
Dottorato di Ricerca in Informatica
Università di Bologna, Padova, Venezia

Searching and Retrieving in Content-based
Repositories of Formal Mathematical Knowledge

Ferruccio Guidi

March 2003

Coordinatore: Tutore:

Prof. Özalp Babaoğlu Prof. Andrea Asperti

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Dottorato

https://core.ac.uk/display/76520184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To Anna, whom I love so much.

Abstract

In this thesis, the author presents a query language for an RDF (Resource Description

Framework) database and discusses its applications in the context of the HELM project

(the Hypertextual Electronic Library of Mathematics).

This language aims at meeting the main requirements coming from the RDF commu-

nity. in particular it includes: a human readable textual syntax and a machine-processable

XML (Extensible Markup Language) syntax both for queries and for query results, a rig-

orously exposed formal semantics, a graph-oriented RDF data access model capable of

exploring an entire RDF graph (including both RDF Models and RDF Schemata), a full

set of Boolean operators to compose the query constraints, fully customizable and highly

structured query results having a 4-dimensional geometry, some constructions taken from

ordinary programming languages that simplify the formulation of complex queries.

The HELM project aims at integrating the modern tools for the automation of formal

reasoning with the most recent electronic publishing technologies, in order create and

maintain a hypertextual, distributed virtual library of formal mathematical knowledge.

In the spirit of the Semantic Web, the documents of this library include RDF metadata

describing their structure and content in a machine-understandable form.

Using the author’s query engine, HELM exploits this information to implement some

functionalities allowing the interactive and automatic retrieval of documents on the basis of

content-aware requests that take into account the mathematical nature of these documents.

ix

Acknowledgements

Many people helped me in different ways during these three years. My sincere gratitude

goes especially to Prof. Andrea Asperti and to the whole HELM research group. In

particular I want to thank Irene Schena and Claudio Sacerdoti Coen for their helpful

discussions about the contents of this thesis. A special thank you goes to Prof. Fairouz

Kamareddine for her precious suggestions on how to improve this document.

Finally, I’m grateful to Prof. Giovanni Sambin, who taught me constructive Mathematics

and introduced me to Martin-Löf type theory: my first functional programming language.

Some contents of this dissertation are clearly influenced by his teachings.

xi

Contents

Abstract ix

Acknowledgements xi

List of Figures xvi

Preface 1

1 Introduction 3

1.1 Formal mathematical knowledge . 3

1.1.1 Overview . 3

1.1.2 Availability and interoperability . 5

1.2 Content-based Web technologies . 7

1.2.1 Content-based technologies for serving Mathematics on the Web . . 7

1.2.2 The Semantic Web . 10

1.3 The Resource Description Framework . 13

1.3.1 RDF models . 13

1.3.2 RDF Schema . 15

1.3.3 Some applications of RDF . 16

1.4 Query languages for RDF metadata . 18

1.4.1 Main requirements . 18

1.4.2 Proposals and implementations . 20

xiii

2 MathQL level 1 25

2.1 Introduction . 25

2.1.1 Design goals and main features . 25

2.1.2 Architectural issues . 27

2.2 Operational semantics . 39

2.2.1 Mathematical background . 39

2.2.2 Textual syntax and semantics of queries 42

2.2.3 Textual syntax and semantics of query results 50

2.3 Some notes on the earlier versions of MathQL-1 51

3 The Hypertextual Electronic Library of Mathematics 55

3.1 The overall architecture . 56

3.1.1 Overview . 56

3.1.2 HELM vs. other technologies . 57

3.2 The persistent contents of the library . 59

3.2.1 Objects and theories exported from Coq 60

3.2.2 Intrinsic and extrinsic RDF metadata 61

3.2.3 Annotations . 62

3.2.4 The RDF Schemata for metadata about theories and objects 63

3.3 The processing tools . 66

3.3.1 The render engine . 67

3.3.2 Other tools . 69

3.3.3 Implementation issues . 71

4 The use of MathQL-1 in the HELM project 75

4.1 The MathQL-1 Suite for HELM . 75

4.1.1 The basic Caml package for MathQL-1 75

4.1.2 The MathQL-1 interpreter for HELM 77

4.1.3 The HELM query generator . 81

4.1.4 The testing software . 89

4.2 Testing the MathQL-1 Suite for HELM . 90

xiv

4.2.1 The “165 queries” performance test 90

4.2.2 The “referred objects” performance test 92

4.2.3 The “transitive principles” accuracy test 92

5 Conclusions and future work 97

A Some Caml code from the MathQL-1 Suite 99

A.1 The interfaces of the main modules . 99

A.1.1 The basic MathQL-1 module: mathQL.ml 99

A.1.2 The query interpreter interface: mQueryInterpreter.mli 101

A.1.3 The query generator interface: mQueryGenerator.mli 102

A.2 Some complete modules . 102

A.2.1 The query interpreter utility module: MQIUtil 102

A.2.2 The query interpreter main module: MQIExecute 105

A.2.3 The query generator core module: MQueryGenerator 111

References 115

xv

List of Figures

2.1 The representation of a pool of RDF triples 28

2.2 The representation of the structured value of a property 29

2.3 The addition of attributed values . 30

2.4 A set of attributed values displayed as a table 31

2.5 Building a simple set of attributed values 31

2.6 The “property” operator . 34

2.7 Textual syntax of numbers, strings and paths 42

2.8 Textual syntax of escaped characters . 42

2.9 Textual syntax of variables . 43

2.10 Textual syntax of queries . 44

2.11 Textual syntax of query results . 50

4.1 The Caml Interface for the conversion functions 76

4.2 The Caml Interface for the interpreter . 80

4.3 The basic queries generated by the “compose” method 82

4.4 The basic queries generated by the “compose” method (continued) 83

4.5 The main methods of the generator core module 84

4.6 Example query in the syntax of [GS03] . 86

4.7 Example query in the syntax of Chapter 2 88

4.8 Results of the “165 queries” performance test 91

4.9 Results of the “referenced objects” performance test 92

4.10 The “transitive principles” query in the syntax of Chapter 2 95

4.11 The “transitive principles” query in the syntax of Chapter 2 (continued) . . 96

4.12 Results of the “transitive principles” accuracy test 96

xvi

Preface

The HELM project (Hypertextual Electronic Library of Mathematics)1 is meant to in-

tegrate the current tools for the automation of formal reasoning and the mechanization

of mathematics (proof assistants and logical frameworks) with the most recent technolo-

gies for the development of Web applications and electronic publishing. The final aim is

the development of a suitable technology for the creation and maintenance of a virtual,

distributed, hypertextual library of formal mathematical knowledge.

In the spirit of the Semantic Web, the documents of the library are described by

RDF (Resource Description Framework) metadata which provide information about their

structure and content in a machine-understandable form. HELM aims at exploiting this

information to provide its library with interactive and automated searching functionalities

capable of retrieving documents on the basis of mathematically relevant requests.

The development of these functionalities involves the adoption of an RDF query engine

working over HELM metadata base but current RDF query languages show the common

drawback of failing to meet some important requirements as, for instance, the possibility

of querying arbitrary RDF Schema graphs exploiting the information on RDF property

hierarchies and the existence of a well defined semantics for the languages themselves.

The contribution of our2 thesis is situated in the context of HELM and our objective

is the development of an RDF query language that provides the main features requested

by the RDF community and complies with the needs of HELM.

1See <http://helm.cs.unibo.it/>.
2Following a well-established tradition concerning the style of Italian Ph.D. dissertations and scientific

papers in general, the author of this document will systematically refer to himself using pluralis maiestatis:

i.e. first person plural instead of first person singular.

2

The peculiar aspects of our language concern query results that are highly structured

and possess their own syntax, formally explained by a rigorous semantics.

We plan to use this language to test HELM metadata architecture, which is now under

development, and to implement the searching functionalities needed to consult the library

in the most profitable way both automatically and interactively.

This dissertation is structured as follows:

• Chapter 1 presents an introduction to formal mathematical knowledge (Section 1.1)

focusing on the important role that the World Wide Web, and the Semantic Web in

particular, can have in this field (Section 1.2). W3C contribution to the Semantic

Web focuses on RDF metadata, which we describe in Section 1.3 with some applica-

tions. Finally we present RDF query languages focusing on the main requirements

proposed by the RDF community (Subsection 1.4.1) and on current implementations

and proposals (Subsection 1.4.2).

• Chapter 2 describes our query language focusing on the most relevant features (Sub-

section 2.1.1), on the main architectural issues (Subsection 2.1.2), on its operational

semantics (Section 2.2) which concerns both queries and query results, and on the

differences between the version presented here and the earlier versions (Section 2.3).

• Chapter 3 presents HELM at its present state focusing on the differences with related

projects (Section 3.1.2), on the persistent contents of its library (Section 3.2) with

particular regard to metadata, and on its software architecture (Section 3.3). HELM

components are implemented in Caml: a functional language from the ML family.

• In Chapter 4 we describe how our query language is used inside HELM presenting

the parsers and renderers for queries and query results (Subsection 4.1.1), the latest

interpreter (Subsection 4.1.2), the query generator (Subsection 4.1.3) and the test-

ing software (Subsection 4.1.4). The Overall performance of these components is

analyzed in Section 4.2.

• Finally in Chapter 5 we draw some conclusions presenting planned future work.

The appendix contains a selection of the source code, written by us, implementing the

software support for our language in the context of the HELM project.

Chapter 1

Introduction

1.1 Formal mathematical knowledge

1.1.1 Overview

In the last thirty years a specific class of software applications, including proof assistants

and logical frameworks [He91, He93], was developed to address the problem of certifying

the correctness of mathematical reasoning with quite notable results.

These tools manipulate mathematical notions (such as definitions, axioms, statements

and proofs) encoded in a formal language (i.e. a language which is unambiguous both at

the syntactic and at the semantic level) usually derived from a foundational theory such as

type theory or set theory, offering a variety of features such as proof checking, step-by-step

proof development assistance and automatic proof searching.

In most cases these mathematical notions are taken from papers, monographs, and

textbooks where they are presented in a language which is necessarily not formal because

a formal language, solving every ambiguity and imprecision, is often too constricting and

verbose for humans. The problem of rephrasing informal notions in a formal language has

been well put by Constable, Knoblock and Bates (1985):

It is thus possible to translate the proof of any mathematical theorem into a

completely formal proof. However, the prospect of actually doing this is quite

daunting because an informal proof of modest length will expand to a formal

one of prodigious size and will require in its production extreme care and

detailed knowledge of the more or less arbitrary conventions of the particular

4 Chapter 1. Introduction

formalism. These tedious details will in sheer number dominate the interesting

mathematical ideas which are the raison d’être of the proof.

The first efforts in the direction of automated reasoning were based on top-down meth-

ods for proof searching: starting from the theorem to prove, the axioms are reached recon-

structing the proof. The next step was the bottom-up approach: starting from the axioms

level of the proof tree, an ever-expanding set of consequences is generated until the goal

(i.e. the theorem to prove) is eventually reached. The most influential bottom-up method

was resolution invented by Robinson (1965) [Rob65], based on unification.

At the end of the 70’s the emphasis moved from the proof searching to proof assistance,

proof checking and interactive theorem proving, which are closer to our present interest.

The idea is not to prove difficult theorems automatically, but simply to assist humans in

constructing a formal proof, or at the very least check its correctness.

A notable example was the AutoMath project led by N.G. De Bruijn, in which signif-

icant parts of mathematics were formalized: for example Bentham Jutting (1977) formal-

ized the Landau’s Grundlagen theory of the real number field [Jut94]. This system uses,

as its formalization language, a version of the λC λ-calculus where the two abstraction

operators (λ and Π) are identified [KBN99, KN96]. In this setting the Curry-Howard

isomorphism defines a correspondence between types of the calculus and statements of the

propositional logic, and between terms and proofs; finally the reduction of the calculus

corresponds to cut elimination in proofs [GLT89].

The Mizar project [Rud92, TR93], which began a little later and is still quite vital

today, on the contrary attempts, via a pseudo-natural representation of the mathematics,

“not to depart too radically from the usual accepted practices of mathematics”.

In 1972 Robin Milner introduced LCF (Logic for Computable Functions) a proof assis-

tant whose formalization language is based on the Curry-Howard isomorphism combining

interaction and automation.

In the last 20 years, several other systems have been developed, like [Coq]1, Lego

[LP92], Nuprl2, Isabelle3, HOL [GM93] and PVS [ROSS99].

In particular Coq is based on the Calculus of (Co)Inductive Constructions (CIC)

[CH88] and is one of the most advanced Proof Assistants. Nevertheless the great number

1See <http://coq.inria.fr/>.
2See <http://www.cs.cornell.edu/Info/Projects/NuPrl/>.
3See <http://www.cl.cam.ac.uk/Research/HVG/Isabelle/>.

Chapter 1. Introduction 5

of offered functionalities (proof editing, proof checking, proof searching, proof extraction,

program verification) have made the system very big and complex.

It is interesting to note that these tools are often conceived as monolithic architectures

in the sense that they can be extended only using the utilities offered by the systems

themselves, with the obvious limitations.

1.1.2 Availability and interoperability

The current tools for the mechanization of Mathematics allow to maintain repositories

of certified mathematical notions but miss the aim of having standard accessible formal

libraries because they are encoded into some application dependent format (usually a

textual one in a specific tactical language, and a proof checked one in some internal

concrete representation language). So the information is not directly available but can be

accessed only through the functionalities offered by the specific application and this makes

it suitable only for a limited number of tasks as well as too sensible to the evolution and

the maintenance of the application itself.

For instance a huge amount of formalization work has been done since the 70’s using

several proof assistant prototypes, but this information can often be used only by a software

application which is not maintained any more, and so is hopelessly lost.

Furthermore current encodings of formal Mathematics lack of satisfactory presentation

formats, are often neither structured nor informative and the granularity or the meaning

of expressions is not accessible. Namely the proof constructing procedures (sometimes

called tactics) are context dependent and their level of detail rarely corresponds to the

logical steps of proofs. Also pseudo-natural language descriptions are not good enough

because they often loose the formal content of proofs.

Finally there is a foundational problem because different applications use different

foundational languages and switching from one to another is not trivial at all.

The QED [Ano94] Manifesto of 1994 represents a proposal to draw the Theorem-

proving communities together in a single project whose aim was to formalize all Math-

ematics using a foundational approach. Unfortunately QED didn’t obtain a big success

due to the difficulties of mutual encoding between not trivial logical systems.

The first and essential step in the direction of facing the interoperability problems

between different applications is having a common standard representation layer for the

6 Chapter 1. Introduction

exchanged information. As a matter of fact, the standardization can not be forced at the

level of logic, but can concern the content level and the communication technology.

A content-centric (and thus application independent) description of Mathematics in a

highly structured and machine-understandable format has several advantages (see [Sch02])

as it allows: automatic elaboration and processing of content information, cut and paste of

computationally meaningful expressions between two systems, automatic proof checking of

published proofs, semantic search for mathematical concepts, indexing and classification

by means of a rich and useful metadata level specifically oriented to Mathematics.

A technological standardization of the data representation layer allows to apply similar

software tools (i.e. for searching, retrieving, displaying or authoring) to all mathematical

documents regardless of their concrete nature which depends on the specific logical system.

Currently, the major achievements in this direction are obtained by the HELM project

and by the MathWeb project.

The purpose of the HELM project4 is the development of a suitable technology for

the creation and maintenance of a virtual, distributed, hypertextual library of structured

mathematical knowledge based on XML technology, trough the integration of the cur-

rent proof assistants and logical frameworks with the most recent technologies for the

development of Web applications and electronic publishing.

The purpose of the MathWeb project5 is to support the development, use, and dis-

semination of an infrastructure for Web-supported mathematics. MathWeb is meant to

provide software systems that connect a wide range of mathematical services by a common

software bus as well as specific services supporting all aspects of doing Mathematics on

the Web.

Both projects use XML (Extensible Markup Language) technology [XML] to store and

exchange the mathematical information in fact XML, along with its applications, can be

considered the best choice for storing, cataloguing, publishing, retrieving and processing

information in a scalable, adaptive and extensible way.

One of the great strengths of XML is its flexibility in representing information coming

from different sources, in fact XML is a metalanguage used to describe other languages.

4Hypertextual Electronic Library of Mathematics: <http://helm.cs.unibo.it/>.
5See <http://www.mathweb.org>.

Chapter 1. Introduction 7

An XML encoding has several benefits: it is standard and application independent thus

it achieves reusability of data and it improves interoperability and communication among

different applications, it is extensible and structured thus allowing complex operations and

transformations to be done automatically. Moreover there is a rich set of standard tools

for processing XML documents.

For these reasons XML is rapidly imposing as the main technological tool for all net-

working applications involving representation, manipulation and exchange of structured

and distributed information.

1.2 Content-based Web technologies

1.2.1 Content-based technologies for serving Mathematics on the Web

As we said in the previous section, the existing proof assistants and logical frameworks are

not suitable for the creation and the maintenance of large and easily accessible reposito-

ries of structured mathematical knowledge, whereas Web technologies surely achieve this

purpose because they provide:

• Accessibility. Web documents are accessed and processed by many applications all

over the world.

• Standardization. Mathematics can be served on the Web using standard formats

that can capture both its structure and its semantics.

The main content-based technologies for serving Mathematics on the Web include three

markup languages, MathML, OpenMath and OMDoc, which we recall here for reference.

The Mathematical Markup Language [MathML] is the instance of XML to be issued as

a W3C6 Standard to address the problem of encoding mathematical material for the Web,

describing both its notational structure and its logical content with the aim of achieving

interoperability and communication among software applications with different tasks.

MathML provides approximately 180 markup elements and joins a content markup

language (C-MathML) to the most traditional presentational one (P-MathML). Presen-

tation elements are conceived to express the two-dimensional layout and the structure of

6The World Wide Web Consortium: <http://www.w3c.org>.

8 Chapter 1. Introduction

mathematical notation. Content elements provide an explicit encoding of the underlying

semantic structure of mathematical expressions.

C-MathML has been outfitted with enough XML elements to carry much of the mean-

ing of Mathematics up to roughly the beginning of college level. Subjects covered to some

extent by C-MathML are: arithmetic, algebra, logic and relations, calculus and vector

calculus, set theory, sequences and series, elementary classical functions, statistics, linear

algebra. Anyway C-MathML provides a generic extension mechanism to eventually define

new content elements.

Content elements have a default presentation but mechanisms are provided to associate

the two encodings in order to specify both the layout and the intended meaning of a

mathematical expression.

The main interest of P-MathML is that it has been recommended by W3C as a standard

for rendering mathematics on the Web and it is likely to be adopted and supported by

most browsers.

The MathML encoding of mathematical expressions can be embedded in larger XML

documents using the standard mechanism of Namespaces [XMLN].

The main drawback of MathML is that content description does not have a stan-

dard semantics, is restricted to common mathematical expressions and does not include

other aspects of mathematical developments such as proofs and traditional structures like

axioms, definitions, theorems, sections, theories and so on.

[OpenMath]7 is a standard for representing the semantic meaning of mathematical

objects, allowing them to be exchanged between computer programs, stored in databases,

or published on the Web.

Originally OpenMath was mainly focused on computer algebra systems, but this lan-

guage is now attracting interest from other areas of scientific computation.

The architecture of OpenMath is based on the conversion between an XML represen-

tation of mathematical objects and its internal representation in a software application

performed by an interface program called a Phrase Book. The translation relies on Con-

tent Dictionaries, hypothetically one for every theory, which contain the definitions of all

entities of a particular logical system and their formal properties as well.

7See <http://monet.nag.co.uk/openmath>.

Chapter 1. Introduction 9

These definitions are given through semi-formal descriptions (namely a mixture of

plain text containing natural language and OpenMath encoding expressing properties

of the defined entity) so Content Dictionaries are machine-readable but not machine-

understandable in a full sense.

Furthermore, as in C-MathML, proofs play a pretty marginal role in OpenMath.

OMDoc8 [Koh00a, Koh00c, Koh00b] is a content-based markup format for communi-

cating mathematics on the Internet, proposed in the context of the MathWeb project.

OMDoc is an extension of the OpenMath standard to the document level, supplying

content markup and syntax to encode a structured theory hierarchy.

As mathematical documents (such as articles and interactive books) have a complex

structure, this extension must solve two tasks: besides representing the semantics of doc-

uments, it must provide a standardized infrastructure of this as well.

As a consequence, OMDoc provides two sorts of markup. One markup addresses

the microstructure of mathematical texts, which largely comprises the general pattern

“definition, theorem, proof” but that can contain auxiliary items like explanatory text,

cross-references, exercises or applets. The other markup addresses the macrostructure of

mathematical texts in terms of mathematical theories, and focuses on the specification of

formal theories of software and hardware behaviour.

OMDoc supports a proof format whose structural and formal elements are derived from

the Proof Plan Data Structure (a hierarchical data structure developed for the Ωmega

project9, that represents a partial proof at different levels of abstraction, called proof

plans), justified by tactic applications, based on a linearized natural deduction style, but

also allows natural language representations at every level. This mixed representation

enhances multimodal proof presentation and the accumulation of proof information in one

structure.

OMDoc does not make any claim of semantic unification and allows to mix formal and

informal content together, without a clear distinction between the two.

According to [Koh00a], OMDoc is a first attempt to standardize the notion of “module”

(i.e. “theory” in a strong sense) but the issue of modules is still an open research field

in the proof assistant community, so each application is likely to develop its own module

8Open Mathematical Documents: <http://www.mathweb.org/omdoc>.
9See <http://www.ags.uni-sb.de/∼omega>.

10 Chapter 1. Introduction

system, easily incompatible with the OMDoc specification. Nevertheless, OMDoc has the

important merit to provide an interesting and constructive starting point, emphasizing a

major problem of current mathematical developments.

Finally we would like to recall that there are many other technologies for publishing

mathematics on the Web (as for instance HTML pages with GIF images for equations, PDF

documents, HTML pages with Design Science WebEQ or IBM Techexplorer components),

but none of them is ideal [MT01, Ber98] mainly because they are presentation-oriented

instead of content-oriented.

1.2.2 The Semantic Web

The World Wide Web was designed as a universal information space with the goal of

being useful for both human communication and machines participation. One of the

major obstacles to this has been the fact that most information on the Web is designed

for human consumption rather than for data that can be processed automatically.

The Semantic Web [BHL01] is an extension of the Web in which machine-readable

information is given a well defined meaning in a machine-understandable form intended

for automated processing and thus allowing automated agents, sophisticated search engines

and interoperable services.

The major challenge of the Semantic Web is to provide a language that can express

both data and rules for reasoning about those data in a machine-understandable way.

The first step in this direction was the XML project, which began to address HTML

limitations on structured documents, by selecting a yet extensible subset of SGML for use

on the Web.

Now the W3C metadata (i.e. “data about data”) activity, which is focused on the

Resource Description Framework (RDF) [RDF, RDFS], addresses the completion of the

following step: having a general metadata framework for modelling information on the

Web (see [Mil98]).

Metadata provide the semantic information (i.e. descriptions about structure and con-

tent) about resources in a machine-understandable form and can be exploited for many

applications that involve automated processing of data10 like resource searching and in-

dexing, intelligent software agents, digital signatures management and content rating.

10See <www.ukoln.ac.uk/interop-focus/presentations/cimi/taiwan/rdf/iap-html/sld001.htm>.

Chapter 1. Introduction 11

Some metadata are user-specified (like the keywords of a document) while other meta-

data may be generated automatically by a batch process (like the dependencies among

documents) and represent redundant information which would be too expensive to com-

pute on the fly.

Using metadata, search engines can “understand” the nature of resources much better,

allowing more accurate searches. Software agents can use metadata to share and exchange

knowledge, enhancing communication and interoperability between applications and Web

communities. Digital signatures, the key to the “Web of Trust”, will be encoded and

transmitted as metadata.

Finally note that the distinction between data and metadata is not absolute but it is

created by a particular application: many times the same resource will be interpreted in

both ways simultaneously.

RDF provides a representation language for metadata [RDF] that extends the Platform

for Internet Content Selection (PICS) [PICS] and describes the relations among resources

in terms of named properties and values without any assumption about a particular ap-

plication domain. RDF additionally provides a vocabulary description language (RDF

Schema) [RDFS] to interpret metadata using specific vocabularies (i.e. class and property

hierarchies) designed to encourage the exchange, reuse and extension of metadata packages

defined by different resource description communities.

RDF is carefully designed to have the following characteristics:

• Independence: metadata should be described in a way that makes no assumptions

about either their intended application domain or their intended semantics, in order

to ensure that the descriptions can be reused in different domains.

• Interchange: metadata should be easy to transport and store.

• Scalability: huge sets of metadata should be easy to handle and process.

Moreover, RDF encourages the view of “metadata being data” by using XML (with

Universal Resource Identifiers11 [URI] and Namespaces) as its privileged technology to

achieve these aims.

11A URI is structured string of characters whose intended meaning is associated by the applications

managing it. A Uniform Resource Locator (URL) [URL] is a special kind of URI.

12 Chapter 1. Introduction

An RDF document contains assertions about resources (i.e. “objects”) having prop-

erties with some values and this structure seems to be a natural way of describing the

majority of the Web data processed by machines.

RDF assertions (or statements) can be encoded with XML tags describing triples of

the form “resource-property-value” and each of these components can be denoted by a

URI which ties it to a unique definition available on the Web.

Nevertheless it is still possible that different communities use different definitions of

the same concept. A solution to this problem is provided by collections of information

called ontologies [W3Cb] which define the terms used to describe and represent an area of

knowledge in a computer-usable form.

Ontologies are usually expressed in a logic-based language, so that detailed, accurate,

consistent, sound, and meaningful distinctions can be made among the defined terms.

Ontologies can prove very useful for a community as a way of structuring and defining

the meaning of the metadata terms that are currently being collected and standardized.

Furthermore they can be used to improve the accuracy of Web searches in which merging

information from different communities is required.

The Semantic Web RDF-based data model [BHL01] is directly connected to the rela-

tional database model12 as, in the context of RDF graph representation (see Section 1.3.1),

a record corresponds to a node, a field name corresponds to a Property and a cell corre-

sponds to a Value.

However relational database systems tend to have loosely enforced combination rules

because a query can join tables by any columns with matching data type without any

semantic check.

The Semantic Web is specifically designed to link different databases on the Web,

allowing sophisticated operations across them to be performed by automated processing.

As we saw, current proof assistants and logical frameworks already offer huge reposito-

ries of fully structured, content oriented mathematical information, that can make a good

test case for the Semantic Web. In this context, the mandatory precondition is producing

and maintaining XML encodings of these repositories: that is what the HELM project is

meant for (see Chapter 3).

12A relational database consists of tables made of rows, or records, which are sets of cells, or fields.

Chapter 1. Introduction 13

1.3 The Resource Description Framework

RDF provides a common framework for expressing information in such a way that it can be

exchanged between applications without loss of meaning. The RDF suite of specifications

focuses on the following issues:

• RDF model and syntax specification [RDF]: introduces a model for representing

RDF metadata as well as a syntax for encoding and transporting them.

• RDF vocabulary description language [RDFS]: describes how to use RDF to express

RDF vocabularies in general and defines a basic vocabulary for this purpose.

• RDF model theory [RDFMT]: specifies a model-theoretic semantics for RDF Model

and Schema, and some basic results on entailment.

