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Abbreviations 

5XFAD: 5X Familial Alzheimer’s disease  

AC: allocortex 

AD: Alzheimer’s disease 

AD offspring: middle-aged offspring with a parental history of AD  

AMPs: antimicrobial peptides 

APOE: apolipoprotein E 

APP: amyloid precursor protein 

Aβ: amyloid‑β peptide 

BBB: blood-brain barrier 

BFB: basal forebrain 

BIN1: bridging integrator 1 

BN: brainstem nuclei 

CB: cerebellum 

CDHR5: cadherin-related family member 5 

ChEIs: cholinesterase inhibitors 

CI: confidence interval 

CIND: cognitive impairment but not demented  

CLU: clusterin 

CMV: cytomegalovirus 

CNS: central nervous system 

CR1: complement component (3b/4b) receptor 1 

CSF1R: colony stimulating factor 1 receptor 

CTR offspring: middle-aged offspring of healthy people  

CTR: controls 

CTR→AD: controls who developed AD at the end of follow-up 

CTR→CTR: controls who remained cognitively healthy at the end of follow-up 
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CTSD: cathepsin D  

CX3CR1: chemokine C-X3-C motif receptor 1 

DCs: plasmacytoid dendritic cells 

DSM: Diagnostic and Statistical Manual of Mental Disorders  

EBNA: epstein-barr nuclear antigen  

EBV: epstein-barr virus 

ELISAs: enzyme-linked immunosorbent assays  

ENT: enthorinal cortex 

EOAD: early-onset familial AD  

FAD: Familial Alzheimer's Disease 

FDA: Food and Drug Administration  

GFAP: glial fibrillary acidic protein 

GWA: genome-wide association 

HBV: hepatitis B 

HCV: hepatitis C 

HFs: host factors 

HHV-6: human herpes virus 6 

HIV: human immunodeficiency virus 

HSV-1: herpes simplex virus type 1 

HSV-2: herpes simplex virus type 2 

IFN: interferon 

IFN-λR1: IFN-λ receptor chain 1 

IgG: immunoglobulin G 

IL-10R2: IL-10 receptor chain 2 

IRF: IFN regulatory factor  

ISGF3: IFN-stimulated gene factor 3 

ISGs: IFN-stimulated genes 
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ITGAM: integrin alpha M 

LC: locus coeruleus 

LOAD: late-onset AD 

M: molecular ladder 100 bp 

MCI: Mild Cognitive Impairment 

MMSE: Mini–Mental State Examination  

MRI: magnetic resonance imaging 

NC: neocortex 

NFTs: neurofibrillary tangles 

NINCDS–ADRDA: National Institute of Neurologic and Communicative Disorders and Stroke–

Alzheimer's Disease and Related Disorders Association  

NMDA: N-methyl-D-aspartate 

OR: odds ratio 

PBLs: pheripheral blood leukocytes 
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PICALM: phosphatidylinositol binding clathrin assembly protein 

PRRs: pattern-recognition receptors  

PSEN1: presenilin 1 

PSEN2: presenilin 2  

p-tau: hyperphosphorylated tau 

qPCR: quantitative PCR  
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RT-PCR: Real Time PCR 

SEM: standard error of the mean 

SNPs: single nucleotide polymorphisms 

SVR: sustained virological response 

TBI: traumatic brain injury 



8 
 

TH: thalamus 

TLR: Toll-like receptor  

TREM2: triggering receptor expressed on myeloid cells 2 

TYROBP: TYRO protein tyrosine kinase-binding protein 

VCA: viral capsid antigen 

WT: wild-type  
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Alzheimer's disease (AD) is a multifactorial and progressive form of dementia with a senile onset 

that affects specific areas of the brain. This condition is characterized by a degeneration of the 

cerebral cortex with a progressive memory loss, cognitive function decline and personality 

changes. The major neuropathological lesions of AD are loss of synapses and neurons, extracellular 

deposits of amyloid and amyloid plaques, mainly composed by the amyloid‑β peptide (Aβ), 

intraneuronal accumulation of hyperphosphorylated tau protein that lead to neuro-fibrillary 

degeneration, reactive astrogliosis and cerebral inflammation. 

Environmental risk factors, still largely unrevealed in AD, may accumulate with advancing age and 

play the role of disease multiple triggers in a susceptible brain inducing an activation of microglia 

and chronic neuro-inflammation. 

Recent genome wide association (GWA) studies reported that the allele 4 of apolipoprotein E 

(APOE) and single nucleotide polymorphisms (SNPs) in other genes that regulate inflammatory 

pathways, such as the gene coding for clusterin (CLU), are associated with AD. The hypothesis is 

that all of these genes may be involved in different mechanisms mediated by herpes viruses and we 

argued that the concomitant presence of SNPs in these genes in the same individual may represent 

a genetic signature predisposing to AD.  

The present study is focused on SNPs in CLU, interferon (IFN)-λ3/IL-28B, Med23 and the 

transcription factor IRF7, which are genes involved in antiviral responses and their association with 

AD and cognitive deterioration. Moreover, the effects of IL-28B, Med23 and IRF7 genotypes upon 

the presence of epstein-barr virus (EBV) and human herpes virus 6 (HHV-6) in the peripheral 

blood of AD and controls (CTR) have been also investigated.  

Microglial cells are the innate immune system in the brain and form the first line of defense against 

bacterial, viral or fungal infection. Experimental, genetic and epidemiological data indicate that the 

activation of the innate immune system has a key role as a promoting factor for AD and in AD 

patients activated microglia release cytokines that induce neuro-inflammation. 
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In this thesis gene variants and different expression of genes involved in the innate immune 

response in case-control population studies and in a mouse model of AD were investigated.  

Results from these experiments suggest that individuals with a particular genetic makeup in 

defensive mechanisms of the innate immunity may be at risk of defective immune responses. 

Impaired immunity against persistent viruses such as those of herpes family, might result in chronic 

and inappropriate activation of microglia, abnormal Aβ production and increased amyloid 

deposition. Cycles of virus latency and infections may therefore contribute to neurodegeneration 

associated with AD in genetically predisposed elderly. 
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1.1 Alzheimer’s disease (AD) 
 

1.1.1 Epidemiology 

 

Alzheimer’s disease (AD) is a heterogeneous progressive neurodegenerative disorder and the most 

common cause of dementia.  

Worldwide, nearly 46.8 million people are living with dementia in 2015 and this number is 

expected to double every 20 years, reaching 74.7 million in 2030 and 131.5 million in 2050. 

Dementia affects people in all countries, with more than half (58%) living in low- and middle-

income countries and by 2050, this is likely to rise to 68% (Alzheimer’s Disease International: 

World Alzheimer Report 2015). 

The highest standardised prevalences were those in North Africa/Middle East (8.7%) and Latin 

America (8.4%), and the lowest in Central Europe (4.7%). The other regions occupied a fairly 

narrow band of prevalence, ranging between roughly 5.6% and 7.6%. 

According to the revised estimates, in 2015, East Asia is the world region with the most people 

living with dementia (9.8 million), followed by Western Europe (7.4 million). These regions are 

closely followed by South Asia with 5.1 million and North America with 4.8 million. In Italy, AD 

patients are 1.2 million. 

The incidence of dementia increases exponentially with increasing age. The regional distribution of 

new dementia cases is 4.9 million (49% of the total) in Asia, 2.5 million (25%) in Europe, 1.7 

million (18%) in the Americas, and 0.8 million (8%) in Africa.  

Moreover, women predominate amongst older people with dementia, probably because of women’s 

greater life expectancy. However, age-specific prevalence and incidence of dementia are also 

higher among women, particularly at older ages. The reasons for this feature are not clearly 

established and more research would be justified, seeking options for prevention and treatments. 
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1.1.2 Symptoms, diagnosis and treatments 

AD symptoms vary among individuals. However, the most common symptoms of Alzheimer’s are 

memory loss, challenges in planning or solving problems, difficulty completing familiar tasks, 

confusion with time or place, problems with words in speaking or writing, changes in mood and 

personality, including apathy and depression. As the disease progresses, cognitive and functional 

abilities decline (Alzheimer’s Association. 2015 Alzheimer’s Disease Facts and Figures. 

Alzheimer’s & Dementia 2015;11(3)332).  

During the last stage of AD, the patient is completely dependent upon caregivers. Individual 

prognosis is difficult to assess and the duration of the disease varies. While most patients are 

diagnosed at 65 years of age and above, evidence suggests that neurodegeneration associated with 

AD develops for an indeterminate period of time before becoming clinically apparent, and it can 

progress undiagnosed for years. Aging is a major risk factor for the development of AD, but 

subclinical disease probably starts in younger people (Heneka et al., 2015). 

No single, definitive diagnostic tests exist for AD. Although living patients can be clinically 

diagnosed as having possible or probable AD, a definite diagnosis requires post-mortem histo-

pathological confirmation. 

The evaluation thus depends on obtaining an individual medical and family history, thorough 

physical and neurologic examinations, testing the mental status, and use of diagnostic criteria for 

dementia and AD that have high reliability and validity.  

The criteria for assessing dementia are specified in the Diagnostic and Statistical Manual of Mental 

Disorders (DSM), five edition and require that a patient have cognitive loss in two or more 

domains, such as memory, language, calculations, orientation and judgment. In addition, the loss 

must be of sufficient severity to cause social or occupational disability (American Psychiatric 

Association. Diagnostic and statistical manual of mental disorders (5th edition). Arlington, Va.: 

American Psychiatric Publishing; 2013). AD must also be differentiated from other causes of 
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dementia, such as vascular dementia, dementia with Lewy bodies, Parkinson’s disease with 

dementia, fronto-temporal dementia and reversible dementias. 

The use of neuropsychological tests and screening instruments, such as the Mini–Mental State 

Examination (MMSE) (Folstein et al., 1975), is recommended for screening the cognitive decline. 

The interpretation of scores depends on individual age and education level, but patients with 

cognitive losses in two or more domains typically have an MMSE below 24 (Kawas, 2003).  

The National Institute of Neurologic and Communicative Disorders and Stroke–Alzheimer's 

Disease and Related Disorders Association (NINCDS–ADRDA) criteria for probable Alzheimer's 

disease (McKhann et al., 1984), defined that cognitive loss (in two or more domains, including 

memory) shows an insidious onset and gradual progression. 

The intermediate stage between cognitive changes associated with aging and dementia is defined as 

Mild Cognitive Impairment (MCI) (Geda, 2012). Individuals with MCI show cognitive impairment 

greater than expected for their age, but otherwise are functioning independently and do not meet 

the criteria for dementia. People with MCI, especially MCI involving memory problems, are more 

likely to develop Alzheimer’s and other dementias than people without MCI. However, in some 

individuals, MCI reverts to normal cognition or remains stable. MCI detection is important, since it 

constitutes a high risk group for dementia. Ideally, prevention strategies should target individuals 

who are not even symptomatic.  

None of the treatments available today for AD slows or stops the damage to neurons that causes 

Alzheimer’s symptoms and eventually makes the disease fatal.  

Only symptomatic therapies for AD are available. All drugs approved by the US Food and Drug 

Administration (FDA) for the treatment of AD modulate neurotransmitters, either acetylcholine or 

glutamate. The standard medical treatment for AD includes cholinesterase inhibitors (ChEIs) and a 

partial N-methyl-D-aspartate (NMDA) antagonist.  
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Secondary symptoms of AD (depression, agitation, aggression, hallucinations, delusions, sleep 

disorders) can be problematic. Behavioral symptoms in particular are common and can exacerbate 

cognitive and functional impairment. Psychotropic medications, for example, antidepressants 

anxiolytics, antiparkinsonian agents, beta-blockers, have been used to treat these secondary 

symptoms. 

Many factors contribute to the difficulty of developing effective treatments for Alzheimer’s. These 

include the high cost of drug development, the relatively long time needed to observe disease 

progression in Alzheimer’s and the structure of the brain, which is protected by the blood-brain 

barrier (BBB), through which few drugs can cross. As with current pharmacologic therapies, non-

pharmacologic therapies, such as music therapy and reminiscence therapy (therapy in which photos 

and other familiar items may be used to elicit recall) have not been shown to alter the course of 

AD. They are often used with the goal of maintaining or improving cognitive function and reducing 

behavioral symptoms (Alzheimer’s Association. 2015 Alzheimer’s Disease Facts and Figures. 

Alzheimer’s & Dementia 2015;11(3)332). 
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1.1.3 Neuropathological hallmarks of AD 

AD is a heterogeneous progressive degenerative dementia usually with a senile onset that affects 

specific areas of the brain.  

The neuropathological hallmarks of AD are extracellular accumulation of senile plaques composed 

of amyloid‑β peptide (Aβ), intraneuronal accumulation of neurofibrillary tangles (NFTs) composed 

of hyperphosphorylated tau (p-tau), synapsis loss, neuronal atrophy and cortical neurodegeneration. 

These pathologic markers are accompanied by neuronal degeneration, astrogliosis, microglia 

activation, BBB dysfunction and cognitive decline. AD pathology is also characterized by an 

inflammatory response, which is primarily driven by microglia and escalates with disease 

progression (Raz et al., 2015; Heppner et al., 2015). 

Alois Alzheimer in his original case report in 1906, described the senile plaques as the result from 

the abnormal extracellular accumulation and deposition of amyloid substance. Amyloid mainly 

consists of Aβ peptides with 40 or 42 amino acids (Aβ40 and Aβ42), two products of the 

metabolism of the amyloid precursor protein (APP) after its sequential cleavage by β- and γ-

secretases enzymes in neurons. In particular, Aβ42 is more abundant than Aβ40 within the plaques 

because of its higher rate of fibrillization and insolubility (Serrano-Pozo et al., 2011). An 

imbalance between production, clearance and aggregation of peptides causes Aβ to accumulate and 

this excess may be the initiating factor in AD. This idea was called the “amyloid hypothesis” with 

evidence that Aβ42 was toxic to cells (Querfurth et al., 2010).  

Neurofibrillary tangles, which are filamentous inclusions in pyramidal neurons, occur in AD and 

other neurodegenerative disorders termed tauopathies. The major component of the tangles is an 

abnormally hyperphosphorylated and aggregated form of tau. Normally an abundant soluble 

protein in axons, tau promotes assembly and stability of microtubules and vesicle transport. 

Hyperphosphorylated tau is insoluble, lacks affinity for microtubules and self-associates into paired 

helical filament structures (Querfurth et al., 2010).  
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In the hierarchical pattern among brain regions established for AD, tau aggregates develop in the 

locus coeruleus (LC), then in the transentorhinal and entorhinal regions and subsequently in the 

hippocampal area and in the neocortex (NC) (Figure 1, panels a and b) (Brettschneider et al., 2015). 

In contrast to the dissemination of tau, patterns of Aβ plaques in AD follow essentially the opposite 

direction: plaques are first observed in the cortex and then detected in allocortical, diencephalic and 

basal ganglia structures and in the brainstem, and occasionally in the cerebellum (CB) (Figure 1, 

panels c and d). Why these two major disease proteins of AD show such fundamentally different 

patterns is incompletely understood (Brettschneider et al., 2015). 

 

Figure 1. The hierarchical pattern among brain regions established in AD for tau aggregates (a, b) 

and amyloid-β (c, d). AC=allocortex; BFB=basal forebrain; BN=brainstem nuclei; ENT=entorhinal 

cortex; TH=thalamus (Brettschneider et al., 2015). 
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1.2 Genetics of AD 

AD is classified into two subtypes according to the age of onset. 

