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Introduction

The major index has been deeply studied from the early 1900s. A clas-
sical result due to MacMahon [14] states that the major index is equidis-
tributed with the length function on the symmetric group. In the last thirty

years, this index has been generalized in two directions.

In 1989 Bjoérner and Wachs [7] generalized the major index defining a new
statistic on labeled forests (i.e., partially ordered sets whose Hasse diagram
is a rooted forest) in a very natural way. They presented in particular two
g-hook length formulas: one for the major index over permutations which
correspond to linear extensions of a labeled forest, and the other for the new

statistic over all labelings of a fixed forest.

In the early 2000s, Adin and Roichman [2] generalized the major index for
colored permutation groups G(r,n), which are wreath products of the form
7,15y, where Z, is the cyclic group of order r. They called this new statistic
the flag-major index and showed that it is equidistributed with the length
function for the classical Weyl group of type B (the case r = 2). In 2004
Biagioli and Caselli [6] defined an analogous statistic for the Weyl groups of
type D and in 2007 Bagno and Biagioli [4] extended the definition of the flag-
major index for complex reflection groups G(r, p,n), which can be naturally
identified as normal subgroups of index p of G(r,n). Finally, in 2011 Caselli
[8] introduced a new family of groups G(r,p,q,n), the projective reflection
groups, that can be described as quotients of G(r,p,n) modulo the cyclic
scalar subgroup C,. Caselli introduced also the following notion of duality,
which plays a crucial role in the theory of these groups: if G = G(r,p, q,n),
then we denote by G* = G(r, ¢, p,n) the dual group of G, obtained by sim-
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ply exchanging the parameters p and gq. Moreover, the definition of the

flag-major index is generalized for these groups in [8].

Although its nature is combinatorial, the flag-major index also has impor-
tant algebraic properties, in particular in the study of the action of reflection
groups on polynomial rings ([2], [1], [6], [5]). We recall a very important
property of projective reflection groups G ([8]), which generalizes and uni-
fies in a very natural way several known results for wreath products and
complex reflection groups: we can describe a monomial descent basis for the
coinvariant algebra of a projective reflection group G by its dual group G*.
More precisely, we associate to any element g € G* a monomial of degree
equal to the flag-major index of g. We remark that this is just the first
instance of the strict relation between the algebraic structure of G and the

combinatorics of G*, and it is the one we refer to in the present work.

In this thesis we give new definitions of labelings of a forest, which gener-
alize the standard type in [7] and the signed type in [10]. In our context
the labels are colored integers. We generalize the major index defined in [7]
introducing the flag-major index of a colored labeled forest. This allows us to
generalize in a natural way the two hook-length formulas recalled above. As
particular cases of them, we recover some known results for the distribution
of the flag-major index on projective reflection groups G* = G(r,n)/C, [8]
and on sets of cosets representatives for some special subgroups of G* [9].
Finally, the study of colored labeled forests consisting of two linear trees
(which has just apparently a simple combinatoric nature) allows us to show
a notion of duality, in the sense introduced in [8], for two particular families

of groups obtained from the direct product G(r,n) x G(r,m).

The thesis is structured as follows. In Chapter 1 we collect some notations
and preliminaries for the necessary background. In Chapter 2 and 3 we in-
troduce colored labelings and other particular generalizations of them. We
define also the flag-major index for these labelings and we present an ana-
logue of the g-hook length formula over all linear extensions of a colored
labeled forests. In Chapter 4 we give a generalized version of the second

g-hook length formula presented, computing also the cardinality of the set
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of all colored labelings of a fixed forest. Finally, in Chapter 5 we define two
families of groups obtained from the product G(r,n) x G(r,m) and we show
the strict relation between the combinatorics of one family and the invariant

theory of the other.

The results appearing in this thesis has been done in collaboration with prof.

Fabrizio Caselli.
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Chapter 1

Notations and preliminaries

1.1 Some notations

Let Z be the set of integer numbers and N the set of non-negative integers.

For a,b € Z, a < b, we let [a,b] := {a,a+ 1,...,b}. For n € N, n # 0, we

let also [n] := [1,n]. If ¢ is an indeterminate, we let
1 _ AN
[n]q = 1_qq =1l4+q+q@+ - +¢"!

be the g-analogue of n, and

We let

€@n ::{f:(f1>f2a"'>fn)€Nn: lefQZan}

be the set of partitions of length at most n, and |f| := f1 + fo+-- -+ f, the

size of f.

Let S,, be the symmetric group on n letters. A permutation o € S,, will
be denoted by o = [01,09,...,0,], where g; = o(7) for i € [n]. We denote

the number of inversions of o by
inv(o) :==|{(4,7): 1 <i<j<nando;>o;},
the descent set of o by
Des(o):={ie€n—1]: 0y > 0411},

1
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and the major index of o by

maj(o) := Z i.
i€Des(o)

If reN, r>0, welet Z, := Z/rZ. We simply denote by a the class of
the integer a in Z,, since the integer r is always fixed in each context, and by
res, (a), or equivalently by res, (a), the smallest non-negative representative
of a. We recall that an r-colored integer is a pair (i,a), denoted also %,
where ¢ € N\ {0} and a € Z,. We let |[i?| := i and ¢(i?) := a.

Finally, we denote by ¢, the primitive 7-th root of the unity e2™/".

1.2 Complex reflection groups and G(r,p,n)

Let V be a complex vector space of finite dimension n and W a finite
subgroup of GL(V'), the group of endomorphisms of V. An element r €
GL(V) is called a pseudo-reflection if it has finite order and its fixed point
space is of codimension 1. Then W is a (finite) complex reflection group if
it is generated by pseudo-reflections.

Irreducible finite complex reflection groups have been completely classified
in the fifties by Chevalley [11] and Shephard-Todd [17]. In this classification

there are:

e an infinite family of groups G(r, p,n), where r, p, n are positive integers

with p | r;
e 34 other exceptional groups.

We will not deal with the 34 exceptional groups in this thesis. So we are

going to describe the infinite family G(r,p,n).

When r = p = 1, the group G(1,1,n) is the symmetric group S, the group

of the n x n permutation matrices.

When p = 1, the group G(r,n) := G(r,1,n) is the wreath product Z, 1 Sy,
also called generalized symmetric group, or group of colored permutations.

G(r,n) consists of all n x n matrices satisfying the following conditions:



1.2 Complex reflection groups and G(r,p,n) 3

e the entries are either 0 or r-th roots of unity;
e there is exactly one non-zero entry in every row and every column.

If p divides r, then G(r, p, n) is the subgroup of G(r,n) given by the matrices
such that:

e the product of the non-zero entries is a r/p-th root of unity.

For our exposition it is more convenient to consider wreath products not
as groups of complex matrices but as groups of colored permutations. So

we recall the following alternative notation.
Notation 1.1. If g € G(r,n), we write g = [o7*,052,...,05"] if the non-zero
entry in the ¢-th row of g is (* and appears in the o;-th column.

In this notation the element in the i-th position of g represents the r-

colored integer ¢(i®) = of*. We denote it also by g;. So G(r,n) is the
group of permutations g of the set of r-colored integers i®, where i € [n] and

a € Z,, such that if g(i%) = j® then g(i%) = j9T°. In other words,
G(r,n) = {[o7*,05%,...,00"] : 0 € S, ¢; € Ly}

If g € G(r,n), we let |g| := 0 € S,, and we denote by

col(g) := z”: Ci
i=1

the color weight of g, which is an integer defined only modulo r. We recall
that
G(r,p,n) :={g € G(r,n) : col(g) = 0 mod p}.

Note that G(r,p,n) is a normal subgroup of G(r,n) of index p, since it is

the kernel of the map
G(r,n) = Zp, g col(g).

Example 1.2. G(2,n) is the Coxeter group B, of type B, also known as
group of signed permutations, or signed symmetric group. We recall that a

signed permutation on [n] is a bijection 5 on the set [—n,n]\ {0} such that
6(_2) = _B(,L) for i € [—TL,TL] \ {0} We write /8 = [ﬂlaﬁ% s 7511] € Bn7
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where 5; = (i) for i = 1,2,...,n. If we identify (signed) non-zero integers

with 2-colored integers in the following way:

mO ifm >0,
m
Im|*  if m <0,
then B = [|51], |52]°2, ..., |Bn|®"], where ¢; € Zs. In the case r = 2, we

will mainly use the signed notation.
For example, 3 = [2, —4, 3, 5, 1] = [2°, 41, 3% 50 19] € G(2,5).

Example 1.3. G(2,2,n) is the Coxeter group D,, of type D, also known as
group of even-signed permutations, or even-signed symmetric group. D, is
the subgroup of B,, consisting of signed permutations with an even number
of minus signs, or equivalently of 2-colored permutations in which the color

1 appears an even number of times:
D,, :={g € By, : neg(g) =0mod 2} = {g € B, : col(g) = 0 mod 2},

where neg(g) = |{i € [n] : g(i) < 0}].
For example, v = [2, —4, 3, —5, 1] = [20, 41, 39 51 19 € G(2,2,5).

1.3 Projective reflection groups and G(r,p,q,n)

Let V be a complex vector space of finite dimension n and S9(V') the ¢-
th symmetric power of V. Let C be the cyclic scalar subgroup of GL(V') of
order ¢ generated by (,I. Finally, let G be a finite subgroup of GL(S?(V)).
Then, according to [8], we say that the pair (G, q) is a (finite) projective
reflection group if there exists a finite complex reflection group W C GL(V)
such that C; C W and G = W/C,.

In our work we will only consider those projective reflection groups arising
as quotients (by scalar subgroups) of all non-exceptional irreducible complex

reflection groups. More precisely,

Definition 1.4. Let r,p, q,n be positive integers such that p | r, ¢ | » and

pq | rn. Then we let

G(r,p,n)
Cy

where C, is the cyclic group generated by (,/.

G(r,p,q,n) :=
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When ¢ = 1, the group G(r,p,1,n) is the complex reflection group
G(r,p,n).

Note the symmetry on the conditions for the parameters p and ¢ in the

definition of G(r,p,q,n). This allows us to give the following:

Definition 1.5. Let G = G(r,p,q,n). We denote by G* the projective
reflection group G(r,q,p,n), where the roles of the parameters p and ¢ are

interchanged. We call G* the dual group of G.

Following Notation 1.1, for an element g € G(r,p, q¢,n) we also write g =

] to mean that g can be represented by [o7*,052,...,05"]

C1 Cc2 C
o7, 052, ..., 05" o8

rvn

in G(r,p,n). Recall that col(g) is defined modulo ged(r, rn/q), which is a
multiple of p.

Example 1.6. G(2,1,2,n) is the group B,/ £ id, where id := idp, is
the identity element of B,. Note that (B,/ £ id)* = D,. For example,
g=1[2, -4, 3,5, 1] € G(2,1,2,5) can be represented by g1 = [2, —4, 3, 5, 1]
or go = [-2, 4, =3, =5, —1] in G(2,5).

1.4 Flag-major index on G(r,p,q,n)
Let g = [o]*,052,...,05"] € G(r,p,q,n). According to (8], we let
HDes(g) :={i€[n—1]: ¢; = cit1 and 0; > 041}
be the homogeneous descent set of g,
di(g) == |{j € [i,n = 1] : j € HDes(g)}|
for all i € [n], and

res,/, (¢n) if i =n,
klg)=q

kiv1(g) +res, (¢; — cig1) ifie[n—1].
Note that the sequence d(g) := (di(g),d2(g),...,dn(g)) is a partition, and
recall that k(g) := (k1(9), k2(g), ..., kn(g)) is the smallest element in &2,

(with respect to the entrywise order) such that

g= [Jfl(g),a;cz(g), . ,U,If"(g)].
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We also let
Ai(g) == rdi(g) + ki(g)

for all i € [n], and similarly we note that A(g) := (A1(g), A2(9), ..., An(g)) is

a partition such that

§= 2D 020 Ao

Finally, we define the flag-major indezx of an element g € G(r,p,q,n) as

fmaj(g) = [A(g)|-

Note that these definitions do not depend on the choice of the representative

of g in G(r,p,n).

Example 1.7. Let g = [22, 73, 63, 45, 81,17, 53, 32] € (3(6,2,3,8). Then
HDes(g) = {2,5}, d(g9) = (2,2,1,1,1,0,0,0), k(g) = (18,13,13,9,5,5,1,0),
A(g) = (30,25,19,15,11,5,1,0) and fmaj(g) = 106.

We recall that the flag-major index has the following distribution.

Theorem 1.8. ([8], consequence of Theorem 8.4) Let t be an indeterminate.
Then

Z tfmaj(g) = Degq([dl]t[dz]t s [dn]t)a
geG(r,q,p,n)

where

Deg, (Z CL tk> = Z Ckq tka,

k>0 k>0

d; =i ifi <n and d, = rn/p are the fundamental degrees of G(r,p,n) (see
Section 1.5).

Corollary 1.9. Let g =1. Let G = G(r,p,n) and G* = G(r,n)/Cy. Then

Z tfmaj(g) = [dl]t[dz]t ce [dn]ta
geG”

where d;’s are the fundamental degrees of G.
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Corollary 1.10. ([2], Theorem 4.1) Let p =g = 1. Then

Z tfmaj(g) — [dl]t[dz]t ce [dn]ta
g€G(ryn)

where d;’s are the fundamental degrees of G(r,n).

From now on, let G = G(r,p,n) and G* = G(r,n)/Cp,. We recall that in
[9] Caselli studied the distribution of the flag-major index on sets of cosets
representatives for some special subgroups of G*, defined as follows. For

k <mn,let
Cr, = {[0?703’ v 70-187.gk+13 ce 7gn] €G'io1<03< - < Jk}‘ (11)
We note that the subgroup of G* given by

{ge G* g = [917927”'7gk7(k+1)0)"'777'0]}

is isomorphic to G(r, k) for all & < n. We may observe that ¢} contains
exactly p representatives for each (right) coset of G(r,k) in G*. Then we

have the following distribution.

