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Preface 

DC to AC converters are widely used in industrial applications, such as motor drives, 

harmonic compensators, active filters and inverters for renewable energy systems.  

Efficiency of motor drives is often sacrificed in order to lower the price of the converters 

and to increase the power density of the systems. The development of power converters for 

renewable energy generation, instead, is mainly driven by efficiency requirements. Higher 

cost of the converters is in fact paid back by energy efficiency policies, and by larger energy 

production over the long term.  

Silicon-based power devices have dominated power electronics applications over the last 

decades. Research and development in microelectronics have pushed the performance of 

power devices to face some fundamental limitations of silicon material. Wide bandgap 

semiconductors, such as silicon carbide, offer a solution to the pressing performance 

requirements of power electronic systems. Silicon carbide power devices can operate at 

higher temperatures, higher frequencies, and generate less power losses as compared to 

traditional silicon-based technologies.  In the last few years, several silicon carbide devices 

have become commercially available on the market at reasonable cost, thereby offering great 

benefits for efficiency demanding applications. 

The use of wide bandgap transistors, however, is not the only way to increase the 

efficiency of the converters. Special DC to AC topologies, named soft switching converters, 

can be adopted as well in order to reduce the switching losses of transistors. Several soft 

switching inverters and control strategies have been proposed in literature. The price that has 

to be paid to increase the efficiency, is a greater hardware and control complexity the 

converter.  

 

The aim of this thesis is the development of DC to AC power converters for applications 

requiring high efficiency. Silicon and silicon carbide based inverters, as well as soft switching 

inverters, have been analyzed and fabricated for performance comparison.  

 

The dissertation is organized as follows.  

Chapter 1 presents the state of art on silicon and silicon carbide power devices.  
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Chapter 2 explores the power loss generation in power switches.  

Chapter 3 presents a topology review of DC/AC soft switching converters. Particular 

attention is given to the operating principle and to the design guide lines of the Zero Voltage 

Transition converter with Two Coupled Inductors (ZVT2CI). The performances of a ZVT2CI 

prototype are compared to that of hard switching converters, based on latest silicon and 

silicon carbide technologies.  

Chapter 4 explores inverter topologies for low power, single phase photovoltaic (PV) 

systems. In the first part of the chapter is presented the diffusion of photovoltaic systems in 

Italy and a review on the requirements for grid connected distributed generators. Particular 

attention is then given to the leakage current issue in transformerless PV system and to 

inverter topologies that can mitigate the problem. Eventually, the experimental performances 

of two single-phase transformerless inverters are presented, one built using high performance 

silicon switches, and one using high switching speed silicon carbide devices. 

The last chapter presents a summary of the results obtained during the Ph.D. research 

activity.  
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Chapter 1                                                          

Trends in Power Transistors Technology 

1.1 State of the art of silicon transistors 

Efficiency of power electronic systems is strongly related to advances in power 

semiconductor technologies since large portion of the losses are dissipated by power 

transistors and diodes. Semiconductor power device technologies have evolved over the last 

decades improving the efficiency and lowering the cost of power converters [1]. 
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Figure 1.1 -  Application of discrete power semiconductors. 

Nowadays, power converters are mainly based on the mature and reliable silicon 

technology [2]. Power devices can be classified in two categories: controlled power switches 

and rectifiers. The controlled device family can be further divided in bipolar-based devices, 
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FET-based devices and devices, such as the IGBT, that combine a bipolar and a FET 

transistor. 

Bipolar devices such as BJTs (Bipolar Junction Transistor), MCTs (Metal-Oxide 

Controlled Thyristor), GTOs (Gate Turn-off Thyristor) and IGCTs (Insulated Gate 

Controlled Thyristor) were the only power switches available before 80s [3]. The earlier 

power converter topologies of the silicon transistor era, e.g., bridge controlled rectifiers and 

cycloconverters, were developed around the characteristics of thyristors. The first real fully 

controllable power switch was the BJT. However, its slow turn-off characteristics (tail 

current) and the complexity required for the base driver circuitry, limited the diffusion of 

BJTs to low power and low frequency applications. Nowadays only IGCTs are still used, 

since they are the only feasible option for high voltage, for high power applications such as 

HVDC power stations and static synchronous compensators (STATCOMs) [4].  

The commercial availability of power MOSFETs in the 70s, and IGBTs in the 80s 

represented an important breakthrough in power semiconductor device technology [5]. These 

new devices replaced bipolar transistors and thyristors for industrial applications, allowing 

the development of efficient power electronic systems.  

 

The aim of this thesis is the development of DC to AC power converters for applications 

requiring high efficiency, such as photovoltaic inverters, motor drives, active filters and 

harmonic compensators. For these applications, the typical DC voltage level is in the range 

from 400Vdc to 800Vdc. As can be seen in Figure 1.2, IGBTs are the only feasible choice 

for applications above 1000V, while MOSFETs are the best devices for applications below 

200V. In between 200V to 1000V the choice between IGBT and MOSFET is application 

dependent [6]. Requirements on cost, size, speed, reliability and efficiency contribute to 

select of the most suitable device. 
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Figure 1.2 - Typical MOSFETs and IGBTs selection as a function of blocking voltage and 

switching frequency. 

1.1.A Power MOSFETs 

More than 30 years of research and development in microelectronics have led to silicon 

power switches with outstanding electrical performances, several classes of devices were 

developed following the requirements demanded by different kind of converter topologies.  
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Figure 1.3 – Lateral and vertical MOSFET structures. 
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The earlier power MOSFET developed was a lateral device since, as depicted in Figure 

1.3, the current flows along the plane of the device from the drain to the source. Lateral 

MOSFET have low on-resistance since the current flows in highly doped silicon region, 

however, the length of the channel increases with the increase of blocking voltage capability 

of the device, requiring larger silicon area [7]. For economic and power density reasons, the 

lateral MOSFET structure was replaced by the Vertical Double Diffused MOSFET 

(VDMOSFET). In this device, as can be observed in Figure 1.3, the current flows vertically 

from the top to the bottom through the silicon wafer [8]. The VDMOSFET structure includes 

an intrinsic body diode, therefore the operation in the first and in third quadrants of the V-I 

characteristic is allowed without the need of an external freewheeling diode. The drift region 

is a low-doping region of the MOSFET, which is required to support the block voltage when 

the device is off. Its thickness increases as the break down voltage (𝑉𝐵𝐷) rating of the device 

increases. As can be seen in Figure 1.4, for high voltage VDMOSFET the main contribution 

to the on state resistance is due to the drift region, therefore, the only way to reduce the overall 

on-resistance is to use larger silicon area, increasing the cost of the device. The minimum 

contribution of the drift region to the specific on-resistance per surface unit (𝑅𝑂𝑁−𝑆𝑃) is 

proportional to 𝑉𝐵𝐷
2.5, which is known as 1D-Silicon limit of power MOSFETs [9]: 

 𝑅𝑂𝑁−𝑆𝑃 = 6 ∙ 10
9 𝑉𝐵𝐷

2.5 [Ω 𝑚𝑚2⁄ ]. (1.1) 

Another weakness of power MOSFETs is the fact that, as the voltage rating increase, the 

reverse recovery characteristics of the parasitic body diode deteriorates causing the increase 

of switching losses [10]. For the technical and economic reasons above, power MOSFETs 

are hardly ever selected for applications above 200V. 

VDMOSFET layout is still used today, power transistor companies have invested 

resources to improve the dynamic behavior of the device and to increase its power density. 

At the same pace of the improvement in VDMOSFET technology, other device structures 

were born in response to the demand of devices specifically optimized for low voltage and 

high voltage applications.  
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Figure 1.4 - Contribution to the on state resistance of a VDMOSFET as function of the 

blocking voltage 

The trench gate MOSFET was introduced in order to reduce the conduction losses of the 

transistor in low voltage applications. As depicted in Figure 1.5, the gate of the trench 

MOSFET does not lay on the surface of the chip like in VDMOSFET, but it expands 

vertically inside the wafer. For this device, the induced channel in the P well region in the 

on-state is arranged vertically, so that the overall distance covered by the electrons is shorter 

than in the case of VDMOSFET. This solution reduces significantly the RDS(on) of the 

transistor [11]. 
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Figure 1.5 – VDMOSFET and trench MOSFET structures. 
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Regarding high voltage MOSFETs, a breakthrough in the technology was the introduction 

in the late 90’s of a device structure that broke the 1D-limit of power MOSFETs [12]. The 

concept was based on the charge compensation effect, known as super-junction principle 

[13], a special structure that allows a significant reduction of the drift region resistance. 

Super-junction power devices were commercially introduced in 1998 by Infineon 

(CoolMOS) [14], and are now available from 500V to 900V. The theoretical 𝑅𝑂𝑁−𝑆𝑃 limit of 

VDMOSFETs and SJ MOSFETs are depicted  in Figure 1.6. It can be seen that the super 

junction technology can potentially achieve higher power density than VDMOSFET. 

However, super junction MOSFETs, for physical reasons, are more prone to have a low 

performance body diode. In DC to AC inverter topology i.e. half bridge, full bridge and three 

phase inverter, the presence of the freewheeling diode in parallel to the transistor is essential 

for the proper operation of the converter. Several applications reported the failure of the 

transistors under hard turn off of the diode due to its reverse recovery characteristic [15] [16] 

[17]. As reported in the section 2.2, for half bridge-based converters under inductive load, 

the reverse recovery current of the diodes increases the turn-on losses of the power transistor 

and is seen as a temporary shoot-trough of the DC source. 

 

Figure 1.6 – 1D-Silicon limits of VDMOSFETs and SJ MOSFETs 

Although SJ MOSFETs are hardly ever selected for DC to AC inverters, they are widely 

used in DC to DC power conversion. In topologies such as buck, boost, PFC and Flyback the 

body diode never conducts, so all the benefits of the power MOSFETs can be exploited.  

 



Trends in Power Transistors Technology  

9 

1.1.B Power IGBTs 

The technological evolution of the power transistors has affected also IGBTs family. 

During the last two decades significant advances were achieved in the fabrication of IGBTs.  
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Figure 1.7 – Comparison of the structure of a VDMOSFET and of a PT IGBT. 

The basic layouts of a power MOSFET and of a IGBT look very similar. The cross section 

of the firstly commercialized Punch Through (PT) IGBT and the one of the VDMOSFET are 

depicted in Figure 1.7. It can be notice that an IGBT is a power MOSFET with the addition 

of a P layer under the N substrate. However, in spite of the similarity, the physical operation 

of the IGBTs is closer to that of bipolar transistors rather than that of power MOSFETs. 

During the on-state, the P layer injects holes into the highly resistive n- drift layer increasing 

its conductivity. The overall effect is the reduction of the on-state voltage drop of the device. 

For this reason, IGBT is sometimes called conductivity modulated metal oxide field effect 

transistor [18]. For the reasons above, the IGBT merges the high current handling capability 

of a bipolar transistor with the ease of control of a MOSFET.  

Another important characteristic of IGBTs is the absence of a parasitic body diode typical 

of MOSFETs. This feature gives the freedom and the flexibility to choose an external fast 

recovery diode to match the target application [19].  
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Figure 1.8 -  Evolution of Infineon IGBTs, from Punch Trough to TRENCHSTOP™ 5  

technology 

Early versions of IGBTs suffered severe limitations. First of all, they could potentially 

loose ability to be turned-off (latch up) in some dynamic conditions [20], furthermore, the 

negative temperature coefficient of IGBTs made the parallel operation of devices hard to 

achieve [21]. The problems above are no longer present for the latest generations of IGBTs, 

moreover, improvement in the switching performances have narrowed the gap between 

IGBTs and MOSFETs. Figure 1.8 compares the cross sections of different IGBT 

technologies, namely planar Punch Through (PT), planar Non Punch Through (NPT), Trench 

Field Stop, and their historical introduction on the market [22].  

 

1.2 Wide bandgap materials – Silicon Carbide 

The development of power semiconductor devices has always been a driving force for 

power electronics systems. For a long time, silicon-based power devices have dominated the 

power electronics applications [23]. As the needs and requirements for electric energy 

continuously grow nowadays, silicon devices are coming to face some fundamental limits in 

performance due to the inherent limitations of silicon material properties.  
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Wide bandgap materials, such as Silicon Carbide (SiC) offer a long term solution to the 

pressing requirements on dynamic performance and efficiency requirements of power 

electronic systems [2] [24] [25] [26] [27].  

In a solid material, electrons exist at energy levels that combine to form energy bands [28]. 

The top level band is called the conduction band and the lower is called valence band. The 

region between the valence band and the conduction band is a forbidden state where ideally 

no electron exists. If the electrons in the valence band are excited externally, they can jump 

to the conduction band. For a conductor, like copper, the forbidden band does not exist and 

the energy bands overlap completely. For an insulator, on the other hand, this band is so wide 

that the electrons need large amount of energy to move from the valence band to the 

conduction band. For the semiconductors conversely, the forbidden gap exists and is smaller 

than that of an insulator. At a certain temperature, electrons have enough energy to move 

spontaneously to the conduction band, this generate an uncontrolled conduction mode that 

must be avoided. In silicon transistors, the temperature at which the devices start to behave 

like a conductor is around 170°C. Wide bandgap semiconductors have the advantage of high 

temperature operation as the thermal energy required to promote electrons in the valence 

band is higher than the one of silicon materials (1.12 eV). The energy bandgap level is not 

the only propriety that make SiC superior material for power electronics devices. The main 

physical property of Si and SiC semiconductors are reported and compared in Table 1.1. 

 

Table 1.1 - Material properties of silicon and silicon carbide. 

Property Si SiC 

Breakdown Field (MV/cm) 0.3 2.2 

Energy Bandgap (eV) 1.1 3.3 

Thermal conductivity [W/cm K] 1.5 4.9 

Saturated electron drift velocity 

[cm/s] 

1 2 

Electron mobility (10^3 cm2/V sec) 1.5 1 
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Figure 1.9 - Material properties of silicon and silicon carbide. 

As can be seen in Figure 1.9, SiC presents greater thermal conductivity, higher critical 

electric field, higher saturated electron drift velocity, and slightly lower electron mobility 

than Si [29]. 

SiC offers a critical electric field that is more than seven times higher than Si. This 

property increases the voltage blocking capability of power devices and allows the reduction 

of the drift layer thickness of power MOSFETs, reducing significantly the on-state resistance. 

Furthermore, the higher thermal conductivity of SiC makes it superior to Si in terms of heat 

dissipation, while the wider bandgap energy (3.3 eV) allows high-temperature operation 

above 300 °C. The superior electron drift velocity also makes SiC devices capable of 

extremely fast commutation. 

Infineon Technologies and Cree Inc. introduced the first commercial SiC power devices 

in 2001 and 2002, which were 600V SiC Schottky diodes [30], [31]. Schottky diodes are 

majority carrier devices, therefore they do not exhibit the reverse recovery phenomena, a very 

favorable characteristic for high-voltage applications [32]. SiC technology extended the 

breakdown voltage of Schottky diodes above 1000 V, which was previously limited below 

200 V for Si technology. Another important characteristic of the SiC Schottky diodes is their 

positive thermal coefficient, which allows a stable parallel connection of diodes in order to 

handle high currents. The success of the SiC Schottky diodes pushed the development and 
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commercialization of the first junction field-effect transistor (JFET) by SemiSouth 

Laboratories in 2008 [33]. In 2011, three years after the release of the SiC JFET, Cree 

commercialized the first SiC Vertical Double Diffused MOSFET (SiC VDMOSFET) [31].  

 

Figure 1.10 - History of the commercialization of SiC devices. 

Today, several manufacturers produce SiC MOSFETs, including General Electric (GE), 

ROHM Semiconductor, Mitsubishi Electric, Microsemi, GeneSiC, and United Silicon 

Carbide. In 2012 the first SiC bipolar junction transistor (BJT) was presented by Fairchild 

[34].  

SiC PN diodes [35], IGBTs [36] and thyristors [37] are still under development, and are 

targeted at high voltage systems (> 10 kV). 
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Chapter 2                                               

Power Loss Mechanism in Power Transistors 

2.1 Introduction 

Understanding the power loss mechanism of power transistor is essential for the 

development of efficient power converters.  

Device losses can be divided in two main contributes, the conduction losses and the 

switching losses [10]. Conduction losses are defined as the energy dissipated by a transistor 

or diode is in the conduction state (on-state). This loss contribution is related to the static 

characteristic of power switches, i.e., unipolar and bipolar devices but is independent to the 

switching frequency of the converter. As described in the previous chapter, many generations 

of MOSFETs and IGBTs have been developed during the last 30 years with the aim of the 

reduction of the forward voltage drop.  

 

 

Figure 2.1 – V-I characteristic two typical 650 V IGBT and SJ MOSFET rated for the same 

current 
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Generally, power MOSFETs have a linear forward voltage drop whereas IGBTs, being 

bipolar devices, show a diode like exponential characteristic. For example, the forward 

characteristics of two best in class devices are reported in Figure 2.1; the first is a 650V, 40A 

trench-field stop IGBT (TS-FS IGBT) and the second is a 650 V, 40A, 40 mΩ Super Junction 

MOSFET (SJ MOSFET). It can be seen that the two 25°C characteristics match at 40A. 

Below the nominal current, the voltage drop of the MOSFET is lower than the voltage drop 

of the IGBT, making the device more efficient during low load conditions. On the other hand, 

the forward characteristic of the MOSFET deteriorates more than the one of the IGBT when 

the junction temperature is 125 °C, making the IGBT more suitable for overload and high 

temperature operations. 

The choice of the best device suited for the target application cannot be done only on the 

basis of the conduction behavior, switching losses must be considered as well. Switching 

losses are defined as the energy dissipated by the device during the transition from the on-

state to the off-state, and vice versa, due to the overlap of the applied voltage and the 

conducted current.  

In first analysis, switching losses depend on the dynamic performance of the devices, on 

the voltage applied in the block state, on the switching frequency and on the converter 

topology. Several families of MOSFETs and IGBTs have been developed with the aim of 

reducing the conduction losses, switching losses or a tradeoff of them.  

 

2.2 Losses in AC to DC power converters 

The world most diffused architectures of DC to AC power conversions are based on the 

half bridge two levels converter, also known as inverter leg, which consists of two power 

transistors in a totem pole configuration [10]. Single phase, three phase and, more in general 

m-phase DC to AC two level converters can be obtained connecting together m inverter legs, 

as illustrated in Figure 2.2. 
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Figure 2.2 – multi phase DC/AC converters based on the half bridge leg. 

The half bridge topology, controlled by pulse width modulation (PWM), is widely adopted 

in industrial applications, especially with an ohmic-inductive load connected to the output. 

In this configuration, during the switching transient, the output inductance maintains nearly 

constant the load current, which commutates from a transistor to the complementary 

freewheeling diode and vice versa. Since this commutation mechanism is the most diffused 

operation mode in power electronics converters, manufactures provide the turn on and turn 

off losses of their transistors using a simplified operation of the half bridge under inductive 

mode operation, called double pulse tester (DPT) [38]. Basically the double-pulse tester is an 

inductive load buck converter, containing one device under test (DUT), one freewheeling 

diode (usually the same diode endowed in the DUT) and a load inductor (See Figure 2.3).  

A two pulse train is sent to the gate of the DUT, the widths of both pulses and the interval 

in between them is adjustable.  

During the first pulse, 𝑉𝐷𝐶 is applied to the inductor 𝐿0 and current 𝐼0 rises linearly: 

 𝑑𝐼0
𝑑𝑡

=
𝑑𝐼𝐶
𝑑𝑡

=
𝑉𝐷𝐶
𝐿0
. (2.1) 
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Since in this condition the load current flows through the DUT, the duration of the fist 

gate pulse 𝑇1 is adjusted in a way to obtain the desired value for the current 𝐼𝐶 𝑇𝐸𝑆𝑇: 

 
𝑇1 =

𝐿0 𝐼𝐶 𝑇𝐸𝑆𝑇
𝑉𝐷𝐶

. (2.2) 

The falling edge of the first pulse corresponds to the turn off of the device, then the turn 

off switching energy 𝐸𝑂𝐹𝐹 at the current 𝐼𝐶 𝑇𝐸𝑆𝑇 and voltage 𝑉𝐷𝐶 can be evaluated. 

 

 
Figure 2.3 – Switching characterization test power switches. a) double pulse tester. b) gate-

emitter voltage, collector-emitter voltage and collector current of the DUT. c) 

switching waveforms during turn-on and turn-off. 
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Between the fist and the second gate pulse, the load current flows through the top 

freewheeling diode 𝐷𝐹𝑊 and remains nearly unchanged at the value 𝐼𝐶 𝑇𝐸𝑆𝑇. The rising edge 

of the second pulse corresponds to the turn on of the device at current 𝐼𝐶 𝑇𝐸𝑆𝑇 and voltage 

𝑉𝐷𝐶, then turn on switching energy 𝐸𝑂𝑁 can be evaluated.  

The typical voltage and current switching waveforms of a power switch in the DPT are 

depicted in Figure 2.3. The turn-on time 𝑡𝑂𝑁  is defined as the time between the moment at 

which the conducted current (𝐼𝐶) rises to 10% of the 𝐼𝐶 𝑇𝐸𝑆𝑇 current to the moment at which 

the applied voltage (𝑉𝐶𝐸) falls to 10% of the steady state blocking voltage 𝑉𝐷𝐶. The turn-off 

time 𝑡𝑂𝐹𝐹 is defined as the time from the moment at which the applied voltage (𝑉𝐶𝐸) rises to 

10% of the steady state blocking voltage 𝑉𝐷𝐶  to the moment at which the conducted current 

(𝐼𝐶) falls to 10% of the test current 𝐼𝐶 𝑇𝐸𝑆𝑇. The turn-on switching energy 𝐸𝑂𝑁 and the turn-

off switching energy 𝐸𝑂𝐹𝐹 are defined as the integrals of the product of 𝑉𝐶𝐸  and 𝐼𝐶  over 𝑡𝑂𝑁  

and 𝑡𝑂𝐹𝐹   respectively. 

 

The switching speed of the transistor, i.e., 
𝑑𝐼𝐶

𝑑𝑡
 and 

𝑉𝐶𝐸

𝑑𝑡
, can be varied, within the safe 

operation limits of the device, changing the value of the gate resistance 𝑅𝐺 . Faster switching 

speed reduces the overlap time of 𝑉𝐶𝐸 and 𝐼𝐶, hence, reducing the switching losses.  

The junction temperature 𝑇𝑗 of the DUT influences the switching energy as well. The DUT 

junction temperature during the test can be regulated by using a temperature controlled 

heatsink.  

It’s important to mention that the reverse recovery charge 𝑄𝑅𝑅 of the freewheeling diode 

takes part to the switching loss generation increasing the carried current of the DUT during 

the turn on. Silicon Fast Recovery Diodes (FREDs) are usually chosen as a freewheeling 

diode of IGBTs due to their low reverse recovery charge. In the case of Si-MOSFET, the 

freewheeling diode coincides with the intrinsic parasitic body diode. However, the reverse 

recover performance of the body diode of MOSFETs degrades as the voltage rating increases. 

For high voltage MOSFETs (𝑉𝐵𝐷 > 250𝑉), the reverse recover characteristics of the body 

diode is usually so poor that the transistor can easily fail due to the excessive heat generation. 

The introduction in 2001 of the first 600V zero reverse recovery charge SiC Schottky diode 

made possible the fabrication of hybrid Si-IGBT + SiC-Schottky devices for efficiency 

demanding applications. Differently from silicon SJ MOSFETs, silicon carbide MOSFETs 
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counterpart are suited for the operation in totem pole configuration since the parasitic body 

diode has dynamic behavior similar to a FRED diode. 

