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Dr. Tommaso Salzillo, Curriculum: Chimica Fisica, Relatore: Prof. Aldo Brillante; Co-relatori: Prof. Elisabetta 

Venuti, Prof. Raffaele Guido Della Valle. 

Thesis title: “Structure, Dynamics and Reactivity in the Organic Solid State: Anthracene 

Derivatives and Charge Transfer Crystals.” 

The work performed by Dr Salzillo during the first and second year of his PhD was mainly 

focused on crystal- to-crystal photochemical reactions of some anthracene derivatives, with the aim of 

exploring the large variety of cases that can be encountered when photochemistry meets the solid state. 

Dr. Salzillo first treated the remarkable transformation of dinitro-antracene to anthraquinone, 

where the stunning acrobatics of the entire single crystals under irradiation mark a significant 

relationship between molecular (chemical) changes and unit cell (physical) changes. Subsequently, the 

classical example of the photodimerization reaction of 9-cyano-anthracene was revisited with a novel 

approach. This reaction represents a typical case of violation of the topochemical principle, whose 

paradigm implies the molecular preformation of the product in the unit cell of the reactant as the strict 

prerequisite to the positive outcome of the dimerization. The perfect structural fit which leads to a 

complete topochemical reaction was instead found in the photo-dimerization of 9-methylanthracene. 

The last photoreaction to be studied was the intriguing issue of 9-anthracene-carboxylic acid, as a case 

of a reversible dimerization in which crystal mechanical motions are indeed observed, but are not 

sufficient to validate the successful outcome of the reaction. 

In the last year of his PhD work, Dr. Salzillo has been studying the phenomenon of 

polymorphism in small-molecule organic semiconductors (9-diphenylanthracene) and charge transfer 

(CT) crystals. CT crystals represent a new emerging class of organic semiconductors, that is quickly 

gaining interest because of its potential for improved optoelectronic functionalities in devices. However, 

there is still very little understanding and control over the solid state structure and properties of the 

donor-acceptor co-crystals. Indeed, the scientific challenge of polymorphism is even more intellectually 

stimulating for a two component crystal. Preliminary studies have been performed on this topic, by 

working on the prototype semiconductor perylene combined with tetracyanoquinodimethane and its 

fluorinated forms, which represent the donor and acceptor, respectively.  

During his PhD studies, Dr. Salzillo has spent a three month period at the University of 

Strasbourg (hosted by Prof. L. De Cola), as well as three more months at the Department of Physics, 

University of Bath (hosted by Prof. Enrico Da Como). At the latter Institution Dr. Salzillo started to 

work on CT crystals, and he showed an unprecedented enthusiasm and a very mature approach in 

conducting this research, contributing to the consolidation of the links between Bath and Bologna. Such 

links, in fact, are expected to get tighter in the future, also on the basis of a common research proposal 

submitted within the EU program HORIZON 2020. 

Over the entire time of his PhD studentship, Dr. Salzillo has shown a definite attitude to 

research, with a marked disposition to work in a group and in collaboration with other colleagues and 

researchers. He has consolidated his knowledge in solid state physical chemistry and has become 

familiar with several complementary techniques, fundamental in the experimental study of materials 

science. He has proven to be a very reliable, organized person with excellent laboratory practice. He has 

acquired skills in many spectroscopic methods quickly, and has been planning experiments. He has also 

been very good at supervising undergraduate student work.  

 

His main scientific achievements during this three year period are documented by six papers in 

peer review journals, three contributions in Conferences and topical meetings, with two oral 

communications, and two seminars given at foreign Institutions. He attended three international schools. 

Two more papers are going to be submitted and more are planned on the basis of the research started in 

the last three years. 

In view of the results here presented, and as supervisor of his thesis, I judge as excellent the 

work done by Dr Tommaso Salzillo during his PhD.  
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Structure, Dynamics and Reactivity in the Organic Solid 
State: Anthracene Derivatives and Charge Transfer Crystals 

 

 

1. Introduction 

 

1.1 Elementary Excitations in Molecular Crystals 

Organic molecules when organized in a crystal lattice keep their molecular identity 

forming the class of materials called molecular crystals, where strong intramolecular 

interactions prevail on the weaker intramolecular ones. The subtle inter-play between these 

interactions affect structure, dynamics and reactivity, giving rise to the wide variety of 

properties encountered in these systems.  

The physico-chemical properties in a crystal environment are strongly dependent on 

the mutual positions of the molecules and, in this sense, they are defined collective properties. 

Consequently, under excitation, the energy does not remain localized in a single lattice site, 

but spreads from site to site as a wave which propagates throughout the crystal as a collective 

excitation. The complex equations of motions of the crystals are solved by diagonalizing the 

Hamiltonian in a harmonic approximation, if the displacements of the molecules from their 

equilibrium positions are small. The solutions represent the collective oscillations of the 

individual normal modes, each related to a motion of a free oscillator with a definite frequency 

and phase. According to quantum theory, these waves carry momentum and thus can also be 

described in terms of particles. These particles, or quasi-particles, are called elementary 

excitations. Depending on the nature of the excitation, there is a large variety of quasi-

particles: phonons, excitons, plasmons and polaritons, among others. In terms of them, 

spectroscopic properties related to IR, Raman and electronic processes are explained. An 

experimental description and a theoretical treatment of these phenomena can be found in 

various textbooks. [1-3] 

 

1.2 Excitons in Molecular Crystals 

Upon light absorption, an electronic excitation spreads throughout the crystal. Due to 

the intermolecular electrostatic interactions, an extended delocalized wave-like excitation is 

established and travels from one molecule to its neighbor, coherent in space and time. This 
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wave is called exciton. The resulting neutral crystal state is called an exciton state and the early 

description of Frenkel [4] still holds when electrons or holes are localized. In this sense, the 

exciton theory describes localized charges but delocalized excitations. Related phenomena 

are absorption and fluorescence spectra of molecular crystals. Moreover, excitons may also 

interact with electrodes, defects, impurities to reach an ionized state that produces an electric 

current. Again, the relative positions and the interactions between molecules in the lattice are 

the driving factors for exciton hopping and electron-hole separation/recombination. In these 

cases, related phenomena are, among others, photoconductivity, electroluminescence, 

photovoltaic effects and charge storage and release [5].  Therefore, the exciton theory stands 

on the basis of the development of the emerging field of molecular electronics with its 

applications to organic optoelectronic devices [6-12].  

By applying exciton theory to molecular crystals, Davydov showed that each molecular 

energy level splits in as many components as the number of molecules in the unit cell [1-2], as 

a consequence of the resonance interaction between translationally inequivalent molecular 

sites. In terms of Group Theory, the split states belong to different irreducible representations 

of the space group and show different polarization properties dictated by the symmetry rules. 

Polarized absorption spectra are then the appropriate experiment to assign spectral 

transitions in molecular crystals with reference to the molecular properties of the free 

molecule. The low lattice energy of molecular crystals is the consequence of the weak binding 

among the molecules which constitute distinct chemical species. According to this picture, 

many properties of molecular crystals can be treated starting from a free molecule and 

applying a small perturbation given by the weakly interacting molecular surrounding. 

Absorption spectra of molecular crystals to low lying excited states can be explained in these 

relatively simple terms. There are, instead, properties essentially related to the collective 

nature of the crystalline solid with no counterpart in a free molecules. An example of collective 

properties is the photoconductivity in a molecular crystal. 

 

1.3 Charge Transfer Crystals 

Among molecular crystals there is a class of compounds where the crystal is formed by 

pairs or stacks of alternating donor (D) and acceptor (A) molecules in a definite stoichiometric 

ratio, the most common one being 1:1. This class of compounds is referred to as weak DA 

complex crystals or, more often, weak charge-transfer (CT) crystals. These materials can be 
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studied in order to gain information into processes where absorption of light generates the 

separation and the transfer of charge from one molecule to another. This and the reverse 

phenomenon of electron-hole recombination with light emission are fundamental processes 

in molecular electronics based on devices where the semiconductor active layer is an organic 

material with the potential for improved optoelectronic functionality. 

 

1.4 Excitons in CT Complexes  

CT excitons in mixed stacks have peculiar properties that make them different from 

excitons in molecular crystals like naphthalene and anthracene [13-15]. These peculiarities are 

strongly related to the specific molecular and crystal structure of the CT solid. The ground 

state of a CT crystal, unlike radical salts such as, for instance, TTF-TCNQ, has a weak, if any, 

polar character. The charge transfer of a fraction of an electron gives rise to a stable CT ground 

state with a characteristic CT absorption band. The excited state is very polar and corresponds 

to an almost complete transfer of an electron from the highest filled donor orbital (HOMO) to 

the lowest unfilled acceptor orbital (LUMO). The polar character can be verified 

experimentally by measuring the Stark shift of the CT transition when an electric field is 

applied parallel to the DA stack direction [16]. With the electron and hole on separate 

molecules, strong coupling to the lattice is expected and this interaction leads to broad and 

structureless absorption CT bands as a consequence of the involvement of several lattice 

phonons.  

A second consequence of the strong exciton-phonon coupling is the relaxation of the 

nuclei in a new equilibrium position with a reorientation of the molecules in a more relaxed 

state with lower energy. In other words, the large intermolecular electronic delocalization 

observed in these systems, due to the strong electrostatic interactions, results in an intense 

CT absorption band lying at lower energy than the localized molecular excitations. Excitons no 

longer undergo to a phenomenological behavior typical of Frenkel excitons in one component 

crystals, but rather to a polarity flipping process [13]. Due to the CT excitons polarity along the 

one-dimensional DA mixed stack, a donor (acceptor) molecule may lose (gain) its electron on 

either side, that is, two CT exciton states can be formed for a given k vector. In a centro-

symmetric crystal, the CT exciton state at k=0 will have parity and only transitons to the odd 

parity state will be allowed from the ground state. This symmetry is broken in the presence of 

an electric field and odd and even parity states will mix and both will be observed [16]. 
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1.5 Structure and Dynamics in Molecular Crystals: Polymorphism and Lattice 

Phonons 

The understanding of molecular structure, phonon dynamics and crystal packing, and 

the relationships among them, is a key issue in the design of the peculiar properties of 

molecular crystals in materials science, particularly for their application in organic electronics. 

One of the most often encountered problem related to the structure is the occurrence of 

polymorphism, i.e., the possibility for the same chemical compound to exhibit two or more 

crystalline modifications [17-18]. Since their early applications, X-ray diffraction (XRD) 

methods were recognized as the technique of choice for the identification of the crystal 

structure of a compound. In the past years, however, much effort has been put in pursuing 

both experimental and computational techniques for identifying and predicting new crystal 

phases, with the aim of determining their relative thermodynamic stability [19] and kinetics. 

The experimental techniques available nowadays include, besides XRD, thermal analyses and 

a variety of spectroscopic methods, and it is quite clear that a single one cannot provide 

exhaustive information about the complex solid state diagrams and crystallization kinetics 

that many substances display. It is then clear that the study of polymorphism must use data 

from different sources, requiring a multidisciplinary approach. 

 Polymorphism is an issue of great importance in crystallography because of its key role 

in pharmaceuticals and materials science. In fact, a large variety of chemical and physical 

properties such as solubility and charge mobility, relevant to the field of application of the 

compound, may dramatically change on going from one crystalline modification to the other. 

In particular, conformational polymorphism is most likely to occur in molecular electronics 

[20]. The ideal organic semiconductor is, in fact, constituted by large and flexible molecules 

with extended π-conjugation and whose geometry may slightly change in the lattice, giving 

rise to different packings, that is, different crystal structures. Polymorphism in organic 

electronics may produce serious problems to an efficient carrier migration. In fact, mobilities 

depend on the crystal structure [21,22] and to match the ideal device with the most suitable 

polymorph becomes a challenge that requires a structural control during the preparation of 

the semiconductor active layer. An additional drawback is that there are several experimental 

evidences of phase mixing [21,23], i.e., the simultaneous coexistence of different crystal 

structures in the same specimen, down to dimensions of the order of the micrometer. The 
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boundaries between domains with different structures will then act as a source of intrinsic 

disorder with detrimental effects on charge transport and other key properties. For these 

reasons, polymorphism in organic electronic is an issue and the assessment of the phase purity 

is of paramount importance to optimize the device performance. Chemical purity and phase 

homogeneity (i.e. physical purity) are then both required for an optimal and reproducible 

operation of a working device, ensuring that the efficiency parameters of the semiconductor 

layer are effectively due to the intrinsic properties of the material.  

The method applied in this thesis to tackle this problem, widely illustrated in the recent 

years, is to use confocal Raman spectroscopy and sample mapping in the region of lattice 

phonons [24 and refs therein], as illustrated in Figure 1.1. 

 

 
Figure 1.1  A sketch of the experiment. 

 

These modes are collective translational or rotational motions of the molecules in the unit cell 

and represent the dynamical deformations of the crystal called lattice vibrations or lattice 

phonons, whose frequencies, involving Raman shifts in the range 10–150 cm-1, probe the 

intermolecular interactions and are hence very sensitive to even slightly different molecular 

packings. Because each crystal structure has its own dynamics, in organic molecular crystals 

lattice phonons are the fingerprints of the individual crystal structure. This method has proved 

to be fast, non destructive and in situ, both for crystal structure recognition and phase mixing 

in domains at the micrometer scale and can be extended from bulk crystals to thin films on 

technologically substrates and to working electronic devices [25,26]. 
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In conclusion, the unique relationship between the lattice phonon spectrum (lattice 

dynamics) and its corresponding XRD pattern (lattice structure) makes Raman spectroscopy a 

powerful tool to obtain information on distinct crystal phases. Unlike XRD, the spectroscopic 

technique can monitor crystal structures in the time scale of a few seconds, also scanning 

them for physical impurities. The problem of polymorphism in the preparation and 

characterization of functional molecular materials should then benefit from this technique as 

a sound method capable to control both crystal structure and molecular recognition in single 

crystals, thin films and electronic devices. 

 

1.6 Photochemical Reactions in the Solid State 

Crystal-to-crystal reactions represent an important category of cooperative 

phenomena occurring under conditions dictated by the intrinsic degree of order in the crystal 

lattice. The energetic cost needed to evolve to products requires a large structural 

reconstruction of the lattice of the reactant, which is often reached with the help of high 

temperature or high pressure. When the chemical and physical transformations are driven by 

photons, molecular displacements follow light absorption, which promotes chemical changes 

according to the relative positions and orientations of the molecules in the crystal. The energy 

transfer and the chemical reaction itself are then favored by the ordered structure of the 

crystal, and the lattice becomes the actual cage where the photoreaction takes place [27]. Its 

counterpart in solution is the perfect fit of dimerized molecules in a confined environment 

[28]. 

Systematic studies of photoreactions date back to early work on cinnamic acid 

derivatives, when a topochemical principle was introduced [29], that is, the reaction product 

is preformed in the packing of the reactant lattice so that only small reorientational motions 

are required to promote the photoreaction. A survey of the early experiments on the subject 

can be found in the literature [30]. 

An important aspect of photoreactions in the solid state is the transformation of the 

photon energy in new forms, capable of driving the chemical and the physical changes. The 

most spectacular one is the mechanical motion obtained in response to absorption of light, 

which manifests as a movement at the supramolecular level (molecular machines) [31-33] or 

of the entire crystal (photomechanical actuators) [34-39]. 
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It is of great importance to understand the mechanism underlying the crystal-to-crystal 

transformation, a process complicated by the need to consider all changes occurring in the 

molecular environment during the course of the reaction. It is self-evident that molecular 

changes ultimately produce modifications of the crystal lattice and, depending upon the 

system studied, the extent of the delay of the structural change may considerably vary. While 

molecular changes under light are produced by a complex mechanism of energetics and 

dynamics along the potential surface, the structural modifications are strictly mediated by the 

lattice phonons which couple to the electronic excitation. Structure and dynamics of the 

crystal lattice are then equally involved and this should be taken into account when designing 

an experiment aimed to reveal the evolution of the photorection in the solid state. 

Among the various techniques that can be employed to study the crystal-to-crystal 

photoreactions, and their evolution in time, we chose confocal Raman microscopy. The 

spectroscopic approach has the advantage  to efficiently follow in real time both the structural 

molecular change and the unit cell transformation occurring on going from the reactant to the 

product. It will be shown that molecular (chemical) transformation in most cases follows a 

faster kinetics with respect to the unit cell (physical) modification, the more so when a non-

topochemical mechanism underlies the photoreaction.  

 

1.7 Aim of the thesis 

The thesis is focused on some fundamental aspects of molecular crystals: structure, 

dynamics and reactivity. The common ground of these topics is necessarily related to the 

concept of excitons, phonons and the coupling between them, which has been briefly 

introduced in the previous sections.  
 

1.7a Structure 

The structural aspects here treated are mostly related to the problem of 

polymorphism, pseudo-polymorphism and co-crystals, as described in chapters 3, 4 and, 

partially, 5. The sample systems studied are some anthracene derivatives, namely 9,10-

diphenyl-anthracene (DPA) and 9-anthracene-carboxylic acid (9ACA). DPA is a polyciclic 

aromatic molecule that shows both high hole and electron mobilities in the solid state linked 

to an intense photoluminescence. It seems, therefore, a good candidate of ambipolar organic 

semiconductor. However, DPA is also an exemplary case of a material whose polymorphism 

becomes a key factor to achieve reproducible intrinsic electronic mobilities in organics. 
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Indeed, different crystal packings lead to different transport properties, making the control of 

the crystal phase a crucial point for device performance. In this thesis we have investigated 

the experimental conditions to drive the crystal growth towards a specific polymorph in its 

pure form, as well as how to avoid phase mixing, which would lead to destructive effects of 

the device performance. Two out of three polymorphs of DPA have been characterized by XRD 

and Raman spectroscopy and their relative stability has been checked by using energy 

minimization methods [40]. A third polymorph, grown as microribbons, has been predicted 

on the basis of its different lattice phonon spectrum. 

The problem of 9ACA is a different one. The two crystal forms of the monomer have 

been investigated with the intent to clarify a relationship between crystal packing and 

reactivity (photodimerization) in the solid state. In fact, as stated in section 1.6, the initial 

disposition of the reactant molecules may determine the outcome of the photoproduct. We 

first started by characterizing the single crystals of the photodimer obtained in solution of 

different solvents and, much surprisingly, encountered a rich variety of pseudo-polymorphs, 

whose XRD analysis showed a diversity in the packing of solvent molecules in the unit cell of 

the dimer. We have then moved our focus towards the study of how each solvent would drive 

a specific structure of the dimer, to eventually discuss the crystal engineering of this system. 

The last subject reported in this thesis on the structural aspects in the organic solid 

state, is related to CT mixed crystals. CT crystals are binary systems grown with stoichiometry 

ratios of charge-donor (D) and charge-acceptor molecules (A). As a result of the electronic 

coupling between the HOMO and LUMO levels of donor and acceptor, many of these 

compounds exhibit interesting electrical properties, with a behavior which can vary from 

insulator to semiconductor to metal. The donor and acceptor system of choice was formed by 

perylene and tetracyano-quinodimethane (TCNQ) and its fluorinated forms. Different 

methods to grow the single crystals were experimented, resulting in a variety of stoichiometric 

ratios between D and A. We have tried to rationalize the crystal growth parameters, in order 

to drive a specific stoichiometry, especially searching the experimental conditions which 

would lead to the 1:1 ratio. We also tried to play with the temperature of growth to make 

hypotheses on how the packing of perylene in its two polymorphic forms would eventually 

affect the insertion of fluorinated TCNQ molecules into the unit cell of the mixed crystals. As 

experimental methods of investigation, X-ray scattering, Raman and IR spectroscopy have 

been chosen. Lastly, the degree of ionicity changing the acceptor from the neutral TCNQ to its 
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fully fluorinated form was calculated using both X-ray diffraction and IR spectroscopy. The goal 

was to select the most suitable system for ambipolar semiconducting behavior searching for 

the optimal solid state organization (polymorphism) to reach the best electrical properties. 
 

