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Combinatorial Optimization is becoming ever more crucial, in these days. From

natural sciences to economics, passing through urban centers administration and

personnel management, methodologies and algorithms with a strong theoretical

background and a consolidated real-word effectiveness is more and more requested,

in order to find, quickly, good solutions to complex strategical problems. Resource

optimization is, nowadays, a fundamental ground for building the basements of

successful projects. From the theoretical point of view, CO rests on stable and

strong foundations, that allow researchers to face ever more challenging problems.

However, from the application point of view, it seems that the rate of theoretical

developments cannot cope with that enjoyed by modern hardware technologies,

especially with reference to the one of processors industry.

We are witnessing a technological ‘golden era’, where enormous amount of com-

putational capabilities is available at an affordable cost, even at the consumer

market level. Is also true that, to fully exploit these devices, a complete focus

shift is necessary in thinking and approaching optimization problems. In this

work we propose new parallel algorithms, designed for exploiting the new parallel

architectures available.

In our research, we found that, exposing the inherent parallelism of some reso-

lution techniques (like Dynamic Programming), the computational benefits are

remarkable, lowering the execution times by more than an order of magnitude,

and allowing to address instances with dimensions not possible before.

We approached four CO’s notable problems: Packing Problem, Vehicle Routing

Problem, Single Source Shortest Path Problem and a Network Design problem.
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For each of these problems we propose a collection of effective parallel solution

algorithms, either for solving the full problem (Guillotine Cuts and SSSPP) or for

enhancing a fundamental part of the solution method (VRP and ND).

We endorse our claim by presenting computational results for all problems, either

on standard benchmarks from the literature or, when possible, on data from real-

world applications, where speed-ups of one order of magnitude are usually attained,

not uncommonly scaling up to 40 X factors.
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Chapter 1

Introduction

The Moore’s Law, in the early years, has brought to a turning point the micro-

processors industry. In fact, the doubling of the computation capabilities of a

CPU every eighteen months was becoming a huge engineering problem, due to the

increasing work frequencies, power consumption and expensive cooling systems.

For instance, the density of heat on the surface of a high-frequency microprocessor

can be compared to the density of heat on the same area on the Sun surface.

Thus, the solution has been to decrease the work-frequencies and to add more

computation units inside the same silicon die; the Moore’s Law then, shifted its

prospective from doubling the frequencies to doubling the number of computation

units inside the processor, remains still valid.

This paradigm shift forced a massive change in software engineering and in com-

puter science in general. In fact, from building an operative system to the design

of new algorithms, the new platforms’ high level of parallelism is an ever more

important aspect to considerate. Also, the academic research community is ev-

ery year more interested in the exploitation of this new enormous availability of

computing resources, aware that this can be a great opportunity to reach new

and significant goals, unexpected until few years ago. On the other hand, to take

advantage from these architectures, is required a high level of expertise and a deep

knowledge of the features implemented on these devices.

A new kind of parallel Lagrangean Relaxation was analyzed and implemented

in [1] related to a network design problem (Membership Overlay Problem), this

algorithm achieved a great speed-up improvement by implementing it using three

of the main parallel paradigms available (MPI, OpenMP and CUDA). This result

1
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encouraged a deeper investigation of this new approach to design optimization

algorithms and this topic was chosen as the main focus for this Ph.D. thesis.

Moreover, Combinatorial Optimization is still marginally affected by this new

approach and the analysis of the most exploited resolution methods, like Dynamic

Programming, Branch and Bound techniques or Column Generation, under this

new parallel prospective, is in its infancy. The state-of-the-art micro-processors

allow now to treat problems never approached before, due to the data dimensions,

to the enormous amount of computations required for their solution or to the

computation’s granularity.

The contribution of this thesis is a collection of parallel algorithms designed to

enhance, sometimes significantly, the execution times of the methods cited above.

We approached some of the most notable problems in CO: The Rectangular Knap-

sack (Unconstrained 2D Guillotine Cuts Problem) achieving, through a Dynamic

Programming algorithm designed for a many-core platform (GPU), a speed-up of

22 X for the biggest instances known in literature and a 30 X speed-up factor for

two new sets of instances, generated to test the real effectiveness of the method.

The Vehicle Routing Problem, for which we provided six many-core algorithms for

enhancing the relaxations (q-routes, through-q-routes and ng-routes relaxations)

relative to the pricing problem inside the Column Generation exact method, based

on the Set Partitioning formulation of the problem. In this case, we achieved a

maximum speed-up of 40 X for the asymmetric version of the ng-routes relaxation,

an average speed-up of 20 X for the q-routes and through-q-routes methods and

an average speed-up of 10 X for the ng-routes.

The Single Source Shortest Path Problem, for solving the Earliest Arrival Problem

in a Multi-modal, Time-Dependent environment. For this problem, we provide a

multi-core (CPU) algorithm, achieving a maximum of 3.5 X speed-up factor on

real-word based instances.

A Network Design Problem, the Membership Overlay, relative a the Peer-to-Peer

network model. For this problem, we propose a parallel subgradient algorithm

for solving the Lagrangean Dual Problem relative to the problem’s Lagrangean

relaxation, achieving a 29 X speed-up for the bigger instances.
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This thesis is structured as follows: in Chapter 2 we will briefly review the High

Performance Computing field and the actual most used parallel programming mod-

els.

In Chapter 3 we will give some definitions for Combinatorial Optimization prob-

lems and we will shortly describe some solution methodologies.

In Chapter 4 we will propose a GPU algorithm for solving the Two Dimension

Guillotine Cutting Problem, with computational results and two new sets of in-

stances.

In Chapter 5 we will describe the most effective pricing strategies for Column

Generation algorithms for solving some classes of the VRP, proposing the relative

parallel algorithms with computational results.

In Chapter 6 we will address the Single Source Shortest Path Problem in a Time-

Dependent Multi-Modal environment, proposing two parallel algorithm (CPU and

GPU) and a new set of instances.

In Chapter 7 we will propose three parallel subgradients for three platforms, CPU,

GPU and cluster, to obtain a valid bound for the Membership Overlay Problem.

In Chapter 8 we will draw the conclusions of our work and give some guidelines

for future researches.





Chapter 2

High Performance Computing

2.1 Definition

By High Performance Computing we mean the use of computers for high through-

put computation, for solving large problems, or for getting results faster. High

Performance is relative to desktop computers, servers or clusters, characterized by

more computation units that can cooperate. Supercomputers were introduced in

the 1960s and were designed primarily by Seymour Cray at Control Data Corpo-

ration (CDC), and later at Cray Research. While the supercomputers of the 1970s

used only a few processors, in the 1990s, machines with thousands of processors

began to appear and by the end of the 20th century, massively parallel super-

computers with tens of thousands of “off-the-shelf” or commercial processors were

marketed [2].

The design of systems with a massive number of processors generally take one

of two paths: in one approach, e.g., in grid computing, the processing power of

a large number of computers in distributed, diverse administrative domains, is

opportunistically used whenever a computer is available. In another approach, a

large number of processors are used in close proximity to each other, for instance, in

a computer cluster. The use of multi-core processors combined with centralization

is an emerging direction [3]. In the early years of 21st century, another emerging

trend is to evaluate the “performance per watt” factor, or the sustainability of a

super computer, deserving a separate ranking [4]. The energy consumption of a

machine with 100,000 or more cores is obviously relevant. To address also this

aspect, the GPU computing or heterogeneous computing seems to be the right

5
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way. The most recent super-computer in the Top 500 list [5] are in most cases

composed not only by canonical processors but, inside every computation node, by

several “accelerators”, dramatically more energetically efficient than the canonical

CPU.

2.2 Main fields of application

The need of such a large amount of computational capabilities is restricted to spe-

cific research areas like physics, chemistry, engineering, etc. . . In the next sections,

we will give a brief list of the applications of HPC. But nowadays the parallelism

is a common factor that brings together the canonical computer to the most ad-

vanced smartphones and the same paradigms, used to exploit the HPC structures,

can be applied on smaller systems enhancing their performances, sometimes dra-

matically.

2.2.1 Simulation

Simulation is the imitation of the operation of a real-world process or system over

time [6]. The act of simulating something first requires that a model be developed;

this model represents the key characteristics or behaviors of the selected physical

or abstract system or process. The model represents the system itself, whereas

the simulation represents the operation of the system over time.

Simulation is used in many fields, such as engineering design, building design, ge-

ology, climatology and video games. Simulation can be used to show the eventual

real effects of alternative conditions or to predict the behavior of a system (for ex-

ample, a building during an earthquake or an electronic device like a smartphone).

Simulation is also used when the real system cannot be directly studied, because

inaccessible, dangerous, not built or simply virtual.

More specifically, a computer simulation models a real-life or hypothetical situation

on a computer so that it can be studied to see how the system works. By changing

variables in the simulation, predictions may be made about the behavior of the

system. It is a tool to virtually investigate the studied system under changing

conditions. Computer simulation has become a useful part for modeling many
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natural systems in physics, chemistry and biology, as well as in engineering. For

example, the effectiveness of exploiting computers for simulating the behavior of

a system is particularly useful in the field of network traffic analysis.

Key issues in simulation include acquisition of valid source information about

the relevant selection of key characteristics and behaviors, the use of simplifying

approximations and assumptions within the simulation, and fidelity and validity of

the simulation outcomes. Traditionally, mathematical models are used to formally

describe systems, models that attempt to find analytical solutions enabling the

prediction of the behavior of the system from a set of parameters and initial

conditions. Computer simulation is often used as an adjunct to, or substitution for,

modeling systems for which simple closed form analytic solutions are not possible.

There are many different types of computer simulation, the common feature they

all share is the attempt to generate a sample of representative scenarios for a

model in which a complete enumeration of all possible states would be prohibitive

or impossible [7]. These are some research areas that uses HPC:

• Computational Fluid Dynamics: is a branch of fluid mechanics that

uses numerical methods and algorithms to solve and analyze problems that

involve fluid flows. Computers are used to perform the calculations required

to simulate the interaction of liquids and gases with surfaces defined by

boundary conditions. With high-speed supercomputers, better solutions can

be achieved. Ongoing research yields software that improves the accuracy

and speed of complex simulation scenarios such as transonic or turbulent

flows. Initial validation of such software is performed using a wind tunnel

with the final validation coming in full-scale testing, e.g. flight tests [8].

• Computational Chemistry: is a branch of chemistry that uses principles

of computer science to assist in solving chemical problems. It uses the results

of theoretical chemistry, incorporated into efficient computer programs, to

calculate the structures and properties of molecules and solids [9].

• Multi Agent Systems: are systems composed of multiple interacting in-

telligent agents within an environment. Multi agent systems can be used

to solve problems that are difficult or impossible for an individual agent

or a monolithic system to solve. Intelligence may include some methodic,

functional, procedural or algorithmic search, find and processing approach.

The study of multi-agent systems is concerned with the development and
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analysis of sophisticated Artificial Intelligence problem-solving and control

architectures for both single-agent and multiple-agent systems [10].

• Computational Astrophysics: refers to the methods and computing tools

developed and used in astrophysics research. It is both a specific branch of

theoretical astrophysics and an interdisciplinary field relying on computer

science, mathematics, and wider physics. Computational astrophysics is

most often studied through an applied mathematics or astrophysics program.

Well-established areas of astrophysics employing computational methods in-

clude magnetohydrodynamics, astrophysical radiative transfer, stellar and

galactic dynamics, and astrophysical fluid dynamics [11].

• Computational Physics: is the study and implementation of numerical

algorithms to solve problems in physics for which a quantitative theory al-

ready exists. It is often regarded as a sub-discipline of theoretical physics but

some consider it an intermediate branch between theoretical and experimen-

tal physics. It is a subset of computational science (or scientific computing),

which covers all of science rather than just physics. Theoretical physicists

provide very precise mathematical theory describing how a system will be-

have. Unfortunately, it is often the case that solving the theory’s equations

ab initio in order to produce a useful prediction is not practical. This is espe-

cially true with quantum mechanics, where only a handful of simple models

admit closed-form, analytic solutions. In cases where the equations can only

be solved approximately, computational methods are often used [12].

As we can see these scientific disciplines need an enormous computing time due

to the intensive and complex kind of calculations required to solving the models

on which they are based.

2.2.2 Bioinformatics

Bioinformatics is an interdisciplinary field involving disciplines from data mining,

machine learning to operational research, that develops and improves methods for

storing, retrieving, organizing and analyzing biological data. A major activity in

bioinformatics is to develop softwares to generate useful biological knowledge (e.g.

GROMACS [13]). Bioinformatics has become a fundamental mean for many areas

of biology, mainly the ones characterized by strong mathematical and statistical
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aspects. In experimental molecular biology for instance, bioinformatics techniques

such as image and signal processing, allow extraction of useful results from large

amounts of raw data. In the field of genetics and genomics, it aids in sequencing

and annotating genomes and their observed mutations [14].

Bioinformatics tools also aid in the comparison of genetic and genomic data, task

that otherwise would not be possible, given the enormous amount of data to ana-

lyze. Another notable contribution is the simulation and modeling of DNA, RNA

and proteins in general as well as molecular interactions, using precise mathemat-

ical models, the actual computational resources made available from the micro-

processors industry.

The peculiarity of this research field is to design computationally intensive methods

to enhance the disciplines mentioned before, influenced by the enormous complex-

ity of the problems treated. Some examples of involved methodologies include:

pattern recognition, data mining, machine learning, and visualization. Bioinfor-

matics has brought remarkable contribution in sequence alignment, gene finding,

genome assembly, drug design, drug discovery, protein structure alignment, pro-

tein structure prediction, prediction of gene expression and protein-protein inter-

actions, genome-wide association studies and the modeling of evolution.

Another challenging goal is to develop software and hardware designed follow-

ing patterns inspired by the biological word itself or more appropriate to precise

biological analysis tasks (networks, processors, etc. . . ).

2.2.3 Large Scale Data Visualization and Management

Data visualization is the study of the visual representation of data, meaning in-

formation that has been abstracted in some schematic form, including attributes

or variables for the units of information [15]. Data visualization and management

has become an active area of research, teaching and development, in fact this field

become really interesting with the new HPC technologies. Also, considering the

enormous quantity of data available nowadays, a correct data interpretation based

on solid statistical and mathematical models, has become strategic, from market-

ing campaigns planning to corporate quantitative analysis. Some related areas

are:
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• Data Acquisition : is the sampling of the real world to generate data

that can be manipulated by a computer. Sometimes abbreviated DAQ or

DAS, data acquisition typically involves acquisition of signals and waveforms

and processing the signals to obtain desired information. The components

of data acquisition systems include appropriate sensors that convert any

measurement parameter to an electrical signal, which is acquired by data

acquisition hardware and stored in digital form [16].

• Data Analysis: is the process of studying and summarizing data with the

goal to extract useful information. Data analysis is closely related to data

mining, but data mining tends to focus on larger data sets with less emphasis

on making inference, and often uses data that was originally collected for

a different purpose. In statistical applications, is frequent to divide data

analysis into descriptive statistics, exploratory data analysis, and inferential

statistics (or confirmatory data analysis). For example, the exploratory data

analysis focuses on discovering new features in the data, instead confirmatory

data analysis aims to endorsing or confuting existing hypotheses [17].

• Data Mining: is the process of sorting through large amounts of data

and picking out relevant information [18]. It is usually used in business

intelligence finance, but is also being used in sciences to extrapolate useful

information from enormous data sets (e.g. physics large scale experiments).

It has been described as the nontrivial extraction of implicit, previously

unknown, and potentially useful information from data [19] and the science

of extracting useful information from large data sets or databases [20]. In

relation to enterprise resource planning, data mining is the statistical and

logical analysis of large sets of transaction data, looking for patterns that

can aid decision making.

2.2.4 Combinatorial Optimization

Combinatorial Optimization is a field that consists of finding an optimal solution

of a constrained problem [21]. In many problems, complete search or solutions enu-

meration is not possible. CO is focused on dealing with optimization problems, in

which the set of feasible solutions is discrete or can be reduced to discrete, and in

which the goal is to find the best solution. This field is characterized by dealing
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with NP-Hard / NP-Complete problems and, obviously, the optimal or near opti-

mal solution of these kind of problems requires a large amount of computing time

and large scales data structures to manage the, often, combinatorial explosion of

data involved. This field will be treated more deeply in Chapter 3, analyzing and

describing various kinds of combinatorial problems and their formulation. Combi-

natorial Optimization involves some of the research areas early cited. In fact a lot

of topics related to physics, chemistry and engineering need the solution of linear

or non linear constrained problems (e.g. lattice problems in particles physics).

2.3 High Performance Computing Programming

Models

In this paragraph we will give a short introduction and description of the “de facto”

standards used for the implementation of parallel applications. The spectrum

of parallel programming models, indeed, is enormously wide, often bounded to

specific types of hardware and software vendors, the three paradigms described in

the following are the most used and studied for their portability, effectiveness and

generality of model. MPI, OpenMP, CUDA, OpenCL are “de facto” standards

because the large part of parallel infrastructures implements these models and

the most important parallel libraries (for instance BLAS [22]) and softwares (for

instance OpenFOAM [23], Quantum Expresso [24] and many more) are based on

these.

2.3.1 Message Passing (MPI)

Message Passing Interface (MPI), proposed in 1992 by William Gropp and Ewing

Lusk, is a standardized and portable message-passing system designed by a group

of researchers from academia and industry to operate on a wide variety of parallel

computers [25]. The standard defines the syntax and semantics of a core of library

routines useful to a wide range of users writing portable message-passing programs

in Fortran 77, Fortran 90 or the C programming languages. Several well-tested

and efficient implementations of MPI include some that are free and in the public

domain. These fostered the development of a parallel software industry, and there

encouraged development of portable and scalable large-scale parallel applications.
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MPI provides parallel hardware vendors with a clearly defined base set of routines

that can be efficiently implemented. As a result, hardware vendors can build upon

this collection of standard low-level routines to create higher-level methods for

the distributed-memory communication environment supplied with their parallel

machines. MPI provides a simple-to-use portable interface for the basic user,

yet powerful enough to allow programmers to use the high-performance message

passing operations available on advance machines.

After twenty years MPI is still the most used and effective parallel programming

model for clusters. Formally, MPI is defined as a: “message-passing application

programmer interface, together with protocol and semantic specifications for how

its features must behave in any implementation” [26]. MPI is not a “de-iure”

standard but, due to its portability and well defined behavior and interface, is

become the “de facto” standard for distributed memory architectures. MPI is an

API referring from 5 to 7 levels of ISO-OSI Communication Stack. The benefit

in using MPI is its complete portability in every parallel environment. In fact,

every MPI implementation provided by each vendor is optimized for the hardware

where the application runs. Moreover, MPI allows the coexistence of portion

of other programming languages code inside the same application; common is

the hybridization with Open MP in order to exploit easily the shared memory

nodes inside the cluster (multi-core CPUs). MPI itself, in any case, allows the

programmer to manage a shared memory computation node. In the last years is

common also the hybridization with specific language-extensions used to manage

the GPU or many-core devices inside the computation node (CUDA or OpenCL).

2.3.1.1 MPI Execution Model

The MPI interface is meant to provide virtual topology, synchronization, and com-

munication functionalities between a set of processes (that have been mapped to

nodes/servers/computer instances) in a language-independent way, with language-

specific syntax (bindings), plus a few language-specific features. MPI programs

always work with processes, but programmers commonly refer to the processes as

processors. Typically, for maximum performance, each CPU (or core in a multi-

core machine) will be assigned just a single process. This assignment happens at

runtime through the agent that starts the MPI program, normally called mpirun

or mpiexec. MPI library functions include, but are not limited to:
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• point-to-point,

• rendezvous-type,

• send/receive operations,

• choosing between a Cartesian or graph-like logical process topology,

• exchanging data between process pairs (send/receive operations),

• combining partial results of computations (gather and reduce operations),

• synchronizing nodes (barrier operation) as well as obtaining network-related

information such as the number of processes in the computing session,

• current processor identity that a process is mapped to,

• neighboring processes accessible in a logical topology.

More in detail, the MPI’s runtime system creates n processes called tasks and each

of these tasks:

• creates an independent copy of the application in the node where is execut-

ing,

• has local memory,

• can be mapped on a different processor,

• has an univocal index among the tasks created by the user.

Each process is part of a Communicator. An MPI Communicator is an object

connecting groups of processes. Each communicator:

• has a name,

• a cardinality,

• assign to its processes a proper index for the communicator itself,

• arrange the processes in an ordered topology,

• each process is equivalent to the others.
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MPI optimizes the deployment of the communicators understanding also when a

data transfer or a communication is relative only to a specific communicator.

Each MPI application is a single executable, managed by the run-time system

that organizes the communication among the application’s processes. The MPI

primitives are blocking or non-blocking for the application execution, obviously

the non-blocking are recommended when exploitable. The primitives also can

have different modes of communication:

• Standard : automatic synchronization and buffering,

• Buffered : buffering defined by the user,

• Synchronous : strict rendezvous,

• Ready : instant communication without hand-shacking.

Actually, the current version of MPI is the 3.0.

2.3.2 Shared Memory (OpenMP)

Figure 2.1: OpenMP logo.

OpenMP (Open Multiprocessing) is an API that supports multi-platform shared

memory multiprocessing programming in C, C++, and Fortran [27], on most

processor architectures and operating systems, including Solaris, AIX, HP-UX,

GNU/Linux, Mac OS X, and Windows platforms. It consists of a set of com-

piler directives, library routines, and environment variables that influence run-

time behavior . OpenMP is managed by the nonprofit technology consortium

OpenMP Architecture Review Board (or OpenMP ARB), represented by a group

of computer hardware and software vendors: AMD, IBM, Intel, Cray, HP, Fujitsu,

NVIDIA, NEC, Microsoft, Texas Instruments, Oracle Corporation, and more [28].

OpenMP is described by a portable, scalable programming model that provides

users with a minimal and flexible interface for developing parallel applications for

a wide spectrum of machines, from desktop computers to a clusters.
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OpenMP obtained a reasonable success due to some interesting characteristics:

• great emphasis on structured parallel programming,

• its modest learning curve. The compiler bears all the most difficult aspects of

the shared-memory parallel programming (threads synchronization, etc. . . ),

• portability: OpenMP libraries are available natively for the most common

and used programming languages,

• incremental implementation from the serial code by adding only some simple

pre-processor’s directives.

The most important aspect of OpenMP is the constant development and support

from the most important actors of software and hardware industry, making it a

‘de facto’ standard for the shared memory parallel programming.

The OpenMP’s directives allow to programmers to indicate to the compiler which

instructions execute in parallel and how to divide the workload among threads.

These compiler directives are extremely flexible and don’t require to re-write the

code in case of platform or compiler changing, besides if a compiler or a platform

is not enabled for run OpenMP, the serial code remains the same.

2.3.2.1 OpenMP Execution Model

OpenMP supports the Fork-Join programming model [29]. Under this approach,

the program starts as a single thread of execution, just like a sequential program.

The thread that executes this code is referred to as the initial thread. Whenever

an OpenMP parallel construct is encountered by a thread while it is executing the

program, it creates a team of threads (fork), becomes the master of the team, and

collaborates with the other members of the team to execute the code dynamically

enclosed by the construct. At the end of the construct, only the original thread,

or master of the team, continues; all others terminate (join). Each portion of code

enclosed by a parallel construct is called a parallel region. A thread is a run-time

entity capable to execute independently an instructions stream [30].

More in details, once the operative system executes an OpenMP application:
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• a process is created for the program,

• are instantiated the necessary system resources: memory pages and registers.

If more threads are spawned, they will share the resources created by the opera-

tive system also the same memory addresses space. Each thread needs only few

resources:

• a program counter,

• private memory locations for its specific data (registers and execution stack).

More threads can be executed by the same processor or core through context

switching procedures. More threads in a multi-core processor can run in a parallel

fashion, properly orchestrated. OpenMP makes transparent a considerable number

of interactions among the thread to the programmer, providing a more friendly

development environment.

Figure 2.2: Fork-Join Execution Model.
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The Fork/Join Execution Model implemented by OpenMP can be described as

follows and depicted in figure 2.2:

• the application starts in a serial mode, with only one thread, the initial

thread,

• once reached the code sections where the OpenMP directories are located, a

team of threads is spawned (Fork),

• the initial thread becomes the master thread and coordinates and cooperate

with the other threads in the parallel section,

• at the end of the OpenMP directives, the master thread continues the exe-

cution and the other are erased (Join).

In parallel regions, the developer can orchestrate at an higher abstraction level

the threads interaction, leaving to the compiler the more low-level implementation

details.

The OpenMP model implements, inside the single multi-core/multi-threaded elab-

oration unit, the same characteristics described for MPI. One of the most used

and effective techniques to develop parallel applications on massively parallel ar-

chitectures is to mix, or hybridizing, the MPI code, exploiting the inter-node

communications and workload, with the intra-node or intra-core communications

and work-sharing, implemented with OpenMP. This approach guarantees a major

scalability of the application. The current release of OpenMP is the 3.0.

2.3.3 GPGPU Computing (CUDA, OpenCL)

Since 2004, when Intel decided to cancel the development of its last single core

processor in order to concentrate its efforts on multi-core architectures, we have

observed a radical change in the design of new generations of CPUs. The focus,

indeed, shifted from the increase of the processor’s frequency to the implementa-

tion of parallel architectures. Following this trend, the market got populated by

relatively affordable devices with great, natively parallel, computational resources.

General-purpose computing on graphics processing units (General-purpose graph-

ics processing unit, GPGPU) is the exploitation of graphics processing unit (GPU),
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which typically handles computation only for computer graphics, to perform com-

putation commonly handled by the CPU. Moreover, the use of multiple GPUs in

the same computer or computation node further parallelizes the already parallel

nature of these devices.

OpenCL is the actually the most used open-source GPU computing language.

The proprietary counterpart framework is NVIDIA’s CUDA. More in general, this

approach is generally called many-core computation, that differs from the ordinary

CPU by the fact that a GPU is composed by hundreds of simple computational

units, otherwise an ordinary CPU has less but more sophisticated cores. This

different prospective in the architecture’s design make the GPU the silver bullet

for high dense computation that involves thousands and thousands of small entities

and a fine grain granularity of computation.

2.3.3.1 NVIDIA CUDA

Figure 2.3: CUDA logo.

In 2007, NVIDIA introduced CUDA (Compute Unified Device Architecture) [31],

a parallel, general purpose programming model designed to exploit the great com-

putational resources available on a GPU. CUDA is implemented as an extension

of the C/C++ or Fortran programming languages. NVIDIA GPU s follow the

SIMT (Single Instruction Multiple Threads) execution model, in which the same

instruction is executed concurrently on multiple data by different threads.

CUDA programming implements an higher abstraction model than a straight

transposition of the hardware architecture of the GPU. The model works at top

level on a kernel, which is the portion of code executed asynchronously on the

GPU, the rest of the user code being directly executed on the CPU. The kernel is

executed in parallel on a user-defined number of threads. The threads are grouped

into blocks, which are equal cardinality subsets of threads. The blocks are in turns

logically arranged into a grid, which is a 1-, 2- or 3-dimensional array of blocks

(see Figure 2.4a).
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(a) CUDA Exe-
cution Model

(b) CUDA Memory
Model

Figure 2.4: CUDA execution and memory models.

Every block is logically executed on a different SM (i.e., Stream Processor or

Cluster Processor) of the GPU, which consists of a set of simple arithmetic cores

called CUDA Cores (Fermi architecture counts 32 Cuda Cores for SM, Kepler 192

and call it SMX and Maxwell 128, calling the processor SMM).

Every block can accept up to 1024 threads [31], even though it will actually si-

multaneously execute sets of only 32 threads at a time, called Warps.

In Figure 2.4a we show in detail this model.

There is a memory hierarchy on these devices, aimed to minimize the communica-

tions between the host memory (named Global Memory in this context) and the

device one, via the PCI-Express bus. In fact, besides the core registries, the GPU

has an on-board, low-latency memory module accessible to all threads of each

single block. In table 2.1 we summarize the features of CUDA’s memory archi-

tecture. The access to Global Memory is a significant bottleneck for performance

enhancement in the design of a GPU-accelerated application. The Global Memory

is the only memory type visible by the entire grid, and sometimes it is needed for

the synchronization and data sharing among the blocks, even though its access

latency is very high (400-800 memory cycles). There are many techniques used to

hide this latency, but they are mainly application-specific, thus often impossible

to apply if the peculiar characteristics of the considered algorithm do not allow

them. It is therefore crucial to properly manage the access to global memory. The

effectiveness of this management is measured by the achieved memory bandwidth,
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which quantifies the amount of relevant data which the application can get from

the global memory per second.