Another important parameter that affects the switching losses of the DUT is the parasitic 

inductance in the power loop of the double pulse tester. The DUT current 𝐼𝐶 flows also 

through the stray inductance 𝐿𝜎, increasing the transient blocking voltage on the DUT at the 

turn on (𝐿𝜎
𝑑𝐼𝐷

𝑑𝑡
> 0) and reducing the applied voltage at the turn off (𝐿𝜎

𝑑𝐼𝐷

𝑑𝑡
< 0), therefore 

increasing 𝐸𝑂𝐹𝐹 and reducing 𝐸𝑂𝑁.  

In fist approximation, switching losses of a transistor operating in a half bridge 

configuration are function of: 

 𝐸𝑠𝑤 = 𝑓(𝑉𝐷𝐶 , 𝐼𝐶 , 𝑅𝐺 , 𝑇𝑗 , 𝐿𝜎 , 𝑄𝑅𝑅). (2.3) 

Device manufacturers provide in the datasheet of their devices the switching energies 

obtained in the DPT, varying the key parameters that influence the switching losses i.e., 

𝑉𝐷𝐶 , 𝐼𝐶 , 𝑅𝐺 and 𝑇𝑗. The switching losses obtained in the DPT of a commercial IGBT (Infineon 

IKW30N60T) are depicted in Figure 2.4 and Figure 2.5. 

 

Figure 2.4 – Switching energies of the IGBT Infineon IKW30N60T as function of collector 

current (left figure) and of gate resistance (right figure) 
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Figure 2.5 - Switching energies of the IGBT Infineon IKW30N60T as function of the junction 

temperature (left figure) and of collector-emitter voltage (right figure) 

In half bridge based converters, given the switching frequency and the modulation 

technique, the only way to reduce the switching losses is to select fast transistors, low reverse 

recovery diodes and minimize the parasitic inductance of the power loops.  

Topologies in which power losses are generated during the turn on and off of the 

transistors are called hard switching converters, all the DC to AC converters based on the 2L 

half bridge topology are part of the hard switching family.  

A different way to improve the overall efficiency of AC to DC power converters is to use 

topologies that reduce the switching losses, avoiding the simultaneous presence of high 

voltage and high current during the commutation of the transistors. Such kind of topologies 

are called soft switching converters [10].  

 

Switching trajectory is a graphical way to see the switching behavior of a transistor by 

superimposing the voltage 𝑉𝐶𝐸 and the current 𝐼𝐶 in a X-Y plot. The switching trajectories of 

the DUT previously presented in Figure 1.1, are depicted on the left side of Figure 2.6. It can 

be clearly seen that hard switching commutations appear as rectangular square trajectories. 

The soft switching locus in the 𝑉𝐶𝐸-𝐼𝐶 plane instead, appear completely different. As can be 
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seen in the right side of Figure 2.6, the transition from the on state to the off state and vice 

versa moves along the axes of the graph, avoiding then the overlap of high voltage and high 

currents i.e. reducing the switching losses. 

 

VCEOFF STATE

ON STATEIC ON

VCE ON VDC

IC

Turn ON

Turn OFF

VCE
OFF STATE

ON STATEIC ON

VCE ON VDC

IC

Turn ON

Turn OFF

HARD switching trajectory SOFT switching trajectory

 

Figure 2.6 – Comparison of hard and soft switching trajectories. 

Inevitably, to archive the soft switching operation, the complexity of the converter is 

increased when compared to a standard hard switched inverter.  

Power electronic designers are called to choose the converter topology and select power 

devices that can satisfy the constraints on cost, efficiency, performance and power density of 

the converter. For applications requiring high efficiency, the higher complexity and cost of a 

soft switching converter can be justified only if the overall efficiency is higher than the 

efficiency obtainable with a simpler structure, e.g., half bridge based converter, using the best 

power transistors available on the market.   

Further details about soft switching converters are presented in chapter Chapter 3.  
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Chapter 3                                                   

Soft Switching in DC to AC Converters 

3.1 Introduction 

Developments in power electronics of the last two decades involved not only power 

switches, but also circuit topologies and control strategies. Since the 70s, the most diffused 

control technique for power converters is the Pulse Width Modulation (PWM). Ideally, power 

switches are operated only in two low-loss conditions, the interdiction state (fully off) and 

the saturated state (fully on). When a switch is in the off state and high voltage is applied to 

the device, practically no current is allowed to flow. Instead when the switch is on, the current 

can flow through the device with a very low internal voltage drop (<2 V). Power losses, being 

the product of voltage and current, are thus in both cases extremely low. However, during 

the commutation between the on-state and the off-state, transistors could be subjected to the 

simultaneous presence of high voltage and high current, which lead to high levels of power 

losses. 

Converter topologies in which power losses are generated during the commutations are 

called hard switching converters. 

VCE

OFF 
STATE

ON 
STATEIC ON

VCE ON VDC

IC

Snubbered

Hard switching

Soft 
switching

Safe operating area

 

Figure 3.1 –  Comparison of typical hard, snubbered and soft switching trajectories of an 

IGBT or BJT.  
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A typical trajectory in (𝑉𝐶𝐸, 𝐼𝐶) plane of a switch, operated in hard switching conditions 

is shown in Figure 3.1 for an IGBT (𝑉𝐶𝐸 is the collector-emitter voltage, 𝐼𝐶 is the collector 

current). It is important to mention that the switching trajectory must be inside the Safe 

Operating Area (SOA) prescribed by the manufacturer for the device, operation outside this 

limit leads to the failure of the device. A possible solution to relieve the stresses of the 

component is the addition a snubber circuit (suppressor), which reduces the overlap of high 

values of current and voltage and consequentially the power dissipated by the device.  

However most snubber circuits divert the part of energy that would be dissipated by the 

transistor to an external dissipative circuit, e.g., RC snubber and RCD snubber, hence it is 

clear that the global efficiency of the system is not increased. 

In the 80's, considerable research efforts were directed toward the use of resonant 

topologies to increase efficiency of converters [39]. The basic idea was to include reactive 

elements in converters, in order to induce sinusoidal oscillations that create the conditions 

for a zero-voltage (ZVS) or zero current (ZCS) switching of the transistors. This behavior 

corresponds, in the (𝑉𝐶𝐸, 𝐼𝐶) plane, to a switching trajectory that avoids the simultaneous 

presence of high voltage and high current. Such kind of topologies were firstly called soft 

switching converters. The drastic reduction of the switching losses and the technological 

improvement of the devices made possible to achieve switching frequencies of hundreds of 

kHz (typically 100-200 kHz). However, resonant converters had several drawbacks in 

comparison to conventional PWM converters, e.g., higher peak current and higher voltage 

stress, leading to higher conduction losses and requiring devices with higher voltage and 

current rating. Furthermore, resonant converters where controlled by means of frequency 

modulations techniques (FM) rather than PWM, making this new class of converters more 

suited for DC to DC applications rather than for DC to AC inverters. 

In the late 80s and during the 90s, new generations of soft-switching converters that 

combined the advantages of conventional PWM converters with those of resonant converters 

were proposed. Unlike full resonant converters, the resonance phase is used in a controlled 

way, during the on and off transition of the switches, creating the conditions for zero voltage 

and zero current switching. Apart from the resonant transition, these converters behaved like 

traditional PWM converters.  
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3.2 Overview of DC to AC soft switching inverters 

Soft-switching techniques offer a substantial reduction of the losses, allow high frequency 

operation and avoid the use of the dissipative snubbers. Many soft switching inverters and 

control strategies have been proposed, a general classification of soft switching inverter 

proposed in [40] is shown in Figure 3.2. 

 

Figure 3.2 – Classification of soft switching DC/AC converters 

Since in soft switching converters commutations have to happen when the voltage or the 

current of the switches are zero, measurement circuits are required to detect the ZV and ZC 

conditions and to trigger the gate driver of transistors; high bandwidth measurement circuits 

are hence required. Voltage measurement is quite easy to implement, whereas high 

bandwidth current measurement is more complicated. The simplest method for current 

measurement is the use of a shunt resistors, which acts as a linear current to voltage 

transducer, although power losses are introduced by the resistor as well as stray inductance 

in the power loop. For the reasons above, zero voltage switching operation is generally 

preferred to zero current switching. 
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Regarding zero voltage switching converters, it is possible to follow two different 

approaches to achieve soft switching.  

Resonant DC-Link family: 

- Resonant DC-link inverter [41]; 

- Actively-clamped resonant DC-Link inverter [42]; 

- Resonant inverter with minimum voltage stress [39]; 

Resonant Pole family: 

- Auxiliary resonant pole inverter [43]; 

- Auxiliary resonant commutated pole inverter [43]; 

The Resonant DC-link inverter, depicted in Figure 3.3, was proposed by Deepakraj M. 

Divan in 1989 [41]. The basic idea is to introduce a resonance on the DC link of the inverter 

so that the voltage at the input of the inverter periodically drops to zero, therefore the 

configuration of the inverter can be changed under ZVS conditions. However, to control this 

type of converters, it is required an Integral Pulse Density Modulation (PMID) strategy since 

the switching can occur only at the instants at zero voltage, which are determined by the 

resonant frequency of the DC link [44]. Despite the potential advantages of this family of 

converters, too many drawbacks prevented its diffusion. In [45] [46] [47] is concluded that 

resonant DC link inverters, compared to traditional hard switched inverters, have a 

significantly higher harmonic distortion caused by the IPDM modulation. In addition, the 

peak voltage of the DC link is two times higher than the voltage of the DC link of a 

conventional inverter. Although auxiliary circuits can be used to reduce the peak voltage to 

1.3-1.5 time the input voltage, the blocking capability of the transistor of the inverter 

(topologies in Figure 3.4 and Figure 3.5) is increased in comparison to a traditional hard 

switched converter.  Furthermore, the power entirely passes through the resonant inductor of 

the DC link, thus reducing the efficiency and limiting the use of these converters only for low 

power applications.  
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Figure 3.3 - Resonant DC-Link Inverter. 

 

Figure 3.4 - Active-Clamped Resonant DC-Link Inverter. 

 

Figure 3.5 - Resonant Inverter with Minimum Voltage Stress. 
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The resonant pole family was proposed by Rik W. De Doncker in 1990 to overcome the 

limitations of the DC link converters [43]. The basic configuration, depicted in Figure 3.6, 

uses auxiliary resonant circuits on the load side of each inverter branch to force to zero the 

voltage whenever it is required to switch a transistor. The auxiliary branches are constituted 

of a bidirectional switch connected in series with an inductor, which ensures the zero current 

switching operation of the bidirectional switch and the zero voltage switching of the transistor 

of the main branch.  

Differently from DC link inverters, this approach does not cause over voltage spikes 

higher than the DC link voltage, therefore the blocking voltage of the power switches equal 

to that of hard switched DC/AC converters. Furthermore, the full power of the system does 

not flow through the auxiliary circuits, making this converter suitable for high power 

applications.  

 

Figure 3.6 - ARCP DC to AC converter. 

 

The control of the auxiliary branches, however, is very complicated since it depends on 

the amplitude and sign of the load current [43]. Several auxiliary circuit variations have been 

proposed to improve the efficiency of the first version of ARCP converter, to make the 

control easier and to reduce the current rating of the devices. Among them it is worth 

mentioning: 
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- Zero Current Transition converter (ZCT) [45]; 

 

Figure 3.7 – Schematic of a three phase ZCT. 

- Zero Voltage Transition with a Single Switch converter (ZVTSS) [45]; 

 

Figure 3.8 -  Schematic of a three phase ZVTSS. 

- Zero Voltage Transition with a Single Inductor converter (ZVTSI) [45]; 

 

Figure 3.9 - Schematic of a three phase ZVTSI. 
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- Zero Voltage Transition with a Coupled Inductor converter (ZVTCI) [48]; 

 

Figure 3.10 - Schematic of a ZVTCI inverter leg. 

- Zero Voltage Transition with two Coupled Inductor converter (ZVT2CI) [49]; 

 

Figure 3.11 - Schematic of a ZVT2CI inverter leg. 

The Zero Voltage Transition with two Coupled Inductor (ZVT2CI) is the latest evolution 

of the Resonant Pole family [49]. The detailed analytical model of this topology is presented 

in section 3.3.B whereas the design procedures of a 2 kW, 400 Vdc single phase converter 

are presented in section 3.3.C. An efficiency comparison between the soft switching 

converter and a hard switched counterpart using the latest transistor technology is presented 

in section 3.3.D. 
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3.3 Zero Voltage Transition Converter with two Coupled 

Inductors 

Among the soft-switching inverter presented in section 3.2, in this thesis attention has 

been given to the auxiliary pole family due to the higher efficiency [45] and relatively simple 

control. The converter selected for a performance comparison with hard switched converters 

is the zero voltage transition converter with two coupled inductors in one resonant pole [49]. 

This topology solves the main drawbacks of the transformed-based ZVS converters, i.e., the 

saturation of the core of the inductors [48], by resetting the magnetizing current each 

switching cycle.   
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Figure 3.12 - Schematic of a ZVT2CI inverter leg feeding an highly inductive load,    

approximated by a current source. 
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3.3.A Topology description 

A branch of a zero voltage transition converter with two couple inductor in one resonant 

pole is shown in Figure 3.12. As in a conventional inverter, two switches (𝑄1 and 𝑄2) with 

freewheeling diodes (𝐷1 and 𝐷2) form the main leg of the converter. Connected in parallel to 

the two main switches there are the resonance capacitors 𝐶𝑅1  and 𝐶𝑅2, which play a key role 

to archive the zero-voltage turn-on of 𝑄1 and 𝑄2 and to reduce the turn-off losses. Two 

auxiliary branches are connected to the central point of the main leg. Each one consists of an 

autotransformer ATR, an auxiliary switch (𝑄𝑋1,2) and two auxiliary diodes (𝐷𝑋3,4) and 

(𝐷𝑋5,6). The auxiliary resonant current can be established by turning on the auxiliary switch, 

which conducts the resonant current through the respective coupled magnetics. The upper 

auxiliary branch takes part to the commutation only if the load current is positive while the 

second one operates only in case of commutation under negative load current. The switches 

of the main branch switch under zero voltage (ZVS) conditions, while the switches of the 

auxiliary branches under zero current (ZCS) conditions.  

 

3.3.B Operating principle of the converter 

In order to simplify the analysis and obtain an analytical description of the converter, the 

following assumptions have been made: 

- power switches and diodes have zero forward voltage drop in the on-state and are 

open circuits in the off-state; 

- the output capacitance of the transistors is negligible; 

- diodes have no reverse recovery charge; 

- the switching time of the power switches is zero, i.e., commutations are instantaneous; 

- autotransformers and capacitors have zero losses; 

- the load is highly inductive, then the load current can be considered constant over a 

switching cycle. Therefore, the load can be modelled as a DC current source. 

The control adopted for the converter, originally proposed in [49], requires four 

independent PWM signals 𝐺𝑋1, 𝐺𝑋2, 𝐺1 and 𝐺2  to control the switches 𝑄𝑋1, 𝑄𝑋2, 𝑄1 and 𝑄2 

respectively.   
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𝐺𝑋1 and 𝐺𝑋2 are complementary signals with a dead time in between them, exactly as they 

were the gate signals of a half bridge converter.  

The turn-on rising edge of the main switch gate signal 𝐺1 is controlled adaptively by a 

zero voltage detector logic, which checks the drain-source voltage of 𝑄1 and ensures soft 

switching turn-on under any load current and any source voltage condition. Instead, the turn-

off falling edge of 𝐺1 is controlled by a fixed time delay from the falling edge of the PWM 

command 𝐺𝑋1, the delay time ensures the complete reset of the magnetizing current of the 

transformer 𝑇1 every switching period.  

In the same way, the turn ON rising edge of the main switch gate signal 𝐺2 is controlled 

adaptively by a zero voltage detector logic, which checks the drain-source voltage of 𝑄2 and 

ensures soft switching turn ON. The turn OFF falling edge of 𝐺2 is controlled by a fixed time 

delay from the falling edge of the PWM command 𝐺𝑋2, the delay time ensures the complete 

reset of the magnetizing current of the transformer 𝑇2 every switching cycle.  

In the analysis of a period, it is assumed that the load current is positive. Therefore, in the 

following description the auxiliary pole L, which operates only in case of negative output 

current, is not considered. The circuit considered in the next analysis is re-drawn in Figure 

3.13. 
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Figure 3.13 - Schematic of the ZVT2CI converter, considering only the main bridge and the   

positive current auxiliary pole. 
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One operating cycle of the converter can be subdivided in nine phases as shown in Figure 

3.14, each phase can be analyzed using an equivalent circuit of the converter. The duration 

of each phase has been increased for the sake of clarity. The sign convention for voltages and 

currents follows the notation of Figure 3.13.  

The stating point of the analysis is the end of the interval [𝑡0-𝑡1], which corresponds to the 

freewheeling circulation of the output current through the diode 𝐷2.  
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Figure 3.14 - Timing diagram of the ZVT2CI inverter. 
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Phase 0 - [𝒕𝟎, 𝒕𝟏] 

At 𝑡 = 𝑡0, the main switch 𝑄2 is turned off under ZVS conditions, the current 𝐼𝑂𝑈𝑇 that 

was flowing through the channel of the MOSFET (third quadrant operation) is diverted to 

the body diode 𝐷2. Therefore: 

 𝑖𝑄2 = −𝐼𝑂𝑈𝑇 . (3.1) 

The turn-off action does not change the output voltage and current waveforms. All the 

gate signals are low and the resonant current 𝑖𝑅𝐸𝑆 is zero.  

The resonant capacitors across 𝑄1 and 𝑄2 respectively are fully charged and discharged: 

 𝑣𝑄1 = 𝑉𝐷𝐶 (3.2) 

 𝑣𝑄2 = 0 . (3.3) 
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Figure 3.15 –Detail of the ZVT2CI converter during time [t0, t1]. 

Phase 1 - [𝒕𝟏, 𝒕𝟐] 

At 𝑡 = 𝑡1, the auxiliary switch 𝑄𝑋1 is turned-on by the PWM signal 𝐺𝑋1. The input voltage 

𝑉𝐷𝐶 is applied to the primary side of the autotransformer and then the diode 𝐷𝑋3 is forced in 

conduction mode, the components that take part to this phase are highlighted in Figure 3.16.  
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Figure 3.16 - Detail of the ZVT2CI converter during time [t1, t2]. 
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Figure 3.17 – Equivalent circuit of the ZVT2CI converter during time [t1, t2]. 

To simplify the analysis, the equivalent circuit of the auto transformer depicted in Figure 

3.17 is introduced. The equivalent electrical parameters of the autotransformer, i.e., the no-

load voltage 𝑉20
′′ , the magnetizing inductance 𝐿𝑀

′′  and leakage inductance 𝐿𝜎
′′ , are referred to 

the secondary side. The autotransformer behaves then like a DC voltage source of amplitude 

 
𝑉20

′′ =
𝑁2

𝑁1 + 𝑁2
𝑉𝐷𝐶 = 𝑘𝑉𝐷𝐶 . (3.4) 
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Initially, the load current 𝐼𝑂𝑈𝑇 is freewheeling through 𝐷2, keeping the pole voltage 𝑣𝑃0 

to zero. The secondary side of the autotransformer is then short circuited and voltage 𝑘𝑉𝐷𝐶 

is completely applied to the leakage inductance 𝐿𝜎
′′  and to the magnetizing inductance 𝐿𝑀

′′ . 

Let us define 𝑡′ = 𝑡 − 𝑡1. The resonant current 𝑖𝑅 rises linearly as follow: 

 
𝑖𝑅 =

𝑘𝑉𝐷𝐶
𝐿𝜎′′

𝑡′. (3.5) 

Simultaneously, a magnetizing current 𝑖𝑀
′′  is established: 

 
𝑖𝑀
′′ =

𝑘𝑉𝐷𝐶
𝐿𝑀
′′ 𝑡′. (3.6) 

Phase 1 ends at 𝑡 = 𝑡2, when the resonant current 𝑖𝑅 reaches the value of the output current 

𝐼𝑂𝑈𝑇 and the diode 𝐷2 is forced to turn-off. Therefore, phase 1 lasts: 

 
𝑇12 = 𝑡2 − 𝑡1 =

𝐿𝜎
′′  𝐼𝑂𝑈𝑇
𝑘𝑉𝐷𝐶

. (3.7) 

The real currents in the windings of the autotransformer can be calculated as follow: 

 𝑖1 = 𝑘( 𝑖𝑅𝐸𝑆 + 𝑖𝑀
′′  ) (3.8) 

 𝑖2 =  𝑖𝑅𝐸𝑆 − 𝑖1 = (1 − 𝑘)𝑖𝑅𝐸𝑆 − 𝑘𝑖𝑀
′′  . (3.9) 

It can be seen from equations (3.10) and (3.11) that the resonant current 𝑖𝑅𝐸𝑆 is shared 

between the transistor 𝑄𝑋1 and the diode 𝐷𝑋3.  

 

Phase 2 - [𝒕𝟐, 𝒕𝟑] 

At 𝑡 = 𝑡2, the resonant current 𝑖𝑅𝐸𝑆 exceeds the load current: the diode 𝐷2 is forced in 

blocking mode and the resonant transition that leads to the ZV turn-on of 𝑄1 begins. The 

excess of current 𝑖𝑅𝐸𝑆 − 𝐼𝑂𝑈𝑇 charges and discharges the resonant capacitors 𝐶𝑅2 and 𝐶𝑅1 and 

the pole voltage 𝑉𝑃0 start rising.  

The Figure 3.18 illustrates the topological configuration of the circuit of phase 2, while 

Figure 3.19 shows the equivalent circuit. 

If we assume that the resonant capacitor 𝐶𝑅1 and 𝐶𝑅2 have the same capacity 𝐶𝑅, then the 

circuit of Figure 3.19 can be further simplified as in Figure 3.20. 
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Figure 3.18 - Detail of the ZVT2CI converter during time [t2, t3]. 
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Figure 3.19 - Equivalent circuit of the ZVT2CI converter during time [t2, t3]. 
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Figure 3.20 - Equivalent circuit of the ZVT2CI converter during time [t2, t3]. 
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Let us define 𝑡′ = 𝑡 − 𝑡2. The following differential equations can be written: 

 𝑑𝑖𝑅𝐸𝑆
𝑑𝑡′

=
𝑑(𝑖𝑐 + 𝐼𝑂𝑈𝑇)

𝑑𝑡
=
𝑑𝑖𝑐
𝑑𝑡′

 (3.10) 

 

𝑘𝑉𝐷𝐶 − 𝐿𝜎
′′
𝑑𝑖𝑐
𝑑𝑡

− 𝑣𝑃0 = 0 (3.11) 

 

𝑖𝑐 = 2𝐶𝑅
𝑑𝑣𝑃0
𝑑𝑡′

 . (3.12) 

Equations (3.10), (3.11) and (3.12) can be combined to obtain a second order differential 

equation: 

 𝑑2𝑣𝑃0
𝑑𝑡′2

+
1

2𝐶𝑅
𝑣𝑃0 =

1

2𝐶𝑅𝐿𝜎′′
𝑘𝑉𝐷𝐶 . (3.13) 

 The solution of (3.13) for the given initial conditions 

 𝑣𝑃0|𝑡′=0 = 0 (3.14) 

 𝑑𝑣𝑃0
𝑑𝑡′

|
𝑡′=0

=
𝑖𝑐
2𝐶𝑅

|
𝑡′=0

=
𝑖𝑅𝐸𝑆 − 𝐼𝑂𝑈𝑇

2𝐶𝑅
|
𝑡′=0

= 0 (3.15) 

is 

 𝑣𝑃0 = 𝑘𝑉𝐷𝐶[1 − cos(𝜔𝑅𝑡′)] (3.16) 

where  

 
𝜔𝑅 =

1

√2𝐶𝑅𝐿𝜎′′
 (3.17) 

is the natural resonant frequency of the L-C series circuit. The equation (3.16) states that the 

pole voltage rises following a cosine shape evolution, whose peak voltage is: 

 𝑉𝑃0𝑀𝐴𝑋 = 2𝑘𝑉𝐷𝐶  . (3.18) 

 The voltages across 𝑄1 and 𝑄2 are obtained from 𝑣𝑃0 as follows: 

 𝑣𝑄1 = 𝑉𝐷𝐶 − 𝑣𝑃0 = VDC − 𝑘𝑉𝐷𝐶[1 − cos(𝜔𝑅𝑡′)] (3.19) 

 𝑣𝑄2 = 𝑣𝑃0 = 𝑘𝑉𝐷𝐶[1 − cos(𝜔𝑅𝑡′)] . (3.20) 

The time evolution of 𝑣𝑄1 and 𝑣𝑄2for several values of 𝑘 are depicted in Figure 3.21. If 

the turn ratio 𝑘 of the autotransformer is greater than 0.5, the voltage 𝑣𝑄2 = 𝑣𝑃0 could rise 



Chapter 3 

40 

above 𝑉𝐷𝐶. Actually, the freewheeling diode 𝐷1 of the to switch 𝑄1 prevents the pole voltage 

to be greater than the input voltage, therefore 𝑣𝑃0 is clamped to 𝑉𝐷𝐶. In this condition the ZV 

logic of the upper main switch turns 𝑄1 on, since 𝑉𝑄1 is zero, archiving a zero switching 

losses commutation.   