Theorem 1.11. ([9], Theorem 5.5) Let 6}, be defined as in (1.1). Then

3" a3 = [plp [(k + D)l [(k +2)r)e -+ [(n — 1) [nr/ple.
gEGK

Corollary 1.12. ([9], Corollary 5.6) If p = 1, then €}, is a complete system

of coset representatives for the subgroup G(r,k) and

3 $mai0™) = [(k + 1))y [(k + 2)r)s - - [nr]e.
gEGK

We recall now some results we will use in the present work.
Lemma 1.13. (]9], Lemma 5.1) There ezists a bijection
G* x Z, x[0,p—1] — N", (g, \h) — f=(f1,fo, s [fn)s

where fi = Ng-1()/(9) + 7 Ajg-1()) + hy for all i € [n]. In this case we say
that f is g-compatible.
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Lemma 1.14. ([9], Lemma 5.2) If g € G* we let S, be the set of g-compatible

vectors in N™. Then

E: 1,.f2 fn

fesy
2 M09) A209) o An(9)
_ lg1l “lg2] lgn|
o T T Yoo (1 — T T _ /e /ey
(= VA —afy 2, ) - (=g oy (L =g 0)

Lemma 1.15. (][9], Lemma 5.3) If g € G* then there exists h € [0,p — 1]
such that Xi(g) + Ng, (97" = hs mod r, for i € [n].

1.5 Invariants and descent basis

Let V be a complex vector space of finite dimension n and W a finite
complex reflection groups. Then W is characterized by the structure of its
invariant ring, in the following sense.

Let S[V*] be the symmetric algebra of polynomial functions on V. Any
finite subgroup W of GL(V) acts naturally on S[V*]. Denote by S[V*]"
the invariant ring of W. Then Chevalley [11] and Shephard-Todd [17] proved
that W is a complex reflection group if and only if S[V*]" is generated by
(1 and by) n algebraically independent homogeneous elements, called basic
invariants. Although these polynomials are not uniquely determined, their
degrees di, ..., d, are basic numerical invariants of W, and they are called
fundamental degrees of W. Denote by I(W) the ideal of S[V*] generated by
the elements of strictly positive degree in S[V*]". Then we recall that the

coinvariant algebra of W is defined by

Since I (W) is W-invariant, the group W acts naturally on R(WW). We recall
that R(W) is isomorphic to the left regular representation of W and in

particular that its dimension as a C-module is equal to |WW].

In [8] Caselli generalized this result to the case of projective reflection groups.
Let S;[V*] be the ¢-th Veronese subalgebra of S[V*], i.e., the algebra of

polynomial functions on V' generated by homogeneous polynomial functions
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of degree ¢. Let G be any finite subgroup of graded automorphisms of S,[V*].
Then (G, q) is a projective reflection group if and only if the invariant algebra
S,[V*]€ is generated by (1 and by) n algebraically independent homogeneous
elements. See Theorem 2.1 in [8].

We denote by I(G) the ideal of S,[V*] generated by homogeneous elements
of positive degree in S,[V*]%. Then the coinvariant algebra of G is defined
by

Let W be the complex reflection group such that G = W/C,. We recall that
Sq[V*]G = S[vW. (1.2)

See Proof of Theorem 2.1 in [8]. It follows that R(G) is the subalgebra of
R(W) given by the elements of degree multiple of q. See Proof of Proposition
3.1 in [8].
Moreover, we recall that R(G) is isomorphic to the group algebra CG and in
particular that its dimension as a C-module is equal to |G|. See Proposition
3.11n [8].

If we set X := x1,...,2, as a basis for V, then S[V*] and S,[V*] can be
identified respectively with the polynomial algebra C[X] and its subalgebra

Sq[X] generated by the monomials of degree ¢. Let now W = G(r, p,n) and
G = G(r,p,q,n).

Observe that G(r,n) acts on C[X] as follows:
o7t 052,...,00"] - P(X)=P (Cf°1x01,4502$02, ol Cf”"xan) )
A set of basic invariants under this action is given by

ei(zy,...,x)), i€ n], (1.3)

where the e;’s are the elementary symmetric functions. It follows that the

fundamental degrees of G(r,n) are
T, 2r, ..., nr.

Moreover, dim R(G(r,n)) = |G(r,n)| = nlr™.
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Now, consider the restriction to W of the action of G(r,n) on C[X]. Let

d :=r/p. Then a set of basic invariants is given by

e;i(xf,...,ar ifien-—1
@t ifie 1) »
¢ xd iti =n,

and the fundamental degrees of W are
r, 2r, ..., (n—1)r, nd.

Moreover, dim R(W) = |W| = nlr"~1d.

Finally, consider the action of G on S,[X]. From (1.2) we recall that a set
of basic invariants is given by (1.4). Moreover,
nlr™

dimR(G) = |G| = 2 = |6¥].
pq

The following result shows that invariant theory of G is quite naturally

described by its dual group G*.

Theorem 1.16. ([8], Theorem 5.3) Let G = G(r,p,q,n). Then the set
{ag : g € G*}, where

n

A
ag(X) = Hmlgi(lg)
is a monomial of degree fmaj(g), represents a basis for R(G).

Finally, we recall the following result.

Lemma 1.17. ([4], Equation (12)) Let W = G(r,p,n). Let M be a mono-
mial in Sy := C[X]/(x¢---x2). Then M admits the following expression in

R(W):
M=) nyay,
9E€n
where £2, :=={g € G(r,n) : c(gn) < d} and ng € Z.
Corollary 1.18. ([5], Lemma 3.3) Let r = p = 2 and d = 1. Let M
be a monomial in Sy := C[X]/(x1---x,). Then M admits the following

M = Z Nglg,

QEAn
where Ay, :={g € By, : g(n) >0} and ng € Z.

expression in R(Dy):
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1.6 Labeled forests and g-hook length formulas

According to [7] we consider a finite poset F' in which every element is
covered by at most one element, or equivalently such that its Hasse diagram
is a rooted forest with roots on top. For this reason we call also F' a forest and
we let V(F) be its vertex set, E(F) its edge set and < the order relation in
F. We can also denote an edge in E(F') by an ordered pair (z,y) of elements
of F' such that = is covered by y. Let

hy =|{a € F:a=uz}
be the hook length of the element x, for each x € F, and
May) = ha
the hook length of the edge (z,y), for each (z,y) € E(F). Let
W (F):={w:V(F)— [n]s.t. wis a bijection}

be the set of labelings of F. For w € W (F) we denote the number of

inversions of w by
inv(w) == [{(2,) : = <y and w(z) > w(y)},
the descent set of w by
Des(w) := {(z,y) € E(F) : w(z) > w(y)},
the major index of w by

maj(w) = Z he,

e€Des(w)

and the set of linear extensions of w by

ZL(w)={o €S8, : if z <y then o (w(z)) < o N (w(y))}.

Example 1.19. Let w be the labeling in Figure 1.1. Let wj_l = w~1(j) be
the vertex with label j in w. Then .Z(w) is the following subset of Ss:
{[2’ 3’ 57 47 1]7 [3’ 27 57 47 1]7 [37 57 27 47 1]7 [37 57 47 27 1]’ [37 57 47 17 2]’
2,5,3,4,1],[5,2,3,4,1],5,3,2,4,1],[5,3,4,2,1],[5, 3,4, 1,2]}.
Moreover, inv(w) = [{(wy ", wi), (wg",wi), (wit,wih), (wst,wi )} =
4, Des(w) = {(w; ', wit), (wst,wy)} and maj(w) =3 + 1 = 4.



12 1 Notations and preliminaries

2 3 5

Figure 1.1: Example of labeling.

We are interested in the following important results:

Theorem 1.20. ([7], Theorem 1.2) Let F' be a finite forest with n elements
and w a labeling of F'. Then

' ' [n]q!
Z qmaj(a) _ qmaj(w) )
ceZL(w) xl;[p[hit]q

Theorem 1.21. ([7], Theorem 1.3) Let F be a finite forest with n elements
and W (F) the set of all labelings of F'. Then

Z ¢w) — Hn!hx H[hz]q.

weW (F) 2CF xeF




Chapter 2

Counting linear extensions of

forest labelings: the r case

2.1 r-Colored labelings

Let F' be a finite forest with n vertices (see Section 1.6).

Definition 2.1. We define the set of r-colored labelings of F' as
W (F) :={w:V(F) = [n] X Zy s.t. the projection on [n] is a bijection},

so every element = € F is labeled by w(x) = (04, ¢) which represents the

r-colored integer oS=.

We denote the label w(z) also by w,. We can identify a colored integer
i® with the integer i for each i € [n], and vice versa. Then for w € #,.(F)

we define the set of linear extensions of w as
Z(w) = {ge€G(rn): (¢ (wy)) =0if x € F, and
if 2 <y then g~ (w,) < g~ (wy)}.

If x € F and z is not a root, we let p(z) be the element that covers x in the

forest. For each z € F we let

(w) res, (¢z) if 2 is a root of F,
zz(w) =
res, (cCc — cp(m)) otherwise

13
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41
51

22 32 19

Figure 2.1: Example of 3-colored labeling.

and we define the homogeneous descent set of w as
HDes(w) :={(z,y) € E(F) : ¢ = ¢y and o, > 0y }.

Finally we define the flag-major index of w as
fmaj(w) := Z Xe(W)he + Z 2y (w
e€E(F) vEV(F

where
1 if e € HDes(w),
Xe(w) =
0 otherwise.

Example 2.2. Let w be the 3-colored labeling in Figure 2.1. Then £ (w)
is the following subset of G(3,5):

{[22,32,10,51,41L[32,22,10,51,41L[32,10,22,51,41L[32,10,51,22,41L
[32710’51741722L[22710732751741L[10722732751741L[10732722751741L
[10’ 32 51 22’41]’ [10’ 32 51 41, 22]}’

HDes(w) = {(w™!(5'),w ' (4"))} and fmaj(w) =3-3+(1-4+1-14+2-
1+2-1)=18.

Remark 2.3. If r = 1 then a 1-colored labeling w of F is a labeling w €
W (F), since ¢, = 0 for each x € F and i° is the integer i. Then we have
HDes(w) = Des(w) and fmaj(w) = maj(w). Moreover, if F' is a linear tree
(i.e., a totally ordered set {x1,x2,...,z,} in which z; < z;41 for i € [n—1])
we note that an r-colored labeling w of F' can be thought as the unique linear
extension g € G(r,n) of w. If we let 2(g) = 2zs,(w), ki(9) = >_;5;%i(9),
di(g) =|{j > i: (zj,xj41) € HDes(w)}| for all i € [n — 1] and dy(g) = 0,
then we have fmaj(w) = >, ¢, (rdi(9) + ki(g)) = fmaj(g).
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Now we can give a generalized version of Theorem 1.20, which we can

recover from the following result when r = 1:

Theorem 2.4. Let F be a finite forest with n elements and w an r-colored
labeling of F. Then

Z quaj fmaj( ) [dl]q[d2]q U [dn]q
hy '
geZ (w) :};IF[ la
where d; = 1i, i = 1,...,n are the fundamental degrees of G(r,n).

We will give a proof of this result in a more general case (see Proof of
Theorem 2.9).

Example 2.5. Let w be the 3-colored labeling in Figure 2.1. Then

Z quaj(g) — q18 + 2q21 + 2q24 + 2q27 + 2q30 + q33

9€Z (w)
and
quaj(w) [r]q[2r]q - -~ [nrlq _ q 18 [31q[6]4[94[12]4[15]4 _
I;IF[th]q [314[3]4[3]q[9]4[12]4

Bl+¢)1+¢+¢8+¢° +¢?).

2.2 r-Starred labelings

Definition 2.6. We define the set of r-starred labelings of F as

S (F) = {w L V(F) = [n] x (Z U {x}) s,
the projection on [n] is a bijection, and the projection v on Z, U {*}

is s.t., if (x,y) € E(F) and y(y) = *, then y(z) = *}

If w is an r-starred labeling, then every element x € F' is labeled by o$»

where ¢, € Z, U {*} and the symbol * represents any class in Z, (i.e., the

r—1
T

,or—1). We require

label o* represents r different colored integers 02,01, . ..

also that, if a vertex x has a starred label, then every vertex in the subtree

rooted at x has a starred label. See Figure 2.2 for an example.
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10
40

21 31 5*

Figure 2.2: Example of 2-starred labeling.

Remark 2.7. An r-starred labeling without * is an r-colored labeling.

Welet Fy:={x € F:cg=x}and F, :={x € F: ¢y € Z,} = F — F..

For w € .7, (F) we define the set of linear extensions of w as
Z(w) = {g € G(r,n): c(g  (w,)) =0 if 2 € F,, and
if 2 <y then |g7" (02)] < g7 (o)}
and for each x € F' we let

0 if x € Fi,
zz(w) = 1 res, (ce) if x € F, and x is a root of F,

res, (cm — cp(m)) otherwise.

Now we let
HDes(w) := {(z,y) € E(F): z € F,, ¢z = ¢y and 0, > 0y}

be the homogeneous descent set of w and we define the starred descent set
of w as
SDes(w) := {(z,y) € E(F): € F, and 0, > 0,}

and finally the flag-major index of w as

fmaj(w) == Y (rxe(w) +xi(w)he + Y zp(w)hy,

e€E(F) veV(F)

1 if e € HDes(w), 1 if e € SDes(w),

0 otherwise 0 otherwise.
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Example 2.8. Let w be the 2-starred labeling in Figure 2.2. Then £ (w)
is the following subset of G(2,5):

{[21,31,50,40, 19],[3%, 21, 52,4919, [3, 5¢, 21, 4°,19], 3%, 5,49, 21 19],
[31’ 507 407 10, 21]7 [21’ 50’ 31’ 40’ 10]’ [587 21, 31’ 40, 10], [507 31, 217 40’ 10]’
[507 31’ 407 21’ 10]’ [50’ 31’ 40’ 10’ 21]}’

where ¢ € {0,1}. Moreover, HDes(w) = {(w™!(4%),w™1(1?)) }, SDes(w) =
{(w™1(5*),w1(4?)) } and fmaj(w) = (2-3+1)+(1-1+1-1) =9.