In this section we give a survey of the first two topics, leaving the third one aside. A

conclusive subsection recalls some RDF applications as the Dublin Core Metadata Initia-

tive and the EULER Metadata Set.

1.3.1 RDF models

The foundation of RDF is a model for representing named properties and property values

which draws on well established principles from various data representation communities.

In particular, the basic data model includes five object types: resources, properties, values,

statements and containers.

• A resource is any entity that can be identified by a URI. In case of need, URI’s are

disambiguated using Namespaces.

• A property can be seen either as an attribute (i.e. an aspect or characteristic) of a

resource, or as a binary relation between resources. Using RDF Schema, a property

can be given a specific meaning defining its allowed values (i.e. the types of resources

it can describe) and its relations with other properties (in the context of a property

hierarchy). Properties can be given a name or can be anonymous.

• A value is a string or a primitive data type defined by XML that is used as a value

or argument for a property of a resource (interpreting the property as an attribute

or as a relation respectively). Values can contain unparsed XML markup or can be

URI’s and denote resources.

14 Chapter 1. Introduction

• A statement is a triple consisting of a resource r (the subject), a named property

p (the predicate) and a value v (the object). This construction is used to model the

assertion: “r has a property p whose value is v”. In particular RDF predefines a

property named type, whose values have to be resources, such that the statement

(r, type, r′) models the assertion “r has type r′” (i.e. a type declaration).

• A container is a resource denoting a collection of values. There are three types of

containers: bags (multisets), sequences (ordered multisets) and alternatives (lists of

alternatives for the single value of a property). The membership relation between the

container and the values it contains is defined by a set of predefined properties named

1, 2, 3, etc. In addition, a container has the type property appropriately set to one

of these values (formally resources): Bag, Seq or Alt. Any property of a container

describes the container itself and does not apply to its members. Nevertheless RDF

provides some primitives to make statements that distribute over each member of a

container.

RDF supports reification which, in this context, is the possibility of representing a

statement with a resource, with the purpose of making statements about it (i.e. higher

order statements). The reification of a statement (r, p, v) is a resource for which the type

property has the value Statement (that formally is a resource) and for which the three

properties subject, predicate, object are set to r, p, v respectively.

RDF provides three representations of the RDF data model:

• RDF triples: a collection of statements described in triples.

• RDF Graph: the RDF directed labelled graphs are a syntax-neutral way of rep-

resenting RDF statements. In these diagrams a named property, the predicate,

corresponds to an arc drown from the subject to the object.

• RDF Syntax: RDF uses XML encoding with Namespaces as its interchange syntax

and in this context the predefined resources and properties should be prefixed by

the “RDF:” Namespace. The syntax comes in two formats: the serialization format

gives access to the full capabilities of the data model, while the abbreviated format

includes additional features that provide a more compact representation form of a

subset of the data model. RDF interpreters are expected to implement both formats,

so metadata authors are free to mix them at will.

Chapter 1. Introduction 15

As RDF properties represent relationships between resources, the RDF data model

can resemble an entity-relationship (ER) diagram. However RDF is more general than

that as relationships are first class objects (in the sense that they are entities themselves).

Furthermore, the set of relationships an entity can have is not defined when the entity is

declared, as with object-oriented systems often used to implement ER models, and can be

stored apart from the entity.

1.3.2 RDF Schema

The RDF vocabulary description language (RDF Schema or RDFS) provides means for

describing properties and their relationships with other resources, and is specified in terms

of the basic RDF information model (i.e. a graph structure describing resources and prop-

erties) using a basic hierarchical class system. In this context a class is a set of RDF values

and is itself a resource.

in particular the RDF Schema specification includes a predefined RDF vocabulary

for describing the meaningful use of properties and classes in RDF data. Therefore the

constraints imposed by an RDF Schema have a semantic nature, and are not syntactical as

those imposed by an XML Document Type Definitions (DTD) [XML] or an XML Schema

[XMLS].

RDFS class system is similar to the type systems of object-oriented (OO) programming

languages but differs from those in that properties are defined in terms of the classes to

which they apply, whereas OO approach is to define a class in terms of the properties its

instances may have.

For this purpose, RDFS defines two properties named domain and range which apply

to properties themselves describing their domain (class of the subjects) and range (class

of the objects). Note that Namespaces can be used in the URI’s denoting domains and

ranges so these classes can be inherited from separate vocabularies.

Other important properties predefined by RDF Schema are:

• isDefinedBy: the Namespace of a resource;

• comment: a human-readable description of a resource;

• label: a human-readable description of a resource name;

• seeAlso: a resource providing information about the subject resource;

16 Chapter 1. Introduction

• subClassOf: this allows to build class hierarchies;

• subPropertyOf: this allows to build property hierarchies.

Note that subClassOf and subPropertyOf are defined transitive and that a subproperty

inherits the domain and range of ancestors.

RDF Schema also predefines the following main classes:

• Class: the class of classes13;

• Resource: the class of resources;

• Literal: the class of RDF literals (i.e. values);

• Container: the class of RDF containers.

As for RDF Model, also RDF Schema uses XML encoding with Namespaces as its

interchange syntax and the predefined classes and properties mentioned above should be

prefixed by the “rdfs:” or “RDFS:” Namespace.

1.3.3 Some applications of RDF

The Dublin Core Metadata Initiative14 is an open forum engaged in the development of

interoperable on-line metadata standards that support a broad range of purposes and busi-

ness models. The Dublin Core Element Set [DC] (DCES) contains 15 elements believed

to be broadly applicable for the description of Web resources across disciplines and lan-

guages, and is considered a world-wide standard for its capability to qualify descriptions

with domain-specific information.

The DCES elements can be represented in many syntax formats and RDF is one of

these. In particular the DCES RDF Schema (“dc” Namespace) declares the following

properties (one for each element).

• title: a name given to the resource.

• creator: an entity primarily responsible for making the content of the resource.

• subject: the topic of the content of the resource.

• description: an account of the content of the resource.

13This definition does not lead to inconsistency because RDFS classes need not to be proper classes.
14See <http://dublincore.org/>.

Chapter 1. Introduction 17

• publisher: an entity responsible for making the resource available.

• contributor: an entity responsible for making contributions to the content of the

resource.

• date: a date (in YYYY-MM-DD format) associated with an event in the life cycle

of the resource.

• type: a description of the nature of the content of the resource.

• format: a description of the physical or digital manifestation of the resource.

• identifier: an unambiguous reference to the resource within a given context.

• source: a reference to a resource from which the resource is derived.

• language: the language of the intellectual content of the resource15.

• relation: a reference to a related resource.

• coverage: the extent or scope of the content of the resource.

• rights: the information about rights held in and over the resource.

Additional qualifier elements are provided in two categories:

• Element Refinement: these qualifiers make the meaning of an element more spe-

cific in the sense that a refined element shares the meaning of the unqualified element

with a more restricted scope.

• Encoding Scheme: these qualifiers identify schemes for interpreting an element

value. Such schemes include controlled vocabularies and formal notions or parsing

rules.

EULER16 is a project funded by the European Commission in April 1998 to integrate

different mathematical resources available on the Web into a single electronic library for

searching purposes. In particular, a common user interface (the EULER service) allows

an homogeneous access to the following integrated information types: scientific litera-

ture databases, library catalogues (OPAC), electronic journals from academic publisher,

archives of preprints and grey literature, indexes of mathematical Internet resources.

15See RFC 1766: <http://www.ietf.org/rfc/rfc1766.txt>.
16European Libraries and Electronic Resources in mathematical sciences:

<http://www.emis.de/projects/EULER>.

18 Chapter 1. Introduction

The integration approach makes use of common resource descriptions based on an

extension of the DCES and accesses those descriptions via the Z39.50 protocol17. Techni-

cally, providers produce DCES metadata for their resources and offer them as distributed

databases that are located at the providers’ sites. The central EULER engine queries

these databases in parallel via a common Z39.50 profile and performs result set merging

and presentation formatting.

1.4 Query languages for RDF metadata

In the previous section we saw that from the logical standpoint RDF metadata can be

presented as a set of “subject-predicate-object” triples (statements) and querying this

structure means searching and retrieving the subsets of statements satisfying a given pool

of conditions (to be specified in the query).

An RDF query language is a syntax for expressing these queries, which is usually

interpreted by a query engine responsible for retrieving the query results.

1.4.1 Main requirements

Some of the main parameters for the evaluation of such a language and engine appear to

be the following [GS03, Bee98, DBSA98]18:

1. It should be possible to query an arbitrary RDF graph which includes information

coming from both RDF Models and Schemata in fact the possibility of inferring from

Schemata allows to perform queries with a deeper semantic content. In particular

the language should provide facilities for denoting classes and properties by:

- hierarchical constraints based on rdfs:subClassOf and rdfs:subPropertyOf;

- traversal of compound values of properties.

At the same time the engine should exploit:

- the transitivity of RDFS hierarchical structure to infer relationships between

classes and properties that are not explicitly stated with rdfs:subClassOf and

rdfs:subPropertyOf;

17See <http://lcweb.loc.gov/z3950/agency/1995doce.html>.
18See also <http://www.w3.org/2001/11/13-RDF-Query-Rules/>.

Chapter 1. Introduction 19

- the classification of resources based on their properties to infer for instance that

a resource having a particular property is an instance of a particular class;

- the graph structure of Models and Schemata to infer inverse relationships.

2. The language should provide operations on literals such as comparisons and

should allow disjunctive Boolean conditions in queries. Moreover it should

be possible to select URI’s and literals by patterns such as wild cards or regular

expressions.

3. The language (and probably the underlying data storage facility) should provide

access to the history of the queried data.

4. The engine should be able to retrieve exhaustive solutions of queries. An exhaus-

tive solution may be retrieved all at once or with a “first-next” strategy, i.e.: the

caller asks repeatedly for the next solution.

5. The language should allow to customize the query results by specifying what

part of an exhaustive solution should be returned to the caller. In particular it

should be possible to hide some details of the solution.

6. As the results of a query may be interpreted differently depending on the source of

the data, the language should provide data source identification, i.e. provide the

sources of the solutions.

7. The language should have a well conceived and well defined semantics including

a precise definition of the underlying data model. In particular a single general

semantic form of query resembling the “select-from-where” pattern is expected

to satisfy all query requirements. Furthermore the language should be defined in

terms of the abstract RDF model, while RDF syntactic representation, say its

XML syntax, should be a secondary concern.

8. Different syntaxes might be used as appropriate for different purposes. In partic-

ular an XML syntax and a textual SQL/OQL-like syntax would be appreciated (a

conventional SQL oriented syntax may be easier to understand for humans than an

equivalent XML representation).

9. As querying RDF is only a subtask for more advanced techniques on the Web, the

engine should be easily usable in the Web environment and integrable with

other software components.

20 Chapter 1. Introduction

Notice that parameters 1, 2, 3 concern searching, 4, 5, 6 concern retrieving while 7, 8,

9 are presentational.

It is important to stress that, even if encoded in XML, RDF metadata requires a ded-

icated query language since a semi-structured query language like XQuery [XQuery] fails

to capture the semantics of RDF. This is basically because the RDF modelling primitives

are substantially different from those defined in object or relational database models. In

particular classes do not define objects or relation types because an instance of a class is

just a resource without any value or state. Furthermore, resources may belong to different

classes not necessarily related by specialization, therefore they may have different proper-

ties while there may be no class on which the union of these properties is defined. Finally

RDF properties may be refined and this concept is not present, say, in XQuery.

1.4.2 Proposals and implementations

The rdfDB Query Language seems to be the first query language focused on RDF metadata

ad is the basis of Algae (see below). It was written by R.V. Guha to work with the rdfDB

System19. This language provides support for RDF Schemata and for some basic forms of

inferring. Constraint management is very limited.

[Algae]20 is another early SQL-like language that uses an S-expression syntax to de-

scribe a graph with variables in some node positions which is matched against an RDF

graph. Algae was implemented by E. Prud’hommeaux in Perl and can be used with an

SQL database holding RDF statements as triples. The database engine must implement

the statementsMatching method which is called for each constraint of the algae query.

Query results are returned in a 2-dimensional table. Currently Algae powers the An-

notea21 annotations system22 as well as other W3C software.

SquishQL23 is one of the many query languages syntactically similar to rdfDB QL.

The query engine is implemented in Java and connects to the underlying database using

JDBC technology.

19See <http://guha.com/rdfdb/>.
20See also <http://www.w3.org/2001/Talks/0505-perl-RDF-lib/Overview.html>.
21See <http://www.w3.org/2001/Annotea/>.
22See <http://www.w3.org/2001/Annotea/User/Protocol.html>.
23See <http://swordfish.rdfweb.org/rdfquery/>.

Chapter 1. Introduction 21

The DAML+OIL Query Language Proposal24 rises in the context of the DARPA

DAML project25 and describes a language with XML syntax only.

RDF Query26 is an RDF vocabulary (whose Namespace is “rdfq”) to express queries on

RDF models (i.e. no inferences from RDF Schema). A query operates on a source container

of resources and returns a result container of resources (which is always a subset of the

former) that can be the source for another query. The resources in the result container may

have fewer properties than in the source and this feature, known as projection, allows to

build different views of the source. The language supports user-defined aggregate functions

on containers and some container composition operators such as union, intersection and

difference which apply if the resources in the two operands have the same properties (same

by name, not by value) so an aliasing mechanism is provided to change the property names.

The duplicate elimination policy for these operators is not specified. There is a syntactic

support for sorting the resources in a container. Queries can be universal and existential,

Boolean conditions are very primitive but new operators can be easily added extending

the markup.

In the above languages constraints can not be composed disjunctively and there is no

syntactic support for hierarchical constraints inferred from RDF Schemata (parameters 1

and 2 stated in the previous section).

RDFQL is the query language implemented by G. Chappell for the RDF Gateway

JDBC Driver27 The query engine can understand and process inference rules and the

language provides a full set of functions on strings, numbers, dates, URI’s/URL’s, lists

and encryption plus all standard Boolean operators to combine constraints. Nevertheless

it does not have a syntactic support for hierarchical constraints.

RDQL28 is a Java implementation of an SQL-like query language for RDF derived from

SquishQL. It treats RDF as data and provides query with triple patterns and constraints

over a single RDF model. The language provides a full set of Boolean and arithmetic

operators to be used in constraints but does not support transitive closures (i.e. hierarchical

constraints). Its purpose, as stated on the RDQL Web site, is as a model-level access

24See <http://www.daml.org/listarchive/joint-committee/0572.html>.
25See <http://www.ai.sri.com/daml/notes/HW2/SemanticWeb/paper.html>.
26See <http://www1.coe.neu.edu/ srayavar/W3CQL/ql.htm>.
27See <http://www.intellidimension.com/default.asp>.
28See <http://www.hpl.hp.com/semweb/rdql.html>.

22 Chapter 1. Introduction

mechanism that is higher level than an RDF API.

RQL is the query language used by the ICS-FORTH RDFSuite29 which includes a

Validating RDF Parser, an RDF Schema specific database and The query engine. These

tools aim at a uniform management of RDF Schemata and resource descriptions, in fact

RQL supports transitive closures on RDF subclasses and subproperties at the syntactic

level. RQL follows a functional approach (like OQL30) and is based on a formal graph

model (as opposed to other triple-based RDF query languages) that captures the RDF

modelling primitives and allows the interpretation of superimposed resource descriptions

by means of one or more Schemata. RQL is implemented on top of a persistent RDF

Store that exploits available RDF schema information in order to efficiently load and query

resource descriptions in an Object-Relational DBMS (SQL3). Notice that query results

are retrieved in 2-dimensional tables. RQL is currently used by the Sesame system31.

RuleML is part of the Rule Markup Initiative32 which aims at defining a shared Rule

Markup Language allowing both bottom-up and top-down rules in XML for deduction,

rewriting, and further inferential-transformational tasks. The current version of the lan-

guage (XML/RDF-combining RuleML 0.8) does not support Boolean disjunction.

XDD33 is a language that enables representation of the semantics of a Web resource.

It is founded on a theoretical basis upon which representation, computation and reasoning

about XML data can be carried out in a uniform and succinct manner. It employs XML

syntax as its underlying data structure and enhances XML expressive power using Declar-

ative Description theory. Computation with XDD is performed by means of Equivalent

Transformation (ET), a computational paradigm based on semantic preserving transfor-

mations, using the ET Compiler, the ET Interpreter and the XML ET Compiler.

We would like to stress that all the above languages have either a textual syntax or an

XML syntax but not both (parameter 8 stated in the previous section).

The RDF Database Access Protocol [HP02] proposes a set of primitives for communi-

cating with a database of RDF data, which include general database management (create,

drop, use) addition and deletion of triples, quantification (foreach-where-do, introduce)

29See <http://139.91.183.30:9090/RDF/>.
30See <http://www.db.ucsd.edu/People/michalis/notes/O2/OQLTutorial.htm>.
31See <http://sesame.aidministrator.nl/>.
32See <http://www.dfki.uni-kl.de/ruleml/>.
33See <http://kr.cs.ait.ac.th/XDD/>.

Chapter 1. Introduction 23

query response (returns a variable or a triple) and transactional grouping (i.e. operations

in the group can be rolled back). Triples may contain variables but conditions are not

very sophisticated (Boolean disjunction is included) and they should be user-defined. The

concrete syntax can be either textual or XML-like as needed.

The RDFPath34 proposal aims at making an XPath-like query system for the RDF data

model. The purpose of RDFPath is to provide for a general technique to specify paths

between two arbitrary nodes of an RDF graph (i.e. to localize information in an RDF

graph). An RDFPath expression is build upon three constructions: a primary selection

specifies an initial set of nodes of a given RDF graph, a composition of location steps,

each specifying a set of nodes which can be reached by “one step” from a given context

object, defines a location path from the initial set of nodes, a filter selects a subset of a

given set of objects. Primary selections include resource and literal, location steps include

child, parent, element, container, self and property but others could be added, filters seem

to be based on Boolean equality of strings but other operators could surely be added. A

specific operator is provided to handle transitive closures (as defined in RDF Schema).

The proposal seems very primitive at the moment.

TRIPLE35 is an RDF query, inference, and transformation language for the Semantic

Web which allows to define the semantics of languages on top of RDF (like RDF Schema,

Topic Maps, UML, etc.) using suitable rules. Access to external programs, like description

logics classifiers, is provided in case the description by rules is not easily possible (i.e.

DAML+OIL). As a result, TRIPLE allows RDF reasoning and transformation under

several semantics allowing to access multiple data source in one application. The query

engine is implemented in Java and the language has both a textual and an XML syntax

but, at the moment, no complete language description exists (as stated in the 2002-03-14

release documentation).

Finally we would like to mention Metalog36 which is proposed by M. Marchiori and

J. Saarela (both working at W3C). The documentation we could retrieve about Metalog

shows that the language is still under development (no complete description of its syntax

is given by the authors yet).

34See <http://logicerror.com/RDFPath>.
35See <http://triple.semanticweb.org/>.
36See <http://www.w3.org/RDF/Metalog/paper981007.html>.

24 Chapter 1. Introduction

Chapter 2

MathQL level 1

In this chapter we discuss the MathQL proposal, briefly announced in [GS03], which

concerns a language developed in the context of the HELM project (see Chapter 3) to

query RDF metadata about mathematical resources.

2.1 Introduction

2.1.1 Design goals and main features

The MathQL proposal rises within the HELM project with the final aim of providing a

set of query languages for digital libraries of formalized mathematical resources, capable

of expressing content-aware requests.

This proposal has several domains of application and may be useful for database or

on-line libraries reviewers, for proof assistants or proof-checking systems, and also for

learning environments because these applications require features for classifying, searching

and browsing mathematical information in a semantically meaningful way.

As the most natural way to handle content information about a resource is by means

of metadata, our first task is providing a query language that we call MathQL level 1 (or

MathQL-1 for short), suitable for a metadata framework. Other languages to be defined in

the context of the MathQL proposal may be suitable for queries about the semantic struc-

ture of mathematical data: this includes content-based pattern-matching (MathQL-2) and

possibly other forms of formal matching involving for instance isomorphism, unification

and δ-expansion1 (MathQL-3).

1by δ-expansion we mean the expansion of definitions.

26 Chapter 2. MathQL level 1

In this perspective the role of a query on metadata can be that of producing a filtered

knowledge base containing relevant information for subsequent queries of other kind.

The present work concerns just MathQL-1 which is designed to achieve the following:

1. Exploitation of RDF technology to manage metadata and compliance with the

main requirements for an RDF query language stated in Section 1.4.1:

- MathQL-1 provides facilities for hierarchical constraints based on RDF Schema

and for traversal of compound values of properties.

- MathQL-1 provides a full set of Boolean operators to compose query constraints

and facilities for selecting URI’s or literals by means of regular expressions.

- MathQL-1 allows to customize the query results specifying what part of a so-

lution should be preserved or discarded.

- MathQL-1 has a well-conceived semantics that will be presented in this chapter

(see Section 2.2), which is defined in term of an abstract metadata model,

imposes that queries return exhaustive solutions and includes a “select-from-

where”-like construction.

- MathQL-1 supports a machine-processable XML syntax as well as a human-

readable textual syntax to achieve the best usability.

2. Careful treatment of query results that should be considered as important as

queries themselves. In particular:

- MathQL-1 query results have a 4-dimensional geometry whereas other lan-

guages assume that query results are returned in 1-dimensional structures (i.e.

lists of resources) or 2-dimensional structures (i.e. relational database tables).

This allows to get better outcomes from queries returning structured results.

- Besides the syntax for queries, MathQL-1 provides a syntax for query results

with its own rigorously defined semantics. This is because, in the context

of a distributed setting where query engines are implemented as stand-alone

components, non only queries but also query results must travel inside the

system and thus need to be encoded in clearly defined format.

3. Exploitation of constructions borrowed from programming languages to al-

low sophisticated queries that need computation over the queried data. In particular:

Chapter 2. MathQL level 1 27

- MathQL-1 supports variables for storing intermediate query results, provides

iterators over these results, has a conditional operator and includes logging

facilities for debugging purposes.

As we see, MathQL-1 aims at making up for two limitations (the insufficient compliance

with the most requested features and the poor attention paid to query result management)

that seem to characterize several implementations and proposals of current RDF query

languages (see section 1.4.2).

2.1.2 Architectural issues

This section outlines the main guidelines concerning MathQL-1 general architecture in-

troducing its abstract metadata model and other minor issues.

Attributed values.

The data representation model used by MathQL-1 relies on the notion of attributed value

(a.v. for short) consists of a subject string2 and an optional set of named attributes each

holding a multiple string value (m.s.v. for short). Attribute names are made of a (possibly

empty) list of string components, so they can be hierarchically structured. Moreover the

set of attributes is partitioned into groups (i.e. subsets) to improve the a.v. structure.

This structure is the building block of query results and MathQL-1 uses it to represent

many kinds of information as for instance:

1. A pool of RDF triples having a common subject r, which in general is a URI reference

[URI]3, is encoded in a single a.v. placing r in the subject string. the predicates of the

triples are encoded as attribute names and their objects are placed in the attributes’

values. These values are structured as multiple strings with the aim of holding the

objects of repeated predicates. Moreover structured attribute names can encode

various components of structured properties preserving their semantics.

Figure 2.1 shows how a set of triples can be coded in an a.v.. Note that the word attr

separates the subject string from its attributes, braces enclose an attribute group

in which attributes are separated by semicolons, and an equal sign separates an

attribute name from its values (see Subsection 2.2.3 for the complete a.v. syntax).

2When we say string, we mean a finite sequence of characters.
3A URI reference is a URI with an optional fragment identifier.

28 Chapter 2. MathQL level 1

The RDF triples:

("http://www.w3.org/2002/01/rdf-databases/protocol", "dc:creator", "Sandro Hawke")

("http://www.w3.org/2002/01/rdf-databases/protocol", "dc:creator", "Eric Prud’hommeaux")

("http://www.w3.org/2002/01/rdf-databases/protocol", "dc:date", "2002-01-08")

The corresponding attributed value:

"http://www.w3.org/2002/01/rdf-databases/protocol" attr

{"dc:creator" = "Sandro Hawke", "Eric Prud’hommeaux"; "dc:date" = "2002-01-08"}

Figure 2.1: The representation of a pool of RDF triples

In this setting the grouping feature can be used to separate semantically different

classes of properties associated to a resource (as for instance Dublin Core metadata,

Euler metadata and user-defined metadata).

Note that the use of a.v.’s to build query results allows MathQL-1 queries to return

sets of RDF triples instead of mere sets of resources, in the spirit of what is currently

done by other RDF query languages (see Section 1.4.2).

2. The value of a property is encoded in a single a.v. distinguishing three situations:

– If the property is unstructured, its value is placed in the a.v. subject string and

no attributes are defined.

– If the property is structured and its value has a main component4, the content

of this component is placed in the a.v. subject string and the other components

are stored in the a.v. attributes as in the other case.

– If the property is structured and its value does not have a main component, the

a.v. subject string is empty and the components are stored in the attributes.

Figure 2.2 (first example) shows three possible ways of representing in a.v.’s an

instance of a structured property id whose value has two fields (i.e. properties)

major and minor. In this instance, major is set to “1” and minor is set to “2”. The

representations depend on which component of id is chosen as the main component

(none, major or minor respectively). Several structured property values sharing a

common main component can be encodes in a single a.v. exploiting the grouping

facility: in this case the attributes of every instance are enclosed in separate groups.

4Which is set by the rdf:value property or defined by a specific application.

Chapter 2. MathQL level 1 29

First example, one instance:

"" attr {"major" = "1"; "minor" = "2"}; no main component

"1" attr {"minor" = "2"}; main component is "major"

"2" attr {"major" = "1"} main component is "minor"

Second example: two separate instances:

"" attr {"major" = "1"; "minor" = "2"}, {"major" = "1"; "minor" = "7"}; no main component

"1" attr {"minor" = "2"}, {"minor" = "7"} main component is "major"

Third example: two mixed instances:

"" attr {"major" = "3", "6"; "minor" = "4", "9"} no main component

Figure 2.2: The representation of the structured value of a property

Figure 2.2 (second example) shows the representations of two instances of id: the

previous one and a new one for which major is “1” and minor is “7”.

Note that if the attributes of the two groups are encoded in a single group, the notion

of which components belong to the same property value can not be recovered in the

general case because the values of an attribute form a set and thus are unordered.

As an example think of two instances of id encoded as in Figure 2.2 (third example).

3. Attributed values can be used to store any auxiliary information needed during

query execution. In particular, MathQL-1 provides variables for a.v.’s which, in its

textual syntax, are identifiers5 preceded by the @ sign, as in @variable, and that

are introduced by the for and select constructions to be explained below.

The basic operation between a.v.’s is called addition and builds a single a.v. starting

from two a.v.’s with the same subject string. The subject of the result is always set to the

common subject of the operands, but there are two ways to compose the attribute groups:

• With the set-theoretic addition, the set of attribute groups in the resulting a.v. is

the set-theoretic union of the sets of attribute groups in the operands.

• With the distributive addition, the set of attribute groups in the resulting a.v. is

the “Cartesian product” of the sets of attribute groups in the two operands. In this

context, an element of the “Cartesian product” is not a pair of groups but it is the

set-theoretic union of these groups where the m.s.v.’s of homonymous attributes are

clustered together using set-theoretic unions.

5To be understood as in programming languages.