Table 2.1: CUDA Memory Hierarchy.

Memory Type Scope Lifetime Access Location Cached

Global Grid+host Application R-W Off-chip No
Shared Block Kernel R-W On-chip N/A
Local Thread Thread R-W Off-chip No
Register Thread Thread R-W On-chip N/A
Constant Grid+host Application Read Only Off-chip Yes
Texture Grid+host Application Read Only Off-chip Yes

2.3.3.2 OpenCL

Figure 2.5: OpenCL logo.

The Open Computing Language (OpenCL) [32] is a heterogeneous programming

framework created and sponsored by the nonprofit technology consortium Khronos

Group and adopted by some of the most important technology actors like Intel,

AMD, NVIDIA, ARM, Apple. OpenCL is a framework for developing applications

that execute across a broad spectrum of device types made by different vendors. It

supports a wide range of levels of parallelism and efficiently maps to homogeneous

or heterogeneous, single or multiple-device systems consisting of CPUs, GPUs, and

other types of device (e.g. FPGA, APU. . . ). The OpenCL definition offers both

a device-side language (based on C99) and a host management layer composed by

ad-hoc designed API, for the devices in a system.

The programming language used to write computation kernels is based on C99

with some limitations and additions. It omits the use of function pointers, recur-

sion, bit fields, variable-length arrays, and standard C99 header files. The language

is extended to use parallelism with vector types and operations, synchronization

primitives, functions to manipulate work-items/groups. It also implements mem-

ory region qualifiers: global, local, constant, and private. To enhance productivity,

many built-in functions has been added (e.g. trigonometric functions). One of the
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most interesting and useful OpenCL’s peculiarities is the Device Fission that al-

lows to queue instructions to a specific section or set of cores of the processor.

This feature allows to split the device into multiple areas assigned to different

tasks, maximizing its utilization or customizing the application for specific types

of processors. The actual release of OpenCL is the 2.0.





Chapter 3

Combinatorial Optimization

3.1 Definition

In mathematics and computer science, an optimization problem is the problem

of finding one best among all feasible solutions. Optimization problems can be

divided into two categories, depending on whether the variables are continuous or

discrete. An optimization problem with discrete variables is known as a combina-

torial optimization problem [33]. In a combinatorial optimization problem, we are

looking for an object such as an integer, permutation or graph from a finite (or

possibly countable infinite) set. As anticipated in the Chapter 1, in this chapter

we will explain more in detail the Combinatorial Optimization field. In general,

we can describe an optimization problem as:

z = min f(x)

s.t. gi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

(3.1)

where:

• f(x) : RN → R, is the objective function to be minimized(maximized) over

the variable x,

• gi(x) ≤ 0 are the inequality constrains,

• hi(x) = 0 are the equality constrains.

23
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In the next sections we will describe some common problems and some of the most

used and known resolution methods.

3.2 Linear Problems (LP)

A Linear Problem (LP), can be expressed in this way (canonical form):

z = min cx

s.t. Ax ≤ b

x ≥ 0

(3.2)

Where:

• A is the matrix of coefficients that describe the convex set,

• c,b are the vector of costs and known coefficients,

• x is the linear solution.

The problem is characterized by being constrained only by linear inequalities.

Another way to describe the problem is:

z = min
n

∑

j=1

cjxj

s.t.
n

∑

j=1

aijxj ≤ bi, i = 1, . . . , n

xj ≥ 0, j = 1, . . . , n

(3.3)

Where:

• aij are the elements of A,

• bi and cj are the elements of b and c respectively,

• xj are the elements of the linear solution x



Chapter 3. Combinatorial Optimization 25

3.3 Integer Linear Problems (ILP)

z = min cx

s.t. Ax ≤ b

x ≥ 0

x int

(3.4)

This kind of problems are characterized by another constraint imposing that the

solution x must be composed only by integer numbers. Two sub-classes of the ILP

are:

• MILP: where only some xj variables are integer,

• Zero-One Problems: where xj ∈ {0, 1}.

3.4 Nonlinear Problems (NPL)

They are distinguished by the presence of non linear constrains inside the system.

A simple example can be:

z = min x1 + x2

s.t. x21 + x22 ≥ 1

x21 + x22 ≤ 2

x1 ≥ 0

x2 ≥ 0

(3.5)

Generally, a non-linear problem can be describe in this way:

z = min f(x)

s.t. gi(x) ≤ 0 i ∈ I = 1, . . . ,m

hj(x) = 0 j ∈ J = 1, . . . , p

(3.6)

where:
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• f(x) : RN → R, is the objective function to be minimized(maximized) over

the variable x,

• x ∈ R
N , that makes the model non-linear,

• gi(x) ≤ 0 are the inequality constrains,

• hi(x) = 0 are the equality constrains.

3.5 Constraints Satisfaction Problems (CSP)

Constraint Satisfaction arose mainly from Artificial Intelligence. A Constraint

satisfaction problem (CSP) is a problem defined as a set of objects that must

satisfy a number of constraints or relations among the problem’s decision variables

[34]. Constraint programming is defined “programming” in a double meaning: not

only “mathematical programming”, in the sense of declaration of constraints and

decision variables, but also in the sense of “computer programming”, in the sense

of programming a search strategy. The methods used to solve this kind of problems

are various: Branch and Bound algorithms, Backtracking, Local Search, typically

all embedded in a properly designed solver.

Formally, a constraint satisfaction problem is defined as a triple 〈X,D,C〉, where

X is a set of variables, D is a domain of values, and C is a set of constraints.

Every constraint is in turn a pair 〈t, R〉 (usually represented as a matrix), where

t is an n-tuple of variables and R is an n-ary relation on D . An evaluation of the

variables is a function from the set of variables to the domain of values, v : X → D.

An evaluation v satisfies a constraint 〈(x1, . . . , xn), R〉 if (v(x1), . . . , v(xn)) ∈ R.

A solution is an evaluation that satisfies all constraints [34].

Contraint Programming has been used to solve combinatorial problems like:

• Eight queens puzzle,

• Map coloring problem,

• Sudoku and many other logic puzzles,

• DNA sequencing,

• Scheduling.
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Often CP deal with problems really hard to solve using canonical OR or CO

techniques.

3.6 Solution and Approximation Methodologies

3.6.1 Simplex Algorithm

Following some notable theoretical results of linear algebra, it can be shown that

for a linear program, if the objective function has a minimum value in the feasible

region then it has this value on (at least) one of the extreme points of the convex

set described by the inequalities constraining the problem [35]. It’s has been also

proven that there is a finite number of extreme points in the convex set, but the

number of extreme points is extremely large also for small linear programs, making

the enumeration of these points inapplicable. It can also be shown that exists

an edge that connects an extreme point to another where the objective function

decreases, if the starting point isn’t a minimum. If the edge is finite, it brings to

another extreme point where the objective function has a smaller value, otherwise

the objective function is unbounded and the linear program has no solution.

The simplex algorithm proposed by Danzig [36] exploits these results and by walk-

ing along edges of the polytope to extreme points with lower and lower objective

values, until the minimum value is reached or an unbounded edge is visited, con-

cluding that the problem has no solution. The great contribution given by this al-

gorithm is that it always terminates because the number of vertices in the polytope

is finite; moreover, since we jump between vertices always in the same direction

(that of the objective function), we hope that the number of vertices visited will

be small. The solution of a linear program is accomplished in two steps. In the

first step, we need to find an extreme point for starting. The possible results of

the first step are either a basic feasible solution is found or that the feasible region

is empty. In the latter case the linear program is called infeasible. In the second

step, the simplex algorithm is applied using the basic feasible solution found as

a starting point. The possible results from the second step are either an optimal

feasible solution to the linear program or an infinite edge on which the objective

function is unbounded.
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Due to the wide spectrum of applications of this algorithm or its variations, com-

mercial and free softwares implementing this method has been proposed. The

most used and effective is the IBM ILOG CPLEX solver [37]. It also imple-

ments methods for solving MIP problems, Quadratic Problems and Quadratically

Constrained Problems. Its free and open source counterpart is the CoinOR, Com-

putational Infrastructure for Operative Research [38] that is a project developed

and maintained by the operative research community, aimed to provide a free

environment for developing and testing OR algorithms.

3.6.2 Lagrangean Relaxation

Lagrangean relaxation proposed by Polyak [39] and used for the first time by

Held et al. [40] and Held and Karp [41, 42] and is a relaxation method which

approximates a difficult optimization problem by a ‘simpler’ one. Solving the

relaxed problem can give an approximate solution to the original one.

The method penalizes violations of inequality constraints using a Lagrangean mul-

tiplier, which imposes a cost on constraints violations in the objective function.

In practice, this relaxed problem can often be solved more easily than the origi-

nal one by using polynomial algorithms like the Subgradient [43], providing useful

information for its solution. The problem of maximizing the Lagrangean func-

tion of the dual variables is the Lagrangean dual problem (if we are searching for

the function’s minimum). Under certain conditions regarding function’s convexity

and constraints, we can state that the solution of primal and dual Lagrangean

problems are the same, avoiding the Duality Gap.

Taking as example a linear problem:

z = min cx

s.t. A1x ≤ b1

A2x ≤ b2

x ≥ 0

(3.7)

where the constraints in A2 are considered ‘difficult’. We can relax the problem

adding a penalty λ and bringing the constraints in the objective function:
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z =min cx+ λ(b2 −A2x)

s.t. A1x ≤ b1

x ≥ 0

(3.8)

This is a relaxed problem different from the initial one, but can be used like a

bound to the optimal value inside other solution techniques.

3.6.3 Column Generation

One of the most difficult aspects related to many linear programs is that the num-

ber of all decision variables is too large to be consider explicitly. Since most of the

variables will be non-basic and assuming a value of zero in the optimal solution,

only a subset of variables need to be considered when solving the problem. Column

generation [44, 45] exploits this idea: it generates only the variables which have

the potential to improve the objective function, finding variables with negative re-

duced cost (assuming without loss of generality that the problem is a minimization

problem).

The original problem is split into two problems: the master problem and the

subproblem. The master problem is composed only by a subset of variables selected

from the original problem (core problem). The subproblem is a new problem

created to identify a new variable (pricing problem). The objective function of

the subproblem is the reduced cost of the new variable with respect to the current

dual variables. The process, iteratively, behaves as follows:

• The master problem is solved taking in consideration only the selected vari-

ables, then we are able to obtain dual prices for each of the constraints in the

master problem. This information is then utilized in the objective function

of the subproblem.

• The subproblem is solved and if the objective value of the subproblem is

negative, a variable with negative reduced cost has been identified. This

variable is then added to the master problem, and the master problem is

solved again. Solving the master problem with the new variable, will generate

a new set of dual values, and the process is repeated until no negative reduced

cost variables are identified. On the other hand, if the subproblem returns a
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solution with non-negative reduced cost, we can conclude that the solution

to the master problem is optimal.

In many cases, this approach makes tractable large linear or integer programs that

had been previously considered intractable. An example of a problem where this

technique is effective is the cutting stock problem where the number of all possible

feasible cuts is intractable. Additionally, column generation has been applied to

many problems such as crew scheduling, vehicle routing, etc . . . .

3.6.4 Dynamic Programming

Dynamic programming (DP) is a technique used for solving complex problems

by dividing them into simpler subproblems. It is applicable to problems exhibit-

ing the properties of overlapping subproblems and optimal substructure (e.g. the

Shortest Path Problem). When applicable, the method takes far less time than

naive methods. The basic idea behind dynamic programming is simple: in general,

to solve a given problem, we need to solve different parts of the problem (subprob-

lems), then we combine the solutions provided by the subproblems to compute

the global one. Often, many of these subproblems are identical. The dynamic

programming approach seeks to solve each subproblem only once, trying to reduce

the computations required. Once a subproblem has been solved, its solution is

stored.

This kind of algorithms works iteratively: once, during a computation step, a so-

lution computed before is needed, it is simply retrieved from the ones stored. This

approach is especially useful when the number of repeating subproblems grows

exponentially as a function of the size of the input. The Dynamic Programming

method is based on the theoretical infrastructure based on R. Bellman’s principle

of optimality [46]: “An optimal policy has the property that whatever the initial

state and initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision”. More generally,

all DP recursions (or recurrences) are based on the Bellman Equation describing

the transitions from a state to another:

V (x) = maxa∈Γ(x) {F (x, a) + βV (T (x, a))} (3.9)
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This approach is also used for solving optimization problems or for computing

valid bounds (e.g. VRP or Cutting Stock Problem). The main disadvantage of

this class of algorithms is the extensive use of memory: the states space created

by the recursion is often too big to manage. For some class of problems, like

the Knapsack 0-1, the dynamic programming is a very fast and simple solution

method, but only for instances with limited dimensions.

3.6.5 Branch and Bound, Branch and Cut Techniques

A branch-and-bound (BB) algorithm [47] consists of a systematic enumeration of

solutions, where large subsets of fruitless candidates are discarded, typically using

bounds to the optimal solution. The search is performed as a tree search or similar

approaches. The key idea of the BB algorithm is: if a lower bound for some node

is greater than an upper bound for some other node, then may be safely discarded

from the search (pruning). Any node whose lower bound is greater than the best

lower bound achieved during the search, can be discarded. The branching phase

is the generation of other (improved) solutions from a node, then, new bounds are

computed on these new solutions (bounding). The search stops when the solution’s

set is reduced to a single element, or when the upper bound matches the lower

bound. Either way, the found value will be the minimum (or the maximum) of

the function.





Chapter 4

Rectangular Knapsack, 2D

Unconstrained Guillotine Cuts

In this chapter we investigate the application of GPU computing to the two-

dimensional guillotine cutting problem, using a dynamic programming approach.

We show a possible implementation and we discuss a number of technical issues.

Computational results on test instances available in the literature and on new

larger instances show the effectiveness of the dynamic programming approach

based on GPU computing for this problem.

4.1 Introduction

The Two-Dimensional Guillotine Cutting Problem (2D-GCP) consists in cutting

a rectangular surface, called stock rectangle or master surface , into a number of

smaller rectangular pieces, each with a given size and value, using guillotine cuts.

A guillotine cut on a rectangle consists in a cut from one edge of the rectangle to

the opposite edge which is parallel to the two remaining edges. A feasible cutting

pattern must be obtained by applying a sequence of guillotine cuts to the original

master surface or to the rectangles obtained in the previous cuts.

The number of pieces of each size and value to be cut can be unconstrained or

constrained within a given minimum and maximum value. The objective is to

maximize the total value of the pieces cut. The related problem of minimizing

33
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the amount of waste produced can be trivially converted into this maximization

problem by taking the value of a piece to be proportional to its area.

A special case of the 2D-GCP is the staged guillotine cutting, where at each stage

we associate a cut direction, i.e., the cuts alternate at each stage between being

parallel to the x-axis and being parallel to the y-axis. In many practical applica-

tions the number of stages is restricted and we say that the guillotine cutting is

k-staged. Often, the number of stages is only two or three (i.e., two- or three-staged

guillotine cutting).

The 2D-GCP can be found in several industrial settings. For example, glass plates

are cut into smaller pieces to produce windows or wood sheets are cut to produce

furniture, and so on.

According to the classification of [48] the 2D-GCP corresponds to the Two-Dimensional

Rectangular Single Large Object Packing Problem.

The 2D-GCP is a well known problem, it was considered for the first time by

Gilmore and Gomory ([49, 50]) who discussed possible mathematical formulations

and proposed dynamic programming algorithms to solve the problem for the two-

and multi-stage versions.

In [51], Herz proposed a recursive tree-search procedure where the search space

is reduced by means of a preliminary discretization using the so-called canonical

dissections. Moreover, Herz pointed out an error in an algorithm proposed by [50].

Christofides and Whitlock ([52]) considered the constrained version of the 2D-GCP

and described a tree-search algorithm, where a valid upper bound is computed by

a dynamic programming procedure applied to the unconstrained version of the

2D-GCP. Christofides and Whitlock also used the canonical dissections, but they

used the term normal patterns for them.

Beasley [53] proposed heuristic and exact algorithms based on dynamic program-

ming to solve the unconstrained version of the 2D-GCP. He considered both the

staged version and the general non-staged version of the problem and used the

normal patterns to reduce the search space.

Focusing our attention on the approaches for the 2D-GCP based on dynamic

programming, recently, Cintra et al. [54] proposed an improved implementation
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of the algorithm proposed by Beasley [53] and Russo et al. [55] proposed an

improved version of the algorithm of Gilmore and Gomory ([50]).

GPU Computing used for optimization has a recent and yet sparse literature.

Due to its structure, it seems to be fit to be combined with dynamic programming

procedures. In fact Kats et al. [56] and Lund et al. [57] proved the effectiveness of

this new paradigm of massively parallel processors on the very well known All-Pairs

Shortest Path Problem (APSP) solved with the Floyd-Warshall algorithm. Boyer

et al. [58] proved that GPU computing is effective also in the resolution of the

Knapsack Problem (KP) using the well-known dynamic programming algorithm

proposed by Bellman [46].

This chapter presents one of the first contributions applying GPU computing to

state of the art research algorithms. We consider the unconstrained and non-

staged version of the 2D-GCP and we focus on the implementation of a dynamic

programming algorithm using a GPU computing approach to gauge the effective-

ness of this new paradigm on optimization problems. We have chosen the dynamic

programming algorithm proposed by Cintra [54] because is quite clean and it well

suited for our purpose. The other best performing approach, namely the algorithm

proposed by Russo et al. [55], is surely interesting and effective, but it is quite

complex and it may divert the attention of the reader on aspects that are beyond

the scope of this paper, which is the implementation of a dynamic programming

algorithm using the GPU computing.

We have organized this chapter as follows. In Section 4.2 we describe the problem

and we introduce the dynamic programming algorithm used. In Section 4.3 we

present the GPU porting of the dynamic programming algorithm for th 2D-GCP.

Computational results are reported and discussed in Section 4.4. Finally, in Section

4.5 we draw some conclusions and we give some ideas for future developments.

4.2 The 2D-GCP: notation, definitions and al-

gorithms

A large rectangular master surface M = (W,H) of width W and height H must

be cut into a number of smaller rectangular pieces chosen from n types of pieces

available. Let P = {1, . . . , n} be the index set of piece types. Each piece of type
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i ∈ P has dimensions (wi, hi) and value vi. The orientation of the pieces is fixed

(i.e., no rotations are allowed). The objective is to construct a guillotine cutting

pattern of M that maximizes the total value of pieces cut, using the given piece

types.

The master surface M is located in the positive quadrant of the Cartesian coor-

dinate system with its origin (bottom left-hand corner) placed in position (0, 0)

and with its bottom and left-hand edges parallel to the x-axis and the y-axis,

respectively. The position of a piece within M is defined by the coordinates of its

bottom left-hand corner, referred to as the origin of the piece.

4.2.1 Principle of Normal Patterns

The origin of a piece of type i ∈ P can be located at every integer point (x, y) of the

master surface, such that 0 ≤ x ≤ W −wi and 0 ≤ y ≤ H − hi. However, this set

of points (x, y) can be reduced by applying the discretization principle proposed

by Hertz [51], who - as mentioned - speaks of canonical dissections, and used by

Christofides [52], who introduced for the first time the term normal patterns. The

principle of normal pattern has been thereafter used by Beasley [53] and many

other authors.

The principle of normal patterns is based on the observation that, in a given

feasible cutting pattern, the position where any piece is cut can be moved to the

left and/or downward as much as possible until its left-hand edge and its bottom

edge are both adjacent to other cut pieces or to the edges of the master surface.

Let X and Y denote the subsets of all x-positions and y-positions, respectively,

where a piece can be positioned applying the principle of normal patterns. These

sets can be computed as follows:

X =
{

x =
∑

k∈P wkξk : 0 ≤ x ≤ W, ξk ≥ 0 integer, k ∈ P
}

(4.1)

and

Y =
{

y =
∑

k∈P hkξk : 0 ≤ y ≤ H, ξk ≥ 0 integer, k ∈ P
}

(4.2)

The x-positions contained inX are sorted so that given xi, xj ∈ X, we have xi < xj

for each 1 ≤ i < j ≤ |X|. The y-positions contained in Y are also similarly sorted.
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A simple dynamic programming recursion for computing X and Y is described

both by Christofides [52] and by Cintra [54].

4.2.2 A Dynamic Programming algorithm for the 2D-GCP

The 2D-GCP considered in this chapter can be solved using the following dynamic

programming algorithm, originally proposed by Cinra et al. [54], and based on

the recurrence formula proposed by Beasley [53].

Let V (w, h) be the value of an optimal guillotine pattern of a rectangle of size

(w, h), evaluated by means of the following recurrence formula:

V (w, h) = max















v(w, h)

max{V (w′, h) + V (p(w − w′), h) : w′ ∈ X and 0 < w′ ≤ w
2
}

max{V (w, h′) + V (w, q(h− h′)) : h′ ∈ Y and 0 < h′ ≤ h
2
}















(4.3)

where p(w) = max{x ∈ X : x ≤ w}, q(h) = max{y ∈ Y : y ≤ h} and where

v(w, h) denotes the value of the most valuable piece that can be cut in a rectangle

of size (w, h) (v(w, h) = 0 if no piece can be cut in such rectangle). Since the only

x and y-positions considered are the ones contained in the subsets X and Y , for

the sake of ease, we use the notation V (xi, yj) and V (i, j) interchangeably. The

optimal solution value is V (p(W ), q(H)) = V (|X|, |Y |).

Let cut(i, j) be the position of the optimal cut within a rectangle of size (xi, yj),

xi ∈ X and yj ∈ Y . It is equal to 0 if guillotine cuts are not applied, it is > 0

if a horizontal cut is applied in position cut(i, j), and it is < 0 if a vertical cut is

applied in position −cut(i, j).

A pseudocode for the dynamic programming algorithm for the 2D-GCP proposed

by Cintra et al. [54] is as follows:

Algorithm DP-2D-GCP(W,H,w,h,v)

1. //Compute the sets X and Y using the normal pattern principle

2. //Initialization

3. for i = 1 to |X| do

4. for j = 1 to |Y | do
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5. V (i, j) = max {{vk : k ∈ P,wk ≤ xi and hk ≤ yj} ∪ {0}}

6. cut(i, j) = 0

7. // Recurrence

8. for i = 2 to |X| do

9. for j = 2 to |Y | do

10. for i′ = 1 to max{k : xk ∈ X, xk ≤ xi/2} do

11. i′′ = max{k : xk ∈ X, xk ≤ xi − xi′}

12. if V (i, j) ≤ V (i′, j) + V (i′′, j)

13. then V (i, j) = V (i′, j) + V (i′′, j)

14. cut(i, j) = −i′

15. for j′ = 1 to max{k : yk ∈ Y, yk ≤ yj/2} do

16. j′′ = max{k : yk ∈ Y, yk ≤ yj − yj′}

17. if V (i, j) ≤ V (i, j′) + V (i, j′′)

18. then V (i, j) = V (i, j′) + V (i, j′′)

19. cut(i, j) = j′

The algorithm starts by computing the sets X and Y using the normal pattern

principle. Then, it initializes V (i, j), for every xi ∈ X and yj ∈ Y , by setting

V (i, j) = v(xi, yj). The recurrence tries to improve each value V (i, j) applying to

the rectangle of size (xi, yj) a horizontal or a vertical guillotine cut. If the sum

of the values associated to the resulting two rectangles improves over V (i, j), its

value is updated and the applied cut is saved in cut(i, j).

(a) Not using normal
patterns

(b) Using normal patterns

Figure 4.1: Computation of function V (x, y).
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The usage of the subsets X and Y instead of the full sets of the available positions

can heavily reduce the computational complexity. In Figure 4.1 we show the

difference between the computation of function V (x, y) not using and using the

normal pattern principle. Normal patterns are shown by ”+” icons adjacent to the

corresponding rows and columns. The figure depicts how the computation of the

V (w, h) values is made based on all gray cells, each representing a partial solution.

It is evident how the number of partial solutions needed for the computation is

much lower using normal patterns than otherwise.

4.3 The GPU porting of the dynamic program-

ming algorithm

The dynamic programming algorithm for the 2D-GCP proposed by Cintra et al.

[54] and described in Section 4.2.2 is natively suitable for an implementation using

GPU computing, due to its matrix-like structure.

In this section we show how to exploit the inherent parallelism of this algorithm,

we describe the parallelization process, the porting to a GPU environment and its

possible implementation using a CUDA model.

4.3.1 Exploiting the inherent parallelism

The objective of the algorithm is to compute the different V (i, j) values. In order to

do this, we need all the intermediate solutions evaluated in the previous iterations

of the dynamic recursion (see Figures 4.1a and 4.1b), as described in Section 4.2.2.

This process can be effectively decomposed into independent tasks, as shown in

the following.

Each index d, corresponding to a stage of the dynamic recursion and such that

1 ≤ d ≤ |X|+|Y |−1, identifies implicitely a corresponding anti-diagonal on matrix

V . The anti-diagonal is composed by the set of cells Ad = {(k, d−k+1) : 1 ≤ k ≤

|X|, 1 ≤ d− k+ 1 ≤ |Y |, k = 1, . . . , d}. At each stage d = 1, . . . , |X|+ |Y | − 1, we

can concurrently compute the values V (i, j) belonging to the corresponding anti-

diagonal Ad (i.e., (i, j) ∈ Ad) (see Figures 4.2a and 4.2b), and to evaluate each

V (i, j), we can perform a parallel max operation over the solution values of the
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(a) Without dis-
cretization

(b) With discretization

Figure 4.2: Parallel tasks executed exploiting the decomposition based on
anti-diagonals.

composing subproblems. Notice that other approaches based on decomposing the

problem by columns or rows do not allow such an effective concurrent evaluation

of the V (i, j) values.

4.3.2 Recurrence Parallelization on GPU

The parallel implementation of the recursion has been designed to fit the CUDA

programming model. As described in 4.3.1, we can exploit two different granu-

larities of parallelism, one for evaluating the V (i, j) values belonging to the anti-

diagonal Ad, and one for the max operation required for finding the cut that

maximizes the V (i, j) value. The mapping on CUDA becomes then straightfor-

ward:

1. inter-grid parallelism among blocks to concurrently evaluate all cells of Ad.

2. inter-block parallelism among threads to compute the reduction (max oper-

ation) for each V (i, j).

At each recursion stage d, 1 ≤ d ≤ |X| + |Y | − 1, each element (i, j) of the

anti-diagonal Ad is assigned to a different GPU block in order to concurrently

evaluate the corresponding V (i, j) value. Therefore, the maximum number of

blocks required to compute an anti-diagonal is b = min{|X|, |Y |}.
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A block computing cell (i, j) runs threads to evaluate Beasley’s recursive formula

4.3:
V X
ij (i

′) = V (i′, j) + V (i′′(i, i′), j), xi′ ∈ X and 0 < xi′ ≤
xi

2

V Y
ij (j

′) = V (i, j′) + V (i, j′′(j, j′)), yj′ ∈ Y and 0 < yj′ ≤
yj
2

(4.4)

where i′′(i, i′) = max{k : xk ∈ X, xk ≤ xi − xi′} and j′′(j, j′) = max{k : yk ∈

Y, yk ≤ yj − yj′}.

Ideally, the block evaluating the values V X
ij (i

′) and V Y
ij (j

′) has a thread for each

index i′ and j′. The obtained values can be stored in the same shared memory lo-

cation. This step is crucial to maximize the global memory bandwidth because, for

example, the thread evaluating V X
ij (i

′), instead of loading the two values V (i′, j)

and V (i′′(i, i′), j) in the shared memory and performing the plus operation, wast-

ing a large number memory cycles, performs the addition inside one instruction

requiring two global memory accesses, doubling the memory bandwidth for each

kernel call.

As mentioned before, the CUDA programming model allows to spawn a maxi-

mum of β threads per block (the value of β depends by the hardware configura-

tion, e.g., β = 1024 for Fermi and Kepler and β = 512 for older architectures),

therefore each thread can be forced to evaluate more than one value V X
ij (i

′) or

V Y
ij (j

′) at each stage. In particular, a thread of index t ≤ ⌊β/2⌋ evaluates ev-

ery value V X
ij (i

′) where i′%⌊β/2⌋ = t (i.e., the remainder of division of i′ by

⌊β/2⌋). Whereas a thread of index t > ⌊β/2⌋ evaluates every value V Y
ij (j

′) where

⌊β/2⌋ + j′%⌊β/2⌋ = t. For sake of ease, we define Tx = {1, . . . , ntx = ⌊β/2⌋},

Ty = {⌊β/2⌋ + 1, . . . , nty = β}, and the following set of position assigned to each

thread:

PX
ij (t) = {i′ : xi′ ∈ X, 0 < xi′ ≤

xi

2
, i′%⌊β/2⌋ = t}, t ∈ Tx

P Y
ij (t) = {j′ : yj′ ∈ Y, 0 < yj′ ≤

yj
2
, ⌊β/2⌋+ j′%⌊β/2⌋ = t}, t ∈ Ty

(4.5)

While each thread evaluates the values V X
ij (i

′), i′ ∈ PX
ij (t), or V

Y
ij (j

′), j′ ∈ PX
ij (t),

it also performs a max operation among them. The resulting maximum value

obtained is used in the parallel reduction for the max operation among threads,

described in the next section, which uses the values saved in the shared memory.
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Figure 4.3: Reduction Tree.