Early-onset familial AD (EOAD) typically develops before the age of 65 years and accounts for 

only a small portion (about 1-5%) of AD cases. This AD form is primarily caused by mutations in 

either the APP gene or genes encoding presenilin 1 (PSEN1) or presenilin 2 (PSEN2), which are 

essential components of the γ-secretase complexes responsible for cleavage and release of Aβ (Zou 

et al., 2014). 

The majority of AD cases occurs late in life (>65 years) and is commonly referred to as late-onset 

AD (LOAD) (Liu et al., 2013). Whereas early-onset familial AD is characterized by classic 

Mendelian inheritance, usually in an autosomal-dominant manner, late-onset AD shows a 

genetically complex pattern of inheritance in which genetic risk factors work together with 

environmental factors and life exposure events to determine lifetime risk for AD (Tanzi, 2012). 

The only gene variant considered to be an established late-onset AD risk factor is the ε4 allele of 

the apolipoprotein E gene (APOE) located on chromosome 19q13. Functionally, ApoE normally 

plays a role in lipid metabolism and transport. However, in AD, it is believed to play a role in the 

clearance of Aβ from brain (Tanzi, 2012). The human APOE gene contains several single 

nucleotide polymorphisms (SNPs) distributed across the gene. The most common SNPs lead to 

changes in the coding sequence and result in the three common isoforms of APOE: ε2 (cys112, 

cys158), ε3 (cys112, arg158), and ε4 (arg112, arg158). Everyone inherits one form of the APOE 

gene, ε2, ε3 or ε4 from each parent. Having the ε4 form increases AD risk compared with having 

the ε3 form, while having the ε2 form may decrease AD risk compared with the ε3 form (Corder et 

al., 1993; Corder et al., 1994). In fact, those who inherit one copy of the ε4 allele have a three-fold 

higher risk of developing AD than those without the ε4 form. Subjects inheriting two copies of the 

ε4 allele have 8- to 12-fold higher AD risk (Holtzman et al., 2012). Researchers estimate that 

between 40 and 65 percent of people diagnosed with Alzheimer’s have one or two copies of the 
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APOE ε4 allele. ApoE binds Aβ and clears soluble Aβ preventing Aβ aggregations, while ApoE ε4 

isoform is thought to be less efficient in mediating Aβ clearance. The APOE ε4 allele is neither 

necessary nor sufficient to cause AD and for this reason, the part of the heritability that was not yet 

explained has been the driving force behind decades of continue search for genetic risk factors 

(Van Cauwenberghe et al., 2015). 

Over the past several years, the most common strategy for identify novel AD gene candidates, used 

the genome-wide association (GWA) approach. In a GWA study, as many as one million of SNPs 

are tested for genetic association with disease risk (Tanzi, 2012). 

In 2009, two large case–control GWA studies (Harold et al., 2009; Lambert et al., 2009) identified, 

in addition to the known association with the APOE gene, loci in three genes that were potentially 

associated with the risk of late-onset AD: CLU (clusterin or apolipoprotein J), PICALM 

(phosphatidylinositol binding clathrin assembly protein) and CR1 (complement component (3b/4b) 

receptor 1).  

Clusterin is a chaperone molecule and can bind amyloid-β peptides and prevent their fibrillization. 

It is also a complement inhibitor and can suppress complement activation observed in AD; CLU is 

also present in lipoprotein particles and regulates cholesterol and brain lipid metabolism which is 

disturbed in AD (Nuutinen et al., 2009). The predominant form of clusterin is a secreted 

glycosylated α-β-heterodimer of 75-80 kDa (de Silva et al., 1990). In humans, CLU gene maps on 

chromosome 8p21-p12 proximal to the lipoprotein lipase gene locus. It is expressed in all 

mammalian tissues and overexpression of CLU levels was observed in many pathological 

conditions involving injury or chronic inflammation of the brain (Calero et al., 2000). CLU 

expression is present in amyloid plaques and in the cerebrospinal fluid of AD cases (McGeer et al., 

1992).  

The second gene locus that shows evidence for association with AD is PICALM, ubiquitously 

expressed particularly in neurons, where it is non-selectively distributed at the pre- and post- 

synaptic structures. PICALM is involved in clathrin-mediated endocytosis, an essential step in the 
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intracellular trafficking of proteins and lipids such as nutrients, growth factors and 

neurotransmitters and necessary for APP processing by γ-secretase into Aβ (Harold et al., 2009). 

CR1 is the receptor for complement C3b, a key inflammatory molecule that is activated as part of 

the brain’s innate immune system in AD, and may be able to protect against Aβ-induced 

neurotoxicity (Tanzi, 2012). 

In 2010, another GWA study suggested the existence of additional AD genetic risk factors 

(Seshadri et al., 2010). Among them was the gene BIN1 (bridging integrator 1), which had 

previously been reported to be associated with AD with subgenome-wide significance (Lambert et 

al., 2009). BIN1 is one of two amphiphysins, and is expressed most abundantly in the brain and 

muscle. Amphiphysins promote caspase-independent apoptosis and also play a critical role in 

neuronal membrane organization and clathrin-mediated endocytosis, which affect APP processing 

and Aβ production or Aβ clearance from the brain. 

Others AD candidates genes emerged in subsequent GWA studies: CD2AP, MS4A6A/ MS4A4E, 

EPHA1, ABCA7 and CD33 (Hollingworth et al., 2011; Naj et al., 2011). Roles for these genes in 

AD pathogenesis can be divided into different basic categories: production, degradation and 

clearance of Aβ, lipid metabolism, innate immunity, and cellular signaling (Tanzi, 2012). 

In particular, five of the identified AD susceptibility loci in CLU, CR1, ABCA7, CD33 and 

EPHA1 have putative functions in the immune system. PICALM, BIN1, CD33 and CD2AP are 

involved in processes at the cell membrane, including endocytosis. APOE, CLU and ABCA7 are 

involved in lipid processing. It is conceivable that these processes would play pivotal roles in 

neurodegeneration and Aβ clearance from the brain (Hollingworth et al., 2011). 

In addition, a rare susceptibility variant in the triggering receptor expressed on myeloid cells 2 

(TREM2) was recently identified. TREM2 encodes a transmembrane glycoprotein that forms a 

receptor-signaling complex with the TYRO protein tyrosine kinase-binding protein (TYROBP or 

DAP12) and thereby triggers the activation of immune responses in macrophages and dendritic 
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cells. In brain cells, TREM2 is primarily expressed on microglia, the resident histiocytes of the 

central nervous system (CNS). Activation of microglia may lead to phagocytosis of cell debris and 

amyloid, but microglia can also be activated to promote the production of proinflammatory 

cytokines or they may differentiate into antigen-presenting cells (Guerreiro et al., 2013; Jonsson et 

al., 2013). 

Finally, a large, two-stage meta-analysis of GWA studies in individuals of European ancestry in 

addition to APOE, CR1, BIN1, CD2AP, EPHA1, CLU, MS4A6A, PICALM, ABCA7 identified 11 

new Alzheimer's susceptibility loci (CASS4, CELF1, FERMT2, HLA-DRB5/HLA-DRB1, 

INPP5D, MEF2C, NME8, PTK2B, SLC24A4/RIN3, SORL1 and ZCWPW1) (Lambert et al., 

2013). These novel loci underline the significance of specific pathways already shown to be 

enriched for association signal in AD GWA studies, such as immune response and inflammation 

(HLA-DRB5/DRB1, INPP5D and MEF2C), cell migration (PTK2B) and lipid transport and 

endocytosis (SORL1), and strengthen the importance of some additional previously suggested 

pathways including APP (SORL1 and CASS4), tau (CASS4 and FERMT2) pathology, 

hippocampal synaptic function (MEF2C and PTK2B), cytoskeletal function and axonal transport 

(CELF1, NME8 and CASS4), regulation of gene expression and post-translational modification of 

proteins, and microglial and myeloid cell function (INPPD5) (Reitz, 2014). 

In previous works from our laboratory (Porcellini et al., 2010, Licastro et al., 2011) it was 

suggested that all the genes reported in GWA studies (Harold et al., 2009; Lambert et al., 2009; 

Hollingworth et al., 2011; Naj et al., 2011), regulating inflammation pathways, might be linked to 

different herpes viral infections. Moreover, we argued that the concomitant presence of these gene 

variations in the same individual might represent a genetic signature predisposing to AD, via 

complex and diverse mechanisms, each contributing to an increase of individual susceptibility to 

herpes virus infection. In a complex disease as AD, several of the loci with weak effects might 

code for proteins that could interact in common pathways. In fact, in spite of the elevated numbers 

of patients and controls from AD GWA studies, each single SNP showed a low odds ratio (OR) 
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value for the disease. Interactions among different SNPs in diverse genes might be more 

informative than a single SNP, considering that none of these genes alone is causative for the 

diseases and that all described genes are involved in different aspects of AD pathogenesis and/or 

clinical history. In addition, environmental factor(s) might trigger several of these genes, which 

could turn on or influence other genes affecting secondary pathogenetic mechanisms in the brain 

(such as apoptosis, immune responses, cholesterol synthesis and transportation, oxidative stress). 

Our hypothesis suggests that the set of genes upstream of the APOE locus or located on different 

chromosomes may constitute a genetic susceptibility trait for AD by affecting different mechanism 

involved in virus entrance or resistance to virus infection. Therefore, we suggest that infective 

agents of the CNS, such as viruses of the herpes family, could be the probable link for all these 

SNPs. 
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1.3 Environmental factors and AD: herpes viruses 

AD is a complex multifactorial disease, whose pathogenesis may be multi-factorial and then 

different etiological factors may converge during aging. Environmental factors could interact with 

genetic risk factors via complex and diverse mechanisms leading to age-related neurodegeneration 

and dementia. Many non-genetic factors have been proposed as risks of AD, including metals, air 

pollution, pesticides, chronic psychological stress but their intracellular and/or extracellular 

mechanisms of inducing AD are still controversial. 

Overall, investigations on environmental factors implicated in AD are scarce and the etiology of 

the disease remains up to now obscure.  

However, there are significant associations between AD and various pathogens, including 

Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori and various 

periodontal pathogens. These pathogens are able to evade destruction by the host immune system, 

leading to persistent infection. Bacterial and viral infections increase the expression of pro-

inflammatory molecules and activate the innate and adaptive immune systems inducing chronic 

inflammation in the elderly (Harris et al., 2015). 

The Herpesviridae are a large family of enveloped DNA viruses that cause disease in several 

animal species, including humans. Herpes viruses have large double-stranded linear DNA genomes 

of 120-220 kb encoding 100-200 genes. They can be subdivided into α- (herpes simplex virus types 

1 and 2, and varicella-zoster virus), β- (cytomegalovirus, and human herpesviruses 6 and 7) and γ- 

herpesviridae (epstein-barr virus and human herpesvirus 8). 

The herpes virus family shows features relevant to AD, since it infects a large proportion of the 

human population, develops a persistent latent form impossible to eliminate by immune responses 

with subsequent reactivation, and is able to infect neurons.  
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A viral etiology, involving herpes viruses in AD, has been already proposed and most 

investigations have shown an association of herpes simplex virus type 1 (HSV-1) with AD (Burgos 

et al., 2006; Itzhaki et al., 2008; Carter, 2008; Wozniak et al., 2009). 

HSV-1 is a neurotropic virus that affects more than 80% of people over 65 of age worldwide. It 

primarily infects epithelial cells of oral and nasal mucosa where it undergoes lytic replication; the 

newly produced viral particles may enter sensory neurons and, by axonal transport, reach the 

trigeminal ganglion where usually establish a latent infection. The virus undergoes periodic 

reactivation cycles in which the newly formed viral particles are transported back to the site of 

primary infection through the sensory neurons. However, the bipolar trigeminal ganglion neurons 

also project to the trigeminal nuclei located in the brainstem. From here, neurons project to the 

thalamus to finally reach the sensory cortex. This is the path through which the reactivated virus 

may reach the CNS, where it may cause acute neurological disorders like encephalitis or a mild, 

clinically asymptomatic, infection, or establish life-long latent infection (Piacentini et al., 2014).  

A number of studies have been conducted to demonstrate the association between AD and HSV-1 

infection by searching for antibodies against HSV-1 in the blood of AD patients. A reactivation of 

HSV-1 infection assessed by increased serum levels of specific anti-HSV-1 antibodies was found 

to almost double the AD risk in a longitudinal study on 3432 elderly (Lövheim et al., 2015). HSV-1 

DNA and antigens were also detected in the cytoplasm of cortical neurons of patients with familial 

AD, suggesting a reactivation of HSV-1, and the presence of HSV-1 appeared to be coupled with 

Aβ42 deposition (Mori et al., 2004). These results were suggestive of reactivation of HSV-1 based 

on the cytoplasmic distribution of viral DNA and antigens which is compatible with the replication 

cycle of HSV. In fact, during the latent phase of HSV infection, virus genomes are harbored in the 

nucleus and not in the cytoplasm of neurons. The presence of HSV-1 may be involved in Aβ42 

deposition. Additionally, glycoprotein B of HSV-1, which amino acid sequence has homology to 

the carboxyl-terminal region of the Aβ peptide, has been shown to promote fibril formation in 

vitro. Alternatively, Aβ deposition activates c-Jun N-terminal kinase, which may facilitate HSV 
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infection. Thus, a certain relationship between Aβ deposition and HSV-1 reactivation in the human 

brain has been suggested (Mori et al., 2004). Another study reported that elevated serum HSV-1 

antibody titers correlated with decreased cortical grey matter volume as assessed by magnetic 

resonance imaging (MRI) (Mancuso et al., 2014). Recurrent HSV-1 infection in the brain may have 

a critical role in AD pathogenesis by directly activating intracellular pathways leading to typical 

AD molecular hallmarks (Piacentini et al., 2014). In addition, a higher frequency of HSV-1 DNA 

in brains from elderly than brains from young people was found (Itzhaki, 2014). It was, therefore, 

suggested that HSV-1 enters the brain in older age, as a consequence of the decline in the immune 

system with age. Subsequently it was found that the virus in the brain of the APOE ε4 allele 

carriers confers a strong risk for AD, accounting up to 60% of cases (Itzhaki, 2014). 

The other human herpesviruses, under appropriate circumstances, are neuroinvasive and might 

therefore act as a potential risk factor for AD. However, investigations focused on different viruses 

of the herpes family, such as cytomegalovirus (CMV), epstein-barr virus (EBV) or human herpes 

virus 6 (HHV-6), in AD are scarce. 

