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Introduction

The major index has been deeply studied from the early 1900s. A clas-

sical result due to MacMahon [14] states that the major index is equidis-

tributed with the length function on the symmetric group. In the last thirty

years, this index has been generalized in two directions.

In 1989 Björner and Wachs [7] generalized the major index defining a new

statistic on labeled forests (i.e., partially ordered sets whose Hasse diagram

is a rooted forest) in a very natural way. They presented in particular two

q-hook length formulas: one for the major index over permutations which

correspond to linear extensions of a labeled forest, and the other for the new

statistic over all labelings of a fixed forest.

In the early 2000s, Adin and Roichman [2] generalized the major index for

colored permutation groups G(r, n), which are wreath products of the form

Zr oSn, where Zr is the cyclic group of order r. They called this new statistic

the flag-major index and showed that it is equidistributed with the length

function for the classical Weyl group of type B (the case r = 2). In 2004

Biagioli and Caselli [6] defined an analogous statistic for the Weyl groups of

type D and in 2007 Bagno and Biagioli [4] extended the definition of the flag-

major index for complex reflection groups G(r, p, n), which can be naturally

identified as normal subgroups of index p of G(r, n). Finally, in 2011 Caselli

[8] introduced a new family of groups G(r, p, q, n), the projective reflection

groups, that can be described as quotients of G(r, p, n) modulo the cyclic

scalar subgroup Cq. Caselli introduced also the following notion of duality,

which plays a crucial role in the theory of these groups: if G = G(r, p, q, n),

then we denote by G∗ = G(r, q, p, n) the dual group of G, obtained by sim-
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0 Introduction

ply exchanging the parameters p and q. Moreover, the definition of the

flag-major index is generalized for these groups in [8].

Although its nature is combinatorial, the flag-major index also has impor-

tant algebraic properties, in particular in the study of the action of reflection

groups on polynomial rings ([2], [1], [6], [5]). We recall a very important

property of projective reflection groups G ([8]), which generalizes and uni-

fies in a very natural way several known results for wreath products and

complex reflection groups: we can describe a monomial descent basis for the

coinvariant algebra of a projective reflection group G by its dual group G∗.

More precisely, we associate to any element g ∈ G∗ a monomial of degree

equal to the flag-major index of g. We remark that this is just the first

instance of the strict relation between the algebraic structure of G and the

combinatorics of G∗, and it is the one we refer to in the present work.

In this thesis we give new definitions of labelings of a forest, which gener-

alize the standard type in [7] and the signed type in [10]. In our context

the labels are colored integers. We generalize the major index defined in [7]

introducing the flag-major index of a colored labeled forest. This allows us to

generalize in a natural way the two hook-length formulas recalled above. As

particular cases of them, we recover some known results for the distribution

of the flag-major index on projective reflection groups G∗ = G(r, n)/Cp [8]

and on sets of cosets representatives for some special subgroups of G∗ [9].

Finally, the study of colored labeled forests consisting of two linear trees

(which has just apparently a simple combinatoric nature) allows us to show

a notion of duality, in the sense introduced in [8], for two particular families

of groups obtained from the direct product G(r, n)×G(r,m).

The thesis is structured as follows. In Chapter 1 we collect some notations

and preliminaries for the necessary background. In Chapter 2 and 3 we in-

troduce colored labelings and other particular generalizations of them. We

define also the flag-major index for these labelings and we present an ana-

logue of the q-hook length formula over all linear extensions of a colored

labeled forests. In Chapter 4 we give a generalized version of the second

q-hook length formula presented, computing also the cardinality of the set
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of all colored labelings of a fixed forest. Finally, in Chapter 5 we define two

families of groups obtained from the product G(r, n)×G(r,m) and we show

the strict relation between the combinatorics of one family and the invariant

theory of the other.

The results appearing in this thesis has been done in collaboration with prof.

Fabrizio Caselli.





Contents

Introduction i

1 Notations and preliminaries 1

1.1 Some notations . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Complex reflection groups and G(r, p, n) . . . . . . . . . . . . 2

1.3 Projective reflection groups and G(r, p, q, n) . . . . . . . . . . 4

1.4 Flag-major index on G(r, p, q, n) . . . . . . . . . . . . . . . . 5

1.5 Invariants and descent basis . . . . . . . . . . . . . . . . . . . 8

1.6 Labeled forests and q-hook length formulas . . . . . . . . . . 11

2 Counting linear extensions of forest labelings: the r case 13

2.1 r-Colored labelings . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 r-Starred labelings . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 r-Partial labelings . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Counting linear extensions of forest labelings: the (r, p) case 27

3.1 (r, p)-Colored labelings . . . . . . . . . . . . . . . . . . . . . . 27

3.2 (r, p)-Starred labelings . . . . . . . . . . . . . . . . . . . . . . 29

3.3 (r, p)-Partial labelings . . . . . . . . . . . . . . . . . . . . . . 30

4 Counting forest labelings 39

4.1 q-Counting colored labelings . . . . . . . . . . . . . . . . . . . 39

4.2 q-Counting partial labelings . . . . . . . . . . . . . . . . . . . 42

4.3 A particular case: the disjoint union of two linear trees . . . . 47

5 Invariants and products 53

5.1 The product Bn ×Bm . . . . . . . . . . . . . . . . . . . . . . 53

v



vi Contents

5.2 The product G(r, n)×G(r,m) . . . . . . . . . . . . . . . . . 61

Bibliography 72



Chapter 1

Notations and preliminaries

1.1 Some notations

Let Z be the set of integer numbers and N the set of non-negative integers.

For a, b ∈ Z, a ≤ b, we let [a, b] := {a, a + 1, . . . , b}. For n ∈ N, n 6= 0, we

let also [n] := [1, n]. If q is an indeterminate, we let

[n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1

be the q-analogue of n, and

[n]q! := [1]q[2]q · · · [n]q.

We let

Pn := {f = (f1, f2, . . . , fn) ∈ Nn : f1 ≥ f2 ≥ · · · ≥ fn}

be the set of partitions of length at most n, and |f | := f1 + f2 + · · ·+ fn the

size of f .

Let Sn be the symmetric group on n letters. A permutation σ ∈ Sn will

be denoted by σ = [σ1, σ2, . . . , σn], where σi = σ(i) for i ∈ [n]. We denote

the number of inversions of σ by

inv(σ) := |{(i, j) : 1 ≤ i < j ≤ n and σi > σj}|,

the descent set of σ by

Des(σ) := {i ∈ [n− 1] : σi > σi+1},

1



2 1 Notations and preliminaries

and the major index of σ by

maj(σ) :=
∑

i∈Des(σ)

i.

If r ∈ N, r > 0, we let Zr := Z/rZ. We simply denote by a the class of

the integer a in Zr, since the integer r is always fixed in each context, and by

resr (a), or equivalently by resr (a), the smallest non-negative representative

of a. We recall that an r-colored integer is a pair (i,a), denoted also ia,

where i ∈ N \ {0} and a ∈ Zr. We let |ia| := i and c(ia) := a.

Finally, we denote by ζr the primitive r-th root of the unity e2πi/r.

1.2 Complex reflection groups and G(r, p, n)

Let V be a complex vector space of finite dimension n and W a finite

subgroup of GL(V ), the group of endomorphisms of V . An element r ∈
GL(V ) is called a pseudo-reflection if it has finite order and its fixed point

space is of codimension 1. Then W is a (finite) complex reflection group if

it is generated by pseudo-reflections.

Irreducible finite complex reflection groups have been completely classified

in the fifties by Chevalley [11] and Shephard-Todd [17]. In this classification

there are:

• an infinite family of groups G(r, p, n), where r, p, n are positive integers

with p | r;

• 34 other exceptional groups.

We will not deal with the 34 exceptional groups in this thesis. So we are

going to describe the infinite family G(r, p, n).

When r = p = 1, the group G(1, 1, n) is the symmetric group Sn, the group

of the n× n permutation matrices.

When p = 1, the group G(r, n) := G(r, 1, n) is the wreath product Zr o Sn,

also called generalized symmetric group, or group of colored permutations.

G(r, n) consists of all n× n matrices satisfying the following conditions:



1.2 Complex reflection groups and G(r, p, n) 3

• the entries are either 0 or r-th roots of unity;

• there is exactly one non-zero entry in every row and every column.

If p divides r, then G(r, p, n) is the subgroup of G(r, n) given by the matrices

such that:

• the product of the non-zero entries is a r/p-th root of unity.

For our exposition it is more convenient to consider wreath products not

as groups of complex matrices but as groups of colored permutations. So

we recall the following alternative notation.

Notation 1.1. If g ∈ G(r, n), we write g = [σc11 , σc22 , . . . , σcnn ] if the non-zero

entry in the i-th row of g is ζcir and appears in the σi-th column.

In this notation the element in the i-th position of g represents the r-

colored integer g(i0) = σcii . We denote it also by gi. So G(r, n) is the

group of permutations g of the set of r-colored integers ia, where i ∈ [n] and

a ∈ Zr, such that if g(i0) = jb then g(ia) = ja+b. In other words,

G(r, n) := {[σc11 , σc22 , . . . , σcnn ] : σ ∈ Sn, ci ∈ Zr}.

If g ∈ G(r, n), we let |g| := σ ∈ Sn and we denote by

col(g) :=

n∑
i=1

ci

the color weight of g, which is an integer defined only modulo r. We recall

that

G(r, p, n) := {g ∈ G(r, n) : col(g) ≡ 0 mod p}.

Note that G(r, p, n) is a normal subgroup of G(r, n) of index p, since it is

the kernel of the map

G(r, n)→ Zp, g 7→ col(g).

Example 1.2. G(2, n) is the Coxeter group Bn of type B, also known as

group of signed permutations, or signed symmetric group. We recall that a

signed permutation on [n] is a bijection β on the set [−n, n] \ {0} such that

β(−i) = −β(i) for i ∈ [−n, n] \ {0}. We write β = [β1, β2, . . . , βn] ∈ Bn,
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where βi = β(i) for i = 1, 2, . . . , n. If we identify (signed) non-zero integers

with 2-colored integers in the following way:

m 7→

m0 if m > 0,

|m|1 if m < 0,

then β = [|β1|c1 , |β2|c2 , . . . , |βn|cn ], where ci ∈ Z2. In the case r = 2, we

will mainly use the signed notation.

For example, β = [2, −4, 3, 5, 1] = [20, 41, 30, 50, 10] ∈ G(2, 5).

Example 1.3. G(2, 2, n) is the Coxeter group Dn of type D, also known as

group of even-signed permutations, or even-signed symmetric group. Dn is

the subgroup of Bn consisting of signed permutations with an even number

of minus signs, or equivalently of 2-colored permutations in which the color

1 appears an even number of times:

Dn := {g ∈ Bn : neg(g) ≡ 0 mod 2} = {g ∈ Bn : col(g) ≡ 0 mod 2},

where neg(g) = |{i ∈ [n] : g(i) < 0}|.
For example, γ = [2, −4, 3, −5, 1] = [20, 41, 30, 51, 10] ∈ G(2, 2, 5).

1.3 Projective reflection groups and G(r, p, q, n)

Let V be a complex vector space of finite dimension n and Sq(V ) the q-

th symmetric power of V . Let Cq be the cyclic scalar subgroup of GL(V ) of

order q generated by ζqI. Finally, let G be a finite subgroup of GL(Sq(V )).

Then, according to [8], we say that the pair (G, q) is a (finite) projective

reflection group if there exists a finite complex reflection group W ⊂ GL(V )

such that Cq ⊆W and G = W/Cq.

In our work we will only consider those projective reflection groups arising

as quotients (by scalar subgroups) of all non-exceptional irreducible complex

reflection groups. More precisely,

Definition 1.4. Let r, p, q, n be positive integers such that p | r, q | r and

pq | rn. Then we let

G(r, p, q, n) :=
G(r, p, n)

Cq
,

where Cq is the cyclic group generated by ζqI.
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When q = 1, the group G(r, p, 1, n) is the complex reflection group

G(r, p, n).

Note the symmetry on the conditions for the parameters p and q in the

definition of G(r, p, q, n). This allows us to give the following:

Definition 1.5. Let G = G(r, p, q, n). We denote by G∗ the projective

reflection group G(r, q, p, n), where the roles of the parameters p and q are

interchanged. We call G∗ the dual group of G.

Following Notation 1.1, for an element g ∈ G(r, p, q, n) we also write g =

[σc11 , σc22 , . . . , σcnn ] to mean that g can be represented by [σc11 , σc22 , . . . , σcnn ]

in G(r, p, n). Recall that col(g) is defined modulo gcd(r, rn/q), which is a

multiple of p.

Example 1.6. G(2, 1, 2, n) is the group Bn/ ± id, where id := idBn is

the identity element of Bn. Note that (Bn/ ± id)∗ = Dn. For example,

g = [2, −4, 3, 5, 1] ∈ G(2, 1, 2, 5) can be represented by g1 = [2, −4, 3, 5, 1]

or g2 = [−2, 4, −3, −5, −1] in G(2, 5).

1.4 Flag-major index on G(r, p, q, n)

Let g = [σc11 , σc22 , . . . , σcnn ] ∈ G(r, p, q, n). According to [8], we let

HDes(g) := {i ∈ [n− 1] : ci = ci+1 and σi > σi+1}

be the homogeneous descent set of g,

di(g) := |{j ∈ [i, n− 1] : j ∈ HDes(g)}|

for all i ∈ [n], and

ki(g) :=

resr/q (cn) if i = n,

ki+1(g) + resr (ci − ci+1) if i ∈ [n− 1].

Note that the sequence d(g) := (d1(g), d2(g), . . . , dn(g)) is a partition, and

recall that k(g) := (k1(g), k2(g), . . . , kn(g)) is the smallest element in Pn

(with respect to the entrywise order) such that

g = [σ
k1(g)
1 , σ

k2(g)
2 , . . . , σkn(g)

n ].
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We also let

λi(g) := rdi(g) + ki(g)

for all i ∈ [n], and similarly we note that λ(g) := (λ1(g), λ2(g), . . . , λn(g)) is

a partition such that

g = [σ
λ1(g)
1 , σ

λ2(g)
2 , . . . , σλn(g)

n ].

Finally, we define the flag-major index of an element g ∈ G(r, p, q, n) as

fmaj(g) := |λ(g)|.

Note that these definitions do not depend on the choice of the representative

of g in G(r, p, n).

Example 1.7. Let g = [22, 73, 63, 45, 81, 17, 53, 32] ∈ G(6, 2, 3, 8). Then

HDes(g) = {2, 5}, d(g) = (2, 2, 1, 1, 1, 0, 0, 0), k(g) = (18, 13, 13, 9, 5, 5, 1, 0),

λ(g) = (30, 25, 19, 15, 11, 5, 1, 0) and fmaj(g) = 106.

We recall that the flag-major index has the following distribution.

Theorem 1.8. ([8], consequence of Theorem 8.4) Let t be an indeterminate.

Then ∑
g∈G(r,q,p,n)

tfmaj(g) = Degq
(
[d1]t[d2]t · · · [dn]t

)
,

where

Degq

(∑
k≥0

ck t
k

)
:=
∑
k≥0

ckq t
kq,

di = ri if i < n and dn = rn/p are the fundamental degrees of G(r, p, n) (see

Section 1.5).

Corollary 1.9. Let q = 1. Let G = G(r, p, n) and G∗ = G(r, n)/Cp. Then∑
g∈G∗

tfmaj(g) = [d1]t[d2]t · · · [dn]t,

where di’s are the fundamental degrees of G.
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Corollary 1.10. ([2], Theorem 4.1) Let p = q = 1. Then∑
g∈G(r,n)

tfmaj(g) = [d1]t[d2]t · · · [dn]t,

where di’s are the fundamental degrees of G(r, n).

From now on, let G = G(r, p, n) and G∗ = G(r, n)/Cp. We recall that in

[9] Caselli studied the distribution of the flag-major index on sets of cosets

representatives for some special subgroups of G∗, defined as follows. For

k < n, let

Ck := {[σ01 , σ02 , . . . , σ0k , gk+1, . . . , gn] ∈ G∗ : σ1 < σ2 < · · · < σk}. (1.1)

We note that the subgroup of G∗ given by

{g ∈ G∗ : g = [g1, g2, . . . , gk, (k + 1)0, . . . , n0]}

is isomorphic to G(r, k) for all k < n. We may observe that Ck contains

exactly p representatives for each (right) coset of G(r, k) in G∗. Then we

have the following distribution.