Figure 4.4: Naive reduction.

4.3.3 Parallel Reduction for the Max Operation

It is possible to exploit an inter-block parallelism among threads to compute the

reduction required by the max operation for each V (i, j). The reduction combines

all the elements in a collection into a single one, using an associative two-input,

one-output operator, which in our case is the max operator.

In general, a reduction is a low intensity arithmetic operation, but it has some

critical aspects to analyze to get an efficient parallel algorithm. It is in fact crucial

to be able to exploit all computational resources available on the the GPU device.

The most effective solution we found to parallelize this max operation is a tree-

based approach. We can represent the max operation as a binary tree, where we

can do the operation in parallel at each level (Figure 4.3). The complexity of this

algorithm becomes O(N/P + logN) where N is the number of elements in every

level, and P the number of processors. In our case N = P and the complexity is

O(logN).
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Figure 4.5: Naive reduction gives rise to bank conflicts (each column of the
shared memory represents a memory bank).

Figure 4.6: Strided access allows a fast reduction.

Figure 4.7: Strided access avoids bank conflicts.

The shared memory is subdivided into small arrays of 32 locations of 32-bit words

each, and its latency is significantly lower (≈ 4 memory cycles) than that of the

global memory. The shared memory is the only means to enable communications

among threads of the same block and, given its bank-like structure, bank conflicts

are the most important aspect to avoid for enhancing the kernel performance. A

bank conflict occurs when more threads of the same warp access the same memory

bank, thus forcing an access serialization. Avoiding this is an implementation

constraint which imposes a specific management of threads communication.

A naive algorithm, as shown in Figures 4.4 and 4.5, implemented with interleaved

addressing creates a large number of conflicts, serializing most of the operations

in the shared memory. On the contrary, a strided access (see Figures 4.6 and 4.7)
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resolves this problem leading to a conflict-free access to the shared memory, to

a maximization of the device memory bandwidth and finally to a good parallel

execution of the threads [59]. In our kernel, once the loading stage described

in section 4.3.2 is finished, we can perform this reduction step, retrieving the

maximization value for V (i, j).

4.3.4 Matrix Update

The normal pattern principle allows to reduce the set of values V (i, j) to be eval-

uated at each stage, this results in an improvement of the performance of the cor-

responding serial algorithm, presented in section 4.2.2. Unfortunately, the same

approach is not suitable for the GPU, because the resulting algorithm would induce

sparse, not linear, and serialized access to the global memory.

New NVIDIA architectures, such as Fermi or Kepler, partially resolve the problem

of coalesced access to global memory, that is the quest for loading data which

resides in adjacent positions even in the global memory. In any case, a more

efficient memory access can be obtained by transforming the double i, j indexing

of the V values into a one-index access, which maximizes the bandwidth on the

PCI-Express bus, structuring the data in a way more suitable for a coalesced

access.

A plain and sequential access to the partial solution values required for evaluating

each V (i, j) can be obtained by filling the discretization induced by the normal

patterns (see Figure 4.1a), as described below. Moreover, in order to maximize

coalescence, we stored the V matrix twice, in two mono-dimensional arrays: one in

row-major order Vrows and one in a column-major order Vcols. When the algorithm

evaluates the V X
ij (i

′) it uses matrix Vcols, whereas when it evaluates the values

V Y
ij (j

′) it uses matrix Vrows (see section 4.3.2).

Using these structures, we can take advantage of discretization when we evaluate

the V (i, j) only for the normal pattern positions, and we can use a complete

matrix representation by means of the arrays Vrows and Vcols defined for every

integer positions 0 ≤ x ≤ W and 0 ≤ y ≤ H, when we compute the maxima.

Given two adjacent normal pattern positions xi, xi+1 ∈ X and yj, yj+1 ∈ Y , we

have that V (xi, yj) = V (x, y) for every xi ≤ x < xi+1 and yj ≤ y < yj+1.

Therefore, when the value V (xi, yj) is evaluated, it can be directly copied in every
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(a) Matrix structure (b) Update for the value
V(i,j)

Figure 4.8: Matrix update in the GPU computing approach proposed

integer positions xi ≤ x < xi+1 and yj ≤ y < yj+1 (see Figures 4.8a and 4.8b), this

permits to fill the gaps in the matrix storage and obtain a full linear access when

computing the corresponding maximum.

As mentioned, the value V (xi, yj) is then copied in both linearized matrices Vrows

and Vcols.

4.3.5 GPU Algorithm

In this section we present a pseudo-code where the structure of GPU algorithm is

fully detailed.

The core of the algorithm is the dynamic stage recursion, which is implemented

in a main loop, working at each iteration on an anti-diagonal d. Every element

V (i, j), (i, j) ∈ Ad, is assigned to a different block, which concurrently evaluates it

by expression 4.3. Each block splits the computation among threads. Half of them

consider the values V X
ij (i

′) and the remaining ones consider the values V Y
ij (j

′) (see

section 4.3.2). At the end, each block makes the reduction corresponding to the

max operation of expression 4.3 and updates the corresponding entries of both

linearized matrices Vrows and Vcols. The cut positions are saved in the linearized

matrix Vcut.
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Algorithm GPU DP-2D-GCP(H,W,w,h,v)

1. //Compute the sets X and Y using the normal pattern principle

2. //Initialization

3. for i = 1 to |X| do

4. for j = 1 . . . , |Y | do

5. V (i, j) = max {{vk : k ∈ P,wk ≤ xi and hk ≤ yj} ∪ {0}}

6. // Initialize the linearized matrices Vcols and Vrows

7. for x = xi to xi+1 − 1 do

8. for y = yj to yj+1 − 1 do

9. Vrows[yW + x] = V (i, j)

10. Vcols[xH + y] = V (i, j)

11. Vcut[xH + y] = 0

12. // Recurrence

13. for d = 1 to |X|+ |Y | − 1 do

14. for each (i, j) ∈ Ad do

15. // CUDA Kernel: each (i, j) is assigned to a different block

16. // Threads evaluate V X
max = max{V X

ij (i
′) : xi′ ∈ X, 0 < xi′ ≤

xi

2
}

17. for each thread t ∈ Tx do

18. V ′[t] = 0, C ′[t] = nil // Shared Memory Initialization

19. for each i′ ∈ PX
ij (t) do

20. if V ′[t] < Vrows[yjW + xi′ ] + Vrows[yjW + (xi − xi′)]

21. then V ′[t] = Vrows[yjW + xi′ ] + Vrows[yjW + (xi − xi′)]

22. C ′[t] = −xi′

23. // Reduction: at the end V ′[1] = V X
max

24. for s = ⌊ntx/2⌋ to 1, s = ⌊s/2⌋ do

25. if (t ≤ s) and (V ′[t] < V ′[t+ s])

26. then V ′[t] = V ′[t+ s], C ′[t] = C ′[t+ s]

27. // Threads evaluate V Y
max = max{V Y

ij (j
′) : yj′ ∈ Y, 0 < yj′ ≤

yj
2
}

28. for each thread t ∈ Ty do

29. V ′[t] = 0, C ′[t] = nil // Shared Memory Initialization

30. for each j′ ∈ P Y
ij (t) do

31. if V ′[t] < Vcols[xiH + yj′ ] + Vcols[xiH + (yj − yj′)]

32. then V ′[t] = Vcols[xiH + yj′ ] + Vcols[xiH + (yj − yj′)]

33. C ′[t] = yj′

34. // Reduction: at the end V ′[ntx + 1] = V Y
max

35. for s = ⌊nty/2⌋ to 1, s = ⌊s/2⌋ do
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36. if (t ≤ ntx + s) and (V ′[t] < V ′[t+ s])

37. then V ′[t] = V ′[t+ s], C ′[t] = C ′[t+ s]

38. if V ′[1] < V ′[ntx + 1]

39. then MaxV = V ′[1], MaxC = C ′[1]

40. else MaxV = V ′[ntx + 1], MaxC = Cx[ntx + 1]

41. // Update Vcols and Vrows

42. for x = xi to xi+1 − 1do

43. for y = yj to yj+1 − 1 do

44. Vrows[yW + x] =MaxV

45. Vcols[xH + y] =MaxV

46. Vcut[xH + y] =MaxC

The initialization section at the beginning of the algorithm includes the setup of

the Vrows, Vcols, and Vcut data structures. This is presented in the same loops where

we access the matrices linearized by rows to simplify the presentation, but in the

actual implementation we initialize Vrows by rows and Vcols and Vcut by columns.

In any given iteration d of the recurrence, the concurrent execution of the blocks is

managed by the GPU scheduler and at the end of the iteration a synchronization

is performed (i.e., iteration d + 1 is performed only after every blocks ended at

iteration d).

Notice that the reduction performed by each thread also requires a synchronization

among threads.

4.4 Computational results

This section reports the computational results and, in particular, the speed-up

factors obtained running the serial and the parallel versions of the algorithm.

The code was implemented in C/C++ with CUDA extensions using the NVCC

Compiler by Nvidia for the GPU version and using Microsoft Visual Studio 2010

with full optimization for the serial version.

All tests were run on a Intel i7 920 Bloomfield QuadCore @2.8 GHz with 6 Gi-

gabytes of RAM and two different graphic card: an Nvidia GeForce GTX 570

Fermi with 1 Gigabyte of GDDR5 RAM and 480 CUDA Cores @1.464 GHz and
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an Nvidia Geforce GTX 770 Kepler with 2 Gigabytes of GDDR5 RAM and 1536

CUDA Cores @1.046 GHz.

We tested the algorithm on two different hardware configurations to compare the

scalability of the method proposed on two different generations of GPUs.

4.4.1 Test instances

We tested our algorithm on three different instance sets. The first set is the well-

known gcut set, generated by Beasley [53] and upgraded by Cintra et al. [54].

In order to check the effectiveness and the correctness of the parallel algorithm,

we generated by means of two opposite methodologies the other two sets, named

testcut and randcut. These two sets were generated as follows.

Every instance of the testcut set is composed by three types of items, where the

w and h dimensions are as follows:

• 25% of items with h ∈ [1, H/4[ and w ∈ [1,W/4[.

• 50% of items with h ∈ [H/4, H/2[ and w ∈ [W/4,W/2[.

• 25% of items with h ∈ [H/2, 3H/4[ and w ∈ [W/2, 3W/4[.

H and W are the dimensions of the master bin.

The instances of the randcut set are composed by items retrieved from randomly

generated guillotine cuts on the original master bin. The peculiarity of this set

is that the objective function z is equal to the bin area, W × H, giving us

the possibility to check the correctness of our algorithm on big instances with

known optimal solutions value. These two new sets are available on the website:

www.sitoistanze.com, together with the images of all the instances.

4.4.2 Experiments

The objective of our experiments is the comparison of our implementations of the

sequential and of the GPU versions of the algorithm, described in sections 4.2.2

and 4.3.5, respectively. The GPU version was run with 256 threads per block.
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In Tables 4.1, 4.2, and 4.3 we report the computational results obtained on the

three considered sets of instances. For each instance we indicate its Name, the

size of the master surface H and W , the number of type of items n, the number of

normal pattern positions |Y | and |X|, the optimal solution value zOPT , and the per-

centage waste Waste%. For the algorithms we report the computing times TCPU

of the sequential version and TGPU of the GPU version, and the resulting SpeedUp

defined by the ratio between TGPU and TCPU , i.e., SpeedUp = TCPU/TGPU .

In Table 4.1 we ignored the first eleven instances due to non significant computa-

tional time required; in fact, the times required to solve these instances are below

0.0001 seconds. Analyzing the results, we can highlight the method’s scalability

as a function of the dimension of the instances. The GTX 570’s decreasing perfor-

mances over the 8000x8000 dimensions of the master bin is the effect of the device’s

limited amount of on-board memory. Over that dimensions, we are forced to keep

in the system’s main memory some data structures, increasing the time required

to access these structure and, significantly, slowing down the performances. The

tests on the GTX 770 graphic card avoid this problem, due to the greater amount

of on-board memory available. As we can see, in this case, the speed-up factor is

almost constant.

Figures 4.9 and 4.10 display the original random generated instance randcutc6000

and its solution, respectively. As we can see, the calculated solution is almost the

same, except the cuts’ positions on the bin. Figure 4.11 displays testcut8000 ’s

solution, while Figure 4.12 shows the solution of gcut13.



C
h
ap

ter
4.

2D
-G

C
P

50

Table 4.1: Computational results on gcut instances.

Instances Core i7 920 NVIDIA GTX 570 NVIDIA GTX 770
Name H W n |Y | |X| zOPT Waste% TCPU TGPU SpeedUp TGPU SpeedUp
gcut12 1000 1000 50 155 124 979,986 2.001 0.016 0.011 1.455 X 0.011 1.455 X
gcut13 3000 3000 32 1457 2310 8,997,780 0.025 12.199 0.681 17.913 X 0.574 6.959 X
gcut14 3500 3500 42 2390 2861 12,245,410 0.037 26.754 1.390 19.247 X 1.168 21.251 X
gcut15 3500 3500 52 2422 2933 12,246,032 0.032 27.627 1.440 19.185 X 1.206 22.907 X
gcut16 3500 3500 62 2559 2943 12,248,836 0.010 28.985 1.514 19.145 X 1.267 22,878 X
gcut17 3500 3500 82 2676 2953 12,248,892 0.009 30.015 1.580 18.997 X 1.331 22.555 X
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Table 4.2: Computational results on testcut instances.

Instances Core i7 920 NVIDIA GTX 570 NVIDIA GTX 770
Name H W n |Y | |X| zOPT Waste% TCPU TGPU SpeedUp TGPU SpeedUp
testcut6000 6000 6000 80 4881 5384 35985098 0.041 163.145 6.797 24.003 X 6.314 25.839 X
testcut6500 6500 6500 80 5610 6350 42241403 0.020 230.397 9.442 24.401 X 8.724 26.410 X
testcut7000 7000 7000 80 6242 6757 48997730 0.004 295.356 11.669 25.311 X 10.900 27.097 X
testcut7500 7500 7500 80 4988 6441 56201826 0.085 253.937 10.066 25.227 X 9.795 25.925 X
testcut8000 8000 8000 100 7365 7426 63993589 0.010 437.347 17.004 25.720 X 16.733 26.137 X
testcut8500 8500 8500 80 8413 8040 72249152 0.001 518.404 35.351 14.664 X 16.826 30.744 X
testcut9000 9000 9000 80 7495 8546 80980280 0.024 569.479 37.899 15.026 X 20.868 27.290 X
testcut9500 9500 9500 80 8784 8124 90231106 0.020 673.266 45.342 14.849 X 24.807 27.140 X
testcut10000 10000 10000 80 9365 9426 99998425 0.001 866.644 57.579 15.051 X 32.283 26.845 X
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Table 4.3: Computational results on randcut instances.

Instances Core i7 920 NVIDIA GTX 570 NVIDIA GTX 770
Name H W n |Y | |X| zOPT Waste% TCPU TGPU SpeedUp TGPU SpeedUp
randcut6000a 6000 6000 34 4971 5747 36000000 0.000 180.898 7.275 24.866 X 6.770 26.722 X
randcut6000b 6000 6000 32 5456 5566 36000000 0.000 187.933 7.700 24.407 X 7.103 26.458 X
randcut6000c 6000 6000 36 5630 4844 36000000 0.000 169.182 7.039 24.035 X 6.452 26.223 X
randcut6500a 6500 6500 28 4967 4645 42250000 0.000 161.617 6.572 24.592 X 6.081 26.579 X
randcut6500b 6500 6500 52 6255 6311 42250000 0.000 255.481 10.249 24.927 X 9.385 27.223 X
randcut6500c 6500 6500 40 6187 5783 42250000 0.000 234.749 9.436 24.878 X 8.640 27.169 X
randcut7000a 7000 7000 44 6631 6669 49000000 0.000 306.135 12.083 25.336 X 11.190 27.358 X
randcut7000b 7000 7000 38 5956 6242 49000000 0.000 261.815 10.514 24.902 X 9.814 26.679 X
randcut7000c 7000 7000 32 6793 6494 49000000 0.000 278.242 12.096 23.003 X 11.225 24.788 X
randcut7500a 7500 7500 44 6993 6981 56250000 0.000 364.229 14.384 25.322 X 13.425 27.132 X
randcut7500b 7500 7500 32 6564 6565 56250000 0.000 334.090 12.850 25.999 X 12.258 27.256 X
randcut7500c 7500 7500 32 6651 6507 56250000 0.000 331.501 12.843 25.812 X 12.247 27.069 X
randcut8000a 8000 8000 28 7876 5639 64000000 0.000 363.668 14.174 25.657 X 14.183 25.642 X
randcut8000b 8000 8000 36 7967 6499 64000000 0.000 378.706 16.019 23.641 X 15.863 23.874 X
randcut8000c 8000 8000 34 7465 6935 64000000 0.000 417.253 16.281 25.628 X 16.027 26.035 X
randcut8500a 8500 8500 46 8023 8100 72250000 0.000 527.499 23.914 22.058 X 19.392 27.202 X
randcut8500b 8500 8500 42 8098 7748 72250000 0.000 523.007 22.965 22.774 X 18.768 27.867 X
randcut8500c 8500 8500 36 8208 6967 72250000 0.000 483.054 21.413 22.559 X 17.411 27.744 X
randcut9000a 9000 9000 44 8728 8547 81000000 0.000 613.783 41.284 14.867 X 23.287 26.357 X
randcut9000b 9000 9000 42 8712 9000 81000000 0.000 657.307 43.418 15.139 X 24.206 27.155 X
randcut9000c 9000 9000 36 8558 7075 81000000 0.000 540.588 32.943 16.410 X 19.733 27.395 X
randcut9500a 9500 9500 40 9256 6813 90250000 0.000 623.986 37.462 16.657 X 22.143 28.180 X
randcut9500b 9500 9500 36 8661 9349 90250000 0.000 743.840 49.040 15.168 X 27.395 27.152 X
randcut9500c 9500 9500 36 7931 8533 90250000 0.000 656.044 42.975 15.266 X 24.012 27.322 X
randcut10000a 10000 10000 36 8587 8382 100000000 0.000 723.389 48.010 15.067 X 27.788 26.032 X
randcut10000b 10000 10000 42 9298 9586 100000000 0.000 882.447 60.378 14.615 X 32.539 27.120 X
randcut10000c 10000 10000 38 8601 9618 100000000 0.000 810.420 53.605 15.118 X 31.043 24.906 X
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Figure 4.9: randcut6000c source.

Figure 4.10: randcut6000c solution.

4.5 Considerations and Future Work

In this chapter we presented a parallel algorithm for solving the Unconstrained

Two-Dimensional Guillotine Cutting Problem (2D-GCP) especially designed for

running on a GPGPU platform. We proved the effectiveness of this method achiev-

ing, in the best case, a 30X speed-up factor upon the serial version, exploiting the

native matrix-like structure of the problem and the fine grained computation re-

quired by the dynamic programming algorithm. We also provided two new sets of
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Figure 4.11: testcut8000 solution.

Figure 4.12: gcut13 solution.

test instances for this problem.

Our future aims are to extend the algorithm for solving the staged version of

the problem and, eventually, GPU Computing to enhance other algorithms de-

signed to approach similar packing problems (i.e. Bin Packing, Constrained Two-

Dimensional Guillotine Cutting Problem, etc.).



Chapter 5

Vehicle Routing Problem

In this chapter we investigate the application of GPU computing to some of

the most effective pricing strategies based on Dynamic Programming (q-route,

through-q-route and ng-route relaxations) for Column Generation methods for

the Vehicle Routing Problem. We propose the parallel versions of these algo-

rithms in a massively parallel environment, discussing the implementation choices

and evaluating the speed-up factors on literature test instances with respect to the

serial version.

5.1 Introduction

The Vehicle Routing Problem (VRP) is among the most studied problems in com-

binatorial optimization, and retains unabated interest both because, though simple

to state, it enjoys intriguing mathematical properties and because it can be quickly

specified into problems of primary economic interest. The literature on the core

problem variants and on the possible real-world variations got huge after the sem-

inal paper which introduced it [60], and includes dedicated books [61], [62] and,

more recently, also dedicated working groups of research associations [63].

The core problem can be quickly introduced as finding a least cost set of routes to

service a number of customers from a central depot, given a cost matrix specifying

the cost for going from any customer to any other one and from the depot to each

customer. The problem can then be complicated at will, by adding constraints

suggested by real world applications. A largely included constraint assumes that

55
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the routes are to be traveled by trucks in order to deliver or to collect goods from

customers, thus the total amount of goods loaded on each truck cannot exceed

its capacity, in weight or in volume. This gives rise to the Capacitated VRP

variant (CVRP). Alternatively, each customer can ask either for a delivery or

for a collection of goods, yielding the Pickup and Delivery variant(PDVRP). In

case all deliveries of each route are to be made first, then all collections, we have

the CVRP with backhauls (VRPB). A further quite common constraint considers

feasible time windows for the visits at the customers (TWVRP). Moreover, in

small area settings each truck could go back to the depot to reload (multitrip

VRP, MTVRP), while in bigger areas it is common the use of more depots by the

vehicles of the fleet (multidepot VRP, MDVRP). The vehicles of the fleet can be

all equal or different among themselves (heterogeneous fleet CVRP, HVRP), could

not be requested to return to the depot they started from (open CVRP, OVRP),

could be requested to repeat the same routes with a given periodicity over the

planning horizon (periodic VRP, PVRP), etc.

Furthermore, all listed constraints, and many more coming from operational prac-

tice, can be freely combined to model actual use cases. For example, a recent work

on city logistics operational optimization ([64]) models its problem as a CVRP with

time windows, multi-trip, heterogeneous fleet and pickup and delivery.

Given its theoretical and practical relevance, the VRP witnessed a wealth of diverse

approaches for its solution and still fosters a lively research community studying

either exact or heuristic methods or, more recently, both. A detailed survey is

clearly out of scope for this paper, in the following we will recall just a few con-

tributions.

Heuristic approaches have a seminal work in [65] and went through tailored heuris-

tics, such as [66], then metaheuristics, such as tabu search ([67]), simulated an-

nealing ([68]), ant colony [69], genetic and in general evolutionary algorithms [70],

variable neighborhood search [71] and PSO [72], just to name a few.

Exact approaches are of more direct interest for this paper. Again, different ap-

proaches have been used, ranging from dynamic programming [73] to branch and

bound [74], from branch and cut [75] to column generation [76]. In all cases, a

central feature is the ability to compute tight lower bounds. Again, different ap-

proaches for computing bounds, recently, bounds based on nonelementary paths,
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such as q-routes [74] and most notably ng-routes [77, 78]appear to be particularly

effective for the Capacitated VRP and VRP with Time Windows.

This chapter reports on the results obtained by implementing the q-routes, through-

q-routes and ng-routes relaxations computation on a GPU parallel architecture.

GPU are enjoying increasing interest among the optimization community given the

possibility to significantly speedup tasks at the core of any approach of interest,

thus to ultimately achieve substantial efficiency improvements [79]. Applications

to combinatorial optimization problems have so far been reported for the knapsack

problem [58] and for the Two-Dimensional Guillotine Cutting Problem [80]. This

is the first work porting state of-the-art vehicle routing optimization components

on GPU, specifically proposing a GPU implementation of the ng-relaxation.

The implementation on GPU of an optimization algorithm is a complex task that

involves the study of tailored data structures and corresponding routines. This

chapter reports in detail the choices we made to achieve the most efficient parallel

implementation of the q-routes, through-q-routes and ng-routes routines and sub-

stantiates this with computational results on standard problem benchmarks from

the literature.

5.2 Problem Description and Mathematical For-

mulations

The CVRP, in its basic version, consists in finding the least-cost set of routes

to be travelled by m homogeneous vehicles of identical capacity Q, in order to

service each of n customers, whose index set is V1. All routes start and return

to a common depot, conventionally indexed by 0. Let V = V1 ∪ {0}. Input data

consist of the requests qi, i = 1, . . . , n and of the travelling costs cij, i = 0, . . . , n,

j = 0, . . . , n, between each pair of customers and between each customer and the

depot.

The problem can thus be defined on a complete weighted graph G = V,A,C,

where A = [(i, j)], i, j ∈ V , and C = [cij ], i, j ∈ V is the corresponding possibly

asymmetric cost matrix. In real-world application, G is typically an overlay graph

superimposed on an actual road network, and nodes in V correspond to geocoded
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facilities while arcs in A correspond to least-cost paths, computed according to

the metric to minimize (distance, time, ... ).

The problem can be formulated in different ways, we refer the reader to [61] for a

thorough overview. The following two subsections introduce the formulations and

the notation we use in the rest of the paper.

5.2.1 Two Index Formulation

The two index formulation associates a decision variable xij ∈ {0, 1} to each arc

(i, j) ∈ A, specifying whether or not in the optimal solution there is a vehicle

travelling directly from node i ∈ V to node j ∈ V .

Different variants of this formulation are possible, the most compact ones require

to compute for each subset of nodes S ⊆ V the minimum number of vehicles

needed to service set S, which is denoted by r(S).

The formulation is as follows.

zCV RP = min
∑

i∈V

∑

j∈V

cijxij (5.1)

s.t.
∑

i∈V

xij = 1 j ∈ V1 (5.2)

∑

j∈V

xij = 1 i ∈ V1 (5.3)

∑

j∈V

x0j = m (5.4)

∑

i/∈S

∑

j∈S

xij ≥ r(S) S ⊆ V1, S 6= ∅ (5.5)

xij ∈ {0, 1} i, j ∈ V (5.6)

Constraints 5.2 and 5.3 impose that exactly one vehicle arrives and leaves each

customer, constraint 5.4 specify the number of available vehicles (not all of which

need to be used) and constraints 5.5, the so called capacity−cut constraints impose

both the connectivity of the solution and the vehicle capacity requirements (see

[61]).
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5.2.2 Set Partitioning Formulation

The set partitioning formulation, originally proposed by [81], associates a decision

variable xℓ to each feasible vehicle route, that is, to each route that can be travelled

by a vehicle, leaving the depot, servicing a subset of customers that collectively

do not exceed the vehicle capacity and finally returning to the depot.

Let R be the index set of all feasible routes, let cℓ be the cost of route ℓ1inR, and

let ai,ℓ be a binary coefficient, which is equal to 1 iff node i ∈ V belongs to route

ℓ ∈ (R).

The formulation is as follows.

zSP = min
∑

ℓ∈R

cℓxℓ (5.7)

s.t.
∑

ℓ∈R

aiℓxℓ = 1 i ∈ V1 (5.8)

∑

ℓ∈R

xℓ = m (5.9)

xℓ ∈ {0, 1} ℓ ∈ R (5.10)

Constraints 5.8 ensure that each customer is serviced by exactly one feasible route

and constraint 5.9 impose the fleet cardinality. It is noteworthy that, in case the

cost matrix satisfied the triangle inequality, equalities 5.8 could be turned into

greater or equal than inequalities, thus turning the problem into an extended set

covering problem, which is computationally easier to deal with.

5.3 Dynamic Programming Relaxations for the

Pricing Problem

In 5.1 we have briefly described some techniques to find a solution, heuristic or

exact, to the VRP. Mainly regarding the exact algorithms, is necessary to solve

the pricing problem for selecting the most interesting columns for the Column

Generation (CG) algorithm. The pricing problem is also an NP-Hard problem,
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the Elementary Shortest Path Problem with Resource Constrain (ESPPRC). This

problem is formally defined: let P be the set of paths of G s.t. each path P ∈

P starts from 0, visits a set of vertices VP ⊆ V , delivers qP units of product

and ends at vertex σP ∈ VP without loops. The ESPPRC can be solved with

Dynamic Programming recursions expressed as follows: we define a state-space

graph X = {(X, i) : X ⊆ V, i ∈ V ′} and functions f(X, i), ∀(X, i) ∈ X, where

f(X, i) is the cost of the least-cost path P that visits the set of customers X,

ends at the customer i ∈ X, and such that
∑

j∈X qj ≤ Q. As we can see, the

exact DP algorithm can’t be applied because of the dimension of the state-space

graph X. Christofides et al. [82] proposed the State-Space Relaxation that is a

procedure whereby the state-space associated with DP recurrence is relaxed to

compute valid lower bounds to the original problem. The next three relaxations

that we will introduce in the next sections of this chapter are relaxations for the

ESPPRC problem based on this principle.