1.7b Dynamics 

In simple terms, the dynamics of a lattice is governed by phonons and, under electronic 

excitation, by their coupling to excitons. The first phenomenological model of lattice dynamics 

calculations was proposed in 1912 by Born and von Karman [41], who developed a formal 

treatment of the quantum theory of crystalline solids [42] and the concept of phonon was 

introduced. Lattice phonons are the collective excitations produced in the crystal by its 

deformation following translational and librational motions of the molecules in the unit cell, 

under optical excitation. Vibrations in solids are experimentally best studied by infrared and 

Raman spectroscopy. A survey of the spectra of solids with comparison to molecular vibrations 

can be exhaustively found in the book of Turrel [3], where also the theory of the symmetry of 

normal modes and their selection rules can be found. The best experimental tool to study 

optical phonons is Raman spectroscopy in the wavenumber region below 150 cm1. As shortly 

outlined in previous sections, the analysis of lattice phonons is strictly related to the 

corresponding crystal structure. As long as the crystal structure reproduces the equilibrium 

positions of the molecular nuclei, lattice phonons represent its dynamics. Consequently, a 

strict relationship is established, since each crystal structure has its own phonon spectrum. 

We shall also show, in the next section, that optical phonons, when coupled to excitons, are 

one of the driving factors governing solid state reactivity. Since lattice phonons probe crystal 

packing and intermolecular interactions, phonon Raman spectroscopy will prove to be a most 

powerful method to study both polymorphism and crystal-to-crystal photoreactions. In this 

thesis we have applied this technique by combining spectroscopy and microscopy, that is, by 

making use of confocality, thus providing insights on the phenomenological aspects of the 

dynamics of crystal domains at the µm scale. 
 

1.7c Reactivity  

The interest for solid state reactions is an evergreen and its application to organic 

crystals dates back to the early work of the group of Schmidt [29,43], who emphasized how a 

collective propagation of the excited reactant molecules into the product had necessarily to 

follow the rule governing ordered systems, that is, a topochemical principle or the capability 
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of the reactant molecules to be in the correct registry to yield the product with a minimum of 

orientational reconstruction. During the last few years a revival on the subject has been found 

in the literature, mostly due to the increasing interest in mechanically responsive single 

crystals and their potential to transform thermal or light energy into work, specifically seeking 

for systems behaving like photomechanical actuators [39]. 

In this thesis we focused our attention on two crystal-to-crystal photoreactions, both 

related to the rich and widely studied class of anthracene derivatives. After the exemplary 

case of the light driven transformation of dinitro-antracene (DNA) to anthraquinone (AQ) [44], 

we will discuss the photodimerization reaction of 9-cyano-anthracene (9CNA) and 9-methyl-

anthracene (9MA). While the latter case refers to a perfect structural fit which leads to a 

topochemical reaction [29], the former compounds represents the classic example of a 

reaction which is triggered by defects, i.e., a non topochemical one [45]. The novel approach 

of this work is the study of crystal to crystal photoreactions, and their evolution in time, by 

using the Raman spectroscopy as a probe of the modifications observed both in the molecular 

environment and in the unit cell during the course of the reaction. While the analysis of the 

lattice modes allowed for the study of the physical changes (lattice dynamics), the chemical 

transformation can be monitored by measuring the intramolecular Raman-active modes of 

both reactant and product, on the very same spot at the same time. Besides, working in 

confocal microscopy, with a Raman signal at a spatial resolution below 1 μm, permits to follow 

the evolution of the photoreaction in situ and to compare crystal and molecular spectral 

changes during the reaction with the microscopic optical images of the sample [44]. 

One of the major findings of this study is that molecular and lattice transformations do 

not proceed at the same rate. The molecular transformation precedes the structural crystal 

change and the delay in time depends on the system studied as well as on sample history. 

Former guest molecules (early content of photoproduct) eventually become the host 

molecules and, at the same time, former host molecules (molecules of the starting reactant 

material) take the place of guests. This is a key point when explaining the evolution mechanism 

of the reaction in the solid state. The observed time mismatch between chemical and lattice 

transformation can be used for a modeling of the system and is rationalized by the different 

behaviors in the kinetic law of molecular and lattice transformation [40]. In the case of 9CNA 

the formation of the dimer crystal structure always takes place with some delay with respect 

to the onset of the chemical reaction, a behavior also found for the topochemical 
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photodimerization of 9MA and previously observed in another crystal-to-crystal 

photoreaction [44]. The kinetic analysis of the spectroscopic data confirms the hypothesis of 

an autocatalytic mechanism for the process.  

 

1.8 Organization of the thesis 

The thesis is organized as follows. In the second chapter the experimental techniques 

are described. The photoinduced reactions in single crystals are illustrated in chapter 3. We 

first show a detailed experimental and computational study of the photoinduced 

transformation of DNA in AQ. The following cases treated are two phodimerization reactions 

of 9-substituted anthracene derivatives representing two typical examples of non 

topochemical (9CNA) and topochemical (9MA) dimerizations. The intriguing case of the 

pseudo-polymorphs of the photodimers of 9-anthracene-carboxylic acid is also treated here. 

The polymorphism of the organic semiconductor 9,10 diphenyl-anthracene (DPA) is the 

content of chapter 4. Chapter 5 is dedicated to CT mixed crystals formed by perylene (D) and 

tetracyano-quinodimethane (A) and its fluorinated forms. In chapter 6 a survey of the activity 

performed during a short stay at the University of Strasbourg is given, whereas the 

Conclusions can be found in chapter 7.  

  



1. Introduction 

21 
 

References 

[1] A.S. Davydov "Theory of molecular excitons" McGraw Hill, New York (1962). 

[2] D.P. Craig, S.H. Walmsley "Excitons in molecular crystals, theory and applications" W.A. 

Benjamin, New York (1968). 

[3] G. Turrel, "Infrared and Raman Spectra of Crystals" Academic Press London (1972). 

[4] J. Frenkel Phys. Rev. 37, 17 (1931). 

[5] M. Pope, C.E. Swenberg "Electronic Processes in Organic Crystals and Polymers" Oxford 

University Press (1999). 

[6] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, J. Am. 

Chem. Soc. 115, 8716 (1993). 

[7] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14, 99 (2002). 

[8] M. Mas-Torrent, C. Rovira, Chem. Soc. Rev. 37, 827 (2008). 

[9] J.E. Anthony, A. Facchetti, M. Heeney, S.R. Marder, X. Zhan, Adv. Mater. 22, 3876 (2010). 

[10] G. Schweicher, Y. Olivier, V. Lemaur, Y. H. Geerts, Israel Journal of Chemistry 54, 595 

(2014). 

[11] A. Yassar, Polymer Science 56, 4 (2014). 

[12] N.A. Minder, S. Lu, S. Fratini, S. Ciuchi, A. Facchetti, A.F. Morpurgo, Adv. Mater. 26, 1254 

(2014). 

[13] D. Haarer, M.R. Philpott, H. Morawitz, J. Chem. Phys. 63, 5238 (1975). 

[14] M.R. Philpott, A. Brillante, Mol. Cryst. Liq. Cryst. 50, 163 (1975). 

[15] A. Brillante, M.R.Philpott, J. Chem. Phys. 72, 4019 (1980). 

[16] D. Haarer, Chem. Phys. Lett. 31, 192 (1975). 

[17] J. Bernstein  "Polymorphism in Molecular Crystals" Oxford University Press, Oxford (2002). 

[18] W.C. McCrone "Polymorphism in Physics and Chemistry of the Organic Solid State" vol. 2, 

ed. D. Fox, M. M. Labes and A. Weissberger, Wiley Interscience, New York  pp. 725–767 

(1965). 

[19] A. Gavezzotti, Acc. Chem. Res. 27, 309 (1994). 

[20] M. Mas-Torrent, C. Rovira, Chem. Rev. 111, 4883 (2011). 

[21] A. Brillante, I. Bilotti, R.G. Della Valle, E. Venuti, S. Milita, C. Dionigi, F. Borgatti, A. N. Lazar, 

F. Biscarini, M. Mas-Torrent, N. Oxtoby, N. Crivillers, J. Veciana, C. Rovira, M. Leufgen, G. 

Schmidt, L. W. Molenkamp, CrystEngComm. 10, 1899 (2008).  



1. Introduction 

22 
 

[22] R. Pfattner, M. Mas-Torrent, I. Bilotti, A. Brillante, S. Milita, F. Liscio, F. Biscarini, T. 

Marszalek, J. Ulański, A. Nosal, M. Gazicki-Lipman, M. Leufgen, G.Schmidt, L. W. 

Molenkamp, V. Laukhin, J. Veciana, C. Rovira, Adv. Mater. 22, 4198  (2010). 

[23] A. Brillante, I. Bilotti, R. G. Della Valle, E. Venuti, M. Masino, A. Girlando, Adv. Mater. 17, 

2549 (2005). 

[24] A. Brillante, I. Bilotti, R.G. Della Valle, E. Venuti, A. Girlando, CrystEngComm. 10, 937 

(2008). 

[25] A. Brillante, I. Bilotti, C. Albonetti, J-F. Moulin, P. Stoliar, F. Biscarini, D.M. de Leeuw, Adv. 

Funct. Mater.  17, 3119 (2007).  

[26] M. Ando, T. B. Kehoe, M. Yoneya, H. Ishii, M. Kawasaki, C.M. Duffy, T. Minakata, R.T. 

Phillips, H. Sirringhaus, Adv. Mater. (2014). 

[27] D.P. Craig, J. Proc. R. Soc. New South Wales 61, 115 (1982). 

[28] M. Yoshizawa, Y. Takeyama, T. Okano M. Fujita, J. Am. Chem. Soc. 125, 3243 (2003). 

[29] M.D. Cohen, G. M. J. Schmidt, J. Chem. Soc. 1964 (1996). 

[30] V. Ramamurthy, K. Venkatesan, Chem. Rev. 87, 433 (1987). 

[31] V. Balzani, A. Credi, F.M. Raymo, J.F. Stoddart, Angew. Chem. Int. Ed. 39, 3348 (2000). 

[32] V. Balzani, A. Credi, M. Venturi, "Molecular Devices and Machines: A Journey into the 

Nano World" Wiley-VCH Weinheim (2003). 

[33] M. Von Delius, D.A. Leigh, Chem. Soc. Rev. 40, 3656 (2011). 

[34] M. Irie, S. Kobatake, M. Horichi, Science 291, 1769 (2001). 

[35] M. Garcia-Garibay, Angew. Chem., Int. Ed. 46, 8945 (2007). 

[36] M. Morimoto, M. Irie, J. Am. Chem. Soc. 132, 14172 (2010). 

[37]  H. Koshima, K. Takechi, H. Uchimoto, M. Shiro, D. Hashizume, Chem. Comm 2011, 47, 

11423 (2011). 

[38] C. Weder, J. Mater. Chem. 21, 8235 (2011) and refs therein. 

[39] N.K. Nath, M. K. Panda, S.C. Sahoo, P. Naumov, Cryst.Eng.Comm. 16, 1850 (2014). 

[40] T. Salzillo, S. Zaccheroni, R.G. Della Valle, E. Venuti, A. Brillante, J. Phys. Chem. C 118, 9628 

(2014) 

[41] M. Born, T. von Karman, "Dynamical Theory of Crystal Lattices" Clarendon Press. Oxford 

(1912). 

[42] M. Born, K. Huang, "Dynamical Theory of Crystal Lattices" Oxford University Press, New 

York, (1954). 



1. Introduction 

23 
 

[43] E. Heller, G.M.J. Schmidt, Israel J. Chem. 9, 499 (1971). 

[44] T. Salzillo, I, Bilotti, R.G. Della Valle, E. Venuti, A. Brillante, J. Am. Chem. Soc. 134, 17671 

(2012). 

[45] D.P. Craig, P. Sarti-Fantoni, Chem. Commun. 742 (1966). 



2. Instruments, experimental setup and crystal growth 

24 
 

2. Instruments, experimental setup and crystal growth 
 

2.1 Instruments 

In this chapter we describe the experimental setup of the instruments used, the setup 

for the irradiation in the solid state and in solution and the methods for crystal growth. 

The instrumentation used for the the spectroscopic measurements was: a confocal 

micro-Raman spectrometer Horiba Jobin Yvon T64000, a fluorescence spectrometer 

Edimburgh FLS920, and an FT-IR microscope Bruker Hyperion 1000. 

 

2.1.1 The Raman spectrometer 

Raman spectra were recorded with the Horiba Jobin Yvon T64000 triple spectrometer 

(Figure 2.1) equipped with three monochromators in double subtractive configuration. This 

configuration is optimized for the acquisition of Raman spectra very close to the laser line, 

down to a Δν ≈ 5 cm-1, enabling the detection of the optical phonon region.  

 

 
 
 
Figure 2.1 Horiba Jobin Yvon T64000 
spectrometer (left) and experimental setup of 
the three monochromators with different laser 
sources (right). 

 
 

 

The spectrometer was coupled to an Olympus BX40 microscope equipped with 100x, 

50x, 20x and 10x objectives which allowed for a spatial resolution below 1 micron and a 

theoretical field depth ranging from about 7 to 450 µm. The spectral acquisition was done 

with a liquid nitrogen cooled charge-coupled device (CCD) detector, with a spectral response 
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in the range 500-900 nm. The excitation was from a multiline (647.1 nm, 676.4 nm, 752.5 nm 

and 792-799 nm) tunable Kr+ gas laser, using mainly the laser line at 647.1 nm with a nominal 

power of 1 Watt. The power was reduced by neutral density filters to avoid sample damage. 

Besides to the gas laser, a diode laser equipped with an external cavity and tuned at 780 nm 

with a nominal power of 150 mW was used. 

 

2.1.2 Fluorescence spectrometer 

Fluorescence spectra of the solid samples were recorded with a FLSP920 Spectrometer 

by Edinburgh Instruments (Figure 2.2), equipped with a 450 Xe lamp, single emission and 

excitation monochromators. A Peltier cooled Hamamatsu R928P photomultiplier was used as 

detector. The spectral range of the instrument goes from 185 to 800 nm (detector cooled to -

20 °C) and is extended to 1700 nm (detector cooled with liquid nitrogen). 

With this equipment it is also possible to analyze time-resolved emissions 

(determination of lifetimes) recorded over the whole spectral range (UV-vis-NIR) of the 

instrument, by using pulsed laser sources (EPLED) or lamps for long phosphorescence. 

 

 

 
Figure 2.2  The fluorescence spectrometer (left) with its optical scheme (right). 

 

2.1.3 FT-IR microscope  

Infrared spectra of the CT crystals were recorded with a Bruker FTIR spectrometer 

coupled to an IR microscope Hyperion 1000. The spectrometer is equipped with a liquid 

nitrogen cooled Mercury Cadmium Telluride (MCT) detector. The instrument setup allows for 

reflection and transmission measurements and polarized spectra. The optical scheme of the 

spectrometer is shown in Figure 2.3. 
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Figure 2.3  Optical layout of the FTIR micro-spectrometer. 

 

2.2 Experimental setup of irradiation for the photochemical reactions 

The absorption spectra of anthracene derivatives show the typical vibronic structure 

of aromatic molecules related to the electronic transitions π*←π and π*←n. For this reason, 

sources with emissions in the UV-Visible range have been used for the irradiation of the 

crystals.  

The irradiation in solution was done with an air cooled 250 Watt Xenon lamp (XBO) in 

vertical configuration (Figure 2.4) and under nitrogen flux to avoid oxidation of the samples 

[1]. The irradiation of the samples in the solid state was done with a water cooled Xenon lamp 

in horizontal configuration (Figure 2.5) and with a nominal power of 75 Watt. In both setups 

the broad-band Xenon emission was selected with a glass filter (UG11) to obtain a specific 

wavelength range between 250 and 400 nm. A pyrex glass was chosen to exclude the radiation 

below 300 nm. Indeed, anthracene derivatives usually show a reversible reaction by excitation 
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below 300 nm or by heat. A water filter was introduced in the optical path to prevent heating 

of the crystals. 

 

  

Figure 2.4  Optical configuration for the irradiation in 
solution. 

Figure 2.5  Optical configuration for the irradiation of 
single crystals with the Xenon lamp. 

 

The irradiation of single crystals was also performed by using a monochromatic source 

from a diode laser tuned to 405 nm with a nominal power of 25 mW. Using laser excitation 

allowed us to select a specific area of the sample for irradiating with a focused or defocused 

beam. Variable optical density filters were used to attenuate the laser power and the beam 

was focused on the sample with a home-made microscope (Figure 2.6). A suitable setup was 

assembled for irradiation of the crystals at high pressure (Figure 2.7) in a diamond anvil cell 

(DAC).  

 

  

Figure 2.6  Optical configuration for the irradiation of the 
crystals with the diode laser. 

Figure 2.7  Optical configuration for the irradiation of the 
crystals in a DAC. 
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2.3 Single-crystal growth of molecular organic materials 

A relevant part of the work of this thesis concerns with the application of growth 

techniques for organic single crystals. In fact, obtaining suitable, pure samples of organic 

materials is highly important for the determination of the intrinsic physical properties of 

organic semiconductors and of the reaction behavior in solid state photoreactions. The issue 

becomes even more important when the goal is the formation of mixed crystals of controlled 

stoichiometry, such as those described in Chapter 5. 

The low melting temperatures, the high vapor pressures and the good solubility of the 

organic compounds in several organic solvents make these materials suitable candidates both 

for solution and gas phase growth methods. High quality crystals can be often obtained in 

different ways. The final choice is, of course, dependent on the nature of the individual 

molecule and on the specific interactions in the condensed matter of each system. In a general 

approach to the problem, solution growth methods are selected for materials with very low 

decomposition and melting temperatures in atmospheric conditions, whereas crystals of 

materials with high vapor pressures but unstable at high temperatures in oxygen can be grown 

from the gas phase at low pressures of inert gases [2]. 

As already mentioned, special efforts have been devoted to obtain binary crystalline 

systems with interesting properties for applications in organic electronics. These systems are 

formed by a pair of acceptor-donor charge transfer compounds and may show a wide range 

of different physical properties showing semiconducting, conducting, and even 

superconducting or reacting behaviors. The crystal growth methods for such mixed materials 

are, of course, similar to those for the pure compounds. However, their phase diagrams, 

polymorphism, stoichiometry and melting properties are still not well understood and, 

consequently, the outcome of the growth might be, in many cases, unknown. For this reason, 

the definition of a growth protocol is an important step to assure the reproducibility of the 

whole process. 

In this chapter, solution, gas-phase, and melt-growth methods for organic pure and 

mixed single crystals employed in this work are described and discussed. 
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2.3.1 Method of Solvent Evaporation 

Many organic compounds are well soluble in organic solvents over a wide range of 

temperatures and pressures, and therefore the solvent evaporation method [2] is often used 

to obtain single crystals suitable for XRD structure analysis. 

When the saturated solution of a poorly volatile organic material in an organic solvent 

(commonly used solvents are dichloromethane, chloroform, ethanol and methanol) is left to 

evaporate, the system reaches slowly super-saturation conditions, in which crystal nucleation 

starts spontaneously and, where the process is slow (Figure 2.10a), the initially formed seeds  

can ripen into larger crystals. The main variables of the growth are the different solubility of 

the compound and the different volatility of the solvent. To obtain crystalline films of organic 

compounds with good solubility, the drop casting method can be used, in which a drop of 

solution is cast and let to dry on a solid substrate such as glass or silicon wafer (Si/SiO2). As 

some solvents have high volatility, their evaporation rate can be controlled by covering the 

sample with a holed cap when the formation of large single crystals is needed. 