Theorem 1.11. ([9], Theorem 5.5) Let Ck be defined as in (1.1). Then∑
g∈Ck

tfmaj(g−1) = [p]tkr/p [(k + 1)r]t [(k + 2)r]t · · · [(n− 1)r]t [nr/p]t.

Corollary 1.12. ([9], Corollary 5.6) If p = 1, then Ck is a complete system

of coset representatives for the subgroup G(r, k) and∑
g∈Ck

tfmaj(g−1) = [(k + 1)r]t [(k + 2)r]t · · · [nr]t.

We recall now some results we will use in the present work.

Lemma 1.13. ([9], Lemma 5.1) There exists a bijection

G∗ ×Pn × [0, p− 1]→ Nn, (g, λ, h) 7→ f = (f1, f2, . . . , fn),

where fi = λ|g−1(i)|(g) + rλ|g−1(i)| + h rp for all i ∈ [n]. In this case we say

that f is g-compatible.
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Lemma 1.14. ([9], Lemma 5.2) If g ∈ G∗ we let Sg be the set of g-compatible

vectors in Nn. Then

∑
f∈Sg

xf11 x
f2
2 · · ·x

fn
n =

=
x
λ1(g)
|g1| x

λ2(g)
|g2| · · ·x

λn(g)
|gn|

(1− xr|g1|)(1− x
r
|g1|x

r
|g2|) · · · (1− x

r
|g1| · · ·x

r
|gn−1|)(1− x

r/p
|g1| · · ·x

r/p
|gn|)

.

Lemma 1.15. ([9], Lemma 5.3) If g ∈ G∗ then there exists h ∈ [0, p − 1]

such that λi(g) + λ|gi|(g
−1) ≡ h rp mod r, for i ∈ [n].

1.5 Invariants and descent basis

Let V be a complex vector space of finite dimension n and W a finite

complex reflection groups. Then W is characterized by the structure of its

invariant ring, in the following sense.

Let S[V ∗] be the symmetric algebra of polynomial functions on V . Any

finite subgroup W of GL(V ) acts naturally on S[V ∗]. Denote by S[V ∗]W

the invariant ring of W . Then Chevalley [11] and Shephard-Todd [17] proved

that W is a complex reflection group if and only if S[V ∗]W is generated by

(1 and by) n algebraically independent homogeneous elements, called basic

invariants. Although these polynomials are not uniquely determined, their

degrees d1, . . . , dn are basic numerical invariants of W , and they are called

fundamental degrees of W . Denote by I(W ) the ideal of S[V ∗] generated by

the elements of strictly positive degree in S[V ∗]W . Then we recall that the

coinvariant algebra of W is defined by

R(W ) :=
S[V ∗]

I(W )
.

Since I(W ) is W -invariant, the group W acts naturally on R(W ). We recall

that R(W ) is isomorphic to the left regular representation of W and in

particular that its dimension as a C-module is equal to |W |.

In [8] Caselli generalized this result to the case of projective reflection groups.

Let Sq[V
∗] be the q-th Veronese subalgebra of S[V ∗], i.e., the algebra of

polynomial functions on V generated by homogeneous polynomial functions
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of degree q. LetG be any finite subgroup of graded automorphisms of Sq[V
∗].

Then (G, q) is a projective reflection group if and only if the invariant algebra

Sq[V
∗]G is generated by (1 and by) n algebraically independent homogeneous

elements. See Theorem 2.1 in [8].

We denote by I(G) the ideal of Sq[V
∗] generated by homogeneous elements

of positive degree in Sq[V
∗]G. Then the coinvariant algebra of G is defined

by

R(G) :=
Sq[V

∗]

I(G)
.

Let W be the complex reflection group such that G = W/Cq. We recall that

Sq[V
∗]G = S[V ∗]W . (1.2)

See Proof of Theorem 2.1 in [8]. It follows that R(G) is the subalgebra of

R(W ) given by the elements of degree multiple of q. See Proof of Proposition

3.1 in [8].

Moreover, we recall that R(G) is isomorphic to the group algebra CG and in

particular that its dimension as a C-module is equal to |G|. See Proposition

3.1 in [8].

If we set X := x1, . . . , xn as a basis for V , then S[V ∗] and Sq[V
∗] can be

identified respectively with the polynomial algebra C[X] and its subalgebra

Sq[X] generated by the monomials of degree q. Let now W = G(r, p, n) and

G = G(r, p, q, n).

Observe that G(r, n) acts on C[X] as follows:

[σc11 , σc22 , . . . , σcnn ] · P (X) = P
(
ζ
cσ1
r xσ1 , ζ

cσ2
r xσ2 , . . . , ζ

cσn
r xσn

)
.

A set of basic invariants under this action is given by

ei(x
r
1, . . . , x

r
n), i ∈ [n], (1.3)

where the ei’s are the elementary symmetric functions. It follows that the

fundamental degrees of G(r, n) are

r, 2r, . . . , nr.

Moreover, dimR
(
G(r, n)

)
= |G(r, n)| = n!rn.
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Now, consider the restriction to W of the action of G(r, n) on C[X]. Let

d := r/p. Then a set of basic invariants is given by ei(x
r
1, . . . , x

r
n) if i ∈ [n− 1]

xd1 · · ·xdn if i = n,
(1.4)

and the fundamental degrees of W are

r, 2r, . . . , (n− 1)r, nd.

Moreover, dimR(W ) = |W | = n!rn−1d.

Finally, consider the action of G on Sq[X]. From (1.2) we recall that a set

of basic invariants is given by (1.4). Moreover,

dimR(G) = |G| = n!rn

pq
= |G∗|.

The following result shows that invariant theory of G is quite naturally

described by its dual group G∗.

Theorem 1.16. ([8], Theorem 5.3) Let G = G(r, p, q, n). Then the set

{ag : g ∈ G∗}, where

ag(X) :=
n∏
i=1

x
λi(g)
|gi|

is a monomial of degree fmaj(g), represents a basis for R(G).

Finally, we recall the following result.

Lemma 1.17. ([4], Equation (12)) Let W = G(r, p, n). Let M be a mono-

mial in Sd := C[X]/(xd1 · · ·xdn). Then M admits the following expression in

R(W ):

M =
∑
g∈Ωn

ηgag,

where Ωn := {g ∈ G(r, n) : c(gn) < d} and ηg ∈ Z.

Corollary 1.18. ([5], Lemma 3.3) Let r = p = 2 and d = 1. Let M

be a monomial in S1 := C[X]/(x1 · · ·xn). Then M admits the following

expression in R(Dn):

M =
∑
g∈∆n

ηgag,

where ∆n := {g ∈ Bn : g(n) > 0} and ηg ∈ Z.
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1.6 Labeled forests and q-hook length formulas

According to [7] we consider a finite poset F in which every element is

covered by at most one element, or equivalently such that its Hasse diagram

is a rooted forest with roots on top. For this reason we call also F a forest and

we let V (F ) be its vertex set, E(F ) its edge set and ≺ the order relation in

F . We can also denote an edge in E(F ) by an ordered pair (x, y) of elements

of F such that x is covered by y. Let

hx := |{a ∈ F : a � x}|

be the hook length of the element x, for each x ∈ F , and

h(x,y) := hx

the hook length of the edge (x, y), for each (x, y) ∈ E(F ). Let

W (F ) := {w : V (F )→ [n] s.t. w is a bijection}

be the set of labelings of F . For w ∈ W (F ) we denote the number of

inversions of w by

inv(w) := |{(x, y) : x ≺ y and w(x) > w(y)}|,

the descent set of w by

Des(w) := {(x, y) ∈ E(F ) : w(x) > w(y)},

the major index of w by

maj(w) =
∑

e∈Des(w)

he,

and the set of linear extensions of w by

L (w) = {σ ∈ Sn : if x ≺ y then σ−1(w(x)) < σ−1(w(y))}.

Example 1.19. Let w be the labeling in Figure 1.1. Let w−1j := w−1(j) be

the vertex with label j in w. Then L (w) is the following subset of S5:{
[2, 3, 5, 4, 1], [3, 2, 5, 4, 1], [3, 5, 2, 4, 1], [3, 5, 4, 2, 1], [3, 5, 4, 1, 2],

[2, 5, 3, 4, 1], [5, 2, 3, 4, 1], [5, 3, 2, 4, 1], [5, 3, 4, 2, 1], [5, 3, 4, 1, 2]
}
.

Moreover, inv(w) = |{(w−14 , w−11 ), (w−13 , w−11 ), (w−15 , w−11 ), (w−15 , w−14 )}| =

4, Des(w) = {(w−14 , w−11 ), (w−15 , w−14 )} and maj(w) = 3 + 1 = 4.
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Figure 1.1: Example of labeling.

We are interested in the following important results:

Theorem 1.20. ([7], Theorem 1.2) Let F be a finite forest with n elements

and w a labeling of F . Then∑
σ∈L (w)

qmaj(σ) = qmaj(w) [n]q!∏
x∈F

[hx]q
.

Theorem 1.21. ([7], Theorem 1.3) Let F be a finite forest with n elements

and W (F ) the set of all labelings of F . Then∑
w∈W (F )

qmaj(w) =
n!∏

x∈F
hx

∏
x∈F

[hx]q.



Chapter 2

Counting linear extensions of

forest labelings: the r case

2.1 r-Colored labelings

Let F be a finite forest with n vertices (see Section 1.6).

Definition 2.1. We define the set of r-colored labelings of F as

Wr(F ) :=
{
w : V (F )→ [n]× Zr s.t. the projection on [n] is a bijection

}
,

so every element x ∈ F is labeled by w(x) = (σx, cx) which represents the

r-colored integer σcxx .

We denote the label w(x) also by wx. We can identify a colored integer

i0 with the integer i for each i ∈ [n], and vice versa. Then for w ∈ Wr(F )

we define the set of linear extensions of w as

L (w) :=
{
g ∈ G(r, n) : c(g−1(wx)) = 0 if x ∈ F , and

if x ≺ y then g−1(wx) < g−1(wy)
}
.

If x ∈ F and x is not a root, we let p(x) be the element that covers x in the

forest. For each x ∈ F we let

zx(w) :=

resr (cx) if x is a root of F,

resr
(
cx − cp(x)

)
otherwise

13
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Figure 2.1: Example of 3-colored labeling.

and we define the homogeneous descent set of w as

HDes(w) := {(x, y) ∈ E(F ) : cx = cy and σx > σy}.

Finally we define the flag-major index of w as

fmaj(w) :=
∑

e∈E(F )

rχe(w)he +
∑

v∈V (F )

zv(w)hv,

where

χe(w) :=

1 if e ∈ HDes(w),

0 otherwise.

Example 2.2. Let w be the 3-colored labeling in Figure 2.1. Then L (w)

is the following subset of G(3, 5):{
[22, 32, 10, 51, 41], [32, 22, 10, 51, 41], [32, 10, 22, 51, 41], [32, 10, 51, 22, 41],

[32, 10, 51, 41, 22], [22, 10, 32, 51, 41], [10, 22, 32, 51, 41], [10, 32, 22, 51, 41],

[10, 32, 51, 22, 41], [10, 32, 51, 41, 22]
}
,

HDes(w) =
{(
w−1(51), w−1(41)

)}
and fmaj(w) = 3 · 3 + (1 · 4 + 1 · 1 + 2 ·

1 + 2 · 1) = 18.

Remark 2.3. If r = 1 then a 1-colored labeling w of F is a labeling w ∈
W (F ), since cx = 0 for each x ∈ F and i0 is the integer i. Then we have

HDes(w) = Des(w) and fmaj(w) = maj(w). Moreover, if F is a linear tree

(i.e., a totally ordered set {x1, x2, . . . , xn} in which xi ≺ xi+1 for i ∈ [n−1])

we note that an r-colored labeling w of F can be thought as the unique linear

extension g ∈ G(r, n) of w. If we let zi(g) = zxi(w), ki(g) =
∑

j≥i zj(g),

di(g) = |{j ≥ i : (xj , xj+1) ∈ HDes(w)}| for all i ∈ [n − 1] and dn(g) = 0,

then we have fmaj(w) =
∑

i∈[n](rdi(g) + ki(g)) = fmaj(g).
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Now we can give a generalized version of Theorem 1.20, which we can

recover from the following result when r = 1:

Theorem 2.4. Let F be a finite forest with n elements and w an r-colored

labeling of F . Then∑
g∈L (w)

qfmaj(g) = qfmaj(w) [d1]q[d2]q · · · [dn]q∏
x∈F

[hxr]q
,

where di = ri, i = 1, . . . , n are the fundamental degrees of G(r, n).

We will give a proof of this result in a more general case (see Proof of

Theorem 2.9).

Example 2.5. Let w be the 3-colored labeling in Figure 2.1. Then∑
g∈L (w)

qfmaj(g) = q18 + 2q21 + 2q24 + 2q27 + 2q30 + q33

and

qfmaj(w) [r]q[2r]q · · · [nr]q∏
x∈F

[hxr]q
= q18

[3]q[6]q[9]q[12]q[15]q
[3]q[3]q[3]q[9]q[12]q

=

= q18(1 + q3)(1 + q3 + q6 + q9 + q12).

2.2 r-Starred labelings

Definition 2.6. We define the set of r-starred labelings of F as

Sr(F ) :=
{
w : V (F )→ [n]×

(
Zr ∪ {∗}

)
s.t.

the projection on [n] is a bijection, and the projection γ on Zr ∪ {∗}

is s.t., if (x, y) ∈ E(F ) and γ(y) = ∗, then γ(x) = ∗
}
.

If w is an r-starred labeling, then every element x ∈ F is labeled by σcxx ,

where cx ∈ Zr ∪ {∗} and the symbol ∗ represents any class in Zr (i.e., the

label σ∗x represents r different colored integers σ0x , σ
1
x , . . . , σ

r−1
x ). We require

also that, if a vertex x has a starred label, then every vertex in the subtree

rooted at x has a starred label. See Figure 2.2 for an example.
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Figure 2.2: Example of 2-starred labeling.

Remark 2.7. An r-starred labeling without ∗ is an r-colored labeling.

We let F∗ := {x ∈ F : cx = ∗} and Fr := {x ∈ F : cx ∈ Zr} = F − F∗.
For w ∈ Sr(F ) we define the set of linear extensions of w as

L (w) :=
{
g ∈ G(r, n) : c(g−1(wx)) = 0 if x ∈ Fr, and

if x ≺ y then |g−1(σx)| < |g−1(σy)|
}

and for each x ∈ F we let

zx(w) :=


0 if x ∈ F∗,

resr (cx) if x ∈ Fr and x is a root of F,

resr
(
cx − cp(x)

)
otherwise.

Now we let

HDes(w) := {(x, y) ∈ E(F ) : x ∈ Fr, cx = cy and σx > σy}

be the homogeneous descent set of w and we define the starred descent set

of w as

SDes(w) := {(x, y) ∈ E(F ) : x ∈ F∗ and σx > σy}

and finally the flag-major index of w as

fmaj(w) :=
∑

e∈E(F )

(rχre(w) + χ∗e(w))he +
∑

v∈V (F )

zv(w)hv,

where

χre(w) :=

1 if e ∈ HDes(w),

0 otherwise
and χ∗e(w) :=

1 if e ∈ SDes(w),

0 otherwise.
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Example 2.8. Let w be the 2-starred labeling in Figure 2.2. Then L (w)

is the following subset of G(2, 5):{
[21, 31, 5c, 40, 10], [31, 21, 5c, 40, 10], [31, 5c, 21, 40, 10], [31, 5c, 40, 21, 10],

[31, 5c, 40, 10, 21], [21, 5c, 31, 40, 10], [5c, 21, 31, 40, 10], [5c, 31, 21, 40, 10],

[5c, 31, 40, 21, 10], [5c, 31, 40, 10, 21]
}
,

where c ∈ {0,1}. Moreover, HDes(w) =
{(
w−1(40), w−1(10)

)}
, SDes(w) ={(

w−1(5∗), w−1(40)
)}

and fmaj(w) = (2 · 3 + 1) + (1 · 1 + 1 · 1) = 9.