Now we can prove Theorem 2.4 by providing the proof for the following

analogous version of that theorem holding for r-starred labelings:

Theorem 2.9. Let F be a finite forest with n elements and w an r-starred
labeling of F'. Then

fmaj(g) __ ,fmaj(w) [dl]q[d2]q U [dn]q
2 T ey T [l

zEF, zeF,

9€Z (w)
where d; = 1i, i = 1,...,n are the fundamental degrees of G(r,n).

Example 2.10. Let w be the 2-starred labeling in Figure 2.2. Then

18
Z quaj(g) — q9 + q10 +9 Z qk + q19 + q20
geZ(w) k=11

and

fmaj(w) [rlg[2r]q - - [nrlq 9 [214[4]4[6]4[8]4[10] _ q9(1 n q2) qu_

! [T [harly T1 ey RlaRlal6ls840g p

xeF), xeF

9
=0

Remark 2.11. Consider the poset {z1,z2,...,z,} with no order relation
between any two different elements. The Hasse diagram V,, of this poset is a
forest comnsisting of n disjoint vertices. Consider now the r-starred labeling
w of V,, such that w(z;) = ¢* for all i € [n]. Then fmaj(w) = 0 and
Z(w) = G(r,n). Therefore in this case Theorem 2.9 reduces to Corollary
1.10.
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N

Z2

‘,1?1 [ ] () oo °
Tl4+1 Tk42 T

Figure 2.3: T;, 1 poset.

Remark 2.12. Let £ < n. Consider the poset {z1,z2,...,z,} with the
ordering given by x; < x; if and only if i < j < k < n. The Hasse diagram
T, . of this poset is a forest consisting of a linear tree of length £ and n — &
disjoint vertices (see Figure 2.3). Consider now the r-starred labeling w of
T,k such that w(x;) = i® for i € [k] and w(x;) = i* for i = k+ 1,k +
2,...,n. Then hy, =i for i € [k] and hy, = 1 otherwise, fmaj(w) = 0 and
ZL(w) = {g € G(r,n) : c¢(¢g7'(i)) = 0if i € [k] and g 1(1°) < ¢g71(29) <
- < g Hk9)}. We finally note that if g € £ (w) then g~! € %}, where %}
is the same set defined in (1.1) when p = 1. Then in this case Theorem 2.9
reduces to Corollary 1.12.

Proof of the fmaj hook length formula of Theorem 2.9
Let w be a fixed r-starred labeling of F' and

o ={feN": f, €cyifwe€F,, and f,, > f,, for cach (z,y) € E(F),

where f,, = f5, implies ¢ = ¢y or = € F}, and 0, < ay}.

We show that the set @7 consists of all g-compatible vectors in N as g varies

in the set .Z(w) of linear extensions of the r-starred labeling w:

Proposition 2.13. Let f € N*. Then f € &7 if and only if f is g-compatible
for some g € Z(w).

Proof. We recall that f is g-compatible if and only if f; = Ajg-1:)(9) +
TAlg-1( for all i € [n], where A € &, (Lemma 1.13 when p = 1). We can

divide the proof in two steps:
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i) If x € F,, then ¢(g~ ' (w;)) = 0 if and only if f,, € cg.

Since fy, € ¢ if and only if Ajy-1(5,)/(9) € Ca, then As, (97') € —c; from
Lemma 1.15 (for p = 1), and this is equivalent to ¢(¢~!(0;)) = —cg. So the

result follows.

i) If (z,y) € E(F), then |g7(04)| < |[¢7(0y)| if and only if fo, > fo,,

where f,, = f,, implies ¢, = ¢y or & € F}, and 0, < 0y,

<) If fo, > fs, then [g7(05)] < |97 (oy)| since A(g) and A are both
partitions. If fo, = fo, then Ag-1(5,)(9) = Ag-1(5,)(9). Since o, < oy,
then the definition of the statistics \;(g) implies that [ (02)| < [g7(ay)].
=) If |[g7'(0x)] < |g ' (oy)| then fs, > f,, since A(g) and X are both
partitions. Moreover, we note that f,, # fo, eitherif cz = ¢, or z € Fi, and

oz > 0y, orif cg # ¢y, for x € F;.. So the result follows by contradiction. [J

For x € F we let %, = {a € F : a = z} be the filter at z, which is a
chain, and &, = {(y,2) € E(F) : y € F,} the set of edges of .%,. We let
also

1 ifyeF, 1 ifyeF,,

Xy(w) = and  x,(w) =
0 otherwise 0 otherwise

and finally

% - {f EN: fro= 3 (o rmgd + mgxt) + 30+ ),
YEFy eEEy

for each x € F, my € N}

where we omitted the dependence from w. We show that &7 and £ are the

same set, so in particular % consists of all g-compatible vectors as g € .Z(w):
Proposition 2.14. o = £A.

Proof. 2) Let f € # and x € F. By definition, f,, = f,, + (zx + rmexh +
MmaXs + "X{pg) T X’(*w y)), where y = p(xz). We note that f, € cg if x € F,
(by an inductive argument) and f,, > fo,, where f,, = fo, implies m, = 0,

Cy =cyor z € F, and 0, < 0y. Then f € &.
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C) Let u be a root. If u € F, then f,, € ¢y, so there exists m,, € N such
that f,, = res, (¢y) + rmy. Otherwise if u € Fy there exists m, € N such
that f,, = my. Then f,, = 24, + rmyx], + muX;,- Let  be an element
covered by u. If x € F, then u € F,. and there exists m, € N such that
for = fo,tres, (¢ — Cu)+7‘X€x,u)+me~ We note that f,, € cp. Otherwise
if x € F there exists m, € N such that f,, = f5, + X?ﬂzu) + my. Then
for = fou + 22 + "X () T T2 X + xf%u) + myxk. We finally obtain the

result extending this argument to every x € F'. O
Now we are ready to prove the main result of this section:

Proof of Theorem 2.9. We consider the formal power series » feo ¢! and
we compute it in two different ways. In the first computation we use Lemma

1.14 (for p = 1) and Proposition 2.13 and we have
M(9)gr2(9) ... gAnl9)

1 = 7 4 -
20 2 G- i)

fed geL(w)

_ de Lw) quaj(g)
(I—=g)(1—g¢>)---(1—q")

In the second computation we use directly the definition of % and Proposi-

tion 2.14: using the same notations, we have

’f’:Zfo: Z thv‘i‘rzmxhx“‘ mehm+

zEF veV(F) z€Fy z€F
+ Z (rxt + x2)he = fmaj(w) +r Z mghs + Z myhy,
ecE(F) zeF: xEF

where m, € N, and then

fmaj(w)+r Z mxhl-&-z Mghy

S =Y =3¢ a2 -

fed fe® maEN

_ _fmaj(w) 1

— 1 [T (T—q™) ] (1 —q")

zeFy xzeF,

Therefore

fmaj(g) _ fmaj(w) (1 — qr)(l — q27") U (1 — an)
2. C IO )

9eZ(w) z€F, z€F,
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We can reformulate Theorem 2.9 in this way:

Theorem 2.15. Let F' be a finite forest with n elements and w an r-starred
labeling of F'. Then

Z quaj(g) _ quaj(w) Mq[zr]q e [’I”LT']q’ where i, = 1 fzrek,

gL (w) IIG_IF[hCC/I:.T]q r  otherwise.

2.3 r-Partial labelings

Starting from Theorem 2.15, we can further generalize the result intro-
ducing a new notion of labeling. First, let m be a positive integer and d a

positive divisor of m. Let also 7' be the projection
Ty Ly, — Lq, zZc,
where c is the remainder of the division of z by d. We note that

my—1 _ . ﬂ
(7o) = {e+kd: ke 0<k< d},

so |(77) "1 (c)| = m/d for each c € Zg.

Definition 2.16. We define the set of r-partial labelings of F' as

Po(F) = {w LV(F) = [n] x (Uy, Zi) st

the projection on [n] is a bijection, and the projection -y on (Uﬂr Zi)

is s.t., if (x,y) € E(F) and y(y) € Z;,, then y(z) € (Uiz\z’y Z@z)}

If w is an r-partial labeling, then every element x € F' is labeled by

o.77® where i, is a positive divisor of 7 and j, is a class in Z;,. So the

label w, represents r/i, different r-colored integers:
T \—1 i . . . . .
0':(;”2) (J=) _ {ng’o_%zﬁ-zm’ o 70_%354-7‘—22} .

We require also that, if the vertex y is covered by x, then i, is a divisor of

(-
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56,2
1674

[}
26,0 33,1 42,1

Figure 2.4: Example of 6-partial labeling.

Remark 2.17. If i, = r the color of w, can be identified with the class

Jo in Z,, so 0,7® = o3®. If i, = 1 the color of w, is any class in Z,, so

or? = or. Moreover, if 7, = r for each x € F then an r-partial labeling is
an r-colored labeling and if r is a prime number then an r-partial labeling

is an r-starred labeling.

For w € Z,(F) we define the set of linear extensions of w as

ZL(w):={g e G(r,n): (c(g_l(crx))) = —jJ if x € F, and

(2

if <y then |g7 " (02)] < g7 (0y)[}
and for each x € F we let

(w) res;, (Ja) if 2 is a root of F,
2z (w) ==
resi, (Jo — Jp(x)) Otherwise.

Finally we let
HDes(w) = {(z,y) € E(F) : jo = WEZ(jy) and o, > oy}

be the homogeneous descent set of w and we define the flag-major index of
w as
fmaj(w) := > iexe(w)he + Y zp(w)hy,
e€E(F) veV(F)
where
1 if e € HDes(w),

i(gy) ‘= iz for each (z,y) € E(F) and  xe(w):=
0 otherwise.
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Example 2.18. Let w be the 6-partial labeling in Figure 2.4. Then £ (w)
is the following subset of G(6,5):

{[20,3“,4”, 1%,52], 32,20 4% 14 52],[32, 45,20, 14,52, [32,4P 14,20 52,
[32,4b 14 52 20] (20,45 32 14 52], 4,20, 32,14, 52], (4%, 3,20, 14, 57],
[4b,3a7 14’20,52]7 [4b,3a7 14’52’20]}’

where a € {1,4} and b € {1,3,5}.

Moreover, HDes(w) = {(w™!(3%1),w™1(15%))} and fmaj(w) = (3-1) + (2"
4+42.3+1-1) =18

We can generalize again Theorem 2.4 in this way:

Theorem 2.19. Let F be a finite forest with n elements and w an r-partial
labeling of F'. Then

Z qfrnaj fmaJ( ) [dl]q[dQ]q e [dn]q
o i
where d; =1i, i =1,...,n are the fundamental degrees of G(r,n).

Example 2.20. Let w be the 6-partial labeling in Figure 2.4. Then

23 47 53
Z gmai(9) = 18 Z 42024 g% +2 Z O g +24% 1 Z & +¢

gEZL (w) k=20 k=26 k=50
and

tmatu) [Ma2rlq - [n7]q _ 15[6q[12]q[18][24] : "~
T ol R R —a ) )

Proof of the fmaj hook length formula of Theorem 2.19
Let now w be a fixed r-partial labeling of ' and
o = {f eN": f5, €jzifx € F,and f,, > f,, for each (z,y) € E(F),
where f,, = f,, implies j, = Wzi’ (jy) and o, < 0y}

As in the case of an r-starred labeling, we show that the set .o/ consists of
all g-compatible vectors in N as g varies in the set . (w) of linear extensions

of the r-partial labeling w:
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Proposition 2.21. Let f € N*. Then f € & if and only if f is g-compatible
for some g € L (w).

Proof. Again we divide the proof in two steps:
i) If z € F, then 7] (c(g‘l(o'x))) = —J if and only if f,, € jg.

Since f,, € je if and only if N\g-1(,,y/(9) € Ja, then Ay, (g7') € —j from
Lemma 1.15 (for p = 1), and this is equivalent to 7/ (c(g(04))) = —Ja-

i) If (z,y) € E(F), then |g~(0,)| < ]g_l(ay)| if and only if fo, > f5,,

where f,, = f,, implies 0, < 0y and j = ﬂzz (Jy)-

<) If fo, > f5, then [g7!(0z)| < |g7(oy)| since A(g) and X are both
partitions. If f,, = fo, then Ag-1(5,)(9) = Ag-1(5,)(9). Since o, < oy,
then the definition of the statistics A;(g) implies that |g71(0,)| < [g71(ay)]-
=) If g7 (oz)|] < |97 (oy)| then f,, > fs, since A(g) and A are both
partitions. Moreover, we note that f,, # f5, if either jp = W;z (Jy) and

Op > Oy, OF Jg # 772;’ (Jy)- So the result follows by contradiction. O

We let now

B = {feN”: for = Z(Zy—i-iymy)—F Ziexe, myEN,mEF}
YEFy eESy,
where we omitted the dependence from w. Similarly we show that & and
A are the same set, so in particular % consists of all g-compatible vectors

as g € Z(w):
Proposition 2.22. &/ = 4.

Proof. 2) Let f € % and x € F. By definition, f,, = f5, + (zx + ipymg +
ixx(w’y)), where y = p(z). Then f € &.