The autotransformer turn ratio 𝑘 must be strictly greater than 0.5 to obtain a ZVS 

transition. Practically, 𝑘 is selected between 0.55 and 0.6 in order to ensure a safe operation 

margin, since the real peak of 𝑉𝑃0 during the resonant transition is reduced by the equivalent 

series resistance in the resonant loop, which includes the resistance of the transformer and 

the forward voltage drop on transistors and diodes. 

 

Figure 3.21 – Resonant transition of voltages 𝑉𝑄1 and 𝑉𝑄2 during time [t2, t3]. 

Assuming that 𝑘 > 0.5, phase 2 ends when at 𝑡 = 𝑡3, when 𝑣𝑃𝑂 reaches 𝑉𝐷𝐶. The duration 

of phase 2 can be obtained by assuming 𝑣𝑃𝑂 = VDC in (3.16): 
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𝑇23 = 𝑡3 − 𝑡2 =

1

𝜔𝑅
cos−1 (

𝑘 − 1

𝑘
) . (3.21) 

Thus, the turn-on delay time between the main switch 𝑄1 and the auxiliary 𝑄𝑋1 switch can 

be obtained as follows: 

 
𝑡3 − 𝑡1 =

𝐿𝜎
′′  𝐼𝑂𝑈𝑇
𝑘𝑉𝐷𝐶

+
1

𝜔𝑅
cos−1 (

𝑘 − 1

𝑘
) . (3.22) 

This expression indicates that the delay time is variable and dependent on the load current. 

Therefore, a ZV detector is required to automatically adapt the turn-on of 𝑄1  to different load 

and source conditions [50]. 

The resonant current 𝑖𝑅𝐸𝑆 can be expressed as follows: 

 
𝑖𝑅𝐸𝑆 = 𝑖𝐶 + 𝐼𝑂𝑈𝑇 = 2𝐶𝑅

𝑑𝑣𝑃0
𝑑𝑡′

+ 𝐼𝑂𝑈𝑇 =
𝑘𝑉𝐷𝐶
𝑍𝑅

sin(𝜔𝑅𝑡′) + 𝐼𝑂𝑈𝑇 (3.23) 

where 𝑍𝑅 is the resonant impedance: 

 

𝑍𝑅 = √
𝐿𝜎′′

2𝐶𝑅
 . (3.24) 

The peak of the resonant current happens when 𝑣𝑃0 is equal to 𝑘𝑉𝐷𝐶, because: 

 𝑑𝑖𝑅𝐸𝑆
𝑑𝑡

=
𝑘𝑉𝐷𝐶 − 𝑣𝑃0

𝐿𝜎′′
. (3.25) 

Assuming 
𝑑𝑖𝑅𝐸𝑆

𝑑𝑡
= 0 the peak value of 𝑖𝑅 can be obtained: 

 
𝐼𝑅𝐸𝑆𝑀𝐴𝑋 = 𝐼𝑂𝑈𝑇 +

𝑘𝑉𝐷𝐶
𝑍𝑅

 . (3.26) 

It can be seen that 𝐼𝑅𝐸𝑆𝑀𝐴𝑋  is greater than 𝐼𝑂𝑈𝑇, but the resonant contribution that takes 

part to the charge and discharge of 𝐶𝑅1 and 𝐶𝑅2 is constant for any load current. At the end 

of phase 2, the resonant current reaches the following value: 

 
𝐼𝑅𝐸𝑆−𝑡3 = 𝐼𝑂𝑈𝑇 +

𝑘𝑉𝐷𝐶
𝑍𝑅

sin(𝜔𝑅𝑇23) . (3.27) 

During the entire phase 2 the voltage 𝑘𝑉𝐷𝐶 is applied to 𝐿𝑀
′′ , so the magnetizing current 

increases linearly and in 𝑡3 it reaches the value:  

 
𝐼𝑀−𝑡3
′′ =

𝑘𝑉𝐷𝐶
𝐿𝑀
′′ (𝑇12 + 𝑇23). (3.28) 
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Phase 3 - [𝒕𝟑, 𝒕𝟒] 

At 𝑡 = 𝑡3, the capacitor 𝐶𝑅1 is fully discharged, while the capacitor 𝐶𝑅2 is charged at the 

voltage 𝑉𝐷𝐶. Diode 𝐷1 prevents the pole voltage 𝑉𝑃0 from rising above 𝑉𝐷𝐶 and conducts the 

excess current 𝑖𝑅 − 𝐼𝑂𝑈𝑇 back to the source. As long as the resonant current is greater than 

the output current, 𝐷1 is forward biased and 𝑉𝑄1 is clamped to zero. Therefore, switch 𝑄1 can 

be turned-on under ZV conditions. The configuration of the converter during phase 3 is 

depicted in Figure 3.22, while Figure 3.23 shows the equivalent circuit. 

Let us define 𝑡′ = 𝑡 − 𝑡3. The resonant current decreases linearly subjected to the voltage 

(1 − 𝑘)𝑉𝐷𝐶: 

 
𝑖𝑅𝐸𝑆 = 𝐼𝑅𝐸𝑆−𝑡3 −

(1 − 𝑘)𝑉𝐷𝐶
𝐿𝜎′′

𝑡′. (3.29) 

The ZV logic circuitry must detect the ZV condition and turn 𝑄1 on before 𝑖𝑅𝐸𝑆 falls below 

the load current, otherwise the ZV switching condition is lost. The time window for the ZV 

turn-on can be evaluated introducing (3.26) into (3.29) and solving 𝑡′ for 𝑖𝑅𝐸𝑆 = 𝐼𝑂𝑈𝑇: 

 

∆𝑇𝑍𝑉𝑆 =
1

𝜔𝑅

𝑘

1 − 𝑘
sin(𝜔𝑅𝑇23) =

1

𝜔𝑅
√
2𝑘 − 1

(1 − 𝑘)2
 . (3.30) 

The equation (3.30) states that the ZV time window is an intrinsic property of the 

converter, which depends only on the transformer turn ratio, on the transformer leakage 

inductance and on the resonant capacitors.  

When switch 𝑄1 is turned on, the current 𝑖𝑄1 that was flowing in the diode 𝐷1 is diverted 

to the channel of 𝑄1. After the time ∆𝑇𝑍𝑉𝑆, the current of 𝑄1 becomes positive and continues 

to increase linearly, diverting the load current from the auxiliary circuit to the main switch: 

 𝑖𝑄1 = 𝑖𝑅𝐸𝑆 − 𝐼𝑂𝑈𝑇 . (3.31) 

The magnetizing current keeps rising since 𝑘𝑉𝐷𝐶 is still applied to 𝐿𝑀
′′ :  

 
𝑖𝑀
′′ = 𝐼𝑀−𝑡3

′′ +
𝑘𝑉𝐷𝐶
𝐿𝑀
′′ 𝑡′. (3.32) 
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Figure 3.22 – Detail of the ZVT2CI converter during time [t3, t4]. 
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Figure 3.23 - Equivalent circuit of the ZVT2CI converter during time [t3, t4]. 

Phase 3 ends when the current 𝑖2 that flows through 𝐷𝑋3 falls back to zero, forcing the 

turn-off of the diode. By using (3.8), (3.29) and (3.32) the current 𝑖2 can be written as:  

 
𝑖2 = (1 − 𝑘) (𝐼𝑅𝐸𝑆−𝑡3 −

(1 − 𝑘)𝑉𝐷𝐶
𝐿𝜎′′

𝑡′) − 𝑘 (𝐼𝑀−𝑡3
′′ +

𝑘𝑉𝐷𝐶
𝐿𝑀
′′ 𝑡′) . (3.33) 

The duration of phase 3 can be obtained imposing 𝑖2 = 0 and solving for 𝑡′ = 𝑇34: 
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𝑇34 = 𝑡4 − 𝑡3 =

(1 − 𝑘)𝐼𝑅𝐸𝑆−𝑡3 − 𝑘𝐼𝑀−𝑡3
′′

𝑉𝐷𝐶 (
𝑘2

𝐿𝑀
′′ +

(1 − 𝑘)2

𝐿𝜎′′
)
 . 

(3.34) 

Since in a transformer the magnetizing inductance is much larger than the leakage 

inductance, (3.34) can be approximated as follows: 

 
𝑇34 ≅

𝐿𝜎
′′  

(1 − 𝑘)𝑉𝐷𝐶
𝐼𝑅𝐸𝑆−𝑡3  . (3.35) 

From time 𝑡1 to 𝑡4 the transformer is supplied. Therefore, the magnetizing current 𝑖𝑀
′′  rises 

linearly and its final value in 𝑡4 can be calculated as:  

 
𝐼𝑀−𝑡4
′′ =

𝑘𝑉𝐷𝐶
𝐿𝑀
′′ (𝑇12 + 𝑇23 + 𝑇34) . (3.36) 

It has been shown that at the end of phase 3 the current 𝑖2 has dropped to zero. Figure 3.24 

helps to understand the relations between the currents of the transformer in 𝑡4. By using (3.8), 

(3.9) and (3.33),the resonant current 𝐼𝑅𝐸𝑆−𝑡4 and the primary current of the autotransformer 

𝐼1−𝑡4 can be calculated as: 

 
𝐼1−𝑡4 = 𝐼𝑅𝐸𝑆−𝑡4 =

𝑘

1 − 𝑘
𝐼𝑀−𝑡4
′′  . (3.37) 

N1
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iRES

i1
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DX3

 

Figure 3.24 – Relation between the resonant current and the currents in the windings of the 

autotransformer. 

  



Soft Switching in DC to AC Converters  

45 

Phase 4 - [𝒕𝟒, 𝒕𝟓] 

Phase 4 starts in 𝑡 = 𝑡4 when the current 𝑖2 of the transformer falls to zero and the diode 

𝐷𝑋3 is forced to turn-off therefore, the secondary winding becomes an open circuit. 

Therefore, the autotransformer behaves just like an inductor , which is formed by 𝑁1 primary 

turns wounded around the core of the transformer. The equivalent inductance 𝐿𝑁1 can be 

calculated as follows: 

 
𝐿𝑁1 = 𝐿𝑀

′′ (
𝑁1
𝑁2
)
2

= 𝐿𝑀
′′ (

1 − 𝑘

𝑘
)
2

. (3.38) 

It can be seen in Figure 3.25 and in the equivalent circuit of Figure 3.26 that a low 

resistance loop is formed by 𝑄𝑋1 (which is still on), 𝑄1 and the primary winding 𝑁1. Therefore 

the current 𝐼1−𝑡4 = 𝐼𝑅𝐸𝑆−𝑡4 calculated in (3.37) can freewheel without attenuation, since the 

voltage applied to 𝐿𝑁1 is zero. The current carried by 𝑄1 is: 

 𝑖𝑄1 = 𝐼𝑂𝑈𝑇 − 𝐼𝑅𝐸𝑆−𝑡4 ≅ 𝐼𝑂𝑈𝑇 . (3.39) 

Phase 4 lasts as long as the PWM signal of 𝐺𝑋1is high.  
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Figure 3.25 - Detail of the ZVT2CI converter during time [t4, t5]. 

 



Chapter 3 

46 

CR2

VDC

CR1

0

P

LN1 

Q1

Q2

IOUT

iRES

vP0=vQ2

iQ2

iQ1

vQ1
QX1

 
Figure 3.26 - Equivalent circuit of the ZVT2CI converter during time [t4, t5]. 

Phase 5 - [𝒕𝟓, 𝒕𝟔] 

At 𝑡 = 𝑡5, the PWM signal 𝐺𝑋1 goes to zero and turns-off the switch 𝑄𝑋1. At the same 

time the current 𝑖1, since is flowing through the inductor 𝐿𝑁1, forces the turn on of the diode 

𝐷𝑋5.   

Therefore, it begins the resetting phase of the current 𝑖𝑅𝐸𝑆.  

Let us define 𝑡′ = 𝑡 − 𝑡5: 

 
𝑖𝑅𝐸𝑆 = 𝐼𝑅𝐸𝑆−𝑡4 −

𝑉𝐷𝐶
𝐿𝑁1

𝑡′. (3.40) 

Figure 3.27 illustrates the topological configuration of the circuit, while Figure 3.28 shows 

the equivalent circuit. 
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Figure 3.27 - Detail of the ZVT2CI converter during time [t5, t6]. 
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Figure 3.28 - Equivalent circuit of the ZVT2CI converter during time [t5, t6]. 

During the resetting of 𝑖2, the diode 𝐷𝑋3 is reverse biased by the voltage induced in 𝑁2: 

 
𝑣𝐷𝑋3 = 𝑉𝐷𝐶 +

𝑁2
𝑁1
𝑉𝐷𝐶 =

1

1 − 𝑘
𝑉𝐷𝐶  . (3.41) 

For values of turn ratio greater than 0.5, it appears that 𝐷𝑋3 has to withstand a voltage 

greater than 2𝑉𝐷𝐶. This phenomenon must be taken seriously into account during the design 

of the converter. 

Phase 5 ends at 𝑡 = 𝑡6, when the resonant current 𝑖𝑅 falls to zero and the diode 𝐷𝑋5 is 

forced to turn-off. Therefore, the duration of phase is: 

 
𝑇56 = 𝑡6 − 𝑡5 =

𝐿𝑁1𝐼𝑅𝐸𝑆−𝑡4
𝑉𝐷𝐶

 . (3.42) 

The delay time 𝑇𝐷𝐿𝑌 introduced between the falling edges of the PWM signals 𝐺𝑋1 and 𝐺1 

(see Figure 3.14) must guarantee the complete reset of the resonant current each switching 

cycle. An incomplete reset leads to the bias of 𝑖𝑅𝐸𝑆, which increases cycle by cycle, leading 

to the saturation of the autotransformer and to the possible failure of the converter. Therefore, 

the delay time must greater than 𝑇56 calculated at the maximum output current of the 

converter: 

 𝑇𝐷𝐿𝑌 > 𝑇56|𝐼𝑂𝑈𝑇 𝑀𝐴𝑋  . (3.43) 
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Phase 6 - [𝒕𝟔, 𝒕𝟕] 

Phase 6 starts at 𝑡 = 𝑡6 when the resonant current has been fully reset and the output 

current flows only through switch 𝑄1.  

Figure 3.29 illustrates the topological configuration of the circuit. 

 

-

CR2

VDC

N1

N2

CR1

Q2

QX1

DX5

DX3

Q1

D1

D2

GX1 G1

G2

T1

0

P
IOUTiRES

vP0=vQ2

iQ2

iQ1

i1

i2

vQ1

 

Figure 3.29 - Detail of the ZVT2CI converter during time [t6, t7]. 

Phase 7 - [𝒕𝟕, 𝒕𝟖] 

At 𝑡 = 𝑡7, the main switch 𝑄1 is turned-off by the PWM signal 𝐺1. Ideally, 𝑄1 interrupts 

instantly 𝐼𝑂𝑈𝑇, which continues to flow through the capacitor 𝐶𝑅1. Therefore, 𝐶𝑅1 is being 

charged by 𝐼𝑂𝑈𝑇 while 𝐶𝑅2 is being discharged. Figure 3.30 illustrates the configuration of 

the circuit during phase 7. 

Let us define 𝑡′ = 𝑡 − 𝑡5, the pole voltage can be expressed as: 

 
𝑣𝑃0 = 𝑉𝐷𝐶 −

𝐼𝑂𝑈𝑇
2𝐶𝑅

𝑡′. (3.44) 

The pole voltage decreases linearly to zero, with a slope proportional to the load current, 

phase 7 ends when 𝑣𝑃0 reaches zero. 

 
𝑇78 = 𝑡8 − 𝑡7 =

2𝐶𝑅𝑉𝐷𝐶
𝐼𝑂𝑈𝑇

 . (3.45) 
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Figure 3.30 - Detail of the ZVT2CI converter during time [t7, t8]. 

Phase 8 - [𝒕𝟖, 𝒕𝟗] 

At 𝑡 = 𝑡8 the pole voltage 𝑣𝑃0 reaches zero, diode 𝐷2 is forced to turn-on and the load 

current 𝐼𝑂𝑈𝑇 freewheels through 𝐷2 (see Figure 3.31). 
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Figure 3.31 - Detail of the ZVT2CI converter during time [t8, t9]. 
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In  this condition, since 𝐷2 keeps the voltage 𝑣𝑄2 to zero, the ZV logic can turn-on 𝑄2 

without the generation of switching losses. Then, the current 𝐼𝑂𝑈𝑇 that was flowing through 

diode 𝐷2 is diverted to the channel of 𝑄2, resulting in a third quadrant operation as depicted 

in Figure 3.32.  
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Figure 3.32 - Detail of the ZVT2CI converter during time [t8, t9]. 

Phase 8 is the last mode of operation, and it continues until the beginning of the next 

switching cycle, which is described in phase 0. 

 

The operation of the converter in the case of a negative output current involves the 

negative current auxiliary pole L and is similar to the analysis presented so far, therefore it 

will be not considered. 
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3.3.C Converter design 

Design specifics 

The design procedures of one leg of ZVT2CI inverter are presented in the following 

subsections. The specifications of the converter are as follows: 

Table 3.1 – Design specifications of the ZVT2CI inverter. 

Design Specifics Value 

DC link voltage 𝑉𝐷𝐶 400 V 

Phase current 𝐼𝑂𝑈𝑇−𝑀𝐴𝑋 16 ARMS 

Switching frequency 𝐹𝑆𝑊 Up to 20 kHz 

 

Main transistor selection  

As discussed in section 1.1, IGBTs are usually selected for applications above 200 VDC in 

hard switched DC to AC inverters. The use MOSFETs could potentially increase the 

efficiency of converters due to the fact that the majority carrier devices can switch much 

faster than bipolar transistors. However, power MOSFETs present an inherent parasitic diode 

whose dynamic performance and di/dt ruggedness deteriorates dramatically with the increase 

of the blocking voltage, generating switching losses and leading to potential failure of the 

device. Typical di/dt ruggedness for the largest part of 600V SJ MOSFET body diodes is 

below 100A/µs, while the di/dt during the hard turn off of diode in DC to AC converters can 

easily reach 1500A/µs, far above the inherent limit of SJ MOSFETs. 

For the ZVS2CI Inverter described in 3.3.A, instead, the di/dt of the current during the 

turn off of the diode 𝐷2 (phase 1) is controlled by the leakage inductance and the turn ratio 

of the auxiliary autotransformer, accordingly to the equation: 

 𝑑𝑖𝑄
𝑑𝑡

=
𝑑𝑖𝑅
𝑑𝑡

=
𝑘𝑉𝐷𝐶
𝐿𝜎′′

 . (3.46) 

Therefore, the leakage inductance of the auxiliary autotransformer can be designed to limit 

the di/dt to less than 50 A/µs, making the use of SJ MOSFETs possible and safe for the main 

switches 𝑄1 and 𝑄2 of the inverter. However, even if di/dt is limited below the physical limit 
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of the SJ MOSFETs, the reverse recovery charge of the body diode of MOSFETs could affect 

the ideal operation of the converter during the resonant transition. 

A short introduction to reverse recover phenomena is required for best understanding of 

the power switches selection criteria.    

It is well known that when a diode is switched from the conducting state to the blocking 

state, the stored charge in the PN junction must be recombined before that the diode can 

recover the ability to block the reverse voltage. The recombination takes a finite amount of 

time, known as Reverse Recovery Time, or 𝑡𝑟𝑟.  

The reverse recovery time can be divided into two parts, corresponding to the duration of 

two distinct consecutive steps: 

1. the storage time 𝑡𝑆, which is defined as the time between the instant when the current 

crosses the zero, and the instant when the current reaches the peak of reverse recovery 

𝐼𝑅𝑅𝑀; 

2. the fall time 𝑡𝑓, which is defined as the time necessary for the current to fall from 

𝐼𝑅𝑅𝑀 to 10% 𝐼𝑅𝑅𝑀.  

During the storage phase, the current decreases linearly, whereas during the second phase 

the current drops back to zero following an exponential law.  

In general, 𝑡𝑠, 𝑡𝑓 and 𝐼𝑅𝑅𝑀 are functions of the current 𝐼𝐹 at the turn off, of the fall rate 
𝑑𝑖𝐹

𝑑𝑡
 

during 𝑡𝑆, of the reverse blocking voltage and of the junction temperature of the diode. 
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Figure 3.33 - Reverse recovery waveforms and definitions. 

Regarding the ZVS2CI inverter, the reverse recovery charge of 𝐷1 and 𝐷2 can cause an 

increase in the resonant current during the resonant phases.  
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The switching cycle of the converter, described in section 3.3.B, begins when the load 

current flows through the freewheeling diode 𝐷2. The aim of the auxiliary pole is to bring the 

pole voltage 𝑣𝑃0 to 𝑉𝐷𝐶 allowing the ZV turn-on of the upper switch 𝑄1. In doing so, a current 

pulse 𝑖𝑅𝐸𝑆 higher than 𝐼𝑂𝑈𝑇 is injected in the point P of the converter. The first part of the 

pulse has the aim of turning off the freewheeling diode 𝐷2, while the second part charges and 

discharges the resonant capacitors across the transistor 𝑄1 and 𝑄2, therefore increasing the 

pole voltage.  

Assuming an ideal behavior of diodes, the pole voltage starts rising exactly when the 

resonant current reaches the load current, forcing the diode 𝐷2 in block mode. This case is 

analytically described in section 3.3.B and is reported in Figure 3.34 for the sake of clarity.  
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Figure 3.34 - Resonant transition of the 

converter if ideal diodes are considered. 

Figure 3.35 -  Resonant transition of the 

converter if real diodes are considered. 
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However, real diodes, can recover the blocking capability only when the charges stored in 

the PN junction have been completely recombined, therefore higher resonant current than in 

the ideal case is required to turn-off 𝐷2. The resonant transition of the converter in the case 

of real diodes is depicted in Figure 3.34. It can be seen that the pole voltage is kept to zero 

until 𝑡2′, when the resonant current is equal to:  

 𝐼𝑅𝐸𝑆−𝑡2′ = 𝐼𝑂𝑈𝑇 + 𝐼𝑅𝑅𝑀 . (3.47) 

Therefore, the total time required to fully turn off the diode 𝐷2 is larger than in the ideal 

case and lasts: 

 
𝑇12′ = (𝑡2 − 𝑡1) + (𝑡2′ − 𝑡2) = 𝑇12 + ∆𝑇𝐵𝑂𝑂𝑆𝑇 =

𝐿𝜎
′′  𝐼𝑂𝑈𝑇
𝑘𝑉𝐷𝐶

+
𝐿𝜎
′′  𝐼𝑅𝑅𝑀
𝑘𝑉𝐷𝐶

 . (3.48) 

The time delay introduced by the reverse recovery characteristic of the diode is called 

boost time ∆𝑇𝐵𝑂𝑂𝑆𝑇, since the resonant current 𝑖𝑅𝐸𝑆 is boosted above the load current 𝐼𝑂𝑈𝑇.  

