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Chapter 1

Preface

The present Thesis aims at building and discussing mathematical models applications
focused on Energy problems, both on the thermal side and on the electrical side. The
objective is to show how mathematical programming techniques developed within Opera-
tional Research can give useful answers in the Energy Sector, how they can provide tools
to support decision making processes of Companies operating in the Energy production
and distribution and how they can be successfully used to make simulations and sensi-
tivity analyses to better understand the state of the art and convenience of a particular
technology by comparing it with the available alternatives.

The scientific sector of mathematical modeling techniques applied to the Energy field is
quite ample, as the Energy field includes a wide variety of systems, plants and technologies.
Furthermore, the continuous research of new and renewable Energy alternatives, as well
as the increasing interest towards intelligent techniques for a better use and control of
the available resources, is motivating more and more the research both in Academia and
Industry.

Broadly speaking, the research in the Energy field can be classified into two main very
big approaches. The first one is the research of complete new technologies for a better
energy generation in terms of safe, efficient and environmentally friendly alternatives; this
approach can be classified in the field of radical innovation, as it focuses on the creation
of processes and products with unprecedented performance features.

The second approach is the research of new methods to better control and use what
is already available in a more intelligent or “smart” way. That is to say, sometimes the
problem doesn’t really lie in what we have, but in how we are using what we already have.
An intelligent use of the available Energy resources and technologies can make a huge
difference in terms of economical and environmental advantages, with long term positive
consequences on the whole society. This latter approach can be classified in the field of
incremental innovation as it exploits the existing technology, focusing on costs or feature
improvements in existing processes and products. It generally makes a massive use of
marketing or business models; the main objective is the improvement of competitiveness
within current markets or industries.

The Operational Research techniques lie in the second of the two approaches outlined
above. Informally known as the science of better, Operational Research can give inter-
esting answers and inputs on the best use of Energy resources and technologies, both
on the systems design side and on the operational management side. Through the use
of mathematical techniques such as mathematical modeling, optimization, deterministic
algorithms or heuristics algorithms, it is possible to find optimal or suboptimal solutions
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to complex decision making problems. The focus is generally the determination of the
maximum profit/performance or the minimum cost/risk/loss of an objective function that
might involve both linear or non-linear variables.

This Thesis is organized in three main parts. Part I will be dedicated to a general
introduction to the main background of mathematical programming together with a com-
prehensive literature review in the field of optimization and mathematical modeling for
the Energy Sector. Part II and III will discuss mathematical programming formulations
for some specific Energy applications in the thermal field and in the electrical field.

Part I is split into three main chapters. Chapter 2 will briefly introduce the most
important concepts of Linear Programming and Mixed Integer Linear Programming, fol-
lowed by some Non-linear Programming peculiarities and related solving techniques with
particular focus to separable programming.

Chapter 3 is dedicated to mathematical background as well. The attention here is on
Graph theory, which represents the main approach used along the Thesis in order to study
and modeling Energy Networks.

The topics for the background theory have been selected according to the content of
following chapters. Hence, the general mathematical background outlined in these two
chapters is focused on those concepts that are essential for the best comprehension of the
models discussed in Part II and III.

In Chapter 4 a comprehensive literature review about mathematical modeling in the
Energy Sector is presented. This is made to give an overview of the current state of the art
of the scientific production in the field of Energy optimization, and consequently motivate
the selected topics for the present Thesis, in light of the current available literature.

A scientific paper titled Mathematical Modeling in the Energy Sector: a Literature
Review has been prepared and is going to be submitted to the European Journal of Oper-
ational Research.

Part II is dedicated to mathematical models for the thermal Energy distribution. This
is the output of a work that started from a collaboration between the DEI Department of
Bologna University and the Multi-Utility HERA, an Energy company based in Bologna.
It is important to underline the precious contribution given by OPTIT Optimal Solu-
tions, which is an academic spin-off of the Operations Research group of the University
of Bologna and which provided essential background and real world material to carry on
with the scientific research.

This part is split into two main chapters. Chapter 5 contains an introduction to the
main theory in the field of District Heating networks, as well as thermodynamics and
hydraulic concepts that need to be considered when building models for such systems.

Mathematical models for the District Heating strategic network design and incremen-
tal network design will be discussed in Chapter 6 with particular regard to instances
characterized by big networks dimensions.

This study has been presented at the YoungOr18 Conference held in Exeter (UK) in
April 2013 and at the Ecomondo Conference held in Rimini (Italy) in November 2013.
Other Conference presentations has been made at the EURO-INFORMS26 Conference
held in Rome in July 2013 as well as at the IFORS20 Conference held in Barcelona (Spain)
in July 2014. A poster session has been joined at the Risk and Reliability Modelling of
Energy Systems Day held in Durham (UK) in November 2013.

An extended abstract titled Mathematical Optimization for the Strategic Design and
Extension of District Heating Systems will be published in the Conference Proceeding of
the Ecomondo Event.
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Moreover, a scientific paper titled An Optimization Approach for District Heating
Strategic Network Design has been submitted to the European Journal of Operational
Research.

Part III is dedicated to mathematical models for the Electrical Energy field. In par-
ticular the objective is the development of linear programming approaches for optimal
battery operation in off-grid solar power schemes, with consideration of battery degrada-
tion. This is the output of a whole year of research period abroad, during which I’ve had
the opportunity to be a visiting PhD student at the School of Engineering and Comput-
ing Sciences of Durham University (UK). The work was motivated by a field project on
operation of off-grid storage in Rwanda, which is part of a greater set of research projects
carried on by the Durham Energy Institute together with the Storage Consortium. The
latter in particular is a UK academic consortium on Energy Storage for Low Carbon Grids,
which include different universities among Imperial College, Cambridge, Cardiff, Durham,
Leeds, Newcastle, Oxford, Sheffield, St. Andrews and University College London.

As the previous one, this part is split into two main chapters. Chapter 7 will introduce
the main concepts of batteries and their integration in off-grid systems, while Chapter 8
will discuss mathematical formulations to build linear programming models for the optimal
management of off-grid systems focusing on batteries degradation issues.

This work has been presented at the Storage Consortium meeting Energy Storage for
Low Carbon Grids: Boot Camp held in Oxford in September 2014 as well as during the
Electricity Research Center ERC Research Symposium held in Dublin (Ireland) in October
2014 and at the Risk and Reliability Modelling of Energy Systems Day held in Durham
(UK) in November 2014.

Moreover the project has been successfully presented for a grant offered by the Excel-
lence Initiative of the German Government for a funded participation to the ENERstore
Summer School 2014 (Energy Storages for Sustainable Energy Supply), held in Dresden
in September 2014.

A scientific paper titled A Linear Programming Approach for the Battery Degradation
Analyses and Optimization in Off Grid Power Systems with Solar Energy Integration has
been prepared and is going to be submitted to an Energy Journal focused on Energy
applications. The target Journals are currently Journal of Energy Storage and eventually
the more established Journal of Energy.
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Chapter 2

Mixed Integer Linear
Programming and Non-Linear
Programming

This chapter is dedicated to a brief introduction to the Linear Programming and Mixed
Integer Linear Programming theory followed by some general fundamentals on the Non-
Linear Programming problems and techniques.

The objective is to focus on the most important background of these main sectors
of the Operational Research, because they will represent the core background for the
modeling applications that will be presented in Part II and Part III. In particular, the
Linear Programming and Mixed Integer Linear Programming approaches will be used in
both Parts, while the Non-Linear Programming will be applied in Part II to solve the
non-linearities involved in thermal distribution networks, by using Piecewise formulations.

2.1 LP and MILP Problems Introduction

A general Linear Programming (LP) problem has the following formulation

min

n∑
j=1

cjxj (2.1)

n∑
j=1

aijxj ≥ bi i = 1...m1 (2.2)

n∑
j=1

aijxj = bi i = m1 + 1...m (2.3)

xj ≥ 0 j = 1...n1 (2.4)

where n, n1,m,m1 are known constant scalars; c = cj ∈ Rn and b = bi ∈ Rm are
known vectors; A = aij ∈ Rm∗n is a known matrix. While the vector x = xj ∈ Rn
represents the decision variables for which an optimal value needs to be found. For LP
problems variables are supposed to be continuous and they can assume every value within
a continuous interval.
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The above formulation can be used for every Optimization Problem with a linear
objective function and where constraints are expressed by linear equations or inequalities.

For maximization problems it is possible to change the objective function sign and in
general if needed it is possible to change the ≥ inequalities into ≤ inequalities.

The presence of inequalities make the problem not solvable with the standard linear
algebraic methodologies which might be applied if there were only equations and if the
variables were not imposed ≥ 0. Hence it is necessary to use appropriate algorithms such
as the Simplex Algorithm.

An Integer Linear Programming Problem (ILP) is a variation of the Linear Program-
ming Problem (LP) which contains a further constraint that imposes that every variable
will be an integer one.

xj integer (2.5)

j = 1...n

A Mixed Integer Linear Programming Problem (MILP) is a generalization of LP and
ILP where just a subset of variables are restricted to be integers while other variables are
allowed to be non-integers.

xj integer (2.6)

j ∈ S
S ⊆ {1...n}

A special case is the 0-1 Integer Linear Programming, in which variables are binary.

xj ∈ {0, 1} (2.7)

j = 1...n

Both ILP and MILP problems can be solved and they are practically solved by using
branch−and−bound algorithms where a continuous relaxation of the problem is iteratively
solved by removing the integer constraints.

There are two main reasons for using integer variables or binary variables when mod-
eling problems as a linear program:

• An integer variable can represent a quantity that can only assume integer values.
For instance, it is not possible to build 1.5 inverters.

• An integer variable can represent decisions that can be taken or not, and therefore
it should only take on the value 0 or 1; in this case it will be a binary variable. A
binary variable will be equal to 1 if a certain decision is taken and it will be equal
to 0 if a certain decision is not taken (for instance, a binary variable can be equal to
1 if a conventional generator is on and 0 if the conventional generator is off).

8



These considerations occur frequently in practice and so integer linear programming
can be used in many applications areas. The Energy Sector in particular offers a wide
range of applied problems where ILP and MILP can be successfully applied to facilitate the
decision making process and to analyze the state of the art of some technologies, making
sensitivity analyses on the most interesting parameters involved. The most important
problems that can be studied through ILP and MILP in the Energy Sector are related to
Energy production and Energy dispatching. In particular, the optimal generator plants
management, scheduling and location and the optimal Energy distribution along optimized
Energy networks are key issues. A literature review related to such topics will be presented
in Chapter 4.

An interesting case that lies in the middle of the LP and ILP is related to problems
where semi-continuous variables are considered. A semi-continuous variable is a variable
that can take the value 0 or any value between its lower bound L and its upper bound U .
The semi-continuous lower bound must be finite and greater than or equal to 0 while the
upper bound do not need to be finite (hence the upper bound can be equal to a defined
value U or to ∞).

xj ∈ {0} ∪ {Lj , Uj} (2.8)

j = 1...n

xj ∈ {0} ∪ {Lj ,∞} (2.9)

j = 1...n

Semi-continuous variables are often encountered in real-world modeling such as pro-
duction planning or optimal dispatch of generating units (unit commitment) in power
systems. An example of application of a semi-continuous variable can be related to the
Energy production of a conventional generator during its two main modes on/off. When
the conventional generator is off then its production is equal to 0, while when the conven-
tional generator is on, then the amount of the production has to lie in a certain interval
due to managerial and technological considerations. In particular, a conventional generator
when active, has to respect some technical constraints related to its minimum production
(lower bound) and its capacity (upper bound).

With regard to the problem complexity, there are mainly two categories:

• Polynomial Problems, for which there exist a Polynomial algorithm that can solve
them

• NP-hard Problems for which there is no Polynomial algorithm available to find a
solution

The LP problems belong to the class of Polynomial Problems while ILP problems
belong to the class of NP-hard Problems.

NP-hard Problems are computationally harder as the required computational time to
get a solution increases exponentially with the problem dimension.
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2.2 Non-Linear Programming

A Non-Linear Programming Problem (NLP) is similar to a Linear Programming one in
that it is composed of an objective function, variable bounds and general constraints that
can be equalities or inequalities. The difference is that a non-linear program includes at
least one non-linear function, which could be the objective function, or some or all of the
constraints.

There are many examples of non-linear systems in the real world applications. We
will present an example of non-linear relationships in Part II when we will deal with the
hydraulic constraints of District Heating Systems. In particular, the relationship between
drop of pressure along pipes and flow rate is non-linear, as further explained in Section
5.5.

A general Non-Linear Programming Problem aims at finding the optimal values of
x = (x1, x2...xn) in such a way that

min f(x) (2.10)

gi(x) ≤ bi ∀i = 1...m (2.11)

x ≥ 0 (2.12)

where f(x) and gi(x) are known functions of the n decision variables.

Non-Linear Programming can be divided usefully into convex programming and non-
convex programming. A region of space is said to be convex if the portion of the straight
line between any two points in the region also lies in the region.

A function f(x) is said to be convex if the set of points (x, y) where y ≥ f(x) forms
a convex region. For example, the function x2 is convex, while the function 2− x2 is not
convex. The concepts of convex and non-convex regions and function apply in as many
dimensions as required.

A mathematical programming model is said to be convex if it involves the minimiza-
tion of a convex function over a convex feasible region. Minimizing a convex function is
equivalent to maximizing the negation of a convex function. Such a maximization prob-
lem will also therefore be convex. Clearly, Linear Programming introduced in previous
section, is a special case of convex programming, as every LP model can be expressed as
minimization of a linear function and linear functions satisfy the definition of a convex
function. Furthermore, the feasible region defined by a set of linear constraints can easily
be shown to be convex.

Non-convex programming includes all the non-linear programming problems that do
not satisfy the convexity rules. In such cases, even if it is possible to find a local optimum,
there is no guarantee that this will also be the global optimum.

Geometrically, non-linear programs can behave much differently from linear programs,
even for problems with linear constraints. There are many reasons for which non-linear
models are inherently much more difficult to optimize. It’s hard to distinguish a local
optimum from a global optimum; optima are not restricted to extreme points; there may
be multiple disconnected feasible regions; different starting points may lead to different
final solutions; it may be difficult to find a feasible starting point; it is difficult to satisfy
equality constraints; different algorithms and solvers arrive at different solutions for the
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same formulation. This is just to give a very broad idea of the difficulties involved in
Non-Linear formulations compared to the easier Linear problems. However, as a deep
theory on the Non-Linear Programming is not the main purpose of this thesis, for further
readings about Non-Linear peculiarities it is possible to refer to the existing literature (i.e.
Bazaraa et al. [1] or Luenberger and Ye [2]).

Different Non-Linear Programming Problems exist as a function of the different prop-
erties of the functions f(x) and gi(x). While with Linear Programming a single algorithm
can suit every problem, for the Non-Linear Programming field there isn’t a single algo-
rithm that can be applied for every circumstance. Hence ad hoc algorithms has been
created and are used for different types of problems.

For the purpose of the present thesis, the most important Non-Linear Programming
class of problems, is represented by separable programming which is a particular case of
convex programming. As further explained in Section 2.3 these type of problems can be
well approximated by a Linear Programming Problem and therefore they can be solved
through the simplex algorithm.

2.3 Separable Programming

Separable programming is important because it allows a convex non-linear program to be
approximated with arbitrary accuracy with a linear programming model. The idea is to
replace each non-linear function with a piecewise linear approximation.

Consider the general Non-Linear Programming problem

min f(x)

gi(x) ≤ bi ∀i = 1...m

x ≥ 0

with the additional conditions that the objective function and all constraints are sepa-
rable and each decision variable xj is bounded below by 0 and above by a known constant
uj for j = 1...n.

Remember that a function, f(x), is separable if it can be expressed as the sum of
functions of the individual decision variables.

f(x) =
n∑
j=1

fj(xj) (2.13)

Separable programs are optimization problems of the following form

min

n∑
j=1

fj(xj) (2.14)

n∑
j=1

gij(xj) ≤ bi ∀i = 1...m (2.15)

0 ≤ xJ ≤ uj ∀j = 1...n (2.16)
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The key advantage of this formulation is that the non-linearities are mathematically
independent. This property together with the finite bounds on the decision variables
permits the development of a piecewise linear approximation for each function in the
problem. It is then possible to use separable programming to obtain a global optimum to
a convex problem or possibly only a local optimum for a non-convex problem.

Although the class of separable functions might seem to be a rather restrictive one, it is
often possible to convert mathematical programming models with non-separable functions
int ones with only separable functions. Ways in which this may be done are discussed in
Williams [3].

An example of non-linear function y = f(x) that can be treated with separable pro-
gramming is depicted in Figure 2.1. In particular, Figure 2.1 represents the non-linear
trend that links the drop of pressures ∆P to the water flow rate ṁ inside District Heating
Networks, so that: ∆P = f(ṁ). This trend and the related piecewise linear approximation
will be used in Chapter 6 to face the non-linearities that occur in the hydraulic modeling
of District Heating Systems. See Section 5.5 for further details on hydraulic properties of
District Heating Systems.

Figure 2.1: Piecewise linear approximation of a non-linear function. A representation of
the relationship between drop of pressures ∆P and water flow rate ṁ in District Heating
Networks

In order to convert a non-linear programming model into a suitable form for separable
programming it is necessary to make piecewise linear approximation to each of the non-
linear functions of a single variable. The non-linear function f(ṁ) depicted on the left side
of Figure 2.1 can be approximated into a piecewise linear F (ṁ) as represented on the right
side of the figure, by using say b line segments. Every discontinuity point of the polygon
curve on the right is called breakpoint. Hence it is necessary to select at first b+ 1 values
of the scalar ṁ within its range 0 ≤ ṁ ≤ ṁmax which are b0, b1, ...b4. At the boundaries
we have b0 = 0 and b4 = ṁmax. Note that the values of the b interval do not have to be
evenly spaced.

Every segment can be mathematically represented by the standard equation of a line.
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Say we have n number of segments, a possible mathematical definition of the piecewise
linear function through its breakpoints, can be the following

f(x) =


f(b0) +

x− b0
b1 − b0

(f(b1)− f(b0)) x ∈ [b0, b1[

f(b1) +
x− b1
b2 − b1

(f(b2)− f(b1)) x ∈ [b1, b2[

f(bn−1) +
x− bn−1

bn − bn−1
(f(bn)− f(bn−1)) x ∈ [bn−1, bn]

(2.17)

The approximation becomes increasingly more accurate as the number of segments
gets larger. Unfortunately there is a corresponding growth in the size of the resulting
problem.

In order to insert a non-linear function y = f(x) inside a mathematical programming
model, it is necessary to introduce the concept of Special Ordered Set of variables SOS,
which can be classified in SOS of type One and SOS of type Two.

Broadly speaking, a Special Ordered Set of type One (SOS1) is a set of variables for
which no more than one member from the set may be non-zero in a feasible solution while
a Special Ordered Set of type Two (SOS2) is a set of consecutive variables in which no
more than two adjacent members may be non-zero in a feasible solution. In both cases,
all sets are mutually exclusive of each other, the members are not subject to any other
discrete conditions and each set is grouped together consecutively in the data.

The normal use of an SOS1 is to represent a set of mutually exclusive alternatives
ordered in increasing values of size, cost or some other suitable units appropriate to the
context of the model.

For the purpose of the present thesis the SOS2 are more important, as they were
introduced to make it easier to find global optimum solutions to problems containing
piecewise linear approximations to a non-linear function of a single argument (as in the
Separable Programming discussed in the present section).

Let us define n new decision variables ti with the following properties

n∑
i=0

= 1 (2.18)

ti ≥ 0 ∀i = 1...n (2.19)

and let us impose that at most two of the consecutive ti can be greater than zero.
Under such conditions, we can express x as follow

x =

n∑
i=0

tibi (2.20)

As a consequence, it is possible to approximate the value of y = f(x) as follow
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y = F (x) =

n∑
i=0

tif(bi) (2.21)

This way, the definition of ti make it possible to define x as a function of the subset
[b0, b1[ ... [bn−1, bn] of the f domain to which x belongs so that y will assume only the
values related to the interval defined by the related breakpoints. The set of variable ti
represents a Special Ordered Set of type 2 (SOS2).

Hence it is possible to manage the non-linearities, even though the above trick requires
the introduction of n new variables of the set SOS2 together with two further constraints.

The key of the procedure is a good choice of breakpoints that means find a compromise
to represent a good approximation of the problem without making it too hard from a
computational point of view.
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Chapter 3

Graph Problems

In this chapter we will outline the fundamental theory in the field of Graph problems as
the Graph theory will represent the main approach used to model the Energy problems
described in Part II and III.

The Graph theory is the most important approach used to model every type of network.
For the purpose of the present thesis we are interested in Energy Networks modeling,
both from a design point of view and from an operational management point of view.
Network Design and Network Flow can be considered as the main classes of problems in
the Energy Sector. That is because, broadly speaking, the study of an Energy Network
presents three main kinds of problems that are related to how to optimally design it, how
to optimally extend it and how to optimally manage its flows once the network is created.
Such problems can be well classified as Network Design Problems, Incremental Network
Design Problems and Network Flow Problems respectively.

In particular, we will use the theory of Network Design and Incremental Network
Design in Part II where District Heating Networks will be studied in terms of optimal
design; while we will use the theory of Network Flow in Part III where an Off-grid system
will be modeled in terms of hourly operational management of Energy flows among the
system units with particular regard to the integrated storage devices.

3.1 Graphs

Graphs can be classified in undirected graphs and directed graphs.

An undirected graph G = (V,E) is defined by two sets: the set of vertexes (or nodes)
V and the set of arcs E. Every arc corresponds to a couple of nodes.

Given a couple of nodes i, j ∈ V , the related arc e is defined as e = (i, j) ∈ E and i, j
are the extremities of e.

Every arc is associated with an unordered pair of nodes ψ(e) = {i, j} called endpoints
of e.

Given a node i ∈ V , the set of arcs that contain i (or arcs with an extremity in i) is
called δ(i).

Given a subset of nodes S ⊆ V the set of arcs with only one extremity in S is called
δ(S).

Given a subset of nodes S ⊆ V , the set of arcs with both extremities in S is called
E(S).
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An arc is a loop if its endpoints are identical.
An undirected graph is said to be complete if its set of arcs contains all the |V |(|V |−1)/2

possible couples of nodes.

A directed graph G = (V,A) is defined by two subsets: the set of vertexes (or nodes)
V and the set of arcs A. Every arc corresponds to an ordered couple of nodes.

Given an ordered couple of nodes i, j ∈ V , the correspondent arc a is defined as
a = (i, j) ∈ A. Every arc a ∈ A has a start node i called tail(a) ∈ V and an end node j
called head(a) ∈ V .

Given a node i ∈ V , the set of arcs with tail i is called δ+(i), while the set of arcs with
a head i is called δ−(i).

Given a subset of nodes S ⊆ V , the set of arcs with a tail in S and a head in V \ S is
called δ+(S), while the set of arcs with a head in S and a tail in V \ S is called δ−(S).

Given a subset of nodes S ⊆ V , the set of arcs with both extremities (head and tail)
in S is called A(S).

An arc a ∈ A is a loop if tail(a) = head(a).
An oriented graph is said to be complete if its set of arcs contains all the |V |(|V | − 1)

possible ordered couples of nodes.

Let G = (V,E) be a graph. For a set of nodes S ⊆ V , we define the set of arcs
E[S] := {e ∈ E : ψ(e) ⊆ S} with both endpoints in S. A subgraph of G is a graph
G′ = (S, F ) with S ⊆ V and F ⊆ E[V ′]. In particular we define G[S] := (S,E[S]) to be
the subgraph induced by S. The notions of subgraph and induced subgraph for a directed
graph are defined in analogy to the undirected case.

Let G = (V,E) be a graph and let i, j ∈ V . A sequence of arcs (e0...ek) is in an
s-t-walk if there is a sequence of nodes (v0...vk+1) such that ψ(ei) = {vi, vi+1} for i ∈ [K].
An s-t-walk is an s-t-path if the arcs e0...ek are pairwise distinct. An s-t-walk is closed if
s = t. A closed walk is a cycle if the arcs e0...ek are pairwise distinct. An s-t-path or cycle
is simple if the nodes (v0...vk) are pairwise distinct.

A graph G = (V,E) is connected if there is a i-j-walk for all i, j ∈ V . A graph
G = (V,E) is strongly connected if there is a directed i-j-walk and a directed j-i-walk for
all i, j ∈ V .

A bipartite graph is a graph whose nodes can be divided into two disjoint sets U and
V (often denoted as partite sets) in such a way that every arc connects a vertex in U to
one in V .

3.2 Network Design Problems

Network design represents one of the main theme of the present thesis, with particular
regard to Part II where a mathematical model for the district heating strategic network
design is presented.

Broadly speaking, network design problems aims at finding the minimum cost sub-
graph of a given graph, fulfilling certain constraints and usually specifying connectivity
requirements. Network design problems can differ in the type of connectivity constraints
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they impose; in the type of graph that can be directed or undirected; in the type of arcs
that can be capacitated or not and if multiple copies of the same arc are allowed or not.

In this section we will focus on the two largest and most important problem classes:
the uncapacitated and capacitated network design problems. In practical applications,
most of the uncapacitated problems - at least in undirected graphs - are considered to be
manageable, while capacitated problems are a great computational challenge.

The uncapacitated network design problem is one of the most fundamental network
design problems. The purpose is to find a minimum cost tree connecting a certain set of
nodes called terminals, possibly spanning some additional nodes called steiner nodes. The
latter are extra intermediate nodes that can be added to the graph in order to reduce the
total length of connection.

The minimum spanning tree problem is a special case of the uncapacitated network
design problem and it can be well applied to District Heating Systems, where the task is
the creation of a new network through which the thermal energy has to reach a specified
set of customers within a city. The objective is to connect every customer with a minimum
cost network in such a way that every couple of nodes must be connected by just one path.
Hence the objective is to find the minimum cost subgraph which will be a loop free tree.
A loop free tree that span all the vertices of a graph is also known as a spanning tree.

Given a graph G = (V,E), we define T a generic spanning tree; K the set of all the
possible spanning trees in G; c(e) the cost of an arc e ∈ E; xe a binary variable which is
equal to 1 if the arc e ∈ E belongs to the tree T and 0 otherwise.

The generic optimization problem can be mathematically described as follow

min
∑
e∈E

cexe (3.1)∑
e∈E

xe = |V | − 1 (3.2)∑
e∈E(U)

xe ≤ |U | − 1 ∀U ⊆ V,U 6= ∅ (3.3)

xe ∈ {0, 1} ∀e ∈ E (3.4)

Where the first constraint imposes that the set of chosen arcs must be a subgraph,
containing no more than |V | − 1 arcs and the second constraint is inserted to avoid loops
in the resulting network.

The uncapacitated network design problem imposes simple connectivity requirements
for the terminals. Every link installed in the network contributes the same unit capacity
and the connecting paths of different node pairs can use this capacity independently from
one another. A different approach is considered in the capacitated network design problem
where the flow running between the terminals has to share the capacity of the installed
links and the capacities provided by each link can be different.

Another important class of network design problems is represented by the shortest path
problem which is the problem of finding a path between two nodes in a graph such that
the sum of the weights of its constituent arcs is minimized.
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Given an oriented graph G = (V,E), a source node s and a destination node t, the
objective is to find the minimum cost path that connect s to t. We define R as the set of
all the possible paths from s to t in G; P as a generic path in R; cij as the cost associated
to the arc e = (i, j); xij as a binary variable that is equal to 1 if the arc (i, j) ∈ E belongs
to the path P , 0 otherwise.

The generic optimization model can be mathematically described as follow

min
∑
i,j∈E

cijxij (3.5)

∑
j:(i,j)∈E

xij −
∑

k:(k,i)∈E

xki =


1 ∀i = s

−1 ∀i = t

0 ∀i 6= s 6= t

(3.6)

∑
ij∈E(U)

xij ≤ |U | − 1 ∀U ⊆ V,U 6= ∅ (3.7)

xij ∈ {0, 1} ∀(i, j) ∈ E (3.8)

where the first constraint imposes that for every node the number of outgoing arcs
must be equal to the number of ingoing arcs. with the exception of the source node and
the destination node, while the second constraint imposes that the resulting path must be
free of loops. The latter can be eliminated for a better formulation, taking into account
that an optimization model would never do a loop to move from s to t rather than covering
a simple path.

The network design problems have been studied with a broad set of algorithmic tech-
niques, ranging from approximation algorithms to mixed integer programming formula-
tions and combinatorial heuristics. As an in depth analyses of such problems is not the
purpose of the present thesis, for further details it possible to refer to the existing litera-
ture, in particular Crainic [3] for network design applications, Gendron et al. [8] for MIP
formulations, polyhedral results and heuristics.

3.3 Incremental Network Design Problems

The incremental network design problem deals with the extension of existing networks by
designing new additional fragments of an existing graph subject to economical/technical
constraints. It is particularly important for the present Thesis as the strategic network
design of District Heating Systems presented in Part II will be focused on the extension
of large scale networks for the distribution of thermal Energy.

We will outline here some of the most recent works in the field of incremental net-
work design that have been recently published for the main basic problems on Graphs:
Incremental Network Design with Shortest Paths by Baxter et al. [2], Incremental Network
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Design with Minimum Spanning Trees by Engel et al. [4] and Incremental Network Design
with Maximum Flows by Kalinowski et al. [9]

As described in Baxter et al. [2], incremental network design problems have two char-
acteristic features: a design feature as it is necessary to define which arcs will be part of a
network and a multi-period feature as the ultimate network design is built over a number
of time periods.

The general problem is formulated as follow. Given a Graph G = (V,A) with nodes
V and arcs A, the set of arcs is split into two subsets: the set of existing arcs Ae and the
set of potential arcs Ap. Each arc a ∈ A has a capacity Ca and each potential arc a ∈ Ap
has an associated build-cost ca; a budget Bt is available to build potential arcs a ∈ Ap in
every time period t with a planning horizon T , so that t ∈ {1...T}. A binary variable yta
is defined to indicate if a potential arc has been built in time t or before time t. Hence if
yta−yt−1

a = 1 that means that the arc a is built in time period t and it is therefore available
in period t+ 1. A continuous variable xta is defined to represent the flow on a generic arc
a ∈ A in time t. In every time step an optimization problem has to be solved over the
usable arcs in time t which can be the existing arcs and the potential arcs that have been
built before time t. The objective is to minimize the total cost over the planning period.

Hence the generic mathematical formulation of an incremental network design problem
is as follow

min
∑

t∈{1...T}

c(x)t +
∑

t∈{1...T},a∈Ap

ca ∗ (yta − yt−1
a ) (3.9)

xta ≤ Ca ∗ yt−1
a ∀a ∈ Ap, t ∈ {1...T} (3.10)∑

a∈Ap

ca ∗ (yta − yt−1
a ) ≤ Bt ∀t ∈ {1...T} (3.11)

yta ≥ yt−1
a ∀a ∈ Ap, t ∈ {2...T} (3.12)

That is, in the basic version of the problem, a single edge can be built in each period
of the planning horizon and the objective is to minimize the operational costs over the
planning horizon.

Two natural heuristics for incremental network design problems are of interest. The
quickest-improvement seeks to improve the value of the solution to the network optimiza-
tion as quickly as possible, for instance by adding as few potential edges to the network
as possible. The quickest-to-ultimate first finds an optimal solution to the network opti-
mization on the complete network, referred to as an ultimate solution, and then seeks to
improve the value of the solution to the network optimization as quickly as possible by
choosing only potential edges that are part of the ultimate solution.

In Baxter et al. [2] the incremental network design with shortest path is described. The
problem considers a graph G = (V,A), a set of potential and existing arcs Ap ∈ A and
Ae ∈ A respectively as well as a source node s ∈ V and a sink node t ∈ V . Each arc is
described by a length la ≥ 0. In every time step there is the option to expand the usable
network, which initially consists of only the existing arcs, by building a single potential
arc which will be available in the following period. In every period the cost or length of a
shortest s− t path is incurred. The objective is to minimize the total cost over a planning
horizon T = |Ap|+ 1.

