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Contents

Sommario xi

Résumé xiii
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Sommario

Questa tesi è centrata sugli aspetti di efficienza energetica nelle reti
wireless, sia per quanto riguarda la trasmissione, sia per quanto con-
cerne la diffusione dell’informazione in reti complesse. In particolare,
se da un lato si analizza l’efficienza della comunicazione, puntando
a ridurre i consumi sul fronte trasmissione, dall’altro non si trascura
che i processi e gli algoritmi richiedenti l’accesso al mezzo di comu-
nicazione debbano essi stessi essere efficienti, minimizzando quindi la
domanda di traffico.

In tema di trasmissioni energeticamente efficienti si introduce uno
schema a riuso di segnali di opportunità, finora mai studiati in let-
teratura a scopo di comunicazione, con l’obiettivo di arrivare ad un
consumo prossimo allo zero. A livello teorico si generalizza il tema
dei segnali di trasmissione a bassa potenza considerando modelli di
canale con segnali di ingresso limitati in ampiezza. Si analizzano
quindi le caratteristiche che tali canali devono possedere affinché la
distribuzione di ingresso, che garantisce il raggiungimento della ca-
pacità, sia discreta.

Per quanto riguarda il progetto di algoritmi efficienti di diffu-
sione dell’informazione, ci si focalizza su un problema di stima de-
centralizzata su una rete di sensori wireless, risolto ponendo l’enfasi
sull’efficienza energetica delle possibili soluzioni e sulla robustezza
delle stesse anche in presenza di perdite (in generale troncamento)
nelle comunicazioni.
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Résumé

Cette thèse porte sur les aspects d’efficacité énergétique, soit pour ce
qui concerne la transmission soit pour ce qui concerne la propagation
de l’information sur des reseaux sans fils complexes. En particulier,
d’un côté, on analyse l’efficacité de la communication étendue vers
la reduction des consommations pour l’émetteur et, de l’autre côté,
on pose l’attention sur l’efficacité des algorithmes et des procès qui
doivent être eux-mêmes le moins exigeants possible en termes de trafic
nécessaire.

Dans le domaine des communications efficaces, on introduit un
nouveau méthode exploitant des signaux déjà présents dans l’ envi-
ronnement, dits signaux d’opportunité, qui n’ont jamais été étudiés
dans la literature aux fins de la communication. Le scope est d’ensurer
des consommations proches de zero. Ensuite, la thématique des sig-
naux de transmission de basse puissance est généralisée: on analyse les
conditions sous lesquelles les chanaux de communication, ayant le sig-
nal d’entrée limité en puissance maxime, présentent une distribution
d’entrée optimale (ainsi atteignant la capacité) discrète.

À l’égard du projet d’algorithmes efficaces pour la propagation
de l’information, on se concentre sur un problème d’estimation dis-
tribué sur un réseau sans fils, résolu en posant l’accent sur l’efficacité
énergétique des solutions possibles et sur leur degré de résistance face à
des pertes lors des communications (soit en présence d’une troncature
plus en général).
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Summary

This thesis focuses on the energy efficiency in wireless networks under
the transmission and information diffusion points of view. In par-
ticular, on one hand, the communication efficiency is investigated,
attempting to reduce the consumption during transmissions, while on
the other hand the energy efficiency of the procedures required to dis-
tribute the information among wireless nodes in complex networks is
taken into account.

For what concerns energy efficient communications, an innovative
transmission scheme reusing source of opportunity signals is intro-
duced. This kind of signals has never been previously studied in liter-
ature for communication purposes. The scope is to provide a way for
transmitting information with energy consumption close to zero. On
the theoretical side, starting from a general communication channel
model subject to a limited input amplitude, the theme of low power
transmission signals is tackled under the perspective of stating suf-
ficient conditions for the capacity achieving input distribution to be
discrete.

Finally, the focus is shifted towards the design of energy efficient
algorithms for the diffusion of information. In particular, the endeav-
ours are aimed at solving an estimation problem distributed over a
wireless sensor network. The proposed solutions are deeply analyzed
both to ensure their energy efficiency and to guarantee their robustness
against losses during the diffusion of information (against information
diffusion truncation more in general).

xv



xvi



Introduction

0.1 Motivation

The majority of recent advances in the field of communication the-
ory and distributed sensing is due to the rise of the new challenges
posed by the transformation of the one to one paradigm into the
many to many paradigm. Multiple input multiple output (MIMO)
communications [1–3], spectrum reuse and cognitive radio [4], and
distributed detection and estimation algorithms in wireless sensor net-
works (WSNs) [5,6] are perhaps the most prominent examples of this
tendency. Nonetheless, literature on WSNs has seen lots of efforts
being attempted in many other directions. For instance, the neces-
sity for improved localization capabilities, network lifetime extension
and, in general, energy efficiency in the use of network resources have
led to the development of ultrawide bandwidth (UWB) localization
and communication techniques [7–9], energy efficient routing [10], and
ad hoc channel access protocols [11, 12], just to cite a few. More-
over, since the pioneering work [13] was published, a rising interest
has been devoted to collaborative distributed schemes aiming to fulfill
tasks shared among the several nodes forming a WSN.

Energy efficiency is on of the most important topic in the WSNs
literature. An ever growing attention has been driven by green com-
munication and computation systems, which represent the future of
the information and communication technology (ICT) world. This vi-
sion is supported by the emergence of Internet of things (IoT) applica-
tions [14,15], which require WSNs as an enabling technology under the
constraint that devices consumption is really low. This stringent re-
quirement should foster the opportunity to employ energy-harvesting
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technologies [16–19] and reduce the strong environmental impact of
batteries. Two are the main declensions for the energy efficiency in
WSNs. On one hand, new communication paradigms can gain in effi-
ciency by requiring less transmit power. On the other hand, the tasks
to which WSNs are dedicated should be less transmissions-eager and
they should require a lower computational burden as well.

To summarize, one might well say that the lowering of the en-
ergy required by data transmissions is the main way for achieving
energy efficiency. The strong interest for lowering power consumption
in wireless communications is not limited to its intrinsic benefits but
also derives from the positive effects it has on electromagnetic (EM)
pollution and on the reduction of interference levels. Specifically, this
allows for a better spatial reuse of spectrum as well as for a less trou-
blesome coexistence of primary and secondary systems on the same
bandwidth. This means that pushing in the direction of autonomous
systems, able to harvest the small required amount of energy from the
surrounding environment, is profitable in many aspects and particu-
larly could enforce the massive deployment of IoT applications. As
for what concerns currently available technologies, modern radiofre-
quency identification (RFID) systems do provide tags with very low
energy consumption and working without batteries [20]. However if
one includes also the RFID reader in the energy budget computation,
it could be seen that the overall system efficiency dramatically de-
creases. In fact, to energize the tags, the reader sends high power (in
the order of Watts) interrogation signals but only a fractional portion
of such energy is actually captured by tags while the rest is wasted
in the environment. This makes the overall energy efficiency of RFID
systems much less than the one that would be obtained using batter-
ies in tags. In this context, the present work proposes a solution that
lowers the overall system energy consumption by “recycling” signals
already present in the scenario as it will be later explained.

One of the most common task that a WSN may be in charge of
is the estimation of a (typically vector) parameter, generally repre-
senting a spatially distributed physical quantity. Subsequently some
decisions are taken based on the acquired estimate. If all the devices
in the WSN are potential decision taking entities they all should be
ensured with the required estimate. Classically, this issue is solved
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by letting a central unit collect all data, compute the estimate and
transmit it back to nodes. Unfortunately, centralized solutions have
some drawbacks related to reliability and traffic load: The central
unit may fail, thus provoking an utter network outage, while the traf-
fic necessary for back transmissions may be overwhelming. This is
where the dichotomy between centralized and distributed approaches
comes from. Typically, a distributed solution would cancel the cen-
tral unit failure problem. However, this problem is generally solved
mostly at the expenses of efficiency in communications. In fact, the
required traffic load should be carefully considered, since, on one hand,
it is more costly to distribute information towards many (possibly all)
nodes in a network than gathering it at a single node while, on the
other hand, distributed solutions do not need any final redistribution
of the produced estimate.

In literature many results in distributed estimation theory can be
found. Precisely, one may observe how the interest for efficient and
robust information diffusion strategies has steadily been increasing in
the last two decades. Nonetheless, the need for robustness has perhaps
drifted the researchers attention mostly on solving the central unit
failure problem. Hence, the preference for peer-to-peer like solutions
has arisen. For instance, consensus algorithms perform really well in
guaranteeing that all nodes in a WSN are able to fulfill an identical
estimation task. However, in literature, the comparison of consen-
sus based algorithms with completely unrouted diffusion strategies is
somehow flawed. Generally, one may find comparisons with the back-
wards transmission of centrally computed quantities (e.g., in [21, 22])
but this is still not enough to claim for efficiency in a satisfying way.
Moreover, the literature is not so keen in the investigation of the ef-
fects of truncation in distributed procedures. Some issues caused by
losses in communications are addressed in, e.g., [23,24], however many
solutions to distributed problems are completely missing this aspect.
This is an important issue that should always be considered when
developing a distributed procedure. Finally, the accent in literature
is on determining estimates in a distributed way. Nevertheless, the
estimate is not always enough to take a subsequent decision. Some-
times, like in source localization problems, it is more important to
have information about the probability with which the parameter of
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interest (e.g., the true source position) lies in a region that surrounds
the obtained estimate. This gives rise to the characterization of con-
fidence regions. One can obtain a good characterization of confidence
regions for an infinite number of measurements by resorting to classical
tools such as those based on the Cramér-Rao bound. Unfortunately
such tools do not provide useful information (they are too optimistic)
when the number of measurements is limited as happens, for example,
when delays or energy constraints are present in the network. This
aspect is investigated in this thesis where distributed approaches for
non-asymptotic confidence regions computation are proposed.

0.2 Thesis Outline

This thesis is mostly focused on energy efficiency in WSNs. This
topic was chosen as a consequence of the growing attention driven by
the need for green communications in WSNs and more generally in
the ICT world, as sketched in the previous section. Energy efficiency
is considered both for what concerns transmission and information
diffusion.

An innovative physical layer scheme for data transmissions is pro-
posed. This scheme aims at lowering the required power on the trans-
mitter side. The contribution lies in the design and analysis of an
almost zero-power transmission approach. The main underlying idea
is to exploit signals already available in the surrounding environment
as transmission carriers instead of generating ad hoc signals, as done
in conventional wireless communication systems. These signals are
modulated by means of backscatter techniques, yielding a significant
advantage for the transmitter in terms of energy consumption. This
principle has already been exploited for localization purposes [25,26],
but it has never been adopted to support data communication. The
analysis is carried out in terms of achievable transmission range and
bit rate. Such a kind of communication approach might find applica-
tions in low power monitoring devices, from environmental to indus-
trial scenarios. Chapter 1 covers the investigation of this innovative
communication scheme and reports results that have been published
in [27,28]. The paper [28] received the “F. Carassa” best paper award
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at the 2013 annual GTTI (associazione Gruppo nazionale Telecomu-
nicazioni e Tecnologie dell’Informazione) meeting.

The conducted analysis is successively enlarged in Chapter 2 to
peak power limited transmission schemes from an information theo-
retic point of view. A pretty general channel model is defined and the
attention is drawn to the investigation of sufficient conditions for the
capacity achieving input probability measures to be discrete with a
finite number of probability mass points. These conditions are shown
to be met in interesting case studies such as the peak power limited
Rayleigh fading channel and additive noise peak power limited chan-
nels. In fact, all feasible communication schemes are limited in peak
power and this clearly sets the ensemble of target applications as really
vast. The literature on the topic of peak power limited channels is not
so large and covers channel models on a case-by-case basis. Here the
approach that is taken aims at abstracting from the particular channel
model, and concentrates on the set of conditions that should be met.
Results have been published/submitted in [29, 30].

The second aspect of energy efficiency is covered in the last chapter
of the thesis. It is worth analyzing how different strategies for diffus-
ing information across a WSN impact on the yielded traffic load. The
focus is on lowering the eagerness for transmissions. To this purpose,
a distributed problem in estimation theory is presented and solved, ac-
counting for both an analysis of efficiency in terms of required commu-
nication efforts and robustness to truncation. Specifically, Chapter 3
investigates the problem of the efficient computation of confidence
regions over WSNs. This differs from literature approaches focused
on point estimation and also from classical, centralized methods for
the computation of confidence regions. A state-of-the-art centralized
method for the computation of non-asymptotic confidence regions is
extended to the distributed scenario. Several solutions for the diffu-
sion of information across the network are designed and compared for
different network topologies and dimensions. The distributed com-
putation of confidence regions may find application in a variety of
scenarios, ranging from source localization to metering and monitor-
ing in smart grids as well as all the contexts in which the mere point
estimates are inadequate. The results presented in Chapter 3 have
been published/submitted in [31–33].
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Part I

Energy efficient wireless
communications

1





Chapter 1

Opportunistic almost
Zero-Power Communications

1.1 Introduction

In recent years, a great effort and attention has been devoted to
backscatter communications. This has grown in importance as the
interest in low power, or ideally zero-power, consuming devices has
been a driving concern. In particular, after its introduction [20, 34],
backscatter modulation has emerged as one of the best strategies to
perform identification in low complexity, low power, passive or semi-
passive RFID devices. Far more recently, UWB technology has been
combined with backscatter modulation to integrate identification with
high-definition localization accuracy capabilities [8,35–37]. Parallel to
this, a significant impulse to backscatter modulation technology has
been driven by sensor applications, in which the influence of the ob-
served physical characteristics on the sensor antenna radiation prop-
erties is the feature exploited for information conveying [38].

In current implementations, backscatter based communication re-
quires the presence of an interrogating device (receiver) that pro-
vides typically a high power radio frequency (RF) signal used by
sensors/tags as carrier for information transmission as well as power
source.

The idea investigated in this chapter is to overtake the need for
an interrogation signal, i.e., the transmission of an ad hoc radiofre-
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quency (RF) carrier, by recycling signals already present in the envi-
ronment as carrier for sensor-to-receiver data transmissions. WiMax
and Wi-Fi systems are two examples of widely diffused systems that
are broadcasting RF signals that may be reused to the scope. These
signals are referred to as source of opportunity (SoO) signals. The
exploitation of SoO signals is not a totally new concept: It has been
already studied for the design of infrastructure-less terrestrial posi-
tioning systems [25, 26]. However, there is no evidence in literature
that SoO signals have ever been considered for communication pur-
poses. The modulation scheme adopted by sensor nodes is the same
as the one used for passive tags/sensors in RFID applications, i.e.,
antenna load modulation causing power level variations of the signal
backscattered by sensors (backscatter modulation). Due to the oppor-
tunistic nature of the proposed communication technique, it is named
“piggyback communication”.

It is necessary to underline how the here proposed nomenclature is
clearly distinct from the previous uses of “piggybacking”: In literature,
this terminology may be found to denote a network layer/protocol
mechanism that achieves overhead minimization in the acknowledge-
ment transmissions by exploiting an overwriting in packets to be sent,
while in this context it denotes a physical layer procedure.

An application scenario may be the one depicted in Fig. 1.1, where
a certain number of passive or semi-passive wireless sensors, deployed
in a small area, transmit their sensed data to a receiver (collector).
The sensors can modulate the SoO signal that is reflected back to
the receiver, thus creating short-range communication links without
additional power emissions. Piggyback communication is expected to
lead to prominent improvements in terms of both energetic cost and
system security, the latter being a fundamental issue for instance in
military applications. In fact, since communication occurs without the
emission of dedicated wireless power in the environment, it is not easily
detectable. The largely improved energy efficiency is expected to be,
on the other hand, a driving factor for the adoption of the proposed
communication technique in body area networks (BANs) or WSNs
applications. The main concern is clearly the feasibility of piggyback
communications in terms of link budget, data rate performance, and
interference issues.

4
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SoO

Receiver

Sensor Node 2

Sensor Node 1

Sensed Data

Sensed Data

rb
rf

Figure 1.1: Example of application scenario using communications
with SoO signals.

Hereby, an investigation of the piggyback communication concept
is presented with the purpose to assess its feasibility from a link bud-
get as well as from an information theoretic point of view. In par-
ticular, it can be shown that communication using SoO signals leads
to the definition of a peculiar discrete-time channel model starting
from which some theoretical considerations can be made considering
a typical WSN scenario.

1.2 Piggyback Communications

The scope of this section is to describe the working principle of a
piggyback communication scheme. Consider the simplified scenario,
shown in Fig. 1.2, where a SoO transmitter, a sensor and a receiver are
present with respective distances rf and rb, typically with rf ≫ rb (see
also Fig. 1.1). Taking without loss of generality as reference time the
receiver local time, denote by VS z(t+ τ1 + τ2) the complex equivalent
baseband signal emitted by the SoO transmitter, where τ1 and τ2

5
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SoO

Receiver

Z
L

x(t)

Sensor

Modulating Signal

      from Sensor

VSz(t + τ1 + τ2)

VZz(t + τ)

τ1

τ2τ3

Figure 1.2: The piggyback communication mechanism.

are the SoO-sensor and sensor-receiver signals time-of-flight (TOF),
respectively, and where, for further convenience, z(t) is normalized so
that < |z(t)|2 >= 1.

