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Sommario 

Titolo: Progettazione e Sviluppo di Soluzioni Software per il Segmento di Terra di Satelliti, 

con Applicazione alla Missione ESEO. 

 

Il successo di una missione spaziale dipende non solo dalla buona progettazione e 

realizzazione del segmento spaziale (piattaforma e payloads) e dalla riuscita del lancio. 

Infatti, il segmento di terra è fondamentale per poter operare il satellite e quindi portare a 

termine con successo la missione. Questo lavoro di tesi si concentra proprio sul segmento 

di terra ed in particolare sulla progettazione e lo sviluppo di soluzioni software necessarie 

per le varie funzionalità svolte dal segmento di terra. 

La prima parte di questo lavoro, che è stata svolta nel primo, secondo e nella prima parte 

del terzo anno di dottorato, si concentra sul progetto ESEO (European Student Earth 

Orbiter), una missione microsatellitare sponsorizzata dall’Education Office dell’Agenzia 

Spaziale Europea (ESA).  ESEO sarà lanciato nel 2017 in orbita bassa con lo scopo di 

scattare immagini della Terra, misurare livelli di radiazione e testare tecnologie spaziali per 

future missioni satellitari. Lo scopo educativo di questo progetto è quello di fornire agli 

studenti universitari la possibilità di lavorare in un vera missione satellitare, formandoli per 

la loro carriera nell’industria spaziale. Il laboratorio di Microsatelliti e Sistemi Spaziali 

dell’Università di Bologna è coinvolto in questo progetto per lo sviluppo del centro di 

controllo missione, della stazione di terra primaria per la ricezione dei dati di telemetria e 

l’invio dei comandi e del ricevitore GPS di bordo. L’oggetto di questo dottorato è stata la 

progettazione e lo sviluppo dei primi due elementi partendo dall’esperienza acquisita dal 

laboratorio durante le operazioni del microsatellite ALMASat-1 lanciato nel Febbraio 2012 

a bordo del Vega maiden flight. Nel corso di questo lavoro, la stazione di terra è stata 

ampiamente rinnovata con l’introduzione di una software-defined radio (SDR) e lo 

sviluppo di nuovo software. Per il centro di controllo missione, si è sviluppato in LabVIEW 

un sistema di monitoraggio e controllo per ESEO connesso ad un database appositamente 

progettato in MySQL per la gestione dei dati di telemetria e dei comandi durante le 

operazioni del satellite. Inoltre è stata instaurata una rete di stazioni di terra che comprende 

le stazioni di Vigo e Monaco per poter operare al meglio la missione ESEO garantendo una 

ridondanza a terra per comunicare con il satellite. I requisiti e il design dettagliato del 

segmento di terra, la descrizione dell’interfaccia di comunicazione tra satellite e terra così 
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come la descrizione del database e delle procedure operazionali sono riportate nella 

documentazione tecnica che è stata preparata per la preliminary design review (PDR) e 

critical design review (CDR) del progetto ESEO superate rispettivamente nel Novembre 

2013 e Luglio 2015. 

Durante il terzo anno, da Maggio a Ottobre 2015, è stata svolto un tirocinio presso 

EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) 

durante il quale si sono sviluppate delle soluzioni software per le stazioni di terra utilizzate 

per operare satelliti meteorologici in orbita bassa, come Metop e NOAA, e in orbita 

geostazionaria, come la famiglia dei satelliti Meteosat. In particolare, tre diverse 

applicazioni sono state sviluppate, testate e rese operative. La prima attività ha riguardato 

l’integrazione di un sistema di generazione automatica di reports periodici contenenti 

grafici e tabelle che illustrano alcuni parametri selezionati delle stazioni di terra collocate 

a Svalbard ed utilizzate per inviare comandi e ricevere telemetria e dati scientifici dai 

satelliti Metop-A, Metop-B e NOAA-19. Questa applicazione si è rivelata particolarmente 

utile per gli ingegneri delle operazioni per individuare problemi relativi a queste stazioni. 

La seconda attività è consistita nello sviluppo di un’applicazione per il calcolo e la 

visualizzazione dei passaggi dei satelliti in orbita bassa al di sopra di una rete di stazioni di 

terra. Questa applicazione basata sulla propagazione delle TLE consente di aggiungere una 

maschera d’orizzonte per ogni antenna, calcolare e risolvere conflitti tra passaggi di più 

satelliti sulla stessa stazione e calcolare le orbite cieche dei satelliti NOAA per garantire il 

supporto dalle stazioni EUMETSAT di Svalbard quando possibile. Infine, l’ultima attività 

ha riguardato lo sviluppo di un simulatore del sistema di monitoraggio e controllo delle 

stazioni di terra che saranno utilizzate per il programma Meteosat Third Generation (MTG). 

Il simulatore riproduce tutte le funzionalità svolte dal sistema: autenticazione, richiesta dei 

parametri di telemetria, registrazione a eventi, richiesta della schedula, invio di comandi 

immediati e time-tagged. 
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1. Introduction 

A space system is composed of three segments: space, ground and launch. The space 

segment comprises of spacecraft and payloads whilst the ground segment comprises of all 

of the ground facilities needed to operate the mission. Software is pervasive throughout the 

whole ‘product tree’ of any space mission: Figure 1 shows a typical space system 

schematically, with emphasis on the software elements. The space segment has on-board 

computers, data-handling systems, attitude and orbit control systems, all of which contain 

software. The ground segment has mission control systems, simulators, flight-dynamics 

systems, mission-analysis tools, communications networks and ground-station data 

systems such as telemetry and telecommand processors, as well as ‘downstream 

processing’ systems for payload data. These all contain software, often of considerable 

complexity. Developing and maintaining this software in a disciplined way is a key to the 

success of any space mission [1]. 

 

 

Figure 1. Schematic of typical space system, with the emphasis on software elements [1] 

 

This thesis presents the software solutions designed and implemented for the ground 

segment of a microsatellite mission named ESEO and for the ground stations of 

EUMETSAT, the European Organisation for the Exploitation of Meteorological Satellites. 

The implemented solutions cover almost all the functionalities required to operate 

successfully a satellite mission: 

 Signal acquisition/transmission, signal demodulation/modulation, frame detection 

in a software-defined radio (SDR) environment. 
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 Satellite monitoring and control: telecommand packing and encoding, telemetry 

unpacking and calibration, command stack, automatic procedures, telemetry limit 

processing and display. 

 Telemetry and telecommand archiving. 

 Satellite tracking based on two line elements TLE. 

 Satellite simulator and TMTC front-end. 

 Ground station performance analysis and reporting 

 Computation of satellite passes over a ground station network and conflict-free 

schedule generation. 

 Ground station monitoring and control. 

 

1.1 Background and Motivation 

In December 2013, ALMASpace S.r.l., a former spin-off of the Microsatellite and Space 

Systems Lab (now merged into the SITAEL company), was awarded a contract relative to 

the invitation to tender (ITT) from the European Space Agency (ESA) for the phases 

C0/C1/D/E1 of the European Student Earth Orbiter (ESEO) project. Whilst ALMASpace 

is the prime contractor, the University of Bologna is a subcontractor, responsible for the 

on-board GPS receiver, the primary TMTC ground station, the mission control centre and 

the organisation of lectures and internships for the students of the ESEO University 

network. Regarding the ground segment and operations, the contract signed between 

ESTEC and ALMASpace S.r.l. list the following main requirements [2]: 

 The ESEO ground segment architecture shall consist of a Mission Control Centre 

in order to perform telemetry, telecommand and control functions, and one or more 

Ground Stations located in Europe in order to perform TMTC radio 

communications with the ESEO satellite. 

 The ESEO ground segment shall allow payload operators access to their payload 

data via internet. 

 The ESEO ground segment shall allow payload operators to submit request for their 

payload operations and associated telecommands via internet to the Mission Control 

Centre for processing. 

 The ESEO ground station(s) shall communicate with the ESEO satellite over VHF 

(30-300 MHz), UHF (300-1000 MHz), or S-band (2-4 GHz) in either radio amateur 
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or regulated bands. Frequency shall be allocated by IARU (in case of radio amateur 

bands) or ITU (in case of regulated bands). 

 The ESEO ground segment and satellite shall be operated by students to the 

maximum extent possible, and mission operations shall be supported by the System 

Prime Contractor staff. 

This was the motivation for the major part of the work done during the PhD course and 

described in this thesis. Moreover, we wanted to improve the theoretical and practical 

knowledge at our lab about the ground segment and operations for satellite missions. A first 

experience of the design of a ground station and performance of operations was gained 

during the ALMASat-1 mission launched in 2012 on-board the Vega Maiden Flight. 

 

1.2 Thesis Outline 

The thesis is organised as follows: 

 

Chapter 2. Ground Systems and Operations. This section explains which are the 

components of the ground segment and what is needed to successfully operate a satellite 

mission. We also list the main differences between the ground segment for large and small 

satellites. 

 

Chapter 3. European Student Earth Orbiter Project. The design and the development 

of the ground segment for this microsatellite mission is widely discussed in this section. 

After a first description of the ESEO project with particular attention to the 

telecommunication system, the main topics of this chapter are the Forlì ground station and 

the ESEO Monitoring and Control system.   

 

Chapter 4. EUMETSAT Ground Station Software Solutions. During an internship at 

EUMETSAT, some innovative software solutions have been implemented to improve 

ground stations operations. This section describes three software applications: the ground 

station analysis and reporting tool, the satellite passes and conflicts engine and the ground 

station centralised M&C simulator. 
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Chapter 5. Conclusion. In this final chapter, we draw the conclusion from the work done 

during the PhD course and we provide recommendations for future work. 
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2. Ground Systems and Operations 

The success of a space mission depends not only on a properly designed and built space 

segment (SS) and the successful launch via a launch segment. It also depends on the ground 

segment (GS) and successful mission operations, carried out by a team of experts using the 

infrastructure and processes of the mission’s GS. Its organization and design as well as the 

assembly, integration, test, and verification (AITV) are therefore equally important as the 

respective activities of the space and launch segment. A GS thereby comprises a ground 

system, i.e., infrastructure, hardware, software, and processes, and a team that conducts the 

necessary operations on the space segment [3]. 

The Mission success is defined as the achievement of the target mission objectives as 

expressed in terms of the quantity, quality  and availability of delivered mission products 

and services (e.g. communication services, science data and space samples) within a given 

cost envelope. 

The ground systems, as shown in Figure 2, usually consists of the following main elements: 

 Mission control system (MCS) 

 Electrical ground support equipment (EGSE) 

 Ground station system (GSTS) 

 Ground communication subnet (GCS) 

 

 

Figure 2. Ground segment systems [4] 

The MCS shall comprise all the elements required to control the mission and to exploit its 

products. It is composed of the following elements: 
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 Operations control system (OCS), mainly supporting planning, monitoring and 

control, and performance evaluation of the platform elements of the space segment 

(SS). It also includes the flight dynamics support element, which may be considered 

as a system in its own right, named flight dynamics system (FDS) 

 Payload control system (PCS), providing the same functions as the OCS but 

dedicated to the control of the payload elements of the SS. 

 Mission exploitation system (MES), supporting the users of the mission products in 

establishing high-level production plan and in providing them with mission 

products and with all data required for their planning and utilization. 

Depending on the type of the mission, often OCS and PCS are grouped in the same system. 

The EGSE system shall be part of the overall ground support equipment (GSE), supporting 

the verification of the SS during assembly, integration and test (AIT). 

The GSTS shall constitute the direct interface with the SS while in-orbit and with the MCS. 

It provides support functions for controlling the SS elements and exploiting the mission 

products. It consists of the following instances: 

 GSTS-SSC: for the ground station system in support of SS control (i.e. providing 

telemetry, telecommand and tracking services) for both the platform and the 

payload. 

 GSTS-ME: for the ground station system in support of mission exploitation; e.g. 

for transmission and reception of payload service data such as telecommunications 

signal, Earth images, science data. 

The GCS shall connect all operational ground facilities. The GCS constitutes the ground 

part of the end-to-end data path. 

A generic example of a GS, its subsystems, and the data flows between them is shown in 

Figure 3. It comprises a GSN of three ground stations and a MCC. The main systems of the 

MCC are the Ground Data System (GDS), the Flight Dynamics System (FDS), and the 

Flight Operations System (FOS). 
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Figure 3. Generic ground segment example [3] 

2.1 Ground segment engineering process 

The ground engineering processes are partitioned in phases and each phase ends with a 

formal review, as shown in Table 1. 

 

Table 1. Ground segment phases 

Phase 0/A B C D E F 

Objective Mission 

analysis 

and 

feasibility 

GS 

preliminary 

design 

GS 

detailed 

design 

GS 

production 

and 

validation 

Operations 

execution 

Disposal 

Reviews RR PDR CDR ORR IOQR, 

IOOR 

MCOR 

Focus System definition GS implementation Operations 

 

During the project, it is requested to prepare some technical documentation describing the 

architecture of the ground segment, requirements, the communication interface with the 

S/C and the operations (Table 2). 
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Table 2. Technical documentation required for ground segment and operations 

Title Purpose Content 

Ground Segment & 

Operations 

Requirements 

Document 

To specify the 

requirements for the 

ground segment and 

mission operations 

in terms of 

functionality, 

performance, 

detailed interface 

requirements and 

verification 

requirements 

Ground segment & operations requirements in 

terms of: 

 Functional requirements 

 performance requirements 

 operations and logistic support 

 internal and external interfaces 

 re-use of generic infrastructure 

elements (e.g. software systems, 

ground station equipment) 

 maintainability of hardware and 

software 

 location of main facilities failure case 

operations and recovery 

 system and network management 

 configuration management  

Ground Segment 

Design Definition File 

To describe the 

characteristics of the 

detailed design of 

the ground segment 

throughout the 

project 

The document shall contain a description of 

the detailed design including: 

 Product and Function Trees 

 Hardware and software description 

and performance 

 Schematics 

 Ground segment architecture 

diagrams 

 Software architecture diagrams 

 Electrical and data interfaces between 

the ground segment elements 

 On-board software verification 

facility 

Space-to-ground 

Interface Control 

Document (SGICD) 

To define the 

interfaces between 

the satellite and the 

ground segment, 

including all ground 

stations 

The main interfaces to be addressed are at the 

level of command and control, Mission data 

and telecommunications aspects for which 

format, content and RF transmission need to 

be described. Satellite to Ground Segment I/F 

definition, including: 

 system overview 

 satellite and orbit, range definition 

 data formats and rates, coding scheme 

and modulation 

 encryption, authentication 

 reference profile assumptions 

 telecommunications: 
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o frequencies 

o link budgets, indicating worst 

case link margins expressed 

in dB for meeting the bit error 

rate requirements expressed in 

the SRD 

 data formats 

 TM/TC formats 

 ground station front-end interfaces 

 ranging interfaces 

 database interface 

 satellite to Ground Segment 

verification (including RF suitcase) 

Satellite Operations 

Handbook (SOH) 

To define in full 

detail, the on-orbit 

operation and 

control procedures 

of the satellite, for 

its subsystems, 

units. 