Authors investigate structural properties of optimal solutions and they propose a nat-
ural greedy solution together with a 4-approximation algorithm.
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In Kalinowski et al. [9] authors present the Incremental Network Design with Maximum
Flows, where in each time period of the planning horizon, an arc can be added to the
network and a maximum flow problem is solved, in order to maximize the cumulative
flow over the entire planning horizon. As in the previous problem, there is a a graph
G = (V ;A), a set of potential and existing arcs Ap ∈ A and Ae ∈ A respectively as well
as a source node s ∈ V and a sink node t ∈ V . In this case each arc is described by
an integer capacity ua ≥ 0 and every node v ∈ V there is a set of arcs entering v called
δin(v) and a set of arcs leaving v called δout(v). The length of the time horizon is defined
as T > |Ap|. The network initially consists of only the existing arcs, and in every period
there is the option to expand it by adding a single potential arc a ∈ Ap which will be
available for use in the following time period. In every period, the value of a maximum
s− t flow is recorded (using only existing arcs and potential arcs that have been added in
previous periods). The objective is to maximize the total flow over the planning horizon.

Several heuristics are described for the solution of such problem whose MIP formula-
tions are NP-complete. Computational experiments are presented to compare the perfor-
mance of the MIP formulations as well as the heuristics.

The incremental network design with minimum spanning tree is described in Engel
et al. [4]. The problem considers an edge-weighted graph G = (V,A) and a set A0 ⊂ A with
the objective to find a sequence of arcs a′1...a

′
r ∈ A\A0 minimizing

∑
t∈{1...T}w(Xt) where

w(Xt) is the weight of a minimum spanning tree Xt for the subgraph (V,A0 ∪ {a′1...a′t})
and T = |A| \A0.

Authors propose a greedy algorithm for the solution of such problem.

3.4 Network Flow Problems

This section is intended to give a brief introduction to the Network Flow Problems as they
will be part of the topics of the present thesis. In particular we will find them in Part II
where, together with the network design problem, we will have to take into account the
thermal Energy flows along the district heating network; and in Part III where electrical
Energy flows will be studied inside an off-grid network. In this section we will outline the
main concepts on the maximum flow problem, the minimum cost flows problem and the
transportation problem as they are the most important ones for the purpose of the present
thesis. Besides the short introduction available in this thesis, it is possible to find more
details on network flow in the comprehensive textbook by Ahuja et al. [1].

Network flow problems are related to the study of flows from a source node to a sink
node, inside networks represented by graphs.

Given an oriented graph G = (V,E), suppose that every arc (i, j) ∈ E has a maximum
capacity qij , that represents the maximum amount of units of product that can be sent
from i to j in every time step. Let us define s as a starting node and t as a destination
node. We call fij the amount of units sent along the arc (i, j) ∈ E and v the amount of
units that flow out the node source node or into the sink node.

The maximum flow problem asks for a flow of maximum value from a source to a sink
without violating the given capacities of the arcs and in such a way that the value of v is
maximized. It is mathematically formulated as follow
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max v (3.13)

0 ≤ fij ≤ qij ∀v ≥ 0 (3.14)

∑
j:(i,j)∈E

fij −
∑

k:(k,i)∈E

−fki =


v ∀i = s

−v ∀i = t

0 ∀i 6= s 6= t

(3.15)

where the constraint 3.14 imposes that the flow among every couple of nodes i, j can’t
exceed the maximum capacity of the related arc (i, j). Moreover, the constraint 3.15
imposes that for every node, the amount of flow into it must be equal to the amount of
flow out of it., with the only exception of the source node s from which the total amount
v must flow out, and the sink node t for which the total amount v must flow in.

Suppose now that every arc (i, j) ∈ E is associated to a cost cij and that v is defined
by a fixed value of product that must flow among s and t.

The minimum cost flow problem aims at finding, among all the possible configurations
that can guarantee a flow equal to v from s to t, the best configuration which correspond
to the minimum cost. It is therefore mathematically formulated as follow

min
∑
i,j∈E

cijfij (3.16)

0 ≤ fij ≤ qij ∀v ≥ 0 (3.17)

∑
j:(i,j)∈E

fij −
∑

k:(k,i)∈E

−fki =


v ∀i = s

−v ∀i = t

0 ∀i 6= s 6= t

(3.18)

A special case of the minimum cost flow problem is the transportation problem where
the graph is a bipartite one, with different sources of capacity si on one side and different
sinks of capacity tj on the other side. It is formulated as follow

min
∑
i,j∈E

cijfij (3.19)

∑
j:(i,j)∈E

fij = si (3.20)
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∑
i:(i,j)∈E

fij = tj (3.21)

∑
i:(i,j)∈E

si =
∑

j:(i,j)∈E

tj (3.22)

The maximum flow problem and the minimum cost flow problem were extensively
studied by Ford and Fulkerson who contributed with important concepts (i.e. residual
networks, augmenting paths, max flow/min cut theorem) building the fundaments of the
network flow theory. Therefore, for further readings it is possible to refer to Ford and
Fulkerson [5] Ford and Fulkerson [6] Ford and Fulkerson [7].
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Chapter 4

Mathematical Modeling in the
Energy Sector: a Literature
Review

This chapter will present a literature review in the field of optimization and mathematical
modeling applied to Energy problems. Section 4.1 will introduce the importance of Oper-
ational Research for the Energy field and will discuss the main classes of Energy problems
that have been studied in literature, as well as the main mathematical approaches that
have been used to solve such problems.

Then according to the proposed classification, the other sections will be organized as
follow. In Section 4.2 we will introduce the most interesting papers in the field of district
heating and cooling networks, in Section 4.3 we will introduce the main literature in terms
of grid connected and off-grid systems optimization, while in Section 4.4 an overview on
CHP and CHCP optimization problems will be presented. In every section we will further
classify the proposed literature into the main groups of design problems, operational man-
agement problems and arbitrage/demand side problems and we will also assign papers to
the main sets of deterministic approaches and heuristics/metaheuristics/machine learning
approaches.

The last Section 4.5 will discuss some conclusions and will motivate the selected topics
for the present Thesis, in light of the current available scientific production.

4.1 Introduction

The objective of this chapter is to make an overview of the main scientific literature in
the field of Operational Research applied to the Energy field. We propose a literature
classification in terms of main Energy topics and main mathematical techniques that has
been used to study such topics.

As shown in Figure 4.1 the Energy topics that has been studied from an optimization
point of view can be classified into two main groups, the Thermal Energy side and the
Electrical Energy side.

The thermal Energy side can be split into two subsets that are the district heating
networks for the distribution of thermal Energy and the district cooling networks for
the distribution of cooled Energy. These problems are generally studied by focusing on
two main aspects: the design of district heating/cooling networks and the operational
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Figure 4.1: A classification criteria for the main Energy Optimization topics studied in
literature
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management of district heating/cooling networks. The first problem has a more strategic
approach to optimize the investment for new networks or to optimize the incremental
design and modification of existing networks; while the latter has a more management
approach to optimize the hourly dispatching or scheduling of Energy in existing networks
with a fixed specific design.

The electrical Energy side can be split into two main subsets that are the grid connected
systems and the off-grid systems. Again these problems are mainly studied by focusing on
two key aspects that are the network design problems and the operational management
problems.

Inside the operational management problems we can find further subsets related to the
optimal Energy distribution/dispatching, the optimal scheduling of the Energy systems
resources and and demand side operational management problems. In particular demand
responsive problems, with loads shifting and arbitrage techniques are widely studied in
literature. These are particularly studied in the electrical field for grid connected systems,
as the opportunity to exchange electrical Energy with the national grid, represents an
important economical source for the electrical energy users. The arbitrage techniques
represent the main motivation for users to shift their electrical loads along the day, taking
advantage of different energy prices.

The electrical side and the thermal side are linked together as the thermal energy
is often the “waste” product that originates from the main electrical energy production.
This is the case of Combined Heat and Power Systems CHP, which refer to plants for
the simultaneous production of heat and power, or Combined Heat Cooling and Power
Systems CHCP characterized by the additional production of cool energy through the use
of absorption chillers. A wide literature has been dedicated to optimal design, location,
management and scheduling of such systems.

Both thermal and electrical side can be described by a further separate subset that
is represented by the storage technologies. They are generally studied as part of Energy
networks operational management problems, but they should be classified in a separate
group as nowadays the Energy storage represents a key topic that is receiving an increasing
particular attention by researchers.

As for the mathematical techniques, the main approaches through which the above En-
ergy problems has been studied and solved, relate to deterministic methodologies, heuristic
and metaheuristic algorithms. The main deterministic approaches refer to Linear Pro-
gramming, Mixed Integer Linear Programming, Non-Linear Programming and Stochastic
Programming. The latter is particularly appreciated to take into account the uncertainty
of real world data.

For complex problems the main approaches are related to Dynamic Programming,
Heuristics and Metaheuristics algorithms. Metaheuristics techniques are particularly ap-
preciated as there is a quite wide literature related to such techniques applied to Energy
problems. The most used are Genetic Algorithms and Particle Swarm optimization. Some
machine learning techniques such as Neural Networks are appreciated as well.

4.2 Thermal Energy Distribution

This section will be dedicated to the presentation of the main scientific literature in the
field of thermal energy distribution optimization, with regard to district heating systems
and district cooling systems.
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District heating (DH) concerns the centralized production of thermal and possibly
electrical energy and its distribution to a set of users through an insulated network of
pipes and a set of heat exchangers located at the users buildings. The thermal energy is
generally produced through combined heat and power plants (CHP) where it is possible
to recover the heat wasted during the electrical production. Such heat can be therefore
used to feed networks and distribute thermal energy for heating and sanitary use.

District cooling (DC) is the opposite of District Heating and it is referred to as the
technological concept of efficiently providing space cooling services to several customers
of diverse nature (shopping malls, hospitals, sports facilities, airports, hotels, dwellings,
various educational facilities, public administrations and industrial facilities). Broadly
speaking, a District Cooling System (DCS) involves the centralized production of chilled
water and its distribution to a network of users, thus obtaining much higher efficiency in
production and maintenance costs as compared to the individual production of cooling
services by end-users. The cold water pumped around the district cooling network is used
to cool the air circulating in the properties ventilation systems. The same water is then
fed back to the production plant to be cooled again. The temperature of the water fed to
properties is around 6 degrees, while the return water is in excess of 16 degrees. Generally
the cold water is provided by absorption cooling processes or heating pumps that are able
to produce both heating and cooling at the same time. The most common plant for the
cool production are combined heat and cooling power plants (CHCP).

4.2.1 District Heating

The scientific literature in the field of District Heating Optimization can be classified into
some main topics that are: the optimal components selection and system configuration;
the optimal network design; the optimal operational management along a representative
period with some demand side models as well. Some models focus on very specific partic-
ular technical aspects optimization (i.e pumps, valves, temperature) while other are more
related to investments decision making.

Deterministic approaches has been widely used for the optimal components selection
and system configuration. In Mehleri et al. [57] a mixed-integer linear programming
(MILP) super-structure model is presented where the objective is to find the optimal
selection of the system components among several candidate technologies (micro com-
bined heat and power units, photovoltaic arrays, boilers, central power grid), including
the optimal design of a heating pipeline network, that allows heat exchange among the
different nodes. A very little application for 10 buildings is discussed.

A similar work has been done in Ren and Gao [69] where the authors present a mathe-
matical model that minimizes the overall energy cost for a test year by selecting the units
to install and determining their operating schedules. Input data comprise the site’s energy
loads, local climate data, utility tariff structure, and technical and financial information
on candidate technologies. A numerical study for an eco-campus in Kitakyushu (Japan)
is presented.

In Sanaei and Nakata [77] a non-linear optimization is proposed to optimize the initial
choice of the energy system components and the way they should interact. The opti-
mum level of interaction between the energy system components has been identified by
employing an optimization algorithm seeking to minimize the overall cost of the energy
system.

The design of the energy production plant integrating cogeneration engines and renew-
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able energy was recently examined by Reini et al. [68] who developed integer programming
models capable of solving small-scale examples.

Beyond costs minimization, some authors propose more environmentally friendly mod-
els. For instance in Chinese and Meneghetti [21] a mixed integer linear-programming
model is developed for a utility company profit maximization, together with a linear-
programming model that aims at minimizing the balance of greenhouse-gas emissions
related to the proposed energy system and the avoided emissions due to the substitution
of current fossil-fuel boilers with district-heating connections.

The district heating network design problem has been widely studied through heuris-
tics, metaheuristics and evolutionary models as well as non-linear models. In Craus et al.
[26] the authors present a Genetic Algorithm to solve the problem of extending district
heating networks by selecting the most profitable users and considering constraints on the
optimal pipe path that has to follow the existing roads. Tests on a simple network of 50
individuals are presented.

A biologically inspired strategy of optimally building heating distribution network is
presented in Shang and Zhao [78]. In this case an Ant Colony algorithm and a Genetic
algorithm are used and compared.

A new method has been developed by Weber et al. [91] to design district energy
systems by decomposing the multi-objective optimization problem in a way similar to the
Bender’s decomposition. In this case authors aims to solve two optimization problems:
the minimization of costs and CO2 emissions and the optimal choice of heat pumps,
temperature along the pipes, thickness of insulation. The objective is to find how shall a
district energy system be designed to minimize the overall costs and the CO2 emissions
while delivering the hourly energy services required by the customers. A multi objective
evolutionary algorithm is presented for such purposes and tests on 12 buildings has been
carried out.

Another multi-objective evolutionary algorithm is studied in Molyneaux et al. [58], to
facilitate the design and planning of a district heating network based on a combination of
centralized and decentralized heat pumps combined with on-site cogeneration. A Genetic
Algorithm is selected to optimize pollution, costs and investments.

Examples of non-linear models for DH network design are presented by Bøhm et al. [9],
Park et al. [64] and Bøhm et al. [8], while network aggregation techniques are discussed in
Zhao [99], Zhao and Holst [100], Larsen et al. [48], Loewen et al. [51], Loewen et al. [52]
and Larsen et al. [49].

The optimal operational management of District Heating Networks has been studied
both through deterministic and heuristics approaches. An example of deterministic ap-
proach can be found in Dotzauer [28]. This study considers mid-term planning of the
production of heat and power for periods of up to one month. The operation of fuel
storage and the influence of the national tax system are considered. The major goal is to
minimize the operation cost, subject to the condition of fulfilling heat demands. The main
output results are the power produced and consumed each day of the planning horizon

An example of Heuristic approaches for the operational management problem can be
found in Sakawa et al. [76] where Genetic algorithms are proposed to formulate the oper-
ation planning of a district heating and cooling plant as a mixed 0-1 linear programming
problem. Authors consider the operation plan to minimize the cost of gas and electric-
ity under the condition that the demand for cold water and steam must be supplied by
running boilers and freezers.

Heuristics has been used also to model demand responsive systems. An example can
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be found in the work published by Sipilä and Kärkkäinen [80], where authors describe a
multiagent system that dynamically controls District Heating Systems (DHS) so that the
load of the system is kept below certain threshold values without reducing the quality of
service provided to the customers. It is important to underline that only peak cutting is
considered in this work, while the demand shifting is not studied.

Other optimization studies in the field of District Heating has been carried out focusing
on specific technical aspects of the system.

Deterministic approaches are used in Bojic and Trifunovic [10] and Bojic et al. [11].
The first work focuses on the evaluation of hydraulic resistance of valves that may be
adjusted, and heat exchangers in substations that may be resized. Tests on three buildings
present the computational results. The latter investigates an optimum strategy to mitigate
the problem caused by changes of three of system characteristics: hydraulic resistance
of secondary pipe network, heat transmittance of radiators inside buildings, and heat
transmittance of building envelope.

Heat exchangers and pumps are considered in Xu and Chen [93] where an optimization
model is developed based on the physical quantities, i.e. entransy, entransy dissipation
and entransy dissipation-based thermal resistance. In particular, two complementary op-
timization problems are studied, the first one related to the minimization of the total
thermal conductance of heat exchangers with total energy consumption of pumps given;
and the second one related to the minimization of the total energy consumption of pumps
with total thermal conductance of heat exchangers given. The final objective is to find
the optimized configuration of all the structural and operating parameters.

An integer programming model for a different problem was defined by Aringhieri and
Malucelli [4]. They considered the optimal selection of the type of heat exchangers to be
installed at the users in order to optimize the return temperature at the plant and achieve
good system efficiency at a reasonable cost.

Heuristics methods are used as well for such analyses. For instance in Kayfeci et al. [42]
Artificial Neural Networks (ANNs) are implemented to predict insulation thickness and life
cycle costs (LCCs) for pipe insulation applications. Artificial Neural Networks techniques
are used in Keçebaş and Yabanova [44] as well, where authors deal with determination of
the energy and exergy efficiencies and exergy destructions for thermal optimization of a
geothermal district heating system.

Finally, some investments decision making are studied by deterministic methods, such
as in Tveit et al. [86] where a MINLP model is presented. In this case the objective is
the analysis of new investments and the long-term operation of CHP plants in a district
heating network with long-term thermal storage. Authors created a decision making tool
for investing either in a long-term thermal storage or for investments in a DH network
with an existing long-term thermal storage.

A summary of the main scientific literature in the field of District Heating can be found
in Table 4.1 where papers are classified according to different types of problems, together
with the methodologies used to solve them. The word deterministic indicates all the exact
methods of mathematical programming, LP, ILP and MILP techniques.
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Table 4.1: District Heating literature summary

TYPE OF PROBLEM PAPERS METHODOLOGY KEYWORDS

UNITS SELECTION AND DESIGN

Optimal components selection Mehleri et al. [57] Deterministic
Ren and Gao [69] Deterministic

Sanaei and Nakata [77] Non-linear optimization

Plant design integration Reini et al. [68] Deterministic

Environmental impact Chinese and Meneghetti [21] Deterministic

Components selection, evironmental impact Weber et al. [91] Bender’s decomposition
Molyneaux et al. [58] Genetic Algorithm

Nework Design Shang and Zhao [78] Ant Colony
Bøhm et al. [9] Non-linear models
Park et al. [64] Non-linear models
Bøhm et al. [8] Non-linear models

Zhao [99] Network aggregation
Zhao and Holst [100] Network aggregation

Larsen et al. [48] Network aggregation
Loewen et al. [51] Network aggregation
Loewen et al. [52] Network aggregation
Larsen et al. [49] Network aggregation

Incremental Network Design Craus et al. [26] Genetic Algorithm

MANAGEMENT

Operational management Dotzauer [28] Deterministic
Sakawa et al. [76] Genetic Algorithm

Demand responsive Sipilä and Kärkkäinen [80] Heuristics, multi-agent

TECHNICAL/ECONOMICAL ASPECTS

Heat exchangers and valves Bojic and Trifunovic [10] Deterministic
Bojic et al. [11] Deterministic

Heat exchangers and pumps Xu and Chen [93] Deterministic

Heat exchangers and return temperature Aringhieri and Malucelli [4] ILP

Insulation thickness Kayfeci et al. [42] Artificial neural networks

Thermal optimization Keçebaş and Yabanova [44] Artificial neural networks
(energy-exergy efficiency)

Investment decision making Tveit et al. [86] Deterministic

4.2.2 District Cooling

The literature specialized in the District Cooling Systems optimization is slightly limited.
The majority of works related to network design or operational management are in the field
of District Heating and in such cases the Cooling problems are somehow complementary to
the main Heating problems already studied. However, some papers specifically dedicated
to District Cooling optimization can still be found in literature.
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In Söderman [81] a Mixed Integer Linear Programming model is applied for the design
and operational management of a District Cooling network in an urban region. On the
network design side, the authors focus in particular on the structure of the district cooling
system including the locations where cooling plants should be built, the cooling capacity of
the plants, the cold media storage locations, the storage capacities and the routing of the
distribution pipelines to individual consumers. On the operational management side the
decisions are related to how the cooling generation plants will be run in different periods
of the year, how the storages will be discharged and recharged and what will be the cold
medium flow rates in the district cooling pipelines. Computational tests on a network of
53 users are presented.

Metaheuristics approaches have received a wider attention with particular regard to
Genetic algorithms implemented to solve mainly design problems.

In Feng and Long [30] and Feng and Long [31] the design problem is related to the
combined optimization of pipes layout, pipes size, water velocity and insulating layer thick-
ness. The objective is finding the best combination with the minimum annual equivalent
cost, which consists of the overall investment, annual operating cost, maintenance and
amortization expense annual cooling loss cost. As for the constraints, hydraulic stability
is also considered in this study besides the ordinary factors such as pipe diameter, flow
velocity, flow needed by users, flow equilibrium and circuit pressure equilibrium. Compu-
tational experiments are presented with regard to 4 cooling plants and 7 nodes with 13
possible connection paths.

The pipe network design optimization is studied by Chan et al. [17] through a Genetic
algorithm as well. The objective is to find the optimal/near optimal piping network
configuration of a district cooling system that minimizes the infrastructure (piping) cost
compatible with the minimum pumping energy cost.

Another Genetic algorithm is implemented in Chow et al. [23] to determine the de-
sirable mix of building types, within the district of interest, to be served by the District
Cooling System. Tests on very little networks of 5 buildings are presented as well.

Other studies are more focused on the chiller selection and management with some
demand responsive formulations. In Powell et al. [65] a cooling network with multiple
chillers is studied and an optimization model is presented to define which chillers should
be used and their corresponding cooling loads. Thermal storage is considered to evaluate
electrical loads shifting allowing the system to take advantage of less expensive off-peak
rates.

Operational management problems are studied by Metaheuristics as well.
A Genetic algorithm is implemented in Sakawa et al. [75] to solve an operation plan-

ning problem of a district heating and cooling plant. The objective is to minimize the
costs related to gas bills and electricity bills due to the Energy consumption of different
components of the network (i.e. cooling towers, heat exchangers, freezers, storage, boil-
ers). An interactive Fuzzy approach to the problem is proposed by the same Authors in
Sakawa and Matsui [74].

Network design and operational management problems are combined with environ-
mentally aware models in Burer et al. [14] where a clustering evolutionary multi-objective
optimizer is used to carry thermo economic analyses. The objective in this case is the
minimization of the overall internalized cost of an energy system, accounting for design,
installation, operation but also pollution through the introduction of pollution cost factors.

Beyond deterministic and heuristics approaches, simulation is also used to study such
systems. In Chow et al. [24] simulation is used to forecast the hourly energy consumption
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of users and the optimal plant configuration to satisfy the users needs.

A summary of the main scientific literature in the field of District Cooling can be found
in Table 4.2 where papers are classified according to different types of problems, together
with the methodologies used to solve them. The word deterministic indicates all the exact
methods of mathematical programming, LP, ILP and MILP techniques.

Table 4.2: District Cooling literature summary

TYPE OF PROBLEM PAPERS METHODOLOGY KEYWORDS
Network design Chan et al. [17] Genetic Algorithm

Mix of building selection Chow et al. [23] Genetic Algorithm

Design and operational management Söderman [81] Deterministic

Design and technical aspects Feng and Long [30] Genetic Algorithm
Feng and Long [31] Genetic Algorithm

Design, management and environmnet impact Burer et al. [14] Evolutionary multi-objective optimizer

Chillers selection and demand response Powell et al. [65] Genetic Algorithm

Operational management Sakawa et al. [75] Genetic Algorithm

Consumptions forecast and plant configuration Chow et al. [24] Simulation

4.3 Electrical Energy Distribution

This section will be dedicated to the presentation of the main scientific literature in the
field of electrical energy distribution optimization, with regard to off-grid systems and grid
connected systems.

In the Energy field, off-grid systems are systems that are not connected to the main
or national electric grid. Off-grid can be stand-alone systems or mini-grids that provide
electricity to small communities which are established in remote rural areas, locations that
are not served by an electricity distribution system. But the term off-grid can also have a
broader meaning, referring in general to a way of living in a self sufficient manner without
any reliance on one or more public utilities.

A typical off-grid system includes one or more methods of electricity generation, stor-
age devices and regulation devices. The electricity is typically generated by one or more
methods among renewable and conventional resources. The most common renewable re-
sources for the electricity production are solar panel (photovoltaic or PV systems) and
wind turbines, followed by micro hydro and geothermal methods. The conventional gen-
eration of electricity can be related to conventional diesel generators (or biofuel generator
for more environmentally friendly solutions) and micro combined heat and power plants
(micro CHP).

The storage devices are typically represented by a battery bank (lead acid batteries
are the most common for solar applications) but sometimes other solutions with fuel cells
are implemented as well.

When the conventional generator is on it can send energy directly to the final users or to
the storage units. Since the storage belongs to the DC side and the conventional generator
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belongs to the AC side, converter units (rectifiers) are inserted. The final demand can be
met also using the energy stored in the battery and the energy produced by the renewable
resource, for instance a PV plant. In this case converter units (inverters) are inserted as
well, since the demand belongs to the AC side and the storage and PV units belongs to
the DC side. The renewable production can be sent to the storage units in those cases in
which the energy produced by the renewable plant exceeds the final users Energy needs.

On the opposite, Grid Connected Systems are systems that are connected to the main
national electric grid. A power system network integrates transmission grids, distribution
grids, distributed generators and loads that have connection points called buses. Broadly
speaking, transmission level is related to the transfer of electrical energy from generating
power plants to electrical substations located near demand centers. Transmission lines,
when interconnected with each other, become transmission networks. The distribution
level represents the connection between high voltage substations and customers. Distri-
bution substations connect to the transmission system and lower the transmission voltage
to medium voltage with the use of transformers.

Renewable energy systems can provide electrical Energy to houses or small businesses
without any connection to the electricity grid, but many economical advantages can be
offered by a grid-connection. In fact a grid-connected system allows people to power
their home or small business with renewable energy during those periods (daily as well as
seasonally) when the sun is shining, the water is running, or the wind is blowing. Any
excess electricity produced is fed back into the grid. When renewable resources are no
available, electricity from the grid can supply people needs, eliminating the expense of
electricity storage devices like batteries.

In addition, power providers (i.e. electric utilities) in most states allow net metering,
an arrangement where the excess electricity generated by grid-connected renewable energy
systems “turns back” people electricity meter as it is fed back into the grid. If a consumer
unit uses more electricity than its system feeds into the grid during a given month, the
consumer will pay its power provider only for the difference between what it used and what
it produced. In such cases arbitrage plays an important role in optimizing the economic
revenues that may come from the electricity exchange between the users and the main
grid.

4.3.1 Off-Grid Systems

The scientific literature in the field of off-grid systems optimization can be classified into
two main problems that are the optimal selection and sizing of components and the optimal
operational management and dispatching of the electrical energy produced by the system.
Components are generally storage devices (mainly batteries), conventional generators to
cover peak demand and renewable resources, with particular regard to PV and wind plants.

These problems are studied both by deterministic and heuristics approaches.
Beyond such main wide topics, other studies take into account also environment and

pollution issues and a separate part of literature is more dedicated to comparison between
deterministic and heuristics approaches and existing design softwares analyses.

The optimal selection and sizing of components has been widely studied through de-
terministic approaches of Linear Programming and Mixed Integer Linear Programming.

In Zhang et al. [97] authors developed a deterministic approach for the optimum sizing
of two hybrid power systems. One composed of PV, wind, battery and diesel and another
one composed of just PV, wind and diesel. Optimum values are obtained with a time
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horizon on 20 years, including the number of PV modules, the PV modules surface area,
the number of wind turbines, the wind turbine installation height, the battery bank number
and the diesel generator operating hours with their lowest system total investment costs.

The problem of sizing battery storage and renewable sources such as PV arrays and
wind turbines at an off-grid facility has been studied by Linear Programming in Puri [67]
as well.

The components sizing can be found also in Yu et al. [95] where authors developed a
mixed integer linear programming algorithm to determine the optimal number of renewable
energy and storage components in a microgrid given typical load profiles, local pricing
regime, and capital costs. Case studies using solar panels and advanced lead acid battery
modules are performed under residential, commercial, and off-grid sites.

In Huneke et al. [39] the optimal configuration of an electrical power supply system
following characteristic restrictions as well as hourly weather and demand data is found.
In particular, the optimal mix of solar and wind-based power generators combined with
storage devices and a diesel generator set is formed.

A slightly different approach is used in Gupta et al. [35] where authors present a
general methodological framework for the formulation of an action plan for a small-scale
hybrid energy system for a remote area. The action plan is the output of a six stage
procedure, where a deterministic approach for sizing and optimization takes place as well.
The proposed procedure is made of selecting cluster of villages, demand assessment, re-
source assessment, estimation of unit cost of different resources, sizing and optimization,
and model formulation.

The operational management problem of off-grid systems has been widely studied as
well through deterministic approaches.

In Chen et al. [19] a mathematical programming approach is established for the analysis
and design of an off-grid hybrid power system. In particular, the problem of allocating
the power sources to demands as well as the storage of excess electricity for later use is
solved.

An optimization framework for solving the scheduling and commitment problems of
off-grid power systems is proposed by Zelazo et al. [96] as well. Authors propose a general
optimization framework to manage load scheduling and utility maximization in the context
of a self-contained power system.

In Bansal et al. [7] a linear programming mathematical model for the optimal daily
scheduling of a solar-wind-diesel system with battery storages is presented. The objective,
as usual, is profit maximization.

A linear mathematical program has been derived by Mustonen and Nanthavong [61]
for an autonomous small scale village power system. The model considers a 24 hours
operation period of a village power system. The peculiarity is that this study involves
the linearization of cost functions for power load, generation, energy storage, and power
distribution, taking into account that in reality, many components of a power system have
non-linear characteristics.

Mixed integer linear programming is used in Dai and Mesbahi [27] where authors
address the optimal power generation and load management problems in off-grid hybrid
electric systems with renewable sources.

Slightly different off-grid systems has been studied by Morais et al. [60]. In this paper
authors take into account a system with fuel cells, beyond the traditional components
(wind, solar, batteries). A mixed-integer linear programming is developed to minimize
the generation costs and optimize storage charging and discharging time subjected to all
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the operation technical constraints
A more complex system with a greater amount of components can be found in Gupta

et al. [36] where authors study the optimal configuration and operation of a hybrid en-
ergy generation system consisting of small/micro hydro based power generation, biogas
based power generation, biomass (fuel wood) based power generation, photovoltaic array,
a battery bank and a fossil fuel generator.

Heuristics approaches has been used both for the selection/sizing of off-grid systems
components and for operational management problems.

The components selection and sizing has been studied in several papers by using heuris-
tics and metaheuristics techniques.

The optimum mix of resources for a cost optimization has been studied in Sharma
et al. [79] both through Genetic algorithms and Particle Swarm methods. Since standard
Particle Swarm optimization algorithm suffers from premature convergence due to low
diversity, and Genetic algorithm suffers from a low convergence speed, in this study authors
propose some modification strategies in the two algorithms to achieve the properties of
higher capacity of global convergence and a faster efficiency of searching.

Particle Swarm optimization is used in Boonbumroong et al. [12] as well for a design
optimization problem. In particular, the objective is finding the optimal configuration of
a stand alone hybrid power system composed of PV/wind/diesel.

In Gajbhiye and Suhane [32] the authors propose an optimization algorithm based
on Ant Colony optimization to evaluate the optimal sizing and economic assessment of a
Hybrid Energy System which combines PV, wind turbine, diesel and battery bank.

Several studies in the field of off-grid systems operational management has been carried
through heuristics and metaheuristics as well.

The operational management problem is studied in Tutkun [85] through a Genetic
algorithm and a Support Vector Machines method. The objective is to minimize the
electricity cost of the renewable system by optimally scheduling generated and consumed
powers.

Particle Swarm optimization is proposed in Amer et al. [2] for the optimization of the
power generated from a Hybrid Renewable Energy Systems in order to achieve the load
of a typical house as example of load demand.

Finally, in Priyadharshini and Chitra [66] an Ant Colony optimization based control
strategy is proposed for self-tuning some control parameters related to voltage regulation
and frequency regulation especially at the instant of shifting from grid tied mode to island
mode of operation of the microgrid

Beyond the main classes of design/selection/sizing of components and operational man-
agement problems, there are other works in literature related to comparative analyses
between heuristics, deterministic and simulation approaches.

In Upadhyay and Sharma [87] authors study the operational management problem by
making a comparative analysis between a mathematical model developed in LINGO and
a Genetic algorithm developed in MATLAB.