The SoO signal can be received directly by the receiver with am-
plitude VZ , also depending on the antenna pattern shape, after τ =
τ1 + τ2 − τ3 seconds, being τ3 the TOF between the SoO transmitter
and the receiver. In addition, the SoO signal is backscattered by the
sensor according to the sensor antenna load conditions. Specifically,
extending the approach in [39], the complex equivalent baseband re-
ceived signal is

y(t) = V0 (As − ρrcs(t)) z(t) + VZ z(t + τ) + n(t) (1.1)

where n(t) is the additive white Gaussian noise (AWGN), indepen-
dent of z(t), with bilateral power spectral density N0/2, As is a load-
independent coefficient, related to the current induced on the antenna
conducting surface by the incident wave, and ρrcs(t) is the antenna

6
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load reflection coefficient given by

ρrcs(t) =
ZL(t)− Z∗

A

ZL(t) + ZA

(1.2)

ZA and ZL being the sensor antenna and sensor load impedances,
respectively.1 The constant V0 is related to the received power as

V0 =

√
2RA PR0

A2
s

exp{jφ} (1.3)

where φ is the phase offset, RA the antenna resistance, and

PR0
=

EIRP

4πr2f
σ0

λ2

(4π)2r2b
GR (1.4)

the RF received power, in free space conditions, evaluated in matching
load condition, i.e., ZL = Z∗

A (→ ρrcs(t) = 0). The parameter σ0

represents the sensor radar cross section (RCS) under matched load
condition, i.e.,

σ0 =
λ2

4π
K G2

t (1.5)

where K is the modulation factor, defined as K = |As − ρrcs(t)|2 [39]
and then coincident with |As|2 for a matched load (ρrcs(t) = 0), and
Gt is the sensor antenna gain in the direction of interest. In (1.4) and
(1.5), EIRP is the transmitter equivalent isotropic radiated power, GR

is the receiver antenna gain, and λ is the incident wavelength.
To make information transmission possible, the antenna load ZL(t)

changes with time according to the data to be transmitted. As a
consequence, also the reflection coefficient ρrcs(t) is time-dependent.
Denoting by x(t) the modulating signal, i.e., the piggyback channel
input carrying data generated by the sensor, in the following analysis
consider x(t) = −ρrcs(t). Since |ρrcs(t)| ≤ 1, then the channel input
results both power and amplitude limited, i.e., |x(t)| ≤ 1. This derives
by the passive nature (no signal amplification) of piggyback commu-
nication. For example, in UWB RFID systems proposed in [8], x(t)
takes two values, i.e., {−1,+1}.

1The superscript ∗ indicates complex conjugation.
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Rearranging, (1.1) may then be written as

y(t) = V0 z(t) x(t) + V0As z(t) + VZ z(t + τ) + n(t) . (1.6)

From (1.6) one can note that the signal backscattered by the sensor
antenna is composed of a component (antenna mode) dependent on
the antenna load, and hence on the input signal x(t), and of a second
component (structural mode) independent of the load and determined

by the physical structure of the antenna. Denote by η = |VZ |2

|V0|2
the ratio

between the direct SoO-receiver signal and the antenna mode signal
square amplitudes. Unlike in RFID systems analyzed in [39], here the
carrier is not an a priori known sinusoidal wave, but is given by the
random SoO signal z(t): Therefore the useful component is determined
by the multiplication between z(t) and x(t), assuming the antenna and
load reflection properties constant within the SoO signal bandwidth.

1.3 Channel Model

From the presented received signal expression one can derive a discrete
time channel model. Considering a sampling time Ts = 1/B, with B
the RF bandwidth of z(t), the discrete-time channel model associated
to (1.6) is

yn = V0 zn xn + wn (1.7)

where yn = y(nTs), zn = z(nTs), and all not data dependent compo-
nents are included in the term wn = w(nTs), with w(t) = VZ z1(t) +
V0As z(t) + n(t), z1(t) = z(t + τ).

One can model the complex equivalent baseband SoO signal as a
circular complex normal (CN) random process with bandwidth B and
white spectral density. Indeed, this is known to be an accurate ap-
proximation for orthogonal frequency division multiplexing (OFDM)
signals [40], that is the most common multiple access technology em-
ployed by the earlier mentioned SoO signals. Therefore, assuming the
channel input as memoryless, one can overlook the time dependence
in (1.7) and write simply

Y = V0 Z X +W (1.8)

8
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with Z ∼CN(0, σ2
Z) and W ∼CN(0, σ2

W ). Conditioned on the input
X , the output Y is also a circular CN distributed random variable
(RV) because Z andW are jointly circular CN RVs. As already stated,
the channel input X is amplitude constrained, i.e., |X| ≤ 1.

The derived discrete-time channel model (1.8) shares some similar-
ities with previously studied ones [41–43]. Specifically, [41,42] studied
an additive scalar Gaussian channel Y =X+N , with inputX subject to
an amplitude constraint. In that case, the channel capacity is reached
by a unique discrete input distribution with a finite number of prob-
ability mass points. Besides, in [43] a similar approach is followed in
studying the multiplicative Rayleigh fading channel Y =V X+N with
power constraint, V and N , being independent Gaussian multiplica-
tive and additive RVs, respectively. It was proven that the capacity
achieving input distribution is again discrete with a finite number of
probability mass points, one of them being located at zero. It was also
showed that, at low signal-to-noise ratio (SNR), the capacity achiev-
ing input distribution has only two mass points: One located at zero,
the other one having amplitude which decreases with the power con-
straint. On the other hand, at high SNR, more than two points are
necessary but the mutual information is not so sensitive to their exact
locations, then values close to capacity can be achieved even without
a perfect positioning of the input mass points.

In Chapter 2 a wider analysis of sufficient conditions under which
peak power limited channels have a capacity achieving real input prob-
ability measure, taking values on a finite number of probability mass
points, will follow. However, it is not possible to claim that the pig-
gyback channel model is covered by this analysis. What is instead
possible to claim is that the here derived channel model is additive
and multiplicative but with correlated noises (Z and W ). This means
that it degenerates into the Faycal, Trott and Shamai channel in the
particular case where Z and W are independent. If the channel in-
put is reduced to take values in the real field, then one way to prove
that the capacity achieving input distribution is discrete with a finite
number of probability mass points is following the same trace as done
in [44], since the output conditioned on the input variable is here also
Gaussian distributed. This way of proceeding accounts also for the
correlation between Z and W . Vice-versa and more generally, if the

9
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input variable is complex, one may prove (as again sketched in [44])
that the relationship between the real and imaginary parts of the in-
put variable is such to give rise to a shell distributed input, (i.e., the
input modulus can assume only a finite number of values, while the
phase is uniformly distributed in general).

1.4 Channel Mutual Information

It is now possible to provide some information theoretic results, con-
cerning the mutual information of the piggyback channel model: In
Section 1.5, some consequent considerations will be presented.

Suppose the input X takes M possible complex values {xi}Mi=1 with
Pi = Pr{X = xi}. The mutual information is [42, 43]:

I(X ; Y ) = h(Y )− h(Y |X)

=

M∑

i=1

Pi

∫

C

pY |xi
(y|xi) log

pY |xi
(y|xi)∑M

k=1 pY |xk
(y|xk)Pk

dy . (1.9)

As previously stated, pY |xi
(y|xi) is circular CN distributed with

mean

µY |xi
= E [Y |xi] = V0xiE [Z] + E [W ] = 0 (1.10)

and variance

σ2
Y |xi

= E [Y Y ∗|xi]

= |V0xi|2 E
[
|Z|2

]
︸ ︷︷ ︸

σ2
Z

+2ℜ{(V0xi)
∗
E [WZ∗]}+ E

[
|W |2

]
︸ ︷︷ ︸

σ2
W

. (1.11)

One can notice that the conditioned variance of Y is a real positive
scalar and that it is completely known, given the conditioning input
xi, the variances of Z and W and their covariance

Cov(W,Z) = E [WZ∗]

= VZρσZ1
σZ + V0Asσ

2
Z (1.12)

10
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Figure 1.3: Trade off between rf and rb for increasing values of the
SNR are shown.

where

ρ =
E[Z1XZX ]

σZ1X
σZX

=
E[Z1Y ZY ]

σZ1Y
σZY

, (1.13)

The distribution pY |xi
(y|xi) is therefore

pY |xi
(y|xi)

=
1

π|σ2
Y |xi

| exp
{
−1

2

[
y∗ y

][σ2
Y |xi

0

0 (σ2
Y |xi

)∗

]−1[
y
y∗

]}
=

=
1

πσ2
Y |xi

exp

{
− |y|2
σ2
Y |xi

}
. (1.14)

Inserting (1.14) in (1.9), the mutual information can be computed in
any desired discrete input scenario.

11
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Figure 1.4: Antipodal mutual information vs. input distribution pa-
rameter p, SNR = 10 dB, η = 2.5 104, ρ = 0.5.

1.5 Numerical Results

In this section an evaluation of the link budget is aimed at demon-
strating the feasibility of the piggyback communication scheme in a
typical WSN scenario. The mutual information is also evaluated in
one specific case and some conclusions are drawn from an information
theoretic perspective. The evaluation of the mutual information al-
lows to fix a precise benchmark for the transmission data rate: Even
if it does not represent the achievable maximum data rate, it states
a value which, being under channel capacity, guarantees an arbitrary
low bit error probability at the receiver.

It has already been stressed how the piggyback communication
scheme borrows its carrier signal from another existing application.
This imposes to pay particular attention in choosing the SoO. In fact,
the exploited signal is required to be as largely diffused as possible.
Because of its wide diffusion, a digital video broadcasting-terrestrial
(DVB-T) SoO signal, using OFDMmodulation, represents an interest-

12
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Figure 1.5: On-off mutual information vs. input distribution parame-
ter p, SNR = 10 dB, η = 2.5 104, ρ = 0.5.

ing choice. A typical effective radiated isotropic power (EIRP) value
for a DVB-T transmitter may well be 10 kW (see, for example, [45]),
serving a single B = 5MHz bandwidth channel. Next, consider the
following realistic values for the numerical analysis, having in mind
a DVB-T broadcast signal: EIRP = 10 kW, Gt = 2dB (a typical
dipole antenna gain, assumed to be isotropic in the horizontal plane),
As = 1 [39], GR = 9dB, λ = 0.375m (f0 = 800MHz), RA = 50 Ω,
N0 = 1.266 10−20 J. In addition, it is possible to define the signal-to-
noise ratio

SNR =
|V0|2E[|X|2]
N0BRA

(1.15)

and, finally, by taking into account the independence of Gaussian noise
and the direct path and backscattered signals, one has

σ2
W = N0BRA + |VZ|2 + |V0|2|As|2 + 2ℜ{VZV

∗
0 A

∗
sρ}. (1.16)

Fig. 1.3 shows the trade off involving the SoO transmitter-sensor and
sensor-receiver distances rf and rb, respectively, by considering an-

13



14
CHAPTER 1. OPPORTUNISTIC ALMOST ZERO-POWER

COMMUNICATIONS

0.2 0.4 0.6 0.8 1.0
Ρ

5.´10-6

0.00001

0.000015

0.00002

0.000025

IHX;Y L @bits�channel useD

Figure 1.6: Antipodal mutual information vs. correlation parameter
ρ, SNR = 10 dB, η = 2.5 104, p = 0.5.

tipodal modulation (X ∈ {−1, 1}) and different SNRs. Thanks to
the high EIRP of the SoO transmitter, it can be noted that appeal-
ing sensor-receiver distances (larger than 10m) can potentially be
achieved with typical values of SNR. This result assesses the pos-
sibility to employ this new communication technique for the proposed
applications (WSNs and BANs).

As far as the achievable data rate performance is concerned, chan-
nel capacity analysis should be considered. Unfortunately, the ca-
pacity expression for the piggyback channel model is still unknown.
However, the mutual information obtained with a discrete input dis-
tribution may be a meaningful term of comparison for capacity itself,
as already cited papers [42,43] show. Hence in a preliminary analysis,
one can consider the mutual information resulting from he adoption of
simple binary modulation schemes, usually implemented in backscat-
ter modulators. The obtained results constitute a significant starting
point: It has already been hinted out how, at low SNR, the not corre-
lated version of the piggyback channel model degenerates into a binary

14
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Figure 1.7: On-off mutual information vs. correlation parameter ρ,
SNR = 10 dB, η = 2.5 104, p = 0.5.

input capacity achieving channel.

For the above mentioned reasons, consider the cases of input RV
X assuming values 1, −1 (antipodal case) and 0, 1 (on-off case) with
probabilities P1 = 1 − p and P2 = p, respectively. Figs. 1.4 and 1.5
show the behavior of the mutual information, as a function of p, while
keeping fixed the correlation between the direct path signal and the
backscatter path signal to ρ = 0.5. A strong direct path is considered
in these examples. Results indicate that the antipodal scheme is better
under the same boundary conditions.

It is also interesting to investigate the influence of the correlation
between the direct path and the backscattered signal on the perfor-
mance, by fixing p = 0.5. The obtained results are shown in Figs. 1.6
and 1.7, where the mutual information increases with the correlation:
This is because the receiver can take advantage of the knowledge of
the carrier SoO signal, when ρ is close to 1.

Finally, one can study the effect of the SoO direct path intensity
with respect to the backscattered signal, accounted for by the parame-
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Figure 1.8: On-off mutual information vs. η, SNR = 10 dB, p = 0.5,
ρ = 0.5, logarithmic scale

ter η, reflecting different geometrical situations for what concerns the
relative transmitter and receiver orientations. Fig. 1.8 shows that,
in general, the performance significantly improves as the direct path
power decreases, even in the presence of partial correlation between
signals. This result indicates that the potential benefit, that can be
obtained through the reception of a correlated version of the SoO sig-
nal, is hamstrung by the additional strong disturbance present at the
receiver.

A direct multiplication of the mutual information by the number of
channel uses per second, i.e. the signal bandwidth, leads to bit rates
in the range of 10 to 500 bits per second, as it can be clearly deduced
by Figs. 1.4, 1.5, 1.6, and 1.8. These values are quite encouraging for
near zero-power remote sensing applications, which are not expected
to be much data consuming.
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1.6 Conclusions

Piggyback communication, recycling radio signals as sources of oppor-
tunity, has been introduced. The corresponding channel model, where
the input symbol is subject to an amplitude constraint due to the
passive nature of the communication, has been developed. The link
budget analysis, in a typical WSN scenario with DVB-T SoO signal,
demonstrates the feasibility of this scheme. In addition, some prelimi-
nary considerations in terms of mutual information have brought some
insights in the understanding of the effect of signals correlation as well
as of the impact of the SoO signal direct path power. Results show
that a better performance can be achieved with increased correlation
or by decreasing the direct path component power level.

As a further consideration, the interference on the primary user
signal is expected to be negligible, since the backscattered signal is
orders of magnitude below the directly received signal.

Summarizing the conducted analysis, the proposed communication
technique appears to be very promising in view of near zero-power
wireless networks, employing passive devices.
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Chapter 2

Constrained Peak Power
Channels

2.1 Introduction

In recent years, a great interest has been rising in what can be called
discrete input channel modeling. This theory takes its first steps from
the study of classical (Gaussian) additive noise channels under input
constraints. The class of channels with input limitations is important
from a practical point of view since feasible systems do always have to
deal with input constraints: Peak and average power are necessarily
bounded. The first works in this field were the ones by Smith back in
the 70’s [41, 42]. The forward step, with respect to the work [46] of
Shannon, was to consider an additive Gaussian noise channel in which
the input is either peak or both peak and average power constrained.
The main discovery was that, under both constraints, the capacity
achieving input probability measure (p.m.) is discrete with a finite
number of probability mass points. This kind of p.m.s will be referred
to as finitely discrete throughout this chapter. The results in [41, 42]
are of notable importance since continuous inputs are not feasible in
practice and have to be approximated with finitely discrete inputs.

The finitely discrete feature was demonstrated to be the exact so-
lution for the capacity achieving input p.m. in the constrained additive
scalar Gaussian noise channel model. This paved the way to several
subsequent studies that, more recently, explored the finite discrete-
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ness of capacity achieving input p.m.s for other input constrained
channel models, presenting quite disparate characteristics. Among
them one may cite [47] and [43], which inspired further works such
as [48] and [44]. Concerning the two last mentioned works, the for-
mer presents conditions on the p.m. of an additive scalar channel noise,
that are sufficient for the optimal bounded input p.m. to have a finitely
discrete support. The latter demonstrates that such a support is sparse
(see [44] for definition) when the channel conditional output p.m., pos-
sibly not scalar, is Gaussian distributed. Subsequent works exploited
the finitely discrete nature of the input p.m. in some specific cases
(e.g., [49, 50]) but no further generalizations have been developed.

The analysis conducted in this chapter was teased by the findings of
Chapter 1. Notwithstanding, here, a general real scalar channel model
is considered and sufficient conditions on the conditional output p.m.
for the peak power limited capacity achieving input p.m. to be finitely
discrete are provided. This result is established without indicating
any particular type of conditional output p.m. nor any particular kind
of the channel input-output law. Moreover, a class of peak power
constrained additive channels as well as the peak power constrained
Rayleigh fading channel are proven to fall in the developed framework
as particular cases, whereas so far they have always been regarded as
distinct categories, necessitating different mathematical treatments.
In this respect, the presented conditions extend the theory of peak
power limited real input scalar channels.