In [74], [77], [83], [84], [85] , were proposed effective and reliable relaxations, based

on Dynamic Programming recurrences. These recurrences, as well as all dynamic

programming algorithms, trade space for time, enumerating all the interesting

solutions for the relaxed problem. In these cases the elementary constraint is

relaxed and the aim is to find interesting almost elementary paths that can be the

base for the creation of feasible solution or a good start point for the computation

of valid and tight lower bounds. In the next sections we will describe three of these

methods (q-route, through-q-route and ng-route) and we will analyze the intrinsic

characteristics of each one.

5.3.1 q-Route Relaxation

The q-route relaxation described in Christofides and al. [74] , is aimed to find

routes without loops of two vertices. Defining f(q, i) the cost of the least cost

path P = (0, 11, . . . , ik), ik = i, (not necessarily simple) from the depot 0 to the

customer i with total load q =
∑k

h=1 qij. Such a path is called q-path. A q-

path with the additional edge 0, i is called q-route and has cost f(q, i) + d0i. We

can impose that the path should not contains loops formed by three consecutive

vertices can be described as follows: let π(q, i) be the vertex just prior to i on the

path corresponding to f(q, i). Let φ(q, i) be the cost of the least cost path ending

at vertex i with the constraint that the vertex γ(q, i) preceding i is not equal to



Chapter 5. VRP 61

π(q, i). This recurrence can be formalized as follows: for a given value of q, let

h(j, i) be the cost of the least path from 0 to i with j just prior to i and without

loops. Then:

h(j, i) =







f(q − qi, j) + dji, if π(q − qi, j) 6= i

φ(q − qi, j) + dji, otherwise
(5.11)

Given the function h, function f and φ can be computed for the given q as follows:







f(q, i) = minj 6=i {h(j, i)}

π(q, i) = j∗
(5.12)

where j∗ is the index of j, the predecessor, corresponding to the above minimum;







φ(q, i) = mink 6=π(q,i),k 6=i {h(k, i)}

γ(q, i) = k∗
(5.13)

where k∗ is the value of k corresponding to the above minimum. The initialization

of f, φ, π and γ is f(qi) = φ(q, i) = inf, for q such that q 6= qi and:

for q such that q = qi



















f(q, i) = d0i

π(q, i) = 0

φ(q, i) = ∞

(5.14)

Informally, we can say that the method builds a minimum non-elementary path,

delivering q quantity of goods with a dynamic programming recursion that adds

an edge from j only to the nodes that don’t have j itself as direct predecessor,

finding a path without loops of two nodes.

The algorithm can be described as follows:

Algorithm Q PATHS (N,Q,qi,d)

1. // Data Structures

2. f, φ, π, γ
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3. // Initialization

4. for q = 0 to Q do

5. for i = 1 to N do

6. if qi(i) == q

7. then f(q, i) = d(0, i), π(q, i) = 0

8. φ(q, i) = ∞, γ(q, i) = ∞

9. else f(q, i) = ∞, π(q, i) = −1

10. φ(q, i) = ∞, γ(q, i) = ∞

11. // q-Paths

12. for q = 0 to Q do

13. for i = 1 to N do

14. for j = 1 to N do

15. if π(q − qi(i)) 6= i

16. then h(j, i) = f(q − q(i), j) + d(j, i)

17. else h(j, i) = g(q − q(i), j) + d(j, i)

18. //Minima calculation for each i

19. f(q, i) = minj 6=i {h(j, i)}

20. π(q, i) = j∗

21. φ(q, i) = mink 6=π(q,i),k 6=i {h(k, i)}

22. γ(q, i) = k∗

23. return f, φ, π, γ

Using this method we can find shortest paths in respect of the request of each

node i and the vehicle’s capacity Q, but the routes, also avoiding loops of two

vertices, are not yet elementary (Figure 5.1b). The q-route relaxation can be

computed in pseudo-polynomial time with a complexity of O(n2Q). In figure 5.1a

we can observe graphically the computation of a single f(q, i) value. In the case

of asymmetric VRP, where dij 6= dji, we compute the relaxation once for the d

matrix and once for its transpose dT .

5.3.2 through-q-Route Relaxation

The through-q-route relaxation [74] is an enhancement for the q-route relaxation.

In fact using the f and the g function we can find a better route mixing two paths

retrieved by the q-path relaxation. Formally: Let φ(q, i) be the value of the least

cost route, without loops, starting at the depot, passing through i and finishing
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(a) f(q,i) q-path computation (b) q-path avoiding 2
vertices loop

Figure 5.1: f(q,i) q-path computation and 2-vertices loops avoiding.

back at the depot with a total load of q. This kind of route is a through-q-route.

The ψ(q, i) values are computed as follows:

ψ(q, i) = min
qi≤q̄≤(q+qi)/2



















f(q̄, i) + f(q + qi − q̄, i), if π(q̄, i) 6= π(q + qi − q̄, i)

min







f(q̄, i) + φ(q + qi − q̄, i),

φ(q̄, i) + f(q + qi − q̄, i)
otherwise

(5.15)

The algorithm can be described as follows:

Algorithm THROUGH-Q ROUTES (N,Q,qi, f ,φ,π,γ)

1. // Data Structures

2. ψ

3. // Initialization

4. for q = 0 to Q do

5. for i = 1 to N do

6. ψ(q, i) = ∞

7. // through q-routes

8. min1, min2 // Minima

9. for i = 1 to N do

10. min1 = ∞, min2 = ∞

11. for q = 0 to Q do

12. for qi(i) ≤ q̄ ≤ (q + qi(i))/2 do
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13. back = (q + qi(i))/2− q̄

14. if π(q̄, i) 6= π(back, i) ∧ f(q̄, i) + f(back, i) ≤ min1

15. then min = f(q̄, i) + f(back, i)

16. else if f(q̄, i) + φ(back, i) ≤ φ(q̄, i) + f(back, i)

17. then min2 = f(q̄, i) + φ(back, i)

18. if min2 ≤ min1

19. then min1 = min2

20. else min2 = φ(q̄, i) + f(back, i)

21. if min2 ≤ min1

22. then min1 = min2

23. // ψ Update

24. ψ(q, i) = min1

25. return ψ

More informally, this recurrence selects, among all the paths for a given q, the

best combination of paths that starts and end to the deposit. Once computed

the q-route relaxation, the through-q-route function ψ(q, i) can be computed in

pseudo-polynomial time with a complexity of O(n2Q2).

In the asymmetric case, we will use the f and φ functions with the π and the γ

computed by the asymmetric q-path described above. We will call f fw and φfw

the functions obtained from q-path computation using the d matrix, along with

the predecessors matrices πfw and γfw. In the same fashion we will call f bw, φbw,

πbw and γbw the one computed with the dT matrix. In this case, we can extend

the algorithm as follows:

Algorithm ASY THROUGH-Q ROUTES (N,Q,qi, f
fw,φfw,πfw,γfw, fbw,φbw,πbw,γbw)

1. // Data Structures

2. ψ

3. // Initialization

4. for q = 0 to Q do

5. for i = 1 to N do

6. ψ(q, i) = ∞

7. // through q-routes

8. min1, min2 // Minima
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9. for i = 1 to N do

10. min1 = ∞, min2 = ∞

11. for q = 0 to Q do

12. for qi(i) ≤ q̄ ≤ (q + qi(i))/2 do

13. back = (q + qi(i))/2− q̄

14. if πfw(q̄, i) 6= πbw(back, i) ∧ f fw(q̄, i) + f bw(back, i) ≤ min1

15. then min = f fw(q̄, i) + f bw(back, i)

16. else if f fw(q̄, i) + φbw(back, i) ≤ φfw(q̄, i) + f bw(back, i)

17. then min2 = f fw(q̄, i) + φbw(back, i)

18. if min2 ≤ min1

19. then min1 = min2

20. else min2 = φfw(q̄, i) + f bw(back, i)

21. if min2 ≤ min1

22. then min1 = min2

23. // ψ Update

24. ψ(q, i) = min1

25. return ψ

5.3.3 ng-Route Relaxation

Righini and Salani [83–85] proposed a DP relaxation based on the construction

of elementary paths in an decreasing state space, Baldacci et al. [77] proposed a

more effective relaxation for the pricing problem, generalizing the Righini’s idea,

the ng-route relaxation. The main problem afflicting the other methods described

above is that allow cycles longer than two vertices. Procedures to avoid bigger

loops are computationally expensive and can address loops of three or four vertices

only. The ng-route relaxation partially solves this problem introducing a supple-

mentary information for the DP algorithm, allowing the recurrence to ’remember’

an arbitrary number of nodes during the state-expansion phase and avoiding the

creation of loops with a significant cardinality of nodes.

The algorithm has specific rules according to the different kind of Vehicle Routing

problem in which is applied (VRPTW, CVRP..). We take in consideration only the

one afferent to the Capacitated Vehicle Routing Problem (CVRP). The ng-route

relaxation can be described as follows: Let Ni ⊆ V be a set of selected customers

for vertex i (according to some criterion), such that i ∈ Ni and |Ni| ≤ ∆(Ni),
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where ∆(Ni) is the cardinality of the selected neighbors for i plus i itself. The sets

Ni allow us to associate with each path P = (0, i1, . . . , ik) the subset Π(P ) ⊆ V (P )

containing customer ik and every customer ir, r = 1, . . . , k − 1 of P that belongs

to all set Nir+1
, . . . , Nik associated with the customer ir+1, . . . , ik visited after ir.

The set Π(P ) is defined as:

Π(P ) =

{

ir : ir ∈
k
⋂

s=r+1

Nis , r = 1, . . . , k − 1

}

⋃

{ik} . (5.16)

A ng-path (q, i, NG), is a non-necessarily elementary path P = (0, i1, . . . , ik−1, ik =

i) starting from the depot, visiting a subset of customers (even more than once)

such that NG = Π(P ), ending at customer i such that i /∈ Π(P ′) where P ′ =

(0, i1, . . . , ik−1). We indicate with f(q, i, NG) the cost of the least cost ng-path

(q, i, NG). We define an ng-route an ng-path (q, i, NG) plus the edge from i to

the depot and the cost of a ng-route f(q, 0, NG) = f(q, i, NG) + di0. Functions

f(q, i, NG) can be computed on the graph defined as H = (Φ,Ψ) where:

Φ =

{

(i, q, NG) : qi ≤ q ≤ Q, ∀NG ⊆ Ni s.t. i ∈ NG ∧
∑

j∈NG

qj ≤ q, ∀i ∈ V ′

}

,

(5.17)

Ψ =
{

((j, q′, NG′), (i, q, NG)) : ∀(j, q′, NG′) ∈ Ψ−1(i, q, NG), ∀(i, q, NG) ∈ Φ
}

,

(5.18)

where

Ψ−1(i, q, NG) =
{

(j, q − qi, NG
′) : ∀NG′ ⊆ Nj s.t. j ∈ NG′ and NG′ ∩Ni = NG/ {i} , ∀j ∈ Γ−1

i

}

(5.19)

The function f(i, q, NG) can be computed using the DP recursion:

f(i, q, NG) = min
(j,q′,NG′)∈Ψ−1(i,q,NG)

{f(j, q′, NG′) + dji} , ∀(i, q, NG) ∈ Φ. (5.20)
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Is necessary to notice that the ∆ parameter is critical for this relaxation: bigger

is the cardinality of the neighborhood set, better is the bound obtained. The

set’s cardinality brings, inevitably to a combinatorial explosion of the recursion’s

states. Martinelli, Pecin and Poggi [78] brilliantly resolve this problem mixing the

Decremental State Space relaxation proposed by Righini with the computation of

the ng-route relaxation, using the exact relaxation only when necessary, allowing to

an heuristic procedure based on the q-route relaxation to find the most promising

routes to insert in the CG algorithm.

Algorithm NG-PATHS (N,Q,d,qi,Ni)

1. // Data Structures

2. f, πn, πng

3. // Initialization

4. for q = 0 to Q do

5. for i = 1 to N do

6. for ng = 0 to |NGlist(i, q)| do

7. if qi(i) == q

8. then NG = i, NGlist(q, i).Add(NG)

9. f(q, i, NG) = d(0, i), πn(q, i, NG) = 0, πng(q, i, NG) = 0

10. else f(q, i, NG) = ∞, πn(q, i, NG) = −1, πng(q, i, NG) = −1

11. // ng-Paths

12. for q = 0 to Q do

13. for i = 1 to N do

14. for j = 1 to N do

15. for ng = 0 to |NGlist(q − qi(i), j)|do

16. NG = NGlist(q − qi(i), j, ng)

17. if i /∈ Ni ∪NG

18. then NGnew = Ni ∩NG ∪ i

19. if f(q − qi(i), j, NG) + dji ≤ f(q, i, NGnew)

20. then f(q, i, NGnew) = f(q − qi(i), j, NG) + dji

21. Add NGnew to NGlist(i, q)

22. πn(q, i, NGnew) = j

23. πng(q, i, NGnew) = NGlist(q − qi(i), j, ng)

24. return f, πn, πng
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In the algorithm we have introduced πn and πng that keep track of the predecessor

node j ∈ Γ−1
i and the predecessor path Π(P ), P = {0, i1, . . . , ik−1}, respectively.

We also introduce the dominance among the labels in the recursion. In fact we

can obtain the same label (i, q, NG) expanding from two different predecessor state

(j, q − qj, NGj) and (k, q − qk, NGk). Obviously, the dominant label is the one

with the lower function value f .

The asymmetric extension for this relaxation is trivial: we can compute the

f fw(i, q, NG) using the d matrix and the f bw(i, q, NG) function using its transpose

dT .

Figure 5.2: ng-Path example.

5.4 Parallel Relaxations on GPU

In this section we describe the parallel algorithms designed to run these relaxations

on a GPU. Dynamic Programming algorithms ported on this kind of devices have

given good results in many application: Boyer a et al. [58] proved that on a

consumer GPU is possible to obtain a 20X speed-up factor for solving the Knapsack
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Problem. Harish et al. [86] and Buluç et al. [87] provided an extensive spectrum of

graph problems (Deep First Search, etc..) having advantages from the utilization of

a GPU. Ortega-Arranz et al. [88] and Kumar et al. [89] proved that also algorithms

like the Bellman-Ford and Dijkstra ones for solving the Single Source Shortest Path

Problem (SSSPP) can be enhanced by the use of a many-core processor.

The GPGPU has given remarkable results also for the All Pairs Shortest Path

Problem (APSPP), solved by means of the Floyd-Warshall algorithm, Katz et

al. [56] and Lund et al. [57]. Maniezzo et al. [80] proved the effectiveness of

many-cores platform also for supply chain’s problems. As we can see, all the

cited methods are based on the Dynamic Programming paradigm; indeed, the fine

calculation granularity and the matrix-like data structures characterizing often

these algorithms, fit particularly well on the many-cores architecture, where every

thread execute a, relatively simple, computational kernel. We decided to use the

CUDA parallel programming model because is, actually, the best trade off among

portability, usability and reliability. Nvidia, also, provides a good environment for

debugging and profiling applications (Nsight debugger for Microsoft Visual Studio,

etc..) with effective functionalities.

5.4.1 GPU q-Route

The first relaxation that we consider is the q-route relaxation. In the next sub-

sections we will expose the parallelism inside the method and we will describe the

proposed algorithm for the GPU.

5.4.1.1 Exposing Parallelism

The equations 5.11 and 5.12 describe the expansion rules for the creation of a new

state f(q, i). As we can see, this is a backward recursion, because we create the

new state from the previous stages. This peculiarity enables a very interesting

effect inside the recursion: all the states f(q, i) ∈ q stage, can be calculated

independently using all the f(q − qi, j), j ∈ Γ−1
i , i ∈ V, i, j = 1, 2, . . . , N states of

the q − qi stage. In fact, we can evaluate at the same time all the f(q, i) states

inside the q stage, as depicted in figure 5.3.
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Figure 5.3: Stage q parallel computation.

5.4.1.2 Algorithm Description

In this section we will provide the pseudo-code for the parallel algorithm and the

computation kernel for the q-path algorithm. According to the CUDA program-

ming model, we can assign a threads block for each state f(q, i) and T threads

for each block. We decided to assign in this manner the workload for allowing us

to compute in parallel not only the state of the recursion (intra-grid parallelism),

but also the min operation required to compute it. In fact, we will use the threads

of each block to evaluate in parallel the reductions (min operation) described in

the equations 5.12 and 5.13 (intra-block parallelism) using the method suggested

in [59]. All the data structures have linear access to each element, it means that

all matrices are stored in a row-major fashion. For the legibility of the algorithm,

we decided to use two indexes for the matrices anyway.

Algorithm GPU Q-PATHS (N,Q,qi,d)

1. // Data Structures

2. f, φ, π, γ

3. // Kernel Setup

4. BLOCKS B = N − 1, THREADS T , SHARED-MEM Sh[2 ∗ (N − 1)]

5. // Main Loop

6. for q = 0 to Q do

7. Q-PATHS-KERNEL<<< B, T, Sh >>>(Q, q, qi, d, f , φ, π, γ)

8. return f, π, φ, γ
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Algorithm Q-PATHS-KERNEL(Q,N, q,qi,d, f ,φ,π,γ)

1. min1, min2 // Variables Initialization

2. pred1,pred2

3. hsh[N − 1], πsh[N − 1]

4. thdidx = threadIdx.x, Nthds = blockDim.x, nodeidx = blockIdx.x

5. slack = N%Nthds, times = N/Nthds

6. if thdidx ≤ slack

7. then times++

8. // Shared Memory Initialization

9. for t = 0 to times do

10. hsh[thdidx+ t ∗Nthds] = ∞

11. πsh[thdidx+ t ∗Nthds] = −1

12. syncthreads()

13. // Partial Minima Computation

14. for t = 0 to times do

15. j = thdidx+ t ∗Nthds

16. if π(q − qi(nodeidx), j) 6= nodeidx

17. then hsh[j] = f(q − qi(nodeidx), j) + d(j, i)

18. πsh[j] = j

19. else hsh[j] = φ(q − qi(nodeidx), j) + d(j, i)

20. πsh[j] = j

21. syncthreads()

22. // First reduction to get f(q, i) value

23. GPU REDUCTION(hsh, πsh)

24. min1 = hsh[0], pred1 = πsh[0], hsh[0] = ∞, πsh[0] = −1

25. // Second reduction to get φ(q, i) value

26. GPU REDUCTION(hsh, πsh)

27. min2 = hsh[0], pred2 = πsh[0]

28. // Matrices update

29. if nodeidx 6= thdidx

30. then f(q, i) = min1, π(q, i) = pred1

31. φ(q, i) = min2, γ(q, i) = pred2

Algorithm GPU REDUCTION (hsh,πsh, times)

1. // Keeping only the most promising value for each thread

2. for t = 0 to times do
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3. if hsh[thdidx] > hsh[thdidx+ t ∗Nthds]

4. then fswap = hsh[thdidx]

5. hsh[thdidx] = hsh[thdidx+ t ∗Nthds]

6. hsh[thdidx+ t ∗Nthds] = fswap

7. // Update Predecessor

8. πswap = πsh[thdidx]

9. πsh[thdidx] = πsh[thdidx+ t ∗Nthds]

10. πsh[thdidx+ t ∗Nthds] = πswap

11. syncthreads()

12. // Reduction

13. for s = Nthds/2 to 0,s/ = 2 do

14. if thdidx < s

15. then if hsh[thdidx+ s] < hsh[thdidx]

16. then fswap = hsh[thdidx]

17. hsh[thdidx] = hsh[thdidx+ s]

18. hsh[thdidx+ s] = fswap

19. // Update Predecessor

20. πswap = πsh[thdidx]

21. πsh[thdidx] = πsh[thdidx+ s]

22. πsh[thdidx+ s] = πswap

23. syncthreads()

The lines 6-8 of the main procedure, GPU Q-PATHS , is the main loop of the

algorithm. Indeed, inside the for cycle we call, iteratively, for each stage q of

the Dynamic Programming recurrence the computation kernel for the GPU. We

also define the dimension of the shared memory for each block of the grid. The

dimension is designed to store all the
∣

∣Γ−1
i

∣

∣ entries for the h(i) vector defined in

the equation 5.11 and the predecessor node for each entry (in our case, the number

of predecessor is equal to N − 1 supposing that the digraph G is complete). Once

initialized the shared memory (lines 9-11 of the Q-PATHS-KERNEL procedure),

we calculate for each predecessor its function value and we store it in the hsh

array together with the node’s index in πsh (lines 14-21) according with the 5.11

equation.

In lines 23 and 26 we calculate the minima values for the f and the φ functions. In

order to compute these values, we call twice the GPU REDUCTION procedure.

This procedure, a device function in the implementation, is based on the one
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described in [59], we modified it in order to keep trace of the values inside the

shared memory, swapping instead of overwriting the values themselves. In lines

2-10 we pre-calculate the significant values for each thread, keeping only the most

promising, and then we perform the reduction to find the minimum (lines 13-23).

Every thread compute one or more values thanks to the indices that we assigned

in the lines 4-7 of the main kernel, calculating the occurrence of the thread index

inside the total number of the problem nodes. Finally, in lines 29-31, we update

the data structures with the new function values. In line 24 of the main kernel,

we reset the result of the first reduction and we store the first minimum and its

predecessor.

5.4.2 GPU through-q-route

In this section we will describe the parallel algorithm for the through-q-route relax-

ation. This method, as described in 5.3.2, is based on the function values obtained

from the q-paths relaxation. In order to minimize the memory transaction between

the CPU and the GPU, we will compute the q-path and, keeping the results on

the GPU memory, we will perform the GPU algorithm for the through-q-routes.

5.4.2.1 Exposing Parallelism

According to the equation 5.15, we can see the nature of the computation is strictly

combinatorial and each ψ(q, i) function value is independent from the others. We

decided to compute in parallel all the function values for each i node of the graph

(each column of the matrix) which is the dimension, the quantity dimension q,

often bigger and computationally more expensive. In the next paragraph we will

provide the pseudo-code for the GPU kernel and we will give a brief description

of the algorithm.

5.4.2.2 Algorithm Description

In this section we will describe the GPU kernel designed to compute the through-

q-route relaxation on a GPU.



Chapter 5. VRP 74

Algorithm GPU THROUGH-Q ROUTES (N,Q, f ,qi,φ,π,γ)

1. // Data Structures

2. ψ

3. // Kernel Setup

4. BLOCKS B = Q, THREADS T, SHARED-MEM Sh[T]

5. // Main Loop

6. for i = 1 to N do

7. THROUGH-Q-ROUTES-KERNEL<<< B, T, Sh >>>(Q, i, qi, d, f ,

φ, π, γ, ψ)

8. return ψ

Algorithm THROUGH-Q-ROUTES-KERNEL(Q,N, i,qi, f ,φ,π,γ,ψ)

1. sh[T ] // Shared memory

2. NThds = blockDim.x, thdidx = threadIdx.x

3. q = blockIdx.x, startidx = qi(i), endidx = (q + qi(i))/2, diff = endidx −

startidx

4. // Shared Memory Initialization

5. sh[thdidx] = ∞

6. times = diff/NThds, slack = diff%NThds

7. if thdidx < slack

8. then times++

9. syncthreads()

10. for t = 0 to times do

11. q̄ = thdidx+ startidx+ (t ∗NThds)

12. if π(q̄, i) 6= π(q + qi(i)− q̄, i)

13. then fnew = f(q̄, i) + f(q + qi(i)− q̄, i)

14. if sh[thdidx] > fnew

15. then sh[thdidx] = fnew

16. else φa = f(q̄, i) + φ(q + qi(i)− q̄, i)

17. φb = φ(q̄, i) + f(q + qi(i)− q̄, i)

18. φnew=0, (φa < φb)?φnew = φa : φnew = φb

19. if sh[thdidx] > φnew

20. then sh[thdidx] = φnew

21. syncthreads()

22. // Parallel reduction
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23. for s = Nthds/2 to 0,s/ = 2 do

24. if thdidx < s

25. then if hsh[thdidx+ s] < hsh[thdidx]

26. then hsh[thdidx] = hsh[thdidx+ s]

27. syncthreads()

28. syncthreads()

29. // Data Update

30. if thdidx == 0

31. then ψ(q, i) = sh[0]

In line 3 we define the indices of the data for the q block. The diff variable

describes the range of indices for the block. In line 5 we initialize the shared

memory and in lines 6-8, as for the q-paths kernel, we define the indices for each

thread of the block. In lines 10- 20 we compute the partial results and we store

them in the shared memory, according to the equation 5.15; in line 11 we define

the indices q̄ for each thread. Once computed the partial results, we can perform

a standard parallel reduction (lines 23-28) in the shared memory as described in

[59]. In this case we don’t need to keep all the values inside the shared memory,

in fact we need only the minimum for each state. Finally, the thread 0 updates

the ψ(q, i) function value (lines 30-31).

5.4.3 GPU ng-Route

Unlike the other relaxations, the ng-route is more computationally expensive but

numerically is more effective than the previous two. The main problems afflicting

this method is an efficient management of the NG sets and the dominance among

them. In fact, the NG set and its cardinality for each f(q, i) stage is dynamic. Dy-

namic data structures in a GPGPU environment are not desirable, indeed searches

and the management inside these structures are performance killers. In the next

sections we will describe our strategies for addressing these problems and then a

parallel algorithm for the GPU.

5.4.3.1 Exposing Parallelism

The first problem that emerges for the porting of this relaxation on a many-cores

platform is the dynamic nature of the NG ‘dimension’ of the recurrence. A static
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data structure is almost mandatory for exploiting the computation capabilities of

these devices. We addressed this problem in this way: As we can see, from the

equations 5.17 and 5.19, the NG set for each stage (i, q) is completely contained

in the Ni set chosen for the i node. Plus, in each NG set the relative i node is

contained. From these assumptions we can state that the complete enumeration

for all the possible NG sets in the (i, q) stage is the NGP
i ∈ P(Ni) set, that is a

subset of the power set of Ni composed only by the subset with i.

The cardinality of the power set of Ni is 2
∆(Ni) but for the NGdim the cardinality

is 2∆(Ni)−1, because we are taking into account only the sets with i. For reasonable

∆(Ni) (10-14) we can easily enumerate all the possible sets for the NG dimension,

allowing us to make static this dimension too. As we illustrate in figure 5.4 it’s

possible to describe all the states and stages of the recursion like a 3-dimensional

cube: vehicle’s capacity Q, customers/nodes i and sets’ indices NG. In the third

dimension NG we consider only the indices of these sets, as we will describe in

the following sections, we can index these sets and use these indices to define the

dimension. To our purposes, in order to expose the parallelism of the method, we

can reformulate the equation 5.20 in its forward form:

f(k, q + qi, NG) = min
(i,q,NG′)∈Ψ(k,q+qi,NG)

{f(i, q, NG) + dik} , ∀(k, q + qi, NG) ∈ Φ.

(5.21)

Exploiting the equation 5.21 we can easily observe that we can compute indepen-

dently all the states f(k, q + qk, NG) from all the states (i, q, NG′) in the q set of

stages.

5.4.3.2 Dominance Management

To easily address the management of the dominances among the states during the

expansion, we decided to pre-calculate the transitions among the NG sets of each

node. We basically create a transition map that taking in input the NG set of the

starting node, the index of the starting node j and the end node i, gives in output

the index of the new NG set among the enumerated ones of i. We indexed the NG

sets for each node i exploiting a bitmap. As we described before, we enumerate

all the possible NG sets for each node obtained from the relative Ni using its
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power set. We define the mask for the NG set as: mask = {b0, b1, . . . , bh} , h =

2∆(Ni)−1, b ∈ {0, 1} and the mask for each NG is defined:

mask(h) =







1 if NG(k) ∈ Ni, k = 0, . . . , |NG|

0 otherwise
(5.22)

Based on this mask, we can define the index for the NG:

NGindex =

∆(Ni)−1
∑

h=0

b ∗ 2h (5.23)

For example: Given NG = {7, 2, 4, 6} ∈ NGP
7 , N7 = {7, 2, 4, 6, 8, 10}, ∆(N7) = 6.