While in Whitefoot et al. [92] authors study the optimal system design problem by
comparing results obtained through a deterministic linear programming model and re-
sults obtained using the publicly available rulebased dispatch strategy in HOMER Energy
software. A case study of an islanded military base microgrid with renewable and non-
renewable electricity generation, battery storage, and plug-in vehicles is presented.

Another group of papers use both deterministic and heuristics to study design and
operational management problems with a more environmentally friendly approach that
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takes into consideration environment issues and pollution emissions.
A deterministic approach is used in Kazemi and Rabbani [43] where authors takes into

account greenhouse gas (GHG) emissions produced by utilization of renewable energies
in decentralized energy planning optimization models with demand side management. A
number of sustainability indicators are utilized upon which four renewable energy tech-
nologies are compared.

A binary evolutionary algorithm is used in Katsigiannis and Georgilakis [40] where an
economic and environmental evaluation of an off-grid system is presented. The economic
evaluation is referred to the minimization of the total net present cost, while the environ-
mental objective refers to the minimization of the total CO2 equivalent emissions during
the life cycle of system components (wind turbines, photovoltaics, diesel generator and
batteries).

The environmental emissions and energy sustainability are considered also in Colson
et al. [25] where an Ant Colony optimization method is proposed for the operational
management problem related to dispatch control and power management of microgrid
generation.

A summary of the main scientific literature in the field of off-grid systems can be found
in Table 4.3 where papers are classified according to different types of problems, together
with the methodologies used to solve them. The word deterministic indicates all the exact
methods of mathematical programming, LP, ILP and MILP techniques.

Table 4.3: Off-grid systems literature summary

TYPE OF PROBLEM PAPERS METHODOLOGY KEYWORDS
Components selection and sizing Zhang et al. [97] Determinisitc

Puri [67] Deterministic
Yu et al. [95] Deterministic

Huneke et al. [39] Deterministic
Gupta et al. [35] Deterministic, clusterization
Sharma et al. [79] Genetic, Particle Swarm

Boonbumroong et al. [12] Particle Swarm
Gajbhiye and Suhane [32] Ant Colony

Operational management Chen et al. [19] Deterministic
Zelazo et al. [96] Deterministic
Bansal et al. [7] Deterministic

Mustonen and Nanthavong [61] Deterministic
Dai and Mesbahi [27] Deterministic

Morais et al. [60] Deterministic
Gupta et al. [36] Deterministic

Tutkun [85] Genetic Algorithm
Amer et al. [2] Particle Swarm

Priyadharshini and Chitra [66] Ant Colony

Comparative analyses Upadhyay and Sharma [87] Deterministic vs Genetic
Whitefoot et al. [92] Deterministic vs simulation

Environmental impact Kazemi and Rabbani [43] Deterministic
Katsigiannis and Georgilakis [40] Binary Evolutionary Algorithm

Colson et al. [25] Ant Colony
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4.3.2 Grid Connected Systems

The field of Grid connected systems optimization has been mainly treated through de-
terministic linear programming and mixed integer linear programming approaches and
heuristics approaches. It is possible to find simulation approaches as well as dynamic
programming and quadratic programming methods.

The main type of problems are the components sizing/location/dimension and the op-
erational management of the system along a defined time horizon. Generally the objective
functions are related to profit maximization with particular regard to the possibility to
sell the available Energy to the grid. The opportunity to play with arbitrage techniques
(i.e. buying/selling Energy from/to the grid), is the main peculiarity that distinguish the
grid connected studies from the off-grid studies.

Deterministic approaches has been used both for sizing, design problems and for op-
erational management studies.

In Ren et al. [70] authors deal with the problem of the optimal size of a grid-connected
photovoltaic (PV) system for residential applications. In particular, they propose a lin-
ear programming model that determines the economically optimal PV installation. The
objective is to define the optimal PV capacity by minimizing the annual energy cost of a
given customer, including PV investment cost, maintenance cost, utility electricity cost,
subtracting the revenue from selling the excess electricity.

Another sizing problems more focused on storage devices is presented in Chen et al. [20].
In this case cost/benefit analyses for the optimal sizing of an energy storage system in a
microgrid are presented. In particular authors propose a comparison between quantitative
results obtained for an offgrid case and a grid connected case.

The optimal design of a hybrid wind-solar power system for either autonomous or grid-
linked applications has been combined with a more environmentally friendly analysis in
Chedid and Rahman [18]. The proposed analysis employs linear programming techniques
to minimize the average production cost of electricity while meeting the load requirements
in a reliable manner, and takes environmental factors into consideration as well.

The network design of the system through deterministic approaches and graph theory
can be found in Paiva et al. [63]. The main purpose is the definition of the power flows in
the branches and the convenience in the installation of each of the branches of the graph
by minimizing costs and meeting restrictions imposed on the problem.

With regard to the operational management problem through deterministic approaches,
the available literature makes use of Linear Programming and Mixed Integer Linear Pro-
gramming.

In Kriett and Salani [46] a generic mixed integer linear programming model is proposed
to minimize the operating cost of a residential grid-connected microgrid. Supply and
demand of both electrical and thermal energy are modeled as decision variables. The
micro grid covers solar energy, distributed generators, energy storages, loads and electric
vehicle.

The electric vehicle management can be found in Stadler et al. [82] as well, where a
mixed-integer linear program is proposed to examine and minimize the impact of electric
vehicles on building energy costs and CO2 emissions.

An operational management problem with demand side applications can be found in
Zhang et al. [98] where authors study the economic dispatch for a microgrid with high
renewable energy penetration. In this case robust optimization is used to address the
intrinsically stochastic availability of renewable energy sources.
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A work more focused on storage management can be found in Lu and Shahidehpour
[55]. The paper presents a short-term scheduling of battery and applies a Lagrangian
relaxation-based optimization algorithm to determine the hourly charge/discharge com-
mitment of battery in a utility grid. The main objective is to make analyses on the impact
of grid-connected PV/battery system on locational pricing, peak load shaving, and trans-
mission congestion management.

With regard to Heuristics approaches, Particle Swarm optimization has been used
mainly for design problems.

Examples can be found in Kornelakis [45] where authors present an optimal design of
photovoltaic grid-connected systems. The objective is to determine the optimal number
of system devices and the optimal PV module installation details, in such a way that
the economic and environmental benefits achieved during the system operational lifetime
period are both maximized.

The optimal location and size of PV Grid-Connected Systems for distributed power
generation is studied by Gómez et al. [34] through a Particle Swarm algorithm as well.

In Hassan and Abido [38] a slightly different problem is presented more focused on
technical aspects of the operational management problem. In particular, Particle Swarm is
used to find the optimal design of LC filter, controller parameters, and damping resistance
for a grid-connected system.

Other approaches such as Dynamic Programming and Quadratic Programming has
been used to study grid-connected optimization problems.

Dynamic Programming is used in Riffonneau et al. [71] to find an optimal power
management mechanism for grid connected PV systems with storage.

While Quadratic Programming is used in Supriya and Siddarthan [83] to determine the
optimal design of a hybrid wind-solar power system for either autonomous or grid-linked
applications. The objective is to minimize the cost while meeting the load requirements
in a reliable manner. The optimum number of PV modules and wind turbines subject to
minimum cost can be obtained with good accuracy.

A probabilistic approach is used in Yokoyama et al. [94] to find the optimal unit siz-
ing of a grid-connected photovoltaic system without storage batteries. In consideration
of probabilistic characteristics of solar insolation and electricity demand, the surface area
of photovoltaic array, capacity of receiving device, and electric contract demand are de-
termined so as to minimize the expected values of annual total cost and annual energy
consumption subject to the annual loss of power supply probability.

Other approaches more related to simulation procedures are available in literature.
In Liu et al. [50] authors investigate the economic, technical and environmental per-

formance of residential PV system. The objective is to optimize the size and slope of PV
array in the system by running simulations through a simulation software called Homer.

A simulation approach is proposed in Notton et al. [62] as well for a similar sizing
problem. In this case the purpose is to calculate the optimal sizing of a grid-connected
PV system under a wide variety of weather conditions and for four photovoltaic module
technologies.

A summary of the main scientific literature in the field of grid-connected systems can
be found in Table 4.4 where papers are classified according to different types of problems,
together with the methodologies used to solve them. The word deterministic indicates all
the exact methods of mathematical programming, LP, ILP and MILP techniques.
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Table 4.4: Grid connected systems literature summary

TYPE OF PROBLEM PAPERS METHODOLOGY KEYWORDS
Units selection, location and sizing Ren et al. [70] Deterministic

Chen et al. [20] Deterministic
Gómez et al. [34] Particle Swarm

Supriya and Siddarthan [83] Quadratic programming
Yokoyama et al. [94] Probabilistic approach

Notton et al. [62] Simulation

Design and environmental impact Chedid and Rahman [18] Deterministic
Kornelakis [45] Heuristic
Liu et al. [50] Simulation

Network design Paiva et al. [63] Deterministic

Operational management Kriett and Salani [46] Deterministic
Hassan and Abido [38] Particle Swarm
Riffonneau et al. [71] Dynamic programming

Op management, environmental impact Stadler et al. [82] Deterministic
Op management, demand response Zhang et al. [98] Deterministic
Op management of storage units Lu and Shahidehpour [55] Lagrangian-relaxation

4.4 Heat and Power Production

This section will be dedicated to the presentation of the main scientific literature in the
field of optimization applied to combined heat and power plants (CHP) and combined
heat cooling and power plants (CHCP).

Combined heat and power production is commonly known as Cogeneration and it
refers to the simultaneously production of electricity and useful heat. Cogeneration makes
a thermodynamically efficient use of fuel. In fact in traditional electricity production, some
energy has to be wasted as heat, as all thermal power plants emit heat during electricity
generation. Such heat is generally released into the natural environment through cooling
towers, or by other means. But through cogeneration plants such thermal energy can be
recovered and put to use. One of the main example of heat recover is the use of such
wasted thermal energy in District Heating networks.

Large cogeneration systems can provide heat and power for industrial sites or even
whole towns.

On the other hand, micro-CHP, is used to provide Energy to houses or small business.
Such installations are usually less than 5 kWe. In this cases, instead of burning fuel to
heat space and water, part of the energy is converted into electricity that can be used both
for the home/business energy needs and, if possible, for energy exchange with the power
grid.

Combined heat, cooling an power production is commonly known as Trigeneration and
it refers to the simultaneous generation of electricity and useful heating and cooling. In
trigeneration the waste heat can be used both for heating and cooling, gaining higher
overall efficiencies than cogeneration or traditional power plants. The cooling production
is typically obtained through an absorption refrigerator.

In both technologies (CHP and CHCP) the Energy production can come from the
combustion of a fuel (diesel or biofuel) or a solar heat collector.

The main optimization problems studied in the field of CHP and CHCP systems are re-
lated to the scheduling and operational management of such plants, with profit maximiza-
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tion objectives and sometimes additional environmental objectives related to emissions
reduction. Part of the literature is also focused on the design of such plants and optimal
dimension of technical components, although the design is always studied together with
the hourly simulation of the system.

The main approaches for these optimization problems are deterministic approaches of
linear programming and mixed integer linear programming and heuristic approaches with
a wide use of Genetic algorithms in particular.

4.4.1 CHP Systems

The Combined Heat and Power (CHP) technology has been studied both through deter-
ministic and heuristic approaches, with particular attention to deterministic methods.

The deterministic methods of linear programming and mixed integer linear program-
ming has been used to solve pure applications related to optimal CHP plants management
and optimized arbitrage techniques trying to take advantage of the electricity exchange
with the main electrical network.

In Cho et al. [22] an energy dispatch algorithm is presented with the objective to
minimize the cost of energy made of cost of electricity from the grid and cost of natural
gas into the engine and boiler based on energy efficiency constrains for each component.
A deterministic network flow model of a typical CHP system is developed as part of the
algorithm.

A similar operational management study can be found in Gustafsson and Karlsson [37]
where the objective is to find the best combination of electricity production, electricity
purchase and heat production. In this case the CHP optimization is integrated with a
district heating system where the heat can be further distributed. The optimal solution
in the model is characterized by the lowest possible operating cost for one year.

Other works are still focused on operational management applications but with more
attention to the benefits that thermal and electrical storage can bring inside the system. It
is the case of Majic et al. [56] where authors present an optimization model for economical
scheduling of a microgrid using linear programming. In this study two microgrid models
are considered. The microgrid proposed in the first model consists of thermal and electrical
loads and a CHP unit. The second model consists of the units considered in the first model
with addition of thermal and electrical storage. Optimization results for the two cases are
compared to determine the impact of energy storage on an optimal scheduling.

Beyond the pure applications, other works are more focused on mathematical tricks to
improve the deterministic algorithms efficiency and robustness.

In Lahdelma and Hakonen [47] authors model the hourly CHP operation as an LP
problem with a special structure and present the specialized Power Simplex algorithm
that utilizes this structure efficiently. In this case the operational management problem of
CHP is studied through a variant of the Revised Simplex algorithm, which is commonly
used for solving LP problems.

Another mathematical study is proposed in Thorin et al. [84] where a tool for long-
term optimization of CHP systems is developed that is based on mixed integer linear-
programming and Lagrangian relaxation. Again the problem studied is the unit commit-
ment and load dispatch problem and the possibility to buy and sell electric power at a
spot market is considered as well as the possibility to provide secondary reserve. For larger
and more complicated systems, a long optimization period has to be divided into shorter
sub-periods. The main focus of this work is the improvement of the robustness of the
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proposed algorithm. For that purpose Lagrangian relaxation is introduced, so that the
solutions of the tool become more robust and near optimal solutions can be found also for
more complicated situations.

Heuristic techniques are used to take into account more complex scenarios, for instance
those whit uncertainty.

In Moradi et al. [59] Particle Swarm optimization is proposed to consider the CHP
model under uncertainty. In this case the problem is a design one and the algorithm has
been developed to determine the optimal capacities for the CHP and boiler such that
thermal and electrical energy demands can be satisfied with high cost efficiency.

Finally other works consider the non-linearity of the CHP operational management
problems. In Ashok and Banerjee [6] a Newton based algorithm for minimizing the total
operating cost of a CHP plant is proposed to face the multiperiod and non-linear nature
of the problem. The objective is to determine the optimal operating strategy of industrial
cogeneration schemes. All types of cogeneration equipments, steam turbines, gas turbines,
diesel generators, steam boilers, waste heat recovery boilers, and steam header configura-
tion, with grid connection are separately represented in terms of their characteristics so
that the model has the flexibility to be applicable for any industry.

A summary of the main scientific literature in the field of CHP systems can be found
in Table 4.5 where papers are classified according to different types of problems, together
with the methodologies used to solve them. The word deterministic indicates all the exact
methods of mathematical programming, LP, ILP and MILP techniques.

Table 4.5: CHP systems literature summary

TYPE OF PROBLEM PAPERS METHODOLOGY KEYWORDS
Design under uncertainty Moradi et al. [59] Particle Swarm

Operational management Cho et al. [22] Deterministic
Gustafsson and Karlsson [37] Deterministic
Lahdelma and Hakonen [47] Revised Simplex algorithm

Thorin et al. [84] Lagrangian relaxation
Ashok and Banerjee [6] Newton based Algorithm

Operational management storage units Majic et al. [56] Deterministic

4.4.2 CHCP Systems

Optimization problems dedicated to CHCP systems are complementary to the ones ded-
icated to CHP as CHCP plants represent a further development of CHP by adding the
opportunity to produce cool Energy beyond the electrical and heat Energy. Hence the
problems studied in the field of CHCP belong to categories similar to the CHP ones
described in previous section.

With regard to deterministic approaches, the main problems are related to optimal
operational management of CHCP plants, with particular focus on applied problems and
arbitrage. Some studies are focused also on environmental aspects and other studies
are focused on mathematical improvement of traditional linear or mixed integer linear
programming.

A simple operational management problem for a trigeneration plant can be found in
Lozano et al. [53]. Arbitrage techniques are taken into consideration. The system is
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interconnected to the electric utility grid, both to receive electricity and to deliver surplus
electricity. A linear programming model provides the operational mode with the lowest
variable cost. A thermoeconomic analysis, based on marginal production costs, is used to
obtain unit costs for internal energy flows and final products as well as to explain the best
operational strategy as a function of the demand for energy services and the prices of the
resources consumed.

Another operational management problem can be found in Arosio et al. [5] where the
operating policy of the plant is dynamically and automatically chosen by a mathematical
model using linear optimization techniques. Such model is then used to make evaluations
on the influence of each parameter on the performances of the whole system.

A slightly different study can be found in Arcuri et al. [3] where the operational man-
agement is studied together with the optimal investment decisions with regard to design
issues as well. In particular, a procedure for optimizing the energy-management of a hospi-
tal complex is described, which derives from the optimal design. In this case the objective
is the determination of the design and the running conditions of a trigeneration plant.

A thermoeconomic analysis of simple trigeneration systems is presented in Lozano et al.
[54]. Different optimal operation conditions which combine the possibility of buying or
selling electricity and/or wasting the excess of heat produced are considered. The aim is
to determine the energy costs of final energy services and internal flows for such different
operation conditions.

The operational management together with the optimal design/configuration and en-
vironmental issues has been studied in Carvalho et al. [15]. In this case the multiobjective
optimization accounts for minimization of total annual costs and annual environmental
loads in the design and operational stages. The environmental loads considered were the
CO2 emissions released in the atmosphere. A set of Pareto solutions is obtained from
the solution of a Mixed Integer Linear Programming (MILP) model, representing optimal
trade-offs between the economic and environmental objectives.

A similar work can be found in Carvalho et al. [16] where the environmental infor-
mation obtained through Life Cycle Analysis techniques has been incorporated into a
Mixed Integer Linear Programming (MILP). The solution of the model provides the op-
timal configuration and operation of an energy supply system to be installed, minimizing
the environmental burden associated with production of equipment and consumption of
resources.

Other studies focus on mathematical tricks to improve the solution of operational
management problems for CHCP systems.

The operational management problem together with the CO2 emission reduction and
some mathematical tricks to improve the algorithm efficiency has been studied in Rong
and Lahdelma [72]. Authors model the hourly trigeneration problem as a linear program-
ming (LP) model with a joint characteristic for three energy components to minimize
simultaneously the production and purchase costs of three energy components, as well as
CO2 emissions costs. Then they explore the structure of the problem and propose the spe-
cialized Tri-Commodity Simplex (TCS) algorithm that employs this structure efficiently.

Another mathematical trick to better solve such problems can be found in Rong et al.
[73] where authors present a Lagrangian relaxation based algorithm for trigeneration long-
term planning with storages based on deflected subgradient optimization method. The
trigeneration planning problem is modeled as a linear programming (LP) problem.

As for heuristic approaches in the field of CHCP, they have been widely used with
particular regard to Genetic algorithms and some Particle Swarm Optimization as well.
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The optimal design of CHCP has been studied in Ghaebi et al. [33] where an exergoe-
conomic optimization is carried on through a Genetic algorithm. The design parameters
of this study are selected as: air compressor pressure ratio, gas turbine inlet temperature,
pinch point temperatures in dual pressure heat recovery steam generator, pressure of steam
that enters the generator of absorption chiller, process steam pressure and evaporator of
the absorption chiller chilled water outlet temperature.

A Genetic algorithm to determine the best design parameters for a CHCP plant has
been used in Ahmadi et al. [1] as well. In this case two objective functions are consid-
ered: the total cost rate of the system, which is the cost associated with fuel, component
purchasing and environmental impact, and the system exergy.

A more comprehensive work can be found in Kavvadias and Maroulis [41] where a
Genetic algorithm has been implemented for the design of trigeneration plants. In this
case the optimization is carried out on technical, economical, energetic and environmental
performance indicators in a multi-objective optimization framework. Both construction
(equipment sizes) and discrete operational (pricing tariff schemes and operational strategy)
variables are optimized based on realistic conditions.

The operational management problem has been studied in Wang et al. [90] through a
Genetic algorithm. The paper analyses the energy flow of a CHCP system and deduces
the primary energy consumption following the thermal demand of building. Three criteria,
primary energy saving, annual total cost saving, and carbon dioxide emission reduction are
selected to evaluate the performance of CHCP system. The objective is to maximize the
technical, economical and environmental benefits achieved by CHCP system in comparison
to separation production system.

A model more focused on environmental impact has been proposed in Wang et al. [88].
The algorithm is still a Genetic one, but the objective is the construction of environmental
impact models for CHCP systems compared to conventional separation production (SP)
systems.

The same authors propose a different heuristic algorithm in Wang et al. [89]. In par-
ticular, Particle Swarm optimization is used to optimize the design and the operation
strategy of a CHCP system. Four decision variables are considered: the capacity of power
generation unit (PGU), the capacity of heat storage tank, the on-off coefficient of PGU
and the ratio of electric cooling to cool load. The objective function simultaneously mea-
sures the energetic, economical and environmental benefits achieved by CHCP system.
Three energy-related environmental issues, global warming, acid precipitation and strato-
spheric ozone depletion, are assessed in the proposed emission model. The objective is the
maximization of the benefits (energy-saving and emission-reducing).

Finally, some studies are focused on the introduction of storage systems for CHCP
plants, as the introduction and the correct management of energy storage systems is a key
point for such plants. In fact, energy storage brings on the one side advantages as for the
reduced components sizes, but more importantly allows for a substantial decoupling of the
thermal and electrical demands, making load following less of a stringent requirement.

A heuristic approach has been used in Bruno et al. [13] where the focus is to find the
best cooling energy storage solution for a real site served by a trigeneration system. In
particular the authors developed a two-step multiperiod algorithm based on two subprob-
lems to explore the opportunities given by the exploitation of different technologies for
energy storage in the development of a trigeneration and district energy project.

The analysis of thermal storage in trigeneration plants is proposed also in Facci et al.
[29] where an optimization methodology, based on energy fluxes simulation and on the
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application of the graph theory, has been used. The optimization algorithm searches for
the plant management envelope that minimizes a prescribed objective function. Specifi-
cally, two different optimization criteria are considered: the economic optimization that
minimizes the total daily operating cost and the primary energy use optimization, that
minimizes the total daily amount of primary energy used by the plant.

A summary of the main scientific literature in the field of CHCP systems can be found
in Table 4.6 where papers are classified according to different types of problems, together
with the methodologies used to solve them. The word deterministic indicates all the exact
methods of mathematical programming, LP, ILP and MILP techniques.

Table 4.6: CHCP systems literature summary

TYPE OF PROBLEM PAPERS METHODOLOGY KEYWORDS
Design Ghaebi et al. [33] Genetic algorithm

Design, environmental impact Ahmadi et al. [1] Genetic algorithm
Kavvadias and Maroulis [41] Genetic algorithm

Design, operation strategy Wang et al. [89] Particle swarm

Environmental impact Wang et al. [88] Genetic algorithm

Operational management Lozano et al. [53] Deterministic
Arosio et al. [5] Deterministic
Wang et al. [90] Genetic algorithm

Op management and investment Arcuri et al. [3] Deterministic
Op management and storage Rong et al. [73] Lagrangian relaxation

Op management, design and environment Carvalho et al. [15] Deterministic
Carvalho et al. [16] Deterministic

Rong and Lahdelma [72] Tri-Commodity Simplex
Wang et al. [90] Genetic algorithm

Storage selection and management Bruno et al. [13] Heuristic
Facci et al. [29] Energy fluxes simulation

Thermoeconomic analysis Lozano et al. [54] Deterministic

4.5 Conclusions

The previous sections showed an overview of the main literature in the field of Energy
optimization, by focusing on the main class of topics described in the introduction and
represented in Figure 4.1. The scientific areas that are still quite uncovered can be iden-
tified as follow.

On the thermal side, the district heating strategic design and incremental design has
received a very little attention, especially with regard to deterministic approaches applied
to large scale problems. The majority of the available literature is focused on very small
instances and many design problems are studied by heuristic and metaheuristic techniques
rather than deterministic methods.

On the electrical side, there is a wide literature in the field of off-grid systems but
very little attention is given to optimal storage operational management with regard to
degradation issues that may be involved in the batteries use for hybrid systems.
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Figure 4.2: Selected Energy Optimization topics and methodology for the present Thesis
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Hence, the most interesting topics that will be covered in this Thesis are related to
the district heating strategic incremental network design and to the battery optimal man-
agement in off-grid power systems with renewable integration, with particular focus on
battery degradation issues.

Figure 4.2 highlights the selected topics and the mathematical techniques through
which such topics will be studied. In particular we will focus on deterministic approaches
and graph theory, both for the network design of district heating systems and the hourly
operational management of off-grid power systems.
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[81] J. Söderman. Optimisation of structure and operation of district cooling networks
in urban regions. Applied thermal engineering, 27(16):2665–2676, 2007.

[82] M. Stadler, C. Marnay, M. Kloess, G. Cardoso, G. Mendes, A. Siddiqui, R. Sharma,
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Chapter 5

Thermal Energy Distribution and
District Heating Systems Theory

In this chapter we will discuss the main theory in the field of District Heating and thermal
Energy distribution, by introducing the most important hydraulic and thermodynamics
concepts that represent the fundamental skills for the mathematical model building. A
brief introduction to illustrate the general aspects and state of the art of District Heating
Systems will be presented in Section 5.1 followed by a general description of the most
important technical aspects in Section 5.2. Section 5.3 will discuss in deep the different
network structures and the graph representation of such systems. Then the concept of
substation together with the most important thermodynamic theory will be introduced in
Section 5.4, while the most important hydraulic theory will be discussed in Section 5.5.
Further important concepts that need to be considered when modeling such networks,
such as concurrent factor, vertical quota and temperature drops, will be introduced in the
last Sections, 5.6, 5.7 and 5.8 respectively.

5.1 Introduction

A good energy policy should be focused on two main aspects: the reduction of energy
consumption and a better use of the available sources. From this point of view, District
Heating (DH) is an important resource to reach environmental sustainability and energy
efficiency of modern cities. Broadly speaking, DH is an energy service based on moving
heat from available heat sources to immediate use directly by customers. It concerns the
centralized production of thermal and possibly electrical energy and its distribution to a
network of users, thus obtaining much higher efficiency in the production and maintenance
costs with respect to the individual production by the end-users (see, e.g., Gustavsson [3]
and Nitsch et al. [6]). It was introduced commercially in the United States in the late
nineteenth century and in Europe in the early twentieth century. During the last decades
DH has reached a considerable diffusion not only in northern Europe, but also in central
and southern European countries, North America and Japan. Just to give an example of
the steep trend line of DH systems implementation, in Italy from 2000 to 2010 the number
of towns having DH networks increased from 27 to 104, the Km of pipe raised from 1000
to about 3000 and the thermal and electric capacity produced more than doubled reaching
7700 GWh (see EuroHeat and Power [1]). This also correspond to a yearly saving of 1.3
millions of CO2 tons. A similar growing trend can be found in other European nations
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(see Table 5.1) and also in other countries such as China - with 147000 Km of pipes and
338 GWth - and Canada, where Dalkia company feeds 19 towns with a total DH extension
of 320 millions of ft2 and the Enwave company feeds the city of Toronto with a total DH
extension of 40M ft2. For more information about the DH infrastructures diffusion the
reader is referred to the survey EuroHeat and Power [1] performed by EuroHeat&Power,
the European association of district heating and cooling.

Table 5.1: Development of DH infrastructures in some European countries (source Euro-
Heat&Power, 2013 survey EuroHeat and Power [1]).

Served Heated Heating Cooling
Country Citizens Pipelines Surface Capacity Capacity

(%) (Km) (106m2) (MWth) (MWth)

Austria 21 4,376 57 9,500 35
Denmark 61 30,288 n.a.

France 7 3,644 n.a. 16,293 668
Germany 12 20,151 438 49,931 161

Italy 5 2,951 96 2,556
Poland 5 19,286 472 59,790
Sweden 42 21,100 678 15,000 650

Starting from early infrastructures fed by traditional boilers, the DH networks saw a
progressive increase in the complexity of the energy production system, which today are
mainly based on modern Combined Heat and Power (CHP) systems with co-generation
engines, and in many cases integrate renewable energy sources such as Waste-to-Energy,
Solar, Geothermal and Biofuel engines.

The most important physics equations required for the description of the DH network
are discussed in the following. For a general introduction to the engineering physics see,
e.g., Khare and Swarup [5], while for details on the DH specific characteristics see, e.g.,
Phetteplace [7].

5.2 District Heating Fundamentals

Today the fundamental idea of district heating is to use local fuel or heat resources that
would otherwise be wasted, in order to satisfy local customer demands for heating, by
using a heat distribution network of pipes as a local market place. Hence, a DH network
is made up by three main elements that are, one or more energy production plants that
provide cheap heat, a heat market that is represented by a group of final users with heat
needs and a network of insulated pipes through which the heat produced in the power
plant can be transported to the consumers in the form of hot water or steam. The plants
produce hot water at a temperature of 90◦C (or even overheated water at the temperature
of 120◦C). When the hot fluid reaches a user, its heat is transferred to a heat exchanger.
The fluid cools down (until a temperature of 60◦C) and can flow back to the production
plant. The plant then provide warming up the cold water again, so that the cycle can
restart. The heat exchanger is a substitute of the classic domestic boiler and it can also
produce water for sanitary use. Typically it is assumed that heat exchangers can provide
the consumers with hot water at 40◦C.

Summarizing, the main elements of a DH system are (see Figure 6.1 for an example):
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• One or more plants, where heat energy is produced in order to warm up a heating
fluid.

• A group of users, which can be represented by the associated heat exchanger. Each
such user v has a power requirement PIv (expressed in kW). Suitable heating de-
mands are space heating and domestic hot water for residential, public and commer-
cial buildings as well as low temperature industrial heating demands.

• A set of insulated pipes which distribute the heating fluid from the plants towards
the users.

These elements should be local in order to minimize the capital investment in the
distribution network through the use of short pipes. As explained in Frederiksen and
Werner [2], the five current most strategic local heat and fuel resources for district heating
are:

• excess heat from thermal power stations (co-trigeneration plants)

• heat obtained from waste incineration

• excess heat from industrial processes and fuel refineries

• fuels that are difficult to handle and manage in small boilers, including most com-
bustible renewables such as wood waste, straw, or olive residues

• geothermal heat sources

The thermal station can be made of simple boilers to produce just heat (see Figure
5.1), or combined plants where the heat production is the waste of the main electrical
production (see Figure 5.2). In large district heating networks a common solution is to
install a main central plant for the combined production of heat and electricity and some
smaller sparse boilers for the heat production in order to cover peak loads. Indicatively
we can say that a plant that produces just electrical energy has an efficiency of 35-40%, a
thermal power station for the combined production of heat and electricity has an efficiency
of 60-70% and a thermal power station that produces both electricity and heat and at the
same time can feed up a district heating network has an efficiency greater than or equal
to 90%.

Figure 5.1: Diagram of a simple plant dedicated just to heat production. Adapted from
Tarenzi and Ceré [9]
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Figure 5.2: Diagram of a CHP plant. Adapted from Tarenzi and Ceré [9]

The heat demands are geographically distributed in an area and their location can be
illustrated by a heat density map where the heat density is the total heat demand divided
by the land area being considered. In such documents the average annual heat density in
kWh/m2 for each part of a city is indicated by different colors. The information required
are generally obtained through a Geographical Information System - GIS which contains
detailed information about the heat demands for each building in a urban area. The basic
information about the current heat supply contained in a heat density map, can be used
to plan and design a district heating network and evaluate the related investment costs.
Priority areas for possible district heating delivery are areas that have a heat density
over a certain threshold value. A typical threshold value for a feasible district heating is
40− 50kWh/m2.