30 Chapter 2. MathQL level 1

attributed values used as operands for the addition:

"1" attr {"A" = "a"}, {"B" = "b1"}

"1" attr {"A" = "a"}, {"B" = "b2"}

Set-theoretic addition:

"1" attr {"A" = "a"}, {"B" = "b1"}, {"B" = "b2"}

Distributive addition:

"1" attr {"A" = "a"}, {"B" = "b1", "b2"}, {"A" = "a"; "B" = "b2"}, {"B" = "b1"; "A" = "a"}

Figure 2.3: The addition of attributed values

Figure 2.3 shows an example of the two kinds of addition.

Query results.

The result of a MathQL-1 query is always a set of a.v.’s whose subject strings are distinct.

MathQL-1 defines three operations on a.v. sets, namely:

• The union corresponds to the set-theoretic union where the a.v.’s sharing a common

subject are packed in single a.v.’s adding them set-theoretically as explained above.

This operation plays a central role MathQL-1 architecture and allows to compose

the attributes of the operands preserving their group structure.

• The intersection contains the set-theoretic union of the a.v.’s whose subject string

appears in each argument. In this case the a.v.’s sharing a common subject are

packed in single a.v.’s adding them distributively. This strong form of intersection

has the double benefit of filtering the common subjects of the given a.v. sets, and

of merging their attribute groups in every possible way. This feature enables the

possibility of performing additional filtering operations checking the content of the

merged groups.

• The difference of two a.v. sets contains the a.v.’s of the first argument whose subject

string does not appear in the second argument.

Following the previous intuition, an a.v. set can be used to represent a set of RDF

triples or a set of property values: this is done by representing each triple or value in a

single a.v. and then by combining these a.v.’s with the union operation we just defined.

Chapter 2. MathQL level 1 31

"A" attr {"major" = "1"; "minor" = "2"},

{"first" = "2002-01-01"; "modified" = "2002-03-01"};

"B" attr {"major" = "1"; "minor" = "7"},

{"first" = "2002-02-01"; "modified" = "2002-04-01"}

“major” “minor” “first” “modified”

“A” “1” “2” “2002-01-01” “2002-03-01”

“B” “1” “7” “2002-02-01” “2002-04-01”

Figure 2.4: A set of attributed values displayed as a table

The wanted set of attributed values contains this element:

"A" attr {"major" = "1"; "minor" = "2"}

This query generates the wanted set:

add "1" as "major", "2" as "minor" in subj "A"

Figure 2.5: Building a simple set of attributed values

If the a.v.’s of an a.v. set share the same attribute names and grouping structure, this

set can be represented as a table in which each row encodes an a.v. and each column is

associated to an attribute (except the first one which holds the subject strings). Figure 2.4

shows an a.v. set describing the properties of two resources “A” and “B” giving its table

representation, in which the columns corresponding to attributes in the same group are

clustered between double-line delimiters6.

The above example gives a spatial idea of the geometry of an a.v. set (i.e. a query

result) which fits in 4 dimensions: namely we can extend independently the set of the

subject strings (dimension 1), the attributes in each group (dimension 2), the groups in

each a.v. (dimension 3) and the set of strings stored in each attribute value (dimension 4).

The metadata defined in the table of Figure 2.4 will be used in subsequent examples.

For this purpose assume that first and modified are the components of a structured property

date available for the resources “A” and “B”.

MathQL-1 support for a.v. set manipulation includes the following constructions, in

which query is an a.v. set and value is a m.s.v. (the precise syntax is in Subsection 2.2.2):

• empty: builds the empty a.v. set.

6A table with grouped labelled columns like the one above resembles a set of relational database tables.

32 Chapter 2. MathQL level 1

• subj value: builds an a.v. set taking the subject strings from value. Each resulting

a.v. has an empty set of attributes.

• add optional-flag attribute-groups in query: builds an a.v. set adding the specified

attribute-groups (contained in a virtual a.v.) to each a.v. of query. If no flag is

specified the addition is set-theoretic, whereas with the distr flag the addition is

distributive. The groups can be explicit or they can be red from a variable for a.v.’s.

Figure 2.5 shows how to build a one-element a.v. set using subj and add.

• proj optional-attribute-name query: builds an m.s.v. containing either the subject

strings of query7 (if the attribute-name is not specified) or the values, searched in

each group and composed by set-theoretic union, found in query for the specified

attribute8.

• keep optional-flag attribute-name-list in query: builds an a.v. set by removing from

query every attribute whose name is included (or is not, according to the flag) in the

given attribute-name-list. If the flag is not present, the list specifies the attributes

to keep, whereas if the flag is allbut, the list specifies the attributes to remove.

Removing unwanted information from an a.v. set is useful in two cases: lowers the

complexity of intermediate query results increasing the performance of subsequent

operations and cleans the final query results making them easier to manage for the

application that submitted the query.

• query infix-binary-operator query: builds an a.v. set by composing the two operands

according to the operator which can be union, intersect or diff. The composition

occurs as explained above.

• let query-variable be query in query: stores the result of the first query in a variable

for a.v. sets before evaluating the second query. Variables for a.v. sets are represented

by identifiers preceded by the % sign, as in %variable.

Ordering of query results.

The data stored in a.v. sets are formally unordered but a MathQL-1 query engine may

implement facilities for presenting query results as ordered structures.

7This is the content of the first column of query viewed as a table.
8This is the content of a labelled column of query viewed as a table.

Chapter 2. MathQL level 1 33

Accessing RDF metadata.

Formally MathQL-1 allows to access an RDF graph9 through an access relation which is

better understood by explaining the informal semantics of the property operator.

This operator builds a result a.v. set starting from two mandatory arguments: the source

m.s.v. and the head path. Other optional arguments may be used to change its default

behaviour or to request advanced functionalities. The textual syntax of this operator is:

property optional-flags head-path optional-clauses of optional-flag value

A path has the structure of an attribute name (i.e. a list of strings) and denotes a (possibly

empty) finite sequence of contiguous arcs (describing properties in the RDF graph).

In the simplest case property is used to read the values of a (possibly compound)

property with an unstructured value and does the following:

• It computes the instances of the given path in the RDF graph available to the query

engine, using the resources specified in the source m.s.v. (call them source resources)

as start-nodes.

• The computation gives a set of nodes in the RDF graph (i.e. the end-nodes of the

instantiated paths) which are the values of the instances of the (possibly compound)

property specified by the path and concerning the source resources.

• These values, encoded into a.v.’s as explained above, are composed by means of the

MathQL-1 union operation to form the result set.

Figure 2.6 (example 1) shows an instance of this procedure. Note that the result sets of

this example have no attributes and that a path is represented by a slash-separated list of

strings denoting the path’s arcs.10

Using the pattern flag, property can be instructed to regard the contents of the

source m.s.v. as POSIX regular expressions rather than as constant strings. In this case

pattern selects the set of resources matching at least one of the given expressions. See

for instance Figure 2.6 (example 2).

If we want to read the value of a structured property we can specify the value’s main

component in the main optional-clause (this specification overrides the default setting

inferred from the RDF graph through the rdf:value property) and the list of the value’s

9When we say RDF graph, we actually mean both the RDF Model graph and the RDF Schema graph.
10If needed, the empty path is represented by a single slash.

34 Chapter 2. MathQL level 1

These examples refer to the resources "A" and "B" of Figure 2.4.

Example 1: reading an unstructured property - simple case:

property "id"/"major" of {"A", "B"} returns "1"

property "id"/"minor" of {"A", "B"} returns "2"; "7"

Example 2: reading an unstructured property - use of pattern:

property "id"/"minor" of pattern ".*" returns "2"; "7"

Example 3: reading a structured property without main component:

property "id" attr "major", "minor" of {"A", "B"}

generates the following attributed values:

"" attr {"major" = "1"; "minor" = "2"}; "" attr {"major" = "1"; "minor" = "7"}

that are composed using MathQL-1 union giving the one-element set:

"" attr {"major" = "1"; "minor" = "2"}, {"major" = "1"; "minor" = "7"}

Example 4: reading a structured property specifying a main component:

property "id" main "major" attr "minor" of {"A", "B"} gives

"1" attr {"minor" = "2"}, {"minor" = "7"}

Example 5: the renaming mechanism:

property "id" attr "minor" as "new-name" of {"A", "B"} gives

"" attr {"new-name" = "2"}, {"new-name" = "7"}

Example 6: imposing constraints on property values:

property "date" istrue "first" in "2002-01-01" attr "modified" of {"A", "B"} and

property "date" istrue "first" match ".*01.*" attr "modified" of {"A", "B"} give

"" attr {"modified" = "2002-03-01"}

Only the instance of "date" with "first" set to "2002-01-01" is considered.

Example 7: inverse traversal of the head path:

property inverse "date" attr "first" in subj "" gives

"A" attr {"first" = "2002-01-01"}; "B" attr {"first" = "2002-02-01"}

Example 8: some triples of an access relation:

The triples formalizing the property "date" of the resource "A":

("A", "date", "");

("A", "date"/"first", "2002-01-01"); ("A", "date"/"modified", "2002-03-01")

Figure 2.6: The “property” operator

Chapter 2. MathQL level 1 35

secondary components in the attr optional-clause. Note that if a secondary component

is not listed in the attr clause, it will not be read. Also recall that, when the result a.v.’s

are formed, the main component is is read in the subject string, whereas the secondary

components are encoded using the attributes of a single group. See for instance Figure 2.6

(examples 3 and 4). As a component of a property’s value may be a structured property,

its specification (appearing in the main or attr clause) is actually a path in the RDF

graph starting from the end-node of the head path.

Note that the name of an attribute, which by default is its defining path in the attr

clause, can be changed with an optional as clause for the user’s convenience. See for

instance Figure 2.6 (example 5). The alternative could be a simple string but needs to be

a path for typing reasons. In any case a string can be seen as a one-element path.

In the default case property builds its result considering every component of the RDF

Model graph (i.e. every RDF Model) but we can constrain some nodes of the inspected

components to have (or not to have) a given value, with the aim of improving the perfor-

mance of the inspection procedure. The constrained nodes are specified in the istrue and

istrue optional-clauses and the constraining values are expressed by in or match con-

structions depending on their semantics (constant values or POSIX regular expressions

respectively). See for instance Figure 2.6 (example 6). Again a constrained node may be

the value of a compound property, therefore its specification (appearing in the istrue or

isfalse clause) is a path in the RDF graph starting from the end-node of the head path.

property allows to access the RDF Schema property hierarchy by specifying a flag named

sub or super. If the sub flag is present, property inspects the instances of the default tree

(made by the head path and by the optional-clauses paths) and every other tree obtained

by substituting an arc p with the arc of a subproperty of p. If the super flag is present,

super-property arcs are substituted instead.

property also allows the inverse traversal of its head path if the inverse flag is specified.

In this case the operator works as follows:

• It instantiates the head path using the values whose main component is specified in

the source m.s.v. set as end-nodes.

• It encodes the resources corresponding to the instances of the start-nodes into a.v.’s

assigning the attributes obtained instantiating the attribute paths11 and composes

11The path in optional-clauses are never traversed backward.

36 Chapter 2. MathQL level 1

these a.v.’s using the MathQL-1 union operation to build the result set.

See for instance Figure 2.6 (example 7).

Now we can present access relations which are the formal tools used by MathQL-1

semantics to access the RDF graph. An access relation is a set of triples (r1, p, r2) where

r1 and r2 are strings, p is a path (encoded as a list of strings). Each triple is a sort of

“extended RDF triple” in the sense that r1 is is a resource for which metadata is provided,

p is a path in the RDF graph and r2 is the main value of the end-node of the instance of p

starting from r1 (this includes the instances of sub- and super-arcs of p if necessary). See

for instance Figure 2.6 (example 8).

MathQL-1 does not provide for any built-in access relation so any query engine can

freely define the access relations that are appropriate with respect to the metadata it

can access. In particular, Section 4.1.2 describes the access relations implemented by the

HELM query engine.

It is worth remarking, as it was already stressed in [GS03], that the concept of access

relation corresponds to the abstract concept of property in the basic RDF data model

which draws on well established principles from various data representation communities.

In this sense an RDF property can be thought of either as an attribute of a resource

(traditional attribute-value pairs model), or as a relation between a resource and a value

(entity-relationship model). This observation leads us to conclude that MathQL-1 is sound

and complete with respect to querying an abstract RDF metadata model.

Finally note that access relations are close to RDF entity-relationship model, but they

do not work if we allow paths with an arbitrary number of loops (i.e. with an arbitrary

length) because this would lead to creating infinite sets of triples. If we want to handle

this case, we need to turn these relations into multivalued functions.

Multiple string values, Boolean values and numbers.

Multiple string values (i.e. sets of strings), are the most important data structures after

a.v.’s and a.v. sets. MathQL-1 uses these structures to encode string data, Boolean values

and natural numbers. More precisely:

• When interpreting a m.s.v. as a Boolean value, the empty set is regarded as false

Chapter 2. MathQL level 1 37

while any inhabited set is regarded as true.12 A specific inhabited m.s.v. (the one-

element set containing the empty string) is used as the default encoding of true.

• Numbers are encoded with m.s.v.’s containing the string of their decimal expansion.

MathQL-1 support for m.s.v. manipulation includes the following constructions:

• {value, · · ·, value}: builds the set-theoretic union of the specified m.s.v.’s.

• count value: builds an m.s.v. containing the size of the value.

• false: builds the m.s.v. representing the false Boolean value (the empty m.s.v.).

• true: builds the default m.s.v. representing a true Boolean value (default-true).

• value infix-test-operator value: builds false or default-true according to the specified

test. The test-operator includes: sub (set-theoretic subset relation), eq (set-theoretic

quality), meet (inhabitance of the set-theoretic intersection), le (numeric less-or-

equal-than), lt (numeric less-than).13

• not value: returns false if the value is true, and default-true otherwise.

• value and value: returns the second value if the first value is true, and false otherwise.

• value or value: returns the first value if it is true, and the second value otherwise.

• value xor value: returns false if both values are true or false, and the true value

otherwise.

• let value-variable be value in query: stores the value in a variable for values before

evaluating the query. Variables for m.s.v.’s are represented by identifiers preceded

by the $ sign, as in $variable.

The ex and ”dot” operators are used to read the attributes of av’s stored in variables for

av’s. They will be discussed in Subsection 2.2.2.

Conditional queries and iterators.

The following constructions allow sophisticated queries like the one in Subsection 4.2.3:

• if value then query else query: executes one of the specified queries interpreting

the value with the Boolean semantics described above.

12This choice was inspired by the C-style encoding of Boolean values on top of integer numbers.
13le and lt build false if their operands are invalid numbers.

38 Chapter 2. MathQL level 1

• for av-variable in query sup query: iterates the evaluation of the second query

setting the av-variable to each a.v. in the first query and builds the MathQL-1 union

of the obtained results.

• for av-variable in query inf query: like the former but MathQL-1 intersection is

used instead of MathQL-1 union.

• select av-variable from query where value: This is the well-known ”select-from-

where” construction suggested by the RDF community (see Subsection 1.4.1).

Its semantics is the one of:

for av-variable in query sup if value then av-variable else empty.

Logging facilities.

MathQL-1 provides for three logging facilities which where introduced mainly for debug-

ging purposes. In particular the language includes these constructions:

• log optional-flags query: logs and returns the query. Normally the result of the

query is logged, but with the source flag, the query itself is logged. By default,

logging occurs in textual syntax but the xml flag switches to XML-logging mode.

• stat query: returns the query logging the size of its result and the execution time.

• stat value: returns the value logging its size and its evaluation time.

Constant strings.

As we saw in the above examples, MathQL-1 represents constant strings surrounding them

with double quotes. The general attitude of the language towards constant strings is to

consider them as data to be processed verbatim, in this sense MathQL-1 semantics provides

only for the escaping and unescaping of special characters occurring in these strings.

MathQL-1 character escaping syntax aims at complying with W3C character model for the

World Wide Web [W3Ca] which recommends a support for standard [Unicode] characters

(U+0000 to U+FFFF) and escape sequences with start/end delimiters. In particular

MathQL-1 escape delimiters (backslash and caret) are chosen among the unwise characters

for URI references (see [URI]) because URI references are the natural content of constant

strings and these characters should not be so frequent in them.

Chapter 2. MathQL level 1 39

2.2 Operational semantics

This section describes the current state of MathQL-1 syntax and semantics, which is still

unstable and is maintained by us in collaboration with I. Schena. Section 2.3 outlines

the differences between this version of the language and the older versions presented in

[GS03, Nat02, Lor02].

We present MathQL-1 semantics in a natural operational style [Lan98, Win93] and we use

a simple type system that includes basic types such as strings and Booleans, and some type

constructors such as product and exponentiation. y : Y will denote a typing judgement.

This semantics is not meant as a formal system per se, but should serve as a reference for

implementors. In this sense an interesting property that could be proved formally is that

the evaluation of a query is deterministic and always terminating.14 However the present

work does not contain such a formal proof.

2.2.1 Mathematical background

String denotes the type of strings and its elements are the finite sequences of [Unicode]

characters. Grammatical productions, represented as strings in angle brackets, denote the

subtype of String containing the produced sequences of characters.

The syntax of grammatical productions resembles BNF and POSIX notation:

• ::= defines a grammatical production by means of a regular expression.

Regular expressions are made of the following elements (here ... is a placeholder):

• ‘...‘ represents any character in a character set;

• ‘^ ...‘ represents any character (U+0020 to U+007E) not in a character set;

• "..." represents a string to be matched verbatim;

• <...> represents a regular expression defined by a grammatical production;

• represents a conjunctive regular expression;

• ... | ... represents a disjunctive regular expression;

• [...]? represents an optional regular expression;

• [...]+ represents a regular expression to be repeated one or more times;

14As a consequence, the language is not Turing-complete.

40 Chapter 2. MathQL level 1

• [...]* represents a regular expression to be repeated zero or more times;

• [...] represents a grouped regular expression.

Num denotes the type of numbers and is defined as the subtype of String given by the

regular expression: ’0 - 9’ [’0 - 9’]*. In this type, numbers are represented by

their decimal expansion.

SetOf Y denotes the type of finite sets (i.e. unordered finite sequences without repe-

titions) over Y . ListOf Y denotes the type of lists (i.e. ordered finite sequences) over Y .

We will use the notation [y1, · · · , ym] for the list whose elements are y1, · · · , ym.

Boole denotes the type of Boolean values and is defined as {∅, {””}} : SetOf SetOf String

where ∅ : SetOf String is the false value (denoted by F) and the one-element set {””} :

SetOf String is the true value (denoted by T).

Y ∗Z denotes the product of the types Y and Z whose elements are the ordered pairs

(y, z) such that y : Y and z : Z. The notation is also extended to a ternary product.

Y → Z denotes the type of functions from Y to Z and f y denotes the application of

f : Y → Z to y : Y . Relations over types, such as equality, are seen as functions to Boole.

With the above constructors we can give a formal meaning to most of the standard

notation. For instance we will use the following:

• ∅ : (SetOf Y)

• ∃ : ((SetOf Y)→ Boole)→ Boole

• ∀ : ((SetOf Y)→ Boole)→ Boole

• ∈ : Y → (SetOf Y)→ Boole (infix)

• ⊆ : (SetOf Y)→ (SetOf Y)→ Boole (infix)

• ≬ : (SetOf Y)→ (SetOf Y)→ Boole (infix)

• ∩ : (SetOf Y)→ (SetOf Y)→ (SetOf Y) (infix)

• ∪ : (SetOf Y)→ (SetOf Y)→ (SetOf Y) (infix)

• ⊔ : (SetOf Y)→ (SetOf Y)→ (SetOf Y) (the disjoint union, infix)

• ≤: Num→ Num→ Boole (infix)

• <: Num→ Num→ Boole (infix)

• # : (SetOf Y)→ Num (the size operator)

Chapter 2. MathQL level 1 41

• @ : (ListOf Y)→ (ListOf Y)→ (ListOf Y) (the concatenation, infix)

• ¬ : Boole→ Boole

Note that ∀ and ∃ are always decidable because the sets are finite by definition.

U ≬ W means (∃u ∈ U) u ∈ W and expresses the fact that U ∩ W is inhabited as a

primitive notion, i.e. without mentioning intersection and equality as for U ∩ W 6= ∅,

which is equivalent but may be implemented less efficiently in real cases15.

U ≬ W is a natural companion of U ⊆ W being its logical dual (recall that U ⊆ W

means (∀u ∈ U) u ∈ W) and is already being used successfully in the context of a

constructive (i.e. intuitionistic and predicative) approach to point-free topology [Sam00].

Sets of couples play a central role in our formalization and in particular we will use:

• Fst : (Y × Z)→ Y such that Fst (y, z) = y.

• Snd : (Y × Z)→ Z such that Snd (y, z) = z.

• With the same notation, if W contains just one couple whose first component is y,

then W (y) is the second component of that couple. In the other cases W (y) is not

defined. This operator has type (SetOf (Y × Z))→ Y → Z.

• Moreover W [y ← z] is the set obtained from W removing every couple whose first

component is y and adding the couple (y, z). The type of this operator is

(SetOf (Y × Z))→ Y → Z → (SetOf (Y × Z)).

• Also U + W is the union of two sets of couples in the following sense:

U + ∅ rewrites to U

U + (W ⊔ {(y, z)}) rewrites to U [y← z] +W

The last three operators are used to read, write and join association sets, which are sets

of couples such that the first components of two different elements are always different.

These sets will be exploited to formalize the memories appearing in evaluation contexts.

Now we are able to type the main objects needed in the formalization:

• A path s is a list of strings therefore its type is T0a = ListOf String.

• A multiple string value V is an object of type T0b = SetOf String.

• A attribute group G is an association set connecting the attribute names to their

values, therefore its type is T1 = SetOf (T0a × T0b).

15As for the Boolean condition φ∨ψ which may have a more efficient implementation than ¬(¬φ∧¬ψ).

42 Chapter 2. MathQL level 1

<dec> ::= ’0 - 9’

<num> ::= <dec> [<dec>]*

<hex> ::= <dec> | ’A - F’ | ’a - f’

<escaped> ::= "u" <hex> <hex> <hex> <hex> | ’"’ | "\" | "^"

<string> ::= ’"’ ["\" <escaped> "^" | ’^ "\^’]* ’"’

<string_list> ::= <string> ["," <string>]*

<path> ::= ["/"]? <string> ["/" <string>]* | "/"

Figure 2.7: Textual syntax of numbers, strings and paths

Escape sequence Unicode character Text

\u....^ U+....

\"^ U+0022 "

\\^ U+005C \

\^^ U+005E ^

Figure 2.8: Textual syntax of escaped characters

• A subject string r is an object of type String.

• A set A of attribute groups is an object of type T2 = SetOf T1.

• An a.v. is a subject string with its attribute groups, so its type is T3 = String×T2.

• A set S of a.v.’s is an object of type T4 = SetOf T3.

• A triple of an attributed relation is of type T5 = String×String×(T0a → String).

We will also need some primitive functions that mostly retrieve the information that

an implemented query engine obtains reading its underlying database. These functions

will be explained in the next section when needed.

2.2.2 Textual syntax and semantics of queries

MathQL-1 expressions denoting queries fall into three categories.

• Expressions denoting an a.v. set belong to the grammatical production <query> and

their semantics is given by the infix evaluating relation ⇓q.

• Expressions denoting a multiple string value belong to the grammatical production

<value> and their semantics is given by the infix evaluating relation ⇓v.

Expressions can contain quoted constant strings with the syntax of Figure 2.7.

Chapter 2. MathQL level 1 43

<alpha> ::= [’A - Z’ | ’a - z’ | ‘_‘]+

<id> ::= <alpha> [<alpha> | <dec>]*

<avar> ::= "@" <id>

<qvar> ::= "%" <id>

<vvar> ::= "$" <id>

Figure 2.9: Textual syntax of variables

When these strings are unquoted, the surrounding double quotes are deleted and each

escaped sequence is translated according to the table in Figure 2.8 (where is a 4-

digit placeholder). This operation is formally performed by the function Unquote of type

String → String. Moreover Name : <path> → T0a is a helper function that converts a

linearized path in its structured representation.

Formally Name (q1 / · · · / qm) rewrites to [Unquote q1, · · · , Unquote qm].

Note that in the present version of the language, the slash at the beginning of a path is

semantically irrelevant, so for instance /"my"/"name" is equivalent to "my"/"name".

Query expressions can contain variables for a.v.’s (avar), variables for a.v. sets, i.e. for

query results (qvar) and variables for multiple strings values (vvar).

Query expressions are evaluated in a context Γ = (Γq, Γa, Γg, Γv) which is a quadruple

of association sets that connect qvar’s to a.v. sets, avar’s to a.v.’s, avar’s to attribute

groups and vvar’s to multiple string values. Therefore the type K of the context Γ is:

SetOf (<qvar>× T4) × SetOf (<avar>× T3) × SetOf (<avar>× T1)× SetOf (<vvar>× T0b)

and the three evaluating relations are of the following types:

⇓q : (K × <query>)→ T4 → Boole,

⇓v : (K × <value>)→ T0b → Boole.

The context components Γq, Γa and Γv are used to store the contents of variables,

while Γg is used by the ex Boolean operator to be presented below.

Expressions denoting an a.v. set

These expressions represent queries or sub-queries and their syntax is described in Fig-

ure 2.10 (the start symbol is <query>).

The first bunch of <query> operators gives the helper functionalities for context ma-

nipulation, syntactic grouping and logging. In particular:

• The let operators:

44 Chapter 2. MathQL level 1

<def> ::= <path> "as" <value>

<groups> ::= <avar> | <def> ["," <def>]*

<path_list> ::= <path> ["," <path>]*

<qualifier> ::= ["inverse"]? ["sub" | "super"]? <path>

<main> ::= ["main" <path>]?

<cons> ::= <path> ["in" | "match"] <value>

<istrue> ::= ["istrue" <cons> ["," <cons>]*]?

<isfalse> ::= ["isfalse" <cons> ["," <cons>]*]?

<exp> ::= <path> ["as" <path>]?

<sec> ::= ["attr" <exp> ["," <exp>]*]?

<opt_args> ::= <main> <istrue> <isfalse> <sec>

<source> ::= ["pattern"]? <value>

<query> ::= "let" <qvar> "be" <query> "in" <query>

| "let" <vvar> "be" <value> "in" <query>

| <qvar> | <avar> | "(" <query> ")"

| "log" ["xml"]? ["source"]? <query>

| "stat" <query>

| "empty" | "subj" <value>

| <query> ["intersect" | "union" | "diff"] <query>

| "add" ["distr"]? <groups> "in" <query>

| "keep" ["allbut"]? [<path_list>]? "in" <query>

| "if" <value> "then" <query> "else" <query>

| "for" <avar> "in" <query> ["sup" | "inf"] <query>

| "select" <avar> "from" <query> "where" <value>

| "property" <qualifier> <opt_args> "of" <source>

<value> ::= <string> | <vvar> | "(" <value> ")" | "stat" <value>

| "{" [<value> ["," <value>]*]? "}" | "count" <value>

| "proj" [<path>]? <query>

| <value> ["sub" | "meet" | "eq" | "le" | "lt"] <value>

| "false" | "true" | "not" <value>

| <value> ["and" | "or" | "xor"] <value>

| "ex" <value> | <avar> "." <path>

Precedence classes (listed from low to high using brackets for grouping):

(let, add, keep, for, if, log, stat), diff, union, intersect, (select, ex),

(or, xor), and, not, (sub, meet, eq, le, lt), (subj, property, proj, count).