Now we can prove Theorem 2.4 by providing the proof for the following

analogous version of that theorem holding for r-starred labelings:

Theorem 2.9. Let F be a finite forest with n elements and w an r-starred

labeling of F . Then

∑
g∈L (w)

qfmaj(g) = qfmaj(w) [d1]q[d2]q · · · [dn]q∏
x∈Fr

[hxr]q
∏
x∈F∗

[hx]q
,

where di = ri, i = 1, . . . , n are the fundamental degrees of G(r, n).

Example 2.10. Let w be the 2-starred labeling in Figure 2.2. Then

∑
g∈L (w)

qfmaj(g) = q9 + q10 + 2

18∑
k=11

qk + q19 + q20

and

qfmaj(w) [r]q[2r]q · · · [nr]q∏
x∈Fr

[hxr]q
∏
x∈F∗

[hx]q
= q9

[2]q[4]q[6]q[8]q[10]q
[2]q[2]q[6]q[8]q[1]q

= q9(1 + q2)
9∑

k=0

qk.

Remark 2.11. Consider the poset {x1, x2, . . . , xn} with no order relation

between any two different elements. The Hasse diagram Vn of this poset is a

forest consisting of n disjoint vertices. Consider now the r-starred labeling

w of Vn such that w(xi) = i∗ for all i ∈ [n]. Then fmaj(w) = 0 and

L (w) = G(r, n). Therefore in this case Theorem 2.9 reduces to Corollary

1.10.
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Figure 2.3: Tn,k poset.

Remark 2.12. Let k < n. Consider the poset {x1, x2, . . . , xn} with the

ordering given by xi ≺ xj if and only if i < j < k < n. The Hasse diagram

Tn,k of this poset is a forest consisting of a linear tree of length k and n− k
disjoint vertices (see Figure 2.3). Consider now the r-starred labeling w of

Tn,k such that w(xi) = i0 for i ∈ [k] and w(xi) = i∗ for i = k + 1, k +

2, . . . , n. Then hxi = i for i ∈ [k] and hxi = 1 otherwise, fmaj(w) = 0 and

L (w) = {g ∈ G(r, n) : c(g−1(i)) = 0 if i ∈ [k] and g−1(10) < g−1(20) <

· · · < g−1(k0)}. We finally note that if g ∈ L (w) then g−1 ∈ Ck, where Ck

is the same set defined in (1.1) when p = 1. Then in this case Theorem 2.9

reduces to Corollary 1.12.

Proof of the fmaj hook length formula of Theorem 2.9

Let w be a fixed r-starred labeling of F and

A =
{
f ∈ Nn : fσx ∈ cx if x ∈ Fr, and fσx ≥ fσy for each (x, y) ∈ E(F ),

where fσx = fσy implies cx = cy or x ∈ F∗, and σx < σy
}
.

We show that the set A consists of all g-compatible vectors in Nn as g varies

in the set L (w) of linear extensions of the r-starred labeling w:

Proposition 2.13. Let f ∈ Nn. Then f ∈ A if and only if f is g-compatible

for some g ∈ L (w).

Proof. We recall that f is g-compatible if and only if fi = λ|g−1(i)|(g) +

rλ|g−1(i)| for all i ∈ [n], where λ ∈ Pn (Lemma 1.13 when p = 1). We can

divide the proof in two steps:
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i) If x ∈ Fr, then c(g−1(wx)) = 0 if and only if fσx ∈ cx.

Since fσx ∈ cx if and only if λ|g−1(σx)|(g) ∈ cx, then λσx(g−1) ∈ −cx from

Lemma 1.15 (for p = 1), and this is equivalent to c(g−1(σx)) = −cx. So the

result follows.

ii) If (x, y) ∈ E(F ), then |g−1(σx)| < |g−1(σy)| if and only if fσx ≥ fσy ,

where fσx = fσy implies cx = cy or x ∈ F∗, and σx < σy.

⇐) If fσx > fσy then |g−1(σx)| < |g−1(σy)| since λ(g) and λ are both

partitions. If fσx = fσy then λ|g−1(σx)|(g) = λ|g−1(σy)|(g). Since σx < σy,

then the definition of the statistics λi(g) implies that |g−1(σx)| < |g−1(σy)|.
⇒) If |g−1(σx)| < |g−1(σy)| then fσx ≥ fσy since λ(g) and λ are both

partitions. Moreover, we note that fσx 6= fσy either if cx = cy or x ∈ F∗, and

σx > σy, or if cx 6= cy, for x ∈ Fr. So the result follows by contradiction.

For x ∈ F we let Fx = {a ∈ F : a � x} be the filter at x, which is a

chain, and Ex = {(y, z) ∈ E(F ) : y ∈ Fx} the set of edges of Fx. We let

also

χry(w) =

1 if y ∈ Fr,

0 otherwise
and χ∗y(w) =

1 if y ∈ F∗,

0 otherwise

and finally

B =

{
f ∈ Nn : fσx =

∑
y∈Fx

(zy + rmyχ
r
y +myχ

∗
y) +

∑
e∈Ex

(rχre + χ∗e),

for each x ∈ F, my ∈ N
}

where we omitted the dependence from w. We show that A and B are the

same set, so in particular B consists of all g-compatible vectors as g ∈ L (w):

Proposition 2.14. A = B.

Proof. ⊇) Let f ∈ B and x ∈ F . By definition, fσx = fσy +
(
zx + rmxχ

r
x +

mxχ
∗
x + rχr(x,y) + χ∗(x,y)

)
, where y = p(x). We note that fσx ∈ cx if x ∈ Fr

(by an inductive argument) and fσx ≥ fσy , where fσx = fσy implies mx = 0,

cx = cy or x ∈ F∗, and σx < σy. Then f ∈ A .



20 2 Counting linear extensions of forest labelings: the r case

⊆) Let u be a root. If u ∈ Fr then fσu ∈ cu, so there exists mu ∈ N such

that fσu = resr (cu) + rmu. Otherwise if u ∈ F∗ there exists mu ∈ N such

that fσu = mu. Then fσu = zu + rmuχ
r
u + muχ

∗
u. Let x be an element

covered by u. If x ∈ Fr then u ∈ Fr and there exists mx ∈ N such that

fσx = fσu+resr (cx − cu)+rχr(x,u)+rmx. We note that fσx ∈ cx. Otherwise

if x ∈ F∗ there exists mx ∈ N such that fσx = fσu + χ∗(x,u) + mx. Then

fσx = fσu + zx + rχr(x,u) + rmxχ
r
x + χ∗(x,u) + mxχ

∗
x. We finally obtain the

result extending this argument to every x ∈ F .

Now we are ready to prove the main result of this section:

Proof of Theorem 2.9. We consider the formal power series
∑

f∈A q|f | and

we compute it in two different ways. In the first computation we use Lemma

1.14 (for p = 1) and Proposition 2.13 and we have∑
f∈A

q|f | =
∑

g∈L (w)

qλ1(g)qλ2(g) · · · qλn(g)

(1− qr)(1− q2r) · · · (1− qnr)
=

=

∑
g∈L (w) q

fmaj(g)

(1− qr)(1− q2r) · · · (1− qnr)
.

In the second computation we use directly the definition of B and Proposi-

tion 2.14: using the same notations, we have

|f | =
∑
x∈F

fσx =
∑

v∈V (F )

zvhv + r
∑
x∈Fr

mxhx +
∑
x∈F∗

mxhx+

+
∑

e∈E(F )

(rχre + χ∗e)he = fmaj(w) + r
∑
x∈Fr

mxhx +
∑
x∈F∗

mxhx,

where mx ∈ N, and then∑
f∈A

q|f | =
∑
f∈B

q|f | =
∑
mx∈N

q
fmaj(w)+ r

∑
Fr

mxhx+
∑
F∗
mxhx

=

= qfmaj(w) 1∏
x∈Fr

(1− qrhx)
∏
x∈F∗

(1− qhx)
.

Therefore ∑
g∈L (w)

qfmaj(g) = qfmaj(w) (1− qr)(1− q2r) · · · (1− qnr)∏
x∈Fr

(1− qrhx)
∏
x∈F∗

(1− qhx)
.
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We can reformulate Theorem 2.9 in this way:

Theorem 2.15. Let F be a finite forest with n elements and w an r-starred

labeling of F . Then

∑
g∈L (w)

qfmaj(g) = qfmaj(w) [r]q[2r]q · · · [nr]q∏
x∈F

[hxix]q
, where ix =

1 if x ∈ F∗,

r otherwise.

2.3 r-Partial labelings

Starting from Theorem 2.15, we can further generalize the result intro-

ducing a new notion of labeling. First, let m be a positive integer and d a

positive divisor of m. Let also πmd be the projection

πmd : Zm → Zd, z 7→ c,

where c is the remainder of the division of z by d. We note that

(πmd )−1(c) =
{
c + kd : k ∈ Z, 0 ≤ k < m

d

}
,

so |(πmd )−1(c)| = m/d for each c ∈ Zd.

Definition 2.16. We define the set of r-partial labelings of F as

Pr(F ) :=
{
w : V (F )→ [n]×

(⋃
i|r Zi

)
s.t.

the projection on [n] is a bijection, and the projection γ on
(⋃

i|r Zi
)

is s.t., if (x, y) ∈ E(F ) and γ(y) ∈ Ziy , then γ(x) ∈
(⋃

ix|iy Zix
)}
.

If w is an r-partial labeling, then every element x ∈ F is labeled by

σix,jxx , where ix is a positive divisor of r and jx is a class in Zix . So the

label wx represents r/ix different r-colored integers:

σ
(πrix )

−1(jx)
x =

{
σjxx , σ

jx+ix
x , . . . , σjx+r−ixx

}
.

We require also that, if the vertex y is covered by x, then iy is a divisor of

ix.
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Figure 2.4: Example of 6-partial labeling.

Remark 2.17. If ix = r the color of wx can be identified with the class

jx in Zr, so σr,jxx = σjxx . If ix = 1 the color of wx is any class in Zr, so

σ1,0x = σ∗x . Moreover, if ix = r for each x ∈ F then an r-partial labeling is

an r-colored labeling and if r is a prime number then an r-partial labeling

is an r-starred labeling.

For w ∈Pr(F ) we define the set of linear extensions of w as

L (w) := {g ∈ G(r, n) : πrix
(
c(g−1(σx))

)
= −jx if x ∈ F , and

if x ≺ y then |g−1(σx)| < |g−1(σy)|}

and for each x ∈ F we let

zx(w) :=

resix (jx) if x is a root of F,

resix
(
jx − jp(x)

)
otherwise.

Finally we let

HDes(w) := {(x, y) ∈ E(F ) : jx = π
iy
ix

(jy) and σx > σy}

be the homogeneous descent set of w and we define the flag-major index of

w as

fmaj(w) :=
∑

e∈E(F )

ieχe(w)he +
∑

v∈V (F )

zv(w)hv,

where

i(x,y) := ix for each (x, y) ∈ E(F ) and χe(w) :=

1 if e ∈ HDes(w),

0 otherwise.
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Example 2.18. Let w be the 6-partial labeling in Figure 2.4. Then L (w)

is the following subset of G(6, 5):{
[20, 3a, 4b, 14, 52], [3a, 20, 4b, 14, 52], [3a, 4b, 20, 14, 52], [3a, 4b, 14, 20, 52],

[3a, 4b, 14, 52, 20], [20, 4b, 3a, 14, 52], [4b, 20, 3a, 14, 52], [4b, 3a, 20, 14, 52],

[4b, 3a, 14, 20, 52], [4b, 3a, 14, 52, 20]
}
,

where a ∈ {1,4} and b ∈ {1,3,5}.
Moreover, HDes(w) =

{(
w−1(33,1), w−1(16,4)

)}
and fmaj(w) = (3 · 1) + (2 ·

4 + 2 · 3 + 1 · 1) = 18.

We can generalize again Theorem 2.4 in this way:

Theorem 2.19. Let F be a finite forest with n elements and w an r-partial

labeling of F . Then∑
g∈L (w)

qfmaj(g) = qfmaj(w) [d1]q[d2]q · · · [dn]q∏
x∈F

[hxix]q
,

where di = ri, i = 1, . . . , n are the fundamental degrees of G(r, n).

Example 2.20. Let w be the 6-partial labeling in Figure 2.4. Then

∑
g∈L (w)

qfmaj(g) = q18+

23∑
k=20

qk+2q24+q25+2

47∑
k=26

qk+q48+2q49+

53∑
k=50

qk+q55

and

qfmaj(w) [r]q[2r]q · · · [nr]q∏
x∈F

[hxix]q
= q18

[6]q[12]q[18]q[24]q[30]q
[6]q[3]q[2]q[18]q[24]q

= q18
5∑

k=0

q2k ·
9∑

k=0

q3k.

Proof of the fmaj hook length formula of Theorem 2.19

Let now w be a fixed r-partial labeling of F and

A =
{
f ∈ Nn : fσx ∈ jx if x ∈ F , and fσx ≥ fσy for each (x, y) ∈ E(F ),

where fσx = fσy implies jx = π
iy
ix

(jy) and σx < σy
}
.

As in the case of an r-starred labeling, we show that the set A consists of

all g-compatible vectors in Nn as g varies in the set L (w) of linear extensions

of the r-partial labeling w:
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Proposition 2.21. Let f ∈ Nn. Then f ∈ A if and only if f is g-compatible

for some g ∈ L (w).

Proof. Again we divide the proof in two steps:

i) If x ∈ F , then πrix
(
c(g−1(σx))

)
= −jx if and only if fσx ∈ jx.

Since fσx ∈ jx if and only if λ|g−1(σx)|(g) ∈ jx, then λσx(g−1) ∈ −jx from

Lemma 1.15 (for p = 1), and this is equivalent to πrix
(
c(g−1(σx))

)
= −jx.

ii) If (x, y) ∈ E(F ), then |g−1(σx)| < |g−1(σy)| if and only if fσx ≥ fσy ,

where fσx = fσy implies σx < σy and jx = π
iy
ix

(jy).

⇐) If fσx > fσy then |g−1(σx)| < |g−1(σy)| since λ(g) and λ are both

partitions. If fσx = fσy then λ|g−1(σx)|(g) = λ|g−1(σy)|(g). Since σx < σy,

then the definition of the statistics λi(g) implies that |g−1(σx)| < |g−1(σy)|.
⇒) If |g−1(σx)| < |g−1(σy)| then fσx ≥ fσy since λ(g) and λ are both

partitions. Moreover, we note that fσx 6= fσy if either jx = π
iy
ix

(jy) and

σx > σy, or jx 6= π
iy
ix

(jy). So the result follows by contradiction.

We let now

B =

{
f ∈ Nn : fσx =

∑
y∈Fx

(zy + iymy) +
∑
e∈Ex

ieχe, my ∈ N, x ∈ F
}

where we omitted the dependence from w. Similarly we show that A and

B are the same set, so in particular B consists of all g-compatible vectors

as g ∈ L (w):

Proposition 2.22. A = B.

Proof. ⊇) Let f ∈ B and x ∈ F . By definition, fσx = fσy +
(
zx + ixmx +

ixχ(x,y)

)
, where y = p(x). Then f ∈ A .

⊆) Let u be a root. Then fσu ∈ ju, so there exists mu ∈ N such that

fσu = resiu (ju)+iumu = zu+iumu. Let x be an element covered by u. Then

there exists mx ∈ N such that fσx = fσu +resix (jx − ju)+ ixχ(x,u)+ ixmx =

fσu + zx + ixχ(x,u) + ixmx. We note that fσx ∈ jx. We obtain the result

extending this argument to every x ∈ F .

Now we are ready to prove this more general version of our main result:
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Proof of Theorem 2.19. We compute the formal power series
∑

f∈A q|f | in

two different ways, as above. In the first computation we use Lemma 1.14

(for p = 1) and Proposition 2.21 and we have

∑
f∈A

q|f | =
∑

g∈L (w)

qλ1(g)qλ2(g) · · · qλn(g)

(1− qr)(1− q2r) · · · (1− qnr)
=

=

∑
g∈L (w) q

fmaj(g)

(1− qr)(1− q2r) · · · (1− qnr)
.