The document shall include: 

 all satellite operations procedures 

(including order of commands) 

 all ground test procedures 

 all default on board data table 

parameters settings 

 complete telecommand & telemetry 

lists for the satellite operation 

 satellite database description 

 

2.2 Differences with small spacecraft ground systems 

The ground systems architecture for small spacecraft missions often takes a different 

form compared to the classical architectures used for large spacecraft missions. Low-

cost constraints and the accessibility to COTS technology for the space sector have not 

only changed how designers think about a spacecraft but also how a ground systems 

architecture can be conceived. An overview of such potential differences highlights the 

extent to which microsatellite ground systems can differ from their classical 

counterparts [5]. 
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Table 3. Fundamental differences between a small spacecraft ground system and classical ground 

systems for large spacecraft [5] 

Classical Ground System Microsatellite Ground System 

Legacy systems   New systems   

High-cost, high complexity Low-cost (COTS), low complexity   

Clear distinction between mission control 

and ground station network   

Standalone system: MCC, SOCC, POCC and 

principal ground station are often aggregated 

into a single entity   

Supports a small to moderate number of 

different missions in parallel. Different types 

of antennas and hardware enable capability of 

communicating with more than one 

spacecraft simultaneously  

Capability to support a large number of 

missions sequentially. Only one antenna, 

therefore no capability to communicate with 

more than one spacecraft simultaneously   

Supports missions with long lifetimes   Supports missions with short lifetimes   

Provides high quality of service (security, 

reliability, etc.)   

Does not guarantee high quality of service   

Commercial or institutional operators   Typically academic or amateur operators   

Hierarchical topology with a small number of 

nodes distributed strategically around the 

globe   

Peer-to-peer topology with typically a large 

number of ad-hoc nodes participating on a 

voluntary basis   

No flexibility in the use of the topology’s 

individual nodes    

Many missions use nearly the same 

frequency bands, so individual nodes in the 

topology may be exchangeable   

S-band and higher frequencies   Typically UHF and VHF   

CCSDS based long-haul communication 

protocols   

TCP/IP based communication protocols   

Big dishes   Small dishes or no dish at all (Ham-type 

antennas)   

Support high power (> 40W) spacecraft   Support low power (< 5W) spacecraft   

Large bandwidth, data rate and throughput   Small bandwidth, data rate and throughput   

Large software requirements   Small software requirements   

Large number of facilities and personnel with 

much expertise   

Small number of facilities and personnel with 

usually less expertise   
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3. The European Student Earth Orbiter Project 

The European Student Earth Orbiter (ESEO) is a micro-satellite mission to Low Earth Orbit 

(LEO). It is being developed, integrated, and tested by European university students as an 

ESA Education Office project. 

ESEO will orbit the Earth taking pictures, measuring radiation levels and testing 

technologies for future education satellite missions. 

It is aimed at providing students with unparalleled hands-on experience to help preparing 

a well-qualified space-engineering workforce for Europe’s future. For this purpose, the 

University of Bologna, coordinating a network of the European universities joining the 

ESEO project (Figure 4), organised university lecture courses and internship opportunities 

for 60 students out of about 200 students involved in the ESEO project. For the first time, 

academic credits (18 ECTS) are granted to students for their participation in hands-on 

projects of ESA’s Education Office [6]. 

 

 

Figure 4. ESEO University Network and roles 

 

In particular, ESEO has the following mission objectives: 

 To take pictures of the Earth and/or other celestial bodies from Earth orbit for 

educational outreach purposes. 

 To provide dosimetry and space plasma measurement in Earth orbit and its effects 

on satellite components. 

 To test technologies for future education satellite missions. 
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The first one will be achieved by the use of a micro camera (uCAM) operating in the visible 

spectrum. 

To fulfil the second objective two instruments will be operated on-board: 

 Plasma diagnostic probe (LMP). 

 Tri-dimensional dosimeter instrument (TRITEL). 

In particular, the LMP shall measure: 

 Electron density. 

 Electron temperature. 

While the TRITEL shall measure 

 LET spectra; 

 Absorbed dose. 

 Dose equivalent. 

In order to provide high-speed datalink for payload data transmission a dedicated S-band 

transmitter (HSTX) will be provided as payload complement.  

The realization of third objective will consist in the flight test of GPS receiver for orbit 

determination and a de-orbit mechanisms (DOM) to be activated in order to comply with 

space debris mitigation policies. 

Functional and performance tests will be performed during the satellite operative phase and 

the results examined on ground by the design team, in order to gain a full space qualification 

in view of their use on other educational missions. 

The satellite will also carry on board a payload proposed by the AMSAT community; it 

will allow the satellite to be exploited by the radio-amateur community after the end of its 

operative phase. The satellite measures 33x33x63 cm and it will weight around 50 Kg. 

The target orbit for ESEO mission is a circular Sun-Synchronous Orbit (SSO) 10:30 LTAN. 

The orbital parameters are reported in Table 4 [7]. 

 

Table 4. ESEO orbital parameters 

Orbital Parameters Mean System of Date 

Semi-major axis 6904.82699 km 

Eccentricity 0.00134790 

Inclination 97.47884º 

Ascending Node 137.34203º 
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Argument of Perigee 67.74183º 

True Anomaly 292.25995º 

 

The identified orbit produces a cycle of 106 orbits in a week, about 15 orbit per day, in 

order to complete the coverage of the selected areas of interest (Europe and South Atlantic 

Anomaly). The definition of the areas of interest was driven by the optical payload and the 

scientific instruments requirements [7]. 

 

Figure 5. ESEO maximum revisit time (in days) for the observed points 

 

Figure 6. ESEO platform 
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The project started in January 2013, the Preliminary Design Review was successfully 

completed in November 2013 and the Critical Design Review in June 2015. Now the 

project is in phase D and the launch is foreseen in late 2016 or early 2017. 

 

3.1 Telecommunication System 

The telecommunication system supports the functions of telemetry and telecommand 

(TMTC) for each phase of the mission. The spacecraft (S/C) telecommunication system 

consists of a redundant set of transceivers working at UHF-band for the uplink and the 

downlink. In addition, two payloads are included for telecommunication purposes, using 

L-band for uplink, and VHF and S-band for downlink. The VHF/L-band system being 

developed by AMSAT-UK is used for educational outreach as voice transponder and low 

data-rate telemetry (TM) downlink whilst the on-board S-band high-speed transmitter 

payload, being developed in Poland by a Wroclaw University of Technology team, will be 

used to download scientific payload data. The simultaneous downlink or uplink at different 

bands is currently not considered (but not excluded) for the mission. Similarly, full duplex 

communication is not foreseen at UHF band. Half-duplex communication is identified as 

the standard for TMTC communication. The platform communication subsystem is 

allocated for a space amateur-radio link with a downlink frequency of 437.000 MHz and 

an uplink frequency of 435.200 MHz. The selection of the modulation scheme at UHF-

band is compliant with the space amateur regulation: the assumed modulation scheme is 

Pulse Code Modulation (PCM), Non-Return-to-Zero-Level (NRZ-L), Gaussian Frequency 

Shift Keying (GFSK) with a BT factor of the Gaussian filter equal to 0.5. The default data 

rate will be 9.6 kb/s, and can be changed to 4.8 kb/s, by a proper HPC. The S-band downlink 

can be performed at different modulations and data rates: 

 Safe mode transmission 

o Data rate: up to 1 kbps 

o Modulation: BPSK 

 Nominal transmission 

o Data rate: up to 4 Mbps 

o Modulation: OQPSK 

 High data rate transmission (elevation angle > 35°) 

o Data rate: up to 10 Mbps 

o Modulation: 4D-TCM-BPSK 
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3.1.1 Space-to-Ground communication protocol 

The space-to-ground communication protocol for TMTC operations is based on the AX.25 

radio amateur protocol [8], which has been preferred to the CCSDS protocol for its 

simplicity, diffusion among the university and radio amateur community and smaller 

overhead. This means that it requires less computational load to the on-board transceiver 

and a narrower bandwidth or shorter ground contact time to downlink the same amount of 

information. The large diffusion among the amateur and university community will be 

beneficial for receiving supports by other ground stations especially during the LEOP 

phase. For the sake of completeness, we report the main features of the communication 

protocol, you can refer to [9] for more details. Telecommands, telemetry data and 

acknowledgement/rejection messages are sent in small block of data, called frames. The 

AX.25 protocol identifies three general types: 

 Information frame (I frame) 

 Supervisory frame (S frame) 

 Unnumbered frame (U frame) 

Each frame is made up of several smaller groups, called fields. U and S frames consist of 

five fields, for a total amount of 19 and 20 bytes respectively (Table 5 and Table 6), while 

I frames have a variable length depending on the info field length which is limited to 128 

bytes leading to a maximum length of 149 bytes for I frames (Table 7). 

Table 5. U frame structure 

First byte 

Flag Address Control FCS Flag 

01111110 14 Bytes 1 Byte 2 Bytes 01111110 

 

Table 6. S frame structure 

First byte 

Flag Address Control FCS Flag 

01111110 14 Bytes 2 Bytes 2 Bytes 01111110 

 

The Flag field is one byte long. Since the flag delimits frames, it occurs at both the 

beginning and end of each frame. A flag consists of a zero followed by six ones followed 

by another zero: 01111110 (0x7E). As result of bit stuffing, this sequence is not allowed to 

occur anywhere else inside a complete frame. 
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The Address field contains the source and destination address, both composed by 7 bytes 

for a total of 14 bytes. 

The Control field identifies the type of frame being sent and includes sequence number to 

maintain flow control. Since two bytes are used in S and I frames, seven bits are dedicated 

to the sequence number (modulo 128). 

The Frame Check Sequence (FCS) field is a sixteen-bit number calculated by both the 

sender and receiver of a frame. It is used to ensure that the frame was not corrupted by the 

medium used to get the frame from the sender to the receiver. It is calculated using the 

whole packet content excluding the flag bytes. 

 

Table 7. I frame structure 

First byte 

Flag Address Control PID Info FCS Flag 

01111110 14 Bytes 2 Bytes 11110000 N Bytes 2 Bytes 01111110 

 

The external header of the I frame consists of 21 bytes. The same fields included in S frames 

are used, plus the protocol identifier and the info field. 

The Protocol Identifier (PID) field identifies what kind of layer 3 protocol is in use. In 

ESEO mission, no layer 3 protocol is implemented then it is set to 0xF0 (11110000). 

The Info field includes the internal header and the data bytes. The internal header is 

identified by the communication protocol between the on-board transceiver and the OBDH 

[10] . The interface is provided by means of an RS-422 serial link with a baud rate of 57600 

bps. The flowchart of Figure 7 shows the bit operations and the frame detection during 

downlink operations. The bit stream coming from the demodulator undergoes a series of 

bit operations. The bit stuffing ensures that the flag bit sequence does not appear anywhere 

else in a frame, the scrambling increases the density of bit transitions easing time recovery 

and the NRZ to NRZI provides differential encoding of the bit stream easing clock 

recovery. Finally, the CRC-16-CCITT-1021 algorithm detects if the frame was corrupted 

during transmission. As shown by Figure 7, a frame is invalid if: 

 it is not bounded by opening and closing flags 

 it consists of less than 152 bits (including flags) 

 it is not byte aligned (i.e. it has not an integral number of bytes) 

 the CRC check is invalid 
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Figure 7. Bit operations and frame detection (downlink) 

In the last two years, a significant interference has been experienced by different university 

satellite mission during uplink operations over the Europe in the UHF radio amateur 

frequency range 430-440 MHz as reported in [11], [12], and shown in Figure 8 [13]. 

For this reason, we decided to add channel coding. In particular, we added a Reed Solomon 

RS correction algorithm in the uplink chain, which is extremely powerful at burst error 

correction. The implemented RS algorithm is a shortened version with an error correcting 

capability of 8 bytes. Another useful expedient to alleviate the interference issue during 

uplink operations is to keep the length of TCs as short as possible due to the pulsing nature 

of the interference source.  
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Figure 8. RSSI (dBm) average interference world plot between 6/8/2014 and 11/8/2014 

The S-band downlink communication protocol is fully compliant to the ECSS standards 

[14], [15].  

 

3.1.2 Link budget 

The main purpose of the link budget is to verify that the communication system will operate 

according to plan, that is, the message quality (error performance) will meet the 

specifications. The link budget takes into account the gains and losses of the transmitted 

signal through the media to the receiver. The budget tells how much EbN0 is received and 

how much safety margin exists beyond what is required [16]. The link budget computation 

is based on the range equation (3), which gives the carrier power at the receiver, C as the 

product between the power flux density at the receiver, M and the antenna effective area at 

the receiver, AR: 

 
𝑀 =

𝑃𝑇𝐺𝑇

4𝜋𝑑2
=

𝐸𝐼𝑅𝑃

4𝜋𝑑2
 (1) 

 

 𝐴𝑅 = 𝜆2𝐺𝑅/4𝜋 (2) 
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𝐶 = 𝑀 ∙ 𝐴𝑅 = 𝐸𝐼𝑅𝑃 (

𝜆

4𝜋𝑑
)

2

𝐺𝑅 = 𝐸𝐼𝑅𝑃 ∙ 𝐿𝑠 ∙ 𝐺𝑅 
(3) 

 

Where d is the distance between the transmitter and the receiver, λ is the wavelength of the 

signal, EIRP is the effective isotropic radiated power, GR is the gain of the receiver and LS 

is the path loss, which is wavelength (frequency) dependent. From (3), we can compute the 

signal-to-noise ratio SNR and then the EbN0 at the receiver, defining the thermal noise 

power, N as: 

 𝑁 = 𝑘𝑇𝑠𝑊 (4) 

Where k is the Boltzmann’s constant, TS is the system temperature in Kelvin and W is the 

bandwidth in Hz. Knowing the definition of the bit energy Eb (5) and the single-sided noise 

power spectral density N0 (6), we can obtain the EbN0 (7) and (8). 

 

 𝐸𝑏 = 𝐶 ∙ 𝑇𝑏 = 𝐶/𝑅𝑏 (5) 

Where Tb is the bit time and Rb is the bit rate 

 

 𝑁0 = 𝑁/𝑊  (6) 

 

 𝐸𝑏

𝑁0
=

𝐶

𝑁
∙

𝑊

𝑅𝑏
=

𝐸𝐼𝑅𝑃𝐿𝑠𝐿𝑎𝐺𝑅

𝐾𝑇𝑠𝑅𝑏
 

(7) 

 

Where La are the additional losses (i.e. polarization, pointing, atmospheric attenuation and 

precipitation losses). 