Left-associative operators: intersect, union, diff, and, or, xor.

Figure 2.10: Textual syntax of queries

Chapter 2. MathQL level 1 45

i : <qvar> ((Γq,Γa,Γg,Γv), x1) ⇓q S1 ((Γq[i← S1],Γa,Γg,Γv), x2) ⇓q S2

((Γq,Γa,Γg,Γv), let i be x1 in x2) ⇓q S2

i : <vvar> ((Γq,Γa,Γg,Γv), x1) ⇓v V ((Γq,Γa,Γg,Γv [i← V]), x2) ⇓q S

((Γq,Γa,Γg,Γv), let i be x1 in x2) ⇓q S

• The operators for reading variables and for syntactic grouping:

i : <qvar>

((Γq,Γa,Γg,Γv), i) ⇓q Γq(i)

i : <avar>

((Γq, Γa,Γg ,Γv), i) ⇓q {Γa(i)}

(Γ, x) ⇓q S

(Γ, (x)) ⇓q S

Γq(i) and {Γa(i)} mean ∅ if i is not defined.

• The logging operators (log and stat):

h1 ∈ ["xml"]? h2 ∈ ["source"]? (Γ, x) ⇓q S

(Γ, log h1 h2 x) ⇓q Log h1 h2 x S

x : <query>

(Γ, stat x) ⇓q QStat Γ x

Log h1 h2 x S rewrites to S
(Γ, x) ⇓q S

QStat Γ x rewrites to S

The second bunch of <query> operators gives the functionalities for a.v. set manipu-

lation including set-theoretic operations. In particular:

• The empty constant and the subj (subject) operator:

(Γ, empty) ⇓q ∅
(Γ, y) ⇓v V

(Γ, subj y) ⇓q {(v, ∅) | v ∈ V }

subj makes a cast (which we are planning to hide) between the types T0b and T4.

• The semantics of union, intersect and diff is defined by means of three helper

functions ⊕, ⊗ and ⊖, each having two rewrite rules.

(Γ, x1) ⇓q S1 (Γ, x2) ⇓q S2

(Γ, x1 union x2) ⇓q S1 ⊕ S2

(Γ, x1) ⇓q S1 (Γ, x2) ⇓q S2

(Γ, x1 intersect x2) ⇓q S1 ⊗ S2

(Γ, x1) ⇓q S1 (Γ, x2) ⇓q S2

(Γ, x1 diff x2) ⇓q S1 ⊖ S2

1a (S1 ⊔ {(r, A1)})⊕ (S2 ⊔ {(r, A2)}) rewrites to S1 ⊕ S2 ⊕ {(r, A1 ∪A2)}

1b S1 ⊕ S2 rewrites to S1 ∪ S2

2a (S1 ⊔ {(r, A1)})⊗ (S2 ⊔ {(r, A2)}) rewrites to (S1 ⊗ S2) ∪ {(r,A1 ⊙ A2)}

2b S1 ⊗ S2 rewrites to ∅

3a (S1 ⊔ {(r, A1)})⊖ (S2 ⊔ {(r, A2)}) rewrites to S1 ⊖ S2

3b S1 ⊖ S2 rewrites to S1

Rules 1a, 2a, 3a take precedence over rules 1b, 2b, 3b respectively, ⊕ is defined

associative and A1 ⊙A2 = {G1 ⊕G2 | G1 ∈ A1, G2 ∈ A2}.

• The semantics of the add operator is defined in terms of the helper function Add:

h ∈ ["distr"]? (Γ, y1) ⇓v V1 · · · (Γ, yn) ⇓v Vn p1 : <path> · · · pn : <path> (Γ, x) ⇓q S

(Γ, add h y1 as p1, · · · , yn as pn in x) ⇓q Add h {{(Name p1, V1)} ⊕ · · · ⊕ {(Name pn, Vn)}} S

46 Chapter 2. MathQL level 1

h ∈ ["distr"]? i : <avar> ((Γq,Γa,Γg,Γv), x) ⇓q S

((Γq,Γa,Γg,Γv), add h i in x) ⇓q Add h (Snd Γa(i)) S

1 Add h A1 ∅ rewrites to ∅

2 Add h A1 ({(r, A2)} ⊔ S) rewrites to {(r, A1 �h A2)} ∪ (Add h A1 S)

Where �”” = ∪ and �”distr” = ⊙.

• The semantics of the keep operator is expressed by the following rules, where W is

{Name p1, · · · , Name pm}. Moreover Keep and Keep′ are two helper functions.

h ∈ ["allbut]? p1 : <path> · · · pk : <path> (Γ, x) ⇓q S

(Γ, keep h p1, · · · , pm in x) ⇓q {(r,
⋃
{Keep h W G | G ∈ A}) | (r,A) ∈ S}

Keep′ h W G rewrites to ∅
1

Keep h W G rewrites to ∅

Keep′ h W G rewrites to G′

2
Keep h W G rewrites to {G′}

3 Keep′ "" W ((s, V) ⊔G) W rewrites to Keep′ "" W G if s /∈W

4 Keep′ "allbut"W ((s, V) ⊔G) W rewrites to Keep′ "allbut"W G if s ∈W

5 Keep′ h W G rewrites to G

Here smaller rule numbers indicate higher precedence for the respective rules.

The third bunch of <query> operators gives the functionalities for conditional queries

and iteration on a.v. sets. In particular:

• Concerning the if operator, rule 1 has higher precedence than rule 2:

(Γ, y) ⇓v F (Γ, x2) ⇓q S2
1

(Γ, if y then x1 else x2) ⇓q S2

(Γ, y) ⇓v V (Γ, x1) ⇓q S1
2

(Γ, if y then x1 else x2) ⇓q S1

• The semantics of the for operator is given in terms of the For helper function:

i : <avar> (Γ, x1) ⇓q S1 h ∈ ["sup"|"inf"]

(Γ, for i in x1 h x2) ⇓q For h Γ i x2 S1

i : <avar> x2 : <query>

For h Γ i x2 ∅ rewrites to ∅

i : <avar> ((Γq,Γa[i← R],Γg,Γv), x2) ⇓q S2

For h Γ i x2 (S1 ⊔ {R}) rewrites to (For h Γ i x2 S1) �h S2

Here we have R : T3, Γ = (Γq, Γa, Γg, Γv), �”sup” = ⊕ and �”inf” = ⊗.

• The select operator is treated substituting every instance of ”select i from x where

y” with ”for i in x sup if y then i else empty” which explains the semantics of select

in terms of the above operators. However a query engine may choose to implement

this operator in native mode for performance reasons.

The last <query> operator is property and depends on the query engine.

In the following rule P is Property h and A2 is {Exp P ′
1 r1 {e1, · · · , em}}:

Chapter 2. MathQL level 1 47

h : <refine> p1 : <path> p2 : <path> e1 : <exp> · · · em : <exp> k ∈ ["pattern"]? (Γ, y) ⇓v V

(Γ,property h p1 main p2 attr e1, · · · , em in k y) ⇓q

⊕
{{(r2, A2)}|(∃r1 ∈ Src k P V)(r1, p1@p2, r2) ∈ P}

When the main clause is not present, we assume p2 = /.

Here Property h gives the appropriate access relation according to the h flag (this is the

primitive function that inspects the RDF graph), see Subsection 2.1.2).

Src k PV is a helper function giving the source m.s.v. according to the k flag. Src is

based on Match, the helper function handling POSIX regular expressions. Formally:

Src "" P V rewrites to V

Src "pattern" P V rewrites to Match {r1 | (∃p, r2) (r1, p, r2) ∈ P} V

Match W V rewrites to
⋃
{PatternWs | s ∈ V }

Here PatternWs is the primitive function returning the subset of W : SetOf String

whose element match the POSIX 1003.2-199216 regular expression "^" @ s @ "$".

Exp P ′
1 r1 E is the helper function that builds the group of attributes specified in the

attr clause. Exp is based on Exp′ which handles a single attribute. Formally:

f P r1 p1 p rewrites to {r2 | (r1, p1 @ (Name p), r2) ∈ P} with p : <path>

Exp′ P r1 p1 p rewrites to {(Namep, f P r1 p1 p)} with p : <path>

Exp′ P r1 p1 (p as p′) rewrites to {(Namep′, f P r1 p1 p)} with p and p′ : <path>

Exp P r1 p1 E rewrites to
⊕
{Exp′ P r1 p1 e | e ∈ E} with E : SetOf <exp>

When c1 : <cons>, · · · , cn : <cons> and the clause “istrue c1, · · · , cn” is present, the set P

must be replaced with {(r1, p, r2) ∈ P | IsTrue P r1 p1 C} where C is {c1, · · · , cn} and

IsTrue is a helper function that checks the constraints in C. IsTrue is based on IsTrue′

that handles a single constraint. Formally, if p : <path>, (Γ, x) ⇓v V and C : SetOf <cons>:

g P p1 p rewrites to {r2 | (∃r1) (r1, p1 @ (Name p), r2) ∈ P}

IsTrue′ P r1 p1 (p in x) rewrites to (f P r1 p1 p) ≬ V

IsTrue′ P r1 p1 (p match x) rewrites to (f P r1 p1 p) ≬ Match (g P p1 p) V

IsTrue P r1 p1 C rewrites to (∀c ∈W) IsTrue′ P r1 p1 c

When the clause “isfalse c1, · · · , cn” is present, the set P must be replaced with {(r1, p, r2) ∈

P | ¬(IsTrue P r1 p1 C)} (using the above notation). Note that this substitution and the

former must be composed if necessary.

If the inverse flag is present, also replace the instances of P in the rule and in the

definition of Src with {(r2, p, r1) | (r1, p, r2) ∈ P}.

16Included in POSIX 1003.1-2001: <http://www.unix-systems.org/version3/ieee std.html>.

48 Chapter 2. MathQL level 1

Expressions denoting a multiple string value

These expressions represent m.s.v.’s (including Boolean values and numbers) and their

syntax is described in Figure 2.10 (the start symbol is <value>).

The first bunch of <value> operators gives the helper functionalities for context ma-

nipulation, syntactic grouping and logging. In particular:

• The operators for reading variables and for syntactic grouping:

q : <string>

(Γ, q) ⇓v {Unquote q}

(Γ, y) ⇓v V

(Γ, (y)) ⇓v V

i : <vvar>
((Γq,Γa,Γg,Γv), i) ⇓v Γv(i)

Here Γv(i) means ∅ if i is not defined.

• The logging operator (stat):

y : <value>

(Γ, stat y) ⇓v VStat Γ y

(Γ, y) ⇓v V

VStat Γ y rewrites to V

The second bunch of <value> operators deals with m.s.v. management:

• The n-ary union operator and the count operator:

(Γ, y1) ⇓v V1 · · · (Γ, yn) ⇓v Vn

(Γ, {y1, · · · , yn}) ⇓v V1 ∪ · · · ∪ Vn

(Γ, y) ⇓v V

(Γ, count y) ⇓v {# V }

• The proj (projection) operator makes a coercion between the types T4 and T0b:

(Γ, x) ⇓q S

(Γ,proj x) ⇓v {Fst u | u ∈ S}

p : <path> (Γ, x) ⇓q {(r1, A1), · · · , (rm, Am)}

(Γ,proj p x) ⇓v Proj (Name p) A1 ∪ · · · ∪ Proj (Name p) Am

Proj p {G1, · · · , Gn} rewrites to G1(p) ∪ · · · ∪Gn(p)

where, for each j such that 1 ≤ j ≤ n, Gj(p) means ∅ if p is not defined in Gj.

The third bunch of <value> operators gives the Boolean values support: In particular:

• The test operators (sub, meet, eq, le, lt):

(Γ, y1) ⇓v V1 (Γ, y2) ⇓v V2

(Γ, y1 sub y2) ⇓v (V1 ⊆ V2)

(Γ, y1) ⇓v V1 (Γ, y2) ⇓v V2

(Γ, y1 meet y2) ⇓v (V1 ≬ V2)

(Γ, y1) ⇓v V1 (Γ, y2) ⇓v V2

(Γ, y1 eq y2) ⇓v (V1 = V2)

(Γ, y1) ⇓v {n1} (Γ, y2) ⇓v {n1}
1

(Γ, y1 le y2) ⇓v (n1 ≤ n2)
2

(Γ, y1 le y2) ⇓v F

(Γ, y1) ⇓v {n1} (Γ, y2) ⇓v {n1}
3

(Γ, y1 lt y2) ⇓v (n1 < n2)
4

(Γ, y1 lt y2) ⇓v F

Chapter 2. MathQL level 1 49

The rules of the same operator are listed in order of precedence (high to low).

The comparisons are extensional an the equality between strings is case-sensitive.

The eq operator is introduced because the evaluation of y1 eq y2 may be more

efficient than that of y1 sub y2 and y2 sub y1.

As an application of the sub and meet operators, consider an a.v. set computed by

X : <query> and a Boolean condition computed by B : <value> depending on the

variable @u : <avar>. The test ”is B satisfied for each a.v. in X?” is expressed by

”proj X sub proj select @u from X where B” whereas the dual test ”is B satisfied

for some a.v. in X?” is expressed by ”proj X meet proj select @u from X where B”.

• The operators about logic (true, false, not, and, or, xor):

(Γ, false) ⇓v F (Γ, true) ⇓v T

(Γ, y) ⇓v F
1

(g, not y) ⇓v T

(Γ, y) ⇓v V
2

(g,not y) ⇓v F

(Γ, y1) ⇓v F
3

(Γ, y1 and y2) ⇓v F

(Γ, x2) ⇓v V
4

(Γ, y1 and y2) ⇓v V

(Γ, y1) ⇓v F (Γ, y2) ⇓v V
5

(Γ, y1 or y2) ⇓v V

(Γ, y1) ⇓v V
6

(Γ, y1 or y2) ⇓v V

(Γ, y1) ⇓v F (Γ, y2) ⇓v V
7

(Γ, y1 xor y2) ⇓v V

(Γ, y1) ⇓v V (Γ, y2) ⇓v F
8

(Γ, y1 xor y2) ⇓v V

(Γ, y1) ⇓v V1 (Γ, y2) ⇓v V2

9
(Γ, y1 xor y2) ⇓v F

The rules of the same operator are listed in order of precedence (high to low).

Notice that "and" and "or" are evaluated with an early-out (C-style) strategy.

• The ex and “dot” operators provide a way to read the attributes stored in avar’s.

The ex (exists) operator gives access to the groups of attributes associated to the

a.v.’s in the Γa part of the context and does this by loading its Γg part, which is

used by the “dot” operator described below.

ex is true if the condition following it is satisfied by at least one pool of attribute

groups, one for each a.v. in the Γa part of the context. Formally we have the rules:

(∀∆g ∈ All Γa) ((Γq,Γa,Γg + ∆g,Γv), y) ⇓v F
1

(Γ, ex y) ⇓v F
2

(Γ, ex y) ⇓v T

i : <avar> p : <path>

(Γ, i.p) ⇓v Γg(i)(Name p)

where17 All Γa = {∆g | ∆g(i) = G iff G ∈ Snd Γa(i)}, and Γ = (Γq, Γa, Γg, Γv).

Moreover Γg(i)(Name p) means ∅ if i or Name p are not defined where appropriate.

Here the first rule has higher precedence than the second does.

17∆g has the type of Γg.

50 Chapter 2. MathQL level 1

<attr> ::= <path> ["=" <string_list>]?

<group> ::= "{" <attr> [";" <attr>]* "}"

<av> ::= <string> ["attr" <group> ["," <group>]*]?

<avset> ::= [<av> [";" <av>]*]?

Figure 2.11: Textual syntax of query results

The “dot” operator allows to read an attribute only by specifying an associated avar

but this restriction offers the advantage of an unambiguous reference to attributes

related to different a.v.’s but sharing the same name. Note that the use of the let

operator may produce unavoidable attribute name collisions in the scope of nested

where clauses as in the following example where ... is a place holder:

let %s be property "..." attr "a" of subj "..." in

select @u1 from %s where "..." sub proj

select @u2 from %s where ex @u1."a" sub @u2."a"

2.2.3 Textual syntax and semantics of query results

The textual representations of query result expressions belong to the grammatical pro-

duction <avset> of Figure 2.11, whose semantics is described by four (infix) evaluating

relations like the ones used for query expressions. In particular:

• ⇒a: <attr>→ (T0a × T0b)→ Boole evaluates an attribute.

• ⇒g: <group>→ T1 → Boole evaluates an attribute group.

• ⇒v : <av>→ T3 → Boole evaluates an attributed value.

• ⇒s: <avset>→ T4→ Boole evaluates a set of attributed values.

Note that a multiple string value can be empty. In fact, in an RDF Model a property can

be optionally used, even if it is always declared in an RDF Schema.

Also note that the attribute groups are always inhabited.

Formally the evaluation is described by four rules:

p : <path> q1 : <string> · · · qm : <string>

p = q1, · · · , qm ⇒a (Name p, {Unquote q1, · · · , Unquote qm})

z1 ⇒a a1 · · · zm ⇒a am

{z1; · · · ; zm} ⇒g {a1, · · · , am}

q : <string> z1 ⇒g G1 · · · zm ⇒g Gm

q attr z1, · · · , zm ⇒v (Unquote q, {G1, · · · , Gm})

z1 ⇒v s1 · · · zm ⇒v sm

z1; · · · ; zm ⇒s {s1, · · · , sm}

Chapter 2. MathQL level 1 51

2.3 Some notes on the earlier versions of MathQL-1

This section outlines the differences between the version of MathQL-1 described in Sec-

tion 2.2 and the earlier versions presented in [Lor02],[Nat02], and [GS03].

MathQL-1.1

The first description of MathQL-1 is briefly sketched in [Lor02] where D. Lordi illustrates

his implementation of a query engine for the language. This paper contains only a succinct

verbal description of the query expressions without mentioning any formal semantics for

them (such a semantics did not exist when the paper was written).

[Nat02] contains a more precise description of the language and includes a sort of formal

semantics for it, adapted from [GS03]. However, that semantics is not designed carefully

and has some problems: in particular it is not clear how the author can formalize the

sortedby operator, that sorts the contents of a.v. sets, given that he formalizes a.v. sets

using unordered data structures like the SetOf type constructor.

That version of the language revealed very unsatisfactory for several reasons:

• a.v.’s have a poorly structured set of attributes (attributes are not grouped and have

a single string value) and this causes the major problems in defining a reasonable

semantics for the union and intersection of a.v.’s sharing the subject string and some

attributes in the case they have different values.

• Relations and functions are built in the language and are optimized for the metadata

currently available in the context of the HELM project. This makes the language

not usable in other contexts without a suitable syntax extension, which is required

even if the HELM metadata model itself happens to be modified.

• The pattern clause does not use standard regular expressions but Unix-like wild-

cards whose semantics is optimized for a very simple URI reference scheme.

MathQL-1.2

The next version of the language, appearing in [GS03] and also included in [Nat02] with

some additions taken from the preliminary version of this dissertation (for instance the

character escaping syntax), aims at solving these inconvenient in the following way:

52 Chapter 2. MathQL level 1

• The attributes of a.v.’s are multivalued and partitioned into groups allowing a clean

semantics for union and intersection; the group structure justifies the presence of the

ex operator in connection with the “dot” operator. The use of multiple string values

in place of single string values is pushed as far as possible in the language architecture

leading to the adoption of other operators like sub, meet, eq, refof (now proj) and

also of variables for values (the vvar’s introduced by the let operator).

• This version uses abstract (i.e. not built-in) relations and functions whose semantics

depends on the query engine, and allows the use of the inverse flag as a syntactic

support for the inference of inverse relationships.

• [GS03] provides for the use of standard regular expressions in the pattern operator.

[GS03] does not include the sortedby operator because of the problems it gives in

the context of a formal semantics based on unordered structures18. Moreover the fun

operator, coming from [Lor02], is also left out because it is a simplified version of the

operator used to invoke abstract functions.

MathQL-1.3

The version of the language presented in this chapter improves the previous version with

the aim of satisfying the basic requirements about a query language for RDF metadata

listed in Subsection 1.4.1. In particular this version adds:

• More expressiveness in attribute names which are paths instead of identifiers. This

choice has a double benefit: on one hand it frees these names from the syntactic

constraints of identifiers (which can contain only a limited set of characters) allowing

them to encode full RDF property names (including a Namespace when appropriate),

and on the other hand it allows attributes to be named as their defining paths, thus

making attribute renaming an optional feature in contrast with MathQL-1.2.

• New features for the property operator that now includes regular expressions han-

dling (the pattern flag), constraint specifications (the istrue and isfalse clauses)

to reduce the computational complexity of some property operations, and main

component specifications (the main clause) to manage structured RDF properties.

• The add and keep operators as a support for customizing the query results.

18The use of unordered structures simplifies MathQL-1 operational semantics quite a lot.

Chapter 2. MathQL level 1 53

• The if and for operators, taken from the programming languages tradition (as the

let operator) help to formulate sophisticated queries.

• New operators for m.s.v.’s (attribute projection, n-ary union, support for numbers)

and logging facilities for debugging purposes.

• A better conceived syntax for escaping the characters in constant strings, which aims

at complying with the W3C specifications.

In this version of the language, Boolean values (and numbers) are m.s.v.’s. This simpli-

fies MathQL-1 syntax and semantics without any drawback. Currently, we are considering

the possibility of removing m.s.v.’s too (in the sense of removing the <value> grammatical

production) and of using a.v. sets everywhere (i.e. the <query> grammatical production)

because this would lead to a substantial simplification of MathQL-1 architecture.

In [GS03] the property operator presented in Subsection 2.2.2 is called relation and

another property operator is provided. This operator does not appear in our presentation

being a particular case of relation from the operational standpoint.

54 Chapter 2. MathQL level 1

Chapter 3

The Hypertextual Electronic Library of

Mathematics

In this chapter we present an overview on the HELM project (see also Subsection 1.1.2)

which is the framework where we are testing MathQL-1, focusing particularly on HELM

metadata structure (see Subsection 3.2.2 and Subsection 3.2.4). Chapter 4 describes how

MathQL-1 is exploited by HELM.

The major methodological requirements of the HELM project are:

• Standardization. By standardization, HELM only means the representation of the

information in a clearly defined, application-independent format. XML is adopted as

a neutral specification language to encode the library contents, taking advantage of

the many functionalities on XML documents offered by standard commercial tools.

Special dialects of XML, such as MathML or XSLT, can be reasonably used as a stan-

dardization languages for presentational and notational aspects of the information,

or for transformations among XML files.

• Distribution. HELM provides a distributed library, which may contain multiple

copies of the same document for efficiency and fault-tolerance reasons. For relocation

and balancing reasons, the objects of the library have logical names and the system

provides a mechanism for resolving these names.

• Simplicity. The kernel system should be as light as possible and should profit of

the existing technology for Web Publishing. The overall policy should be as liberal

as possible, respecting the general philosophy of the Web: every user with a HTTP

or FTP space should be allowed to publish his or her piece of theory. In particular,

56 Chapter 3. The Hypertextual Electronic Library of Mathematics

no assumptions should be made about the server for publishing and users should be

able to browse the library with any browser.

• Modularity. HELM should be conceived as an open system, in the most general

sense of the term. It should be possible to add more functionalities and utilities with

a minimal effort and no impact on the kernel.

3.1 The overall architecture

3.1.1 Overview

The HELM project is developed by Prof. A. Asperti and his research team (also including

I. Schena, C. Sacerdoti Coen, L. Padovani, F. Guidi, S. Zacchiroli, and formerly D. Lordi,

L. Natile and A. Nediani) at the Department of Computer Science of the University of

Bologna. The project is integrated with related projects in the framework of the European

FET Project IST-2001-33562, under the name MOWGLI1.

HELM pursues the integration of the tools for the automation of formal reasoning and

mechanization of mathematics (mainly proof assistants and logical framework) with the

recent technologies for the development of Web applications and electronic publishing.

The main technical novelty of HELM is in its synergy between different scientific

communities and research topics as digital libraries [Com98], web publishing and logical

environments.

From the web-publishing standpoint, the project is the first attempt to provide a

comprehensive description, from content to metadata, of Mathematics, in order to enhance

its accessibility, exchange and elaboration through the Web. To this aim HELM exploits

most of the technologies recently introduced by W3C like XML, MathML, XSLT, RDF

and related companion tools.

From the digital libraries standpoint, the project is aimed at exploiting the function-

alities offered by the Web, and in particular a more integrated use of its browsing and

searching facilities. In this context, HELM library is not a mere structured collection of

texts, but it is a virtual structure inside which the user can freely navigate.

As the library is encoded in XML, HELM needs some modules for exporting the already

encoded mathematical knowledge towards the XML representation

1Math On the Web: Get it by Logic and Interfaces: <http://www.mowgli.cs.unibo.it>.

Chapter 3. The Hypertextual Electronic Library of Mathematics 57

Currently, the HELM team has written such a module only for the [Coq] proof assistant

but similar exportation functionalities are expected to be provided by the developers of

other logical systems in the near future. Note that, while HELM exports the information,

a tight interaction with the source application is usually required.

To exploit and augment the library, HELM needs several tools providing the function-

alities given by the current tools for proof-reasoning, such as type checking, proof search-

ing, program verification and code extraction. Moreover HELM can use the available

well-developed and extensible tools for processing, retrieval and rendering XML-encoded

information.

The user will interact with the library through several interfaces that integrate the

different tools to provide a homogeneous view of the functionalities. Actually the HELM

team is developing two interfaces.

Because of the particular nature of the library, HELM also provides a suitable model

of distribution.

3.1.2 HELM vs. other technologies

EULER (see Subsection 1.3.3) can be considered one of the most interesting and represen-

tative projects with regard to Digital Libraries. The main difference with the HELM

project is that EULER tries to integrate every kind of mathematical resource, while

HELM is concerned only with the formal ones. Moreover the format of the resources

usually indexed by EULER is textual or presentation-oriented, thus a granular access to

the document structure is impossible.

P-MathML is definitely suitable for HELM purposes, but C-MathML does not entirely

meet our requirements because it is mainly focused on computer algebra systems, while

HELM is oriented towards proof-assistant applications, Also, MathML does not provide

a standard semantics for its content elements and this is fundamental in a formal context

where semantics is uniquely defined.

Anyway, as we said, OpenMath provides only a semi-formal encoding of mathematical

objects, and this fact rises almost the same problems of C-MathML, so under this point

of view, OpenMath has no added value than C-MathML for the purposes of HELM.

With regard to MathWeb, which uses the OMDoc format to encode information, we

point out the differences with respect to HELM.

58 Chapter 3. The Hypertextual Electronic Library of Mathematics

• The emphasis of MathWeb is on communication and structured knowledge bases2 so

XML is used to encode short-term persistence information, while HELM is an XML-

native system and uses XML encodings also for long-term persistence information.

• MathWeb is mainly focused on computer algebra systems and interoperability issues,

whereas, as we said, HELM is concerned with proof assistants.

The proof format supported by OMDoc allows, as HELM does, natural language

representations at every level of abstraction, but it is tactic-based and therefore it

is not satisfactory because the language of tactics is really system-dependent, often

partly documented and in continuous evolution.