We will have: maskNG = {1, 1, 1, 1, 0, 0} and the index: NGindex = 1 ∗ 20 + 1 ∗

21 + 1 ∗ 22 + 1 ∗ 23 + 0 ∗ 24 + 0 ∗ 25 = 1 + 2 + 4 + 8 + 0 + 0 = 15.

We give, for each combination of the 1 and 0 of the NG map, an univocal index.

This univocal index gives us the possibility to know in advance which will be the

index for the new NG set created by the expansion to another state. Given the

description for the index of each NG set we can define the transition map among

the NG sets of each node: given the NGindex, the starting node j and the Ni set

of the destination node i, the mapping function returns the index NG
′

index of the

NG
′

∈ NGP
i .

Figure 5.4: NG path 3-D states space.
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5.4.3.3 Active Sets

Exploiting the equation 5.16 we can pre-calculate the NG ∈ NGP
i sets active

during the recursion. In fact not all the NG enumerated are effectively used

by the method. For each stage q, we can retrieve all the NG sets involved in

the computation simply running the recursion, without computing f , once before

the main part of the algorithm in which the ng-relaxation is used, exploiting the

transition map defined in the previous paragraph. This property allows us to

apply a modified version of what is called ‘threads compaction’, described in [86]

and analyzed in [90]. This method consists in creating a mask for allowing to the

GPU to spawn only the threads useful for the computation. Using this technique

and exploiting the property described before, we can take in consideration only

the states effectively useful for the relaxation and calibrate the device’s resources

on these, avoiding the overhead induced by not working threads. The active sets

for each stage together with the indexing for the NG sets also enhance the serial

version of the method, indeed we avoided the overhead for the dominance and we

reduced drastically the computation at each stage. We propose a modified version

of the serial algorithm in the next paragraph.

5.4.3.4 Algorithm Description

In this section we describe first the enhancement for the serial algorithm using the

previous consideration, then we will propose a parallel kernel for the GPU.

Algorithm NG-PATHS 2 (N,Q,d,qi,ActiveSets,TransMap)

1. // Data Structures

2. f, πn, πng

3. // Initialization

4. for q = 0 to Q do

5. for i = 1 to N do

6. for ng = 0 to |NGlist(i, q)| do

7. if qi(i) == q

8. then f(q, i, 0) = d(0, i), πn(q, i, 0) = 0, πng(q, i, 0) = 0

9. else f(q, i, 0) = ∞, πn(q, i, 0) = −1, πng(q, i, 0) = −1

10. // ng-Paths
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11. for q = 0 to Q do

12. for i = 1 to N do

13. for j = 1 to N do

14. distij = dist(i, j)

15. for h = 0 to |ActiveSets(q − qi(i), j)| do

16. NGindex = ActiveSets(q − qi, j, h)

17. NG′
index = TransMap(i, j, NGindex)

18. if f(q, i, NG′
index) > f(q − qi(i), j, NGindex) + distij

19. then f(q, i, NG′
index) = f(q − qi(i), j, NGindex) + distij

20. πn(q, i, NG
′
index) = j

21. πng(q, i, NG
′
index) = NGindex

22. return f, πn , πng

In lines 15 and 16 we introduced the ActiveSets and TransMap data structures

giving us the NG sets indices to update.

Algorithm GPU NG-PATHS (N,Q,d,qi,ActiveSets,TransMap)

1. // Data Structures

2. f, πn, πng, SLabelsN , SLabelsNG, ActThds

3. // The variables f, πn, πng are initialized in the same fashion of the serial

algorithm

4. // Number of Active Threads for each set of stages q

5. for q = 0 to Q do

6. for i = 1 to N do

7. ActThds(q)+ = |ActSets(q, i)| // Initialize StartLabels

8. for q = 0 to Q do

9. for i = 1 to N do

10. for h = 0 to |ActSets(q, i)| do

11. NG = ActSets(q, i, h)

12. SLabelsN(q).Add(i)

13. SLabelsNG(q).Add(NG)

14. //Main Loop

15. for q = 0 to Q do

16. // Kernel Setup

17. THDS = T
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18. BLK.y = N − 1, BLK.x = |ActThds(q)|/THDS

19. NG-PATHS-KERNEL<<< BLKS, THDS >>>

20. (q, qi, Map, d, f , πn,πng, ActSets, SLabelsNodes, SLabelsNG)

21. return f , πn,πng

Algorithm NG-PATHS-KERNEL(q,qi,Map,d, f ,πn,πng,ActSets,SLabelsN,SLabelsNG)

1. idx = blockIdx.x ∗ blockDim.x+ threadIdx.x

2. i = blockIdx.y

3. j = SLabelsN (q, idx), NGindex = SLabelsNG(q, idx)

4. dist = d(j, i)

5. NG′

index =Map(i, j,NGindex)

6. if f(q + qi(i), i, NG
′

index) > f(q, j,NGindex) + dist

7. then f(q + qi(i), i, NG
′

index) = f(q, j,NGindex) + dist

8. πn(q + qi(i), i, NG
′

index) = j

9. πng(q + qi(i), i, NG
′

index) = NG

Inside the main procedure, GPU NG-PATHS , in lines 5-7 we count the number

of active labels for each stage q. Using this value, inside the main loop of the

procedure, we spawn the necessary number of thread for each iteration of the loop

(line 19).

In lines 8-13 we initialize the StartLabelsNodes and StartLabelsNG structures,

containing, for each q the indices of the active NG for each node. The main loop

is described in lines 15-20. As for the serial version of the algorithm, we return

the f array with the function values with the array for the predecessors node, πn

and the array for the predecessor path πng (line 21).

Inside the GPU kernel, NG-PATHS-KERNEL, in lines 1-3 we define the indices

of the label, in line 5, using the transition map, we find the index if the new

NG set for the expanded label and in lines 6-9 we update, if necessary, the new

label. The operation in these lines are implemented using the AtomicMin() CUDA

primitive to manage the concurrent update of a single variable by more threads

simultaneously, in order to avoid race conditions and inconsistent results.

5.4.4 Asymmetric Relaxations

The asymmetric case for the VRP is characterized by dij 6= dji. In the case of

q-path and ng-paths, we are forced to calculate twice the relaxation, once using
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the d matrix (forward) and once using the dT transpose matrix (backward). For

the through-q-route relaxation, we have to use the output from the asymmetric

computation of the q-path, as described in ASY THROUGH-Q ROUTES algo-

rithm. We propose an effective parallel approach to solve this version of the VRP

exploiting all the parallel features of a GPU.

A Stream is a sequence of operations that execute in issue-order on the GPU.

More intuitively, we can say that a GPU can execute concurrently multiple kernels

and memory transactions, overlaying the operations (e.g. transferring data for the

kernel 2 from the HOST to the GPU while executing the kernel 1). This is possible

due to different engines managing the execution and memory transfer operations.

Depending on the number of the simultaneous streams supported by the GPU,

(typically 4) we can hide the memory transaction operation with the computation

of a kernel and then compute the data loaded with another kernel. This feature

allows us to compute concurrently the two relaxations (forward and backward) on

the same GPU, introducing another level of parallelism (among kernels). In our

case we don’t use the streams to hide the memory transactions between the CPU

and the GPU, but to execute the same kernel with different data on the same

GPU, in a typical SIMD approach.

In the following we propose the pseudo-code for these algorithms. The kernels

are the same described in the previous paragraph. The main difference is the

use of the cudaMemcpyAsync() primitive that is a page-locked memory (pinned

memory) for the characteristics of which we refer to the official documentation of

CUDA.

Algorithm GPU-Q-PATHS ASY (N,Q,qi,d,d
T)

1. // Data Structures

2. ffw, φfw, πfw, γfw

3. f bw, φbw, πbw, γbw

4. // Stream Initialization

5. Stream FW , Stream BW

6. // Kernel Setup

7. BLOCKS B = N − 1, THREADS T , SHARED-MEM Sh[2 ∗ (N − 1)]

8. // Main Loop

9. for q = 0 to Q do
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10. Q-PATHS-KERNEL<<< B, T, Sh, FW >>>(Q, q, qi, d, f
fw, φfw,

πfw, γfw)

11. Q-PATHS-KERNEL<<< B, T, Sh,BW >>>(Q, q, qi, d
T , f bw, φbw,

πbw, γbw)

12. return ffw, πfw, φfw, γfw, f bw, πbw, φbw, γbw

Algorithm GPU NG-PATHS ASY (N,Q,d,dT,qi,ActSetsfw,ActSetsbw,Mapfw,Mapbw)

1. // Data Structures

2. ffw, πfw
n , πfw

ng , SLabelsfwN , SLabelsfwNG, ActThdsfw

3. fbw, πbw
n , πbw

ng , SLabels
bw
N , SLabelsbwNG, ActThdsbw

4. // The variables f, πn, πng are initialized in the same fashion of the serial algorithm

5. // Number of Active Threads for each set of stages q

6. for q = 0 to Q do

7. for i = 1 to N do

8. ActThdsfw(q)+ = |ActSetsfw(q, i)|

9. ActThdsbw(q)+ = |ActSetsbw(q, i)|

10. // Initialize StartLabels

11. for q = 0 to Q do

12. for i = 1 to N do

13. for h = 0 to |ActSetsfw(q, i)| do

14. NG = ActSetsfw(q, i, h)

15. SLabelsfwN (q).Add(i)

16. SLabelsfwNG(q).Add(NG)

17. for h = 0 to |ActSetsbw(q, i)| do

18. NG = ActSetsbw(q, i, h)

19. SLabelsbwN (q).Add(i)

20. SLabelsbwNG(q).Add(NG)

21. // Stream Initialization

22. Stream FW, Stream BW

23. //Main Loop

24. for q = 0 to Q do

25. // Kernel Setup

26. THDS = T

27. BLK.y = N − 1, BLK.x = |ActThdsfw(q)|/THDS

28. NG-PATHS-KERNEL<<< BLKS, THDS, 0, FW >>>

29. (N , Q, q,qi, Mapfw, d, ffw, πfw
n , πfw

ng , ActSetsfw,

30. SLabels
fw
N , SLabelsfwNG)

31. BLK.y = N − 1, BLK.x = |ActThdsbw(q)|/THDS

32. NG-PATHS-KERNEL<<< BLKS, THDS, 0, BW >>>

33. (N , Q, q, qi, Mapbw, dT , fbw, πbw
n , πbw

ng , ActSets
bw,

34. SLabelsbwN , SLabelsbwNG)
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35. returnffw, fbw, πfw
n , πfw

ng , fbw, πbw
n , πbw

ng

The through-q-route algorithm only changes the data structures in input:

Algorithm GPU THROUGH-Q-ROUTES ASY (N,Q,qi, f
fw,φfw,πfw,γfw, fbw,φbw,πbw,γbw)

1. // Data Structures

2. ψ

3. // Kernel Setup

4. BLOCKS B = Q, THREADS T , SHARED-MEM Sh[T ]

5. // Main Loop

6. for i = 1 to N do

7. THROUGH-Q-ROUTES-KERNEL ASY<<< B, T, Sh >>>(Q, i, qi, f
fw, φfw, πfw,

γfw, fbw, φbw, πbw, γbw, ψ)

8. return ψ

Algorithm THROUGH-Q-ROUTES-KERNEL ASY (Q,N, i,qi, f
fw,φfw,πfw,γfw, fbw,φbw,πbw,γbw,ψ)

1. sh[T ] // Shared memory

2. NThds = blockDim.x, thdidx = threadIdx.x

3. q = blockIdx.x, startidx = qi(i), endidx = (q + qi(i))/2, diff = endidx− startidx

4. // Shared Memory Initialization

5. sh[thdidx] = ∞

6. times = diff/NThds, slack = diff%NThds

7. if thdidx < slack

8. then times++ syncthreads()

9. for t = 0 to times do

10. q̄ = thdidx+ startidx+ (t ∗NThds)

11. if πfw(q̄, i) 6= πbw(q + qi(i)− q̄, i)

12. then fnew = ffw(q̄, i) + f bw(q + qi(i)− q̄, i)

13. if sh[thdidx] > fnew

14. then sh[thdidx] = fnew

15. else φa = ffw(q̄, i) + φbw(q + qi(i)− q̄, i)

16. φb = φfw(q̄, i) + f bw(q + qi(i)− q̄, i)

17. φnew = 0, (φa < φb)?φnew = φa : φnew = φb

18. if sh[thdidx] > φnew

19. then sh[thdidx] = φnew

20. syncthreads()

21. // Parallel reduction

22. for s = Nthds/2 to 0,s/ = 2 do

23. if thdidx < s
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24. then if hsh[thdidx+ s] < hsh[thdidx]

25. then hsh[thdidx] = hsh[thdidx+ s]

26. syncthreads()

27. syncthreads()

28. // Data Update

29. if thdidx == 0

30. then ψ(q, i) = sh[0]

5.5 Computational Results

In this section we report the experimental results of our algorithms. Each table

reports the execution time for a single run of the methods. All the times for the

GPU are calculated taking in account the load and store time for the data between

the CPU and the GPU. We choose to take into account these times because the

relaxations are repeatedly called inside a CG algorithm and the load and store

times have a significant impact on the performances.

The test machine is a workstation equipped with an Intel i7 4820K @3.9 GHz with

32 Gigabytes of RAM and a Nvidia GTX TITAN with 2688 Cuda Cores @837 MHz

with 6 Gigabytes of GDDR5 RAM provided by SINTEF [91]. The data-sets are

the ones of the VRPLIB [92] and the bigger instances are the ones provided by

[93]. We report the speed-up factor between the serial and the parallel versions of

the methods. The speed up factor is the ratio between the serial and the parallel

algorithms: SpeedUp = T imeSerial/T imeParallel.
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Table 5.1: Computational results for the symmetric q-path and through-q-route relaxations.

Instances CPU Algorithm Times GPU Algorithm Times Speed-Up
Name Nodes Capacity q-path t-q-route q + through-q q-path t-q-route q + through-q q-paths t-q-route q + through-q

V560-1200 560 1200 1.045 2.325 3.370 0.140 0.210 0.350 7.455 X 11.055 X 9.615 X
V600-900 600 900 0.874 1.311 2.185 0.101 0.128 0.228 8.692 X 10.257 X 9.568 X
V640-1400 640 1400 1.576 4.695 6.271 0.177 0.284 0.461 8.897 X 16.527 X 13.596 X
V720-1500 720 1500 2.215 6.677 8.892 0.251 0.363 0.614 8.831 X 18.369 X 14.475 X
V760-900 760 900 1.857 2.340 4.197 0.162 0.149 0.311 11.483 X 15.717 X 13.513 X
V800-1700 800 1700 4.805 11.497 16.302 0.362 0.511 0.873 5.126 X 22.489 X 18.663 X
V840-900 840 900 3.027 2.932 5.959 0.209 0.165 0.373 14.514 X 17.807 X 15.967 X
V880-1800 880 1800 7.004 15.241 22.245 0.486 0.627 1.113 14.424 X 24.289 X 19.985 X
V960-2000 960 2000 10.046 23.353 33.399 0.628 0.837 1.465 15.995 X 27.910 X 22.802 X
V1040-2100 1040 2100 13.166 29.640 42.806 0.869 0.994 1.862 15.158 X 29.831 X 22.987 X
V1120-2300 1120 2300 16.832 40.154 56.986 1.061 1.276 2.336 15.869 X 31.479 X 24.392 X
V1200-2500 1200 2500 21.092 52.026 73.118 1.328 1.607 2.935 15.878 X 32.385 X 24.914 X
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Table 5.2: Computational results for the asymmetric q-path and through-q-route relaxations.

Instances CPU Algorithm Times GPU Algorithm Times SpeedUp
Name Nodes Capacity q-path t-q-route q + through-q q-path t-q-route q + through-q q-paths t-q-route q + through-q

A034-02f 34 1000 0.008 0.031 0.039 0.024 0.007 0.031 0.334 X 4.722 X 1.278 X
A036-03f 36 1000 0.015 0.031 0.031 0.024 0.007 0.031 0.619 X 4.557 X 0.999 X
A039-03f 39 1000 0.015 0.031 0.046 0.026 0.007 0.033 0.579 X 4.213 X 1.382 X
A045-03f 45 1000 0.015 0.047 0.062 0.026 0.009 0.034 0.578 X 5.505 X 1.799 X
A048-03f 48 1000 0.016 0.047 0.063 0.025 0.009 0.035 0.634 X 4.986 X 1.817 X
A056-03f 56 1000 0.015 0.063 0.078 0.026 0.011 0.037 0.584 X 5.777 X 2.131 X
A065-03f 65 1000 0.016 0.093 0.109 0.026 0.013 0.039 0.606 X 7.388 X 2.796 X
A071-03f 71 1000 0.031 0.078 0.109 0.026 0.014 0.040 1.184 X 5.642 X 2.724 X
Balman859-1000 859 1000 6.100 3.026 9.126 0.393 0.122 0.515 15.514 X 24.781 X 17.710 X
Balman859-2000 859 2000 13.385 17.113 30.498 0.791 0.502 1.292 16.929 X 34.102 X 23.597 X
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Table 5.3: Computational results for the symmetric ng-path relaxation.

Instances CPU Algorithm Times GPU Algorithm Times SpeedUp

Name Nodes Capacity NG:8 NG:10 NG:12 NG:13 NG:14 NG:8 NG:10 NG:12 NG:13 NG:14 NG:8 NG:10 NG:12 NG:13 NG:14

A-n62-k8 62 100 0.047 0.093 0.281 0.421 0.717 0.004 0.007 0.021 0.047 0.080 12.796 X 12.510 X 13.646 X 8.875 X 8.947 X

A-n63-k10 63 100 0.047 0.094 0.234 0.359 0.546 0.003 0.007 0.020 0.046 0.070 14.030 X 12.974 X 11.958 X 7.775 X 7.813 X

A-n64-k9 64 100 0.047 0.093 0.249 0.375 0.515 0.003 0.007 0.021 0.034 0.066 14.766 X 13.358 X 11.906 X 10.969 X 7.830 X

A-n80-k10 80 100 0.078 0.187 0.484 0.733 1.061 0.005 0.012 0.036 0.067 0.113 14.888 X 15.004 X 13.425 X 10.927 X 9.356 X

B-n50-k8 50 100 0.031 0.094 0.296 0.484 0.827 0.003 0.007 0.024 0.042 0.095 10.431 X 12.835 X 12.530 X 11.433 X 8.715 X

B-n68-k9 68 100 0.094 0.234 0.639 0.842 1.373 0.006 0.021 0.068 0.088 0.167 14.925 X 10.928 X 9.441 X 9.530 X 8.220 X

B-n78-k10 78 100 0.110 0.343 0.998 1.482 2.511 0.010 0.032 0.109 0.199 0.290 11.542 X 10.754 X 9.192 X 7.442 X 8.659 X

E-n51-k5 51 160 0.063 0.125 0.359 0.593 0.920 0.004 0.008 0.025 0.062 0.084 16.475 X 15.543 X 14.089 X 9.607 X 10.916 X

E-n76-k7 76 220 0.156 0.421 1.279 2.043 3.260 0.010 0.026 0.081 0.194 0.305 15.388 X 16.476 X 15.775 X 10.533 X 10.680 X

E-n76-k8 76 180 0.125 0.296 0.921 1.420 2.215 0.008 0.019 0.071 0.139 0.222 16.346 X 15.811 X 12.894 X 10.228 X 9.975 X

E-n76-k10 76 140 0.078 0.187 0.530 0.811 1.216 0.005 0.012 0.036 0.067 0.124 14.684 X 15.352 X 14.536 X 12.174 X 9.773 X

E-n76-k14 76 100 0.031 0.078 0.203 0.297 0.390 0.003 0.006 0.018 0.044 0.065 10.375 X 12.597 X 11.361 X 6.688 X 5.998 X

E-n101-k8 101 200 0.272 0.795 2.371 3.619 5.523 0.017 0.046 0.182 0.306 0.528 15.826 X 17.271 X 13.042 X 11.824 X 10.453 X

E-n101-k14 101 112 0.110 0.280 0.765 1.108 1.623 0.007 0.018 0.061 0.098 0.170 15.621 X 15.862 X 12.535 X 11.344 X 9.520 X

F-n135-k7 135 2210 9.516 30.342 91.853 Out Out 0.480 1.634 5.694 Out Out 19.811 X 18.565 X 16.131 X Out Out

M-n121-k7 121 200 0.671 2.169 9.345 19.407 38.876 0.045 0.246 1.203 2.710 5.731 14.871 X 8.817 X 7.767 X 7.160 X 6.783 X

M-n151-k12 151 200 0.577 1.591 4.181 6.692 10.358 0.034 0.099 0.323 0.556 0.978 16.731 X 16.083 X 12.952 X 12.038 X 10.587 X

M-n200-k16 200 200 0.983 2.901 7.301 10.905 15.928 0.064 0.198 0.611 0.956 1.524 15.292 X 14.629 X 11.946 X 11.408 X 10.450 X

M-n200-k17 200 200 0.998 2.902 7.332 10.888 15.943 0.064 0.197 0.617 0.966 1.527 15.501 X 14.759 X 11.887 X 11.272 X 10.443 X

P-n50-k8 50 120 0.031 0.047 0.109 0.171 0.250 0.002 0.005 0.012 0.024 0.044 14.299 X 9.918 X 8.804 X 7.001 X 5.685 X

P-n70-k10 70 135 0.047 0.125 0.359 0.530 0.749 0.004 0.009 0.035 0.048 0.089 12.401 X 13.832 X 10.362 X 10.954 X 8.439 X
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Table 5.4: Computational results for the asymmetric ng-path relaxation.

Instances CPU Algorithm Times GPU Algorithm Times SpeedUp
Name Nodes Capacity NG:8 NG:10 NG:12 NG:13 NG:14 NG:8 NG:10 NG:12 NG:13 NG:14 NG:8 NG:10 NG:12 NG:13 NG:14

A034-02f 34 1000 0.422 1.045 3.151 5.055 8.096 0.022 0.035 0.086 0.128 0.199 19.055 X 29.825 X 36.821 X 39.555 X 40.595 X
A036-03f 36 1000 0.406 1.014 3.230 4.711 7.629 0.023 0.037 0.086 0.127 0.194 17.849 X 27.397 X 37.417 X 37.189 X 39.292 X
A039-03f 39 1000 0.406 1.185 3.417 5.289 8.205 0.024 0.038 0.091 0.146 0.221 17.256 X 31.399 X 37.441 X 36.216 X 37.103 X
A045-03f 45 1000 0.546 1.404 4.259 6.942 12.137 0.027 0.053 0.138 0.238 0.443 19.884 X 26.447 X 30.809 X 29.206 X 27.377 X
A048-03f 48 1000 0.671 1.809 5.835 9.625 18.205 0.030 0.079 0.239 0.427 0.956 22.587 X 22.900 X 24.374 X 22.565 X 19.041 X
A056-03f 56 1000 0.905 2.730 7.784 14.367 21.918 0.041 0.114 0.331 0.687 1.102 22.124 X 23.856 X 23.514 X 20.910 X 19.898 X
A065-03f 65 1000 1.154 3.213 9.423 15.398 25.365 0.053 0.122 0.398 0.720 1.298 21.691 X 26.385 X 23.661 X 21.391 X 19.547 X
A071-03f 71 1000 1.326 3.869 11.684 19.625 30.639 0.057 0.160 0.572 1.109 1.813 23.425 X 24.127 X 20.428 X 17.703 X 16.904 X
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In table 5.1 we report the speed-up factor relative to the q-paths and through-q-

routes algorithms. We used the biggest instances for the CVRP in literature for

two reasons:

1. the execution times for these algorithms on the VRPLIB is negligible because

of the small instances dimensions ,

2. we want to highlight the method’s scalability on very difficult instances.

In fact, for bigger instances the global speed-up factor obtained is really consistent,

24 X for the V1200-2500 instance. We decided to report the unified speed-up for

both the methods because to compute the through-q-routes we need the results of

q-paths. However, we can see that the through-q-routes is the algorithm achieving

the best performances.

For the asymmetric instances, table 5.2, as before, the best results are obtained

for big instances.

In table 5.3, we report the results for the NG relaxation for the symmetric CVRP.

In this case we evaluate the scalability of the method among different dimensions

for the ∆ parameter (8,10,12,13,14), using the VRPLIB instances because of the

data-structures dimensions reached during the computations. It’s easy to notice

that the performances of the method degrade with bigger neighborhood sets, be-

cause of the increasing of atomic operations among the labels and the bigger data

transfer time from and to the GPU, but in most cases, remaining above the 10

X factor. In the asymmetric 5.4 case we can appreciate the maximum speed-up

obtained, 40 X. In this case we can show all the computation capabilities of the

device, exploiting all the parallelism levels available as described before.

5.6 Considerations and Future Work

In this chapter we highlighted the great advantages that a parallel algorithm can

bring to this pricing strategies for the VRP. In fact, inside a CG method, the

pricing problem is the most computationally expensive routine used to generate

the columns to insert inside the master. The use of a GPU seems to be a very

good alternative in terms of execution time, portability and affordability (the

device used is an high end gaming GPU). Seems notable, moreover, the great
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performances obtained for the biggest instances, the hardest to solve and the

ones taking relevant elaboration time. The future work planned is to explore

the implementation of these methods with OpenCL, with the aim to make the

methods portable on the most common parallel processors of different vendors,

and, obviously, exploit these relaxations, or some their variants, in order to design

most powerful and effective algorithms for solving instances from different classes

of VRPs.



Chapter 6

Single Source Shortest Path

Problem

6.1 Introduction

The ever more complex systems and eco-systems represented by urban centers

and industrialized countries are growing fast and, nowadays, to exploit optimally

the infrastructures composing these systems is more and more difficult. Passing

through the public transport to the goods transportation and delivery, the prob-

lems related are increasingly strategic and dealing with these is the focus of many

studies and researches from academia and private companies.

To provide high quality decision support tools is mandatory to preserve the re-

sources from the environmental point of view and enhance life’s quality in densely

populated areas. By now, for instance, a great urban center has different kinds,

or modes, of transportation, covering the city area, allowing people to move easily

from a location to another. Also in highly industrialized countries, the trans-

portation is characterized by multiple networks (railways, motorways, air-flights

. . . ), that permit a fast displacement of people and goods. The layered networks

composing these transportation infrastructures have different properties and char-

acteristics, making the related mathematical models more complex and the consis-

tent and effective resolution of optimization problem for these models a non-trivial

challenge.

91
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Routing is a widely explored research topic and has its origin in early fifties with

the well known Dijkstra’s algorithm [94], for finding the shortest path inside an

oriented graph or the Bellman-Ford algorithm [95], computationally more expen-

sive but more effective for other purposes. More generally, for routing we mean

finding the ’best’ path relative to one or more aspects of the journey: mileage,

cost, fuel consumption, time, number of transportation modes used and others. In

fact, we shift the focus from finding the shortest path in a geographical network, to

optimize a route among different layers with respect to other factors. One aspect,

mainly related to the people and goods transportation, is the arrival time to a

certain destination. In a public transport or goods delivery scenario, earlier is the

arrival time, better is the QoS.

Over the years many enhancement to the basic algorithms cited above has been

proposed, achieving good results in a large spectrum of routing problems, but

in cases where the query is strictly related to a temporal dimension, algorithm

using bi-directional search, contraction hierarchies or an heuristic to compute a

completion bound to the solution like A* [96] are not applicable because of the

changes of the networks values (mainly the edges costs) or the topology in function

of time. In this case we can only compute the routing problem’s solution using an

’augmented’ version of the Shortest Path algorithm that, up to certain dimensions,

is computationally expensive.

In this chapter we propose two parallel algorithms implemented both on CPU

(multi-core, shared memory platform) and GPU to solve the Earliest Arrival

Problem in a Time-Dependent Multi-Modal Network reporting the performance

obtained compared to the serial version.

6.2 Problem Definition

In this section we will define all problem’s peculiarities starting from the definition

of Earliest Arrival Problem, showing that can be solved using an augmented version

of the Shortest Path algorithm. We will also define a Multi-Modal Network, the

algorithm to manage the routing in this type of graph and, finally, we will add to

the model the time dimension, describing what changes will it add to the model.
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Definition 6.1. (Earliest Arrival Problem). Given a time-independent or time-

dependent network, source and target points s and t in the network, we ask for a

route in the network with the following properties:

1. The route must start at s,

2. the route ends at t,

3. the length (travel time) of all other routes satisfying the properties (1)–(2)

must be bigger or at least equal.

In other words, from all the possible routes in the network from s to t, we seek the

route with the minimum cost for arriving to t. As mentioned before, the route’s

cost can be any aspect from the fuel consumption to the travel time or a mix of

more of these criteria. In this paper we will cover only the optimization relative

to one criteria.