C) Let u be a root. Then f,, € ju, so there exists m, € N such that
fou = resi, (Ju)+iumy = zy+iymy. Let x be an element covered by u. Then
there exists m, € N such that f,, = fo, +1e8i, (Jz — Ju) +izX(2u) T iaMz =
fou + 22 + i X (z,u) T taMz. We note that fo. € Jz. We obtain the result

extending this argument to every x € F'. O

Now we are ready to prove this more general version of our main result:
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Proof of Theorem 2.19. We compute the formal power series > feo ¢/l in
two different ways, as above. In the first computation we use Lemma 1.14

(for p = 1) and Proposition 2.21 and we have

q>\l(g)q>\2(g) e qAn(g)

Ifl — =
P N e [ R ey

fes g€ (w)

de.z(w) quaj(g)

(1—=g)(1—g*)---(1—q")

In the second computation we use directly the definition of &/ and Proposi-

tion 2.22: using the same notations, we have
|f| = Z fUz = Z (Zv+ivmv)hv+ Z ieXehe = fmaj(w)+z ixMghy,
zeF veV (F) e€E(F) zeF

where m, € N, and then
fmaj(w)+ >, tzmaha 1

Z q|f| — Z q‘f| — Z q z€F _ quaj(w)w.

fed fexs mg €N sCF

Therefore

Z quaj(g) _ quaj(w) (1 — qT)(l — qZT) o (1 - an) )
T ¢)

geZL(w) sCF






Chapter 3

Counting linear extensions of

forest labelings: the (r,p) case

3.1 (r,p)-Colored labelings

Let F' be a finite forest with n vertices (see Section 1.6) and G* the
projective reflection group G(r,n)/C), (see Section 1.3).
Consider the action of C) on the set #;.(F) of labelings defined by

k k k x z+k
([Fr/P 2kr /P kT IP) ofe) s ggmthr /P

for each x € F and k = 0,1,...,p — 1. Note that this is simply the action
of the cyclic subgroup of Z, of order p generated by r/p on the set (Z,)"
of colors. Let x1,x2,...,x, be a linear extension of F' and denote by c; the
color of w(x;) in w € #,.(F), for i € [n]. Then every orbit of (Z,)" is an

arithmetic progression « on (Z,)", in which the common difference is the

n-tuple (r/p,r/p,...,r/D):
aler, ez, ... cn) = {(c1 + kr/p, ca + kr/p,..., cn + kr/p) Z;é
where (c1,c¢2,...,¢cn) € (Z,)".

Definition 3.1. We call (r,p)-colored labelings of F' the orbits of #,(F)

under the action of €}, and we define the set of these labelings as
Wrp(F) := W (F)/Ch.
See an example in Figure 3.1.

27
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Figure 3.1: Example of (6, 3)-colored labeling.

Remark 3.2. Note that if (z,y) € E(F') then the difference c¢(w;) — c(wy)
does not depend on the choice of w lift of w in #;(F'). Then we can define

Cla,y) = c(Wz) — c(Wy) € Zy.

For w € #;. ,(F) we define the set of linear extensions of w as

L(w) = {g € G* : for each g lift of g in G(r,n), there exists w lift of w
in #,(F) s.t. c(§g *0z)) = —c(w,) if z € F, and

if 2 <y then |g7 ! (02)] < |7 (o)}
Note that a linear extension of a labeling is now an element of G*.

Example 3.3. Let w be the (6, 3)-colored labeling in Figure 3.1. For exam-
ple the element g = [11,32 59,40 23 64] € G(6,3,6)* is a linear extension
of w. A lift of g in G(6,6) is an element

je {[11+2k’ 32+2k’ 52k742k7 23+2k7 64+2k]’ k=01, 2} .
Then
i le {[1—1+2k’5—3+2k72—2+2k742k732k’6—4+2k]’ k=0, 172}

is the inverse of g € G(6,6).

We let

HDes(w) := {(z,y) € E(F) : ¢(4,) =0 and 0, > 0y}
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be the homogeneous descent set of w and finally we define the flag-major

index of w as the multiset

Fmaj(w) :=
= {{ Z rX7P (w)he + Z 2y (W)hy, for each w lift of w in #,.(F) }},
€ E(F) VeV (F)
where

; 1 if e € HDes(w),
X' (w) :=
0 otherwise.

Remark 3.4. Note that the previous definition is equivalent to the follow-
ing:

Fmaj(w) = {{fmaj(fﬁ), for each w lift of w in %(F)}}
Example 3.5. Let w be the (6, 3)-colored labeling in Figure 3.1. We show
that the flag-major index of w is a multiset:

Fmaj(w) = {6 -3+ (2 - resg(4 + 2k) + 5+ 4 - resg(2k) + 2 + 1),
k=0,1,2} = {34,34,46 }}.

We can generalize again Theorem 2.4 in the following;:

Theorem 3.6. Let F' be a finite forest with n elements and w an (r,p)-
colored labeling of F'. Then

Z gmaite) — Z . [dl]Q[dZ]Q"'[dn]q’

hy
ge&L(w) s€Fmaj(w) };IF[ T]q

where d; = ri if i <n and dy, = rn/p are the fundamental degrees of G.

We will give a proof of this result in the most general case (see Proof of
Theorem 3.20).

3.2 (r,p)-Starred labelings

Consider the action of C), on the set .7,.(F') defined by

* if F.
([1kr/p,2kr/p7.”’nkzr/p]jo_;m) . O, . I x € Py,
J§m+ r/p otherwise

foreach z € FFand k=0,1,...,p— 1.
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12

12 16 110
45— 45 49 41
) I

[ ] L] [ ) [ )

23 34 5* 23 34 5* 27 38 5* 211 30 5*

Figure 3.2: Example of (12, 3)-starred labeling.

Definition 3.7. We call (r,p)-starred labelings of F' the orbits of .7,.(F)
under the action of C}, and we define the set of these labelings as

Frp(F) = S(F)/Cy.

See an example in Figure 3.2.

Remark 3.8. If F, = F then the action of C), on .7,.(F) is trivial, i.e.,
if w is an r-starred labeling in which each label has color *, then its orbit

contains only w.

We analyze (r, p)-starred labelings as a particular case of a more general

type of labelings, described in the following section.

3.3 (r,p)-Partial labelings

Consider now the action of C), on the set &, (F) of labelings defined by

([1kr/p okr/p pkr/P| Givdw),  gizdetkr/p
for each x € F and £k =0,1,...,p— 1. As in the colored case, we can read

it as the action of the cyclic subgroup of Z, of order p generated by r/p on
the set I' of colors, each defined as a residue class modulo a divisor of r. Let
Z1,%2,...,%Ty be a linear extension of F' and denote by j; € Z;, the color of
w(zy) inw € Z.(F), forl € [n]. Then every orbit of I' = Z;; XZ;, X ... X Z;,,
is an arithmetic progression « on I'; in which the common difference is the

n-tuple (r/p,r/p,...,r/p):
a(jlijv"' ;jn) - {(Jl + k:?“/p, j2 + kr/p,.- n jn + k’f'/p) Z;é

where (j1,72,...,Jn) € T
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112,10 112 10
[ )
24,1 32,1 53,1 24 1 32 1 71 24 1 32 1 70 24 1 32 1

Figure 3.3: Example of (24, 3)-partial labeling.

Definition 3.9. We call (r,p)-partial labelings of F' the orbits of Z,(F)

under the action of C}, and we define the set of these labelings as
Py p(F) = P (F)/Cy.
See an example in Figure 3.3.
The following lemma is useful to determine the cardinality of these orbits:

Lemma 3.10. Let F be a forest and vy, v, ..., vy its roots. Let w € P, (F)
and consider the action of Cp on Z.(F') defined as above. Then the orbit of

w contains p/d distinct elements, where

,
_ 1
d = ged <1cm(z'1,z'2,...,z'l)’ p) , (3.1)

and iy denotes i,, fort € [l].

Proof. We consider first the case in which F' is a tree and then the case of

a general forest.

o [ tree
Let F be a tree and v its root. Consider w € Z,.(F'). So, by definition,
iz | iy for every x € F. Then the cardinality of the orbit of w depends only

on the choice of i,, as we can see in the following claim.

Claim 3.11. If F is a tree and v is its root, then

gcd(f,p):dZI

if and only if j, + kr/p are p/d distinct residue classes in Z;,, for k €
{0,1,...,p — 1}. Equivalently, the orbit of w contains p/d elements.
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It is enough to show that the period of r/p in Z;, is p/d, i.e.,

Ty D

ged (r/p, iy)  d’
In fact,

ged (r/p, iv) B ged(r, iy p) B ged(r /iy, p)

iy D p P
t

Note that, if ged(r /iy, p/d) = 1, then we can replace p with p/d since the
period of rd/p in Z;, is p/d. Otherwise, if ged(r/iy, p/d) = d' > 1, then

consider p/dd’ and repeat the same argument.

o I forest

Now let F be a forest with components 17,75, ..., T; and roots vy, v, ..., v.
Let w € Z,(F). From Claim 3.11 we know that the orbit of w restricted to
T; has p/d; elements, where dy = ged(r /i, p) and iy = i,,, for t € [[]. Then

in this case the orbit of w contains as many elements as
lem [ £ 2 P
dy’ dy’ T
Then we can conclude with the following claim.

Claim 3.12. Let F be a forest and vi,vs,...,v; its roots. Then

ged — —,p|=d=>1
lem(iq, i9, ..., 1)

p p p
1 — = ..., — | =p/d
Cm<d17d27 7dl> p/7

where dy = ged(r /iy, p) and p/dy is the period of r/p in Z;,.

if and only if

Let m be a prime that divides p. Let a and b be positive integers and c
a non-negative integer, ¢ < a, such that 7% || p, 7° || r and 7¢ || d, where the
symbol || means “exactly divides”.

=) By hypothesis
c+1 T
10m<’i1, ig, ce 7il)’

so there exists ¢ € [I] such that 7°~¢ | 4;. Then 7°¢ || d; and 7~ | p/d;. So

77 ¢ | lem LA
di’dy’ 4,

™
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By repeating the same argument for each prime in the factorization of p, we

P em (22D
d di’dy’ " d )

The result follows, since d | d; and we have

lem (2.2 PP
E2LLB)E

<) By hypothesis there exists ¢ € [I] such that 77¢ | p/d;. Then 7°¢ | d;

have

and 7°~¢| i;. So

.
¢ | ged
™ | o <1cm(z'1,¢2,...,il)’p>

and, by repeating this argument for each prime in the factorization of d, we

T
d | ged :
& <lcm(i1,i2,---7il)’p>

d = ged 4
8¢ <lcm(i1,i2,...,il)’p>

where d | d’. Then there exists a positive integer ¢’ such that ¢ < ¢ < a and

have

Suppose that

7 || d'. If 7¢t1 { d’ we can replace 7 with any of the other primes in the
factorization of p. Then there exists ¢ € [I] such that 7= || iz, so ¢ = .
We conclude that d’ = d. O

Remark 3.13. Let d be defined as in (3.1). Then the [-tuple (%, %, e %)

has period p/d in Z;, X Z;, X - - - x Z;,. Moreover, by the definition of partial

labeling, we have

r

ged <lcm({ix cxeFY}) p)

Example 3.14. Let w be the first labeling in Figure 3.4. Note that

30

Consider the colors of the two roots: (2,1) € Zz x Zg. These represent in

=d.

the orbit of w the following colors:

{(2 4 5k,1 4 5k) € Zy x Zg, k=0,1,...,5} =
=1{(2,1),(1,0),(0,5),(2,4),(1,3),(0,2)},
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46,1 410,1
I 63’2 16,3 [ 65’2 110,6
21,0 32,1 53,0 21,0 35,1 52,0

Figure 3.4: Examples of (30, 6)-partial labelings.

and then the cardinality of the orbit is 6. Let now w be the second labeling
in Figure 3.4. We have

30

Consider the colors of the two roots: (2,1) € Zs x Z1p. These represent in

the orbit of w the following colors:
{(2+5k,1 4 5k) € Zs x Z19, k=0,1,...,5} ={(2,1),(2,6)},

and then the cardinality of the orbit is 2.

Let u € Z,(F) and denote by j(u,) the color jg € Z;, in the label of z.

Remark 3.15. Let w € &, ,(F). If (z,y) € E(F), then we can consider
the difference j(w,) — j(w,) modulo i, and we note that it does not depend
on the choice of w lift of w in &2,.(F'). Then we can define

j(a:,y) = ﬂ—:il (](&}z) - ](wy)) € ZZI

For w € £, ,(F) we define the set of linear extensions of w as

ZL(w) = {g € G": for each g lift of g in G(r,n), there exists w lift of w
in Z,(F) s.t. ©} (c(g " (02))) = —j(w,) if x € F, and
if « <y then |9~ (00)] < g7 (y)I},
where d is defined as in (3.1).

Example 3.16. Let w be the second labeling in Figure 3.4. For example
the element g = [5%0,3%1 1106 4101 91.0 6521 ¢ (G(30,6,6)* is a linear

extension of w. A lift of g in G(30,6) is an element

e {[52,5k:’ 35,1+5k, 110,6+5k7 41071+5k’ 21,51@7 65,2—1—51«:}’ k=0, 1} .
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Then

G le {{310,—6—}-51«:’ 5L5k 95,145k 410,—1+5k 12,5k,65,—2+5k]’ k=0, 1}

is the inverse of g € G(30,6).

We let
HDes(w) := {(z,y) € E(F) : j(zy) =0 and 0, > 0y}

be the homogeneous descent set of w and finally we define the flag-major

indexr of w as the multiset

Fmaj(w) :=
= {{ Z eXe(w)he + Z 2y (W)hy, for each w lift of w in L, (F )}},
ecE(F) veV (F)
where

1 if e € HDes(w),
Xe(w) :=
0 otherwise.