 

2.3.2 Method of Solution Slow Cooling 

The solubility of organic compounds may increase considerably as a function of 

temperature and this can be exploited to reach saturation conditions [2], with more dissolved 

materials, at high temperature. By subsequently decreasing the temperature, the solubility 

also decreases slowly (Figure 2.10b in paragraph 2.3.5). Deposition of new material tends to 

occur in the seeds already present at the bottom of the container, which grow to form large 

single crystals. Ostwald ripening [3,4] can be achieved by moving slightly and repeatedly the 

temperature above and below the saturation point. Smaller crystals would then dissolve and 

their material can redeposit onto the larger crystals which therefore keep growing.  

 

2.3.3 Method of the Floating-drop (FD)  

When placing a drop of a solvent on the surface of another liquid (liquid substrate), 

immiscible with the former, two different behaviors can be observed: 1) the drop spreads over 

the substrate covering its surface or 2) the drop takes the shape of a lens on the surface [5]. 

The different behaviors are thermodynamically described by the spreading coefficient S, 

defined as S= γ1 – γ2 – γ12. Here γ1, γ2 and γ12 are the surface tensions of the liquid substrate, 

of the solvent and of the substrate/solvent interface, respectively. For S < 0 the drop forms 
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the lens on the substrate surface; the case with S > 0 corresponds instead to the optimal 

spreading of the solvent on the entire substrate surface.  

The first treatment of the physics of layers of solvent on water surfaces is by Langmuir 

[6], and it was found that the thickness of the lens, for S < 0, assumes a limiting value at 

equilibrium which is function of the physical properties of the two liquid phases: 

 

𝑡∞
2 = −2𝑆𝜌1/𝑔𝜌2(𝜌1 − 𝜌2) 

 

Here ρ1 and ρ2 are the densities of the liquid substrate and solvent, respectively, and g 

is the gravity acceleration. A sketch of the system described by Langmuir is shown in Figure 

2.8.  

 

 
Figure 2.8  Lens floating on the liquid surface described by Langmuir [6]. 

 

In the FD method a drop of the solution containing the material to crystallize is placed 

on the substrate surface and is left to dry slowly. At the beginning of the process, if the 

concentration of the material in the solvent is low, the system can be described as formed by 

the substrate and the pure solvent, and the geometry of the lens can be estimated. To grow 

good quality flat face crystals is necessary to have a flat interface between the two liquids, 

and this implies minimizing t∞,  condition which is achieved, given water as a liquid substrate,  

with a solvent of very low surface tension γ2 and density 𝜌2 much lower than the water 

density. 

During the evaporation of the solvent the concentration of the material dissolved 

increases and the lens geometry may change, either because of the increase of the solution 

density, or of the possible decrease of the surface tension γ2 of the solution and, consequently, 

of the interfacial tension at the solution/water interface. 
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The first effect is not found to play a relevant role, while in most cases the lens 

diameter remains constant during the evaporation while the thickness decreases 

progressively, thus showing that the second effect is at work. 

Water, used in the course of our experiments, is usually a good substrate, since after 

the complete evaporation of the solvent, the crystals of the organic material can be recovered 

floating on the surface, due to the high surface tension of the liquid substrate. However, the 

low density of water prevents the use of several common solvents. Clearly, the control of the 

nucleation and of the thickness of the crystals is given by the suitable combination of substrate 

and solvent. 

 

2.3.4 1D and semi-2D Organic Nanostructures Method of Growth 

In this method, described in details in a number of recent papers [7-9] and illustrated 

in Figure 2.9, nanostructures can be prepared by injecting under vigorous stirring a small 

volume of the solution of the organic compound (a) into a poor solubility medium like water, 

so to gain quick super-saturation of the organic compound in the new environment (b) [7].  To 

interpret the result of this crystallization process, it has been suggested that in the first step 

the nucleation proceeds via the formation of stable nuclei, together with some tiny meta-

stable aggregates (c). Directional interactions such as dipole-dipole interactions will act as the 

driving force for the process of crystal growth, which results in an isotropic molecular stacking. 

Under stirring, the meta-stable aggregates would dissolve and transform to yield crystallites 

which grow preferentially along the orientation of the directional interactions.  

The mixture is finally left undisturbed for the time needed to allow the crystal growth 

and at this stage the size of the crystals increases. Thus the crystals become more stable, while 

the solubility in the solvent limits the rates of growth and dissolution (d). 

 

 
Figure 2.9  Schematic proposed mechanism [7] for 1D and semi 2D nanostructure crystal growth method. 
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2.3.5 Liquid-liquid diffusion method 

The organic compound will dissolve well in certain solvents (“good” solvents) but not 

in others (“poor” solvents or anti-solvents). This method [2] exploits the different solubility of 

the material in two solvents, which must be co-miscible and have different densities. The 

compound is dissolved in the “good” solvent to form a saturated solution and then is placed 

in a schlenk tube. The “poor” solvent is let flow slowly on top of the saturated solution if less 

dense of it, or collected at the bottom of the container when the opposite applies, in such a 

way that two distinct layers are formed as shown in Figure 2.10c. With time the poor solvent 

diffuses into the solution, yielding an interface mixture in which the solubility of the 

compound is lower than that in the pure “good” solvent. As a result, crystal formation takes 

place in the boundary liquid-liquid region. 

Care must be taken to achieve the stratification of the two solvents one on the top of 

the other, to allow for the formation of a clear and distinct interface, in such a way that the 

mixing of the two liquids occurs only by diffusion. By controlling the temperature of the 

system, saturation conditions can be changed, and the crystal growth influenced.  

A solvent system commonly used for layering consists of a combination of dichloromethane 

and ethanol. Other successful combinations employ chloroform or dichloromethane together 

with diethyl ether or a hydrocarbon. 

 

 

Figure 2.10  Solution-based methods for the growth of organic single crystals [2]. 
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2.3.6 Melt growth method 

Crystal growth techniques from the melt are used most frequently for inorganic 

compounds, characterized by high stability at high temperature and very low vapor pressures. 

However, also crystals of organic compounds such as anthracene, naphthalene, pyrene and 

diphenylanthracene can be grown in this way, because these compounds are pretty stable up 

to the melting point even though they may decompose or react under long term treatment. 

Large and high quality single crystal can be obtained for several materials, suitable for physical 

and optical properties studies. It is often necessary to work in controlled atmosphere 

conditions to avoid oxidation processes or evaporation of the material due to its high vapor 

pressure [2]. 

 

2.3.7 Vacuum sublimation method 

Sublimation processes employ the solid-gas equilibrium, and therefore must take place 

at low pressures and relatively high temperatures. At high temperatures of the sublimation 

chamber, the crystal growth at the cold end may result into too fast a process, yielding 

twinned or statically disordered crystals. Good quality crystals by this method can be obtained 

playing on the p,T conditions, that is, decreasing the temperature of the process by decreasing 

the pressure of the system. There are numerous variations of the technique, which employ 

either static or dynamic vacuum environments. In the case of static conditions, a small amount 

of sample is placed under vacuum in a Pyrex tube (Figure 2.11) and the material is heated up 

from the bottom. The crystal grows on a water cooled cold end at the top of the pyrex tube. 

This setup produces good quality crystals in hours or possibly weeks, depending on the 

volatility of the sample and the quality of the vacuum. Vacuum sublimation is also ideal for 

compounds with low vapor pressure or which are very air sensitive, as the tubes can be loaded 

in dry boxes, or when the low solubility of the material prevents the crystal growth by any 

solution method. 

 



2. Instruments, experimental setup and crystal growth 

34 
 

 

Figure 2.11  Sublimation experimental setup. 

 

2.3.8 Physical vapor transport (PVT) method 

PVT is a crystal growth technique [10] which belongs to the gas-phase methods and 

therefore works with physical principles which are the same as those of the vacuum 

sublimation method. A scheme of the experimental setup is shown in Figure 2.12. 

Crystal growth from vapor phase can be divided in chemical vapor transport (CVT), 

which is common for the growth of inorganic compound using a chemical transport agent like 

iodine, and physical vapor transport (PVT) which is instead used for organic materials. In 

general, this method uses an ampoule sealed under vacuum, at the two ends of which 

different temperatures are applied, so that the compound inside moves under the resulting  

temperature gradient [10]. 

The ampoule is filled with the polycrystalline material, sealed after being evacuated in 

inert atmosphere, typically nitrogen or argon, and then horizontally placed in a two 

temperature zones furnace. The ampoule end with the material lies in the high temperature 

zone, whereas the other end of the ampoule, where the crystals are going to grow, is 

maintained at a lower temperature. The source material sublimes at the hot end and the 

temperature gradient causes super-saturation, resulting in the deposition of the vaporized 

compound at the cold end. The method is suitable for the preparation of high purity crystals, 
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since a purification process takes place during the growth, and it is very effective for the 

preparation of mixed single crystals, obtained starting from mixed source materials. As a result 

of the different conditions of super-saturation of the various compounds, mixed crystals of 

different stoichiometry may be deposited along the direction of the temperature gradient.  

The vapor phase in the ampoule moves by buoyant convection motion, driven by the 

applied horizontal temperature gradient. Convection in horizontal cavities, as reported in Ref. 

[10], has been studied by Simpkins and Chen [11], who estimated the magnitude of this 

phenomenon using the two-dimensional Handley cell model. In such a tube with a horizontal 

T gradient the Handley equation yields a velocity profile described by a cubic function of the 

depth. Applying hot temperature on the left end, the motion will take place from left to right 

on the upper part of the ampoule and reverses in the lower part. Simpkins and Chen gave the 

expression of the maximum velocity μ’: 

 

𝜇′ ∝
𝑅

𝐿
 

 

Where L is the aspect ratio, length for gradient/tube diameter (≈ 6) [11], and R is the Rayleigh 

number defined as: 

 

𝑅 =
𝑔 𝛽 ∆𝑇 𝑑3

𝜈 𝑘
 

 

where g is the gravitational constant, β is the thermal expansion coefficient [12], k the thermal 

diffusivity [12], d is the tube diameter and ∆T is the maximum temperature difference. The 

maximum velocity, using the principal carrier gases such as Argon (R = 51800), Helium (R = 

1120) and Nitrogen (R = 64660), which we used for our experiments, are 14, 1.6 and 12 cm/s, 

respectively, i.e., are substantially larger than the velocity given by forced convection flow in 

ampoules with gas inlet. The circulation flow for a closed system is therefore shown in the 

Figure 2.12, entirely determined by buoyant convection.  It is important to say that the above 

described model is a the result of a simplified system where are not considered several factor 

like local temperature gradients and three dimensional aspects which are well described by 

Rosemberger and coworkers [13]. From an experimental point of view, large high quality 

crystals are obtained when the maximum gradient ∆T is small (around 25°C) and the high 
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temperature is only slightly higher than the sublimation temperature of the compound at the 

pressure of the experiment. 

 

 

Figure 2.12  Scheme of the ampoule in the two zone temperatures furnace and circulation pattern of the compounds in 

the gas phase. 
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3. Solid state photoreactions 
 

Materials capable to change their shape under the external stimulus of light, open the 

new exciting field of mechanically responsive single crystals, with potential applications in a 

number of active devices where energy interconversion occurs at molecular level. The search 

of photoreactions in the solid state, capable to exploit at best the amount of potential energy 

developed during the progress of the reaction, becomes a challenge of crystal engineering 

when designing a solid state reaction in which the change of the chemical identity of the 

reactant must also involve the adjustment of the structure of the lattice. A topochemical 

perspective of the crystal packing usually helps the selection of suitable reactant candidates 

to drive their transformation in the solid state.  

This chapter of the thesis describes a selection of crystal to crystal photoreactions with 

the purpose to show the large variety of cases that can be encountered when photochemistry 

meets the solid state. 

The first example, section 3.1, deals with the remarkable transformation of dinitro-

antracene (DNO2A) to anthraquinone (AQ), where the stunning acrobatics of the entire single 

crystals mark a significant relationship between molecular (chemical) changes and unit cell 

(physical) change. 

Section 3.2 shows the classical example of the photodimerization reaction of 9-cyano-

anthracene (9CNA), the typical case of violation of the topochemical principle, whose 

paradigm implies the molecular preformation of the product in the unit cell of the reactant as 

strict prerequisite for the positive outcome of the dimerization. 

In section 3.3, the dimerization of 9-methylanthracene (9MA) is indeed the classical 

case of a perfect structural fit which leads to a complete topochemical reaction. 

The last section, 3.4, discusses the intriguing issue of 9-anthracene-carboxylic acid 

(9ACA) as a different case of a reversible photodimerization where crystal mechanical motions 

are not sufficient to validate the successful outcome of the reaction. 

For our investigation, we have used the novel approach of following the reaction by 

means of lattice phonon Raman microscopy, a technique which easily probes inter-molecular 

modes, i.e., collective translational or rotational motions of the molecules in the unit cell, to 

directly follow the solid state transformation of the unit cell of the reactant in that of the 

product. 
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3.1 Photoreaction of 9,10-dinitroanthracene to anthraquinone. 

 

The first subject of this chapter is the crystal-to-crystal photochemical reaction of 9,10-

dinitroanthracene (DNO2A) to anthraquinone (AQ) + 2NO. The reaction, has been observed 

since long time in solution [1] and its mechanism has been more recently revisited [2]. In the 

solid state this reaction reveals intriguing aspects, since its path requires a striking 

modification of the crystal lattice, starting from the triclinic structure of DNO2A, with one 

molecule per unit cell (Z = 1), to yield the monoclinic structure of AQ with Z = 2. This involves 

a considerable change of the chemical environment, which implies the use of sensitive probes 

of intermolecular interactions. We have then used the approach of following the reaction by 

means of lattice phonon Raman microscopy [3], a technique which directly probes even 

slightly differences of molecular packing, becoming the ideal tool to monitor changes in the 

unit cell structure. The additional feature of working in confocal microscopy, has allowed us 

to follow the evolution of the photoreaction in situ, with a Raman signal at a spatial resolution 

below 1 µm, in order to compare crystal and molecular spectral changes with the optical 

images of the sample. While the analysis of the lattice modes allowed for the study of the 

physical changes (lattice dynamics), the chemical transformation was monitored by measuring 

the intra-molecular Raman-active modes of both, reactant and product, on the very same spot 

at the same time. 

The experiments show that, once triggered, the reaction rapidly proceeds up to a 

complete transformation to the product. The change in crystal morphology strongly depends 

on the different conditions of irradiation and on the sample history. In any case, at the 

macroscopic level, we have detected an impressive relationship between incident light and 

mechanical strain, which manifests as striking bending and unfolding of the specimens under 

irradiation. In order to clarify the mechanism underlying the relationship between incident 

photons and molecular constraints, we have extended the study to high pressure, up to 2 GPa. 

It was found that above 1 GPa the photoreaction becomes inhibited.  

Lastly, lattice dynamics calculations based on standard intermolecular potential 

models have been employed to simulate the reaction steps transforming the initial unit cell of 

DNO2 into the final AQ lattice. 
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3.1.2 Experimental details. 

Single crystals of DNO2A from Aldrich were grown by sublimation, obtaining in most 

cases needles elongated along the a axis. 

Raman spectra were obtained by placing the sample on the optical stage of a 

microscope (Olympus BX40) interfaced to a Jobin Yvon T64000 Raman spectrometer, with 50x 

or 100x objectives, which allowed us to obtain a spatial resolution just below 1 μm and a 

theoretical field depth from about 7 to 25 µm. Raman spectra were recorded by excitation 

from a krypton laser (647.1 nm), an energy sufficient low to avoid background fluorescence 

from the sample and its possible photochemical side products. The laser power was adjusted 

in every experiment to prevent crystal damage. The actual power focused on the sample was 

always less than 1 mW. For more details on the spectroscopic characterization see ref. [3]. 

Two different procedures were followed to irradiate the crystal, i.e., broadband and 

laser excitation. For the former, a 75 W Xe lamp was used and the spectral range 250-400 nm 

was selected with a glass filter. Laser excitation was produced by a 25 mW diode laser tuned 

at 405 nm. 

High pressure measurements were performed with a sapphire windows cell for 

pressure up to 1 GPa, and a diamond anvil cell above 1 GPa. A 4:1 methanol-ethanol solution 

was used as hydrostatic medium and the ruby luminescence method was used for pressure 

calibration [4]. 

 

3.1.3 Results. 

3.1.3.1 Lattice phonon Raman spectra. 

In order to follow the photoreaction we first collected, as a reference, the data of pure 

reactant and product. The lattice phonon Raman spectra at ambient (p,T) of DNO2A and AQ 

of the actual samples used in the experiments are reported in Figure 3.1. Both agree with data 

from literature [5,6]. 

The crystal structure of DNO2A is triclinic 𝑃1̅ (Ci
1) with one molecule per unit cell [7]. 

Since Z=1, only three k=0 optical lattice phonons are expected and are of Ag symmetry, i.e., 

Raman-active [8]. They all show up in Figure 3.1. The crystal structure of AQ is monoclinic P21/a 

(C5
2h) with two molecules per unit cell [9]. Since Z=2, nine k=0 optical lattice phonons are 

allowed and six of them (3Ag+3Bg) are Raman-active. Five out of six [6] are shown in Figure 

3.1.  
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Figure 3.1  Lattice phonon Raman spectra of DNO2A (left) and AQ (right).  

In the inset the corresponding molecules in the unit cell are reported. 

 

3.1.3.2 The crystal to crystal photoreaction.  

Although studied in solution, no reports can be found in the literature of this reaction 

in the solid state. Once the reaction is performed by photo-excitation of the crystal, the initial 

step, following light absorption, is the localization of the exciton in active sites, usually physical 

traps, which act as nucleation centers for the propagation throughout the entire crystal. In 

this sense a solid state photoreactions can be classified as cooperative. Selectivity and 

localization are then the dominant factors of the process [10]. 

A collective propagation of the excited reactant molecules into the product must 

necessarily follow the rule governing ordered systems, that is, a topochemical principle or the 

capability of the molecules to be in the correct registry to yield the product with a minimum 

of orientational reconstruction. Crystal packing, in other words, owns already the capability of 

determining the chemical change produced by the incoming light.  

Our study is described with reference to three experimental setups: (i) broadband 

excitation from a UV lamp focused on the crystal; (ii) excitation from a diode laser (λ = 405 

nm), with and without focusing; (iii) laser excitation in high pressure cells (0-2 GPa). A number 

of samples have been treated. The main results are illustrated in the following sections. 

 

3.1.3.3 Broadband excitation 

Single crystals of DNO2A have been irradiated by a Xe lamp (luminous emittance 350 

lx) with excitation in the range 250-400 nm selected by a glass filter. A water filter was placed 
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in the optical path to prevent sample heating. Lattice phonon Raman spectra have been 

recorded as a function of time to follow the photoreaction. The UV light was focused on one 

end only of the crystal, in order to compare reacted and un-reacted regions on the same 

specimen. Figure 3.2 shows the Raman spectra collected at regular time intervals together 

with the picture of the sample with the indication of the area tested. As a reference, the 

phonon spectrum of pure AQ, the photoproduct, is reported at the top of the spectra. After 

only two minutes, a marked color difference was observed between the two ends of the 

samples. Correspondingly, Raman profiles of the illuminated region (left side of the figure) 

show the fast growth of AQ lattice phonons which initially overlap the phonon bands of the 

starting DNO2A crystal and eventually fully replace them. The right side of the figure shows 

instead the unchanged spectrum of the DNO2A in the region of the sample not subjected to 

irradiation. The reaction quickly proceeds up to its completion after only 4 minutes. The 

phonon spectrum of the photoproduct shows a large noise and broader bands with respect to 

those of a pure pristine single crystal AQ (red trace in Figure 3.2). This can be accounted for 

by the inhomogeneuos broadening induced by local disorder of the irradiated regions. 