The presence of the boost phase has negative effects on the operation of the converter, 

including: 

 increase in the peak value of the resonant current; 

 longer duration of the resonant transition; 

 increase in the conduction losses of the auxiliary circuits due to the larger RMS value 

of the resonant current; 

 increase in the magnetizing current and therefore longer reset time is required. 

Then the main switches 𝑄1 and 𝑄2 should be selected in such a way that the freewheeling 

diodes 𝐷1 and 𝐷2 are endowed with a low recovery current. IGBTs are usually co-packed 

with fast recovery diodes, therefore they are potentially suitable to operate as main switches 

in the ZVS2CI inverter. Instead not all power MOSFETs are suited for this application; only 

MOSFETs with a fast body diode should be selected for the use in the ZVS2CI inverter.  

Given the above, both MOSFETs and IGBTs could be selected as main switches of the 

converter as long as theirs freewheeling diodes have proper dynamic performance. A second 

requirement that make a difference in the performance of the converter, is the turn-off 

characteristic of bipolar and majority carrier devices. Although the turn-on losses of 𝑄1 and 

𝑄2 are negligible due to the zero-voltage switching, the turn-off loss can be only reduced, but 
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not fully eliminated, by the resonant capacitors 𝐶𝑅1 and 𝐶𝑅2, acting as voltages snubbers. The 

shorter is the current fall time of the switch, the lower are the turn off losses. A detailed 

analysis of the resonant capacitor selection criteria is reported in the next section.   

For the reasons above, and giving that the converters efficiency is the main focus of this 

thesis, power MOSFETs have been chosen due to the fast switching characteristics of 

majority carrier devices i.e., current fall time and absence of tail current.  

An Infineon IPW65R080CFD super junction MOSFET with fast body diode, designed 

specifically for resonant converter topologies, was selected for the switches 𝑄1 and 𝑄2. Its 

main static and dynamic parameters are listed in Table 3.2. 

 

 

Table 3.2 – Main electrical parameters of  IPW65R080CFD SJ MOSFET. 

Parameter Value 

Continuous drain current 
43.3 A @ 25 °C 

27.4 A @ 100°C 

Switching rise time 18 ns @ (400 V, 26.3 A) 

Switching fall time 6 ns @ (400 V, 26.3 A) 

RTH (junction-case) 0.32 K/W 

Diode forward voltage 0.9 V @ ( 26.3 A , 25 °C ) 

Diode reverse recovery time 180 ns @ (400 V, 26.3 A, 100 A/µs, 25°C) 

Diode reverse recovery charge 1 µC @ (400 V, 26.3 A, 100 A/µs, 25°C) 

Diode peak of recovery current 10 A @ (400 V, 26.3 A, 100 A/µs, 25°C) 
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Resonant capacitor selection 

The resonant capacitors 𝐶𝑅1 and 𝐶𝑅2 play a key role to archive the ZV turn ON of the 

switches 𝑄1 and 𝑄2 of the converter. They affect the duration of phases 2-7 and define the 

peak of the resonant current 𝑖𝑅𝐸𝑆. However, the most important role of resonant capacitors is 

to mitigate the turn-off losses of the main switches 𝑄1 and 𝑄2.  
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Figure 3.36 – Turn-off of 𝑄1 considering ideal switches. ZVS is achieved since the load 

current commutate instantly from the transistor to the capacitor 𝐶𝑅1. 

The turn-off of 𝑄1 described in the phase 7 appears to be a ZV tur-off, since 𝐶𝑅1 keeps to 

zero the voltage 𝑣𝑄1 across the switch during the instantaneous commutation of 𝑄1. However, 

in a real transistor the interruption of the current is not instantaneous; the current in 𝑄1 starts 

shifting out to charge 𝐶𝑅1, whose voltage starts increasing. Given that the transistor conducts 

current while the voltage is rising, power losses are generated. The correct design of the 

capacitor 𝐶𝑅 can retain the voltage across the switch near zero during the turn-off of the 

switch, reducing significantly the turn-off losses.  

The rigorous calculation of the switching losses requires a complete dynamic model of the 

transistor, of the gate driver and in general of the whole converter leg; this approach is 

possible only numerically using Spice models.  

A simplified analysis can be carried out by assuming that the current in the switch 𝑄1 

decreases linearly to zero in a time 𝑡𝑓𝑎𝑙𝑙. As a first approximation, it can be considered 𝑡𝑓𝑎𝑙𝑙 

as the time provided by device manufacturers for the double pulse test. The turn off 

mechanism of the upper switch 𝑄1 is depicted in Figure 3.37.  
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Figure 3.37 - Turn-off loss generation of 𝑄1 considering a real power transitor. 

Let us define 𝑡′ = 𝑡 − 𝑡1. The analysis illustrated hereafter starts in 𝑡′ = 0 when the PWM 

signal 𝐺1 commands the turn off of 𝑄1.  

The following equations can be written:  

 
𝑖𝑆𝑊1 = 𝐼𝑂𝑈𝑇 −

𝐼𝑂𝑈𝑇
𝑡𝑓𝑎𝑙𝑙

𝑡′ (3.49) 

 
𝑖𝐶1 = 𝐶𝑅1

𝑑𝑣𝑄1
𝑑𝑡

 (3.50) 

 
𝑖𝐶2 = 𝐶𝑅2

𝑑𝑣𝑄2
𝑑𝑡

= 𝐶𝑅2
𝑑(𝑉𝐷𝐶 − 𝑣𝑄1)

𝑑𝑡
= −𝐶𝑅2

𝑑𝑣𝑄1
𝑑𝑡

 (3.51) 

 𝑖𝑆𝑊1 + 𝑖𝐶1 = 𝐼𝑂𝑈𝑇 + 𝑖𝐶2 . (3.52) 
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If the resonant capacitor are equals 𝐶𝑅1 = 𝐶𝑅2 = 𝐶𝑅, equations (3.49), (3.50), (3.51) and 

(3.52) can be combined to obtain the following differential equation: 

 𝑑𝑣𝑄1
𝑑𝑡′

=
𝐼𝑂𝑈𝑇

2𝐶𝑅𝑡𝑓𝑎𝑙𝑙
𝑡′ . (3.53) 

The initial condition of (3.53) is the forward voltage of 𝑄1 in conduction mode, which can 

be assumed negligible. Therefore, imposing 𝑣𝑄1|𝑡=0 = 0, the voltage across transistor 𝑄1 

during the turn off can be calculated as:  

 
𝑣𝑄1 =

1

2

𝐼𝑂𝑈𝑇
2𝐶𝑅𝑡𝑓𝑎𝑙𝑙

𝑡′2 . (3.54) 

The voltage across transistor 𝑄1 when the current has fully extinguished is: 

 
𝑉𝑄1|𝑡𝑓𝑎𝑙𝑙

=
1

2

𝐼𝑂𝑈𝑇𝑡𝑓𝑎𝑙𝑙

2𝐶𝑅
 . (3.55) 

Therefore, the turn off energy can be calculated as the integral of the instantaneous power: 

 

𝐸𝑜𝑓𝑓 = ∫ 𝑣𝑄1 𝑖𝑆𝑊1𝑑𝑡 =

𝑡𝑂𝐹𝐹

0

1 

24

𝐼𝑂𝑈𝑇
2

2𝐶𝑅
𝑡𝑓𝑎𝑙𝑙
2 =

1

12
𝐼𝑂𝑈𝑇 𝑉𝑄1|𝑡𝑓𝑎𝑙𝑙

 𝑡𝑓𝑎𝑙𝑙  . (3.56) 

Relation (3.50) states that the snubber capacitor can be selected in order to reduce the 

switching energy. Furthermore, the quadratic dependence of 𝐸𝑜𝑓𝑓 upon 𝑡𝑓𝑎𝑙𝑙 of the transistor 

justifies the selection of fast switching power devices such as power MOSFET.  

A criteria for the selection of resonant capacitors is to limit the voltage 𝑉𝑄1|𝑡𝑓𝑎𝑙𝑙
 (calculated 

for the maximum output current) to a small percentage of the DC link voltage 𝑉𝐷𝐶, usually 

below 10%: 

 

𝑉𝑄1 𝑚𝑎𝑥−𝑝𝑢 =
𝑉𝑄1|𝑡𝑓𝑎𝑙𝑙

(@𝐼𝑂𝑈𝑇 𝑚𝑎𝑥 )

𝑉𝐷𝐶
< 0.1 . (3.57) 

An excessive snubber effect has the drawback of over-extend phase 7, indeed the 

derivative of the pole voltage 𝑣𝑃0 is: 

 𝑑𝑣𝑃0
𝑑𝑡

= −
𝐼𝑂𝑈𝑇
2𝐶𝑅

 . (3.58) 
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Several values of 𝑉𝑄1 𝑚𝑎𝑥−𝑝𝑢 calculated for different fall time 𝑡𝑓𝑎𝑙𝑙 and resonant capacitors 

𝐶𝑅 are depicted in Figure 3.38. The DC link voltage has been considered equal to 400 V and 

𝐼𝑂𝑈𝑇 𝑚𝑎𝑥 equal to 22.6𝐴, i.e., the design specifications of the converter. 

 

Figure 3.38 – Voltage across switch 𝑄1 versus snubber capacitor 𝐶𝑅1 as a function of the fall 

time of the transistor. Curves are calculated for a load current of 22.6𝐴 .  

It should be considered that power transistors have an inherent parasitic nonlinear output 

capacitance 𝐶𝑂𝑆𝑆 between drain and source (collector-emitter). This capacitance is in parallel 

to the external capacitor 𝐶𝑅 and takes part to the resonant transition phases of the converter. 

Therefore, 𝐶𝑅 should be selected at least one order of magnitude above 𝐶𝑂𝑆𝑆, in order to 

mitigate the nonlinearity of 𝐶𝑂𝑆𝑆 and to make the frequency shift caused by of 𝐶𝑂𝑆𝑆 

negligible.  

The parasitic output capacitance of the SJ MOSFET selected for the converter is shown 

in Figure 3.39, it can be seen the strong nonlinearity of 𝐶𝑂𝑆𝑆 over the drain source voltage. 

For 𝑉𝐷𝑆 < 50𝑉, the output capacitance of the transistor is higher than 1 nF, therefore it 

has the effect of helping 𝐶𝑅 to reduce the turn off losses of the switch while for 𝑉𝐷𝑆 > 100𝑉, 

𝐶𝑂𝑆𝑆 is lower than 200 pF. Therefore the resonant capacitor 𝐶𝑅 should be selected higher than 

2 nF. 
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For the reasons above, and considering that the fall time of the selected SJ MOSFET is 

6ns (@ 26.3A), a 4.7nF capacitor was selected for 𝐶𝑅1 and 𝐶𝑅2. 

 

Figure 3.39 - C-V characteristics of IPW65R080CFD super junction MOSFET. 

Autotransformer turn ratio section 

The transformation ratio 𝑘 of the autotransformer affects the duration of the resonant 

transitions of the converter. In fact, the derivative of current in phase 1 is proportional to 𝑘:  

 𝑑𝑖𝑅
𝑑𝑡

=
𝑘𝑉𝐷𝐶
𝐿𝜎
′′

 (3.59) 

while in phase 3 is proportional to 1 − 𝑘: 

 𝑑𝑖𝑅
𝑑𝑡

= −
(1 − 𝑘)𝑉𝐷𝐶

𝐿𝜎′′
 . (3.60) 

Figure 3.40 shows the effect of the turn ratio on the resonant current 𝑖𝑅. The following 

operating conditions and parameters have been considered: 

 𝑉𝐷𝐶 = 400 𝑉 

 𝐼𝑂𝑈𝑇 = 22.6 𝐴 (16𝐴𝑟𝑚𝑠) 
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 𝐿𝜎
′′ = 6.8 𝜇𝐻  

 𝐶𝑅1 = 𝐶2 = 4.7 𝑛𝐹 

 no magnetizing inductance. 

 

Figure 3.40 - a) Auxiliary current as a function of the transformation ratio of the 

autotransformer. b) Duration of phases 1, 2, and 3 as a function of the 

transformation ratio of the autotransformer. 

It can be seen in Figure 3.40 that the increase of k leads to an increase in the peak value 

of 𝑖𝑅𝐸𝑆  and a reduction in time 𝑇13 (resonant phases 1 and 2). Therefore, ZV condition for 

𝑄1 can be reached in shorter time. On the contrary, the descending phase of 𝑖𝑅𝐸𝑆 takes a 

longer time 𝑇34, increasing the overall time 𝑇14 required to complete a resonant cycle and 

increasing RMS value of the current 𝑖𝑅𝐸𝑆. Since there are no benefits in the reduction of 𝑇13 

i.e., main switches 𝑄1 and 𝑄2 are turned on under ZV in any case, it is recommendable to 

keep the turn ratio as close as possible to 0.5.  
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Practically, 𝑘 is selected between 0.55 and 0.6 in order to guarantee a safe margin of operation 

since the equivalent series resistance of the resonant loop reduces the theoretical peak of the 

voltage 𝑉𝑃0 during the resonant phase 2.  

 

For the reasons above, the transformation ratio selected for the prototype is: 

 
𝑘 =

𝑁2
𝑁1 + 𝑁2

= 0.6 . (3.61) 

   

Resonant inductance selection 

The resonant inductance 𝐿𝜎
′′  plays a key role in the design of the converter since it 

determines the duration of the resonant phases 1 to 3 and the peak of the resonant current 

𝑖𝑅𝐸𝑆. Figure 3.41 shows the effect of the variation of 𝐿𝜎
′′ , where the following operating 

conditions and parameters are considered: 

 𝑉𝐷𝐶 = 400 𝑉 

 𝐼𝑂𝑈𝑇 = 22.6 𝐴 (16𝐴𝑟𝑚𝑠) 

 𝐶𝑅1 = 𝐶2 = 4.7 𝑛𝐹 

 𝑘 = 0.6 

 no magnetizing inductance. 

 

It can be observed in Figure 3.41 that the resonant transition time is almost a linear 

function of the resonant inductance 𝐿𝜎
′′ ; small value of 𝐿𝜎

′′  reduces the transition time 𝑇14 but 

causes high values of 𝑖𝑅𝐸𝑆 and of  
𝑑𝑖𝑅𝐸𝑆

𝑑𝑡
. As explained in the previous section, high level of 

𝑑𝑖𝑅𝐸𝑆

𝑑𝑡
 may introduce an unwanted boost phase of 𝑖𝑅𝐸𝑆 caused by the reverse recovery 

characteristics of 𝐷1 and 𝐷2. A reasonable 
𝑑𝑖𝑅𝐸𝑆

𝑑𝑡
 value that makes negligible the reverse 

recovery effect on the converter behavior is between 10 and 50 A/µs.  

For the reasons above, and considering the dynamic characteristic of the body diode of the 

selected power switch, the following resonant inductance has been chosen: 

 𝐿𝜎
′′ = 6.5 𝜇𝐻 (3.62) 

which correspond to a 
𝑑𝑖𝑅𝐸𝑆

𝑑𝑡
 of 37 A/µs and to a transition time of 2.4 µs at the maximum 

output current 𝐼𝑂𝑈𝑇 of 22.6 𝐴. 
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Figure 3.41 - a) Auxiliary current as a function of the leakage inductance of autotransfomer. 

b) Duration of the transition time 𝑇14 as a function of the leakage inductance of 

autotransfomer. c) Maximum resonant current variation as a function of the 

leakage inductance of autotransfomer. 

 

Autotransformer design and FEM simulation 

The autotransformer of the ZVT2CI inverter has two main functions; it generates the 

voltage 𝑘𝑉𝐷𝐶 and it incorporates the inductance that take part to the LC resonant transition 

of the converter. The design specifics and the constraints obtained in the previous paragraphs 

can be summarized as follows: 
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Table 3.3 – Design specifics of the autotransformer. 

Design Specifics Value 

Primary side voltage 400 V 

Autotransformer turn ratio 𝑘 =
𝑁2

𝑁1+𝑁2
 0.6 

Secondary side leakage inductance 𝐿𝜎
′′  6.5 µH 

Maximum transition time 𝑇14−𝑀𝐴𝑋  2.4 µs (@𝐼𝑂𝑈𝑇 𝑀𝐴𝑋) 

 

It has been shown in section 3.3.B that the DC link voltage is applied to the primary 

winding of the autotransformer 𝑁𝑃 = (𝑁1 + 𝑁2) for the time 𝑇14, thus the cross section area 

𝐴𝑒 of the transformer and the primary winding turns 𝑁𝑃 should be selected in such a way that 

the iron core saturation is avoided. If we assume the proper operation of the converter, then 

the magnetizing current of the transformer is completely reset each switching cycle. The 

magnetic flux linked with the primary coil can be obtained as: 

 ∅𝑀𝐴𝑋 = 𝑉𝐷𝐶𝑇14−𝑀𝐴𝑋 . (3.63) 

Assuming a linear BH characteristic of the ferromagnetic material of the core, the turn 

number of the primary coil can be calculated as follows: 

 
𝑁𝑃 =

∅𝑀𝐴𝑋
𝐵𝑀𝐴𝑒

=
𝑉𝐷𝐶𝑇14−𝑀𝐴𝑋
𝐵𝑀𝐴𝑒

 (3.64) 

where 𝐵𝑀 is the flux density and 𝐴𝑒 is the cross section area of the iron core.  

For high frequency applications, ferrites are usually adopted since sintered materials can 

significantly reduce eddy currents losses compared to laminated iron steels. For the project, 

a TDK N87 ferrite material has been selected, its B-H characteristic is depicted in Figure 

3.42. It can be seen that the saturation flux density at 100°C is around 360 mT, therefore 

(3.64) is reasonably accurate if the maximum flux density is limited below the saturation 

knee of the material. 
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Figure 3.42 –  Magnetic hysteresis loop of N87 ferrite. 

The number of turns of the two coils of the autotransformer can be easily calculated 

imposing the required transformation ratio 𝑘: 

 𝑁1 = (1 − 𝑘) 𝑁𝑃 (3.65) 

 𝑁2 = 𝑘 𝑁𝑃 . (3.66) 

The inductance 𝐿𝜎
′′  can be controlled by varying the mutual position of the windings 𝑁1 

and 𝑁2. The leakage inductance referred to the secondary side of the autotransformer can be 

evaluated using the approximated geometrical relations reported in  

Table 3.4 and the following formula: 

 

𝐿𝜎
′′ = 𝑁2

2 (
1 − 𝑘

𝑘
)
2

𝜆𝜎 . 
(3.67) 

In general, concentric disposition of 𝑁1 and 𝑁2 reduces the leakage flux, while a split 

arrangement has the effect to reduce the coupling coefficient. 
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Table 3.4 - Leakage permeance coefficients of split and concentric windings. 

 

s1

s0 s2

δ0 

δ1 

δ2 

Rc

Winding 
N1 

Winding 
N2 

Iron 
core

 

Leakage permeance coefficient 

of split windings: 

𝜆𝜎 ≅ 𝜇0
2𝜋 (𝑅𝐶 +

𝑠0 + 𝑠1 + 𝑠2
2 )

𝑠0 + 𝑠1 + 𝑠2
(𝛿0 +

𝛿1 + 𝛿2
3

) 

δ0 
δ1 

Ri

Winding 
N1 

Winding 
N2 

Iron 
core

δ2 

h

 

Leakage permeance coefficient 

of concentric windings: 

𝜆𝜎 ≅ 𝜇0

2𝜋 (𝑅𝑖 +
𝛿0 + 𝛿1 + 𝛿2

2 )

ℎ
(𝛿0 +

𝛿1 + 𝛿2
3

) 

 

The last design constraint is the maximum current density 𝐽𝐶𝑈 of the windings of the 

transformer. Common values of 𝐽𝐶𝑈 that guarantee a safe thermal operation of an air cooled 

transformer are below 2𝐴𝑅𝑀𝑆/𝑚𝑚
2.  

The RMS currents in the winding 𝑁1 and 𝑁2 depend on the load current 𝐼𝑂𝑈𝑇 and on the 

switching frequency of the converter. If the magnetizing current is neglected, 𝐼1𝑅𝑀𝑆 and 𝐼2𝑅𝑀𝑆 

can be calculated as: 
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𝐼1𝑅𝑀𝑆 = √𝐹𝑆𝑊∫(𝑘 𝑖𝑅𝐸𝑆)2 𝑑𝑡

𝑇4

0

 (3.68) 

 

𝐼2𝑅𝑀𝑆 = √𝐹𝑆𝑊∫((1 − 𝑘)𝑖𝑅𝐸𝑆)
2
𝑑𝑡 

𝑇4

0

. (3.69) 

 

A numerical design procedure has been implemented in order to design the 

autotransformer. The range of variation of the design parameters and the constraints are 

listed in Table 3.5 and Table 3.6. 

 

Table 3.5 – Design specifics of the autotransformer. 

Design Specifics Value 

Primary side voltage 400 V 

Autotransformer turn ratio 𝑘 =
𝑁2

𝑁1+𝑁2
 0.6 

Secondary side leakage inductance 𝐿𝜎
′′  6.5 µH 

Maximum transition time 𝑇14−𝑀𝐴𝑋  2.4 µs (@𝐼𝑂𝑈𝑇 𝑀𝐴𝑋) 

Switching frequency 𝐹𝑆𝑊 30 kHz 

Table 3.6 - Design constraints of the autotransformer. 

Design constraints  Value 

Maximum iron core flux density 𝐵𝑀𝐴𝑋 350 mT 

Maximum error on turn ratio k < 2% 

Maximum current density 𝐽𝐶𝑈−𝑀𝐴𝑋 < 2𝐴/𝑚𝑚2 

Utilization factor of the transformer window  𝐾𝑈 < 0.45 

Distance between 𝑁1 and 𝑁2 0.5mm to 5mm 

Winding configuration Split or concentric coils 

Ferrite core shapes ETD34 , ETD39 , 

ETD43 
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The preliminary design result of the transformer has been simulated by using 3D Finite 

Element Analysis in order to adjust the mutual position of the windings. In Table 3.7 are 

listed the electrical characteristics of the final design of the transformer, while in Figure 3.43 

are depicted the rendering of the transformer and a FEA field map. 

Table 3.7 – Final design results. 

Design results  Value 

Ferrite core shape ETD39 

Maximum iron core flux density 𝐵𝑀𝐴𝑋 300 mT (@𝑇14 = 3.5µ𝑠)  

Winding 𝑁1 15 turns 

Winding 𝑁2 22 turns 

Turn ratio 𝑘 =
𝑁2

𝑁1+𝑁2
 0.595 

Primary winding composition  10 𝑤𝑖𝑟𝑒𝑠 𝑥 0.35𝑚𝑚 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

Secondary winding composition  7 𝑤𝑖𝑟𝑒𝑠 𝑥 0.35𝑚𝑚 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

Primary winding DC resistance  18mΩ @25°C 

Secondary winding DC resistance  39mΩ @25°C 

Distance between 𝑁1 and 𝑁2 4 mm 

 

 

Figure 3.43 – Detail of the FEA model of the autotransformer. 
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The finite element analysis provides only the inductance matrix between the coils 𝑁1 and 

𝑁2 of the autotransformer: 

 
|
𝐿11 𝑀
𝑀 𝐿22

| = |
0.734 1.062
1.062 1.577

|  𝑚𝐻. (3.70) 

The magnetizing and leakage inductance referred to the secondary side of the auto-

transformer can be obtained by means of (3.70) and imposing the series connection of coils 

𝑁1 and 𝑁2: 

 
𝐿𝜎
′′ = 𝑘2𝐿11 (1 −

𝑀2

𝐿11𝐿22
) = 6.8 𝜇𝐻 (3.71) 

 
𝐿𝑀
′′ = (

𝑘

1 − 𝑘
)
2𝑀2

𝐿22
= 1.54 𝑚𝐻. (3.72) 

 

Auxiliary switches and selection of diodes 

The components used for the auxiliary switches 𝑄𝑋1 and 𝑄𝑋2 are composed of an IGBT 

(Infineon IGP50N60T) and a Schottky diode (Infineon IDH04G65C5XKSA1). This IGBT 

offers high switching speed and a low collector-emitter saturation voltage, whereas the diode 

is a SiC part specifically designed for high-frequency applications. Infineon 

IDH04G65C5XKSA1 is used also for diodes 𝐷𝑋5 and 𝐷𝑋6. Finally, the Schottky SiC diode 

Cree C4D05120A is used for 𝐷𝑋3 and 𝐷𝑋4, because it provides a negligible reverse recovery 

current. 