The chapter is organized as follows. In Section 2.2 all necessary no-
tation and definitions are introduced, while in Section 2.3 the general
channel model under consideration is introduced. The main result is
stated in Section 2.4. This result is gradually proved in Sections 2.5,
2.6, and 2.7. Some hints about uniqueness of the capacity achiev-
ing input p.m. are provided in Section 2.8. The above mentioned
examples are analysed in Section 2.9, while conclusions are drawn in
Section 2.10. Ancillary results necessary for the proof of the main
theorem are deferred to Annexes 2.11.1, 2.11.2, and 2.11.4 while An-
nex 2.11.3 provides some deeper explanations concerning the earlier
discussed examples.
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2.2 Notation and Definitions

In this section notation and definitions are presented in coherence with
the ones given by previous authors [42, 44].

Throughout this chapter, Y andX represent the real scalar channel
output and input RVs, respectively. Moreover, denote by F (x) the
input cumulative distribution function (c.d.f.), by pX(x) the input
p.m., and by pY |X(y|x) the conditional output p.m. The input RV X
is assumed to take values in the set S, with P being the ensemble of
possible p.m.s defined on that set. The corresponding class of c.d.f.s
is denoted by F . One has

pY (y) =

∫

S

pY |X(y|x)pX(x)dx =

∫

S

pY |X(y|x)dF (x)

= pY (y; pX) = pY (y;F ) (2.1)

where the dependence on pX(x) of the output p.m. pY (·) is kept ex-
plicit.1

Channel capacity is the supremum over the input p.m. of the mu-
tual information functional [51]

I(X ; Y ) =

∫

R

∫

S

pY |X(y|x) log
pY |X(y|x)
pY (y;F )

dF (x)dy = I(F ) (2.2)

where log(·) denotes the base-2 logarithm.2 Since only meaningless
channel structure have zero capacity, one may assume the channel ca-
pacity to be strictly positive and denote the capacity achieving (hence
optimal) input p.m. as pX0

(x). The mutual information functional can
be further developed as

I(F ) = H(F )−D(F ) (2.3)

where

H(F ) , −
∫

R

pY (y;F ) log pY (y;F )dy

1Here, and throughout the whole chapter, one of the two equivalent formula-
tions with pX(x) or F (x) will be freely used as appropriately needed.

2In contrast, ln(·) will denote the natural logarithm.
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and

D(F ) , −
∫

R

∫

S

pY |X(y|x) log pY |X(y|x)dF (x)dy.

One can notice how D(F ) depends in general on the input c.d.f., as
opposed to what happens for an additive Gaussian channel (model
in [42]).

One can also define the marginal information density and the
marginal entropy density as

i(x;F ) ,

∫

R

pY |X(y|x) log
pY |X(y|x)
pY (y;F )

dy

and

h(x;F ) , −
∫

R

pY |X(y|x) log pY (y;F )dy

respectively. These two densities are related as

i(x;F ) = h(x;F )− d(x)

where

d(x) , −
∫

R

pY |X(y|x) log pY |X(y|x)dy.

It is straightforward to show that the following three equations also
hold:

I(F ) =

∫

S

i(x;F )dF (x) (2.4)

H(F ) =

∫

S

h(x;F )dF (x) (2.5)

and

D(F ) =

∫

S

d(x)dF (x). (2.6)

In this chapter, (2.4), (2.5), and (2.6) are well-defined since h(·), i(·),
and d(·) are finitely bounded under the conditions enunciated in Sec-
tion 2.3, as proven in Appendix 2.11.1.
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2.3 Channel Model

The memoryless real scalar channel of interest is considered to be
governed by a general input-output relationship in the form

Y = f (X,Θ) (2.7)

where X is the input RV and Θ a vector of nuisance parameters. No
further conditions are imposed on the input-output channel law f (·),
which may be linear or nonlinear, additive in noise or multiplicative
or both, with independent or correlated noises.

Throughout the chapter, consider a peak power constrained input
RV X taking values in the bounded set (see Fig. 2.1)

S = [−A,A] ∩ A

where [−A,A] is the compact real interval of radius A and A represents
an open subset of the complex extended input plane on which the
conditional output p.m. pY |X(y|x) is analytic (hence continuous) in
the input variable.

The fundamental conditions on which the analysis relies may be
summarized as follows:

1. The conditional output p.m. can be analytically extended to
complex inputs, i.e., there exists an open set A ⊆ C such that

x 7→ pY |X(y|x)
is an analytic map over A, while

(x, y) 7→ pY |X(y|x)
is a continuous function over A× R.

2. There exist two functions q(y) and Q(y), both nonnegative, and
bounded above, and integrable, such that ∀x ∈ S one has

0 ≤ q(y) ≤ pY |X(y|x) ≤ Q(y) ≤ K < +∞, ∀y ∈ R (2.8)

and the map

y 7→ Q(y) log q(y)

is integrable in y.
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Figure 2.1: Pictorial representation of the set S = [−A,A] ∩ A on
which the input RV takes its values.

3. The two integrals
∫

R

pY |X(y|w) log pY |X(y|w)dy
∫

R

pY |X(y|w) log pY (y; pX)dy

are uniformly convergent (see [52] for definition) ∀w ∈ D, for
some D such that S ⊂ D ⊆ A.3

4. For each of the maximally extended connected regions forming
S (one can call them S ′, S ′′, . . .), one of the following three con-
ditions holds:

(a) there exist x′, x′′, . . . ∈ S ′, S ′′, . . . (see Fig. 2.1) and corre-
sponding c.d.f.s F ′, F ′′, . . . with

log pY |X(y|x′)− log q(y) < I(F ′), ∀y ∈ R (2.9)

3For the sake of clarity, here and elsewhere in the chapter a generic input value
is denoted by x or w whenever the input is considered strictly real or complex
extended, respectively.
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and analogously for the other regions, where I(F ′) is the
mutual information between the output and input variable
when the input is distributed according to F ′(x).

(b) for all real input p.m.s pX(x), there exist x′, x′′, . . . ∈ S ′,
S ′′, . . . (see Fig. 2.1) such that pY |X(y|x′) is the unique
conditional output p.m. satisfying

min
x∈S′

DKL(pY |X(y|x)||pY (y; pX)) =

= DKL(pY |X(y|x′)||pY (y; pX))

and analogously for the other regions, where DKL denotes
the Kullback-Leibler divergence.

(c) for all real input p.m.s pX(x), there exist pairs of distinct
points (x′

1, x
′
2), (x

′′
1, x

′′
2), . . . ∈ S ′ × S ′, S ′′ × S ′′, . . . such that

DKL(pY |X(y|x′
1)||pY (y; pX)) 6= DKL(pY |X(y|x′

2)||pY (y; pX))

and analogously for the other regions.

Remark 1. The here stated conditions do not impose any peculiar
kind of conditional output p.m., as it was the case in [41,42,44], nor
any particular channel law, as it was done in [48]. The first three con-
ditions are mild regularity conditions on the conditional output p.m.
while the fourth one states that it should actually depend on the in-
put value that is assigned as a condition. Moreover, the input set
compactness, deeply exploited in [44], is not a required condition here.
Examples, considered in Section 2.9, further show the presented theory
to extend the previously known treatments.

2.4 Main Result

The statement of the main result of this chapter hereby follows.

Theorem 1. Every real scalar and peak power constrained input
channel, whose conditional output p.m. fulfills the aforementioned con-
ditions 1 to 4, has a finitely discrete capacity achieving input p.m.
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The remainder of this chapter is devoted to prove Theorem 1.
The proof requires some intermediate steps: In particular, Section 2.5
proves that the capacity achieving input p.m. exists and also states,
as a corollary, the Kuhn-Tucker conditions on the marginal informa-
tion density (defined in Section 2.2) for an input p.m. to be optimal.
Section 2.6 proves the analyticity of the marginal information density
which is exploited in Section 2.7, alongside the corollary statement, to
finally prove the finitely discrete nature of the capacity achieving input
p.m. support. Besides, Section 2.8 hints in the direction of proving
uniqueness of the optimal input p.m..4

2.5 Existence of a Capacity Achieving Prob-

ability Measure

Following the approach in [41, 42], in this section it is proven that
an optimal input p.m. exists and that the Kuhn-Tucker conditions
are necessary and sufficient for its optimality. Some basic results in
optimization theory are first reviewed [41, 42, 53].

A map f : Ω 7→ R, where Ω is a convex space, is said to be weakly
differentiable in Ω if, for θ ∈ [0, 1] and x0 ∈ Ω, the map f ′

x0
: Ω → R,

defined as

f ′
x0
(x) = lim

θ→0

f [(1− θ)x0 + θx]− f(x0)

θ

exists for all x and x0 in Ω. Besides, f is said to be concave if, for all
θ ∈ [0, 1] and for all x and x0 in Ω,

f [(1− θ)x0 + θx] ≥ (1− θ)f(x0) + θf(x).

Theorem 2 (Optimization Theorem [53]). Let f be a continuous,
weakly differentiable, and concave map from a compact, convex topo-
logical space Ω to R, and define

C , sup
x∈Ω

f(x) .

Then:
4Uniqueness was not proven in general neither in [48] nor in [44].
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1. C = maxx∈Ω f(x) = f(x0) for some x0 ∈ Ω;

2. f(x0) = C if and only if f ′
x0
(x) ≤ 0 ∀x ∈ Ω.

Exploiting the above results from optimization theory, one has the
following proposition.

Proposition 1. Let I(F ) be the mutual information functional be-
tween X and Y , as defined in (2.2). Then, under an input peak power
constraint and conditions 1 and 2 of Sec. 2.3, there exists an F0 ∈ F

(equivalently a pX0
∈ P) such that

C = I(F0) = max
F∈F

I(F ).

Moreover, a necessary and sufficient condition for the input c.d.f. F0

to maximize I(F ), i.e., to achieve capacity, is
∫

S

i(x;F0)dF (x) ≤ I(F0), ∀F ∈ F . (2.10)

Proof. As from Theorem 2, it suffices to show that F is convex and
compact in some topology and that I : F 7→ R is continuous, con-
cave and weakly differentiable. The necessary and sufficient condition
(2.10) also follows from Theorem 2, as it will be shown.

2.5.1 Convexity and Compactness

The convexity of F , i.e. the fact that

Fθ(x) = (1− θ)F1(x) + θF2(x)

still belongs to F for each F1, F2 in F and for each θ ∈ [0, 1], is
immediate. The compactness of F in the Lèvy metric5 topology (as
defined in [41] and recalled in Appendix 2.11.5) follows from the Helly
Weak Compactness Theorem (see Appendix 2.11.4) and from the fact
that convergence in the Lèvy metric is equivalent to complete conver-
gence [54], which on a bounded interval is equivalent to weak conver-
gence.

5The corresponding distance is here indicated with d(·, ·).
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2.5.2 Continuity

The continuity of functional I(F ) descends from the Helly-Bray The-
orem (see Appendix 2.11.4), according to which d(Fn, F ) −→

n
0 im-

plies I(Fn) −→
n

I(F ), provided the boundedness and continuity in

x of i(x;F ). The latter two properties are demonstrated in Ap-
pendix 2.11.1 (continuity of i(x;F ) is a consequence also of analyticity
discussed in Section 2.6).

2.5.3 Concavity

For what concerns I(F ) being concave, one can note how

pY (y;Fθ) = pY (y; (1− θ)F1 + θF2)

=

∫

S

pY |X(y|x)[(1− θ)dF1(x) + θdF2(x)]

= (1− θ)pY (y;F1) + θpY (y;F2)

and

D ((1− θ)F1 +θF2) =

= −
∫

R

∫

S

p(y|x) log p(y|x)[(1− θ)dF1(x) + θdF2(x)]dy

= (1− θ)D(F1) + θD(F2). (2.11)

Hence, one has that

I((1− θ)F1 + θF2) ≥ (1− θ)I(F1) + θI(F2)

is equivalent, from (2.3) and (2.11), to

H((1− θ)F1 + θF2) ≥ (1− θ)H(F1) + θH(F2). (2.12)

28



CHAPTER 2. CONSTRAINED PEAK POWER CHANNELS 29

Inequality (2.12) may be proved as follows:

H((1− θ)F1 + θF2) = −
∫

R

pY (y; (1−θ)F1+θF2) log pY (y;Fθ)dy

= −
∫

R

[(1− θ)pY (y;F1) + θpY (y;F2)] log pY (y;Fθ)dy

(a)

≥ −(1− θ)

∫

R

pY (y;F1) log pY (y;F1)dy

− θ

∫

R

pY (y;F2) log pY (y;F2)dy

= (1− θ)H(F1) + θH(F2)

where (a) exploits the Gibbs inequality [51], which states that for any
two random variables, Z1 and Z2, one has

−
∫

R

pZ1
(z) log pZ1

(z)dz ≤ −
∫

R

pZ1
(z) log pZ2

(z)dz

with equality if and only if

pZ1
(z) = pZ2

(z).

Hence, concavity of I(·) is proven and equality holds if and only if
pY (y;F1) = pY (y;F2).

2.5.4 Weak Differentiability

As proven in Appendix 2.11.2, for arbitrary F1 and F2 in F one has

lim
θ→0

I((1− θ)F1 + θF2)− I(F1)

θ
=

∫

S

i(x;F1)dF2(x)− I(F1).

(2.13)

The proof of weak differentiability is completed by observing that
i(x;F ) is finitely bounded (Appendix 2.11.1), which guarantees the
existence of the integral in the right-hand side of (2.13).

Since all hypotheses of Theorem 2 are satisfied, the optimal input
p.m. exists in P. Furthermore, from (2.13), it is immediate to derive
the necessary and sufficient condition (2.10).
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The following corollary of Proposition 1 states the Kuhn-Tucker
conditions that will be used in Section 2.7 to prove the final result.

Corollary 1 (Kuhn-Tucker Conditions). Let pX0
be an arbitrary p.m.

in P. Let S0 denote the set of mass points of pX0
on S.6 Then pX0

is
optimal if and only if

{
i(x; pX0

) ≤ I(pX0
), ∀x ∈ S

i(x; pX0
) = I(pX0

), ∀x ∈ S0

The proof of this corollary is taken from [41, 42].

Proof. If both conditions hold pX0
is optimal because it satisfies the

condition stated in Proposition 1. The converse holds in the sub-
sequent way: Assume pX0

is optimal but the first equation is not
valid. Then an x1 ∈ S exists such that i(x1; pX0

) > I(pX0
). Choose

pX(x) = δ(x− x1). Then

∫

S

i(x; pX0
)pX(x)dx = i(x1; pX0

) > I(pX0
). (2.14)

This contradicts Proposition 1, hence the first statement has to be
true. Now, assume the second one is not true. Then, because of the
first equation,

i(x; pX0
) < I(pX0

), (2.15)

on a set E ′ ⊆ S0. This implies

∫

E′

pX0
(x)dx = δ > 0,

∫

S0rE′

pX0
(x)dx = 1− δ,

6The set S0 is defined independently of the discreteness or continuity of the
input p.m..
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with i(x; pX0
) = I(pX0

) on S0 r E ′. In the end one can write

I(pX0
) =

∫

S

i(x; pX0
)pX0

(x)dx =

∫

S0

i(x; pX0
)pX0

(x)dx =

=

∫

E′

i(x; pX0
)pX0

(x)dx+

∫

S0rE′

i(x; pX0
)pX0

(x)dx <

< δI(pX0
) + (1− δ)I(pX0

) = I(pX0
), (2.16)

which is a clear absurd. Thus also the second statement holds.

2.6 Analyticity of the Mutual Informa-

tion Density

In this section it is proven that i(x; pX) can be analytically extended
to i(w; pX), ∀w ∈ D. This step is necessary as a starting point for the
capacity achieving input p.m. characterization in Section 2.7.

First, one has to extend i(x; pX) to the analyticity region A of
x 7→ pY |X(y|x) as

i(w; pX) ,

∫

R

pY |X(y|w) log
pY |X(y|w)
pY (y; pX)

dy

∀w ∈ A where convergence holds.7 Now apply the Differentiation
Lemma (see Appendix 2.11.4, with I = R, U = D), to the functions

f1(w, y) = pY |X(y|w) log pY |X(y|w),
f2(w, y) = pY |X(y|w) log pY (y; pX).

The two functions are continuous (see Section 2.3) over D×R.8 More-
over, from conditions in Section 2.3, they are uniformly integrable
over R and, being compositions of analytic functions, they are ana-
lytic. The difference of the two analytic (from Differentiation Lemma)

7Convergence is guaranteed inside S, as proven in Appendix 2.11.1.
8D has to exclude the possibility for pY |X(y|w) to be real negative valued, this

to ensure continuity of the principal value complex logarithm.
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integral functions

∫

R

f1(y, w)dy −
∫

R

f2(y, w)dy

is analytic on D. This means that i(w; pX) is an analytic function over
D.