5.3 Networks Structures, Growth Structures and Maps

A network is a set of elements and devices through which the water can be transported
among the heating plants and the consumers. It is important to note that the network can
be split into two separate parts: the first one is the so-called feed line, which contains the set
of pipes bringing hot fluid from the plants to the users. The second part is called the return
line, which includes the pipes bringing cooled down fluid from the users back to the plants.
These pipes are usually laid down in pairs, with one feed and the corresponding return
pipes, and they share physical properties (such as insulation) and geometric properties
(such as diameters and length). Furthermore, the nodes of the network, representing both
users’ exchangers and points in which the pipes bifurcate or merge, called tees, are also
considered in couple. In fact, as the pipes, the nodes are strictly connected both from a
thermal and from a hydraulic point of view. As a consequence, a topological representation
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of a DH network can be obtained by mapping just the feed line.
As shown in Figure 5.3 - 5.6 a district heating network can be described by an oriented

graph were arcs represent the network pipes oriented in the flow direction and nodes
represent plants, final users and ramification tees. Arcs and nodes of the oriented graph
can be associate to the most relevant thermal and hydraulic conditions of the network, in
such a way that:

• every node is associate to a temperature (in ◦K) and a pressure (in bar)

• every arc is associate to a flow mass in the flow direction (in Kg/s), a drop of pressure
in the flow direction (in bar) and a drop of temperature (in ◦K)

It is important to remember that these variables are required both for the feed line
and for the returns line.

Every existing network structure is the result of a growth process. Four main stages
of growth can be identified in the development from small to large systems.

A single grid with a tree structure is initially established (Figure 5.3). The tree struc-
ture implies that only one line can be drawn to anyone of the connected buildings from a
heat supply plant. The flow direction is unique, from the main heat supply plant (black
pentagon) to the final users connected. Generally after the first stage, few additional
smaller independent grids provided with smaller boilers (gray pentagons) can start to
develop in other parts of the city, initially to serve just small groups of similar buildings.

The second stage (Figure 5.4) is the one in which one or more of the smaller grids
of the first stage will be interconnected to the central grid, which has a base load plant.
The structure is still a tree one, even though larger and more complex. In this case the
flow direction isn’t unique anymore, as the presence of more than one plant in different
nodes of the graph can create different operational conditions with different flows along
the network.

At a third stage (Figure 5.5) of development certain pairs of feed and return pipes will
be interconnected, initially between two of the largest branches, to form a ring. The pure
tree-structure is abandoned and more ends are connected establishing a ring of significant
diameter. In this case flow direction along pipes can vary as well.

The last stage (Figure 5.6) is the one in which the structure design grows further and
the network complexity becomes higher as more branch ends will become interconnected
creating a meshed structure feed up by multiple heat supply plants. Distribution pipes will
generally follow the street map, although the street map will remain more fully meshed.

With respect to the size and local conditions there are five typical network structures
as described in Frederiksen and Werner [2]. As depicted in Figure 5.7, smaller systems
are generally based on a network with one central location where all heat supply units are
concentrated at one site (network A). In this case the distance between the heat supply
plant and each substation is short. In medium sized systems decentralized peak load
plants can complement the central base load plant, allowing the reduction of the pipe
diameters from the base load plant (network B). At lower heat loads the whole network is
supplied from the central base load plant, while at higher heat loads the peak plants will
handle the peripheral parts of the city and the base load plant will only supply its own
local neighbourhood. Sometimes large CHP plants are situated at a significant distance
from the central parts of a city for many reasons (i.e. minimize the environmental impact)
while the peak load plants are located in the city area. In this case a transmission pipeline
is required to connect the base load with the general grid (network C). Other types of
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Figure 5.3: First stage of development for a district heating network with a basic tree
structure for smaller areas. Adapted from Frederiksen and Werner [2]

Figure 5.4: Second stage of development for a district heating network with an extended
tree structure. Adapted from Frederiksen and Werner [2]
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Figure 5.5: Third stage of development for a district heating network with ring formation.
Adapted from Frederiksen and Werner [2]

Figure 5.6: Fourth stage of development for a district heating network with meshed struc-
ture. Adapted from Frederiksen and Werner [2]
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networks contain several base load plants. These plants can be connected to one central
heat transmission pipe maintaining a tree structure (network D) or, in cities with more
than one million inhabitants there can be large integrated networks where each major part
of the city has its own base load plant and creating a fully meshed structure as depicted
in Figure 5.6.

Figure 5.7: Different typical network structures. One central base load (A), one central
based load with peripheral base loads (B), one common transmission pipe (c) and periph-
eral decentralized base loads (D). The black and gray pentagons represent the base load
plant and a peak load plant respectively. Adapted from Frederiksen and Werner [2]

5.4 Substations

In district heating the concept of substation is similar to the same concept adopted in
electrical power engineering. A substation can be defined as a unit in which the type
of energy being distributed is transformed from a higher to a lower level, in terms of
one or more characteristic energy-related parameters. In electric power substations the
voltage level is lowered, while in district heating substation temperature and pressures are
lowered, in order to permit the use of less expensive equipment within buildings without
risking malfunctions or accidents. Hence, through the substation the energy transfer can
be interrupted in case of a disturbance or repair. Most of district heating substations are
specific to each building being served and are usually placed inside of these buildings (i.e.
house substations). Sometimes lowering of temperature and pressure is carried out also
in area substations within a network, to serve a local distribution network. At the other
extreme there are flat substations or apartment substations, one for each flat.
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In district heating substations, the key elements are heat exchangers, equipments
through which it is possible to exchange thermal energy between fluids at different tem-
peratures. Broadly speaking, in a district heating system, the heat exchangers are made
of a primary circuit through which the hot fluid from the district heating network feed line
flows, and a secondary circuit through which a cooler fluid from the connected users flows.
The circuits are close each other so that when the two fluids with different temperatures
flows along them, they can exchange their thermal energy. This way the cool fluid from
the users will heat up taking the heat from the hot fluid that comes from the feed line of
the district heating network. Hence the hot fluid will cool down and will come back to
the heat plant through a return line to be heated again and restart the cycle. Figure 5.8
shows a schematic representation of a final user substation.

Figure 5.8: Schematic representation of a final user substation with heat exchanger

The heat exchanger work can be mathematically described by two main thermody-
namics equations.

The first equation relates the final user heat loads, the fluid flow rate and the temper-
ature gradient as follows:

Q = ṁ ∗ cp ∗∆T (5.1)

where Q is the heat (W), ṁ is the fluid flow rate along the primary circuit of a heat
exchanger, (kg s−1), cp is the water specific heat evaluated in constant pressure conditions
(kJ kg−1 K−1 or kcal kg−1 C−1 where 1kcal = 4, 18kJ) and ∆T is the thermal gradient
defined among feed line and returns line (K)
The equation (5.1) is a general one and derives directly from the first law of thermody-
namics, which is usually formulated by stating that the change in the internal energy of
a closed system is equal to the amount of heat supplied to the system, minus the amount
of work performed by the system on its surroundings.

The water specific heat is a function of the temperature and the pressure. As the
pressure dependence is very limited, it is generally defined in constant pressure conditions.
As for the temperature relationship, an example of this is given by Figure 5.9. In district
heating systems planning and operational management it can be assumed that the water
specific heat is a constant value. In particular, in our study we will assume cp = 4, 18 kJ
kg−1 K−1
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Figure 5.9: Water specific heat trends as a function of the temperature and pressures.

The behavior of a generic heat exchanger is instead described by the following relation
that relates the technical properties of the particular heat exchanger that is being inserted:

Q = U ∗A ∗∆Tml (5.2)

where U is the overall heat transfer coefficient (in W/(m2* K)), A is the heat transfer
surface area (m2) and ∆Tml is the log mean temperature difference (in ◦K). The equation
(5.2) is a specific one and defines a generic heat exchanger, whose heat transfer rate is
equal to the product of an overall heat transfer coefficient (that characterizes a particular
heat exchanger), a heat transfer surface area and the log mean temperature difference of
the heat exchanger itself. As previously outlined, inside the heat exchanger, there are two
different flows: one is the heat transfer fluid which flows along a hydraulic circuit called the
primary circuit ; the other one is the cooled down water which flows along another circuit
called the secondary circuit. This second type of flow has to be warmed up by the hottest
fluid of the primary circuit. The log mean temperature difference factor ∆Tml includes
both the input temperature of the hottest flow (flowing along the primary circuit) and the
input temperature of the warmest flow (flowing along the secondary circuit) together with
the relative output temperatures.

5.5 Pumps and Flow Distribution

In addition to the relations introduced before, it is also important to consider friction losses
along the pipes and flow rate constraints, defined by the water requirement of the users.
As can be seen in the following equations 5.3 and 5.5 the pressure drop is proportional to
the square of the water speed v. At the same time the water speed is proportional to the
square root of the pressure difference. Hence, in order to get a double water flow in a pipe,
it is necessary to provide a pressure difference that is four times as great as the current
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pressure difference between the inlet and the outlet of the pipe. This pressure difference
is provided by circulations pumps positioned in the closed circuit of feed and return pipes.
Figures 5.10 and 5.11 show examples of different pressure drop trends for different pipes
inner diameter as a function of the water flow rate. According to the UK/US notation, in
the figures pressure drops are defined in pound per square inch (psi) that corresponds to
0.0689 bar, while the flow rate is expressed in gallons per minute (gpm) that corresponds
to 0.063 kg/sec and the pipe diameters are expressed in inch that corresponds to 2.54 cm.
These are examples of diagrams provided by manufacturers to assist technicians in the
network design of district heating networks.

Figure 5.10: Steel Pipe Pressure Loss: 1/2” to 1” Chart - Information chart assists in
determining pressure loss (psi per 100 LF) for 1/2”, 3/4” and 1” diameter steel pipes at
flows from 0 to 50 gpm. Data distributed online by Industrial Equipment www.industrial-
equipment.biz

According to basic fluid mechanics, the pressure losses in turbulent flow conditions, in
the flow direction in a circular pipe, can be formulated as a sum of two terms: localized
pressure losses ∆Pc and distributed pressure losses ∆Pd.

∆P = ∆Pc + ∆Pd (5.3)

Distributed pressure losses ∆Pd are due to the viscous friction in turbulent flow con-
ditions. Broadly speaking, the flow along a pipe can be of two types, laminar flow and
turbulent flow. Laminar flow occurs when a fluid flows in parallel layers, with no disrup-
tion between the layers, while turbulent flow is a chaotic flow regime that is charachterised
by eddies or small packets of fluid particles which result in lateral mixing. In the first case
the fluid speed is very low and the viscous force prevail on the inertia force. In the second
case the fluid speed is very high with an inertia force that prevails on the viscous one. In a
standard operational regime a district heating network is characterised by turbulent flows.
If a pipe has a laminar flow that means the pipe has been over sized for that particular
operational conditions.
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Figure 5.11: Steel Pipe Pressure Loss: 1” to 2” Chart - Information chart assists in
determining pressure loss (psi per 100 LF) for 1” , 1-1/4”, 1-1/2” and 2” diameter steel
pipes at flows from 0 to 200 gpm. Data distributed online by Industrial Equipment
www.industrial-equipment.biz

Localized pressure losses ∆Pc are due to the presence of junction elements and devices
along the network such as angle pipes, T-joints, increasing or decreasing pipe dimensions,
filter, valves etc. It is generally very difficult to determine such losses in an experimental
way, however, localized pressure losses are considerably lower than the distributed ones,
hence, also an approximation of the 20% can be enough. A localized losses coefficient is
generally defined for every particular type of element of the network. Figures 5.12, 5.13,
5.13 and 5.14 shows example of such junction elements.

In particular, the values of localized and distributed pressure losses can be derived by
fluid dynamics formulations as follows:

∆Pc = 0.5 ∗ ξ ∗ ρ ∗ v2 (5.4)

∆Pd = 0.5 ∗ f ∗ L ∗ ρ ∗ v2 ∗D−1 (5.5)

where:
ξ is the localized losses coefficient (dimensionless)
ρ is the water density (kg/m3)
v is the water speed (m/s)
f is the friction factor (dimensionless)
D is the pipe inner diameter ( m)
L is the pipe length (m)
The water speed v is defined as v = ṁ ∗ (ρ ∗ a)−1 where ṁ is the water flow rate in

kg/s−1 and a is the circular pipe area π∗(D/2)2. Hence, the equation 5.5 can be rewritten
as:

∆Pd = 8 ∗ f ∗ L ∗D−5 ∗ π−2 ∗ ρ−1 ∗ ṁ2 (5.6)
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Figure 5.12: Schematic representation of increasing and decreasing pipe sections and their
symmetrical integration both in the feed and return line. A decreasing pipe section in the
feed line has an equal decreasing section in the return line with the opposite flow direction.
Adapted from Tarenzi and Ceré [9]

Figure 5.13: Schematic representation of an angle joint and its symmetrical integration
both in the feed and return line. Adapted from Tarenzi and Ceré [9]
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Figure 5.14: Schematic representation of a T joint and possible flows throughout it

The equation 5.5 is the Darcy Weisbach law, which refers to the distributed pressure
losses due to viscous friction in turbulent flow conditions. The expression contains the ge-
ometric properties of the pipe, the physical properties of the fluid and the Darcy friction
factor. There are different formulation of the Darcy friction coefficient, obtained in an ex-
perimental way in different conditions, however every formulation is always related to the
inner pipe diameter, the inner pipe surface roughness and the Reynolds number (which is
a dimensionless number used to define the flow motion). In particular, the friction factor
increases with the increasing roughness of the inner pipe surface. The Moody diagram pre-
sented in Figure 5.15 shows the dependence of the friction factor on the Reynolds number
and the pipe roughness. Fortunately friction factor values do not increase dramatically
with surface roughness, hence in practice, there is no need to use detailed friction factors
in the pressure drops calculations. Generally system friction factors are defined through
a comparison between a computerized simulation and an actual measured pressure drop
in an entire system. The system friction factor is identified as the friction factor in the
calculation that gives the same pressure drop as that being measured.

In our study we will refer to the following definition of the friction coefficient f :

f = 0.07 ∗Re−0.13 ∗D−0.14 (5.7)

where Re is the Reynolds number and D is the pipe inner diameter.
Through proper algebraic manipulation we can approximate the pressure loss as a

function of the fluid flow rate as follows

∆P = ∆Pc + ∆Pd = K1 · ṁ2 +K2 · ṁ1.87 (5.8)

where K1 and K2 are empirical coefficients derived by the hydraulic equations discussed
above. They depends on the specific characteristics of the pipe, such as its diameter and
length, and properties of the fluid as previously described.

As the equation 5.6 shows, the pressure drop is inversely proportional to the fifth of
the power of the pipe diameter. That means the pressure drop increases significantly when
the next narrower pipe dimension is chosen. This makes the incremental network design
of a district heating network a true challenge, as the final users to be connected to an
existing network have to be chosen very carefully, taking into consideration not only the
economical aspects, but also the more important hydraulic constraints due to pressure
drops issues.

In fact one of the main issues of companies involved in the district heating management,
is related to the incremental network design. The commercial department can make deep
analyses to define the optimal set of new users from an economic point of view (profit
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Figure 5.15: Friction factor as a function of the Reynolds number and the inner pipe
surface roughness in a circular pipe

maximization), but it can happen that the suggested connections will not be practically
feasible from a physical point of view, or they will require important improvement and
modifications of the existing network in order to be realized. In such cases the company
is going to face very high unexpected expenses. From that point of view the operational
research techniques can offer a holistic approach to the problem, more suitable to better
integrate the economical and technical requirements of such analyses.

Since the heat-transfer fluid loses pressure along the pipes because of the above men-
tioned localized and distributed pressure drops, the fluid pressure decreases gradually from
the plants towards the users and from the users back to the plant. That means that such
networks always present at least one point in the feed line corresponding to the minimum
value of pressure and this point is typically associated with a user. The fluid flow along
the return line has an opposite direction but same value of flow rate, while the pressure
drop along the return line has an opposite sign and slightly larger value due to the lower
temperature of the fluid that increases its kinematic viscosity.

Furthermore, note that when we have a single plant serving the network, it is clear that
at the plant connection with the feed line we have the highest pressure in the network,
while at the connection of the plant node on the return line with have the lowest pressure.
As a consequence, the plant is the point with the highest pressure drop between feed
and return lines and these consideration can be extended also in the case where we have
multiple plants. Pressure at the plants has to be monitored and kept within specific ranges
so as to permit the fluid flow and be compatible with the required pumping system.
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5.6 Concurrent Factor

The final user demand, especially the residential users one, is extremely discontinuous.
The higher the number of consumers is, the lower is the probability that all the users
requirements will be simultaneously at the maximum value. If the network is planned
supposing that every user consumption will be equal to the medium value of all users’
needs, then the network will be undersized. That means that in this case the network will
not be able to guarantee the amount of heated water corresponding to a peak request. On
the other hand, if the network is planned to satisfy the maximum contemporary request of
all users’, then the network will be extremely over sized. Hence, one of the most common
tricks used in such systems is the concepts of concurrent factor. The concurrent factor can
be defined as the ratio between the actual maximum number of users and the theoretical
maximum number of users. The latter is defined as the summation of the maximum heat
requirements of all the currently connected users (or alternatively, in incremental network
design, the maximum heat requirements of all the users that will be presumably connected
to the grid is considered). The concurrent factor is a function of the type and number
of consumers and it decreases as the the number of consumers increases. It is used to
reduce the peak demand of each user. Such a reduction of the demand is practically used
to reproduce the fact that not all users are actually requesting the heat concurrently and,
as a consequence, it is feasible to define the network capacity taking into account just a
fraction of the total demand of the users.

5.7 Vertical Quota

There are some implications related with the unevenness of the vertical quota of the pipes
that need to be briefly outlined for further information.

Let us consider an ideal fluid that moves along a pipe represented in Figure 5.16.

Figure 5.16: Pipe and vertical quota representation. Source Tarenzi and Ceré [9]

Under the ideal fluid assumptions, the specific volume of the fluid is constant and there
no frictions inside it or between it and the pipe layer. If the pipe diameter is constant,
then the fluid speed in input is equal to fluid speed in output v1 = v2

The Bernoulli equation (Schaschke [8]) applied to the pipe ends can be therefore written
as follow
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P1

g ∗ ρ
+ h1 =

P2

g ∗ ρ
+ h2 (5.9)

Let us define the parameters as follow
h1, h2 are the vertical quota (m)
P1, P2 are the pressures (kg/cm2)
g ∗ ρ is the specific weight (kg/m3)

Then the equation becomes

h1 + 10000 ∗ P1

γ
= h2 + 10000 ∗ P2

γ
(5.10)

In the case of a real fluid it is necessary to take into consideration the friction losses
due to the fluid viscosity, hence the hydraulic load will drop in the flow direction.

The equation 5.9 for a real fluid becomes

h1 + 10000 ∗ P1

ρ
= h2 + 10000 ∗ P2

ρ
+
∑

λ (5.11)

where
∑
λ represents the summation of the overall losses due to frictions.∑

λ is generally defined as J ∗ L where J is the energy lost per every unit of length
and L is the length of the pipe.

Broadly speaking, the effect of different vertical quotas at the ends of the pipe involves
changes in the pressures behavior. If the pipe rise then the pressure value tends to decrease
of 0,0980665 bar.

5.8 Pipes Insulation and Temperature Drops

District heating pipes are always insulated and often underground. This section will
briefly introduce the most important concepts and formulas with regard to insulation and
temperature drops. Figure 5.17 shows the main mathematical notation for an insulated
pipe (above) and for the pipe itself underground (below).

The overall thermal resistance of a pipe is the summation of four different kinds of
thermal resistance: water/pipe thermal resistance, pipe thermal resistance, insulation
layer thermal resistance and insulation/air thermal resistance.

It is important to note that the pipe thermal resistance and the water/pipe thermal
resistance are quite small and can be overlooked while the insulated layer thermal resis-
tance is definitely prevalent. As for the insulation/air resistance due to the convection
phenomenas, this is smaller than the latter one, but there are cases in which it can’t be
overlooked. With such assumptions, the overall thermal resistance Rtot (m ◦C h / kcal)
can be written as follow:

Rtot = Ris +Rconv (5.12)

The values of Ris and Rconv come from the fundamentals of thermal and fluid engi-
neering that can be found in many books such as Kaminski and Jensen [4].
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Figure 5.17: Insulation of a pipe (above) and insulation of an underground pipe (below).
Source Tarenzi and Ceré [9]

In particular the insulation thermal resistance Ris is defined as follow

Ris =
1

2 ∗ π ∗ λis
∗ ln

(
Dis

Dest

)
(5.13)

The insulation/air thermal resistance Rconv due to convection phenomenas is instead
defined as follow

Rconv =
1

π ∗Dis ∗ kis−air
(5.14)

where
λis is the insulation thermal conductivity (kcal / m h ◦C)
kis−air is the heat transfer coefficient insulation/air (kcal / m2 h ◦C)
Dest is the outer diameter of the pipe (m)
Din is the inner diameter of the insulation layer (m)

With regard to the underground pipes, they are both insulated and protected by a fur-
ther cover to be positioned underground. The overall thermal resistance is the summation
of five thermal resistances: the water/pipe thermal resistance, the pipe thermal resistance,
the insulation layer thermal resistance, the soil thermal resistance and the soil/air thermal
resistance.

It can be assumed that the insulation layer thermal resistance and the soil thermal
resistance are definitely prevalent.
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Hence in this case the overall thermal resistance Rtot (m ◦C h / kcal) can be defined
as follow

Rtot = Ris +Rterr (5.15)

The insulation layer thermal resistance Ris has been already defined in formula 5.13.
The soil thermal resistance Rterr comes from the fundamentals of thermal and fluid engi-
neering as well (i.e. Kaminski and Jensen [4]) and is defined in m ◦C h / kcal as follow

Rterr =
1

2 ∗ π ∗ λsoil
∗ ln

(
2 ∗ z
Dis

+

√√√√(2 ∗ z
Dis

)2

− 1

)
(5.16)

where
λsoil is the soil thermal conductivity (kcal/ m h ◦C)
z is the pipe depth (m)

We can finally define the most important equations for the calculation of the water
temperature right outside a pipe. Let us consider a pipe fragment of dx lenght as depicted
in Figure 5.18

Figure 5.18: Water temperature outside a pipe. Source Tarenzi and Ceré [9]

In perfect thermal equilibrium conditions the heat losses along a pipe fragment can be
defined in kcal/m/h as follow

Q(x) =
T (x)− Tamb

Rtot
(5.17)

where
Q(x) is the heat exchanged for every unit of length and for every unit of time (kcal/m/h)
T (x) is the pipe temperature on the x coordinate (◦C)
Tamb is the ambient temperature (◦C)
Rtot is the pipe/soil thermal resistance per every unit of length (◦C m h /kcal)

The enthalpy balance along the fragment dx is defined as follow
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3600 ∗ ṁ ∗ cp ∗
dT (x)

dx
= −Q(x) (5.18)

where cp is the water specific heat in kcal/ kg ◦C and ṁ is the water flow rate.
It is then possible to insert in the 5.18 the value of Q(x) found in 5.17 and make the

integral for x getting the following formulation

T (x) = Tamb + (Tin − (Tamb) ∗ e
− x

3600∗ṁ∗cp∗Rtot (5.19)

By imposing x = L it is possible to get the water temperature outside the pipe fragment
of length L

Tout = T (L) (5.20)

where
Tin is the water temperature in input (◦C)
Tout is the water temperature in output (◦C)
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Chapter 6

MILP models for the District
Heating Incremental Network
Design

This chapter will focus on mathematical modeling formulations for the District Heating
design and incremental design problems, with particular regard to instances characterized
by big networks dimensions. The chapter is organized as follows. A brief introduction
to the problem and research motivation will be presented in Section 6.1. In Section 6.2
we discuss a brief literature review about optimization techniques applied to the District
Heating (DH) Network Design field. Section 6.3 will present the main assumptions used
to build an optimization model for the DH incremental network design problem. The
mathematical model developed for supporting DH system optimal planning is described
in Section 6.4. The computational testing of the model on large-scale randomly gener-
ated networks is presented in Section 6.6, while Section 6.7 draws some conclusions and
illustrates possible future developments of the model.

6.1 Introduction

The main aim of this chapter is to show how mathematical optimization techniques devel-
oped within operations research may offer appropriate methods to support planning and
management activities in the DH field. In particular, we focus our research on finding
a viable quantitative methodology to support strategic decisions and commercial policies
related to the connection of new users to an existing DH network. The resulting opti-
mization problem is modeled through the application of graph theory and integer linear
programming paradigms.

To better explain the problem we study, let us consider Figure 6.1 which depicts a
simple DH network whose nodes and links are associated with the following elements: one
plant (represented by node 1), a set of existing users already connected to the network
(i.e., nodes 4, 7 and 13), a set of potential users that can be connected to the network in
the future (i.e., nodes 10, 11 and 12), a set of pipes which connect the existing users (i.e.,
the links in solid lines) and a set of potential pipes (i.e., the links in dashed lines) which
might be lied down when potential users are connected to the network.

Our strategic network design problem aims at deciding which potential users can be
connected to the network in order to maximize the overall profit for the energy provider,
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while respecting the physics and hydraulic operational conditions of the system. The
optimal solution of such a problem is then obtained by constructing a graph representation
of the DH network and considering an integer linear programming model which is then
solved through a commercial solver.

Our research was motivated by the Innovami project financed within the regional pro-
gram PRRIITT, activated by Emilia-Romagna regional authority to promote and support
industrial research, innovation and technology transfer. During the project a prototype of
the model presented hereafter was developed in collaboration with a local utility company
and tested on a small-scale realistic network. Following the positive evalutation by prac-
titioners the model was further extended in partnership with Optit, a spinoff company of
the University of Bologna, making it possible to solve large-scale networks. The model
represents the main hydraulic constraints of the real-world networks and constitutes an
effective compromise between the accuracy of representation of physical behaviour and
the capability of handling realistic instances of the problem.

Figure 6.1: An example of a generic district heating network. The pentagon represent the
plant, squares represent existing or potential users, circles are tees and other junctions in
the pipe networks, solid lines are existing pipes and hashed lines are potential ones.

6.2 Literature Review

The optimization of DH networks has received relatively little attention in the literature.
A first type of modeling approaches aims at representing in detail the network physics
through sets of non-linear equations derived from the thermo and fluid dynamic theories.
In this way one generally obtains a very good precision of the representation of fluid
distribution and thermal gradients along the different network components.
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However, the algorithmic difficulty of the solution of the required non-linear relations
makes such approaches not adequate to model large networks those found in real-world
applications where hundreds of users are served by the DH system. In this case, aggre-
gation techniques of the network elements are often used to reduce the size enough to
permit the numerical solution of the model at the expense of the accuracy of the network
representation.

Examples of non-linear models for DH network design are presented by Bøhm et al.
[4], Park et al. [11] Bøhm et al. [3], while network aggregation techniques are discussed in
Zhao [14], Zhao and Holst [15], Larsen et al. [6], Loewen et al. [8], Loewen et al. [9] and
Larsen et al. [7].

An alternative modeling of the DH networks is based on their empirical simulation
starting from observation of temperature and pressure distributions of the real system (see,
e.g., Benonysson et al. [2] and Pálsson [10]). Such approaches require long observations
of the system to get sufficient accuracy and are not suited to study different system
configurations with respect to the observed ones. Network simulation was also used by
Wernstedt et al. [13] to study the performance of different real-time control strategies for
DH network management.

An integer programming model for a different network design problem was defined by
Aringhieri and Malucelli [1]. They considered the optimal selection of the type of heat
exchangers to be installed at the users in order to optimize the return temperature at
the plant and achieve good system efficiency at a reasonable cost. Finally, the design of
the energy production plant integrating cogeneration engines and renewable energy was
recently examined by Reini et al. [12] who developed integer programming models capable
of solving small-scale examples.

6.3 Assumptions

The problem is modeled considering stationary peak conditions. As generally done in
practice the peak demand requirements of downstream users is reduced to take into account
that not all are active simultaneously. To this end, a so-called concurrent factor, for
example equal to 60-70% is used to reduce the peak demand of each user.

Because of the thermal insulation of the pipes, the temperature losses in the DH system
are mainly localized at the user’s heat exchangers. Moreover, the temperature drop at the
exchanger is generally assumed to be constant. Such an assumption is clearly very strong
when the dynamic behavior of the system has to be analyzed (e.g., to derive operational
models) but is acceptable for the purposes of network planning where stationary peak
conditions are considered. Note that the main consequence of assuming constant the
temperature drop ∆T at the heat exchangers is that formula (5.2) permits to express the
heat power as proportional to the flow rate ṁ of the fluid.

Note also that, because pipes bifurcates and merge at tees the overall network may
contains loops. However, in our study we will simplify both the notation and the model
description and we will limit ourselves to networks having a tree configuration and with
a single plant. This is not limiting since all models and experiments we performed can be
extended to the case where loops and multiple plants are present in the network.

In addition, for the sake of simplicity we assume that the network lies on a plane, i.e.,
we do not consider the implications related with the unevenness of the vertical quota of
the pipes.
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6.4 A Mathematical Model for District Heating Network
Design Problem

In this section we introduce a mathematical formulation of the District Heating Network
Design Problem (DHNDP) as previously defined. The model is based on a graph repre-
sentation of the the DH network where nodes and arcs of the graph corresponds to the
relevant elements of the network. As an example, Figure 6.2 depicts a graph representa-
tion of the simple DH network shown in Figure 6.1. Each node of the original network
is represented by a pair of nodes: one, with positive identifier, associated with the feed
network and the second, with negative identifier, with the return network. It is possible
to identify plant node, user nodes and tee nodes as described in Section 5.1. The links in
the graph represent pipes either of the feed or of the return circuits, and heat exchangers
at user nodes. The orientation of the links is compatible with the flow of the heating
fluid and it is possible to distinguish between existing pipes, represented by solid arcs and
potential ones, represented by hashed arcs.

Figure 6.2: The graph representation of the simple DH system of Figure 6.1. Feed pipes
are represented by solid lines and hashed lines are associated with potential parts of the
network.

Figure 6.3 focuses on the representation of user links and illustrates how such user
is inserted into the network, i.e., through a heat exchanger and a parallel configuration
between feed line and return line. Note that user arcs are the only connections between
feed and return networks because are the only portions of the network where heat exchange
is assumed to take place.
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Figure 6.3: Schematic representation of feed and return line connected through a heat
exchanger at a user’s site.

As previously mentioned, in a DHNDP the DH network includes both existing and
potential elements. The existing elements are associated with the initial network config-
uration made up by one or more plants and a set of pipes connecting the existing users.
The potential elements of the network are instead:

• A set of potential users, each with an associated thermal demand.

• A set of potential pipes and tees that may be connected to the existing ones to reach
the potential users.

More precisely, we are given a directed graph G = (V,A), where V is the set of nodes,
A is the set of arcs. Node set V includes both nodes v, with v > 0, belonging to the
feed line and the corresponding nodes −v belonging to the return line. Set V is also
partitioned into some relevant subsets. Namely, VI is the subset of plant nodes, VS is that
of existing user nodes, VP is the set of potential users nodes, VT = VTE ∪VTP is the set of
tee nodes, which is further split in subset VTE of existing tees and subset VTP of potential
tees. Finally, we denote by VE = VS ∪ VTE the set of all the existing nodes, i.e., that of
existing users and tees.

The set of arcs A is, in turn, partitioned into five subsets, namely A = AF ∪ AR ∪
AS ∪ AP ∪ AI . Set AF = AFE ∪ AFP includes all feed line pipes, i.e., both the existing
and potential ones (i.e., sets AFE and AFP , respectively). Similarly, AR = ARE ∪ARP is
the set of all returns line pipes, including both existing and potential ones (i.e., sets ARE
and ARP , respectively). Finally, AS and AP represent the existing and potential user heat
exchangers, and AI are the plant arcs.

The demand of each user v ∈ VS ∪ VP is represented by the required flow µe of heat
fluid in the corresponding user arc e = (v,−v) ∈ (AS ∪AP ).

The generic feed line arc is denoted as e = (i, j) ∈ AF , while the corresponding
return line arc is denoted as r(e) = (−j,−i) ∈ AR. Similarly, user arcs are indicated
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as (v,−v) where v belongs to VS , VP , and plant arcs are represented as (−v, v) with
v ∈ VI , respectively. For each pipe arc e = (i, j) ∈ (AF ∪ AR), we define a conventional
orientation from node i to node j with i < j. Since we consider here only networks with
a tree configuration and with a single plant (i.e., |VI | = |AI | = 1), the flow direction along
pipes is defined a-priori as the water will flow from the plant node to the users nodes
and there are no loops which may change the conventional direction. However, as will be
discussed in Section 6.5, the model described here can be easily extended to consider more
general network structures including loops and multiple plants.