 

 
(

𝐸𝑏

𝑁0

)
𝑑𝐵

= 𝐸𝐼𝑅𝑃 (𝑑𝐵𝑊) + 𝐿𝑠(𝑑𝐵) + 𝐿𝑎(𝑑𝐵) +
𝐺𝑅

𝑇𝑆

(
𝑑𝐵

𝐾
) + 228.6 − 10 log10 𝑅𝑏 (𝑏𝑝𝑠) (8) 

 

Where the ratio between GR and TS is named figure of merit. The system link margin is 

then given by the difference between the EbN0 computed in (8) and the required EbN0, which 

can be read from Figure 9 for the desired value of BER. Figure 9 shows the theoretical BER 

curve for the non-coherent BFSK modulation described by (9). 
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𝐵𝐸𝑅 =

1

2
𝑒−0.5∙𝐸𝑏𝑁0 

(9) 

 

 

Figure 9. Theoretical Noncoherent BFSK BER curve  

Table 8 and Table 9 reports the UHF downlink and uplink budget at 9.6 kbps respectively. 

The UHF link budget at 4.8 kbps and the S-band downlink budget can be found in [17]. 

This document also contains more detail about the space to ground interface.  

 

Table 8. UHF downlink budget at 9.6 kbps 

Parameter 
Value 

Units 
Best case Average case Worst case 

Downlink frequency 437 437 437 MHz 

Wavelength 0,686 0,686 0,686 m 

Slant range 2100 2100 2100 Km 

Boltzmann's Constant -228,6 -228,6 -228,6 dBW/K/Hz 

Spacecraft S/C     

S/C Transmitter Power Output 

1,25 1,00 0,85 W 

0,97 0,00 -0,71 dBW 

30,97 30,00 29,29 dBm 

S/C total transmission line losses -2,00 -2,30 -2,70 dB 

S/C Antenna Gain 4,50 4,30 3,00 dBiC 

S/C EIRP 3,47 2,00 -0,41 dBW 

S/C EIRP 33,47 32,00 29,59 dBm 

Downlink Path     

S/C Antenna Pointing Loss -0,12 -0,24 -0,48 dB 
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Antenna Polarization Loss -0,80 -1,90 -3,00 dB 

Path Loss -151,71 -151,71 -151,71 dB 

Tropospheric Loss -1,00 -1,00 -1,00 dB 

Ionospheric Loss -0,20 -0,20 -0,20 dB 

Rain Loss 0,00 0,00 0,00 dB 

Isotropic Signal Level at GS -150,36 -153,05 -156,79 dBW 

Isotropic Signal Level at GS -120,36 -123,05 -126,79 dBm 

Ground Station GS     

GS Antenna Pointing Loss -0,02 -0,06 -0,10 dB 

GS Antenna Gain 17,00 16,00 15,00 dBiC 

GS total transmission line losses -0,80 -1,00 -1,20 dB 

GS Effective Noise Temperature 540,00 560,00 580,00 K 

GS Figure of Merit (G/T) -11,12 -12,48 -13,83 dB/K 

GS Signal-to-Noise Power Density (S/No) 67,10 63,01 57,87 dBHz 

System Data Rate 
9600 9600 9600 bps 

39,82 39,82 39,82 dBHz 

Telemetry System Eb/No 27,27 23,19 18,05 dB 

Telemetry System Required BER 1,00E-05 1,00E-05 1,00E-05  

Demodulator implementation loss 1 1 1 dB 

Telemetry System Required Eb/No 13,80 13,80 13,80 dB 

Eb/No threshold 14,80 14,80 14,80 dB 

System Link Margin 12,47 8,39 3,25 dB 

 

Table 9. UHF uplink budget at 9.6 kbps 

Parameter 
Value 

Units 
Best case Average case Worst case 

Uplink frequency 435,2 435,2 435,2 MHz 

Wavelength 0,688 0,688 0,688 m 

Slant range 2100 2100 2100 Km 

Boltzmann's Constant -228,6 -228,6 -228,6 dBW/K/Hz 

Ground Station GS         

GS Transmitter Power Output 

20,00 20,00 20,00 W 

13,01 13,01 13,01 dBW 

43,01 43,01 43,01 dBm 

GS total transmission line losses -3,00 -3,70 -5,00 dB 

Antenna Gain 17,00 16,00 15,00 dBiC 

GS EIRP 27,01 25,31 23,01 dBW 

GS EIRP 57,01 55,31 53,01 dBm 

Uplink Path         

Antenna Pointing Loss -0,20 -0,30 -0,50 dB 
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Antenna Polarization Loss -0,80 -1,90 -3,20 dB 

Path Loss -151,67 -151,67 -151,67 dB 

Tropospheric Loss -1,00 -1,00 -1,00 dB 

Ionospheric Loss -0,20 -0,20 -0,20 dB 

Rain Loss 0,00 0,00 0,00 dB 

Isotropic Signal Level at S/C -126,86 -129,76 -133,56 dBW 

Isotropic Signal Level at  S/C -96,86 -99,76 -103,56 dBm 

Spacecraft S/C         

S/C Antenna Pointing Loss -1,00 -2,00 -3,00 dB 

S/C Antenna Gain 4,50 4,30 3,00 dBiC 

S/C total transmission line losses -1,70 -2,00 -3,00 dB 

S/C Effective Noise Temperature 519,00 583,00 753,50 K 

S/C Figure of Merit (G/T) -24,35 -25,36 -28,77 dB/K 

S/C Signal-to-Noise Power Density (S/No) 76,39 71,48 63,27 dBHz 

System Desired Data Rate 
9600 9600 9600 bps 

39,82 39,82 39,82 dBHz 

Telemetry System Eb/No 36,56 31,66 23,44 dB 

Telemetry System Required BER 1,00E-05 1,00E-05 1,00E-05   

Demodulator implementation loss 1 1 1 dB 

Telemetry System Required Eb/No 13,80 13,80 13,80 dB 

Eb/No threshold 14,80 14,80 14,80 dB 

System Link Margin 21,76 16,86 8,64 dB 

 

 

3.2 Ground Segment 

For ESEO project, the University of Bologna is responsible for the overall GS and is 

collaborating with other universities to build an essential network of ground stations 

(Figure 10). The ESEO GSN consists of three stations located at: 

 University of Bologna, in Forlì (Italy), used to transmit telecommands (TC) and 

receive the whole amount of TM data at UHF-band and as a secondary ground 

station to download the whole amount of data generated by the different payloads 

at S-band. 

 University of Vigo (Spain), used as backup for TMTC operations at UHF-band. 

 Technical University of Munich (Germany), used as primary ground station for the 

downlink of payload science data. 
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Figure 10. Detail of the visibility circles of Forlì, Munich and Vigo stations (5º, 10º, 15º and 20º 

minimum elevations) 

Visibility analysis for the ground stations of the ESEO network has been performed and 

reported in [7]. Table 10 reports the statistics of ESEO contact durations with the stations 

of the network considering a minimum elevation of 5°. These results have been obtained 

considering the orbital parameters in Table 4. 

 

Table 10. Statistics of contact durations with the stations (5º minimum elevation) 

Station Forlì Munich Vigo 

Minimum (min) 1.60 1.90 2.77 

Mean (min) 7.20 7.34 7.56 

Maximum (min) 9.43 9.43 9.43 

Blind orbits (of 106) 74 72 77 

 

The network is coordinated from the MCC located in Forli through a system named 

SATNet developed by CalPoly University. It mainly consists of two different types of 

clients and one central node [18]: 

 Central node is the core of the network and it is named Network System (N-

System). This node implements the services that enable the connection to the 

ground station network through a set of remotely invokable software interfaces. 

 Software clients will be utilized for accessing the services provided by the N-

System. Two different clients are expected to operate within this network: 
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o Ground Station Clients (G-Clients) will be used by Ground Station 

Operators (G-Operators) for accessing to the services of the network. 

o Mission Operation Clients (M-Clients) will enable the access of Mission 

Operators (M-Operators) to the services of the network. 

The services provided by the N-System are listed below: 

 Management Service: it includes the Registration Service, which permits the 

registration of users and clients in the N-System, the Configuration Service, which 

allows configuring the capabilities of the Ground Station and the communications 

requirements of the S/C and the Information Service, which enables the remote 

access to additional information (e.g. statistics report). 

 Scheduling Services: it is used by G and M clients for arranging a remote operation 

of an S/C. 

 Communications Services: it is required for exchanging data message between the 

G and M clients of the network. 

The block diagram depicted in Figure 11 shows the ESEO ground segment highlighting the 

information exchanged among the satellite, ground stations, mission control center and the 

user segment.  

Payloads Science TM packets
 (S band)

Vigo GS

TC Packets (UHF Band)

HK TM Packets (UHF band)
TC Ack Packets (UHF band)

Payloads 
Planning

ESEO MCC

Forlì GS

ESEO

TC Packets (UHF Band)

HK TM Packets (UHF band)
TC Ack Packets (UHF band)

Payloads Ancilliary TM Packets (UHF band)

Munich GS

User Segment

Pass Planning (SATNET)

Science Data Downlink 
Report (SATNET)

Science Data file (SATNET)

Payloads Requests (FTP)

Payloads Request Status (FTP)
Pass Planning (FTP)

Payloads Science TM packets
 (S band)

 

Figure 11. ESEO Ground Segment 
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A more detailed block diagram of ESEO ground segment is shown in Figure 12. It defines 

the connections between the software and hardware components and it highlights in 

different colours the contribution to the development of the ground segment by the different 

ESEO teams. In the left side, there is the ESEO SS with the S-band transmitter (HSTX), 

the TMTC transceiver and the AMSAT payload. The connections between the ESEO SS 

and the ground stations, illustrated in the next column, give information about the RF signal 

(frequency, modulation, bitrate). The components inside each ground station block 

represent the hardware and software used to move the antenna and receive/transmit 

messages from/to the SS. The messages are forward to the MCS through SATNet by using 

two different clients: the G-client at the ground station connected to demodulator software 

through a UDP connection and the M-client at the MCS connected to the TMTC data 

handling application through a UDP connection. The TM and the TC data are routed on 

two different ports. These messages are also stored for a limited time period in the SATNet 

DB implemented using PostgreSQL. The MCS is mainly based on a LabVIEW application 

connected to a MySQL DB for TMTC handling and it is widely described in 3.2.2. For a 

quick check of a selection of the most significant TM parameters from a smart phone, the 

TMTC software is connected to the LabVIEW Data Dashboard application. Engineering 

and payload science data are stored in two different DB scheme, which are available to the 

user community through a dedicated DB server. 

The functional, interface, operation, design and performance requirements of the ground 

segment have been defined in [19]. 
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Figure 12. ESEO Ground Segment detailed block diagram 

 

3.2.1 Forli Ground Station 

To support ALMASat-1 operations, a ground station has been developed in Forlì through 

the years since 2003. The RF communications of the mission were established on VHF 

uplink and UHF downlink and the RF system was based on commercial analogic radio 

(ICOM IC-910H), low noise amplifier (LNA) and terminal node controller (Kantronics 

KPC-9612+), compliant with the International Amateur Radio Union (IARU) guidelines 

and with the AX.25 standard protocol (Figure 13). 
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Figure 13. Forlì Ground Station configuration for 

ALMASat-1 mission 

 

Figure 14. ALMASat-1 Ground Station 

The 2x9 elements VHF Yagi antenna, operating in the frequency range 144 – 146 MHz and 

the 2x19 elements UHF Yagi antenna, operating in the range 430 – 440 MHz (see Appendix 

A), are moved by an azimuth and elevation rotor by AlfaSpid (see Appendix B). We 

recently added a 3m parabolic dish equipped with a septum dish feed (Figure 15) tuned in 

the CCSDS S-band frequency ranges: 2025-2120 for uplink and 2200-2300 MHz for 

downlink (Figure 16). The datasheet for the parabolic dish from RF Hamdesign can be 

found in Appendix C. 

 

Figure 15. Septum dish feed mounted on a 

3m parabolic dish by RF Hamdesign 

 

Figure 16. VSWR plot for the RX port of the septum 

dish feed by RF Hamdesign 

 

The AMGS will be soon moved on the top of a new building hosting the UNIBO 

engineering labs and the mission control room (Figure 18). 
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Figure 17. S-band parabolic dish antenna and 

VHF/UHF Yagi antenna 

 

Figure 18. Mission control room 

 

In the framework of the ESEO mission, we enhanced the Forlì ground station (AMGS) 

capabilities by introducing a software-defined radio (SDR). These radios are becoming 

every day more popular in amateur and university ground stations for satellite 

communications. They allow fast and cheap reconfiguration of the ground station for 

satellite missions using a different modulation scheme, communication protocol and 

frequency. This is possible thanks to the wide frequency band of RF front-end and because 

the signal is digitally processed at software level. In fact, unlike the ICOM IC-910H radio 

which is only capable of communicating in the 2 m and 70 cm bands and optionally the 23 

cm band (see Table 11), the USRP uses modular daughterboards, which allow to 

communicate over a wide range of frequencies [20]. 

 

Table 11. ICOM IC-910H frequency coverage in Italy 

Band Range 

2 m 144.0-146.0 

70 cm 430.0-434.0 

435.0-438.0 

23 cm 1240.0-1245.0 

1270.0-1298.0 

 

Moreover, SDR is very beneficial for education purposes: engineering students can simply 

develop digital communications algorithms on a computer applying their knowledge in 

communication theory to practical applications. Furthermore, thanks to its versatility, an 

SDR-based ground station will allow easily participating to many university satellites GSN 
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opening beneficial collaborations among universities. A ground station using a hardware 

radio and a TNC is only capable of communicating with satellites, which communicate 

using the AX.25 protocol. The SDR system for the AMGS comprises the USRP platform 

by Ettus Research, model N210, hosting the FPGA and the ADC/DAC (Figure 19), the 

wide bandwidth transceiver named SBX daughterboard (Figure 20) and the host PC 

running a dedicated software. 

 

Figure 19. USRP N210 by Ettus Research 

 

Figure 20. SBX daughterboard by Ettus Research 

 

Figure 21 shows the block diagram of the USRP: the incoming signal attached to the 

standard SMA connector of the USRP are mixed down using a direct-conversion 

(homodyne) receiver to baseband I/Q components, which are sampled by a two-channel, 

100 MS/s, 14-bit analog-to-digital converter (ADC). The digitised I/Q data follows parallel 

paths through a digital down conversion (DDC) process that mixes, filters and decimates 

the input 100 MS/s signal to a user-specified rate. The down converted samples, when 

represented as 32-bit numbers (16 bits each for I and Q), are passed to the host computer at 

up to 25 MS/s over a standard Gigabit Ethernet connection. 

For transmission, baseband I/Q signal samples are synthesised by the host computer and 

fed to the USRP at up to 25 MS/s over Gigabit Ethernet when represented with 32-bits (16-

bits each for the I and Q components). The USRP hardware interpolates the incoming signal 

to 400 MS/s using a digital up conversion (DUC) process and then converts the signal to 

analog with a dual-channel, 16-bit digital-to-analog converter (DAC). The resulting analog 

signal is then mixed up to the specified carrier frequency. 