In the second computation we use directly the definition of A and Proposi-

tion 2.22: using the same notations, we have

|f | =
∑
x∈F

fσx =
∑

v∈V (F )

(zv+ivmv)hv+
∑

e∈E(F )

ieχehe = fmaj(w)+
∑
x∈F

ixmxhx,

where mx ∈ N, and then∑
f∈A

q|f | =
∑
f∈B

q|f | =
∑
mx∈N

q
fmaj(w)+

∑
x∈F

ixmxhx
= qfmaj(w) 1∏

x∈F
(1− qixhx)

.

Therefore ∑
g∈L (w)

qfmaj(g) = qfmaj(w) (1− qr)(1− q2r) · · · (1− qnr)∏
x∈F

(1− qixhx)
.





Chapter 3

Counting linear extensions of

forest labelings: the (r, p) case

3.1 (r, p)-Colored labelings

Let F be a finite forest with n vertices (see Section 1.6) and G∗ the

projective reflection group G(r, n)/Cp (see Section 1.3).

Consider the action of Cp on the set Wr(F ) of labelings defined by

([1kr/p, 2kr/p, . . . , nkr/p], σcxx ) 7−→ σcx+kr/px

for each x ∈ F and k = 0, 1, . . . , p − 1. Note that this is simply the action

of the cyclic subgroup of Zr of order p generated by r/p on the set (Zr)n

of colors. Let x1, x2, . . . , xn be a linear extension of F and denote by ci the

color of w(xi) in w ∈ Wr(F ), for i ∈ [n]. Then every orbit of (Zr)n is an

arithmetic progression α on (Zr)n, in which the common difference is the

n-tuple (r/p, r/p, . . . , r/p):

α(c1, c2, . . . , cn) :=
{

(c1 + kr/p, c2 + kr/p, . . . , cn + kr/p)
}p−1
k=0

where (c1, c2, . . . , cn) ∈ (Zr)n.

Definition 3.1. We call (r, p)-colored labelings of F the orbits of Wr(F )

under the action of Cp and we define the set of these labelings as

Wr,p(F ) := Wr(F )/Cp.

See an example in Figure 3.1.

27
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�
�
�

T
T
Ts s s

s s
s

23

64

32 11

50

40

=

{
�
�
�

T
T
Ts s s

s s
s

23

64

32 11

50

40

,
�
�
�

T
T
Ts s s

s s
s

25

60

34 13

52

42

,
�
�
�

T
T
Ts s s

s s
s

21

62

30 15

54

44
}

Figure 3.1: Example of (6, 3)-colored labeling.

Remark 3.2. Note that if (x, y) ∈ E(F ) then the difference c(w̃x)− c(w̃y)
does not depend on the choice of w̃ lift of w in Wr(F ). Then we can define

c(x,y) := c(w̃x)− c(w̃y) ∈ Zr.

For w ∈ Wr,p(F ) we define the set of linear extensions of w as

L (w) :=
{
g ∈ G∗ : for each g̃ lift of g in G(r, n), there exists w̃ lift of w

in Wr(F ) s.t. c(g̃ −1(σx)) = −c(w̃x) if x ∈ F , and

if x ≺ y then |g−1(σx)| < |g−1(σy)|
}
.

Note that a linear extension of a labeling is now an element of G∗.

Example 3.3. Let w be the (6, 3)-colored labeling in Figure 3.1. For exam-

ple the element g = [11, 32, 50, 40, 23, 64] ∈ G(6, 3, 6)∗ is a linear extension

of w. A lift of g in G(6, 6) is an element

g̃ ∈
{

[11+2k, 32+2k, 52k, 42k, 23+2k, 64+2k], k = 0, 1, 2
}
.

Then

g̃ −1 ∈
{

[1−1+2k, 5−3+2k, 2−2+2k, 42k, 32k, 6−4+2k], k = 0, 1, 2
}

is the inverse of g̃ ∈ G(6, 6).

We let

HDes(w) := {(x, y) ∈ E(F ) : c(x,y) = 0 and σx > σy}
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be the homogeneous descent set of w and finally we define the flag-major

index of w as the multiset

Fmaj(w) :=

=

{{ ∑
e∈E(F )

rχr,p
e (w)he +

∑
v∈V (F )

zv(w̃)hv, for each w̃ lift of w in Wr(F )

}}
,

where

χr,p
e (w) :=

1 if e ∈ HDes(w),

0 otherwise.

Remark 3.4. Note that the previous definition is equivalent to the follow-

ing:

Fmaj(w) =
{{

fmaj(w̃), for each w̃ lift of w in Wr(F )
}}
.

Example 3.5. Let w be the (6, 3)-colored labeling in Figure 3.1. We show

that the flag-major index of w is a multiset:

Fmaj(w) =
{{

6 · 3 + (2 · res6(4 + 2k) + 5 + 4 · res6(2k) + 2 + 1),

k = 0, 1, 2
}}

=
{{

34, 34, 46
}}
.

We can generalize again Theorem 2.4 in the following:

Theorem 3.6. Let F be a finite forest with n elements and w an (r, p)-

colored labeling of F . Then∑
g∈L (w)

qfmaj(g) =
∑

s∈Fmaj(w)

qs
[d1]q[d2]q · · · [dn]q∏

x∈F
[hxr]q

,

where di = ri if i < n and dn = rn/p are the fundamental degrees of G.

We will give a proof of this result in the most general case (see Proof of

Theorem 3.20).

3.2 (r, p)-Starred labelings

Consider the action of Cp on the set Sr(F ) defined by

([1kr/p, 2kr/p, . . . , nkr/p], σcxx ) 7−→

σ∗x if x ∈ F∗,

σ
cx+kr/p
x otherwise

for each x ∈ F and k = 0, 1, . . . , p− 1.
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�
�
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T
T
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s
s

23 34 5∗

45
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=

{
�
�
�

T
T
Ts s s
s
s

23 34 5∗

45

12

,
�
�
�

T
T
Ts s s
s
s

27 38 5∗

49

16

,
�
�
�

T
T
Ts s s
s
s

211 30 5∗

41

110
}

Figure 3.2: Example of (12, 3)-starred labeling.

Definition 3.7. We call (r, p)-starred labelings of F the orbits of Sr(F )

under the action of Cp and we define the set of these labelings as

Sr,p(F ) := Sr(F )/Cp.

See an example in Figure 3.2.

Remark 3.8. If F∗ = F then the action of Cp on Sr(F ) is trivial, i.e.,

if w is an r-starred labeling in which each label has color ∗, then its orbit

contains only w.

We analyze (r, p)-starred labelings as a particular case of a more general

type of labelings, described in the following section.

3.3 (r, p)-Partial labelings

Consider now the action of Cp on the set Pr(F ) of labelings defined by

([1kr/p, 2kr/p, . . . , nkr/p], σix,jxx ) 7−→ σix,jx+kr/px

for each x ∈ F and k = 0, 1, . . . , p− 1. As in the colored case, we can read

it as the action of the cyclic subgroup of Zr of order p generated by r/p on

the set Γ of colors, each defined as a residue class modulo a divisor of r. Let

x1, x2, . . . , xn be a linear extension of F and denote by jl ∈ Zil the color of

w(xl) in w ∈Pr(F ), for l ∈ [n]. Then every orbit of Γ = Zi1×Zi2×. . .×Zin ,

is an arithmetic progression α on Γ, in which the common difference is the

n-tuple (r/p, r/p, . . . , r/p):

α(j1, j2, . . . , jn) =
{

(j1 + kr/p, j2 + kr/p, . . . , jn + kr/p)
}p−1
k=0

where (j1, j2, . . . , jn) ∈ Γ.
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=
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�

T
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s

24,1 32,1 53,1
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,
�
�
�

T
T
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s
s
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,
�
�
�

T
T
Ts s s
s
s

24,1 32,1 53,2

46,2

112,2
}

Figure 3.3: Example of (24, 3)-partial labeling.

Definition 3.9. We call (r, p)-partial labelings of F the orbits of Pr(F )

under the action of Cp and we define the set of these labelings as

Pr,p(F ) := Pr(F )/Cp.

See an example in Figure 3.3.

The following lemma is useful to determine the cardinality of these orbits:

Lemma 3.10. Let F be a forest and v1, v2, . . . , vl its roots. Let w ∈Pr(F )

and consider the action of Cp on Pr(F ) defined as above. Then the orbit of

w contains p/d distinct elements, where

d := gcd

(
r

lcm(i1, i2, . . . , il)
, p

)
, (3.1)

and it denotes ivt, for t ∈ [l].

Proof. We consider first the case in which F is a tree and then the case of

a general forest.

• F tree

Let F be a tree and v its root. Consider w ∈ Pr(F ). So, by definition,

ix | iv for every x ∈ F . Then the cardinality of the orbit of w depends only

on the choice of iv, as we can see in the following claim.

Claim 3.11. If F is a tree and v is its root, then

gcd

(
r

iv
, p

)
= d ≥ 1

if and only if jv + kr/p are p/d distinct residue classes in Ziv , for k ∈
{0, 1, . . . , p− 1}. Equivalently, the orbit of w contains p/d elements.
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It is enough to show that the period of r/p in Ziv is p/d, i.e.,

iv
gcd (r/p, iv)

=
p

d
.

In fact,
iv

gcd (r/p, iv)
=

iv p

gcd(r, iv p)
=

p

gcd(r/iv, p)
=
p

d
.

Note that, if gcd(r/iv, p/d) = 1, then we can replace p with p/d since the

period of rd/p in Ziv is p/d. Otherwise, if gcd(r/iv, p/d) = d′ > 1, then

consider p/dd′ and repeat the same argument.

• F forest

Now let F be a forest with components T1, T2, . . . , Tl and roots v1, v2, . . . , vl.

Let w ∈Pr(F ). From Claim 3.11 we know that the orbit of w restricted to

Tt has p/dt elements, where dt = gcd(r/it, p) and it = ivt , for t ∈ [l]. Then

in this case the orbit of w contains as many elements as

lcm

(
p

d1
,
p

d2
, . . . ,

p

dl

)
.

Then we can conclude with the following claim.

Claim 3.12. Let F be a forest and v1, v2, . . . , vl its roots. Then

gcd

(
r

lcm(i1, i2, . . . , il)
, p

)
= d ≥ 1

if and only if

lcm

(
p

d1
,
p

d2
, . . . ,

p

dl

)
= p/d,

where dt = gcd(r/it, p) and p/dt is the period of r/p in Zit.

Let π be a prime that divides p. Let a and b be positive integers and c

a non-negative integer, c ≤ a, such that πa ‖ p, πb ‖ r and πc ‖ d, where the

symbol ‖ means “exactly divides”.

⇒) By hypothesis

πc+1 -
r

lcm(i1, i2, . . . , il)
,

so there exists t ∈ [l] such that πb−c | it. Then πc ‖ dt and πa−c | p/dt. So

πa−c | lcm

(
p

d1
,
p

d2
, . . . ,

p

dl

)
.
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By repeating the same argument for each prime in the factorization of p, we

have
p

d
| lcm

(
p

d1
,
p

d2
, . . . ,

p

dl

)
.

The result follows, since d | dt and we have

lcm

(
p

d1
,
p

d2
, . . . ,

p

dl

)
| p
d
.

⇐) By hypothesis there exists t ∈ [l] such that πa−c | p/dt. Then πc | dt
and πb−c | it. So

πc | gcd

(
r

lcm(i1, i2, . . . , il)
, p

)
and, by repeating this argument for each prime in the factorization of d, we

have

d | gcd

(
r

lcm(i1, i2, . . . , il)
, p

)
.

Suppose that

d′ = gcd

(
r

lcm(i1, i2, . . . , il)
, p

)
where d | d′. Then there exists a positive integer c′ such that c < c′ ≤ a and

πc
′ ‖ d′. If πc+1 - d′ we can replace π with any of the other primes in the

factorization of p. Then there exists t ∈ [l] such that πb−c
′ ‖ it, so c′ = c.

We conclude that d′ = d.

Remark 3.13. Let d be defined as in (3.1). Then the l-tuple
(
r
p
, r
p
, . . . , r

p

)
has period p/d in Zi1 ×Zi2 ×· · ·×Zil . Moreover, by the definition of partial

labeling, we have

gcd

(
r

lcm({ix : x ∈ F})
, p

)
= d.

Example 3.14. Let w be the first labeling in Figure 3.4. Note that

d = gcd

(
30

lcm(3, 6)
, 6

)
= gcd(5, 6) = 1.

Consider the colors of the two roots: (2,1) ∈ Z3 × Z6. These represent in

the orbit of w the following colors:{
(2 + 5k,1 + 5k) ∈ Z3 × Z6, k = 0, 1, . . . , 5

}
=

=
{

(2,1), (1,0), (0,5), (2,4), (1,3), (0,2)
}
,
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�
�
�

T
T
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s s
s

21,0

63,2

32,1 53,0

16,3

46,1

�
�
�

T
T
Ts s s

s s
s

21,0

65,2

35,1 52,0

110,6

410,1

Figure 3.4: Examples of (30, 6)-partial labelings.

and then the cardinality of the orbit is 6. Let now w be the second labeling

in Figure 3.4. We have

d = gcd

(
30

lcm(5, 10)
, 6

)
= gcd(3, 6) = 3.

Consider the colors of the two roots: (2,1) ∈ Z5 × Z10. These represent in

the orbit of w the following colors:{
(2 + 5k,1 + 5k) ∈ Z5 × Z10, k = 0, 1, . . . , 5

}
=
{

(2,1), (2,6)
}
,

and then the cardinality of the orbit is 2.

Let u ∈Pr(F ) and denote by j(ux) the color jx ∈ Zix in the label of x.

Remark 3.15. Let w ∈ Pr,p(F ). If (x, y) ∈ E(F ), then we can consider

the difference j(w̃x)− j(w̃y) modulo ix and we note that it does not depend

on the choice of w̃ lift of w in Pr(F ). Then we can define

j(x,y) := π
iy
ix

(j(w̃x)− j(w̃y)) ∈ Zix .

For w ∈Pr,p(F ) we define the set of linear extensions of w as

L (w) :=
{
g ∈ G∗ : for each g̃ lift of g in G(r, n), there exists w̃ lift of w

in Pr(F ) s.t. πrix
(
c(g̃ −1(σx))

)
= −j(w̃x) if x ∈ F , and

if x ≺ y then |g−1(σx)| < |g−1(σy)|
}
,

where d is defined as in (3.1).

Example 3.16. Let w be the second labeling in Figure 3.4. For example

the element g = [52,0, 35,1, 110,6, 410,1, 21,0, 65,2] ∈ G(30, 6, 6)∗ is a linear

extension of w. A lift of g in G(30, 6) is an element

g̃ ∈
{

[52,5k, 35,1+5k, 110,6+5k, 410,1+5k, 21,5k, 65,2+5k], k = 0, 1
}
.



3.3 (r, p)-Partial labelings 35

Then

g̃ −1 ∈
{

[310,−6+5k, 51,5k, 25,−1+5k, 410,−1+5k, 12,5k, 65,−2+5k], k = 0, 1
}

is the inverse of g̃ ∈ G(30, 6).

We let

HDes(w) := {(x, y) ∈ E(F ) : j(x,y) = 0 and σx > σy}

be the homogeneous descent set of w and finally we define the flag-major

index of w as the multiset

Fmaj(w) :=

=

{{ ∑
e∈E(F )

ieχe(w)he +
∑

v∈V (F )

zv(w̃)hv, for each w̃ lift of w in Pr(F )

}}
,

where

χe(w) :=

1 if e ∈ HDes(w),

0 otherwise.

Remark 3.17. Note that the previous definition is equivalent to the fol-

lowing:

Fmaj(w) =
{{

fmaj(w̃), for each w̃ lift of w in Wr(F )
}}
.

Remark 3.18. Let d be defined as in (3.1). Then |Fmaj(w)| = p/d.

Example 3.19. Let w be the first labeling in Figure 3.4. Then the flag-

major index of w is the multiset:

Fmaj(w) =
{{

(2 · 1 + 3 · 1) + (2 · res3(2 + 5k) + 4 · res6(1 + 5k) + 3 · 2),

k = 0, 1, . . . , 5
}}

=
{{

19, 13, 31, 31, 25, 19
}}
.