Furthermore the scripts in this language are usually very obscure to humans because

the semantics of tactics is not compositional, depending on the current sub-goal and

its environment.

On the contrary, HELM proof representation is not tactic-based and HELM natural

descriptions do not substitute a formal step but simply represent an alternative way

of presenting it.

• In the practice of Mathematics the choice of names is essential because names bring

a useful and important meaning, often fixed by an ancient mathematical tradition.

Moreover, structured names help their mining, facilitate search and retrieve opera-

tions and naturally induce a hierarchical organization of metadata, opening the way

to simple inheritance mechanisms.

For these reasons, HELM uses hierarchically structured names for the objects in its

library while MathWeb currently relies on flat names even if a different solution is

likely to be adopted in the next specification.

• The current effort inside HELM is mostly oriented towards “documents” which are

not “theories” in the sense of OMDoc because, at present, any attempt to impose

a specific standardization at the level of theories is very likely to be rejected by the

scientific community.

• OMDoc allows many different levels of markup (representing content, rendering and

metadata information) to be placed in a single document because it is mainly con-

ceived as the input/output format for the MBase system, so documents are very

2See for instance MBase: <http://www.mathweb.org/mbase>.

Chapter 3. The Hypertextual Electronic Library of Mathematics 59

complex and it may be difficult to process them efficiently (as it already happened

with SGML [ISO8879] in the publishing world).

HELM instead follows the guidelines of W3C, which is moving in the direction of

having many dialects, each for a peculiar kind of information, and adopts the general

approach of layering the levels of processing,

As a consequence, each different kind of information is kept separated form the other

and this leads to a better complexity management because documents are smaller.

• OMDoc metadata describe only the general information about documents by means

of the Dublin Core elements because the other information is inferred by the specific

distribution server (i.e. MathWeb), while HELM does not make this assumption and

needs the full RDF encoding for its metadata.

3.2 The persistent contents of the library

HELM library is currently composed of about 65000 XML documents consisting of core

files and auxiliary files. A core file contains a basic unit of information (we will call it

an object) which is a formal definition, axiom or proven statement expressed in a suit-

able logical system and typically borrowed from the available repositories produced by

proof assistants. Each logical system has a different DTD, due to the different founda-

tional meaning of its operations and constructions. An auxiliary file contains additional

information about a core file or about another auxiliary file. The additional information

can be of several kinds and includes RDF metadata, theories (describing the semantic

information needed to classify the objects into lemmas, conjectures, corollaries, etc, and

to enforce some constraints, for instance, on the scope of variables), views (structured

collections of references to objects, suitably assembled for some presentational purpose)

and annotations (storing presentational human-provided information).

In this section we give some details about these kinds of documents.

It is very important to stress that the auxiliary information is essential to enable or

facilitate specific functionalities such as rendering, searching and indexing of the core

information, but, on the other hand, it may be a burden for an application that processes

the core information automatically: either it could be simply ignored or it imposes a lot

of additional consistency checks. In this perspective HELM separates the information

60 Chapter 3. The Hypertextual Electronic Library of Mathematics

according to its meaning and usage storing the core data and the auxiliary data in distinct

XML files, which are related using the [XLink] technology.

As a result an application can consult just the XML files holding the information it

really needs, without having to parse and ignore non-interesting information.

3.2.1 Objects and theories exported from Coq

The module interfacing HELM with the Coq System is part of Coq version 7 and is used

to export Coq’s libraries into a suitable low-level XML dialect which is specific to Coq’s

logical system, i.e. the Calculus of (Co)Inductive constructions (CIC). The exportation

procedure is a batch process producing the CIC object files and the associated theory

files. The exportation strategy follows a minimalist principle: only the non-redundant

information (i.e. the minimal information required for automatic checking) available at

the logical level should be exported.

One of the problems connected with the design of the exportation module is that some

information which needs to be exported (i.e. the one required for presentational issues) is

not directly available from Coq internals. For instance, the type of the inner nodes of a

proof3 (which are essential to recover a human readable representation of the proof: see

[CKT95, Cos00]) is typically missing. Note that the information about these types is kept

separate from the core information for the reasons we explained above.

Each CIC object file contains an XML representation of a CIC object that can be a

definition (also inductive or coinductive), a proof in progress (i.e. an unfinished proof), an

axiom, or variable declaration. Note that a definition can actually be a theorem because

CIC does not make any syntactic distinction between these two concepts.

Each object is encoded with its type and its body (when appropriate) which are both

CIC terms. These files are hierarchically structured into directories corresponding to

sections in Coq (used for instance as delimiters of the scope of a local axiom or definition)

and for each leaf directory a theory file is also extracted from Coq internals.

The theory file is an XML document describing the objects in that directory, with the

aim of assigning a semantic classification to them (the distinction between definition and

theorem is done at this level) which does not depend on the specific logical framework. A

theory does not include its objects directly, but refers to them trough their URI’s.

3Recall that CIC represents propositions as types, following the so-called Curry-Howard isomorphism.

Chapter 3. The Hypertextual Electronic Library of Mathematics 61

It is important to stress that at the theory level, objects are not organized in chapters,

paragraphs or the like because many kinds of markup languages have just been developed

to do so. For this reason, and accordingly to the spirit of XML, the theory markup is

freely mixable with other kinds of markup, such as [XHTML].

3.2.2 Intrinsic and extrinsic RDF metadata

In the context of the HELM project, the purpose of metadata is to provide semantic infor-

mation about the library contents enabling smart searching and retrieving functionalities

(see also [Ric99]). These features, besides being very helpful to browse the library, are

also fundamental in the development of those proof assistants meant to allow an effective

reuse of already developed results. It is a matter of fact that many theorems and defini-

tions provided by Coq or by other similar tools are often restated by the authors in the

new contributions for the mere difficulty of identifying the needed notion in the already

developed knowledge base.

Note that, as a general-purpose metadata model (like the Dublin Core metadata) does

not suffice to describe the particular semantics of mathematical information, HELM needs

to use a specialized model that we will discuss hereafter. In particular HELM metadata

can be associated either to a whole document (i.e. object or theory) like for instance the

author of a theorem, or to some part of it (i.e. an informal description of a proof step).

HELM distinguishes between two kinds of metadata: intrinsic and extrinsic. By in-

trinsic metadata we mean all the information that can be automatically recovered by

analyzing the documents contents (such as the list of identifiers occurring in a term, or

the main identifier in the conclusion of a statement). Extrinsic metadata are the auxiliary

data that cannot be inferred from the documents themselves (such as the name of the

author, the date, or a list of keywords).

Intrinsic metadata are generated in a completely automatic way by a batch process

while extrinsic metadata, including the Dublin Core and EULER elements, are manually

inserted using suitable tools.

In Subsection 3.2.4 we describe the latest version of HELM RDF Schemata respectively

for theories and objects4 Which are entirely due to I. Schena [Sch02]. These Schemata

4An exhaustive presentation should include the Dublin Core and EULER elements, but here we are

taking their Schema hierarchies for granted.

62 Chapter 3. The Hypertextual Electronic Library of Mathematics

include both kinds of metadata and are still under development (as the whole surrounding

technological infrastructure). Currently we are starting to test the corresponding Models

against concrete requirements.

HELM Schemata provide for the following features:

• XML Schema data types support. The literal values of properties, i.e. the

range constraints, are specified using the XML Schema data types [XMLS] as defined

in the XMLSchema-datatypes RDF Schema (“dt” Namespace)5 because it is very

likely that the RDF working group will propose the usage of these types for the

specialization of the rdfs:Literal class.

• Dublin Core metadata support. HELM exploits a corrected version of the RDF

Schema for the Dublin Core Element Set 1.16 (“dc” Namespace), a corrected version

of the RDF Schema for the Dublin Core Element Set Qualifiers [DCT] vocabulary7

(“dcq” Namespace) and a corrected version of the Dublin Core Schema for the type

vocabulary8 (“dct” Namespace). All DC properties must apply to hth:MathResource,

representing a mathematical resource in general.

• Euler metadata support. HELM uses a corrected version of the RDF Schema9

provided by the SCHEMAS project10: a forum for metadata Schema designers in-

volved in projects under the IST Programme and national initiatives in Europe.

3.2.3 Annotations

By annotations we mean comments, notes, explanations, or other types of external remarks

that can be attached to any Web document or to a selected part of it without modifying the

document itself. The idea is that a user getting a document, may also load its annotations

from some selected annotation servers. From the technical standpoint, annotations are

usually considered as metadata, since they give additional information about an existing

piece of data, even if this information is not always machine-understandable.

5See: <http://www.w3.org/2001/XMLSchema-datatypes>.
6Original at <purl.org/dc/elements/1.1/>, corrections at <helm.cs.unibo.it/schemas/dces>.
7Original at <purl.org/dc/terms/>, corrections at <helm.cs.unibo.it/schemas/dcq>.
8Original at <purl.org/dc/dcmitype/>, corrections at <helm.cs.unibo.it/schemas/dctype>.
9<wip.dublincore.org/2000/11/21-euler>, corrections: <helm.cs.unibo.it/schemas/euler>.

10See <http://www.schemas-forum.org/>.

Chapter 3. The Hypertextual Electronic Library of Mathematics 63

The Annotea project11 [KKPS01] is part of W3C Semantic Web activity and it is

meant to enhance the W3C collaboration environment with shared annotations. Annotea

describes annotation with an RDF based annotation Schema and exploits [XPointer] for

locating the annotations in the annotated document. These annotations can be roughly

considered as attachments containing plain text associated to a (fragment of) document to

make it understandable, are stored on annotation servers in RDF format and are presented

to users by suitable clients that interface with the servers using the HTTP protocol. The

first client implementation of Annotea is the W3C’s Amaya MathML compliant editor

and browser12.

HELM annotations are different because they are meant to give an alternative human-

readable view of a formalized entity as a CIC term (which can be a whole proof) in a core

file. In this setting, the annotation content is not required to be machine-meaningful and

is encoded in plain XML. Every entity has a unique identifier in the file where it is stored

and these identifiers are used to link the annotations to the entities (this technology was

found to be more convenient than the use of XLink).

In any case, as in Annotea, HELM annotations aim at making information human-

understandable, so this can still be regarded as metadata.

3.2.4 The RDF Schemata for metadata about theories and objects

Metadata about theories allow to search for theory items belonging to a given semantic cat-

egory (axiom, variable, definition, theorem, lemma, corollary, fact, data, type, algorithm)

and to explore various kinds of dependencies among theory items.

A stable (but reduced) RDF Schema for metadata about theories (“hth” Namespace)

is available at <http://helm.cs.unibo.it/schemas/schema-helmth> and includes the

following items. The full development version of this schema is available at:

<http://helm.cs.unibo.it/¨schena/schema-hth>.

• MathResource. The subclass of rdfs:Resource representing mathematical resources

described in the HELM library by core XML documents. All properties referring to

core documents use this class as the domain constraint so every subclass of Math-

Resource can naturally inherit them.

11See: <http://www.w3.org/2001/Annotea/>.
12See <http://www.w3.org/Amaya/>.

64 Chapter 3. The Hypertextual Electronic Library of Mathematics

In particular MathResource is the domain of the following properties:

– shortName. The subproperty of dc:title describing the short name (i.e. alias)

of the mathematical resource. The value of this property is a dt:string.

– firstVersion, modified. The subproperties of dc:description describing any

additional information about the first and the modified version of the mathe-

matical resource. The value of these properties is a dt:string.

– institution, contact. The subproperties of dc:creator describing the infor-

mation about the affiliated institution and the contact of the creator of the

mathematical resource. The value of institution is a dt:string while the value

of contact is an instance of Contact (see below).

– isBasedOn, isBasisFor, isSourceFor, hasSource. The subproperties of

dc:relation describing the respective relationships between mathematical re-

sources. Their value is a MathResource.

• Theory. The subclass of MathResource representing mathematical theories.

• HELMFormat. The instance of dcq:FormatScheme representing the logical encod-

ing format of a mathematical resource. Possible values (specified in its rdf:about

attribute) may include “XML.cic”, “XML.mizar” and “XML.hol”.

• HELMId. The instance of dcq:IdentifierScheme representing the identifiers of a

mathematical resource.

• HELMText. The subclass of dcq:Text representing the text types of a mathemat-

ical resource. Possible values include: “Abstract”, “Paper”, “Bibliography”, “En-

closure”, “HomePage”, “LectureNotes”, “Monograph”, “PatentSpec”, “Preprints”,

“Proceedings”, “Review”, “Separatum”, “Serial”, “TechReport” and “Thesis”, plus

the entry “General” that means: none of the former.

• HELMSoftware. The subclass of dcq:Software representing the software types of

a mathematical resource. Possible values include: “Exec” and “Source”.

• Contact. The class representing the creator contact information. It is the domain

of the following properties whose value is a dt:string:

– address, email. The properties describing the respective contact information

relative to the creator of a mathematical resource.

Chapter 3. The Hypertextual Electronic Library of Mathematics 65

Metadata about objects can describe the structure of a HELM object (i.e. a mathemat-

ical statement or proof) in terms of its constants and variables taking into account their

position that is classified in semantically meaningful categories. Note that the constants

include the names of the referred objects so these metadata also describe the dependencies

between objects.

Other metadata can describe proofs (which, being actually terms, are treated at the

object level) by means of their proof steps (using tactics or proof-plans13) taking into

account the information about their logical foundation (i.e. intuitionistic, classical, pred-

icative, impredicative, based on contested axioms, etc.)

A stable (but reduced) RDF Schema for metadata about objects (“h” Namespace)

is available at <http://helm.cs.unibo.it/schemas/schema-helm> and includes the fol-

lowing items. The full development version of this Schema is available at:

<http://helm.cs.unibo.it/¨schena/schema-h>.

• Object. The subclass of hth:MathResource representing HELM units of knowledge.

The elements of this class inherit the properties of a hth:MathResource (for instance

hth:shortName and the Dublin Core properties), but note that inheritance is a deli-

cate issue since an object can be referred by several theories.

object is the domain of the following properties:

– refObj. The property describing a referred constant. Its value is an anonymous

resource with the properties occurrence (describes the referred object), position

and depth (see below).

– backPointer. The property describing a reference to the object (i.e. the in-

verse of the former). Its value is an anonymous resource with the properties

occurrence (describes the referring object), position and depth (see below).

– refRel. The property describing a referred variable. Its value is an anonymous

resource with the properties position and depth (see below).

– refSort. The property describing a referred CIC sort. Its value is an anony-

mous resource with the properties sort, position and depth (see below).

The properties representing the components of a reference description are listed

below:

13In the sense of OMDoc.

66 Chapter 3. The Hypertextual Electronic Library of Mathematics

– occurrence. The property describing an object involved in a reference. Its

value is an Object.

– sort. The property describing a referred CIC sort. Its value is an instance of

Sort (see below).

– position. The property describing the position of a reference in the referring

object. Its value is an instance of Position (see below).

– depth. The property describing a depth index associated to the position of a

reference in the referring object. The depth of a reference is defined only when

its position is set to MainHypothesis or MainConclusion (see below). The value

of depth is a dt:integer

• DirectoryOfObject. The subclass of hth:MathResource describing the hierarchical

collections (directories) of objects. A collection contains the objects whose URI’s

share a common URI prefix (which identifies the collection itself and is placed in the

rdf:about attribute of DirectoryOfObject). Note that the objects of a collection may

share some DC and EULER properties.

• Position. The class representing the positions of a reference in the referring object.

• MainHypothesis, InHypothesis, MainConclusion, InConclusion, InBody.

The instances of Position representing a classification of mathematically meaningful

positions for a reference in the referring object. The positions include: “in head

position of a statement premise”, “in a statement premise, but not in head position”,

“in head position of the statement conclusion”, “in the statement conclusion, but

not in head position” and “not in the statement”.

• Sort. The class representing the possible CIC sorts (“set”, “prop”, “type”).

• Set, Prop, Type. The instances of Sort representing the corresponding CIC sort.

3.3 The processing tools

This section briefly describes the software tools implemented by the HELM team to

process the persistent contents of the library. HELM architecture allows every user to

consult and contribute to the library requiring as few client-side software as possible.

In particular, at least for simple consulting, HELM proposes a Web interface requiring

Chapter 3. The Hypertextual Electronic Library of Mathematics 67

only a common browser. The on-line version of the library can be found at the address

<http://helm.cs.unibo.it/library.html>. A plug-out to render MathML documents

and another one to annotate proofs can be freely downloaded. The Web interface provides

access to an integrated proof checker running on the server side.

3.3.1 The render engine

In HELM the transformation of a document from its persistent XML encoding described

previously in Section 3.2 to its rendering encoding, essentially consists of two phases:

abstraction and presentation.

Both the abstract format and the rendering format are generated on the fly by means of

XSL Transformations [XSLT]. Most of these transformations are pretty complex: HELM

heavily relies on the XSLT inclusion mechanism to organize stylesheets in a coherent and

easily maintainable structure.

Furthermore there are several flows of transformations: one applies to individual ob-

jects, another one applies to theories. The most complex transformation process obviously

concerns objects and their sub-elements (i.e. CIC terms interpreted as propositions or

proofs, requiring an adequate notational support) while theories are essentially structured

collections of references to objects and do not require major transformations.

In the abstraction phase the semantic content of the information is extracted from

its logical encoding and expressed in a suitable content-centric XML dialect, while a back-

pointer to the logical encoding is always preserved as an XLink.

The content level is meant to improve the modularity of the whole architecture and here

many different formal notions, from the same or even from different logical environments,

are typically mapped into the same content notion (think for instance of the notion of

equality whose formal definition may vary from one system to another, but whose intended

meaning does not change). So, there is no point in defining a specific presentation for each

formal notion at the logical level and HELM just defines presentation for the content level.

HELM adopts C-MathML (see Subsection 1.2.1) for the content representation of

formulae and proofs, and has defined a new markup for the theory and metadata level.

During abstraction, HELM must work heavily on proofs in order to put them in a

suitable form for human reading. Typically this requires a major reorganization of the

structure of the proof (see for instance [CKT95, Cos00]): in proof assistants, proofs are

68 Chapter 3. The Hypertextual Electronic Library of Mathematics

typically generated in a top-down fashion while we naturally expect a bottom-up presen-

tation where sub-proofs appear before conclusions. Another issue is that of recognizing

and managing induction principles, (one of the main proof-mechanisms of constructive

mathematics). During this phase, proofs are also integrated with their “inner types” (i.e.

intermediate conclusions). One of the most interesting achievements of HELM has been

to prove that even these complex transformations can be feasibly performed using XSLT.

In the presentation phase the document is turned from its content representation

to its final rendering format (currently HELM produces either P-MathML or [XHTML];

other languages could be exploited in the future). This transformation is based on a

bunch of pre-defined or user-defined XSLT stylesheets containing notational and stylistic

intelligence. HELM uses, among others, a stylesheet by Igor Rodionov14 which is com-

pliant with the last MathML specification. Most of these stylesheets have a very simple

and repetitive structure, so the HELM team is currently studying the possibility of gen-

erating them automatically form a more abstract and concise representation of notational

and stylistic information. For example most of the rules dealing with operators of the

same arity are similar and could be inferred from the arity, the associativity, the type

(infix/prefix/postfix) and the precedence index of the operators themselves.

The XHTML rendering format is provided because no already available browser fully

implements the MathML specification and behaves correctly for HELM quite peculiar

documents (for dimensions and level of table nesting). Moreover, hyperlinks must be

added to MathML documents only using XLink, therefore HELM requires browsers that

are both MathML and XLink compliant. Moreover, even if we can expect such browsers

to be developed very soon, it is quite unlikely that they will have the possibility of nesting

different markups (i.e. XHTML and MathML) in the same document; note that this feature

is needed to render both mathematical documents and user-annotated formal proofs.

The main issues that can not be easily addressed regarding XHTML rendering are:

• Rendering oversized formulas. A MathML engine has enough information to

correctly break the lines that exceed the page width re-indenting the output accord-

ingly. For XHTML, HELM lets the browser create an oversized canvas. Note that

the presentation stylesheets already do a good job computing a coarse-grained layout

so the event of oversized formulas is very rare and not very severe.

14Current home page: <http://www.orcca.on.ca/MathML/igor.html>.

Chapter 3. The Hypertextual Electronic Library of Mathematics 69

• Multiple-depth formula rendering. A MathML presentation element, named

maction, is used to create a node having many children of which only one is shown,

and the user can switch the visible one. HELM exploits this element allowing to

browse a proof as a collapsing tree where the user can expand the proofs in a pro-

gressive way, augmenting the level of detail only locally. This can not be reproduced

in XHTML and to achieve a similar effect, HELM can simply render the whole proof

again with different parameters, but this operation requires many seconds if the

proof is huge.

• Smart selections. A MathML render engine can easily allow to select subexpres-

sions in a semantically meaningful way. Even if it is unlikely that standard browsers

could be exploited for complex interactions (i.e. editing), this feature seems to be

very helpful in order to understand the structure of complex expressions.

3.3.2 Other tools

HELM provides for a variety of tools for handling the library contents. Here we give an

overview of the most important ones15:

• The tools for rendering MathML. As a compromise to cope both with the lim-

itations of XHTML and the unavailability of MathML compliant browsers (recall

that Amaya and Mozilla support only a subset of MathML, and that their per-

formances are quite low), HELM provides a plug-out for Netscape under Linux, the

GtkMathView16, with rendering17 and interaction capabilities for documents embed-

ding MathML presentation markup. The widget adopts Gdome2 [CP02], a DOM

level 2 Gnome implementation that is another by-product of HELM. Using Gdome2,

it will be possible to integrate this widget with other engines with the final aim of

developing an architecture in which different kinds of markup will be intermixed in

the same document and will be rendered by co-operating widgets.

The plug-out controls Netscape in such a way that the browser and the plug-out

windows are kept in synch. This means that the XHTML page always refers to

15The tools for rendering MathML are maintained by L. Padovani while the annotation software, the

type-checker and the proof engine are maintained by C. Sacerdoti Coen.
16see: <http://helm.cs.unibo.it/mml-widget>.
17Both to screen and Postscript.

70 Chapter 3. The Hypertextual Electronic Library of Mathematics

the object shown in the plug-out: i.e. following a hyperlink in the plug-out or in

the browser, both documents are updated. That is important because the XHTML

page holds a control frame that proposes the actions allowed on the current object

(for instance annotate it or type-check it).

In this way, the control frame and its JavaScript logic have not to be reproduced in

the HELM plug-out, that is kept extremely simple. This solution, though, has some

limitations too:

– It requires the user to install client-side software. Moreover it works only for

Linux boxes and, without modifications, only with Netscape Navigator.

– Due to the way the plug-out is kept in synch with Netscape, progressive ren-

dering is not allowed. Hence the user has to wait for the entire file to be

downloaded before Netscape gives it to the plug-out for rendering.

– The plug-out solution does not work for MathML embedded inside other kinds

of markup.

• The annotation software. If we leave the problem of consulting the library and we

focus on more advanced forms of interaction, for example annotating formal objects

with informal descriptions, the only feasible solution seems to require the user to

install client-side software.

HELM provides a plug-out for annotating CIC terms, which is invoked by following a

link in the control frame of the interface. The link returns a document with a suitable

MIME type that causes the browser to start the plug-out. Here HELM is implicitly

assuming that downloading an applet every time we need it is too time-consuming.

The reason is that the applet should be at least able to render MathML and this

requires a huge amount of byte-code to be downloaded even for simple objects.

• The proof checker. HELM comes with a stand-alone proof checker for CIC objects,

which works directly on the XML logical encoding. It is similar to the one used

by Coq but fairly simpler and smaller thanks to its independence from the proof

engine (see below). With respect to other proof checkers (as the one of Coq), it is

fairly standard except for the peculiar management of the environment: usually each

checked object is added to an environment and it is used in subsequent checking,

so every object is always checked with the same, statically defined environment.

Chapter 3. The Hypertextual Electronic Library of Mathematics 71

The HELM proof checker, instead, builds the environment (a cache, actually) “on-

demand”: every time an object that is not in the environment is referred, the current

proof checking is suspended and the new object is checked. This process is recursive

and checks are introduced in order to avoid cyclic references.

• The proof engine. HELM proof engine is meant as an authoring tool exploiting

the all set of functionalities offered by HELM architecture. This tool is accessed

through a graphical front-end, the claims to prove are either typed using a Coq-like

syntax, or retrieved from the library typing their HELM URI. Every incoming object

is type-checked and objects are output using the render engine (Subsection 3.3.1).

The proof construction is handled by tactics, which are invoked using some graphical

controls.

Currently the proof engine implements most of Coq tactics plus a tactic exploiting

the retrieving capabilities offered by MathQL-1 queries. In particular we would like

to mention the following tactics:

Ring, Fourier.

The first allows to replace, in the goal, equal terms belonging to a commuta-

tive semi-ring structure. The second allows to solve linear inequalities on real

numbers using Fourier’s method18.

SearchPattern Apply.

Finds the theorems that can be applied to the goal, among the ones provided by

the library, and lets the user select which theorem to apply. This tactic explores

the library issuing a MathQL-1 query to be detailed in Subsection 4.1.3.

3.3.3 Implementation issues

The main requirement for the HELM user interface is that any user with a Web space

(either HTTP or FTP) should be able to browse the library and contribute to it using

a minimal amount of client-side software. The reason for this approach is that often the

Web space of a user is hosted by a provider that does not allow new software to be run

in it. Moreover, the HTTP publishing model has already proved itself very effective in

creating distributed libraries of knowledge.

18J.B.J. Fourier. Fourier’s method to solve linear inequations/equations systems. Gauthier-Villars, 1890.

72 Chapter 3. The Hypertextual Electronic Library of Mathematics

Furthermore the HELM distribution model regards formal mathematical documents

as immutable resources in the sense that each new version of a document is considered

a different document that does not replace the old version (as for packages of operating

systems distributions).

HELM documents are identified by logical names (URI’s) instead of physical names

(URL’s) so different servers can publish the same document with the same name and a

user is free to access this document from the nearest or less overloaded server. Using

this policy, HELM allows users to make local copies of the documents they are interested

in, and to start distributing them. Thus interesting documents are likely to increase the

number of their instances avoiding the danger of disappearing.

These are the main problems concerning this model which are still unsolved:

• HELM needs a well-conceived naming policy that does not allow different documents

to be published with the same URI (i.e. logical name). This issue can be faced by

means of a centralized naming authority even if a distributed solution would be more

desirable (for instance a name server hierarchy).

• HELM needs to define how a user can locate and download an instance of a document

knowing only its logical name and a list of servers possibly providing it.

• HELM needs to define how a user can locate the sites that are able to process the

documents (i.e. for rendering or other purposes).

HELM architecture requires at least three components, which are: distribution sites,

standard browsers with plug-outs, and processing sites (providing XSLT processors to

elaborate the documents, query engines to search the library and others). Distribution

sites are HTTP and FTP servers while browsers are HTTP clients running on the user

host. Processing sites are HTTP servers providing specific services in response to a browser

request. It may happen that processing sites need to contact other sites in order to obtain

some information (as a document published by a distribution site) so these components

can be HTTP clients too. Note that each HELM component can run on a different host.

The above considerations show that HELM architecture is organized as a set of HTTP

pipelines where each node is seen as an object providing different methods taking argu-

ments: a different URL is associated to each method and its search part (i.e. the one after

the question mark) is used to pass arguments in the standard way.