 

 
 

Figure 3.2  Lattice phonon Raman spectra of an irradiated (left) and non irradiated (right) region of a DNO2A single crystal 
whose picture is reported at the bottom. In the upper part of the figures the spectrum of the single crystal of AQ is 

reported in red as reference. 
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3.1.3.4 Laser excitation 

A focused beam from a diode laser tuned at 405 nm (radiative flux 340 W/cm2), 

unfailingly produced an immediate and explosive breaking of the crystal. The experiments 

were then performed with a series of variable optical density filters to attenuate the incoming 

light up to three order of magnitude, which also resulted in scaling up the time required to get 

the completion of the reaction in the order of hours. Results are reported in Figure 3.3. 

Although slower, the modification of the lattice occurs with a gradual change of the whole 

phonon spectrum from the lattice modes of pure crystalline DNO2A to those of pure AQ. The 

optimal control of the reaction can also be deduced by the lack of background fluorescence, 

whose presence would certainly have been an indication of the formation of side 

photoproducts acting as impurity traps. The pictures of the crystal at the right side of the figure 

show that in any case, although less dramatically, the crystal, initially long a few hundreds of 

μm, breaks up in a number of fragments at the end of the reaction (t = 530 min). The large 

mechanical strain, which starts in the middle point of crystal where the laser beam was 

focused, produces this destructive process. The post analysis of the Raman spectra of these 

fragments indicates that they belong to pure AQ (upper spectrum of the Figure), an evidence 

that the reaction had indeed reached its full completion. Unlike the spectra of Figure 3.2, all 

phonon bands are now well resolved with an excellent signal to noise ratio. 
 

 
Figure 3.3  Lattice phonon Raman spectra of a DNO2A single crystal as a function of time after irradiaton from a focused 

laser at 405 nm. In the right side, the pictures of the crystal before (lower picture) and after (upper picture) the 
photoreaction are shown. 
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To avoid the fragmentation of the crystal we defocused the laser beam on the crystal 

surface to get a more uniform irradiation (radiative flux 3x10-2 W/cm2), an expedient also used 

to control the interfacial strain in the photodimerization of 9-anthracene-carboxylic acid [11]. 

Under these conditions, the mechanical deformation of the crystal during the progress of the 

reaction is homogeneously distributed over the entire size of the crystal, avoiding its 

destructive fragmentation. In other words, the macroscopic boundaries of the crystal, edges 

and surface, act to soften the strain produced by photons. However, the most intriguing and 

spectacular results obtained under these experimental conditions are shown in Figure 3.4. 

 

 
Figure 3.4  Left: lattice phonon Raman spectra of a DNO2A single crystal as a function of time under uniform irradiaton 

from a defocused laser beam. Right: snapshots, at the corresponding times, of the irradiated crystal during the course of 
the reaction. 

  

Here the photoreaction reaches its completion pretty much in the same time scale as 

that of the previous experiment, where, though strongly attenuated, the laser beam was 

focused on the crystal. However, in this case the crystal avoids breaking into smaller 

fragments, but undergoes, under irradiation, a striking series of mechanical movements, 

which manifest as bending, twisting and unfolding, as shown in the right side of the figure. 

The well shaped single crystal (a) initially bends, especially at one of its end (b-c), then rotates 

by 180° along its long axis to reach, after unfolding (d) and further twisting (e), its initial shape 

(f). At this stage, the transformation is not yet complete, as indicated by the spectral profiles 

after 365 minutes, where residual phonon bands of DNO2A lattice are persisting. The final 
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step, up to the complete formation of AQ, requires a new and fast deformation of the crystal 

(g) which eventually leads to pure AQ, whose lattice phonon bands undergo some 

inhomogeneous broadening, as shown by the congested region around 60 cm–1. The different 

spectral distribution of phonon bands with respect to that of the reference crystal can be 

accounted for an anisotropic effect determined by a reorientation of the crystal after 

irradiation. Similar trends have been observed for other crystals of approximately the same 

shape and size. A more detailed series of snapshots of the spectacular behavior of this reaction 

is documented in Figure 3.5. 

 

   

   

   

   

Figure 3.5  Snapshots of photochemical motions. 
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3.1.3.5 The timing of the reaction and its molecular and lattice kinetics. 

During the course of the photoreaction, the extensive study of the Raman phonon 

spectra (changes of the lattice) has been complemented by the simultaneous detection of the 

intra-molecular modes (molecular modifications), in order to compare the molecular 

transformation of DNO2A to AQ with the changes of the crystal lattice (from triclinic to 

monoclinic) at the same irradiation times. This investigation is crucial for the determination of 

the reaction mechanism following photon absorption. Figure 3.6 shows these data. 

  

 
Figure 3.6  Lattice phonon Raman spectra (left) and internal vibration spectra in the region 300 -1800 cm-1 (right) at 

different times of irradiation of a single crystal of DNO2A. 
 

Quite interestingly, at reaction times for which the lattice phonon spectra are still 

those of DNO2A, the internal vibrations of molecular AQ are already well visible, with 

intensities comparable to those of DNO2A as can be seen in Figure 3.6, where AQ bands have 

been marked by vertical lines.  This can be verified, for instance, by comparing the relative 

intensities of the bands at 1403 cm-1 and 1675 cm-1, corresponding to intra-molecular modes 

for DNO2A and AQ, respectively, that have been analyzed at time 575 min, where the lattice 

is still that of the pure triclinic DNO2A crystal. Taking into account the ab-initio value of the 

Raman intensities calculated for the isolated molecules (from the calculations of section 2.5), 

we can estimate that about 40% of DNO2A had already reacted at this time and therefore a 

surprisingly large amount of AQ molecules is still present. In other words, it is as though the 

photoproduct AQ occupies substitutional sites of the triclinic lattice of DNO2A, i.e., the 

molecular transformation by far precedes the transformation of the crystal lattice, an 

important finding that will be discussed in section 2.4. 
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3.1.3.6 The photochemical reaction at high pressure 

Pressure is a most efficient tool of perturbation of intermolecular interactions, though 

leaving basically unchanged the molecular environment. Since large mechanical strain is 

undoubtedly involved in the crystal to crystal transformation of DNO2A to AQ, we have 

investigated the reaction as a function of pressure, to get further hints on a reaction 

mechanism where incoming light and molecular constraints play a crucial role on the route to 

the photoproduct.  

High pressure experiments were performed in in a gasketed diamond anvil cell (DAC) 

[12] with the procedure described in section 3.1.2. Several measurements have been 

performed over a wide pressure range and under different irradiation conditions. We limit the 

description of the experiment to few typical cases, one of which is illustrated in Figure 3.7. 

Here the crystal was subjected to a constant pressure of 0.7 GPa and then irradiated by the 

diode laser at 405 nm in the DAC. Changes of both phonon spectra and crystal morphology 

were simultaneously detected at constant time intervals. 

 

 
Figure 3.7  Lattice phonon Raman spectra at p = 0.7 GPa (left) and corresponding changes in crystal morphology at 

constant time intervals (right). 
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After 80 minutes the reaction reached its full completion in the irradiated region and 

the observed phonon bands are uniquely attributed to AQ lattice vibrations. It is of some 

interest to follow the changes of the shape of the crystal during the reaction. Although the 

crystal is subjected to the strong mechanical strain induced by the incoming light, it is 

nevertheless constrained in the gasket area, which produces a sort of physical barrier in 

limiting the sample movement. The crystal bends and splits in two forming a kind of ring in 

correspondence of the point where the laser was focused. By further increasing the pressure 

up to about 1 GPa a similar process to that described in Figure 3.7 occurs. Eventually, above 1 

GPa, and irrespective of prolonged irradiation, no transformation to AQ occurs, as shown in 

the spectra of Figure 3.8. We have further verified that the photoreaction is really inhibited 

above 1.0 GPa by using different crystals loaded in the DAC up to pressures of about 2.0 GPa. 

Furthermore, the very same DNO2A crystal which went unreacted at 1.4 GPa completely 

transforms to AQ after 20 minutes of irradiation once the pressure was released to 0.4 GPa 

(Figure 3.9). The complete absence of molecular modes of AQ (Figure 3.2,3.10) confirms that 

the reaction has not started also at the molecular level. The image of the crystal, 

correspondingly, shows no major changes: although undergoing a longitudinal fracture under 

pressure and light, it never bends or splits. It seems as though the release of the mechanical 

energy, revealed by the crystal movements, is indeed the driving force required for the 

advancement of the photoreaction. 
 

   
Figure 3.8  Lattice phonon Raman spectra of a crystal irradiated at 1.0 GPa (left) and at 1.4 GPa (right). In the inset a 

picture of the irradiated crystal at 1.0 GPa is shown. 
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Figure 3.9  Lattice phonon Raman spectra of irradiated crystals above and below the reactive threshold of 1 GPa of 

pressure. The upper trace shows the pure AQ phonon spectrum once the crystal is irradiated below 1.0 GPa. 

 

 
Figure 3.10  Upper trace: Raman spectra of intra-molecular modes of a DNO2A. A crystal irradiated at 1.0 GPa. 

Comparison with reference spectra (lower traces) show that no molecular AQ is present, even after 120 minutes. 
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An additional factor which can explain the inhibition of the reaction at high pressure is 

that the release of NO cannot take place if the external pressure is too high. However, as 

discussed later, we anticipate that a photochemical reaction inhibited at high pressure is an 

indication of a defect-based non-topochemical mechanism, as shown by some experiments a 

few decades old [13,14]. A topochemical mechanism instead would naturally be favored at 

the reduced intermolecular separations at high pressures. The larger the pressure, the faster 

the photoreaction. However, we have to notice that topochemical and non-topochemical 

mechanism have historically been introduced to describe how much compatible or not were 

the mutual molecular orientations, finalized to produce the photodimerization reaction [15-

17]. In the present study, in analogy to what occurs at molecular level, we can think of a 

topochemical route as the one being compatible at a crystal structure level, i.e., crystal axes 

and angles compatible with a cell doubling or halving determined by symmetry. This would be 

better described as a topophysical principle, whose description based on a cell doubling 

mechanism is delayed to section 2.4 and is theoretically simulated in section 2.5. 

 

3.1.4 The progress of the reaction 

In a most general description of a reaction in a solid one can think of the formation of 

the active sites as the first step of the physical and chemical transformation. The nucleation is 

instead the slowest step, as it requires the activation energy necessary to trigger the reaction. 

When a crystal-to-crystal transformation is activated, the propagation to the product follows 

a collective process given by its ordered structure. In the present case, the activation energy, 

initially given by light absorption, soon involves a large mechanical strain which fuels further 

lattice deformations to eventually produce the structural change required for the formation 

of the new crystal lattice of the photoproduct. To make some plausible hypotheses of the 

reaction mechanism, it is worthwhile to undergo a finer tuning of the steps at the basis of the 

process:  

 

1) Triggering of the reaction and formation of the active sites (nucleation centers) 

2) The chemical reaction in the unit cell (the reaction cage)  

3) Collective propagation of the nucleation centers over the entire volume of the crystal  

4) Final progress up to the complete formation of crystalline AQ 
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Step 1. Triggering the reaction 

The trigger of the reaction occurs through a well known mechanism of photochemical 

reactions in organic crystals [10]. Following light absorption, a delocalized exciton (ideal 

crystal) forms, which eventually localizes (real crystal) into chemical or physical traps of the 

crystal. These traps are sites of local disorder that become the active sites, that is, the 

nucleation centers which start the photoreaction. The transformation, in these local sites, of 

molecules of DNO2A to AQ, provides further disorder, increasing the number of active sites 

capable of driving the reaction. The reaction starts and as long as DNO2A molecules continue 

to transform to AQ, the latter, being in a foreign lattice, creates further trapping sites which 

favor the course of the reaction, following an auto-catalytic mechanism. 

 

Step 2. The chemical reaction in a cage: the cage is the unit cell 

Once the reaction has been triggered, the ordered structure of the crystal is the 

dominating factor for its propagation. By looking at the crystal parameters of DNO2A and AQ 

(Table 2.1, section 2.5), it is tempting to think of a simple reaction mechanism mostly based 

on a cell doubling, in a direction that could be the axes b or c, or a more complicated 

combination of them. This would result in an appropriate topophysical disposition able to 

justify how the reaction easily reaches its completion, starting from the triclinic cell (Z = 1) of 

DNO2A to get the monoclinic cell (Z = 2) of AQ of about a double volume. The triclinic unit cell 

of DNO2A can thus be considered as the chemical cage where the photoreaction begins [10]. 

However, as previously shown, this reaction is inhibited at high pressure. One could then infer 

that, although the two structures are definitely compatible with a crystal to crystal 

modification, the role played by defects should be somehow predominant in governing the 

proceeding of the reaction. This effect could be underestimated by merely looking at the unit 

cell parameters of the two crystal structures.  

The reaction path leading to the cell doubling will be computationally modeled in 

section 2.5.  

 

Step 3. The propagation of the reaction: from the cage to the entire crystal  

The information of the crystal structure obtained through the Raman phonon spectra 

give interesting clues on the progress of the reaction after its beginning. The key point is that 

the molecular transformation precedes the transformation of the crystal lattice, as clearly 
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indicated by Figure 3.6. AQ guest molecules, which at the beginning of the reaction occupy 

substitutional sites in the DNO2A lattice, i.e., maintain positions and orientations of the host 

molecules, soon reach a concentration sufficiently high to make hardly sustainable the 

existence of a stable triclinic unit cell. This is possibly the reason why, at this very moment, 

the energy stored in the system is released and gives rise to strong mechanical deformations 

which manifest as bending and unfolding of the whole crystal, as illustrated in Figures 3.4 and 

3.5. We believe that this is the step (Figure 3.4, picture c) when the triclinic lattice of DNO2A 

begins to transform into to the monoclinic lattice of AQ, whose lattice phonons soon become 

predominant in the Raman profiles. Therefore, the mechanical movement induced by light 

absorption, as shown in the pictures from 3.4c to 3.4f, provides the energetic cost of the 

crystal to crystal transformation.  

  

Step 4. The complete formation of crystalline AQ 

At the final stage the AQ molecules, formerly guest molecules in the triclinic DNO2A 

lattice, become themselves host molecules in a monoclinic lattice where unreacted DNO2A 

molecules are now guests. This implies that, although the new crystal lattice is formed, the 

reaction is not complete until all reactant molecules are transformed to AQ in the AQ lattice. 

This would allow us to advance an hypothesis on why in Figure 4, picture g, the crystal, which 

after having recovered its initial shape at time 365 min, undergoes further distortion by 

shrinking and bending in a fashion similar to the process previously exhibited in pictures a to 

f. Indeed, the completion of the photoreaction still requires that a sizable amount of DNO2A 

molecules to react and a corresponding stoichiometric amount of NO molecules to leave the 

crystal, which therefore shrinks to keep its cohesion. At this stage only, the reaction 

completely ends.  

We must remark once again the importance of the relationship between the intra-

molecular vibrational spectra and the intermolecular lattice phonon spectra. This relationship 

is of paramount importance in probing, at the same time, both the photochemical 

transformation of the molecules and the change of the crystal lattice. 

3.1.5   Modeling the reaction  

Now we aim to describe the transformation of DNO2A to AQ in the solid-state by 

emulating the experimental process, that is by first chemically transforming DNO2A into AQ 

without changes to the lattice, and then by continuously deforming the crystal lattice into the 
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final AQ structure, without further chemical changes and along the path with the lowest 

energy barrier. We must, in effect, identify the transition state, which is the minimum energy 

saddle point between reactants and products. To implement this program we need a model 

for the molecules and then a model for their interactions in the crystal.  

For the molecular model we have chosen the minimum energy geometries of isolated 

DNO2A and AQ molecules, determined ab-initio with the program GAUSSIAN03 [18], using the 

B3LYP/6-31G* combination of density functional and basis set. The model is adequate, since 

the equilibrium geometries so obtained closely match the experimental molecular geometries 

in the crystals [7,9], with the only noticeable difference of a small deviation (below 5°) in the 

C-C-N-O torsion angles in DNO2A.  

Intermolecular interactions were modeled by an atom-atom potential with 

electrostatic and Buckingham terms, Vij(r)=qiqj/r+Aijexp(−Bij r)−Cij/r6. The atomic charges qi are 

the "ESP" charges [18] fitted to the electrostatic potential evaluated in the just mentioned ab-

initio calculations on the isolated molecules. The parameters Aij, Bij and Cij for H, C, N and O 

atoms are from a potential model [19] specifically designed to be internally consistent and 

transferable. Crystal structures were determined by seeking minimum energy lattice 

configurations using the program WMIN [20], with molecules maintained rigid in their ab-

initio geometries. Several experimental and hypothetical initial lattice structures have been 

considered, as discussed below. The stability, or lack of stability, of the optimized structures 

was assessed by computing the phonon frequencies which, as a necessary and sufficient 

condition for local stability [21], must be real and ≥ 0 (non-negative force constants).  

As a first validation of the molecular and potential models, starting from the 

experimental structures [7,9] of DNO2A (triclinic, space group 1P , with Z=1) and AQ 

(monoclinic, space group P21/a, with Z=2), we have determined the equilibrium configurations 

by minimizing the potential energy with respect to all independent structural parameters 

allowed by the space group symmetry. The resulting structures, hereafter labeled as D1 and 

A2, are shown in Figure 3.11, while their lattice parameters are listed in Table 3.1. The excellent 

agreement between calculated and experimental parameters confirms that the models are 

realistic. Also excellent is the agreement between the computed binding energy of the lattice 

and its closest experimental equivalent, namely the sublimation enthalpy, available only for 

AQ [22].  
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Table 3.1: Experimental and computed lattice parameters [7,9] and binding energies [22]. 
 

 
Z 

Space 
group 

Structure a b c α β γ V E 

    (Å) (Å) (Å) (deg) (deg) (deg) (Å3) kcal/mol 

DNO2A 
   

1 𝑃1̅ Expt.[7] 3.950 8.680 8.760 106.77 98.98 98.02 278.59  

  Calc. D1 3.713 8.824 8.825 105.69 98.09 98.13 270.67 −36.38 

AQ  

   
   
   
   

1 𝑃1̅ Calc. A1 4.157 8.258 7.778 107.74 85.60 106.30 244.08 −27.99 

2 𝑃1̅ Calc. A1′ 16.407 4.157 8.138 77.08 101.47 70.83 488.15 −27.99 

2 C2/m Calc. T2 15.314 3.963 9.163 90.00 98.90 90.00 489.63 −26.88 

2 P21/a Expt.[9,22] 15.780 3.942 7.868 90.00 102.69 90.00 480.21 −27.2±4.8 

      Calc. A2 16.010 3.929 7.805 90.00 102.71 90.00 478.75 −29.09 

 

As discussed in previous sections, the photochemical molecular transformation of 

DNO2A to AQ precedes the transformation of the lattice. To model this behavior, starting from 

the known structure of DNO2A, we have converted all DNO2A molecules into AQ molecules 

and then minimized the lattice energy. We have thus reached a virtual triclinic AQ structure 

with Z=1 (labeled A1), which represents a local energy minimum, since all computed force 

constants are non-negative. This hypothetical structure, although mechanically stable, is 

predicted to be thermodynamically unstable, since it is less bound than the Z=2 monoclinic 

structure A2 (see energies in Table 3.1). Immediate conversion of A1 into A2 is hindered by the 

energy barrier that separates the two structures. To estimate this barrier, we have searched 

all possible reaction paths between A1 and A2. The procedure used to identify the transition 

state is shortly described below and is extremely artificial. Nevertheless, we will immediately 

see that the resulting reaction path, illustrated in Figure 3.11, describes a quite obvious and 

easily understandable process.  

The transition state, labeled T2, is a Z=2 non-primitive monoclinic structure with space 

group C2/m. The two molecules are equivalent by translation and parallel to ac plane. The 

structure, optimized with respect to all structural parameters allowed by the monoclinic 

lattice, sits on an energy saddle, since some of its phonons have negative force constants. 