CMV is prevalent in humans with a seropositivity that ranges from 20%–100% depending on 

socioeconomic status and age; this virus can establish a persistent and most often asymptomatic 

infection in humans. CMV resides in the myeloid cell compartment, remaining latent in monocytes, 

but shows tropism for numerous cell types such as endothelial cells, epithelial cells, fibroblasts, 

smooth muscle cells, neuronal cells, hepatocytes, trophoblasts, macrophages and dendritic cells. As 

other members of the Herpesviridae family, CMV may reactivate under stress conditions or other 

stimuli (Harris et al., 2015). The brain is the principal target organ for CMV infection in infants 

causing congenital infection and in immunocompromised patients (Tsutsui et al., 2008). CMV is a 

driver of age-associated immune changes in elderly populations which lead to a reduction in the 

number of naïve T cells available for fighting new infections (Simanek et al., 2011). Few studies 

have shown an association between CMV infection and increased risk of both cognitive 

impairment and development of AD. An increased rate of cognitive decline over a four year study 
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period in subjects with higher levels of antibody to CMV at baseline than those with lower levels 

has been reported (Aiello et al., 2006). A definitive direct infiltrative CNS role for CMV in AD was 

not indicate. Frontal and temporal brain cortex from both AD patients and elderly healthy subjects 

were positive for CMV with no statistically significant difference between the two groups (Lin et 

al., 2002a). In contrast, CMV DNA was found in brain of a greater proportion of vascular dementia 

patients than elderly controls, suggesting that this virus might play a role in the disease (Lin et al., 

2002b). Our recent work showed that increased CMV antibody levels were present in the elderly 

who developed clinical AD during a five years follow-up compared to patients who remained 

cognitively healthy (Carbone et al., 2014). Findings from another investigation reported that 

baseline CMV seropositivity doubled the risk of developing clinical AD in a longitudinal follow-up 

of 849 participants (Barnes et al., 2015). 

EBV infects 95% of humans early in life resulting in lifelong latent asymptomatic infection of B-

lymphocytes. The virus causes acute infectious mononucleosis in a minority of immune competent 

subjects, while the majority develops a lifelong asymptomatic infection (Licastro et al., 2014). 

However, EBV is involved in the development of several diseases such as Burkitt lymphoma, 

Hodgkin lymphoma and nasopharyngeal carcinoma (Kutok et al., 2006). Moreover, EBV seems to 

be involved in the pathogenesis of various neurological diseases, such as encephalitis, neuritis, 

myelitis, cerebellitis, acute disseminated encephalomyelitis, or CNS lymphoma in patients with the 

human immunodeficiency virus (HIV) infection and to contribute to the pathogenesis of multiple 

sclerosis (Kleines et al., 2011). Although data on the association of EBV with AD are limited, the 

virus may be a risk factor for the development of AD. Recently our findings showed an association 

of peripheral blood positivity for EBV genome and AD, with 45% of peripheral blood leukocytes 

(PBLs) positive for EBV DNA in AD patients compared to 31% of controls (Carbone et al., 2014). 

Moreover, serum immunoglobulin G (IgG) levels for EBV antigens were also significantly 

increased in a group of elderly individuals who developed AD during a five year follow-up period  

(Carbone et al., 2014). 
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HHV-6 is a neurotropic virus and exists in two forms: type A and type B. HHV-6 is widely spread 

in the population (seroprevalence>90%) and can establish a persistent and most often 

asymptomatic infection in humans. It has been implicated in multiple neurologic conditions, 

including seizures, encephalitis, mesial temporal lobe epilepsy and multiple sclerosis (Yao et al., 

2010). HHV-6 has been found in a higher proportion of AD brains (70%) than age-matched control 

brains (40%) (Lin et al., 2002a). However, these findings were not confirmed in another study 

(Hemling et al., 2003). In our recent work, HHV-6 showed a 23% positivity in PBLs samples from 

AD and 4% from controls and 17% of AD brains were HHV-6 positive (Carbone et al., 2014). In 

addition, at baseline HHV-6 DNA positivity in PBLs was significantly increased in those who 

developed clinical AD after a five year follow-up. Therefore, EBV and HHV-6 might be 

environmental risk factors for cognitive deterioration and progression to AD in the elderly 

(Carbone et al., 2014). 

Recent studies have shown that while the adaptive immune system has limited access to the brain, 

the CNS can still mount a robust response to invading pathogens via antimicrobial peptides and the 

innate immune system (Soscia et al., 2010). The physiological role of Aβ is still unknown, 

however, Soscia and co-workers found that the Aβ peptide could be a defensive response of the 

innate immune system by showing that Aβ was active against at least eight common and clinically 

relevant microorganisms. They also observed that many of the physiochemical and biological 

properties of Aβ were similar to those of a group of biomolecules collectively known as 

“antimicrobial peptides” (AMPs), also called “host defense peptides”, which are components of the 

innate immune system (Soscia et al., 2010). A recent report showed also that Aβ peptides displayed 

antiviral activities against the enveloped influenza A virus (White et al., 2014). Besides, Aβ peptide 

was shown to protect against in vitro infection by neurotropic virus such as HSV-1 (Bourgade et 

al., 2015). However, a sustained induction of Aβ peptide production by brain cells may become 

deleterious with aging due to an impaired efficiency in eliminating both viruses and Aβ peptides. 

Indeed, overproduction of Aβ peptide against latent herpes viruses may partially contribute to 
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amyloid plaque formation. Therefore, brain infections may play a pathogenic role in the 

progression of the sporadic form of AD (Bourgade et al., 2015). 
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1.3.1 Genetic variants in antiviral host defence: the IFN-λ family  

Investigations regarding pathogen-host interactions have stressed the importance of host factors in 

the pathogenesis of infectious disease and polymorphisms in genes encoding these factors influence 

the host response to infection and the course of disease (Russell et al., 2014). 

Interferon (IFN) family plays a pivotal role in the human anti-viral defenses. IFNs can be produced 

by several cell types and primarily act as antiviral cytokines, although they also exhibit cytostatic 

activities and help to activate and shape the adaptive immune response. In fact, IFNs provide the 

first line of innate immune defence against viruses and intra-cellular bacteria and are classified into 

families based upon sequence homology, receptor specificity and the responses they initiate 

(Griffiths et al.,  2015). 

Mammals have three IFNs classes: type I (IFN-α/β), type II (IFN-γ) and type III (IFN-λ). The 

direct antiviral effects of type II IFN are limited, but it has pleiotropic effects on a diverse set of 

immune cells promoting both adaptive and innate immune responses. Type I and III IFNs induce a 

strong antiviral state in responsive cells by initiating a transcriptional program that regulates the 

expression of hundred genes. Whereas almost all nucleated cells respond to type I IFN, responses 

to type III IFNs are restricted to tissues with a high risk of viral exposure and infection, such as 

those at mucosal surfaces. This allows type III IFNs to selectively induce a strong antiviral state in 

high-risk tissues with a limited inflammatory cost for the host organism (Wack et al., 2015). 

IFN-λ is a recently discovered molecular group comprising several members: IFN-λ1, IFN-λ2 and 

IFN-λ3, also known as IL-29, IL-28A and IL-28B, respectively (Kotenko et al., 2003; Sheppard et 

al., 2003) and the more recently described IFN-λ4 (Bibert et al., 2013; Prokunina-Olsson et al., 

2013). 

The IFN-λ receptor complex is composed of the specific IFN-λ receptor chain 1 (IFN-λR1 

(IL28RA)) and the shared IL-10 receptor chain 2 (IL-10R2 (IL-10Rβ)). Engagement of the IFN-λ 

receptor complex by any of the four ligands leads to activation of the JAK/STAT signaling system 
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(Kotenko et al., 2003; Sheppard et al., 2003). The phosphorylated STATs recruit IFN regulatory 

factor (IRF) 9, to form a trimeric transcription factor complex known as IFN-stimulated gene factor 

3 (ISGF3), which enters the nucleus and drives the transcription of IFN-stimulated genes (ISGs) 

(Donnely et al., 2010).  

IFN-λ is functionally an interferon, but it is clearly structurally related to members of the IL-10 

family. In particular, it was found an interesting similarity between IFN-λ and IL-22, suggesting 

that IFN-λ and IL-22 possess parallel functions, protecting epithelial tissue against viral and 

bacterial infections, respectively (Gad et al., 2009). 

Type III IFNs can be induced by a wide range of viruses in different cell types (Ank et al., 2008; Li 

et al., 2009) and activate a marked antiviral protection in a wide variety of cells (Doyle et al., 2006) 

with a cooperative action with type I IFNs (Pagliaccetti et al., 2008).  

In particular, the IFN-λ family exerts anti-viral activity against a range of RNA and DNA viruses 

responsible for diverse infections, including hepatitis B (HBV) and C viruses (HCV) (Robek et al., 

2005), herpes simplex virus types 1 and 2 (HSV-1/2) (Griffiths et al., 2013; Ank et al., 2006), 

CMV (Brand et al., 2005), HHV-6B (Nordström et al., 2012) and HIV (Hou et al., 2009). IFN-λ 

also considerably contributes to the control of viral infections of the respiratory tract (Griffiths et 

al., 2015). 

IFN-λ expression was detected at low levels in human blood, brain, lung, ovary, pancreas, pituitary, 

placenta, prostate and testis (Sheppard et al., 2003). This family of IFNs is expressed 

predominantly in antigen-presenting cells such as macrophages and dendritic cells. Their receptor 

is expressed in hepatocytes more than nonhepatocytes and in epithelial cells more than 

nonepithelial cells (Suppiah et al., 2009). Owing to the restricted IFN-λR1 expression by immune 

cells, the immunomodulatory effects of type III IFNs are limited, compared to the ubiquitous 

activity of type I IFN during responses to infection. While the wider range of activity of type I IFN 

is crucial for the control of systemic viral infection, the risk of increased disease severity is always 

present and deleterious effects of inappropriate type I IFN responses during infection were 
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described in multiple reports. Therefore, type III IFN is the antiviral weapon of choice when a local 

mucosal response is sufficient to control the virus and when immune-mediated inflammation is a 

real risk (Wack et al., 2015). The induction of IFNs is mediated by pattern-recognition receptors 

(PRRs) that recognize the invading virus and initiate a transcriptional response through the 

transcription factors NF-κB, IRF3 and IRF7 (Osterlund et al., 2007).  

The IFN-λ locus has been found by three independent GWA studies to be associated with the 

outcome of human HCV infection.  

Ge et al. (2009) performed a GWA study on more than 1600 individuals chronically infected with 

HCV who were participating in a clinical treatment trial. A SNP 3 kb upstream of the IL-28B gene, 

rs12979860, was strongly associated with sustained virological response (SVR), defined as the 

absence of detectable virus at the end of the follow-up evaluation. The CC genotype of rs12979860 

was associated with an approximately two-fold greater rate of SVR than the TT genotype, in 

patients of European, African American and Hispanic ancestries. Thomas et al. (2009) found that 

the frequency of the C allele versus the T allele was greater in the HCV clearance group in 

individuals of European ancestry, with frequencies of 80.3% versus 66.7%, respectively, and in 

individuals of African ancestry, with frequencies of 56.2% versus 37%, respectively. Patients with 

the CC genotype were three times more likely to clear HCV relative to patients with CT and TT 

genotypes. Genotyping of populations worldwide showed that the C allele was nearly fixed 

throughout east Asia, had an intermediate frequency in Europe, and was a minor allele in Africa. 

The frequencies in Central and South America were also intermediate, suggesting selective 

pressure since migration from Asia.  

To identify genetic variants associated with HCV treatment response, in 2009 two other GWA 

studies were conducted, reporting an association to SVR with the SNP rs8099917, within the gene 

region encoding IL-28B (Suppiah et al., 2009) and with two SNPs near the gene IL-28B 

(rs12980275, rs8099917) (Tanaka et al., 2009).  
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These IFN-λ SNPs have been demonstrated to influence IFN-λ expression in humans. Langhans et 

al. (2011) found that serum IFN-λ levels were significantly higher in individuals with the 

rs12979860 CC genotype versus TT genotype. 

Whilst the impact of IFN-λ and its SNPs on HCV is clear, its role in HBV infection remains 

controversial (Takahashi, 2014). Recent data demonstrate that IFN-λ genetic variation also 

contributes to the course of other infectious disease. For example, the protective rs12979860 CC 

genotype was associated with spontaneous HIV control (Machmach et al., 2013).  

The IL-28B genotypes were explored in patients suffering recurrent orofacial herpes HSV-1 

outbreaks, previously shown to be deficient in IFN-λ secretion. The minor T allele at rs12979860 

was found to be associated with the severity and frequency of oral herpes labialis recurrence 

(Griffiths et al., 2013). In this study, Med23 was identify as an anti-viral host factor in HSV-1 

infection in vitro. Med23 is a component of the largely pro-viral Mediator complex, which links 

specific transcription factors to RNA polymerase II and Med23 was found to up-regulate IFN-λ at 

the mRNA and protein level by interacting with IRF7 (Griffiths et al., 2013). The latter, was 

originally identified in the context of EBV infection, and has since emerged as the crucial regulator 

of type I IFNs after activation by pathogen recognition receptors (Ning et al., 2011). 
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1.4 Neuroinflammation as a risk factor for AD 

Over the past decade, epidemiological evidence have identified several risk factors for AD, 

including aging, reduced physical activity, midlife obesity, systemic infection or inflammation, 

brain trauma and chronic peridontitis (Figure 2). Interestingly, most of these risk factors involve the 

activation of innate immunity and neuroinflammation, indicated as an important contributor to AD 

pathogenesis (Heneka et al., 2014).  

In particular, a sedentary lifestyle leads to increased levels of pro-inflammatory cytokines in the 

blood circulation. Similarly, white adipose tissue is a constant source of pro-inflammatory 

cytokines that can affect the function of distant organs, including the brain. Moreover, clinical 

studies suggested that patients who have experienced systemic infection and sepsis show 

accelerated cognitive decline (Heneka et al., 2014).  

Oral microbiome and oral infections have been recently indicated as potential causes of BBB 

disruption and brain inflammation and these pathogens may also infect the brain via trigeminal 

and/or olfactory nerves (Shoemark et al., 2015). Periodontal disease is a prevalent peripheral 

infection induced by gram-negative anaerobic bacteria and associated with the elevation of serum 

inflammatory markers, including C-reactive protein (Kamer et al., 2008). Chronic inflammation in 

periodontitis has been suggested as a potential risk factor in AD (Sparks et al., 2012).  

Traumatic Brain Injury (TBI) also increase the risk of developing AD and also leads to a local 

increase in the levels of neuroinflammatory mediators, which may contribute to chronic Aβ 

deposition and microglial activation that ultimately result in chronic neuropathology (Johnson et 

al., 2010; Sivanandam et al., 2012). 

Genetic factors may affect the microglial cell reaction to aggregated forms of Aβ. AD-linked 

mutations in the microglial or myeloid genes encoding TREM2, CD33, CR1, MS4A6A and 

putative MS4A4E support the concept of altered microglial function in AD (Heppner et al., 2015).  
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Although aggregated forms of Aβ may induce the initial activation of microglial cells in the brain, 

the activation of these cells may be further exacerbated by systemic inflammation (Heneka et al., 

2014).  

 

Figure 2. Risk factors for AD increase innate immune activation by inducing local or systemic 

inflammation (Heneka et al., 2014).  

 

 

 

Persistent infections lead to a low grade chronic inflammation which produces exacerbated 

activation of the microglia and dysregulation of the pro-inflammatory response. This may be 

especially relevant in the elderly, who show higher prevalence of systemic infections and senescent 

immune system prone to develop a pro-inflammatory over anti-inflammatory cell phenotype. 

We now know that systemic inflammatory/immune responses transmit to the brain. 

Communication between peripheral immune responses and the brain can follow three different 

pathways: first, peripherally derived signals and even pathogen-associated molecular patterns can 

access the nervous system through brain sites that lack a proper BBB, or through fenestrated 
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capillaries; secondly, on-going peripheral reactions can be sensed and transmitted to the brain via 

neural afferent pathways, mainly through the vagus nerve; lastly, the BBB itself, through the role of 

its numerous cellular components like endothelial cells and perivascular macrophages can sense 

circulating signals and respond to them, affecting behavior of neurons, astrocytes, and especially 

resident microglia population (Solito et al., 2012). 