Here are some comments on the main components:

Chapter 3. The Hypertextual Electronic Library of Mathematics 73

• Distribution sites. Each distribution server publishes a list of the URI’s of its

documents with the associated URL’s (whose transfer protocol can be HTTP, FTP

or NFS) and the file format (due to the high verbosity of XML files, these can be

stored in compressed form).

• The Getter is the client module of the distribution sites and its main method takes

an URI and returns an instance of the corresponding HELM document (always in

deflated format). Another method allows to specify an ordered list of servers which

the Getter contacts on a regular basis, retrieving the lists of available documents

and building a local table (a NDBM database) with the URI-to-URL mappings.

Being supposed to reside closer to the user than the distribution site, the Getter im-

plements a cache that reduces the downloading time of already retrieved documents.

• UWOBO19 is an XSLT processor whose main method is used to apply a list of

stylesheets (each one with the respective parameters) to a document. Both the

stylesheets and the document are identified by URL’s so they can reside on any host.

In particular, the document URL is usually the invocation of the Getter method to

download a document whose URI is also given in the dynamic part of the URL.

UWOBO can process precompiled stylesheet to improve performance.

• hbugs is a set of components, maintained by S. Zacchiroli [Zac03], generating run-

time “suggestions” about the applicable tactics, during an interactive proof. This

set includes a broker, a client and some tutors (one for each “suggestion”). The set of

“suggestions” is user-defined and the architecture resembles that of Ω-ants [BS02].

• The query engine provides a method to execute a general MathQL-1 query (en-

coded in textual syntax as an argument) plus other methods to execute specific

MathQL-1 queries like the one used by the SearchPattern Apply tactic of the HELM

proof engine (see Subsection 3.3.2). this component will be analyzed in Subsec-

tion 4.1.3.

HELM components used to be implemented in various programming languages (Java,

Perl, C/C++ and others) but now the team is strongly oriented towards a uniform [Caml]20

19See: <http://helm.cs.unibo.it/uwobo>.
20A strongly-typed functional language from the ML family. <http://caml.inria.fr>.

74 Chapter 3. The Hypertextual Electronic Library of Mathematics

re-implementation of the whole software. In this context some Caml bindings are used to

interface third party libraries.

Chapter 4

The use of MathQL-1 in the HELM project

In this chapter we describe how HELM (see Chapter 3) exploits MathQL-1 (see Chapter 2)

to query the metadata about its library (see Subsection 3.2.4) and the achieved results.

Our contribution is this sense consisted in implementing and testing the necessary software

components. The integration of MathQL-1 in HELM is still at an early stage but will

evolve quite quickly because HELM seems to be a good test case of our query language.

4.1 The MathQL-1 Suite for HELM

The MathQL-1 Suite for HELM includes the software components used by HELM to

exploit the features of MathQL-1. Each component is implemented in Caml for an easy

integration inside HELM architecture and in the following we will assume that the reader

has some knowledge of this programming language.

4.1.1 The basic Caml package for MathQL-1

The first task of a Caml implementation of MathQL-1 is to provide a Caml package

allowing an access to:

• A representation of MathQL-1 basic structures, which are queries and query results.

• A set of functions enabling the translation between the Caml representation of these

entities and their linearized representation in text (see Subsection 2.2.2 and Subsec-

tion 2.2.3) and XML.

This is the aim of the basic MathQL-1 package that is maintained by us and that con-

tains two modules, MathQL and MQueryUtil, which do not depend on HELM architecture.

76 Chapter 4. The use of MathQL-1 in the HELM project

val text_of_query : (string -> unit) -> MathQL.query -> string -> unit

val text_of_result : (string -> unit) -> MathQL.result -> string -> unit

val query_of_text : Lexing.lexbuf -> MathQL.query

val result_of_text : Lexing.lexbuf -> MathQL.result

val xml_of_query : (string -> unit) -> MathQL.query -> unit

val xml_of_result : (string -> unit) -> MathQL.result -> unit

val query_of_xml : Lexing.lexbuf -> MathQL.query

val result_of_xml : Lexing.lexbuf -> MathQL.result

Figure 4.1: The Caml Interface for the conversion functions

• The MathQL module contains the definitions of the Caml types used to represent

queries and query results: The two main definitions are self-explanatory:
type query = ...

type result = ...

The full definition is included in Subsection A.1.1. Note that the constructor for the

ex operator is declared with two arguments by means of the line:
Ex of avar list * msval

where the first argument is a list of avar’s that does not appear in MathQL-1 syntax.

This list is included only for optimization purposes and contains the avar’s actually

involved in “dot” operators inside the m.s.v. expression ex applies to (i.e. its second

argument in the above declaration). Knowing this list in advance, which usually

has less elements than the whole Γr component of the evaluation context Γ (see

Subsection 2.2.2), a MathQL-1 interpreter can reduce the size of the set All Γa

involved in the computation of ex, and thus it can gain in efficiency.

Note that this list should not contain duplicate elements.

Also note that the MathQL module does not include a declaration for the context

Γ, which is left to each specific interpreter. This choice is justified by the fact that

there are many sensible ways to implement the notion of an association set (see

Subsection 2.2.1).

• The MQueryUtil module provides eight functions, shown in Figure 4.1, converting

the different representations of queries and query results. Currently, these functions

convert the textual and XML syntax into the Caml representation or vice-versa. The

names are self-explanatory and the types may be subjected to small changes.

The first argument of the rendering functions is a call-back of type string -> unit

connecting them to the output device. The third argument of text of query and

Chapter 4. The use of MathQL-1 in the HELM project 77

text of result is an optional separator used for presentational purposes (normally

a new-line character or a <P> HTML tag), which is inserted after the linearization

of a query or after the linearization of every a.v. in an a.v. set.

Note that text of query and xml of query hide the extra argument of the Ex con-

structor, while their inverse functions build it automatically.

The Caml representation of a MathQL-1 constant string is a term of type string,

but Caml strings are made of ISO 8859-1 characters, whereas MathQL-1 constant

strings are made of Unicode characters. So the parsers invoked by query of text,

result of text, query of xml and result of xml map every Unicode character

outside ISO 8859-1 to U+001A1 when it appears in a constant string2.

Conversely text of query and text of result escape every character outside the

closed interval U+0020 to U+007E, when appearing in a constant string.

Finally, the parsers invoked by query of text and result of text understand (pos-

sibly nested) Caml-like comments (i.e. strings between the tokens “(*” and “*)”).

4.1.2 The MathQL-1 interpreter for HELM

The second task of a MathQL-1 implementation is to provide an interpreter for the lan-

guage (i.e. a query engine). The current MathQL-1 formal model (see Subsection 2.1.2)

does not specify how the query engine should obtain the information it needs to compute

the access relations, so a part of the engine has to depend on the specific metadata it is

going to query (we are trying to reduce this part as much as possible, and eventually we

will eliminate it). On the contrary, the part of the engine implementing the semantics of

every operator other than property, should not depend on these metadata.

The Caml package implementing the interpreter for MathQL-1.1 was initially main-

tained by D. Lordi [Lor02], The upgrade to MathQL-1.2 was due to L. Natile [Nat02], and

we are personally maintaining the MathQL-1.3 upgrade that is a full implementation of

the language described in this dissertation.

This section describes the current state of the interpreter focusing on two aspects: how

the metadata are accessed (the back-end) and how they are made available (the front-end).

1This behaviour agrees with the Unicode specification.
2A Java representation of MathQL-1 structures would not have this drawback because Java is based on

Unicode characters.

78 Chapter 4. The use of MathQL-1 in the HELM project

According to the HELM team present experience, the fastest way to access the meta-

data is to parse the RDF Model files describing it, build a relational database containing

the collected information, and then let the interpreter access this database. This tech-

nique, which is used by many RDF query engines (see Subsection 1.4.2), has the advantage

that the RDF files are parsed only when the database is built so the interpreter can access

already parsed information, stored in a convenient way. The drawback, however, is that

the database needs to be updated whenever new metadata is available (in the specific case

of HELM this happens every time users contribute to the library creating new objects).

In this perspective, HELM maintains a relational database managed by the Post-

greSQL3 DBMS which stores all the metadata coming from HELM RDF files (see Sub-

section 3.2.2). This database is filled by a batch process that scans the metadata files and

currently is organized as follows:

• The Dublin Core information is stored in 15 tables named as the corresponding prop-

erty (i.e. “dctitle”, “dccreator”, “dcsubject”, etc.) and each table has two columns

named “uri” and “value”. The entries of the first column can be replicated to indi-

cate that a resource defines more than one value for a given property.

• The same approach is used to store the information about the hth:shortName prop-

erty (see Subsection 3.2.4).

• The h:refRel property (see Subsection 3.2.4) uses a three column table: the columns

are named “uri”, “position”, “depth”.

• The h:refSort property (see Subsection 3.2.4) uses a similar table but with an addi-

tional column named “sort”.

• The information about the h:refObj and h:backPointer properties (Subsection 3.2.4)

is stored in a two-level structure: a table named “registry” associates a unique

numeric identifier to each HELM URI (say 1, 2, 3, etc.) and there are other ta-

bles (named “t1”, “t2”, “t3”, etc) that contain the metadata about the resource

related to the corresponding identifier. These columns of these tables are named

“prop id”, “uri”, “position”, “depth”. In each record, “prop id” discriminates be-

tween h:refObj and h:backPointer information, holding “F” or “B” respectively, “uri”

3See <http://www.postgresql.org>.

Chapter 4. The use of MathQL-1 in the HELM project 79

comes from h:occurrence, and “position” holds one of “MainHypothesis”, “InHypoth-

esis”, “MainConclusion”, “InConclusion”, “InBody” each prefixed by:

“http://helm.cs.unibo.it/schemas/schema-helm#”4.

This database structure was proposed by D. Lordi that in [Lor02] proves it to be

much more efficient than the one used by ICS-FORTH RSSBD (see Subsection 1.4.2)

with the same metadata.

Another (slower) way to access the metadata is having the interpreter read the RDF

Model files at run-time every time a piece of information is needed. In this perspective,

the interpreter maintained by L. Natile can also read the HELM RDF Model files using

Galax5, which is a Caml implementation of a fully compliant XQuery engine.

This feature has not been upgraded to MathQL-1.3 yet but we hope to do it very soon.

The other interesting aspect of the interpreter concerns the way it makes the meta-

data available in MathQL-1 queries. In this sense the access relations recognized by our

interpreter are defined applying the general metadata encoding and accessing principles

of MathQL-1 (see Subsection 2.1.2) to the HELM RDF graph (see Subsection 3.2.4).

Our interpreter currently supports just one access relation concerning the (possibly

compound) RDF properties whose domain is hth:MathResource or a subclass of its (i.e.

h:Object). The other access relations, taking into account the RDF property hierarchies

and the other notions inferred from RDF Schema, are not implemented at the moment

because the RDF Schema graph used by HELM metadata is not very sophisticated.

The triples of the implemented access relation concern the following properties:

• The unstructured, not compound properties (i.e. hth:shortName and the Dublin Core

ones) are accessed through paths having the corresponding name (the names are ac-

tually those of the corresponding tables in the HELM relational database). So these

paths are named "hth:shortName", "dc:title", "dc:creator", "dc:subject", . . .

• The unstructured compound properties are accessed through paths having two com-

ponents. For instance the paths for h:refObj are named "h:refObj"/"occurrence",

"h:refObj"/"position" and "h:refObj"/"depth" while the other ones, concern-

ing h:backPointer, h:refRel and h:refSort, are similar6 (see Subsection 3.2.4). Note

4The Namespace of the schema-helm RDF Schema (see Subsection 3.2.4).
5See <http://db.bell-labs.com/galax/>.
6We are planning to introduce the “h:” Namespace in the second component of these paths too.

80 Chapter 4. The use of MathQL-1 in the HELM project

val execute : string -> MathQL.query -> MathQL.result

val init : string -> unit

val close : string -> unit

val check : string -> bool

Figure 4.2: The Caml Interface for the interpreter

that the values of "h:refObj"/"occurrence" and "h:backPointer"/"occurrence"

are HELM URI’s.

Also note that the two-level structure of the HELM database does not allow a simple

inversion of the triples of this group concerning h:refObj and h:backPointer.

• The structured properties are accessed through paths having the corresponding

name. Note that the HELM RDF Models do not define any default main component

for these properties (this would by done using rdf:value).

– "h:refObj", "h:backPointer".

The components of their value (i.e. h:occurrence, h:position and h:depth) are

reached using the paths "occurrence", "position" and "depth". Note that by

the definition of h:refObj and h:backPointer, we have that "h:backPointer" is

the inverse of "h:refObj" (in MathQL-1 sense) and conversely that "h:refObj"

is the inverse of "h:backPointer". As a consequence the interpreter can invert

the corresponding triples very easily.

– "h:refRel", "h:refSort".

The components of their value (i.e. h:sort, h:position and h:depth) are reached

using the paths "sort", "position" and "depth".

The Caml package implementing the interpreter is designed to achieve the best per-

formance: for instance the types built using the SetOf type constructor in the formal

semantics (see Subsection 2.2.1 and Subsection 2.2.2) are maintained as ordered lists to

optimize the set theoretic operations (i.e. union, intersect, diff, sub, meet, eq).

The package interface (shown in Subsection A.1.2) is based on a Caml functor connecting

the interpreter to a generic logging device, and provides the methods shown in Figure 4.2.

The first argument is always a sting of flags (encoded as letters) specifying the operating

mode (PostgreSQL or Galax) plus other settings for output verbosity and the like.

Chapter 4. The use of MathQL-1 in the HELM project 81

execute issues a query, while the other functions handle the connection between the

interpreter and PostgreSQL or Galax (the methods’ names are self-explanatory).

4.1.3 The HELM query generator

The query generator is the Caml package that is responsible for building specific kinds of

MathQL-1 queries, which are meaningful in the context of HELM, starting from a high-

level description of the wanted results. The generator is maintained by us and is currently

made of three modules: two auxiliary modules generate the “high-level descriptions” and

the core module generates the queries from these descriptions.

The core module of the query generator

Currently the core module can generate two kinds of queries:

• The locate query retrieves the set of HELM objects having a specified short name.

The high-level description of this query is just a string containing the sort name (call

it NAME-STRING) and the generated query is:

property inverse "hth:shortname" of NAME-STRING

This query is useful because we usually now an object by its short name (i.e. “nat” for

the set of natural numbers, “plus” for the function which adds two natural numbers)

and not by its HELM URI (for “plus” that is <cic:/Coq/Init/Peano/plus.con>).

Note that many objects may share the same short name (currently there are 4 objects

named “plus” and 328 objects mysteriously named “A”).

• The compose query retrieves the set of HELM objects whose references satisfy a given

set C of constraints. This query exploits the information available through h:refObj,

h:refRel and h:refSort, which are the HELM RDF properties describing the entities

that a HELM object refers to (see Subsection 3.2.4), and is build incrementally on

the elements of C.

The set C can contain 8 kinds of constrains that we list below using the numbers

from 1 to 8. Furthermore each constraint can be either “positive” (we want all

objects satisfying it) or “negative” (we want all objects not satisfying it).

The following constraints take for parameters: R represents the URI of a HELM

object, S represents a CIC sort, P represents a position specification and D represents

82 Chapter 4. The use of MathQL-1 in the HELM project

The basic query generated for constraint "+1" (first) and "-1" (second):

property inverse "h:refObj" istrue "occurrence" in R, "position" in P, "depth" in D of ""

property inverse "h:refObj" isfalse "occurrence" in R, "position" in P, "depth" in D of ""

The basic query generated for constraint "+2" (first) and "-2" (second):

property inverse "h:refRel" istrue "sort" in S, "position" in P, "depth" in D of ""

property inverse "h:refRel" isfalse "sort" in S, "position" in P, "depth" in D of ""

The basic query generated for constraint "+3" (first) and "-3" (second):

property inverse "h:refRel" istrue "position" in P, "depth" in D of ""

property inverse "h:refRel" isfalse "position" in P, "depth" in D of ""

The basic query generated for constraint "+4" (first) and "-4" (second):

select @obj from ... where not proj

property "h:refObj" isfalse "occurrence" in R, "position" in P, "depth" in D of proj @obj

select @obj from ... where not proj

property "h:refObj" istrue "occurrence" in R, "position" in P, "depth" in D of proj @obj

The basic query generated for constraint "+5" (first) and "-5" (second):

select @obj from ... where not proj

property "h:refSort" isfalse "sort" in S, "position" in P, "depth" in D of proj @obj

select @obj from ... where not proj

property "h:refSort" istrue "sort" in S, "position" in P, "depth" in D of proj @obj

The basic query generated for constraint "+6" (first) and "-6" (second):

select @obj from ... where not proj

property "h:refRel" isfalse "position" in P, "depth" in D of proj @obj

select @obj from ... where not proj

property "h:refRel" istrue "position" in P, "depth" in D of proj @obj

The basic query generated for constraint "+7" (first) and "-7" (second):

select @obj from ... where proj

property "h:refObj" istrue "position" in P, "depth" in D of proj @obj sub R

select @obj from ... where proj

property "h:refObj" isfalse "position" in P, "depth" in D of proj @obj sub R

Here ... is a placeholder for a query built from other constraints or for

property / of pattern ".*" (retrieving all HELM objects) if none is given.

Figure 4.3: The basic queries generated by the “compose” method

Chapter 4. The use of MathQL-1 in the HELM project 83

The basic query generated for constraint "+8" (first) and "-8" (second):

select @obj from ... where proj

property "h:refSort" istrue "position" in P, "depth" in D of proj @obj sub S

select @obj from ... where proj

property "h:refSort" isfalse "position" in P, "depth" in D of proj @obj sub S

Here ... is a placeholder for a query built from other constraints or for

property / of pattern ".*" (retrieving all HELM objects) if none is given.

Figure 4.4: The basic queries generated by the “compose” method (continued)

a depth index. These are the values of the properties h:occurrence, h:sort, h:position

and h:depth described in Subsection 3.2.4. Note that these parameters are optional.

The query corresponding to each constraint is shown in Figure 4.3 and Figure 4.4.

±1. The wanted objects must (or must not) contain a reference to a object R in a

position P with a depth index D.

±2. The wanted objects must (or must not) contain a reference to a CIC sort S in

a position P with a depth index D.

±3. The wanted objects must (or must not) contain a reference to a bound variable

in a position P with a depth index D.

These constraints are composed conjunctively in the sense that if the set C contains

two of them, the wanted objects must satisfy both and so the corresponding basic

queries are composed using the intersect operator. Note that each basic query

returns a set of HELM URI’s each without attributes (because no attr clause is

specified in it) so the way intersect handles the attributes is not relevant here.

±4. The wanted objects may contain a reference to an object only if it does (or does

not) concern a object R in a position P with a given depth index D.

±5. The wanted objects may contain a reference to a CIC sort only if that does (or

does not) concern a sort S in a position P with a depth index D.

±6. The wanted objects may contain a reference to a bound variable only if in (or

not in) a position P with a depth index D.

These constraints are composed disjunctively in the sense that if the set C contains

two of them, the wanted objects must satisfy either one or the other, and no other

84 Chapter 4. The use of MathQL-1 in the HELM project

val locate : string -> MathQL.query

val compose : spec list -> MathQL.query

Figure 4.5: The main methods of the generator core module

references are allowed. Note that these queries are based on negative conditions:

i.e. we are seeking the objects for which the set of unwanted references is empty,

therefore their property operators are composed using intersect as well.

Also note the formal symmetry between the property operations involved in the

basic queries ±1, ±2, ±3 and ±4, ±5, ±6.

±7. The wanted objects may contain a reference to a object in a position P with a

depth index D only if it does (or does not) concern an object R.

±8. The wanted objects may contain a reference to a CIC sort in a position P with

a depth index D only if it does (or does not) concern a CIC sort S.

The basic queries of this kind are composed disjunctively, as the basic queries 4, 5

and 6, but using true disjunctive operators (as Union, meet or Boolean or) because

they are based on positive conditions.

Given a compose query, obtained by composing the above basic blocks, we define its

static complexity as the number of involved constraints (i.e. the cardinality of the

set C). Its dynamic complexity is instead the number of times metadata are accessed

by an interpreter executing it. Note that these values are not the same because the

basic queries 4, 5, 6, 7 and 8 have a property operator inside a where clause, so the

property operation may be iterated many times when these queries are executed.

The section about the auxiliary modules of the generator contains an example of how

the above basic queries can be composed.

The interface of the core module is shown is Subsection A.1.3. The two main methods

are reported in Figure 4.5 where spec is a type with eight constructors, one for each

kind of constraint mentioned above. The parameters R, S, P and D are represented by

lists of strings (like the m.s.v.’s) rather than by single strings, to allow grouping. For

instance the seventh constructor (whose name is WOnlyObj) with a positive sign, R =

{“A1”, “A2”} and P = “B1”, represents two grouped constraints of kind +7 with P =

“B1”. One of them has R = “A1” and the other has R = “A2”. The constraints grouped

Chapter 4. The use of MathQL-1 in the HELM project 85

in a single constructor are composed disjunctively and the resulting queries (one from

each constructor) are composed conjunctively. Note that the disjunctive composition is

guaranteed by the ≬ operator appearing in the semantics of the in part of the istrue and

isfalse clauses (see the property operator in Subsection 2.2.2).

The auxiliary modules of the query generator

The first auxiliary module generates the constraints for the queries needed by the Search-

Pattern Apply tactic of the HELM proof engine (see Subsection 3.3.2). The main function

inspects the goal the proof engine is focused on, and builds a list of constraints for the com-

pose method of the core module. The resulting query retrieves a set of HELM statements

that can possibly apply to the goal.

[GS03] reports the following example of such a query, obtained from the simple goal

2 ∗m ≤ 2 ∗ n under the assumptions m : nat and n : nat.

The query was built by the MathQL-1.2 version of the generator that could only handle

constraints of kind 1 and 7 without the mention of "depth" because the metadata about

h:refRel, h:refSort, h:depth and h:sort were computed after [GS03] was written.

The constraints derived from the analysis of the goal were the following:

A. ≤ (HELM URI: <cic:/Coq/Init/Peano/le.ind#1/1>) must appear as the main

operator in the conclusion of the statement.

B. ∗ (HELM URI: <cic:/Coq/Init/Peano/mult.con>) must appear in the conclusion

of the statement but not in main position.

C. 2 must also appear in the conclusion of the statement not in main position and 2 is

encoded as the successor of the successor of zero so the above condition on 2 must

hold for “successor” (HELM URI: <cic:/Coq/Init/Datatypes/nat.ind#1/1/2>)

and “zero” (HELM URI: <cic:/Coq/Init/Datatypes/nat.ind#1/1/1>).

D. No other object must be referred in the conclusion of the statement,

Note that conditions A, B and C are constraints of kind 1 while condition D is a

constraint of kind 7 (expressed in a negative way). So the generated query was composed

by four basic queries of kind 1 and by four basic queries of kind 7. Namely the textual

layout of query in [GS03] syntax is shown in Figure 4.6.

Here, select @uri0 introduces the group of basic queries of kind 7 which are stated

in its where clause. In this clause, select @uri is semantically equivalent to:

86 Chapter 4. The use of MathQL-1 in the HELM project

let $positions be {"MainConclusion", "InConclusion"} in

let $universe be

{"cic:/Coq/Init/Datatypes/nat.ind#1/1/1", "cic:/Coq/Init/Peano/mult.con",

"cic:/Coq/Init/Datatypes/nat.ind#1/1/2", "cic:/Coq/Init/Peano/le.ind#1/1"

} in

select @uri0 in

select @uri in

relation inverse "refObj" "cic:/Coq/Init/Peano/le.ind#1/1"

attr $pos <- "position"

where ex "MainConclusion" sub @uri.$pos

intersect

select @uri in

relation inverse "refObj" "cic:/Coq/Init/Peano/mult.con"

attr $pos <- "position"

where ex "InConclusion" sub @uri.$pos

intersect

select @uri in

relation inverse "refObj" "cic:/Coq/Init/Datatypes/nat.ind#1/1/2"

attr $pos <- "position"

where ex "InConclusion" sub @uri.$pos

intersect

select @uri in

relation inverse "refObj" "cic:/Coq/Init/Datatypes/nat.ind#1/1/1"

attr $pos <- "position"

where ex "InConclusion" sub @uri.$pos

where

refof select @uri in relation "refObj" refof @uri0 attr $pos <- "position"

where ex $positions meet @uri.$pos

sub $universe

Figure 4.6: Example query in the syntax of [GS03]

Chapter 4. The use of MathQL-1 in the HELM project 87

property "h:refObj" istrue "position" in "MainConclusion" of proj @uri0

union

property "h:refObj" istrue "position" in "InConclusion" of proj @uri0

in the syntax of Chapter 2, which shows its basic components composed disjunctively, but

the condensed form has some optimizations:

• It uses a single relation operator (called property in Chapter 2).

• Exploits the meet operator for the test:

{"MainConclusion", "InConclusion"} meet @uri.$pos

which should be more efficient than the equivalent compound test:

"MainConclusion" sub @uri.$pos or "InConclusion" sub @uri.$pos

as this involves a larger number of operators.

• Uses a $positions variable that is defined at the beginning of the query outside the

where clauses in place of the constant set {"MainConclusion", "InConclusion"}.

Finally the $universe variable is used in place of the constant construction:

subj "cic:/Coq/Init/Peano/le.ind#1/1" union subj "cic:/Coq/Init/Peano/mult.con" union

subj "cic:/Coq/Init/Datatypes/nat.ind#1/1/2" union

subj "cic:/Coq/Init/Datatypes/nat.ind#1/1/1"

which again shows its components composed disjunctively (each coming from a basic query

of kind 7) but that is very heavy from the computational standpoint.

The in clause of select @uri0 contains the four basic queries of kind 1 separated

by three intersect operators (i.e. composed conjunctively). In each of these, a select

operator is used because the relation operator of [GS03] does not have the istrue clause

of the property operator described in Chapter 2.

Using the new syntax, the above query would be written as in Figure 4.7 (where we

omitted the Namespace of “MainConclusion” and “InConclusion”). As we see, this version

is simpler and is expected to run much faster (see Section 4.2).

The second auxiliary module works like the former, but inspects a closed CIC terms (i.e.

not just its conclusion but its premises too). The resulting queries are used to retrieve the

HELM objects having a given shape (see Subsection 4.2.3 for the solution of an advanced

problem of this kind: i.e. how to find the transitive principles stored in the library).