When first perturbed by slightly rotating the two molecules, either in the same or in opposite 

directions, the state T2 in fact falls to either one of the two different minima A2 or A1′. It may 

also be noticed, as shown in Figure 3.11, that A1 is just a cell halving of A1′, and, in fact, A1′ and 

A1 have exactly the same energy (i.e. they are just two equivalent description of the same 

structure).  

We can now fully describe the transformation, illustrated in the figure, from D1 (the 

Z=1 DNO2A lattice) to A2 (the Z=2 AQ lattice). We first photo-chemically transform D1 into A1 
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(AQ in the Z=1 DNO2A lattice), which is immediately doubled into A1′. We then progressively 

deform the Z=2 triclinic lattice A1′ into a monoclinic lattice, while simultaneously rotating the 

two molecules until they lye parallel to the ac plane. The T2 saddle structure is thus reached, 

after paying an activation energy of 1.11 kcal/mol. We then rotate the two molecules in 

opposite directions, finally reaching the monoclinic A2 lattice and recovering 2.21 kcal/mol, 

with a net, though small, gain.  

 

 
Figure 3.11  Reaction path from DNO2A to AQ. D1 is the Z=1 DNO2A structure which, when photochemically transformed 
to AQ, becomes the Z = 1 metastable structure A1. A1 is mathematically equivalent (through a cell doubling) to A1′, which 

may be transformed into the transition state T2. Finally, T2 spontaneously converts to A2 (the Z = 2 AQ structure). 
Axonometric views of the various computed structures along the path are shown close to their energies. AQ and DNO2A 

molecules maintain their ab-initio geometries (with D2h and C2h symmetry, respectively) and reside on inversion sites. 
Graphics by MolScript [23]. 

 

 In conclusion, the photo-induced reaction of dinitro-anthracene to antraquinone fits 

the general picture of molecular materials that change shape and dimensions by means of the 

transformation of photon energy into mechanical work [24]. However, what we aim to 

emphasize here, is the mechanism underlying the crystal to crystal transformation, a process 

complicated by the need to consider all changes occurring in the molecular environment 

during the course of the reaction. It is self evident that molecular changes ultimately produce 

modifications of the crystal lattice. Raman spectroscopy has revealed to be the ideal tool to 

conveniently follow this process. While the analysis of the lattice modes allowed for the study 

of the physical changes, the chemical transformation was monitored by measuring the intra-

molecular Raman-active modes of both, reactant and product. The structural reconstruction 
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required to drive the photoreaction explains the different evolution of crystal morphology 

under irradiation. We have shown that a completely destructive process is observed when 

irradiation is produced by an intense focused laser beam, whereas a uniform distribution of 

the exciting radiation with a lower intensity permits a more controlled structural change. In 

the latter case the crystal initially keeps its shape, propagating the mechanical strain to edges 

and surfaces rather than undergoing cracks or breaking in small fragments.  

One of the major outcome of this study is that molecular and lattice transformations 

do not proceed at the same rate. The molecular transformation precedes the structural crystal 

change, which implies a key role played by host and guest molecules, that interchange in the 

substitutional sites of the unit cell. The observed time mismatch between chemical and lattice 

transformation allows for a clear way of modeling the crucial step of the cell doubling. In fact, 

once the AQ molecules are formed inside the DNO2A lattice, the system relaxes to a readily 

accessible mechanically stable structure still with Z=1. From here, a local minimum, the 

thermodynamically stable structure with Z=2 can be attained with a small energy expense 

which leads the system through a plausible transition state.  

To clarify the mechanisms underlying the relationship between incoming light and 

molecular constraints we have extended the study to high pressure up to 2 GPa. It was found 

that after 1 GPa the photoreactions becomes inhibited, a finding which fits a possible scenario 

of a crystal to crystal photophysical process triggered by defects [10,17].  

As a last point we again underline the role played by the mechanical strain induced by 

light. A large structural reconstruction, as that involved in the doubling of the triclinic unit cell 

of DNO2A to yield the monoclinic structure of AQ, cannot occur without striking crystal 

deformations accompanying the photoreaction. Light energy initially produces the chemical 

transformation of the molecular units in the lattice. This change induces the mechanical 

deformations which eventually become the driving factor of the structural change. At high 

pressure (> 1 GPa) where crystal movements meet with molecular constraints, the 

photoreaction lacks its driving force and cannot reach its completion. 
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3.2 The Photodimerization reaction of 9-cyanoanthacene 

 

The crystal-to-crystal photodimerizations of anthracene and 9-substituted 

anthracenes have been considered for a long time as model systems for bimolecular solid 

state reactions. The dimer is formed through an excited state [4+4] cycloaddition, where the 

reaction centers are a pair of carbon-carbon double bonds located on two distinct molecules 

lying adjacent in the crystal lattice. It has been recognized [25-28] that in these systems the 

dimerization mechanism involves as a first step the formation of an excimer intermediate, or 

physical dimer, generated by electronic excitation of the monomer, from which the chemical 

dimer can be obtained via a non-radiative decay path [29]. In agreement with the so-called 

topochemical postulate [15], the possibility for the reaction to follow its course is determined 

by a number of parameters, the values of which depend on the monomer crystal packing.  

Distances between the potentially reactive atoms of the two adjacent molecules must be 

below a threshold value, while relative orientations of the anthracene skeletons and lateral 

shifts between the orbitals of the reactive atoms must be favorable to the formation of the 

new molecular geometry [30]. Thus, only when all these parameters are within the boundaries 

identified by the topochemical principle [30], can the photodimerization occur and the dimer 

crystal obtained, with a structure  which was already present (or pre-formed) in the lattice of 

the monomer precursor. 

The solid-state reaction of 9-cyanoanthracene (9CNA) [31,32] is the earliest case in 

which the dimerization occurs quite rapidly under irradiation, but the topochemical principle 

cannot be a-priori applied. In fact, 9CNA molecules are arranged in the lattice in such a way to 

give a head-to-head or cis dimer as a product, but the formation of this is not 

thermodynamically favoured due to the steric hindrance arising from having both substituents 

on the same side. What is observed instead is the formation of the thermodynamically stable 

trans dimer (head-to-tail configuration) [31-34]. Such a result is explained by assuming that 

the reaction is first triggered in  defective sites of the crystal, and in particular along partial 

(221) dislocations where the crystal planes are shifted in such a way that pairs of molecules 

end up lying in a head-to-tail arrangement, as schematically shown in Figure 3.12.  
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Figure 3.12  Simulation of a defective zone by (221) slip plane. 

 

The pairs of molecules in a head-to-tail arrangement can therefore easily form the 

trans excimer and hence the chemical dimer via its non-radiative decay [32]. Once the 

transformation is triggered in the original defect, the reaction site itself is the origin of more 

defects, so that the process can spread auto-catalytically to the entire crystal due to the 

progressive loss of order. 

In this thesis work we wanted to revisit the classic 9CNA photodimerization by 

employing the confocal Raman microscopy technique, already used to follow the unimolecular 

reaction of dinitro-anthracene [35] previously described. As in the case of dinitro-anthracene, 

Raman spectra were collected both in the energy range of intramolecular vibrations and at 

low wavenumbers (10-150 cm−1), where the bands characteristic of the lattice vibrations can 

be detected. In the former energy interval we have been able to follow the reaction from a 

molecular point of view, detecting the bands typical of the reactant and of the product as a 

function of the irradiation time. Intermolecular interactions were instead probed in the region 

at low wavenumbers, where the Raman spectrum displays dramatic changes when the 

molecular packing changes or the order and the spatial correlation in an existing structure are 

disrupted. Therefore, the Raman technique allowed us to monitor directly and simultaneously 

both the formation of a new chemical species and the associated structural changes. This 

represents an advantage with respect to other spectroscopic methods used to investigate 

solid state reactions, such as electronic absorption, emission and vibrational spectroscopy of 

molecular normal modes. Besides, by exploiting the confocality of the micro-Raman 

technique, the entire process was followed on single crystals, precisely identifying portions of 

the sample subjected to irradiation.  

[100], a

[010], b

(221) slip
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 One of the interesting results found for the reaction of the dinitro-anthracene crystal 

was, also in this case, the delay between the chemical and the physical modifications, easily 

observable on the time scale of the experiment. Thus, it felt important to understand if this 

kind of behavior was altogether general, starting from a system that is in some respect 

prototypical, such as the 9CNA dimerization reaction. 

 

3.2.1 Experimental 

Single crystals of 9CNA were grown by slow evaporation of an ethanol solution of the 

commercial product from Aldrich. Light yellow needles a few mm long were obtained, 

elongated along the short a crystallographic axis.  

The trans 9-cyanoanthracene dimer (9CNAD) was also photochemically synthesized in 

ethanol solution (Figure 3.13) to obtain nicely shaped single crystals to use as a spectroscopic 

reference of the product of the solid state photoreaction.  

 
Figure 3.13  Dimerization reaction scheme. 

 

Following the procedure described in the literature [36,37], a stirred solution of 9CNA 

in ethanol was irradiated in a pyrex flask under nitrogen atmosphere with a 250 W Xe lamp. 

As the pyrex glass light transmission is very low at wavelengths below 300 nm, with a 

maximum above 340 nm, the reverse reaction from dimer to monomer was prevented under 

these conditions. White needle crystals of 9CNAD, insoluble in ethanol, were separated by 

filtration after about 4 h of irradiation, repeatedly washed with ethanol and dried. Mass and 

NMR spectra, reported in Figures 3.14 and 3.15, respectively, were recorded to make sure 

that the synthesized dimer was chemically pure of the monomer and the only species obtained 

was the head-to-tail configuration. In the mass spectra the molecular peaks of monomer and 

dimer are observed, while in the H1 NMR spectrum the formation of dimer is clearly present 

as confirmed by the detection of the aliphatic hydrogens in the range 4.8-5.0 ppm. The 13C 

NMR spectrum confirms the presence of the dimer structure. 
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Figure 3.14  Mass spectra of monomer (top) and dimer (bottom) of 9CNA 
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Figure 3.15  NMR spectra 1H (top) and 13C (bottom) of 9CNA dimer. 
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To irradiate the 9CNA crystals two distinct sources were employed: the UV excitation 

of a 75 W Xe lamp (radiative flux 5×10−5 W/cm2), in the range 300-400 nm, and the beam of 

diode laser tuned at 405 nm. The focused laser source had a radiative flux of 340 W/cm2, which 

decreased to 0.03 W/cm2 when out of focus. 

Raman spectra were recorded with the Raman micro-spectrometer as described in 

chapter 2. The Raman excitation source was a krypton laser at 647.1 nm and, when needed, 

the impinging power was reduced with suitable filters to prevent crystal damage. 

Fluorescence spectra of the solid samples were recorded with a FLSP920 Spectrometer 

by Edinburgh Instruments, also described in chapter 2. 

 

3.2.2 Results and Discussion 

3.2.2.1 Lattice phonon Raman spectra of the reference crystals 

The lattice phonon spectra of pure 9CNA and 9CNAD crystals, which are needed as 

reference spectra of reactant and product, respectively, are reported in Figure 3.16. The 

orthorhombic structure of 9CNA crystal belongs to the space group P21P21P21 (D2
4), with Z=4 

and unit cell parameters a = 17.15 Å b = 15.11 Å, c = 3.93 Å [38]. The four molecules lie on 

generic positions (site symmetry C1) and are exchanged by the group symmetry operations. 

The number and the symmetry of the Raman active lattice modes (k=0) in this orthorhombic 

structure can be determined by the factor group analysis. Of the 24 lattice modes, 21 are 

Raman active, with symmetries 6A1 + 5B1 + 5B2 + 5B3.  

The structure of the most stable polymorph of 9CNAD is triclinic and belongs to the 

space group P1̅ with Z=4 [39], with unit cell parameters a = 10.217 Å, b = 10,235 Å, c = 11.594 

Å,  = 95,20°,  = 90.37 and  =120.13°. Two molecules lie on inversion sites at (0,0,0) and 

(0,1/2,1/2) (site symmetry Ci) while two more lie on generic sites (site symmetry C1) and are 

exchanged by inversion. Therefore, the unit cell contains 3 asymmetric units: one dimer 

molecule and two half dimer molecules. Of the 24 lattice phonon normal modes, 12 are of 

gerade symmetry Ag and are Raman active. 
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Figure 3.16  Lattice phonon Raman spectra and unit cells of 9CNA (bottom) and 9CNAD (top) crystals. 

 

By observing the two spectra of figure 6, one could infer that lattice phonon bands of 

either crystal, suitable for following the progress of the reaction, could be easily identified 

especially in the range 80-130 cm-1. However, the simple features of the 9CNA spectrum of 

Figure 3.16 are quite deceptive. By recording the spectra of a sample of 9CNA with various 

orientations of the crystal planes with respect to the incoming beam, as shown in Figure 3.17, 

we could probe the high anisotropy of this system, arising from the high symmetry of the 

lattice and its large number of vibrational modes. Different orientations also produce very 

different spectral features, and it is clear that, unlike what anticipated, there are many 

accidentally coincident bands observed in 9CNA and 9CNAD. Thus, the task of disentangling 

the spectra of the two species in the course of the reaction is far from being easy, especially 

considering that (vide infra) the irradiated sample will transform into a polycrystalline system, 

will move and get re-oriented.  
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Figure 3.17  Effect of crystal anisotropy on the lattice phonon Raman spectra of 9CNA crystal recorded in different 

orientation and for various crystal faces. 

 

To measure polarized Raman spectra, the orientation of the crystal faces and axes in a 

reference frame must be known. In the case of 9CNA, a reasonable guess of the c 

crystallographic axis could be made even without the aid of the X-rays, as this the shortest axis 

and is very likely the direction of fastest growth and coincides with the long axis of the needle 

crystals. Once the c axis was identified, the 9CNA needle crystals could be rotated around  it, 

thus presenting to the observer (and to the exciting light) either the ac or the bc face. Finally, 

by placing the needle perpendicular to the measuring stage, the ab face could be exposed.  

To clarify the following discussion on polarized spectra of 9CNA crystal, in equation 1 

the symmetry of the polarizability matrix tensor of the unit cell group D2 is given. 
 

(

𝐴 𝐵1 𝐵3
𝐵1 𝐴 𝐵2
𝐵3 𝐵2 𝐴

) ≡ (

𝛼𝑎𝑎 𝛼𝑎𝑏 𝛼𝑎𝑐
𝛼𝑎𝑏 𝛼𝑏𝑏 𝛼𝑏𝑐
𝛼𝑎𝑐 𝛼𝑏𝑐 𝛼𝑐𝑐

) 

 

Figure 3.18 shows the polarized spectra of a 9CNA needle single crystal in which the 

alignment of the c crystallographic axis with respect to the laser beam polarization direction 

is known. In particular, the spectra a) and b) of Figure 3.18 show the Raman scattering from 

crystal faces containing the c axis (either ac or bc face), whereas the spectra in c) concern the 

scattering from the ab face.  
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By keeping excitation and detection both parallel to each other and to the c axis (par-

par configuration), all the modes of A1 symmetry which owe their intensities (or part of it) to 

the cc component of the polarizability tensor could be detected. Top spectra (par-par) 3.18a) 

and 3.18b) must show the same bands, either as pure lattice vibrations (five) or coupled with 

molecular vibrations. Variable relative intensities of the bands may occur, due to slight crystal 

misalignments. By aligning the crystal with the c axis along the direction of light propagation, 

we were looking at face ab as in spectra 3.18c). In the (par-par) spectrum of Figure 3.18c 

excitation and analyzed scattering are polarized parallel to each other. The observed modes 

are still those of A1 symmetry, but now the aa or bb tensor polarization components (or a 

combination of both) are probed, so that the detected bands can display significant intensities 

variability. As for the non totally symmetric vibrations, symmetry selection rules tell us B1 

modes can be detected on the ab face, B2 in bc and B3 in ac. 

The spectra of Figure 3.18a and 3.18b labelled as (par-perp) were collected with the 

Raman scattering polarized perpendicular to both excitation light and c axis for the ac and bc 

faces. This was be attained by rotating both the crystal and the excitation polarization by 90°, 

while keeping the position of the analyzer fixed. These spectra should allow us to disentangle 

and assign B2 and B3 modes, probing tensor polarizability components ac and bc. Analogously, 

the bottom spectra of Figure 3.18c, also labelled par-perp, give information only on B1 modes.  

The careful analysis of the spectra of Figure 3.18 and many others has indeed allowed 

us to identify with certainty at least 19 of the expected 21 lattice phonon bands, safely 

discriminating A1 and B modes and obtaining the information needed to the interpretation of 

spectra with overlap of monomer and dimer bands. 

As a last remark, we should point out that the analysis of the polarized 9CNAD Raman 

spectra would not provide more information on this system. In the case of 9CNAD we are 

dealing with the spectrum of a centrosymmetric triclinic crystal lattice, for which all the total 

symmetric Ag modes are always Raman allowed, regardless of the orientation of the crystal 

and of the polarization of exciting and scattered light. However, different crystal orientations 

probe different elements of the polarizability tensors, and also 9CNAD Raman spectra were 

found to change dramatically from sample to sample, a phenomenon which was especially 

evident when comparing the reference spectra with those of the photoproducts of the solid 

state reaction.   
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Figure 3.18  Polarized spectra collected from ab (bc) 
crystal faces planes in (A) and  (B), and of ab face (C) and 

schematic representation of the needle crystal 
arrangement. 
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3.2.2.2 Raman spectra of irradiated samples 

The broadband UV excitation of the 75 W Xe lamp was used to irradiate the 9CNA 

crystal of Figure 3.19. From the image it clearly appears that the sample is composed of a large 

crystal having the shape of a needle with a micro-crystal lying on top of it.  

 

 
Figure 3.19  9CNA crystal before (a) and after (b) UV irradiation with a Xe lamp. 

 

The Raman spectra of the sample are reported in Figure 3.20 as a function of the 

irradiation time, together with the reference spectrum of the 9CNAD dimer obtained from the 

photochemical reaction in solution. As can be seen from the spectra of Figure 3.20b, in the 

sample under investigation the vibrational bands of the 9CNAD molecule appear after 30 min 

of irradiation and within a time span of 240 min no further spectral modifications could be 

observed.  
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Figure 3.20  Raman spectra of a single crystal of 9CNA as a function of the irradiation time with a broadband excitation: 
(a) lattice phonon modes, (b) molecular vibrations in the region 350-1400 cm−1. The dashed lines identify the vibrational 

modes which best show the progress of the dimerization. 
 

 

The change of the Raman spectrum with time was accompanied by a blue-shift (from 

green-yellow to blue) of the fluorescence emission, detectable even by the naked eye while 

the sample was irradiated. Indeed, the measurement of the fluorescence in the course of the 

reaction (Figure 3.21) showed that new bands at ≈ 411 and 440 nm appeared as shoulders of 

the strong maximum at ≈ 490 nm, which characterizes the emission spectrum of 9CNA and is 

assigned to the trans excimer [13]. The new bands are instead assigned to the exciton emission 

of residual 9CNA molecules trapped within dimeric regions while the reaction proceeds. An 

example of the behavior of the emission with irradiation time is reported in Figure 3.21c. 

Interestingly, a progression of bands at ≈ 411, 440 and 460 nm also characterizes the emission 

spectrum of 9CNAD crystal obtained in solution. These bands probably mark the presence of 

unreacted monomer impurities, which cannot be removed even after recrystallization and 

which cannot even be detected by NMR as having too low a concentration.  
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a) 

 

b) 

 

c) 

 

Figure 3.21  a) and b): fluorescence spectra of pure 9CNA  and 9CNAD, respectively;  
                                   c) set of fluorescence spectra recorded as a function of the irradiation time. 
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Experiments of irradiation were performed on many single crystals which showed a 

similar behavior as that whose Raman spectra appeared in Figure 3.20. However, it was 

observed the timing of the reaction depended on the size, shape and history of the starting 

crystal. This appears to be a common feature in crystal-to-crystal-photoreactions. 