Microglia are the innate immune cells of the central nervous system (Mosher et al., 2014). They 

constitute the first line of defence against invading pathogens or other types of brain tissue injury 

(Solito et al., 2012). In the healthy young CNS microglia have a typical ramified morphology and 

are distributed throughout the neural parenchyma in a “space-filling” manner, providing efficient 

spatial coverage of the entire CNS milieu (Wong, 2013). Microglia are equipped to sense the so 

called danger signals, such as AD protein aggregates, and to respond to changes in neuronal health 

by adopting a set of morphological and functional attributes; such cells are termed “reactive” or 

“primed” (Heppner et al., 2015). 

With aging, the number and density of microglia appear to increase significantly in various CNS 

compartments, the order and regularity of their mosaic distribution appear to deteriorate and 

microglia cells undergo changes in their ramified morphology and decline in their dynamic motility 

(Wong, 2013). Besides, microglia show increased basal states of activation and increased 

expression of inflammatory cytokines (such as IL1β, TNF-α, IL6). It has been suggested that 

microglia may age, in part, as a result of cumulative activation in response to systemic infections 

over lifetime. Thus, systemic infections and inflammation could also drive and exacerbate 

neurodegeneration (Wong, 2013).  

Microglia have been extensively studied in the AD field due to their dramatic responses to the 

pathophysiology of the disease. For instance, microglia in AD acquire what is typically considered 

a “reactive” morphology, with short, thick and poorly ramified processes (Mosher et al., 2014). Aβ 

deposits attract and activate microglia (Mosher et al., 2014).  
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On one hand, the ability of microglia to recognize and uptake Aβ is well established and is strongly 

supported by the presence of multiple receptors that bind Aβ such as Toll-like receptors (TLR) 2 

and 4 (Solito et al., 2012). In addition, microglia also release Aβ-degrading enzymes and express 

scavenger receptors, which can mediate Aβ phagocytosis. Microglia are also able to secrete growth 

factors and anti-inflammatory cytokines, which are neuroprotective.  

On the other hand, an inefficient clearance of Aβ by compromised microglial phagocytosis capacity 

might be responsible for reduced clearance of Aβ plaques in vivo. Impaired phagocytic activity of 

microglia correlated with Aβ plaque burden, indicating that Aβ plaque deposition and microglial 

function are closely related (Meyer-Luehmann et al., 2015). Besides, microglia can generate 

reactive oxygen species and secrete pro-inflammatory cytokines and additional neurotoxic factors, 

which contribute to the pathology of AD (Krauthausen et al., 2015).  

Therefore, there is compelling evidence that microglial cells can modulate the pathological course 

of AD, although the exact role of microglia in AD remains to be clarified. Thus, it is critical to 

understand the state of activation of microglia in different AD stages to be able to determine the 

effect of potential anti-inflammatory therapies. 

Like microglial cells, astrocytes, a CNS-resident cells of neuroectodermal origin, can respond to 

pathological stimuli through reactive gliosis and surround Aβ plaques. Studies using transgenic 

mice exhibiting cerebral amyloidosis have shown that their activation occurs early in the course of 

neurodegeneration and reactive astrocytes upregulate their expression of glial fibrillary acidic 

protein (GFAP) (Heppner et al., 2015). 

Lastly, other cell types in the brain, such as neurons and endothelial cells, are also equipped with 

and can be activated through innate immune receptors. Therefore, these cells can also contribute to 

inflammatory responses in the brain. 
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Materials and Methods 
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2.1 SNPs in the CLU gene 

2.1.1 Patients and controls from Conselice study 

Two groups of 106 AD patients and 431 controls (CTR) were included in this study. 

Patients (33 male and 73 female, 77.9 ± 6.5 years of age at the beginning of the follow-up; 82.9 ± 

6.5 at the end of the follow-up ) with clinical diagnosis of probable AD and elderly CTR (210 male 

and 221 female, 72.5 ± 5.9 years of age at the beginning of the follow-up; 77.5 ± 5.9 at the end of 

the follow-up) were enrolled from the longitudinal “Conselice study on Brain Aging”  (Ravaglia et 

al., 2001; Licastro et al., 2010).  

A flow chart describing the enrolment of participants and their follow-up after five years has been 

summarized in Figure 3.  

 

Figure 3. Flow chart of the “Conselice study on Brain Aging”. Patients and controls were selected 

randomly from followed up subjects (CIND=cognitive impairment but not demented). 
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Controls and patients were randomly selected from this study. 

Cognitive performance was measured according to the Mini-Mental State Examination (MMSE) at 

the baseline of the study (1999) and at the end of the five-year follow-up (2004). Clinical diagnosis 

of AD followed the criteria of the Diagnostic and Statistical Manual of Mental Disorders (DSMIV), 

the National Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer’s Disease and Related Disorders Association (now called the Alzheimer’s Association) 

(NINCS-ADRDA) (Forti et al., 2001).  

 

2.1.2 Offspring with and without a parental history of AD 

Offspring from patients with late-onset AD and offspring without such a parental history were 

recruited between 2006 and 2007 in a family study to investigate midlife factors that are associated 

with an increased risk of late-life AD. Ninety-two consecutive patients aged 70 years and older 

(mean age 82 years) with a diagnosis of probable AD according to National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related 

Disorders Association criteria were recruited from the memory clinic of the Alzheimer Center of 

the Vrije Universiteit Medical Center of Amsterdam and affiliated nursing homes. Subjects with 

mixed-type dementia or vascular dementia were excluded. Ninety-seven married couples, aged 70 

years and older (mean age 82.6 years), who were free from dementia, were also recruited. At least 

1 spouse participated in either the Longitudinal Aging Study Amsterdam or the Leiden 85-Plus 

Study, 2 Dutch prospective population-based studies. Subjects were classified as free from 

dementia when having a Mini-Mental State Examination score greater than 27 points. When one of 

the spouses was deceased (n=55), a history of cognitive function from the surviving spouse was 

obtained. Children from the patients with AD (n=203) and the married couples without AD 

(n=197) were invited to participate in the study. All measurements were confined to the offspring 

of patients with AD and offspring of couples with good cognitive function, hereafter described as 
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“offspring with or without a parental history of AD”. The Medical Ethical Committee for Mental 

Health Care of the Netherlands approved the study and consent for participation in the study was 

given by all married couples or the legal guardian of eligible patients with AD (Van Vliet et al., 

2009). 

 

2.1.3 Genomic DNA samples 

1.5 ml of blood diluted in a Falcon with ¾ volumes of Phosphate Buffer Saline 1X were obtained 

from the patients and were centrifuged for 10 minutes at a temperature of 4 °C at 3000 rpm. 900 µl 

of saline solution Nonidet P40/NaCl (Nonidet P40 0.1% e NaCl 0.9%) were added to the pellet and 

was centrifuged again for 10 minutes at 4 ºC at 3000 rpm. 2.5 ml of lyses buffer (Urea 7 M; NaCl 

0.3 M; EDTA 10 mM; Tris-HCl 10 mM a pH 7.5) and then 500 µl of 10% SDS were added to the 

pellet and incubated for the lysis in thermostat bath at 37 ºC for 10 minutes. 4 ml of phenol / 

chloroform / isoamyl alcohol 25:24:1 were added and centrifuged for 10 minutes at 4 ºC to 3000 

rpm. The supernatant was collected and measured. 90 µl Sodium acetate was added to the 

supernatant to obtain a final concentration of 0.2 M. Then 2-3 volumes of 95% ethanol were added 

to the solution; shaking slightly, a suspension of filamentous DNA (jellyfish) was observed. The 

suspension was centrifuged at 4 ºC at 3500 rpm for 10 minutes. To collect the DNA, the pellet 

coated into the tube was resuspended in 1 ml of 70% ethanol. The pellet collected was then 

centrifuged at 4 ºC at 10000 rpm for 10 minutes. After removing the ethanol, the pellet was dried 

and finally resuspended in water by controlling the viscosity to add an appropriate quantity of 

water. The concentration of DNA was read in a spectrophotometer at 260 nm. The samples 

obtained were maintained at -20 ºC. 
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2.1.4 SNPs detection 

TaqMan SNP Genotyping Assay (Applied Biosystems, Foster City, CA) was used to genotype 

three intronic CLU SNPs (rs2279590, rs11136000, rs9331888) and one promoter CLU SNPs 

(rs9314349), according to the manufacturer’s instructions. It included an unlabelled PCR primer 

pair to detect specific SNP targets and two different TaqMan probes that distinguished two alleles 

of the SNP: one probe labeled with VIC® dye and the other one labeled with FAM® dye. Allelic 

discrimination was based on the generated signal from each probe at the end of the Real Time PCR 

(RT-PCR) using a CFX96 BioRad Real Time cycler.  

 

2.1.5 Statistical analysis 

Genotype and allele frequency analysis was performed by χ2 test and odds ratio calculation by 

using the Statistical Package for the Social Sciences (version 20.0; SPSS Inc, Chicago, IL). 
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2.2 Variants in antiviral genes as risk factors for cognitive decline 
and dementia 

 

2.2.1 Patients and controls 

Two groups of 158 AD patients and 228 CTR were included in this study. 

Patients (47 male and 111 female, 77.7 ± 6.2 years of age at the beginning of the follow-up; 82.7 ± 

6.2 at the end of the follow-up) with clinical diagnosis of probable AD and elderly CTR (113 male 

and 115 female, 72.9 ± 6.9 years of age at the beginning of the follow-up; 77.9 ± 6.9 at the end of 

the follow-up) were enrolled from the longitudinal “Conselice study on Brain Aging” (Ravaglia et 

al., 2001; Licastro et al., 2010).  

Controls and patients were randomly selected from this study. 

Cognitive performance was measured according to the Mini-Mental State Examination (MMSE) at 

the baseline of the study (1999) and at the end of the five-year follow-up (2004), as previously 

reported (Licastro et al., 2010).  

 

2.2.2 Genomic DNA samples 

Genomic DNA from PBLs was purified as previously described. 

 

2.2.3 SNPs detection 

APOE genotyping for the ε alleles from DNA samples was assessed as previously described 

(Licastro et al., 1999;  Licastro et al., 2007). 
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The rs12979860 SNP (substitution C/T) located ~ 3 kb upstream of IL-28B was detected by 

restriction fragment length polymorphism (RFLP).  

Patients and CTR were genotyped by PCR DNA amplification using the following primer pairs: 

5′TCAATCACAGAAGGGAGCCC3′/5′TAACCTCTGCACAGTCTGGG3′ with 5 min at 98 °C 

for the initial denaturation and 30 cycles of 30 s at 98 °C, 30 s at 58 °C and 45 s at 72 °C. After 10 

min incubation at 72 °C the final extension was performed. The restriction enzyme BstUI (MBI 

Fermentas, Italy; 10 U/sample) resolved three different bands identifying three different genotypes 

on 3.5% agarose gel.  

In particular, the specific primer pair amplified a 194 bp DNA fragment and then digestion of this 

product with the restriction enzyme BstUI produced 2 fragments of 122 bp and 72 bp for TT 

genotype; 4 fragments of 122 bp, 97 bp, 72 bp and 25 bp for CT genotype; 3 fragments of 97 bp, 72 

bp and 25 bp for CC genotype (Figure 4).  

 

Figure 4. Pattern of bands for the promoter polymorphism of the IL-28B (rs12979860) after 

digestion with the enzyme BstUI (M=molecular ladder 100 bp). 
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The 2 kb upstream SNP of Med23 (rs3756784 T/G) and an upstream gene variant of IRF7 

(rs6598008 A/G) were analyzed by Real Time PCR using TaqMan® probes according to the 

manufacturer’s instructions (Applied Biosystems, Foster City, CA). 

Hardy-Weinberg equilibrium was verified for all genotypes.  

 

2.2.4 Anti-EBV and HHV-6 IgG plasma levels 

Plasma samples were collected from AD and CTR enrolled in the Conselice study. Assays included 

enzyme-linked immunosorbent assays (ELISAs) for EBV Epstein-Barr nuclear antigen (EBNA) 

IgG, EBV viral capsid antigen (VCA) IgG and HHV-6 IgG. A total of 75 plasma samples were 

assessed, according to the manufacture’s recommendations, using commercially available assays, 

as described by Carbone and co-workers (Carbone et al., 2014).  

 

2.2.5 Detection of EBV and HHV-6 DNA 

EBV DNA positivity from PBL was analyzed by nested PCR amplification in 2 PCR steps and the 

detection of HHV-6 DNA was performed by quantitative PCR (qPCR), as described by Carbone 

and co-workers (Carbone et al., 2014).  

 

2.2.6 Statistical analysis 

Statistical analysis for quantitative variables from AD and CTR was performed by one-way 

ANOVA or t test and frequency analysis was performed by χ2 test and odds ratio calculation by 

using the Statistical Package for the Social Sciences (version 20.0; SPSS Inc, Chicago, IL). 
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2.3 Gene expression in a model of AD pathology 

2.3.1 Mice 

5X Familial Alzheimer’s disease (5XFAD) mice strain Tg6799 (Oakley H. et al., 2006) were used 

in Marco Prinz laboratory, University Medical Center Freiburg. The 5XFAD transgenic mice 

overexpress both mutant human APP  (695) with the Swedish (K670N and M671L), Florida 

(I716V) and London (V717I) Familial Alzheimer's Disease (FAD) mutations and human PS1 

harboring two FAD mutations, M146L and L286V. Expression of  both transgenes is regulated by 

neural-specific elements of the mouse Thy1 promoter to drive overexpression in the brain.  

Animals were bred for heterozygosity. FAD-negative littermates were used as wild type controls. 

Only female mice have been used in this study. Mice were bred under pathogen-free conditions in a 

temperature and humidity controlled vivarium and subjected to a standard 12 h light/dark cycle 

with food and water were available ad libitum. All animal experiments were performed in 

accordance with the guidelines of the Regierungspräsidium Freiburg legislation for animal 

experiments. 