Remark 3.17. Note that the previous definition is equivalent to the fol-

lowing:
Fmaj(w) = {{fmaj({ﬁ), for each w lift of w in %(F)}}
Remark 3.18. Let d be defined as in (3.1). Then |Fmaj(w)| = p/d.

Example 3.19. Let w be the first labeling in Figure 3.4. Then the flag-

major index of w is the multiset:

Fmaj(w) = {{(2-143-1) + (2 res3(2 + 5k) + 4 - res(1 + 5k) + 3 - 2),
k=0,1,...,5}} = {{19,13,31,31,25,19}}.

Let w be the second labeling in Figure 3.4. Then the flag-major index of w

is the multiset:

Fmaj(w) = {(5-1+2-1) + (2 -ress(2 + 5k) + 4 - res1o(1 + 5k) + 3 - 5),

k=0,1}} = {30,50}.
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Now we can generalize Theorem 2.4 in this way:

Theorem 3.20. Let F be a finite forest with n elements and w an (r,p)-
partial labeling of F'. Then

Z quaj(g) _ Z ¢ [dl]q[dQ]q U [dn]q7

hyiy
geZ(w) s€Fmaj(w) CCI;[F[ g ]q

where d; = ri if i <n and d, = rn/p are the fundamental degrees of G.

Remark 3.21. Consider the poset {x1,z9,...,2,} with no order relation
between any two different elements. The Hasse diagram V,, of this poset
is a forest consisting of n disjoint vertices. Consider now the (r, p)-partial
labeling w of V,, such that w(z;) = %0 for all i € [n]. This is equivalent
to consider the (r,p)-starred labeling w of V,, such that w(x;) = i* for all
i € [n]. Then Fmaj(w) = {0} and £(w) = G*. Therefore in this case
Theorem 3.20 reduces to Corollary 1.9.

Remark 3.22. Let £ < n. Consider the poset {x1,zo,...,2z,} with the
ordering given by x; < x; if and only if ¢ < 7 < k < n. We called its
Hasse diagram T;, ; (see again Figure 2.3). Consider now the (r,p)-partial
labeling w of T, 1 such that w(x;) =" for i € [k] and w(x;) = i''0 for i =
k+1,k+2,...,n. Then h,, =i fori € [k] and h,;, = 1 otherwise, Fmaj(w) =
{0,kr/p,2kr/p,...,(p—1)kr/p} and L(w) ={g€ G*: Ik € {0,1,...,p—
1} st c(g~1(0)) = k% for each g lift of g in G(r,n), i € [k] and |g~1(1)] <
lg71(2)| < -+ < |g71(Kk)|}. We finally note that if g € £ (w) then g~! € %,
where %}, is the same set defined in (1.1). Then in this case Theorem 3.20

reduces to Theorem 1.11.
Proof of the fmaj hook length formula of Theorem 3.20
Let now w be a fixed (r, p)-partial labeling of F. Let
o ={feN": 3w lift of w in P.(F) s.t. fs, € j(W,) if x € F, and

fam > foy for each (xay) € E(F)7 where fom - ny

implies j(g,y) = 0 and o, < O’y}

and we show that &/ consists of all g-compatible vectors in N™ as ¢ varies

in the set .Z(w) of linear extensions of the (r, p)-partial labeling w.
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Proposition 3.23. Let f € N*. Then f € o if and only if f is g-compatible
for some g € Z(w).

Proof. We recall that f is g-compatible if and only if f; = A1) (9) +
rAlg-1(p) + by for all i € [n], where A\ € &, and h € {0,1,...,p — 1}
(Lemma 1.13). We divide the proof in two steps:

i) For each = € F, there exists w lift of w in &, (F') such that

7, (c(g 7 (0a))) = —(We)

for each g lift of g in G(r,n) if and only if there exists w lift of w in
P.(F) such that f,, € j(@W,).

Since fo, € j(w;) if and only if Ajg-1(4,)/(9) +h7/p € j(Wz), then for Lemma
1.15 there exists k € {0,1,...,p — 1} such that A, (g7 1) + kr/p € —j(W,)
and this is equivalent to say that for each g lift of g in G(r,n) there exists
w lift of w in Z,.(F) such that 7} (c(g ' (02))) = —j(Wa).

it) If (z,y) € E(F), then |g7(04)| < |[g7(0y)| if and only if fo, > fos,,

where f,, = f,, implies 0, < 0y and j(z,y) = 0.

<) If fo, > fr, then |[g7 (0s)| < |97 (oy)]| since A(g) and X are both par-
titions and the result follows. If f5, = f5, then Ag-1(5,y/(9) = Ajg-1(c,)(9)-
Then the definition of the statistics A;(g) implies that [g71(0,)| < [g7 (ay)],
since 0, < 0y.

=) If |97 (02)| < |g~'(oy)| then f,, > f,, since A(g) and X are both par-
titions. Moreover, we note that f,, # fo, if j(z,y) = 0 and o, > oy, or if

J(z,y) 7 0. So the result follows by contradiction. O

We let now
B = {fGN”: Jw lift of w s.t.

Jo. = Z (zy(W) + iymy) + Z ieXe, for each z € F, my € N}

yéﬁi—c ecéy

where we omitted the dependence from w. Again we show that &/ and £

are the same set, so in particular % consists of all g-compatible vectors as

g € ZL(w):
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Proposition 3.24. o = A.

Proof. 2) Let f € % and x € F. By definition, fo, = f5, + (zx(iﬁ) +ipmg +
ixx(x,y)), where y = p(z). Then f € &7.

C) Let u be a root. Then there exists w lift of w such that f,, € j(w,), so
there exists m, € N such that f,, = res;, (j(Wy)) + tumy = 2 (W) + GyyMy.
Let = be an element covered by u. Then there exists m, € N such that
fou = fou + 1680, (J(ayy)) T iaX(@w) T iaMe = fo, + 2(W) + fX(z0) T iz Me-
We note that f,, € j(w;). We obtain the result extending this argument to
every ¢ € F. ]

Now we are ready to prove the most general version of our main result:

Proof of Theorem 3.20. We compute the formal power series Zfed ¢! in
two different ways. In the first computation we use Lemma 1.14 and Propo-
sition 3.23 and we have

Y dll=> (1=g)(1—g*)- (1 —gm=br)(1 —gnr/p)

feo geL(w)

de Zw) gfimail9)

(1 _ qr)(l _ q27") c. (1 — q(n—l)r)(l — qm"/P) ’

In the second computation we use directly the definition of 2/ and Proposi-

tion 3.24: using the same notations, we have

|f’ = Z fO'a: = Z (Zv(ﬁ;) + ivmv) hy + Z 2.eXehe =s+ Z ixmxhx>

zeF VeV (F) c€E(F) zeF

where m, € N, s € Fmaj(w), and then

S =Y Y ( T qs> g
fed fe# mzEN ~ s€Fmaj(w)

D D —

1 — gizhe)’

s€Fmaj(w) II;[F( 4 )

Therefore

) 1— ") (1 — 27"'_.1_ (n—1)r 1— nr/p
Z quaj(g) _ Z qs( q )( q 1)_[(1(_ qz?}h) )( q )

geZL (w) s€Fmaj(w) sCF



Chapter 4

Counting forest labelings

4.1 ¢-Counting colored labelings

Let F be a finite forest with n vertices (see Section 1.6). In this chapter
we generalize the result in Theorem 1.21 by g-counting the set of all labelings
of a fixed forest F' using the fmaj statistic, for each type of labeling defined
in Chapters 2 and 3. We recall from [7] that, for any fixed o € S, there are

n!

I1 he

el

labelings w of F' such that o is a linear extension of w, since there is a
bijection between the set {w € #(F) : 0 € Z(w)} and the set Z(F)
of linear extensions of F'. The same argument also applies to any element
g € G(r,n), respectively g € G*, where G = G(r,p,n). So we have the

following result.

Remark 4.1. Let g € G(r,n) and u € #;(F"). Then there exists a bijection
{weW.(F): ge L(w)} - ZL(u).

Similarly, let now g € G* and u € #;,(F). Then there exists a bijection
{w e Wrp(F) : g€ Lw)} > L(w).

Moreover, if w € #;(F) or w € #; ,(F), then we have
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To see this, let x1,xs,...,x, be a linear extension of F. Let g =
(91,92, .., gn], where g; = 0% for i = 1,2,...,n. Then the labeling w, de-
fined by w(x;) = g; for i = 1,2, ..., n, satisfies g € £ (w). With this labeling
we associate the linear extension h such that h; = w(z;) for i = 1,2,...,n.
Then h = g. Vice versa, consider the element h such that h; = u(z;) for
i=1,2,...,n. Clearly h € Z(u). With this linear extension we associate
the labeling w such that w(x;) = h;. Then w = w. Thus, the map is a
bijection.

Note that we did not need to specify g € G(r,n) and v € #,(F), or
g € G* and u € ¥, ,(F), since the proof is the same. Note also that
|-Z(w)| = |-Z(F)|, so this cardinality does not depend on the choice of the

colored labeling w.

Theorem 4.2. Let F' be a finite forest with n elements and #,.(F') the set
of all r-colored labelings of F'. Then

§ gmaite) H”’hx IT (7l
zeF

weH(F)

Remark 4.3. For r = 2, the result was given in [10] (Theorem 2.3).

Proof. We consider the double sum

Z Z quaj(g)

weHr(F) ge£(w)

and we evaluate it in two different ways. In the first computation we use

Theorem 2.4 and we have

fmaj(g) _ fmaj(w) [T]Q[QT](] e [m"]q
2 2 2 II [Rarl,

weH (F) ge£(w) weWr(F) ZeF

_ [T]q[zr}q e [”T]q fmaj(w)
[l 2,

zeF

In the second computation we exchange the order of summations and use

Remark 4.1 and Corollary 1.10. Let x denotes the indicator function which
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has value 1 when the argument is true and 0 otherwise. Then we have

Y OY s Y Y e 2w) -

weH(F) geZ(w) weW(F) geG(r,n)

= > Y ™Ux(geLw) =

geG(r,n) weW,(F)

= Y ™I N y(geLw) =

g€eG(rn) weWr(F)

_l2E) Y e
geG(ryn)

= I~ [r]q[2r]q -~ [nr]q.

Therefore by equating

[r]q[2r]q - - [nr]q Z quaj(w) _ n!

H [hmr]q H hx [T]q[2r]q U [TL’I“]q

zeF zeF

weWr(F)

and we have the result. O

Theorem 4.4. Let F' be a finite forest with n elements and #;.,(F) the set
of all (r,p)-colored labelings of F'. Then

Z Z ¢ = H’I’llhx H [hxr]q-

weWr,p(F) s€Fmaj(w)

zeF

Proof. Again we consider the double sum

Z Z qmai9)

weWrp(F) ge£(w)

and we evaluate it in two different ways. In the first computation by Theo-

rem 3.6 we have

Z Z quaj(g) —

weWrp(F) ge£(w)

[r]q[2r]q - -+ [(n = D)r]q[nr/ply s
B [T [hatlq 2 2

CF weWr,p(F) s€Fmaj(w)
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In the second computation by exchanging the order of summations and using

Remark 4.1 and Corollary 1.9 we have

S OY e Y Y (g e Zw) -

weWrp(F) g€L(w) weWr p(F) geEG*

= Ym0 Y g e Zw) =

geG* weWrp(F)

= ———[rlg[2r]g -+ [(n = V)r]g[nr/pl,-

Therefore by equating we have the result. O

Let now T' be a linear tree and w an arbitrary (r, p)-colored labeling of
T. We let

fmaj(w) := min Fmaj(w)
be the smallest value of the multiset Fmaj(w). If ¢ € G* is the unique linear

extension of w, then fmaj(w) = fmaj(g). If p = 1, see Remark 2.3. We have

the following result.

Corollary 4.5. Let T be a linear tree with n elements and W, ,(T') the set
of all (r,p)-colored labelings of T. Then

n—1
Z quaj(w) = H [kr]q[rn/p]q-
wE%;p(T) h=1

Proof. Note that

Z quaj(w) _ Z quaj(g).

wEW r,p(T) geG*

Then the result follows from Corollary 1.9. O

4.2 ¢-Counting partial labelings

We can generalize the previous results to partial labelings of a fixed forest
F in the following way. Let x1,x2,...,2, be a linear extension of F. We
fix the vector I := (i1,1i9,...,1,) € N, where i, is a positive divisor of r for

k=1,2,...,n, and i; is a divisor of i, if x; is covered by x; in the forest
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F. Welet I'7 :=7Z;, X Zy, X ... X Z;, and denote by

‘@T,I(F) = {w € '@T(F) : (7(3;1)’7('%2)7 cee 77(xn)) € Fla

for each x1,z2..., 2, € L(F)},

where « is given in Definition 2.16, the set of all r-partial labelings w of F'
in which each color is defined as a residue class modulo a fixed divisor of
r. Let now w € &, ;(F) and consider the following equivalence relation on
Z(w): if g,h € Z(w) then

g~h ifandonlyif |g|=|h|€S,.
We denote by .Z(w)/~ the set of all equivalence classes.

Proposition 4.6. Let g € G(r,n) and v € P, [(F). Then there exists a
bijection
{we Z, (F): ge L(w)} - ZL(u)/~.

Moreover, if w € P, ((F), then we have

nlr®
ZLw)| = ——.
2w =
zeF
Proof. We use the same idea shown in Remark 4.1. So let x1,z9,...,x, be
a linear extension of F and g = [g1,92, - - ., gn] € G(r,n), where g = o* for

k=1,2,...,n. Then the partial labeling w, defined by

77 (cx)

w(wy) = oy, = a,i’“’j’“

for k = 1,2,...,n, satisfies g € Z(w). With this labeling we associate the
equivalent class h of linear extensions such that, for each h € h, we have
|h| = o and c(hy) € (W{k)_l(jk) for k=1,2,...,n. Then h =g. Vice versa,
let u be the labeling defined by u(zy) = T]ik’jk for k =1,2,...,n and consider
the class h of linear extensions such that, for each h € h, we have |h| = 7
and c(hg) = ¢ € (W[k)_l(]k) for k =1,2,...,n. Clearly h € Z(u). With

7r;-r (Ck)

this class we associate the labeling w such that w(xzy) = 7, = TZ"”j’“.