Figure 3.22 shows the bands which allowed us to follow better the progress of the 

chemical reaction with time.  

The energy interval typical of C-H bending vibrations is reported in Figure 3.22a, for 

instance, and we can observe how the ratio between the intensities of the bands at 1040 cm−1 

and 1018 cm−1, belonging to 9CNAD and 9CNA, respectively, monitors the increasing 

concentration of the product and the disappearing of the reactant over a narrow wavenumber 

range. This intensity ratio is therefore an ideal probe to collect quantitative information on 

the reaction yield. 

In the range 1350-1650 cm−1, given in Figure 3.22b, the vibrations typical of the 

aromatic anthracene systems can be found [40,41], with maxima for 9CNA at 1412, 1485, 1562 

and 1628 cm−1, which correspond to C-C and/or ring deformation modes, all of A1 symmetry 

in the 9-substituted anthracene molecule. The weakening of the intensity of these bands 

represents a good probe of the progress of the reaction, as it probes the loss of aromaticity 

arising from reaction at the carbon atoms in position 9 and 10 of the anthracene central ring. 

The two series of spectra in Figure 3.20 (a and b) provide the piece of information we 

were looking for: a detectable concentration of dimer molecules is already present after 30 

min of irradiation, but the lattice phonon spectra at this time are not changed yet. Lattice 

phonon bands of the dimer appear only after 90 min of irradiation. We can therefore infer 

that a significant concentration of dimer product must form in the parent phase, before a new 

crystal phase finally grows, thus following a path already detected by Raman microscopy in 

the dinitro-anthracene photoreaction [35].  

The dashed lines in the spectra of Figure 3.20a identify the lattice dimer peaks the 

intensity of which is visibly increasing with time. While it is straightforward to follow the 

behaviour of the 9CNAD phonon bands with time, it is remarkably more difficult to use Raman 

bands for the disappearance of the monomer, especially below 80 cm−1. This is due to the 

large spectral overlap between reactant and product, as can be seen by comparing the spectra 

of the crystals of the pure compounds, where many accidental degeneracies can be singled 

out. After 240 min the complete crowded spectrum of the dimer is clearly present, showing 
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that the system has undergone a crystal-to-crystal transformation. No further spectral 

changes were detectable at longer irradiation times and the Raman signal remained 

unchanged after keeping the sample for days at ambient p,T conditions. Different intensity 

distributions among the modes are observed when comparing the spectra of the photo-

product with that the 9CNAD reference crystal. This is not surprising, in the light of the large 

differences among the 9CNAD spectra collected at different crystal orientations, as mentioned 

above. The spectrum of the photoproduct is likely the result of various crystal orientations 

and polarization effects, as we expect that many randomly oriented micro-domains are 

formed upon irradiation in the sample of Figure 3.19. In fact, similar large differences in peak 

intensities have been observed for all the irradiated specimens. 

Noticeably, we observed that in the course of the reaction, and precisely when the 

dimer lattice phonons were just detectable, the position of the micro-crystal of Figure 3.19a 

changed with respect to the larger needle, so that  at the end of the process (Figure 3.19b), 

after a macroscopic jump, it was seen stemming from the needle itself. The photomechanical 

response which accompanies several solid state photoreactions is widely studied as a 

potentially exploitable way of converting the absorbed light into mechanical work [35,42-47]. 

The mechanical work originates from of the release of the strain accumulated in the parent 

lattice while the reaction is progressing. As possible sources of strain, we can identify both the 

formation of the product molecules in the parent lattice (the guest-host mechanism) and the 

nucleation of the new phase (the dimer crystal) in the old one. In many cases, and especially 

when the reaction is fast, the uncontrolled energy release can lead to the shattering of the 

crystal [48], and we will also see this in dimerization reaction of 9-methyl-anthracene, though 

in small enough specimens with a large surface-to-volume ratio the excess energy may be 

dissipated through the surface. 
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Figure 3.22  Selected bands of the Raman spectra which show the molecular transformation from 9CNA to 9CNAD; (a) 

wavenumber intervals 1000-1060 cm−1, (b) wavenumber intervals 1350-1650 cm−1. 

 

3.2.2.3 Laser irradiation of the 9CNA crystal 

Either the focused (radiative flux 340 W/cm2) or the unfocused (radiative flux 0.03 

W/cm2) beam of a 25 mW diode laser tuned at 405 nm were also used to irradiate needles 

only a few micro-meters long. When the laser is unfocused, the impinging radiation is evenly 

spread over the entire crystal, while the radiative flux is reduced. This has the effect of slowing 

down the reaction, but to produce it simultaneously over a larger area, and the strain arising 

either at the interfaces of reacted and unreacted portions of the sample or from thermal 

gradients can be avoided [49]. This should prevent the localization of the photoreaction and 

the fragmentation of the crystal under irradiation. Indeed, the many crystals probed with the 

unfocused laser all reacted on time scales comparable to those recorded when employing the 

Xe lamp, despite the greater radiative flux of the 405 nm source. In view of the broader energy 

spectrum of the lamp excitation, this result is not unexpected, but it is difficult to quantify due 

to the variable dimensions of the various samples. Interestingly, the reaction spread quickly 

to the entire body of the crystals. Sometimes, macroscopic changes could be observed, such 

as the motion of the sample or even the nucleation of the dimer in the shape of thin whiskers 

on the surface and on the edges of the disrupted monomer crystal. Such a variety of 



3. Solid state photoreactions 

73 
 

incontrollable behaviours is clearly the consequence of the fact that the different samples 

display different concentrations and distributions of the defects triggering the reaction in the 

crystals. 

By employing a focused laser beam the reaction was both started and then completed 

in a shorter time but appeared to remain localized onto the irradiated area and the growth of 

dimer crystals from the surface of the monomer was always observed (see Figure 3.23). 
 

 
Figure 3.23  9CNA crystal before (a) and after (b) irradiation with the 405 nm line of a diode laser. 

 

3.2.2.4 Kinetics analysis based on the intensities of the Raman bands 

As just pointed out, the initial concentration of defects in 9CNA crystals determines 

the initial concentration of the pre-formed trans-dimers and hence of the trans-excimers 

which can decay non-radiatively to form 9CNAD. The Raman experiments are a direct probe 

of the local molecular response for the photoreaction via the time dependence of the band 

intensities of reactant and product. Performing a kinetic analysis over the different Raman 

energy ranges allows for the investigation of the observed delay between the dimerization bi-

molecular event and the lattice transformation, quantitatively rather than by visually 

analyzing the single spectra. Simultaneously, the applicability of the various kinetic models 

can be tested on both processes. 
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In choosing the sample to irradiate for the kinetic analysis, care was taken to select a 

single needle crystal slightly bent at one end (and therefore certainly defective), as can be 

seen from the microscope image of Figure 3.24. The defective area could be entirely irradiated 

with a slightly unfocused laser and we assumed that here the photoreaction could be started 

quickly.  
 

 
Figure 3.24  9CNA crystal selected for the kinetic study; inset: before (a) and after (b) UV irradiation with a 405 nm line of 

a diode laser. 
 

The spectra used for the analysis (Figure 3.25) were collected in the very same area, 

which at the end of the irradiation displayed the growth of whiskers from the crystal surface. 

The Raman inspection of the growth confirmed this was formed by 9CNAD.  
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Figure 3.25  Raman spectra used for the kinetic study: on the left phonon region; on the right intramolecular modes 

region. 

 

Using the micro-Raman data to analyze the kinetics offers several advantages: the 

technique allows for the direct investigation of the area of the crystal which is irradiated with 

a micrometric precision, and also allows for the close inspection of the effects in its 

surroundings. On the other hand, the spectra may become progressively noisier with the 

advancing of the reaction, while all the bands become broader. This phenomenon, which is 

due to the progressive loss of order in the reacting lattice while a new lattice is formed, is not 

surprising, but undesirable. Besides, macroscopic movements of the 9CNA crystals under 

irradiation, which have been recorded for a large number of specimens and normally occur 

when the Raman spectrum of the lattice is also changing, require the adjustment of the 

microscope focus, thus modifying slightly the measurement conditions. For all these reasons, 

intensity measurements become less reliable at long reaction times and the estimate of the 

reaction extent is possible only if bands of 9CNA and 9CNAD with increasing and decreasing 

intensities, respectively, can be safely identified over the necessary time spans. This is 

relatively easy for the molecular vibrations (see for instance the 1000-1060 cm−1 interval in 

Figure 3.25), but it may pose a problem in the overcrowded lattice phonon region. Here the 

large overlap between the spectra of the two crystals limits the number of bands which can 
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be used in the analysis and requires anyway global analysis methods for the determination of 

the band amplitudes. 

 

3.2.2.4.1 The kinetic equation 

The rather overwhelming literature on the kinetics of solid-state reactions has been 

reviewed in several papers [50-52]. Following the literature on the photochemical reactions 

of anthracene and the spectroscopic evidence, we can assume that 9CNA dimerization 

proceeds via i) the absorption of a photon followed by creation of an exciton (A*), ii) the 

exciton migration to a defect trap, iii) the formation of excimer (AD*) at the defect site, and iv) 

the final non-radiative decay of the physical excimer onto the chemical dimer (A2). These 

sequence of steps can be summarized in the following scheme (in which, for the reasons given 

in the following, no kinetic constant are explicitly). 

 

 

 

𝟐𝑨
          𝒉𝝂          
→        𝑨𝟐 

 

𝐴
          ℎ𝜈          
→        𝐴∗ i 

𝐴∗ + 𝐷
                   
→     (𝐴𝐷∗)

                   
→     𝐴2 ii, iii 

𝐴2 + 𝐴
                       
→       𝐴2 + 𝐷 iv 

 

Chemical reaction and formation of the product crystal phase, as we can probe them, 

do not start simultaneously. The formation of the product in the host lattice and the 

subsequent growth of the new crystal phase both increase the concentration of the defects 

which trigger and then propagate the reaction, with an autocatalytic effect.  

Since steps we can identify as the reaction itself and the catalytic are certainly 

interrelated [53], the actual reaction scheme must be quite complex and is best described with 

kinetic constant which express it in terms of lumped species [50]. If we use a pseudo-

unimolecular step for the original non-catalyzed reaction and then add an autocatalytic effect, 

the kinetic equation proposed by Finkey and Watzky (FW) [54], which directly accounts for 
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autocatalysis, represents a particularly natural choice for analyzing our data. The FW equation, 

rewritten in terms of the conversion fraction α (the fraction of transformed reactant, 

increasing from 0 to 1) as a function of time t is 

 

𝜶 = 𝟏 −
𝒌𝟏+𝒌𝟐

′

𝒌𝟐
′+𝒌𝟏𝒆

(𝒌𝟏+𝒌𝟐
′ )𝒕

                       (2)  

 

Here k1 is the rate constant of the original non-catalyzed reaction and k2′ the constant 

for the autocatalytic process. Indeed equation (2) is adopted for processes where the product 

of the reaction increases the rate of that reaction and has been used to describe nucleation 

processes with nucleation branching [53], nucleation and growth [54], autoinhibition in solids 

[55] and the autocatalysis photodimerization of β-9-anthracenecarboxylic acid [56]. 

It has been shown [52,57] that the behavior of FW equation is numerically 

indistinguishable from that of the classical Johnson-Mehl-Avrami-Erofeyev-Kolgomorov 

(JMAEK) equation [58-64], that has often been used for treating both phase transitions and 

solid state reactions. Although the two equations give totally equivalent fits to experimental 

kinetic data, the FW equation appears preferable, since it is widely accepted that the two 

parameters of the JMAEK equation do not provide a real physical insight of the process under 

investigation [52]. The classical Prout-Thomkins (PT) autocatalytic equation [51,57,65], also 

often used, is just a limiting case of the FW equation (when k2 >> k1). Since the FW equation 

is so flexible, separate fits with the JMAEK and PT equations, and other similar kinetic 

equations, are unnecessary. 

The conversion fractions α to be fed in equation were obtained from the intensities of 

selected bands of reactant and product at different reaction times. Bands in the interval 1000-

1300 cm−1 were taken for the intramolecular vibrations, while among the lattice phonons the 

choice had to be limited to the interval 100-150 cm−1, with bands at 133, 146, 151 and 156 

cm−1 (shown in Figure 3.26), two each for reactant and product.  
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Figure 3.26  Deconvolution of the bands used for the kinetic study in the phonon region. 

 

The observed intensities at each time were fitted as linear combination of the 

intensities of product and reactant with linear coefficients α and 1−α, respectively. Band 

intensities of the pure compounds, overall intensity of each spectrum, and the fraction α, were 

the adjustable parameters. 

Figure 3.27 shows the fractions α reaction time, as obtained from the intensity analysis 

of either the intramolecular vibrations or of the lattice phonons, together with the 

corresponding FW fitted curves. In both cases, the fits yielded R2 values ≥ 0.99. 

 
Figure 3.27  Conversion fraction α as a function of time as obtained from the band intensities of micro-Raman spectra. 

Blue and red points: α values from the global fit to the measured intensities of intramolecular modes and lattice 
phonons, respectively. The half width of the error bars indicates the 3σ standard deviation. Lines: fitted curves according 

to the FW equation. 
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In the case of the intramolecular vibrations, the range of α values covers about the 

65% of conversion for the sample chosen and the autocatalytic model works well, with fitted 

constants k1=(1.04±0.05)×10−3 min−1 and k2′=(7.7±0.2)×10−3 min−1. As the two rates have 

comparable values, we may conclude that the initial concentration of defects, which may act 

as "reaction intermediates" in the dimer formation, rules the early stage of the reaction. 

The kinetic analysis based on the lattice phonon intensities provides information on 

the rearrangement of the crystal lattice of the reactant into the crystal lattice of the product. 

The investigated interval covers a range of transformation more limited than that of the 

chemical reaction, partly due to the experimental problems reported above, but also due to 

longer delay of the transformation itself. Nonetheless, some interesting conclusions can still 

be drawn. The FW kinetic laws still applies, with fitted constants k1 = (2.8±0.3)×10−6 min−1 and 

k2′ = (1.85±0.04)×10−2 min−1. 

Since k2′ >> k1, this is actually the limiting case in which the classic PT autocatalytic rate 

law applies. The non catalytic constant k1 is orders of magnitude smaller than the autocatalytic 

constants k2′ of both the chemical and physical processes, which have comparable values. 

From a physical point of view, this implies that the initial concentration of nucleation 

"seeds" of crystalline 9CNAD is very low and grows slowly with time. From a purely 

mathematical point of view, it means that the curve describing the lattice transformation is 

shifted forward on the time axis with respect to that of the chemical reaction by a delay which 

corresponds to the induction period of the process. As a result, we find that ≈ 30% of the 

monomer molecules have already reacted when finally the bands of the new lattice can be 

observed in the Raman spectrum. The time elapsed between the onset of the chemical 

reaction and the re-organization of the lattice is the time needed for the product 

concentration to cross a saturation limit and determine the new phase segregation. The 

autocatalytic effect, via an increasing concentration of (chemically and physically) reacting 

centers, drives the transformation. 

As far as the expected reaction yield is concerned, it has been demonstrated [66,67] 

that photodimerizations in one dimensional stacks cannot proceed to a complete monomer 

to dimer conversion, due to formation of isolated monomers which remain unreacted. 

Photodimerization driven by defects has also been theoretically considered [66], and it has 

been suggested that a sizable population of isolated monomers should remain also in this 
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case. Due to this theoretical prediction and to the observation of exciton emission attributable 

to unreacted 9CNA, we cannot assert that the 9CNA to 9CNAD reaction proceeds to 

completion. For this reason, we have repeated the fits with equation scaled to yield an 

adjustable final conversion factor α∞. Although the data are not inconsistent with values of α∞ 

just below 1, no statistical improvement of the fits was found with respect to the unmodified 

equation (α∞=1). 

In conclusion, the Raman, fluorescence and optical observations described in this 

thesis, together with the kinetic analysis of the Raman intensities yield a coherent picture of 

the 9CNA solid state dimerization. In the classic literature on solid state photochemistry (Ref. 

[15,25-29] and references therein), reactions in which a phase separation occurs were 

classified as heterogeneous, as opposed to those in which there is not such separation. The 

distinction might not be rigid, as in some cases the system can remain homogeneous up to a 

certain degree of chemical conversion and then switch to heterogeneous. Very recently [68], 

photoinduced denitrogenation solid state reactions in triazolines were studied as test models 

and the nature of the physical changes accompanying the reactions were reviewed, also in the 

light of a previous analysis on the same subject [48]. Following an initial stage of solid solution 

with the reactant, which can be identified as a homogeneous system, the product can i) 

transform into an amorphous phase, ii) form a metastable phase in the lattice of the reactant, 

iii) undergo a structural reconstruction into a new lattice or, finally and more rarely, iv) show 

a single-crystal-to-single-crystal transformation. 

Indeed, the growth of the new crystal phase of the product portrays the 

photodimerization of a single 9CNA crystal as a typical case of phase reconstruction. By 

employing the micro-Raman technique, a single measurement clearly allows for the 

identification both of the stage in which the reacted molecules are hosted in the parent lattice, 

with the dimer forming a solid solution with the monomer, and the onset of the structural 

reconstruction. The spectroscopic data show that no amorphous phase is formed during the 

irradiation, as a lattice phonon pattern is retained in the irradiated spot at all reaction times. 

The dimer crystal structure is detected to appear only when a sizable portion of monomer 

molecules have reacted, without the single crystal showing at this stage macroscopic changes 

as shattering or fragmentation. However, as the spectroscopic technique reveals that the 

lattice is finally changing, the accumulated lattice strain can be released and the relaxation 

process induces quick movements or jumps. 
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The kinetics analysis here performed of the chemical reaction and of the phase 

transformation supports the early hypothesis of an autocatalytic mechanism [45,48-50]. 

Certainly, the complexity of solid state reaction mechanisms precludes the possibility of 

identifying the elementary autocatalytic steps [50]. Nonetheless, the picture of an advancing 

front of reacted molecules, starting from a defect and propagating in its surroundings, conveys 

the idea of an autocatalytic process in our chemical intuition. In fact, it has been proposed 

[69-71] that in defect induced reactions, new defects are created by the separation of the 

product phase. However, even before a phase separation occurs, the formation of any new 

dimer molecule generates new defect sites [66], which are the source from where the reaction 

can spread further. 
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3.3  9-methyl anthracene photodimerization reaction. 

 

9-methyl anthracene (9MA) is another anthracene derivative that undergoes a [4+4] 

photodimerization by irradiation with a wavelength λ > 300 nm [16,72-77] both in solution 

and in the solid state. The reverse process can be induced by heating or by UV light with λ 

below 300 nm (Figure 3.28) [78-80], but the crystalline photodimer is stable at ambient 

conditions and the reaction can be classified as effectively irreversible. 

 
Figure 3.28  Photodimerization scheme of 9MA 

 

In the literature, a number of 9-substituted anthracenes have been investigated and 

most of them follow the topochemical principle, with the noticeable exception of 9-cyano 

anthracene, treated in the previous section. 9MA follows this general rule, thus only the trans 

dimer is expected in the solid state, as observed in previous experiments [77,81] and in the 

present work.  

The structure of the monomer 9MA and of the dimer 9MAD have been published by 

Bart et al. [82] and Cox et al. [83] and have been more recently re-determined by Turowska-

Tyrk et al. [75]. 9MA and 9MAD crystallize in the same monoclinic structure, space group 

P21/c, with 4 molecules (Z=4) and 2 molecules (Z=2) per unit cell, respectively. The cell 

parameters are reported in Table 3.2. 