 

Active ZVS gate driver design 

As described in the section 3.3.B, load current and source voltage influence the duration 

of phases 1 to 3 of the converter. Adaptive gate driver circuits have been implemented in 

order to ensure the ZV turn-on of the main switches under any load current and source voltage 

conditions [50].  

The details of the ZVS gate driver for switch 𝑄1 are depicted in Figure 3.44. The circuit 

is composed by a gate driver, a decoupling diode, a Schmitt trigger, a logic AND gate, an 

optocoupler and an isolated power supply that generates the voltage 𝑉𝐶𝐶 referred to the source 

of 𝑄1. The same block is replicated for switch 𝑄2.  
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The voltage 𝑉𝐷𝑆1 across 𝑄1 is sensed through a blocking diode, which guarantees that no 

voltage higher than 𝑉𝐶𝐶 can be applied to the logic circuit. If 𝑉𝐷𝑆1 is lower than a threshold 

value (few volts), the Schmitt trigger enables the transmission of the PWM control signal to 

the gate driver circuit. Therefore the ZV turn-on of 𝑄1 is ensured.   

 

 

Figure 3.44 – Details of the Zero-voltage detection circuit and gate driver. 
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3.3.D Experimental results 

For the sake of simplicity, only one leg of the inverter has been fabricated. The same board 

can be reconfigured to a hard switching leg for performance comparison.     

The schematic and the 3D rendering of the prototype are depicted in Figure 3.45. The 

converter is controlled by means of an external control board, which implements the control 

algorithm and generates the PWM signals.  

 

 

Figure 3.45 – Schematic and 3D rendering of the prototype of ZVT2CI converter. 

Functional tests of the converter 

The ZVT2CI prototype was firstly tested in order to verify the proper operation of the 

converter, the test circuit implemented is depicted in Figure 3.46.  

Switches 𝑄𝑋1 and 𝑄𝑋2 are controlled according to the principle of the sinusoidal pulse 

width modulation. The dead-time interval, 𝑇𝐷𝑇,  is equal to 1.5 µs, while the delay time 𝑇𝐷𝐿𝑌 

between the fall edge of 𝑄𝑋2 and 𝑄1 has been chosen equal to 1 µs in order to guarantee the 

complete reset of the magnetizing current of the autotransformer each switching cycle.  
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Figure 3.46 - Schematic of a leg of  the ZVT2CI inverter. 

Figure 3.48 shows the waveforms of the load current, 𝐼𝑂𝑈𝑇, the positive component of the 

resonant current, 𝑖𝑅𝐸𝑆+ , the drain-source voltage 𝑉𝐷𝑆−𝑄1 of 𝑄1, and the gate-source voltage 

𝑉𝐺𝑆−𝑄1 of Q1 over a time interval of 20 ms. The lower part is a zoomed view of the same 

waveforms during one switching cycle of 𝑄1. The inverter is controlled by means of a 

sinusoidal PWM, therefore the load current is nearly sinusoidal. It can be noted that the 

resonant current is zero during the negative half-period of the load current since only 𝑖𝑅𝐸𝑆+ 

is sensed. Therefore, the auxiliary RMS current stress is very low. In the zoomed view of the 

same picture, it can be clearly seen that the load current is approximately constant over a 

switching period, and the waveforms of the variables depicted are very similar to those shown 

in the theoretical timing diagram of Figure 3.14. The turn-on command of 𝑄1 is applied when 

its drain-source voltage 𝑉𝐷𝑆−𝑄1 is zero, i.e., in zero-voltage switching condition.  
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Figure 3.47 - Behavior of the ZVT2CI inverter controlled by means of sinusoidal modulation. 

 

Figure 3.48 – Detail of the zero-voltage turn-on of switch 𝑄1. 

Figure 3.48 shows in details the turn-on phase of 𝑄1. It can be observed that the turn-on 

command of 𝑄1 is applied when its drain-source voltage is zero, therefore the ZV switching 

is achieved. In addition, the same figure shows the waveform of the resonant current during 
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the time interval 𝑡1 − 𝑡4. The resonant current is zero before 𝑡1, while is equal to the 

magnetizing current of the transformer after 𝑡4, this fact confirms the correct de-

magnetization phase of the autotransformer in each switching cycle. 

 

The upper part of Figure 3.49 shows the waveforms of the drain-source voltage 𝑉𝐷𝑆−𝑄1 

and the current 𝐼𝐷𝑆−𝑄1 carried by the device during the turn-on phase. 𝐼𝐷𝑆−𝑄1 starts to flow 

through the device only when 𝑉𝐷𝑆−𝑄1 falls to zero, therefore, soft switching operation is 

achieved since the instantaneous power dissipated by the device is minimized. The soft 

switching operation is confirmed by the turn-on trajectory depicted in the lower part of Figure 

3.49.  

 

 

Figure 3.49 - Detail of the zero-voltage turn-on of switch 𝑄1 and switching trajectory. 

Figure 3.50 shows the experimental verification of the main switch ZVS operation with 

load current adaptability. As 𝑄𝑋1 is turned on, the resonant current start increasing. Voltage 

𝑉𝐷𝑆−𝑄1 decreases to zero when the resonant current exceeds the load current and diode 𝑄2 

turns off. It can be noted that the reverse recovery current of the diode causes a small delay 

between the instant at which 𝐼𝑅𝐸𝑆  is equal to 𝐼𝑂𝑈𝑇 and when voltage 𝑉𝐷𝑆−𝑄1 starts falling. 

Although the duration of the resonant process depends on the amplitude of the load current, 
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the zero-voltage detection circuit of Figure 3.44 always ensures that 𝑄1 is turned on only 

when its drain-source voltage is zero. 

 

 

Figure 3.50 - Behavior of the ZVT2CI inverter as the load current increases. 

 

The effect of the reverse recovery characteristic of 𝐷2 on the resonant transition of the 

converter is reported in Figure 3.51. The left part of the figure is obtained using for 𝑄1 and 

𝑄2 SJ MOSFETs endowed with body diodes that have large reverse recovery charge 𝑄𝑅𝑅, 

while the right part of the figure is obtained using the MOSFETs endowed with a fast body 

diode selected in section 3.3.C. Both experiments were carried out at the same input voltage 

𝑉𝐷𝐶 and output current 𝐼𝑂𝑈𝑇. It can be observed that the reverse recovery charge of 𝐷2 can 

introduce a boost phase of the resonant current, which causes negative effects on the 

operation of the converter. It is worth mentioning that the longer duration of the resonant 

phase 𝑡1 − 𝑡4 and the higher peak value of the resonant current lead to an increase in the 

conduction losses of the auxiliary circuit. 
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Figure 3.51 – Effect of the reverse recovery of diodes on the behaviour of the converter. 
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Efficiency comparison of ZVT2CI inverter and HS inverters 

The efficiency of the ZVT2CI inverter developed has been compared to hard switched 

inverters built with the latest transistor technologies. This comparison is crucial since the 

hardware and control complexity of the ZVT2CI inverter is justified only if the reduction in 

the overall losses of the converters is appreciable. In fact, the reduction of the switching 

losses of the main power switches is obtained in spite of additional losses introduced by the 

auxiliary circuits to achieve ZVS.  

VDC
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Q1

iOUT

VDC

CDC

CDC

LOAD

HS inverter 
leg

 

Figure 3.52 - Schematic of a  leg of  the  hard-switching inverter. 

For comparison purposes, the ZVT2CI inverter has been re-arranged in a conventional 

hard switching inverter, as shown in Figure 3.52. Two versions of the converter have been 

tested, which differ from each other only in the power switches 𝑄1 and 𝑄2. The transistor 

chosen for the efficiency comparison are listed in Table 3.8. The first device is a silicon high-

performance IGBT (Infineon IKW40N65H5), designed for best-in-class efficiency in hard-

switching and resonant converter topologies. The second device selected is a high-switching 

speed SiC MOSFET (C2M0080120D), produced by CREE. As can be observed in Table 3.8, 

the blocking voltage of the SiC switch (1200V) is almost twice that of the Si counterpart 

(650V). This choice is due to the absence of SiC devices with lower blocking voltages on the 

market.  



Chapter 3 

78 

It is worth mentioning that the Si SJ MOSFET selected for the operation in ZVT2CI 

configuration cannot be tested under hard switching condition. Indeed, the reverse recovery 

characteristic of the body diode would generate very high levels of switching losses, which 

would damage the components.  

Table 3.8 – Main parameters of the Si IGBT and SiC MOSFET selected. 

Parameter Si IGBT SiC MOSFET 

Breakdown voltage 650V 1200V 

DC continuous current 46A @100°C 20A @100°C 

Nominal on-state voltage drop/resistance 1.65 V 80 mΩ 

RTH (junction-case) 0.60 K/W 0.60 K/W 

Case package TO247 TO247 

Part number Infineon 

IKW40N65H5 

Cree 

C2M0080120D 

The forward voltage drop of the Si IGBT and SiC MOSFET are compared in Figure 3.53, 

whereas the turn-on and turn-off switching energies are depicted in Figure 3.54. 

 

Figure 3.53 – V-I characteristic of the Si IGBT and SiC MOSFET selected. 

 

Figure 3.54 – Switching energies of the Si IGBT and SiC MOSFET selected. 
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Three prototypes were tested in the same operating conditions in order to compare their 

efficiency. For the sake of clarity the converters that were tested are listed in Table 3.9. 

Table 3.9 – List of tested converters. 

 Inverter configuration Power switch Switch part  number 

Prototype 1 Hard switching (HS) Si IGBT IKW40N65H5 

Prototype 2 Hard switching (HS) SiC MOSFET C2M0080120D 

Prototype 3 ZVT2CI Si SJ MOSFET IPW65R080CFD 

 

All the tests were carried out at constant modulation index, equal to 0.8, and at an output 

frequency of 50 Hz. The converters fed an R-L load, whose inductance was 2 mH, whereas 

the resistance was adjusted to change the load point. Due to the low value of the load 

inductance, the load power factor was nearly unity in all tests. 

During the tests, the dc voltage, equal to 400 V, was kept constant by the dc generator 

TDK Lambda GEN600-5.5, which also limited the output power to about 2200 W. The 

efficiency was measured by means of a digital power meters Yokogawa WT2030, since the 

wide frequency ranges of the instrument makes possible the direct efficiency measure of 

switching converters.  

The sink of the prototypes was thermally controlled and its temperature was kept at about 

25°C for all whole duration of the tests. The test setup is show in Figure 3.55. 

 

Figure 3.55 – Experimental test setup. 
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The efficiency of the three prototypes are shown in Figure 3.56, Figure 3.57 and Figure 

3.58 as a function of the output power at three switching frequencies, i.e., 10 kHz, 20 kHz 

and 30 kHz.  

 

 

Figure 3.56 – Efficiency of prototypes as a function of output power at a switching frequency 

of 10 kHz. 

 

Figure 3.57 - Efficiency of prototypes as a function of output power at a switching frequency 

of 20 kHz. 

 

Figure 3.58 - Efficiency of prototypes as a function of output power at a switching frequency 

of 30 kHz. 
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The efficiency of all prototypes is plotted in Figure 3.59 as a function of the switching 

frequency when the output power is equal to 500 W, 1000 W, 1500 W and 2000 W. 

 

 

Figure 3.59 - Comparison of the efficiency of prototypes as a function of the switching 

frequency for different output power. 

It can be noted from the graphs that the efficiency of the ZVT2CI converter is always 

greater than the efficiency of the HS Si IGBT inverter. The higher efficiency is due to several 

factors. First of all the use of the ZVT2CI topology avoids the turn-on losses and reduces the 

turn-off losses generated by the main switches of the converter. In addition, the ZVT2CI 

converter allows the use of SJ MOSFET that otherwise would not be possible to use for issues 

related to the reverse recovery characteristic of the body diode. The last advantage is the 

increase in efficiency of the converter at low load, which is due to the resistive V-I 

characteristic of MOSFET. 
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The comparison between the ZVT2CI converter and the HS SiC MOSFET converter 

deserves a special discussion. Conduction losses of the main leg of the two converters are 

similar since both uses devices with the same nominal RDS-ON of 80 mΩ. Therefore, the 

efficiency difference is mainly due to the switching losses and to the losses introduced by the 

auxiliary circuits of the ZVT2CI converter. It can be noted that the efficiency at low load of 

the ZVT2CI converter is lower than that of SiC inverter, even at low switching frequency. 

This behavior is due to the loss bias of the auxiliary circuits, which become dominant at low 

output currents. 

As the frequency increases, it can be noted that the efficiency of the SiC inverter tends to 

be higher than that of the ZVT2CI converter, for any load current value. Again, this behavior 

is due to the losses of the auxiliary circuits of the ZVT2CI, which increase as a function of 

the frequency more than the switching losses of the SiC converter, thus making the efficiency 

improvement less appreciable. For switching frequencies above a threshold value, between 

20 and 30 kHz, the SiC converter becomes more efficient than the ZVT2CI converter for any 

load current. 

It is worth mentioning that the SiC prototype have higher efficiency even though the 

power transistors are rated for a blocking voltage much higher than the silicon transistor. 

 

 

 

 



  

 

 

83 

Chapter 4                                                      

Single Phase Inverters for Transformerless 

PV Applications 

4.1 Short introduction on solar energy conversion  

Photovoltaic (PV) energy has grown at an average annual rate of 60% in the last five years, 

and has become an important part of the energy mix of power systems [51]. Global PV power 

installed has had a significant growth from 1.2 GW in 1992 to 177 GW in 2014 [52]. Europe 

has led the PV development until 2012, when its cumulative PV installed power was the 70% 

of the global installations [53]. Since 2012, European PV installations has slowed down while 

Asian PV installations have been increasing rapidly. 

 

Figure 4.1 – Evolution of regional PV installations. 

 

Figure 4.2 – Cumulative installed PV capacity at the end of 2014. 
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The contributions of individual countries to the cumulative PV power installed at the end 

of 2014 are depicted in Figure 4.2, the statistical results were published in 2014 PV Annual 

Report of the  European Photovoltaic Industry Association (EPIA) [54]. It can be observed 

that over 50% of the global PV power installations (89 GW) are within the European Union 

territory. 

At the end of 2014, the installed PV capacity in Italy was 18.5 GW. The PV penetration 

in the national power system is very important considering that 24 TWh of energy were 

generated by PV on a total energy demand of 309 TWh.  

The largest part of the photovoltaic power is generated by large photovoltaic plants 

connected to the medium voltage (MV) network (61%), low voltage (LV) installations 

contributes to the 33% of national production while only the 6% is generated by plants 

connected to the high voltage (HV) grid. Even though low voltage systems contribute only 

for one third to the national energy production, they are the majority part of installed systems. 

In fact, 97% of PV installations are connected to the LV grid and consist of residential and 

commercial PV plants.  

 

 

Figure 4.3 –Statistic of italian PV systems. 

All the energy generated by PV systems is injected in the electrical power system by 

DC/AC converters. Therefore, considering the high cost of solar panels, great attention has 

been given to the development of highly efficient PV inverters by researcher and companies. 

Several inverter topologies have been proposed to increase the efficiency of converters in 

compliance with national safety regulations for grid connected systems.  

In Italy, LV grid connected photovoltaic systems are regulated by the standard CEI 82-25. 
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For power levels above 20kW, the standard requires a galvanic isolation between the DC 

side and the AC side of the PV system. Galvanic isolation can be performed using an isolation 

transformer. This solution has the main goal of prevent the injection of DC current into the 

grid by DC/AC converters. DC currents in AC system must be avoided since may lead to the 

iron core saturation of MV/LV distribution transformers. Isolation can be achieved either by 

high frequency and low frequency transformers. 

If the installed power is below 20 kW, the galvanic isolation may be replaced by an active 

protection that senses the phase currents and disconnects the PV system within: 

 200 ms if the DC component is higher than 1A; 

 1 s if the DC component is higher than 0.5% of the rated current of the converter. 

Furthermore, the standard imposes a three phase connection to LV grid for all PV systems 

above 6 kW, below this power level, PV inverters can be single phase units.  

 

Given that LV PV systems are the largest part of the PV installations, the focus of this 

thesis has been given to single phase PV converters. 

 

Figure 4.4 shows the schematic of a single phase PV system connected to the LV grid through 

an isolation transformer. The overall conversion efficiency of this solution can be written as: 

 𝜂𝑇𝑂𝑇 = 𝜂𝐼𝑁𝑉 𝜂𝐹 𝜂𝑇  (4.1) 

where 𝜂𝐼𝑁𝑉 is the combined efficiency of the Maximum Point Tracker (MPPT) and inverter, 

𝜂𝐹 is the efficiency of the decoupling filter, and 𝜂𝑇 is the efficiency of the transformer. 

The opportunity given by CEI 82-25 to remove the insolation transformer (transformerless) 

has the aim of increasing the overall efficiency of low power PV systems. Although the 

transformer reduces the efficiency of the system, its low coupling capacitance between 

primary and secondary windings strongly attenuates the circulation of any hazardous leakage 

current generated by the DC/AC converter, also known as Common Mode (CM) currents 

[55] [56] [57]. Figure 4.5 shows the schematic of a single phase transformerless PV system 

connected to the LV grid. The common mode current is generated by the inverter and flows 

in a loop composed by the coupling capacitance of the transformer, the LV grid, the ground 

connection of the MV/LV transformer and the parasitic capacitance to ground of the PV 

modules. 
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PV systems are sensitive to CM current issue more than any other energy generation 

system due to the parasitic capacitance between PV modules and ground. PV silicon solar 

cells are usually encapsulated in a structure composed of glass, thermoplastic elastomers like 

Ethylene Vinyl Acetate (EVA), protective back sheet, and a metallic frame. In order to 

guarantee the personal protection against indirect contacts, all the exposed metallic frames 

must be electrically connected to the grounding system of the plant. The proximity of 

grounded metallic frames to PV cells creates a distributed capacitance between the DC link 

of the PV system and the ground, i.e., a path for leakage currents is created. The total 

capacitance to ground depends on the module fabrication, on the surface of the PV strings 

and on weather conditions. Typical values of capacitance to ground are in the order of 50-

150 nF/kWp [55].  

The respect of national safety requirements for PV transformerless inverters (CEI 64-8), 

is then more critical to achieve than for transformer-based inverters. Special converter 

topologies, modulation strategies and common mode line filters are generally required to be 

compliant with standards [58] [59] [60]. 

 

 

Figure 4.4 – Single phase PV system with isolation transformer. 

 

Figure 4.5 - Single phase transformerless PV system. 
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4.2 Common mode model of single-phase transformerless 

inverters 

 

The aim of this section is to show how the leakage current can be calculated as a function of 

the output voltage generated by the inverter.  
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Figure 4.6 – Transformerless PV system schematic showing the leakage loop. 

Let us consider the schematic of a typical single phase transformerless PV system depicted 

in Figure 4.6. The elements of the system can be described as follows: 

 𝑍𝐺  is the ground impedance of the MV/LV transformer of the grid; 

 𝑍𝐹 and 𝑍𝑁 are the line and neutral impedance of the electrical line between the 

MV/LV transformer and the Point of Connection (POC) of the PV system; 

 𝐿𝐴 and 𝐿𝐵 are the decoupling inductors between the grid and the inverter. The 

converter is a voltage controlled source, and therefore, a short-circuit condition 

appears whenever it is directly connected to other voltage source like the grid. 

Consequently, decoupling inductors are required to limit the current injected into the 

grid. 

 𝐶𝑃𝑉1 and 𝐶𝑃𝑉2 are the equivalent capacitances to ground of the PV system; 

 𝑉𝐴0 and 𝑉𝐵0 are the voltages generated by the front-end inverter; 
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 𝑖𝐷𝑀 is the differential mode (DM) current, which is related to the power generated by 

the PV system; 

 𝑖𝐶𝑀 is the common mode current generated by the front-end inverter. 

As reported in previous paragraph, the total capacitance of the PV system to ground can be 

estimated in 50-150 nF/kW. If we consider a 6 kW PV system, the maximum level allowed 

by standards for single phase connections, the capacity to ground 𝐶𝑃𝑉 can be calculated as: 

 𝐶𝑃𝑉 ≅ 900 𝑛𝐹 . (4.2) 

The voltage across 𝐶𝑃𝑉 presents a low frequency component due to the grid voltage source, 

and a high frequency component due to the voltage modulation of the front-end inverter, 

typically from 10 kHz to 30 kHz. The impedance of 𝐶𝑃𝑉, opposing to the circulation of the 

leakage current, can be calculated as: 

 𝑍𝑃𝑉(@50 𝐻𝑧) = 3.5 𝑘Ω (4.3) 

 𝑍𝑃𝑉(@20 𝑘𝐻𝑧) = 9 Ω . (4.4) 

Given that 𝐶𝑃𝑉 acts as a high-pass filter, the grid influence on the common mode behavior of 

the system can be neglected. For the same reason, the voltage variation on the PV panels can 

be neglected as well.   

A second reasonable approximation comes from the fact that grid impedances 𝑍𝐹 and 𝑍𝑁 

depend on the short-circuit power of the grid at the point of connection of the PV system. 

Weak distribution grids have high impedances, which help to reduce the leakage current. PV 

systems, however, must be compliant with safety standards independently of the short-circuit 

power at POC, hence, even in the worst case of ideal grid ( 𝑍𝐹=𝑍𝑁 =0 ). 

In light of the above, the model of Figure 4.6 can be simplified to that of Figure 4.7. The 

inverter has been substituted by two equivalent controlled voltage sources 𝑉𝐴0 and 𝑉𝐵0.   
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Figure 4.7 – Simplified model of the PV system. 

Circuit depicted in Figure 4.7 can be redrawn as in Figure 4.8, capacitors 𝐶𝑃𝑉1 and 𝐶𝑃𝑉2 have 

been reduced to the single lumped capacitor calculated in (4.2).    
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Figure 4.8 - High frequency model of the PV system 

The leakage current can be calculated solving the circuit of Figure 4.8: 

 
𝐼𝐶𝑀(𝑠) =

𝑠𝐶𝑃𝑉
1 + 𝑠𝐶𝑃𝑉𝑍𝐺 + 𝑠2𝐶𝑃𝑉𝐿𝐴𝐵

(
𝐿𝐵

𝐿𝐴 + 𝐿𝐵
𝑉𝐴0(𝑠) +

𝐿𝐴
𝐿𝐴 + 𝐿𝐵

𝑉𝐵0(𝑠)) (4.5) 

 

where 𝐿𝐴𝐵 is the parallel of the decupling inductances 𝐿𝐴 and 𝐿𝐵.  