 

2.3.2 qRT-PCR 

Tissues were dissected from brain and snap frozen in liquid nitrogen. RNA was isolated using the 

RNeasy Mini Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions. Samples 

were treated with RNase-Free DNase Set (Qiagen) and RNA was transcribed into cDNA using 

oligo(dT) primers and the SuperScript II RT kit (Invitrogen, Carlsbad, CA). Two μl of diluted 

cDNA were used for performing qRT-PCR using LightCycler 2X SYBR Green master mix 

(Roche) and were analyzed with a LightCycler 480 (Roche) using the following primer pairs: 

mouse GAPDH (forward, TCC TGC ACC ACC AAC TGC TTA GCC; reverse, GTT CAG CTC 

TGG GAT GAC CTT GCC),  
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Β-ACTIN (forward, TCCTGTGGCATCCATGAAACT; reverse, GAAGCACTTGCGGTGCAC),  

CCL3 (forward, TCCCAGCCAGGTGTCATTTTC; reverse, AGGCATTCAGTTCCAGGTCA),  

CCL6 (forward, GGCTGGCCTCATACAAGAAATG; reverse, GGTTCCCCTCCTGCTGATAA),  

CD68 (forward, ACTTCGGGCCATGTTTCTCT; reverse, GGGGCTGGTAGGTTGATTGT),  

CCL12 (forward, GAGAGACACTGGTTCCTGACTC; reverse, 

TCCGGACGTGAATCTTCTGC),  

CSF1R (forward, CTTGGGAGCCTGTACTCACG; reverse, ACTGTCCCTGCGCACATATT),  

TLR2 (forward, CCTGAGAATGATGTGGGCGT; reverse, GCTGGACCATGAGGTTCTCC),  

TLR7 (forward, CTGGAGTTCAGAGGCAACCA; reverse, GGCGGCATACCCTCAAAAAC),  

TGFBR1 (forward, AACCGCACTGTCATTCACCA; reverse, 

AGCAGTGGTAAACCTGATCCA),  

CD11B (forward, GACTCAGTGAGCCCCATCAT; reverse, AGATCGTCTTGGCAGATGCT),  

CX3CR1 (forward, GGAGACTGGAGCCAACAGAG; reverse, TCTTGTCTGGCTGTGTCCTG),  

GFAP (forward, AGAAAACCGCATCACCATTC; reverse, TCACATCACCACGTCCTTGT),  

TYROBP (forward, GCTGGGATTGTTCTGGGTGA; reverse, 

CTCTGACCCTGAAGCTCCTGA),  

CTSD (forward, CTGAACAGGGACCCAGAAGG; reverse, CTCATTGCCCACCTCCAACT),  

IRF8 (forward, CAGCAATTCTACGCCACCCA; reverse, CTGCTCTACCTGCACCAGAAT),  

RUNX1 (forward, TGGCAGGCAACGATGAAAAC; reverse, TGAAGCTCTTGCCTCTACCG),  

LY6C (forward, GGACTGCAGTGCTACGAGTG; reverse, AAGGCACTGACGGGTCTTTA).  
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2.3.3 Statistical Analysis 

Statistical differences were evaluated using the unpaired Student's t test (GraphPad Prism) or 

ANOVA test. Differences were considered to be significant when p < 0.05, p < 0.01 or p < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

 

Results 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



50 
 

3.1 SNPs in the CLU gene 

3.1.1  Conselice study 
 

Researchers have found several genes that increase the risk of AD. APOE ε4 is the first risk gene 

identified, and remains the gene with the strongest impact on AD risk. With this in mind, we 

genotyped our cohort of probable AD patients and CTR subjects for the APOE gene. This 

association was confirmed also in our population. In particular, APOE ε4 was over represented in 

AD patients when compared with controls (APOE ε4 frequency: AD 23.8% vs 15.5% CTR, 

p=0.035). 

To establish the association of CLU, we genotyped SNPs in the CLU gene in a cohort of 106 

patients with clinical diagnosis of AD and 431 control subjects matched for age and sex.  

Three intronic SNPs in the CLU gene (rs2279590 (C/T), rs11136000 (C/T), rs9331888 (C/G)) and 

one SNP located in the promoter region (rs9314349 (G/A)) were analyzed in AD and CTR 

populations. CLU SNPs genotypes were in Hardy-Weinberg equilibrium in control group.  

Results obtained are shown in Tables 1, 2, 3 and 4. 

 

Table 1. Allele and genotype distribution of the rs2279590 (C/T) in the CLU gene from AD 

patients and CTR. 

      CC     CT      TT   C carr   T carr 

 N         % N         % N         % N         % N         % 

AD=103 30        29.1 59        57.3 14      13.6 89       86.4 73       70.9 

CTR=430 147      34.2 204      47.4 79      18.4 351     81.6 283     65.8 

AD vs CTR χ2 3.359 p=0.186 
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Table 2. Allele and genotype distribution of the rs11136000 (C/T) in the CLU gene from AD 

patients and CTR. 

      CC     CT      TT   C carr   T carr 

 N         % N         % N         % N         % N         % 

AD=102 33        32.4 56        54.9 13      12.7 89      87.3 69       67.6 

CTR=431 157      36.4 206      47.8 68      15.8 363    84.2 274     63.6 

AD vs CTR χ2 1.730 p=0.421 

 

Table 3. Allele and genotype distribution of the rs9331888 (C/G) in the CLU gene from AD 

patients and CTR. 

      CC     CG      GG   C carr   G carr 

 N         % N         % N         % N         % N         % 

AD=106 53        50.0 46        43.4  7       6.6 99      93.4 53        50 

CTR=431 231      53.6 167      38.7 33      7.7 398    92.3 200     46.4 

AD vs CTR χ2 0.798 p=0.671 

 

Table 4. Allele and genotype distribution of the rs9314349 (G/A) in the CLU gene from AD 

patients and CTR.  

      GG     AG      AA   G carr   A carr 

 N         % N         % N         % N         % N         % 

AD=131 20      15.3  66       50.4 45        34.4 87      66.4 111      84.7 

CTR=341 48      14.1 169      49.6 124      36.4 217    63.6 293      85.9 

AD vs CTR χ2 0.380 p=0.899 

 

As showed from tables 1, 2, 3 and 4, no statistically significant differences in the allele and 

genotype frequencies for any SNPs of the CLU (rs2279590, rs11136000, rs9331888 and 

rs9314349) between AD and CTR were found.  
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Because all these subjects belonged to the longitudinal “Conselice study on Brain Aging”, they 

were followed up for five years and cognitive performances were detected at the beginning (1999) 

and at end of the study (2004). All DNA samples were obtained at the beginning of the clinical 

follow-up. 

We performed experiments to evaluate potential difference in the genotype frequencies of CLU 

SNPs between subjects that after five years developed AD (CTR→AD) and subjects who remained 

cognitively healthy at the end of follow-up (CTR→CTR).  

Results are summarized in Tables 5, 6, 7 and 8.  

 

Table 5. Allele and genotype distribution of the rs2279590 (C/T) in the CLU gene in subjects 

converting to AD compared to those remaining cognitively healthy. 

      CC     CT      TT    C carr    T carr 

 N         % N         % N         % N         % N         % 

CTR→AD=68 18      26.5  39       57.4 11      16.2 57       83.9 50 73.6 

CTR→CTR=430 147    34.2 204      47.4 79      18.4 351     81.6 283       65.8 

CTR→AD vs CTR→ CTR χ2 2.394 p=0.30 

 

Table 6. Allele and genotype distribution of the rs11136000 (C/T) in the CLU gene in subjects 

converting to AD compared to those remaining cognitively healthy. 

      CC     CT      TT   C carr    T carr 

 N         % N         % N         % N         % N         % 

CTR→AD=68 19      27.9  39        57.4 10      14.7 58      85.3 49      72.1 

CTR→CTR=431 157    36.4 206       47.8 68      15.8 363    84.2 274    63.6 

CTR→AD vs CTR→ CTR χ2 2.335 p=0.31 
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Table 7. Allele and genotype distribution of the rs9331888 (C/G) in the CLU gene in subjects 

converting to AD compared to those remaining cognitively healthy. 

      CC     CG      GG C carr G carr 

 N         % N         % N         % N         % N         % 

CTR→AD=72 39      54.2 31        43.1  2         2.8 70        97.3 33         45.9 

CTR→AD=431 231    53.6 167      38.7 33        7.7 398      92.3 200       46.4 

CTR→AD vs CTR→ CTR χ2 2.405 p=0.30 

 

Table 8. Allele and genotype distribution of the rs9314349 (G/A) in the CLU gene in subjects 

converting to AD compared to those remaining cognitively healthy. 

      GG     AG      AA G carr A carr 

 N         % N         % N         % N         % N         % 

CTR→AD=64 9        14.1  34        53.1 21       32.8 43        67.2 55        85.9 

CTR→CTR=341 48      14.1 169       49.6 124     36.4 217      63.7 293      86 

CTR→AD vs CTR→ CTR χ2 0.326 p=0.84 

 

As can be seen from the above tables, no statistically significant differences in the genotype 

frequencies of the CLU SNPs analyzed were present among subjects that developed AD and 

subjects that remained healthy after five years of follow-up.  

 

3.1.2 Offspring study 

A collaboration with Dr. Eric Van Exel belonging to VUMC (Vrij University, Medical Centre, 

Amsterdam) made possible the use of a different population model. Intronic polymorphisms 

rs9331888 and rs11136000, and the promoter polymorphisms rs9314349 in the CLU gene were 

analyzed in 198 DNA samples extracted from PBLs of middle-aged offspring with a parental 

history of AD (AD offspring) and 191 DNA samples taken from middle-aged offspring from 
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healthy parents (CTR offspring) (Tables 9, 10 and 11). AD offspring are particularly interesting 

because this population can be considered at high risk for AD.  

 

Table 9. Allele and genotype distribution of the rs9314349 (G/A) in the CLU gene from AD 

offspring and CTR offspring. 

      GG     AG      AA   G carr   A carr 

 N         % N         % N         % N         % N         % 

AD  

offspring=195 

27       13.8 97        49.7 71        36.4 124      63.5  168      86.1 

CTR  

offspring=191 

42        22.0     78        40.8 71        37.2 120      62.8 149      78 

AD vs CTR χ2 5.283 p=0.071 

G carrier AD offspring vs CTR offspring χ2 0.068 p=0.794 

A carrier AD offspring vs CTR offspring χ2 4.359 p=0.037 OR=1.754 CI=1.031-2.984 

 

Table 10. Allele and genotype distribution of the rs11136000 (C/T) in the CLU gene from AD 

offspring and CTR offspring. 

      CC     CT      TT   C carr   T carr 

 N         % N         % N         % N         % N         % 

AD 

offspring =198 

79        39.9 98        49.5 21        10.6 177      89.4 119      60.1 

CTR 

offspring =182 

69        37.9 90        49.5 23        12.6 159      87.4 113      62.1 

AD vs CTR χ2 0.434 p=0.805 

C carrier AD offspring vs CTR offspring χ2 0.382 p=0.536 

T carrier AD offspring vs CTR offspring χ2 0.088 p=0.767 
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Table 11. Allele and genotype distribution of the rs9331888 (C/G) in the CLU gene from AD 

offspring and CTR offspring. 

      CC     CG      GG   C carr   G carr 

 N         % N         % N         % N         % N         % 

AD 

offspring =198 

98        49.5 81        40.9 19        9.6 179      90.4 100      50.5 

CTR 

offspring =190 

91        47.9 71        37.4 28        14.7 162      85.3 99        52.1 

AD vs CTR χ2 2.477 p=0.290 

C carrier AD offspring vs  CTR offspring χ2 2.407 p=0.121 

G carrier AD offspring vs  CTR offspring χ2 0.099 p=0.753 

 

No difference in the frequency of rs11136000 (χ2 0.434 p=0.805) and rs9331888 (χ2 2.477 p=0.290) 

SNPs between offspring with a parental history of AD and offspring from healthy parents was 

found. 

Only the SNP rs9314349, showed different distribution in the two offspring population (Table 9). 

In particular, A carrier frequency in offspring with a parental history of AD was increased, as 

shown in Table 9, being 86.1% vs 78%; χ2 4.359; p=0.037; OR 1.754. The APOE ε4 allele was also 

over represented in the offspring with a parental history of AD (46.5% AD offspring vs 21.1% 

CTR offspring, χ2 27.894,  p=0.0001), as shown in Table 12.  

 

 

 

 

 



56 
 

Table 12. AD offspring and CTR offspring APOEε4 carrier or APOEε4 non carrier. 

      ε4 carr     ε4 non carr 

 N            % N              % 

AD 

offspring =198 

92        46.46 106        53.54 

CTR 

offspring =190 

40        21.05 150        78.95 

χ2 27.894 p=0.0001 

 

To determine if the association for the A carrier of rs9314349 SNP was dependent or independent 

of APOE ε4 allele we restricted the analysis to offspring rs9314349 A carrier with or without the 

APOE ε4 allele. The results were statistically significant only for APOE ε4 non carrier (χ2 3.844 

p=0.050) (Table 13). 
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Table 13. Allele A distribution of the rs9314349 CLU SNP in AD offspring and CTR offspring 

APOEε4 carrier or APOEε4 non carrier. 

ε4 carr  A carr 

N         % 

A non carr 

N         % 

 AD 

offspring 

78        85.7 13        14.3 

 CTR 

offspring 

34        82.9 7          17.1 

ε4 non carr  A carr 

N         % 

A non carr 

N         % 

 AD 

offspring  

90        86.5 14        13.5 

 CTR 

offspring  

115      76.7 35        23.3 

APOE ε4 carr χ2 0.171 p=0.679 

APOE ε4 non carr χ2 3.844 p=0.050 
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3.2 Variants in antiviral genes as risk factors for cognitive decline 
and dementia 
 

We genotyped AD patients and CTR subjects belonging to the longitudinal “Conselice study on 

Brain Aging” for the APOE gene. APOE ε4 was over represented in AD patients respect to controls 

(APOE ε4 frequency: AD 23.7% vs 11.2% CTR, p=0.001).  

Genotype distribution of IL-28B polymorphism is shown in Table 14, panel A. TT genotype 

frequency between AD and CTR (15.9% in AD vs 9.2% in CTR) was statistically different 

(p=0.047).  

All subjects were followed up for five years and cognitive performances were detected at the 

beginning and at end of the study; 85 converted to AD and 218 remained cognitively normal. The 

frequency of the IL-28B TT genotype was 16.5% in subjects converting to AD (CTR→AD) and 

9.2% in those without cognitive deterioration at the end of follow-up (CTR→CTR) (p=0.071), as 

shown in Table 14, panel A. No difference in genotype distribution of Med23 polymorphism 

(rs3756784) between AD and CTR was found (Table 14, panel B). On the contrary, the GG 

genotype was slightly more frequent in subjects who developed AD (5.8%) than in those who 

remained cognitively healthy (1.8%) (p=0.055). 
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Table 14. A) Allele and genotype distribution of the rs12979860 in the IL-28B gene and B) 

rs3756784 in the Med23 gene from patients with AD and CTR and in subjects converting to AD 

compared to those remaining cognitively healthy after a five year follow-up. 

A)  

IL-28B 

      TT     CT      CC   T carr   C carr 

 N         % N         % N         % N         % N         % 

AD=157 25       15.9  66       42.0 66        42.0 91      58.0 132      84.1 

CTR=218 20        9.2 94       43.1 104      47.7 114    52.3 198      90.8 

CTR→AD=85 14       16.5 39       45.9 32        37.6 53      62.4 71        83.5 

CTR→CTR=218 20        9.2 94       43.1 104      47.7 114    52.3 198      90.8 

AD vs CTR TT genotype: χ2 3.937  p=0.047  OR=1.875  CI= 1.001 - 3.513 

CTR→AD vs CTR→CTR TT genotype: χ2 3.268  p=0.071 

 

B) 

Med23 

      TT     GT      GG   T carr   G carr 

 N         % N         % N         % N         % N         % 

AD=158  104       65.8 47         29.7 7 4.4 151 95.6 54 34.2 

CTR=228 158       69.3 66         28.9 4 1.8 224 98.2 71 31.1 

CTR→AD=86   53        61.6 28         32.6 5 5.8 81 94.2 33 38.4 

CTR→CTR=228 158       69.3 66         28.9 4 1.8 224 98.2 71 31.1 

AD vs CTR GG genotype: χ2 2.414  p=0.120   

CTR→AD vs CTR→CTR GG genotype: χ2 3.696  p=0.055  OR=3.457  CI= 0.906 - 13.190 
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We evaluated also the possible APOE ε4 effect, but the ε4 allele presence did not affect IL-28B 

genotype distribution in these AD groups (Table 15, panel A).  

Conversely, the GG genotype was slightly higher in the APOE ε4 non carrier AD patients than 

CTR (p=0.059) and significantly increased in the APOE ε4 non carrier elderly who developed AD 

(p=0.018; Table 15, panel B) during the five years follow-up. 