Then w = u. Thus, the map is a bijection.

Let now g € £ (w)/~ and note that the cardinality of g is
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since ji € Z;, represents r/ij distinct classes in Z,, for each k =1,2,...,n.
Then we have

[ Z(w)] = C|ZL(w)/~ | =C|ZL(F)|,

so this cardinality does not depend on the choice of the partial labeling
w. O

Theorem 4.7. Let F' be a finite forest with n elements and &, [(F') the set
of all r-partial labelings of F where vector I is fired. Then

n

S gmaite) - 1_7[1!;:0% I haiale-

wGQZT’[(F) zeF zeF

Proof. We consider the double sum
¥y g
weZ, (F) ge£(w)

and we evaluate it in two different ways. In the first computation by Theo-

rem 2.19 we have

Z Z quaj(g ] [1—[}[]1 Z 5nr]q Z quaj('w)'

wGJ, 1( ) ge"g( ngZ,.y[(F)

zeF

In the second computation by exchanging the order of summations and using

Proposition 4.6 and Corollary 1.10 we have

Z Z quaj(g) _ Z Z quaJ g e g( ))

weP, ((F) geL(w) weP, ((F) geG(rn)
= Y ™0 N ygeLw) =
g€G(rym) we Py [(F)
=€ |ZL(F Z quaJ(g
gEG(r n)
nlr®
= m["]q[%]q - [nrlg.
zeF
Therefore by equating we have the result. O

We denote now by

@r,p,I(F) =2, I(F)/Cp

s
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the set of all (r,p)-partial labelings w of F' in which each color is defined
as a residue class modulo a fixed divisor of r. Let now w € Z, , ;(F') and
consider again the equivalence relation on .Z(w) such that, if g,h € Z(w),

then

g~h ifandonlyif |g| =|h|€S,.
We denote by .Z(w)/~ the set of all equivalence classes.

Proposition 4.8. Let g € G* and u € P, ((F). Then there exists a
bijection

{we P, 1(F): ge L(w)} = L(u)/~.

Moreover, if w € Py, [(F), then we have

nlr?
\«f(wﬂ—m’
zeF
where
r
d = ged . 4.1
Be <lcm(i1,i2,...,in)’p) (4.1)

Proof. For the first part the proof is the same as in Proposition 4.6, where
now g € G* and u € &, , [(F).
Moreover, the cardinality |.Z(w)| does not depend on the choice of the par-

tial labeling w, since we have
2 (w)| =€ |L (w)/~ | =€ |L(F),

where € is the cardinality of class g € £ (w)/~ as a subset of £ (w). We

just need to prove that
n

r
d 1] is
z€F

€ =

To see this, we can compute the number % of (distinct) lifts of g in G(r,n)
and then divide this number for p, to obtain the number of (distinct) repre-
sentatives of these lifts in G*. This is equivalent to prove that

"D

Al i

zeF

¢




46 4 Counting forest labelings

Consider the n-tuple of colors (j1,72,...,Jn) € I7. From Remark 3.13
we know that the period of the n-tuple (r/p,r/p,...,r/p) in I is p/d.
Therefore, the set

r r r
J:{<]1+ka]2+k7>}n+k) ely: k:071>7p_1}
b b p

contains p/d distinct elements. Now we note that each j; € Z;, represents

r/i; distinct classes in Z,., for [ € [n]. So each element of J corresponds to

T?’L

i1i2 .. an

distinct elements in (Z,)™. Then the result follows. O

Theorem 4.9. Let F be a finite forest with n elements and P, 1(F) the
set of all (r,p)-partial labelings of F where vector I is fived. Then

nlr" ,
Z Z ¢ = m H [haiz]g,

WE Py 1(F) s€Fmaj(w) CF zeF

where d is defined as in (4.1).

Proof. Again we consider the double sum

Z Z quaj (9)

WEPyp 1(F) gL (w)

and we evaluate it in two different ways. In the first computation by Theo-

rem 3.20 we have

Z Z quaj (9) =

we@r,p,[(F) gej(w)

_[rlgl2r]g - [(n = D)r]glnr/ply s
- IT o], 2 2

2EF wePy p [(F) secFmaj(w)

In the second computation by exchanging the order of summations and using
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Proposition 4.8 and Corollary 1.9 we have

Z Z quaJ 9) — Z Z quaJ gEg( ))

wePy p 1(F) ge£(w) wePy, [(F) geG*
=Y ™0 N x(ge L(w) =
geG* weyrp I(F)
_F2(F)| Y )
geG*
nlr™
= W[T’]q[%]q - [(n = D)rg[nr]q.
zeF
Therefore by equating we have the result. O

4.3 A particular case: the disjoint union of two

linear trees

Consider the case in which the poset F' is the disjoint union of two
totally ordered sets, i.e., F' consists of two linear trees 77 and T>. Let n
be the size of T3 and m the size of T, so n + m is the size of F'. For
1 = 1,2, let v; be the root of T;. If w is an arbitrary r-colored labeling of
F', let w; be the restriction of w to the linear tree T;. Note that, if u; is an
r-colored labeling of T; such that c(u;(x)) = c¢(w;(z)) for each z € T; and
HDes(u;) = HDes(w;), then fmaj(u;) = fmaj(w;). Then

fmaj(w) = fmaj(u1) + fmaj(uz),

from the definition of fmaj. Finally, by noting that |#,.(T1)| = n!r™,
|#,.(To)| = m!r™ and |#,.(F)| = (n +m)!r"*™ from Theorem 4.2 we have

Z quaJ _ n + m H Z fmaJ w;)
T nlml

weWr(F) =1 u, ¥ (T;)
n m
n+m
=( 2" T 1T
k=1 =1

Then, for this g-counting, consider two independent labelings for 77 and
T5 is equivalent to consider a total labeling for F', up to a constant. For
this reason, in this section we study the product #;(T1) x #,(13) and two

particular sets obtained from it.
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Let Cp be the cyclic subgroup of G(r,n) x G(r,m) of order p generated
by
(/P27 /p,  arIe) (7 arle /)

For any w € #,(T1) x #;(T>) we denote by
col(w) := Z c(wyg)
zeF

the color weight of w. We consider two particular sets obtained from
Wy (T1) X #y(T2): its subset

G =1,(W.(Th) x #:(13))
=A{w e #.(Th) x #.(1T3) : col(w) =0 mod p},

and its quotient
W (Th) x #r(T3)
Cp ’
where the action of C), on the set #,.(T1) x #;(13) is defined by adding the
same multiple of r/p to all the colors of the labels of F'.

I =

Consider the subset ¢4 and g-count all its elements according to the fmaj

index. Then we have the following result:

Proposition 4.10. Let T1 and T5 be linear trees of size n and m, respec-
tiely. Let 9 = I,(#(Th) x #(12)). Then

Z gmaiw) — Deg, (H[/ﬁa]q. [“‘]q) ,
k=1

weY =1
where
Doty ( S out) = Tt
k>0 k>0

Proof. From the definition of fmaj and Theorem 4.2, we have

Z gmai(w) — Z gimeiui) — H[kr]q- [I7] -
7 1Uie%‘(Ti)

wWeW - (Th) x W (T2) k=1 =1

[\

Moreover, by definition

fmaj(w) = Z zz(w)h, mod r
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2 2 -2 -2
I [ ) I [ ) I [} I [ )
1 1 -1 -1 -1 1 1 -1
1 1 -1 -1
I [ ] I [ ] [ [ ] I [ ]
2 1 -2 -1 -2 1 2 -1
Figure 4.1: Example of 4, withr=p=2,n=2, m=1.
Then we take exactly the monomials of
n m
H[k””]q ) H[lr]q
k=1 =1
of degree multiple of p. ]

Example 4.11. Let ¢ be the set of labelings in Figure 4.1. Then

qumaj(w):1+q2+q2+q4+q2+q2+q4+q4
weYy

=1+4¢° + 3¢",
and

Deg, ([2]4[4]q - [2]q) = Degy (1 +¢)* - (1+ g+ ¢* + ¢%))
= Deg, (1 + 3¢ + 4¢* + 4¢* + 3¢* + ¢°))
=1+4¢>+ 3¢*.

Consider now the set 7 and let w € 2. For i = 1,2, let ¢; be the color

of the root v; of T; in w (to mean that w can be represented by its lift in

W, (Th) x #,.(T3) such that ¢; is the color of the root v;), and let p; € [0,p—1]

such that
¢ € [pid, (u; + 1)d — 1].

(4.2)
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We define the H-flag-major index of w as the following subset of Fmaj(w):

Hemaj(w) = {min Fmaj(w)} if g1 = pa,
{{nfmajo(w), himaj, (w)J} it # pa,
where
hfmajy(w) := Y (rx0P(w) + res, (ce) ) he
ecE(F)

+n - res, /, (c1) +m - res, (resr/p (c1) + co — cl) ,

hfmaj, (w) := Z (rx0P(w) + res, (ce) ) he
e€E(F)

+m - res, ), (C2) + n - res, (ves, ), (c2) + ¢1 — ¢2) -

Remark 4.12. If 1 = us, note that

min Fmaj(w) = Z (rx0P(w) + resy (ce) ) he
e€E(F)

+n-res,p, (c1) +m - res, , (c2) -
If 1 # po, then
res, /p (¢;) = ¢; — kr/p =res, (¢; — kr/p)

for some k € [0,p — 1], and

res, (res, s, (¢i) +¢j — ¢;) = res, (res, s, (¢;) + ¢j —res,/, (¢;) — kr/p)
=res, (¢;j — kr/p),
where (7,7) = (1,2) or (i,5) = (2,1). So Hfmaj(w) C Fmaj(w).

Now we g-count all the elements of 7 according to the Hfmaj index.

Then we have the following result:

Proposition 4.13. Let T} and Ty be linear trees of size n and m, respec-
tively. Let 7 = W,.(Th) x #;(12)/Cp. Then

> > -

weHN s€Hfmaj(w)

n—1 m—1

= TTtkrlalrn/pla - TT rlalrm/pla - (Bl + Pl = 1)

k=1 =1
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Proof. Let % := {u € #,.(T1) x #(T2) : c1 < dorcy < d}. Let now
) =4{w € A pup = p}t and JA = {w € A : 1 # p2}, where p; is
given in (4.2), and note that % = .7 U J#. Then there exists a bijection

of multisets

o : {{s € Hfmaj(w) : w € %”}} — {{fmaj(u) tu € %}},
where
o(s) € {{fmaj(u) s u € W (Th) X #p(To) s.t. ¢p < dand ¢z < d}}

if w e 4, and

o(s) € {{fmaj(u) s u € W (Th) X #p(T2) s.t. ¢1 < dand cg > d}}
U {{fmaj(u) s u € W (Th) X #p(To) s.t. ¢ > d and cg < d}}

if w e JA. If we identify a class of labelings with its minimal representative
(with a slight abuse of notation), then by using the above bijection ¢, from
Theorem 4.2 and Corollary 4.5, we have

> 3 -

weHN s€Hfmaj(w)

_ Z quaj (w1) Z quaj(wg)

w1€%,p(T1) wo €W (T2)

+ Z quaj (w1) Z quaj (w2)

w1 €Y7 (T1) w2 W,p(T2)

- Z quaj(w1) Z quaj(wg)

U)1€WT,p(T1) WQEWTP(TQ)

= [T +rlalrn/plg - [ lirlg +Hlﬂ“ 11 rlglrm/pl,
k=1 =1 =1
n—1 m—1

— H lglrn/plg H qlrm/plg

k=1 =1

n—1 m—1
= || [kr]qlrn/plq - H [ir]qlrm/plg - ({70[;”/@:](1 * [J:/iq]q a 1)

3
L
3
3
L

=TT tkrlalrn/ply - TT trlalrm /ply - (1plgrnso + [Pl = 1)
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2 2 —2 -2

I [ ] I [ I [ ] I [ ]
1 1 -1 1 -1 1 1 1
1 1 -1 -1

I L] I [ ] I L] I L
2 1 -2 1 —2 1 2 1

Figure 4.2: Example of 7, withr=p=2,n=2, m=1.
Example 4.14. Let S be the set of labelings in Figure 4.2. Then

Yo Y CEltar @A)+ (@) +d g
weH seHfmaj(w)

+ (@ +¢") + (@ +¢°) =1+ 3q+4¢> + 3¢° + ¢*,
and

2404/24 - 12/2)g - (2l + 2le = 1) = (1+@)* (1 +g+1+¢* 1)
=1+ 3¢+ 4¢*> + 3¢% + ¢*.

Remark 4.15. If T is a linear tree of size n, note that the following maps
are bijections:
7 (T) = G(r,n),  werg,

and
Wy p(T) — G*, w g,

where ¢ is the unique linear extension of the labeling w.

In the following chapter we extend this result to ¢ and J7.



Chapter 5

Invariants and products

5.1 The product B, x B,,

Let n,m € N, n,m > 0. Let C[X,Y] := Clzy,...,Tpn,¥1,...,Ym) and
denote by Si[X,Y] the algebra of polynomials in C[X,Y] generated by (1
and by) the monomials of degree k. Let B,, x B,, the direct product of two
Coxeter groups of type B. We consider the following two groups obtained

from B,, X B,,: its subgroup
D(B,, x Bp,) :={(g,h) € By, X By, : neg(g) + neg(h) = 0 mod 2},

and its quotient
B, x B,

+id

where id := (idp, ,idp,,) is the identity element of B, X B,.