Relation (4.5) can be further simplified introducing the concept of common mode and 

differential mode voltage. The common mode voltage is defined as the average value 𝑉𝐴0 and 

𝑉𝐵0: 

 
𝑉𝐶𝑀 =

𝑉𝐴0 + 𝑉𝐵0
2

 . (4.6) 

The differential mode voltage is defined as the difference between the pole voltages: 
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 𝑉𝐷𝑀 = 𝑉𝐴𝐵 = 𝑉𝐴0 − 𝑉𝐵0 . (4.7) 

The voltages 𝑉𝐴0 and 𝑉𝐵0 can be written as: 

 
𝑉𝐴0 = 𝑉𝐶𝑀 +

𝑉𝐷𝑀
2

 (4.8) 

 
𝑉𝐵0 = 𝑉𝐶𝑀 −

𝑉𝐷𝑀
2
 . (4.9) 

By using (4.8) and (4.9), leakage current 𝐼𝐶𝑀 can be written as: 

 
𝐼𝐶𝑀(𝑠) =

𝑠𝐶𝑃𝑉
1 + 𝑠𝐶𝑃𝑉𝑍𝐺 + 𝑠2𝐶𝑃𝑉𝐿𝐴𝐵

(𝑉𝐶𝑀(𝑠) + 𝑉𝐷𝑀(𝑠)
𝐿𝐵 − 𝐿𝐴

2(𝐿𝐴 + 𝐿𝐵)
) . (4.10) 

The terms that sustain the circulation of leakage current can be grouped in one equivalent 

quantity called total common mode voltage 𝑉𝑇𝐶𝑀, defined as: 

 
𝑉𝑇𝐶𝑀(𝑠) = 𝑉𝐶𝑀(𝑠) + 𝑉𝐷𝑀(𝑠)

𝐿𝐵 − 𝐿𝐴
2(𝐿𝐴 + 𝐿𝐵)

 (4.11) 

Equation (4.11) can be rewritten as follows: 

 
𝐼𝐶𝑀(𝑠) =

𝑠𝐶𝑃𝑉
1 + 𝑠𝐶𝑃𝑉𝑍𝐺 + 𝑠2𝐶𝑃𝑉𝐿𝐴𝐵

𝑉𝑇𝐶𝑀(𝑠) (4.12) 

Figure 4.9 shows the equivalent common mode circuit on the PV system. It is worth 

mentioning that 𝑉𝐷𝑀 may contribute to the total common mode voltage if decoupling 

inductors 𝐿𝐴 and 𝐿𝐵 are unbalanced.  
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Figure 4.9 - Simplified model of the PV system showing the total common mode voltage 

𝑉𝑇𝐶𝑀. 

Equation (4.12) shows that 𝐼𝐶𝑀 can be reduced by increasing the decoupling inductance 

(adoption of CM filters), or by reducing the high frequency components of voltage 𝑉𝑇𝐶𝑀. If  
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voltage 𝑉𝑇𝐶𝑀 does not vary with time ( 
𝑑𝑉𝑇𝐶𝑀

𝑑𝑡
= 0 ), then leakage current is minimized. 

Several converter topologies and modulation techniques have been proposed to address the 

leakage current issue of transformerless PV systems. Proposed converters can be classified 

into two categories, which are different for the implemented approach. 

The aim of the first category is to keep constant 𝑉𝑇𝐶𝑀 over the time. Topologies that 

exploit this approach are [61] [62]:     

 Full bridge converter with bipolar modulation (H4 bipolar inverter); 

 Three Level Neutral Point Clamped inverter (NPC inverters); 

 T-type Three Level inverter (T-NPC inverters); 

 H6 inverter; 

The aim of the second group is a bit different from what has been explained so far. Rather 

than keeping 𝑉𝑇𝐶𝑀 constant, the DC side of the inverter is disconnected to the grid every time 

a zero configuration (𝑉𝐴0 = 𝑉𝐵0) is applied by the inverter. As described in section 4.3.B, this 

solution has the effect of an evident reduction in the leakage current [62]. The main 

topologies that implement CM current interruption are [61]: 

 H5 inverter 

 Highly Efficient and Reliable Inverter Concept (HERIC) 

In this thesis only the configurations derived from the full bridge converter have been 

analyzed, i.e., H4, H5, and H6 converters. 

 

4.3  Single phase transformerless inverters derived from full cridge 

converter 

In the following sections are presented the latest DC/AC converters employed for 

transformerless PV systems. For each converter the possible modulation techniques are 

described and the results of numerical simulations obtained with PLECS, a software 

developed by Plexim GmbH for the simulation of power electronic systems, are presented. 

Particular emphasis is given to the total common mode voltage 𝑉𝑇𝐶𝑀 generated by each 

converter. 
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Simulations have been performed under the assumption that the parameters listed in Table 

4.1. The symbols are referred to the general schematic of Figure 4.10. 

Table 4.1 – Parameter of the PV system used for the simulations. 

Parameter Value 

Grid voltage 𝑉𝐺 230 VRMS , 50 Hz 

DC link voltage 400 V (800V for 3L converters) 

Total decoupling inductance 𝐿𝐴 + 𝐿𝐵 2 mH 

Switching frequency 𝐹𝑆𝑊  20 kHz 

𝐶𝑃𝑉 900 nF 

ZG 20 Ω (ohmic) 

𝑍𝐹 and 𝑍𝑁   0 Ω (ideal grid) 
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Figure 4.10 – Circuit simulated in PLECS. 

All the modulation strategies presented are based on the concepts of switching function and 

modulation index. The instantaneous value of the output voltages 𝑉𝐴0 and 𝑉𝐵0 is defined by 

binary switching functions 𝑠𝐴 and 𝑠𝐵: 

 
{
𝑉𝐴0 = 𝑠𝐴𝑉𝐷𝐶
𝑉𝐵0 = 𝑠𝐵𝑉𝐷𝐶

 (4.13) 

where 𝑠𝐴 and 𝑠𝐵 can assume only values (0,1).  
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The average value of 𝑉𝐴0 and 𝑉𝐵0 can be controlled each switching cycle 𝑇𝑆𝑊 by means of 

the switching functions 𝑠𝐴 and 𝑠𝐵: 

 

{
 
 

 
 𝑉𝐴0̅̅ ̅̅ =

1

𝑇𝑆𝑊
∫ 𝑠𝐴𝑉𝐷𝐶  𝑑𝑡 = 𝑚𝐴𝑉𝐷𝐶

𝑇𝑆𝑊

0

𝑉𝐵0̅̅ ̅̅ =
1

𝑇𝑆𝑊
∫ 𝑠𝐵𝑉𝐷𝐶  𝑑𝑡 = 𝑚𝐵𝑉𝐷𝐶

𝑇𝑆𝑊

0

 (4.14) 

where 𝑚𝐴 and 𝑚𝐵 are the leg modulation functions:  

 

{
 
 

 
 𝑚𝐴 =

1

𝑇𝑆𝑊
∫ 𝑠𝐴 𝑑𝑡
𝑇𝑆𝑊

0

𝑚𝐵 =
1

𝑇𝑆𝑊
∫ 𝑠𝐵 𝑑𝑡
𝑇𝑆𝑊

0

  . (4.15) 

Instantaneous values of 𝑠𝐴 and 𝑠𝐵 that satisfy relation (4.15) can be generated by well-known 

Pulse Width Modulation (PWM) strategy. In PWM, a modulation signal is compared with a 

triangular carrier wave, and the intersections define the switching instants of the output 

function 𝑠. Several waveforms can be adopted for the triangular carrier. 

Direct and homopolar modulation functions can be introduced in order to simplify the 

implementation of the control system: 

 𝑚𝐷 = 𝑚𝐴 −𝑚𝐵  (4.16) 

 
𝑚𝑂 =

𝑚𝐴 +𝑚𝐵

2
 . (4.17) 

By using (4.16), (4.17) the leg modulation functions can be written as: 

 𝑚𝐴 = 𝑚𝑂 +
𝑚𝐷

2
 (4.18) 

 𝑚𝐵 = 𝑚𝑂 −
𝑚𝐷

2
 . (4.19) 

Direct modulation function 𝑚𝐷 is closely related to the differential output voltage generated 

by the converter, therefore, it controls the power injected in the electrical grid: 

 𝑉𝐴𝐵 = 𝑉𝐴0 − 𝑉𝐵0 = (𝑚𝐴 −𝑚𝐵)𝑉𝐷𝐶 = 𝑚𝐷𝑉𝐷𝐶  . (4.20) 

Homopolar modulation function 𝑚𝑂 is a degree of freedom whose value defines different 

modulation strategies, it can be used along with PWM carrier to vary the common mode 

voltage generated by the converter.  
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Figure 4.11 - Output current control scheme. 

The reference voltage 𝑉𝐴𝐵 is generated by the current control loop depicted in Figure 4.11. A 

reference sinusoidal current, synchronized with the grid voltage by means of a single phase 

PLL module [63], is compared with the phase current of the converter. The current error 

signal enters in proportional resonant controller (PIR) [64], which generate the reference 

voltage 𝑉𝐴𝐵. The controller is tuned is order to guarantee a stable operation of the converter 

and a good dynamic response.  

 

4.3.A Full bridge converter (H4) 

World most diffused DC/AC power converters are based on the half bridge leg, indeed 

single phase, three phase and more in general m-phase DC to AC two level converters can be 

obtained connecting together m-half bridge legs. 

Figure 4.12 shows a transformerless PV system connected to grid by means of a full bridge 

converter.   

  

 

Figure 4.12 – Grid connected full bridge converter. 
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The converter can be controlled by means of four well known modulation strategies [65]: 

 Bipolar modulation. 

 Unipolar modulation 

 Discontinuous modulation 

 Hybrid modulation. 

Each modulation strategy has its own advantages and disadvantages as discussed in the 

following sections. 

Bipolar modulation 

Bipolar modulation is the simplest modulation strategy that can be used to control the full 

bridge converter, indeed it requires only one PWM modulator. The switching function 𝑠𝐴 is 

used to control the converter while 𝑠𝐵 is substituted by the logical complement of 𝑠𝐴: 

 
{ 

𝑉𝐴0 = 𝑠𝐴𝑉𝐷𝐶
𝑉𝐵0 = (1 − 𝑠𝐴)𝑉𝐷𝐶

 . (4.21) 

Functions 𝑚𝐴 and 𝑚𝐵 defined in (4.15) can be written as: 

 

{
𝑚𝐴 =

1

𝑇𝑆𝑊
∫ 𝑠𝐴 𝑑𝑡
𝑇𝑆𝑊

0

𝑚𝐵 = 1 −𝑚𝐴

  . (4.22) 

The differential mode voltage generated by the inverter can be obtained as follows: 

 𝑉𝐴𝐵 = 𝑉𝐴0 − 𝑉𝐵0 = (𝑚𝐴 −𝑚𝐵)𝑉𝐷𝐶 = (2𝑚𝑂 − 1 +𝑚𝐷)𝑉𝐷𝐶  . (4.23) 

If the homopolar component 𝑚𝑂 is equal to 0.5, equation (4.23) becomes:  

 𝑉𝐴𝐵 = 𝑚𝐷𝑉𝐷𝐶  . (4.24) 

It has been shown that bipolar modulation controls the average value of the output voltage 

𝑉𝐴𝐵 using only one PWM modulator.  

The total common mode voltage can be calculated using equation (4.11). If decoupling 

inductors 𝐿𝐴 and 𝐿𝐵 are balanced, 𝑉𝑇𝐶𝑀 can be simplified as: 

 
𝑉𝑇𝐶𝑀 = 𝑉𝐶𝑀 =

𝑉𝐴 + 𝑉𝐵
2

 . (4.25) 
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Table 4.2 lists the values of 𝑉𝐴0, 𝑉𝐵0, 𝑉𝐴𝐵, 𝑉𝐶𝑀 and the state of the switches of the converter 

as function of 𝑠𝐴. 

Table 4.2 – Configurations of the converter. 

 
Switching 

 function Switch states     

 sA Q1 Q2 Q3 Q4 VA0 VB0 VAB VTCM 

A
ct

iv
e 1 1 0 0 1 VDC 0 VDC 

𝑉𝐷𝐶

2
  

0 0 1 1 0 0 VDC -VDC 
𝑉𝐷𝐶

2
  

 

The table above shows that 𝑉𝐴𝐵 can only assume the values +VDC and –VDC, hence the name 

bipolar modulation. Table 4.2 shows also that this control strategy has the benefit of 

maintaining 𝑉𝑇𝐶𝑀 constant to 𝑉𝐷𝐶/2. 

 

The full bridge converter with bipolar modulation technique has been simulated using 

PLECS, the parameters of the model and the implemented control loop are described in 

section 4.3.A.  

The simulation results are presented in Figure 4.13. The waveforms of 𝑚𝐴, 𝑉𝐴0, 𝑉𝐵0, 𝑉𝐴𝐵, 

𝑉𝑇𝐶𝑀 and 𝐼𝐷𝑀 are plotted from the top to the bottom. The left part shows one fundamental 

period of modulating signals (20 ms), while, the right part is a zoomed view of the same 

waveforms during four switching cycles. The peak of the output current is set to 20A by the 

high-level control loop. It is worth noting that bipolar modulation maintains constant the total 

common mode voltage 𝑉𝑇𝐶𝑀 over the time, therefore, it can limit the circulation of leakage 

current in PV systems. Even though 𝑉𝑇𝐶𝑀 is constant, the harmonic content of 𝑉𝐴𝐵 is worse 

than the one generated by all the other converters presented in this chapter. Figure 4.14 shows 

the harmonic content of 𝑉𝐴𝐵, it can be noted that all the harmonics multiple of the switching 

frequency are present. In order to reduce the output current ripple, H4 converter with bipolar 

modulation requires higher switching frequency or larger decoupling inductors than the other 

solutions. The usage of a higher switching frequency or larger inductors have the drawback 

of reduce the overall efficiency of the converter, therefore, it should be avoided. 

However, even at the same switching frequency, bipolar modulation generates more losses 

than unipolar modulations on reactive components of the inverter: 
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 Bipolar voltage variation (𝑉𝐷𝐶 → −𝑉𝐷𝐶 → 𝑉𝐷𝐶) across the inductor leads to larger 

minor hysteresis loops than for unipolar case (𝑉𝐷𝐶 → 0 → 𝑉𝐷𝐶). Thus higher iron 

core losses are generated.   

 In unipolar modulation, the output current freewheels on two transistor during the 

freewheeling phase (𝑉𝐴𝐵 = 0). On the contrary, in bipolar modulation, the output 

current is forced back to the source, increasing then the DC link capacitor losses.  

The FB with bipolar modulation, despite it generates a constant 𝑉𝑇𝐶𝑀, is generally avoided 

for use in transformerless PV applications due to the low efficiency [61]. 
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Figure 4.13 – Simulation results of full bridge converter controlled by means of bipolar 

modulation. 
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Figure 4.14 – Harmonic content of the output voltage 𝑉𝐴𝐵 generated by bipolar modulation. 

Unipolar modulation 

Unipolar Modulation (UM), unlike bipolar modulation, generates three output voltage 

levels i.e., 𝑉𝐷𝐶, 0, and −𝑉𝐷𝐶. The two leg of the converter are controlled in such a way that 

the equivalent switching frequency of 𝑉𝐴𝐵 is twice the frequency 𝐹𝑆𝑊. With the same input 

voltage 𝑉𝐷𝐶 and switching frequency 𝐹𝑆𝑊, the output voltage 𝑉𝐴𝐵, generated by unipolar 

modulation, has better harmonic content than the one generated by bipolar modulation. 

Moreover, compared to bipolar modulation, unipolar modulation reduces the iron core losses 

in the output filter and prevents the reactive power exchange between output filter and DC 

link capacitor. These properties make unipolar modulation the most diffused modulation 

strategy for DC/AC FB converters in industrial applications.  

The modulation strategy can be obtained imposing 𝑚𝑂 equal to: 

 
𝑚𝑂 =

1

2
 . (4.26) 

The leg modulating signals can be obtained as: 

 
𝑚𝐴 =

1 +𝑚𝐷

2
=

1

𝑇𝑆𝑊
∫ 𝑠𝐴 𝑑𝑡
𝑇𝑆𝑊

0

 (4.27) 

 
𝑚𝐵 =

1 −𝑚𝐷

2
=

1

𝑇𝑆𝑊
∫ 𝑠𝐵 𝑑𝑡
𝑇𝑆𝑊

0

 . (4.28) 
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The total common mode voltage 𝑉𝑇𝐶𝑀 can be calculated by using equation (4.11). If 

decoupling inductors 𝐿𝐴 and 𝐿𝐵 are balanced, 𝑉𝑇𝐶𝑀 can be simplified as follows: 

 
𝑉𝑇𝐶𝑀 = 𝑉𝐶𝑀 =

𝑉𝐴 + 𝑉𝐵
2

 . (4.29) 

Table 4.3 shows the switching configurations that can be generated by unipolar 

modulation each switching cycle. It can be noted that 𝑉𝑇𝐶𝑀 assumes three voltage levels 

(0,VDC / 2, VDC), thus this modulation strategy do not keep the common mode voltage at a 

constant value.  

Table 4.3 – Configurations of the converter. 

 
Switching 

 function 
Switch states     

 SA SB Q1 Q2 Q3 Q4 VA0 VB0 VAB VTCM 

A
ct

iv
e 1 0 1 0 0 1 VDC 0 VDC 

𝑉𝐷𝐶

2
  

0 1 0 1 1 0 0 VDC -VDC 
𝑉𝐷𝐶

2
  

Z
er

o
 1 1 1 0 1 0 VDC VDC 0 VDC 

0 0 0 1 0 1 0 0 0 0 

The full bridge converter with unipolar modulation technique has been simulated using 

PLECS, the parameters of the model and the implemented control loop are described in 

section 4.3.A. Figure 4.15 shows the simulation results. The waveforms of 𝑚𝐴, 𝑚𝐵, 𝑉𝐴0, 𝑉𝐵0, 

𝑉𝐴𝐵, 𝑉𝑇𝐶𝑀 and 𝐼𝐷𝑀 are plotted from top to bottom.  

The simulation confirms that FB converter with unipolar modulation is not suitable for the 

use in transformerless PV application due to the high frequency harmonic content of the total 

common mode voltage.  

Harmonic content of the output voltage 𝑉𝐴𝐵 is shown in Figure 4.16, unipolar modulation 

has the unique feature to cancel the odd voltage harmonics multiple of the switching 

frequency 𝐹𝑆𝑊.  
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Figure 4.15 - Simulation results of full bridge converter controlled by means of unipolar 

modulation. 
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Figure 4.16 - Harmonic content of the output voltage 𝑉𝐴𝐵 generated by unipolar modulation. 
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Discontinuous modulation 

A common feature of bipolar and unipolar modulations is that, during each switching 

cycle, both inverter legs are used to modulate the reference voltage 𝑉𝐴𝐵
∗ . Discontinuous 

modulation instead, depending on the sign of 𝑉𝐴𝐵
∗ , modulates the output voltage with only 

one leg while the configuration of the other one remains unchanged for the whole switching 

cycle. Two modulation strategies can be implemented depending on whether the switching 

function is kept to zero or one, i.e., high-side or low-side discontinuous modulation. Only the 

low-side case has been analyzed since both of them generate the same common and 

differential mode voltages.  

The modulation strategy can be obtained by imposing 𝑚𝑂 equal to: 

 𝑚0 = |
𝑚𝐷

2
| . (4.30) 

The leg modulating signals are can be calculated as: 

 
𝑚𝐴 =

|𝑚𝐷| + 𝑚𝐷

2
 (4.31) 

 
𝑚𝐵 =

|𝑚𝐷| − 𝑚𝐷

2
 . (4.32) 

Depending on the sign of the reference voltage 𝑉𝐴𝐵
∗ , modulating signals can be calculated as 

follows. 

 
 𝑉𝐴𝐵
∗ > 0 → 𝑚𝐷 > 0 {

𝑚𝐴 = 𝑚𝐷

𝑚𝐵 = 0
 (4.33) 

 
 𝑉𝐴𝐵
∗ < 0 → 𝑚𝐷 < 0 {

𝑚𝐴 = 0
𝑚𝐵 = −𝑚𝐷

 . (4.34) 

The total common mode voltage 𝑉𝑇𝐶𝑀 can be calculated using equation (4.11). If decoupling 

inductors 𝐿𝐴 and 𝐿𝐵 are balanced, 𝑉𝑇𝐶𝑀 can be simplified as: 

 
𝑉𝑇𝐶𝑀 = 𝑉𝐶𝑀 =

𝑉𝐴 + 𝑉𝐵
2

 . (4.35) 

Table 4.4 reports the switching configuration applied by discontinuous modulation. Also 

in this case, the common mode voltage is not kept constant; it varies between two voltage 

levels every switching cycle, i.e., 0 and VDC/2.  



Chapter 4 

102 

 

Table 4.4 - Configurations of the converter 

 
 

Switching 

 functions 
Switch states     

  SA SB Q1 Q2 Q3 Q4 VA0 VB0 VAB VTCM 

mD>0 
Active 1 0 1 0 0 1 VDC 0 VDC 

𝑉𝐷𝐶

2
  

Zero 0 0 0 1 0 1 0 0 0 0 

mD<0 
Active 0 1 0 1 1 0 0 VDC -VDC 

𝑉𝐷𝐶

2
  

Zero 0 0 0 1 0 1 0 0 0 0 

 

The full bridge converter with discontinuous modulation technique has been simulated 

using PLECS, the parameters of the model and the implemented control loop are described 

in section 4.3.A.  

Figure 4.17 shows the simulation results, the waveforms of 𝑚𝐴, 𝑚𝐵, 𝑉𝐴0, 𝑉𝐵0, 𝑉𝐴𝐵, 𝑉𝑇𝐶𝑀 

and 𝐼𝐷𝑀 are plotted from top to bottom. The left part shows one fundamental period of 

operation (20 ms), while the right part is a zoomed view of the same waveforms during four 

switching cycles. The peak of the output current is set to 20A by the high level control loop.  

It is worth noting that each leg of the converter commutates at high frequency only for 

half period (10 ms), hence the name discontinuous modulation.  

As in the case of unipolar modulation, the common mode voltage 𝑉𝑇𝐶𝑀 is not kept at a 

constant value, however the peak to peak voltage 𝑉𝑇𝐶𝑀 is reduced from 𝑉𝐷𝐶 to 𝑉𝐷𝐶/2. Even 

though the harmonic content of 𝑉𝑇𝐶𝑀 is lower, this modulation technique should be avoided 

for transformerless PV applications too.  

The harmonic content of 𝑉𝐴𝐵 is shown in Figure 4.18, differently than unipolar 

modulation, all the harmonics at frequencies multiple of the switching frequency are present. 

However, the high frequency harmonic content of 𝑉𝐴𝐵 is lower than that generated by bipolar 

modulation. 
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Figure 4.17 - Simulation results of full bridge converter controlled by means of low side 

discontinuous modulation. 
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Figure 4.18 - Harmonic content of the output voltage 𝑉𝐴𝐵 generated by low side discontinuous  

modulation. 
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Hybrid modulation 

Hybrid modulation is a special case of discontinuous modulation. Leg A of the converter is 

switched at high frequency while leg B is switched at grid frequency. This modulation 

scheme requires a specific connection scheme to the grid in order to reduce the common 

mode voltage generated. Figure 4.19 shows a grid connected full bridge converter controlled 

by means of hybrid modulation. It can be noted that decoupling inductances 𝐿𝐴 and 𝐿𝐵 have 

been grouped on the phase side of the converter. Therefore, no inductance is present between 

point B and the neutral conductor.  
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Figure 4.19 - Grid connected full bridge converter controlled by means of hybrid modulation. 

The hybrid modulation strategy can be obtained imposing two different 𝑚𝑂, depending on 

the sign of the reference voltage 𝑉𝐴𝐵
∗ . 

 𝑉𝐴𝐵
∗ > 0 →  𝑚0 =

𝑚𝐷

2
 (4.36) 

 𝑉𝐴𝐵
∗ < 0 →  𝑚0 = 1 +

𝑚𝐷

2
 . (4.37) 

Modulating signals can be calculated as follows: 

 𝑉𝐴𝐵
∗ > 0 → 𝑚𝐷 > 0 → {

 𝑚𝐴 = 𝑚𝐷

𝑚𝐵 = 0
 (4.38) 

 

𝑉𝐴𝐵
∗ < 0 → 𝑚𝐷 < 0 → { 

𝑚𝐴 = 1 − |𝑚𝐷|
𝑚𝐵 = 1

 . (4.39) 
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The total common mode voltage 𝑉𝑇𝐶𝑀 can be calculated using equation (4.11). In this case, 

since decoupling inductors 𝐿𝐴 and 𝐿𝐵 are unbalanced (𝐿𝐵 = 0), 𝑉𝐷𝑀 contribute to the total 

common mode voltage too. 