 

Table 15. Genotype distribution of the A) rs12979860 in the IL-28B SNP and B) rs3756784 

Med23 in AD patients and CTR APOE ε4 carrier/or ε4 non carrier and in subjects converting to AD 

compared to those remaining cognitively healthy. 

A) 

    IL-28B    

  ε4 carr    ε4 non carr  

 TT CT CC  TT CT CC 

 N % N % N %  N % N % N % 

AD=37 7 18.9 14 37.8 16 43.2 AD=119 18 15.1 52 43.7 49 41.2 

CTR=24 3 12.5 7 29.2 14 58.3 CTR=191 17 8.9 87 45.5 87 45.5 

CTR→AD=18 3 16.7 6 33.3 9 50.0 CTR→AD=67 11 16.4 33 49.3 23 34.3 

CTR→CTR=24 3 12.5 7 29.2 14 58.3 CTR→CTR=191 17 8.9 87 45.5 87 45.5 

AD vs CTR APOE Ɛ4 carr χ2 1.358  p=0.507 

AD vs CTR APOE Ɛ4 non carr χ2  2.893  p=0.235   

AD vs CTR APOE Ɛ4 non carr TT genotype χ2  2.837  p=0.092  

CTR→AD vs CTR→CTR APOE Ɛ4 carr χ2  0.313  p=0.855 

CTR→AD vs CTR→CTR APOE Ɛ4 non carr  χ2  4.194  p=0.123 

CTR→AD vs CTR→CTR APOE Ɛ4 non carr  TT genotype χ2  2.897  p=0.089 
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B) 

    Med23    

  ε4 carr    ε4 non carr  

 TT GT GG  TT GT GG 

 N % N % N %  N % N % N % 

AD=38 25 65.8 11 28.9 2 5.3 AD=119 79 66.4 35 29.4 5 4.2 

CTR=25 16 64.0 7 28.0 2 8.0 CTR=200 140 70.0 58 29.0 2 1.0 

CTR→AD=19 12 63.2 6 31.6 1 5.3 CTR→AD=67 41 61.2 22 32.8 4 6.0 

CTR→CTR=25 16 64.0 7 28.0 2 8.0 CTR→CTR =200 140 70.0 58 29.0 2 1.0 

AD vs CTR APOE Ɛ4 carr χ2  0.190  p=0.909 

AD vs CTR APOE Ɛ4 non carr χ2  3.631  p=0.163  

AD vs CTR APOE Ɛ4 non carr GG genotype χ2  3.563  p=0.059   

CTR→AD vs CTR→CTR APOE Ɛ4 carr  χ2  0.167  p=0.920 

CTR→AD vs CTR→CTR APOE Ɛ4 non carr  χ2  6.337  p=0.42   

CTR→AD vs CTR→CTR APOE Ɛ4 non carr  GG genotype χ2  5.644  p=0.018  OR=6.286   

CI=1.125 - 35.134 

 

We analyzed also the rs6598008 polymorphism in IRF7 gene. However, no statistically significant 

difference was found neither between AD and CTR nor between subjects who developed AD and 

subjects who remained cognitively healthy (Table 16). The presence or the absence of the APOE ε4 

allele did not influence IRF7 SNP distribution, ad shown in Table 17. 

 

 

 



62 
 

Table 16. Allele and genotype distribution of the rs6598008 IRF7 SNP in patients with AD and 

CTR and in subjects converting to AD compared to those remaining cognitively healthy. 

IRF7 

      GG     GA      AA   G carr   A carr 

 N         % N         % N         % N         % N         % 

AD= 129 43        33.3 59        45.7 27        20.9 102       79.1 86          66.7 

CTR=172 55        32.0 73        42.4 44        25.6 128       74.4 117        68.0 

CTR→AD=79  27        34.2 33        41.8 19        24.1  60        75.9  52         65.8 

CTR→CTR=172 55        32.0 73        42.4 44        25.6 128       74.4 117        68.0 

AD vs CTR  χ2  0.900  p=0.638 

CTR→AD vs CTR→CTR  χ2  0.137  p=0.934 
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Table 17. Genotype distribution of the rs6598008 IRF7 SNP in AD patients and CTR APOE ε4 

carrier/or ε4 non carrier and in subjects converting to AD compared to those remaining cognitively 

healthy. 

  ε4 carr    ε4 non 

carr 

 

 GG GA AA  GG GA AA 

 N % N % N  %  N % N % N % 

AD=30 8 26.7 13 43.3 9 30.0 AD=98 35 35.7 45 45.9 18 18.4 

CTR=20 3 15.0 12 60.0 5 25.0 CTR=149 52 34.9 60 40.3 37 24.9 

CTR→AD=17 6 35.3 7 41.2 4 23.5 CTR→AD=62 21 33.9 26 41.9 15 24.2 

CTR→CTR=20 3 15.0 12 60.0 5 25.0 CTR→CTR=149 52 34.9 60 40.3 37 24.8 

AD vs CTR APOE Ɛ4 carr χ2 1.516  p=0.469  

AD vs CTR APOE Ɛ4 non carr χ2  1.565  p=0.457   

CTR→AD vs CTR→CTR APOE Ɛ4 carr  χ2  2.198  p=0.333 

CTR→AD vs CTR→CTR APOE Ɛ4 non carr  χ2  0.5  p=0.975 

 

Leukocyte DNA from a subgroup of AD and CTR belonging to the Conselice study was previously 

analyzed for the presence of HHV-6 and EBV nucleic acids (Carbone et al., 2014). The difference 

for the presence of HHV-6 DNA between AD (87.5%) and CTR (12.5%) was statistically 

significant (p=0.019) (Table 18). Frequency of EBV DNA positivity in AD was also increased but 

at the limit of statistical significance (p=0.065) (Table 19). 
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Table 18. Presence or absence of human herpes virus 6 (HHV-6) DNA in peripheral blood 

leukocytes (PBL) from AD patients and CTR.  

     AD      CTR 

HHV-6  N         % N          % 

Positive= 8 7          87.5 1           12.5 

Negative=73 32        43.8 41         56.2 

χ2  5.506  p=0.019  OR=8.969  CI= 1.049 - 76.664 

 

Table 19. Presence or absence of Epstein-Barr virus (EBV) DNA in peripheral blood leukocytes 

(PBL) from AD patients and CTR.  

     AD      CTR 

EBV  N         % N          % 

Positive= 44 25        56.8 19         43.2 

Negative= 36 13        36.1 23         63.9 

χ2  3.404  p=0.065   

 

In order to evaluate whether polymorphisms in antiviral gene such as IL-28B, Med23 and IRF7 

might influence anti-HHV-6 and EBV immune responses in AD, we stratified results from DNA 

virus positivity from AD patients and CTR according to genotype distributions.  

Results are presented in Table 20, panel A, B, C. TT carrier for IL-28B SNP showed an increased 

positivity for the presence of EBV DNA (16.3%, panel A). There were only three subjects with GG 

genotype for Med23 SNP and they were all positive for EBV DNA. 
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Table 20. Presence or absence of Epstein-Barr virus (EBV) DNA in peripheral blood leukocytes 

(PBL) from all subjects (AD+CTR) in relation to different genotype of A) IL-28B, B) Med23 and 

C) IRF7 SNP. 

A) 

IL-28B 

 

TT CT CC 

N % N % N % 

Positive=43  7 16.3 17 39.5 19 44.2 

Negative=31 2 6.5 11 35.5 18 58.1 

χ2  2.202 p=0.332 

B) 

   

Med23 TT GT GG 

N % N % N % 

Positive=43  33 76.7 7 16.3 3 7.0 

Negative=34 25 73.5 9 26.5 - - 

χ2  3.347 p=0.188 

C) 

   

IRF7 GG GA AA 

N % N % N % 

Positive=43 8 18.6 22 51.2 13 30.2 

Negative=34 7 20.6 20 58.8 7 20.6 

χ2  0.923  p=0.630 

 

IL-28B genotypes did not affect HHV-6 DNA presence or absence (Table 21, panel A). In 

particular, only one subject TT carrier for IL-28B SNP was positive for HHV-6 DNA. 
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On the other hand, Med23 genotypes were associated with differential degrees of HHV-6 DNA 

positivity (p=0.049), the percentage of positivity for the virus being elevated among carriers of the 

GG genotype (p=0.041), as shown in Table 21, panel B. 

Table 21 panel C also shows that IRF7 genotypes did not affect HHV-6 DNA presence or absence. 

 

Table 21. Presence or absence of human herpes virus 6 (HHV-6) DNA in peripheral blood 

leukocytes (PBL) from all subjects (AD+CTR) in relation to different genotype of A) IL-28B, B) 

Med23 and C) IRF7 SNP. 

A) 

IL-28B TT CT CC 

 N % N % N % 

Positive=7  1 14.3 3 42.9 3 42.9 

Negative=68 7 10.3 28 41.2 33 48.5 

χ2  0.142  p=0.932   

B) 

Med23 TT GT GG G carr non G carr 

 N % N % N % N       % N % 

Positive=7  3 42.9 3 42.9 1 14.3 4      57.1 3 42.9 

Negative=70 53 75.7 16 22.9 1 1.4 17    24.3 53 75.7 

χ2  6.026  p=0.049 

GG genotype χ2 =4.158  p=0.041  OR=11.5  CI= 0.636 - 207.882 

G carriers χ2 =3.464  p=0.063  OR=4.157  CI= 0.845 - 20.456 
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C) 

IRF7 GG GA AA 

 N % N % N % 

Positive=7  2 28.6 3 42.9 2 28.6 

Negative=70 21 30.0 29 41.4 20 28.6 

χ2  0.007  p=0.996   

 

In order to investigate EBV and HHV-6 serum positivity in AD and CTR samples, virus antigen 

specific IgG plasma levels, such as HHV-6 IgG plasma levels and EBNA and VCA for EBV, were 

also previously measured (Carbone et al., 2014). HHV-6 specific IgG levels and EBNA IgG-

specific levels were not affected by IL-28B, Med23 or IRF7 genotypes in AD, CTR and in subjects 

that developed AD at the end of follow-up. 

On the other hand, IRF7 genotypes influenced VCA IgG levels in both AD and CTR, as shown in 

Figure 3 (panel A) and the GG carriers with AD showed the highest serum levels of these 

antibodies (p<0.001; Figure 2, panel A). In addition, VCA IgG titers were higher in IRF7 GG 

(p=0.0001) and G carriers (p=0.022) who developed AD than those from elderly who remained 

cognitively healthy during the five years follow-up (Figure 3, panel B).  
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Figure 5. Immunoglobulin G (IgG) plasma levels specific for VCA antigens for Epstein-Barr virus 

(EBV) (AU/ml) according to the IRF7 genotypes and alleles in A) AD and CTR and B) subjects 

converting to AD compared to those remaining cognitively healthy after a five year follow-up.  

 

A) AD and CTR t-test: AD p=0.074; CTR p=0.023. GG carr AD vs CTR p=0.000  

 

B) Subjects converting to AD compared to those remaining cognitively healthy after a five year 

follow-up t-test: CTR→AD p=0.182; CTR→CTR p=0.023. GG carr p=0.000. G carr p=0.022  

*p<0.05, **p<0.001. 
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3.3 Gene expression in a model of AD pathology 

 

5XFAD mice rapidly recapitulate major features of AD amyloid pathology and are useful models 

of intraneuronal Abeta42-induced neurodegeneration and amyloid plaque formation (Oakley et al., 

2006). 

Here we demonstrated that several genes encoding chemokines and other myeloid cell markers 

were up-regulated in aged 5XFAD female mice at 40 weeks (Figure 6 a, b and c) and 48 weeks of 

age (Figure 7 a, b and c) compared with wild-type (WT) mice particularly in the cortex and 

hippocampus, the two major brain regions affected in AD, but much less in the cerebellum. Our 

results showed an increase in the number of differently expressed genes between 40 weeks and 48 

weeks old mice in each tissue and most of these genes were shared by cortex and hippocampus. 

In particular, upregulated genes mostly belong to the innate immune response and inflammatory 

response category, as illustrated by changes in expression of genes encoding for chemokines 

(CCL3, CCL6, CCL12) and the glial fibrillary acidic protein (GFAP) both in the cortex and 

hippocampus of aged mice. We also found an up-regulation of TLRs (TLR2, TLR7) in 40 and 48 

weeks mice and to a lesser extent of integrin alpha M (ITGAM or CD11b) gene. Genes encoding 

for microglial activation markers such as CD68 and the chemokine C-X3-C motif receptor 1 

(CX3CR1) were overexpressed in 5XFAD mouse model, instead, LY6C, a myeloid cells marker, 

did not change or was down-regulated in 5XFAD mice. Transcription factors IRF8 and RUNX1 

genes were highly up-regulated in the cortex and hippocampus whereas TGFß signalling molecule 

(TGFBR1) was not differently expressed. Colony stimulating factor 1 receptor (CSF1R) and 

TYROBP genes, which belong to the same signalling pathway, were also up-regulated.    

An increased expression of cathepsin D (CTSD), one of the lysosomal proteinases, was also present 

in 5XFAD mouse model. 
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Figure 6. Gene expression in 5XFAD mice at 40 weeks of age. Each panel represents gene 

expression in the indicated brain regions in wild type and in 5XFAD mice. Each bar represents the 

mean ± SEM gene expression level relative to the average of two animals per group, normalized 

over GAPDH and β ACTIN expression as reference genes (*p ≤ 0.05, ** p≤ 0.01,*** p ≤ 0.001). 
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FAD (n=2) 
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b) Hippocampus 

  

c) Cerebellum 

  

 

WT (n=2) 

FAD (n=2) 

WT (n=2) 

FAD (n=2) 
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Figure 7. Gene expression in 5XFAD mice at 48 weeks of age. Each panel represents gene 

expression in the indicated brain regions in wild type and in 5XFAD mice. Each bar represents the 

mean ± SEM gene expression level relative to the average of three animals per group, normalized 

over GAPDH and β ACTIN expression as reference genes (*p ≤ 0.05, ** p≤ 0.01,*** p ≤ 0.001). 
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b) Hippocampus 

 

c) Cerebellum 

    

 

WT (n=3) 

FAD (n=3) 

WT (n=3) 

FAD (n=3) 
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4.1 SNPs in the CLU gene 

4.1.1  Conselice study 

Late-onset AD is the most common form of dementia with age onset after 65 years. AD shows a 

genetically complex pattern of inheritance in which genetic risk factors together with 

environmental factors and life exposure events could contribute to increase the risk for AD. 

Consequently, it is difficult to identify novel AD loci, also because studies are often characterized 

by replications and refutations.  

Genetic studies identified ε4 allele of the APOE gene as the major susceptibility locus for late-

onset AD (Corder et al., 1993) and several recent GWA studies have, in addition to APOE ε4, 

identified the CLU gene, which encodes for Clusterin protein, as an indipendent genetic locus 

involved in AD risk. 

One of the SNPs located in the CLU gene, rs11136000, was reported to be significantly associated 

with AD by two independent and large-scale GWASs of Caucasian ancestry by Harold et al. (2009) 

and Lambert et al. (2009). 

