just stated that for growing n2 forming a link becomes less and

less costly, until such cost vanishes entirely at the limit. Provided that we can now focus

on the minority. Equilibrium behavior adding one link toward the majority would be

x∗1 = α{x̄j}j∈N1 + (1− α)θ1

= α(
n1 − 1

n1

x1 +
1

n1

θ2) + (1− α)θ1

=
α

n1 − α(n1 − 1)
θ2

(B.7)
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where we used θ1 = 0 to simplify the algebra. As before we paste now into utility function

af agents 1.

U1 = δn1 − α
1

n1

(
α

n1 − α(n1 − 1)
θ2 − θ2)2 − (1− α)(

α

n1 − α(n1 − 1)
θ2)2 =

= δn1 −
α

n1

(1− α

n1 − α(n1 − 1)
)2θ2

2 − (1− α)(
α

n1 − α(n1 − 1)
)2θ2

2

(B.8)

Now, we know that with no addition of the further link U ′1 = δ(n1 − 1), since agents

are linked with n1 − 1 other agents, and links are costless. Therefore we take now the

difference between U1 − U ′1, we want that this is positive, meaning that the addition of

the link is profitable, and then we solve for θ2. As a result we obtain

θ2 <

√
δ

( α
n1

(1− α
n1−α(n1−1)

)2) + (1− α)( α
n1−α(n1−1)

)2
:= ξ(δ, α, n1) (B.9)

B.6 Proof of Remark 19

Proof. To show this result, we have to solve the recursive formula.

x = αWx + (1− α)t

x = αW(αWx + (1− α)t) + (1− α)t

x = α2W2(αWx + (1− α)t) + αW(1− α)t + (1− α)t

.

.

x =
∞∑
k≥0

αkWk +
∞∑
k≥0

αkWk(1− α)t

x = (I− αW)−1(I + (1− α)t)

(B.10)

B.7 Example - Three agents

This particularly simple example is meant to provide an example of how farsightedness

helps in avoiding cycles into the framework I have described. When only n = 3 agents

are in the network, the whole possible structures are given by 23 = 8. However, thanks to
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Proposition 9 we can reduce the number of feasible networks, because I have shown that

only certain structures can arise in equilibrium. Figure B.1 shows that.

Figure B.1: The figure represents all the possible network configurations when 3 agents are considered.

Some networks are excluded from the figure because of considerations in Proposition 9.

Provided that, this simple environment allows us to present results under a fairly

general framework. For bigger n we would have too many networks to compare. With such

restriction on population size, instead, we can do comparative statics on all parameters

of the model.

Basic conditions for agents to start to form connections are that agents at the periphery

are at least willing to form link with the middle agent. In next Remark these conditions

are formalized.

Remark 22. With n = 3 agents,it is profitable for both involved agents to form a link

when the following are true

• Agent 1 and 2 are connected (g2) whenever (θ1 − θ2)2 < (1+α)2

α−α2 δ.

• Agent 2 and 3 are connected (g3) whenever (θ2 − θ3)2 < (1+α)2

α−α2 δ

The results here are intuitive. If we have a population of 2 agents, we have that they

will form a link whenever the benefits outweigh the costs, which are determined through

the distance of these agents in terms of their characteristics. Moreover, the benefit (or the

perception of it) depends on α. In particular for mid ranges of the parameter (between 0.2

and 0.5) the benefit keeps relatively low, meaning that social interactions are chosen more

carefully by agents. Whenever out of this range instead the benefits explode, meaning that

agents do not care about other’s characteristics, both because they would just conform

to them, either because they would just respond to their types.
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Now we explore whether it is profitable for agent 2 to add a connection on top of

one of the two scenarios above depicted. This is the case where farsightedness hinges in

the model. To see this, assume we are in network g2 where 1 and 2 are connected, but

agent 3 is left apart. However imagine that 2 and 3 would both benefit form adding a

connection. By pairwise stability they would add this link ending up in g4. However now

two different situations may arise: (1) agent 1 has still a positive utility, and therefore

severing a link would not be optimal, since he would end up alone, with 0 utility. In this

case the network is PS. (2) Agent 1 is now facing negative utility, because the indirect

influence he receives from agent 3 pull him too far from her own identity. In such a case

agent 1 would be better off severing the link, and the network configuration would then

be g3.

From now on agent 2 has again 2 options: (2a) agent 2 is better off in g3 than in g2.

In such a case g3 is PS. (2b) Agent 2 is better off in g2 with respect to g3. Now we would

have a cycle, and this is the only case where farsightedness applies. In fact rather than

cycling on g2, g3, g4, agent 2 would anticipate that and will not form the connection with

agent 3 in the first place, letting g2 be FPS.

To simplify exposition of further results we let α = 0.5, δ = 1 and θ1 = 0.3. All

results are presented in the following table which summarizes all conditions for every

single network to be stable, under the above mentioned restrictions on parameters.