Let w be the second labeling in Figure 3.4. Then the flag-major index of w

is the multiset:

Fmaj(w) =
{{

(5 · 1 + 2 · 1) + (2 · res5(2 + 5k) + 4 · res10(1 + 5k) + 3 · 5),

k = 0, 1
}}

=
{{

30, 50
}}
.
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Now we can generalize Theorem 2.4 in this way:

Theorem 3.20. Let F be a finite forest with n elements and w an (r, p)-

partial labeling of F . Then∑
g∈L (w)

qfmaj(g) =
∑

s∈Fmaj(w)

qs
[d1]q[d2]q · · · [dn]q∏

x∈F
[hxix]q

,

where di = ri if i < n and dn = rn/p are the fundamental degrees of G.

Remark 3.21. Consider the poset {x1, x2, . . . , xn} with no order relation

between any two different elements. The Hasse diagram Vn of this poset

is a forest consisting of n disjoint vertices. Consider now the (r, p)-partial

labeling w of Vn such that w(xi) = i1,0 for all i ∈ [n]. This is equivalent

to consider the (r, p)-starred labeling w of Vn such that w(xi) = i∗ for all

i ∈ [n]. Then Fmaj(w) = {0} and L (w) = G∗. Therefore in this case

Theorem 3.20 reduces to Corollary 1.9.

Remark 3.22. Let k < n. Consider the poset {x1, x2, . . . , xn} with the

ordering given by xi ≺ xj if and only if i < j < k < n. We called its

Hasse diagram Tn,k (see again Figure 2.3). Consider now the (r, p)-partial

labeling w of Tn,k such that w(xi) = i r,0 for i ∈ [k] and w(xi) = i1,0 for i =

k+1, k+2, . . . , n. Then hxi = i for i ∈ [k] and hxi = 1 otherwise, Fmaj(w) =

{0, kr/p, 2kr/p, . . . , (p− 1)kr/p} and L (w) = {g ∈ G∗ : ∃ k ∈ {0, 1, . . . , p−
1} s.t. c(g̃ −1(i)) = k r

p
for each g̃ lift of g in G(r, n), i ∈ [k] and |g−1(1)| <

|g−1(2)| < · · · < |g−1(k)|}. We finally note that if g ∈ L (w) then g−1 ∈ Ck,

where Ck is the same set defined in (1.1). Then in this case Theorem 3.20

reduces to Theorem 1.11.

Proof of the fmaj hook length formula of Theorem 3.20

Let now w be a fixed (r, p)-partial labeling of F . Let

A =
{
f ∈ Nn : ∃ w̃ lift of w in Pr(F ) s.t. fσx ∈ j(w̃x) if x ∈ F , and

fσx ≥ fσy for each (x, y) ∈ E(F ), where fσx = fσy

implies j(x,y) = 0 and σx < σy
}

and we show that A consists of all g-compatible vectors in Nn as g varies

in the set L (w) of linear extensions of the (r, p)-partial labeling w.
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Proposition 3.23. Let f ∈ Nn. Then f ∈ A if and only if f is g-compatible

for some g ∈ L (w).

Proof. We recall that f is g-compatible if and only if fi = λ|g−1(i)|(g) +

rλ|g−1(i)| + h rp for all i ∈ [n], where λ ∈ Pn and h ∈ {0, 1, . . . , p − 1}
(Lemma 1.13). We divide the proof in two steps:

i) For each x ∈ F , there exists w̃ lift of w in Pr(F ) such that

πrix
(
c(g̃ −1(σx))

)
= −j(w̃x)

for each g̃ lift of g in G(r, n) if and only if there exists ŵ lift of w in

Pr(F ) such that fσx ∈ j(ŵx).

Since fσx ∈ j(ŵx) if and only if λ|g−1(σx)|(g)+hr/p ∈ j(ŵx), then for Lemma

1.15 there exists k ∈ {0, 1, . . . , p − 1} such that λσx(g−1) + kr/p ∈ −j(ŵx)

and this is equivalent to say that for each g̃ lift of g in G(r, n) there exists

w̃ lift of w in Pr(F ) such that πrix
(
c(g̃ −1(σx))

)
= −j(w̃x).

ii) If (x, y) ∈ E(F ), then |g−1(σx)| < |g−1(σy)| if and only if fσx ≥ fσy ,

where fσx = fσy implies σx < σy and j(x,y) = 0.

⇐) If fσx > fσy then |g−1(σx)| < |g−1(σy)| since λ(g) and λ are both par-

titions and the result follows. If fσx = fσy then λ|g−1(σx)|(g) = λ|g−1(σy)|(g).

Then the definition of the statistics λi(g) implies that |g−1(σx)| < |g−1(σy)|,
since σx < σy.

⇒) If |g−1(σx)| < |g−1(σy)| then fσx ≥ fσy since λ(g) and λ are both par-

titions. Moreover, we note that fσx 6= fσy if j(x,y) = 0 and σx > σy, or if

j(x,y) 6= 0. So the result follows by contradiction.

We let now

B =

{
f ∈ Nn : ∃ w̃ lift of w s.t.

fσx =
∑
y∈Fx

(zy(w̃) + iymy) +
∑
e∈Ex

ieχe, for each x ∈ F, my ∈ N
}

where we omitted the dependence from w. Again we show that A and B

are the same set, so in particular B consists of all g-compatible vectors as

g ∈ L (w):
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Proposition 3.24. A = B.

Proof. ⊇) Let f ∈ B and x ∈ F . By definition, fσx = fσy +
(
zx(w̃)+ ixmx+

ixχ(x,y)

)
, where y = p(x). Then f ∈ A .

⊆) Let u be a root. Then there exists w̃ lift of w such that fσu ∈ j(w̃u), so

there exists mu ∈ N such that fσu = resiu (j(w̃u)) + iumu = zu(w̃) + iumu.

Let x be an element covered by u. Then there exists mx ∈ N such that

fσx = fσu + resix
(
j(x,y)

)
+ ixχ(x,u) + ixmx = fσu + zx(w̃) + ixχ(x,u) + ixmx.

We note that fσx ∈ j(w̃x). We obtain the result extending this argument to

every x ∈ F .

Now we are ready to prove the most general version of our main result:

Proof of Theorem 3.20. We compute the formal power series
∑

f∈A q|f | in

two different ways. In the first computation we use Lemma 1.14 and Propo-

sition 3.23 and we have∑
f∈A

q|f | =
∑

g∈L (w)

qλ1(g)qλ2(g) · · · qλn(g)

(1− qr)(1− q2r) · · · (1− q(n−1)r)(1− qnr/p)

=

∑
g∈L (w) q

fmaj(g)

(1− qr)(1− q2r) · · · (1− q(n−1)r)(1− qnr/p)
.

In the second computation we use directly the definition of A and Proposi-

tion 3.24: using the same notations, we have

|f | =
∑
x∈F

fσx =
∑

v∈V (F )

(zv(w̃) + ivmv)hv +
∑

e∈E(F )

ieχehe = s+
∑
x∈F

ixmxhx,

where mx ∈ N, s ∈ Fmaj(w), and then∑
f∈A

q|f | =
∑
f∈B

q|f | =
∑
mx∈N

( ∑
s∈Fmaj(w)

qs
)
q

∑
x∈F

ixmxhx

=
∑

s∈Fmaj(w)

qs
1∏

x∈F
(1− qixhx)

.

Therefore∑
g∈L (w)

qfmaj(g) =
∑

s∈Fmaj(w)

qs
(1− qr)(1− q2r) · · · (1− q(n−1)r)(1− qnr/p)∏

x∈F
(1− qixhx)

.



Chapter 4

Counting forest labelings

4.1 q-Counting colored labelings

Let F be a finite forest with n vertices (see Section 1.6). In this chapter

we generalize the result in Theorem 1.21 by q-counting the set of all labelings

of a fixed forest F using the fmaj statistic, for each type of labeling defined

in Chapters 2 and 3. We recall from [7] that, for any fixed σ ∈ Sn, there are

n!∏
x∈F

hx

labelings w of F such that σ is a linear extension of w, since there is a

bijection between the set {w ∈ W (F ) : σ ∈ L (w)} and the set L (F )

of linear extensions of F . The same argument also applies to any element

g ∈ G(r, n), respectively g ∈ G∗, where G = G(r, p, n). So we have the

following result.

Remark 4.1. Let g ∈ G(r, n) and u ∈ Wr(F ). Then there exists a bijection

{w ∈ Wr(F ) : g ∈ L (w)} → L (u).

Similarly, let now g ∈ G∗ and u ∈ Wr,p(F ). Then there exists a bijection

{w ∈ Wr,p(F ) : g ∈ L (w)} → L (u).

Moreover, if w ∈ Wr(F ) or w ∈ Wr,p(F ), then we have

|L (w)| = n!∏
x∈F

hx
.

39
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To see this, let x1, x2, . . . , xn be a linear extension of F . Let g =

[g1, g2, . . . , gn], where gi = σcii for i = 1, 2, . . . , n. Then the labeling w, de-

fined by w(xi) = gi for i = 1, 2, . . . , n, satisfies g ∈ L (w). With this labeling

we associate the linear extension h such that hi = w(xi) for i = 1, 2, . . . , n.

Then h = g. Vice versa, consider the element h such that hi = u(xi) for

i = 1, 2, . . . , n. Clearly h ∈ L (u). With this linear extension we associate

the labeling w such that w(xi) = hi. Then w = u. Thus, the map is a

bijection.

Note that we did not need to specify g ∈ G(r, n) and u ∈ Wr(F ), or

g ∈ G∗ and u ∈ Wr,p(F ), since the proof is the same. Note also that

|L (w)| = |L (F )|, so this cardinality does not depend on the choice of the

colored labeling w.

Theorem 4.2. Let F be a finite forest with n elements and Wr(F ) the set

of all r-colored labelings of F . Then

∑
w∈Wr(F )

qfmaj(w) =
n!∏

x∈F
hx

∏
x∈F

[hxr]q.

Remark 4.3. For r = 2, the result was given in [10] (Theorem 2.3).

Proof. We consider the double sum

∑
w∈Wr(F )

∑
g∈L (w)

qfmaj(g)

and we evaluate it in two different ways. In the first computation we use

Theorem 2.4 and we have

∑
w∈Wr(F )

∑
g∈L (w)

qfmaj(g) =
∑

w∈Wr(F )

qfmaj(w) [r]q[2r]q · · · [nr]q∏
x∈F

[hxr]q

=
[r]q[2r]q · · · [nr]q∏

x∈F
[hxr]q

∑
w∈Wr(F )

qfmaj(w).

In the second computation we exchange the order of summations and use

Remark 4.1 and Corollary 1.10. Let χ denotes the indicator function which
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has value 1 when the argument is true and 0 otherwise. Then we have

∑
w∈Wr(F )

∑
g∈L (w)

qfmaj(g) =
∑

w∈Wr(F )

∑
g∈G(r,n)

qfmaj(g) χ(g ∈ L (w)) =

=
∑

g∈G(r,n)

∑
w∈Wr(F )

qfmaj(g) χ(g ∈ L (w)) =

=
∑

g∈G(r,n)

qfmaj(g)
∑

w∈Wr(F )

χ(g ∈ L (w)) =

= |L (F )|
∑

g∈G(r,n)

qfmaj(g) =

=
n!∏

x∈F
hx

[r]q[2r]q · · · [nr]q.

Therefore by equating

[r]q[2r]q · · · [nr]q∏
x∈F

[hxr]q

∑
w∈Wr(F )

qfmaj(w) =
n!∏

x∈F
hx

[r]q[2r]q · · · [nr]q

and we have the result.

Theorem 4.4. Let F be a finite forest with n elements and Wr,p(F ) the set

of all (r, p)-colored labelings of F . Then

∑
w∈Wr,p(F )

∑
s∈Fmaj(w)

qs =
n!∏

x∈F
hx

∏
x∈F

[hxr]q.

Proof. Again we consider the double sum

∑
w∈Wr,p(F )

∑
g∈L (w)

qfmaj(g)

and we evaluate it in two different ways. In the first computation by Theo-

rem 3.6 we have

∑
w∈Wr,p(F )

∑
g∈L (w)

qfmaj(g) =

=
[r]q[2r]q · · · [(n− 1)r]q[nr/p]q∏

x∈F
[hxr]q

∑
w∈Wr,p(F )

∑
s∈Fmaj(w)

qs.
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In the second computation by exchanging the order of summations and using

Remark 4.1 and Corollary 1.9 we have∑
w∈Wr,p(F )

∑
g∈L (w)

qfmaj(g) =
∑

w∈Wr,p(F )

∑
g∈G∗

qfmaj(g) χ(g ∈ L (w)) =

=
∑
g∈G∗

qfmaj(g)
∑

w∈Wr,p(F )

χ(g ∈ L (w)) =

=
n!∏

x∈F
hx

[r]q[2r]q · · · [(n− 1)r]q[nr/p]q.

Therefore by equating we have the result.

Let now T be a linear tree and w an arbitrary (r, p)-colored labeling of

T . We let

fmaj(w) := min Fmaj(w)

be the smallest value of the multiset Fmaj(w). If g ∈ G∗ is the unique linear

extension of w, then fmaj(w) = fmaj(g). If p = 1, see Remark 2.3. We have

the following result.

Corollary 4.5. Let T be a linear tree with n elements and Wr,p(T ) the set

of all (r, p)-colored labelings of T . Then

∑
w∈Wr,p(T )

qfmaj(w) =
n−1∏
k=1

[kr]q[rn/p]q.

Proof. Note that ∑
w∈Wr,p(T )

qfmaj(w) =
∑
g∈G∗

qfmaj(g).

Then the result follows from Corollary 1.9.

4.2 q-Counting partial labelings

We can generalize the previous results to partial labelings of a fixed forest

F in the following way. Let x1, x2, . . . , xn be a linear extension of F . We

fix the vector I := (i1, i2, . . . , in) ∈ Nn, where ik is a positive divisor of r for

k = 1, 2, . . . , n, and ij is a divisor of ik if xj is covered by xk in the forest
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F . We let ΓI := Zi1 × Zi2 × . . .× Zin and denote by

Pr,I(F ) := {w ∈Pr(F ) : (γ(x1), γ(x2), . . . , γ(xn)) ∈ ΓI ,

for each x1, x2 . . . , xn ∈ L (F )},

where γ is given in Definition 2.16, the set of all r-partial labelings w of F

in which each color is defined as a residue class modulo a fixed divisor of

r. Let now w ∈Pr,I(F ) and consider the following equivalence relation on

L (w): if g, h ∈ L (w) then

g ∼ h if and only if |g| = |h| ∈ Sn.

We denote by L (w)/∼ the set of all equivalence classes.

Proposition 4.6. Let g ∈ G(r, n) and u ∈ Pr,I(F ). Then there exists a

bijection

{w ∈Pr,I(F ) : g ∈ L (w)} → L (u)/∼ .

Moreover, if w ∈Pr,I(F ), then we have

|L (w)| = n! rn∏
x∈F

hxix
.

Proof. We use the same idea shown in Remark 4.1. So let x1, x2, . . . , xn be

a linear extension of F and g = [g1, g2, . . . , gn] ∈ G(r, n), where gk = σckk for

k = 1, 2, . . . , n. Then the partial labeling w, defined by

w(xk) = σ
πrik

(ck)

k = σik,jkk

for k = 1, 2, . . . , n, satisfies g ∈ L (w). With this labeling we associate the

equivalent class h of linear extensions such that, for each h ∈ h, we have

|h| = σ and c(hk) ∈ (πrik)−1(jk) for k = 1, 2, . . . , n. Then h = g. Vice versa,

let u be the labeling defined by u(xk) = τ ik,jkk for k = 1, 2, . . . , n and consider

the class h of linear extensions such that, for each h ∈ h, we have |h| = τ

and c(hk) = ck ∈ (πrik)−1(jk) for k = 1, 2, . . . , n. Clearly h ∈ L (u). With

this class we associate the labeling w such that w(xk) = τ
πrik

(ck)

k = τ ik,jkk .

Then w = u. Thus, the map is a bijection.

Let now g ∈ L (w)/∼ and note that the cardinality of g is

C :=
∏
x∈F

r

ix
,



44 4 Counting forest labelings

since jk ∈ Zik represents r/ik distinct classes in Zr, for each k = 1, 2, . . . , n.