An available 8-bit mode, in which 16-bits total are used to represent the I and Q values of 

a down converted sample or sample to be up converted, can enable a transfer rate of up to 

50 MS/s over the Gigabit Ethernet connection between the host PC and the USRP. 

The SBX daughterboard provides up to 100mW (20 dBm) of output power, a typical noise 

figure of 5 dB and 40 MHz of bandwidth. The local oscillators for the receive and transmit 

chains operate independently, which allows dual-band operation in the 400-4400 MHz 
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range. The low power signal transmitted by the SDR is then amplified using a high power 

amplifier (HPA) whose datasheet can be found in Appendix D. 

The block diagram in Figure 22 shows the connection between the components of the 

VHF/UHF ground station listed in Table 12. The UHF chain, which will be used for the 

ESEO mission, is based on the SDR technology whilst the VHF chain has not been changed 

from ALMSat-1 version. Another example of an SDR-based ground station for university 

satellite missions can be found in [21]. For the S-band ground station, the components are 

listed in Table 13 whilst their connections are highlighted in the block diagram of Figure 

23. 

 

Figure 21. USRP block diagram 
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Figure 22. VHF/UHF ground station 

Table 12. VHF/UHF ground station components 

Component Vendor Model 

UHF antenna AFT 2x19 Yagi (430-440 MHz) 

VHF antenna AFT 2x9 Yagi (144-146 MHz) 

Az-El rotor RF Hamdesign SPID RAS Az-El rotator 

Rotor digital controller RF Hamdesign SPID RAS Az-El controller 

High Power Switch SKYWORKS SKY12208-478LF 

VHF LNA Landwehr N GaAs 145 MAS 

UHF LNA Landwehr N GaAs 435 MAS 

HPA MiniCircuits ZHL-50W-52 

SDR Ettus Research USRPN210 + SBX daughterboard 

Analog radio ICOM IC-910H 

Modem Kantronics KPC 9612+ 

CI-V Level Converter ICOM CT-17 



32 

 

 

SDR

S/S tracking SW
SDR SW

Coaxial

Coaxial

Az El

1 GB Ethernet

Rotor

Super LNA

Rotor Controller

Power Supply

3m parabolic dish +
septum dish feed

Coaxial Coaxial

HPA
USB

 

Figure 23. S-band ground station 

 

Table 13. S-band ground station components 

Component Vendor Model 

Parabolic dish RF Hamdesign 3m up to 11 GHz 

Septum dish feed RF Hamdesign dual mode, LHCP/RHCP 

Az-El rotor RF Hamdesign SPID BIG-RAS/HR Az-El rotor 

Rotor controller RF Hamdesign SPID BIG-RAS/HR MD-01 

Power Supply RF Hamdesign SPID PS-01 

Super LNA KUHNE electronic KU LNA 222 AH1 

HPA MiniCircuits ZHL-100W-242+ 

SDR Ettus Research USRPN210 + SBX daughterboard 

 

3.2.1.1 Satellite Tracking Software 

Pointing the ground station antennas to the satellite is the first step for uplink and downlink 

operations. The antennas are moved by a rotor around the azimuth and elevation angles 

                                                 
1 Datasheet can be found in Appendix E. 
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through a digital controller connected to a computer running a satellite tracking software. 

There are several real-time satellite tracking and orbit prediction programs and the most 

popular are: Gpredict, Orbitron and Nova for Windows. They implement the NORAD 

SGP4/SDP4 algorithms to solve Kepler’s equation of orbital motion. The Keplerian 

elements are extracted from the TLE (as shown in Table 24) retrieved from the internet or 

local files. For our ground station, we selected Gpredict, an open source program which 

offers several views as depicted in Figure 25. It allows automated ground station operation 

providing both Doppler tuning for radios and antenna rotator control through Hamlib. 

 

 

Figure 24. Computation of azimuth and elevation from ground station to satellite 

 

Figure 25. Gpredict satellite tracking software 
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3.2.1.2 Software Defined Radio implementation 

Three main programming languages can be used to develop a customised software for SDR: 

LabVIEW, MATLAB/Simulink and GNURadio (GR) [22]. GR uses a two-tier structure: 

the computationally intensive processing functions are implemented in C++ while 

application-defined control and coordination of blocks are developed in Python. A 

description of GR working mechanism can be found in [23]. A first software model for 

AMGS was implemented in GNURadio and presented in [24] but the final model was 

developed in LabVIEW since it offers more functionalities for our purposes compared to 

the other possible solutions. The software takes advantage of the NI USRP and Modulation 

toolkit to interface with the USRP hardware and perform modulation [25] and it has been 

implemented using five parallel loops: 

 Signal acquisition and display 

 Signal IQ data recording 

 Signal demodulation and UDP connection 

 UDP connection and signal modulation and transmission. 

 Orbitron DDE connection 

The signal acquisition loop forwards the IQ data to the signal recording and modulation 

loops using queue operations functions. 

 

Figure 26. LabVIEW block diagram of the signal acquisition loop of the SDR software 

 

The signal acquisition loop shown in Figure 26, comprises several functionalities. In the 

left top of the block diagram, some values used to define the signal displays are set as 

constant. For the STFT-based spectrogram (Figure 29), the time-frequency sampling info, 

which specifies the density to use to sample the signal in the time-frequency domain and 

defines the size of the resulting 2D time-frequency array, is specified in terms of time steps 
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and frequency bins. The former specifies the sampling period, in samples, along the time 

axis and it is set equal to 256 whilst the latter is the FFT block size of the STFT and it must 

be a power of two, here equal to 256. For the double-sided power spectrum density (Figure 

27), we set the frequency range to 50 kHz. In the left bottom of the diagram, the five USRP 

parameters are set from controls in the GUI (Figure 27) and the USRP is initiated. Inside 

the loop, first of all the USRP RX carrier frequency, gain and active antenna values are 

refreshed. This is particularly useful to correct automatically the frequency for the Doppler 

shift. Then, received baseband samples are fetched from the USRP as complex (in-phase 

and quadrature-phase), double-precision floating-point data in a cluster, which also 

includes sampling information. These data are passed to a signal detector to check if the 

signal level is above or below to a defined threshold (e.g. 250 µV). If above, the signal 

display turns on, the next samples are fetched from the USRP and the two bunches of 

samples are concatenated. Finally, samples are displayed in different graphs through the 

signal plot block, enqueued to a buffer, which will be processed by the demodulation and 

decoding parallel loop, and if the record option is checked, converted to the 16-bit signed 

integer data representation and enqueued to a buffer, which will be read by the signal 

recording parallel loop. This loop stores the IQ data as an interleaved array of signed 16-

bit integers (𝐼0, 𝑄0, 𝐼1, 𝑄1, … , 𝐼𝑛, 𝑄𝑛), the same format in which the data are transferred over 

the Ethernet bus and stored in the PC memory, so that the only processing is simply copying 

the data from PC memory to disk. In fact, it is important to minimize the amount of 

processing applied to the data during recording to stream data to disk at high rates. 

 

Figure 27. SDR software GUI 
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Figure 28. GFSK signal time plot 

 

Figure 29. GFSK signal waterfall plot 

 

The SDR can be configured through five basic parameters: 

 Device name: is the IP address of the USRP device. This is used to identify the HW 

connected to the PC (e.g. 192.168.10.2). 

 Antenna: is the selected antenna port to transmit from (TX1 is the only option) and 

receive from (RX1 for half-duplex and RX2 for full-duplex) 

 Carrier frequency: is the TX/RX carrier frequency of interest in the range 400-4400 

MHz. 

 Gain: is the amplification of signal before digitising the signal (0-25 dB for TX and 

0-32 dB for RX with a step of 0.5 dB). 

 Fetch size: specifies how many samples N are acquired at each iteration. It is 

correlated to the fetch time Tf and the IQ rate Fs by the following expression: 

 

 𝑇𝑓 = 𝑁/𝐹𝑠 (10) 

 

The number of samples should be large enough to acquire all the samples inside a single 

frame but at the same time, the fetch time should be small enough to allow real time 

operations, meaning that the fetch rate should be larger than the number of separated frames 

sent in one second. Table 14 shows different possible values of fetch size, time and rate. 

The loop rate is half of the fetch rate, since the acquisition loop (Figure 26) performs two 

fetch operations at each iteration. Loop rate values have an upper limit due to the software 

computational speed. Tests have shown that the loop rate is limited to 9 frames per seconds, 

which means that the software cannot execute more than 9 iterations of the signal 

acquisition loop per second. 
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Table 14. Different values of the SDR fetch size, time and rate 

Fetch size (kS) Fetch time (ms) Fetch rate (N/s) Loop rate (N/s) 

80 297.6 3.360 1.680 

70 260.4 3.840 1.920 

60 223.2 4.480 2.240 

50 186.0 5.376 2.688 

40 148.8 6.720 3.360 

30 111.6 8.961 4.480 

20 74.4 13.441 6.720 

10 37.2 26.882 13.441 

 

The modulation scheme selected for the ESEO TMTC operations is a non-coherent BFSK 

preceded by a Gaussian filter. In this scheme, a change from one frequency to the other 

does not adhere to the current phase of the signal as shown in Figure 30. 

 

 

Figure 30. Non-coherent BFSK signal 

 

The Gaussian pulse-shaping filter reduces the levels of side-lobes of the FSK spectrum. In 

the GUI it is possible to select this filter class (other options are raised cosine filter, root 

raised cosine filter and no filter), the filter length and either alpha or BT. The filter length 

specifies the length of the transmit pulse shaping filter in symbol whilst BT is the product 

between the -3 dB bandwidth and the symbol period for a Gaussian filter. 

A characteristic parameter for the FSK modulation scheme is the frequency deviation fd: 

 

 
𝑓𝑑 =

𝑅𝑠𝑘

2
 

(11) 

 

where k is the modulation index and Rs is the symbol rate, the number of transmitted 

symbols per second. This is related to Rb, the bit rate by the following equation: 
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 𝑅𝑠 = 𝑅𝑏/𝑚 (12) 

 

where m is the number of bits transmitted with each symbol. For the BFSK, m is equal to 

1 meaning that 𝑅𝑠 = 𝑅𝑏. For the ESEO TMTC, the bit rate and hence the symbol rate can 

be 9.6 or 4.8 kbps. The user can change between these two values in the GUI, and the 

software automatically sets the number of samples per bit Spb and the IQ rate using the 

following relation: 

 𝑅𝑏 = 𝑆𝑝𝑏/𝐹𝑠 (13) 

 

The IQ rate aka sample rate can be adjusted to values ranging from 195.312 kS/s to 25 

MS/s. However not all values in this range are supported by the USRP, hence coerced 

values are used by the SDR. In order to set the bit rate to 9.6 kbps and 4.8 kbps, the number 

of samples per bit can be properly adjusted as shown in Table 15 and Table 16. 

 

Table 15. SDR settings for bit rate equal to 9.6 kbps 

Spb 
Desired IQ 

rate (kSps) 

Coerced IQ 

rate (kSps) 

Coerced bit 

rate (bps) 

Error 

(Hz) 

20 192.000 195.312 9765.60 165.60 

22 211.200 211.864 9630.18 30.18 

24 230.400 229.358 9556.58 43.42 

26 249.600 250.000 9615.38 15.38 

28 268.800 268.817 9600.61 0.61 

30 288.000 287.356 9578.53 21.47 

 

Table 16. SDR settings for bit rate equal to 4.8 kbps. 

Spb 
Desired IQ 

rate (kSps) 

Coerced IQ 

rate (kSps) 

Coerced bit 

rate (bps) 

Error 

(Hz) 

40 192.000 195.312 4882.8 82.8 

42 201.600 201.613 4800.31 0.31 

44 211.200 211.864 4815.09 15.09 

46 220.800 221.239 4809.54 9.54 

48 230.400 229.358 4778.29 21.71 

50 240.000 240.385 4807.70 7.70 

 

The occupied bandwidth BW is then given by: 
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 𝐵𝑊 = (1 + 𝐵𝑇)𝑅𝑠 + 2𝑓𝑑 (14) 

 

The SDR software is connected to a satellite tracking software, named Orbitron, through a 

dynamic data exchange (DDE). This is needed for automatic Doppler shift frequency 

correction. This application can be then connected to SATNet or directly to the S/C M&C 

system through an UDP connection. 

 

3.2.1.3 Compatibility Tests 

This section describes the set-up and results for compatibility tests between the SDR used 

as the UHF transceiver of the AMGS and the ESEO on-board transceiver. The latter is the 

CC1020 UHF transceiver, designed by Texas Instruments. This integrated circuit is a low 

power device well suited for critical application as microsatellite platform where the power 

consumption and the overall dimension are strict parameters. The CC1020 transceiver has 

flight heritage in space communication application, as it has successfully used in small 

satellite platform such as the CAPE-1 and PICPOT. More details can be found in its 

datasheet [26]. Figure 31 shows the RF output signal of the engineering model of the TMTC 

board. It is obtained setting the CC1020 in transmit mode with the maximum output power 

available on-board (10 dBm) and selecting a final data rate of 4.8 kbps. The occupied 

channel bandwidth is 12.5 KHz, respecting the specification of the IARU recommendation 

for channel spacing. For a data rate of 9.6 kbps a channel of at least 25 KHz is necessary, 

requiring the assignment of at least two adjacent channel of the spectral resources managed 

by IARU [27]. 

The objectives of these tests are: 

 Check the radio frequency compatibility between the SDR and the CC1020. 

 Check modulation/demodulation scheme compatibility between the SDR and the 

CC1020. 

 Check coding/decoding operations compatibility between the SDR and the 

CC1020. 

 Check the packet error rate PER at different values of SNR. 
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Figure 31. GFSK signal spectrum 

 

Figure 32 shows the test setup: the SDR is composed of the USRP N210 device connected 

through a 1 GB Ethernet cable to a laptop running a LabVIEW VI. The on-board transceiver 

(TMTC) comprises the CC1020 device programmed from a laptop running the IAR 

Embedded Workbench software through the AVR JTAGICE device. They are both 

connected through coaxial cables to a manual step attenuator, ranging from 0 to 110 dB 

with 10 dB steps which allows to perform tests at different values of SNR. 

The running VI implements the SDR software described in 3.2.1.1 with a modified 

interface for testing purposes and a functionality that allows saving the instantaneous power 

in band value in a binary file using the spectral measurement toolkit. These values are then 

processed to compute the SNR value at the receiver. 
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Figure 32. SDR Test setup 
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Figure 33. SDR software for testing purposes 

 

Table 17 reports the results in terms of PER at the SDR side for different values of SNR 

measured by the SDR software. Each frame consists of 152 bytes (1216 bits). 