2.7 A Finitely Discrete Capacity Achiev-

ing Probability Measure

In this section, the finite discreteness of the capacity achieving input
p.m. is finally proven .
Define v(w) as9

v(w) ,

∫

R

pY |X(y|w)
[
− log

(
pY (y; pX0

)

pY |X(y|w)

)
− I(pX0

)

]
dy

= i(w; pX0
)− I(pX0

) (2.17)

where pX0
(x) is a capacity achieving input p.m.. Recall from Sec-

tion 2.3 that S ′, S ′′, . . . are the maximally extended connected regions
forming S, while S ′

0, S
′′
0 , . . . is the corresponding decomposition for S0

(the support of pX0
(x)), i.e., S ′

0 is the set of points of S0 in S ′, S ′′
0 is

the set of points of S0 in S ′′, and so on. Note that, if each of the opti-
mal input domain decomposition sets were not finitely discrete, then,
for the Bolzano-Weierstrass Theorem, it would have an accumulation
point in the corresponding connected subregion of S and thus, by the
identity principle of analytic functions and Corollary 1, v(w) = 0 in
that entire subregion. From (2.17), v(w) = 0 means

−
∫

R

pY |X(y|w) log
(
pY (y; pX0

)

pY |X(y|w)

)
dy − I(pX0

) = 0.

9Recall that a generic input value is respectively denoted by x and w, depending
on whether the input is considered strictly real or complex extended.
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In the following, for notation convenience, suppose to consider the S ′

subregion of S.
In case one of the first two options 4a, 4b presented in Section 2.3

is verified and since v(w) = 0 on the entire considered subregion, one
must have:

v(x′)=−
∫

R

pY |X(y|x′) log

(
pY (y; pX0

)

pY |X(y|x′)

)
dy − I(pX0

) = 0

also for the corresponding particular value x′, whose existence was
supposed in Section 2.3. However this is in clear contradiction with
either

v(x′) =

∫

R

pY |X(y|x′) log

(
pY |X(y|x′)

pY (y; pX0
)

)
dy − I(pX0

)

≤
∫

R

pY |X(y|x′)

(
log pY |X(y|x′)− log q(y)

)

︸ ︷︷ ︸
<I(F ′) see eq.(2.9)

dy − I(pX0
)

< I(F ′)− I(F0) ≤ 0.

or

v(x′) =

∫

R

pY |X(y|x′) log

(
pY |X(y|x′)

pY (y; pX0
)

)
dy − I(pX0

)

= DKL(pY |X(y|x′)||pY (y; pX0
))− I(pX0

)

< DKL(pY |X(y|x)||pY (y; pX0
))− I(pX0

) = 0.

If vice versa the third option 4c holds, it follows

v(x′
1) = DKL(pY |X(y|x′

1)||pY (y; pX0
))− I(pX0

)

6= DKL(pY |X(y|x′
2)||pY (y; pX0

))− I(pX0
) = 0

and again a contradiction occurs.
This finally proves that the hypothesis to have an infinite set of

probability mass points S0 is incorrect and, hence, the input RV X
can take only on a finitely discrete set of values.
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2.8 Hints about Uniqueness

The so far developed conditions on the capacity achieving input p.m.
do not guarantee also its uniqueness. In this direction, a further prop-
erty that all possibly optimal input p.m.s must satisfy, differently to
any other capacity achieving p.m., can be outlined.
Consider all the optimal input p.m.s10 and denote the i-th of them by
pXi

(x). Then, the following proposition holds.

Proposition 2. All the optimal input p.m.s of a channel model sat-
isfying conditions 1-4 in Section 2.3, must fulfil the condition

i(x; pX0
) = I(pX0

), ∀x ∈ Si

Si ⊂ S being the support of pXi
(x).

Proof. Let pX0
(x) and pX1

(x) be two optimal input p.m.s (whose ex-
istence is guaranteed by Proposition 1), both with a finitely discrete
support. Then also (1 − θ)pX1

(x) + θpX0
(x) is capacity achieving,

since the mutual information functional is concave (see Theorem 6 in
Appendix 2.11.4). This fact yields the weak derivative I ′pX0

(pX1
) to

be null. Recall the probability mass points in S0 and S1 xm and xn,
and the correspondent probability bm and an, respectively. In addition
suppose that the condition enunciated in Proposition 2 is not verified,
i.e., i(x; pX0

) < I(pX0
) for at least one of the xn ∈ S1, where the

order relation is imposed by Corollary 1. The cited weak derivative
expression becomes

∫

S

i(x; pX0
) [pX1

(x)− pX0
(x)] dx =

∑

n

ani(xn; pX0
)−

∑

m

bmi(xm; pX0
)

< I(pX0
)
∑

n

an − I(pX0
)
∑

m

bm = 0.

A contradiction has arisen since I ′pX0
(pX1

) = 0 and I ′pX0
(pX1

) < 0,
which completes the proof.

10In the previous sections, it was proven that they belong to P ′, the restriction
of P to the class of finitely discrete generalized functions defined on a finite number
of probability mass points in the input support S.

34



CHAPTER 2. CONSTRAINED PEAK POWER CHANNELS 35

Proposition 2 does not provide uniqueness of the capacity achieving
input p.m., nevertheless it tightens the conditions for an input p.m.
to be optimal.

2.9 Examples

This section is divided in two subsections. The first one proves that
any peak power constrained channel with additive noise satisfies con-
dition 4, stated in Section 2.3 and, therefore, it belongs to the general
class of channels treated in this chapter upon fulfilling also conditions
1, 2, and 3.11 The second one proves that the Rayleigh fading channel
undergoes all the conditions in Section 2.3.

2.9.1 Additive Channels

Consider an additive channel model Y = X+N , where N is the noise
RV. The marginal information density can be rewritten as

i(x; pX) =

∫

R

pN(y − x) log pN(y − x)dy−
∫

R

pN (y − x) log pY (y; pX)dy

= k −
∫

R

pN(y − x) log pY (y; pX)dy

where k is constant as it can be easily shown with an ordinary vari-
able substitution. The second term is in the form of convolution and
admits Fourier Transform (FT) since pN(·) is integrable on R and
log pY (y; pX) = u(y) is locally integrable hence transformable at least
in the sense of distributions. Now assume the marginal information
density is equal to a constant c1: Its FT would then be

ΨN(2πf)U(f) = c1δ(f)

where ΨN(·) denotes the characteristic function of the RV N , defined
as

ΨN(f) = E[exp{jxf}] =
∫

R

pN(x) exp{jxf}dx.

11The fulfillment of conditions 1-3 must be checked case by case, but it is ex-
pected to be a simple verification.
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The only case for this to hold is u(y) being a constant itself: This is
however contradictory since u(y) = c2 implies pY (y; pX) = 2c2, ∀y ∈
R, which is clearly an absurd, and hence condition 4c stands.

2.9.2 The Rayleigh Fading Channel

Consider the Rayleigh fading channel conditional output p.m., as de-
fined in [43],

pY |X(y|x) =
1

1 + x2
exp

{
− y

1 + x2

}

= s exp{−ys}

and assume the channel input X is subject to a peak power constraint
A as defined in Section 2.3. Since this conditional p.m. derives from
normalizations of the original input and output modules, U and V
in [43], this is a real scalar memoryless channel whose output takes
values in [0,+∞).
It is now possible to assess that the four conditions stated in Sec-
tion 2.3 are fulfilled.

(a) It is immediate to verify that condition 1 holds over the set
A = Cr {−j, j}.

(b) Concerning condition 2, let us define

Q(y) =

{
1, 0 ≤ y ≤ c(A2 + 1)

1
y1+γ , y > c(A2 + 1)

where parameter γ fulfils γ < 1 and c is a constant such that
c > 2 (the details are provided in Appendix 2.11.3). Moreover,
let us define

q(y) =

{
1

1+A2 exp
{
− y

1+A2

}
, 0 ≤ y ≤ (1+A2) ln(1+A2)

A2

exp{−y}, y > (1+A2) ln(1+A2)
A2

where y2 =
(1+A2) ln(1+A2)

A2 is the solution of 1
1+A2 exp

{
− y

1+A2

}
=

exp{−y}. The two functions q(·) and Q(·) satisfy inequality
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(2.8), as rigorously proven in Appendix 2.11.3. Furthermore,
both of them are nonnegative, superiorly bounded, and inte-
grable over the output domain [0,+∞). Besides Q(y) log q(y)
is integrable over [0,+∞), which may be shown by analysing
integrability over the tail.12 One has

∫ +∞

y3

Q(y) log q(y)dy =

∫ +∞

y3

1

y1+γ
exp{−y}dy

=

[
−y−γ

γ
exp{−y}

]+∞

y3

−
∫ +∞

y3

y−γ

γ
exp{−y}dy

which is finite. The considered y3 is sufficiently large to guar-
antee that the expressions employed for Q(y) and q(y) are the
proper ones.

(c) Consider now the condition 3. The integral

∫ +∞

0

pY |X(y|w) log pY (y; pX)dy

is uniformly convergent on

D =

{
w : ℜ{ 1

1 + w2
} ≥ a1, |

1

1 + w2
| ≤ a2

}
,

with strictly positive a1 and a2, and with a1 ensuring that
S ⊂ D. Uniform convergence holds since, for each w ∈ D,
given ǫ, there exist B0 < B1 < B2 such that

∣∣
∫ B2

B1

pY |X(y|w) log pY (y; pX)dy
∣∣

≤
∫ B2

B1

∣∣pY |X(y|w) log pY (y; pX)
∣∣ dy

12Q(y) log q(y) is locally integrable since it is continuous.
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=

∫ B2

B1

∣∣∣∣
1

1 + w2

∣∣∣∣
∣∣∣∣exp

{
− y

1 + w2

}
log pY (y; pX)

∣∣∣∣ dy

=

∫ B2

B1

∣∣∣∣
1

1 + w2

∣∣∣∣
∣∣∣∣exp

{
−yℜ

{
1

1 + w2

}}
log pY (y; pX)

∣∣∣∣ dy

≤ −
∫ B2

B1

1

y3
log q(y)dy < ǫ

as
∣∣ 1
1+w2 exp

{
−yℜ

{
1

1+w2

}}∣∣ is minor in a definitive manner in
y than 1/y3 regardless of w ∈ D.13 To prove the result it is also
necessary to employ (2.21) in Appendix 2.11.1 and to choose
B0 in such a way that B0 > y2 and

1
B0

< ǫ. The choice for D is
dictated by the necessity to guarantee the existence of a uni-
form upper bound for |pY |X(y|w) log pY (y; pX)|. Analogously,
also

∫ +∞

0

pY |X(y|w) log pY |X(y|w)dy

is uniformly convergent on D. In fact, for each w ∈ D, given
ǫ, there exist B0 < B1 < B2 such that

∣∣
∫ B2

B1

pY |X(y|w) log pY |X(y|w)dy
∣∣

≤
∫ B2

B1

∣∣pY |X(y|w) log pY |X(y|w)
∣∣dy

≤
∫ B2

B1

∣∣∣∣
1

1 + w2

∣∣∣∣
∣∣∣∣exp{−

y

1 + w2
} log 1

1 + w2

∣∣∣∣ dy

+

∫ B2

B1

∣∣∣∣
1

1 + w2

∣∣∣∣
∣∣∣∣exp

{
− y

1 + w2

}
log

(
exp

{
− y

1 + w2

})∣∣∣∣ dy

≤
∫ B2

B1

1

y2
dy < ǫ

where again B0 is chosen to ensure 1/B0 < ǫ.

13This is guaranteed by the existence of a maximum for | 1
1+w2 | and a non zero

minimum for ℜ
{

1
1+w2

}
on D.
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(d) One should finally address condition 4. Consider

∫ +∞

0

pY |X(y|x) log pY |X(y|x)dy −
∫ +∞

0

pY |X(y|x) log pY (y; pX)dy

=

∫ +∞

0

s exp{−ys} log (s exp{−ys}) dy

−
∫ +∞

0

s exp{−ys} log pY (y; pX)dy

= log s− 1

ln 2
−
∫ +∞

0

s exp{−ys} log pY (y; pX)dy.
(2.18)

The third term dependence14 on s cannot be logarithmic since

lim
s→+∞

−
∫ +∞

0

s exp{−ys} log pY (y; pX)dy = 0

where exchange between integral and limit is licit since when
s → +∞ it can be supposed greater than 1, this ensuring
the existence of an integrable upper bound of |s exp{−ys}
log pY (y; pX)|, much as previously done for integrability ofQ(y)
log q(y). Hence the difference between the first and third term
of (2.18) cannot be constant on S, this proving condition 4c to
hold.

2.10 Conclusions

This chapter has proposed general conditions on the conditional out-
put p.m. under which real scalar channel models, with input peak
power constraints, show to have capacity achieving p.m.s which are
finitely discrete. These conditions represent a step towards the full
understanding of the basic channel characteristics that determine the
capacity achieving input p.m. to be finitely discrete under peak power

14Dependence on variable s is the same independently of the s considered: It
is thus possible to consider values for s even outside the region dictated by the
particular channel capacity problem which is under consideration.
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constraints. The here presented theory of peak power limited chan-
nels unifies under a same framework several channel models that were
previously investigated using separated approaches, as shown by the
provided examples.

Particular attention will be paid to whether all of the posed con-
ditions are strictly necessary. The feeling is that some of those condi-
tions are not negotiable, while other ones may not be as fundamental
as they appear to be.

As last but not least consideration, the deep belief that only real
scalar peak power limited channels can have a finitely discrete capacity
achieving input p.m. has matured.

2.11 Annexes

2.11.1 Boundedness and Continuity of the Marginal

Information Density

The existence and boundedness of the upper and lower bounds on
pY |X(y|x), postulated in Section 2.3 is sufficient to prove the existence
and boundedness of pY (y; pX). In fact, one can write

q(y) =

∫

S

q(y)pX(x)dx ≤
∫

S

pY |X(y|x)pX(x)dx

≤
∫

S

Q(y)pX(x)dx = Q(y)

that is

0 ≤ q(y) ≤ pY (y; pX) ≤ Q(y) ≤ K, ∀y ∈ R and ∀ pX(x) ∈ P.
(2.19)

An equally useful inequality, immediately descending from the previ-
ous one, is the following:

− logQ(y) ≤− log pY (y; pX) ≤ − log q(y), ∀y ∈ R and ∀ pX(x) ∈ P.
(2.20)
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Moreover, consider the pair of functions f(y) and g(y), respectively
nonnegative and positive, such that g(y) ≤ K < +∞. The next
inequality holds:

|f(y) log g(y)| ≤ −f(y) log
g(y)

K
+ f(y)| logK|

≤ −f(y) log g(y) + 2f(y)| logK|. (2.21)

Besides

G(y) = −Q(y) log q(y) + 2Q(y)| logK|

is integrable on R. Proof for this is an immediate consequence of the
conditions in Sec. 2.3.

The next step consists in showing that h(x; pX) and i(x; pX) are
bounded ∀x ∈ S and ∀ pX(x) ∈ P. In fact one has

|h(x; pX)| =

∣∣∣∣∣∣

∫

R

pY |X(y|x) log pY (y; pX)dy

∣∣∣∣∣∣

≤
∫

R

∣∣pY |X(y|x) log pY (y; pX)
∣∣ dy

≤
∫

R

pY |X(y|x)
[
− log pY (y; pX) + 2| logK|

]
dy

≤
∫

R

Q(y)[− log q(y) + 2| logK|]dy

=

∫

R

G(y)dy < +∞

having used (2.8), (2.19), (2.20) and (2.21). Moreover, one has

|d(x)| =

∣∣∣∣∣∣
−
∫

R

pY |X(y|x) log pY |X(y|x)dy

∣∣∣∣∣∣

≤
∫

R

∣∣pY |X(y|x) log pY |X(y|x)
∣∣dy
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≤
∫

R

pY |X(y|x)
[
− log pY |X(y|x) + 2| logK|

]
dy

≤
∫

R

Q(y) [− log q(y) + 2| logK|] dy

=

∫

R

G(y)dy < +∞

where again (2.8), (2.19), (2.20) and (2.21) are exploited. One may
then conclude that i(x; pX) = h(x; pX)− d(x) is bounded, as it is the
difference between two quantities fulfilling the same finite boundedness
property.

Continuity of i(x; pX) can be demonstrated in an almost identical
way since, ∀x ∈ S, it is possible to exchange the continuity limit
with the integral in the definition of i(·), this being guaranteed by
integrability of G(y), and continuity of the integrand functions being
an immediate evidence.