Several association studies between the CLU SNPs and AD were conducted after the GWA studies 

with controversial results. Among them, subsequent two case-controlled studies (Carrasquillo et al., 

2010; Corneveaux et al., 2010) and three meta-analysis (Jun et al., 2010; Seshandri et al., 2010; 

Kamboh et al., 2012) performed on Caucasian populations confirmed this finding. However, 

despite of these studies, Chen at al. showed evidence of a weak association of the CLU SNP with 

AD (Chen et al., 2012) whereas Lu et al. conducted another association study with no positive 

results (Lu et al., 2014) in two independent southern Chinese population. Finally, a meta-analysis 

study demonstrated that the rs11136000 polymorphism contributed to AD with a similar genetic 

risk in both Asian and Caucasian populations (Liu et al., 2014). 



76 
 

In the CLU gene, other two SNPs (rs2279590, rs9331888) showed statistically significant 

association with AD in samples from European countries (Lambert et al., 2009).  

The rs2279590 polymorphism was also investigated in Asian populations, which included three 

studies in Chinese population (Yu et al. 2010; Chen et al. 2012; Lu et al., 2014) and one study in 

Japanese population (Komatsu et al. 2011), resulting in no or only weak association with AD. On 

the contrary, this polymorphism has been shown to contribute to AD susceptibility both in 

Caucasian and Asian populations in a recent meta-analysis (Zhang et al., 2015).  

Inconsistent results regarding the rs9331888 SNP have also been reported in Asian population (Yu 

et al. 2010; Chen et al. 2012; Lu et al., 2014; Komatsu et al. 2011). This finding was reinforced by 

two recent analysis that confirmed that this SNP was associated with an increased AD risk in 

Caucasian population but not in Asian population (Shuai et al., 2015; Zhang et al., 2015). 

This discrepancy might be attributable to the heterogeneity in the genetic background in different 

populations. On the other hand, studies conducted in Asian population generally had small sample 

size, compared with large-scale GWASs in populations of European ancestry (Harold et al. 2009; 

Lambert et al. 2009).  

To help clarify the relevance of CLU as genetic determinant of AD, we analyzed its association in 

our Conselice population. This study comprised 106 probable sporadic AD patients and 431 age- 

and sex-matched healthy controls. Four SNPs within CLU gene were selected for genotyping: the 

previously mentioned rs2279590, rs9331888 and rs11136000 from GWA studies (Harold et al., 

2009; Lambert et al., 2009) and meta-analysis studies (Jun et al., 2010; Seshadri et al., 2010) and 

the rs9314349. The last one is in the CLU promoter region and might affect CLU expression.  

Nevertheless, no positive association was found between these CLU variants and AD and we were 

unable to replicate CLU SNPs associations in our population. CLU SNPs association with AD risk 

reported by GWA studies and meta-analysis was small according to the relatively small OR values 

obtained from the large population of AD and controls investigated. 
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We could not exclude that the number of AD and controls was too small to reproduce data from 

much larger populations from GWA investigations. 

Because all these subjects belonged to the longitudinal “Conselice study on Brain Aging”, they 

were followed up for five years and cognitive performances were detected at the beginning and at 

end of the study.  

This allowed us to divide our samples into two groups: CTR→CTR and CTR→AD, in which 

CTR→CTR were elderly persons who stayed cognitively healthy, whereas CTR→AD represented 

elderly persons who developed clinical AD at the end of the follow-up after five years. 

In order to verify whether these polymorphisms of CLU could be associated with progression of 

AD, we evaluated the genotype frequencies of CLU SNPs between CTR→AD and CTR→CTR. 

The negative result suggests that CLU variants may not influence AD progression in our cohort and 

this can be explained by our relatively small sample size suggesting that CLU may only exert a 

modest effect to the risk.  

 

4.1.2 Offspring study 

In light of the increasing number of AD patients, the research for factors that might increase or 

lower the risk of manifesting the disease takes on crucial importance. We yet still cannot predict 

with a satisfactory degree of certainty the risk for the population of adult children of persons with 

AD (AD offspring) to develop the same disease of their parents. Moreover, risk and protective 

factors still lack robust data required for devising effective preventive and treatment interventions. 

Therefore, further research may be of particular urgency because there are few data available on the 

genetic background affecting the risk faced specifically by AD offspring (Jarvik et al., 2008). 
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AD is a complex neurodegenerative disorder and heritable factors make an important contribution 

to late-onset AD. Twin studies estimated an high hereditability,  ≥ 60%, for AD (Gatz et al., 2006), 

however, it remains unclear which genes contribute to AD owing to its heterogeneity.  

Although late-onset AD is traditionally referred to as sporadic form of AD, familial clusters have 

been frequently observed and first degree relatives of AD patients are at increased risk for 

developing dementia (Wang et al., 2012). It remains uncertain whether the contribution of family 

history of AD is independent of the APOE ε4 allele as both strongly co-occur (Wang et al., 2012).  

We used samples from a family study in which middle-aged offspring with and without a parental 

history of AD were compared (Van Exel et al., 2009). 

In this study, offspring with a parental history of AD might have an increased number of risk 

factors but did not yet present the disease.  

The over representation of the APOE ε4 allele among offspring with a parental history of AD 

confirm the notion that the APOE ε4 allele was associated with increased risk for the disease also 

in this population.  

However, we were unable to find differences in genotype frequency for both rs11136000 and 

rs9331888 SNPs in offspring populations. This result maybe be ascribed to the population size of 

the group at risk for AD, since among offspring with a positive familiarity only a small percentage 

would develop AD in advanced age. 

However, an increased representation of A allele of the rs9314349 SNP located in the CLU 

promoter region from offspring with positive history of AD was observed. Thus, rs9314349 SNP 

could represent a new genetic risk factor predisposing to cognitive decline and AD. Further studies 

in larger cohorts of offsprings are needed to confirm the above finding. 
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4.2 Variants in antiviral genes as risk factors for cognitive decline 

and dementia 

In recent years, the involvement of infection in the etiology of AD has gained attention suggesting 

a role for viral and bacterial chronic infections as causative inflammatory pathway in AD. A viral 

role in AD, especially involving herpes simplex virus type 1 (HSV-1), was proposed several 

decades ago (Mori et al., 2004; Burgos et al., 2006; Itzhaki et al., 2008; Carter CJ, 2008; Wozniak 

et al., 2009).  

HSV-1 is a neurotropic double-stranded DNA virus that primarily infects epithelial cells of oral and 

nasal mucosa, where it undergoes lytic replication. The newly produced viral particles may enter 

sensory neurons and, by axonal transport, reach the trigeminal ganglion where the virus usually 

establish a latent infection. The trigeminal ganglion neurons also project to the trigeminal nuclei 

located in the brainstem. From here, neurons project to the thalamus to finally reach the sensory 

cortex. This may be the path through which the reactivated virus may reach the CNS and cause 

acute neurological disorders like encephalitis or a mild, clinically asymptomatic, infection, or 

establish lifelong latent infection (Monastero et al., 2014).  

In contrast to the high frequency of HSV-1 DNA in elderly brains, the viral DNA was found to be 

present in only a very small proportion of brains of young people suggesting that HSV-1 enters the 

brain in older age, as a consequence of the decline in the immune system with age (Itzhaki, 2014). 

Subsequently the presence of this virus was found increased in the brain of carriers of the APOE ε4 

allele with AD (Itzhaki et al., 1997).  

Other herpes viruses have the ability to become latent in the infected host and eventually latently 

infect neurons (Monastero et al., 2014). However, investigations focused on these viruses, such as, 

EBV or HHV-6 in AD are limited. 
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The sero-positivity to these viruses is very high worldwide and both EBV and HHV-6 seem to be 

involved in the pathogenesis of various neurological diseases (Licastro et al., 2014). 

Our previous findings showed an association of peripheral blood positivity for EBV DNA with AD 

and elevated levels of EBV specific antibodies were associated with an increased AD risk (Carbone 

et al., 2014). 

HHV-6 has been found in a higher proportion of AD brains than age-matched control brains (Lin et 

al., 2002a). However, this result was not confirmed by another investigation (Hemling et al., 2003). 

An elevated positivity for HHV-6 DNA in peripheral blood and brains of AD has been 

demonstrated beforehand and an increased sero-positivity for this virus was also associated with 

clinical diagnosis of AD (Carbone et al., 2014). 

Moreover, it is also relevant how the host responds to viral infections. Several studies have 

suggested that factors such as number or expression of viral genes and host susceptibility might be 

related to incidence of AD (Monastero et al., 2014). These findings suggested that a differential 

genetic background in genes regulating immune defences against herpes viruses might be 

associated with age-related cognitive deterioration and AD. Cycles of virus latency and infections 

may therefore contribute to neurodegeneration associated with AD in genetically predisposed 

elderly, leading to neuronal loss, inflammation and amyloid deposition (Porcellini et al., 2010; 

Licastro et al., 2011). 

Molecules belonging to the IFNs family are produced by both by innate and adaptive immunity and 

are the major factors with antiviral activity.  

In particular, type III IFNs (IFN-λ) exhibit antiviral activity against several viruses. GWA studies 

have revealed multiple IFN-λ polymorphisms that are linked to clearance of HCV infection and 

possibly improved outcomes with other viral infections, including HBV, CMV, HSV-1, HSV-2 

(Lazear et al., 2015; Griffiths et al., 2015) and HHV-6B (Nordström et al., 2012). 
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The type III IFNs genes (IFN-λ1 or IL-29, IFN-λ2 or IL-28A, IFN-λ3 or IL-28B and the most 

recently discovered IFN-λ4) map on chromosome 19q13. Like type I, type III IFNs trigger a signal 

transduction pathway that induces the activation of JAK-family kinases, phosphorylation of STAT1 

and STAT2, and association between activated STAT complexes and IRF-9 to form ISGF3, which 

translocates to the nucleus and induces expression of hundreds of ISGs (Kotenko et al, 2003; 

Sheppard et al, 2003).  

Among the IFN-λ subtypes, IFN-λ3 shows the most potent bioactivity compared with IFN-λ1 and 

IFN-λ2 (Dellgren et al., 2009) although IFN-λ2 and IFN-λ3 are nearly identical (96% amino acid 

identity) (Sheppard et al., 2003). IFN expression occurs after host detection of pathogen-associated 

molecular patterns by specific PRRs. Transcription factors activated downstream of PRR signaling 

include interferon regulatory factors (IRFs) and NF-kB (Lazear et al., 2015). The IFN-λ1 (IL-29) 

gene expression is regulated by IRF3 and IRF7, thus resembling the regulation of the IFN-β gene, 

whereas IFN-λ2/3 (IL-28A and B) gene expression is mainly controlled by IRF7, thus resembling 

IFN-α genes (Li et al., 2009). 

Most cell types express both types IFN-α/β and IFN-λ after TLRs stimulation or virus infection, 

whereas the ability of cells to respond to IFN-λ is restricted to a narrow subset of cells, including 

plasmacytoid dendritic cells (DCs) and epithelial cells (Ank et al., 2008).  

Almost any cell type is able to express IFN-λ1-3 mRNA in response to diverse viral infections. 

High levels of IFN-λs, but not IFN-α, were observed during viral infection of lung and liver tissues 

and IFN-λs seem to be the major IFNs induced in airway epithelial cells during infection with 

respiratory viruses (Egli et al., 2014a). However, the most potent producers of IFN-λs seem to be 

myeloid and DCs (Egli et al., 2014a). 

Recently, a variant in the upstream region of IFN-λ3, designated as IFN-λ4, has been discovered 

(Prokunina-Olsson et al., 2013). This region harbors a dinucleotide variant (ss469415590) that is 

found in two alternative forms (ΔG or TT alleles). The one-base deletion in the ΔG variant results 
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in a frameshift that in turn creates IFN-λ4 gene encoding the interferon-λ4 protein, which is 

moderately similar to IFN-λ3 (Prokunina-Olsson et al., 2013). 

Recent studies showed that IFN-λ exerts its antiviral activity in vivo by the stimulation of the 

immune system rather than through induction of antiviral state mediators. These activities include 

the increase of the NK and T cell dependent cytotoxicity (Li et al., 2006) and the induction of T 

helper 1 cell responses (Kotenko et al., 2003; Sheppard et al., 2003). 

In a GWA study from a clinical trial on more than 1600 individuals chronically infected with HCV 

Ge et al. found that the rs12979860 SNP, which is located 3kb upstream of the IFN-λ3/IL-28B 

gene, was associated with SVR to antiviral therapy, defined as the absence of detectable virus at the 

end of follow-up evaluation (Ge et al., 2009). The CC genotype showed a two-fold greater rate of 

SVR in patients of European ancestry and Hispanics and a three-fold higher rate in African-

American patients group in comparison to the TT genotype.  

Moreover, genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, shown to 

be deficient in IFN-λ secretion, found a significant correlation with the rs12979860 SNP in the IL-

28B promoter; the homozygous TT genotype being associated with the disease severity progression 

(Griffiths et al., 2013). Besides, IL-28B SNP influenced the replication and viremia level of CMV 

(Egli et al., 2014b) and EBV (Akay et al., 2014). 

Our findings showed that IL-28B TT carriers were significantly over represented in AD patients 

compared to CTR (p=0.047). An over representation of IL-28B TT genotype in the elderly 

developing AD during a five years follow-up compared to subjects that remained cognitively 

healthy was also present. These results suggest that this genotype may favor cognitive deterioration 

by defective anti viral immune responses. 

Using a combined two genome-scale screens for host factors (HFs) involved in virus replication to 

investigate the complex interaction between HSV-1 and its host, Griffiths et al. showed that IL-28B 

was up-regulated by Med23, an anti-viral component of the largely pro-viral multi-protein 
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Mediator complex, at the mRNA and protein level by directly interacting with the transcription 

factor IRF7 (Griffiths et al., 2013). 

It is of interest that a missense mutation (R617Q) in Med23 gene failed to enhance IRF7-induced 

IFN-λ expression (Griffiths et al., 2013) and this mutation was associated with hereditary dementia 

(Hashimoto et al., 2011). The failure to induce IFN-λ and thereby control HSV-1 in the brain may 

be a potential cofactor for the development of dementia, similar to AD. 

Since the synergistic effect of Med23 and IRF7 on IFN-λ induction suggested that IRF7 could be 

the major transcription factor for IFN-λ expression, we decided to investigate the role of SNPs in 

Med23 and IRF7 genes in AD. Med23 and IRF7 SNPs were not investigated in recent GWA 

studies; the IL-28B (rs12979860) was included in the first European GWA investigation, but its 

association with the disease was below 10-5 threshold (Lambert et al., 2009).   

Our data showed that the GG genotype in the rs3756784 SNP in the promoter region of the Med23 

gene was over represented in the elderly converting to AD when compared to the frequency from 

those subjects that remained cognitively healthy at the end of the follow-up (p=0.055) and 

significantly increased in subjects converting to AD without the APOE ε4 allele (p=0.018). This 

could suggest that the SNP in Med23 gene could be associated with the progression of AD 

independently of APOE ε4.  

We also analyzed the rs6598008 SNP in IRF7 gene, which belong to PHRF1 (PHD and ring finger 

domains 1 (PHRF1, also known as KIAA1542) - IRF7 - CDHR5 (cadherin-related family member 

5) locus (Carmona et al., 2012). This SNP was not associated with the AD risk or the progression 

to AD.  

HHV-6 and EBV have been implicated in the development of different neurological diseases (Yao 

et al., 2010; Kleines et al., 2011), but studies regarding these viruses in AD are scarce. As 

previously reported by our laboratory (Carbone et al., 2014), we have shown also in our cohort of 
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subjects that a higher proportion of AD patients than CTR were positive for HHV-6 virus and, 

though to a lesser extent, for EBV virus. 