Table 17. Packet Error Rate for different Signal-to-Noise Ratio values in downlink testing 

Frames Bits (k) Duration (M:S) Frame rate (n/s) RX frames SNR (dB) PER 

1000 1216 5:13 3.19 1000 60.3 0 

1000 1216 5:13 3.19 1000 40.4 0 

1000 1216 5:13 3.19 1000 20.4 0 

1000 1216 5:13 3.19 1000 16.9 0 

5000 6080 26:03 3.20 5000 12.6 0 

1000 1216 5:13 3.19 1000 12.5 0 

5000 6080 26:03 3.20 4998 11.8 4e-4 

5000 6080 26:03 3.20 4993 11.5 1.4e-3 

1000 1216 5:13 3.19 998 11.4 2e-3 

5000 6080 26:03 3.20 4985 10.7 3e-3 

1000 1216 5:13 3.19 997 10.5 3e-3 

 

3.2.2 Spacecraft Monitoring and Control 

To operate efficiently a satellite, a complete and easy-to-use S/C M&C system is essential. 

The system has been implemented in LabVIEW because the GUI is a very important aspect 

of this system and students can easily learn this programming language allowing them to 
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modify the software for future satellite missions. This application is connected to a MySQL 

DB for TMTC storing and retrieving operations using the Database Connectivity Toolkit. 

For further information about DB schema definition, see 3.2.2.1. It can be also connected 

to SATNet or directly to the SDR software through an UDP connection receiving and 

transmitting TM and TC packets. The application consists of three views: the main display 

(Figure 34), the TM data display (Figure 35) and the TC set display (Figure 36). 

 

 

Figure 34. Spacecraft Monitoring and Control GUI 

 

The main display allows the operator to select the commands filtering by 

equipment/payload and type (SET/GET) and enable the time tag option specifying the 

execution time through a calendar widget. The command can be directly sent to the S/C or 

queued into the TC stack. From the TC stack, the command can be sequentially sent to the 

S/C or deleted. The two list boxes in the right side of the interface shows in real time, the 

received TM packets (top) in hexadecimal representation and the sent TC (bottom). TM 

packets can also be filtered by class. The class is the type of the packet: 

 TC acknowledgment message 

 Beacon of type 1 (general): contains information from various subsystems 

 Beacon of type 2 (power system) 

 Beacon of type 3 (OBDH) 

 Beacon of type 4 (AOCS and sensor/actuator) 

 Beacon of type 5 (FDIR and TMTC) 

 Beacon of type 6 (payload) 

 HK data page 
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 HK history 

 PS high rate history 

 Death report 

 ES IR image 

The rows of the sent TCs list box are highlighted in different colours according to the 

acknowledgment status: green for acknowledged (ACK), red for rejected (REJ) and orange 

for not acknowledged (NAK). An acknowledgment message sent from the S/C in response 

to a TC, indicates that the TC has been correctly executed on-board if immediate or that 

the command has been successfully inserted into the TTC on-board schedule if time-

tagged. A rejection message sent from the S/C in response to a TC highlights one of the 

following error: 

 CRC error due to frame corruption. 

 Invalid address (out of range): the command identifier (address) does not exist. 

 Invalid address (equipment/payload is OFF): the receiver of the TC 

(equipment/payload) is off. 

 Invalid address (type combination): the sent TC type (SET/GET) is not available 

for the specified address. 

 Invalid time: the time tag of the sent TC is in the past. 

 Time tagged of type GET is invalid: TTC can be only of SET type. 

 Destination equipment timeout/not answering. 

 Sequence number error: the expected sequence number is different. 

 Unable to process TC request: the content of the TC is invalid. 

If after a defined timeout (5 sec) from the sent TC, an acknowledgement message is not 

received, the TC is considered as NAK. 

Another list-box will show the current content of the TTC on-board schedule based on the 

successfully sent TTCs, the TCs to handle the schedule (disable a scheduled TTC, clear all 

the schedule) and the TCs to get information on the scheduled TTCs. The list box contains 

information about the TC identifier, execution time and status. The latter can be one of the 

following: 

 Pending: the row contains a TTC that will execute at execution time and then 

deleted. 
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 Disabled: the row contains a TTC that will not execute at execution time and then 

deleted. 

 Cleared: the row is free, it does not contain a TTC. 

The on-board schedule has a maximum capability of 120 TTCs. 

The operator can display the value of each TM parameter in a dedicated view (Figure 35). 

Values are expressed in engineering units and with the textual calibration. Each parameter 

value is visualised by an indicator (numeric displays, slides, lights) that the operator can 

easily find by selecting the desired equipment/payload tab. A LED indicator above the 

name of each subsystem highlights if there is an error (e.g. OOL value) in that subsystem 

and an automatic warning e-mail informs the engineers about possible issues. Warnings are 

triggered by a change in the equipment/payload error array. 

In the view shown in Figure 36, the operator can change the values of all settable parameters 

before sending the corresponding SET TC from the main view. TC parameters are grouped 

by equipment/payload (one for each tab) and values are textual calibrated or limited 

between acceptable minimum and maximum values if applicable. 

 

Figure 35. AOCS Telemetry display 

 

 

Figure 36. AOCS Telecommands display 



45 

 

 

Figure 37 and Figure 38 highlights all the functionalities implemented in LabVIEW for the 

uplink and downlink chain respectively.  
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Figure 37. Uplink chain flowchart 
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Figure 38. Downlink chain flowchart 

 

3.2.2.1 Database definition 

ESEO has around 500 TM parameters and 500 TCs needed to know the health status and 

command the on-board equipment and payloads. The full list of TM and TC can be found 

in [28]. Therefore, to store all the S/C parameters, the history of sent TCs and received HK 

data in an orderly manner, a proper database schema definition is required. The selected 

relational database management system (RDMS) is MySQL for its popularity, simple and 

intuitive syntax and it can be connected to a large variety of software. The DB is populated 

with flat (spreadsheet-like) tables containing: 

 TM parameters list: label, equipment/payload (Table 18), description, default and 

limit values, units and data types. 

 TC list: label, equipment/payload, address and type (GET/SET) 
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 TM packets history: class, hex raw string, timestamp (date and time) 

 TC packets history: equipment/payload, address, timestamp, status (ACK, REJ, 

NAK), hex raw string. 

 TM data: one table for each equipment/payload (parameters, timestamp) 

 

Table 18. ESEO equipment/payloads 

Equipment/Payload Prefix 

OBDH equipment OBD 

TMTC main TTM 

TMTC redundant TTR 

Power Management Unit main PMM 

Power Management Unit redundant PMR 

AOCS algorithms ACS 

Sun sensor main SSM 

Sun sensor redundant SSR 

Earth sensor ESE 

Magnetometer main MMM 

Magnetometer redundant MMR 

Magnetic Torquer main MTM 

Magnetic Torquer redundant MTR 

Momentum Wheel main MWM 

Momentum Wheel redundant MWR 

TRITEL TRI 

Langmuir Probe LMP 

uCAM CAM 

De-orbit mechanism DOM 

AMSAT-UK AMS 

S-Band transmitter STX 

GPS receiver GPS 

TU-Delft attitude determination experiment ADE 

 

Different levels of privileges are granted to the different users. The customer (ESA), the 

system prime contractor (SITAEL) and the ground segment responsible (UniBO) are 

granted with read privileges on all mission data. Payload teams are granted with read 

privileges only for data on their payload whilst the MCS administrator (from UniBO) is 
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granted with full privileges. DB backup is performed automatically using the free version 

of MySQL Backup FTP. This tool creates remote MySQL DB backups, zips, encrypts and 

sends backups to a local or online folder. It runs on a flexible schedule and sends email 

confirmations on job success or failure. This allows automatic and planned data backups. 

For more detailed information about the DB schema definition and examples, please refer 

to [29]. 

 

3.2.2.2 Automatic procedures 

Some procedures have been identified and reported in the ESEO satellite operations 

handbook [30]. These procedures contains a set of telecommanding and TM checks and 

have been implemented as MATLAB scripts, which can be started from a dedicated 

interface. The operations procedures style guide is compliant to [31] and each procedure is 

written in a dedicated Excel file. This file comprises three sheets: 

 Change log: records the change made to the procedure. 

 Procedure header: contains information about duration, criticality, title, objective, 

related procedures, authorisation, etc. 

 Procedure body: within the procedures, the basic structure consists of steps and 

sub-steps. All actions (e.g. send, verify, select, etc.) must take place in the sub-

steps of the procedure body. The first two steps in a procedure must always be 

preparation and initial verifications. Afterwards, each sub-step can refer to 

telecommanding, telemetry monitoring, control structures (i.e. if, goto, case, wait 

for/until) or ground segment interaction (e.g. select display). 

The procedure body contains the following items: 

 Step: is the number of the step and sub-step. 

 Operations: gives information about the action performed in the corresponding step 

and contains the keyword of the action (e.g. send, verify, etc.). 

 TC: identifies the TC to be sent. 

 Data: is the value assigned to the TC. 

 Description: gives a short description of the sent TC or the monitored TM 

parameter. 

 TM: identifies the TM parameter. 

 TM Data: is the expected value of the TM parameter. 

 Display: identifies the display containing the specified TC or TM value. 
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3.2.2.3 Telemetry Visualisation and Analysis Tool 

Spacecraft telemetry gives a complete description of the health status of the satellite and a 

careful analysis of these data can spot future possible issues. For this reason, we developed 

a software tool for TM data analysis. The user can select the TM parameters to analyse 

from a list and specify the datetime interval (Figure 39). Data are then presented in 

graphical (Figure 41) and scrollable (Figure 40) displays. They can be displayed as 

engineering units values and raw values (binary, hexadecimal or decimal representation). 

A quick statistical analysis of these values (mean, standard deviation, maximum and 

minimum values) is also possible and data can be compared with default, minimum and 

maximum values where applicable. This application is connected to the DB to retrieve the 

TM parameter definition and the TM data. 

 

 

Figure 39. Telemetry Visualisation and Analysis Tool 

 

 

Figure 40. TM Scrollable display and 

statistical analysis 

 

Figure 41. TM Graphical display 
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3.2.2.4 Users’ Requests 

Considering the unusually large number of payloads, which will fly on-board ESEO, it is 

essential to plan an efficient mechanism to handle the numerous payload requests that will 

arise from the user segment during the mission. Figure 42 shows the lifecycle for each 

individual user segment payload request at MCC, highlighting the interaction between the 

MCC and the user segment. The operator and the automatic follow-up system will be in 

charge of changing the requests’ status. The status can be one of the following: 

 ACCEPTED: on reception of a new payload request, it is first syntactically verified 

(the operator checks that all required information are provided). In case of no error, 

it is stored in the DB with the ‘accepted’ status 

 READY: simulations have shown that the request can be uploaded to the satellite. 

 REJECTED: if the request has been uploaded but the satellite has rejected the TC. 

 ACKNOWLEDGED: the satellite has been successfully executed the request 

(immediate TC) or inserted into the on-board schedule (TTC). 

 DELETED: If for any reason, the request is invalid by itself, or cannot be scheduled 

without violating a predefined constraint. The reason of this rejection is written in 

the comment text field attached to the request. 

In case of contingencies, the operator can manually cancel the upload of a previously 

“accepted” or “ready” payload request. 

If the user segment wishes to re-plan a request, their actions will depend on whether or not 

the request has already been uploaded or not. 

If the user segment wishes to change a TTC that has already been uploaded on-board then 

the US will notify the S/C operator to delete the request. If the operator cannot delete the 

request, (e.g. the request will be executed before the next AOS) then the request will be 

executed. 
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Figure 42. Lifecycle for each individual payload request at MCC 

 

3.2.3 Spacecraft Simulator 

In order to test the automatic procedures and train future S/C operators, an existing satellite 

mission simulator has been improved adding TM and TC functionalities. The original 

simulator is based on MATLAB/Simulink and it propagates the attitude and orbit of the 

satellite considering orbital perturbations, internal and external torques. Recently, we also 

added the thermal model and the power simulator of the satellite to increase the number of 

simulated S/C variables [32]. Figure 43 shows the interaction between the ground segment 

software and the S/C simulator as well as the internal connections. The S/C simulator is 

composed of three main components: 

 AOCS and EPS simulator: it simulates the orbital and attitude dynamics of the S/C, 

the thermal subsystem and the electrical power subsystem. It is implemented in 

MATLAB/Simulink/Simscape. 
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 TMTC interface: it allows to command the simulator through telecommands sent 

by the ground segment and to collect TM data to be sent to the ground segment 

[33]. It is implemented in MATLAB/Simulink. 

 TXRX, OBDH simulator: this is the counterpart of the software developed for the 

ground station SDR. Simulating the on-board transceiver, it implements signal 

acquisition, demodulation and AX.25 decoding and then it forwards the data 

content to the OBDH. This subsystem is simulated checking if the received 

command is valid (see 3.2.2) and storing the TTC in a schedule. Immediate and 

valid commands are directly forward to the TMTC interface whilst TTC are 

forwarded to the TMTC interface when the execution time expires. Similarly, in 

uplink operations the same functionalities are performed. 

 

S/C M&C

SDR Software

S/C AOCS and EPS simulator

TMTC Interface

TXRX, OBDH simulator

TC packet TM packet

IQ data
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Figure 43. S/C simulator block diagram 

 

3.2.4 Code review 

The solutions designed for the ESEO ground segment required an extensive code 

implementation in LabVIEW. Therefore, a systematic examination of source code with the 
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intent of finding and fixing mistakes that were overlooked during development was needed. 

The items to examine during a code review include the following: 

 Correctness of implementation 

 Interaction with other components 

 Robustness and error handling 

 Conformance to coding standards/practices 

 Readability 

 Maintainability 

 Reusability 

 Completeness 

For Testing and Validation (Figure 44), we used an incremental approach, which means: 

for every delta implementation, we performed a delta testing and validation. LabVIEW 

offers two tools for this task: 

 LabVIEW VI Analyzer: a tool that inspects VIs and recommends modifications to 

the front panel, block diagram, VI properties and documentation that improves code 

performance, usability and maintainability. The toolkit includes over 60 different 

tests that can be run on any VI such as cyclomatic complexity, modularity index 

and many others. 

 LabVIEW Unit Test Framework: a tool for LabVIEW that can be used to automate 

unit testing, requirements-based validation and regression testing of VIs. 

 

Requirements
Gathering

Deployment
Application
Architecture

Development
Testing and
Validation

 

Figure 44. Software Engineering Process 
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4. EUMETSAT Ground Station Software Solutions 

During an internship at EUMETSAT within the Ground Station and External Interfaces 

GSEI team lead by Dr. Thomas Sheasby, some innovative software solutions have been 

implemented to improve ground stations operations. EUMETSAT operates both GEO and 

LEO satellites to acquire and disseminate Earth observation data for climate change studies 

weather forecasts. 

The currently operative LEO satellites are Metop-A and Metop-B whilst the launch of 

Metop-C is foreseen for 2018. There are two separate Command and Data Acquisition 

(CDA) stations located on Spitsbergen, Svalbard, (78°N), providing the capacity to receive 

the data from all Metop orbits (Figure 45). The stations can also acquire data from the 

NOAA satellites, in particular for those orbits that are not visible (NOAA blind orbit 

support) from the NOAA ground stations in Fairbanks and Wallops Island in the USA. 