Analyzing the definition 6.1, we can easily notice that, substituting to the opti-

mization criteria any function of weight for the edges of the network, this problem

becomes a Single Source Shortest Path Problem. We will define the SSSP Problem

first, then we will propose the Multi-Modal and Time-Dependent version.

6.2.1 Single Source Shortest Path Problem

Shortest Path is a deeply investigated problem in the Combinatorial Optimization.

This problem and its variations are subject of research from about five decades

and can be found, often like subproblem, in a wide plethora of applications. In

our case, shortest paths are the basis for the problem we are discussing.

Definition 6.2. (Single Source Shortest Path Problem). Given a weighted, di-

rected graph G = (V,E), a source node s ∈ V , a target node t ∈ V and a weight

function w(e) for the edge e = (va, vb), va ∈ V and vb ∈ V , we ask for a path

P = {v1, ..., vk}, with the following properties:

1. The path begins at s, thus v1 = s,

2. the path ends at t, thus vk = t,



Chapter 6. SSSPP 94

3. P is minimal.

We define Len(P ) =
∑k−1

i=1 w(vi, vi+ 1), the length of the path P .

The SSSPP has some common declinations, depending on the number of sources

and target considered:

• Many-To-Many-Shortest Path Problem. This is a generalization of the Short-

est Path Problem. Instead of one node s and t we are given a set of source

nodes S ⊆ V and a set of target nodes T ⊆ V . We now ask for a shortest

path Ps,v for each pair (s, t) ∈ S × T . In multi-modal routing the Earliest

Arrival Problem will actually transform to this version of the problem.

• One-To-All-Shortest Path Problem. This is a special case of the Many-To-

Many-Shortest Path Problem where S is a singleton set consisting of one

source node s and T = V is the set of all nodes. Hence, we are asking for

shortest paths Pv to every node v ∈ V . Because the edge set of all resulting

paths T = ∪Ps,v
, v = 1, . . . , |V | forms a tree, we might also say that we

compute a shortest path tree.

• All-Pairs-Shortest Path Problem. This is a version of the Many-To-Many-

Shortest Path Problem where both S and T are the complete node set V

of the graph. Having the All-Pairs-Shortest Path Problem solved automati-

cally includes solutions for all instances of the Shortest Path Problem in the

graph. For this problem in most cases is used the Floyd-Warshall dynamic

programming algorithm [97].

All these problems can be solved using the same algorithm, executing it multiple

time often. In this paragraph we didn’t take into account the time dimension, we

will extend the model after the introduction of the Multi-Modal Networks.

We can consider the SSSPP a special case of a Multi-Modal network with only

one mode. In this case the solution algorithm for the routing problem without

time-dependencies is equivalent to the Dijkstra algorithm.

Algorithm Unimodal Routing(s, t,V,E, w())
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1. vals // Tentative Distances Values

2. preds // Predecessors vector

3. Queue Q = null // Priority Queue

4. // Data Structures Initialization

5. Q.Insert(s)

6. for i = 1 to |V | do

7. if i == s

8. then vals[i] = 0, preds[i] = 0

9. else vals[i] = ∞, preds[i] = ∞

10. // Algorithm

11. while Q 6= null do

12. n = Q.first()

13. if n == t

14. then break

15. else valn = vals[n]

16. for each succ ∈ Γn do

17. coste = w((n, succ))

18. if vals[succ] > valn + coste

19. then vals[succ] = valsn + coste

20. preds[succ] = n

21. Q.Insert(succ)

The proposed algorithm is a straightforward implementation of the Dijkstra one.

In fact in line 3 we initialize a priority queue implemented with a heap, ordered

by the tentative values, in line 5 we insert in the heap the start node s. In lines

6-9 we initialize the tentative values for each node and the predecessors to retrieve

the shortest path.

In lines 11-21 we have the core algorithm inside a do-while cycle that ends once

the queue is empty. In line 12 we extract the root from the heap, in lines 13-15

we check if we have reached the target t, otherwise we extract the cost of the

label relative to the actual node n. The foreach statement, in lies 16-21, evaluate

the new tentative values for each successor succ of n and update them if the

successor’s label is greater, keeping trace of the predecessor, n, and inserting the

successor node succ in the queue, line 21, that will reorder itself maintaining the

heap properties.
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6.2.2 Multi-Modal Networks

In this section, we define a Multi-Modal Network and the other basis on which

relies the routing for this type of networks. First, we give de definition of Multi-

Modal or Multi-Layer Network:

Definition 6.3. (Multi-Modal Network). Given a graph G = (V ,E,M ) where:

1. M = {M1,M2, . . . ,Mn} is the set of modes, or layers, composing the net-

work, where M i = (V i, Ei) is the graph representing the i mode or layer, V i

is the set of vertices of i, Ei is the set of edges of i and n = |M |,

2. V =
⋃n

i=1 V
i, with V i ∩ V j = {0}, i 6= j,

3. vi ∈ V i is a vertex for the mode i,

4. ei ∈ Ei is an edge connecting two nodes of the same mode i, e = (vih, v
i
k),

5. et ∈ Et, is an edge connecting two nodes of different modes i and j, et =

(vih, v
j
k), with i 6= j (transition edge),

6. E =
⋃n

i=1E
i ∪ Et is the set of edges of G where Ei ∩ Ej = {0}.

TheG graph is amulti-modal or multi-layer graph composed by nmodes or layers.

For each M i graph we can define a cost function wi(e
i) for the mode’s edges. For

the transition edges, the wt(et) is equal to 0.

For instance, the network of public transport in an urban area (roads, bus lines,

tram lines, trains, boats, etc. . . ), can be modelled with a multi-modal network.

Another example can be the different types of transportation for a delivery service

(postal service for instance), that has different types of networks to deliver the

goods (ship, aeroplane, etc. . . ).

The routing problem for this type of networks can be seen as Shortest Path Prob-

lem among the various, connected, modes of the network, using the relative wi()

weight functions to evaluate each time the cost of an edge. In this case we will

found a route, passing through the various modes of the network from the source

s to the target t. In this scenario, we are allowed to choose also path exploiting

various type of transportation: car, bus, trams, boats, together in the same path.
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(a) Not Convenient
Route

(b) Convenient Route

Figure 6.1: Types of Routes.

Obviously, this kind of solution is not desirable, in fact, a ‘well formed’ route is

a route passing only through certain types of modes depending on the state of

the traveler: For instance, assume that we are a tourist in Rome and we want to

visit some of the most beautiful places in the city. We are by foot and we want

a route that uses the public transport and the road network, allowing us to reach

the places we have chosen. The algorithm, as it is, can give us undesirable results

finding that the most convenient path between the Colosseum and the Vatican

Museums is taking the metro until a certain point, then take the car, take another

bus, then the car again to reach the Museums.

It’s straightforward that a path like this is not desirable, we’d like a path using

only the public transportation to reach our destination (6.1). Another side-effect

of using this algorithm on these types of networks is that while we are traveling

on a train, the railway intersects a road, without a stop for the train, that can

bring us to destination faster, the algorithm can suggest us to take that road. In

general, we are forced to evaluate paths that are compatible with the state (foot,

car, bicycle, etc. . . ) of the traveler.

6.2.3 Label Constrained Shortest Path Problem

Barrett [98] proposed an algorithm to solve the problem of not desirable routes

associating to the graph an Automaton that, treating the modes and the states

as part of a DFA, Deterministic Finite Automata, regulates the transition among

the modes of the network. We will give a brief definition for a language and an

automaton, then we will describe the algorithm based on these and its implications.

Definition 6.4. (Regular Languages). Let Σ be an alphabet. Then a language L

over Σ is regular if and only if it confirms the following construction rules:

1. The empty language {0} is regular,
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2. for each σ ∈ Σ the singleton language {σ} is regular,

3. if L1 and L2 are regular languages, then L1 ∪ L2, L1 · L2 and L∗
1 are also

regular languages.

To describe a regular language L we can use formalism like regular expression or

automata. In our case we will give a brief definition for the DFA describing the

language L.

Definition 6.5. (DFA, Deterministic Finite Automaton). A Deterministic Finite

Automaton describing the language L is given by a 5-tuple A = (Q,Σ, δ, q0, F )

where:

1. Q is the set of states composing the automaton,

2. Σ is the alphabet, a finite set of symbols,

3. δ is the transition function δ : Q× Σ → P(S),

4. q0 is the initial state.

5. F is the set of final states.

We say that a word w is accepted by A if and only if exists a path from q0 to

qf ∈ F regulated by δ.

By Kleene’s Theorem [99] each regular language L can be described by a finite

automaton in the sense that every word w ∈ Σ∗ is accepted by this automaton.

The language L and the automaton A can be interchanged.

Given the definition of language and automata, we can define the Label Con-

strained Shortest Path Problem:

Definition 6.6. (Label Constrained Shortest Path Problem). Given an alphabet

Σ, a language L ⊂ Σ∗, a weighted, directed graph G = (V,E) with Σ-labeled

edges and source and target nodes s, t ∈ Σ, we ask for a shortest path P from s

to t, where the sequence of labels along the edges of the path creates a word of L.

Thus given P = [v1, . . . , vk] it has to hold that:

label((v1, v2))label((v2, v3)(. . . label((vk−1, vk)) ∈ L. (6.1)
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This definition needs no restrictions on the language L but, for our purposes,

a regular language is sufficient to model the transition among the modes of the

network. In [98] the following theorem is proven:

Theorem 6.7. the Label Constrained Shortest Path Problem restricted to Regular

Languages, RegL-CSPP, can be solved in deterministic polynomial time.

An algorithm for solving this problem operates on a product graph between the

automaton A, describing the allowed transitions among the modes and the graph

G.

Definition 6.8. (Product Network). Given a Σ-labeled graph G = (V,E) and

a non-deterministic finite automaton A = (Q,S, δ, q0, F ), the product network

G× = (V ×, E×) is defined as follows:

1. The node set consists of product-nodes (v, q) ∈ V × where v ∈ V and q ∈ Q.

2. An edge e× = (v1, q1), (v2, q2) between two product-nodes is included in E×

if and only if e = (v1, v2) ∈ E and there is a label σ ∈ Σ for which exists

a transition q2 ∈ δ(q1, σ) in the automaton. The weight of e× is set to the

weight of e and label(e×) is set to σ.

The resulting graph is uni-modal.

In [98] is proven that this assumption holds:

Theorem 6.9. The RegL-CSPP for a Σ-labeled graph G = (V,E) from source

s ∈ V to target t ∈ V and a regular language L ⊆ Σ∗ can be reduced to the

Shortest Path Problem as follows:

1. Construct a finite automaton A = (Q,Σ, δ, S, F )describing L, where S is the

set of starting states,

2. construct the product network G× = G× A

3. solve the Many to Many Shortest Path Problem for G× using:

S =
⋃

qs∈S

(s, qs), T =
⋃

qf∈F

(t, qf ) (6.2)

where S and T are, respectively, the set of the sources and the set of the

targets inside the product graph,
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4. from all resulting paths pick the one having minimal length.

Let P = [(v1, q1), . . . , (vk, qk)]be the shortest path obtained by the algorithm in-

duced from Theorem 2. Then the length of the path in G is the same as the length

Len(P ) in G×. The actual path in G can be obtained by omitting the ‘automaton

part’ of the product-nodes, thus, yielding [v1, . . . , vk]. On the other hand, the word

conforming to L along the path can be obtained by concatenating the edge labels:

word(P ) = label((v1, q1), (v1, q2)) . . . label((vk−1, qk−1), (vk, qk)) (6.3)

The creation of the product graph can be computed in time O(|G| · |A|) which is

also polynomial. Hence, the algorithm induced by Theorem 2 runs in polynomial

time. The memory complexity and the space required to store the product graph

G× is also in O(|G| · |A|) which is extremely expensive for large instances.

The memory complexity of the product graph can be easily avoided using the

transition graph relative to the automaton A. We can compute implicitly the

shortest paths for the Many to Many SPP using an constrained version of the

Dijkstra algorithm regulated by the transition graph of the automaton.

Figure 6.2: Automaton managing four states.

In this case, the memory complexity of G× becomes O(|G|+ |A|), reducing consis-

tently the memory space required. For instance, we can assume that a traveller,

by foot, can use the public transport and walk through the streets by foot, then,

the the relative automaton will allow the moving through the various modes, like
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bus, trains or subways and the costs of the streets will be computed considering

the average speed of a man walking.

A bike trip, instead, must be constrained by the streets or the transport networks.

In fact is not allowed to ride a bicycle in a motorway or to bring it on a bus, instead

is allowed to ride in urban centers or in secondary roads and to bring the bicycle on

a train or a subway. All these aspects must be modeled by the automaton, that,

during the evaluation of the successors states and the computation of the new

tentative costs, allows the algorithm to expand or not a state. Here we propose

an augmented version of the algorithm Unimodal Routing , taking into account a

Multi-Modal Network and an automaton.

Algorithm RegL-CSPP(s, t,V,E, w(), A)

1. Queue SQ=null // Generated States of G× queue

2. // Queue Initialization

3. for each (s, qs) ∈ S do

4. SQ.Insert((s, qs),((0, 0), 0) 0)

5. // Main cycle

6. while SQ 6= null do

7. ((n, s), (p, q, val(p, q)), f(n, s)) = SQ.First()

8. if (n, s) ∈ T

9. then reached++

10. if reached == |T |

11. then break

12. for each edge e = (n, succ), succ ∈ Γn do

13. for each q′ ∈ δ(s, label(e)) do

14. if (succ, q′) /∈ SQ

15. then SQ.Insert((succ, q′),((n, s), f(n, s)), f(n, s) + w(e))

16. else if f((n, s)) + w(e) < f((succ, q′))

17. then SQ.Update((succ, q′),((n, s), f(n, s)),f((n, s))+

w(e))

In the algorithm RegL-CSPP we introduce the triple ((v, q), (p, r, f(p, r)), f(v, q))

indicating a certain node v in a state q and its value, keeping trace of the prede-

cessor triple of node p, state r and valuef(p, r) also, to retrieve the path at the

end of the computation.
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In lines 3-4 we initialize the queue SQ collecting all the G× states produced during

the computation, ordering following their value f . As in the algorithm Unimodal

Routing we implemented it with an heap. More specifically, in line 4 we initialize

all the states for the starting point s ∈ S, setting the predecessors and the values

to 0.

In lines 8-11 we check if all the targets states t ∈ T has been reached, in this case

we stop the computation. In lines 12-18 we update the data for each successor of

n. In line 13 we check if the transition of the edge e is allowed by the transition

function δ of A, if allowed, we check if the state has been already generated, if not

we insert the new triple in SQ (line 15), otherwise, we update the existing triple

with the new value, if the new path enhance the solution (lines 17-18).

6.2.4 Time-Dependent Networks

In time-dependent routing we do not longer have constant weights assigned to

the edges. To accommodate for time-dependency, we replace the edge weights

by arbitrary functions f from some function space F . The shortest s-t-path in a

time-dependent model then depends on the departure time τs of the source node.

This might result in shortest paths of different length for different departure times

or, in general, even a completely different route. In the simplest case, we can

describe these time-functions as periodic functions f : R+
0 → R

+
0 with period Π,

meaning that for each value f(τ) = f(τ mod Π).

To make the model more realistic, we need to express the F as a set of piecewise

linear functions : A periodic function f : R+
0 → R

+
0 is called piecewise linear if it

consists of a finite number of segments of linear functions. Let f be a piecewise

linear function then f can be described by a finite set P of interpolation points

where each interpolation point pi ∈ P consists of a departure time τ and an

associated function value f(τ).

The value of f for an arbitrary time τ is then computed by interpolation. This is

done differently for time-dependent road networks and public transportation net-

works. Whereas in road networks we interpolate linearly between two subsequent

interpolation points, the travel time function along a public transportation edge

is interpreted as follows. First we have to wait for the next train or aeroplane

to depart and then we have to add its mere travel time along that edge to that.
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(a) Road Network Speed Pro-
file

(b) Public Transport Speed Pro-
file

Figure 6.3: Speed Profiles.

Hence, for some arbitrary time point t we use the nearest interpolation point τ in

the future and interpolate by the formula:

f(τ) = −γ · (τi − τ) + f(τi). (6.4)

with γ ∈ [−1, 0] as the fixed gradient for f . In figure 6.3 we show the two types of

functions for the road network and the public transport network. For extending

the Dijkstra algorithm to manage time-dependency we need to add as input the

time τs of the day when the trip starts. There are two type of routing queries that

we can perform on a time-dependent graph:

• Time Queries : The time-dependent version of Dijkstra’s algorithm is almost

identical to the time-independent version as illustrated in Algorithm RegL-C-

SPP when computing time queries. The only changes to the algorithm that

need to be made are the following two:

1. we need to supply a departure time τ as additional input, as mentioned

before,

2. to evaluate the edge weights, we have to consider the current time at

which we encounter the respective edge. Let e = (v, w) be an edge

of which the weight has to be evaluated, then the time at which we

evaluate the function fe of the edge e is the departure time τ plus the

time along the path to v.

• Profile Queries : Using the previously described version of the time-dependent

query algorithm yields only shortest paths for one particular departure time
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τ . While this seems to be a canonical generalization of the time-independent

case, there is another type of query in time-dependent graphs, where we are

not only interested in the shortest path at one time point, but at all times

of day.

For example: in a railway network we state 8 o’clock as departure time τ for

a query. Let’s say there is a train departing at 8:00 to our destination takes

2 hours. But maybe there is another train departing at 9 o’clock that takes

only 1 hour and 10 minutes. Taking the second train would be a suboptimal

solution to the Earliest Arrival Problem (since the arrival time is 10 minutes

later), but its sheer travel time is 50 minutes shorter. So, maybe it would

be nice to present the user with the travel time for each possible departure

time τ < Π. In other words, the result of the query should be a piecewise

linear function f itself, where each interpolation point represents a shortest

path for that particular time.

In our work we will consider only Time Queries. In fact, other types of queries

in a time-dependent graph are extension or have as their foundation this type of

query and proposing a parallel algorithm for this problem can be useful for all the

others.

6.3 Serial Algorithm

Dean [100] proposed the extended version of the Dijkstra algorithm for time-

dependent graphs. In this section we will propose the final version of the algorithm

to compute the Shortest Path in a Multi-Modal Network with Time-Dependencies.

This extension of the problem is particularly hard to solve, because we can’t exploit

some of the most famous and effective techniques for speeding-up the computation

of Shortest Path or we need some pre-computation phases.

Algorithms like Contraction Hierarchies [101], bi-directional search, Arc-Flag [102,

103] or ALT (A* with Landmarks and Triangle Inequality) [104, 105] are not

adaptable or need some long-time pre-computation for larger graphs. Pajor [106]

proved that almost all of these methods are useless for the time-dependant case.
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6.3.1 Time-Dependent Augmented Dijkstra Algorithm

Algorithm T-D-RegL-CSPP(s, t,V,E, ftime, A, τstart)

1. Queue SQ=null // Generated States of G× queue

2. Queue Initialization

3. for each (s, qs) ∈ S do

4. SQ.Insert((s, qs),((0, 0), τ0), τstart)

5. // Main cycle

6. while SQ 6= null do

7. ((n, h), (p, q, τp,q), τn,h) = SQ.First()

8. if (n, h) ∈ T

9. then reached++

10. if reached == |T |

11. then break

12. for each succ ∈ Γ(n) do

13. e = (n, succ)

14. for q′ ∈ δ(h, label(e)) do

15. if (succ, q′) /∈ SQ

16. then SQ.Insert((succ, q′),((n, h), τn,h), τn,h + ftime(e, τn,h))

17. else if τn,h + ftime(e, τn,h) < τsucc,q′

18. then SQ.Update((succ, q′),((n, h), τn,h),τn,h+ftime(e, τn,h))

We introduce the function ftime() calculating the time for traveling the edge e.

This function can be a collection of methods created to evaluate the traveling

time, based on various factors: road type (primary, secondary, etc . . . ), the type

of public transport (bus, subway, etc . . . ), the moment of the day (traffic profiles

or other factors), the state of the automaton (depending if we are traveling by

foot or on a bicycle). The algorithm is equivalent to the RegL-CSPP but here is

computed the time for each query inside the multi-graph G. Depending on the

granularity of the problem, the time can be expressed in minutes or seconds.
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6.4 GPU Algorithm

In this section, we propose an extension of the parallel Dijkstra algorithm proposed

by [88] for computing the EAP in a Multi-Modal Time-Dependent Graph and its

porting on a GPU using the CUDA [107] programming model. First, we present

the basic algorithm, then we will introduce a new approach to compute the frontier

set Fi to enable the parallelism of the method.

6.4.1 GPU Dijkstra Algorithm

We can distinguish two parallelization alternatives that can be applied to Dijkstra’s

algorithm. The first one parallelizes the internal operations of the sequential Dijk-

stra algorithm, while the second one performs several Dijkstra algorithms through

disjoint sub-graphs in parallel [108]. Our approach is focused in the first solution.

The key of the parallelization of a single sequential Dijkstra algorithm resides in the

inherent parallelism of its loops. For each iteration, the outer loop selects a node to

compute new distance labels. Inside this loop, the algorithm relaxes its outgoing

edges in order to update the old distance labels, that is the inner loop. Parallelizing

the outer loop implies to compute in each iteration i a frontier set Fi of nodes that

can be settled in parallel without affecting the algorithm correctness. The main

problem here is to identify this set of nodes v which tentative distances V al(v)

from source s must be the minimum shortest distance. Crauser et al.[109] and

Crobak et al. [110] proposed two solutions addressing this problem. Parallelizing

the inner loop implies to traverse simultaneously the outgoing edges of the frontier

node. One of the algorithms presented in [111] is an example of this parallelization

approach.

Following the approach in [109], we explain the method for identifying the frontier

set Fi and maximizing its cardinality. It’s straightforward to highlight that bigger

is the frontier set, higher is the level of parallelism of the method.

6.4.1.1 Frontier Set

The method, in each iteration i, calculates the minimum tentative distance of

the nodes belonging to the unsettled set, Ui. The node whose tentative distance
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is equal to this minimum value can be settled and becomes the frontier node.

Its outgoing edges are traversed to relax the distances of the adjacent nodes.

In order to parallelize the algorithm, it is needed to identify which nodes can

be settled and used as frontier nodes at the same time. Martin et al. [112]

inserts into the frontier set, Fi+1, all nodes with this minimum tentative distance

with the aim to process them simultaneously. Crauser et al. [109] introduces a

more aggressive enhancement, augmenting the frontier set with nodes with longer

tentative distance. The algorithm computes in each iteration i, for each node of

the unsettled set, u ∈ Ui, the sum of:

1. its tentative distance,

2. the cost of its outgoing edges.

Afterwards, it calculates the minimum of these computed values. Finally, those

nodes whose tentative distance are lower or equal than this minimum value can

be settled becoming the frontier set.

Introducing ∆i as the threshold value computed in each iteration i that holds that

any unsettled node u with val(u) ≤ ∆i can be safely settled. The bigger the ∆i

value, the more parallelism is exploited. However, depending on the particular

graph being processed, the use of a very ambitious ∆i may induce overheads that

destroys any performance gain with respect to sequential execution.

The basic Dijkstra parallel method follows the idea proposed by Crauser [109] of

incrementing each ∆i. For every node v ∈ V , the minimum weight of its outgoing

edges, that is, ∆v = min {w(v, z) : (v, z) ∈ E}, is calculated in a pre-computation

phase. For each iteration i of the external loop, having all tentative distances of

the nodes in the unsettled set, we define

∆i = min {(val(u) + ∆v) : u ∈ Ui} (6.5)

More in general, we insert into the frontier set Fi+1 every node v with val(v) ≤ ∆i.
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6.4.1.2 GPU Implementation

Once defined the concept used for exposing the inherent parallelism inside the

Dijkstra algorithm, we provide the complete pseudo-code for the method on the

GPU.

Algorithm GPU Dijkstra(s, t,V,E, w(),∆v)

1. vals, preds, Ui, Fi

2. ∆i = ∞

3. // Data Structures Initialization

4. for i = 1 to |V | do

5. if i == s

6. then vals[i] = 0, preds[i] = 0

7. else vals[i] = ∞, preds[i] = ∞

8. // GPU Algorithm

9. Initialize<<<>>>(Ui, Fi) // Frontier and Unsettled Nodes initialization

10. Initialize(∆i) //Threshold Initialization

11. while ∆i 6= ∞ do

12. // Relax the frontier nodes

13. RELAX-KERNEL<<<>>>(vals, preds, Fi, Ui)

14. // Update ∆i

15. ∆i = DELTA-UPDATE-KERNEL<<<>>>(vals, Ui, ∆v)

16. // Update Fi+1

17. FRONTIER-KERNEL<<<>>>(∆i, Fi, Ui)

Algorithm RELAX-KERNEL(vals,preds,Fi,Ui)

1. nidx = thread.id

2. if Fi[nidx] == true

3. then for each u ∈ Γnidx
do

4. if Ui[u] == true

5. then Start Atomic Operations

6. if vals[u] > vals[nidx] + w(nidx, u)

7. then vals[u] = vals[nidx] + w(nidx, u)

8. preds[u] = nidx

9. End Atomic Operations
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Algorithm FRONTIER-KERNEL(∆i,Fi,Ui,∆v,vals)

1. nidx = thread.id

2. Fi[nidx] == false

3. if Ui[nidx] = true ∧ vals[nidx] ≤ ∆i

4. then Ui[nidx] = false,Fi[nidx] = true

The main procedure, GPU Dijkstra, uses three kernels to relax the nodes and

create the frontier and unsettled nodes sets. In lines 3-11, we initialize the data

structures used by the algorithm, lines 12-15 are the main loop, that stops once

relaxed all the nodes in the graph or reached the t node. The kernel function

Relax-Kernel relaxes all the nodes inside Fi (line 13), the Delta-Update-Kernel

updates the ∆i value using a parallel reduction. This procedure is a modified

version of the reduce3 procedure taken from the CUDA SDK that comes along

with the CUDA package from Nvidia. Frontier-Kernel is the kernel function that

creates the F set at the next iteration.

The RELAX-KERNEL procedure updates the tentative distances of the nodes

inside the F set. Each thread elaborates a node nidx, relaxing all its successors

unsettled nodes w ∈ Γnidx
. The relaxation at line 6 is an atomic operation among

the threads to avoid race conditions. We need to make this operation atomic

because, at the same time, other threads can update the same memory location

(the same unsettled node), generating inconsistent reads or writes.

The FRONTIER-KERNEL kernel generates the Ui+1 and Fi+1 sets. Each thread

is assigned to a node and checks if the node tentative distance is less or equal to

the ∆i threshold and if the node is in the Ui set. In this case the kernel inserts

the node in the Fi set.

The DELTA-UPDATE-KERNEL is a simple procedure implemented to avoid a

data transfer between the CPU and the GPU. Basically, it’s a parallel reduction

among the nodes in the Ui set, for finding the shortest tentative distance.

6.4.2 Dynamic Frontier Definition

We enhanced the Frontier-Creation-Kernel to address the Time-Dependency of

our model. We need to evaluate for each iteration i the ∆v values. The main
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problem is that we can’t evaluate a priori, the minimum cost among the outgoing

edges from the v vertex, because of the time dependency.

The only way to pre-calculate the value is to evaluate the minimum cost among

the edges for each second of the day (the granularity of our problem), for each

node, bringing to a great amount of memory used and a long computation time.

We define the set Ri as the set of the nodes u ∈ Ui which tentative distances has

been updated from the initial ∞ value, all possible members of the Fi+1 set at

the i + 1 iteration. For each node r ∈ Ri we evaluate, at time τ , the outgoing

minimum cost edge.

∆v = min {c = ftime(r, u, h, τr,u,h) : r ∈ Ri, u ∈ Γ(r) ∩ Ui, (r, u) ∈ E, h ∈ A}

(6.6)

Where r is the node in the Ri set, u is a successor of r in the Ui set and h a state

of the automaton A. ftime is the time function evaluating the cost of the edge

from r to u, in the state h of the automaton at time τ . The ∆v is computed every

iteration i, then, the values take part to the evaluation of the ∆i threshold, as

described in the FRONTIER-KERNEL to create the Fi set.

6.4.3 GPU Time-Dependent Algorithm

The porting to the GPU environment implies some modification to the data struc-

tures used by the algorithm. We can’t use dynamic data structures, performance

killers for the GPU, and, to keep trace of the tentative distances and the prede-

cessors, we will implement two bi-dimensional arrays times and preds, in which

one dimension is the |V | cardinality and the other is the number h of states in

which the traveler can be (foot,car,etc . . . ). For each state of the traveler, we have

an automaton Ah that regulates the transitions among the modes of the network.