B.8 Alternative utility function

As a final exercise I want to discuss an alternative utility function. It is reasonable to

contest the specificity of the parametric form of the utility function. However, what

really characterize the game here is the best reply function. We can get the same best

reply changing slightly the utility function used in Calvó-Armengol et al. (2009). In

particular in the mentioned paper, agents’ own preferences are modeled disjointly from

the action that may derive from peer’s interactions, and that was made for measurement

purposes, when approaching the data. Here instead the two sources are measured on the

same metric. Theoretically, in fact, there should be no difference between the action one

would exert in isolation, and the component of behavior one undertakes because of social

3This are strong restriction on parameters, but algebra becomes extremely tedious letting all param-
eters free to move. Nevertheless, δ = 1 and θ=0 are without loss of generality, and α = 0.5 is in my
opinion the most interesting case. This can be partly motivated by results in Remark 10
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Conditions with α = 0.5, δ = 1 and θ1 = 0
Networks Conditions

θ2 > 3, θ3 > 3θ2

θ2 ∈ (0, 2.4], θ3 > 12− 4θ2

θ2 ∈ (2.4, 3), θ3 > θ2

θ2 ∈ (1.8, 2.4), θ3 ∈ (12− 4θ2, 3θ2)
θ2 > 2.4, θ3 < 3θ2

θ2 ∈ (0, 2], θ3 < 1
5
(12 + 4θ2)

θ2 ∈ (2, 2.4), θ3 < 12− 4θ2

θ2 = 2, θ3 < 4.46
θ2 = 3, θ3 < 4
θ2 = 3.5, θ3 < 3.57

Table B.1: This table shows conditions on θ2, θ3 under which every single network is PS (or FPS)

assuming α = 0.5, δ = 1, θ1 = 0. Conditions on the same row must hold jointly, and were obtained

deriving conditions for utility of all players to be greater than in any other scenario. The first row show

the empty network denoted in the text with g1. g2, g3, g4, g5 follow.
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influence. However that paper provides mainly an empirical contribution and therefore

making such distinction is important for the specification of the underlying econometric

model.4 Consider the following utility function

Ui =
∑

j∈Ni(g)

δ − 1

2
x2
i + α

1

di(g)

∑
j∈Ni(g)

xixj + (1− α)xiθi (B.11)

This utility function just states that utility is concave in own action, there is a comple-

mentarity between own action and own links’ behavior, and a complementarity between

own behavior and own type. Since types are exogenously given, it represents again the

bliss point of an agent in undertaking a specific action. The interpretation of this para-

metric utility function is slightly different from the one proposed above. Here there are

no more deviations from reference points, but complementarities are more evident. Here

every agent faces the same disutility from action x, but the heterogeneity makes anyone

of them to prefer a specific level of it. Best reply function are identical to those proposed

before5 and therefore given by

x?i = α{x̄j}j∈Ni(g) + (1− α)θi (B.12)

Even though the model is similar in its characteristics with the one presented above,

the interpretation is definitely different. Homophily still arises, but the underlying motives

are different. Imagine a high type, i.e. an agent with high θ already connected with

similar agents. Connecting with other people would push his choice of x under his/her

own reference point. This would generate several effects. The disutility from action

would go down, increasing the agent utility. The term that captures complementarity

effects with other peers would go down because the average contribution of peers to

“team work” would be lower. Finally also the idiosyncratic term would go down because

the agent exerts now a lower level of x. Summing up all these effects, the net value may

be negative. Therefore connections would be beneficial if and only if the benefit of such

further links is high enough to compensate for the loss.

Summing up connections with similar agents will always be preferred to those with

agents with distant characteristics. In fact, given the same benefit deriving from the

connections, the net utility loss deriving from the other terms would be lower. Again,

4One may take as benchmark the model in Ballester et al. (2006) and note as a difference the simple
introduction of an exogenous heterogeneity in the identity of players.

5See equation 2.3.
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depending on the value function that describes the benefit from connections, there are

links that is not profitable to make, and the more an agents’ characteristics are far from

another agent, the more probable would be that a connection takes place between them.



Appendix C

Search over the network

C.1 Expected Degree

E(di1) = Ei(pij) + Ei(pij)
∑

k∈N\i,j

pki
N − 1

+ (1− Ei(pij))
∑
j∈N\i

pji
N − 1

=

= Ei(pij) + Ei(pij)
∑

k∈N\i,j

pki
N − 1

+ (1− Ei(pij))Ei(pji)

For large N , or for N way larger than T , we can approximate
∑

k∈N\i,j

pki
N−1
≈ Ei(pji), such

that 3.5 can be rewritten as

E(di1) = Ei(pij) + Ei(pji) = 2Ei(pij)

where the last holds under undirected network. Iterating the formula we can calculate

the expected degree in any period t+ 1, which depends on the expected degree in period

t, since this is a cumulative process. Let us call p̄i = Ei(pij) = 1
N−1

∑
j∈N\i

pij

E(dit+1) = E(dit) + p̄i (C.1)

Therefore the general expected degree at time t is given by

E(dit) = 0 + 2tp̄i = 2tp̄i (C.2)

83
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C.2 Stopping time

Uit ≤ EUit+1

thus search continues whenever

(T − t)dit ≤ (T − t− 1)(dit + 2p̄i)

after some algebra we get

dit ≤ (T − t− 1)2p̄i

from which we can get

E(t∗|dit) = T − dit
2p̄i
− 1 (C.3)

and

d̄i|t = 2(T − t− 1)p̄i (C.4)
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