Then we have

|L (w)| = C |L (w)/∼ | = C |L (F )|,

so this cardinality does not depend on the choice of the partial labeling

w.

Theorem 4.7. Let F be a finite forest with n elements and Pr,I(F ) the set

of all r-partial labelings of F where vector I is fixed. Then∑
w∈Pr,I(F )

qfmaj(w) =
n! rn∏

x∈F
hxix

∏
x∈F

[hxix]q.

Proof. We consider the double sum∑
w∈Pr,I(F )

∑
g∈L (w)

qfmaj(g)

and we evaluate it in two different ways. In the first computation by Theo-

rem 2.19 we have∑
w∈Pr,I(F )

∑
g∈L (w)

qfmaj(g) =
[r]q[2r]q · · · [nr]q∏

x∈F
[hxix]q

∑
w∈Pr,I(F )

qfmaj(w).

In the second computation by exchanging the order of summations and using

Proposition 4.6 and Corollary 1.10 we have∑
w∈Pr,I(F )

∑
g∈L (w)

qfmaj(g) =
∑

w∈Pr,I(F )

∑
g∈G(r,n)

qfmaj(g) χ(g ∈ L (w)) =

=
∑

g∈G(r,n)

qfmaj(g)
∑

w∈Pr,I(F )

χ(g ∈ L (w)) =

= C |L (F )|
∑

g∈G(r,n)

qfmaj(g) =

=
n! rn∏

x∈F
hxix

[r]q[2r]q · · · [nr]q.

Therefore by equating we have the result.

We denote now by

Pr,p,I(F ) := Pr,I(F )/Cp
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the set of all (r, p)-partial labelings w of F in which each color is defined

as a residue class modulo a fixed divisor of r. Let now w ∈ Pr,p,I(F ) and

consider again the equivalence relation on L (w) such that, if g, h ∈ L (w),

then

g ∼ h if and only if |g| = |h| ∈ Sn.

We denote by L (w)/∼ the set of all equivalence classes.

Proposition 4.8. Let g ∈ G∗ and u ∈ Pr,p,I(F ). Then there exists a

bijection

{w ∈Pr,p,I(F ) : g ∈ L (w)} → L (u)/∼ .

Moreover, if w ∈Pr,p,I(F ), then we have

|L (w)| = n! rn

d
∏
x∈F

hxix
,

where

d = gcd

(
r

lcm(i1, i2, . . . , in)
, p

)
. (4.1)

Proof. For the first part the proof is the same as in Proposition 4.6, where

now g ∈ G∗ and u ∈Pr,p,I(F ).

Moreover, the cardinality |L (w)| does not depend on the choice of the par-

tial labeling w, since we have

|L (w)| = C |L (w)/∼ | = C |L (F )|,

where C is the cardinality of class g ∈ L (w)/∼ as a subset of L (w). We

just need to prove that

C =
rn

d
∏
x∈F

ix
.

To see this, we can compute the number C of (distinct) lifts of g in G(r, n)

and then divide this number for p, to obtain the number of (distinct) repre-

sentatives of these lifts in G∗. This is equivalent to prove that

C =
rnp

d
∏
x∈F

ix
.
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Consider the n-tuple of colors (j1, j2, . . . , jn) ∈ ΓI . From Remark 3.13

we know that the period of the n-tuple (r/p, r/p, . . . , r/p) in ΓI is p/d.

Therefore, the set

J :=

{(
j1 + k

r

p
, j2 + k

r

p
, . . . , jn + k

r

p

)
∈ ΓI : k = 0, 1, . . . , p− 1

}

contains p/d distinct elements. Now we note that each jl ∈ Zil represents

r/il distinct classes in Zr, for l ∈ [n]. So each element of J corresponds to

rn

i1i2 · · · in

distinct elements in (Zr)n. Then the result follows.

Theorem 4.9. Let F be a finite forest with n elements and Pr,p,I(F ) the

set of all (r, p)-partial labelings of F where vector I is fixed. Then

∑
w∈Pr,p,I(F )

∑
s∈Fmaj(w)

qs =
n! rn

d
∏
x∈F

hxix

∏
x∈F

[hxix]q,

where d is defined as in (4.1).

Proof. Again we consider the double sum

∑
w∈Pr,p,I(F )

∑
g∈L (w)

qfmaj(g)

and we evaluate it in two different ways. In the first computation by Theo-

rem 3.20 we have

∑
w∈Pr,p,I(F )

∑
g∈L (w)

qfmaj(g) =

=
[r]q[2r]q · · · [(n− 1)r]q[nr/p]q∏

x∈F
[hxix]q

∑
w∈Pr,p,I(F )

∑
s∈Fmaj(w)

qs.

In the second computation by exchanging the order of summations and using



4.3 A particular case: the disjoint union of two linear trees 47

Proposition 4.8 and Corollary 1.9 we have∑
w∈Pr,p,I(F )

∑
g∈L (w)

qfmaj(g) =
∑

w∈Pr,p,I(F )

∑
g∈G∗

qfmaj(g) χ(g ∈ L (w)) =

=
∑
g∈G∗

qfmaj(g)
∑

w∈Pr,p,I(F )

χ(g ∈ L (w)) =

= C |L (F )|
∑
g∈G∗

qfmaj(g) =

=
n! rn

d
∏
x∈F

hxix
[r]q[2r]q · · · [(n− 1)r]q[nr]q.

Therefore by equating we have the result.

4.3 A particular case: the disjoint union of two

linear trees

Consider the case in which the poset F is the disjoint union of two

totally ordered sets, i.e., F consists of two linear trees T1 and T2. Let n

be the size of T1 and m the size of T2, so n + m is the size of F . For

i = 1, 2, let vi be the root of Ti. If w is an arbitrary r-colored labeling of

F , let wi be the restriction of w to the linear tree Ti. Note that, if ui is an

r-colored labeling of Ti such that c(ui(x)) = c(wi(x)) for each x ∈ Ti and

HDes(ui) = HDes(wi), then fmaj(ui) = fmaj(wi). Then

fmaj(w) = fmaj(u1) + fmaj(u2),

from the definition of fmaj. Finally, by noting that |Wr(T1)| = n! rn,

|Wr(T2)| = m! rm and |Wr(F )| = (n+m)! rn+m, from Theorem 4.2 we have

∑
w∈Wr(F )

qfmaj(w) =
(n+m)!

n!m!
·

2∏
i=1

∑
ui∈Wr(Ti)

qfmaj(ui)

=

(
n+m

n

)
·
n∏
k=1

[kr]q ·
m∏
l=1

[lr]q.

Then, for this q-counting, consider two independent labelings for T1 and

T2 is equivalent to consider a total labeling for F , up to a constant. For

this reason, in this section we study the product Wr(T1) ×Wr(T2) and two

particular sets obtained from it.
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Let Cp be the cyclic subgroup of G(r, n)×G(r,m) of order p generated

by

([1r/p, 2r/p, . . . , nr/p], [1r/p, 2r/p, . . . ,mr/p]).

For any w ∈ Wr(T1)×Wr(T2) we denote by

col(w) :=
∑
x∈F

c(wx)

the color weight of w. We consider two particular sets obtained from

Wr(T1)×Wr(T2): its subset

G := Γp(Wr(T1)×Wr(T2))

:= {w ∈ Wr(T1)×Wr(T2) : col(w) ≡ 0 mod p} ,

and its quotient

H :=
Wr(T1)×Wr(T2)

Cp
,

where the action of Cp on the set Wr(T1)×Wr(T2) is defined by adding the

same multiple of r/p to all the colors of the labels of F .

Consider the subset G and q-count all its elements according to the fmaj

index. Then we have the following result:

Proposition 4.10. Let T1 and T2 be linear trees of size n and m, respec-

tively. Let G = Γp(Wr(T1)×Wr(T2)). Then

∑
w∈G

qfmaj(w) = Degp

(
n∏
k=1

[kr]q ·
m∏
l=1

[lr]q

)
,

where

Degp

(∑
k≥0

ck q
k

)
:=
∑
k≥0

ckp q
kp.

Proof. From the definition of fmaj and Theorem 4.2, we have

∑
w∈Wr(T1)×Wr(T2)

qfmaj(w) =
2∏
i=1

∑
ui∈Wr(Ti)

qfmaj(ui) =
n∏
k=1

[kr]q ·
m∏
l=1

[lr]q.

Moreover, by definition

fmaj(w) ≡
∑
x∈F

zx(w)hx mod r

≡ col(w) mod r.
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Figure 4.1: Example of G , with r = p = 2, n = 2, m = 1.

Then we take exactly the monomials of

n∏
k=1

[kr]q ·
m∏
l=1

[lr]q

of degree multiple of p.

Example 4.11. Let G be the set of labelings in Figure 4.1. Then∑
w∈G

qfmaj(w) = 1 + q2 + q2 + q4 + q2 + q2 + q4 + q4

= 1 + 4q2 + 3q4,

and

Deg2 ([2]q[4]q · [2]q) = Deg2
(
(1 + q)2 · (1 + q + q2 + q3)

)
= Deg2

(
1 + 3q + 4q2 + 4q3 + 3q4 + q5)

)
= 1 + 4q2 + 3q4.

Consider now the set H and let w ∈H . For i = 1, 2, let ci be the color

of the root vi of Ti in w (to mean that w can be represented by its lift in

Wr(T1)×Wr(T2) such that ci is the color of the root vi), and let µi ∈ [0, p−1]

such that

ci ∈ [µid, (µi + 1)d− 1]. (4.2)
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We define the H-flag-major index of w as the following subset of Fmaj(w):

Hfmaj(w) :=


{

min Fmaj(w)
}

if µ1 = µ2,{{
hfmaj0(w), hfmaj1(w)

}}
if µ1 6= µ2,

where

hfmaj0(w) :=
∑

e∈E(F )

(
rχr,p

e (w) + resr (ce)
)
he

+ n · resr/p (c1) +m · resr
(
resr/p (c1) + c2 − c1

)
,

hfmaj1(w) :=
∑

e∈E(F )

(
rχr,p

e (w) + resr (ce)
)
he

+m · resr/p (c2) + n · resr
(
resr/p (c2) + c1 − c2

)
.

Remark 4.12. If µ1 = µ2, note that

min Fmaj(w) =
∑

e∈E(F )

(
rχr,p

e (w) + resr (ce)
)
he

+ n · resr/p (c1) +m · resr/p (c2) .

If µ1 6= µ2, then

resr/p (ci) = ci − kr/p = resr (ci − kr/p)

for some k ∈ [0, p− 1], and

resr
(
resr/p (ci) + cj − ci

)
= resr

(
resr/p (ci) + cj − resr/p (ci)− kr/p

)
= resr (cj − kr/p) ,

where (i, j) = (1, 2) or (i, j) = (2, 1). So Hfmaj(w) ⊆ Fmaj(w).

Now we q-count all the elements of H according to the Hfmaj index.

Then we have the following result:

Proposition 4.13. Let T1 and T2 be linear trees of size n and m, respec-

tively. Let H = Wr(T1)×Wr(T2)/Cp. Then∑
w∈H

∑
s∈Hfmaj(w)

qs =

=

n−1∏
k=1

[kr]q[rn/p]q ·
m−1∏
l=1

[lr]q[rm/p]q ·
(

[p]qrm/p + [p]qrn/p − 1
)
.
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Proof. Let U := {u ∈ Wr(T1) × Wr(T2) : c1 < d or c2 < d}. Let now

H0 := {w ∈ H : µ1 = µ2} and H1 := {w ∈ H : µ1 6= µ2}, where µi is

given in (4.2), and note that H = H0 ∪H1. Then there exists a bijection

of multisets

φ :
{{
s ∈ Hfmaj(w) : w ∈H

}}
→
{{

fmaj(u) : u ∈ U
}}
,

where

φ(s) ∈
{{

fmaj(u) : u ∈ Wr(T1)×Wr(T2) s.t. c1 < d and c2 < d
}}

if w ∈H0, and

φ(s) ∈
{{

fmaj(u) : u ∈ Wr(T1)×Wr(T2) s.t. c1 < d and c2 ≥ d
}}

∪
{{

fmaj(u) : u ∈ Wr(T1)×Wr(T2) s.t. c1 ≥ d and c2 < d
}}

if w ∈H1. If we identify a class of labelings with its minimal representative

(with a slight abuse of notation), then by using the above bijection φ, from

Theorem 4.2 and Corollary 4.5, we have∑
w∈H

∑
s∈Hfmaj(w)

qs =

=
∑

w1∈Wr,p(T1)

qfmaj(w1)
∑

w2∈Wr(T2)

qfmaj(w2)

+
∑

w1∈Wr(T1)

qfmaj(w1)
∑

w2∈Wr,p(T2)

qfmaj(w2)

−
∑

w1∈Wr,p(T1)

qfmaj(w1)
∑

w2∈Wr,p(T2)

qfmaj(w2)

=
n−1∏
k=1

[kr]q[rn/p]q ·
m∏
l=1

[lr]q +
n∏
k=1

[kr]q ·
m−1∏
l=1

[lr]q[rm/p]q

−
n−1∏
k=1

[kr]q[rn/p]q ·
m−1∏
l=1

[lr]q[rm/p]q

=

n−1∏
k=1

[kr]q[rn/p]q ·
m−1∏
l=1

[lr]q[rm/p]q ·
(

[rm]q
[rm/p]q

+
[rn]q

[rn/p]q
− 1

)

=

n−1∏
k=1

[kr]q[rn/p]q ·
m−1∏
l=1

[lr]q[rm/p]q ·
(

[p]qrm/p + [p]qrn/p − 1
)
.
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Figure 4.2: Example of H , with r = p = 2, n = 2, m = 1.

Example 4.14. Let H be the set of labelings in Figure 4.2. Then∑
w∈H

∑
s∈Hfmaj(w)

qs =1 + q + (q + q2) + (q2 + q3) + q2 + q

+ (q3 + q4) + (q2 + q3) = 1 + 3q + 4q2 + 3q3 + q4,

and

[2]q[4/2]q · [2/2]q ·
(
[2]q + [2]q2 − 1

)
= (1 + q)2 · (1 + q + 1 + q2 − 1)

= 1 + 3q + 4q2 + 3q3 + q4.

Remark 4.15. If T is a linear tree of size n, note that the following maps

are bijections:

Wr(T )→ G(r, n), w 7→ g,

and

Wr,p(T )→ G∗, w 7→ g,

where g is the unique linear extension of the labeling w.

In the following chapter we extend this result to G and H .



Chapter 5

Invariants and products

5.1 The product Bn ×Bm

Let n,m ∈ N, n,m > 0. Let C[X,Y ] := C[x1, . . . , xn, y1, . . . , ym] and

denote by Sk[X,Y ] the algebra of polynomials in C[X,Y ] generated by (1

and by) the monomials of degree k. Let Bn ×Bm the direct product of two

Coxeter groups of type B. We consider the following two groups obtained

from Bn ×Bm: its subgroup

D(Bn ×Bm) := {(g, h) ∈ Bn ×Bm : neg(g) + neg(h) ≡ 0 mod 2},

and its quotient
Bn ×Bm
±id

,

where id := (idBn , idBm) is the identity element of Bn ×Bm.

Remark 5.1. (Bn × Bm)/ ± id is a projective reflection group: it is the

quotient of a reflection group modulo the cyclic subgroup ±id of order 2.

We know that it acts on the algebra S2[X,Y ] and its invariants coincide

with the invariants of Bn ×Bm, which are

C[e1(x
2
1, . . . , x

2
n), . . . , en(x21, . . . , x

2
n)]⊗C[e1(y

2
1, . . . , y

2
m), . . . , em(y21, . . . , y

2
m)],

where the ej ’s are the elementary symmetric functions. Then the invariant

ring of (Bn ×Bm)/± id is generated as a C-algebra by n+m algebraically

independent homogeneous polynomials (together with 1). See Section 1.5.