2.11.2 Proof of Equation (2.13)

The weak derivative can be developed as

lim
θ→0

I((1− θ)F1 + θF2)− I(F1)

θ

= lim
θ→0

{
1

θ

∫

R

∫

S

pY |X(y|x)log
pY |X(y|x)

p(y; (1−θ)F1+θF2)

[(1−θ)dF1(x)+θdF2(x)]dy

− 1

θ

∫

R

∫

S

pY |X(y|x) log
pY |X(y|x)
pY (y;F1)

dF1(x)dy

}

= lim
θ→0

{
1

θ

∫

R

∫

S

pY |X(y|x) [− log pY (y;Fθ) + log pY (y;F1)] dF1(x)dy

+

∫

R

∫

S

pY |X(y|x) log
pY |X(y|x)

(1− θ)pY (y;F1) + θpY (y;F2)

[dF2(x)− dF1(x)]dy
}
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(a)
= lim

θ→0

{
1

θ

∫

R

∫

S

pY |X(y|x) [log pY (y;F1)

− log ((1− θ)pY (y;F1) + θpY (y;F2))] dF1(x)dy
}

+

∫

S

i(x;F1)dF2(x)− I(F1)

(b)
= lim

θ→0

{
1

θ

∫

R

∫

S

pY |X(y|x)
[
log pY (y;F1)− log pY (y;F1)

− 1

ln 2
θ
−pY (y;F1) + pY (y;F2)

pY (y;F1)

]
dF1(x)dy

}

+

∫

S

i(x;F1)dF2(x)− I(F1)

=
1

ln 2

∫

R

∫

S

pY |X(y|x)
(
1− pY (y;F2)

pY (y;F1)

)
dF1(x)dy

+

∫

S

i(x;F1)dF2(x)− I(F1)

=

∫

S

i(x;F1)dF2(x)− I(F1)

+
1

ln 2

∫

R

pY (y;F1)

(
1− pY (y;F2)

pY (y;F1)

)
dy

=

∫

S

i(x;F1)dF2(x)− I(F1)

where the exchange between limit and integral in (a) follows from the
Lebesgue Dominated Convergence Theorem. In fact, ∀θ ∈ [0, 1]

fθ(y, x)pX2
(x) = pY |X(y|x)pX2

(x) log
pY |X(y|x)
pY (y;Fθ)

≤ pX2
(x)
(∣∣pY |X(y|x) log pY |X(y|x)

∣∣
+
∣∣pY |X(y|x) log pY (y;Fθ)

∣∣)

which is integrable on R × S,15 by integrability of G(y), and then
also on S × R via Tonelli and Fubini Theorems and due to the fact

15Integration on R produces pX2
(x)i(x;Fθ) that is integrable on S due to the

boundedness of i(·).
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that fθ(y, x) converges, for θ → 0, to f(y, x) = pY |X(y|x) log pY |X(y|x)

pY (y;F1)
.

Moreover, (b) follows from the first order McLaurin Series

log(a(1− x) + bx)=log(a)+
x(−a + b)

a

1

ln 2
+ o(x).

2.11.3 An upper and lower bound for the Rayleigh
fading conditional output p.m.

In this appendix inequality (2.8) is rigorously proven to be satisfied in
case the considered conditional output p.m. and correspondent Q(y)
and q(y) are the ones introduced in Section 2.9.2. Concerning the
upper bound, one should show that there exist a parameter γ such
that

1

y1+γ
>

1

1 + x2
exp

{
− y

1 + x2

}
, ∀x : 0 ≤ |x| ≤ A (2.22)

is valid for y > c(A2 +1), where c > 2. The considered inequality can
be reformulated as follows

y

(1 + x2)(1 + γ)
+

ln(1 + x2)

1 + γ
> ln y.

To guarantee the inequality to be fulfilled even in the worst case, the
left hand side (x is confined in it) can be studied, for each fixed y, to
find out that

√
y − 1 is its minimum in x, provided y ≥ 1. Moreover,

if y ≥ A2 + 1 the minimum becomes x = A, since x is bounded
and

√
y − 1 is unreachable in this case. The minimum expression for

y ≥ A2 + 1 is

y

(1 + A2)(1 + γ)
+

ln(1 + A2)

1 + γ

which has constant derivative in y, equalling the derivative of ln y
taken at y = (1+A2)(1+γ). Now, consider y1 = c(1+A2): If constants
c and γ are chosen such that c > 2 and γ < 1, then y1 > (1+A2)(1+γ)
and

d

dy

[
y

(1 + A2)(1 + γ)
+

ln(1 + A2)

1 + γ

]∣∣∣∣
y1

>
d

dy
ln y

∣∣∣∣
y1

.
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This ensures the derivative of y

(1+A2)(1+γ)
+ ln(1+A2)

1+γ
to be greater than

the one of ln y, which is decreasing, for y > y1. If, finally, it is possible
to derive a condition on γ to provide that

(
y

(1 + A2)(1 + γ)
+

ln(1 + A2)

1 + γ

)∣∣∣∣
y1

> ln y|y1 (2.23)

the original assertion (2.22) would be satisfied. This is indeed possible
since (2.23) becomes

c

1 + γ
+

ln(1 + A2)

1 + γ
> ln(1 + A2) + ln c

which is satisfied for γ < c−ln c
ln[c(1+A2)]

. Any choice of γ such that

γ < min

{
1,

c− ln c

ln [c(1 + A2)]

}

would fulfil the scope. Consequently the definition

Q(y) =

{
1, 0 ≤ y ≤ c(A2 + 1)

1
y1+γ , y > c(A2 + 1)

is well posed since it guarantees the right hand side of inequality (2.8)
to be respected.

Concerning the lower bound q(y), one has to prove that it coincides
with the output p.m. conditioned by the maximum input up to y2 =
(1+A2) ln(1+A2)

A2 and that it coincides with the output p.m. conditioned
by the minimum input after that same y2. To do that, consider the
intersection between 1

1+x2 exp
{
− y

1+x2

}
and exp{−y} which is given by

y(x) =
(1 + x2) ln(1 + x2)

x2
.

This intersection is non decreasing in x for 0 ≤ x ≤ A (only positive
values are admissible for x, deriving from normalization in [43]) since

dy(x)

dx
=

2

x3

[
x2 − ln(1 + x2)

]
≥ 0
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this meaning that it is maximum for x = A. This duly proves that
the output p.m. conditioned by the maximum input lies under all the
other conditional output p.m. up to its intersection with exp{−y}
in y2 = (1+A2) ln(1+A2)

A2 , while afterwards the same role is taken by
exp{−y}. This finally proves that

q(y) =

{
1

1+A2 exp
{
− y

1+A2

}
, 0 ≤ y ≤ (1+A2) ln(1+A2)

A2

exp{−y}, y > (1+A2) ln(1+A2)
A2

is also well posed, fulfilling the left hand side of (2.8).

2.11.4 Useful Theorems

This appendix provides a collection of theorem statements (along with
the appropriate references) that are used throughout this chapter.

Theorem 3 (Helly Weak Compactness Theorem [55]). Every sequence
of c.d.f.s is weakly compact.16

Theorem 4 (Helly-Bray Theorem [55]). If g is continuous and bounded
on Rn, then Fn

c−→
n

F up to additive constants implies
∫
g dFn →

∫
g dF .

This theorem is formulated in terms of complete convergence, but
complete convergence is equivalent to Lèvy convergence in F .

Theorem 5 (Differentiation Lemma [52]). Let I be an interval of
real numbers, eventually infinite, and U be an open set of complex
numbers. Let f = f(t, z) be a continuous function on I × U . Assume
1) for each compact subset K of U the integral

∫
I

f(t, z)dt is uniformly

convergent for z ∈ K, 2) for each t, the function z 7→ f(t, z) is analytic,
then the integral function F (z) =

∫
I

f(t, z)dt is analytic on U .

16Recall that a set is said to be compact, in the sense of a type of convergence,
if every infinite sequence in the set contains a subsequence which is convergent in
that same sense [55].
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y

x

1

a

d(F1, F2, a)

x+ y = a

F1

F2

Figure 2.2: Illustrative example for the definition of the Lèvy metric

Theorem 6 ( [53], Proposition 1, Chapter 7.8). Let f be a concave
functional defined on a convex subset C of a normed space. Let µ =
supx∈C f(x). Then

1. The subset Ω of C where f(x) = µ is convex.

2. If x0 is a local maximum of f(·), then f(x0) = µ and, hence x0

is a global maximum.

2.11.5 Definition of the Lèvy metric

This section provides the definition for the Lèvy metric, which is taken
from [41]. In general it is possible to define this metric on the space
of all c.d.f.s. Here, it is anyway restricted to the class F . Consider
any two c.d.f.s in F , F1, F2 and any a ∈ R. Denote d(F1, F2, a)
the a-dependent slant distance between the intersections of the line
x + y = a and F1 and F2, respectively (see also Fig. 2.2). The Lèvy
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distance between F1 and F2 is defined as

d(F1, F2) =
1√
2
sup
a∈R

d(F1, F2, a). (2.24)
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Energy efficient distributed
estimation
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Chapter 3

Distributed Computation of
Exact Non-Asymptotic
Confidence Regions

3.1 Introduction

A WSN consists of energy-limited sensing devices deployed to collabo-
rate in performing a common task. Examples may be the monitoring of
an environmental parameter (e.g. temperature or pressure [5,56,57]),
the detection of a binary event [58], the estimation of a spatial field [6],
the estimation of the coordinates of a signal source [59], etc.

Depending on the specific task requirements (fault tolerance, pri-
vacy issues, energy constraints), either a centralized or a distributed
approach can be adopted: In the former a central unit is needed, that
collects all the information and completes the objective task, whereas
in the latter all nodes accomplish the objective task on the basis of
the information previously exchanged among them. In the centralized
scenario the adoption of efficient routing schemes is of capital impor-
tance. Contributions in this sense are the energy-efficient adaptive
clustering proposed in [60] and the routing protocols in [10, 61–63],
aimed at extending network lifetime.

One of the most studied topic in the WSN literature is the es-
timation of physical parameters. The literature is mostly focused
on the development of some specific estimation techniques, both for
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the centralized and distributed approaches. Classical maximum like-
lihood (ML) or least squares (LS) estimators [64] work under the hy-
pothesis of having all the required observations available at one central
unit. The scarce robustness to central unit failures and poor network
scalability have brought to consideration of distributed approaches.
For instance, [65,66] address recursive weighted LS estimation, along-
side a consensus-based algorithm that allows to incorporate informa-
tion from neighbor nodes in the local estimate. A similar approach
is taken within the Bayesian framework in [67–69], where consensus-
based distributed Kalman filtering is proposed.

The computation of confidence regions has been less considered: In
some applications, however, (e.g., in source localization) the derivation
of the confidence region is as important as the determination of the
estimate. Classical Cramér-Rao-like bounds have been proposed, for
instance, in [70–73]. Confidence regions can also be derived as a by-
product of the application of Kalman filtering [68,69]. However, strong
assumptions on measurement noise (typically Gaussian) are necessary
and a good characterization of confidence regions is only possible for
a large number of measurements (asymptotic regime).

If attention is restricted the to the centralized setup, the derivation
of confidence regions in the non-asymptotic regime has been proved
to be possible using, for example, the results in [74–77]. Specifically,
[74,75] and [76] respectively propose the Leave-out Sign-dominant Cor-
relation Regions (LSCR) and the sign perturbed sums (SPS) methods.
These algorithms allow a central unit to derive a confidence region,
from a finite set of measurements, and obtain the exact probability
that the true parameter value falls within it. In [77], an efficient cen-
tralized computation of confidence regions is obtained using interval
analysis techniques. Differently from Cramér-Rao-like bounds, the
SPS algorithm does not require precise statistical knowledge of the
noise, and works under very mild assumptions on its distribution.

3.1.1 Main Contributions

This chapter aims at developing distributed versions of the SPS al-
gorithm. The main advantage of the distributed computation lies in
its reliability with respect to central unit failures. Moreover, the com-
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putation of a confidence region allows an assessment of quality in the
estimation procedure that the point estimate alone cannot guarantee.
The last benefit, that the reader should bear in mind, is that the here
treated confidence regions are non-asymptotic, hence derived from a
finite set of measurements.

To ensure that the confidence region computed by each node is
similar in shape to the one that would be evaluated in a centralized
setup, nodes have to share their local information with one another.
The way of diffusing information drastically impacts on the amount of
data exchanged, that has to be kept as low as possible. For this reason,
several information diffusion strategies are analyzed and compared in
the following. A novel information diffusion strategy, named tagged
and aggregated sums (TAS), is presented. It exploits the peculiarities
of the SPS algorithm, allowing a reduction of the amount of infor-
mation to be exchanged among nodes. Its performance is compared
to that of established information diffusion strategies, such as flood-
ing [56,78] and consensus algorithms [67], in terms of generated traffic
load as well as confidence region volume/traffic trade-off. Performance
predictions and simulation results are provided for various topologies.
The chapter presents the results that were treated in [31–33].

Constraints on traffic load may lead to information diffusion trun-
cation: Certain nodes might hence compute a confidence region with
partial data. However, it is here proven that consistent non-asymptotic
confidence regions can be computed, even starting from an incomplete
set of measurements. This constitutes a further contribution of this
chapter, hinting in the direction of ensuring the robustness of the pro-
posed distributed approach.

The remainder is organized as follows. Section 3.2 defines the mea-
surement model and recalls the SPS algorithm. Section 3.3 presents
several information diffusion strategies. The computation of non-
asymptotic confidence regions, from an incomplete set of measure-
ments, is analyzed in Section 3.4. Information diffusion techniques
are compared on various network topologies in Sections 3.5 and 3.6.
Conclusions are drawn in Section 3.7.

53



54
CHAPTER 3. DISTRIBUTED COMPUTATION OF EXACT

NON-ASYMPTOTIC CONFIDENCE REGIONS

3.1.2 Notation

In this chapter, RVs are indicated with capital roman or greek letters.
Their realizations are denoted by the corresponding lowercase letters.
Vectors are denoted by bold letters, being lowercase or uppercase ac-
cording to their random or deterministic nature, while matrices are
indicated with bold capital letters.

3.2 Recalls

3.2.1 Measurement model

This section introduces the measurement model on which the following
analysis relies. Consider some spatial field described by the parametric
model [79]

ym (x,p) = ϕT (x)p, (3.1)

where x ∈ Rnx represents some vector of experimental conditions
(time, location, . . . ) under which the field is observed, ϕ (x) is some
regressor function, and p is the vector of unknown parameters, be-
longing to the parameter space P ⊂ Rnp.

Measurements are taken by a network of N sensor nodes, spread
at random locations xi ∈ R

nx , i = 1, . . . , N . Each sensor collects its
scalar measurement yi according to the local measurement model

Yi = ym (xi, p̊) +Wi = ϕ
T
i p̊+Wi, (3.2)

where ϕT
i = ϕT (xi) is the regressor vector at xi, assumed to be known

at the corresponding node i, p̊ is the true value of the parameter vector
and Wi is a random variable representing the measurement noise. The
only assumption on Wi’s is that they are independent from node to
node with a distribution, whichever its shape, symmetric with respect
to zero.

3.2.2 The SPS algorithm

As starting point, for the distributed computation of confidence re-
gions, the centralized SPS algorithm [76] is recalled. SPS assumes
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all measurements and regressors to be known to a central processing
unit and returns the exact confidence region around the least squares
estimate p̂ of p̊, obtained as the solution of the normal equations∑N

i=1ϕi

(
yi −ϕT

i p
)
= 0. Specifically, [76] introduces the unperturbed

sum

S0(p) =
N∑

i=1

ϕi

(
Yi − ϕT

i p
)

(3.3)

and the m− 1 sign-perturbed sums, for some m, with 2 ≤ m ≤ N ,

Sj(p) =

N∑

i=1

Aj,iϕi

(
Yi − ϕT

i p
)
, j = 1, . . . , m− 1 (3.4)

where Aj,i ∈ {±1} are independent random signs.1 Introducing

Zj(p) = ||Sj(p)||22, j = 0, . . . , m− 1, (3.5)

one may define the set

Σq = {p ∈ P|Z0(p) is not among the q largest Zj(p)}

=

{
p ∈ P

∣∣∣∣∣

m−1∑

j=1

I(Zj(p)− Z0(p)) ≥ q

}
, (3.6)

where I(·) is the indicator function on positive reals. In [76], it was
proven that

Prob(p̊ ∈ Σq) = 1− q

m
. (3.7)

As a consequence Σq is a non-asymptotic (i.e. derived from a finite set
of measurements) confidence region with confidence level 1− q/m. As
a clarification example, consider the one depicted in Fig. 3.1.2 There
it is considered the computation of the confidence region for a one
dimensional parameter. One may observe as the comparison of the
computed Zj leads to the definition of the confidence region. Two
confidence regions with different confidence levels are illustrated.

In the following, the distributed computation of Σq will be ad-
dressed considering different information diffusion strategies.

1A random sign is a symmetric ±1 valued random variable taking both values
with the same probability.

2Thanks to Professor M. Kieffer for having kindly conceded the use of this
picture.
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Figure 3.1: An illustrative example of the working principle of the
SPS algorithm.

3.3 Information Diffusion Algorithms

This section describes concurrent procedures for information diffusion
adapted to SPS. The purpose is to let each node capable of collect-
ing the largest amount of measurements yi and regressors ϕi possi-
bly with the lowest amount of data exchanged in the network. This
section starts by describing two state-of-the-art information diffusion
algorithms (Plain Flooding (PF) and consensus algorithms) while the
remainder of it is dedicated to novel contributions.

3.3.1 State-of-the-Art Algorithms

This subsection is devoted to providing descriptions of two state-of-
the-art algorithms for information diffusion.
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3.3.1.1 Plain Flooding (PF)

When adopting this simple information diffusion strategy [31, 56, 78],

the generic node i initially broadcasts its own state x
(0)
i =

[
ψT

i , yi
]

at time 0. As next step, it collects the states from its neighbors,
then forwards a new data packet containing the aggregated state

x
(1)
i =

[(
ψT

i , yi
)
,
{(
ψT

j , yj
)}

j∈Ni

]
, where

{(
ψT

j , yj
)}

j∈Ni
denotes the

set of regressor and measurement pairs collected from nodes j in the
neighborhoodNi of node i. As successive step, the i-th node transmits
all the data received in the previous communication rounds. This pro-
cess is repeated until each node in the network has collected the state
from all nodes. Afterwards, each node is able to compute the per-
turbed and unperturbed sums in (3.3) and (3.4) for any p, and hence
derive the confidence region. No transmission of αj,i is necessary, pro-
vided that all nodes agree on seeds for their random generators. Note
that each node has to transmit a packet containing D

(0)
f = np + 1

values during the first communication round and D
(last)
f = N(np + 1)

values when the last communication occurs. This strategy is the most
trivial one but does not result to be particularly efficient on lossless
networks, as later explained.