By considering the sample network depicted in Figure 6.2 the nodes and arcs sets are
defined as follows.

VI = {1,−1},
VS = {4, 7, 13,−4,−7,−13},
VP = {10,−10, 11,−11, 12,−12},
VTE = {2,−2, 3,−3, 5,−5, 6,−6, 8,−8},
VTP = {9,−9},
AFE = {(1, 2), (2, 3), (3, 4), (3, 5), (5, 6), (6, 7), (6, 8), (8, 13)},
AFP = {(5, 12), (8, 9), (9, 10), (9, 11)},
ARE = {(−1,−2), (−2,−3), (−3,−4), (−3,−5), (−5,−6), (−6,−7), (−6,−8), (−8,−13)},
ARP = {(−5,−12), (−8,−9), (−9,−10), (−9,−11)},
AS = {(4,−4), (7,−7), (13,−13)},
AP = {(10,−10), (11− 11), (12− 12)}
AI = {(−1, 1)}.

All the non-linear relations in the network will be approximated by piecewise-linear
functions. In particular, such a linear approximation is used to express the pressure drop
∆P = f(ṁ) given in (5.8) as a piecewise-linear function fL(ṁ).

The economic parameters of the model are the profits associated with the connection
of potential users and the costs for the network setup. In particular, for each arc cor-
responding to the heat exchanger at a potential users (i.e., arcs e = (v − v) ∈ AP ) the
parameter Re denotes the net profit of connecting it to the network. Such a profit is the
difference between the net present value of the income associated with the energy sold to
the user during the time horizon T (generally between ten and thirty years), minus the
costs of user connection, such as, for example, the cost of the exchanger and those of the
commercial activities related to the contract setup. Furthermore, for each potential pipe
(i.e., arcs e = (i, j) ∈ AFP ), cost Ce represents the global cost of the installation of the
required pipes. For the sake of simplicity we only associate cost to potential pipes of the
feed line and we include into them also those of the corresponding return pipes.

The physical characteristics of the network are described through several parameters.
The pressure in each node of the network must be larger than a minimum value Pmin,
whereas at each plant node v ∈ VI must not exceed a maximum feed line pressure limit
Pmax
v . Each pipe arc e = (i, j) ∈ (AF ∪AR) is associated with a maximum capacity µmax

e

for the heat fluid, that depends on the diameter of the pipe and on the given maximum
speed of the fluid. Finally, each arc e = (v,−v) ∈ (AE ∪ AP ) associated with a user
exchanger must have a pressure drop larger than a prescribed minimum value ∆Pmin.

The objective of the problem is to find the subset potential users that can be con-
nected to the network, trying to both maximizing the overall net profit and to respect
the main physical and logical constraints imposed by the configuration of the network.
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As previously discussed, the network is designed by considering stationary peak condi-
tions. The formulation uses two main sets of decision variables. The binary variables xe,
e = (v,−v) ∈ AP define connection the state of a potential user and take value 1 if the
user v ∈ VP is connected to the network, and 0 otherwise. Furthermore, binary variables
ye, e = (i, j) ∈ AFP defines the use of a potential feed line pipe and take 1 if the pipe is
used in the optimal solution, and 0 otherwise. In addition to the main decision variables,
the model uses continuous variables to represent the hydraulic conditions of the network.
In particular, we introduce specific variables for the node pressure Pv, v ∈ V , for the pres-
sure drop and flow rate along the pipes, ∆Pe and ṁe, e ∈ A, respectively. The resulting
mathematical model follows.

max
∑
e∈AP

Rexe −
∑

e∈AFP

Ceye (6.1)

subject to

ṁe = µe ∀e ∈ AS (6.2)

ṁe = µexe ∀e ∈ AP (6.3)

ṁe ≤ µmax
e ∀e ∈ AFE (6.4)

ṁe ≤ µmax
e ye ∀e ∈ AFP (6.5)

ṁr(e) = ṁe ∀e ∈ AF (6.6)∑
e=〈i,v〉∈A

ṁe −
∑

e=〈v,j〉∈A

ṁe = 0 ∀v ∈ V (6.7)

Pv ≤ Pmax
v ∀v ∈ VI (6.8)

Pv ≥ Pmin ∀v ∈ V (6.9)

∆Pe ≤ ∆Pmax ∀e ∈ AI (6.10)

∆Pe ≥ ∆Pmin ∀e ∈ AS (6.11)

∆Pe ≥ ∆Pminxe ∀e ∈ AP (6.12)

∆Pe = fL(ṁe) ∀e ∈ AF ∪AR (6.13)

ṁe ≥ 0 ∀e ∈ AF ∪AR (6.14)

Pv ≥ 0 ∀v ∈ V (6.15)

∆Pe ≥ 0 ∀e ∈ A (6.16)

xe ∈ {0, 1} ∀e ∈ AP (6.17)

ye ∈ {0, 1} ∀e ∈ AFP (6.18)

The objective function (6.1) of the problem maximizes the net profit of the optimal
network, which is defined as the difference between the net present value of the revenues
associated with the connection of potential users and the costs required to setup the po-
tential pipes to join them to the network. The total revenues derive from the summation of
fixed revenues due to potential users connection, revenues due to an annual consume, that
represents a fix booked power and revenues due to an annual real consume,which comes
from bills. As for costs there are fix costs of connections and variable pipes installation
costs.
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The constraints of the model can be grouped into four categories. In the first one, we
have the relations that refer to the flows of the heating fluid in the pipes. In particular,
constraints (6.2) and (6.3) define the flow ṁe in the user’s pipes. Namely, existing users
ones have their flow imposed by the users’ heat demand, while in pipes corresponding to
potential users the flow is non-zero only if the user is connected to the network, i.e. when
xe = 1. Similarly, inequalities (6.4) and (6.5) impose an upper bound on the flow of the
other forward pipes of the network, where such upper bound is zero if a potential pipe is
not used, i.e. when ye = 1. The flow on each return pipe r(e) is set equal to that of the
corresponding forward pipe e by equalities (6.6).

The second group of constraints are related with the nodes of the network, correspond-
ing to tees and connections of users and plants to the pipes. First of all, equalities (6.7)
impose the balance of the flows entering and leaving each such node. Then, a lower bound
for the pressure in all the nodes is set by (6.9), while for plant nodes of the feed line is an
upper bound for the pressure is also imposed in (6.8).

The third set of constraints refer to the pressure drops along the pipes. More pre-
cisely, the maximum pressure drop at the plant, and the minimum drop on existing and
potential users’ pipes are set by inequalities (6.10), (6.11) and (6.12), respectively. As to
the remaining pipes of the network, the linearized relation between flow and pressure is
synthetically expressed by inequalities (6.13). Note that, because of the convex nature of
the non-linear relation between pressure drop and flow, in the actual implementation of
the model for a specific solver such inequalities need be transformed into a set of linear
relations, possibly involving auxiliary binary variables.

Finally, constraints (6.14) to (6.16) set the lower bounds for the continuous variables,
while (6.17) and (6.18) define the binary variables.

6.5 Model Extensions and Solution

The proposed model can be nimbly extended to represent additional technical aspects of
the network such as the possibility to include loops and multiple plants and to consider
the cost of different pipe connections, as well as economic and practical aspects such as
the possibility to change the client contracts or to incorporate deeper pressures control.
A brief discussion of such features follows.

6.5.1 Networks With Loops

As previously discussed, the above model can be easily extended to represent networks
including loops and multiple plants. We note, however, that in such cases the direction
of the flow along forward and return pipes is not implicitly defined. As a consequence,
an appropriate binary variable should be used to define the flow direction on the non-user
pipes of the network and the existing pressure related variables and flow related variables
should be split into two to take into consideration the flow direction and the drop of pres-
sure direction. Note that a generic arc e = 〈i, j〉 connecting nodes i and j, corresponds to
the pipe connecting the same real point i and j. That means that arcs must be oriented
according to the direction of the water flow along the pipes. It’s always used the following
rule:

(∀e = 〈i, j〉 ∈ AF ∪AR) i ≤ j
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The above rule defines the conventional direction of every arc e in such a way that node
i is always before node j. Note that such rule is not valid in the case of user’s arcs and
plant’s arcs since they connect feed line and return line and they present a positive node
and a negative node.

We define conventional positive direction the direction of a fluid which moves from i
to j. Otherwise we have a negative direction. The definition of a conventional direction
of the arcs, introduces a new binary variable dire which will be equal to 1 if flow direction
along the pipe is equal to the conventional direction (positive direction), and 0 otherwise.
Flow rate continuous variables and drop of pressures continuous variables will be split as
follow: ṁ+

e is the flow rate along a pipe in a positive direction (conventional direction)
and ṁ−e is the flow rate along a pipe in a negative direction (opposite to the conventional
direction); ∆P+

e is the drop of pressure along a pipe in a positive direction (conventional
direction) and ∆P−e is the drop of pressure along a pipe in a negative direction (opposite
to the conventional one).

The set of constraints should be then integrated as follow

∆P+
e = fL(ṁ+

e ) ∀e ∈ AF ∪AR (6.19)

∆P−e = fL(ṁ−e ) ∀e ∈ AF ∪AR (6.20)

ṁ+
e ≤ direµmaxe ∀e ∈ AF ∪AR (6.21)

ṁ−e ≤ (1− dire)µmaxe ∀e ∈ AF ∪AR (6.22)

∆P+
e ≤ direbigṁ ∀e ∈ AF ∪AR (6.23)

∆P−e ≤ (1− dire)bigṁ ∀e ∈ AF ∪AR (6.24)

∆Pe = ∆P+
e −∆P−e ∀e ∈ AF ∪AR (6.25)

ṁe = ṁ+
e − ṁ−e ∀e ∈ AF ∪AR (6.26)

In constraints (6.19) and (6.20) the linearized relation between flow and pressure is
split into the positive and negative direction of the continuous variables ∆Pe and ṁe.

The constraints (6.21) and (6.22) imposes that the flow rate along the pipes must be
minus than or equal to the maximum acceptable value µmaxe . The boolean variable dire
imposes that, once the direction is defined, one of the two flow rate (among the positive
flow ṁ+

e and the negative flow ṁ−e ) must be equal to zero. That means that the direction
of the flow along a pipe must be univocal. Since dire is a boolean variable, one of the two
constraints is always neutralized so that the remaining flow has its defined direction.

The multiplicative factor bigṁ in constraints (6.23) and (6.24) represents a very big
value of pressure. It is used to neutralize one of the constraints (6.23) and (6.24) when the
related binary variable dire is equal to zero. That means that the only active constraints
will be related to the drop of pressure along those pipes where fluid direction is the one
corresponding to the value of dire.

Constraints (6.25) and (6.26) define the positive (conventional) or negative (non con-
ventional) direction of drop of pressures ∆Pe and flow rate ṁe for every pipe e. It is
important to remember that the binary variable dire allows only one univocal direction
for every pipe e.
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6.5.2 Cost of Pipe Connections and Degree Rules for Nodes

The proposed model can be further developed by adding the cost of different types of pipe
connection. In real applications there are three levels of joints, schematically represented
in Figure 6.4. The different levels represent the way through which pipes are connected
each other. Level 1 is related to nodes with just one ingoing pipe (i.e. users nodes) or
just one outgoing pipe (i.e. plant nodes); level 2 is related to tee nodes with a total of two
pipes among ingoing and outgoing pipess; level 3 is related to tee nodes with a total of
three pipes among ingoing and outgoing pipes. Generally the cost tends to become higher
as the level grows from 1 to 3 as different joints are required to build up the practical
connection.

Figure 6.4: Different pipe connections

Therefore it is possible to add a new term of cost inside the objective function, so
that the model will be able to choose the best configuration, considering that, different
ramifications of the network, may cause different global costs of connection. This feature
becomes very useful when a complete potential network has to be created. This is, for
example, the case of a new district where there is no district heating at all and where it is
necessary to plan the whole grid, by choosing the optimal pipe paths to reach the optimal
subset of potential users.

For that purpose it is necessary to define a new binary variable gvh that will be equal
to 1 if node v is associated to level h, and 0 otherwise. Then we need to define two new
parameters: Ch which represents the cost of configuration h and εh which will indicate
the type of configuration: εh = 1 for configurations of type 1, εh = 2 for configurations of
type 2, εh = 3 for configurations of type 3.

The model can be modified by adding the configuration cost Ch multiplied by the new
binary variable gvh in the objective function as showed in formula (6.27)
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−
∑
v∈V

∑
h

Ch ∗ gvh (6.27)

While the set of constraints has to be integrated as follow

∑
e=〈i,v〉∪e=〈v,j〉∈A

1 +
∑

e=〈i,v〉∪e=〈v,j〉∈A

ye ≤
∑
h

gvh ∗ εh ∀v ∈ V (6.28)

∑
h

gvh ≤ 1 ∀v ∈ V (6.29)

Constraint (6.28) creates a mathematical relation between the new decision variable
gvh and the existing variable ye. The term

∑
e=〈i,v〉∪e=〈v,j〉∈A 1 relates to all the ex-

isting arcs connected to the node v (both ingoing and outgoing arcs), while the term∑
e=〈i,v〉∪e=〈v,j〉∈A ye relates to all the potential arcs that will be connected to node v

(both ingoing and outgoing potential arcs). The meaning of constraint (6.28) is to ensure
that the total number of arcs connected to every node will be equal to the related level
defined by the binary variable gvh and the parameter εh.

Constraint (6.29) means that every node v can be associated to at most one type of
connection h.

In real world problems it is also important to impose the following degree rules for
nodes:

• Every plant node must have one outgoing arc and no ingoing arcs (0in / 1out)

• Every user node must have one ingoing arc and no outgoing arcs (1in / 0out)

• Every tee node can have at most three arcs among ingoing and outgoing arcs, through
the following combinations:

– One ingoing arc and two outgoing arcs (1in / 2out)

– Two ingoing arcs and one outgoing arc (2in / 1out)

– One ingoing arc and no outgoing arcs (1in / 0out)

The last rule in particular describes very well a realistic district heating constraint, as
the available joints for pipe connections allow at most three ramifications.

The above rules can be expressed by the following additional constraints:∑
e=〈i,v〉∈A

1 +
∑

e=〈i,v〉∈A

ye = 0 ∀v ∈ VI (6.30)

∑
e=〈v,j〉∈A

1 +
∑

e=〈v,j〉∈A

ye = 1 ∀v ∈ VI (6.31)

∑
e=〈i,v〉∈A

1 +
∑

e=〈i,v〉∈A

ye = 1 ∀v ∈ VS ∪ VP (6.32)
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∑
e=〈v,j〉∈A

1 +
∑

e=〈v,j〉∈A

ye = 0 ∀v ∈ VS ∪ VP (6.33)

∑
e=〈i,v〉∪e=〈v,j〉∈A

1 +
∑

e=〈i,v〉∪e=〈v,j〉∈A

ye ≤ 3 ∀v ∈ VT (6.34)

6.5.3 Client Contract Change

The set of existing users can be described by an additional parameter, that is the effective
consumption CE (kWh / year). This value can be deduced by the user absorption of
thermal energy along the period after the user connection to the grid.

Let us define convertible users CR the existing users that have an effective consumption
CE much smaller than the historical consumption CSto.

CSto represents the average absorption of thermal energy in the period before the user
connection to the grid; its value is used to determine the initial installation power PI.

If the real consumption is smaller than the installed power, it might be possible to
reduce the original power PI to a new smaller value of power PI

′′
.

Since the plant is able to supply a power PI, if the original power PI of a user is
reduced to a new smaller value PI

′′
, the result is a power availability equal to PI − PI ′′

which could be used to feed up new potential users.
Generally Energy Societies define a particular limit below which it is worthy to evaluate

the client contract change. If the ratio CE/CSto is smaller than 70-80%, then the existing
user wil be considered as a convertible user whose power might be reduced as a function
of the actual consumption.

In this new feature, the objective is to find which potential users can be connected to the
grid, by using the exceeding power that derives from the reduction of some existing users
power (users with an actual consumption smaller than the installed power). As usual, that
must be done together with the overall net profit maximization and by fulfilling physics
and logical constraints imposed by the configuration of the network.

The model can be modified by adding a new binary variable se ∈ AS in order to define
the contract conditions of an existing user. In particular se = 1 if the existing user is going
to become a convertible user, while se = 0 otherwise.

We need to define a new parameter ∆ṁS
e that is the amount of flow rate that could

be distributed to other users. As shown in formula 6.35 this is calculated through the
difference between the flow rate defined by the existing contract ṁmax

e (which is supposed
before the connection) and the actual flow rate ṁmin

e .

∆ṁS
e = ṁmax

e − ṁmin
e ∀e ∈ AS (6.35)

It’s necessary to add a new term of cost inside the objective function as shown in
6.36. This is related to the costs associated to the convertible users. These costs are
obtained from the summation of a fixed penalty cost CS related to the convertible users
plus the missed actualized revenue Re∆ṁ

S
e . The latter is due to the reduction of the

power previously assigned to those existing users with an actual consumption less than
the forecasted consumption.
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∑
e

se(CS +Re∆ṁ
S
e ) ∀e ∈ AS (6.36)

Finally the flow rate constraint has to be modified as follow

ṁe = ṁmax
e −∆ṁS

e se ∀e ∈ AS (6.37)

In constraint (6.37) if the service delivered to an existing user e ∈ AS is going to remain
unchanged (se = 0), then the forecasted flow rate previously defined will remain the same
(equal to ṁmax

e ). Otherwise, if the the service delivered to an existing user e ∈ AS is going
to be reduced, then total flow rate will be reduced to a smaller value equal to the actual
consumption, that is ṁmin

e .

6.5.4 Other Practical and Economic Features

Several other practical requirements may be easily incorporated in the proposed model.
A common example is represented by the need to limit the maximum pressure values
in specific parts of the network, which may be imposed by adding constraints similar to
(6.8) or (6.10) for specific nodes or pipes subsets. Similarly, either to take into account
pumping costs or to favor solution that have a lower values of pressures or flows in presence
of additional features such as loops, one can add suitable penalties or costs to the objective
function. More precisely, let ε1, . . . , ε3 be the unit penalties (or costs) associated with the
node pressures, the pressure drops and the fluid flow along the pipes, respectively. Then
a more general objective function can be written as:

max
∑
e∈AP

Rexe −
∑

e∈AFP

Ceye −
∑
v∈V

ε1 ∗ Pv −
∑

e∈AF∪AR

(ε2∆Pe + ε3ṁe) (6.38)

Whenever for a given user there exist alternative ways of connecting it to the network
or alternative levels of demand, hence of required exchanger, it is possible to consider all of
them and let the model chose the optimal one. This is simple done by adding constraints
which impose that at most one among a subset of binary variables corresponding to the
alternatives is selected.

Economic features of the real-world problem may be also added to the model. For
example, generalized budget constraints may limit the total investment costs. In addition,
it may be desirable to favor solutions that or favoring solutions that connect users, (e.g.
buildings or shops) with a common administrator since this will reduce the administrative
cost of setting up the contract.

Model (6.1)-(6.18) belongs to the class of Mixed-Integer Linear Programming models
which are notoriously difficult to solve computationally. However, as we will discuss in the
following sections we found that realistically-sized models of this type, i.e. with hundreds of
potential users, can be solved to optimality or near-optimality within reasonable computing
time by a commercial solver. The possibility of directly solving DHNDP does not come as
a surprise, since current solvers incorporate very sophisticate solution strategies capable of
successfully attacking several classes of important problems similar to the DHNDP (see,
e.g., Fischetti, Lodi and Salvagnin Fischetti et al. [5]). However, specifically designed
heuristic algorithms may be required to solve large-scale instances of DHNDP or some
variants involving additional real-world constraints as those described above.
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6.6 Computational Testing of the DHNDP Model

In this section we describe the results we obtained during the computational testing of
the DHNDP model on a set of test networks. First of all we consider a small real-world
network defined within the Innovami project and used to validate a preliminary version
of the model described in previous sections.

To provide a more extensive and detailed analysis of the model potentialities we next
examined a set of 100 large-scale DHNDP instances with up to 1000 potential and 500
existing users. The data for the cost and demand used in such instances are derived
from real-world information obtained from Italian multi-utility companies, and the ran-
dom layout of the network is designed through a procedure that tries to reproduce the
characteristics of real-world urban DH networks.

6.6.1 Testing on a Real-World Urban Network

We describe here the testing of the model conducted on a small real-world instance rep-
resenting a portion of the DH network in a town of Emilia-Romagna, in northern Italy.
The instance, defined during the Innovami project funded by the Emilia-Romagna Re-
gion in 2009-10, includes 33 users in total of which 20 are existing and 13 potential. The
structure of the network is depicted in Figure 6.5, where the plant is represented by the
square node, existing and potential users are identified by solid and empty large circles,
respectively. Similarly, the existing and potential intermediate tee nodes are shown as
solid and empty small circles, respectively. Finally, existing (forward) pipes are drawn as
solid directed lines, while potential pipes are represented by hashed ones. The type of each
user (indicated as E or P) and the corresponding thermal demand in kW are reported in
Table 6.1 (note that the reported data are slightly altered to preserve the confidentiality).
The existing network is about 4.3 km long and the total length of the potential pipes is
slightly less than 1.9 km.

Specific data are also defined for the cost of the heat exchangers, depending on the
users’ demand class, for the potential pipes depending on their diameter and length and
for the revenues of the sale of energy. In addition, the maximum pressure at the plant is
9 bar, the minimum pressure at each node is 2 bar and the minimum pressure drop at a
user’ pipes is equal to 0.5 bar.

Two different scenarios are considered, the first one considers a time horizon of 10 years
for the computation of net present value of the network. The second considers a reduced
time horizon of 5 years only in which pipes costs are reduced by 10% and the user’s fee for
the connection to the network are increased by 50%. The results of the model for the two
scenarios are shown in Figure 6.6 where the connected potential users are identified by
gray circles and the potential pipes which must be used are now drawn with a thick solid
line. In particular, in Scenario 1 the potential users 4, 6, 7, 9, 27, 29, 32, 35 and 37 are
selected, while in Scenario 2 the optimal set of potential users to be connected includes 4,
7, 9, 27 and 29.

By comparing the two solutions we may observe that some users, such as 11 or 20, are
not compatible with the connection in both scenarios. This is either due to the relatively
small demand compared to the length of the pipe required to connect them that may make
them unprofitable, or to the insufficient capacity of the network due to the limits of the
pressure at the plant that does not allow to connect all potential users even when they are
profitable (as, for example, user 33). Some other users, such as 6 and 32, which turn out
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Figure 6.5: The real-world network used within Innovami project.
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Table 6.1: The existing (left) and potential (right) users of the real world instance.

User id Type Demand (kW) User id Type Demand (kW)
13 E 1400 4 P 1200
15 E 400 6 P 300
17 E 1050 7 P 450
23 E 250 9 P 100
25 E 150 11 P 100
40 E 200 20 P 250
41 E 350 27 P 150
43 E 1050 29 P 200
45 E 1050 32 P 650
48 E 300 33 P 450
49 E 300 35 P 300
52 E 400 37 P 50
54 E 400 38 P 100
55 E 400
57 E 500
59 E 250
61 E 400
63 E 350
65 E 400
66 E 500

to be selected with the longer time horizon are instead no longer profitable in the second
scenario even if the capacity of the network would allow to connect them.

Since the optimal solutions for this network can be obtained in few seconds of com-
putation by using IBM Cplex solver, it is evident the great value for decision makers of
the model we propose for the evaluation of several alternative scenarios to support the
decision process.

6.6.2 Testing on Randomly Generated Networks

To analyze the performance of the model on large-scale instances we randomly generated a
set of 100 instances. The generation procedure is designed so as to create realistic network,
inspired by those found in the real-world. We generated five classes of networks, each
characterized by a different size of the network in terms of existing nodes VE , i.e. existing
tees and users. In particular, we considered VE ∈ {100, 200, 300, 400, 500}. Furthermore,
for each size of network, we considered four different number of potential users VP defined
proportionally VE , namely: VP = VE/2; VP = VE ; VP = VE + VE/2; VP = 2 · VE . Finally,
for each pair of VE and VP we randomly generated five different test instances.

Given the value of VE we define a circle with a diameter of D Km. In particular, we
used D = 5 if VE ≤ 200 and D = 10 otherwise. Random coordinates within such circle are
associated with each existing node. Then a shortest spanning tree for the complete graph
including all existing nodes and with arc cost equal to the Euclidean distance between
the endpoints. Such shortest spanning tree represents the existing network. The plant is
defined as the node with smaller abscissa coordinate value. In addition, all leave nodes of
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Figure 6.6: The potential users which are connected to the network in the two scenarios
examined. The left solution is relative to a 10 years time horizon with original costs and
revenues, the right one is relative to a reduced time horizon of 5 years but with reduced
construction costs. Connected users are grey circles and potential pipes installed are
identified by thick solid lines.

the tree are defined as existing users.
We next randomly generate the points corresponding to the potential users so that

their coordinates are close to the arcs of the existing network. The potential users nodes
are connected to the existing network through potential arcs ending at the closest point of
the existing network. If such point is along a link a potential tee is added and the existing
arc is split in that point.

Each existing and potential user is associated with a random value for the thermal
demand PIe drawn from a T-Gamma distribution with an average value of 75 kW. Note
that such demand is already reduced taking into account a concurrent factor of 60%
with respect to the typical original demand. Then, the required flow rate along existing
user’s arcs is computed through the relation µe = PIe/(∆T ∗ cp), where ∆T = 27◦K and
cp = 4.18.

Given the flow rates on the existing users arcs flow rate, the flow rate on the remaining
existing arcs is computed by recursively adding the flow of the outgoing arcs starting from
the leaves of the network. The flow rate along the potential pipes is instead simply equal
to the flow rate required by the potential user at its endpoint.

Then the diameter, in centimeters, of the pipe required for each existing and potential
arc is determined through standard hydraulic equations and the value is rounded up to
the next existing pipe value chosen between the set {25, 32, 40, 50, 65, 80, 100, 125, 150,
200, 250, 300, 350, 400, 500, 600}. In particular, given the water speed as shown in Table
6.2 the diameter D of a pipe is given by

D =
√

(ṁ/v) ∗ (4/π) ∗ (1/ρ) (6.39)

where ṁ is the water flow rate (kg/s), v is the water speed (m/s) and ρ is the water
density (kg/m3).

In fact the water flow rate can be defined both through the water volume (volumetric
flow ṁv in m3/s) and through the water mass (mass flow rate ṁm in kg/s).

The relationship between the two can be expressed as ṁm = ṁv ∗ ρ where ρ is the
water density.

The water speed v inm/s is linked to the water volumetric flow through the relationship
ṁv = A ∗ v where A is the circle area of a pipe in m2 (A = π ∗ (D/2)2).
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Through proper algebraic manipulation of the above formulas it is possible to derive
the equation 6.39 for the diameter definition.

Once such diameter is known, we can compute the cost of the pipe by multiplying its
unit cost (see table 6.2) times the length of the pipe and we can determine the coefficients
K1 and K2 to be used in formula (5.8) to compute the pressure drop along the pipe.

All data of the generated instances are available on request from the authors.

Table 6.2: Prices and water speed for different pipe dimensions
Pipe nominal diameter Pipe price Water speed

(mm) (Euro/m) (m/sec)
DN25 455 1.5
DN32 467 1.5
DN40 487 1.5
DN50 550 1.5
DN65 569 1.5
DN80 617 1.5
DN100 648 1.5
DN125 751 1.5
DN150 800 1.5
DN200 886 1.5
DN250 1017 2
DN300 1111 2
DN350 1205 2
DN400 1386 2
DN500 2036 2
DN600 2378 2.5
DN700 2774 2.5
DN800 3054 2.5

The computational testing has been performed using an Intel Pentium processor SU4100
1.30 GHz PC, with 4GB of memory and the MILP models are solved through the branch-
and-cut algorithm implemented in the IBM Cplex 12.2 solver.

Three different scenarios have been considered corresponding to different values of the
plant capacity and of the maximum number of potential nodes that can be connected.

The tables including the results includes several information and report the average
values over the five instances for each value of VE and VP . In particular, the tables report:

“|VP |/|VE |” is the ratio between VP , the number of potential users and VE , the
number of nodes of the existing network;

“|VS |” is the average number of existing users;

“VS pow” is the average total power (in kW) required by existing users;

“VP pow” is the average total power (in kW) required by potential users;

“Conn. VP ” is the average number and percentage of connected potential users;

“Conn. VP pow” is the average total power (in kW) of connected potential users;

“B&C Nodes” is the average number of branch-and-cut nodes.

“Root Time” is the time (in seconds) required for the root node of the branch-and-
cut;

“Total time” is the total time (in seconds) required by the branch-and-cut.
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In addition, the percentage gap of the best upper bound and heuristic solution values
at the root node are computed as follows

Gap U = (U − Z∗)/Z∗ · 100

Gap H = (H − Z∗)/Z∗ · 100

where U is the best upper bound value, H is the best heuristic solution value found at
root node, and Z∗ is the value of the optimal solution.

6.6.3 Basic Scenario

The first set of tests is performed by considering a plant with a very high capacity sufficient
to serve all potential users and without any limitation on the number of potential users
that can be connected.

The results for the basic scenario are reported in Table 6.3, which shows that all
problems can be solved within a very short computing time by the solver. Moreover the
formulation appears to be quite tight as indicated by the small values of the average gaps
of both the upper bound and of the heuristic solution value. Since the Scenario does not
limit considerably the number of users that can be connected we see that on average about
70 % of potential users are selected corresponding to more than 85% of the total power
demand. Such users are clearly the ones that are both profitable and compatible with
the physical constraints of the network resulting from the pressure drops and the pipe
capacities.

Table 6.3: Results for Scenario 1. Plant with very high capacity and no limit on the
number of connected potential users. Average results over five instances.

Total Total Conn. Conn. Conn. Conn. B&C Root Total
|VP |/|VE | |VS | VS pow VP pow VP VP VP pow VP pow Gap U Gap H Nodes Time Time

(n) (n) (kW) (kW) (n) (%) (kW) (%) (%) (%) (n) (sec) (sec)
50 / 100 22.00 1561 3436 35 69.20 3041 88.52 0.24 0.00 0.0 0.16 0.16
100 /100 21.00 1621 7553 66 66.00 6243 82.65 0.73 -0.31 19.8 0.43 0.54
150/100 23.60 1750 11671 104 69.20 10077 86.34 0.10 -0.06 4.2 0.39 0.44
200/100 22.20 1578 15918 136 68.10 13487 84.72 0.16 -0.25 17.6 0.75 0.95
100/200 44.40 3381 7513 71 71.40 6740 89.71 0.19 0.00 0.0 0.53 0.36
200/200 43.00 3689 14926 144 71.90 13380 89.65 0.16 -0.04 6.2 0.83 0.90
300/200 43.20 3281 22941 204 68.07 19816 86.38 0.17 -0.03 28.2 1.20 1.64
400/200 45.80 3149 24995 236 58.90 20108 80.45 0.14 -0.43 69.0 2.12 3.40
150/300 65.20 4828 11011 113 75.07 10107 91.79 0.02 0.00 0.0 0.40 0.40
300/300 65.20 4994 22622 215 71.73 20140 89.03 0.22 -0.21 23.2 1.54 1.94
450/300 66.00 5099 33736 331 73.47 30508 90.43 0.07 -0.10 28.6 2.32 3.05
600/300 64.00 3707 35707 356 59.40 28817 80.70 0.18 -0.19 81.6 3.92 7.19
200/400 89.20 6985 14854 149 74.40 13504 90.91 0.09 -0.07 3.6 0.80 0.89
400/400 86.40 6188 29583 293 73.30 26848 90.76 0.18 -0.06 13.6 3.50 4.25
600/400 91.40 6855 45611 444 74.03 41122 90.16 0.09 -0.21 58.6 4.64 7.25
800/400 87.00 5323 47398 512 63.95 40040 84.48 0.10 -0.18 375.8 6.54 23.22
250/500 109.60 7885 18841 187 74.88 17265 91.64 0.08 -0.01 0.4 1.16 1.18
500/500 107.00 8284 38324 376 75.24 35023 91.39 0.08 -0.07 39.2 4.87 6.16
750/500 108.80 8562 56134 551 73.44 50649 90.23 0.04 -0.08 35.0 7.34 9.21
1000/500 109.60 6585 60132 629 62.92 50658 84.24 0.06 -0.10 327.6 10.50 29.34

As previously mentioned, the average computing times required to solve the problems
to optimality is considerably small and grows relatively slowly with the number of potential
users as shown by Figure 6.7.
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Figure 6.7: Computing time required to optimally solve the model as a function of the
number of potential users of the network.