 

 

Figure 45. The Metop satellites are operated via two CDAs collocated in Svalbard, Norway and linked 

to the operational ground segment in Darmstadt via fibre-optic and satellite communications links 

 

There are two generations of active GEO satellites: Meteosat First Generation (MFG) and 

Meteosat Second Generation (MSG), providing images of the full Earth disc and data for 

weather forecasts. The Primary Ground Station (PGS) supporting the MSG satellites is in 

Usingen, Germany, about 30 km north of Frankfurt. This ground station is unmanned and 

can be remotely monitored and controlled from the MCC in Darmstadt. A separate Back-

up and Ranging Ground Station (BRGS) is located in Maspalomas, Spain. 

The following sections will describe the software solutions implemented for the M&C of 

these ground stations. 
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4.1 Ground Station Analysis and Reporting Tool 

GSAR, the Ground Station Analysis and Reporting tool is a project built on top of the 

CHART-core framework. CHART (Component Health Assessment and Reporting Tool) 

is a framework for developing telemetry monitoring tools. It has been used to create 

CHART-EPS, SAPHIRE, CHART-MSG and other projects. These tools can ingest data 

from multiple sources, produce automated reports, and offer interactive websites for ad-

hoc analysis [34]. 

The GSAR project receives and ingests telemetry data from Svalbard CDA1 and CDA2. 

Once ingested, data can be used to build reports or visualised with web-based tools. Each 

ground station maintains a telnet link to the MCS, which it uses to report a stream of 

telemetry messages in ASCII form. Each message includes a timestamp, parameter name, 

a raw and a calibrated value. The incoming messages can be divided into 3 categories: 

 Normal background telemetry, sent continually at a low data rate. 

 High frequency data bursts during satellite data acquisition periods. 

 Parameter refresh, where every 15 minutes the value of all parameters is sent 

regardless of changes. 

In the first two cases, messages are generally only sent when a value changes. All categories 

have the same data format. The database is Oracle 11g and it is sized to store the data of 

both ground stations for 3 years (≈ 3 TB) [35]. 

 

4.1.1 Motivations and Background 

Ground station operations and maintenance engineers need to monitor and control the two 

CDAs in Svalbard in a timely and effective manner to ensure that satellite data are not lost. 

For this purpose, they can read TM data generated by all devices inside the CDA using a 

software named TMPropagator [36]. This software supports several types of real time 

display: Alphanumeric Displays (ANDs) show data in text fields, Graphical Displays 

(GRDs) show the history of one or more parameters graphically as a function of time and 

mimics (Figure 46) shows the connection between the equipment and highlights warnings 

and alarms. Data can be retrieved in both real time and playback mode. 
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Figure 46. TMPropagator client, CDA1 mimic display 

 

In addition to this tool, ground station engineers would have reports containing a set of 

CDAs’ TM data displayed in tables and plots for both a quick overview and a more detailed 

investigation. These reports should be generated automatically and periodically and they 

should be available on a web page through a calendar interface (Figure 47). 
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Figure 47. GSAR reports web calendar interface 

 

4.1.2 Reports generation 

Each report is generated from a template, which is specified by an XML file containing a 

list of selected widgets. CHART core widgets can be used but they are not always suitable 

for the requirements of ground station engineers. Therefore, we implemented some GSAR 

custom widgets, which are described in 4.1.4. The widgets are coded as python classes, 

which retrieve TM and FD data from the database, build tables and generate plots using the 

matplotlib package. The automatic generation is handled by an XML schedule file, which 

contains the generation period (i.e. daily, weekly, monthly), time, the name of the activity 

to perform and the identification of the CDA (cda1 or cda2). The activity is another XML 

file, which contains the file name of the template. For the content of these files and for a 

complete development guide, refer to [37]. 

Schedule Activity Template Widgets TM data

FD data

Parameter

definition

 

Figure 48. Reports generation flowchart 



57 

 

4.1.3 Database definition 

Raw TM data injected from the PMCS are stored in a time series key-value store table. In 

a key-value table, there is a timestamp column, a key (or name) column, and a value 

column. This is different to a flat (or spreadsheet-like) table where there would be a 

timestamp column followed by one column for each parameter. In a flat table a complete 

packet of data, where every field has the same timestamp, can be written as a single row. 

For GSAR a key-value store is the safest storage mechanism because it allows the 

possibility of storing highly irregular data efficiently, if every parameter has a unique 

timestamp, this can be stored easily. A flat table is more efficient for packet-based data, 

where parameters tend to arrive in groups with the same timestamp. There are around 2000 

parameters defined for each CDA and they are enumerated types, counters and physical 

variables (e.g. temperatures, EbN0, SNR, etc.). The full list of parameters, their descriptions, 

units, data types and keys is defined in a CSV file constantly updated by ground stations 

engineers. Another DB table containing FD data is used to retrieve the orbit number of the 

passes tracked by each CDA. 

 

4.1.4 Reports content 

This section shows how CDAs’ TM data are displayed in the reports. These reports 

completely satisfies the requirements collected from the ground stations engineers. The 

first widget inserted in the report displays a table containing the number of passes tracked 

by the selected CDA for each satellite (i.e. M01, M02, N18 and N19) as shown in Figure 

49. 

 

 

Figure 49. CDA tracked passes counter 

 

Engineers are also interested in monitoring the antenna movement in azimuth (Figure 50), 

elevation (Figure 51) and tilt (Figure 52 and Figure 53) along a whole day to check that 

there were not issues in the ACU. 
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Figure 50. CDA2 Antenna Azimuth, 21/10/2015 

 

Figure 51. CDA2 Antenna Elevation, 21/10/2015 

 

 

Figure 52. CDA2 Antenna Tilt, 21/10/2015 

 

 

Figure 53. CDA2 Antenna Tilt movements, 21/10/2015 

 

The tilt movements are computed using information on the azimuth and elevation axis since 

tilt movements occur only when the azimuth and elevation axis are blocked. The state of 

some CDAs’ devices is indicated by dedicated enumerated parameters, which can assume 

the values reported in Table 19. 
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Table 19. CDA’s devices status 

Raw value Text value Mimic colour 

0 Active Green 

1 Connection lost Brown 

2 Alarm Red 

3 Acknowledged alarm Orange 

4 Maintenance Blue 

5 Absent Cyan 

  

 

Figure 54. CDA2 devices status, 21/10/2015 

 

 

Figure 55. CDA2 ACU status, 21/10/2015 

 

More information about the performance of a ground station can be obtained by displaying 

data for each pass correlating TM data with FD data. Ground station engineers can detect 

issues during a pass by reading the values listed in Figure 56 and have more information 

on each pass by looking at the plots generated for each pass (Figure 57). 
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Figure 56. CDA2 tracked passes with FD information (S/C, orbit, AOS time) and TM data (BTSE, 

corrected, uncorrected and received frames), 21/10/2015 

 

 

Figure 57.  CDA2 TM data during M02 pass, orbit 46725 

 

Figure 57 shows five subplots displaying a selection of significant TM data during Metop-

A pass. The first subplot shows the antenna azimuth and elevation on twin axes, the second 

subplot displays the EbN0 values for different frequency bands; the third subplot illustrates 

the tracking receiver levels (S-band in blue and X-band in red); the last two subplots show 

the number of the BTSE counted by the HRDFEP in hot redundancy (HRDFEP1 and 

HRDFEP2) in a time scale and in a polar plot. To generate the polar plot we needed to 

interpolate the azimuth and elevation timestamp with the BTSE timestamps since each 

parameter is sampled at a different time. 

When analysing the plots like the one shown in Figure 57, we should take into consideration 

that NOAA satellites payload downlink is at L-band while Metop satellites payload 
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downlink is at X-band and telemetry data are downloaded at S-band for both satellites (see 

Table 20 and Figure 58). 

Table 20. Metop and NOAA satellites frequencies 

Satellite TT&C Uplink [MHz] TT&C Downlink [MHz] Data Downlink [MHz] 

Metop 2026 (S-band) @ 2kbps 2230 (S-band) @ 4kbps 7750-7900 (X-band) @ 70 Mbps 

NOAA 2053 (S-band) 2247.5 (S-band) 1698,  1702.5, 1707 (L-band) 

 

 

Figure 58. CDA high level block diagram 

 

Another aspect to take into consideration is that the X-band downlink occurs around the 

maximum elevation point as highlighted in Figure 67. 

 

4.1.5 Repeat cycle analysis 

If Earth makes an integral number of rotations in the time taken for the LEO satellite to 

complete an integral number of orbits, the sub-satellite track repeats exactly. This time span 

is called repeat cycle. The existence of a repeat cycle means that a whole number of 

revolutions can be completed in exactly a whole number of days. The orbital period 

determines the number of orbits N that the satellite runs in 24 hours, which is normally not 

an integer. In order to obtain a repeat cycle of m days, the orbital period is adjusted to 

ensure that 𝑁 ∙ 𝑚 is an integer. N can then be expressed in the following form where n and 

l are respectively the quotient and remainder of the integer division of 𝑁 ∙ 𝑚 by m: 
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𝑁 = 𝑛 + 𝑙/𝑚, with n, l and m integers (l < m) 

Metop satellites orbit has been designed to have a repeat cycle as reported in Table 21. The 

repeat cycle is of particular interest because TM data, like EbN0 and tracking receiver levels 

can be compared during a pass under the same conditions in terms of azimuth and elevation. 

Table 21. Metop repeat cycle values 

Period  No. of orbits per day Cycle Revs/cycle Main sub-cycles 

101.36 min 14 + 6/29 29 days 412 5 days 

Nominally, ground stations opeations engineers schedule Metop passes to one CDA and 

NOAA passes to the other CDA. However, due to CDAs maintenance and upgrades, the 

assignement is changed from time to time: this is named mission swap. Therefore, due to 

the mission swap, the CDA used to track the same satellite can be different when we analyse 

several cycles. The script can detect the right CDA by counting the number of items 

returned by the DB selection query. In fact, as stated in 4.1, data are acquired at a higher 

frequency during a pass, resulting in a higher number of items from the DB if the query is 

submitted for the time period corresponding to a pass. This script also needs FD data, since 

it retrieves the AOS and LOS values for the initial given orbit number and for the previous 

orbits every cycle (412 orbits). Figure 59 shows the result generated from this script for the 

S-band EbN0 of Metop-A. Each subplot contains the value for this parameter during a pass 

where the orbit number is given by: 

𝑛𝑖 = 𝑛0 − 𝑖 ∙ 412, 𝑖 = 0, … , 𝑁 

where n0 is the initial orbit number given as input and N is the number of cycles to be 

investigated. In order to ease the comparison, the y-axis is shared and x-axis is given in 

terms of the antenna elevation instead of time. 



63 

 

 

Figure 59. Metop-A S-band EbN0 repeat cycle comparison 

  

4.1.6 Code verification and results validation 

Before installing the implemented code in the operational environment, it has been checked 

using pylint for coding standard and error detection. Some of the coding standards checks 

are line-code’s length, trailing whitespaces, missing spaces around operators, if imported 

modules are used, missing docstrings, etc. It is important to be compliant to this standard 

to enhance code readability and ease its maintainability. 

The results generated by this tool have been validated by comparing the plots and values 

with TMPropagator displays as shown in Figure 60 and Figure 61. 
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Figure 60. TMPropagator GRD, CDA tracking 

receiver levels 

 

Figure 61. GSAR, CDA tracking receiver levels 

 

4.2 Satellite Passes And Conflicts Engine 

SPACE, the satellite passes and conflicts engine is an application developed in python 

which offers an easy way to compute visibility passes of a satellite group over a GSN, 

detect and resolve pass conflicts based on a satellite priority list defined for each ground 

station. 

The application is based on a TLE propagator, which implements the simplified 

perturbation model SGP4. The user can select between the pyephem [38] and pyorbital [39] 

python packages. Pyephem is built on top of XEphem, a C library for basic astronomical 

computations and is used by other projects, like SATNet [40] and SatNOGS [41]. Pyorbital 

is part of a project named pytroll, which provides different free and open source python 

modules for the reading, interpretation and writing of weather satellite data. SPACE can be 

used through a simple and intuitive interface and results are presented as pictures and tables 

in HTML pages. 

 

4.2.1 Applications 

SPACE have been implemented and validated at EUMETSAT for the Initial Joint Polar 

System IJPS. The SS of the IJPS comprises the satellites listed in Table 22. 

The considered GSN comprises EUMETSAT and NOAA ground stations and the 

ESTRACK core network (see Table 23). Svalbard CDAs track Metop satellites and offer 

support to NOAA satellites, mainly during blind orbits. These CDAs are far enough north 

to track all 14 orbits a day.  Fairbanks and Wallops track NOAA satellites but they cannot 

offer a coverage for all 14 orbits a day. 
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Table 22. IJPS satellites 

Satellite Launch Date Inclination 

(deg) 

Altitude 

(km) 

LTAN Period 

(min) 

Operational 

Status 

METOP-A 19/10/2006 98.70 817 21:29:05 101.36 AM Backup 

METOP-B 17/09/2012 98.70 817 21:31:45 101.36 AM Primary 

METOP-C 2018 (foreseen) N/A N/A N/A N/A N/A 

NOAA-18 20/05/2005 98.74 854 16:58:11 102.12 PM Secondary 

NOAA-19 06/02/2009 98.70 870 14:09:47 102.14 PM Primary 

  

Table 23. Ground Stations location 

Antenna Longitude (deg) Latitude (deg) Altitude (km) 

Svalbard CDA1 15.388229269 78.228981740 0.490818934 

Svalbard CDA2 15.401320535 78.228562464 0.495385340 

Fairbanks -147.505823340 64.973760002 0.397033060 

Wallops -75.462919721 37.947340276 -0.021250002 

McMurdo 166.650000022 -77.849999998 0.157000215 

Kourou -52.804663716 5.251439108 -0.014670939 

Villafranca -3.952597571 40.445595405 0.664791780 

Perth 115.885163931 -31.802518955 0.022160714 

Maspalomas -15.633800861 27.762889290 0.205117772 

  

McMurdo ground station tracks Metop passes within the Antarctic Data Acquisition (ADA) 

service halving the data transfer from satellite to ground station as illustrated in Figure 62. 

 

 

Figure 62. Antarctic Data Acquisition service. © EUMETSAT 
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The ground stations horizon mask are given as CSV files where the first column is a 

sequence of azimuth values from 0° to 359° with a step of 1° and the second column is the 

corresponding elevation value of the mask with an accuracy ranging from 0.1° to 1° 

depending on the ground station. 

 

 

Figure 63. Fairbanks horizon mask 

 

 

Figure 64. Wallops horizon mask 

 

The usage of SPACE can be easily extended to other LEO satellites and ground stations. 

An XML configuration file allows the user to specify the list of satellites and ground 

stations. SPACE has also been tailored to meet the requirements of EUMETSAT ground 

stations operations engineers adding a section, which allows computing NOAA blind orbits 

according to the definition given in the ICD: 

“Pass where visibility is less than 7 minutes between FRT and LRT at both the Fairbanks 

and Wallops CDAs”. 