3.3.1.2 Consensus Algorithms

In (3.3) and (3.4), one can see that the computation of s0(p) and sj(p)
does not necessarily require the knowledge of each local quantity, but
rather of aggregated values. This suggests the adoption of consensus
strategies that are suited for the distributed computation of sums or
averages.

A consensus scheme may be viewed as the following discrete-time
evolving system [67, 80–83]

x(k+1) = Wx(k) (3.8)

where x(k) =
[
x
(k)
1 ,x

(k)
2 , . . . ,x

(k)
N

]T
is the global state at time k, whose

i-th entry is the local state at node i. W is the system dynamics
matrix that depends on the chosen consensus algorithm as well as on
the network topology. The properties of W are such to asymptotically
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lead to a global state whose entries are all equal to the average of
the initial quantities x(0) [67, 81]. In particular, the convergence of a
consensus algorithm is assured by the following three necessary and
sufficient conditions:

1TW = 1T , W1 = 1, ρ(W − 11T/N) < 1 (3.9)

where ρ denotes the spectral radius [81]. Two possible consensus
matrices are presented: For a more detailed comparison of conver-
gence speed (and convergence analysis in general) the reader may refer
to [67,81]. The first presented matrix is the Metropolis matrix whose
entries are given by

wi,j =





1
1+max{di,dj}

, if (i, j) ∈ E ,
1− ∑

(i,q)∈E

wi,q, if i = j,

0, otherwise,

(3.10)

where di = |Ni| denotes the degree of node i (i.e., the number of
neighbors) and E is the set of edges in the network topology. An
alternative choice is represented by setting W as a Perron matrix,

W = I− ǫL, (3.11)

where I denotes the identity matrix, while L is the network graph
Laplacian matrix given by

L = D−A, (3.12)

with D being the diagonal matrix D = (d1, d2, . . . , dN) and A repre-
senting the network graph adjacency matrix whose entries are

ai,j =

{
1, if (i, j) ∈ E ,
0, otherwise.

(3.13)

The constant ǫ should be set such that it fulfills the condition

0 < ǫ <
1

∆
, (3.14)
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where ∆ = maxi di.

According to (3.8) and independently of the chosen W, each node
performs its local state update as follows,

x
(k+1)
i =

N∑

j=1

wi,jx
(k)
j . (3.15)

To apply the consensus algorithm to the problem of the distributed
computation of (3.3) and (3.4), consider the following averages that
do not depend on p

b0 =
1

N

N∑

i=1

ψiyi bj =
1

N

N∑

i=1

αj,iψiyi (3.16)

A0 =
1

N

N∑

i=1

ψiψ
T
i Aj =

1

N

N∑

i=1

αj,iψiψ
T
i (3.17)

for j = 1, 2, . . . , m− 1.

The consensus algorithm is launched on all Aj’s and bj ’s (in-
cluding A0 and b0). At step k = 0, the local state at node i is

given by x
(0)
i =

[
(ψiyi)

T ,
{
ψiψ

T
i

}
,
{
(αj,iψiyi)

T
}
j
,
{
αj,iψiψ

T
i

}
j

]T
, with

j = 1, 2, . . . , m − 1, that is, the single addends in (3.16) and (3.17).

The matrices entries should be indexed so that x
(0)
i results to be a

column vector. At each successive step the ith node updates its own
state according to (3.15). Once a consensus on Aj and bj is reached,
each node is able to locally evaluate (3.3) and (3.4) for any value p
in the parameter search space. It is worth noting that no particular
value of the parameter p has to be transmitted and that getting aver-
ages, instead of the true sums, does not affect the SPS algorithm since
the comparison of rescaled norms or norms gives the same ordering in
(3.6). Therefore the algorithm works also without the knowledge of
N . Note that the state is composed of Dc = m(3np + n2

p)/2 values,

where symmetry of ψiψ
T
i is exploited. The state dimension is con-

stant during the entire running of the algorithm but is larger than the
one initially required by flooding.
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3.3.2 Mixed Flooding+Consensus Approach

As observed, the pure average consensus algorithm requires an amount
of data to be transmitted that is initially strictly larger than that re-
quired by flooding. However, in few iterations the amount of data
transmitted with flooding exceeds Dc due to data accumulation at
nodes. This fact suggested the introduction of a third mixed strategy
conceived as follows: flooding, as described in Section 3.3.1.1, works
until at least one node i experiments an amount of data that exceeds
Dc, that is n

(k)
i D

(0)
f > Dc, where n

(k)
i is the number of distinguished

received data at node i, at iteration k. When this happens, all nodes
switch to the consensus strategy described in Section 3.3.1.2. The cor-
rect initialization, for the consensus state x

(0)
i , is to be set as the av-

erage of the quantities received during the initial flooding. Numerical
results will show that, when using this strategy, a benefit is possible.
Reason for this is that, for the first iterations, the mixed approach
behaves like flooding, that is always initially advantageous, and then
behaves like consensus, that, even if asymptotically worse than flood-
ing, ensures a gain in performance when the number of data that can
be exchanged is limited (and not almost asymptotic).

3.3.3 Modified Flooding (MF)

For the last two algorithms to be described, the evolution of the
amount of information available at a node k can be represented by
means of a table R(k). The construction of R(k) and the transmission
of information depend on the considered procedure.

The main difference between MF and PF is that, in the former, an
information already transmitted by a node is never transmitted again
by the same node. This kind of behavior is certainly efficient in terms
of amount of data to be transmitted on lossless links.

The MF algorithm generates at runtime a table of contents avail-
able at nodes. An example for this is depicted in Table 3.1. This table
gathers the information collected at node k = 1 in a network composed
of 7 nodes. Each row r in R(k) contains an available information D

(k)
r

and its related tag, indicating the originating node. When perform-
ing the MF algorithm, the generic node k initially fills the first line
of R(k) with its own local information, i.e., D

(k)
1 =

[
ϕT

k , yk
]
and the
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R(1) =

D
(1)
1 1 0 0 0 0 0 0

D
(1)
2 0 0 1 0 0 0 0

D
(1)
3 0 0 0 0 0 1 0

D
(1)
4 0 1 0 0 0 0 0

D
(1)
5 0 0 0 1 0 0 0

D
(1)
6 0 0 0 0 0 0 1

D
(1)
7 0 0 0 0 1 0 0

Table 3.1: Table R(1) of available information at node k = 1 when MF
is used for information diffusion.

corresponding tag3 t
(k)
1 having a single 1 at the k-th entry. It then

broadcasts
{
D

(k)
1 , t

(k)
1

}
and marks the line as already transmitted. As

next step, it collects the data coming from neighbors and inserts in
the table this new acquired information, thus creating a set of rows
corresponding to its set of neighbor nodes, denoted as Nk. Then it
forwards a new data packet containing the data of all lines in R(k)

which were not marked as already transmitted. This means that the

second message that node k transmits contains
{
D

(k)
j , t

(k)
j

}
j∈Nk

. All

rows whose data have been transmitted are then marked. The itera-
tion of the procedure yields, at the next transmission step, a message
to be transmitted containing only information never previously trans-
mitted. This process terminates when each node in the network has
collected the information from all nodes. Section 3.4 analyses the case
when all data cannot be gathered at all nodes due, e.g., to delay/traffic
constraints.

Afterwards, each node is able to compute the perturbed and un-
perturbed sums in (3.3) and (3.4) for any p, and hence derive the
confidence region. During the first iteration, each node has to trans-
mit a packet containing

dMF = np + 1 (3.18)

3The tag matrix is denoted by T
(k) and its r-th row by t

(k)
r .
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real values. The dimension of successive data packets is an integer
multiple of this value, possibly zero.

Remark 2. If all nodes agree on their random generators seed, the
computed confidence regions are the same at all nodes without any
need for transmission of Aj,i. In case this agreement is lacking, still
transmission of Aj,i can be avoided, but the shape of confidence regions
computed at different nodes may differ.

3.3.4 Tagged and aggregated sums (TAS) algo-
rithm

Before coming to the detailed description of the TAS algorithm, a
preliminary consideration is needed. Expanding a realization of (3.3)
and (3.4) one gets,

s0(p) =

N∑

k=1

ϕkyk −
(

N∑

k=1

ϕkϕ
T
k

)
p (3.19)

sj(p) =
N∑

k=1

aj,kϕkyk −
(

N∑

k=1

aj,kϕkϕ
T
k

)
p, j = 1, . . . , m− 1.

(3.20)

The evaluation of (3.19) and (3.20) for any value of p ∈ P does not
necessarily require the availability of each individual term in the sums
but rather of




N∑

k=1

ϕkyk,

N∑

k=1

ϕkϕ
T
k ,

{
N∑

k=1

aj,kϕkyk

}

∀j

,

{
N∑

k=1

aj,kϕkϕ
T
k

}

∀j



 .

(3.21)

Therefore, at each information diffusion step, the available informa-
tion can be composed into an aggregated sum, reducing the traffic
load. This is the peculiarity of the SPS algorithm that can be ex-
ploited by both TAS and consensus algorithms. The main difficulty
lies in avoiding the same term to appear more than once in each sum,
independently of network topology. This consideration led to the for-
mulation of the TAS algorithm whose details follow.
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The TAS algorithm consists of six phases, namely, i) initialization,
ii) reception, iii) distillation, iv) aggregation, v) transmission, and vi)
wrap-up.

i) Initialization phase. During the initialization phase each node
k ∈ {1, ..., N} creates and transmits a data packet which consists of
the first row of its table R(k). This first row is composed of:

• a data set D
(k)
1 =

{
ϕkyk,

{
ϕkϕ

T
k

}
, {aj,kϕkyk}∀j ,

{
aj,kϕkϕ

T
k

}
∀j

}
,

corresponding to the local quantities related to node k. This set
consists of

dTAS = m

(
np + np

np + 1

2

)
(3.22)

real values, taking into account the symmetry of ϕkϕ
T
k .

• a tag vector t
(k)
1 , that is an all-zero vector except for the k-th

entry where a 1 is located.

After initialization, the reception, distillation, aggregation, and trans-
mission phases are sequentially repeated until a termination condition
is met. Typically this conditions can be set as the reaching of a max-
imum allowed number of iterations. Within each cycle, new rows
{D(k)

r , t
(k)
r } are possibly added to R(k), with r > 1 representing the

row number.
For r > 1, the r-th data set D

(k)
r can either contain the local

quantities related to another node or the sum of quantities related to
several nodes, as specified in t

(k)
r . The dimension of data sets obtained

as sums of initial data sets does not vary and stays equal to dTAS.

ii) Reception phase. During this phase each node collects messages
transmitted by its neighbors. The message m(n) coming from node n,
with n 6= k, consists of a data set and a tag vector.

iii) Distillation phase. At the end of the reception phase, at each
node, the received tag vectors and those already stored in R(k) are
compared to detect whether the received data contains new informa-
tion. More precisely, the received tag vector of each incoming message
is compared to all the already available tag vectors t

(k)
r contained in
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D
(1)
1 1 0 0 0 0 0 0

D
(1)
2 0 0 1 0 0 0 0

D
(1)
3 0 0 0 0 0 1 0

D
(1)
4 0 1 0 0 0 0 1

D
(1)
5 0 0 0 1 0 0 0

D
(1)
6 0 0 0 0 1 0 1

D
(1)
7 0 1 0 0 1 0 0

Table 3.2: Table of available information at node k = 1 when infor-
mation diffusion is done via the TAS algorithm.

R(k). If a received message does not contain any new contribution, it
is discarded, otherwise a new row is added to R(k), containing the new
information contribution, that is, the received message (data set+tag
vector) duly polished of already available information.

Example 1 : if node k receives a message containing the sum of
quantities originating from nodes 1, 2, 7, 8, 11 and if it has already
rows in R(k) containing the information relative to node 1 and to the
sum of local quantities of nodes 2 and 7, it can successfully detect the
sum of quantities related to nodes 8 and 11 and insert them in the
table. Only this distilled information, composed of a new data set and
its corresponding tag vector (having the 8th and 11th bits set to 1) is
added to R(k).

iv) Aggregation phase. To form the next packet to transmit, each
node aggregates the information contained inR(k), summing the avail-
able data sets and merging the related tag vectors. The merge is done
as follows. When the aggregation phase takes place for the first time,
each node k initializes a temporary data set D

(k)
T and the related N

elements temporary tag vector t
(k)
T with the content of the first row of

R(k) and marks this row as already merged. Then, the node checks
whether the next row contains some information that is already ac-
counted for in t

(k)
T . If not, it marks it as already merged and sums

its corresponding data set to D
(k)
T and updates t

(k)
T . All rows are then

progressively examined. Successive aggregation phases initialize D
(k)
T
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and t
(k)
T as the content of the first never merged row, starting the

search from the first row.

Example 2 : Consider R(1) reported in Table 3.2. Node k = 1 has
to compose the first message that it should transmit. It starts from
the first row and initializes D

(1)
T and t

(1)
T with the content of the first

row. It then marks the first row as already merged. The second row
is then examined. As it contains only new information, with respect
to the content of t

(1)
T , its corresponding data set is added to D

(1)
T and

its tag vector is merged with t
(1)
T , resulting in t

(1)
T = (1, 0, 1, 0, 0, 0)

and D
(1)
T = D

(1)
1 + D

(1)
2 . The same happens for the third, fourth

and fifth rows, that are then all marked as already merged. The
sixth row contains, instead, information relative to node 7: Node 7 is
already contributing to the current t

(1)
T , thus, D

(1)
6 is not added toD

(1)
T .

Afterwards, D
(1)
T and t

(1)
T are transmitted as definitive message, when

all rows of the table have been traversed. When the next aggregation
phase takes place, D

(1)
T and t

(1)
T are initialized as the content of the first

row that has never been merged in the previous aggregation phases:
In the proposed example, this happens for the sixth row.

v) Transmission phase. The message obtained at the end of the
aggregation phase is broadcasted to all neighbor nodes.

The information diffusion stops after a fixed number of transmis-
sion phases: On random networks the limit can be set equal to the
diameter of the network (as would be the case for any flooding ap-
proach).

vi) Wrap-up phase. Once the information diffusion expires, the
objective, for any node k, is the computation of (3.21), which is then
used to evaluate (3.5). This means finding a strategy to combine the
rows in R(k) to obtain the aggregated data in (3.21). Two cases are
possible: Either rank

(
T(k)

)
= N and then a perfect reconstruction

of (3.21) is possible, since each appearing term can be individually
retrieved, or rank

(
T(k)

)
< N and node k will try to close as much

as possible on (3.21). This can be realized performing a linear combi-
nation of the rows of R(k), aiming at maximizing the amount of data
taken into account.

Each node k will evaluate a linearly weighted sumD
(k)
F =

∑
r b̂k,rD

(k)
r ,

where b̂k is the solution of the following constrained optimization
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problem

b̂k = argmax
bk

bkT
(k)1, (3.23)

s.t. 0 ≤
∑

r

bk,rt
(k)
r,i ≤ 1, i = 1, . . . , N. (3.24)

Here, t
(k)
r,i are the elements of T(k), with r and i denoting the row and

column indexes. The solution of (3.23)-(3.24) is obtained by linear
programming.

The term ck,i =
∑

r bk,rt
(k)
r,i in (3.24) represents the weight of the

quantities related to node i. Since local quantities in (3.4) cannot
contribute more than once, to keep independence among all terms
intervening in (3.4), then it must be 0 ≤ ck,i ≤ 1, that determines the
constraints (3.24).

Remark 3. The TAS algorithm takes some inspiration from network
coding techniques [84–86]. However, the main difference is that each
node does not need to decode, by means of Gaussian elimination, all
the individual messages transmitted by the other nodes, but rather the
decoding of their sum (possibly of an incomplete sum) suffices.

The performance of the TAS algorithm will be investigated in Sec-
tions 3.5 and 3.6.

3.4 Analysis of Information Diffusion Trun-

cation

In this section, the effect of truncation of information diffusion is dis-
cussed. The objective is to prove that consistent non-asymptotic con-
fidence regions can still be computed via SPS, at all nodes, even when
the information diffusion process is stopped before each node has gath-
ered all data.

To achieve this objective, the truncated expressions of (3.3) and
(3.4) are provided first. Then, some other preliminary definitions and
recalls are outlined. Last, a theorem closes the section.

Truncating the information diffusion algorithm entails that (3.3)
and (3.4) are estimated taking into account only the data actually
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received by each node. Hence, at node k, the following quantities are
evaluated from the available data

S̃k,0(p) =

N∑

i=1

ck,iϕi

(
Yi − ϕT

i p
)

(3.25)

S̃k,j(p) =
N∑

i=1

ck,iAj,iϕi

(
Yi −ϕT

i p
)
, (3.26)

where j = 1, . . . , m − 1, and ck,i ∈ {0, 1}. The coefficients ck,i reckon
with the availability or absence of the i-th measurement, due to trun-
cation, at node k.4

Note that (3.25) is the set of normal equations that would be ob-
tained in a centralized context, considering a weighted least-squares
estimator, with a diagonal weight matrix Ck = diag (ck,1, . . . , ck,N).
Similarly, (3.26) is the sign perturbed sum that would be obtained
when considering weighted least-squares. It will be shown that the
confidence region, obtained considering (3.25) and (3.26) in (3.6), is
still a non-asymptotic confidence region. Reaching completion of the
information diffusion algorithm entails that the ck,i are all equal to
one, thus ensuring equivalence with the centralized scenario. In case
of truncation, instead, the ck,i fall in the interval [0, 1], their values
depending on the applied information diffusion procedure: In case
that the TAS or a consensus approach are applied they might take
any value in [0, 1], otherwise, with flooding, only 0 and 1 are possible
values.