53
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Denote by I((Bn × Bm)/ ± id) the ideal of S2[X,Y ] generated by the

invariants of (strictly) positive degree and let

R

(
Bn ×Bm
±id

)
=

S2[X,Y ]

I((Bn ×Bm)/± id)

be the coinvariant algebra of (Bn × Bm)/ ± id. We define the flag-major

index of an element γ ∈ D(Bn ×Bm) as

fmaj(γ) := fmaj(g) + fmaj(h),

where g and h are the projections of γ on Bn and Bm, respectively. We now

associate to any γ a monomial aγ ∈ C[X,Y ] of degree fmaj(γ) such that

aγ(X,Y ) := ag(X)ah(Y ) =
n∏
i=1

x
λi(g)
|g(i)|

m∏
j=1

y
λj(h)

|h(j)| .

Proposition 5.2. The set {aγ : γ ∈ D(Bn × Bm)} represents a basis for

the coinvariant algebra R((Bn ×Bm)/± id).

Proof. Recall that R((Bn ×Bm)/± id) is the subalgebra of R(Bn ×Bm) =

C[X,Y ]/I(Bn × Bm) given by the elements of even degree. Then R((Bn ×
Bm)/± id) has a basis given by

{agah : (g, h) ∈ Bn ×Bm and deg(agah) ≡ 0 mod 2}.

We note that

deg(agah) = fmaj(g) + fmaj(h) =
∑
i

λi(g) +
∑
j

λj(h)

and then

deg(agah) ≡ neg(g) + neg(h) mod 2,

since
∑

i λi(g) ≡
∑

i ki(g) ≡ neg(g) mod 2. Then the basis is exactly the set

{aγ : γ ∈ D(Bn ×Bm)}.

Moreover,

dimR

(
Bn ×Bm
±id

)
= |D(Bn ×Bm)| =

∣∣∣∣Bn ×Bm±id

∣∣∣∣ .
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Example 5.3. Let n = 2 and m = 1. The elements of D(B2 ×B1) are

([1, 2], [1]) ([−1,−2], [1]) ([−1, 2], [−1]) ([−2, 1], [−1])

([2, 1], [1]) ([1,−2], [−1]) ([2,−1], [−1]) ([−2,−1], [1]).

The corresponding monomials

1 x1x2 x1y1 x2y1

x22 x21x2y1 x1x
2
2y1 x1x

3
2

form a basis for S2[x1, x2, y1]/(x
2
1 + x22, x

2
1x

2
2, y

2
1), that is the coinvariant

algebra of (B2 ×B1)/± id.

Consider now D(Bn ×Bm) and note that

Inv(Bn ×Bm) ⊂ Inv
(
D(Bn ×Bm)

)
⊂ Inv(Dn ×Dm),

since Dn ×Dm ⊂ D(Bn ×Bm) ⊂ Bn ×Bm.

Claim 5.4. The invariant ring of D(Bn ×Bm) is generated as a C-algebra

by (1 and by) n+m+ 1 homogeneous polynomials, which are

• the n elementary symmetric functions ei(x
2
1, . . . , x

2
n) for i ∈ [n],

• the m elementary symmetric functions ej(y
2
1, . . . , y

2
m) for j ∈ [m],

• the monomial eXeY , where eX := x1 · · ·xn and eY := y1 · · · ym.

Equivalently, Inv(D(Bn×Bm)) is generated by the basic invariants of Bn×
Bm and eXeY .

To prove Claim 5.4 we need the following result.

Lemma 5.5. Let G be a finite group and V a complex vector field of finite

dimension n. Consider a representation of G on V and suppose that such

representation is monomial, i.e., there exists a basis B = {b1, b2, . . . , bn}
of V such that g(bi) = cjibj, where cji ∈ C, for every g ∈ G. Let v =

a1b1 + . . .+ anbn be an invariant element of V and suppose that there exists

a subgroup H of G and l ∈ [n] such that∑
h∈H

h(bl) = 0.

Then al = 0.
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Proof. Consider any G-orbit of the basis B and consider the projection of

v =
∑
aibi on the elements of this G-orbit. This element is still invariant.

Then we can suppose that the action of G on B is transitive. Let S be a

set of representatives of (left) cosets of H in G, i.e., G = S ·H =
⊎
s∈S sH,

where
⊎

denotes the disjoint union. Then∑
g∈G

g(bl) =
∑
s∈S

∑
h∈H

sh(bl) = 0.

This holds for every element bj ∈ B: since the representation is monomial

and G is transitive, there exists an element g̃ ∈ G such that bj = c g̃(bl) for

a suitable c ∈ C. So∑
g∈G

g(bj) =
∑
g∈G

g(c g̃(bl)) =
∑
g∈G

c gg̃(bl) = c
∑
g′∈G

g′(bl) = 0.

Then, since v is invariant,

v =
1

|G|
∑
g∈G

g(v) =
1

|G|
∑
g∈G

∑
i

aig(ei) = 0.

Finally ai = 0 for each i ∈ [n].

Proof of Claim 5.4. Let P be a D(Bn × Bm)-invariant polynomial. Then

P is Dn × Dm-invariant. Suppose that P is homogeneous: if not, then

its homogeneous components are still invariant (from the uniqueness of the

decomposition in homogeneous components). If eXeY divides P , then we

proceed by induction. If eXeY does not divide P , then there exists a mono-

mial M = xd11 · · ·xdnn y
f1
1 · · · y

fm
m in P such that at least one of the di’s or fj ’s

is 0. We can clearly assume d1 = 0. Again suppose that at least one of the

di’s or fj ’s in M is odd. Suppose d2 ≡ 1 mod 2. Consider now the element

γ := (γ1, idBm) ∈ D(Bn×Bm) such that γ1(i) = −i if i = 1, 2 and γ1(j) = j

if j ∈ [3, n]. Then γ(M) = −M , i.e., γ(M) +M = 0. Since < γ > has order

2, from Lemma 5.5 the coefficient of M in P is 0.

Otherwise, suppose f1 ≡ 1 mod 2. Then consider the element γ := (γ1, γ2) ∈
D(Bn × Bm) such that γ1(1) = −1, γ2(1) = −1 and γ1(j) = j if j ∈ [2, n],

γ2(i) = i if i ∈ [2,m]. Repeat the same argument.

We can conclude that all the di’s and fj ’s in each monomial M of P are

even. Then P is Bn ×Bm-invariant, since it is Dn ×Dm-invariant.
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Note again that, since

Inv(Bn ×Bm) ⊂ Inv(D(Bn ×Bm)) ⊂ Inv(Dn ×Dm),

then R(Dn×Dm) is a quotient of R(D(Bn×Bm)) which in turn is a quotient

of R(Bn ×Bm). In particular

R
(
D(Bn ×Bm)

)
=
R(Bn ×Bm)

(eXeY )
,

where (eXeY ) is the ideal generated by eXeY in R(Bn ×Bm).

Proposition 5.6. Consider the set {agah : (g, h) ∈ Bn ×Bm}. Then:

• the subset of elements agah such that g(n) < 0 and h(m) < 0 is a basis

for the ideal (eXeY ) in R(Bn ×Bm),

• all the other elements agah form a basis for R(D(Bn ×Bm)).

To prove Proposition 5.6 we need the following result.

Lemma 5.7. Let M ∈ C[X] be a monomial such that x1 · · ·xn divides M .

Then M admits the following expansion in R(Bn):

M =
∑

g∈−∆n

ηgag,

where ηg ∈ Z and ∆n = {g ∈ Bn : g(n) > 0}.

Proof. If x21 · · ·x2n |M , then M = 0 in R(Bn). So we can suppose

M = x1 · · ·xn ·N

and x1 · · ·xn - N . From Corollary 1.18, N admits the following expansion

in R(Dn):

N =
∑
g∈∆n

ηgag,

where ηg ∈ Z. Since R(Dn) = R(Bn)/(x1 · · ·xn), then in R(Bn) we have

N =
∑
g∈∆n

ηgag + P · x1 · · ·xn,
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where P ∈ R(Bn). Then in R(Bn)

M =
∑
g∈∆n

ηgag · x1 · · ·xn + P · x21 · · ·x2n

=
∑
g∈∆n

ηgag · x1 · · ·xn =
∑
g∈∆n

ηg

n∏
i=1

x
λi(g)+1
|g(i)| .

Note that if g ∈ ∆n, then kn(g) = 0 and ki(g) = ki+1(g)+εi(g) if i ∈ [n−1],

where

εi(g) :=

1 if g(i) · g(i+ 1) < 0,

0 otherwise.

Consider now the element h := −g ∈ Bn. Note that h(n) < 0 and εi(h) =

εi(g) for i ∈ [n − 1]. By definition, we have HDes(h) = HDes(g) and so

di(h) = di(g) for each i ∈ [n]. Moreover, kn(h) = 1 and ki(h) = ki+1(h) +

εi(g) if i ∈ [n− 1], so ki(h) = ki(g) + 1 for i ∈ [n]. Then

λi(h) = 2di(h) + ki(h) = 2di(g) + ki(g) + 1 = λi(g) + 1.

Finally, we have

M =
∑
g∈∆n

ηg

n∏
i=1

x
λi(g)+1
|g(i)| =

∑
h∈−∆n

ηh

n∏
i=1

x
λi(h)
|h(i)| =

∑
h∈−∆n

ηhah,

where ηh ∈ Z.

Proof of Proposition 5.6. If g(n) < 0 and h(m) < 0, then λn(g) 6= 0 and

λm(h) 6= 0. Recall that λ(g) and λ(h) are partitions, so λi(g) 6= 0 and

λj(h) 6= 0 for each i ∈ [n], j ∈ [m]. Then eXeY divides agah. Moreover,

from Lemma 5.7 we note that in R(Bn × Bm) a monomial in which all the

variables appear is a linear combination of elements agah such that g(n) < 0

and h(m) < 0.

Note that the elements agah such that g(n) and h(m) are not both negative

are equivalently the monomials a′ga
′
h, eXa

′
ga
′
h, eY a

′
ga
′
h such that (g, h) ∈ D∗n×

D∗m. These a′ga
′
h are independent in R(Dn × Dm) since they form a basis

for it. Then they are independent in R(D(Bn×Bm)), since R(Dn×Dm) is

a quotient of it.
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Consider the group (Bn×Bm)/± id. Let δ ∈ (Bn×Bm)/± id and let g

and h be the projections of a representative of δ on Bn and Bm, respectively.

We define the H-flag-major index of an element δ ∈ (Bn×Bm)/± id as the

following multiset:

Hfmaj(δ) :=


{

hfmaj0(δ)
}

if g(n)h(m) > 0,{{
hfmaj0(δ), hfmaj1(δ)

}}
if g(n)h(m) < 0,

where

hfmaj0(δ) :=

n+m∑
i=1

λ
(0)
i (δ), hfmaj1(δ) :=

n+m∑
i=1

λ
(1)
i (δ),

λ
(0)
i (δ) := 2 · di(δ) + k

(0)
i (δ), λ

(1)
i (δ) := 2 · di(δ) + k

(1)
i (δ),

di(δ) :=
(
d1(g), d2(g), . . . , dn(g), d1(h), d2(h), . . . , dm(h)

)
,

k
(0)
i (δ) :=



0 if i = n+m,

k
(0)
i+1(δ) + εi−n(h) if i ∈ [n+ 1, n+m− 1],

ε(δ) if i ∈ n,

k
(0)
i+1(δ) + εi(g) if i ∈ [n− 1],

k
(1)
i (δ) :=



1 if i = n+m,

k
(1)
i+1(δ) + εi−n(h) if i ∈ [n+ 1, n+m− 1],

0 if i ∈ n,

k
(1)
i+1(δ) + εi(g) if i ∈ [n− 1],

ε(δ) :=

1 if g(n) · h(m) < 0,

0 otherwise,

εi(g) =

1 if g(i) · g(i+ 1) < 0,

0 otherwise,

and dj(g) = |{i ∈ [j, n− 1] : i ∈ HDes(g)}| defined as in Section 1.3.

Let U := {(α, β) ∈ Bn × Bm : α(n) > 0 or β(m) > 0} and fmaj(α, β) :=
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fmaj(α) + fmaj(β) for (α, β) ∈ Bn ×Bm. Note that there exists a bijection

of multisets

φ :
{{
s ∈ Hfmaj(δ) : δ ∈ (Bn×Bm)/± id

}}
→
{{

fmaj(α, β) : (α, β) ∈ U
}}
,

where

φ(s) ∈
{{

fmaj(α, β) : (α, β) ∈ Bn ×Bm s.t. α(n) > 0 and β(m) > 0
}}

if g(n)h(m) > 0, and

φ(s) ∈
{{

fmaj(α, β) : (α, β) ∈ Bn ×Bm s.t. α(n) > 0 and β(m) < 0
}}

∪
{{

fmaj(α, β) : (α, β) ∈ Bn ×Bm s.t. α(n) < 0 and β(m) > 0
}}

if g(n)h(m) < 0.

Remark 5.8. Using the bijection φ, we can conclude that a basis for

R(D(Bn ×Bm)) is the set{
a
(0)
δ : δ ∈ (Bn ×Bm)/± id s.t. δ(n)δ(n+m) > 0

}
∪
{
a
(0)
δ , a

(1)
δ : δ ∈ (Bn ×Bm)/± id s.t. δ(n)δ(n+m) < 0

}
,

where

a
(0)
δ (X,Y ) :=

n∏
i=1

x
λ
(0)
i (δ)

|δ(i)|

n+m∏
j=n+1

y
λ
(0)
j (h)

|δ(j)| ,

a
(1)
δ (X,Y ) :=

n∏
i=1

x
λ
(1)
i (δ)

|δ(i)|

n+m∏
j=n+1

y
λ
(1)
j (h)

|δ(j)| .

Moreover,

dimR
(
D(Bn ×Bm)

)
=

3

2
·
∣∣∣∣Bn ×Bm±id

∣∣∣∣ =
3

2
· |D(Bn ×Bm)|.

Example 5.9. Let n = 2 and m = 1. The elements δ of (B2 × B1)/ ± id
are

([1, 2], [1]) ([−1, 2], [1]) ([−2, 1], [1]) ([2, 1], [1])

([−1,−2], [1]) ([1,−2], [1]) ([2,−1], [1]) ([−2,−1], [1]).
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The corresponding monomials are

1 x1 x2 x22

x1x2 x21x2 x1x
2
2 x1x

3
2

y1 x1y1 x2y1 x22y1,

and they form a basis for C[x1, x2, y1]/(x
2
1 + x22, x

2
1x

2
2, y

2
1, x1x2y1), that is

the coinvariant algebra of D(B2 ×B1).

Proposition 5.2 and Remark 5.8 show a duality between the groups (Bn×
Bm)/± id and D(Bn ×Bm). Let us generalize this behavior.

5.2 The product G(r, n)×G(r,m)

Let n,m, r ∈ N, n,m, r > 0, and denote by ζr the primitive r-th root of

the unity. Consider the direct product G(r, n) × G(r,m) of two groups of

r-colored permutations. Let p be a positive divisor of r. We consider the

following two groups obtained from G(r, n)×G(r,m): its subgroup

G := Γp(G(r, n)×G(r,m))

:= {(g, h) ∈ G(r, n)×G(r,m) : col(g) + col(h) ≡ 0 mod p},

and its quotient

H :=
G(r, n)×G(r,m)

Cp
,

where Cp is the cyclic subgroup of G(r, n)×G(r,m) of order p generated by

([1r/p, 2r/p, . . . , nr/p], [1r/p, 2r/p, . . . ,mr/p]).

H is a projective reflection group, since it is the quotient of a reflection

group modulo a cyclic scalar subgroup of order p. So it acts on the algebra

Sp[X,Y ] and its invariants coincide with the invariants of G(r, n)×G(r,m),

which are

C[e1(x
r
1, . . . , x

r
n), . . . , en(xr1, . . . , x

r
n)]⊗C[e1(y

r
1, . . . , y

r
m), . . . , em(yr1, . . . , y

r
m)],

where the ej ’s are the elementary symmetric functions. Then the invariant

ring of H is generated as a C-algebra by n + m algebraically independent

homogeneous polynomials (together with 1). See Section 1.5.
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Denote by I(H) the ideal of Sp[X,Y ] generated by the invariants of

(strictly) positive degree and let

R(H) =
Sp[X,Y ]

I(H)

be the coinvariant algebra of H. We define the flag-major index of an

element γ ∈ G as

fmaj(γ) := fmaj(g) + fmaj(h),

where g and h are the projections of γ on G(r, n) and G(r,m), respectively.