88 Chapter 4. The use of MathQL-1 in the HELM project

let $positions be {"MainConclusion", "InConclusion"} in

let $universe be

{"cic:/Coq/Init/Datatypes/nat.ind#1/1/1", "cic:/Coq/Init/Peano/mult.con",

"cic:/Coq/Init/Datatypes/nat.ind#1/1/2", "cic:/Coq/Init/Peano/le.ind#1/1"

} in

select @obj from

property inverse "h:refObj"

istrue "occurrence" in "cic:/Coq/Init/Peano/le.ind#1/1",

"position" in "MainConclusion"

of ""

intersect

property inverse "h:refObj"

istrue "occurrence" in "cic:/Coq/Init/Peano/mult.con",

"position" in "InConclusion"

of ""

intersect

property inverse "h:refObj"

istrue "occurrence" in "cic:/Coq/Init/Datatypes/nat.ind#1/1/2",

"position" in "InConclusion"

of ""

intersect

property inverse "h:refObj"

istrue "occurrence" in "cic:/Coq/Init/Datatypes/nat.ind#1/1/1"

"position" in "InConclusion"

of ""

where

proj property "h:refObj" istrue "position" in $positions of proj @obj

sub $universe

Figure 4.7: Example query in the syntax of Chapter 2

Chapter 4. The use of MathQL-1 in the HELM project 89

The HELM component for the query generator

This component (also referred to as the query engine) is an http client/server, maintained

by C. Sacerdoti Coen, (see Subsection 3.3.3) exporting the functionalities of both the gen-

erator and of the interpreter. Currently the query engine implements four functionalities:

• The execute method that takes a general MathQL-1 query and gives it to the inter-

preter without manipulation. In this case the input query is linearized in textual

syntax inside the execute method URL but other solutions may be possible.

• The locate method that execute a locate query, built by the generator core module.

• The matchConclusion and searchPattern methods that execute a compose query built

by the first and by the second auxiliary module respectively.

The locate method is invoked by the HELM CIC textual parser (maintained by C.

Sacerdoti Coen) to translate short names into URI’s because the Caml representation of a

CIC term used by HELM, encodes a referred object with its URI, but the parser accepts

short names too. Note that the translation procedure exploits the HELM type-checker

(see Subsection 3.3.2) to disambiguate a short name referring to multiple objects.

The matchConclusion method is invoked by the HELM proof engine during the exe-

cution of the SearchPattern Apply tactic which takes the current goal, finds a maximal

set Cmax of constraints considering all its references, queries the library for the objects

satisfying these constraints, and tries to apply them to the goal. A subsets of Cmax may

also be selected in case the whole set of constraints is too restrictive. Note that the tactic

pre-computes a default family of subsets of Cmax among which the user can choose.

The execute, locate and searchPattern methods can be invoked from the proof engine

graphical front-end (in this context these are regarded as additional services).

All methods can also be invoked through a Web interface7 (maintained by A. Nediani

[Ned03]), which currently understands only MathQL-1.2, but that will be updated soon.

4.1.4 The testing software

The testing software for the MathQL-1 Suite consists of a Caml Package maintained by

us and providing three textual interfaces (one for the basic MathQL-1 package, one for

the interpreter and one for the query generator) with specific features meant for testing.

7Reachable from the HELM Library homepage: <http://helm.cs.unibo.it/library.html>.

90 Chapter 4. The use of MathQL-1 in the HELM project

• The textual interface for the basic MathQL-1 package is used to test the parsers

and renderers. So it just reads its input from a file (a query or a query result) and

displays it. Some options can be specified in the command line to switch between

textual and XML format (both for parsing and rendering).

• The textual interface for the interpreter executes a query read from a file. the string

containing the options for the interpreter can be specified in the command line.

• The textual interface for the query generator can:

– Execute general queries stored in a text or XML file.

– Execute locate queries (the short names are given in the command line).

– Execute compose queries reading the list of wanted constraints from a file. We

defined a specific textual syntax for denoting these constraints.

– Execute the matchConclusion and searchPattern queries produced by the gen-

erator’s auxiliary modules, starting from a CIC term stored in a text file and

from a progressive number identifying one of the default subsets of constraints

pre-computed for that term (See Subsection 4.1.3).

We plan to add other features according to the kinds of tests we will need to perform.

4.2 Testing the MathQL-1 Suite for HELM

In this section we present the results of the testing activity concerning the MathQL-1

Suite for HELM. Note that this testing activity is still in progress, especially the one

about MathQL-1.3, which is the language presented in this dissertation.

4.2.1 The “165 queries” performance test

The most authoritative overall performance test concerning the MathQL-1.2 interpreter

and query generator appears in [GS03] and was performed by us. This test reports the

total execution times of 165 matchConclusion queries built by the searchPattern Apply

tactic of the HELM proof engine (see Subsection 4.1.3 and Subsection 4.1.4) starting from

33 goals and selecting each pre-computed set of constraints (the testing software provides

for a specific feature for this). The goals where chosen according to these main criteria:

• They are objects of the library of sort “Prop” (i.e. propositions) whose type (i.e.

statement) starts with a λ-application. This is a frequent kind of goal in practice.

Chapter 4. The use of MathQL-1 in the HELM project 91

Natile interpreter: PostgreSQL mode

size issued queries time/size (mean) time/size (variance)

1 to 2 59 0.25 sec. 0.23 sec.

3 to 9 106 0.03 sec. 0.02 sec.

1 to 9 165 0.11 sec. 0.17 sec.

Natile interpreter: Galax mode

size issued queries time/size (mean) time/size (variance)

1 to 2 59 13.00 sec. 13.53 sec.

3 to 9 106 0.33 sec. 0.23 sec.

1 to 9 165 4.86 sec. 10.12 sec.

Figure 4.8: Results of the “165 queries” performance test

• Their statement has at least 10 references to other objects and the height of the

deepest reference in the syntactic tree of the statement is at least 5.8

A specific software was implemented by us in order to identify the objects of the library

undergoing the above criteria for use in this test9. These objects are actually more than

33 (especially now that the library has been expanded) but the test is not fully automatic

yet and one of its parts requires a human contribution that is proportional to the number

of tested goals. We plan to eliminate this drawback as soon as possible.

The test was executed by the Natile interpreter [Nat02] running in both “PostgreSQL”

and “Galax” mode. The same test performed with the Lordi interpreter [Lor02] (“Post-

greSQL” mode only) is not available yet because of an error in the timing routines (the

HELM team does not maintain that interpreter any more) but we plan to fix the error in

order to perform the test. [GS03] reports the test results shown in Figure 4.8.

The queries explored a library of 15000 objects and were executed on an “INTEL

Pentium 4” at 1.8 GHz. The PostgreSQL database was on a “AMD Athlon” at 1.5 GHz.

The Galax engine could access 84 Mbytes of RDF metadata.

The “size” reported in the tables is the number of resources stored in the “$universe”

variable of those queries (see Figure 4.6), which is the half of the number of basic queries

8This is just to make the goals reasonably complex.
9Unfortunately current HELM metadata do not allow to retrieve these objects with a MathQL-1 query.

92 Chapter 4. The use of MathQL-1 in the HELM project

Average execution time

Natile interpreter: PostgreSQL mode ≈ 105 min.

Guidi interpreter: PostgreSQL mode ≈ 1 min.

Figure 4.9: Results of the “referenced objects” performance test

composing them (formally each resource gave rise to two basic queries: one of kind 1 and

one of kind 7). Thus the “size” is proportional to the static complexity of the queries as

defined in Subsection 4.1.3. Another interesting parameter of those queries would be their

dynamic complexity but no test was done for this at the time of [GS03].

Finally note that, according to the above results, the Natile interpreter seems to handle

complex queries more efficiently. We plan to enquire this fact with other tests.

4.2.2 The “referred objects” performance test

The “165 queries” performance test is not available for our interpreter yet because the

related testing software is still under development, but we are sure that this interpreter

runs much faster than Natile’s one, because we reorganized the code completely putting

the major efforts on gaining performance. The benefits of the code reorganization are

clearly proven by the following test, which aims at retrieving the objects that are referred

by some object of the library. This is a “heavy” test because it forces the interpreter to

inspect every HELM RDF Model concerning the h:refObj property.

The test was performed by us on the same hardware described in Subsection 4.2.1

using the current version of the HELM library, which contains 37853 resources, and the

results are shown in Figure 4.9.

The issued query, which retrieved 25955 results, was (in the syntax of Chapter 2):
property "h:refObj" of pattern ".*"

4.2.3 The “transitive principles” accuracy test

In this section we present a query that was thought by the HELM team to test the

suitability of the HELM metadata model against the problem of identifying the statements

of the library that are instances of a given parametric statement.

In particular the problem we want to solve is that of retrieving the HELM theorems

proving that some binary relation is transitive. These theorems are of the form:

Chapter 4. The use of MathQL-1 in the HELM project 93

C : (z : A) (x : A) (y : A) (B x z)→ (B z y)→ (B x y)

where A : Set and B : A→ A→ Prop. So the query is performed in three steps:

A. Find the objects A : Set.

The statements of these objects must have no premises and a reference to Set ap-

pearing in the main position of their conclusion, so we use a basic query of kind 2

with parameters S = “Set” (the wanted sort), P = “MainConclusion” (the wanted

position of the sort) and D = “0” (the depth of the reference, that in the case of a

“main conclusion” is the number of premises of the statement).

B. Find the objects B : A→ A→ Prop.

Here we use a similar approach as the statements of these objects must have two

premises and a reference to Prop appearing in the main position of their conclusion,

so we use another basic query of type 2 with parameters S = “Prop”, P = “Main-

Conclusion” and D = “2”. An Additional check on each B is needed to verify that

its two premises refer to the same object in main position and that this object is of

type Set. We obtain this by checking that the set of objects referred by B in position

h:MainHypothesis10 is made of just one element contained in the set of results found

in the former step.

C. Find the objects C : (z : A) (x : A) (y : A) (B x z)→ (B z y)→ (B x y).

The initial constraints on C are that it must have 5 premises and its conclusion must

contain a reference to an object B in main position: the set of these C’s is found

joining, for each B found in the former step, the results of the basic queries of kind

1 with parameters R = B, P = “MainConclusion”, D = “5”. An Additional check

on C is needed to ensure that its premises and conclusion just refer to B and A in

main position (where A actually depends on B as we saw in the previous step).

The first part of this check deals with excluding the C’s whose statement refers to

objects not in main positions and this is done by imposing two basic constraints of

kind −4, one with the parameter P set to “InHypothesis” and the other with the

parameter P set to “InConclusion”, on the set of the initial C’s. The second part of

the test deals with selecting the above C’s whose premises refer only to B and A in

10This set contains the h:occurrence components of the h:refObj dependencies of B.

94 Chapter 4. The use of MathQL-1 in the HELM project

main position and this is done by imposing two basic constraints of kind 4, one with

parameters R = B, P = “MainHypothesis”, and the other with parameters R = A,

P = “MainHypothesis”.

The resulting query is shown in Figure 4.10 and it retrieves 55 objects covering the

majority of the transitive principles available in the HELM library. The best execution

times (on the same hardware of the former tests) and the number of times metadata are

accessed (i.e. the dynamic complexity) are shown in Figure 4.12. Note that the average

execution times usually depend on the hardware workload at the moment of the query

execution. Figure 4.12 confirms that our interpreter is much faster than Natile’s one.

Note that the current query generator can not build such a complex query automati-

cally, but we are planning to add more features to it, which will make it possible to obtain

that query (or at least a significant part of it) from a suitable high-level description.

Chapter 4. The use of MathQL-1 in the HELM project 95

(* Preliminary commands and declarations **)

stat log keep in

let $IH be "http://www.cs.unibo.it/helm/schemas/schema-helm#InHypothesis" in

let $IC be "http://www.cs.unibo.it/helm/schemas/schema-helm#InConclusion" in

let $MH be "http://www.cs.unibo.it/helm/schemas/schema-helm#MainHypothesis" in

let $MC be "http://www.cs.unibo.it/helm/schemas/schema-helm#MainConclusion" in

let $SET be "http://www.cs.unibo.it/helm/schemas/schema-helm#Set" in

let $PROP be "http://www.cs.unibo.it/helm/schemas/schema-helm#Prop" in

(* First step ***)

let $sets be proj

property inverse "h:refSort" istrue "sort" in $SET, "position" in $MC, "depth" in "0"

of "" in

(* Second step **)

let %rels0 be

for @uri in

property inverse "h:refSort" istrue "sort" in $PROP, "position" in $MC, "depth" in "2"

of ""

sup

add

proj property "h:refObj" main "occurrence" istrue "position" in $MH of proj @uri

as "set" (* The premises of the binary relation are saved in the "set" attribute *)

in @uri

in

(* Test in the second step **)

let %rels be

select @uri from %rels0 where ex count @uri."set" eq "1" and @uri."set" sub $sets

in

(* Third step ***)

let %trans0 be

for @uri in %rels

sup

add (* These attributes are attached to the following "property" *)

proj @uri as "rel", (* The relation is saved in the "rel" attribute *)

proj "set" @uri as "set" (* The premises of the relation are copied in "set" *)

in

property inverse "h:refObj" main "occurrence" istrue "position" in $MC, "depth" in "5"

of proj @uri

in (* Continues in Figure 4.11 *)

Figure 4.10: The “transitive principles” query in the syntax of Chapter 2

96 Chapter 4. The use of MathQL-1 in the HELM project

let %trans1 be

for @uri in %trans0

sup

add distr (* We need another couple of attributes that must go in the same group *)

proj property "h:refObj" main "occurrence" istrue "position" in $MH of proj @uri

as "premises", (* The premises of the trans. principle are saved in "premises"

proj property "h:refObj" main "occurrence" istrue "position" in {$IC, $IH}

of proj @uri

as "extra" (* The unwanted references are saved in the "extra" attribute *)

in @uri

in

(* Test in the third step ***)

select @uri from %trans1

where ex not @uri."extra" and @uri."premises" sub {@uri."rel", @uri."set"}

Figure 4.11: The “transitive principles” query in the syntax of Chapter 2 (continued)

Best execution time Access to the metadata base

Natile interpreter: PostgreSQL mode 92.71 sec. Still unknown

Guidi interpreter: PostgreSQL mode 0.60 sec. 2231 times

Figure 4.12: Results of the “transitive principles” accuracy test

Chapter 5

Conclusions and future work

In this dissertation we presented a query language for RDF metadata which aims at pro-

viding the major features required by the RDF community. In particular the metadata

access model used by our language exploits an arbitrary RDF Schema graph which in-

cludes property hierarchies. Moreover the language has a well defined semantics which we

described using a natural operational style.

Looking at the current implementations and proposals of RDF query languages, the

main novelty of our approach is the definition of a syntax for query results (with its own

rigorous semantics) besides the usual syntax for queries.

This feature makes our language particularly suited for use in distributed systems

where query engines are implemented as stand-alone units, because in this setting, query

results must travel between the system components as well as queries, and thus both need

to be encoded in a rigorously defined format (which in our case can be textual or XML).

We would like to stress that, in the spirit of the Semantic Web, distributed information

bases exploiting RDF metadata are likely to become popular in the near future. For this

reason we consider the presence of a specific syntax for query results as an important

requirement for a modern RDF query language.

Finally note that a query result should not be just a collection of resources (as for

“RDF Query”) because this approach allows only queries of kind “A” in the list below:

A. The (constraints on) metadata are known and the (satisfying) resources are wanted.

B. The resources are known and the (corresponding) metadata are wanted.

In this sense an RDF query language allowing a query to return property values as well

as resources (possibly placed in a structured container), would be much more desirable.

98 Chapter 5. Conclusions and future work

This consideration justifies the choice of using our 4-dimensional sets of attributed values

as containers for the query results of our language.

The language we presented is being tested in the context of the HELM project where

it is used to query a library of formalized mathematical knowledge. The testing activ-

ity is still in progress because the language is still unstable as well as HELM metadata

architecture, and this forces the HELM team to review the query software periodically.

In the next future we plan to continue the testing and research activity concerning all

aspects of the MathQL-1 Suite, with the aim of obtaining a stable software product.

The objectives of our testing and research activity are at least the following:

• Improve the test of Subsection 4.2.1 extending it to more than 200 queries.

• Use the above test to compare the performance of the three implemented inter-

preters (Lordi [Lor02], Natile [Nat02] and Guidi). We expect the Natile interpreter

to run approximately as fast as the Lordi interpreter because we believe that chang-

ing the semantics of the language from [Lor02] to [GS03] did not affect the overall

performance of a well-implemented query engine in real cases.

• Evaluate the new constraint feature of the property operator (see Subsection 2.1.2)

comparing, on the Guidi interpreter, the performance of queries like:

select @obj from

property inverse "h:refObj" main "occurrence" attr "position"

of "cic:/Coq/Init/Peano/mult.con"

where ex "InConclusion" sub @obj."position"

property inverse "h:refObj" main "occurrence" istrue "position" in "InConclusion"

of "cic:/Coq/Init/Peano/mult.con"

The second query should run faster because the Guidi interpreter can encode the

istrue/isfalse constraints in the low-level query providing the result of property.

• Perform other accuracy tests on the capability of HELM metadata to describe mathe-

matical resources to be retrieved on the basis of semantically meaningful constraints.

• Instruct the query generator to build sophisticated queries like the one of Subsec-

tion 4.2.3 starting from suitable high-level descriptions.

• Make the query interpreter completely HELM independent.

• Implement the MathQL-2 and MathQL-3 languages mentioned in Subsection 2.1.1.

Appendix A

Some Caml code from the MathQL-1 Suite

This appendix contains a selection of the most recent Caml modules composing the

MathQL-1 Suite for HELM. Section A.1 includes the interfaces of the three main mod-

ules: the MathQL-1 basic module, the query interpreter and the query generator, while

Section A.2 includes the most relevant implementation files. We would like to stress that

all the Caml code appearing in this Appendix was personally written and tested by us.

A.1 The interfaces of the main modules

In this section we show the complete Caml interface files, concerning the MathQL-1 basic

module, the interpreter and the generator, which we briefly mentioned in Section 4.1.

A.1.1 The basic MathQL-1 module: mathQL.ml

This module defines the Caml representation of MathQL-1.3 queries and query results.

(* output data structures ***)

type path = string list (* the name of an attribute *)

type value = string list (* the value of an attribute *)

type attribute = path * value (* an attribute *)

type attribute_group = attribute list (* a group of attributes *)

type attribute_set = attribute_group list (* the attributes of an URI *)

type av = string * attribute_set (* an attributed URI *)

type av_set = av list (* the query result *)

type result = av_set

(* input data structures **)

type svar = string (* the name of a variable for an av set *)

type avar = string (* the name of a variable for an av *)

100 Appendix A. Some Caml code from the MathQL-1 Suite

type vvar = string (* the name of a variable for an attribute value *)

type inverse = bool

type refine = RefineExact

| RefineSub

| RefineSuper

type main = path

type pattern = bool

type exp = path * (path option)

type exp_list = exp list

type allbut = bool

type xml = bool

type source = bool

type bin = BinFJoin (* full union - with attr handling *)

| BinFMeet (* full intersection - with attr handling *)

| BinFDiff (* full difference - with attr handling *)

type gen = GenFJoin (* full union - with attr handling *)

| GenFMeet (* full intersection - with attr handling *)

type test = Xor

| Or

| And

| Sub

| Meet

| Eq

| Le

| Lt

type query = Empty

| SVar of svar

| AVar of avar

| Subj of msval

| Property of inverse * refine * path *

main * istrue * isfalse * exp_list *

pattern * msval

| Select of avar * query * msval

| Bin of bin * query * query

| LetSVar of svar * query * query

| LetVVar of vvar * msval * query

| For of gen * avar * query * query

| Add of bool * group * query

| If of msval * query * query

| Log of xml * source * query

Appendix A. Some Caml code from the MathQL-1 Suite 101

| StatQuery of query

| Keep of allbut * path list * query

and msval = False

| True

| Not of msval

| Ex of avar list * msval

| Test of test * msval * msval

| Const of string

| Set of msval list (* n-ary union *)

| Proj of path option * query

| Dot of avar * path

| VVar of vvar

| StatVal of msval

| Count of msval

and group = Attr of (path * msval) list

| From of avar

and con = pattern * path * msval

and istrue = con list

and isfalse = con list

A.1.2 The query interpreter interface: mQueryInterpreter.mli

This file defines the interface of our MathQL-1.3 compliant interpreter.

module type Callbacks =

sig

val log : string -> unit (* logging function *)

end

module Make (C: Callbacks) :

sig

val postgres : string

val galax : string

val stat : string (* shows some query statistics *)

val quiet : string

val warn : string

val execute : string -> MathQL.query -> MathQL.result

val init : string -> unit

val close : string -> unit

val check : string -> bool

end

102 Appendix A. Some Caml code from the MathQL-1 Suite

A.1.3 The query generator interface: mQueryGenerator.mli

This file defines the interface of our MathQL-1.3 compliant query generator.

type uri = string

type pos = string

type depth = string

type sort = string

type neg = bool

(* "Only" constraints on "Obj" and "Sort" can be "Strong" or "Weak" *)

type spec = MustObj of neg * uri list * pos list * depth list (* kind 1 *)

| MustSort of neg * sort list * pos list * depth list (* kind 2 *)

| MustRel of neg * pos list * depth list (* kind 3 *)

| SOnlyObj of neg * uri list * pos list * depth list (* kind 4 *)

| SOnlySort of neg * sort list * pos list * depth list (* kind 5 *)

| OnlyRel of neg * pos list * depth list (* kind 6 *)

| WOnlyObj of neg * uri list * pos list * depth list (* kind 7 *)

| WOnlySort of neg * sort list * pos list * depth list (* kind 8 *)

val locate : string -> MathQL.query

val compose : spec list -> MathQL.query

val builtin : MathQL.vvar -> string

A.2 Some complete modules

This section contains a selection of complete Caml modules (consisting of an interface file

and of an implementation file) that are part of the MathQL-1 Suite for HELM.

A.2.1 The query interpreter utility module: MQIUtil

This module implements the basic functionalities used by the interpreter such as the set-

theoretic operations and the operations for composing a.v. sets.

Interface: mQIUtil.mli

val mql_true : MathQL.value

val mql_false : MathQL.value

val set_sub : MathQL.value -> MathQL.value -> MathQL.value

val set_meet : MathQL.value -> MathQL.value -> MathQL.value

val set_eq : MathQL.value -> MathQL.value -> MathQL.value

val set_union : ’a list -> ’a list -> ’a list

val mql_union : (’a * ’b list) list -> (’a * ’b list) list ->

Appendix A. Some Caml code from the MathQL-1 Suite 103

(’a * ’b list) list

val mql_prod : MathQL.attribute_set -> MathQL.attribute_set ->

MathQL.attribute_set

val mql_intersect : MathQL.result -> MathQL.result -> MathQL.result

val mql_diff : MathQL.result -> MathQL.result -> MathQL.result

val iter : (’a -> ’b list) -> ’a list -> ’b list

val mql_iter : (’c -> (’a * ’b list) list) -> ’c list ->

(’a * ’b list) list

val mql_iter2 : (’c -> ’d -> (’a * ’b list) list) -> ’c list ->

’d list -> (’a * ’b list) list

val xor : MathQL.value -> MathQL.value -> MathQL.value

val le : MathQL.value -> MathQL.value -> MathQL.value

val lt : MathQL.value -> MathQL.value -> MathQL.value

val set : string * ’a -> (string * ’a) list -> (string * ’a) list

Implementation: mQIUtil.ml

(* Boolean constants ***)

let mql_false = []

let mql_true = [""]

(* set theoretic operations ***)

let rec set_sub v1 v2 =

match v1, v2 with

| [], _ -> mql_true

| _, [] -> mql_false

| h1 :: _, h2 :: _ when h1 < h2 -> mql_false

| h1 :: _, h2 :: t2 when h1 > h2 -> set_sub v1 t2

| _ :: t1, _ :: t2 -> set_sub t1 t2

let rec set_meet v1 v2 =

match v1, v2 with

| [], _ -> mql_false

| _, [] -> mql_false

| h1 :: t1, h2 :: _ when h1 < h2 -> set_meet t1 v2

| h1 :: _, h2 :: t2 when h1 > h2 -> set_meet v1 t2

| _, _ -> mql_true

let set_eq v1 v2 =

if v1 = v2 then mql_true else mql_false

let rec set_union v1 v2 =

match v1, v2 with

| [], v -> v

104 Appendix A. Some Caml code from the MathQL-1 Suite

| v, [] -> v (* (zz h1 ">" h2); *)

| h1 :: t1, h2 :: t2 when h1 < h2 -> h1 :: set_union t1 v2

| h1 :: t1, h2 :: t2 when h1 > h2 -> h2 :: set_union v1 t2

| h1 :: t1, _ :: t2 -> h1 :: set_union t1 t2

let rec iter f = function

| [] -> []

| head :: tail -> set_union (f head) (iter f tail)

(* MathQL specific set operations **)

let rec mql_union s1 s2 =

match s1, s2 with

| [], s -> s

| s, [] -> s

| (r1, g1) :: t1, (r2, _) :: _ when r1 < r2 ->

(r1, g1) :: mql_union t1 s2

| (r1, _) :: _, (r2, g2) :: t2 when r1 > r2 ->

(r2, g2) :: mql_union s1 t2

| (r1, g1) :: t1, (_, g2) :: t2 ->

(r1, set_union g1 g2) :: mql_union t1 t2

let rec mql_iter f = function

| [] -> []

| head :: tail -> mql_union (f head) (mql_iter f tail)

let rec mql_iter2 f l1 l2 = match l1, l2 with

| [], [] -> []

| h1 :: t1, h2 :: t2 -> mql_union (f h1 h2) (mql_iter2 f t1 t2)

| _ -> raise (Invalid_argument "mql_itwr2")

let rec mql_prod g1 g2 =

let mql_prod_aux a = iter (fun h -> [mql_union a h]) g2 in

iter mql_prod_aux g1

let rec mql_intersect s1 s2 =

match s1, s2 with

| [], s -> []

| s, [] -> []

| (r1, _) :: t1, (r2, _) :: _ when r1 < r2 -> mql_intersect t1 s2

| (r1, _) :: _, (r2, _) :: t2 when r1 > r2 -> mql_intersect s1 t2

| (r1, g1) :: t1, (_, g2) :: t2 ->

(r1, mql_prod g1 g2) :: mql_intersect t1 t2

let rec mql_diff s1 s2 =

match s1, s2 with

| [], _ -> []

| s, [] -> s

Appendix A. Some Caml code from the MathQL-1 Suite 105

| (r1, g1) :: t1 , (r2, _) ::_ when r1 < r2 ->

(r1, g1) :: (mql_diff t1 s2)

| (r1, _) :: _, (r2, _) :: t2 when r1 > r2 -> mql_diff s1 t2

| _ :: t1, _ :: t2 -> mql_diff t1 t2

(* logic operations **)

let xor v1 v2 =

let b = v1 <> mql_false in

if b && v2 <> mql_false then mql_false else

if b then v1 else v2

(* numeric operations **)

let int_of_list = function

| [s] -> int_of_string s

| _ -> raise (Failure "int_of_list")

let le v1 v2 =

try if int_of_list v1 <= int_of_list v2 then mql_true else mql_false

with _ -> mql_false

let lt v1 v2 =

try if int_of_list v1 < int_of_list v2 then mql_true else mql_false

with _ -> mql_false

(* context handling **)

let rec set ap = function

| [] -> [ap]

| head :: tail when fst head = fst ap -> ap :: tail

| head :: tail -> head :: set ap tail

A.2.2 The query interpreter main module: MQIExecute

This module implements the function that executes a query. Its arguments are the logging

function and the string holding the interpreter options.