Taking the squared norms of (3.25) and (3.26), respectively named
Z̃0(p) and Z̃j(p), for j = 1, . . . , m− 1, allows to define the confidence
region that is obtained at node k when truncation occurs, that is,

Σ̃q,k =

{
p ∈ P

∣∣∣∣∣

m−1∑

j=1

I(Z̃j(p)− Z̃0(p)) ≥ q

}
. (3.27)

In order to characterize the consistency of Σ̃q,k, that relies on an in-
complete set of measurements, it is necessary to recall some definitions
taken from [76].

4The ck,i differ from the weighting coefficients appearing in [76, Section 2.2].
The difference is that, here, they depend on the measurement index i. This makes
the two forms of weighting completely unrelated.
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Definition 1 (Symmetric Random Variables). Given a probability
space (Ω,F ,�), Ω being the sample space, F the σ-algebra of events,
and � the probability measure, a real (possibly Rd-valued) RV X is
said to be symmetric around the origin 0 (possibly origin vector 0) if

∀A ∈ F : �(X ∈ A) = �(−X ∈ A). (3.28)

The following property recalls [76, Lemma 2].

Property 1. Let A,B1, . . . , Bk be independent, identically distributed
(i.i.d.) random signs. Then A,AB1, . . . , ABk are also i.i.d. random
signs.

Definition 2 (Uniformly Ordered Variables). A finite set of real-
valued RVs Z0, Z1, . . . , Zm−1 is said to be uniformly ordered if for
all permutations i0, i1, . . . , im−1 of indexes 0, 1, . . . , m− 1, one has

P(Zi0 < Zi1 < . . . < Zim−1
) =

1

m!
. (3.29)

Definition 2 states that all orderings are equiprobable. A direct
consequence is that, for a set of uniformly ordered RVs Z0, Z1, . . . ,
Zm−1, each variable Zi takes any position in the ordering with proba-
bility 1/m.

With the purpose to formulate Lemma 1, introduced in the follow-
ing, another few more considerations are needed. Let h(Z0, Z1, . . . ,
Zm−1) : Rm → N

m−1
0 be a function of m real variables, with N

m−1
0

denoting the set of naturals from 0 to m − 1. The function provides
a permutation i0, i1, . . . , im−1, such that Zi0 ≤ Zi1 ≤ . . . ≤ Zim−1

. In
case of ties between input variables, the permutation is uniquely de-
termined by applying the following rule. Suppose that n variables are
tied: Thus n! orderings are possible. Then h(·) provides a reorder-
ing choosing among the possible n! with uniform distribution. Having
premised this, when h(·) takes RVs as inputs, it can be considered as
a discrete random variable with m! possible outcomes, i.e., as many
as the number of possible permutations of m integers.

Lemma 1 (Uniform Ordering Lemma). Let Z0, Z1, . . . , Zm−1 be real-
valued, i.i.d. RVs. Then they are uniformly ordered.
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Proof. Consider h(·), as previously defined. Since Z0, Z1, . . . , Zm−1

are i.i.d. the distribution of h(Zi0, Zi1 , . . . , Zim−1
) is the same for all

permutations. Permutations are in number of m!, hence each of the
outcome of h(·) has probability 1/m!, since the mechanism, by which
h(·) is defined, guarantees that all outcomes are equally possible. This
is equivalent to saying that the variables are uniformly ordered.

Lemma 1 is a generalization, to both continuous and discrete RVs,
of [76, Lemma 4], which does not hold for discrete RVs. The need for
this extension will appear in the proof of Theorem 7.

Now, one can state the following theorem.

Theorem 7. Under the assumption of measurement noises being sym-
metric RVs and independent across nodes, the confidence level with
which the true parameter value p̊ falls in the region Σ̃q,k, yielded at
node k, is

Prob(p̊ ∈ Σ̃q,k) = 1− q

m
, (3.30)

for every k = 1, . . . , N .

Proof. Following a similar approach as in [76], the evaluation of (3.25)
and (3.26) for p̊ gives

S̃k,0(p̊) =
N∑

i=1

ck,iϕiWi (3.31)

and

S̃k,j(p̊) =

N∑

i=1

ck,iAj,iϕiWi, (3.32)

with j = 1, . . . , m − 1. The truncation results in a rescaling of mea-
surement noise terms Wi, since it only depends on the communication
links effectively traversed during the information diffusion phase. This
rescaling preserves independence as well as symmetry of noise distri-
butions. Consider, further, that from (3.31) and (3.32), one can derive

Z̃k,0(p̊) =

∥∥∥∥∥

N∑

i=1

ck,iϕiWi

∥∥∥∥∥

2

2

, (3.33)
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and

Z̃k,j(p̊) =

∥∥∥∥∥

N∑

i=1

ck,iAj,iϕiWi

∥∥∥∥∥

2

2

. (3.34)

These last two expressions may be rewritten highlighting the indepen-
dent random measurement noise terms W1, . . . ,WN , i.e.,

Z̃k,0(p̊) = f(ck,1W1, . . . , ck,NWN), (3.35)

Z̃k,j(p̊) = f(ck,1Aj,1W1, . . . , ck,NAj,NWN), (3.36)

As already pointed out, each ck,iWi has a symmetric distribution.
By applying Lemma 1 from [76] to the variables in the collection
{ck,iWi}Ni=1 and introducing the set of random signs {Bi}Ni=1 one can
write ck,iWi = Bi(Bick,iWi) = BiVi, where Bi and Vi = Bick,iWi are
independent ∀i [76, Lemma 1]. It is possible to compact (3.35) and
(3.36) in the single expression

Z̃k,j(p̊) = f(Dj,1V1, . . . , Dj,NVN) (3.37)

for j = 0, . . . , m − 1, with D0,i , Bi and Dj,i , Aj,iBi for j =

1, . . . , m − 1. The set of RVs {Dj,i}N,m−1
i=1, j=0 is also a collection of

i.i.d. random signs, this deriving from Property 1 applied to the i.i.d.
random signs Bi and {Aj,i}m−1

j=1 . Now fix a realization for {Vi}Ni=1,

indicated as {vi}Ni=1. Conditioning on {Vi}Ni=1 = {vi}Ni=1,
{
Z̃k,j(p̊)

∣∣

{Vi}Ni=1 = {vi}Ni=1

}m−1

j=0
is a collection of discrete, real-valued, and i.i.d.

RVs, since {Dj,i}N,m−1
i=1, j=0 is a collection of i.i.d. random signs. Applying

Lemma 1 to
{
Z̃k,j(p̊)

∣∣ {Vi}Ni=1 = {vi}Ni=1

}m−1

j=0
leads to the considera-

tion that these variables are uniformly ordered. This implies that the
RV Z̃k,0(p̊)

∣∣ {Vi}Ni=1 = {vi}Ni=1 takes each position in the ordering with
probability 1/m. The conclusion is that it is not among the q largest
Z̃k,j(p̊)

∣∣ {Vi}Ni=1 = {vi}Ni=1, j = 0, . . . , m−1, with probability 1− q/m.
Since this probability value is independent of the particular realiza-
tion of {Vi}Ni=1, one can apply [76, Lemma 3] to say that Prob(p̊ ∈
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Σ̃q,k) = Prob
(
Z̃k,0(p̊) is not among the q largest Z̃k,j(p̊)

)
= 1− q

m
is

valid also when not conditioning on noise realizations. This concludes
the proof.

Remark 4. Lemma 1 is introduced to prove that i.i.d. discrete RVs are
uniformly ordered. From [76, Lemma 4], one can draw this conclusion
only for continuous variables. Lemma 1 generalizes [76, Lemma 4].
This copes with the discrete RVs, that are appearing when noise real-
izations are fixed, as done in the proof.

Remark 5. When at sensor node k there is only a single non-zero
coefficient, ck,k = 1, meaning that truncation in information diffusion
occurred before node k could gain knowledge about any other sensor
than itself, then, the m × N matrix formed by all random signs Aj,i

participating in the confidence region computation at node k has only
one column filled with values {−1, 1}, while all the remaining ones are
filled with zeros. Its rank is hence equal to 1 and the norms Z̃k,j(p) are
all equal independently of j and for any value of p. This is certainly the
case for which the highest number of ties occurs, nevertheless, choos-
ing at random for the reordering, yields a random confidence region,
covering a percentage equal to 1− q/m of the initial search space. The
computed confidence region keeps again the same level of confidence
1 − q

m
, as stated by Theorem 7. This observation gives an insight on

the reason why the shape of confidence regions is affected by informa-
tion availability.

3.5 Analysis of Traffic Load on Generic

Topologies

In order to fairly compare different information diffusion strategies, the
network traffic burden has to be characterized. The algorithms are
compared on specific topologies, such as random trees, with binary
trees as a special case, and clustered networks, that are the most
commonly used in practical applications [5]. In Section 3.6, completely
random networks will also be considered.

Before entering into the details of the analytical investigation, re-
call that dTAS and dMF, respectively given by (3.22) and (3.18), denote
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L=4

Figure 3.2: A random tree topology. Some of the random variables,
that describe it, take values Λ(0) = 1, Λ(1) = 2, Λ(2) = 4, Λ̄(2) =
1, Λ(3) = 8, Λ̄(3) = 6, etc.

the numbers of real-valued scalars that a single data is composed of
when the TAS or the MF algorithm are considered. Only these two
information diffusion strategies will be analytically compared. This is
due to the fact that PF is outperformed by MF on lossless networks
while the amount of data that should be transmitted by a consensus
algorithm strictly depends on its convergence threshold and is there-
fore not a-priori predictable if only the network topology is given.
The behavior of these strategies will nevertheless be simulated in Sec-
tion 3.6.

The remainder of this section is divided into as many subsections
as the considered topologies.

3.5.1 Random Trees

Consider a random tree topology, i.e., a tree where each node has a
random number of sons, possibly zero. The number of nodes form-
ing the network is considered equal to N . The levels in the tree are
indicated by ℓ, with ℓ ≥ 0. L denotes the lowest level in the tree.
The set of nodes in the ℓ-th level of the tree is denoted as Lℓ, having
cardinality Λ(ℓ), which is a RV. Nevertheless, Λ(0) = 1 and is not
random, since the tree is single rooted. Moreover, the set of nodes, in
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the ℓ-th level in the tree, that are not parents to any nodes, is denoted
by L̄ℓ and its cardinality is a RV denoted by Λ̄(ℓ).

3.5.1.1 TAS algorithm

The TAS algorithm of Section 3.3.4 does not assume any ordering in
the network on which it should run. On a random tree, however, it
is possible to simplify it making nodes transmit much less frequently
than required on an unstructured random topology.

During each transmission phase a single level of the tree is active.
Only nodes in this level can transmit. Starting from level L, each node
in LL has to broadcast its own local data. Then, parent nodes distil
and aggregate the received quantities with their own ones and broad-
cast. The process is repeated until the tree root is reached. The tree
is then traveled backwards, from Level 0 to Level L, making the com-
plete sum available to all nodes. This way of operating ensures that
an exact retrieval of the entire sum is possible and that no truncation
occurs, if the procedure is completed. Nodes participate only in the
(at most two) rounds of transmission involving the level they belong
to. The number of data that must be transmitted when employing
the TAS algorithm is a discrete RV given by

NRT
TAS =

L∑

ℓ=0

Λ(ℓ)dTAS +
L−1∑

ℓ=1

Λ(ℓ)dTAS −
L−1∑

ℓ=1

Λ̄(ℓ)dTAS. (3.38)

NRT
TAS consists of the number of data transmitted when traversing the

tree from level L to the root, included, plus the amount of data re-
quired by the backwards travel. The last term in (3.38) is related to
nodes without sons, which do not transmit anything when the back-
wards travel is performed.

3.5.1.2 MF algorithm

For the MF, one instead gets,

NRT
MF = Λ(L)dMF + (Λ(L) + Λ(L− 1))dMF + . . .+

L∑

ℓ=0

Λ(ℓ)dMF
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+N
(
Λ(1)− Λ̄(1)

)
dMF −

L∑

ℓ=2

Λ(ℓ)dMF −
(
Λ(1)− Λ̄(1)

)
dMF

+ . . .+N
(
Λ(L− 1)− Λ̄(L− 1)

)
dMF

− Λ(L)dMF −
(
Λ(L− 1)− Λ̄(L− 1)

)
dMF

= Λ(L)dMF+(Λ(L)+Λ(L− 1))dMF+. . .+

L∑

ℓ=0

Λ(ℓ)dMF

+(N − 1)
(
Λ(1)−Λ̄(1)

)
dMF −

L∑

ℓ=2

Λ(ℓ)dMF

+ . . .+ (N − 1)
(
Λ(L− 1)− Λ̄(L− 1)

)
dMF − Λ(L)dMF

=
L∑

ℓ=0

Λ(ℓ)dMF + Λ(L)dMF +N
L−1∑

ℓ=1

(
Λ(ℓ)− Λ̄(ℓ)

)
dMF

+

L−1∑

ℓ=1

Λ̄(ℓ)dMF, (3.39)

where Λ(L)dMF + (Λ(L) + Λ(L− 1))dMF + . . .+
∑L

ℓ=0 Λ(ℓ)dMF is the
amount of data transmitted in the forward travel, N

(
Λ(1)− Λ̄(1)

)
dMF

is the amount of data (proportional to N) that nodes, with sons, in
level 1 would transmit when the tree is traveled backwards, as if no for-
ward travel was ever performed, and

∑L
ℓ=2Λ(ℓ)dMF+

(
Λ(1)− Λ̄(1)

)
dMF

is the amount of data that has to be subtracted from the previous one,
since these data have already been transmitted in the forward travel.
The other terms can be similarly explained.

3.5.1.3 Comparison

TAS is more efficient than MF when NRT
TAS < NRT

MF, i.e., when

L∑

ℓ=0

Λ(ℓ)(dTAS − dMF)−
L−1∑

ℓ=1

Λ̄(ℓ)(dTAS + dMF)− Λ(L)dMF

−N

L−1∑

ℓ=1

(
Λ(ℓ)− Λ̄(ℓ)

)
dMF +

L−1∑

ℓ=1

Λ(ℓ)dTAS < 0

N(dTAS − dMF)− Λ(L)dMF + (N − Λ(L)− 1)dTAS
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−N(N − Λ(L)− 1)dMF +
L−1∑

ℓ=1

Λ̄(ℓ) ((N − 1)dMF − dTAS) < 0,

(3.40)

that is,

(dMF + dTAS − NdMF) Λ(L) > N(dTAS − dMF) + (N − 1)dTAS

−N(N − 1)dMF +

L−1∑

ℓ=1

Λ̄(ℓ) ((N − 1)dMF − dTAS) .

(3.41)

In case N is finite, (3.41) is satisfied with a probability that is
not easily evaluated. Nevertheless, an asymptotic consideration can
be done. First, when N → ∞, assume that L → ∞. This is the
case when the area on which nodes are deployed is increasing with
N , due to coverage extension purposes, or if the communication range
dcomm is diminishing with N , due to interference mitigation purposes.
Moreover, one has

∑L−1
ℓ=1 Λ̄(ℓ) < N − Λ(L) − L, since the number of

nodes without sons, in all levels except 0 and L, cannot exceed the
total number of nodes deprived of the number of nodes at level L
and of at least one node for each of the L levels from 0 to L − 1 (if
no nodes are present in a level, there cannot be any further levels).
Then, passing to the limit for N → +∞, if

lim
N→∞

{N(dTAS − dMF) + (N − 1)dTAS −N(N − 1)dMF

+ ((N − 1)dMF − dTAS) (N − Λ(L)− L)

− (dMF + dTAS −NdMF) Λ(L)} < 0 (3.42)

holds, i.e.,

lim
N→∞

(dTAS − dMF) +
(L− 1)

N
dTAS −

L(N − 1)

N
dMF < 0, (3.43)

then also (3.41) holds asymptotically. Since L also goes to +∞, (3.43)
is verified and thus (3.41) holds for all values of Λ(L), hence with
probability 1. Moreover, this is true for all values of the problem
dimensions, i.e., np and m.
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3.5.2 Binary Trees

A deterministic complete binary tree topology, that is a tree where
each node has exactly two sons apart from nodes in level L that do not
have any, is now considered. Assuming that the binary tree consists
of L levels entails that N = 2L+1 − 1.

3.5.2.1 TAS algorithm

For the TAS algorithm, the total number of required data communi-
cations is deduced from (3.38)

NBT
TAS =

(
2L + 2L−1 + . . .+ 21 + 1 + 21 + . . .+ 2L−1

)
dTAS

=

(
2L+1 − 2 +

1

2

(
2L+1 − 2

))
dTAS =

(
3N − 3

2

)
dTAS. (3.44)

3.5.2.2 MF algorithm

The total number of data communications required by the MF algo-
rithm is deduced from (3.39)

NBT
MF =

(
2L+1 − 1

)
dMF + 2LdMF +

(
2L+1 − 1

) L−1∑

i=1

2idMF =
N2 + 1

2
dMF.