For a more readable notation, we will call A the macro-automaton composed by

all the At automata for each type of traveler.

Algorithm GPU T-D-RegL-CSPP(s, t,V,E, ftime(),∆v)

1. vals, preds, Ui, Fi, Ri
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2. ∆i = ∞

3. for h = 1 to |TravelerStates| do

4. for i = 1 to |V | do

5. if i == s

6. then vals[h][i] = 0, preds[h][i] = 0

7. else vals[h][i] = ∞, preds[h][i] = ∞

8. // GPU Algorithm

9. // Frontier, Unsettled Nodes and R initialization

10. Initialize<<<>>>(Ui, Fi, Ri)

11. Initialize(∆i) //Threshold Initialization

12. while ∆i 6= ∞ do

13. // Relax the frontier nodes

14. RELAX-KERNEL<<<>>>(vals, preds, Fi, Ui, A)

15. // Update ∆v

16. ∆v=DYNAMIC-∆v-KERNEL<<<>>>(vals, Ui, Ri, A)

17. // Update ∆i

18. ∆i = DELTA-UPDATE-KERNEL<<<>>>(vals, Ui, ∆v)

19. // Update Fi+1

20. FRONTIER-KERNEL<<<>>>(∆i, Fi, Ui)

Algorithm DYNAMIC-∆v-KERNEL(Ui,Ri,∆v,vals, A, τ)

1. nidx = thread.x.id

2. hidx = thread.y.id

3. if Ri[nidx]==true

4. then τ = vals[hidx][nidx]

5. for each u ∈ Γnidx
∩ Ui do

6. edge e = (nidx, u)

7. for each q′ ∈ δ(hidx, label(e)) do

8. if ∆v[nidx] > ftime(e, τ)

9. then ∆v[nidx] = ftime(e, τ)

Algorithm RELAX-KERNEL(vals,preds,Fi,Ui, A)

1. nidx = thread.x.id

2. hidx = thread.y.id

3. if Fi[nidx] == true

4. then τ = vals[hidx][nidx]
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5. for each w ∈ Γnidx
do

6. edge e = (nidx, w)

7. for each q′ ∈ δ(hidx, label(e)) do

8. if Ui[w] == true

9. then Start Atomic Operations

10. vals[hidx][w] = min(vals[hidx][w], vals[hidx][nidx] +

ftime(e, τ))

11. preds[hidx][w] = nidx

12. End Atomic Operations

The GPU T-D-RegL-CSPP algorithm has the same behaviors of the original one,

except for the Dynamic-Deltav-Kernel at line 14, described in 6.4.2. The Delta-

Update-Kernel and Frontier-Kernel are the same described in 6.4.1.2, only chang-

ing the input data. In Relax-Kernel we introduced the automaton A that regulates,

at line 7, the transition to the w ∈ Γ nodes. Here we have two indexes to address

the vals and the preds matrices.

The hidx index represent the traveler’s state and the index nidx the node to ex-

pand. In this case we use a bi-dimensional block indexing to create the CUDA

computational grid on the GPU. In lines 9-12 we have the atomic updates for

the tentative distances and the predecessors. The τ variable (line 4), represent

the actual time, used to evaluate the edge cost with the ftime function in line 10.

The Dynamic-∆v-Kernel exploit the same bi-dimensional indexing used for the

Relax-Kernel, in line 5 we select the successors of the nidx vertex that can be in

the i+1 iteration regulated by the automaton, line 7, and we evaluate the cost of

the edge at line 8, using the ftime function, updating, if necessary, the ∆v values

in line 9.

6.5 Shared Memory Algorithm

Analyzing in detail the serial algorithm, we can observe that we can compute, for

each traveler state h a T-D-RegL-CSPP in a state-space of labels at least equal to

the dimension of the graph’s nodes set V . Under this prospective, we can describe

the state-space in a bi-dimensional matrix with h rows, one for each traveler state,

and |V | columns. For each h state, we can compute a Time-Dependent-RegL-

CSPP as described by the algorithm T-D-RegL-CSPP completely decoupled from
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the others. In fact we will have independent data structures (the h row in the

matrices for the predecessors and the tentative distances) and an independent pri-

ority queue. Noticed these peculiarities, we can re-write the algorithm exploiting

the characteristics described above:

Algorithm T-D-RegL-CSPP2 (s, t,V,E, ftime, A, τstart)

1. Queue Q=null // Generated States of G× queue

2. vals, preds

3. // Data Structures Initialization

4. for h = 1 to |TravellerStates| do

5. for n = 1 to |V | do

6. if n == s

7. then vals[h][n] = τstart, preds[h][n] = 0

8. else vals[h][n] = ∞, preds[h][n] = ∞

9. // Algorithm

10. for h = 1 to |TravellerStates| do

11. // Queue Initialization

12. Q.Insert((s))

13. while SQ 6= null do

14. n =SQ.First()

15. τ = vals[h][n]

16. if (n, h) ∈ T

17. then break

18. for each u ∈ Γn do

19. edge e = (n, u)

20. for q′ ∈ δ(h, label(e)) do

21. if vals[h][u] > vals[h][n] + ftime(e, τ)

22. then vals[h][u] = vals[h][n] + ftime(e, τ)

23. preds[h][u] = n

24. if Q.InQueue(u)

25. then Q.Update(u)

26. else Q.Insert(u)
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In lines 4-8 we initialize the tentative distance matrix vals and the predecessors

matrix preds. For each traveler state h we initialize the start node to τstart and

the predecessor to 0.

In lines 10-26 we evaluate, for each traveler state, the T-D-RegL-CSPP as done

in the original algorithm. As we can see, every h state is independent from the

others, allowing us to evaluate the states in parallel.

6.5.1 OpenMP Porting

OpenMP API [113] seems to be the best option to parallelize the algorithm pro-

posed in the previous paragraph. In fact, we can easily parallelize the method,

using the fork/join programming model, assigning to each thread a traveler state.

With few pre-processors directives, we can exploit the parallelism inside multi-

core/multi-threaded CPUs.

Algorithm T-D-RegL-CSPP OMP(s, t,V,E, ftime, A, τstart)

1. Queue Q=null // Generated States of G× queue

2. vals, preds

3. // Data Structures Initialization

4. for h = 1 to |TravellerStates| do

5. for n = 1 to |V | do

6. if n == s

7. then vals[h][n] = τstart, preds[h][n] = 0

8. else vals[h][n] = ∞, preds[h][n] = ∞

9. // Algorithm

10. SetThreads(|TravellerStates|)

11. # start parallel region

12. h = GetThreadID()

13. // Queue Initialization

14. Q.Insert((s))

15. while Q 6= null do

16. n =Q.First()

17. τ = vals[h][n]

18. if (n, h) ∈ T
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19. then break

20. for each u ∈ Γ(n) do

21. edge e = (n, u)

22. for q′ ∈ δ(h, label(e)) do

23. if vals[h][u] > vals[h][n] + ftime(e, τ)

24. then vals[h][u] = vals[h][n] + ftime(e, τ)

25. preds[h][u] = n

26. if Q.InQueue(u)

27. then Q.Update(u)

28. else Q.Insert(u)

29. # end parallel region

As we can see, the modification to the code are minimal. We introduce only the

directives in pseudo-code to the pre-processor in lines 9-11. In line 11 we simply

get the thread id and use it to indexing the state. In line 9 we spawn a thread for

each state. In line 10 we declare the parallel section (fork) and, finally, in line 29

we close it (join).

6.6 Computational Results

We tested our parallel methods reporting the Speed-Up factor with respect to the

serial version of the algorithm. Out test machine is a workstation equipped with a

Intel Core i7 920 @ 2,9 GHz with 6 Gigabytes of RAM and a GPU Nvidia GTX570

with 1,280 Gigabyte of GDDR5 memory on board, 480 CUDA Cores @ 1,464 GHz.

For each instance we report the serial time, the relative parallel time and the

Speed-Up factor obtained. For each instance, we evaluated the performance for an

increasing number of traveller state h (2,3,4,6,8) and, consequentially, for a bigger

state-space for the algorithm. The time horizon is one day and the granularity of

time is expressed in seconds (one day = 86400 seconds) . The Speed-Up factor is

computed: SpeedUp = T imeserial/T imeparallel.

6.6.1 Data Sets Creation

The data set used as benchmark for the methods is a set of 10 instances generated

as follows:
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• we selected 10 urban centres from the OSM [114] repository,

• extracted the relative graph, keeping trace of the streets classes ( primary,

secondary, etc . . . ),

• we created 4 dense random graphs of 500000, 400000, 300000 and 200000

nodes, for the modes over the geographical network,

• connected with transition edges all the nodes of the random graphs to the

geographical network,

• connected with transition edges the modes among them.

We used the street classes from OSM to calculate the journey time using the speed

limits relative to that class and the speed profile described in 6.2.4 as penalties.

For the other modes, we assume that represent the public transport networks

(metro, bus, trams, etc . . . ) we used a constant speed limit and the speed profiles

for the public transport described in the previous sections. The path is calculated

as depicted in figure 6.4, from an extreme point to another of the area, to force

the method to visit all the graph.

Figure 6.4: Test Path in Berlin

6.6.2 Results

In this section we provide the experimental results for the instances described

above. First, we give some data relative to the instances dimensions, then, the rel-

ative computational times for the serial implementation, the GPU implementation
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and the parallel CPU implementation. We indicate with Φ = TravelerStates ∗V

the dimension of the state-space.

Figure 6.5: Serial times vs OpenMP times for the Berlin instance

Figure 6.6: Speed-Up for different h values for the Los Angeles instance
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Table 6.1: Test instances dimensions

Instance Nodes Edges Modes Φ (h = 2) Φ (h = 3) Φ (h = 4) Φ (h = 6) Φ (h = 8)
Berlin 1594184 26360404 5 3188368 4782552 6376736 9565104 12753472
London 1962806 27134087 5 3925612 5888418 7851224 11776836 15702448
Los Angeles 1845707 26957936 5 3691414 5537121 7382828 11074242 14765656
Melbourne 1636709 26438780 5 3273418 4910127 6546836 9820254 13093672
Milan 1515734 26154972 5 3031468 4547202 6062936 9094404 12125872
Moskow 1621233 26423233 5 3242466 4863699 6484932 9727398 12969864
New York 1650314 26519156 5 3300628 4950942 6601256 9901884 13202512
Paris 1654535 26457090 5 3309070 4963605 6618140 9927210 13236280
Rome 1490676 26098377 5 2981352 4472028 5962704 8944056 11925408
Tokyo 2600054 29232779 5 5200108 7800162 10400216 15600324 20800432
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Table 6.2: Computational results on CPU

Instances Serial OpenMP SpeedUp
Name h = 2 h = 3 h = 4 h = 6 h = 8 h = 2 h = 3 h = 4 h = 6 h = 8 h = 2 h = 3 h = 4 h = 6 h = 8
Berlin 3.90491 7.19491 9.16738 12.35290 18.62190 4.00861 4.83804 4.64429 5.04666 5.84201 1.0 X 1.5 X 2.0 X 2.4 X 3.2 X
London 4.27784 7.43718 9.51450 13.39980 20.09110 4.12370 4.51029 4.80851 5.20207 6.24187 1.0 X 1.6 X 2.0 X 2.6 X 3.2 X
Los Angeles 4.31991 6.99828 9.12968 12.88160 20.42397 4.22763 4.33566 4.63512 5.00295 5.91230 1.0 X 1.6 X 2.0 X 2.6 X 3.5 X
Melbourne 4.00122 6.65853 8.29722 10.70190 16.39150 3.97519 4.33418 4.68507 5.03967 5.89474 1.0 X 1.5 X 1.8 X 2.1 X 2.8 X
Milan 3.98671 6.97139 9.37055 12.58200 18.68020 4.05487 4.42006 4.72360 5.10111 5.82905 1.0 X 1.6 X 2.0 X 2.5 X 3.2 X
Moskow 3.91440 6.70570 9.01145 11.84520 18.17520 3.99721 4.29074 4.65833 4.92247 5.77115 1.0 X 1.6 X 1.9 X 2.4 X 3.1 X
New York 4.02293 6.91773 9.29118 12.68630 19.21360 3.85927 4.25159 4.71184 4.96807 5.82088 1.0 X 1.6 X 2.0 X 2.6 X 3.3 X
Paris 4.17275 7.10199 9.21067 12.81390 19.63470 4.03054 4.39365 4.73818 5.13069 5.87103 1.0 X 1.6 X 1.9 X 2.5 X 3.3 X
Rome 3.88276 6.86815 8.94360 12.50710 18.54690 3.76575 4.09594 4.49787 5.02301 5.71587 1.0 X 1.7 X 2.0 X 2.5 X 3.2 X
Tokyo 2.91007 6.02751 9.13981 13.20910 16.69850 2.53121 4.39309 4.97617 5.24188 5.91094 1.1 X 1.4 X 1.8 X 2.5 X 2.8 X
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Table 6.3: Computational results on GPU

Instances Serial CUDA
Name h = 2 h = 3 h = 4 h = 6 h = 8 h = 2 h = 3 h = 4 h = 6 h = 8
Berlin 3.90491 7.19491 9.16738 12.35290 18.62190 15.29472 35.38592 45.31485 60.45892 90.10293
London 4.27784 7.43718 9.51450 13.39980 20.09110 15.85713 34.75631 44.36134 61.98234 100.42816
Los Angeles 4.31991 6.99828 9.12968 12.88160 20.42397 14.84052 35.02742 44.23401 62.09213 100.90235
Melbourne 4.00122 6.65853 8.29722 10.70190 16.39150 14.94752 34.46021 46.28461 61.45213 88.16702
Milan 3.98671 6.97139 9.37055 12.58200 18.68020 15.95023 33.67302 42.01237 62.23768 90.56330
Moskow 3.91440 6.70570 9.01145 11.84520 18.17520 14.95064 31.10204 43.47502 60.14586 91.09123
New York 4.02293 6.91773 9.29118 12.68630 19.21360 15.88630 36.67120 44.65321 60.27451 92.34551
Paris 4.17275 7.10199 9.21067 12.81390 19.63470 15.68335 34.05063 45.75230 63.35672 91.76812
Rome 3.88276 6.86815 8.94360 12.50710 18.54690 15.95033 33.12574 45.78124 61.01203 90.01445
Tokyo 2.91007 6.02751 9.13981 13.20910 16.69850 14.12753 35.69305 42.87932 60.36789 86.13599
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6.7 Considerations and Future Work

As it emerged from the experimental test, for this particular problem, the GPU

algorithm is not effective. The main reason is that the geographical network is a

really sparse graph and the frontier set’s Fi cardinality is too small to allow the

GPU to release its massive parallelism. The multi-core/ OpenMP version, instead,

brings results near to the theoretical speed-up for a quad-core processor for the

bigger instances. The other bottleneck for the GPU performance is the load bal-

ancing inside the device where most part of the computational kernel is composed

by serial operations. The new Nvidia chips, the Maxwell series, partially resolve

this problem, introducing a new feature called Dynamic Parallelism, allowing the

kernel function to call another kernel, making the load balancing relative to non-

uniform data structures (e.g. adjacency lists) more effective. As soon as possible

we will provide a method exploiting this new feature.





Chapter 7

Membership Overlay Problem

In this chapter we will considerate a parallel version of the Subgradient Method,

used to solve the Dual Lagrangean Problem. We choose a network design problem,

the Membership Overlay Problem (MOP), relative to the Peer-to-Peer networks.

We designed three parallel algorithms for the GPU Computing, Shared Memory

and Distributed Memory environments exploiting, respectively, CUDA, OpenMP

and MPI.

7.1 Introduction

Peer-to-Peer (P2P) networks actually represent a conspicuous part of the internet

data traffic. This model, indeed, is the counterpart of the well-known and studied

client-server model. A large number of network applications (legal or not) are

already adopting this network model.

The proliferate of this kind of networks has brought to the attention of the aca-

demic community some challenging problems relative to the P2P model. In liter-

ature, for example, doesn’t exist a precise and coherent definition and a precise

and exhaustive description is hard to find.

Informally speaking, a P2P network is a totally decentralized network, composed

by peers that share, exchange and distribute data and information. The success

of this kind of networks is related to the anonymous identity of the members,

allowing, in some case, the exercise of not totally legal trades.

123
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Another peculiarity of P2P is the dynamic topology of the network. A peer can

connect to the network for a limited time and share its data or its bandwidth with

the others. Once disconnected, the topology changes and some routes for the data

packets or connections must be modified to maintain the network performances.

This strictly dynamic feature is definitely interesting and has arose critical prob-

lems for some applications. The P2P paradigm can be a fundamental part of large

scale distributed computation infrastructures or grid computing applications. The

dynamic nature of the network topology implies a significant degradation of the

performance or a non-optimal configuration of communications and connections,

compromising the system scalability.

Most of the P2P applications are based on the TCP/IP communication protocol

and, virtually, all the peers are connected to each other. A P2P network, instead,

is at application level in the ISO/OSI stack having their routing and topology.

In this scenario, network design problems seem critical, mainly the ones dealing

with the optimization of the connections for enhancing the network’s performances.

The Membership Overlay Problem (MOP) is one of these network design problems

that can arise in relation with a P2P environment. The problem consists in the

creation of an overlay network that maximizes the bandwidth throughput among

the peers inside the P2P application.

In this chapter we will describe a Lagrangean Relaxation for the problem and

a Distributed Subgradient for solving the relative Lagrangean Dual Problem pro-

posed originally by Boschetti et al. [115]. We will propose three parallel algorithms

based on this Subgradient, designed to exploit three ‘de-facto’ standard parallel

programming models, CUDA, OpenMP and MPI, relative to GPU, Shared Mem-

ory and Distributed Memory environments respectively.

7.2 Membership Overlay Problem

In this section we will illustrate the Membership Overlay Problem, giving first

an informal definition, then a mathematical formulation, describing the inherent

characteristics. MOP is a network design problem, in fact is focused on the creation

of a network topology following precise performance, fault tolerance or efficiency

constraints.
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Network Design is actually one of the most interesting and studied class of prob-

lems in the CO field. It affects many real-world applications like supply chain

logistics or telecommunications.

The problem consists in maximizing the throughput of a P2P network where the

nodes (peers) are described by a percentage of on-line time and a bandwidth to the

internet. The edges are the connections among these nodes, with a capacity. The

solution of the problem is a subset of these edges that maximize the throughput,

creating an overlay network defining a topology among the nodes.

Before the mathematical formulation, we will give an example to illustrate the

problem.

Referring to the figure 7.1, we depicted a graph representing a network with the

characteristics cited before Without lack of completeness, from now we will repre-

sent the network as a graph with nodes and edges.

Node 1 Node 2

Node 3Node 4

w:1024

p:0.70

w:512
p:0.90

w:1024
p:0.60

w:2048
p:0.90

Figure 7.1: P2P network with 4 nodes.

Every node has a percentage, p, to be on-line and a bandwidth, w, representing the

bandwidth of the internet connection. The graph is compete, due to the TCP/IP

protocol. The edges are not oriented, and we can assume that are bi-directional.

The edges have a capacity b equal to the minimum value w of the nodes that

connects as described in figure 7.2 .

Every edge has a probability, p′, equals to the product of the p probabilities of

its extremes (figure 7.3). Once characterized the graph, we need to set other

parameters that constraint the problem’s solution. Birattari et al. [116] and

Rardin and Uzsoy [117], proposed these parameters. To guarantee a minimum
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Node 1 Node 2

Node 3Node 4

w:1024

p:0.70

w:512
p:0.90

w:1024
p:0.60

w:2048
p:0.90

b: 512

b:1024

b:512

b:512

b:1024

b:1024

Figure 7.2: Edges bandwidth values.

Node 1 Node 2

Node 3Node 4

w:1024

p:0.70

w:512
p:0.90

w:1024
p:0.60

w:2048
p:0.90

b: 512

b:1024

b:512

b:512

b:1024

b:1024

p’:0.63

p’:0.54

p’:0.63

p’:0.54

p’:0.81p’:0.42

Figure 7.3: Edges p’ values.

QoS (Quality of Service) is necessary to set a bandwidth lower bound, l, for each

edge of 14 Kbps for instance, as shown in figure 7.4.

Node 1 Node 2

Node 3Node 4

w:1024

p:0.70

w:512
p:0.90

w:1024
p:0.60

w:2048
p:0.90

b: 512

b:1024

b:512

b:512

b:1024

b:1024

p’:0.63

p’:0.54

p’:0.63

p’:0.54

p’:0.81p’:0.42

l:14

l:14
l:14

l:14

l:14 l:14

Figure 7.4: Edges lower bound l.
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Similarly, is necessary to set a bandwidth upper bound, u, for each edge to avoid

the congestion of the node and the network. For the results cited above, we can

set this value to 256 Kbps (figure 7.5).

Node 1 Node 2

Node 3Node 4

w:1024

p:0.70

w:512
p:0.90

w:1024
p:0.60

w:2048
p:0.90

b: 512

b:1024

b:512

b:512

b:1024

b:1024

p’:0.63

p’:0.54

p’:0.63 p’:0.54

p’:0.81p’:0.42

l:14

l:14 l:14

l:14

l:14 l:14

u:256

u:256

u:256 u:256

u:256

u:256

Figure 7.5: Edges upper bound u.

In figure 7.6 is described the optimal solution for the proposed example.

Node 1 Node 2

Node 3Node 4

w:1024

p:0.70

w:512
p:0.90

w:1024
p:0.60

w:2048
p:0.90

161.28

161.28

107.42 207.36

138.34

Figure 7.6: MOP Optimal Solution.

More in details, the value for an edge is given by uijp
′
ij and the optimal value

of the problem will be the sum of these values relative to the edges in solution:
∑

uijp
′
ij. In figure 7.6 we show the problem’s solution, coloring in green the edges.

The final values is 775.68 and the edge (2, 3) has been rejected from the solution.

The resulting sub-graph is the overlay network that maximize the throughput for

the P2P network.
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7.2.1 Definition and Mathematical Formulation

Given a graph G = (V,E) where n = |V |, the vertices are the peers of the P2P

network and the edges the possible connections among the vertices. Two edges i

and j are connected by the edge (i, j) if both nodes can send messages each others,

using the underlying routing structure (the internet typically). Each node i can

enter and exit the network, according to the P2P model, and, when is on-line, can

share a limited amount of bandwidth. Each node is characterized by two weights:

pi e wi, respectively the connection time, expressed in percentage (1 = always on

line, 0 = never on line) like described by Saroiu et al. [118] and the available

bandwidth of its connection. δ(i) is the neighbors set for the node i.

The Membership Overlay Problem consists in finding a sub-graph G′ = (V,E ′)

from G. The edges of G′ define that two nodes decide to allocate a part of their

bandwidth to communicate between them. If bi e bj are the bandwidths of node

i and j, the available bandwidth for the edge (i, j) is bij = min{bi, bj}. The two

bandwidth values can be equal to the wi and wj values, saturating the nodes or

inferior in relation to the other nodes in the graph. Anyway, we will define an

upper bound,uij and a lower bound, lij, to guarantee a minimum QoS and to

avoid the network’s congestion, respectively.

The graph G′ obtained will have the following peculiarities:

1. the global throughput is maximized;

2. the graph G′ diameter is logarithmic, creating a connected graph;

3. the total bandwidth used by each node i is less or equal to bi.

From these first considerations, we can assume that for each node i is not necessary

the global knowledge of the graph, but only the state of the nodes in δ(i).

Following the definition given by [117], we can define MOP a control problem

that : ‘must be solved frequently and it involves decision over a relatively short

horizon’. Solutions for these kind of problems ‘must be obtained in near real time,

algorithms must run in fractions of seconds’ and ‘quality matters somewhat less’

than speed.

This kind of problems is often linked to critical applications in robotics or au-

tomations in general, also in high-precision tools or car control units. Taking into
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account these factors, seems mandatory design fast and effective algorithms for

giving a good solution to the problem in a short execution time.

In the next section we will provide a Mixed Integer formulation for the static

version of MOP (SMOP), from this formulation will be derived a polynomial upper

bound and a relaxation framework.

7.2.2 MIP Formulation

Static Membership Overlay Problem can be formulated as follows. We have two

set of decision values {xij} and {ξij}, (i, j) ∈ E. The xij continuous variables

defines the bandwidth between i e j and 0 ≤ xij ≤ uij . The binary variables

ξij are 1 if the edge (i, j) is used to connect the nodes, 0 otherwise. The MIP

formulation is the following:

zSMOP = max
∑

(i,j)∈E

pijxij (1)

s.t.
∑

j∈δ(i)

xij ≤ bi, i ∈ V (2)

lijξij ≤ xij ≤ uijξij, (i, j) ∈ E (3)

ξij ∈ {0, 1}, (i, j) ∈ E (4)

(7.1)

where pij = pi × pj for each edge (i, j) ∈ E and δ(i) represent the neighborhood

of i in G (in our case δ(i) = V/{i}, G is complete). The objective function (1)

maximizes the total bandwidth given by the sum of all the assigned bandwidths

to each connection (i, j) ∈ E weighted by their up-times (on-line times) p. The

constraints (2) ensure that the bandwidth assigned to the i node does not exceed

the limit bi.

Static Membership Overlay Problem is an NP-Hard problem, setting lij = uij , for

each edge (i, j) ∈ E. SMOP can be described as a Multidimensional Knapsack

Problem:



Chapter 7 MOP 130

zMKP = max
∑

(i,j)∈E

pijuijξij (5)

s.t.
∑

j∈δ(i)

uijξij ≤ bi, i ∈ V (6)

ξij ∈ {0, 1}, (i, j) ∈ E (7)

(7.2)

That is the generalization for the Knapsack 0-1 where the bin has more than one

dimensional constraint and the objective is to maximize the use of the bin.

7.3 Linear and Lagrangean SMOP Relaxations

7.3.1 LP Relaxation

The SMOP LP relaxation, zLP , is the following:

zLP = max
∑

(i,j)∈E

pijxij (8)

s.t.
∑

j∈δ(i)

xij ≤ bi, i ∈ V (9)

lijξij ≤ xij ≤ uijξij, (i, j) ∈ E (10)

0 ≤ ξij ≤ 1 (i, j) ∈ E (11)

(7.3)

We relaxed the (7) constraint, making it continuous: 0 ≤ ξij ≤ 1. This relaxation

gives us an upper bound to the integer solution for SMOP, bound that we will

use to evaluate the effectiveness of the Lagrangean bound that we will describe in

the next section. We can easily compute the LP relaxation using a linear solver

(CoinMP or CPLEX).

7.3.2 Lagrangean Relaxation

The Lagrangean relaxation for SMOP can be formulated associating a non negative

penalty λi to each constraint (2). The formulation, called zLR(λ), is the following:
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zLR(λ) = max
∑

(i,j)∈E

p′ijxij +
∑

i∈V

biλi (12)

s.t. lijξij ≤ xij ≤ uijξij, (i, j) ∈ E (13)

ξij ∈ {0, 1}, (i, j) ∈ E (14)

(7.4)

that is equivalent to the problem:

zLR(λ) = max
∑

(i,j)∈E

p′ijxij +
∑

i∈V

biλi (15)

s.t. 0 ≤ xij ≤ uij, (i, j) ∈ E (16)

(7.5)

where p′ij = pij − λi − λj and the {ξij} variables are not necessary.

Given λ, the optimal value of zLR(λ) is computed according to the following

observations :

• if p′ij ≥ 0 we use all the bandwidth available, then the edge will be part of

the solution: ξij = 1 e xij = uij

• if p′ij < 0, the connection is discarded: ξij = 0 e xij = 0

The Dual Lagrangean Problem associated can be described as follows:

zLR(λ
∗) = min{zLR(λ) : λ ≥ 0} (7.6)

7.4 Subgradient Algorithm

The Subgradient algorithm proposed by Shore in [43] and successfully used by

[39–42] is an iterative procedure that, at each iteration k, computes a new approx-

imation λk+1 of the Lagrangean multipliers in such a way that, for k → +∞, λk is

an optimal or near optimal solution of the corresponding Lagrangean Dual. Let xk

of cost zLR(λ
k) obtained at iteration k by solving problem 7.5 setting λk = λk+1.