Therefore, the viral DNA presence were stratified according to IL-28B, Med23 and IRF7 

genotypes. Of the above genes, only Med23 GG genotype was associated with increased positivity 

for HHV-6 DNA presence in PBLs from AD.  

Age-associated immune alterations induced by chronic sub-clinical infections might substantially 

contribute to the appearance of neuroinflammation in the elderly (Licastro et al., 2014).  

Therefore, to assess systemic immune responses to EBV and HHV-6 in AD patients and CTR with 

a different genetic background, serological data about IgG plasma levels (Carbone et al., 2014) 

were stratified for the genotype distribution of SNPs in IL-28B, Med23 and IRF7 genes. AD 

patients with the IRF7 GG genotype showed elevated levels of VCA IgG for EBV. Moreover, the 

elderly converting to AD had increased serum titers of these antibodies. These findings suggested 

that a specific polymorphism in antiviral genes might influence immune responses and progression 

to AD. 

However, these preliminary results should be interpreted with caution and they should be replicated 

in a larger case-control study. We included in this study 158 AD patients and 228 controls subjects, 

genotyped for different SNPs in APOE, IL-28B, Med23 and IRF7 genes. The discrepancy in 

subject number in the different genotyping investigations was due to the fact that DNA and plasma 

samples were not available for all genotyping and for all plasma Ig viral detection. Besides, we 

have differentially genotyped subjects, with inherent implications of selection. Furthermore, 

plasma analyses were run in only 75 subjects.  
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4.3 Gene expression in a model of AD pathology 

5XFAD transgenic mice that overexpress mutant human APP (695) with the Swedish (K670N, 

M671L), Florida (I716V), and London (V717I) Familial Alzheimer's Disease (FAD) mutations and 

human PS1 harboring two FAD mutations, M146L and L286V were used. Expression of both 

transgenes is under the transcriptional control of the neuron-specific Thy-1 promoter to drive 

overexpression in the brain.  

Mutations in genes encoding for APP and presenilins (PS1 and PS2) cause an enhanced production 

of Aβ42 and familial Alzheimer’s disease (FAD). Mice expressing FAD mutations (such as 

5XFAD line) overproduce Aβ42 and present amyloid plaque pathology similar to that found in AD. 

In 5XFAD mouse model extracellular amyloid deposition begins at 2 months reaching a very large 

burden while intraneuronal Aβ42 accumulates in brain starting at 1.5 months of age. These  

transgenic mice have reduced synaptic markers, increased p25 (activation subunit of cyclin-

dependent kinase 5) levels, increased neuron loss and memory impairment in the Y-maze (Oakley 

et al., 2006).  

Thus, 5XFAD mice rapidly summarize the major features of AD amyloid pathology and are useful 

models of amyloid plaque formation and intraneuronal Aβ42-induced neurodegeneration and 

amyloid plaque formation (Oakley et al., 2006). 

Little is known about gene expression changes during neurodegeneration in this AD mouse model. 

Recently, Landel and co-workers carried out a transcriptomic analysis on RNAs from the neocortex 

and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (Landel 

et al., 2014). 

Here, we showed an increased expression of chemokines and myeloid cell markers in the two 

major brain regions affected in AD, cortex and hippocampus, obtained from 5XFAD female mice 

at 40 and 48 weeks of age. 
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Upregulated genes both in the cortex and hippocampus mostly belong to the innate immune 

response and inflammatory response as demonstrated by an over-expression of genes coding for 

chemokines CCL3, CCL6, CCL12 and GFAP, the main astrocytic intermediate filament protein.  

Neuroinflammation is a well-known hallmark of AD characterized by the activation of astrocytes 

and microglia. Chemokines are considered pro-inflammatory factors because they can be induced 

during the immune response to recruit cells of the immune system to the site of infection (Chang et 

al., 2014). Amyloid plaques in human AD and AD mouse models are surrounded by reactive 

astrocytes which express increased GFAP levels; the latter is considered a marker for activated 

astrocytes (Kamphuis et al., 2012). Moreover, recently transcript levels of most known GFAP 

isoforms have been shown to increase with AD progression in human hippocampal tissue at 

different stages of the disease (Kamphuis et al., 2014). 

We found that Toll-like receptors (TLR2 and TLR7) expression was also increased in 5XFAD 

mice, particularly in the hippocampus. On the other hand,  the expression of  the microglial integrin 

marker CD11b was not statistically different from wild-type mice.  

It was already observed that 6-month-old 5XFAD mice showed an upregulation of TLR2, TLR7 

and TLR9 and GFAP (Hillmann et al., 2012). TLR2 and TLR7 were higher also in the cortex of 

another transgenic mice (APP TgCRND8) (Letiembre et al., 2009) and a strong upregulation of 

TLR2 and TLR7 mRNAs was detected in plaque material, compared to plaque-free tissue, in the 

APP23 transgenic mouse model (Frank et al., 2009).  

Fibrillar Aβ1–42 peptides increased the expression of different TLRs, proinflammatory molecules 

and microglial integrin markers (CD11a, CD11b, CD11c, and CD68) in mouse primary microglia 

and BV-2 microglial cells (Jana et al., 2008).  

In our study from 5XFAD mice microglial activation markers CD68 and CX3CR1 were strongly 

overexpressed in the cortex and hippocampus. Given the importance of microglia in physiological 

brain function, it is not surprising that an increasing number of microglia-related genes have now 
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been associated with neuropsychiatric or neurologic disorders. “Activated microglia” were already 

found to exhibit greater expression of CD68, a low-density lipoprotein associated with microglial 

phagocytosis (Walker et al., 2013). Fractalkine receptor CX3CR1, which normally promotes 

phagocytosis of apoptotic cells, shifted microglia towards a phenotype with less capacity to 

phagocytose fibrillary congophilic Abeta in diseased condition (Meyer-Luehmann et al., 2015). 

The transition from the “resting” but surveying microglial phenotype to an activated stage is tightly 

regulated by several extrinsic (e.g., interaction between CX3CR1 and neuronal CX3CL1) and 

intrinsic factors, such as RUNX1 and IRF8, a downstream effector of IFN-γ (Kierdorf et al., 2013), 

which were up-regulated in cortex and hippocampus of our 5XFAD model. IRF8 expression can 

also be induced through TGF-β (Ju et al., 2007). TGF-β receptor is encoded by the TGFBR1 gene 

that was overexpressed in 5XFAD mice of our study.  

We find also an overexpression of  the macrophage colony stimulating factor 1 receptor gene 

(CSF1R), that encodes for a myeloid cell markers, which, together with its ligand (CSF1), co-

signals through TYROBP (Neumann et al., 2013), another upregulated gene. TYROBP (also called 

DAP-12) is the trans-membrane binding partner of TREM2, a microglial/macrophage cell surface 

receptor, which activates a signal transduction leading to brain myelination and inflammation 

(Villegas-Llerena et al., 2015). In mice, TREM2 is expressed in myeloid cells in the brain and 

appears increased in microglia in the vicinity of plaques in APP mice (Melchior et al., 2010; Frank 

et al., 2008). Recently, rare variants in TREM2 have been associated with susceptibility to late-

onset AD, with an odds ratio similar to that of the APOE ε4 allele (Guerreiro et al., 2013; Jonsson 

et al., 2013). Landel proposed that the signalling involving CSF1/CSF1R/TREM2/TYROBP might 

play a role in the 5XFAD physiopathology since all the corresponding genes were strongly 

upregulated in cortex and hippocampus of these aged mice (Landel et al., 2014). 

Another gene greatly expressed in our 5XFAD mice is the Cathepsin D (CTSD). This finding was 

confirmed also in another aged 5XFAD mouse model (Bouter et al., 2014). It is of interest that an 

up-regulation of CTSD mRNA in neurons of AD patients was also reported (Cataldo et al., 1995). 
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CTSD is a lysosomal enzyme found in neuritic plaques and is considered to be involved in amyloid 

precursor protein processing (Schuur et al., 2011).  

In conclusion, the upregulation of all these immune markers makes 5XFAD mice a good model for 

AD because it recapitulates the dysfunction of immune system seen in AD.  
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AD is a multifactorial and progressive neurodegenerative disease and the most common form of 

dementia in the elderly. AD is clinically characterized by a degeneration of the cerebral cortex with 

progressive impairment of memory and cognitive functions and personality changes. Since current 

treatments for AD and strategies for preventing or significantly slowing the disease progression are 

limited, AD is a serious health problem and the number of patients is continuously increasing. It is 

estimated that over 46 million people worldwide are currently living with dementia and that this 

number is estimated to increase to 131.5 million by 2050 (Alzheimer’s Disease International: 

World Alzheimer Report 2015).  

Neuritic senile plaques, neurofibrillary tangles, synapsis loss, neuronal atrophy, microglia 

activation, reactive astrogliosis and cerebral inflammation are neuropathological hallmarks of the 

disease. Overall, 90-95% of AD, also called late-onset AD (LOAD), belongs to the sporadic form 

and affects people over 65 years of age. AD is a complex disorder characterized by interactions 

among multiple genetic, epigenetic and environmental factors. 

Recent GWA studies found that the APOE ε4 allele and SNPs of other genes that regulate 

inflammatory pathways are associated with AD (Harold et al., 2009; Lambert et al., 2009; 

Hollingworth et al., 2011; Naj et al., 2011).  

All these genes can be involved in different mechanisms mediated by viral herpes virus and has 

been proposed that the concomitant presence of these SNPs might result in a genetic signature 

predisposing to AD (Porcellini et al., 2010; Licastro et al., 2011; Licastro et al., 2015). 

A strong association of the CLU gene, also known as APOJ, with the disease was found. CLU is a 

modulator of complement and its cytolytic activity is important for virus neutralization. 

Polymorphisms in this gene might influence virus lytic defences by regulating complement 

activation (Porcellini et al., 2010). 

The family of herpes virus shows characteristics relevant to AD, as the virus infects a large 

proportion of the population, develops a latent persistent infection impossible to eliminate by the 
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immune responses and is able to infect neurons. Brain infections by reactivated latent viruses may 

induce neuronal loss and astroglial activation leading to AD. 

In a case-control study, EBV and HHV-6 were considered as possible environmental risk factors 

for cognitive impairment and progression of AD in the elderly (Carbone et al., 2014). Studies on 

host-pathogen interactions have shown the importance of host factors in the pathogenesis of 

infectious diseases and polymorphisms in genes encoding these factors influenced the response of 

the host and the course of the disease (Russell et al., 2014). 

As already known, one of the most important groups of cytokines with antiviral function are the 

interferons (IFN).  

IFN-λ has direct antiviral functions, common to other IFNs; however, complex regulatory 

mechanisms exist which have implications on viral infection (Egli et al., 2014a). 

Med23, a subunit of the Mediator complex, is a key regulator of IFN-λ induction. It is a coactivator 

involved in transcriptional regulation of almost all RNA polymerase II-dependent genes. Med23 

up-regulates, both at the mRNA and protein level, IFN-λ by interacting with IRF7, an important 

transcription factor involved in innate immunity against HSV-1 infection (Griffiths et al., 2013). 

Results presented in this thesis investigated several SNPs in genes potentially associated with AD 

risk and disease’s progression and involved in herpes virus infection pathways. 

Polymorphisms in the CLU gene were investigated in a population of patients with clinical 

diagnosis of AD and age- and sex-comparable controls. 

AD patients and controls (“Conselice study on Brain Aging”) were followed up during a five year 

period from 1999 and ended in 2004. All subjects belonging to the study were assessed cognitively 

at the beginning and end of the study. 
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Three intronic polymorphisms of the CLU gene (rs2279590, rs11136000, rs9331888) and a SNP 

located in the promoter of the CLU (rs9314349) were investigated. However, no association of 

these SNPs in AD patients was found. 

Studies of offspring whose parents were affected by late-onset AD may be informative for genetic 

factors relevant to AD. For this purpose, rs9331888 and rs11136000 SNPs, and the promoter 

polymorphisms rs9314349 in the CLU gene were analyzed in middle-aged offspring with a positive  

parental history of AD (AD offspring) and negative parental history of AD (CTR offspring). 

Despite no difference was found in the frequency of rs11136000 and rs9331888 SNPs between 

offspring with a parental history of AD and offspring of healthy subjects, the difference in the A 

carrier frequency of rs9314349 SNP between the two gropus was statistically significant. 

Our results suggest that CLU genotypes may have a limited effect on AD risk and this small effect 

emerges only by investigating several thousand cases and controls as it is the case of large GWA 

population studies. 

A gene association study of factors regulating antiviral response, such as interferon IFN-λ3, also 

known as IL-28B, Med23 and IRF7 with cognitive deterioration and AD was also the object of this 

thesis. 

SNPs of IL-28B (rs12979860), Med23 (rs3756784) and IRF7 (rs6598008) genes were analyzed in 

elderly belonging to the above mentioned “Conselice study on Brain Aging”.  

Differences in the TT genotype distribution of IL-28B SNP between AD and CTR were found. The 

GG genotype of Med23 gene appeared to influence the progression of the disease, being more 

frequent in the APOE ε4 negative elderly that developed AD during the five year follow-up.  

Moreover, we were also interested in the immune response of the host to infections, since herpes 

viral replication occurs intermittently throughout life. In fact, viruses of the herpes familiy by 

frequent cycle of reactivation and latency constantly challenge the host immune system. 
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In the present study, both Med23 and IRF7 gene polymorphisms appeared to affect anti-HHV-6 

and EBV immune responses in AD. These findings suggest that individual genetic makeup may 

influence sub-clinical infections by persistent virus and chronic infections may contribute to 

cognitive deterioration. Therefore, these data support the notion that peripheral infections may also 

modulate inflammatory responses in CNS and neurodegenerative processes associated with AD. In 

fact, persistent cycles of virus latency and reactivations by stressing the systemic immune 

responses may contribute to neurodegeneration and progression of cognitive decline in genetically 

predisposed elderly leading to AD.  

However, our data are preliminary and further studies with larger sample sizes is needed to confirm 

and extend these findings. 

AD mouse models can contribute to our understanding of the pathophysiology of the disease. 

Furthermore, they are valuable tools in the preclinical testing of potential drugs for AD therapy. 

The 5XFAD mouse model carrying five mutations associated with familial Alzheimer’s disease 

(FAD) was used. 5XFAD mice rapidly recapitulate major features of AD amyloid pathology and 

may be useful models of neurodegeneration and amyloid plaque formation (Oakley et al., 2006). In 

these mice gene expression studies were performed by using different brain samples. 

Gene expression changes can be involved in the progression of AD in the brain. Like other 

neurodegenerative diseases, AD is the result of complex interactions between many different 

factors over an extended time period.  

Here we showed that several genes belonging to the innate immune response and inflammatory 

response, such as genes coding for chemokines (CCL12,CCL3,CCL6), TLRs (TLR2, TLR7), 

microglial activation markers (CD68, CX3CR1), were up-regulated in female mice of 40 weeks 

and 48 weeks of age, particularly in the cortex and hippocampus. 

Our data from this mouse model of AD suggest that, inflammation-associated pathways and 

sustained microglial activation represent predominant features of AD associated 
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neurodegeneration. Moreover, this study identifies a number of genes already known to be altered 

in human AD, thus confirming that the 5XFAD model can be valid and useful for understanding 

AD pathogenesis and for screening potential therapeutic molecules.  
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