(3.45)

3.5.2.3 Comparison

On a binary tree, TAS is more efficient than MF when

3N − 3

2
dTAS <

N2 + 1

2
dMF. (3.46)

Using (3.22) and (3.18) one obtains the following condition

(
N2 + 1

)
k1 − 3N + 3 > 0, (3.47)

where k1 = np+1

(np+np
np+1

2 )m
. For sufficiently large N , (3.47) is always

satisfied, disregarding np and m. Moreover, and unlike in the random
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Figure 3.3: Critical value N∗, as a function of np, on binary trees, for
several values of m.

tree case, given np and m, it is possible to derive the value

N∗ =
3 +

√
9− 4k1 (3 + k1)

2k1
, (3.48)

for which TAS is more efficient than MF. Fig. 3.3 represents N∗ as a
function of np, considering m = 10, 20, 40. The behavior is not exactly
linear, as it can be easily verified by derivation of (3.48), but rapidly
tends to be such: In fact, when np grows large, k1 ≈ 2

npm
and

N∗ ≈ npm

4

[
3 +

√
9− 8

npm

(
3 +

2

npm

) ]
≈ 3

2
mnp. (3.49)

3.5.3 Clustered Networks

Consider a clustered network, formed by N nodes, structured on a
single level of hierarchy (see Fig. 3.4). The network is hence assumed
to be divided in nc clusters. The i-th cluster comprises a random num-
ber of nodes N c

i , including the clusterhead, that is the special node
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Figure 3.4: A clustered topology. Clusterheads are indicated in red.

responsible for aggregating the local data of its sons. The subnetwork
formed by clusterheads is considered to be fully connected: Cluster-
heads can directly communicate to one another. Moreover, each node
in a cluster is assumed to directly communicate with its clusterhead
(and vice-versa).

3.5.3.1 TAS algorithm

On this topology, the TAS algorithm transmission phases can be or-
ganized as follows. At the beginning, all nodes, with the exception
of clusterheads, transmit their local data to the clusterheads. Then
each clusterhead aggregates the local data of all nodes in its cluster.
Successively, clusterheads transmit to all other clusterheads their ag-
gregated data. Since the network of clusterheads is fully connected, a
single broadcast transmission for each of the clusterheads suffices for
all clusterheads being capable to construct the completely aggregated
data. The amount of scalar data, that has to be transmitted, is thus

N cc
TAS = ((N − nc) + nc + nc) dTAS

= (N + nc)dTAS. (3.50)
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This accounts for the initial N −nc transmissions and the subsequent
actions of clusterheads, that should broadcast to each other the par-
tially aggregated data and then broadcast, towards nodes forming
their cluster, the completely aggregated data.

3.5.3.2 MF algorithm

All nodes in a cluster can overhear broadcast transmissions operated
by the corresponding clusterhead. Therefore, the amount of data to
be transmitted when employing the MF algorithm is

N cc
MF = ((N − nc) +N + (nc − 1)N) dMF

= (N − nc + ncN) dMF. (3.51)

This is because all nodes, apart from clusterheads, initially transmit
their local information to clusterheads, giving rise to (N − nc)dMF

transmitted scalar data. Then clusterheads broadcast the received
data and their own, this forming a total flow of NdMF scalar data.
At this point, all nodes in each cluster are completely informed about
data related to their respective cluster. Finally, there is a backwards
transmission during which each clusterhead is transmitting towards
its cluster all the NdMF scalar data except the ones that it pre-
viously transmitted, this being equivalent to further (nc − 1)NdMF

transmitted scalars, composed of nc clusterheads transmitting not N ,
but (N − N c

i )dMF scalar data, i.e., a total of
∑nc

i=1 (N −N c
i ) dMF =

(ncN −N) dMF.

3.5.3.3 Comparison

TAS is better than MF when N cc
TAS < N cc

MF, i.e., when

(N − nc + ncN) dMF − (N + nc) dTAS > 0(
1 +

nc(N − 2)

N + nc

)
dMF

dTAS

> 1. (3.52)

Here nc is the degree of freedom, in lieu of L in the tree topologies.
Assuming that, due to coverage extension or interference mitigation

79



80
CHAPTER 3. DISTRIBUTED COMPUTATION OF EXACT

NON-ASYMPTOTIC CONFIDENCE REGIONS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.5: Realization of an unstructured random network composed
of N = 100 nodes.

purposes, nc grows to ∞ with N going to ∞, one has

lim
N→+∞

(
1 +

ncN − 2nc

N + nc

)
dMF

dTAS
= lim

N→+∞
nc

dMF

dTAS
= +∞, (3.53)

independently on np and m. Thus, TAS is asymptotically better than
MF.

3.6 Numerical Results

In this section, all simulations results have been obtained assuming
lossless links while confidence regions are evaluated with the inter-
val analysis techniques described in [77].5 The Intlab package [87] is
employed for intervals computations.

5These techniques allow for the numerical computation of tight outer approx-
imations of confidence regions via contraction of the initial search space. The
contraction halting criterion may be set such that single box outer approxima-
tions are obtained, instead of multiple boxes outer approximations. For the sake
of simplicity and with abuse of terminology, in the remainder, ‘confidence regions’
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Figure 3.6: Projections of the 90% confidence region computed at node
1 after 4 consensus iterations. A random unstructured network of 100
nodes is considered.

3.6.1 Effect of truncation

Firstly, a numerical investigation of the effect of truncation in infor-
mation diffusion on the shape of the confidence region is performed.
To this purpose, a random unstructured network of N = 100 nodes
(reported in Fig. 3.5), uniformly distributed over a unit area, is in-
stantiated and a true parameter value p̊ = [p1, p2, p3] = [0.2, 0.3, 0.4]
is considered. The inter-node communication range is set to dcomm =√

log2 N
2N

. According to [88], this range guarantees almost sure con-

nectivity of a network of N nodes, deployed on a finite area. White
Gaussian measurement noise is considered and the regressors are com-
posed of random equiprobable and independent elements with values
in {−1, 1}. No unit of measurement is specified since it is not nec-
essary to restrict p̊ to any specific domain. A truncated Metropolis
consensus algorithm [31, 81, 82] is run for the distributed computa-

is used in lieu of ‘outer approximations of confidence regions’, if not otherwise
specified.
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Figure 3.7: Projections of the 90% confidence region computed at
node 1 after 30 consensus iterations. A random unstructured network
of 100 nodes is considered.

tion of confidence regions. Similar results may be obtained also for
the other information diffusion strategies, described in Section 3.3.
Figs. 3.6 and 3.7 show the confidence region computed at node 1 after
4 and 30 iterations, respectively, projected over the dimensions of the
parameter space. The reduction in terms of volume is quite evident
in the second case, while it is to be underlined that the confidence
level is the same, independently of when the truncation occurs. In
fact, according to the analysis in Section 3.4, any information diffu-
sion truncation does not change the level of confidence but only the
shape of the region.

3.6.2 Comparison of information diffusion algo-
rithms

The initial step is to compare state-of-the-art algorithms, hence PF
and consensus algorithms, to the mixed approach. Consensus algo-
rithms need all nodes to transmit and update almost synchronously
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Figure 3.8: Average volume, across nodes, of the 90% confidence re-
gion as a function of the average amount of data transmitted by each
node. A random unstructured network of N = 100 nodes is consid-
ered.

their local state and thus are not able to exploit peculiarities of struc-
tured networks. This is the reason why the comparison is carried out
only on random unstructured topologies. Afterwards, the MF and
TAS algorithm will be compared on random trees and clustered net-
works. Finally their performance will be investigated also on random
unstructured networks, where a full comparison with state-of-the-art
consensus algorithms will be meaningful.

Figs. 3.8 and 3.9 show the average volume of the 90% confidence
regions, obtained running the Metropolis consensus algorithm, the PF,
and the mixed approach, as a function of the amount of data transmit-
ted on average by each node. Fig. 3.8 was obtained for the topology
shown in Fig. 3.5, while Fig. 3.9 was obtained for a network of 150
nodes, shown in Fig. 3.10. As it can be observed, the confidence region
achieved with flooding is smaller than that obtainable with consensus
when the same amount of transmitted data is considered, but a gain
is possible when applying the mixed approach. In fact, in both cases
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Figure 3.9: Average volume, across nodes, of the 90% confidence re-
gion as a function of the average amount of data transmitted by each
node. A random unstructured network of N = 150 nodes is consid-
ered.

there is a range of amount of transmitted data wherein the mixed
approach slightly outperforms flooding, which is, however, the best
solution when no limitation on data exchanges is present (see the as-
ymptotic behavior in Figs. 3.8 and 3.9). The evidenced behavior of
the mixed approach, getting an advantage over the flooding for low
data amounts, is always guaranteed to be present, given the defini-
tion of the mixed approach itself, for which the initial performance
coincides with the one of flooding and, subsequently, improves on it,
when that becomes possible. The improvement is related to the num-
ber of measurements taken into account: This number is progressively
higher and, when applying a mixed approach, this increment comes
at a communication cost, in terms of number of data to be transmit-
ted, that is lower than that required with flooding. Anyway, after a
certain amount of iterations, depending on network size and connec-
tivity, flooding regains its advantage. This is due to the fact that the
coefficients, with which measurements are considered in the perturbed
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Figure 3.10: Realization of an unstructured random network composed
of N = 150 nodes.

and unperturbed sums, are equal to 1, while with the mixed approach
algorithm they are between 0 and 1. This plays a favorable role in the
confidence region volume reduction, as evidenced by the simulation
results.

In order to compare the TAS and the MF algorithms, consider ran-
dom trees, clustered networks, and random unstructured topologies,
for the same order of magnitude in terms of number of nodes.

For what concerns the analysis on random trees, consider to build a
spanning tree on top of a random unstructured network, setting dcomm

as earlier done. For each N (see the horizontal axis in Fig. 3.11),
100 connected network realizations are instantiated. TAS and MF are
compared in terms of the required number of data to be transmitted
on each network realization. The success rate of TAS is the percentage
of network realizations that proved favorable to TAS and it is shown
in Fig. 3.11 as a function of N , for several values of np. As foreseen in
the theoretical analysis in Section 3.5, there always exists a threshold
value of N , depending on np, above which the TAS outperforms the
MF algorithm, i.e., the percentage closes to 100%.
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Figure 3.11: Percentage of network realizations favorable to TAS, in
terms of required data exchanges, compared to MF, as a function of the
number of nodes forming a random tree topology for different values
of np. 100 random tree realizations are considered for each value of
N .

Now the investigation of the trade-off between the confidence re-
gion volume and the amount of data transmitted by each node follows.
Fig. 3.12 shows the average volume of the 90% confidence region as a
function of the average amount of data that needs to be communicated
by each node. The volume and data amount are averaged across all
nodes and across 100 random tree realizations, while simulation pa-
rameters are set to np = 2, q = 1, N = 100 and m = 10. Fig. 3.12
allows to know which is the amount of data that needs to be trans-
mitted by each node on average to obtain a given confidence region
average volume. Each pair of coordinates corresponds to one different
transmission round, hence, only partial information could be available
at the generic node. However, this affects only the confidence region
volume, but does not compromise the level of confidence, which, ac-
cording to the analysis in Section 3.4, remains the same as if all the
information had already been gathered. The TAS algorithm outper-
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Figure 3.12: Average volume, across nodes and 100 random tree real-
izations, of the 90% confidence region. Simulation parameters are set
to N = 100, np = 2, q = 1, and m = 10.

forms the MF to achieve meaningful small volume values, in terms of
the average amount of data transmitted by each node.

Similar results can be obtained on clustered networks. The number
of clusters is set to nc = 20 and the average number of per cluster nodes
is set to E[N c

i ] = 7 (the parameter dimension is np = 2, while q = 1
and m = 10). In particular, Fig. 3.13 shows the average volume of the
confidence region, across nodes and 100 clustered network realizations.
Here the number of computed pairs volume-amount of data is much
lower than that of random trees, due to the fewer transmission rounds.
The average amount of data transmitted by each node, needed to
obtain meaningful small volumes, is lower when employing the TAS
algorithm, as it was on random trees.

Finally, consider a random unstructured network, setting N = 100
and np = 3. As shown in Fig. 3.14, the MF algorithm behaves better
than TAS, providing lower volume values for the same amount of
data. For comparison, it is also shown how both the MF and the
TAS algorithm outperform the state-of-the-art consensus algorithms,
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Figure 3.13: Average volume, across nodes and 100 clustered network
realizations, of the 90% confidence region. Simulation parameters are
set to np = 2, q = 1, nc = 20, and m = 10.

independently of the considered consensus matrix (Metropolis [81] or
Perron [67]).

This section confirms the general behavior that was highlighted
in Section 3.5: On structured topologies, such as random trees and
clustered networks, there is an advantage in employing the TAS algo-
rithm when the network dimension is sufficiently large, and this in-
dependently of np. On unstructured networks of comparable size, the
MF produces the best results, but, in any case, the absolute amount
of data transmitted by each node is much larger than in structured
networks. This suggests the adoption of structured networks, together
with the TAS algorithm for the distributed computation of confidence
regions, when the network traffic load for data diffusion is particularly
critical.
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Figure 3.14: Average volume, across nodes, of the 90% confidence
region. A random unstructured network of 100 nodes is considered.

3.7 Conclusions

This chapter has investigated the distributed evaluation of non- as-
ymptotic confidence regions at each node in WSNs. Several state-of-
the-art information diffusion algorithms are compared to innovative
schemes in terms of the required traffic burden. A particular attention
is devoted to robustness both guaranteeing that central unit failures
are avoided and providing an analysis of the effects of truncation in
the information diffusion procedure. The TAS algorithm is presented
and its comparison with the other information diffusion algorithms
on structured and unstructured topologies is carried out. The TAS
algorithm has been designed to efficiently exploit the peculiarities of
the distributed evaluation of confidence regions via SPS. This chapter
demonstrates that, even in presence of truncated information diffu-
sion, the level of confidence remains the same as in the centralized
not truncated case. Simulation results provide a characterization of
the trade-off for the achievable average confidence region volume as a
function of the required amount of data that each node should trans-

89



90
CHAPTER 3. DISTRIBUTED COMPUTATION OF EXACT

NON-ASYMPTOTIC CONFIDENCE REGIONS

mit on average. The contributions nicely concur at showing that, on
structured networks, the proposed TAS algorithm is able to outper-
form the MF, when the network dimension is sufficiently high, this
independently of the specific dimension of the parameter space, as
investigated in the theoretical and numerical analyses.
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Conclusions

Almost zero-power wireless communications are a key enabler for fu-
ture energy autonomous systems. The very low power consumption
can ensure a much improved device lifetime, paving the way for appli-
cations in hostile environments as well as for everyday life IoT appli-
cations. The understanding of achievable communication ranges and
bit rates is of fundamental importance for the effective deployment of
new communication paradigms.

This thesis has proposed an innovative scheme and has theoreti-
cally and numerically assessed its performance. The channel charac-
teristics are important features that have to be studied as well: The
limitations in peak power availability translate into precise properties
of the optimal input distribution. These topics have been investi-
gated in this thesis leading to advances in the knowledge of low power
communication systems: Finding a set of sufficient conditions for the
capacity-achieving input distribution to be discrete has been one of
the major achievements.

The efficiency in communications should pair with the efficiency
of the procedures that provide information diffusion in WSNs. The
importance of guaranteeing energy savings discloses the meaning of
Green ICT: The technology should on one side reduce its intrinsic en-
ergy consumption, while on the other one it should contribute to the
reduction of the applications consumption. This is the main reason
why this thesis has not been limited to low power communications but
has also been dedicated to the design and analysis of efficient proce-
dures for the communication of data required by tasks distributed over
WSNs. Specifically, the distributed computation of non-asymptotic
confidence regions has been considered to avoid the drawbacks of cen-
tralized solutions such as strong sensitivity to failures. The problem
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has been tackled by investigating the consistency and robustness of
the distributed solutions in presence of truncation in data diffusion
caused by energy and/or traffic constraints. Contrary to existing stud-
ies based on asymptotic bounds, the here obtained results allow the
computation of confidence regions even when finite and limited data
are available.

For what concerns future advancements, it is worth noting that
the experimental assessment of the comparison of information diffu-
sion algorithms is particularly attractive. In fact, the specific medium
access control (MAC) issues, like collisions and collisions recovery,
that are usually overlooked in numerical verification can be reckoned
with. These issues are currently being investigated in an experimen-
tal campaign: The results of this campaign are expected to complete
the investigation of the topic of information diffusion related to the
computation of confidence regions.

More in general, and to further deepen the perspective open by
this thesis, it is remarkable that low power communication systems
can rely on external carriers. This can ensure deployment of systems
on a larger scale, a lower complexity of the employed devices and
higher communication security as well. In fact spoofing of these op-
portunistic communications is much more complicated than detecting
ad-hoc generated carriers. Moreover, the low complexity required in
the generation of discrete inputs is winking in the direction of estab-
lishing low power devices as legacy systems. Finally, the possibility to
spare energy by means of clever information diffusion strategies is an
important feature that next future systems should be provided with.
To say it in a nutshell, this thesis has hopefully paved the way for inter-
esting advancements in communication and estimation theory, having
a possibly strong impact on next-future communication systems.
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