6.6.4 Scenarios 2 and 3

We conducted further tests by considering two additional scenarios to evaluate the model
behavior and robustness in different conditions with respect to the basic. The two scenarios
are defined by either limiting the total number of potential users that can be connected
or the plant total capacity, as follows:

Scenario 2: the plant capacity is not limited but at most half of the users in VP can
be connected;

Scenario 3: the plant capacity is reduced by 25% with respect to that used in Scenario
1 and no limit is set on the number of potential users that can be connected.

Scenario 2 represents the case in which budget restrictions impose a limit on the new
users that can be connected. We simplified this requirement by considering just the
number of users but a similar effect may be obtained by limiting any other measure
related to the potential users that are connected in the optimal solution, such as the total
investment cost, the total power or the total length of the pipes used. Scenario 3 instead
represents a change either in the available capacity, e.g. due to a modification of the
existing or designed plant. Such a scenario may also indirectly account for modifications
of the consumption profile of the users that increases the concurrent demand requirement.
Because the computing time required by the model is relatively short, we limited our
analysis to the 20 instances with 500 existing nodes.

It is interesting to note that computational time is higher when the plant capacity is
limited.

The results for Scenario 2 are given in Table 6.4 and show that the model is not sensibly
affected by the additional constraint on the number of users. The computing times and
the quality of upper bound and heuristics solutions are almost unchanged. We observe
that, as expected, the user that are selected by the model are the largest one as their total
demand is the 75 % of the potential demand.
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Table 6.4: Results for Scenario 2. No limitation on plant capacity but at most 50% of
potential users may be connected. Average results over five instances.

Total Total Conn. Conn. Conn. Conn. B&C Root Total
|VP |/|VE | |VS | VS pow VP pow VP VP VP pow VP pow Gap U Gap H Nodes Time Time

(n) (n) (kW) (kW) (n) (%) (kW) (%) (%) (%) (n) (sec) (sec)
250/500 109.60 7885 18841 125 50.00 14261 75.69 0.17 -0.15 5.0 1.36 1.61
500/500 107.00 8284 38324 250 50.00 28747 75.01 0.10 -0.16 33.0 4.33 6.31
750/500 108.80 8562 56134 375 50.00 42074 74.95 0.03 -0.14 48.0 8.20 12.43
1000/500 109.60 6585 60132 500 50.00 45113 75.02 0.08 -0.12 124.0 18.93 33.38

The results for Scenario 3 are show in Table 6.5. In this case the reduction of plant
capacity has a perceptible effect on both the total computing effort, as indicated by the
increase in B&C nodes and total time, and on the quality of the heuristic solution. In
addition, the number of users that are connected is drastically reduced.

Table 6.5: Results for Scenario 3. Reduction by 25% of the plant capacity and no limit on
the number of potential users that may be connected. Average results over five instances.

Total Total Conn. Conn. Conn. Conn. B&C Root Total
|VP |/|VE | |VS | VS pow VP pow VP VP VP pow VP pow Gap U Gap H Nodes Time Time

(n) (n) (kW) (kW) (n) (%) (kW) (%) (%) (%) (n) (sec) (sec)
250/500 109.60 7885 18841 56 22.40 8528 45.26 0.04 -0.15 810.0 2.79 13.21
500/500 107.00 8284 38324 47 9.40 8965 23.39 0.04 -0.47 1501.0 7.96 52.77
750/500 108.80 8562 56134 46 6.08 9271 16.52 0.02 -0.37 1664.0 11.62 66.69
1000/500 109.60 6585 60132 38 3.80 7090 11.79 0.05 -0.39 2453.0 18.63 109.02

In Table 6.6 we mimic the summary results of a what-if analysis on a single instance
of the 250/500 set. The table compares the results of the three scenarios by also reporting
the total value of the objective function in monetary units.

Table 6.6: An example of what-if analysis conducted on a single instance of the 250/500
test set.

Total Total Conn. Conn. Conn. Conn.
|VP |/|VE | |VS | VS pow VP pow Scenario VP VP VP pow VP pow Z∗

(n) (n) (kW) (kW) (n) (%) (kW) (%) (mu)
250/500 111 10840 20509 1 199 79.60 19162 93.43 9,506,397

2 125 50.00 15398 75.08 8,484,102
3 60 24.00 9757 47.57 6,358,060

We note that the difference in total net present value of the revenue between Scenarios 1
and 2 is about 10% while clearly the starting investment cost for Scenario 2 is substantially
smaller because of the smaller number of connected users. Such observation may be verified
by considering the unit cost per connected customer and per connected kW that are in
Scenario 2 larger by 42 and 11 %, respectively.
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Similarly, the greatly reduced net present value of Scenario 3 is compensated by a
consistent reduction of the initial investment associated with a smaller plant and much
smaller number of connected users. Also in this case the unit revenue per connected user
and kW are larger than those of Scenario 1 by 121 and 31 %, respectively.

Given the possibility of running new simulations in a few minutes of computing time
the decision makers can examine in detail several alternative scenarios to carefully evaluate
the best solution to implement taking into account all the performance measures that are
relevant in the specific real-world context.

6.6.5 Testing Features on Randomly Generated Networks

We conducted further tests by considering new scenarios to evaluate the model behav-
ior and robustness with the additional variables and constraints related to the features
described in previous sections. The results are shown in Tables 6.7, 6.8, 6.9.

The additional data available in the tables are related to the ”client contract change”
scenario.

“|NS |” is the average number of convertible users (average number of users with an
actual consumption smaller than the historical consumption);

“NS pow” is the average convertible power (in kW) that can be subtracted by the
convertible users to eventually feed new potential users;

“Select NS” is the average number of convertible users that has been selected by the
model for the power reduction;

“Select NS pow” is the average power that has been subtracted by the selected
convertible users to feed up new potential users;

Scenario 4 represents a combination of the Scenario 3 previously described, together
with the client contract change feature. In this case the plant capacity is the same of that
used in Scenario 3 but at most half of the users in VP can be connected. The number of
convertible users VN is half of the existing users. Hence, part of the potential users power
VP pow can be satisfied by using part of the exceeding power NS pow of the available
convertible users.

The results of scenario 4 are given in Table 6.7. It is possible to note that the number
of connected potential users in Scenario 4 is higher than the number of potential users
connected in Scenario 3. This is because in Scenario 4 there is additional power that can
be obtained by an optimal subset of convertible users.

Note that in Scenario 4 the model can connect at most half of the available potential
users, while in Scenario 3 there were not limits on the number of potential users that may
be connected: despite that, the number of potential users connected in Scenario 4 is still
higher than the number of potential users connected in Scenario 3.

With regard to the model robustness, we note that for this additional feature the
computational time is higher, but the model is still quite fast.

Table 6.8 shows results for Scenario 5. This scenario is related to a basic network of
250 nodes and 100 potential users, which is connected to a complete potential network
(a sort of new district where there is no district heating at all). The complete potential
network is composed of 500 potential nodes (459 potential arcs) and an ascending number
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of potential users (250, 500, 750, 1000). In this case the problem has a higher complexity
since the model has to evaluate not only the optimal subset of potential users to be
connected, but also all the possible pipe paths through which the potential users can be
reached by the district heating system. The model contains all the decision variables and
constraint related to all the feature together: potential users connection, client contract
change decision, potential pipes connection, cost of different joints that affect the path
choice.

For such Scenario the computational time becomes particularly high, but the analyses
that can be made with such a combination of features are particularly strategic and can
have a high impact on the Energy company decisions and investments.

In Table 6.9 we mimic the summary results of a what-if analysis on a single instance
of the 250/500 set with the additional features related to the client contract change and
the cost of different pipe connections. The table compares the results of further scenarios
by also reporting the total value of the objective function in monetary units.

Scenario 6: reduction by 25% of the plant capacity, no limit on the number of
potential users that may be connected, no limit on the number of convertible existing
users that may change their contract.

Scenario 7: reduction by 25% of the plant capacity, at most half of the potential
users can be connected, at most half of the convertible existing users may change
their contract.

Scenario 8: reduction by 25% of the plant capacity, the model can connect at most
half of the potential users that it connected in Scenario 6, no limit on the number
of convertible existing users that may change their contract.

Scenario 9: reduction by 25% of the plant capacity, the model can connect at most
half of the potential users that it connected in Scenario 8, at most half of the con-
vertible existing users may change their contract.

Scenario 6 is similar to Scenario 3 of Table 6.6 as the plant capacity is reduced by 25%
in both cases and there is no limit on the number of potential users that may be connected.
In Scenario 6, however, there is the additional choice related to the client contract change.

We note that the net present value is almost the same for the two cases, but the number
of connected potential users is higher in scenario 6: that is because part of the convertible
existing users power has been used to connect further potential users. Hence it is possible
to reach more potential clients at no additional costs.

If the company had to connect the additional potential users to the network without
the convertible users feature, it would have had to build a new plant, as the current plant
was already saturated. The net present value of Scenario 6 is not higher than the one of
Scenario 3, because even though new potential users has been connected, there are costs
associated to the power reduction of convertible users. Hence we can say it is possible to
reach more potential users at no additional costs. The great saving in this case is related
to the possibility to avoid an investment in a new plant.

In Scenario 9 no convertible users are selected. That is because there is a very tight
limit on the number of potential users that may be connected: the costs related to the
client contract change are higher than the revenues associated to the few potential users
that may be connected through the additional power of the convertible users.
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6.7 Conclusions and Future Developments

An optimization approach for the optimal incremental design of district heating networks
has been presented. The proposed mathematical model represents a valuable tool to
support strategic decision analyses in the field: it has been conceived to incorporate the
essential hydraulic characteristics of a real network together with the economic elements
that allow to evaluate long-term scenarios. The model resulted fast to solve even for large
networks and very robust with respect to variations of some parameters.

The future development will be in the direction of enriching the model so as to incorpo-
rate additional features that may be relevant in real-world applications. First of all, more
complex network topologies such as those including either some loops in the backbone
infrastructure of the network or multiple plants, need to be fully examined. We performed
a preliminary testing on this type of networks and we obtained very encouraging results
showing the capability of solving realistic sized networks. In addition several constraints
or cost components may be considered, such as:

• the cost of the insertion of new tees in the potential network,

• the cost of pumping,

• the choice of the optimal diameters of the potential pipes,

• the choice of the optimal size of heat exchangers at potential users when it is possible
to reduce their initial power demand,

Other interesting directions for future developments can be open by including in the
optimization process also the creation of the potential network to be fed as an input to the
current model. In such a case, the potential network is virtually a complete graph including
all possible potential topologies from which the optimal one has to be selected. Because of
the substantial increase in the difficulty of the resulting problems it will be appropriate to
develop solution methods which belong to the field of matheuristics, where mathematical
programming models are integrated into general heuristic solution frameworks that permit
to consider complex problems within a reasonable amount of computing time.

An implementation of the proposed model has been incorporated by Optit srl, an
accredited spinoff company of the University of Bologna, into a software tool for the
strategic network design of DH networks. The tool, called Opti-TLR, is based on a public
domain GIS for the representation of the network and of the solutions and solves the
model through IBM ILOG Cplex. Opti-TLR (see Figure 6.8) has been used in the last
three years in several projects of DH network design by several mayor utility companies
in Italy.
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Figure 6.8: A screenshot of Opti-TLR: a Decision Support Tool for the design of DH
networks which incorporates an implementation of the model described in this document.
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Chapter 7

Power Systems Storage and Lead
Acid Batteries Fundamentals

In this chapter we introduce the main theory in the field of storage technology for off-grid
systems. This is made to build the most important background that will be useful to
understand the mathematical models and computational tests that will be presented in
the following Chapter 8.

Section 7.1 will present a brief introduction to motivate the proposed study and un-
derline the key issues in terms of storage integration in off-grid systems. The following
Section 7.2 will be dedicated to a description of the most important battery properties
that will be considered in our mathematical model. Section 7.3 will discuss the kinetic
battery representation to take into account the chemical processes involved in the battery
charge and discharge operations, while Section 7.4 will explain in more detail the main
degradation issues involved in the charge/discharge operations. The last Section 7.6 will
discuss some formulations for the definition of a battery degradation cost.

7.1 Introduction

Storage technologies and storage integration are currently key issues for most of the re-
searchers working in the energy field, especially when they have to deal with the increasing
integration of renewable energy.

Off-grid power systems in particular have received a wide attention around the world
as they allow to bring electricity to remote rural areas at lower costs than grid extension.
They are based on one or more renewable energy sources (i.e. PV or wind) together with
a conventional power generator to provide backup when it is necessary. Sometimes and
in certain parts of the world such as Africa villages, the conventional generator can be
absent and the community will commit its energy needs just to the renewable availability,
allowing a portion of unmet demand. In this latter case the presence of a storage unit
becomes essential to eventually store the exceeding energy and provide it when it is needed:
this way it is possible to cover a higher portion of demand. However, beyond these
extreme cases, storage units are usually integrated in offgrid systems as they represent an
alternative energy source to the conventional generator use which induces high operations
costs due to the fuel consumption in addition to the CO2 emissions. For these reasons
the possibility to store the renewable Energy is generally highly appealing. Especially in
Off-Grid applications batteries perform several important tasks such as absorbing short-
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term intermittence of the renewable resources, extending the electrical service hours to
night time periods and giving the system an autonomy of many hours or even several days
without any power generation.

As storage units in general and batteries in particular requires important investment
costs, the main question that arises from this current scenario is how storage operations
might be carried out in a more economical way, as there are important degradation issues
involved in such technologies; issues that are generally overlooked both during the system
design and during the hourly operation management of the system. And since these
batteries technologies implies operations costs due to degradation issues, are they still
cost effective for the general operating costs of a system? These kind of questions can
be well studied through the Mathematical Optimization techniques. In particular linear
programming can be very useful in defining whether certain choices are cost effective or
not and, if not, understanding under which conditions they can become cost effective and
how to make a better use of the available alternatives.

Our research was motivated by a field project on operation of off-grid storage in
Rwanda carried on at Durham University In particular, after a mathematical modeling
definition, some computational tests using real world data from a site in Rwanda will be
presented in Chapter 8. The main objective is to show how the battery use changes with
different degradation cost structures. The key of this step is the definition of a battery
degradation cost that will be introduced in Section 7.2) and that will take us towards
sensitivity analyses in Chapter 8, to explore how much battery costs have to come down
before the decisions become subtle and what trade offs there are, looking forward to when
the battery technology is more economical. In particular we will investigate when batter-
ies become more economical in a forecasted scenario in which diesel price will continue
to increase and battery costs drop, as well as when battery price become interesting as a
function of the declared lifetime throughput. These analyses will also give us answers on
the best type of use for batteries that lies in a certain range of price. It will be the case
that with the current technology, the optimized use of batteries will suggest to keep them
just for backup and emergency, but as the costs change we will see how deeper cycles and
intensive use become more convenient.

7.2 Main Battery Properties

In order to build a linear programming model that can be strongly focused on the battery
degradation optimization, it is very important to be aware of what factors affect the
battery lifetime and which are the most important battery properties to consider. For
that purpose there is a wide literature related to chemical analyses and laboratory tests
(Jarno et al. [5]), methodological papers related to battery lifetime prediction (Monika
et al. [11], Peng and Pedram [12]), general guidelines on battery optimal management
(Atcitty et al. [1]) as well as useful literature reviews about battery degradation processes
from a chemical and material point of view (Kanevskii and Dubasova [7]). None of these
papers are aimed at developing degradation cost fictions in a form suitable for inclusion
in optimization models, but they represent a good starting point to have an overview of
battery properties and degradation processes. There are also other useful works that give
good inputs about battery degradation cost definition and calculation (Michael et al. [10])
as well as general battery lifetime modeling Bindner et al. [2].

The main battery properties that we need to consider inside an operational manage-
ment optimization problem are: max charge power htchar (kWh) that defines the maximum
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amount of power that can be absorbed by the battery in every time step t; max discharge
power htdis (kWh) that defines the maximum amount of energy that can be withdrawal
from the battery in every time step t; nominal voltage V (V) which is the reference voltage
provided by manufacturers; minimum state of charge S (kWh) below which the battery
must not be discharged to avoid permanent damage; maximum charge rate α (A/Ah),
that is the maximum allowable charge rate measured in amp per amp-hours of unfilled
capacity; maximum charge current I (A) which is the absolute maximum charge current
regardless of the state of charge; nominal capacity Qmax (kWh) that indicates the rated
capacity of the battery; square root of the roundtrip efficiency Eff (%) which indicates
the percentage of the energy going into the battery that can be drawn back out. Note that
the roundtrip efficiency of the battery represents the total efficiency of charging and dis-
charging. The square root gives the efficiency in one direction. This assumes the battery
efficiency is symmetric. It may be that more is lost when charging than when discharging,
but for modeling purposes, symmetry is always assumed.

The nominal capacity is often measured by Ah (number of Amperes that can be taken
from battery multiplied by time how long this current can be taken). As our model is
focused on energy flows defined in kWh, we will calculate the battery capacity as battery
voltage multiplied by Ah (V ∗A ∗ h = Wh) assuming a constant battery voltage.

7.3 Charge/Discharge Processes and Kinetic Modeling

There are two main ways to think about charge/discharge processes of batteries. The
simplest one - and the most commonly used in literature - is the one-tank model with a
fixed capacity and no limit to the charge and discharge rates. A more detailed approach to
determine the amount of energy that can be absorbed by or withdrawn from the battery
bank on each time step, is the Kinetic Battery Model described in Manwell and McGowan
[9]. This latter approach is the one we will use in our study.

The kinetic battery model is based on the concepts of electrochemical kinetics and it
represents a battery as a two tank system. The first tank contains available energy, that
is energy that is readily available for conversion to electricity. The second tank contains
bound energy, that is energy that is chemically bound and therefore not immediately
available for withdrawal. The following Figure 7.1 illustrates the concept:

Figure 7.1: Two-tanks kinetic battery model representation

The total amount of energy stored in the battery at any time t Qtj is the sum of the
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available energy Q1t and bound energy Q2t.
In order to describe this two tank system we will need three parameters in our mathe-

matical model: the maximum battery capacity (Qmax) which is the total amount of energy
the two tanks can contain; the capacity ratio (c) which is the ratio of the size of the avail-
able energy tank to the combined size of both tanks; the rate constant (k) which relates
to the conductance between the two tanks, it is a measure of how quickly the battery can
convert bound energy to available energy or vice-versa and it is analogous to the size of
the pipe between the tanks. These values can be derived from battery data provided by
manufacturers. In particular it is necessary to fit data from the battery capacity curve
(which shows the discharge capacity of the battery in Ah versus the discharge current in
A) to the kinetic battery model with a numerical algorithm (i.e. simulated annealing, see
Saul et al. [13] for further details).

In our mathematical model we will define the value of Q1t and the maximum charge
and discharge power in every time step as well as the battery constants using the kinetic
battery model formulas available in Manwell and McGowan [9].

As described in Lambert et al. [8], if we model the battery as a two-tank system rather
than a single-tank system we can get two effects. The first one is that the battery will
never be fully charged or discharged all at once. The second one is that the battery ability
to charge and discharge will depend on its recent charge and discharge history and not
only on its current state of charge. Hence the Kinetic Battery Model approach will allow
us a more detailed representation of the battery behavior.

7.4 Main Considerations on Battery Degradation Issues

The life of a battery can be measured by the number of times it can be cycled before it
is no longer able to deliver sufficient energy to satisfy the load requirements of the system
IEEE1013-2007 [3]. There are two main definitions of a battery cycle. A full cycle refers to
a sequence of discharge-charge operations that takes a fully charged battery down during
discharge and then back to full charge again. On the contrary a partial cycle refers to a
sequence of discharge-charge that can start and/or end with a not fully charged battery.

In Kaise et al. [6] several stress factors were identified, which were defined as quan-
tities that, either directly or indirectly, affect the battery life, even though they are not
themselves ageing mechanism that cause irreversible degradation. The found major stress
factors are discharge rate, time at low state of charge, Ah throughput, charge factor, time
between full charge, partial cycling and temperature.

In general the number of cycles of battery operation depends on the factors that can be
grouped in: cell design, use and operating temperature IEEE1013-2007 [3]. Particularly,
we are going to focus on the following stress factors Svoboda et al. [14]:

• Depth of discharge. The published cycle-life values are usually given at several
different depth of discharge. The shallower the depth of discharge the greater the
cycle-life IEEE1361-2003 [4]

• Number of cycles. As the life of the battery can be measured by the number of
times it can be cycled, the higher the number of cycles is during the battery use, the
shorter the battery lifetime will be.

• Ah throughput. It is expressed as the cumulative energy discharged per year and it
represents the type of operation: it can be used to distinguish between a back up
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battery operation and between a full cycling operation.

• Time between fully charged states. This is the average time in days between recharg-
ing the battery to a full state of charge. Generally a value of 90% as full state of
charge criteria is chosen for practical reasons.

• Insufficient recharge (partial cycles). Insufficient time at the available charge rate
results in an undercharged battery. Failure to properly recharge a battery limits its
capacity. A discharge cycle that starts with a battery full of energy is less damaging
than the same discharge cycle that starts with a battery less full of energy (different
battery contents at the beginning of a discharge cycle have different impacts on the
battery wearing).

7.5 Battery Lifetime and Lifetime Throughput

The battery lifetime is usually calculated through an approximated value that is called
lifetime throughput. We described in the following lines this kind of approach.

The lifetime of a battery is generally calculated as a function of three values: the num-
ber of batteries in the battery bank, the lifetime throughput and the annual throughput.

Figure 7.2 shows a screenshot of the Homer software interface, that contains a good
example of a battery’s lifetime curve and data.

Figure 7.2: A screenshot of the Homer software interface: battery data and battery curves
provided by manufacturers. Example of a Trojan battery L16P

The values entered in the table of cycles-to-failure versus depth-of-discharge appear
as white diamonds. For each of those n points, it is possible to calculate a value of the
lifetime throughput LTn (where n corresponds to each line of the table) using the following
equation:
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LTn = Qmax ∗ dn ∗ fn (7.1)

where:
Qmax is the battery capacity (kWh)
fn is the number of cycles to failure of the table’s line n
dn is the depth of discharge of the table’s line n (%)

The resulting set of points appear as black diamonds on the lifetime curve of Figure
7.2. Then the lifetime throughput LT of the battery is obtained by averaging the n values
of lifetime throughput LTn in the allowable range of depth of discharge.

LT =
n∑
l=1

LTn/n (7.2)

Note that the allowable range is determined using the minimum state of charge: for
instance, if the minimum state of charge is 30%, then the battery will only experience
depths of discharge between 0% and 70%. That means that, for this example, in the
Lifetime Throughput calculation, we will only use the first 7 values available in the table
of cycles-to-failure versus depth-of-discharge (and we will averaging dividing by 7 and not
by 10)

7.5.1 Numerical Example of Lifetime Throughput Calculation

Consider a battery with a minimum state of charge of 30%, a maximum capacity of 360
Ah, a voltage of 6 V and values of cycles to failure versus depth of discharge listed in the
following Table 7.1:

Table 7.1: Cycles-to-failure versus depth-of-discharge

depth-of-discharge cycles-to-failure

0.1 4398
0.2 2322
0.3 1614
0.4 1266
0.5 1036
0.6 884
0.7 774
0.8 698
0.9 633
1 600

We can define for every line n of the table the value of LTn = Qmax ∗ dn ∗ fn (where
dn is the depth of discharge in line n and fn is the cycles to failure value in line n). The
following Table 7.2 contains the value of LTn for every line n in the third column (for
example, the first line LT value is (6 ∗ 360/1000) ∗ 0.1 ∗ 4398 = 950):
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Table 7.2: Lifetime throughput calculations for every depth of discharge

depth-of-discharge cycles-to-failure LT

0.1 4398 950
0.2 2322 1003
0.3 1614 1046
0.4 1266 1094
0.5 1036 1119
0.6 884 1146
0.7 774 1170
0.8 698 1206
0.9 633 1230
1 600 1296

Now we can calculate the Lifetime Throughput by averaging the LTn values calculated
in the table above. But we need to remember that the battery has a minimum state of
charge of 30% so we will not average all the values shown in the table: we will average the
values from 0.1 to 0.7 depth of discharge (in fact 100% - 30% = 70%).

Hence the Life Time Throughput will be calculated as follow:

LT =
950 + 1003 + 1046 + 1094 + 1119 + 1146 + 1170

7
= 1075 (7.3)

The battery life (years of life) LY can be derived from the lifetime throughput defined
above, using the following equation:

LY =
N ∗ LT
AT

(7.4)

where N is the number of batteries in the battery bank, while AT is the annual through-
put. The annual throughput is a value that can be calculated at the end of the time horizon
(generally one year) and it is equal to the summation of the charge power values (kWh) in
every time step t. As highlighted before, we must remember the energy losses that occur
during the charge/discharge process, so for every time step t we need to multiply every
charge power by the square root of the roundtrip efficiency of the battery Effj .

7.6 Battery Degradation Cost Definitions

In order to run an optimization model we will need to build an objective function that
is a cost minimization one. Thus, every degradation issue will have to be treated in the
objective function multiplying the related decision variables by a representative battery
degradation cost.

In the present study we will refer to two ways to calculate the battery degradation cost.
One related to the battery throughput which refers to a cost per kWh out the battery and
the other one related to the battery cycles to failure which refers to an average cost per
cycle. Further descriptions of these two costs follow.
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7.6.1 Cost per kWh

The battery degradation cost can be defined as the cost of the energy through the battery
bank. We can assume the battery bank will require replacement once its total throughput
equals its lifetime throughput. Each kWh of throughput brings the battery bank closer
to needing replacement. From that point of view, the battery degradation cost per kWh
BDCkWh can be defined using the following equation:

BDCkWh =
Crep

LT ∗ Effj
(7.5)

Where:
Crep replacement cost of the battery ($)
LT the lifetime throughput of the battery (kWh)
Effj the square root of the roundtrip efficiency of the battery (%)

This cost can be used every time the battery is discharging as a cost per kWh out the
battery.

7.6.2 Cost per Cycle

The second way to calculate the battery degradation cost is related to the cycles to failure.
We can use the lifetime curve provided by manufacturers and we can calculate the cost
per cycle for every depth of discharge n as a fraction of the battery capital cost Crep and
the remaining cycles to failure fn as shown in formula (7.6).

BDCncycle =
Crep
fn

(7.6)

See in Table (7.3) a numerical example related to a Troian battery L16P with a capital
cost of 300 $.

Table 7.3: Cycle cost associated to every depth of discharge

depth-of-discharge cycles-to-failure cycle cost

0.1 4398 0.07
0.2 2322 0.13
0.3 1614 0.19
0.4 1266 0.24
0.5 1036 0.29
0.6 884 0.34
0.7 774 0.39
0.8 698 0.43
0.9 633 0.47
1 600 0.50

Figure 7.3 shows the trend of the cycle cost as function of the depth of discharge. The
trend in this case is almost linear and can be successfully approximated and then inserted
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Figure 7.3: Representation of the cycle cost as function of the depth of discharge for a
Troian battery L16P

in a linear programming model. The idea is that say we have different depth of discharge
values and different cycle life values, we calculate the cost per cycle for each depth of
discharge. We calculate the value for the whole battery bank (capital cost) and then store
up the costs of every discharge cycle until we get to the max capital cost: then the battery
has to be replaced.

125



Bibliography

[1] S. Atcitty, P. C. Butler, G. P. Corey, and P. C. Symons. Optimal management of
batteries in electric systems, Mar. 5 2002. US Patent 6,353,304.

[2] H. Bindner, T. Cronin, P. Lundsager, J. F. Manwell, U. Abdulwahid, and I. Baring-
Gould. Lifetime modelling of lead acid batteries. 2005.

[3] IEEE1013-2007. Recommended practice for sizing lead-acid batteries for stand alone
photovoltaic (pv) systems. Technical report, IEEE, 2007.

[4] IEEE1361-2003. Guide for selection, charging, test and evaluation of lead-acid bat-
teries used in stand alone photovoltaic (pv) systems. Technical report, IEEE, 2003.

[5] D. D. Jarno, R. Bart, and D. J. N. Frans. Characterization of li-ion batteries for
intelligent management of distributed grid-connected storage. IEEE Transactions on
Energy Conversion, 26, 2010.

[6] R. Kaise, G. Bopp, H. Wenzl, N. Renewable, N. Wimot, A. Carr, M. L. Gall, G. E. D.
Cadarache, C. Tselepis, C. Rodrigues, and I. Technology. Work package 4.3: bench-
marking processes and recommendations, 2005.

[7] L. S. Kanevskii and V. S. Dubasova. Degradation of lithium-ion batteries and how
to fight it. a review. Russian Journal of Electrochemistry, 41(1):1, 2005.

[8] T. Lambert, P. Gilman, and P. Lilienthal. Micropower system modeling with homer.
Integration of alternative sources of energy, 1, 2006.

[9] J. F. Manwell and J. G. McGowan. Lead acid battery storage model for hybrid energy
systems. Solar Energy, 50, 1993.

[10] K. Michael, B. Theodor, U. Andreas, and G. Andersson. Defining a degradation cost
function for optimal control of a battery energy storage system. In PowerTech, 2013.

[11] C. Monika, N. rajendra, B. Rajni, and W. Herman. Utility energy storage life degra-
dation estimation method. In Innovative Technologies for an Efficient and reliable
Electricity Supply, 2010.

[12] R. Peng and M. Pedram. An analytical model for predicting the remaining battery
capacity of lithium-ion batteries. IEEE Transactions on Very Large Scale Integration
Systems, 14, 2006.

[13] A. T. Saul, T. V. William, and P. F. Brian. Numerical Recipes in C++: The Art of
Scientific Computing. Cambridge Univ Pr (Sd).

126



[14] V. Svoboda, H. Wenzl, R. Kaiser, A. Jossen, I. Baring-Gould, J. Manwell, P. Lund-
sager, H. Bindner, T. Cronin, P. Nørg̊ard, et al. Operating conditions of batteries in
off-grid renewable energy systems. Solar Energy, 81(11):1409–1425, 2007.

127





Chapter 8

MILP Models for Optimal Battery
Management in Off Grid Systems

The present chapter will discuss mathematical formulations to build linear programming
models that can be used to find the optimal hourly management of Solar Off-Grid Systems,
focusing on batteries degradation issues and allowing the integration of existing design
softwares (i.e. Connolly et al. [9]) with more aware battery modeling. One of the main
questions we want to answer to is whether it is possible to find a good balance between
storage needs and cost reduction needs and how does this affect the system design choices
and the system operational reliability.

The chapter starts with a brief literature review in Section 8.1 where the main works in
the field of mathematical programming for the battery degradation modeling are discussed.
In Section 8.2 we will present a basic mathematical model that defines the hourly optimal
management of an off-grid system, minimizing the energy costs of the conventional gen-
erator production and allowing an optimal use of the available renewable energy, through
optimized battery charge/discharge operations. Then in Section 8.3 this first basic model
will be further developed adding features to mathematically describe the main battery
degradation issues involved in the charge/discharge cycles and reduce some of the major
stress factors. Computational experiments on a real world site in Rwanda and sensitivity
analyses will be discussed in Section 8.4. The next two sections will be dedicated to fur-
ther developments of the proposed model. We will add features to allow further analyses
in different scenarios. Section 8.5 will discuss how the preliminary design of an off-grid
system can change when battery degradation issues are considered, with particular regard
to the additional PV production required to guarantee a healthier battery lifetime. Then
Section 8.6 will study a different Scenario in which the demand flexibility makes it possible
to run systems without generator but with a better battery use, by disconnecting some
flexible loads. Conclusions and future developments will be illustrated in Section 8.7

8.1 Literature Review

The batteries degradation issues have received a wide attention in literature, although
linear programming approaches are quite rare and mostly dedicated to system design
problems (Di et al. [10], Chedid and Saliba [8], Pascal et al. [20]) or to operational manage-
ment and scheduling problems (Bo and Mohammad [6]) without any particular attention
to battery degradation processes and battery use optimization.
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The majority of works is focused on grid connected systems with arbitrage and invest-
ment decisions (Faisal and Heikki [11], Mohamed and Koivo [18]), even though there are
some studies related to islanded systems as well (Bakirtzis and Dokopoulos [5], Hugo et al.
[14]), but the battery degradation issues are not considered.