Table 3.2  Cell paramaters of both 9MA and 9MAD structures [75]. 

 9-methyl anthracene (9MA) 9-methyl anthracene dimer (9MAD) 
Chemical Formula C15H12 C30H24 

Molecular weight 192.25 g/mol 384.49 g/mol 

Crystal system monoclinic monoclinic 

Space group P21/c P21/c 

A 8.8859(13) Å 9.7650(13) Å 

B 14.594(2) Å 13.6035(19) Å 

C 8.0395(11) Å 8.1177(10) Å 

Α 90° 90° 

Β 96.505(14)° 113.308(15)° 

Γ 90° 90° 

V 1035.86 Å3 990.338 Å3 

Z 4 2 
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A comparison between the two structures (Figure 3.29) provides useful hints for the 

understanding of the mechanism of the photodimerization reaction. First of all, the monomer 

in the packing is organized in pairs of molecules related by the crystal inversion centre, with 

distances between adjacent ones below the threshold of 4 Å. In this almost perfect fit for a 

trans dimerization, a reaction quickly progressing with a high yield is expected. Secondly, the 

structures of both monomer and dimer belong to the same space group P21/c, with 

differences in cell parameters in the 1% to 10% range.  
 

a) 

 

b) 

 
Figure 3.29  Crystal structure of a) 9MA monomer and b) 9MAD [75]. View is along the 

a axis 
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Such a limited variation accounts for the reasonable volume contraction of 4.4% 

observed in going from the monomer to the dimer. Lastly, the molecular orientations in both 

structures are well compatible with the established reaction mechanism, which predicts the 

bending of the anthracene rings at positions 9 and 10 under irradiation, to facilitate the 

photodimerization. In other words, reactant molecules appear to be in an ideal structural 

preformation to give the trans topochemical dimer, with a reaction yield which can be 

estimated to be close to 100%. The crystal-to-crystal transformation would still require slight 

structural rearrangements, and these would explain the mechanical motions that accompany 

this as well as the other solid state reactions described in the previous paragraphs of this 

chapter.  

The structural match between reactant and product in the present case gives the 

chance of having a 100% conversion. This makes of 9MA an ideal model system to illustrate 

how heterogeneous reaction kinetics, together with a suitable crystal shape, can be used to 

design elements of new potential photomechanical materials [77]. 

 

3.3.1 Lattice phonon Raman spectra of the reference crystals.  

9MA was purchased from Sigma Aldrich and the single crystals were grown from an 

acetone solution by slow evaporation at room temperature. 9MAD was synthesized by 

irradiating a nearly saturated solution of 9MA in ethanol with a XBO lamp for 4 hours, using a 

bandpass filter to select the 300-400 nm wavelength range. Colorless rhombohedral crystals 

of 9MAD, as shown in Figure 3.30b, were obtained by precipitation from the ethanol solution. 

Both 9MA and 9MAD crystals were characterized by Raman spectroscopy in the lattice phonon 

(Figure 3.30a) as well as in the internal vibrations (Figure 3.30c) regions. The latter spectra 

were found to differ especially around 1400 cm-1, where some typical modes of the 

anthracene backbone obviously disappear after dimerization, as reported above 9CNAD. 

More different spectral features characterize the range 300-600 cm-1 and above 120 cm-1 

(Figure 3.30a). 
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Figure 3.30  a) Raman spectra down to the lattice phonon region of 9MA and 9MAD; b) crystal shape of the 9MAD 

crystals obtained from the irradiated in solution; c) Comparison of intra-molecular modes of reactant, 9MA, and product, 
9MAD. 

 

Polarized phonon spectra of 9MA and 9MAD are shown in Figure 3.31. An accurate 

analysis of mode assignment was beyond the aim of the present work, where the main 

purpose was to understand qualitatively the anisotropic effects due to reorientations of the 

samples during the reaction. It was also important to check the profiles of the spectra of the 

crystal powder against those of single crystals in different polarization conditions. Therefore, 

we limit the discussion to recall that a mutual exclusion rule is expected for the Ag (parallel-

parallel, or par-par configuration) and Bg modes (parallel-perpendicular, or par-perp 

configuration) of a centrosymmetric monoclinic crystal. All the bands of gerade symmetry 

must be instead visible in a powder-like sample, where all possible orientations are present 

and therefore the complete Ag+Bg spectrum should appear. This is perfectly reproduced in the 

spectra of 9MA (left side of the figure) as in a textbook example. The bands in the region above 

110 cm-1 belong to internal modes, which are expected show as closely spaced Ag+Bg doublets. 

Lattice dynamics calculations, not reported here, confirm this finding. 
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Figure 3.31  Polarized lattice phonon spectra of a) 9MA and b) 9MAD. 

 

The same considerations hold for the polarized spectra of the dimer shown in Figure 

3.31b, which also follow the selection rule of mutual Ag/Bg exclusion in the corresponding 

monoclinic system. Here the frequency range boundary between inter- and intra-molecular 

modes is even more evident: the three most intense bands above 120 cm-1 are easily assigned 

as intramolecular. For these modes, doublets with different polarizations are expected, but 

just one band for both of them shows up in either configuration, not being resolved at room 

temperature. Their unusually high intensity can be explained by the more flexible nature of 

the dimer molecule, whose low frequency internal modes should therefore be larger than 

those of the monomer, both in number and activity, carrying a stronger coupling with the 

lattice phonons. Again, what observed above is confirmed by lattice dynamics calculations. 

3.3.2 Raman spectra of the irradiated samples. 

The photodimerization of 9MA crystals was first studied using high-resolution solid 

state 13C NMR by Takegoshi et al. [83], who showed that only the trans photodimer was 

formed. The same study reports that both cis and trans dimers are produced in solution, 

although the cis dimer is thermodynamically unstable and a thermal reverse reaction occurs 

[16,84]. Later, Turowska-Tyrk [75] and coworkers monitored the structural changes in a crystal 
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of 9MA during the photodimerization by means of X-ray diffraction, recording only a 28% 

degree of monomer-dimer conversion, because of crystal disintegration. They justified the 

disintegration process as due to the dimer crystal packing, which resulted in an increase of the 

unit cell volume at the beginning of the reaction, followed by a subsequent contraction. It is 

worth mentioning, however, that the irradiation power they used was of 24 mW/mm2, that is 

four order of magnitude larger than that used in the present work, and this can reasonably 

explain the outcome of their experiment. In a time resolved X-ray diffraction study by Mabied 

and coworkers [76], the complete transformation of the reactant was reported for powder 

samples and, obviously, using these rather than macroscopic single crystals prevented the 

system disintegration.  

A very recent study [77] reports on how crystal morphology and reaction dynamics can 

affect the photomechanical deformations of single microcrystals. By changing preparation 

conditions, Bardeen and coworkers obtained differently shaped crystals, microneedles or 

microribbons, which bent or twisted, respectively, under irradiation. For both shapes, the 

maximum deformation occurred at roughly the midpoint of the reaction, after which the 

crystals recovered their original shape. This behavior was qualitatively explained as the result 

of the motion driven by the strain between spatially distinct reactant and product domains, 

also called heterometry [77]. However, the Authors found no explanation for a sizable amount 

of unreacted monomer still found in their system at the end of the process. 

Different techniques have been used to study 9MA photodimerization but not all of 

them are equally effective to follow the dynamics of the reaction. The crystal size is also of 

relevant importance, because of the constraints produced in large crystals under 

transformation, which lead to disintegration and prevent following the reaction by x-ray single 

crystal technique. In this thesis we report the study of 9MA photodimerization by means of 

Raman spectroscopy both in the lattice phonon and in the intramolecular vibrational regions, 

where we have detected the structural modifications and the chemical transformation, 

respectively.  

Figure 3.32 shows the morphology of a crystal of monomer before and after irradiation 

with a diode laser of 20 mW of power, tuned at 405 nm and focused on a specific region of 

the sample. The starting power impinging onto the sample was 3x10-3 mW/mm2, but was 

attenuated with an optical filter by a factor of two. Nonetheless, after 5 minutes of irradiation 

the crystal had already split in two bits. The Raman spectra were collected (Figure 3.33) and 
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the transformation resulted so fast that both inter- and intramolecular spectra did not show 

any residual peak of the monomer, suggesting that the reaction had reached its completion. 

It is worth mentioning that the reaction was not confined to the surface of the crystal but had 

been propagating in its depth, as confirmed by the spectra recorded by varying the microscope 

objective from 50x to 10x.  

 

 

Figure 3.32  Crystal morphology of the crystal before (left) and after (right) 5 minutes of irradiation.  

 

 

Figure 3.33  Raman spectra in the lattice phonon region (left) and in the 300-600 cm-1 intra-molecular region (right) for 
the irradiation process of the crystal shown in Figure 3.32. 
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A new crystal, shown in Figure 3.35, was also irradiated, attenuating the power by a 

factor of two order of magnitude. Even with such a lower irradiation power the crystal broke 

again in two parts after 25 minutes. The Raman spectra of the largest segment at this stage of 

the reaction are shown in Figure 3.34. 

 

 
Figure 3.34  Raman spectra in the lattice phonon region (left) and in the 300-600 cm-1 intra-molecular region (right) at 

time 25 minutes.  

 

By looking at the figure, it is interesting to notice that, in these conditions and at this 

reaction time, we have picked up the onset of the molecular transformation at its very 

beginning, whereas the lattice has not yet changed. In fact, the small band above 300 cm-1 is 

the only modification observed in the Raman spectra, and it probes the initial appearance of 

dimer molecules in the unchanged monomer lattice.  

The largest fragment was irradiated for further 10 minutes and the spectra of figure 8 

indicate that this additional irradiation time was sufficient to reach the completion of the 

photodimerization. Also shown in the figure is a linear scan of the spectral profiles, which was 

recorded starting from the point where the laser beam was focused up to the not irradiated 

end. The purpose of this experiment was to identify the possible propagation of the front of 

dimer molecules into the non irradiated regions of the crystal, by producing a set of spectra 

of both phonons (Figure 3.35 left side) and internal vibrations in the range 150-600 cm-1 

(Figure 3.35 left and right sides). Both spectral regions show that the reaction is indeed 

confined to the irradiated zone of the sample, without any propagation to the rest of the 
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crystal. Reacted and unreacted zones can also be distinguished from each other by the 

different degree of grey shade on the crystal surface.  

 

 
Figure 3.35  Crystal shape of the 9MA before and after irradiation and linear map of the lattice phonon (left) and 

intramolecular (right) spectral range. 
 

Finally, to better understand the progress of the reaction, a fresh monomer crystal was 

irradiated with an attenuation of the laser beam by a factor of 1000, i.e., an effective power 

onto the crystal of 3x10-6 mW/mm2. The pictures of the crystal before and after 21 minutes of 

irradiation, together with the corresponding Raman spectra, are shown in Figure 3.36. The 

spectra definitely confirm that after 21 minutes some dimer bands start to appear (see the 

internal vibration bands marked with vertical red lines in the figure) whereas the lattice 

phonon spectra are still entirely those of the monomer lattice. The crystal, despite being 

transformed, maintains its shape without breaking.  

It is now definitely clear that the molecular transformation precedes that of the crystal 

and the dimer molecules are hosted in the monomer lattice in the early stages of the reaction. 

In the specific case of 9MA-9MAD, this agrees with the idea of the almost perfect geometrical 

fit of reactant and product systems, which we were able to infer on the basis of the structural 

data of Figure 3.29. This is also in agreement with the results obtained for other solid state 

photoreactions reported in literature [35,85] and illustrated in the previous sections of this 

chapter.  
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Figure 3.36  Crystal morphologies before and after irradiation by a diode laser tuned at 405 nm with an optical filter OD = 

3.0. Raman spectra in the phonon (left) and in the intramolecular (right) regions. In the middle a close up of the actual 
irradiated zone of the crystal is shown. The vertical lines mark internal modes of the dimer molecule. 

 

In conclusion, we performed a Raman study of 9MA during its [4+4] photodimerization 

reaction. By using microscopy and confocality we were able to investigate at the same time 

and in the very same spot the reaction dynamics for both its molecular and its lattice 

transformations. This [4+4] cyclo-addiction is a typical example of a crystal-to-crystal 

photodimerization which follows perfectly the topochemical principle [26]. The study was 

carried out using the setup described in chapter 2 and irradiating the sample by a diode laser 

tuned at 405 nm and modulating its power of irradiation to slow down the reaction in its initial 

stage. In this way the fragmentation of the single crystal could also be avoided. 

It is worth comparing these last results obtained what obtained for the photoreactions 

of DNO2A (paragraph 3.1) and 9CNA (paragraph 3.2). As already observed with the crystal-to-

crystal reaction of DNO2A to AQ and with the dimerization of 9CNA, the chemical 

transformation (molecular changes) precedes the crystal lattice transformation (physical 

changes).  

The mechanical response to the light, which is clearly depending on the shape and the 

length scale of the crystal, has been attributed to the interfacial strain generated at the 

interface between different domains of the dimer embedded in the monomer matrix [77].  
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The actual value of the reaction yield for the solid state dimerization of 9MA is still 

matter of debate. The expectation would be for a yield close to 100%, because of the perfect 

fit between reactant to product molecules. In their work, Mabied and coworkers [76] reported 

that the reaction in a polycrystalline powder had gone to completion. However, their analysis 

was based on the disappearing of the monomer signals in the IR spectra, which can monitor 

the reaction progress from the molecular point of view only, and give no information on the 

corresponding changes of the unit cell. Bardeen and coworkers [77], working on microribbons 

and microneedles, observed a 10-20% of unreacted monomer. As mentioned above, the 

Authors could not provide a clear reason for this behavior as, unlike 9ACA and 9CNA, 

monomers are already paired in their lattice, and statistically none of them should be left out 

as the reaction goes on. Lattice distortions and formation of local defects in the course of the 

reaction were claimed as possible explanations [77]. 

In the present experiments we did not observe any residual monomer bands (see 

Figures 3.33 and 3.35) in the Raman spectra, and this is a neat indication of a complete 

reaction, within the detection limits of the spectroscopic method. Moreover, the 

topochemical nature of the process makes this transformation dramatically faster than those 

previously studied [35,85], with the photoproduct that can be obtained within minutes. We 

believe that reaction rate and reaction yield are two non separable factors in solid state 

reactions, which both drive the outcome of the reaction. It may well be of course that a role, 

for the purpose, is played by defects, kind and size of the sample and its history: intrinsic 

defects of the sample can destroy the perfect order of the molecules, prior of the formation 

of reactive sites, changing the kinetics of the reaction and forming an amount of un-reacted 

monomer.  
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3.4 The Reversible Photodimerization reaction of 9-anthracene-carboxylic 

acid 

 

In the search of model systems for solid state photodimerizations of substituted 

anthracene compounds it was unavoidable to deal with the case of 9-anthracenecarboxylic 

acid (9ACA) (Figure 3.37), as an example of reversible reaction. 

 
Figure 3.37  9-Anthracene-carboxylic acid structure and reactivity scheme. 

 

In both the known polymorphs of 9ACA [16,49,86,87] the anthracene backbones of the 

molecules are aligned in stacks in which the geometrical requirements for the [4+4] 

dimerization, following the topochemical principle, are fully satisfied. Besides, the system 

displays excimer fluorescence, that is the proof of the formation of the intermediate state, 

whose existence is the first necessary step of the reaction. However, the molecules in the 

9ACA crystal stacks are arranged to yield the sterically hindered head-to-head (cis) 

photodimer, and already in 1971 Schmidt and Heller [16] stated that 9ACA was highly 

photostable in the solid state. Since then there have been a number of reports [49,87,88] 

which contradict the early findings. In the light of the results of these reports, 9ACA does 

dimerize in its crystal state, but the reaction is reversible within a timespan which depends on 

sample size and history, temperature and exposition to ambient light. The photoreaction takes 

place relatively quickly in solution [89], where it yields a mixture of both head-to-tail and head-

to-head dimers, with the former prevailing by a ratio of 5:1, but Ito [88] found that the head-

to-head form was actually more stable in the solid state than in solution. Most recently 

Bardeen and coworkers [11,47,49,90] have described a reversible twisting of microribbons of 

9ACA resulting from its light irradiation. The analysis of the experimental data suggested that 

crystal motion is generated by the interfacial strain between unreacted monomer and 

photoreacted dimer regions within the crystal, as in the case of 9CNA reported in chapter 3.2.  

Photoactivated motions in reversible systems have been considered particularly 

appealing in the search of micro and nano photoresponsive objects [11,47,49,90], and this is 
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one of the reasons why research on systems like 9ACA and similar compounds has been 

revisited.  

Interestingly, however, X-ray characterization of neither photodimer, head-to-tail- or 

head-to-head have ever been reported in the literature, being in fact the crystal motion under 

irradiation the sole hint of the structural modification. In the case of the head-to-head dimer 

in the solid state reaction, one can assume that this is due to the short lifetime of the species 

and that by the time the system could be probed by X-rays, it has already reverted to the 

monomeric state. It is all the same quite surprising that even after 77.8 h of irradiation, crystal 

samples still display the X-ray structure of the monomer, just with an increased disorder [87]. 

In the light of the somehow controversial and incomplete information available on 

9ACA solid state behavior under irradiation, our work on this system focused on the detection 

of the structural change linked to the chemical transformation. In other words: after 

recognizing that NMR and spectroscopic results detect the (labile) existence of the dimer 

under irradiation, we wondered whether the elusive crystal-to-crystal step could be observed 

by lattice phonon Raman spectroscopy. The presence of two stable 9ACA polymorphs and 

their possible different reactivity also needed be investigated. 

  

3.4.1 Experimental 

The overall instrumental set up and the irradiation conditions were the same as for 

9CNA and have already been described in detail in Section 3.2.1 of this Chapter. 

 Well formed, single crystals of 9ACA, suitable for irradiation, were grown by slow 

evaporation either from ethyl acetate or p-xylene solutions of the commercial product from 

Aldrich, following the procedure described in Ref [11]. In the former case it is possible to 

obtain the monoclinic P21/n polymorph [11,86], also present in the pristine material and 

named hereafter α-9ACA. In the latter case the triclinic P1̅ structure (β-9ACA) is instead grown. 

Light yellow needles a few mm long were obtained in both cases. We also prepared 9ACA 

microribbons as those studied in Ref. [11]. The microribbons were obtained at the interface 

between 9ACA dissolved in ethyl acetate and milliQ purified water, following the method and 

the concentration conditions of Ref. [49]. When the ethyl acetate evaporated, the 9ACA 

microribbons floating on the water surface were carefully recovered after letting also the 

water evaporate slowly in the dark over a period of two weeks. 
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Following Ito and Wolff [88,89], we assumed that both head-to-head and head-to-tail 

photodimers, although in different proportions, could be synthesized and then separated by 

precipitation in solutions of various solvents, such as ethanol, methanol, ethyl-acetate, 

methyl-tert-butylether (MTBE), acetone, anisole and methyl-anisole. As in the case of 9CNAD, 

the aim was to synthesize through a different route the pure product of the reaction, to have 

a reference Raman spectrum to compare with those obtained during the reaction progression 

in the solid state. The surprising results of our approach will be described in detail in paragraph 

3.5. Here we only report that it did not produce the expected dimer phases. 

3.4.2 Results and Discussion 

3.4.2.1 Lattice phonon Raman spectra of the reactant crystals 

Figure 3.38 shows the lattice phonon Raman spectra of the two known 9ACA 

polymorphs. The monoclinic P21/n structure [86] of α-9ACA has 4 molecules per unit cell (Z = 

4) and structural parameters a = 3.897 Å, b = 9.355 Å, c = 28.980 Å and β=90.79°. The molecules 

lie on generic positions (site symmetry C1) so they are all symmetry equivalent and exchanged 

by the group four symmetry operations.  