Where FRT stands for first receive time and it is defined as: 

“A NOAA term for the time (rounded up to the nearest 10 seconds) when the elevation of a 

rising satellite is equal to the elevation of the CDA’s horizon mask. The delta time between 

AOS(0) and FRT is constrained by SOMS to be no less than 30 seconds”. 

Similarly, LRT stands for last receive time and it is defined as: 
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“A NOAA term for the time (rounded down to the nearest 10 seconds) when the elevation 

of a setting satellite is equal to the elevation of the CDA’s horizon mask. The delta time 

between LRT and LOS(0) is constrained by SOMS to be no less than 30 seconds”. 

In a nominal scenario, NOAA passes are scheduled to one Svalbard CDA and Metop passes 

to the other CDA as depicted in Figure 65 but when one of the two CDAs undergoes 

maintenance or upgrades, it is needed to prepare a conflict-free pass planning over the 

available CDA. 

 

Figure 65. Svalbard CDAs nominal pass planning 

 

4.2.2 Graphical User Interface 

The GUI for the SPACE application (Figure 66) has been implemented using Tkinter, the 

most commonly used GUI programming toolkit for python. In the menu bar, there are three 

available options: File, Edit and Help. The File option contains the Data command, which 

opens an HTML page containing tables listing ground stations location and satellites TT&C 

frequencies and the Quit command to exit the application. Data are presented directly from 

the configuration file using an XSL transformation. The Edit option contains the 

Configuration command to open the configuration file in edit mode. The Help option 

contains the About command to open an EUMETSAT web page about the EPS and the 

Help Contents to open a user guide. 

The three tabs allows to separate the different functionalities provided by the application: 

the first tab allows computing passes and resolve conflicts for any satellites group and GSN; 

the second tab is tailored for NOAA blind orbits support from Svalbard CDA and the third 

tab allows computing detailed information for the next pass of a selected satellite over a 

selected ground station. 
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Figure 66. SPACE graphical user interface 

The TLEs can be retrieved from CelesTrack [42], EUMETSAT website [43] or from a local 

folder. The TLE should follow the NORAD format: 

AAAAAAAAAAAAAAAAAAAAAAAA 

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN 

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN  

Where columns with a space or period can have no other character. Columns with an 'N' 

can have any number 0-9 or, in some cases, a space. Columns with an 'A' can have any 

character A-Z or a space. The column with a 'C' can only have a character representing the 

classification of the element set, normally either a 'U' for unclassified data or an 'S' for 

secret data (of course, only unclassified data are publicly available). Columns with a '+' can 

have either a plus sign, a minus sign, or a space and columns with a '-' can have either a 

plus or minus sign (if the rest of the field is not blank) [42]. 

Here an example of METOP-B TLEs: 

METOP-B                  

1 38771U 12049A   15316.45144032  .00000093  00000-0  62456-4 0  9990 

2 38771  98.6795  14.0746 0001866 111.1497 340.7088 14.21505995163482 
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Table 24. TLE set format definition 

Line 1 

Column Description Example 

01 Line Number of Element Data [1] 

03-07 Satellite Number [38771] 

08 Classification (U = Unclassified) [U] 

10-11 International Designator (Last of two digits of launch year) [12] 

12-14 International Designator (Launch number of the year) [049] 

15-17 International Designator (Piece of the launch) [A] 

19-20 Epoch Year (Last two digits of year) [15] 

21-32 Epoch (Day of the year and fractional portion of the day) [316.45144032] 

34-43 First Time Derivative of the Mean Motion, revolutions per day [  .00000093] 

45-52 
Second Time Derivative of Mean Motion (decimal point 

assumed) 
[  00000-0] 

54-61 
BSTAR drag term (decimal point assumed) for SGP4 

perturbations (otherwise radiation pressure coefficient) 
[  62456-4] 

63 Ephemeris type [0] 

65-68 Element number [ 999] 

69 
Checksum (Modulo 10)  

(Letters, blanks, periods, plus signs = 0; minus signs = 1) 
[0] 

Line 2 

Column Description Example 

01 Line Number of Element Data [2] 

03-07 Satellite Number [38771] 

09-16 Inclination (degrees) [ 98.6795] 

18-25 Right Ascension of the Ascending Node (degrees) [ 14.0746] 

27-33 Eccentricity (decimal point assumed at beginning) [0001866] 

35-42 Argument of Perigee (degrees) [111.1497] 

44-51 Mean Anomaly (degrees) [340.7088] 

53-63 Mean Motion (revs per day) [14.21505995] 

64-68 Revolution number at epoch (revs) [16348] 

69 Checksum (modulo 10) [2] 

 

The spin-boxes labelled by AOS and LOS time margin can be used to set the time in 

minutes to allow for time margin between two passes to compute conflicts. This means that 

for each pass: 

AOStime = AOStime - AOSmargin 

LOStime = LOStime + LOSmargin 
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These margins named conf and stby are highlighted in Figure 67. It also shows some other 

events during a pass like the time when the satellite is first above and below the horizon 

mask during rising and setting (AOS_M and LOS_M), the AOS(0) time plus 5 minutes 

(AOS_5) and LOS(0) time minus 5 minutes (LOS_5) and the start and stop of the X-band 

dump (XBS). Currently, there is an ongoing investigation to reduce these time margins to 

allow scheduling more passes which means providing greater support to NOAA, greater 

maintenance options and in the future also accommodating METOP-C passes (to be 

launched in 2018) and supporting EPS-SG (to be launched in 2020). This tool helps to 

investigate for these potential benefits by changing the AOS and LOS time margin and 

compare the results for different values. 

 

Figure 67. Satellite pass events 

 

4.2.2.1 Error handling 

To avoid an application to crash ungracefully it is important to handle errors properly. 

Python, like some other languages (e.g. LabVIEW, Java ...) offers some built-in functions 

that can be used for this purpose. A message or warning error pops up when the user inserts 

unexpected values to the application through the interface. Below some possible cases: 

 “Cannot connect to URL” is displayed when the user tries to download TLEs from 

the website but this is not available. 

 “Please select at least one satellite” is displayed when the user tries to get TLEs 

before selecting at least one satellite. 

 “Please insert an e-mail address” is displayed if the user tries to send the report 

before inserting an e-mail address. 

 “Invalid datetime range” is displayed when the stop date is equal or less than the 

start date. 
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 “Please select at least one ground station” is displayed if the user tries to predict 

passes before selecting at least one ground station. 

 “No tables to save” is displayed when the user tries to export data before predicting 

passes. 

 “Failed to send e-mail to address” is displayed if the e-mail cannot be sent due to 

connectivity issues (e.g. connection to SMTP server) 

 “Syntax error in the configuration file” is displayed at the application start or later 

after the file has been edited if the XML syntax has not been respected. 

 

4.2.3 Results 

This section reports some of the outputs generated by this application. Pictures are 

generated using matplotlib whilst tables are created using pandas. An extract of the list of 

passes ordered by ground station and AOS time is shown in Figure 68 and a small table 

summarises the number of passes of each satellite over each ground station (Figure 69). 

The duration is computed as the difference between the rise time, AOS(0) and the set time, 

LOS(0) whilst the real duration is computed as the difference between FRT and LRT. 

 

 

Figure 68. Visibility passes list 

 

 

Figure 69. Visibility passes summary 
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The maximum elevation and pass duration are plotted for each ground station as shown in 

Figure 70 and Figure 71. 

 

Figure 70. Satellites passes duration over CDA1 during one day 

 

Figure 71. Satellites passes maximum elevation over CDA1 during one day 
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Another table (Figure 72) shows the conflicts between pairs of satellites passes over the 

same ground station. The conflict duration also takes into account the AOS and LOS 

margins. 

 

Figure 72. Satellites passes conflicts table 

If the conflict resolution checkbox is checked, SPACE generates a conflict-free schedule 

displayed as a table, Gantt chart (Figure 73) and pie chart for each ground station (Figure 

74). 

 

 

Figure 73. One-day conflict-free schedule for Metop-A, Metop-B, NOAA19 over Fairbanks, McMurdo 

and Svalbard 
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Figure 74. Conflict-free passes percentage over Fairbanks for Metop-A, Metop-B and NOAA19 

SPACE gives also details on a single pass in terms of azimuth, elevation, range, range rate 

and Doppler corrected frequencies with a given sampling time as shown in Figure 75. 

 

 

Figure 75. Pass details: Metop-A over CDA1, orbit 45500, sampling time 30 seconds 

 

Azimuth and elevation are plotted on a time axis (Figure 76) and on a polar plot (Figure 

77). 
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Figure 76. Predicted azimuth and elevation on a 

time axis 

 

Figure 77. Predicted azimuth and elevation 

on a polar plot 

 

The uplink and downlink frequency corrected for the Doppler shift together with the uplink 

and downlink centre frequencies are plotted versus time (Figure 78). 

 

 

Figure 78. Doppler corrected downlink frequency for Metop-A pass over CDA1, orbit 45500 

 

4.2.4 Validation 

At EUMETSAT, the FD team generates pass prediction files (called wimpy) for both short 

term (1 month) and long term (1 year). Passes for Metop satellites are computed over 

Svalbard, Fairbanks, Wallops and McMurdo. Passes for NOAA are computed over 

Svalbard CDA, Fairbanks and Wallops. These files, one for each satellite, contain the 

datetime, orbit number and pass events over the ground stations. We implemented a Python 

script to read these files, to perform a validation test campaign of the pass prediction results. 
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The values that have been analysed are the maximum elevation time and maximum 

elevation angle. These tests have been performed covering a prediction time of two weeks. 

Results have been generated for Metop-A, Metop-B and NOAA19 passes over Svalbard, 

Fairbanks and Wallops from 14/08/2015 12:00:00 UTC to 27/08/2015 12:00:00 UTC. The 

TLEs used for these tested are reported hereafter: 

 

METOP-A                  

1 29499U 06044A   15224.56533007  .00000034  00000-0  35384-4 0  9994 

2 29499  98.6712 282.9342 0001269  61.3615  74.8830 14.21497318457295  

NOAA 19                  

1 33591U 09005A   15224.43157467  .00000127  00000-0  94161-4 0  9991 

2 33591  98.9936 174.4573 0014459  16.0535 344.1092 14.11965220335422  

METOP-B                  

1 38771U 12049A   15224.80641553  .00000032  00000-0  34482-4 0  9998 

2 38771  98.6929 283.8945 0001764  71.2312  22.3257 14.21489399150461  

 

Results show that pyorbital has a higher accuracy compared to pyephem. However, the 

latter is around four times faster in performing computations. 

 

Table 25. Errors between results given by pyephem and EUMETSAT FD team 

S/C G/S No. of orbits 
TCA Error [s] Max El Error [deg] 

Mean Max Mean Max 

NOAA19 

Svalbard 197 5.2 12.9 0.3 3 

Fairbanks 155 5.6 16.1 0.2 2 

Wallops 83 4.3 13.4 0.2 3 

METOP-A 

Svalbard 171 7.6 11.8 0.2 3 

Fairbanks 135 4.7 13.4 0.1 4 

Wallops 71 3.5 10.8 0.1 2 

METOP-B 

Svalbard 199 4.5 11.5 0.2 3 

Fairbanks 156 5.1 12.5 0.1 2 

Wallops 82 3.9 12.6 0.3 3 

 

Table 26. Errors between results given by pyorbital and EUMETSAT FD team. 

S/C G/S No. of orbits 
TCA Error [s] Max El Error [deg] 

Mean Max Mean Max 

NOAA19 

Svalbard 197 0.4 1.0 0.0 1 

Fairbanks 155 0.3 1.0 0.0 0 

Wallops 83 0.3 1.0 0.0 0 
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METOP-A 

Svalbard 171 0.3 1.0 0.0 1 

Fairbanks 135 0.3 0.8 0.0 0 

Wallops 71 0.4 1.0 0.0 0 

METOP-B 

Svalbard 199 0.4 1.1 0.0 1 

Fairbanks 156 0.4 1.0 0.1 2 

Wallops 82 0.4 1.0 0.3 3 

 

NOAA blind orbits are not highlighted by the FD team in the wimpy files, thus results 

generated from this application are checked against NOAA blind orbits support requests. 

Results generally match the requests from NOAA but we noticed that some 9ish orbits 

defined blind from NOAA are not highlighted by this application. This occurs for orbits 

when there is a low elevation pass (below 10°) over Fairbanks or Wallops. In this case, the 

real duration of the pass computed by this tool is a few tenths of seconds greater than 7 

minutes, which makes this orbit not blind according to the definition. There are some 

reasons that may lead to this mismatch: 

 The accuracy of the TLE propagator. 

 TLE source is different: SPACE uses CelesTrak TLEs for NOAA satellites whilst 

NOAA uses four line elements (4LE) generated by its FD team. 

 Rounding up and down to compute FRT and LRT, according to the definition, may 

amplify the error in the worst-case scenario. For instance, consider the following 

FRTs: 

09:36:29 rounds up to 09:36:30 

09:36:31 rounds up to 09:36:40 

 

An initial error of 2 seconds leads to an error of 10 seconds. Then consider the 

following LRTs: 

 

09:43:49 rounds down to 09:43:40 

09:43:51 rounds down to 09:43:50 

 

Again, an initial error of 2 seconds leads to an error of 10 seconds. However, since 

we are interested in the real duration (LRT - FRT), the error may cancel out, sum 

up giving 20 seconds of total error or remain equal to 10 seconds. 
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 Satellite elevation check against horizon mask elevation can be made every n 

seconds. Then as soon as the satellite elevation is equal to the mask elevation, that 

time is taken as FRT or LRT. Lower values of n gives a better resolution in terms 

of time increasing the accuracy. 

 The horizon masks used at EUMETSAT may be slightly different from the masks 

used by NOAA. 

However, this issue can be easily overcome by increasing the minimum pass duration by a 

few tenths of seconds or one minute to generate conservative results, which means 

predicting a slightly higher number of 9ish blind orbits. 

 

4.3 Ground Station Centralised M&C Simulator 

The Ground Stations Centralised High Level Monitoring and Control (HL M&C) is a 

system responsible for the operational real-time monitoring and control of EUMETSAT 

ground stations from the MCC or MCC backup facilities. Within each ground station there 

is an M&C system, which is used to monitor and manage the activities within the ground 

station. This system is often referred to as the Ground Station Low Level M&C (LL M&C). 

The communications interface between the LL M&C computers and the HL M&C 

computers for control, monitoring, event and schedule information is well described in 

[44]. The implementation of this communication interface is the purpose of the simulator 

described in this chapter. The simulator is based on Device Simulator, DS tool, which is 

described in 4.3.2. The data flows between the HL M&C in the MCC and the LL M&C 

servers within the individual EUMETSAT Ground Station facilities are summarised in 

4.3.1. 