Other papers use dynamic programming and heuristics and metaheuristics approaches
(i.e. genetic algorithms and neural networks) to study the optimal operations management
of grid connected energy systems with storage (Jen-Hao et al. [15], Yann et al. [26],) and
some of them take into account the reduction of battery stress during operations (Maly
and Kwan [17], Saeed et al. [22], Angel et al. [3]).

There is a wide literature related to battery control in the electric vehicle field, where
the main purpose is to define the optimal scheduling of vehicle charging (Lombardi et al.
[16], Anderson et al. [1], Hoke et al. [13]). These studies belong to a different field where
the issues related to the renewable availability and integration in offgrid systems don’t
need to be considered.

Some studies are more focused on battery control and degradation issues, but they
are generally related to grid connected systems and the battery modeling usually turns
out to be very simple. In fact the battery control is made using very strong assumptions
as inputs, for instance, defining a priori an upper bound on the maximum number of
allowable cycles (Shinya et al. [24], Shinya et al. [23]) or defining upper bounds and lower
bounds on the state of charge of the battery (Rakesh and Ratnesh [21]).

An optimization model can give more complete results if it is built in such a way
that number of cycles and state of charge (as well as other degradation properties) are
considered as variables rather than as input parameters. This way deeper analyses on
balancing cost of using battery against benefits can be done and the optimal trend of
use for the battery can be found without affecting the final results with assumptions that
tend to limit the model decisions. The key point is that if one can assign costs to battery
cycles of different natures, then the optimization approach will be more directly related
to minimizing the true costs of operating the battery. This will be the major focus of the
study proposed in the present chapter.

8.2 A Mathematical Model for the Battery Optimal Man-
agement in Off Grid Systems with Renewable Integra-
tion

In this section we introduce a mathematical formulation for the battery optimal manage-
ment in Off-Grid systems while in the following section we will discuss features to take
into account the main degradation issues. Figure 8.1 shows the energy flows among the
different units that will represent decision variables in our optimization model. When the
conventional generator is on it can send energy directly to the final users (xtpd) or to the
storage units. Since the storage belongs to the DC side and the conventional generator
belongs to the AC side, we need a converter unit (rectifier) so that the flow from the
conventional generator to the storage will be split into a flow xtpr from the conventional
generator to the rectifier and another flow xtrj from the rectifier to the storage.

The final demand can be met also using the energy stored in the battery. In this
case the flow must be split too since the demand belongs to the AC side and the storage
belongs to the DC side. We have a flow from the storage to the inverter xtjv and a flow
from the inverter to the final demand xtvd. Note that the converter units may have different
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Figure 8.1: Off-grid power system block diagram and simplified energy flows for the linear
programming model

Table 8.1: Continuous decision variables

xtij energy that flows from the renewable source i to the storage unit j in time t

xtiv energy that flows from the renewable source i to the inverter v in time t
xtjv energy that flows from the storage unit j to the inverter v in time t

xtvd energy that flows from the inverter v to the final users d in time t
xtrj energy that flows from the rectifier r to the storage unit j in time t

Qtj battery energy content in time t

Q1t available energy in the battery in time t

Table 8.2: Semi continuous decision variables

xtpd energy that flows from the conventional generator p to the final users d in time t

xtpr energy that flows from the conventional generator p to the rectifier r in time t
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efficiency values in case they are inverter or rectifier.
There is also the possibility to send energy from the renewable source to the final users:

in this case there is a flow xtiv from the renewable source i to the inverter v and a flow xtvd
from the inverter v to the final users d.

Note that we will need to consider the total flow into the battery (xtrj plus xtij) and
the flow out from the battery (xtjv) as mutually exclusive flows, since it is not physically
allowed for the same battery unit to do charge and discharge cycles at the same time.

We assume that the voltage is constant and equal to the nominal voltage (instead of
considering a battery with an internal resistance that causes the voltage to rise above the
nominal voltage during charging, and drop below the nominal voltage during discharging.)
We also assume that the battery has a constant round-trip energy efficiency, independent
of the rate of charge/discharge and independent of the state of charge.

We consider a time step t of one hour. Note that the interval time t is related to what
happen at the beginning of every time step.

Let us consider the system represented in Figure 8.1, the decision variables listed in
Tables 8.1, 8.2 and the parameters listed in Table 8.3. The resulting mathematical model
for the basic hourly operation management problem follows.

Table 8.3: Parameters

T programming period
0 < t ≤ T interval time (one hour h)
dt final users demand defined for period t (kWh)
Rt renewable energy forecast production in period t (kWh)
Kp cost of the energy produced by the conventional generator ($/kWh)
PPp conventional generator minimum production (kWh)
PCp conventional generator capacity (kW)
λv efficiency of the inverter v (%)
λr efficiency of the rectifier r (%)
Qmax battery capacity (kWh)
Effj square root of the roundtrip efficiency of the battery j (%)
Sj minimum state of charge of the battery j (%)
c battery capacity ratio (unitless)
k battery rate constant (1/h)
N number of cells in the battery bank (n)
V nominal voltage of the battery (V)
I battery maximum charge current (A)
α battery maximum charge rate (A/Ah)
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OBJECTIVE

min
∑
t

CtG + CtB (8.1)

The objective function (8.1) aims at minimizing the energy cost CtG of the conventional
generator and the total degradation costs CtB related to the battery use.

The conventional generator cost is given by CtG =
∑

t(x
t
pd+xtpr)∗Kp. It minimizes the

cost of energy that flows from the conventional generator to the final users xpd and from the
conventional generator to the battery xpr, by multiplying the kWh out the conventional
generator by the energy cost per kWh Kp.

The battery total degradation cost CtB is defined as a function of one or more battery
stress factors s and their related costs. Hence CtB = f(s) where f(s) can be a function
of: the lowest depth of discharge reached along a representative period CtB = f(Qm);
the battery energy content at the end of a discharge cycle CtB = f(Qend); the battery
energy content at the beginning of a discharge cycle CtB = f(Qstart); the number of cycles
along a representative time horizon CtB = f(N); the amount of energy out the battery
CtB = f(xjv).

The mathematical modeling for all of these battery degradation functions will be fur-
ther explained in following sections, to show how the objective function and constraints
of this basic mathematical model can be modified to take into consideration one or more
battery stress factors.

Note that if we impose CtB = 0 we will obtain an optimization result that reflects
the actual current Off-Grid systems behavior focused just on diesel costs minimization
regardless of battery degradation issues.

CONSTRAINTS

Meet demand

xtpd + xtvd = dt ∀t (8.2)

Constraint (8.2) reflects the fact that the final users demand must be completely met
with one of the two flows.

Conventional generator properties

(xtpd + xtpr = 0)||(PPp ≤ xtpd + xtpr ≤ PCp) ∀t (8.3)

From an operational point of view we must respect a minimum plant production PPp
and a maximum plant capacity PCp. For this purpose the semi continuous variables
(xtpd + xtpr) can be inserted in a disjunction constraint (8.3). The use of semi-continuous
variables will allow us to avoid the explicit use of binary variables (i.e. variables that are
equal to 1 if the plant is on and equal to 0 if the plant is off) and improve the model speed.

Converter units efficiency

xtvd = (xtiv + xtjv) ∗ λv ∀t (8.4)
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xtrj = xtpr ∗ λr ∀t (8.5)

Constraint (8.4) and (8.5) are used to take into account the loss of energy due to the
inverter efficiency λv and the rectifier efficiency λr.

Renewable source capacity

xtiv + xtij ≤ Rt ∀t (8.6)

Constraint (8.6) is inserted to control the flows from the renewable source: their sum-
mation must respect the maximum forecast production of the renewable source in time
t.

Initial values of battery variables

Qtj = Qmaxj ∀t = 0 (8.7)

Qt1 = c ∗Qmaxj ∀t = 0 (8.8)

Constraints (8.7) and (8.8) define the initial values (t = 0) of the battery content Qtj
(the battery is assumed completely charged) and of the variable Qt1 that will be used inside
the max charge and discharge constraints. The parameter c is the battery capacity ratio
defined as input.

Minimum battery charge level

Qtj ≥ Sj ∀t (8.9)

The battery properties impose that the battery content can’t be less than a minimum
value as expressed in constraint (8.9) where Sj is the minimum state of charge defined as
input.

Charge and discharge processes management
The last following constraints define the charge and discharge processes through the

Kinetic Battery Model formulas introduced in the previous paragraph.

Qtj = (Qt−1
j − (xtjv ∗

1

Effj
) + xtrj + xtij ∀t > 0 (8.10)

Constraint (8.10) defines the current value of the battery energy content for every time
step t taking into account the loss of energy due to the discharge process Effj

Battery max discharge

xtjv ≤ htdis ∗ Effj ∀t (8.11)
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Constraint (8.11) contains the max discharge power formula where htdis is expressed
by the following equation according to the Kinetic Battery Model formulation:

htdis =
Qt1 ∗ k ∗ e−k∗δt +Qtj ∗ k ∗ c ∗ (1− e−k∗δt)

1− e−k∗δt + c ∗ (k ∗ δt− 1 + e−k∗δt)

Battery max charge

xtrj + xtij ≤ htchar ∀t (8.12)

Constraint (8.12) contains the max charge formula where htchar is expressed by the
following formula:

htchar = [Min(Ht
1, H

t
2, H3)] ∗ 1

Effj

According to the Kinetic Battery Model formulation the values of H1 H2 and H3 are
the following:

Ht
1 =

Qmax ∗ k ∗ c−Qt1 ∗ k ∗ e−k∗δt −Qtj ∗ k ∗ c(1− e−k∗δt)
1− e−k∗δt + c ∗ (k ∗ δt− 1 + e−k∗δt)

(8.13)

Ht
2 =

(1− e−α∗δt) ∗ (Qmaxj −Qtj)
δt

(8.14)

H3 = N ∗ I ∗ V/1000 (8.15)

Note that H3 is not time dependent since it is the absolute maximum charge power
allowed for the battery.

Q1 step by step value

Qt1 = Qt−1
1 ∗ e−k∗δt +

(Qtj ∗ k ∗ c+ P t) ∗ (1− e−k∗δt)
k

+
P t ∗ c ∗ (k ∗ δt− 1 + e−k∗δt)

k
(8.16)

Pt = xtij + xtrj − xtjv (8.17)

The last constraint (8.16) defines the value of Q1 for every time step t according to
the Kinetic Battery Model formulation.
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8.3 Battery Stress Factors Modeling

In this section we will explain how to model different battery stress factors and how
the basic model presented in previous section can be modified by adding variables and
constraints to take into consideration different battery degradation issues.

8.3.1 Daily Depth of Discharge

Let us assume that the battery wearing is mainly due to a cost on the depth of discharge.
Let us assume also that the battery use for Off-Grid solar applications has a daily trend
with daily discharge-charge operations. That is related to the fact that the general Off-
Grid systems behavior for solar applications is to store the exceeding renewable energy
during the day in order to extend the electrical service hours during night time periods
when the PV production is zero. Computational tests presented in Section 8.4 will show
such daily trends for solar applications.

Under the above assumptions we can improve the battery lifetime by focusing on the
daily depth of discharge and placing a cost per kWh on it. What we will obtain through
this trick is shifting the battery use curve towards the higher part of a diagram so that
the deeper discharge in every day will be minimized. Note we are not imposing a lower
bound on the state of charge a priori as we want to find the optimal value towards which
the lowest state of charge should settle in every day, by varying the battery degradation
cost.

From a mathematical and computational point of view, in order to do that we need a
new decision variable Qmg that will represent the lowest state of charge in every day g.
Then we can insert the following constraint:

Qtj >= Qmg ∀g, ∀t : t = {[(g − 1) ∗ 24]...[(g − 1) ∗ 24 + 23]} (8.18)

We impose that for every day g, the value of Qtj along 24 hours, must be greater than
or equal to a value Qmg that will be maximized by the objective function. In this way
we will avoid the deeper daily discharge and we will keep the battery state of charge on
higher levels.

Note that t has to be defined from 1 to T (with T equal to the number of hours) while g
has to be defined from 1 to G (with G equal to the number of days). Hence the total period
T is split into daily intervals through the formulation t = {[(g− 1) ∗ 24]...[(g− 1) ∗ 24 + 23.
The model will therefore find the optimal lowest state of charge in every single day.

If needed, it is possible to modify the length of the time intervals sequence, by consid-
ering sequences of 12 hours, or sequences of 6 hours, or longer sequences of 48 hours and so
on. It is only necessary to change the range according to the specific needs. For instance,
in wind applications the daily trend might be not suitable and the range of time might
be shorter according to the particular wind resource behavior. Appropriate preliminary
computational tests can give good answers on the most suitable range to adopt. As we
are presenting a study related to solar applications, we found that the battery use has a
strong daily trend and computational experiments that will be showed in Section 8.4 will
demonstrate that. Hence for our purposes a range of 24 hours is appropriate.

In order to apply a cost on the daily depth of discharge, we need to add it inside the
objective function: this new term of cost is represented by the summation of the Qmg in
every day g multiplied by a representative battery degradation cost per kWh. It has a
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negative sign, as the lower the battery content is (hence the lower the value of Qm is), the
higher the related cost should be.

So the objective function will become:

min
∑
t

(xtpd + xtpr) ∗Kp −
∑
g

Qmg ∗BDCkWh (8.19)

where the term −
∑

g Qm
g has been inserted and BDCkWh represents a Battery Degra-

dation Cost per kWh, as introduced in Section 7.4.

8.3.2 Partial Cycles

The daily depth of discharge formulation presented in previous Section 8.3.1, can be suit-
able to reduce the number of partial cycles as well. If the battery curve will be shifted
towards the higher part of the diagram, this will have two main effects: the direct effect
is that the deeper discharge in every day will be penalized by the degradation cost as
explained in previous section; the indirect effect of this procedure is that as the battery
curve will be shifted up, we will obtain a higher number of cycles that end with a fully
charged battery (that means in other words that we will reduce or even annul the number
of partial cycles). An example to better understand such behavior is depicted in Figure
8.2: the curve related to case01 can be shifted little by little and as this happen, a higher
number of cycles will end with a fully charged battery, hence the number of partial cycles
is minimized. In particular, in case01 there are 4 partial cycles, in case02 there are again
4 partial cycles but the depth of discharge is a little bit shallower; in case03 there are 2
partial cycles and a shallower depth of discharge; in case04 there are no partial cycles and
a very light depth of discharge. Note that in practical problems a value of 90% as a full
state of charge criteria is chosen for practical reasons as explained in Svoboda et al. [25].

Figure 8.2: Example of a battery curve that is shifted towards the higher part of the
diagram. The direct effect is the depth of discharge minimization. The indirect effect is
the reduction of partial cycles (which are cycles that starts and/or end with a not fully
charged battery).
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Computational experiments presented in Section 8.4 will show such behavior. Sensi-
tivity analyses with different costs per kWh will show in which conditions it is possible to
substantially reduce the number of partial cycles.

8.3.3 Counting Battery Cycles

In order to better model the battery degradation, we are interested in defining the exact
time t on which a discharge action is finishing: if we can identify the end of a cycle and
the state of charging of the battery, we can for instance minimize the number of cycles
in our objective function, or we can impose that when a charge is starting, then it must
carry on until a fully charged battery. Both procedures might be interesting to reduce the
battery degradation.

In order to do that from a linear programming point of view, we need to link three
types of binary variables.

• θt 1 if the battery is charging in time t, 0 otherwise

• θtdown 1 if a charging is starting or a discharging is finishing, 0 otherwise

• θtup 1 if a charging is finishing or a discharging is starting, 0 otherwise

If on time t a sequence of charging actions is starting, that means that on time t − 1
a sequence of discharging actions has just finished. Hence from a mathematical point of
view, we can say that:

• if in time t the storage is on a charging sequence (θt = 1) and on time t-1 it was
on a discharging sequence (θt−1 = 0), then in time t a charging sequence is starting
(θtdown = 1);

• if in time t the storage is on a discharging sequence (θt = 0) and on time t-1 it was
on a charging sequence (θt−1 = 1), then in time t a discharging sequence is starting
(θtup = 1);

• if in time t the storage is on a charging sequence (θt = 1) and on time t-1 it was on a
charging sequence too (θt−1 = 1), then there are no changing in the state of charge
(θtdown = 0 and θtup = 0);

• if in time t the storage is on a discharging sequence (θt = 0) and on time t-1 it was
on a discharging sequence too (θt−1 = 0), then there are no changing in the state of
discharge (θtdown = 0 and θtup = 0).

These considerations can be expressed by the following constraint:

θt − θt−1 = θtdown − θtup ∀t > 0 (8.20)

We also need to impose that the beginning of a charge event can’t happen together
with the beginning of a discharge event, that means the θtdown and the θtup can’t be equal
to one at the same time.

θtdown + θtup <= 1 ∀t (8.21)
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It is necessary to link the new binary variables to the existing decision variables in
order to get correct results from our mathematical model. We need to link in particular
the variable θt to the flows into the battery in time t, xtij and xtrj .

xtij + xtrj ≤ Qmax ∗ θt ∀t (8.22)

Finally we need to add another constraint in order to link the binary variable θt to
the flows out the battery. If the binary variable θt is equal to 1, it means that the battery
is charging and therefore the flows out the battery itself must be equal to zero. Thus, to
let the model work properly, we need to insert a ”mutually exclusive flows” constraint as
follows:

xtjv <= Qmax ∗ (1− θt) ∀t (8.23)

What we can do in the objective function is minimize the number of cycles multiplying
the variable θtup by a representative cost per cycle as outlined in Section 7.4.

min
∑
t

(xtpd + xtpr) ∗Kp +
∑
t

θtup ∗BDCcycle (8.24)

8.3.4 Define the Content of Energy at the End/Beginning of a Cycle

A more detailed way to study battery degradation issues is not only focusing on the number
of cycles, but considering also the energy content at the beginning or at the end of every
cycle. For that purpose we can define two new decision variables as follow:

Qtend which define the energy content in the battery at the end of a discharge cycle;
Qtstart which define the energy content in the battery at the beginning of a discharge

cycle;

In order to define the value of Qend we need to insert the following constraints:

Qtend ≤ θtdown ∗Qmax ∀t (8.25)

Qtend ≤ Qtj ∀t (8.26)

Through the constraint (8.25) we impose that the variable Qend will assume a value
greater than zero only when the variable θtdown will be equal to one, as we want to look
for the energy content only when a cycle is finishing. The constraint (8.26) imposes that
the variable Qend can’t be greater than the energy content in time t, thus if we maximize
the variable Qend in the objective function, it will always be equal to the battery energy
content Qtj . But thanks to the constraint 8.25 this will happen only when the cycle is
finishing, that is when the variable θtdown is equal to 1.

The objective function will become the following:

min
∑
t

(xtpd + xtpr) ∗Kp +
∑
t

(Qmax−Qtend) ∗BDCkWh (8.27)
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where (Qmax − Qtend) represents the amount of space in the battery at the end of a
discharge cycle on which a degradation cost is applied. The lower the value, the shallower
the depth of discharge. BDCkWh is the battery degradation cost per kWh introduced in
Section 7.4.

Similarly, for the battery energy content at the beginning of a discharge cycle Qstart
we can add the following constraints:

Qtstart ≤ θtup ∗Qmax ∀t (8.28)

Qtstart ≤ Qtj ∀t (8.29)

Then the objective function will become as follow:

min
∑
t

(xtpd + xtpr) ∗Kp +
∑
t

(Qmax−Qtstart) ∗BDCkWh (8.30)

where (Qmax−Qtstart) represents the amount of space in the battery at the beginning
of a discharge cycle to be minimized. The lower the value, the higher the battery energy
content at the beginning of a cycle (that means the battery starts a discharge in a fully
charged condition).

8.3.5 Cost per kWh Throughout the Battery

One of the quickest ways to take into consideration the battery degradation is applying a
degradation cost on the flows out the battery xtjv as follow:

min
∑
t

(xtpd + xtpr) ∗Kp +
∑
t

xtjv ∗BDCkWh (8.31)

8.4 Computational Experiments and Sensitivity Analyses

8.4.1 Introduction to Sensitivity Analyses

Broadly speaking the objective of the following computational tests and sensitivity anal-
yses is to see whether the battery technology is worthy at the current state of art of
technology and, if not, in which conditions it becomes valuable.

As the battery degradation cost definition comes with an intrinsic uncertainty (due
to manufacturer data uncertainty), the most interesting thing to do is making sensitivity
analyses using different values of such cost and comparing it with a reference cost, to
see how different trade offs affect the optimization model decisions. In particular, since
the main energy alternative to meet the demand of an offgrid system is represented by
a diesel generator, we will study how the battery behavior depends on the ratio of the
battery degradation cost and the diesel cost. In fact if the system is going to use the
battery less (because of the battery degradation cost applied on the depth of discharge,
for instance), then sometimes it will have to run the conventional generator more. The key
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is also whether it is still worthy to use the battery when there is a conventional generator
with a lower cost per kWh.

Batteries degradation costs are high at present, so we will study a range of costs to
understand how behavior of system will depend on lower degradation costs in a future
world with better batteries (i.e. a forecasted scenario in which battery costs drop and
diesel costs will continue to increase).

Such tests will also tell us how much the battery replacement cost should drop as a
function of the declared lifetime throughput, to make the battery use more convenient.

8.4.2 A Rolling Optimization Procedure for Big Instances

We made some previous tests and we found out that every day trend is affected by the
model decisions of the next three days ahead, but after the fourth day the results of the
first one become constant. We call this condition “edge effect” as there is and edge of
three days before getting a stable result of the first day. Figure 8.3 shows an example
of such behavior. That means we don’t need to run an optimization grouping too many
days together as we can look ahead of just three days to eliminate the edge effect. For
this reason we can solve the model through a rolling optimization procedure by testing 6
days each time, keeping the results of the first 3 days of every run and use the values of
the variables Qt and Q1t at the end of the third day, as the starting values for the next 6
days run and so on. This way we can link every optimization and we can run big instances
of the problem that otherwise would be computationally hard to solve for a wide time
horizon (i.e. one year) especially with the addition of binary variables.

However, it is important to underline that we can solve the current model in few
seconds for instances of one month length. Hence we don’t need any rolling procedure to
run monthly instances of the model.

Figure 8.3: Example of the edge effect. Different optimizations run adding one day each
time to see variations in final results.

8.4.3 Data

Tests have been made using real world data of demand and renewable production from a
site in Rwanda Anuta et al. [4]. We tested an offgrid system with a set of data showed in
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Table 8.4 and an average very common battery for solar applications. The offgrid system
data shown in Table 8.4 come from the real world application in Rwanda. The site is
provided with a 1.3 kW solar PV array.

The diesel cost in $/kWh is given by ($/Liter) ∗ (L/kWh) where we considered a cost
per liter equal to 1.6 $ (values for the African sites tested in Anuta et al. [4]) and an
average diesel production of 0.330 L/kWh.

Battery data are provided by manufacturer documentation, as well as the kinetic bat-
tery constants are derived by the capacity curves and lifetime curves. Table 8.5 shows the
battery lifetime data expressed as depth of discharge versus cycles to failure that is gener-
ally provided by manufacturers. The column “Lifetime throughput” shows the calculated
throughput for each depth of discharge using the formula 7.1, while the column “Cycle
cost” shows the calculated cost per every cycle using the formula 7.6. The global lifetime
throughput of the battery is obtained by averaging the values of each line, as well as the
battery cycle cost can be obtained by averaging the cycle costs of each line.

Table 8.4: Data for computational tests

GENERATOR DATA

D 0.48 conventional generator diesel cost ($/kWh)
PC 1 conventional generator capacity (kW)
PP 0.2 conventional generator minimum production (%)

CONVERTER DATA

λv 0.90 inverter efficiency (%)
λr 0.85 rectifier efficiency (%)

BATTERY DATA

Eff 0.89 square root of the roundtrip efficiency of the battery (%)
S 0.2 battery minimum state of charge (%)
c 0.151 battery capacity ratio (unitless)
k 9.51 battery rate constant (1/h)
Ah 225 battery capacity (Ah)
V 12 battery nominal voltage (V)
I 67.5 battery charge current (A)
α 1 battery maximum charge rate (A/Ah)
Crep 900 battery purchase cost ($)
LT 1344 battery lifetime throughput (kWh)
BDCkWh 0.7 battery degradation cost ($/kWh)

BATTERY BANK DATA

N 2 number of cells in the battery bank (n)
Qmax 5.4 battery bank capacity (kWh)
V bank 24 battery bank nominal voltage (V)
Cbankrep 1800 battery bank purchase cost ($)

Qbanklifetime 2688 battery bank throughput (kWh)

Note that in Table 8.4 battery data are shown for a single battery. As in the real
world case we have 2 cells in the battery bank that means that the battery capacity has
to be multiplied by 2 as well as the voltage and the resulting lifetime throughput will be
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Table 8.5: Battery bank lifetime table (depth of discharge versus cycles to failure) with
lifetime throughput calculations

Depth-of-discharge (%) Cycles-to-failure (n) Lifetime throughput (kWh)

10 5700 3078
25 2100 2835
35 1470 2778
50 1000 2700
60 830 2689
70 700 2646
80 600 2592
90 450 2187

double as shown in the section “battery bank data” of Table 8.4. However, this doesn’t
change the Battery Degradation Cost BDCkWh as the double cost at the numerator will
be neutralized by a double throughput at the denominator. The cycles to failure per every
depth of discharge remain the same.

8.4.4 Tests on the Lowest State of Charge in Every Day. Results Dis-
cussion

The following diagrams and tables show the results obtained performing the optimization
using an Intel Pentium processor SU4100 1.30 GHz PC, with 4GB of memory; the MILP
models are solved through the branch-and-cut algorithm implemented in the IBM Cplex
12.2 solver.

The model has been run for the months of August from the 1st to the 31st and we show
the resulting battery energy content Qj in 20 mainly representative days in the middle,
from the 8th to the 27th of August. We made different analyses applying different kinds
of costs in the objective function. In particular, in this section D represents the diesel cost
per kWh and LW represents a degradation cost per kWh on the lowest state of charge in
every day. We tested different ratios of per kWh battery degradation cost to diesel cost.

Figure 8.4 shows two extreme cases that represent the starting point for sensitivity
analyses. The worse situation is represented by a battery that is deeply used where no
degradation charge is applied: this situation is showed by the black bold curve which is
related to an optimization run applying a cost only on the conventional plant generation,
hence the model makes a deep use of the battery to minimize the conventional generator
costs. This trend shows the main battery degradation issues: high number of cycles, very
deep discharge mode and partial cycles with a battery not fully charged for most of the
time. Another interesting thing to note is that from this battery curve it is clear that
an actual general battery use for solar Off-Grid systems is made of one main daily deep
cycle, thus it makes sense to focus on a cost of the lowest state of charge per every day as
explained in Section 8.3.1.

The other extreme scenario depicted in Figure 8.4 is the one that shows a very little
use of the battery, mainly for backup and emergency. This scenario is represented by the
traced line, obtained applying a very high degradation cost per kWh on the lowest state of
charge in every day. In particular, the cost per kWh applied in this scenario is for present
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day battery costs. It is equal to the battery degradation cost BDCkWh calculated through
the formula 7.5 which is a function of the battery replacement cost, lifetime throughput
and efficiency. This shows that, for Off-Grid applications, the current battery technology
is still not mature enough as battery replacement costs are currently too high compared
with their throughput properties.

Within the two extreme scenarios outlined above, we made some sensitivity analyses
to find out in which range the battery degradation cost defined in 7.5 should settle to
allow a healthier battery life and how the battery curves change and shift in the diagram
as a function of different degradation cost values. As already stated in Section 8.4.1, we
will compare the battery degradation cost with a reference that is the diesel cost, as it
represents the main alternative source of energy available in the system. For a clearer
visualization we will show the results enlargement of these sensitivity analyses for some
more representative fragments of the battery trend. The gray circles in Figure 8.4, indicate
the most interesting fragments that will be enlarged in the following pictures to show the
battery trend with different degradation costs applied.

Figure 8.5 shows enlargements of the fragments number 1, 2, 3 and 4 identified by
the gray circles in Figure 8.4. We apply different degradation costs on the lowest state of
charge in every day (LW cost). Degradation costs are defined as a percentage of the fixed
diesel cost. We reduce the LW cost little by little to see how the battery trend changes
from the very little use (backup and emergency use) to the deeper use (storage purpose).

It is important to note how the application of a cost on the lowest state of charge in
every day is able to shift the battery curve towards the higher section of the diagram,
allowing both shallower depth of discharge and an almost fully charged battery at the end
of every cycle. Hence, through the application of a degradation cost on the lowest state
of charge in every day, we get a direct effect that is to avoid deep discharge cycles, and an
indirect benefit that is an almost fully charged battery at the end of every cycle (which is
beneficial for the battery).

In fragments 1 and 3 we get overlapped curves for LW values equal to the 50-60-70
% of the diesel cost D. In fragment 4 we get almost overlapped curves as well for LW
values equal to the 50-60-70 %. There is an evidence that this is a particular range of
degradation costs within which the depth of discharge is shallower and the battery is
almost fully charged at the end of a cycle (see the peak of the curves). Fragment 2 in
particular shows how close these three curves are (even when they are not overlapped)
and how they can shift the battery curve in such a way that the battery ends in a fully
charged state at the end of the cycle. Lower values of LW costs (see for instance the curve
with LW equal to 40% of the diesel cost) give as results deeper and partial cycles that are
not beneficial for the battery life. Higher values of LW costs (i.e. LW values greater than
or equal to 80% of the diesel cost) tend to a smaller use of the battery, more for backup
and emergency activities rather than storage purposes.

The use of the diesel generator to satisfy the final user demand can change as the
battery degradation costs become higher. In fragment 1 for instance, when there are no
battery degradation costs (black line) we saw the diesel production was zero as the demand
was satisfied through a deep use of the battery. As we applied the LW cost, we saw the
use of the traditional generator became higher. However, in the range of LW costs within
the 50-60-70%, the additional diesel production was very limited. In the fragment 1 for
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instance we found the diesel generator was on at 18.00 (0.22 kWh) and 22.00 of the 9th
(0.29 kWh) and at 10.00 of the 10th (0.28 kWh), for a total additional production of 0.79
kWh. If the LW cost is higher (i.e. greater than 80% of the diesel cost) then the diesel
generator production increases strongly. In the fragment 1, for the dot curve (80% of the
diesel cost) we saw the diesel generator was on at 18.00 of the 9th (0.2 kWh), 19.00 of
the 9th (0.17 kWh), 22.00 of the 9th (0.29 kWh), 10.00 of the 10th (0.28 kWh), 18.00 of
the 10th (0.2 kWh) and 21.00 of the 10th (0.21 kWh) for a total additional production of
1.35 kWh.

An interesting thing we noted is that sometimes, in the range of LW costs within the
50-60-70%, the curve shifting brings a beneficial shallower depth of discharge and a fully
charged battery, at no diesel extra costs. Fragment 3 is an example of such behavior. The
diesel generator was always off for the curves related to the 50-60-70%. While there was
an additional diesel production of 1.6 kWh for the curve related to the 80%.

In Table 8.6 there is a summary of the total additional diesel production required in
the different cases tested for the whole 20 days of August (from the 8th to the 27th).