The Lagrangean multipliers can be updated as follows:

λk+1
i = max{0, λki + αkgki }, i ∈ V (7.7)
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where:

gki =
∑

j∈δ(i)

xkij − bi, i ∈ V (7.8)

is the i-th component of the subgradient gk and αk is the length of the step

along the search direction given by the subgradient itself. In literature has been

proposed several versions of the step size αk update. In this chapter we will take

in consideration the standard one proposed by Polyak [119] and a constant one

(called quasi-constant) for a fully distributed algorithm proposed by [115].

The standard update rule can be described as follows:

αk = βk z̄ − zLR(λ
k)

∥

∥gk
∥

∥

(7.9)

where z̄ is an overestimate of zLR(λ
∗). Polyak proved the convergence of the

method for ǫ ≤ βk ≤ 2. Instead of a overestimate of the Lagrangean function, is

possible, in many application, substitute it with:

αk = βk 0.001zLR(λ
k)

∥

∥gk
∥

∥

(7.10)

Usually, the βk step is initialized with a value dependent to the considered problem

and updated (e.g βk+1 = 0.5βk) if after and arbitrary number of iteration the

zRL(λ
k) is not improved.

Our implementation of the standard subgradient algorithm implements the fol-

lowing update rule for the Lagrangean penalties:

λk+1
i = max{0, λki + β

0.01zLR(λ)

‖g2‖
gki } (7.11)

7.5 Distributed Subgradient

The Lagrangean relaxation proposed in 7.3.2 doesn’t take into account the dynamic

aspect of a P2P net, considering static the topology of the network. In fact, in
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a P2P environment, the nodes join and exit dynamically from the net and for

each node is impossible to have a consistent view of the graph’s status and the

optimization process described above is not effective.

This aspect makes impossible to built an optimization process based on global

parameters (e.g. the g subgradient).

Deeply analyzing the P2P environment we can observe that:

• each node has a local knowledge of the net. It is aware only of the status of

its neighbors,

• each node can optimize its parameters only looking at the behavior of its

neighbors,

• the potentially infinite time horizon of the net brigs to a constant optimiza-

tion, based on the changing graph topology (e.g. selecting a new set of

connections because of the exit of some nodes from the net),

• each node, computing its local optimization step, can contribute to the global

optimization of the graph, in an asynchronous fashion.

Aware of these observations we can draw some guidelines for the design of a

distributed algorithm:

• the optimization step is local, each node compute its values through its

knowledge of the net and its connections,

• the optimization process must be asynchronous,

• the optimization process must be distributed among the nodes of the graph,

• once each node computed its optimization step, communicate to others its

results and create the overlay network. When one or more nodes exit the

net, each node optimize again, considering the new topology.

These considerations allow us to indicate the behavior of a distributed subgradient:

• each node will compute its Lagrangean penalty λi, according to its local

knowledge,



Chapter 7 MOP 134

• each node will compute its part of the global objective function,

• each node will update its penalty exploiting a local method,(e.g. ‖g‖ can’t

be considered),

• each node will compute its optimization step using the updated penalties

from the other nodes.

We report, after the previous considerations, a dynamic, asynchronous and fully

distributed subgradient. This approach doesn’t solve the Lagrangean problem of

the original graph G, but for each node of the graph. Given:

Gh(Vh, Eh) (7.12)

containing only the h node and its neighborhood δ(h), with:

Vh = δ(i) ∪ {h}

Eh = {(i, j) ∈ E : i, j ∈ Vh}
(7.13)

and a set of Lagrangean penalties λ = {λ0, . . . , λk} with k = 1, . . . , |Vh| for each

subgraph Gh(Vh, Eh), h ∈ V , we solve the following problem:

zhLR(λ) = max
∑

(i,j)∈Eh

1

2
p′ijxij + bhλh (17)

s.t. 0 ≤ xij ≤ uij , (i, j) ∈ Eh (18)

(7.14)

This problem is derived directly from the 7.5, considering only the h node. The

global value of the objective function is given by zLR(λ) =
∑

h∈V z
h
LR(λ).

The coefficient 1
2
is included for avoiding the double evaluation of the node and

its edges.

7.5.1 Algorithm foundations

The proposed formulation suggests an algorithm that follows the steps:
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Step 1 At each iteration k each node h request the Lagrangean penalties from

its neighborhood i ∈ δ(h),

Step 2 exploiting the new penalties, the node h locally optimize, solving the

problem zhLR(λ) and computing its solution xij ,

Step 3 node h updates its penaltyλh, λh = max{0, λh + αk
hgh}.

It’s trivial to notice that we can’t perform at each step the exchange of the λh

penalties because of the computational cost of the communications. To avoid this

problem and enhancing the algorithm’s performances, [115] proposed a two-level

optimization process:

I Level (Core Optimization) An internal loop in which h optimize its zhLR(λ)

value, using its λh penalty and keeping constant the penalties λi from its

neighborhood,

II Level (External Optimization) once each node h ∈ G completed their op-

timization step, each penalty is updated and sent to the neighborhood, then,

completed the communication, it’s possible to each node to perform another

Core Optimization step.

7.5.2 Quasi-constant step size update

The main problem afflicting the distributed subgradient is the update of the λh

penalties. We can’t use a standard step update rule, like the one described in 7.4.

The h node doesn’t have a consistent knowledge of the network and to perform

other communications will degrade the method’s performances.

It’s necessary use an update rule that exploit constant and local parameters. This

rule is named quasi-constant step size rule:

Step 1 initially α0 = αstart an arbitrary small value,

Step 2 once the bound is improved, the step size is incremented αk+1 = γαk, con

γ > 1, by means of a constant defined a priori,
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Step 3 if the bound is not improved for a given number of iterations, the step size

is reduced αk+1 = max{γ
′

αk, αmin} where 0 < γ
′

< 1 and 0 < αmin < αstart,

otherwise αk+1 = αk.

The subgradient gkh is also computed using only the local xh solution.

The rule for updating the Lagrangean penalties is:

λk+1
h = max{0, λkh + αk

hg
k
h} (7.15)

7.5.3 Algorithm description

We can summarize the two level optimization procedure as follows:

Algorithm Inner-Subgradient(h,λ′)

1. Initialize λi = λ′i for each i ∈ Vh = δ(h) ∪ {h}

2. while it < InnerMaxIter do

3. Solve zhLR(λ)

4. Update only the node h penalty: λh = max{0, λh + αhgh}

5. if zhLR(λ) < zhLR(λ
′)

6. then λ′h = λh

Algorithm External-Optimization()

1. while et < ExtMaxIter do

2. for h = 1 to |V | do

3. Inner-Subgradient(h, λ)

4. Send each λh to each j ∈ δ(h)

The External-Optimization algorithm manages the external optimization step,

calling the Inner-Subgradient procedure for each node of the graph (line 3). Each

node h do its optimization step, solving its Lagrangean Problem zhLR(λ) (line 3),

updating its penalty (line 4) and, re-optimizing with the new λ, for a given number

of iterations. At the end of the main procedure External-Optimization the best

penalties for each node is send to the other peers of the network (line 4).
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7.6 Computational Results

In this section we propose the computational result regarding the distributed sub-

gradient algorithm, compared to the standard one and the LP relaxation of the

problem, computed using CPLEX and CoinMP.

The test sets are provided by Boschetti et al. [115]

We call STD the standard subgradient algorithm and DIST the distributed one.

The standard subgradient is implemented using the standard update rule proposed

by Polyak: αk = βk 0.001zLR(λk)

‖gk‖
, with these parameters:

• β0 = 0.005, start step,

• ∆k = 75, number of iterations before computing a smaller step: βk+1 =

0.95βk,

• MaxIter = 10000, max number of iterations,

• Stop Condition: if the bound is not improved at least of 0.1% in the last

3000 iterations, the method is stopped.

The parameters of the DIST algorithm are:

• αstart = 0.0025,

• αmin = 0.000005,

• γ = 1.005,

• γ′= 0.95.

• ExtMaxIter = 500.

• InnerMaxIter = 20.

• ∆k = 10.

The CPLEX version is the 11.2 and the CoinMP one is 1.7. We report the average

value of the instances in the set, the execution times and the Gap% (Gap =

100 ×
zLRopt−zLP

zLP
) between the LP relaxation and the results computed by the

subgradient algorithms.



Chapter 7 MOP 138

The test machine is equipped with an Intel i7 Core 920 @ 2.8 GHz and 6 Gigabytes

of RAM.
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Table 7.1: Gaps and execution times for LP, STD, DIST.

Problem Group LP STD DIST

Name zLP (AV G) CoinMPt CPLEXt Time Gap% Time Gap%

grafo50a-14 8181.31 0.06 0.04 0.61 0.0100 0.04 0.2810
grafo100a-14 18898.20 0.23 0.05 2.78 0.0020 0.14 0.4070
grafo250a-14 70508.01 3.69 0.35 7.89 0.0200 2.55 0.5430
grafo500a-14 151190.40 92.96 1.91 52.65 0.0100 9.82 0.3800
grafo750a-14 238698.34 761.80 4.79 150.09 0.0330 37.50 0.0000
grafo1000a-14 316579.60 3203.72 10.95 330.12 0.0150 52.01 0.0001

grafo50a-128 8271.55 0.06 0.02 0.62 0.0010 0.05 0.2950
grafo100a-128 21850.80 0.18 0.05 2.43 0.0021 0.17 0.1180
grafo250a-128 68858.90 3.85 0.41 7.89 0.0250 2.53 0.3900
grafo500a-128 153809.50 108.38 1.90 52.65 0.0100 9.83 0.0060
grafo750a-128 242610.80 770.96 5.03 150.09 0.0343 37.56 0.0010
grafo1000a-128 336517.60 2734.91 9.06 330.12 0.0124 52.06 0.0001

grafo50b-14 1092.54 0.03 0.02 0.64 0.0300 0.03 0.5640
grafo100b-14 2298.66 0.09 0.08 2.65 0.0010 0.16 0.4630
grafo250b-14 5447.14 0.72 1.35 8.56 0.0110 2.58 0.5850
grafo500b-14 11198.03 4.93 12.37 52.65 0.0060 9.96 0.4740
grafo750b-14 16524.70 17.17 47.03 110.09 0.0231 38.04 0.4350
grafo1000b-14 22448.11 50.93 164.76 200.15 0.0260 53.78 0.4330

grafo50b-128 1565.68 0.03 0.01 0.65 0.0100 0.04 0.4320
grafo100b-128 3243.71 0.09 0.09 2.38 0.0020 0.16 0.3780
grafo250b-128 8110.50 0.71 1.40 8.54 0.0200 2.57 0.5330
grafo500b-128 16062.21 3.98 13.76 52.65 0.0140 9.94 0.4920
grafo750b-128 23748.90 12.85 52.10 150.09 0.0190 37.96 0.4840
grafo1000b-128 32271.93 31.71 204.95 223.12 0.0050 53.77 0.4950



Chapter 7 MOP 140

It’s straightforward to notice that CPLEX outperforms the execution time of

CoinMP, confirming it’s efficiency. The Lagrangean relaxations proposed provide

good quality bounds, competitive with the LP relaxation of the problem. For the

biggest instances, the execution times are comparable to the CPLEX one and in

some cases, like the grafo1000b-128 set where the execution time are better than

the CPLEX one. Obviously, the STD algorithm has better results than DIST,

having a global knowledge of the network, using global parameters, like described

in 7.4, but, for our purposes this approach is not applicable.

7.7 Shared Memory Algorithm

The shared memory algorithm proposed exploits the inherent parallelism inside

the distributed subgradient. The problem granularity is straightforward: each

node h is an independent entity to consider and we can map a subset of nodes

for each thread spawned in a parallel cycle. We used OpenMP because is a de-

facto standard for the shared memory parallel programming model and for its

portability. The simplicity of implementation and the non-invasive pre-processor

calls to the APIs enable a fast code deploying, adding few lines of code to the

serial version.

Each node has its own data structures to compute its zLR(λ) value and a pri-

vate array λnodes for storing the penalties relative to the other nodes. The used

processor for testing the algorithm, an Intel Core i7 @ 2.8 GHz, implements the

Hyper-Threading [120] proprietary technology by Intel giving to a quad-core pro-

cessor the ability to act like a processor with the double of cores (in our case

8 cores). In our test, we reported the best speed-up value spawning 8 threads,

theoretically, one thread per core.

The load balancing is totally managed by OpenMP, that assigns to each thread

an equal number of nodes, as shown in picture 7.7, relative to an instance with

1000 nodes.

As mentioned before, the insertion of the OpenMP directories is not invasive and

the parallel algorithm has few modifications compared to the serial one.
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CORE 2 CORE 1 CORE 0 CORE 3 

CORE 4 CORE 5 CORE 7 CORE 6 

125 Nodes 125 Nodes125 Nodes 125 Nodes

125 Nodes125 Nodes125 Nodes 125 Nodes

CPU 

Figure 7.7: Nodes deploy in a eight core processor.

Algorithm Inner-Subgradient(h,λ′)

1. Initialize λi = λ′i for each i ∈ Vh = δ(h) ∪ {h}

2. while it < InnerMaxIter do

3. Solve zhLR(λ)

4. Update only the node h penalty: λh = max{0, λh + αhgh}

5. if zhLR(λ) < zhLR(λ
′)

6. then λ′h = λh

Algorithm External-Optimization-OMP()

1. while et < ExtMaxIter do

2. # parallel for private(h, λnode)

3. for h = 1 to |V | do

4. Inner-Subgradient(h, λnode)

5. # end parallel for

6. Update each λnode array with the new λh penalties

The differences between the two algorithms are minimal: we added in line 2 the

OpenMP directories, opening a parallel for (fork) and declaring private for each

thread the λnode and the h variables. Each thread, once partitioned the indexes

h, will compute the Inner-Subgradient .
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We don’t need explicit synchronization directives because the end of the parallel

region is an implicit synchronization point for the threads.

At line 5 of the main procedure, closed the parallel region (join), the algorithm

updates the new λh penalties in the λnode array of each node.

7.8 Distributed Memory Algorithm

In this case we used the hybridization of MPI with OpenMP described in 2.3.1

where the shared memory model is used to enhance the intra-node performances

of the message passing model. The algorithm exploits another level of parallelism

with the possibility to divide the graph among the cluster’s node and inside each

node, with OpenMP.

Each MPI task, deployed on a different cluster’s node, performs the External

Optimization step of a given subset of nodes Vtask. Then, the Vtask set is computed

in parallel, in the same fashion described in 7.7.

At the end of each inner cycle, once each task computed the zhLR(λ) relative to its

Vtask subset of nodes, we need a synchronization primitive (barrier) to synchronize

the tasks and broadcast consistent penalties values.

The communication step is implemented with a broadcast communication primi-

tive that updates the other tasks with the new Lagrangean penalties. The com-

putational tests has been conducted on a experimental cluster implemented with

Microsoft HPC 2008 Server with:

• 33 HP PCs with: Intel Pentium E6800 @ 3.2 GHz, 4 Gbyte of RAM,

• Windows 7 Professional Edition 64 bit, for each node,

• network switch: HP Procurve 2650.

The bottleneck relative to this cluster is the slow network that connects the ma-

chines (computation nodes). For our purposes, it’s sufficient to show the scalability

of the method in a message passing environment.
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In the 7.10 section we will observe that over a certain number of compute nodes,

the method doesn’t scale anymore, and the execution times are slowed down by

the network and the communications.

7.9 GPU Algorithm

In this section we propose a many-core algorithm for running the algorithm on

a many-core platform. As in the other chapters, we used the Nvidia CUDA par-

allel programming model for its reliability and more effective programming and

debugging tools.

For this algorithm we need to explore deeply the Inner-Subgradient procedure. It’s

necessary, indeed, to break into small pieces the steps of the Core Optimization

and design four kernels for executing the method on a GPU.

First, we propose a extended version for the Core Optimization and, then, we will

design the GPU algorithm.

Algorithm Inner-Subgradient-Extended(h,λ′)

1. while k < InnerMaxIter do

2. if zhLR(λ
k) < zhLR(λ

k−1) // If the bound is improved

3. then Compute subgradient: gkh =
∑

j∈δ(h) x
k
hj − bh

4. Compute αk: αk = αk−1γ

5. Save best λh and Xk
h

6. Update λkh: max{0, λ
k−1
h + αk}

7. Update λk with λkh

8. //Update X:

9. for each j ∈ δ(h) do

10. (phj − λkh − λj > 0)?xhj = uhj : xhj = 0

11. else Compute subgradient: gkh =
∑

j∈δ(h) x
k
hj − bh

12. if ∆ > ∆k

13. then αk = max{αk−1γ′, αmin}

14. Update λkh: max{0, λ
k−1
h + αk}

15. Update λk with λkh

16. //Update X:

17. for each j ∈ δ(h) do
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18. (phj − λkh − λj > 0)?xhj = uhj : xhj = 0

19. ∆ + +

20. k ++

In line 2 the algorithm checks if the bound has been improved. If yes, the sub-

gradient gh is computed (line 3), updated the step α, line 4, saved the penalties

and the solution (line 5). In lines 6-10, the algorithm updates the actual solution

(lines 9-10) and the Lagrangean penalties. Otherwise, the gh subgradient is com-

puted anyway together with the other parameters without saving the penalties

and the solution. In lines 4 and 12-13 the α step update is computed following

the quasi-constant rule described before.

The main idea behind the GPU algorithm is to execute in a concurrent fashion

each k iteration of each h node in the problem. Following the CUDA programming

model, we can assign to each computation block a node h and compute in parallel

each step of the Inner-Subgradient algorithm.

To minimize the communications between the HOST and the GPU, has been im-

plemented three support kernels that manipulate on the device the data structures

and manage the communications of the Lagrangean penalties.

Algorithm External-Optimization-GPU

1. BLKS = h

2. THDS = n

3. Sharedmem = THDS

4. while et < ExtMaxIter do

5. Update-X-Kernel<<<BLKS,THDS>>>(λ′, xij)

6. while k < InnerMaxIter do

7. Compute-zLR-Kernel<<<BLKS, THDS, Sharedmem>>>(zLR(λ
′),

xij)

8. Inner-Subgradient-Kernel<<<BLKS, THDS, Sharedmem>>>(λ
′,

zLR(λ
′), xij)

9. Update-Lambda-Kernel<<<BLKS,THDS>>>(λ, λ′)

The peculiarity of this algorithm is the design’s shift from executing the relaxation

of a certain number of nodes in parallel to executing the same relaxation’s step for

all the nodes in parallel. The Update-X-Kernel (line 5), updates the xij solution for
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the Lagrangean problem in parallel for each node (the number of blocks is the same

in each kernel) at the beginning of each Core Optimization step. The Compute-

zLR-Kernel (line 7), evaluates, for each node h its actual objective function value.

The Update-Lambda-Kernel (line 9), finally, at the end of the Core Optimization,

send the updated penalties to each node.

Algorithm Inner-Subgradient-Kernel(λ′, zLR(λ
′), xij)

1. h = blockIDx

2. thidx = threadIDx

3. THDS = blockDIMx

4. // Shared Memory Initialization

5. shared[thidx] = 0

6. times = |V | /THDS

7. reminder = |V |%THDS

8. if thidx < reminder

9. then times++

10. Thread-Synchronization()

11. if zhLR(λ
k) < zhLR(λ

k−1)

12. then

13. // Compute subgradient: gkh =
∑

j∈δ(h) x
k
hj − bh

14. for t = 0 to times do

15. index = h ∗ V + (thidx + t ∗ THDS)

16. shared[thidx] += xij [index]

17. Thread-Synchronization()

18. // Reduction

19. for s = THDS/2 to 0, s/ = 2 do

20. if thidx < s

21. then shared[thidx] += shared[thidx + s]

22. Thread-Synchronization()

23. gkh = shared[0]

24. // Compute αk: αk = αk−1γ

25. // Save best λh and Xk
h

26. // Update λkh

27. λ[h] = max{0, λk−1
h + αk}

28. // Update λk with λkh

29. //Update X:
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30. for t = 0 to times do

31. index = h ∗ V + (thidx + t ∗ THDS)

32. (p[index] − λ[h] − λ[(thidx + t ∗ THDS)] > 0)?x[index] = uhj :

x[index] = 0

33. else // Compute subgradient: gkh =
∑

j∈δ(h) x
k
hj − bh

34. for t = 0 to times do

35. index = h ∗ V + (thidx + t ∗ THDS)

36. shared[thidx] += xij [index]

37. Thread-Synchronization()

38. // Reduction

39. for s = THDS/2 to 0, s/ = 2 do

40. if thidx < s

41. then shared[thidx] += shared[thidx + s]

42. Thread-Synchronization()

43. gkh = shared[0]

44. if ∆ > ∆k

45. then αk = max{αk−1γ′, αmin}

46. // Update λkh

47. λ[h] = max{0, λk−1
h + αk}

48. // Update λk with λkh

49. //Update X:

50. for t = 0 to times do

51. index = h ∗ V + (thidx + t ∗ THDS)

52. (p[index] − λ[h] − λ[(thidx + t ∗ THDS)] > 0)?x[index] = uhj :

x[index] = 0

53. ∆ + +

The algorithm spawns a block for each h node. In lines 14-23 and 34-43 the sub-

gradient is computed using a modified version of the parallel reduction suggested

by [59]. In the case the bound is improved, the new α is computed (line 24), the

node’s Lagrangean penalty updated (line 27) and created the new solution for the

h node, lines 30-32. Otherwise, in the else branch of the if-then-else statement,

starting at line 33, the instructions are the same, the only difference is in the

penalty update.



Chapter 7 MOP 147

The data structures are indexed in a row-major fashion. The index value, in lines

15, 31, 35 and 51 is the one-dimensional address of the structures accessed by the

thidx thread.

The notable performances of this method is given by the use of parallel reductions

that seems to fit very well in the cluster processors of the GPU, together with

the use of the shared memory. The Kepler architecture, with 192 Cuda Cores per

cluster processor of our test device, seems to manage very well the reductions,

due to the great amount of cores in the same cluster (preliminary test done on a

Fermi GPU, with cluster of 32 Cuda Cores, showed that the reductions step was

the bottleneck for the method).

7.10 Computational Results

We present the computational results relative to the Speed-Up factors obtained

on the different parallel platforms considered. The testbed machine used for the

OpenMP and the CUDA algorithms is the same used in the paragraph 7.6 with

an Nvidia GeForce GTX 770 with 2 GigaBytes of GDDR5 memory. The cluster

used for the MPI algorithm is the one described in 7.8.

The tuning parameters are the same used in 7.6

We report the SpeedUp factor, as the ratio between the serial time of the algo-

rithms and the parallel ones, SpeedUp = T imeserial/T imeparallel.
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Table 7.2: Speed-Ups of the CUDA, MPI and OpenMP algorithms.

Problem Group Serial (AVG) (sec.) Parallel (AVG) (sec.) SpeedUp

Name Serial Time OpenMP MPI CUDA OpenMP MPI CUDA

grafo50a-14 0.041 0.024 0.650 0.023 1.708 X 0.063 X 1.754 X
grafo100a-14 0.144 0.055 0.829 0.024 2.618 X 0.174 X 5.937 X
grafo250a-14 2.550 0.652 1.522 0.171 3.911 X 1.675 X 14.873 X
grafo500a-14 9.828 2.445 1.993 0.415 4.020 X 4.931 X 23.697 X
grafo750a-14 37.509 9.370 5.747 1.343 4.003 X 6.527 X 27.933 X
grafo1000a-14 52.015 13.378 6.390 1.799 3.888 X 8.140 X 28.919 X

grafo50a-128 0.050 0.025 0.642 0.027 2.000 X 0.078 X 1.864 X
grafo100a-128 0.171 0.058 0.837 0.029 2.948 X 0.204 X 5.964 X
grafo250a-128 2.537 0.665 1.544 0.171 3.815 X 1.643 X 14.805 X
grafo500a-128 9.837 2.098 1.989 0.421 4.689 X 4.946 X 23.350 X
grafo750a-128 37.566 9.281 6.729 1.354 4.048 X 5.583 X 27.754 X
grafo1000a-128 52.062 13.467 7.400 1.798 3.866 X 7.035 X 28.953 X

grafo50b-14 0.03 0.022 0.643 0.025 1.655 X 0.057 X 1.456 X
grafo100b-14 0.16 0.049 0.889 0.028 3.388 X 0.187 X 6.022 X
grafo250b-14 2.58 0.654 1.535 0.172 3.948 X 1.682 X 14.986 X
grafo500b-14 9.96 2.136 1.998 0.426 4.667 X 4.989 X 23.384 X
grafo750b-14 38.04 9.335 6.792 1.365 4.075 X 5.601 X 27.860 X
grafo1000b-14 53.78 13.387 7.400 1.823 4.018 X 7.268 X 29.502 X

grafo50b-128 0.041 0.023 0.680 0.027 1.783 X 0.060 X 1.493 X
grafo100b-128 0.164 0.055 0.899 0.029 2.971 X 0.182 X 5.752 X
grafo250b-128 2.578 0.641 1.531 0.174 4.022 X 1.684 X 14.799 X
grafo500b-128 9.947 2.340 1.873 0.429 4.251 X 5.311 X 23.202 X
grafo750b-128 37.960 9.381 6.834 1.362 4.046 X 5.555 X 27.863 X
grafo1000b-128 53.778 13.729 7.123 1.816 3.917 X 7.550 X 29.615 X
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The experimental results show clearly that the GPU algorithm obtains the best

Speed-Up factor among the proposed solutions, lowering the execution time more

than one order of magnitude. The effectiveness of this method is a consequence

of the massively parallel architecture implemented in the GPU, allowing us to

execute in a parallel fashion a large number of operations. The other two solu-

tions, indeed, obtained good results, proving the intrinsic parallel nature of the

distributed subgradient.

For what concerns the MPI algorithm, we are aware that the used cluster is not

the best option to test our method. We are sure that, executing the algorithm

on faster (mainly on the communication side) infrastructure, the execution times

can be lower. We used only 15 compute nodes, because, as shown in figure 7.8a, a

larger number of compute nodes brings to a degradation of the performance, due

to communications.

The OpenMP algorithm has the quality that is almost the same with respect to the

serial version, due to the intelligent design of the OpenMP’s directives, allowing

to achieve good results modifying few parts of the original code.

(a) MPI Performance degrada-
tion for grafo1000a-128

(b) Platforms comparison

Figure 7.8: Performances evaluation.

7.11 Considerations and Future Work

In this chapter we presented three parallel algorithms for finding a bound to the

Membership Overlay Problem, relative to the Peer-2-Peer network model. The

results reported show the efficiency of the GPU algorithm, executed on a mid-level

consumer device. The others algorithm, indeed, showed good results, proving the

method’s high scalability. We planned to apply this new kind of relaxation to other
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Combinatorial Optimization problems, to verify the reliability and the generality

of the method.
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Conclusions

In this Thesis we presented new optimization algorithms designed to run on the

state of the art, inherently parallel processors available on the market. The need

to exploit these new architectures in Combinatorial Optimization is becoming ever

more urgent. The advent of technologies and paradigms like cloud computing or big

data for example, containing at their core notable CO problems, together with the

increasing dimension of real-life instances (vehicle routing, resource scheduling and

optimization, network design, etc...) requires consistent and reliable developments

of both theoretical and practical issues. Moreover, the computation of solutions for

these problems must be really fast in most cases, from decision support softwares

to scientific applications. This work has provided parallel methodologies for solv-

ing or enhancing the solution methods of some important problems in literature,

methodologies that can be applied to a wide spectrum of real-word situations.

The speed-up factors obtained are suggestive of the potential behind these archi-

tectures. Not only the hardware parallelism is growing, but also the quantity of

memory got far beyond the 8/16 gigabytes of RAM for each computation node or

workstation, and 2/4 gigabytes of memory for accelerators. To exploit in a better

way the computational resources of these devices, also at the dawn of exa-scale

era, can bring an effective enhancement in both industrial and academic fields.

Our envisioned future work includes the porting of these algorithms on a larger

number of hardware platforms, like AMD devices or FPGA, by exploiting the

OpenCL parallel programming model to take advantage also of the peculiar char-

acteristics of these devices (faster computation, better double precision through-

put, larger number of cores, etc . . . ). Another interesting development related

151
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to the processors evolution is the insertion of a many-core processor (GPU) in

the same silicon die of a canonical multi-core CPU. This solution is called APU,

Accelerated Processing Unit. HSA, Heterogeneous System Architecture, proposed

by AMD is a new environment designed to specifically exploit these processors.

The great advantage of this approach is avoiding the PCI Express communications

between the HOST and the GPU, thus exploiting the whole system memory. In

this technological period, is mandatory to take into account the massively par-

allel implementation of these processors during the design of new methodologies

and algorithms. Our aim is to design, starting from the well established CO’s

theoretical foundations, new algorithms targeted to run on these new devices.
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