Remark 5.1. (B, x B,)/ £ id is a projective reflection group: it is the
quotient of a reflection group modulo the cyclic subgroup +id of order 2.
We know that it acts on the algebra S3[X,Y] and its invariants coincide

with the invariants of B,, X B,,, which are

C[el(x%,...,xi), .. .,en(x%, V.. ,xi)]@@[el(y%, .. .,y%%), .. .,em(y%, .. ,yzn)],

where the e;’s are the elementary symmetric functions. Then the invariant
ring of (B, X By,)/ £ id is generated as a C-algebra by n + m algebraically

independent homogeneous polynomials (together with 1). See Section 1.5.

53
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Denote by I((By, x By,)/ £ id) the ideal of S3[X,Y] generated by the

invariants of (strictly) positive degree and let

B, x By So[X,Y]
R( +id > - I((By j B/ £ id)

be the coinvariant algebra of (B, x By,)/ £ id. We define the flag-major
index of an element v € D(By, x By,) as

finaj(y) = fmaj(g) + fmaj(h),

where g and h are the projections of v on B, and B,,, respectively. We now

associate to any v a monomial a, € C[X,Y] of degree fmaj(y) such that

e ) T A
0 (X,Y) = ag(X)an(v) = [T TT i)
i=1 Jj=1

Proposition 5.2. The set {ay : v € D(B, x By,)} represents a basis for
the coinvariant algebra R((By, x By,)/ £ id).

Proof. Recall that R((B,, x B,,)/ £ id) is the subalgebra of R(B,, x B,,) =
C[X,Y]/I(B, x By,) given by the elements of even degree. Then R((B,, x
B,,)/ £id) has a basis given by

{agay : (g9,h) € By x By, and deg(agap) = 0 mod 2}.
We note that

deg(agap) = fmaj(g) + fmaj(h Z Ai(g) + Z Aj(h)

and then
deg(agan) = neg(g) + neg(h) mod 2,

since Y. Ai(g) = >, ki(g) = neg(g) mod 2. Then the basis is exactly the set

{ay : v € D(B,, x Bp)}. O
Moreover,
. By, x By, B Bn X By,
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Example 5.3. Let n = 2 and m = 1. The elements of D(By x Bj) are

(L2, ) d=t-=21 1) (=12, =) (=21, [-1])
(21, ) (n=2) =1 (@210 =) ((=2,-1, [1]).

The corresponding monomials
1 xr1%2 z1Y1 Toy1
2

2 2 3
Ty T1T2Y1 T1T9Y1 T1To

form a basis for Sa[z1,z2,y1]/(2? + 23, 2323, y?), that is the coinvariant
algebra of (Bg x By)/ %+ id.

Consider now D(B,, x By,) and note that
Inv(B, X By,) C Inv(D(By, X By,)) C Inv(Dy, x D),
since Dy, X Dy, C D(By, X By,) C By, X Bp,.

Claim 5.4. The invariant ring of D(B,, X By,) is generated as a C-algebra
by (1 and by) n+m + 1 homogeneous polynomials, which are

e the n elementary symmetric functions e;(z3,...,x2) fori € [n],

e the m elementary symmetric functions ej(y3,...,y2,) for j € [m],
e the monomial exey, where ex == x1--- Ty and ey == Y1+ Ym-

Equivalently, Inv(D(B,, X By,)) is generated by the basic invariants of By, X

B,, and exey.
To prove Claim 5.4 we need the following result.

Lemma 5.5. Let G be a finite group and V' a complex vector field of finite
dimension n. Consider a representation of G on V and suppose that such
representation is monomial, i.e., there exists a basis B = {b1,ba,..., by}
of V' such that g(b;) = cjib;, where cj; € C, for every g € G. Let v =
a1b1 + ... 4+ apb, be an invariant element of V' and suppose that there exists
a subgroup H of G and l € [n] such that

> h(b) =0.

heH
Then a; = 0.
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Proof. Consider any G-orbit of the basis B and consider the projection of
v = Y a;b; on the elements of this G-orbit. This element is still invariant.
Then we can suppose that the action of G on B is transitive. Let S be a
set of representatives of (left) cosets of H in G, ie., G =5 -H =,.qg5H,

where [+ denotes the disjoint union. Then

D glb)=>_> sh(b) =

geG seS heH

This holds for every element b; € B: since the representation is monomial
and G is transitive, there exists an element g € G such that b; = cg(b;) for

a suitable ¢ € C. So

D glb) =Y glegb) =D cggl) =c Y g'(b) =

geG geG geG g eG

Then, since v is invariant,

v= \G|29 ,G|ZZazg ei) =

geG i

Finally a; = 0 for each i € [n]. O

Proof of Claim 5.4. Let P be a D(B,, x By,)-invariant polynomial. Then
P is D, x Dp,-invariant. Suppose that P is homogeneous: if not, then
its homogeneous components are still invariant (from the uniqueness of the
decomposition in homogeneous components). If exey divides P, then we
proceed by induction. If e Xey does not divide P, then there exists a mono-

mial M = g8 ... gdnyft ..

ym in P such that at least one of the d;’s or f;’s
is 0. We can clearly assume d; = 0. Again suppose that at least one of the
d;’s or f;’s in M is odd. Suppose d2 = 1 mod 2. Consider now the element
v := (m,tdp,,) € D(By X By,) such that v1(i) = —i if i = 1,2 and 11 (j) = J
if j € [3,n]. Then yv(M) = —M, i.e., y(M)+ M = 0. Since < y > has order
2, from Lemma 5.5 the coefficient of M in P is 0.

Otherwise, suppose fi = 1 mod 2. Then consider the element v := (v1,72) €
D(B,, x By,) such that (1) = —1, 72(1) = —1 and v1(j) = j if j € [2,n],
v2(i) = i if i € [2,m]. Repeat the same argument.

We can conclude that all the d;’s and f;’s in each monomial M of P are

even. Then P is B,, X B,,-invariant, since it is D,, X D,,-invariant. O]
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Note again that, since
Inv(B,, X Bp,) C Inv(D(B,, X By,)) C Inv(D,, X Dy;,),

then R(D,, x Dy,) is a quotient of R(D(B,, X By,)) which in turn is a quotient
of R(B,, X By,). In particular

R(B,, x Bn,)

R(D(By, x Bp)) = (exer)

where (exey) is the ideal generated by exey in R(B, X By,).
Proposition 5.6. Consider the set {agap : (g,h) € By, x By, }. Then:

o the subset of elements agayp, such that g(n) < 0 and h(m) < 0 is a basis
for the ideal (exey) in R(B, X Bp,),

e all the other elements agap, form a basis for R(D(By X By,)).
To prove Proposition 5.6 we need the following result.

Lemma 5.7. Let M € C[X] be a monomial such that xy - -z, divides M.
Then M admits the following expansion in R(By,):

M = Z NgQg,

ge*An

where ng € Z and A, = {g € By, : g(n) > 0}.
Proof. If x2---22 | M, then M =0 in R(B,). So we can suppose
M=z 2z, N

and z1---x, t+ N. From Corollary 1.18, N admits the following expansion

in R(D,,):
N= ) ngay,
9€ln

where 1y € Z. Since R(D,,) = R(B,)/(z1---xy), then in R(B,,) we have

N = Z Ngg + P21+ 2p,
geA,
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where P € R(By,). Then in R(B,)

M: Z nga/g.xl...xn_f_P.x%...x%

gEA,
n
. . Xi(g)+1
= Z NgQg = X1+ Tn = Z ”gH"’ﬂg(m :
geA, geA, i=1

Note that if g € A, then k,(g9) = 0 and k;(g) = ki+1(g) +¢ci(g) ifi € [n—1],
where

1 ifg(é) - g(i+1) <0,

ei(g) ==

0 otherwise.
Consider now the element h := —g € B,,. Note that h(n) < 0 and ¢;(h) =
ei(g) for i € [n — 1]. By definition, we have HDes(h) = HDes(g) and so
di(h) = d;(g) for each i € [n]. Moreover, k,(h) =1 and k;(h) = ki+1(h) +
ei(g) if i € [n — 1], so ki(h) = ki(g) + 1 for ¢ € [n]. Then

Ai(h) = 2d;(h) + ki(h) = 2d;(g) + ki(9) + 1 = A\i(g) + 1.

Finally, we have

M=} ”QHx\A;((S?H = nhHwﬁifﬁ? = > man,

gEA,  i=1 he—A, =1 he—An

where 7y, € Z. O

Proof of Proposition 5.6. If g(n) < 0 and h(m) < 0, then A,(g) # 0 and
Am(h) # 0. Recall that A\(g) and A(h) are partitions, so A;(g) # 0 and
Aj(h) # 0 for each i € [n], j € [m]. Then exey divides agaj. Moreover,
from Lemma 5.7 we note that in R(B,, X B,,) a monomial in which all the
variables appear is a linear combination of elements a4ayp, such that g(n) < 0
and h(m) < 0.

Note that the elements agay, such that g(n) and h(m) are not both negative
are equivalently the monomials ajaj,, exagaj,, ey agaj, such that (g, h) € D} x
Dy,. These ayaj, are independent in R(D,, x Dy,) since they form a basis
for it. Then they are independent in R(D(B,, X By,)), since R(D,, x Dy,) is
a quotient of it. ]
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Consider the group (B, X By,)/ £id. Let § € (B, X By,)/ £ id and let g
and h be the projections of a representative of § on B, and B,,, respectively.
We define the H-flag-major index of an element ¢ € (B, X By,)/ +id as the

following multiset:

Htmag(8) o {hfmajo(a)} if g(n)h(m) > 0,
{{hfmajo(a), hfmaj, (6) }} if g(n)h(m) < 0,
where
n+m n+m
hfmajy(8) == Y A”(6),  hfmaj (8) = Y AV(),
=1 =1

0 if 4 =n-+m,
k(o)(é) . k'z(%((s) + Ez'fn(h) if 7 € [n + Ln +m — 1]’
Z (6) ifien,
\kz(%((s) +¢i(9) if i e [n—1],
1 if 4 =n-+m,
k(l)(é) — kl(i)l((s) + Ei—n(h) ifi € [n +1,n+m— 1]’
Z 0 if i €n,
\kﬁ)ﬂ(s) +€i(9) if i e [n—1],

{1 if g(n) - h(m) < 0,

0 otherwise,

1 ifg(i)-gi +1) <0,
ei(g) = {

0 otherwise,

and d;(g) = |{¢ € [j,n — 1] : i € HDes(g)}| defined as in Section 1.3.

Let U := {(a,8) € By, x By, : a(n) > 0 or f(m) > 0} and fmaj(c, §) =
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fmaj(«) + fmaj(g) for («, 8) € By, x B,,. Note that there exists a bijection

of multisets
¢ {{s € Hfmaj(s) : § € (B x Bm)/iid}} = {{fmaj(a,ﬁ) L (a,f) € U}}
where

é(s) € {{fmaj(a,ﬁ) . (, B) € By X By s.t. a(n) > 0 and S(m) > o}}
if g(n)h(m) > 0, and

(s) € {{fmaj(a, B): (a,8) € By X B s.t. a(n) > 0 and B(m) < 0

U {{fmaj(a,ﬂ) . (, B) € By X By s.t. a(n) < 0 and B(m) > 0}}

if g(n)h(m) < 0.

Remark 5.8. Using the bijection ¢, we can conclude that a basis for
R(D(B,, x By,)) is the set

{agm . 5 € (By x Bp)/ +id s.t. 8(n)d(n+m) > o}

U {ag ) a\V s 6 € (By x By)/ £id st. 8(n)d(n+m) < o} :

where
(0)
(0) Hxx“’) 8) H >\ (h
Y5 )
j=n+1
M) x A ( 5) A(l)(h
ag HJ: H Yot
j=n+1
Moreover,
3 |B, x By, 3
dimR(D(B, x By)) ==+ |———| = = - |D(B, X Bn)|-
i R(D(B % B)) = 5 |20 = 3 1D x B

Example 5.9. Let n = 2 and m = 1. The elements ¢ of (By x By)/ £ id

are



5.2 The product G(r,n) x G(r,m) 61

The corresponding monomials are

1 T o 3:%

12 CL'%"EQ :Ell'% xlxg
2

n T1Yy1 T2Y1 TalY1,

and they form a basis for Clz1,z2,y1]/(z3 + 23, 2323, v}, z122y1), that is

the coinvariant algebra of D(By x Bj).

Proposition 5.2 and Remark 5.8 show a duality between the groups (B, X
By,)/ £id and D(B,, x By,). Let us generalize this behavior.

5.2 The product G(r,n) x G(r,m)

Let n,m,r € N, n,m,r > 0, and denote by (, the primitive r-th root of
the unity. Consider the direct product G(r,n) x G(r,m) of two groups of
r-colored permutations. Let p be a positive divisor of r. We consider the

following two groups obtained from G(r,n) x G(r,m): its subgroup

G = I,(G(r,n) x G(r,m))
:={(g,h) € G(r,n) x G(r,m) : col(g) + col(h) = 0 mod p},

and its quotient
G(r,n) x G(r,m)

Cp ’
where C), is the cyclic subgroup of G(r,n) x G(r,m) of order p generated by

H =

(/P 27/, . am/P) [17/P 27/ mT/P)).