 
𝑉𝑇𝐶𝑀 = 𝑉𝐶𝑀 + 𝑉𝐷𝑀

𝐿𝐵 − 𝐿𝐴
2(𝐿𝐴 + 𝐿𝐵)

= 𝑉𝐶𝑀 −
𝑉𝐷𝑀
2

= 𝑉𝐵0 . (4.40) 

Table 4.5 reports the switching configurations applied by hybrid modulation. It can be 

noted that the common mode voltage is maintained to 𝑉𝐷𝐶 if the reference 𝑉𝐴𝐵
∗  is positive, 

while 𝑉𝑇𝐶𝑀 is maintained to zero if 𝑉𝐴𝐵
∗  is negative. Therefore, the total common mode 

voltage 𝑉𝑇𝐶𝑀 changes its level at grid frequency.   

Table 4.5 - Configurations of the converter. 

 
 

Switching 

 functions 
Switch states     

  SA SB Q1 Q2 Q3 Q4 VA0 VB0 VAB VTCM 

mD>0 
Active 1 0 1 0 0 1 VDC 0 VDC 0 

Zero 0 0 0 1 0 1 0 0 0 0 

mD<0 
Active 0 1 0 1 1 0 0 VDC -VDC VDC  

Zero 1 1 1 0 1 0 VDC VDC 0 VDC 

 

The full bridge converter with hybrid modulation technique has been simulated using 

PLECS, the parameters of the model and the implemented control loop are described in 

section 4.3.A.  

The simulation results are presented in Figure 4.20, the waveforms of 𝑚𝐴,𝑚𝐵, 𝑉𝐴0, 𝑉𝐵0, 

𝑉𝐴𝐵, 𝑉𝑇𝐶𝑀 and 𝐼𝐷𝑀 are plotted from top to bottom during one fundamental period of the grid.  

It is worth noting that only leg A of the converter switches at high frequency, while leg B 

changes its configuration at grid frequency. The total common mode voltage 𝑉𝑇𝐶𝑀 has a 

square wave variation at grid frequency, therefore its harmonic content is lower than that 

generated by unipolar and discontinuous modulation. As discussed in 4.2, not only the 

common mode voltage determines the leakage current but also the common mode impedance 

of the decoupling filter of the converter. Figure 4.21 shows the CM equivalent circuit of the 

PV system, the common mode impedance of decoupling inductors is zero since all the 
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inductance is on the phase side of the converter. Each time leg B changes configuration, a 

voltage step of 𝑉𝐷𝐶 determine an high leakage current peaks, which is limited only by the 

ground impedance of the system. This drawback prevents the use of hybrid for 

transformerless PV applications. 
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Figure 4.20 - Simulation results and harmonic content of the output voltage 𝑉𝐴𝐵 in case of 

full bridge converter controlled by means of hybrid modulation. 
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Figure 4.21 – Simplified CM circuit of the full bridge converter controlle by means of hybrid 

modulation. The total common mode voltage is equal to 𝑉𝐵0. 
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4.3.B H5 converter 

It has been shown, in the previous section, that bipolar modulation is the only modulation 

strategy of the full bridge converter suited for transformerless applications. However, in 

comparison to unipolar modulations, the output voltage 𝑉𝐴𝐵 has only 2 levels (−𝑉𝐷𝐶, +𝑉𝐷𝐶) 

and the absence of the freewheeling phases (𝑉𝐴𝐵 = 0) reduces the efficiency of the converter. 

In order to limit the ripple of the current, high switching frequency or bulky inductors are 

required, but both solutions further reduce the overall efficiency of the PV system.  

H5 topology was proposed and patented in 2005 by SMA to overcome the limitations of 

H4 inverter [66].  

 

Figure 4.22 - Grid connected H5 converter. 

Figure 4.22 shows the H5 inverter, it consists of a full bridge converter with an extra 

switch 𝑄5 on the positive side of the dc-link. During active configurations, the operation of 

H5 inverter is similar to H4 converter. The additional switch 𝑄5 is closed while diagonal 

switches of the bridge are controlled in order to generate  𝑉𝐴𝐵 = ±𝑉𝐷𝐶 . The zero voltage 

configuration 𝑉𝐴𝐵 = 0, instead, is obtained shorting the output by means of switches 𝑄1 and 

𝑄3, while 𝑄2, 𝑄4 and 𝑄5 are kept open. Left part of Figure 4.23 shows the equivalent circuit 

of PV system during the active configurations, while the right part, during the zero output 

configuration. The aim of the fifth switch, along with 𝑄2 and 𝑄4, is to disconnect the PV 

panels from the electric grid during freewheeling phases of the converter. Actually, the 

prefect disconnection is not possible due to the junction capacitance of power switches, which 
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is in the range from tens to few hundreds pF. However, a large impedance is inserted in the 

common mode circuit that reduces the high frequency leakage current.  

 

Figure 4.23 – Simplified circuit of the H5 converter during active configurations (left) and 

zero output configurations (right). 

The main bridge is controlled by means of high side discontinuous modulation, while the 

switching function of 𝑄5 can be derived as a logic combination of 𝑠𝐴 and 𝑠𝐵.  

Homopolar component 𝑚𝑂 is equal to: 

  𝑚0 = 1 − |
𝑚𝐷

2
| . (4.41) 

The leg modulating signals can be calculated as: 

 
𝑚𝐴 = 1 −

|𝑚𝐷| + 𝑚𝐷

2
 (4.42) 

 
𝑚𝐵 = 1 −

|𝑚𝐷| − 𝑚𝐷

2
 . (4.43) 

Depending on the sign of the reference voltage 𝑉𝐴𝐵
∗ , modulating signals can be calculated as 

follows. 

 
 𝑉𝐴𝐵
∗ > 0 → 𝑚𝐷 > 0 {

𝑚𝐴 = 1 −𝑚𝐷

𝑚𝐵 = 1
 (4.44) 

 
 𝑉𝐴𝐵
∗ < 0 → 𝑚𝐷 < 0 {

𝑚𝐴 = 1

𝑚𝐵 = 1 − |𝑚𝐷| .
  (4.45) 

Switching functions of legs A and B are obtained by means of PWM modulation: 
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𝑚𝐴 =

1

𝑇𝑆𝑊
∫ 𝑠𝐴 𝑑𝑡
𝑇𝑆𝑊

0

𝑚𝐵 =
1

𝑇𝑆𝑊
∫ 𝑠𝐵 𝑑𝑡
𝑇𝑆𝑊

0

 .

 (4.46) 

The switching function 𝑠5 of the additional switch 𝑄5 can be obtained by means of a logic 

NAND operation on 𝑠𝐴 and 𝑠𝐵: 

 𝑠5 = 𝑠𝐴 ∙ 𝑠𝐵̅̅ ̅̅ ̅̅ ̅̅  . (4.47) 

Table 4.6 shows the switching configuration of the H5 converter.  

Table 4.6 - Configurations of the converter. 

 
Switching 

 function 
Switch states     

 SA SB S5 Q1 Q2 Q3 Q4 Q5 VA0 VB0 VAB VTCM 

A
ct

iv
e 1 0 1 1 0 0 1 1 VDC 0 VDC 

𝑉𝐷𝐶

2
  

0 1 1 0 1 1 0 1 0 VDC -VDC 
𝑉𝐷𝐶

2
  

Z
er

o
 

1 1 0 1 0 1 0 0 - - 0 - 

 

The H5 converter has been simulated using PLECS, the parameters of the model and the 

implemented control loop are described in section 4.3.A.  

The simulation results are presented in Figure 4.20. The waveforms of 𝑚𝐴,𝑚𝐵, 𝑉𝐴0, 𝑉𝐵0, 

𝑉𝐴𝐵, 𝑉𝑇𝐶𝑀 and 𝐼𝐷𝑀 are plotted from top to bottom during one fundamental period of the grid.  

As discussed before, during the zero output configuration, the grid is connected to DC 

side of the converter only by means of stray junction capacitance of power switches. Thus 

the total common mode voltage 𝑉𝑇𝐶𝑀 is hardware and application dependent, since 𝑉𝐴0 and 

𝑉𝐵0 are not actively set by the converter.  

With respect to bipolar modulation of H4, H5 reduces the losses in reactive components 

of the converter and generates an output voltage 𝑉𝐴𝐵 with lower harmonic content. The 

voltage spectrum of 𝑉𝐴𝐵, as depicted in Figure 4.25, is identical to the one generated by 

discontinuous modulation for full bridge converters. However, higher conduction losses in 
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power transistors are generated since the output current flows through three switches during 

the active configurations.  
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Figure 4.24 - Simulation results of H5 

converter controlled by means of high side 

discontinouos modulation.  

Figure 4.25 - Harmonic content of the 

output voltage 𝑉𝐴𝐵 generated by high side 

discontinouos modulation. 

4.3.C H6 converter 

In the previous section, it has been shown that H5 converter addresses the problems of the 

leakage current disconnecting the PV panels to the electric grid during zero output state of 

the inverter. Therefore, the approach followed is to interrupt the leakage current rather than 

keeping the total common mode voltage constant.  

H6 converter, instead, is an inverter that can be used to actively keep the common mode 

voltage to a constant value, 𝑉𝐷𝐶 2⁄ . It has been patented by Ingeteam [67] and published in 

reference [60]. H6 topology is depicted in Figure 4.26. It is composed by a full bridge (H4) 

with two extra switches 𝑄5 and 𝑄6 on the upper and lower side of the DC link.  Moreover, 

the DC link capacitor is split into two parts. The potential of the midpoint is 𝑉𝐷𝐶 2⁄ . Two 

diodes 𝐷7 and 𝐷8 are connected between the center tap of the capacitors and the input of the 

bridge. Several modulation strategies have been proposed in literature [68] [69] [70] [71]. 
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During active configurations, the operation of H6 inverter is similar to H4 converter. The 

DC link switches 𝑄5 and 𝑄6 are closed while diagonal switches of the bridge are controlled 

in order to generate 𝑉𝐴𝐵 = ±𝑉𝐷𝐶. The total common mode voltage 𝑉𝑇𝐶𝑀 in both cases is 

𝑉𝐷𝐶 2⁄ . 

 During zero output voltage configuration 𝑉𝐴𝐵 = 0, instead, 𝑄5 and 𝑄6 are switched off 

while all the switches of the bridge are turned on. In this condition, the diodes 𝐷7 and 𝐷8 

clamp the voltages 𝑉𝐴0 and 𝑉𝐵0 to 𝑉𝐷𝐶 2⁄ , therefore the leakage current is reduced since 𝑉𝑇𝐶𝑀 

is maintained to a constant value. It is worth mentioning that the short circuit of the bridge 

guarantee that 𝑉𝑇𝐶𝑀 is clamped to 𝑉𝐷𝐶 2⁄ , regardless the sign of the output current.   
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Figure 4.26 - Grid connected H6 converter. 

The proper operation of the converter requires the possibility to close all the switches of the 

bridge. This situation is not allowed using one switching function per leg since only one 

switch at time can be turned on i.e., the top or the bottom switch. In order to control the 

converter, a different mathematical approach has to be defined. Switches 𝑄1 and 𝑄4 are 

controlled by the same modulating signal 𝑚14, while 𝑄2 and 𝑄3 are controlled by the 

modulating signal 𝑚23: 

 
𝑚14 = 1 −

|𝑚𝐷| + 𝑚𝐷

2
 (4.48) 

 
𝑚23 = 1 +

|𝑚𝐷| + 𝑚𝐷

2
 . (4.49) 
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The switching function of the switches of the bridge can be obtained by means of two PWM 

modulators, which generate 𝑠14 and 𝑠23: 

 

{
 
 

 
 𝑚14 =

1

𝑇𝑆𝑊
∫ 𝑠14 𝑑𝑡
𝑇𝑆𝑊

0

𝑚23 =
1

𝑇𝑆𝑊
∫ 𝑠23 𝑑𝑡
𝑇𝑆𝑊

0

 . (4.50) 

Switches 𝑄5 and 𝑄6 are controlled by the same switching function 𝑠56, which can be obtained 

by means of logic NAND operation on 𝑠14 and 𝑠23: Configurations of the converter 

 𝑠56 = 𝑠14 ∙ 𝑠23̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (4.51) 

Table 4.7 shows the switching configuration of the H6 converter. It can be noted that the 

common mode voltage is equal to 𝑉𝐷𝐶 2⁄  for all active and zero configurations of the 

converter, i.e., the leakage current is reduced. 

 

Table 4.7 - Configurations of the converter 

 
Switching 

 function 
Switch states     

 S1-4 S2-3 S5-6 Q1 Q2 Q3 Q4 Q5 Q6 VA0 VB0 VAB VTCM 

A
ct

iv
e 1 0 1 1 0 0 1 1 1 VDC 0 VDC 

𝑉𝐷𝐶

2
  

0 1 1 0 1 1 0 1 1 0 VDC -VDC 
𝑉𝐷𝐶

2
  

Z
er

o
 

1 1 0 1 1 1 1 0 0 
𝑉𝐷𝐶

2
  

𝑉𝐷𝐶

2
  0 

𝑉𝐷𝐶

2
  

 

The simulation results carried out by PLECS are presented in Figure 4.27. The waveforms 

of 𝑚14,𝑚23, 𝑉𝐴0, 𝑉𝐵0, 𝑉𝐴𝐵, 𝑉𝑇𝐶𝑀 and 𝐼𝐷𝑀 are plotted from the top to the bottom during one 

fundamental period of the grid. It is worth noting that the clamping diodes make 𝑉𝐴0 and 𝑉𝐵0 

to commutate by the voltage step 𝑉𝐷𝐶 2⁄  instead of the full DC link voltage, as in a standard 

H4 converter. This characteristic of operation reduces the switching losses of the main 

switches of the converter. However, higher conduction losses in power transistors are 

generated since the output current flows through four switches during the active 

configurations.  
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Figure 4.27 - Simulation results of H6 converter. 

With respect to bipolar modulation of H4, the H6 reduces the losses in reactive 

components of the converter and generates an output voltage 𝑉𝐴𝐵 with lower harmonic 

content. The voltage spectrum of 𝑉𝐴𝐵, as depicted in Figure 4.28 is identical to the one 

generated by discontinuous modulation of full bridge converter. 

[V
]

VAB

Frequency [Hz]
 

Figure 4.28 - Harmonic content of the output voltage 𝑉𝐴𝐵. 
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4.3.D H6 converter – unipolar modulation 

The control technique of H6 presented so far guarantees a constant common mode voltage 

regardless the sign of the output current. H6 topology can be also controlled by a modulation 

technique that combines the advantages of the unipolar modulation of H4 (equivalent 

switching frequency of 𝑉𝐴𝐵 is twice the frequency 𝐹𝑆𝑊), with the leakage current reduction 

of the H5 converter.  

Legs A and B of the bridge are controlled by means of the unipolar modulation presented 

in paragraph 4.3.A. The switch 𝑄5 is turned off every time the main bridge applies an high 

side null configuration, and the PV panels has to be disconnected from the grid. In the same 

way, 𝑄6 is turned off every time the bridge applies a low side null configuration. Similarly 

to the case of H5 converter, the common mode voltage during zero configurations depend on 

the stray junction capacitance of the switches, however, the diodes 𝐷7 and 𝐷8 may clamp 

𝑉𝑇𝐶𝑀 to 𝑉𝐷𝐶 2⁄ , depending on the sign of the output current.  

The main bridge is controlled by means of unipolar modulation, while the switching 

function of 𝑄5 can be derived as a logic combination of 𝑠𝐴 and 𝑠𝐵.  

Homopolar component 𝑚𝑂 is equal to: 

  
𝑚0 =

1

2
 . (4.52) 

The leg modulating signals can be calculated as: 

 
𝑚𝐴 =

1 +𝑚𝐷

2
=

1

𝑇𝑆𝑊
∫ 𝑠𝐴 𝑑𝑡
𝑇𝑆𝑊

0

 (4.53) 

 
𝑚𝐵 =

1 −𝑚𝐷

2
=

1

𝑇𝑆𝑊
∫ 𝑠𝐵 𝑑𝑡
𝑇𝑆𝑊

0

 . (4.54) 

The switching function 𝑠5 and 𝑠6 of the addition switch 𝑄5 can be obtained by means of logic 

operation on 𝑠𝐴 and 𝑠𝐵: 

 𝑠5 = 𝑠𝐴 ∙ 𝑠𝐵̅̅ ̅̅ ̅̅ ̅̅  (4.55) 

 𝑠6 = 𝑠𝐴 + 𝑠𝐵 . (4.56) 
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Table 4.8 - Configurations of the converter. 

 
Switching 

 function 
Switch states     

 SA SB S5 S6 Q1 Q2 Q3 Q4 Q5 Q6 VA0 VB0 VAB VTCM 

A
ct

iv
e 1 0 1 1 1 0 0 1 1 1 VDC 0 VDC 

𝑉𝐷𝐶

2
  

0 1 1 1 0 1 1 0 1 1 0 VDC -VDC 
𝑉𝐷𝐶

2
  

Z
er

o
 1 1 0 1 1 0 1 0 0 1 - - 0 - 

0 0 1 0 0 1 0 1 1 0 - - 0 - 

The H6 converter with unipolar modulation technique has been simulated using PLECS, the 

parameters of the model and the implemented control loop are described in section 4.3.A. 

Figure 4.29 shows the simulation results, the waveforms of 𝑚𝐴, 𝑚𝐵, 𝑉𝐴0, 𝑉𝐵0, 𝑉𝐴𝐵, 𝑉𝑇𝐶𝑀 and 

𝐼𝐷𝑀 are plotted from the top to the bottom.  

Harmonic content of the output voltage 𝑉𝐴𝐵 is shown in Figure 4.30. Unipolar modulation 

has the unique feature to cancel the odd voltage harmonics multiple of the switching 

frequency 𝐹𝑆𝑊, which in this case is 20kHz.  
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Figure 4.29 - Simulation results H6 

converter controlled by means of unipolar 

modulation. 

Figure 4.30 - Harmonic content of the 

output voltage 𝑉𝐴𝐵 generated by unipolar 

modulation. 
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4.4 Experimental results 

H6 converter is the most complex topology described in section 4.3. It includes all the 

elements of full bridge and H5 converters. Giving that H6 can be reconfigured as three 

different converters, a H6 prototype has been designed and fabricated in order to 

experimentally compare the efficiency and the leakage current generated by different 

modulation strategies.  

 

4.4.A Design of a H6 converter 

Figure 4.31 shows the H6 prototype. The converter is rated for a DC link of 400 V and a 

phase current of 16 ARMS. The power stage consists of discrete power components mounted 

on an exposed heatsink. Therefore, during experimental tests, the accurate measure of the 

temperature of the power switches is possible by means of an infrared (IR) camera. This 

feature allows to evaluate the effect of the different modulation techniques on the thermal 

stress of each component. The thermal resistance of the heatsink, under natural cooling 

condition, is nearly 1.4 ÷ 1.5 °C/W. Such a large value has been selected so that small 

variation of the dissipated power leads to a variation of the temperature of the heatsink 

appreciable by IR measurements.  

 

Figure 4.31 – Picture of the H6 converter prototype. 
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The prototype has been designed also with the aim to be a test bench platform for different 

power switch technologies, thus, reconfigurable gate driver circuits have been adopted. 

Labels “1” of Figure 4.31 identify the six gate driver circuits of the converter. Each one 

consists of the standalone circuit depicted in Figure 4.32.  

Two versions of the converter have been built, one using high-performance Si IGBTs 

(Infineon IKW40N65H5), and one using high-switching speed SiC MOSFETs 

C2M0080120D, produced by CREE [72]. These two devices require a different driving 

voltage and gate resistance in order to maximize their static and dynamic performances, thus, 

two different gate driver boards have been built.  

 

Figure 4.32 – Picture of the gate driver board. 

The DC bus is composed of electrolytic capacitors and metallized polypropylene film 

capacitors, as shown in Figure 4.31. In single phase PV systems, the DC link capacitor 

decouples the constant power generated by PV panels, to the pulsating AC power injected in 

the grid. This situation, for the sake of clarity, is depicted in Figure 4.33. The DC bus voltage 

and its second harmonic ripple are computed by the balance of input and 

output powers in the inverter, and may be approximated by the following expression, given 

in [73] [74]:  

 
𝑣𝐷𝐶(𝑡) = 𝑉𝐷𝐶̅̅ ̅̅ ̅ +

𝑃𝑃𝑉

2𝜔𝐺𝐶𝐷𝐶𝑉𝐷𝐶̅̅ ̅̅ ̅
sin (2𝜔𝐺𝑡) (4.57) 

where 𝑉𝐷𝐶̅̅ ̅̅ ̅ is the average DC bus voltage, 𝑃𝑃𝑉 is the power generated by the PV panels, 𝜔𝐺 

is the frequency of the grid, and 𝐶𝐷𝐶 is the DC link capacitance. The maximum ripple of 

𝑣𝐷𝐶  can be controlled by properly selecting the capacity of the DC link: 

 𝑃𝑃𝑉,𝑚𝑎𝑥

2𝜔𝐺𝐶𝐷𝐶𝑉𝐷𝐶̅̅ ̅̅ ̅
<
𝑉𝑃𝑃,𝑚𝑎𝑥
2

 . (4.58) 
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A total capacity of 560 µF has been selected in order to limit the peak to peak voltage ripple 

below 30V, when the converter operates at 400V and the input power is 2000W: 

 
𝐶𝐷𝐶 >

𝑃𝑃𝑉,𝑚𝑎𝑥

𝜔𝐺𝑉𝐷𝐶̅̅ ̅̅ ̅ 𝑉𝑃𝑃,𝑚𝑎𝑥
= 530 𝜇𝐹 . (4.59) 

 

 

Figure 4.33 – Power balance on the DC link capacitor of a single phase PV system. 

The converter is controlled by an external DSP board, therefore, it is designed for the 

reception of the PWM signals, and for the transmission of analog feedback measures. 

The PWM receiver module of the converter is pointed out by label 3 of Figure 4.31. Labels 

4, 5, and 6 of the same figure show, respectively, the isolated measurement circuits of the 

output current, of the DC link voltage, and of the grid voltage.   

 

4.4.B Leakage current test 

In section 4.3, different modulation techniques for H4, H5, and H6 inverters have been 

presented. Each strategy generates a common mode voltage that may or may not be suited 

for the use in transformerless PV systems. Moreover, converters that reduces the leakage 

current disconnecting the PV panels from the electric grid during zero output configuration, 
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cannot be accurately simulated using system level programs, like PLECS. For this reason, 

the leakage current generated by each inverter has been measured experimentally for 

comparison purpose.  

 

 

Figure 4.34 – Experimental test setup. 

Figure 4.34 shows the test setup used to compare the modulation strategies presented in 

section 4.3. The tests have been carried out at reduced DC link voltage of 70 V. In order to 

make results reproducible and independent from the POC of the system, the power grid has 

been replaced by an ohmic inductive load.  

The common mode current generated flows back to the DC side of the converter by means 

of two R-C circuits, which simulate the ground resistance and the capacitance of the PV 

panels.  

A Fluke i30s current probe, which has a bandwidth of 100 kHz, has been used to measure 

the CM current. Thus, the RMS value of the leakage current has been calculated considering 

only spectral components below 100 kHz. 

The control algorithm depicted in Figure 4.11 has been implemented, in discrete time [75], 

on a control board based on a floating point Digital Signal Processor (DSP) TMS320F28335. 