Interface: mQIExecute.mli

val execute : (string -> unit) -> string -> MathQL.query -> MathQL.result

Implementation: mQIExecute.ml

(* modifiers ***)

let galax_char = ’G’

let stat_char = ’S’

let warn_char = ’W’

(* contexts ***)

106 Appendix A. Some Caml code from the MathQL-1 Suite

type svar_context = (MathQL.svar * MathQL.av_set) list

type avar_context = (MathQL.avar * MathQL.av) list

type group_context = (MathQL.avar * MathQL.attribute_group) list

type vvar_context = (MathQL.vvar * MathQL.value) list

type context = {svars: svar_context;

avars: avar_context;

groups: group_context; (* auxiliary context *)

vvars: vvar_context

}

(* execute ***)

exception Found

let execute out m x =

let module M = MathQL in

let module P = MQueryUtil in

let module U = MQIUtil in

let warn q =

if String.contains m warn_char then

begin

out "MQIExecute: warning: reference to undefined variables: ";

P.text_of_query out q "\n"

end

in

let rec eval_val c = function

| M.False -> U.mql_false

| M.True -> U.mql_true

| M.Const s -> [s]

| M.Set l -> U.iter (eval_val c) l

| M.Test k y1 y2 ->

let cand y1 y2 =

if eval_val c y1 = U.mql_false then U.mql_false else eval_val c y2

in

let cor y1 y2 =

let v1 = eval_val c y1 in

if v1 = U.mql_false then eval_val c y2 else v1

in

let h f y1 y2 = f (eval_val c y1) (eval_val c y2) in

let f = match k with

| M.And -> cand

| M.Or -> cor

| M.Xor -> h U.xor

Appendix A. Some Caml code from the MathQL-1 Suite 107

| M.Sub -> h U.set_sub

| M.Meet -> h U.set_meet

| M.Eq -> h U.set_eq

| M.Le -> h U.le

| M.Lt -> h U.lt

in

f y1 y2

| M.Not y ->

if eval_val c y = U.mql_false then U.mql_true else U.mql_false

| M.VVar i -> begin

try List.assoc i c.vvars

with Not_found -> warn (M.Subj (M.VVar i)); [] end

| M.Dot i p -> begin

try List.assoc p (List.assoc i c.groups)

with Not_found -> warn (M.Subj (M.Dot i p)); [] end

| M.Proj None x -> List.map (fun (r, _) -> r) (eval_query c x)

| M.Proj (Some p) x ->

let proj_group_aux (q, v) = if q = p then v else [] in

let proj_group a = U.iter proj_group_aux a in

let proj_set (_, g) = U.iter proj_group g in

U.iter proj_set (eval_query c x)

| M.Ex l y ->

let rec ex_aux h = function

| [] ->

let d = {c with groups = h} in

if eval_val d y = U.mql_false then () else raise Found

| i :: tail ->

begin

try

let (_, a) = List.assoc i c.avars in

let rec add_group = function

| [] -> ()

| g :: t -> ex_aux ((i, g) :: h) tail; add_group t

in

add_group a

with Not_found -> ()

end

in

(try ex_aux [] l; U.mql_false with Found -> U.mql_true)

| M.StatVal y ->

108 Appendix A. Some Caml code from the MathQL-1 Suite

let t0 = Sys.time () in

let r = (eval_val c y) in

let t1 = Sys.time () in

out (Printf.sprintf "Stat: %.2fs,%i\n" (t1 -. t0) (List.length r));

r

| M.Count y -> [string_of_int (List.length (eval_val c y))]

and eval_query c = function

| M.Empty -> []

| M.Subj x ->

List.map (fun s -> (s, [])) (eval_val c x)

| M.Log _ b x ->

if b then begin

let t0 = Sys.time () in

P.text_of_query out x "\n";

let t1 = Sys.time () in

if String.contains m stat_char then

out (Printf.sprintf "Log source: %.2fs\n" (t1 -. t0));

eval_query c x

end else begin

let s = (eval_query c x) in

let t0 = Sys.time () in

P.text_of_result out s "\n";

let t1 = Sys.time () in

if String.contains m stat_char then

out (Printf.sprintf "Log: %.2fs\n" (t1 -. t0));

s

end

| M.If y x1 x2 ->

if (eval_val c y) = U.mql_false

then (eval_query c x2) else (eval_query c x1)

| M.Bin k x1 x2 ->

let f = match k with

| M.BinFJoin -> U.mql_union

| M.BinFMeet -> U.mql_intersect

| M.BinFDiff -> U.mql_diff

in

f (eval_query c x1) (eval_query c x2)

| M.SVar i -> begin

try List.assoc i c.svars

with Not_found -> warn (M.SVar i); [] end

Appendix A. Some Caml code from the MathQL-1 Suite 109

| M.AVar i -> begin

try [List.assoc i c.avars]

with Not_found -> warn (M.AVar i); [] end

| M.LetSVar i x1 x2 ->

let d = {c with svars = U.set (i, eval_query c x1) c.svars} in

eval_query d x2

| M.LetVVar i y x ->

let d = {c with vvars = U.set (i, eval_val c y) c.vvars} in

eval_query d x

| M.For k i x1 x2 ->

let f = match k with

| M.GenFJoin -> U.mql_union

| M.GenFMeet -> U.mql_intersect

in

let rec for_aux = function

| [] -> []

| h :: t ->

let d = {c with avars = U.set (i, h) c.avars} in

f (eval_query d x2) (for_aux t)

in

for_aux (eval_query c x1)

| M.Add b z x ->

let f = if b then U.mql_prod else U.set_union in

let g a s = (fst a, f (snd a) (eval_grp c z)) :: s in

List.fold_right g (eval_query c x) []

| M.Property q0 q1 q2 mc ct cf el pat y ->

let f = if String.contains m galax_char

then MQIProperty.galax else MQIProperty.postgres in

let eval_cons (pat, p, y) = (pat, p, eval_val c y) in

let cons_true = List.map eval_cons ct in

let cons_false = List.map eval_cons cf in

let property_aux s =

let t0 = Sys.time () in

let r = f q0 q1 q2 mc cons_true cons_false el pat s in

let t1 = Sys.time () in

if String.contains m stat_char then

out (Printf.sprintf "Property: %.2fs,%i\n" (t1 -. t0) (List.length r));

r

in U.mql_iter property_aux (eval_val c y)

| M.StatQuery x ->

110 Appendix A. Some Caml code from the MathQL-1 Suite

let t0 = Sys.time () in

let r = (eval_query c x) in

let t1 = Sys.time () in

out (Printf.sprintf "Stat: %.2fs,%i\n" (t1 -. t0) (List.length r));

r

| M.Select i x y ->

let rec select_aux = function

| [] -> []

| h :: t ->

let d = {c with avars = U.set (i, h) c.avars} in

if eval_val d y = U.mql_false

then select_aux t else h :: select_aux t

in

select_aux (eval_query c x)

| M.Keep b l x ->

let keep_path (p, v) t =

if List.mem p l = b then t else (p, v) :: t in

let keep_grp a = List.fold_right keep_path a [] in

let keep_set a g =

let kg = keep_grp a in

if kg = [] then g else kg :: g

in

let keep_av (s, g) = (s, List.fold_right keep_set g []) in

List.map keep_av (eval_query c x)

and eval_grp c = function

| M.Attr l ->

let attr_aux g (p, y) = U.mql_union g [(p, eval_val c y)] in

[List.fold_left attr_aux [] l]

| M.From i ->

try snd (List.assoc i c.avars)

with Not_found -> warn (M.AVar i); []

in

let c = {svars = []; avars = []; groups = []; vvars = []} in

let t0 = Sys.time () in

let r = eval_query c x in

let t1 = Sys.time () in

if String.contains m stat_char then

out (Printf.sprintf "MQIExecute: %.2fs,%s\n" (t1 -. t0) m);

r

Appendix A. Some Caml code from the MathQL-1 Suite 111

A.2.3 The query generator core module: MQueryGenerator

This module implements the core part of the query generator. The interface of this module

is shown in Subsection A.1.3.

Implementation: mQueryGenerator.ml

type uri = string

type pos = string

type depth = string

type sort = string

type neg = bool

(* "Only" constraints on "Obj" and "Sort" can be "Strong" or "Weak" *)

type spec = MustObj of neg * uri list * pos list * depth list

| MustSort of neg * sort list * pos list * depth list

| MustRel of neg * pos list * depth list

| SOnlyObj of neg * uri list * pos list * depth list

| SOnlySort of neg * sort list * pos list * depth list

| OnlyRel of neg * pos list * depth list

| WOnlyObj of neg * uri list * pos list * depth list

| WOnlySort of neg * sort list * pos list * depth list

module M = MathQL

let locate s =

let query =

M.Property true M.RefineExact ["objectName"] [] [] [] []

false (M.Const s)

in M.StatQuery query

let compose cl =

let letin = ref [] in

let must = ref [] in

let sonly = ref [] in

let wonly = ref [] in

let only = ref false in

let set_val = function

| [s] -> M.Const s

| l ->

let msval = M.Set (List.map (fun s -> M.Const s) l) in

if ! only then begin

let vvar = "val" ^ string_of_int (List.length ! letin) in

letin := (vvar, msval) :: ! letin;

112 Appendix A. Some Caml code from the MathQL-1 Suite

M.VVar vvar

end else msval

in

let property inv n neg r s p d =

let cons r s p d =

let con p = function

| [] -> []

| l -> [(false, [p], set_val l)]

in

con "occurrence" r @ con "sort" s @ con "position" p @ con "depth" d

in

let m = match inv ,n with

| false, "h:refObj" -> ["occurrence"]

| false, "h:refSort" -> ["sort"]

| _, _ -> []

in

let ct, cf = if neg then [], cons r s p d else cons r s p d, [] in

M.Property inv M.RefineExact [n] m ct cf [] false

(if inv then M.Const "" else M.Proj None (M.AVar "obj"))

in

let rec aux = function

| [] -> ()

| MustObj neg r p d :: tail ->

only := false;

must := property true "h:refObj" neg r [] p d :: ! must; aux tail

| MustSort neg s p d :: tail ->

only := false;

must := property true "h:refSort" neg [] s p d :: ! must; aux tail

| MustRel neg p d :: tail ->

only := false;

must := property true "h:refRel" neg [] [] p d :: ! must; aux tail

| SOnlyObj neg r p d :: tail ->

only := true;

sonly := property false "h:refObj" (not neg) r [] p d :: ! sonly;

aux tail

| SOnlySort neg s p d :: tail ->

only := true;

sonly := property false "h:refSort" (not neg) [] s p d :: ! sonly;

aux tail

| OnlyRel neg p d :: tail ->

Appendix A. Some Caml code from the MathQL-1 Suite 113

only := true;

sonly := property false "h:refRel" (not neg) [] [] p d :: ! sonly;

aux tail

| WOnlyObj neg r p d :: tail ->

only := true;

wonly := (property false "h:refObj" neg [] [] p d, set_val r) :: ! wonly;

aux tail

| WOnlySort neg s p d :: tail ->

only := true;

wonly := (property false "h:refSort" neg [] [] p d, set_val s) :: ! wonly;

aux tail

in

let query = aux cl in

let rec iter f g = function

| [] -> raise (Failure "MQueryGenerator.iter")

| [head] -> (f head)

| head :: tail -> let t = (iter f g tail) in g (f head) t

in

let must_query =

if ! must = [] then

M.Property false M.RefineExact [] [] [] [] [] true (M.Const ".*")

else

iter (fun x -> x) (fun x y -> M.Bin M.BinFMeet x y) ! must

in

let sonly_val () =

let f x = M.Proj None x in

let g x y = M.Test M.Or x y in

M.Not (iter f g ! sonly)

in

let wonly_val () =

let f (x, v) = M.Test M.Sub (M.Proj None x) v in

let g x y = M.Test M.And x y in

iter f g ! wonly

in

let select_query x =

match !sonly, !wonly with

| [], [] -> x

| _, [] -> M.Select "obj" x (sonly_val ())

| [], _ -> M.Select "obj" x (wonly_val ())

| _, _ -> M.Select "obj" x (M.Test M.And (sonly_val ()) (wonly_val ()))

114 Appendix A. Some Caml code from the MathQL-1 Suite

in

let letin_query =

if ! letin = [] then fun x -> x

else

let f (vvar, msval) x = M.LetVVar vvar msval x in

iter f (fun x y z -> x (y z)) ! letin

in

M.StatQuery (letin_query (select_query must_query))

let builtin s =

let ns = "http://www.cs.unibo.it/helm/schemas/schema-helm#" in

match s with

| "MH" -> ns ^ "MainHypothesis"

| "IH" -> ns ^ "InHypothesis"

| "MC" -> ns ^ "MainConclusion"

| "IC" -> ns ^ "InConclusion"

| "IB" -> ns ^ "InBody"

| "SET" -> ns ^ "Set"

| "PROP" -> ns ^ "Prop"

| "TYPE" -> ns ^ "Type"

| _ -> raise (Failure "MQueryGenerator.builtin")

References

[ABCK01] Allsopp D., Beautement P., Carson J. and Kirton M. Toward semantic inter-

operability In agent-based coalition command systems. presented at the International

Semantic Web Working Symposium 2001.

<http://www.semanticweb.org/SWWS/program/full/paper10.pdf>.

[Algae] Prud’hommeaux E. W3C Algae HOWTO. 1999.

<http://www.w3.org/1999/02/26-modules/User/Algae-HOWTO.html>.

[Ano94] Anonymous. The QED Manifesto. In Automated Deduction - CADE 12, volume

814 of Lecture Notes in Artificial Intelligence, pp. 238-251. Springer-Verlag, 1994.

[APSGS01] Asperti A,, Padovani L., Sacerdoti Coen C., Guidi F. and Schena I. Mathemat-

ical Knowledge Management in HELM. 1st International Workshop on Mathematical

Knowledge Management, RISC-Linz, Austria, September 2001. To appear in Annals

of Mathematics and Artificial Intelligence, Special Issue on Mathematical Knowledge

Management, Cluwer Academic Publishers.

[APSSa] Asperti A., Padovani L., Sacerdoti Coen C. and Schena I. Content Centric Logical

Environments. Short Presentation at LICS 2000, Santa Barbara, California, USA,

June 2000.

[APSSb] Asperti A., Padovani L., Sacerdoti Coen C. and Schena I. Towards a Library

of Formal Mathematics. Technical Report of TPHOLs 2000 Conference, Portland,

Oregon, USA, August 2000.

[APSSc] Asperti A., Padovani L., Sacerdoti Coen C. and Schena I. Formal Mathemat-

ics in MathML. Session Presentation at the 1st MathML International Conference,

University of Illinois, Urbana-Champaign, Illinois, USA, October 2000.

116 References

[APSSd] Asperti A., Padovani L., Sacerdoti Coen C., and Schena I. Formal Mathematics

on the Web. In Proc. of the 8th International Conference “Crimea 2001”, Vol. 1, pp.

342-346, Sudak, Ukraine, June 2001.

[APSSe] Asperti A., Padovani L., Sacerdoti Coen C. and Schena I. XML, Stylesheets and

the re-mathematization of formal content. In Proc. of Extreme Markup Languages

2001, pp. 17-27, Montréal, Québec, Canada, August 2001.

[APSSf] Asperti A., Padovani L., Sacerdoti Coen C. and Schena I. HELM and the Se-

mantic Math-Web. In Proc. of the 14th International Conference on Theorem Prov-

ing in Higher Order Logics (TPHOLs), LNCS 2152, pp. 59-74, Edinburgh, Scotland,

September 2001.

[BB99] Bosak J. and Bray T. XML and the Second-Generation Web. In The Eighth In-

ternational World Wide Web Conference (WWW8), Scientific American, 1999.

[Bee98] Beech D. Position Paper on Query Languages for the Web, presented at the W3C

Query Languages’98 workshop (QL’98), 1998.

[Ber98] Berners-Lee T. What the Semantic Web can represent. 1998

<http://www.w3.org/DesignIssues/RDFnot.html>.

[BHL01] Berners-Lee T., Hendler J. and Lassila O. The Semantic Web. Scientific Ameri-

can, (284(5)):34-43, 2001.

[BS02] Benzmüller C. and Sorge V. Ω-ANTS - an open approach at combining interactive

and automated theorem proving. In Proc. of the Calculemus Symposium 2002.

[Caml] Leory X. The Objective Caml system, release 3.06. Documentation and user’s man-

ual. INRIA, August 19, 2002. <http://caml.inria.fr/ocaml/htmlman/>.

[CH88] Coquand T. and Huet G. The Calculus of Constructions. In Information and

Computation, number 76(2/3). 1988.

[CKT95] Coscoy Y., Kahn G., and Thery L. Extracting Text from Proofs. In Dezani M.

and Plotkin G., editors, Typed Lambda Calculus and Applications, volume 902, pp.

109-123. Springer-Verlag, 1995.

[Coq] The Coq Development Team. The Coq Proof Assistant. Reference Manual. Version

7.4. LogiCal Project, 2003. <http://coq.inria.fr/doc/main.html>.

References 117

[Com98] Communication of the ACM. Special Issue on Digital Libraries. 1998.

[Cos00] Coscoy Y. Explication textuelle de preuves pour le calcul des constructions induc-

tives. Ph.D. dissertation, Sophia Antipolis, Université de Nice, 2000.

[CP02] Casarini P. and Padovani L. The Gnome DOM Engine. Markup Languages: The-

ory & Practice, Vol. 3, Issue 2, pp. 173-190, ISSN 1099-6621, MIT Press, April 2002.

[dBr80] De Bruijn N. G. A survey of the project AUTOMATH. In J. P. Seldin and J. R.

Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus

and Formalism. pp. 589-606. Academic Press, 1980.

[DBSA98] Decker S., Brickley D, Saarela J. and Angele j. A Query and Inference Service

for RDF, presented at the W3C Query Languages’98 workshop (QL’98). 1998.

[DC] Dublin Core Metadata Element Set, Version 1.1: Reference Description. DCMI Rec-

ommendation, February 4, 2003.

<http://dublincore.org/documents/2003/02/04/dces/>.

[DCT] DCMI Metadata Terms. DCMI Recommendation, February 12, 2003.

<http://dublincore.org/documents/2003/02/12/dcmi-terms/>.

[EDOS00] Ennser L., Delporte C., Oba M. and Sunil K. M. Integrating XML with DB2

XML Extender and DB2 Text Extender. Redbooks, 2000.

[GLT89] Girard J. Y., Lafont Y. and Taylor P. Proofs and Types. Cambridge Tracts in

Theoretical Computer Science, Cambridge University Press, 1989.

[GM93] Gordon M. and Melham T. Introduction to HOL: A theorem-proving environment

for higher order logic. Cambridge University Press, 1993.

[GS03] Guidi F. and Schena I. A Query Language for a Metadata Framework about Mathe-

matical Resources. In Proc. of 2nd International Conference on Mathematical Knowl-

edge Management (MKM 2003). Bertinoro, Italy, February 2003. LNCS 2594, pp.

105-118, Springer. 2003.

[He91] Huet G. and Plotkin G. (eds). Logical Frameworks. Cambridge University Press,

1991.

[He93] Huet G. and Plotkin G. (eds). Logical Environments. Cambridge University Press,

1993.

118 References

[HP02] Hawke S. and Prud’hommeaux E. RDF Database Access Protocol. 2002.

<http://www.w3.org/2002/01/rdf-databases/protocol>.

[ISO8879] Standard Generalized Markup Language (SGML). ISO 8879:1986.

[Jut94] Jutting van L. S. B. Checking Landau’s “Grundlagen” in the AUTOMATH Sys-

tem. Ph.D. thesis, Eindhoven University of Technology, 1994. Useful summary in

Nederpelt, Geuvers and de Vrijier, 1994, pp. 701-732.

[Kar00] Karvounarakis G. RDF Query Languages: a state-of-the-art. 2000.

<http://139.91.183.30:9090/RDF/publications/state.html>.

[KBN99] Kamareddine F., Bloo B. and Nederpelt R. On Π-conversion in The lambda-

cube and the combination with abbreviations. In Annal of Pure and Applied Logics

volume 97, no. 1-3, pp. 27-45, 1999, Elsevier, North-Holland.

[KCP+01] Karvounarakis G., Christophides V., Plexousakis D., Alexaki S. and Tolle K.

The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. 2001.

4th International Workshop on the Web and Databases (WebDB 2001).

[KCPA00] Karvounarakis G., Christophides V., Plexousakis D. and Alexaki S. Querying

Community Web Portals, 2000.

<http://139.91.183.30:9090/RDF/publications/sigmod2000.html>.

[KKPS01] Kahan J., Koivunen M., Prud’hommeaux E. and Swick R. R. Annotea: An

Open RDF Infrastructure for Shared Web Annotations. In The Tenth International

World Wide Web Conference (WWW10), 2001.

[KN96] Kamareddine F. and Nederpelt R. Canonical Typing and π-conversion in the

Barendregt Cube. Journal of Functional Programming volume 6, no. (2), pp. 245-267,

1996, Cambridge University Press.

[Koh00a] Kohlhase M. OMDoc: An Infrastructure for OpenMath Content Dictionary In-

formation. 2000. <http://www.mathweb.org/omdoc>.

[Koh00b] Kohlhase M. OMDoc: Towards an Internet Standard for the Administration,

Distribution and Teaching of mathematical Knowledge. In Artificial Intelligence and

Symbolic Computation, LNAI. Springer-Verlag, 2000.

[Koh00c] Kohlhase M. OMDoc: Towards an OpenMath Representation of Mathematical

Documents. Technical Report, 2000. <http://www.mathweb.org/omdoc/>.

References 119

[Lan98] Laneve C. La descrizione operazionale dei linguaggi di programmazione.

Un’introduzione FrancoAngeli, 1998.

[Lor02] Lordi D. Sperimentazione e Sviluppo di Strumenti per la gestione di metadati.

Master Thesis in Computer Science, University of Bologna, 2002. Advisor: A. Asperti.

[LP92] Luo Z. and Pollack R. LEGO Proof Development System: User’s Manual. 1992.

<http://www.dcs.ed.ac.uk/home/lego/>.

[Mac95] MacKenzie D. The automation of proof: A historical and sociological exploration.

In IEEE: Annals of the History of Computing, 1995.

[MathML] Mathematical Markup Language (MathML) 2.0. W3C Recommendation.

February 21, 2001. <http://www.w3.org/TR/MathML2/>.

[Mil98] Miller E. An Introduction to the Resource Description Framework. D-Lib Maga-

zine, ISSN 1082-9873, 1998.

[MT01] Miner R. and Topping P. Math on the Web: A Status Report. January 2001.

<http://www.dessci.com/webmath/status>.

[Nat02] Natile L. Tecnologie per l’Interrogazione di Basi Documentarie in Formato XML.

Master Thesis in Computer Science, University of Bologna, 2002. Advisor: A. Asperti.

[Ned03] Nediani A. Disegno e Implementazione di un’Interfaccia Web di Supporto ad In-

terrogazioni su Basi di Dati Documentarie. Master Thesis in Computer Science, Uni-

versity of Bologna, 2003. Advisor: A. Asperti.

[OpenMath] OpenMath Consortium. The OpenMath Standard: OpenMath Deliverable

1.3.3a. 1999. <http://www.openmath.org/>.

[PICS] PICS Label Distribution Label Syntax and Communication Protocols. W3C Rec-

ommendation. October 31, 1996. <http://www.w3.org/TR/REC-PICS-labels>.

[RDF] Resource Description Framework (RDF) Model and Syntax Specification. W3C

Recommendation. February 22, 1999.

<http://www.w3.org/TR/1999/REC-rdfsyntax-19990222/>.

[RDFMT] RDF Semantics. W3C Working Draft. January 23, 2003.

<http://www.w3c.org/TR/rdf-mt/>.

120 References

[RDFS] RDF Vocabulary Description Language 1.0: RDF Schema. W3C Working Draft.

January 23, 2003 <http://www.w3.org/TR/rdf-schema/>.

[RDFTC] RDF Test Cases, W3C Working Draft. January 23, 2003.

<http://www.w3.org/TR/rdf-testcases/>.

[Ric99] Ricci A. Studio e progettazione di un modello RDF per biblioteche matematiche

elettroniche. 1999.

[Rob65] Robinson J. A. A machine-oriented logic based on the resolution principle. In

Journal of the ACM, volume 2, pp. 23-41, 1965.

[ROSS99] Rushby J.M., Owre S., Shankar N. and Stringer-Calvert. PVS System Guide,

1999. Computer Science Laboratory, SRI International.

[Rud92] Rudnicki P. An overview of the Mizar project. In Proceedings of 1992 Workshop

on Types and Proofs for Programs, pp. 311-332, 1992.

[Sam00] Sambin G. Formal topology and domains. Electronic Notes in Theoretical Com-

puter Science, (35). 2000.

[Sch02] Schena I. Towards a Semantic Web for Formal Mathematics. Ph.D. dissertation.

University of Bologna, 2002. Advisor: A. Asperti.

[TR93] Trybulec A. and Rudnicki P. Using Mizar in Computer Aided Instruction of Math-

ematics. 1993, Norwegian-French Conference of CAI in Mathematics.

[Unicode] Unicode Consortium. The Unicode Standard, Version 3.2. March 2002.

<http://www.unicode.org/unicode/standard/standard.html>.

[URI] Uniform Resource Identifiers (URI): Generic Syntax (RFC 2396). August 1998.

<http://www.ietf.org/rfc/rfc2396.txt>.

[URL] Relative Uniform Resource Locators (RFC 1808). June 1995.

<http://www.ietf.org/rfc/rfc1808.txt>.

[W3Ca] Character Model for the World Wide Web 1.0, W3C Working Draft. April 30,

2002. <http://www.w3.org/TR/charmod/>.

[W3Cb] Web Ontology Language (OWL) Use Cases and Requirements. W3C Working

Draft. February 3, 2003. <http://www.w3.org/TR/webont-req/>.

References 121

[Wan60] Wang H. Toward mechanical mathematics. In IBM Journal of research and de-

velopment, volume 4, pp. 2-22, 1960.

[Win93] Winskel G. The formal semantics of programming languages: an introduction.

MIT Press Series in the Foundations of Computing. London: MIT Press, 1993.

[XHTML] XHTML[tm] 1.0 The Extensible HyperText Markup Language (Second Edition).

A Reformulation of HTML 4 in XML 1.0. W3C Recommendation. January 26, 2000,

revised August 1, 2002. <http://www.w3.org/TR/xhtml1/>.

[XLink] XML Linking Language (XLink) 1.0. W3C Recommendation. June 27, 2001.

<http://www.w3.org/TR/xlink>.

[XML] Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation.

October 6, 2000. <http://www.w3.org/REC-xml>.

[XMLN] Namespaces in XML. W3C Recommendation. January 14, 1999.

<http://www.w3.org/TR/REC-xml-names/>.

[XMLS] XML Schema. W3C Recommendation. May 2, 2001.

Primer: <http://www.w3.org/TR/xmlschema-0/>,

Structures: <http://www.w3.org/TR/xmlschema-1/>,

Datatypes: <http://www.w3.org/TR/xmlschema-2/>.

[XPointer] XML Pointer Language (XPointer). W3C Working Draft. August 16, 2002

<http://www.w3.org/TR/xptr>.

[XQuery] XQuery 1.0: An XML Query Language. W3C Working Draft November 15,

2002. <http://www.w3.org/TR/xquery/>.

[XSLT] XSL Transformations (XSLT) 1.0. W3C Recommendation. November 16, 1999.

<http://www.w3.org/TR/xslt>.

[Zac03] Zacchiroli S. Web services per il supporto alla dimostrazione interattiva. Master

Thesis in Computer Science, University of Bologna, 2003. Advisor: A. Asperti.

122 References