H is a projective reflection group, since it is the quotient of a reflection
group modulo a cyclic scalar subgroup of order p. So it acts on the algebra
Sp[X,Y] and its invariants coincide with the invariants of G(r,n) x G(r,m),

which are

Cler(al,...,zp), .o yen(@], ...,z )]QCler (Y, -« -, U)oy em(Yly - Um )]s

where the e;’s are the elementary symmetric functions. Then the invariant
ring of H is generated as a C-algebra by n + m algebraically independent

homogeneous polynomials (together with 1). See Section 1.5.
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Denote by I(H) the ideal of S,[X,Y] generated by the invariants of
(strictly) positive degree and let

be the coinvariant algebra of H. We define the flag-major indexr of an

element v € G as
fmaj(7) := fmaj(g) + fmaj(h),

where g and h are the projections of v on G(r,n) and G(r, m), respectively.
We now associate to any element v € G a monomial a, € C[X, Y] of degree

fmaj(~y) such that
A(o) T1
ay(X,Y) = ag(X)an(¥V) = [ [ TT i}
Proposition 5.10. The set {a, : v € G} represents a basis for the coin-

variant algebra R(H).

Proof. Recall that R(H) is the subalgebra of

C[X,Y]
I(G(r,n) x G(r,m))

R(G(r, n) x G(r, m)) =

given by the elements of degree multiple of p. Then R(H) has a basis given
by

{agap : (g,h) € G(r,n) x G(r,m) and deg(agap) = 0 mod p}.
We note that

deg(agap) = fmaj(g) + fmaj(h) = Z Xi(g) + Z i ()

and then

deg(agap) = col(g) + col(h) mod r,

since >, X\i(g) = >, ki(g) = col(g) mod r. Then the basis is exactly the set
{ay: v € G}. O
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Moreover,
dim R(H) = |G| = |H|.

Consider now GG and note that
Inv(G(r, n) x G(r, m)) C Inv(G) C Inv(G(r,p,n) x G(r,p, m)),
since G(r,p,n) x G(r,p,m) C G C G(r,n) x G(r,m).

Claim 5.11. Let d = r/p. The invariant ring of G is generated as a C-

algebra by (1 and by) n +m + 1 homogeneous polynomials, which are
e the n elementary symmetric functions e;(xy,...,z]) fori € [n],

e the m elementary symmetric functions e;(yy,...,ym) for j € [m],

d d

e the monomial ek e = x¢- - adyd. .. yd

m-*

Equivalently, Inv(G) is generated by the basic invariants of G(r,n) x G(r,m)

d _d
and exey .

Proof. Let P be a G-invariant polynomial. Then P is G(r,p,n) x G(r, p, m)-
invariant. Suppose that P is homogeneous: if not, then its homogeneous

components are still invariant. If e%edy divides P, then we proceed by in-

duction, since eg(e‘{/ is clearly G-invariant. If egl(egl, does not divide P, then
there exists a monomial M = xclll e x,‘i"y{ o yfnm in P such that at least one

of the d;’s or f;’s is less than d: we can assume 0 < dy < d. Again suppose
that there exists ¢ € [2, n], respectively j € [m], such that r 1 d;, respectively
r {1 fj: suppose r { da. Consider now the element v := (’Yl,idg(rjm)) € G
such that v1(1) = 11, 91(2) = 2P7! and v (j) = j if j € [3,n]. Let
s:=dj + (p — 1)ds. Then v¥(M) = ¢*M for k € N. Let p := ged(r, s) and
a:=r/p, f:=s/p. Then the subgroup < v > has order r and we have

r—1 a—1

PORCHED SEUEHES D SEACIE}

heE<y> k=0 k=0

since

1+ o =14+ P4 D=,



64 5 Invariants and products

Then, from Lemma 5.5, the coefficient of M in P is 0.

Otherwise, suppose r { fi. Then consider the element v := (y1,72) € G
such that 1 (1) = 11, yo(1) = 171 and v, (j) = j if j € [2,n], 12(i) = i if
i €[2,m]. Let s:=d; + (p—1)f; and repeat the same argument.

Again, suppose now 0 < d; < d and r | d;, r | fj for each i € [2,n], j € [m]
in M. Then v¥(M) = ¢¥ M for k € N[0,r —1]. As in the previous case, M
does not appear in P and we can conclude that all the d;’s and f;’s in each
monomial M of P are multiple of r (or 0). Then P is G(r,n) x G(r,m)-

invariant, since it is G(r,p,n) x G(r, p, m)-invariant. O
Note again that, since
Inv(G(r,n) x G(r,m)) C Inv(G) C Inv(G(r, p,n) x G(r,p,m)),

then R(G(r,p,n) x G(r,p,m)) is a quotient of R(G) which in turn is a
quotient of R(G(r,n) x G(r,m)). In particular
R(G(r,n) x G(r,m))

(eey) ’

R(G) =

where (e4ef.) is the ideal generated by e%e in R(G(r,n) x G(r,m)).

Proposition 5.12. Let d = r/p. Consider the set {agan : (g,h) € G(r,n) x
G(r,m)}. Then:

e the subset of elements aqap, such that c(gn) > d and c(hy,) > d is a
basis for the ideal (e%ed) in R(G(r,n) x G(r,m)),

e all the other elements agay, form a basis for R(G).
To prove Proposition 5.12 we need the following result.

Lemma 5.13. Let M € C[X] be a monomial such that e = z¢... 24

divides M. Then M admits the following expansion in R(G(r,n)):

M = Z NgQg,

9E2n

where g € Z and (2, :={g € G(r,n) : c(gn) > d}.



5.2 The product G(r,n) x G(r,m) 65

Proof. If o7 ---z] | M, then M =0 in R(G(r,n)). So we can suppose
M = (xil...xd)s.]\g

where s € [p— 1] and 2¢---28 t N, i.e., if N = z{* - 2% at least one of

n o

the d;’s is less than d. From Lemma 1.17, N admits the following expansion

in R(G(r,p,n)):
N= Z Ng%g>
geN,

where 7, € Z. Since

then in R(G(r,n)) we have
N = Z ngag+P‘$(1i"'$g7
g€y
where P € R(G(r,n)). Then in R(G(r,n))
M=% ngag-(af - 2p)° + P (af---af)*H
gE2n,

Write P = ¢ymy + - -+ 4+ ¢ymy, where m; is a monomial and ¢; € C. Then

we have two possibilities:

i) - xd fm;,
i) x¢-xd | my, so my = (2422t - n;, where t € [p— s — 2] and

In the other cases m; - (xf---2%)*t1 = 0 in R(G(r,n)). Now we can write
the previous expansion for m; in case i), and for n; in case 7). We can apply
this argument recursively until we obtain the following expansion for M in
R(G(r,n)):

+1)d —1)d
M= Z Us,gag'egg‘i' Z 778+1,gag'€g? ) +-- Z 7717*179“9'6&? ) )
QEQn QEQn gGQn
with suitable coefficients 7; 4 € Z for i € [s,p — 1]. Then

p—1 1 " |
M=3 3 mgag- e =30 3 s J[

Jj=s g€y j=s g€y i=1
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Note that if g € (2, then k,(9) = c(g9n) < d. Consider now the element
h € G(r,n) such that |h| = |g| and c(h;) = ¢(g;) + pd, where p € [p — 1], for
each i € [n]. Then

c(hy) € [pd, (p+1)d — 1.

By definition we have HDes(h) = HDes(g) and so d;(h) = d;(g) for each
i € [n]. Moreover, ky(h) = c¢(gn) + pd and

Ki(h) = ki (h) + res, (e(ha) — e(his1)) = kisa () + res, (c(g:) — elgisn))
if i € [n—1], so k;(h) = ki(g) + ud for ¢ € [n]. Then
Ai(h) = rdi(h) + ki(h) = rdi(g) + ki(g) + pd = Xi(g) + pd.

Finally, let $2,(a,b) := {g € G(r,n) : ¢(gn) € [a,b]}. In this notation

2n = 2,(0,d—1) and (2, = 2,,(d,r — 1). We have

— ToA)

o ) Ai(g)+id

M = g [ #93)
j=s ge2n, i=1
p—1 n ( )
i(h)

= Z Nj,h Hxlh(i)\ = Nhah,

J=s he€n(jd,(j+1)d—-1) i=1 he2n,
where ny, € Z. O

Proof of Proposition 5.12. 1f ¢(g,,) > d and c(hy,) > d, then \,(g) > d and
Am(h) > d. Recall that A\(g) and A(h) are partitions, so A;(g) > d and
Aj(h) > d for each i € [n], j € [m]. Then e%ef divides aza,. Moreover,
from Lemma 5.13 we note that in R(G(r,n) x G(r,m)) a monomial in which
all the variables appear with exponent at least d is a linear combination of
elements agay, such that c¢(g,) > d and c(h,,) > d.

Note that the elements aga; such that (g,h) € G(r,n) x G(r,m) and c(gn)

and c(h,,) are not both > d are equivalently the monomials

1o d roroo2d 11 (p—1)d 1
agah, €x -agah, €x -agah, ceey CX -agah,
d roro2d 1) (p—1)d 1
€y - Clga]_“ €y - agah, ey €Y . agah

such that (g,h) € G(r,p,n)* x G(r,p,m)*. These ayaj, are independent
in R(G(r,p,n) x G(r,p,m)) since they form a basis for it. Then they are
independent in R(G), since R(G(r,p,n) x G(r,p,m)) is a quotient of it. [J
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Consider the group H. Let 6 € H and let g and h be the projections of a
representative of § on G(r,n) and G(r, m), respectively. Again let ¢; := ¢(g;)

and zj := c(h;) for i € [n], j € [m]. Let p,v € [0,p — 1] such that
cn € [pd,(p+1)d—1] and 2z, € [vd, (v+1)d —1]. (5.1)

We define the H-flag-major index of an element § € H as the following

multiset:
Hfma(5) {hfmaj0(5)} it p=vo,
maj(d) :=
{{hfmajo(é), hfmaj, (0) }} if p# v,
where
n—+m n—+m
hfmajo(8) == Y AP(6),  hfmaj,(8) = > AV (),

res, /p (2m) ifi =n-+m,
KO (5) = kz(—(l)-)l ) +resy (2 — zip1)  ifi€[n+1n+m—1]

res, kr(gzm@) +cp — zm> if i € n,

KO (8) +res, (ci — 1) ifi € [n— 1],

res, /p, (Cn) if i = n,
A 0) +res, (¢; — ¢ ifiell,n—1],
K0 (5) i i11(6) ( +1) [ ]

res, knl)(é) + Zm — cn> ifien+m,

k:g)l(é) +res, (z; —ziy1) ifien+1,n+m—1],

and d;(g) = |{i € [j,n — 1] : i € HDes(g)}| defined as in Section 1.3.

Let U :={(,8) € G(r,n) x G(r,m) : ¢(an) < d or ¢(By,) < d} and recall
that 2, = {a € G(r,n) : c(ay,) < d} and 2, = {a € G(r,n) : c(ay,) > d}.
Let fmaj(a, f) := fmaj(a) + fmaj(s) for (o, ) € G(r,n) x G(r,m). Note

that there exists a bijection of multisets

¢ {{s € Hfmaj(s) : § € H}} = {{fmaj(a,ﬁ) : (o, 8) € U}}
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where
(s) € {{fmaj(a, B): (a,8) € 2y x Qm}}

if u =v, and
o(s) € {{fmaj(a. 8) : (@ 8) € 20 x 2 }}
U {{fmaj(a, 8) : (@, 8) € P x 2m f}
if 4 # v, where p and v are given by (5.1).
Remark 5.14. If u # v, then
kfﬁ&)—m(é) = IeS;/p (2m) = 2m — kr/p = res, (2, — kr/p)
for some k € [0,p — 1], and
kO (5) = res, (res,/p (2m) + cn — 2m)

= res, (res,/p (2m) + ¢n — res,, (2m) — kr/p)
=res, (¢, — kr/p).

In the same way,
kM (8) = res, (en — kr/p)

n

for some k € [0,p — 1], and

kr(}lm(é) =res, (zm — kr/p) .

If p = v, then
kfﬁ&)—m(é) =TIeS/p (2m)

and
k1(’LO) (6) = resy/p (cn) -

Remark 5.15. For any § € H, let p; € [0,p — 1] such that
c(éi) € [mid, (i + 1)d — 1].
Using the bijection ¢, we can conclude that a basis for R(G) is the set

{ago) 0 € H st oy, = un+m} U {ago),agl) 20 € H st pn # p,n+m},



5.2 The product G(r,n) x G(r,m) 69

where
n n+m
NOm A9 ()
H%(z 11 Yol
j=n+1
0 TN ) 2
a; (X,Y):= H$|5()| H ylé(a)l
=1 Jj=n+1
Moreover,
2p —1 2p—1
dimR(G) = 2 — |7 = 2= . |q].
p

Finally, let us consider a finitely generated graded commutative algebra

A over C, which is generated by elements of positive degree. So

A:@Ak,

k>0

where Ag = C. Recall that the Hilbert function of A is the map
HF4: N — N, k'—)dim(cAk,
and the Hilbert series of A is the formal series

HSA(q Z HF 4(
k>0

According to the notes in Remark 4.15 and the notation in Section 4.3, we

have the following two results:

Proposition 5.16.
> ™) = HSp ) (q)-

weY

Proof. Note that there exists a bijection:

{fmaj(y) : v € G} — {fmaj(w) : w € ¥}.

Then
Z qfrnaj Z qfrnaj
veG weY
so from Propositions 4.10 and 5.10 we have the result. 0

Example 5.17. See Examples 4.11 and 5.3.
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Proposition 5.18.

Y DY ¢ =HSpe)(9)

weA scHfmaj(w)

Proof. Recall Remarks 4.12 and 5.14. Note that there exists a bijection:

{s € Hfmaj(é) : 6 € H} — {s € Hfmaj(w) : w € J€}.

Then
>, 2 =) )
0€H seHfmaj(d) weH s€eHfmaj(w)
so from Proposition 4.13 and Remark 5.15 we have the result. 0

Example 5.19. See Examples 4.14 and 5.9.
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