The switching frequency is the same for all the tests, 20kHz, and the output peak current is 

set to 5 A – 50 Hz.  

The converter endowed with Si IGBTs has been used for the leakage current test.  
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H4 converter with bipolar modulation 

Figure 4.35 shows the test set setup and the experimental results obtained. In b) it can be 

noted that the output voltage 𝑉𝐴𝐵 generated by the bipolar modulation has only two levels. 

The output current 𝐼𝐷𝑀 has the higher ripple among all the tested solutions. 

 Figure a) shows the test setup, it can be noted that the load is symmetric, therefore, 𝑉𝑇𝐶𝑀 

is equal to 𝑉𝐶𝑀. In d) it can be observed that the bipolar modulation keeps nearly constant 

𝑉𝐶𝑀, therefore, the leakage current is extremely low. This is confirmed by the spectral 

analysis of the leakage current depicted in graph c), the RMS value of 𝐼𝐶𝑀 is 4.4 mARMS. 

 

 

  

a) Test setup b) Differential mode results 

 
 

c) Harmonic content of the leakage current d) Common mode results 

Figure 4.35 – Experimental results of full bridge converter controlled by means of bipolar 

modulation. 
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H4 converter with unipolar modulation 

Figure 4.36 shows the test set setup and the experimental results obtained. In b) it can be 

noted that the output voltage 𝑉𝐴𝐵 has three levels and its equivalent switching frequency is 

twice that of 𝑉𝐴0 and 𝑉𝐵0.  

Also in this case, the load is symmetric, therefore, 𝑉𝑇𝐶𝑀 is equal to 𝑉𝐶𝑀. In d) it can be 

observed that the common mode voltage has a high frequency harmonic content, therefore, 

large leakage current is generated. This is confirmed by the spectral analysis of the leakage 

current depicted in graph c), the RMS value of 𝐼𝐶𝑀 is 102.9 mARMS. 

 

 

  

a) Test setup b) Differential mode results 

 
 

c) Harmonic content of the leakage current d) Common mode results 

Figure 4.36 - Experimental results of full bridge converter controlled by means of unipolar 

modulation. 
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H4 converter with discontinuous modulation 

Figure 4.37 shows test set setup and the experimental results obtained. In b) it can be noted 

that the output voltage 𝑉𝐴𝐵 has three levels, and that legs A and B modulate once at time.  

Also in this case, the load is symmetric, therefore, 𝑉𝑇𝐶𝑀 is equal to 𝑉𝐶𝑀. In d) it can be 

observed that the common mode voltage has a high frequency harmonic content, therefore, 

large leakage current is generated. This is confirmed by the spectral analysis of the leakage 

current depicted in graph c), the RMS value of 𝐼𝐶𝑀 is 69.5 mARMS. 

 

 

  

a) Test setup b) Differential mode results 

 
 

c) Harmonic content of the leakage current d) Common mode results 

Figure 4.37 - Experimental results of full bridge converter controlled by means of 

discontinuous modulation. 
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H4 converter with hybrid modulation 

Figure 4.38 shows the test set setup and the experimental results obtained. Hybrid 

modulation has the unique characteristic of modulate leg A at high frequency, and leg B at 

grid frequency. It can be noted in figure a) that decupling inductors and load resistances have 

been grouped on the phase side of the converter. This specific arrangement, as discussed in 

paragraph 4.3.A, makes 𝑉𝑇𝐶𝑀 equal to 𝑉𝐵0. The total common mode voltage appears as a 

square wave, varying at grid frequency. Figure d) confirm that every time leg B changes 

configuration, a voltage step 𝑉𝐷𝐶 determine leakage current peaks higher than 1 A, which are 

limited only by 𝑅𝐺  and the parasitic inductance of the circuit. The spectral analysis of the 

leakage current is depicted in graph c), its RMS value is 22.2 mARMS.  

  

a) Test setup b) Differential mode results 

  

c) Harmonic content of the leakage current d) Common mode results 

Figure 4.38 - Experimental results of full bridge converter controlled by means of hybrid 

modulation. 
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H5 converter 

Figure 4.39 shows the test set setup and the experimental results obtained. The bridge of 

the converter is controlled by means of high side discontinuous modulation, while switch 𝑄5 

disconnects the DC side from the AC side during zero output configurations. The output 

voltage has the same characteristic of discontinuous modulation of H4, whereas the common 

mode voltage is hardware dependent. In d) it can be noted that voltage 𝑉𝐴0 and 𝑉𝐵0, when 

𝑉𝐴𝐵 is zero, are not actively imposed by the converter to any value. The effectiveness of this 

converter is shown in graph c), the RMS value of the leakage current is reduced to 7.8 mARMS. 

The H4 converter controlled by means of the same discontinuous modulation strategy 

generates a leakage current that is 9 times higher.  

 
 

a) Test setup b) Differential mode results 

 
 

c) Harmonic content of the leakage current d) Common mode results 

Figure 4.39 - Experimental results of H5 converter. 
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H6 converter  

Figure 4.40 shows the test set setup and the experimental results obtained. The aim of H6 

converter is to actively keep the common mode voltage to a constant value 𝑉𝐷𝐶 2⁄ . This 

characteristic is confirmed by the waveforms depicted in plot d). Since 𝑉𝑇𝐶𝑀 is nearly 

constant over time, the RMS value of the leakage current is greatly reduced. The spectral 

analysis of the leakage current is depicted in graph c). The RMS value of 𝐼𝐶𝑀 is 4.2 mARMS, 

a value that is close to that obtained by bipolar modulation of H4 converter.  

 

  

a) Test setup b) Differential mode results 

 
 

c) Harmonic content of the leakage current d) Common mode results 

Figure 4.40 - Experimental results of H6 converter. 
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H6 converter with unipolar modulation 

Figure 4.39 shows the test set setup and the experimental results obtained. The bridge of 

the converter is controlled by means of unipolar modulation, while switches 𝑄5 and 𝑄6 

disconnect the DC side from the AC side during zero output configurations. The output 

voltage has the same characteristic of unipolar modulation of H4, while the common mode 

voltage is hardware dependent. In d) it can be noted that voltage 𝑉𝐴0 and 𝑉𝐵0, when 𝑉𝐴𝐵 is 

zero, are not actively imposed by the converter to any value. The effectiveness of this 

converter is show graph c), the RMS value of the leakage current is reduced to 12.9 mARMS. 

The H4 converter controlled by means of the same unipolar modulation strategy generates a 

leakage current 8 times higher.  

  

a) Test setup b) Differential mode results 

  

c) Harmonic content of the leakage current d) Common mode results 

Figure 4.41 - Experimental results of H6 converter controlled by means of unipolar 

modulation. 
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Leakage current comparison 

Figure 4.42 combines the results of the leakage current tests. The figure is subdivided into 

seven columns, one for each modulation technique. Four graphs are depicted from top to 

bottom. The first one shows the total common mode voltage during a period of the grid 

frequency. The second graph shows the total common mode voltage during two switching 

cycles. The third graph depicts the leakage current during a period of the grid frequency, 

whereas the last graph shows the RMS of the leakage current, expressed as a percentage of 

the maximum value obtained in the tests. 

Figure 4.42 shows that bipolar modulation is the only modulation technique of the H4 

converter that strongly reduces the leakage current. In fact, the total common mode voltage 

is maintained at a constant value of 𝑉𝐷𝐶 2⁄ . On the contrary, unipolar and discontinuous 

modulations determine and high-frequency variation of 𝑉𝑇𝐶𝑀, hence, high leakage current.  

 

Figure 4.42 – Comparison of the total common mode voltage and leakage current generated 

by the tested modulation strategies.  
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The total common mode voltage generated by hybrid modulation of H4 converter has a 

low frequency square wave variation. However, high leakage current peaks are generated due 

to the fact that the common mode impedance is composed only by the ground resistance and 

by the parasitic inductance of the circuit. 

The H6 converter generates a very low leakage current level, similar to that obtained by 

the H4 converter controlled by bipolar modulation. Indeed, the aim of the H6 topology is to 

actively maintain the common mode voltage to 𝑉𝐷𝐶 2⁄ .  

H5 converter and H6 converter controlled by unipolar modulation, have the common 

characteristic of interrupt the leakage current during zero output configurations. It can be 

noted in Figure 4.42 that the common mode voltage is not actively kept to 𝑉𝐷𝐶 2⁄  as in the 

case of H6 converter. A voltage transient appears every time the converter applies a zero 

output configuration, i.e., common mode behavior is hardware dependent. Both topologies 

greatly reduce the leakage current. Therefore, they are very suitable for transformerless PV 

applications. 

The common mode voltage generated by the converter, however, is not the only 

requirement of PV systems, and the efficiency has to be considered as well. In the next section 

the efficiency evaluation of the converters presented so far is assessed, using silicon and 

silicon carbide power devices. 
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4.4.C Efficiency tests  

The Si IGBT prototype and the SiC MOSFET prototype of the converters previously 

described have been tested and compared for all the modulations strategies presented in 

section 4.3.  

The transistor chosen for the efficiency comparison are the same used in chapter 3.3.D. 

For the sake of clarity the main electrical parameters of the devices are listed in Table 4.9. 

The first device is a silicon high-performance IGBT (Infineon IKW40N65H5), designed for 

best-in-class efficiency in hard-switching and resonant converter topologies. The second 

device selected is a high-switching speed SiC MOSFET C2M0080120D, produced by CREE. 

As can be observed in Table 4.9 the blocking voltage of the SiC switch (1200V) is almost 

twice of that of the Si counterpart (650V). This choice is due to the absence of SiC devices 

with lower blocking voltages on the market.  

 

Table 4.9 - Main parameters of the Si IGBT and SiC MOSFET selected. 

Parameter Si IGBT SiC MOSFET 

Breakdown voltage 650V 1200V 

DC continuous current 46A @100°C 20A @100°C 

Nominal on-state voltage 

drop/resistance 
1.65 V 80 mΩ 

RTH (junction-case) 0.60 K/W 0.60 K/W 

Case package TO247 TO247 

Part number 
Infineon 

IKW40N65H5 

Cree 

C2M0080120D 

 

The forward voltage drop of the Si IGBT and SiC MOSFET is compared in Figure 4.43, 

whereas the turn-on and turn-off switching energies are depicted in Figure 4.44. 

All the tests were carried out at constant modulation index, equal to 0.8, and at output 

frequency of 50 Hz. The converters fed a R-L load, whose inductance was 2 mH, whereas 

the resistance was adjusted to change the load point. Due to the low value of the load 

inductance, the load power factor was nearly unity in all tests. 
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Figure 4.43 - V-I characteristic of the Si IGBT and SiC MOSFET selected. 

 

 

Figure 4.44 – Switching energies of the Si IGBT and SiC MOSFET selected. 

 

The experimental test setup is depicted in Figure 4.45. During the tests, the dc voltage, 

equal to 400 V, was kept constant by a dc generator TDK Lambda GEN600-5.5, which also 

limited the output power to about 2200 W. The efficiency was measured by means of a digital 

power meter Yokogawa WT2030. The wide frequency range of the instrument allows the 

direct measure of the converter efficiency.  

 

The control algorithm depicted in Figure 4.11 has been implemented, in discrete time, on 

a control board based on a floating point Digital Signal Processor (DSP) TMS320F28335. 

The switching frequency was kept constant at 20 kHz for all the tests. 
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Figure 4.45 – Experimental test setup. 

H4 converter with unipolar modulation 

Figure 4.46 shows the results of the efficiency tests of the H4 converters controlled by 

means of unipolar modulation. The efficiency curves of Si and SiC prototypes are shown in 

Figure b), each point was measured at the end of the thermal transient of the heat sink.  

The efficiency of the SiC converter is always greater than the Si counterpart, and the 

maximum difference is 0.5% at half load. The difference between the two converters 

decreases as the output power increases. This behavior is due to the forward voltage 

characteristics of IGBT and MOSFET. As can be seen in Figure 4.43, SiC MOSFET is 

favored for low load conditions.  

The minimum difference between the two efficiencies, 0.19%, is reached at the maximum 

output power of 2000 W.  Given that the thermal resistance of the heat sink is 1.3 ÷ 1.5 °C/W, 

the difference of temperatures between the two prototypes can be roughly estimated in 4.9 ÷ 

5.7 ° C. 

The infrared thermal analysis of the two converters, at the output power of 2000 W, is 

depicted in Figures c) and d). The difference of temperature between the two heatsink is 4.9 

° C, thus confirming the consistency of the measure of efficiency.   
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a) Test setup. b) Efficiency comparison of SiC and Si 

prototypes.   

  

c) IR picture of the Si prototype at output 

power of 2000 W. 

d)  IR picture of the SiC prototype at 

output power of 2000 W.  

Figure 4.46 - Experimental results of full bridge converter controlled by means of unipolar 

modulation. 

 

H4 converter with discontinuous modulation 

Figure 4.47 shows the results of the efficiency tests of the H4 converters controlled by 

means of discontinuous modulation. The efficiency curves of Si and SiC prototypes are 

shown in Figure b), it can be seen that the efficiency of the SiC converter is always greater 

than the Si counterpart, and the maximum difference is 0.6% at 25% of load. The minimum 

difference between the two efficiencies, 0.12%, is reached at the maximum output power of 

2000 W.  
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 The infrared thermal analysis of the two converters, at the output power of 2000 W, is 

depicted in c) and d). It can be noted that switches 𝑄1 and 𝑄3 are hotter than 𝑄2 and 𝑄4. This 

behavior is due to the asymmetric use of the converter by the discontinuous modulation. 

Indeed, the zero output voltage configuration is always generated by the upper switches of 

the bridge, therefore they generate more conduction losses. The difference of temperature 

between the two heatsink is 6.3 ° C, whereas the maximum temperature of the transistors is 

87.1 °C, for Si IGBTs, and 80.4 °C for SiC MOSFETs.  

 

 

 

 

a) Test setup. b) Efficiency comparison of SiC and Si 

prototypes. 

  

c)  IR picture of the Si prototype at output 

power of 2000 W. 

d) IR picture of the SiC prototype at output 

power of 2000 W.  

Figure 4.47 - Experimental results of full bridge converter controlled by means of 

discontinuous modulation. 
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H4 converter with hybrid modulation 

Figure 4.48 shows the results of the efficiency tests of the H4 converters controlled by 

means of hybrid modulation. The efficiency curves of Si and SiC prototypes are shown in 

Figure b). The efficiency of the SiC converter is always greater than the Si counterpart, and 

the maximum difference is 0.6% below 50% of load. The minimum difference between the 

two efficiencies, 0.1%, is reached at the maximum output power of 2000 W.  

 

  

 

 

a) Test setup. b) Efficiency comparison of SiC and Si 

prototypes.   

  

c) IR picture of the Si prototype at output 

power of 2000 W. 

d) IR picture of the SiC prototype at output 

power of 2000 W.  

Figure 4.48 - Experimental results of full bridge converter controlled by means of hybrid 

modulation. 
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The infrared thermal analysis of the two converters, at the output power of 2000 W, is 

depicted in Figure c) and d). It can be noted that switches 𝑄1 and 𝑄2 are hotter than 𝑄3 and 

𝑄4. This behavior is due to the asymmetric use of the leg of the converter by the hybrid 

modulation. Indeed, leg A is switched at high frequency while leg B is switched at grid 

frequency. The difference of temperature between the two heatsink is 5.7 ° C, whereas the 

maximum temperature of the transistors is 78.2 °C, for Si IGBTs, and 70.9 °C for SiC 

MOSFETs.  

H5 converter 

Figure 4.49 shows the results of the efficiency tests of the H5 converters. The efficiency 

curves of Si and SiC prototypes are shown in Figure b), each point was measured at the end 

of the thermal transient of the heat sink. The efficiency of the SiC converter is always greater 

than the Si counterpart, and the maximum difference is 0.6% below 50% of load. The 

minimum difference between the two efficiencies, 0.1%, is reached at the maximum output 

power of 2000 W.  The infrared thermal analysis of the two converters, at the output power 

of 2000 W, is depicted in Figure c) and d).  

The difference of temperature between the two heatsink is 1.2 ° C, whereas the maximum 

temperature of the transistors is 85.5 °C, for Si IGBTs, and 83.3 °C for SiC MOSFETs. For 

both converters, the hottest switch is 𝑄5. This characteristic is due to the fact that all the load 

power flows through the DC link transistor. 

 

 

 
 

a) Test setup. b) Efficiency comparison of SiC and Si 

prototypes.   
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c) IR picture of the Si prototype at output 

power of 2000 W. 

d) IR picture of the SiC prototype at output 

power of 2000 W.  

Figure 4.49 - Experimental results of H5 converter. 

H6 converter 

Figure 4.50 shows the results of the efficiency tests of the H6 converter. The efficiency 

curves of Si and SiC prototypes are shown in Figure b). The efficiency of the SiC converter 

is always greater than the Si counterpart, and the maximum difference is 0.55% below 50% 

of load. The minimum difference between the two efficiencies, 0.3%, is reached at the 

maximum output power of 2000 W. The infrared thermal analysis of the two converters ia 

depicted in Figure c) and d). The difference of temperature between the two heatsink is 6.7 ° 

C, whereas the maximum temperature of the transistors is 100 °C, for Si IGBTs, and 92.5 °C 

for SiC MOSFETs. For both converters, the hottest switches are 𝑄5 and 𝑄6. This 

characteristic is due to the fact that all the load power flows through the DC link transistors. 

 

 

a) Test setup. b) Efficiency comparison of SiC and Si 

prototypes.   
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c) IR picture of the Si prototype at output 

power of 2000 W. 

d) IR picture of the SiC prototype at output 

power of 2000 W.  

Figure 4.50 - Experimental results of H6 converter. 

 

H6 converter with unipolar modulation 

Figure 4.51 shows the results of the efficiency tests of the H6 converter controlled by 

means of unipolar modulation. The efficiency curves of Si and SiC prototypes are shown in 

b). The efficiency of the SiC converter is always greater than the Si counterpart, and the 

maximum difference 1% at 25% of load. The minimum difference between the two 

efficiencies, 0.35%, is reached at the maximum output power of 2000 W. The infrared 

thermal analysis of the two converters is depicted in figures c) and d). The difference of 

temperature between the two heatsink is 7.7 ° C, whereas the maximum temperature of the 

transistors is 105 °C, for Si IGBTs, and 95.3 °C for SiC MOSFETs.  

 

 

a) Test setup. b) Efficiency comparison of SiC and Si 

prototypes.   
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c) IR picture of the Si prototype at output 

power of 2000 W. 

d) IR picture of the SiC prototype at output 

power of 2000 W.  

Figure 4.51 - Experimental results of H6 converter controlled by means of unipolar 

modulation. 

 

Efficiency comparison 

Figure 4.52 shows the efficiency of Si and SiC inverter prototypes as a function of the 

output power, whereas the maximum temperature reached by the converters is reported in 

Figure 4.53. 

Full bridge converter, controlled by means of hybrid and discontinuous modulation, is the 

most efficient topology tested. This result is due to the fact that both conduction and 

switching losses are minimized. Conduction losses are related to the number of components 

present in the converter, thus full bridge is favored respect to H6 and H5. Switching losses, 

instead, depend on the number of commutation per switching cycle, thus discontinuous 

modulations are more efficient than unipolar and bipolar techniques. Even though hybrid and 

discontinuous modulation of full bridge lead to higher efficiency, they cannot be used for 

transformerless PV applications, as shown in section 4.4.B 

The only modulation technique of H4 converter that strongly reduces the leakage current 

is the bipolar one. Unfortunately, it was not possible to test the efficiency of bipolar 

modulation as the power meter could measure differential voltages up to 600V, while bipolar 

modulation generates a differential output voltage of 2 𝑉𝐷𝐶, i.e., 800 V. Nevertheless, H4 

converter controlled by bipolar modulation requires high switching frequency and large 
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decoupling inductors in order to reduce the output current ripple, thus, reducing the overall 

efficiency of the converter.  

Among all the converters that reduce the leakage current, the H5 topology shows the best 

efficiency. Instead, H6 converter controlled by unipolar modulation technique shows the 

lowest efficiency. However, it generates an output voltage that has a fundamental switching 

frequency at 2𝐹𝑆𝑊, thus it requires smaller decoupling inductors. 

It is worth mentioning that the DC link switches of H5 and H6 converters, from the thermal 

point of view, are more stressed than the switches of the main bridge. The maximum output 

power of the converters is thus limited by the maximum junction temperature of the DC 

power switches. An accurate design of the cooling system may help to uniform the thermal 

stress among the transistors, therefore increasing the maximum power of the inverter. 

The efficiency of the SiC converters is always greater than that of the Si counterpart, for 

any value of the output power. The gain of efficiency is more appreciable at reduced load 

and decreases as the output power increases. This behavior is due to the forward voltage 

characteristics of IGBT and MOSFET. High efficiency at low load is particularly 

advantageous for PV installations, which rarely operate at full power since the solar radiation 

depends on weather conditions and on the position of the sun in the sky. It may be noted also 

that the advantage in the use of SiC is greater for unipolar modulation than for discontinuous 

techniques. This behavior is due to the fact that the SiC MOSFET has lower switching energy 

than the Si IGBT, as depicted in Figure 4.44.  

It is also important to remind that SiC prototypes show higher efficiency even if the 

MOSFETs are rated for 1200 V, whereas silicon prototypes use 650 V IGBTs. A fair 

comparison among devices with the same blocking voltage, would have resulted in a greater 

difference in terms of efficiency.  

In conclusion, among the topologies examined, the H5 converter offers the best tradeoff 

between efficiency and reduction of the leakage current. Moreover, the superior switching 

characteristics of SiC technology can be advantageously used in PV systems, where the 

economic return in the long term operating can justify the higher cost of SiC devices.  
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a) Efficiency at 25 % of power. 

  

b) Efficiency at 50 % of power. 

 

c) Efficiency at 75 % of power. 

 

d) Efficiency at 100% of power. 

Figure 4.52 – Efficiency comparison of Si and SiC prototypes as a function of the output 

power. 

 

 

Figure 4.53 – Maximum temperature of the power switches at output power of 2000 W. 
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Conclusions 

In this thesis, high-efficiency DC to AC power converter have been investigated. The state 

of the art on transistor technologies and on converter topologies has been presented too. 

In the first part of the dissertation, soft switching and hard switching topologies have been 

presented. Silicon and silicon carbide prototypes have been built for efficiency comparison.  

The soft-switching silicon prototype has shown better efficiency than hard-switching 

silicon counterparts, for any value of the output power and switching frequency. Higher 

efficiency is however achieved to the price of higher hardware and control complexity of the 

converter. Soft-switching silicon converter, however, compared to hard switching silicon 

carbide converter, has shown marginal benefits in terms of efficiency. For switching 

frequencies below 20 kHz, soft switching converter is slightly more efficient than SiC 

prototype only at high power level. While for switching frequencies above 25 kHz, the silicon 

carbide prototype is the most efficient for any value of the output power. 

The first conclusion of the thesis is that the use of the latest SiC technologies in hard 

switching DC/AC converters guarantee higher efficiency with respect to the use of silicon 

devices, even using complex soft switching topologies.  

The second part of the dissertation have shown inverter topologies for low power, single 

phase photovoltaic (PV) systems. When no transformer is included in a PV system, the 

DC/AC front-end converter may generate high level of leakage current, leading to potential 

hazards for the personal electric safety. Inverter topologies that can mitigate the leakage 

problem, and at the same time guarantee a high level of efficiency, have been presented.  

Full bridge, H5 and H6 converters prototypes have been realized in order to 

experimentally compare their efficiency and their common mode behavior. Each converter 

has been realized in two different versions, one using high-performance Si IGBTs, and one 

using high-switching speed SiC MOSFETs.  

The conclusion of the tests is that, among the topologies examined, the H5 converter offers 

the best tradeoff between efficiency and reduction of the leakage current. Moreover, the 

superior switching characteristics of SiC technology can be advantageously used to increase 

the efficiency of PV systems.  
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