Table 8.7 summarizes the main stress factor values for the different battery degradation
costs along the 20 days shown in the previous diagrams. Note that partial cycles are all
the charge/discharge operations that start with a not fully charged battery and/or end
with a not fully charged battery. For practical reasons we consider a fully charged battery
when the energy content is greater than or equal to 90% of the total battery capacity (that
is an almost fully charged battery)

In Figures 8.6, 8.7, 8.8, 8.9, 8.10 the different battery stress factors values (see Section
7.4) for the different battery degradation costs are shown together with the related diesel
costs. As we apply a battery degradation cost, then the battery use tends to become
shallower allowing a reduction of the stress factors, but that requires a higher use of
the conventional generator. However, it is clear how the interval of battery degradation
costs within 50-60-70% is the one in which the diesel costs remain steady on medium-low
values. As the battery degradation cost increases to 80% and more then the additional
diesel production increases considerably. Note that both in the tables and figures the total
diesel cost is split into the amount of energy that flows directly to satisfy the demand and
the amount of energy that has to flow towards the battery. This latter energy is the
result of the conventional generator minimum production constraint: as outlined in the
mathematical model formulation, when the conventional generator is on, it has to produce
a minimum amount of energy. If the final user demand is less than the conventional
generator minimum production, then there is an excess of energy that has to be stored
inside the battery.

Table 8.8 shows an annual projection of data for a broader vision of the battery use and
estimated lifetime as a consequence of the different patterns studied above. The lifetime
throughput in kWh for the different scenarios has been obtained from the battery data,
considering the lowest depth of discharge reached at different battery degradation costs.
The estimated lifetime in years is obtained through the following formulation

QlowSoC
Qout

(8.32)

where QlowSoC is the lifetime throughput at the lowest depth of discharge reached
along the period and Qout is the annual energy out the battery.
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Figure 8.4: Two extreme cases of battery use: the deeper use without any battery degra-
dation cost (black line) and the very little use due to a very high battery degradation cost
(dot line). D is the diesel cost per kWh while LW is the cost per kWh applied to the
lowest state of charge in every day.

Table 8.6: Results summary along a representative period of 20 days - additional diesel
production and diesel costs in different scenarios with different battery degradation costs
applied to the daily depth of discharge

Battery Diesel Prod Diesel cost Diesel Prod Diesel cost Tot Tot
degradation towards towards towards towards diesel diesel

cost LW demand demand battery battery production cost
(% of D cost) (kWh) ($) (kWh) ($) (kWh) ($)

80 16.87 8.1 1.25 0.6 18.12 8.7
70 11.53 5.53 1.1 0.53 12.63 6.06
60 11.27 5.41 0.98 0.47 12.25 5.88
50 11.1 5.33 0.96 0.46 12.06 5.79
40 7.25 3.48 0.53 0.25 7.78 3.73
0 2.48 1.19 0 0 2.48 1.19
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Figure 8.5: Enlargement N1, N2, N3 and N4 of sensitivity analyses with different battery
degradation costs (LW) applied to the daily depth of discharge as a function of the diesel
cost (D).
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Table 8.7: Results summary along a representative period of 20 days - battery stress
factors in different scenarios with different battery degradation costs applied to the daily
depth of discharge

Battery Energy Lowest Average Time Highest time Time Partial
degradation out SoC between between at low SoC cycles

cost LW the battery reached full charged full charged (below 35%)
(% of D cost) (kWh) (%) (days) (days) (%) (n)

80 24.88 48 1 1 0 1
70 30.81 58 1 1 0 1
60 31 58 1 1 0 1
50 31.08 58 1 1 0 1
40 34.98 70 1.3 3 5 10
0 40.01 80 2.1 4 35 16

Figure 8.6: Stress factor analyses along 20 representative days. Energy out the battery
and diesel costs trend with different battery degradation costs applied to the daily depth
of discharge. The higher the column is the worse the stress factor is.

Figure 8.7: Stress factor analyses along 20 representative days. Lowest state of charge
reached and diesel costs trend with different battery degradation costs applied to the
daily depth of discharge. The higher the column is the worse the stress factor is.

148



Figure 8.8: Stress factor analyses along 20 representative days. Time at the lowest state
of charge and diesel costs trend with different battery degradation costs applied to the
daily depth of discharge. The higher the column is the worse the stress factor is.

Figure 8.9: Stress factor analyses along 20 representative days. Number of partial cycles
and diesel costs trend with different battery degradation costs applied to the daily depth
of discharge. The higher the column is the worse the stress factor is.

Table 8.8: Annual projection of the battery estimated lifetime in the different scenarios
with different battery degradation costs applied to the daily depth of discharge. Estimated
values at the lowest state of charge reached along the period.

Battery Lowest Average Throughput Estimated
degradation SoC annual at lowest lifetime

cost LW reached energy out SoC
(% of D cost) (%) (kWh) (kWh) (years)

80 0.5 448 2700 6
70 0.6 543 2689 5
60 0.6 543 2689 5
50 0.6 543 2689 5
40 0.7 630 2646 4.2
0 0.8 720 2592 3.6
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Figure 8.10: Stress factor analyses along 20 representative days. Time between fully
charged states and diesel costs trend with different battery degradation costs applied to
the daily depth of discharge. The higher the column is the worse the stress factor is.

8.4.5 Conclusions

As a conclusion, for Off-Grid application the battery technology is still no mature enough
and it should move towards a degradation cost reduction where the battery degradation
cost BDCkWh defined in 7.5 should settle at least around 70% of the diesel costs. In other
words, that means that, given the current diesel costs K, the lifetime throughput LT and
the efficiency Eff of a battery, then the battery replacement cost Crep should satisfy the
relationship:

Crep = LT ∗ Eff ∗ 0.7 ∗K (8.33)

The formula 8.33 can be a guideline during battery choice and purchase. Higher battery
costs can be accepted in systems where the battery is going to be used mostly for backup
and emergency purposes. At the current state of technology PV-Storage is not feasible
without government incentives. Batteries can be more convenient in Off-grid applications
for rural and remote areas, where the diesel costs are much higher due to handling and
transportation activities required because of the lack of fuel availability. However, looking
at a future in which diesel prices will increase and the battery technology will improve,
we can reasonably expect that the ratio between the battery degradation costs and the
diesel costs will drop. Figure 8.11 for instance shows the increasing diesel prices trends
in Rwanda along the last years. Prices has increased quite a lot since 2000 and we can
expect further increase in the near future.
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Table 8.9: Diesel prices trend in Rwanda along the last years. Source: World Development
Indicators (WDI), September 2014 (http://knoema.com)

Year Diesel price
($/L)

1991 0.79
1992 0.88
1998 0.72
2000 0.84
2002 0.84
2004 0.99
2006 1.08
2008 1.37
2010 1.62
2012 1.73

Figure 8.11: Increasing diesel prices trend in Rwanda along the last years. Source: World
Development Indicators (WDI), September 2014 (http://knoema.com)
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8.4.6 Tests on the Number of Cycles. Results Discussion

In this section we will show one of the tests made adding the cycle cost to the optimization
run. The related mathematical modeling has been already explained in detail in Section
8.3.3. The objective is to minimize the number of cycles along the period, together with
the diesel costs and the lowest state of charge through a combined optimization. We noted
in previous tests that a battery degradation cost equal to the 70% of the diesel cost, is
enough both to avoid deep discharge and tho shift the battery curve in such a way that
every charge operation ends with a fully charged battery (that means the number of partial
cycles tend to be null): hence, we can apply a cost per cycle regardless of the state of
charge at the end of a charge operation, as we can reasonably expect that every cycle will
end with an almost fully charged battery. That is why we need a combined optimization:
the battery degradation cost on the lowest state of charge in every day will guarantee a
fully charged battery at the end of every discharge operation and the cost per cycle will
reduce the number of battery cycles for a further improvement in the battery lifetime.
Note that in practical problems a value of 90% as a full state of charge criteria is chosen
for practical reasons as explained in Svoboda et al. [25].

As already outlined in Section 7.4 the cost per cycle BDCcycle can be calculated for
every depth of discharge n as

BDCncycle =
Crep
fn

(8.34)

We saw in previous computational tests that a battery degradation cost equal to 70% of
the diesel cost is the most representative value, hence we run an optimization considering
a battery replacement cost equal to [LT ∗ Eff ∗ 0.7 ∗ K]. In our real world case this
corresponds to a replacement cost for the battery bank equal to 803$. This gives an
average cost per cycle CY equal to 0.76 $/cycle as shown in table 8.10

Table 8.10: Battery bank cycle costs considering a battery bank replacement cost equal
to 803 $

Depth of discharge Cycles to failure Lifetime throughput Cycle cost
(%) (n) (kWh) ($/cycle)
10 5700 3078 0.14
25 2100 2835 0.38
35 1470 2778 0.55
50 1000 2700 0.80
60 830 2689 0.97
70 700 2646 1.15
80 600 2592 1.34

Average cycle cost 0.76

Figure 8.12 shows the battery trend after the optimization, while Tables 8.11 and 8.12
summarize the resulting diesel costs and battery stress factors. An interesting thing to
note in Figure 8.12 is how the model tends to penalize just the partial cycles (that are
particularly bad for the battery health) by making longer discharge operations that allow
it to jump the partial cycle sections. The combined cost on the lowest state of charge helps
maintaining the curve properly shifted avoiding deep discharge. The annual projection for
the battery lifetime estimation is shown in Table 8.13. As the cycles has been reduced,
the shallower use of the battery had to be balanced by a higher use of the conventional
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Figure 8.12: Battery trend with a cycle cost applied to reduce the number of cycles and
a daily depth of discharge cost applied to minimize the daily depth of discharge

Table 8.11: Results summary along a representative period of 20 days - additional diesel
production and diesel costs in the different scenarios (with and without a cycle cost and
a daily depth of discharge cost).

Battery Battery Diesel Prod Diesel cost Diesel Prod Diesel cost Tot Tot
degradation degradation towards towards towards towards diesel diesel

cost LW cost CY demand demand battery battery production cost
(% of D cost) ($/cycle) (kWh) ($) (kWh) ($) (kWh) ($)

70 0.7 20.05 9.62 2.4 1.15 22.45 10.78
0 0 2.48 1.19 0 0 2.48 1.19

Table 8.12: Results summary along a representative period of 20 days - battery stress
factors in the different scenarios (with and without a cycle cost and a daily depth of
discharge cost).

Battery Battery Energy Lowest Average Time Highest time Time Partial
degradation degradation out SoC between between at low SoC cycles

cost LW cost CY the battery reached full charged full charged (below 35%)
(% of D cost) ($/cycle) (kWh) (%) (days) (days) (%) (n)

70 0.7 21.96 60 1.3 3 0 2
0 0 40.01 80 2.1 4 35 16
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generator which brings a high increase in the diesel costs. But on the other hand the
estimated battery lifetime after the optimization is even double.

Table 8.13: Annual projection of the battery estimated lifetime in the different scenarios
(with and without a cycle cost and a daily depth of discharge cost). Estimated values at
the lowest state of charge reached along the period.

Battery Battery Lowest Average Throughput Estimated
degradation degradation SoC annual at lowest lifetime

cost LW cost LW reached energy out SoC
(% of D cost) ($/cycle) (%) (kWh) (kWh) (years)

70 0.7 0.6 395 2689 6.8
0 0 0.8 720 2592 3.6

8.4.7 Conclusions

The number of cycles minimization together with the lowest state of charge minimization
tends mainly to reduce the number of partial cycles and the amount of energy throughout
the battery. That gives as result a strong improvement in the battery lifetime, but it
involves much higher diesel costs.

We would also like to underline that more work needs to be done in the cycle cost
definition, as the manufacturer data that provide the depth of discharge versus cycles to
failure, come with an intrinsic uncertainty that need to be treated. We however show
that a mathematical formulation that take into account the number of cycles can exist
and might be used. From that point of view the scientific production should also move
towards a better definition of numbers and data for such field as at the current state of
the art the major limit of such analyses is represented by the lack of precise numbers and
data to put on a model.

8.5 Optimal Additional PV Production

8.5.1 Modeling Introduction

The proposed model can be further developed adding features to extend the sensitivity
analyses. In this section we will discuss some of the results obtained by increasing the PV
production. In particular, the mathematical model can be modified to get the optimal
value of PV production. This value, combined with the different battery degradation
costs, can give as output an optimized battery trend together with a reduction of the
conventional generator use. For that purpose the model has been modified as follows.
A new continuous decision variable Rtadd has been created to define the additional PV
production required in time t. Then the constraint 8.6 has been modified as follow

xtiv + xtij ≤ Rt +Rtadd ∀t (8.35)

Finally a new constraint to maintain the renewable production equal to zero during
night hours has been added.

Rtadd = 0 ∀g, ∀t : t = {[(g − 1) ∗ 24− 5]...[(g − 1) ∗ 24 + 6]} (8.36)
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8.5.2 Computational Experiments. Results Discussion

Figure 8.13 shows the resulting battery trends for the different battery degradation costs,
once that the optimal additional PV production has been found by the model.

Figures 8.14 and 8.15 show the single battery trend together with the actual and
modified renewable production to better understand in which time slots the model suggests
a higher PV availability. The average additional PV production is showed in Table 8.14.

To summarize the results, what we found is that the average battery trend is improved
when the degradation cost is applied. That means we get a battery trend where the depth
of discharge is shallower and we annul the partial cycles, getting only more beneficial full
cycles that start and end with a fully charged battery. We get overlapped curves in the
range of battery degradation costs within 40-50-60-70-80% of the diesel cost. While in the
previous tests without any additional PV, the overlapped range was within 50-60-70%.
That means the additional PV can somehow relax the battery degradation cost upper
limit, allowing the purchase of more expensive batteries, with a degradation cost that can
increase until the 80% of the diesel cost.

Furthermore, we also noted that in the range of battery degradation costs within 40-
50-60-70-80% of the diesel cost, the total diesel production and related costs were zero.
Hence in this range we can run the system at no diesel costs, but with a healthier battery
life. While diesel costs increase a lot when the battery degradation cost applied is higher
(i.e. 90% of the diesel cost).

Tables 8.14, 8.15 and 8.16 summarize the results showing the suggested additional PV
production in different scenarios, the battery stress factors and the annual projection of
the battery lifetime respectively.

Table 8.14: Average additional PV production suggested by the model in different scenar-
ios and related diesel costs. Comparison with the basic scenario with no battery degrada-
tion costs applied and no additional PV

Battery Average Total
degradation additional diesel

cost LW PV production cost
(% of D cost) (kWh) ($)

90 0.2 10.43
40-50-60-70-80 0.4 0

0 0 1.19

Table 8.15: Results summary along a representative period of 20 days. Battery stress
factors in the different scenarios as a consequence of the additional PV production. Com-
parison with the basic scenario with no battery degradation costs and no additional PV

Battery Average Energy out Lowest Average Time Highest time Time Partial
degradation additional the battery SoC between between at low SoC cycles

cost LW PV production reached full charged full charged (below 35%)
(% of D cost) (kWh) (kWh) (%) (days) (days) (%) (n)

90 0.2 11.29 20 1 1 0 0
40-50-60-70-80 0.4 33.22 50 1 1 0 0

0 0 40.01 80 2.1 19 35 16
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Table 8.16: Annual projection of the battery estimated lifetime in the different scenarios
as a consequence of the additional PV production. Comparison with the basic scenario
with no battery degradation costs and no additional PV. Estimated values at the lowest
state of charge reached along the period

Battery Average Lowest Average Lifetime Estimated
degradation additional SoC annual Throughput lifetime

cost LW PV production reached energy out
(% of D cost) (kWh) (%) (kWh) (kWh) (years)

90 0.2 0.2 203 2835 14
40-50-60-70-80 0.4 0.5 598 2700 4.5

0 0 0.8 720 2592 3.6

Figure 8.13: Battery trend in different scenarios as a consequence of the additional PV
production suggested by the model.
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Figure 8.14: Battery trend as a consequence of the additional PV production suggested
by the model together with curves related to the actual PV production and the additional
suggested PV production. Scenario with LW cost equal to 40-50-60-70-80% of the D cost
(overlapped curves)

Figure 8.15: Battery trend as a consequence of the additional PV production suggested
by the model together with curves related to the actual PV production and the additional
suggested PV production. Scenario with LW cost equal to 90% of the D cost
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8.5.3 Conclusions

To summarize, compared to the Scenario with no additional PV and no battery degrada-
tion costs, in this new Scenario with additional PV production and battery degradation
costs, the battery use is improved, the diesel costs decrease to zero and the battery re-
placement cost Crep can increase as follow

Crep = LT ∗ Eff ∗ 0.8 ∗K (8.37)

where LT and Eff are the battery lifetime throughput and square root of the roundtrip
efficiency respectively, while K is the diesel cost per kWh.

We noted that a healthier battery use can be achieved by an oversized PV plant. That
means that if we take into account the battery degradation issues during the operational
management of a system, then this can bring to different choices in the preliminary design
of the system itself. In this case we showed for instance how the PV plant needed to be
built with a different bigger size to guarantee a better lifetime of the integrated battery.
Designing a system taking into consideration the battery degradation issues brings to a
higher suggested PV installation.

As in previous sections we found that at the current state of the technology battery
prices are too high compared to their throughput and efficiency properties, considering
the additional tests of the current section, we can say it may be better to invest on more
PV panels rather than bigger batteries. This is particularly true if we also consider the
rapidly falling global PV prices in the last years. See for instance Figure 8.16 which shows
an example of the rapidly falling global PV prices in East Africa.

Figure 8.16: Rapidly falling global PV prices in East Africa. Pricing trend of solar PV
panels from 1985 to 2011. Source: 1985-2010 data from Paula Mints, Principal Analyst,
Solar Services Programme, Navigant. 2011; based on current market data
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8.6 Loads Disconnection for Sites with No Generator

8.6.1 Introduction to African Social Aspects

In this section we will further develop the proposed model to analyze “shortage condi-
tions”. These are related to extreme situations in which the conventional generator is
assumed to be unavailable. It is the case of most African rural islanded villages where the
conventional generator can be missing because of the lack of fossil fuels in the country.
Hence communities have to commit the Energy needs just to the renewable resources and
storage technologies. In such cases the social aspects of the particular country become
very important and they should be included in the analyses together with the technical
requirements we discussed in previous sections.

One of the social aspects that characterize African sites in general and the Rwanda
sites we are studying in particular, is that 100% power is not a necessity. It is necessary
to have it during critical periods, i.e. for essential activities during parts of the day or for
lighting at night etc, but compared to other developed countries (i.e. Italy or UK etc),
African power demand is much more flexible. Hence, at this stage, it is important not to
take out the social element as it is crucial and pure technical optimization can give results
that are not practical for such systems.

A wide literature is available in the field of the social and anthropological aspects
of Energy. Many interesting studies are related to the way through which people in
different countries, conditions and cultures make use of the available Energy resources
modifying their needs according to the particular situation in which they grew up and
live. Even though these are very interesting and fascinating subjects, a dedicated deep
discussion would fall outside the main topic of the present Thesis. Hence we will focus on
mathematical formulations that may be useful to meet such social aspects, but for further
anthropological readings, the suggestion is to refer to the existing literature available
among the scientific production.

More detailed descriptions about African Energy situation in general and Rwanda case
in particular can be found in Gupta and Sood [12] and Anuta et al. [4]. For further in
depth analyses on social aspects of Energy needs in underdeveloped countries it is also
possible to refer to a wide scientific production that comes from the Durham Energy
Institute of the Durham University (UK) and its ”Society and Energy Research Cluster”.
The latter in particular developed new theoretical approaches to current energy research
challenges based on the conception of energy systems as ”socio-technical”; that is, on the
understanding that energy systems are co-produced through relations between constituent
social and technical elements.

8.6.2 Flexible Demand Modeling

To take into account the Rwanda Energy social aspects related to the lack of fossil fuels
and to the demand sites flexibility, it is possible to modify the proposed mathematical
model by allowing some capacity shortage. That means we will move towards the use of
a relaxed “demand meeting constraint”, by allowing a portion of unmet demand.

It is necessary to disaggregate the global hourly demand dt into the different types of
loads l that are required in every time step t. Hence the global demand dt will be modified
in dtl , the energy demand of load l in time t. A new continuous decision variable wtl will
be created, to define the amount of kWh of load l that is better to disconnect in time t. A
representative penalty cost of disconnection Ctl will be assigned to every load l according
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to the different loads priorities, in such a way that most critical loads will have a higher
penalty than the most flexible ones.

The objective function will be modified by removing the diesel costs per kWh and
adding the new term of cost related to the loads disconnection as follow:

min
∑
t

CtL + CtB (8.38)

where the cost of loads disconnection CtL has been added in place of the conventional
generator cost CtG that has been removed to take into consideration sites with no generator.
The cost of load disconnection is given by the amount of load l disconnected in time t
times the penalty associated to load l according to its priority: CtL = wtl ∗ Ctl

CtB is a battery wearing cost defined as a function f(s) of one or more battery stress
factors s as already explained in previous sections.

Then the set of constraints should be modified as follow

xtvd =
∑
l

Dt
l − wtl ∀t (8.39)

wtl ≤ Dt
l ∀t, l (8.40)

Constraint 8.39 is a modified version of the basic model constraint 8.2: the flow xtpd
related to the conventional generator has been removed, the demand dt has been disag-
gregated into different loads demand Dt

l and the possibility of disconnect part of loads
has been added through the variable wtl . Constraint 8.40 says that for every load l, the
disconnected power must be less than or equal to the demand of that particular load. Such
constraint might be modified by adding different and lower upper bounds to further limit
the available power for disconnection; that might be useful to meet some particular needs
of the specific site studied.

8.6.3 Computational Experiments

In order to run the model it is necessary to disaggregate the demand into different loads
with different priorities. A list of the main equipments available in the Rwanda site are
listed in Table 8.17.

As real world data are not available, we generated random loads values for every time
step t in such a way that the random values summation in every time t is equal to the
total demand dt that we already used in our previous sensitivity analyses. We generated
random values for four different types of representative loads (l = 4) with four different
priorities. Hence the loads listed in Table 8.17 are grouped into four priority classes 1, 2,
3, 4 from the most flexible loads belonging to class 1 to the less flexible loads belonging
to class 4.

The load disconnection cost is difficult to estimate. Some studies suggest that the
cost of disconnection should be equal to the value of lost load (VOLL) assigned by the
customers (i.e. Centolella et al. [7], Anderson and Taylor [2]) and that it depends on the
duration of the event (Oseni and Pollitt [19]).
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Table 8.17: Main equipments for the Rwanda site and related priorities. 1 is for the most
flexible loads, 4 is for the less flexible loads. 2 and 3 correspond to intermediate flexibilities

Equipment Priority

Centrifuge 3
Desktop computer 3

Fridge Freezer 3
Hematology analyzer 4

Humalyzer 4
Laptops 1

LED Bulbs 3
Microscope 4

Mobile Phone chargers 1
Photocopier 2

Printers 2
Rotator 3

Satellite modem 2
Security light 4

Sterilizer 4
TV 1

For our computational tests purposes, the values of Ctl were fixed as listed in the
Table 8.18 so that the costs of disconnection are higher than any other kind of generation,
that means higher than diesel costs and battery degradation costs (considering a standard
battery degradation cost equal to 70% of the diesel cost). As a guideline, the penalty cost
of disconnection should not be too high, otherwise the model will not disconnect anything,
but at the same time it should not be too low, otherwise the model will disconnect almost
everything. From some previous tests we found reasonable values lie just around the diesel
and battery degradation costs, with slightly higher values.

Moreover each value reflects the flexibility of the load in such a way that the less
flexible loads, for example night lighting, are more expensive than the more flexible loads,
like the TV or equipments in a rest room. Loads of type L4 with a high priority, are
characterized by a bigm penalty that is a very high value so that such loads will never be
disconnected for any reason.

The upper diagram in Figure 8.17 shows the resulting battery trend after the optimiza-
tion run by minimizing the battery degradation cost (fixed at 70% of the diesel cost from
previous analyses described in Section 8.4.4) together with the load disconnection penalty
costs. The bottom diagram shows the demand trend and the total load disconnection
trend. The disconnected loads belong to classes L1, L2 and L3, with a very small amount
of disconnection for loads of type L3 and a higher amount of disconnection for loads of
type L1 and L2.

Thanks to the load disconnection it is still possible to run the off-grid system and
improve the battery use, even though the conventional generator is missing.

Table 8.19 shows the battery stress factors comparison between the basic scenario with
no battery optimization and the scenario that takes into account the battery degradation
cost and the load disconnection possibility.

161



Table 8.20 shows the estimated lifetime in the two cases. Note that in this case we
are not using the conventional generator at all and the load disconnection is limited to
the most flexible loads. Hence, the Scenario conditions are quite extreme, but we can still
make a better use of the battery and get an improvement in its degradation issues and
lifetime.

Table 8.18: Representative penalty costs of disconnection for different loads with different
priorities

Load type Ctl
($/kWh)

L1 0.6
L2 0.7
L3 0.8
L4 bigm

Table 8.19: Results summary along a representative period of 20 days - battery stress
factors. Comparison between the basic Scenario with no battery degradation costs and no
loads disconnection and the Scenario which consider both a battery degradation cost and
load disconnection

Battery Loads Energy Lowest Average Time Highest time Time Partial
degradation disconnection out SoC between between at low SoC cycles

cost LW the battery reached full charged full charged (below 35%)
(% of D cost) (Y/N) (kWh) (%) (days) (days) (%) (n)

70 Yes 32.15 40 1.2 3 0 5
0 No 40.01 80 2.1 4 35 16

Table 8.20: Annual projection of the battery estimated lifetime in the different scenarios.
Comparison between the basic Scenario with no battery degradation costs and no loads
disconnection and the Scenario which considers both a battery degradation cost and load
disconnection. Estimated values at the lowest state of charge reached along the period.

Battery Loads Lowest Average Throughput Estimated
degradation disconnection SoC annual at lowest lifetime

cost LW reached energy out SoC
(% of D cost) (Y/N) (%) (kWh) (kWh) (years)

70 Yes 0.4 579 2778 4.8
0 No 0.8 720 2592 3.6
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Figure 8.17: Battery trend as a consequence of the loads disconnection. Comparison
between the basic scenario with no battery degradation costs and no load disconnection
and the new scenario that take into account both the battery degradation cost and the
load disconnection

Table 8.21: Total disconnected power for different loads classes along a representative
period of 20 days

Load type Ctl Disconnected Power
($/kWh) (kWh)

L1 0.6 8.39
L2 0.7 0.83
L3 0.8 0.72
L4 bigm 0
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A further test has been made by combining the load disconnection and an additional
PV production.

We found in Section 8.5 that the optimal additional PV production was equal to 0.4
kWh. With such additional production the diesel costs were zero and the off-grid system
had the possibility to work without any conventional generator.

Let us suppose now that some hypothetical budget limits impose to increase the PV
system of an amount that is less than the optimal additional production found in Section
8.5. We can still run our off-grid system without any conventional generator by allowing
the loads disconnection previously explained.

Figure 8.18 shows the results obtained running an optimization with an additional PV
production equal to the 70% of the optimal production found in Section 8.5, that means
an additional PV production equal to 0.3 kWh. In this case the battery trend is better
than the trend we got in Figure 8.17 (where no additional PV production was considered)
as there are no partial cycles at all. We can also see that the total disconnected loads
are less than the loads that have been disconnected in Figure 8.17. That is because the
test represented in Figure 8.17 has been run with the actual PV production while the test
represented in Figure 8.18 has been run with an additional PV production. Hence in the
latter case the system can count on more renewable and therefore it is possible to reduce
the disconnected loads.

Table 8.22 summarize the loads disconnection obtained in this test.

Table 8.22: Total disconnected power for different loads classes along a representative
period of 20 days with an additional PV production of 0.3 kWh

Load type Ctl Disconnected Power
($/kWh) (kWh)

L1 0.6 0.15
L2 0.7 0.02
L3 0.8 0.01
L4 bigm 0

Table 8.23: Results summary along a representative period of 20 days - battery stress
factors. Comparison between the basic Scenario and the Scenario that takes into account
a battery degradation cost, the load disconnection and an additional PV production equal
to 0.3 kWh

Battery Loads Additional Energy Lowest Average Time Highest time Time Partial
degradation discon PV out SoC between between at low SoC cycles

cost LW production the battery reached full charged full charged (below 35%)
(% of D cost) (Y/N) (kWh) (kWh) (%) (days) (days) (%) (n)

70 Yes 0.3 33.22 50 1 1 0 0
0 No 0 40.01 80 2.1 4 35 16
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Figure 8.18: Battery trend and loads disconnection along a representative period of 20
days. Comparison between the basic Scenario and the Scenario that takes into account a
battery degradataion cost, the load disconnection and an additional PV production equal
to 0.3 kWh

Table 8.24: Annual projection of the battery estimated lifetime. Comparison between the
basic Scenario and the Scenario that takes into account a battery degradataion cost, the
load disconnection and an additional PV production equal to 0.3 kWh. Estimated values
at the lowest state of charge reached along a representative period of 20 days.

Battery Loads Additional Lowest Average Throughput Estimated
degradation disconnection PV SoC annual at lowest lifetime

cost LW production reached energy out SoC
(% of D cost) (Y/N) (kWh) (%) (kWh) (kWh) (years)

70 Yes 0.3 0.5 598 2700 4.5
0 No 0 0.8 720 2592 3.6
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8.6.4 Conclusions

In this section we further improved the model by including a representation of the load
flexibility in terms of cost, allowing the system to disconnect loads with different priorities,
when the demand is greater than the energy generation at certain time. Simulation results
proved that the load disconnection can be used as a mechanism to protect the batteries
from over-discharging and improper use in general. Moreover, the load flexibility can be
useful to find a better design for the off-grid power supply, by reducing the capacity of the
battery and therefore reducing the investment costs through the purchase of smaller and
cheaper storage units.

8.7 Conclusions and Future Developments

A model for the battery degradation analyses and optimization has been presented. The
contribution of the study is both a methodological one and an analytical one. From a
methodological point of view we presented mathematical ways and tricks to represent off-
grid systems and battery degradation issues inside an optimization model. It is important
to note that we didn’t make any assumption on the allowable depth of discharge or on
the maximum number or allowed cycles but we found a way to get optimized values as
output rather than imposing them as input (the latter way is what generally people do
in literature). From an analytical point of view we used the proposed model (and the
additional features in different combinations) to make sensitivity analyses on the battery
prices and degradation costs showing the state of the art of the technology and how this
might improve moving towards different prices. We also showed how the battery use can
change taking into consideration the most important degradation issues such as depth of
discharge and number and type of cycles.

At the current state of technology batteries are convenient for backup and emergency
uses, no matter how they are classified. Both deep-cycle batteries and shallow cycles
batteries, at the current prices, turned out to be not worthy for the deep use required by
Off-Grid systems. Battery prices should move towards a reduction so that the battery
replacement cost Crep should satisfy the relationship Crep = LT ∗Eff ∗ 0.7 ∗K where LT
and Eff are the battery lifetime throughput and square root of the roundtrip efficiency
respectively, while K is the diesel cost per kWh. Remember that the diesel represents the
main alternative energy source for the system and a better use of the battery can require
a higher use of diesel, hence it is important to find out the best trade-off between battery
lifetime improvement and the related higher diesel costs.

This relationship could be a guideline when purchasing a battery to understand its
degradation issues and forecast its behavior and lifetime. However, in remote sites where
the diesel cost is higher due to additional transportation and handling operations, the use
of storage becomes more valuable as long as the global diesel cost can increase at least up
to the 20-30%.

We also saw how the installation of additional PV power can be useful both to further
reduce the use of the backup conventional generator and to allow the purchase of more
expensive batteries. In such cases the battery replacement cost can increase as follow:
Crep = LT ∗ Eff ∗ 0.8 ∗K.

In general we can say an optimization model like the one we studied, can be very useful
to extend analyses on a wide range of batteries and evaluate their convenience in terms of
prices and degradation costs.
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In conclusion, it is clear that a hybrid system design should take into consideration
battery degradation issues and costs: such issues are frequently overlooked while our
analyses showed clearly how much they can influence the design and the general operating
cost of a system.

As for future development, the model is going to be integrated with a demand respon-
sive formulation that can extend the load disconnection analyses, shifting loads of sites or
by programming a battery management system that limits output power at specific time
of the day. More batteries types with different properties, costs, throughput and efficiency
shall be investigated.
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