 

4.3.1 Data Flows 

This section summarises the interface, which provides real time commanding, telemetry, 

events and schedule information from a ground station LL M&C system to the ground 

station centralised HL M&C at the EUMETSAT prime and backup control centre. For a 

complete description of the communication interface, please refer to [44]. 

The Interface comprises the following data towards the ground station LL M&C: 

 Request for a set of telemetry values for a given set of telemetry points. 
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 Request for a set of Event Messages. 

 Request for schedule information. 

 Control Messages to set parameter values / trigger macros / schedule macros. 

The Interface comprises the following data from the ground station LL M&C: 

 Telemetry request acknowledgements. 

 Telemetry point values in engineering units, raw values, status and 

timestamps. 

 Control message acknowledgements. 

 Event messages. 

 Schedule information. 

Figure 79 illustrates the communication interface between LL and HL M&C. The HL M&C 

will connect to multiple ground stations, which each contain a single LL M&C instance. 

Each LL M&C instance will provide the requested real time TM parameters, Events and 

Schedule information to the HL M&C. The HL M&C is also able to issue control messages 

to the LL M&C to trigger procedures or set individual parameters either immediately or 

added to the schedule for later execution. 

 

EUMETSAT HQ

Ground Station 1

LL M&C

HL M&C

RF Front End

GSCON
HL M&C

Base Band

Ground Station 2

LL M&C

Antenna

RF Front End

Base Band

Antenna

 

Figure 79. HL and LL M&C connection 
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Figure 79 shows that two instances of the HL M&C servers (Prime and Backup) are 

deployed. The Backup HL M&C server is in hot standby. If there are problems with the 

prime server, the swap to the backup server is performed automatically. The HL M&C 

supports auto redundancy switching towards the LL M&C of each ground station, meaning 

that if the Prime LL M&C server is unavailable then it will try to connect to the Backup 

and vice versa. The HL M&C is designed to M&C an unbounded number of ground stations 

by utilising their LL M&C function. Figure 80 shows the data stream exchanged between 

a LL M&C instance and the HL M&C. 

 

Figure 80. Kinds of data streams exchanged over the interface 

 

4.3.2 Device Simulator 

The functionality of the Device Simulator is intended to be a generic Lego set, which allows 

a user to easily create an interface of any of the supported types: 

 TCP client/server 

 Simple Network Management Protocol, SNMP 

 Serial (RS-232, RS-422, RS-485) 

 GPIB (IEEE-488) 

In addition, it allows generating the packets and packet interactions that allow realistic 

simulation of the subject device / facility interface. 
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The Device Simulator was originally developed for the EUMETSAT ground station team 

to allow the simulation of ground station monitoring and control interfaces. After the initial 

development, the generic nature and flexibility of the software meant that the context 

quickly grew beyond the ground stations to be applicable GS wide. 

The benefits of using DS are: 

 Shorten the time to market: 

o Parallel development of the various SW 

o Rapid prototyping 

 Reduce development and testing costs: 

o Find interface problems early 

o Easily create complex test scenarios 

 Improve quality: 

o Automate test cases 

o Fast regression testing 

The implementation of any type of device specific functionality (e.g. packet definition, 

command execution, etc.) is very flexible thanks to an extensive use of user definable 

macro Java code. This gives the user the ability to implement any kind of desired 

functionality. 

For any user definable macro the user has the ability to: 

 Read any of the monitoring packet parameters. 

 Read any of the incoming command packet parameters. 

 Read any of the monitoring request packet parameters. 

 Read any of the command acknowledgement packet parameters. 

 Write to any of the monitoring packet parameters. 

 Write to any of the command acknowledgement packet parameters. 

 Send any monitoring packet. 

 Send any command acknowledgement packet. 

 Execute high-level programming language functions like: 

o Logical operators 

o Arithmetic operators 

o Comparative operators 

o IF THEN ELSE operations 

 Access the system time. 
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These macros are then executed at the sending or reception of a defined packet or with a 

specified time interval. 

The definition and configuration of devices can be a labour intensive activity for the user, 

especially configuring all of the packet definitions. To significantly speed up this part of 

the simulator configuration a series of wizards are available to the user. There is a separate 

wizard for each of the following types of definition (Figure 81): 

 Interface definition 

 Monitoring Packet definition 

 Monitoring Request Packet definition 

 Command Packet definition 

 Command Acknowledgement Packet definition 

The wizards guides the user through the complex definition process providing extra 

information where necessary. Within the wizards, there is also a series of tools implemented 

to speed up the definition process [45]. 

Interface Module

Ground Station 

M&C System

Command Ack 

Module
Command Module

Monitoring Packet 

Request Module

Monitoring Packet 

Module

ReqTCAck TM

Ack TM ReqTC

Send Mon PktSend Ack Pkt Set Parameter
 

Figure 81. Definition of a device mechanism 

 

4.3.3 Simulator 

The communication interface described in [44] has been implemented in DS implementing 

a ground station centralised M&C simulator. The exchanged packets have been 

implemented using the DS Editor shown in Figure 82 and they are listed in Table 27. 
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Table 27. Exchanged messages between HL and LL M&C 

Message ID Direction Folder 

Telemetry Request TLMREQ HL > LL Monitoring Request 

Telemetry Response TLMRESP LL > HL Monitoring 

Telemetry Points TLM LL > HL Monitoring 

Event Request EVTREQ HL > LL Monitoring Request 

Event Response EVTRESP LL > HL Monitoring 

Event Message EVTMSG LL > HL Monitoring 

Schedule Request SCHREQ HL > LL Monitoring Request 

Schedule Info Message SCHMSG LL > HL Monitoring 

Authentication Request AUTREQ HL > LL Command 

Authentication AUT_LL LL > HL Command Ack 

Authentication AUT_HL HL > LL Command 

Control Message/Schedule Control CTLMSG HL > LL Command 

Acknowledgments ACK LL > HL Command Ack 

 

We also implemented some dummy packets containing setting parameters: 

 KeyConfig (at LL M&C): 

o HLKey (default value: “S2jJ90Lkgh79F6GH7h8H”): HL M&C 

passkey (random sequence of numbers and upper and lower case 

characters concatenated together).   

o LLKey (default value: “FK6G37in7GW47m78hSDx”): LL M&C 

passkey (random sequence of numbers and upper and lower case 

characters concatenated together). 

o AUT (default value: 1): authentication mechanism override (0 

authentication required, 1 authentication not required). 

 SchedConfig (at LL M&C): 

o SCH (default value: 1): schedule usage (0 agreed to not be 

implemented, 1 agreed to be implemented). 

 KeyConfig (at HL M&C): 

o HLKey (default value: “S2jJ90Lkgh79F6GH7h8H”): HL M&C 

passkey.   
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o LLKey (default value: “FK6G37in7GW47m78hSDx”): LL M&C 

passkey. 

 PackConfig (at HL M&C): 

o TLMREQ (default value: 100): number of telemetry requests to be 

packed in a single TCP call. 

o EVTREQ (default value: 100): number of event requests to be packed in a 

single TCP call. 

 

 

Figure 82. Device Simulator Editor 

 

The main effort for the development of this simulator was to implement the macros. They 

can be divided into periodic macros and packet-triggered macros. The former are executed 

only once, with a specified initial delay, or regularly with a specified time interval. When 

disabled, these macros can be executed manually at run-time. Periodic macros implemented 

for this simulator are reported in Table 28. 
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Table 28. Simulator periodic macros 

ID Activation Description 

CLOCK 
initial delay: 1s 

period: 1s 

Updates the current UNIX time displayed in the 

JAVA GUI. 

AUT_TIME 
initial delay: 10s 

period: 10s 

Checks if the HL M&C authenticates within 10s 

from the connection to the CON port. If not, reset 

the connection. 

INITIALISATION 
initial delay: 0s 

period: run once 

Performs all initialisation tasks for both HL and 

LL M&C, reading from XML configuration files. 

REGISTER_ALL_

TLM 
manual 

Sends TM requests for all parameters known by 

the HL M&C. 

REGISTER_ALL_

EVT 
manual 

Sends EVT requests for all events known by the 

HL M&C. 

REGISTER_ALL_

TLM_BLOCK 
manual 

Similar to the REGISTER_ALL_TLM but 

multiple requests are packed in a single TCP call. 

REGISTER_ALL_

TLM_BLOCK 
manual 

Similar to the REGISTER_ALL_EVT but 

multiple requests are packed in a single TCP call. 

SCHEXE 
initial delay: 0s 

period: 10s 

Simulates the dynamics of the LL M&C schedule: 

checks the exe time of items and changes the 

status accordingly. 

EVTEXE 
initial delay: 10s 

period: 10s 

Simulates the execution of events in the LL 

M&C: a random event happens every period. 

TLMPT 
initial delay: 10s 

period: 10s 

Simulates the change of a random TM point in the 

LL M&C. 

CMD_TEST1 manual 
Sends a set of different types of CTLMSG to test 

the simulator. 

 

The packet-triggered macros are executed at the reception and/or at the sending of a packet 

and they are listed in Table 29. 

Telemetry parameters, events, commands and initial values are defined in XML values at 

both LL and HL M&C side. Therefore, we implemented XML parsing operations (reading, 

creating and modifying) using the Java DOM parser. This parser comes with the JDK 

distribution and it is simple and intuitive to use. Other parsers are faster for reading 

operations (e.g. StAX or XPath) but DOM is recommended for creating and modifying 

XML files. The implemented code relies on the corresponding XSD files, which defines 

the legal building blocks of an XML document (e.g. elements, child elements, optional 

elements, etc.). For a detailed description of the implemented code and the use case 

scenarios, please refer to [46]. 
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Table 29. Simulator packet-triggered macros 

Triggered by Executed at Description 

AUT_REQ reception LL M&C sends the AUT_LL 

CTLMSG reception LL M&C 
validates and executes the command and sends the 

ACK  

AUT_HL reception LL M&C 
checks the authentication keys and sends the 

AUT_LL 

TLMREQ reception LL M&C 
checks the request, registers the parameter and sends 

the TLMRESP and the TLM 

SCHREQ reception LL M&C reads the schedule content and sends the SCHMSG 

EVTREQ reception LL M&C 
checks the request, registers the event and sends the 

EVTRESP 

TLM sending LL M&C replaces the space char with the “?” char 

CTLMSG sending HL M&C sets sending time and automatically filled fields 

ACK reception HL M&C reads and displays the packet fields 

AUT_LL reception HL M&C 
checks the authentication keys and sends the 

AUT_HL 

TLMRESP reception HL M&C reads and displays the packet fields 

TLM reception HL M&C reads and displays the packet fields 

EVTRESP reception HL M&C reads and displays the packet fields 

EVTMSG reception HL M&C reads and displays the packet fields 

SCHMSG reception HL M&C reads and displays the packet fields 

 

 

4.3.4 Testing 

Before delivering the simulator and its user guide to the developer of the ground station 

M&C system for the MTG programme, it has been extensively tested in all its 

functionalities. DS offers a runtime configuration window, which allows the user to set the 

fields of a packet and sends the packet by pressing a button (Figure 83). This is useful to 

set and send commands, telemetry, event and schedule requests and initiate the 

authentication process. 
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Figure 83. Device Simulator Runtime Configuration window 

 

The DS status window (Figure 84) allows the user to check that the number of sent and 

received packets is as expected. It shows the CPU load, and some error, warning and info 

messages useful for debugging and display the values of the packet fields. In particular, 

Figure 84 shows in the log window, the messages exchanged between the HL and LL M&C 

during the authentication process. 

For testing purposes, we also implemented a GUI to display the messages received by the 

HL M&C. This GUI shows the current UNIX time in the menu bar and it consists of four 

different tabs for each type of received message: telemetry (Figure 85), events (Figure 86), 

schedule (Figure 87) and acknowledgements (Figure 88). These messages are inserted into 

a table composed of several columns, one for each field. We used different row background 

colours to highlight particular messages (e.g. OOL telemetry values; warning, error and 

alarm events, executed or failed commands, completed, suspended or pending time-tagged 

commands). 

For these tests, we used the telemetry, events and commands of the BRGS, which counts 

1907 telemetry parameters. The simulator has been successfully tested and it has been 

delivered to CGI Space for the development of the M&C. 
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Figure 84. Device Simulator Status window 

 

Figure 85. Telemetry points messages table 
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Figure 86. Events messages history 

 

 

Figure 87. Time-tagged commands inserted in the schedule 

 

Figure 88. Acknowledgement messages history 
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5. Conclusions 

The work presented in this thesis focused on the design and implementation of software 

solutions for the ground segment of satellite missions, with application to the ESEO project. 

The project started at the same time of the PhD course in January 2013 and it is currently 

in Phase D after successfully passing the preliminary and critical design reviews. For this 

purpose, we first had to define the requirements for a ground segment suitable to the ESEO 

mission and then design the components of the ground segment to cover all the required 

functionalities. We started from our experience with operations of ALMASat-1 micro-

satellite launched in February 2012 and we greatly improved the ground systems for a more 

complex mission like ESEO. One of the most important improvement in the ground 

systems was the introduction of a software defined radio (SDR) in our ground station which 

required first the study of this new device and then the implementation of a proper software 

application to have a transceiver capable of communicating with the on-board transceiver 

at the registered frequencies and using the defined communication protocol and modulation 

scheme. Moreover, during the satellite operations, ground operators will greatly benefit 

from displaying the received signal in frequency and time domain and registering the 

acquired signal for post-processing in case of issues. The spacecraft monitoring and control 

system and the telemetry data visualisation and display tool have been designed keeping in 

mind the high number of subsystems and payloads that are hosted in the satellite, the 

possibility to re-use the same software for future missions with the minimum effort and the 

low experience of people which will control the spacecraft. The introduction of a 

connection to a database is essential considering the high number of spacecraft and mission 

data. The work done during the phase B and C of the ESEO mission has been also the object 

of some students’ thesis and scientific papers presented in different workshops [6], [24] 

and [47]. 

This thesis also presented the software solutions designed for the ground stations used by 

EUMETSAT to operate LEO and GEO weather satellites. This was the result of a six-

month internship within the realtime services and system operations (RSO) division. The 

Ground Station Analysis and Reporting (GSAR) tool is now used by the ground station 

operations and maintenance engineers to check the performance of two ground stations in 

Svalbard used to operate Metop and NOAA satellites. It was implemented with the goal to 

generate period reports containing ground station data in tables and graphs to spot possible 

issues. The Satellite Passes and Conflicts Engine (SPACE) is now used by the ground 
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station operations team to support the schedule of Metop and NOAA satellite passes over 

Svalbard ground station especially when one of the two antennas is under maintenance or 

upgrade. However, it is a general tool which can be used to compute passes and resolve 

conflicts of multiple satellites over multiple ground stations based on the propagation of 

the TLEs. Finally a ground station centralised monitoring and control simulator has been 

implemented and fully tested and will now be used as the reference for the procurement of 

the monitoring and control system for the ground stations used to operate the satellites of 

Meteosat Third Generation programme. 
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