We now associate to any element γ ∈ G a monomial aγ ∈ C[X,Y ] of degree

fmaj(γ) such that

aγ(X,Y ) := ag(X)ah(Y ) =
n∏
i=1

x
λi(g)
|gi|

m∏
j=1

y
λj(h)

|hj | .

Proposition 5.10. The set {aγ : γ ∈ G} represents a basis for the coin-

variant algebra R(H).

Proof. Recall that R(H) is the subalgebra of

R
(
G(r, n)×G(r,m)

)
=

C[X,Y ]

I
(
G(r, n)×G(r,m)

)
given by the elements of degree multiple of p. Then R(H) has a basis given

by

{agah : (g, h) ∈ G(r, n)×G(r,m) and deg(agah) ≡ 0 mod p}.

We note that

deg(agah) = fmaj(g) + fmaj(h) =
∑
i

λi(g) +
∑
j

λj(h)

and then

deg(agah) ≡ col(g) + col(h) mod r,

since
∑

i λi(g) ≡
∑

i ki(g) ≡ col(g) mod r. Then the basis is exactly the set

{aγ : γ ∈ G}.
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Moreover,

dimR(H) = |G| = |H|.

Consider now G and note that

Inv
(
G(r, n)×G(r,m)

)
⊂ Inv(G) ⊂ Inv

(
G(r, p, n)×G(r, p,m)

)
,

since G(r, p, n)×G(r, p,m) ⊂ G ⊂ G(r, n)×G(r,m).

Claim 5.11. Let d = r/p. The invariant ring of G is generated as a C-

algebra by (1 and by) n+m+ 1 homogeneous polynomials, which are

• the n elementary symmetric functions ei(x
r
1, . . . , x

r
n) for i ∈ [n],

• the m elementary symmetric functions ej(y
r
1, . . . , y

r
m) for j ∈ [m],

• the monomial edXe
d
Y = xd1 · · ·xdnyd1 · · · ydm.

Equivalently, Inv(G) is generated by the basic invariants of G(r, n)×G(r,m)

and edXe
d
Y .

Proof. Let P be a G-invariant polynomial. Then P is G(r, p, n)×G(r, p,m)-

invariant. Suppose that P is homogeneous: if not, then its homogeneous

components are still invariant. If edXe
d
Y divides P , then we proceed by in-

duction, since edXe
d
Y is clearly G-invariant. If edXe

d
Y does not divide P , then

there exists a monomialM = xd11 · · ·xdnn y
f1
1 · · · y

fm
m in P such that at least one

of the di’s or fj ’s is less than d: we can assume 0 ≤ d1 < d. Again suppose

that there exists i ∈ [2, n], respectively j ∈ [m], such that r - di, respectively

r - fj : suppose r - d2. Consider now the element γ :=
(
γ1, idG(r,m)

)
∈ G

such that γ1(1) = 11, γ1(2) = 2p−1 and γ1(j) = j if j ∈ [3, n]. Let

s := d1 + (p− 1)d2. Then γk(M) = ζksr M for k ∈ N. Let ρ := gcd(r, s) and

α := r/ρ, β := s/ρ. Then the subgroup < γ > has order r and we have

∑
h∈<γ>

h(M) =

r−1∑
k=0

γk(M) =
r

α
·
α−1∑
k=0

γk(M) = 0,

since

1 + ζsr + ζ2sr + . . .+ ζ(α−1)sr = 1 + ζβα + ζ2βα + . . .+ ζ(α−1)βα = 0.
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Then, from Lemma 5.5, the coefficient of M in P is 0.

Otherwise, suppose r - f1. Then consider the element γ := (γ1, γ2) ∈ G

such that γ1(1) = 11, γ2(1) = 1p−1 and γ1(j) = j if j ∈ [2, n], γ2(i) = i if

i ∈ [2,m]. Let s := d1 + (p− 1)f1 and repeat the same argument.

Again, suppose now 0 < d1 < d and r | di, r | fj for each i ∈ [2, n], j ∈ [m]

in M . Then γk(M) = ζkd1r M for k ∈ N[0, r− 1]. As in the previous case, M

does not appear in P and we can conclude that all the di’s and fj ’s in each

monomial M of P are multiple of r (or 0). Then P is G(r, n) × G(r,m)-

invariant, since it is G(r, p, n)×G(r, p,m)-invariant.

Note again that, since

Inv
(
G(r, n)×G(r,m)

)
⊂ Inv(G) ⊂ Inv

(
G(r, p, n)×G(r, p,m)

)
,

then R(G(r, p, n) × G(r, p,m)) is a quotient of R(G) which in turn is a

quotient of R(G(r, n)×G(r,m)). In particular

R(G) =
R
(
G(r, n)×G(r,m)

)
(edXe

d
Y )

,

where (edXe
d
Y ) is the ideal generated by edXe

d
Y in R(G(r, n)×G(r,m)).

Proposition 5.12. Let d = r/p. Consider the set {agah : (g, h) ∈ G(r, n)×
G(r,m)}. Then:

• the subset of elements agah such that c(gn) ≥ d and c(hm) ≥ d is a

basis for the ideal (edXe
d
Y ) in R(G(r, n)×G(r,m)),

• all the other elements agah form a basis for R(G).

To prove Proposition 5.12 we need the following result.

Lemma 5.13. Let M ∈ C[X] be a monomial such that edX = xd1 · · ·xdn
divides M . Then M admits the following expansion in R(G(r, n)):

M =
∑
g∈Ωn

ηgag,

where ηg ∈ Z and Ωn := {g ∈ G(r, n) : c(gn) ≥ d}.
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Proof. If xr1 · · ·xrn |M , then M = 0 in R(G(r, n)). So we can suppose

M = (xd1 · · ·xdn)s ·N,

where s ∈ [p − 1] and xd1 · · ·xdn - N , i.e., if N = xd11 · · ·xdnn , at least one of

the di’s is less than d. From Lemma 1.17, N admits the following expansion

in R(G(r, p, n)):

N =
∑
g∈Ωn

ηgag,

where ηg ∈ Z. Since

R
(
G(r, p, n)

)
=
R
(
G(r, n)

)
(xd1 · · ·xdn)

,

then in R(G(r, n)) we have

N =
∑
g∈Ωn

ηgag + P · xd1 · · ·xdn,

where P ∈ R(G(r, n)). Then in R(G(r, n))

M =
∑
g∈Ωn

ηgag · (xd1 · · ·xdn)s + P · (xd1 · · ·xdn)s+1.

Write P = c1m1 + · · · + ckmk, where mi is a monomial and ci ∈ C. Then

we have two possibilities:

i) xd1 · · ·xdn - mi,

ii) xd1 · · ·xdn | mi, so mi = (xd1 · · ·xdn)t · ni, where t ∈ [p − s − 2] and

xd1 · · ·xdn - ni.

In the other cases mi · (xd1 · · ·xdn)s+1 = 0 in R(G(r, n)). Now we can write

the previous expansion for mi in case i), and for ni in case ii). We can apply

this argument recursively until we obtain the following expansion for M in

R(G(r, n)):

M =
∑
g∈Ωn

ηs,g ag · esdX +
∑
g∈Ωn

ηs+1,g ag · e(s+1)d
X + · · ·+

∑
g∈Ωn

ηp−1,g ag · e(p−1)dX ,

with suitable coefficients ηi,g ∈ Z for i ∈ [s, p− 1]. Then

M =

p−1∑
j=s

∑
g∈Ωn

ηj,g ag · ejdX =

p−1∑
j=s

∑
g∈Ωn

ηj,g

n∏
i=1

x
λi(g)+jd
|g(i)| .
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Note that if g ∈ Ωn, then kn(g) = c(gn) < d. Consider now the element

h ∈ G(r, n) such that |h| = |g| and c(hi) = c(gi) + µd, where µ ∈ [p− 1], for

each i ∈ [n]. Then

c(hn) ∈ [µd, (µ+ 1)d− 1].

By definition we have HDes(h) = HDes(g) and so di(h) = di(g) for each

i ∈ [n]. Moreover, kn(h) = c(gn) + µd and

ki(h) = ki+1(h) + resr (c(hi)− c(hi+1)) = ki+1(h) + resr (c(gi)− c(gi+1))

if i ∈ [n− 1], so ki(h) = ki(g) + µd for i ∈ [n]. Then

λi(h) = rdi(h) + ki(h) = rdi(g) + ki(g) + µd = λi(g) + µd.

Finally, let Ωn(a, b) := {g ∈ G(r, n) : c(gn) ∈ [a, b]}. In this notation

Ωn = Ωn(0, d− 1) and Ωn = Ωn(d, r − 1). We have

M =

p−1∑
j=s

∑
g∈Ωn

ηj,g

n∏
i=1

x
λi(g)+jd
|g(i)|

=

p−1∑
j=s

∑
h∈Ωn(jd,(j+1)d−1)

ηj,h

n∏
i=1

x
λi(h)
|h(i)| =

∑
h∈Ωn

ηhah,

where ηh ∈ Z.

Proof of Proposition 5.12. If c(gn) ≥ d and c(hm) ≥ d, then λn(g) ≥ d and

λm(h) ≥ d. Recall that λ(g) and λ(h) are partitions, so λi(g) ≥ d and

λj(h) ≥ d for each i ∈ [n], j ∈ [m]. Then edXe
d
Y divides agah. Moreover,

from Lemma 5.13 we note that in R(G(r, n)×G(r,m)) a monomial in which

all the variables appear with exponent at least d is a linear combination of

elements agah such that c(gn) ≥ d and c(hm) ≥ d.

Note that the elements agah such that (g, h) ∈ G(r, n)×G(r,m) and c(gn)

and c(hm) are not both ≥ d are equivalently the monomials

a′ga
′
h, e

d
X · a′ga′h, e2dX · a′ga′h, . . . , e

(p−1)d
X · a′ga′h,

edY · a′ga′h, e2dY · a′ga′h, . . . , e
(p−1)d
Y · a′ga′h

such that (g, h) ∈ G(r, p, n)∗ × G(r, p,m)∗. These a′ga
′
h are independent

in R(G(r, p, n) × G(r, p,m)) since they form a basis for it. Then they are

independent in R(G), since R(G(r, p, n)×G(r, p,m)) is a quotient of it.
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Consider the group H. Let δ ∈ H and let g and h be the projections of a

representative of δ on G(r, n) and G(r,m), respectively. Again let ci := c(gi)

and zj := c(hj) for i ∈ [n], j ∈ [m]. Let µ, ν ∈ [0, p− 1] such that

cn ∈ [µd, (µ+ 1)d− 1] and zm ∈ [νd, (ν + 1)d− 1]. (5.1)

We define the H-flag-major index of an element δ ∈ H as the following

multiset:

Hfmaj(δ) :=


{

hfmaj0(δ)
}

if µ = ν,{{
hfmaj0(δ), hfmaj1(δ)

}}
if µ 6= ν,

where

hfmaj0(δ) :=
n+m∑
i=1

λ
(0)
i (δ), hfmaj1(δ) :=

n+m∑
i=1

λ
(1)
i (δ),

λ
(0)
i (δ) := 2 · di(δ) + k

(0)
i (δ), λ

(1)
i (δ) := 2 · di(δ) + k

(1)
i (δ),

di(δ) :=
(
d1(g), d2(g), . . . , dn(g), d1(h), d2(h), . . . , dm(h)

)
,

k
(0)
i (δ) :=



resr/p (zm) if i = n+m,

k
(0)
i+1(δ) + resr (zi − zi+1) if i ∈ [n+ 1, n+m− 1],

resr

(
k
(0)
n+m(δ) + cn − zm

)
if i ∈ n,

k
(0)
i+1(δ) + resr (ci − ci+1) if i ∈ [n− 1],

k
(1)
i (δ) :=



resr/p (cn) if i = n,

k
(1)
i+1(δ) + resr (ci − ci+1) if i ∈ [1, n− 1],

resr

(
k
(1)
n (δ) + zm − cn

)
if i ∈ n+m,

k
(1)
i+1(δ) + resr (zi − zi+1) if i ∈ [n+ 1, n+m− 1],

and dj(g) = |{i ∈ [j, n− 1] : i ∈ HDes(g)}| defined as in Section 1.3.

Let U := {(α, β) ∈ G(r, n) × G(r,m) : c(αn) < d or c(βm) < d} and recall

that Ωn = {α ∈ G(r, n) : c(αn) < d} and Ωn = {α ∈ G(r, n) : c(αn) ≥ d}.
Let fmaj(α, β) := fmaj(α) + fmaj(β) for (α, β) ∈ G(r, n) × G(r,m). Note

that there exists a bijection of multisets

φ :
{{
s ∈ Hfmaj(δ) : δ ∈ H

}}
→
{{

fmaj(α, β) : (α, β) ∈ U
}}
,
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where

φ(s) ∈
{{

fmaj(α, β) : (α, β) ∈ Ωn ×Ωm
}}

if µ = ν, and

φ(s) ∈
{{

fmaj(α, β) : (α, β) ∈ Ωn ×Ωm
}}

∪
{{

fmaj(α, β) : (α, β) ∈ Ωn ×Ωm
}}

if µ 6= ν, where µ and ν are given by (5.1).

Remark 5.14. If µ 6= ν, then

k
(0)
n+m(δ) = resr/p (zm) = zm − kr/p = resr (zm − kr/p)

for some k ∈ [0, p− 1], and

k(0)n (δ) = resr
(
resr/p (zm) + cn − zm

)
= resr

(
resr/p (zm) + cn − resr/p (zm)− kr/p

)
= resr (cn − kr/p) .

In the same way,

k(1)n (δ) = resr (cn − kr/p)

for some k ∈ [0, p− 1], and

k
(1)
n+m(δ) = resr (zm − kr/p) .

If µ = ν, then

k
(0)
n+m(δ) = resr/p (zm)

and

k(0)n (δ) = resr/p (cn) .

Remark 5.15. For any δ ∈ H, let µi ∈ [0, p− 1] such that

c(δi) ∈ [µid, (µi + 1)d− 1].

Using the bijection φ, we can conclude that a basis for R(G) is the set{
a
(0)
δ : δ ∈ H s.t. µn = µn+m

}
∪
{
a
(0)
δ , a

(1)
δ : δ ∈ H s.t. µn 6= µn+m

}
,
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where

a
(0)
δ (X,Y ) :=

n∏
i=1

x
λ
(0)
i (δ)

|δ(i)|

n+m∏
j=n+1

y
λ
(0)
j (h)

|δ(j)| ,

a
(1)
δ (X,Y ) :=

n∏
i=1

x
λ
(1)
i (δ)

|δ(i)|

n+m∏
j=n+1

y
λ
(1)
j (h)

|δ(j)| .

Moreover,

dimR(G) =
2p− 1

p
· |H| = 2p− 1

p
· |G|.

Finally, let us consider a finitely generated graded commutative algebra

A over C, which is generated by elements of positive degree. So

A =
⊕
k≥0

Ak,

where A0 = C. Recall that the Hilbert function of A is the map

HFA : N→ N, k 7→ dimCAk,

and the Hilbert series of A is the formal series

HSA(q) :=
∑
k≥0

HFA(k) qk.

According to the notes in Remark 4.15 and the notation in Section 4.3, we

have the following two results:

Proposition 5.16. ∑
w∈G

qfmaj(w) = HSR(H)(q).

Proof. Note that there exists a bijection:

{fmaj(γ) : γ ∈ G} → {fmaj(w) : w ∈ G }.

Then ∑
γ∈G

qfmaj(γ) =
∑
w∈G

qfmaj(w),

so from Propositions 4.10 and 5.10 we have the result.

Example 5.17. See Examples 4.11 and 5.3.
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Proposition 5.18. ∑
w∈H

∑
s∈Hfmaj(w)

qs = HSR(G)(q).

Proof. Recall Remarks 4.12 and 5.14. Note that there exists a bijection:

{s ∈ Hfmaj(δ) : δ ∈ H} → {s ∈ Hfmaj(w) : w ∈H }.

Then ∑
δ∈H

∑
s∈Hfmaj(δ)

qs =
∑
w∈H

∑
s∈Hfmaj(w)

qs,

so from Proposition 4.13 and Remark 5.15 we have the result.

Example 5.19. See Examples 4.14 and 5.9.
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