 
Figure 3.38  Lattice phonon Raman spectra of the two 9ACA polymorphs. 
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The factor group analysis of the 24 lattice modes at k = 0 shows that 12 of them are 

Raman active, with symmetries 6Ag + 6Bg. To identify all the expected bands of α-9ACA, the 

polarized Raman spectra of Figure 3.39 were measured. This approach was needed as the 

spectrum of the cis-dimer solid phase, which could not be synthesized in solution, is unknown. 

Therefore, we wanted to make sure that any changes observed in the spectrum of α-9ACA 

under irradiation were not due merely to polarization effects as a result of sample movements 

and re-orientation. 

 

 
Figure 3.39  Polarized phonon Raman spectra of α-9ACA 

 

The long axis of the α-9ACA needle crystal, that is the direction of its fastest growth, 

was assumed to be coincident with the shortest a crystallographic axis. The crystal placed 

between the crossed polarizers of an optical microscope gave extinction in the direction nearly 

perpendicular to the needle axis, and such a direction was identified with the b 

crystallographic axis of the monoclinic structure. Accordingly, the needle was placed vertically 

aligned on the spectrometer measuring stage, and the Raman spectra of Figure 3.39 were thus 
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recorded in such a way to keep the polarization direction of the excitation light either parallel 

or perpendicular to the b monoclinic axis, while the Raman scattering was analyzed with a 

polarization always parallel to the axis. The spectra obtained are then labeled as (bb) and (ab) 

respectively following the Porto’s notation. In the top spectrum of Figure 3.39 only the modes 

of Ag symmetry can be observed. The Bg modes can instead be detected when the ab matrix 

elements are probed, as in the bottom spectrum of Figure 3.39. Residual polarization should 

account for features common to the two spectra. 

The triclinic P1̅ structure [49] of β-9ACA has cell parameters a = 3.8896 Å, b = 9.384 Å, 

c = 14.852 Å, α = 101.784°, β =95.457°, γ = 90.220°. The two molecules per unit cell lie in 

generic positions and are exchanged by the crystal centre of symmetry. Out of the 12 lattice 

modes, the 6 of Ag symmetry are Raman active. Measuring polarized Raman spectra is not 

necessary here, as all the Ag bands can be detected in Figure 3.39, and in any other orientation 

of the triclinic structure. Intensity variations among bands in different spectra may 

nonetheless occur, as a result of different selections of the polarizability matrix elements 

when the crystal orientation changes.  

 

3.4.2.2 Molecular arrangements and reactivity 

The two 9ACA structures (Figure 3.40) have almost identical densities (1.397 and 1.398 

g/cm3 for monoclinic and triclinic phase, respectively) and therefore higher density, usually 

corresponding to a more efficient packing, is not in this case a criterion that can be used to 

predict the more stable polymorph. On the other hand, either form can be obtained by simply 

changing the re-crystallization solvent, and predictably their energies are very close.  

To verify which polymorph is the more stable, we performed crystal lattice energy 

minimization calculations with a model potential. A detailed description of the computational 

approach and the potential model used will be given and can be found in Chapter 4. A 

comparison between the molecular geometries in the two crystal structures confirms that 

these are virtually identical. The carboxyl group is in both cases (nearly) planar and its plane 

forms a dihedral angle of ≈ 54° with the plane defined by the anthracene skeleton. The ab-

initio optimized geometry for the molecule in the gas phase is very similar to that found in the 

crystal, with a dihedral angle of 47.8°. Since it was very reasonable to assume the same starting 

molecular geometry for both polymorphs, it was also reasonable to calculate their crystal 

lattice energies adopting identical molecules for them, especially in view of the very close 
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energy values. The choice of the ab-initio geometry did not appear to be the one to prefer. In 

fact, the hydrogen bonds involving the COOH groups are very important features in the 

molecular packing of these systems and certainly the small, but significant difference in the 

experimental dihedral angle can be attributed to the solid state pattern of interactions. For 

these reasons, the molecular geometry selected for our calculations was the one calculated 

as the average of all the asymmetric units of both the monoclinic and the triclinic structures. 

Minimum potential energy structures for the two structures are reported in Table 3.3, along 

with the computed cell unit parameters. For the latter, the match with the experimental 

parameters is excellent, thus confirming that the chosen potential model properly describes 

this crystal structures. As a matter of fact, from our calculations emerges that the two 

polymorphs have almost identical energies, and the monoclinic is calculated to be more stable 

just by less than 4.0 10-2 kcal/mol. This is also in agreement with the experimental findings 

and an analysis of the molecular packings.  

Table 3.3 The experimental structures of the known 9ACA polymorphs [86,49] are compared to the minimum potential 
energy Φ. Energies are in kcal/mole, unit cell axes a, b, c are in Å , angles α, β, γ in degrees, and cell volumes V in Å3. 

 a b c α β γ V Energy 

 Polymorph α 

Experimental 3.897 9.355 28.98 90.0 90.79 90.0 1056.407  

Minimum φ 3.727 9.505 29.90 90.0 88.0 90.0 1058.620 -27.5752 

 Polymorph β 

Experimental 3.8896 9.3840 14.8520 101.784 95.457 90.220 528.117  

Minimum φ 3.747 9.470 15.356 100.97 98.52 87.35 528.865 -27.5379 

 

A detailed discussion on the similarities and differences of the two structures can be 

found in reference [49], and is only resumed here. 
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Figure 3.40  Comparison of the two polymorph structures: α-9ACA (top) and β-9ACA (bottom). 

 

In both 9ACA structures there is a single type of hydrogen bond (or motif) which forms 

a cyclic dimer around a site of Ci symmetry, as clearly illustrated in Figure 3.41, in which the 

carboxylic groups are rotated by about 55° with respect to the nearly planar anthracene 

backbone. Each molecule belongs to a stack formed by the anthracene cores, and the 

hydrogen bonds link pairs of molecules belonging to neighboring stacks. The solid state 

dimerization reaction is an intra-stack process, which should only perturb the inter-stack 

hydrogen bonds. Since there are only 2 molecules per cell in the β-9ACA structure, only one 

type of stack pairing is possible. Instead, in the monoclinic α-9ACA structure with Z = 4, two 

distinct pairs of stack can be identified, rotated with respect to each other, while the intra-

stack distances and relative molecular orientations within the stacks are virtually the same for 

both structures. This means that no large differences should be expected in the photo-

reactivity of the two polymorphs. 
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Figure 3.41  Hydrogen bond type in α-9ACA (left) and β-9ACA (right). 

 

3.4.2.3 Lattice phonon Raman spectra of 9ACA single crystals under irradiation 

Figure 3.42 shows the lattice phonon Raman spectra of a crystal of α-9ACA irradiated 

with the unfocused light of a diode laser at 405 nm, as a function of the irradiation time, 

together with the image of the sample.  

 

 

 

Figure 3.42  Left: Lattice phonon Raman spectra of α-9ACA crystal irradiated by unfocused diode laser (left); Right: image 
of the irradiated specimen. 
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The choice of using the laser beam unfocused was dictated by the need of irradiating 

in a uniform way in area as large as possible of a macroscopic sample (Figure 3.42 right). This 

allowed us to identify easily the irradiated spot also in the Raman measurements taken at very 

different times and in the case of bending and twisting of the specimen. 

As can be seen from Figure 3.42, α-9ACA proved to be very resilient to reacting, and 

spectra taken at intervals of 30’ of light exposure did not show any change up to 2h, when 

finally, and suddenly, new phonon bands appeared. In the meantime, no macroscopic 

movements of the sample were detected, and the Raman measurements in the energy 

interval of the internal vibrations (here not shown) turned out to be very noisy for all the 

tested samples and did not give a clear hint of a chemical process. In fact, we could not 

monitor unambiguously a decrease of the intensity in the vibrational bands characteristic of 

the anthracene aromatic cores, decrease which would be the evidence of the dimerization 

reaction. However, the outcome of the spectrum taken after 2h is unmistakable: the monomer 

lattice is transforming into a new one, with new spectral features at 44 cm-1 and between 110 

and 145 cm-1. Such a transformation must be accompanied by a chemical process, marked by 

the observed changes in the intramolecular vibrational bands which fall in the same spectral 

range of the lattice phonons, like the band at 318 cm-1. Two more hours of continuous 

irradiation, did not produce any further progression of the reaction. The study of this 

photodimerization by UV-vis absorption spectroscopy [87] revealed that in 9ACA powder the 

behaviour of the monomer concentration with time is accounted for by a kinetic equation 

which includes a step of autoinhibition or negative catalysis. The origin of the inhibition 

process is not clear, but, as a result of it, the more product is formed the more the reaction 

slows down, never reaching completion. Indeed, also for the sample of Figure 3.43, no further 

spectral changes were observed during an illumination of hours. Besides, the transformations 

undergone by the crystal were found to be totally reversible, as the Raman lattice phonon 

spectrum of the α-9ACA polymorph is fully recovered after 24 h in the dark, as seen in Figure 

3.42. Note that the spectrum does not even display band broadening and increased spectral 

noise, as it would be expected if the systems turned back into its monomeric state but with 

some structural disorder. It would be worth mentioning that the sequence of spectra of Figure 

3.42 is in fact the first evidence of a structural transformation linked to the dimerization of the 

α-9ACA system. As reported above, no dimer structure could be found by single crystal X-ray 

diffraction [87], as the only effect of long hours of irradiation of crystals larger than 50 µm was 
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an apparently more disordered monomer structure, with unit cell parameters only slightly 

changed with respect to the original crystal. Not all the irradiated samples of α-9ACA showed 

the evidence of structural changes, but in some, instead, an increase of disorder was 

detectable from the lattice phonon spectra. 

 

a)

 

b) 
 

 

Figure 3.43  Time sequence of Raman spectra and images of irradiated sample. 

 

In Figure 3.43a, for instance, the time sequence of the spectra recorded upon 

irradiation with focused laser light for the sample in Figure 3.43b is reported. It can be noticed 

that, after several hours of illumination, the Raman spectrum has retained the feature of the 

monomer, but it has become more noisy and intensity variations in the bands can be 

observed. Either structural changes did not occur or they were reversible even on the 

timescale of each single experiment. In the latter case the variation of intensity could be 

ascribed to the fact that at the end of the sequence of transformations, the crystal must be 

formed by many micro-domains differently oriented. 

Finally, irradiating single crystals of the triclinic β-9ACA did not produce instead any 

change in the lattice phonon spectra despite the high number of tested samples and 

prolonged irradiation. As in the example mentioned above, long illumination times yielded 



3. Solid state photoreactions 

103 
 

monomer spectra noisier than at the beginning, and affected the intensity ratios of the various 

bands, but what lies behind it could not actually be disclosed. 

 

3.4.2.4 Lattice phonon Raman spectra of 9ACA microribbons under irradiation 

The reversible photoinduced twisting of microribbons of α-9ACA under spatially 

uniform irradiation were studied in Ref. [11], and a detailed analysis of the movement was 

performed in that work. The microribbons prepared for this thesis work were found by the 

Raman lattice phonon spectra to have the structure of α-9ACA, as expected [11]. In Ref. [11], 

the orientation of the crystallographic planes in the microribbons was determined by X-rays, 

and the ribbon face was found to be parallel to the ab crystal plane. In fact, through the 

comparison between the microribbon spectra (Figure 3.44) and the bulk single crystal 

polarized spectra, we were able to confirm the correctness of the orientations assumed for 

the bulk α phase of section 3.4.2.1. 

 

 
Figure 3.44  Raman spectra and image of a microribbon (α-phase). 

 

In the case of the microribbons, the onset of the photodimerization reaction [47] is 

given by the intensity decrease of the green-yellow excimer fluorescence, which is partly 

replaced by an exciton-like blue-shifted emission, assigned to unreacted, isolated monomers, 



3. Solid state photoreactions 

104 
 

trapped in the environment of the dimer species, as in the case of 9CNA. The X-ray 

determination of the dimer structure was not possibile neither in the bulk or in the 

microribbons of 9ACA and of a series of its derivatives [47], as only the monomer structure 

was found after the time elapsed between the end of the irradiation and the actual X-ray 

measurement. The most remarkable feature of the microribbon is, however, their twisting 

under irradiation, which was present also in all our samples. This motion, proceeds by cycles, 

at the end of which the initial conformation of the sample is restored, and it is assumed to be 

caused from the building-up in the crystal lattice of the strain resulting from the coexistence 

of two or more chemical species. In our system the different species could be identified in the 

monomer and the dimer molecules, but could also be reaction intermediates. The 

phenomenon is generally called heterometry [11]. It is not clear what role lattice distortions 

and modifications can play in this kind of process.  

In our experiments, microribbons were seen to twist and bend, qualitatively in the 

same way as described in ref [11]. However, despite the fact that the time elapsing between 

the switching off of the irradiation and the positioning of the sample on the micro-Raman 

stage was less than a minute, no changes in the Raman lattice phonon spectra were ever 

detected. This means that no structural modification could be seen, at least on the time scale 

of our experiments. Therefore, the origin of the motion cannot be likely ascribed the 

adjustment of the product lattice into the one of the reactant. No aid in the interpretation of 

the cause of the motion came from the analysis of the spectra in the internal vibrations modes, 

because, as in the case of the α-9ACA bulk crystal, the results were affected by the high noise 

present in the spectra and small changes were observed only in the fingerprint region. The 

difficulties encountered in the spectral analysis is also probably due to the large concentration 

of unreacted monomer left in the samples. The only possible way of interpreting these results 

is assuming that, while the chemical reaction (reversibly) occurs, with the microribbon motion 

being the effect, no phase reconstruction does take place. 

In conclusion, we have attempted the study of the reversible [4+4] photodimerization 

reaction of 9ACA. In the literature, the spectroscopic evidence of the chemical reaction in the 

solid state is based on the change of the fluorescence emission [47] and of the absorption 

spectrum [87], but so far there is no clear evidence of a phase transformation linked to the 

chemical step. We have recorded a significant change in the lattice phonon Raman spectra of 

an α-9ACA single crystal, which also proved to be fully reversible. This means that, at least in 



3. Solid state photoreactions 

105 
 

some specimens, the lattice transformation occurs. There are hints that something is 

happening in the lattice under irradiation also when we are dealing with microribbons of the 

same α-polymorph, but they are very elusive, whereas, at least for the few samples tested, 

the β-polymorph seems to be definitely (and unexpectedly) photostable. 

Both polymorphic forms of 9ACA are characterized by the same hydrogen bond motif. 

Each potentially reacting pair of monomers in a stack is linked to another pair in a neighboring 

stack. However, statistically, two dimerization reactions in the two stacks may not involve the 

molecules connected by two adjacent centres of symmetry. In other words, at any stage of 

the reaction, the hydrogen bond patterns can be highly disrupted because the bonds may be 

now exerted between pairs of dimers, pairs of monomers or dimers and monomers. This 

constitutes an important source of strain, and the necessary rearrangements of the 

interaction patterns may produce the macroscopic crystal motion and also contribute to the 

intrinsic instability of the product. Statistically, of course, this prevents the completion of the 

reaction, but it could also be the origin of the negative autocatalytic step identified by Moré 

and coworkers [87]. In these conditions, it is not perhaps unrealistic to think that the 

concomitant steric hindrance of the dimers and the hydrogen bonds dynamic disruption 

concur to drive the reaction backwards, so that, when the light is switched off, the system 

fully reverts to its initial chemical state. In the meantime, with high probability, the product 

lattice has never formed.  

Given the strong similarities between the two polymorphs of 9ACA, we cannot really 

explain why the β form appears to be photostable, and we believe that the subject is still 

worth pursuing. 
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3.5 Pseudo-polymorphism  

 

Pseudo-polymorphism was first defined by McCrone in 1965 [91] and occurs when 

different crystal structures of a specific compound differ in the nature or stoichiometry of 

solvent molecules included in its lattice [92]. Actually, there is a still open debate about the 

exact definition of the terms pseudo-polymorph, co-crystal and solvate (hydrate when the 

solvent is water) [93] but a clarification about that distinction has been made by Bernstein 

[94] and a schematic representation of his classification is shown in Figure 3.45. 

 

 
Figure 3.45 Schematic representation of polymorphs (A), pseudo-polymorphs (B) and co-crystals (C) [94]. 

 

A first distinction among the different crystal structures can be made on the basis of 

the number of different molecules involved in the packing. When the structure is composed 

only of molecules of a single chemical species the phenomenon of different packings is called 

polymorphism (Figure 3.45a). When more chemical species are involved, different names are 

conventionally adopted, depending on the physical status and the nature of one of the 

components at room temperature. If this component is found as a liquid at room T the term 

“solvate” (Figure 3.45b) should be used, otherwise the denomination of co-crystal (Figure 

3.45c) is the correct one. The term “solvate” is usually substituted with the more common 
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term “pseudo-polymorph”, which will be used hereafter to conform with the current 

nomenclature [94]. 

In the recent years the interest in the regulation and manipulation of the crystal 

pseudo-polymorphism of organic compounds has been subject of several studies in different 

scientific fields including pharmaceutical chemistry and materials science [95].  

The pseudo-polymorphs of a certain compound are distinct chemical structures in a 

supramolecular sense, and should be therefore treated like the normal crystal polymorphs 

encountered in molecular crystals, as they exhibit different physical and chemical properties 

due to their different molecular packing or conformational modifications in the crystal [96]. 

The variety of crystal packings found in molecular crystals originates from subtle 

differences in the non-covalent interactions between molecules, as described in chapter 4, 

which determine the complex phase diagram of most solid systems. The various alternative 

packing arrangements of the pseudo-polymorphic structures arise from the nature of the 

interactions between the molecules of the material and the molecules of the solvent in which 

the crystallization process takes place: hydrogen-bonding is often at play, with the formation 

of typical hydrogen-bond motifs and influencing the final conformation of the species in the 

crystal structure [97]. 

In the literature it is possible to find several examples of compounds, such as aromatic 

amides and aromatic sulfonamides, that, additionally to polymorphism, also exhibit pseudo-

polymorphism phenomena, depending on the crystallization conditions adopted [98]. 

The cause of the existence of pseudo-polymorphism is related to the tendency for a 

solvent to be retained in the crystal lattice via the formation of multipoint recognition 

hydrogen bonding synthons, involving the specific solvent used and the molecule during the 

crystallization process [99]. For this very reason the strong and directional nature of hydrogen 

bonds is the master key in crystal engineering, supramolecular chemistry, and biological 

recognition [100]. Interestingly, literature data show that solvents which have only a single 

hydrogen-bonding recognizing site are not included in molecular crystal as often as solvents 

with many sites. The stability of a solvated structure is connected to the balance between the 

entropic gain made in releasing the solvent molecules of the crystal nuclei into the bulk 

solution, and the enthalpic gain, given by the formation of strong and directional O/N – H· · ·O 

and/or C – H· · ·O hydrogen bonds (energy 2–10 kcal/mol-1) [101]. Only when the enthalpic 
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contributions override the negative enthalpy variations, the solvent can be retained in the 

nucleating crystal to give a stable system [99]. 

An interesting subject of investigation is how the presence of the “guest” solvent 

molecules modifies the arrangement in the “host” system. Clearly this must depend both on 

the nature and strength of the interactions and on the size and shape of the guest. 

Consequently, a guest can either induce small changes, so that even the lattice parameter of 

the solvated and non-solvated form are very close, or lead to dramatic modifications of the 

host solid state architecture [102].  

Desolvation processes in pseudo-polymorphic structures are the object of several 

studies, as several stable and metastable polymorphs can be so obtained. The possibility of 

having a stable structure after desolvation, instead of the collapse of the crystal structure and 

therefore an amorphous material, is the complex function of many  parameters, such as the 

kinetics of the reaction, the thermodynamic relation between solvated and solvent free forms, 

the nature of the solvate and the specific conditions and method for the removal of the solvent 

[103]. 

The main challenge in crystal design and engineering is the understanding of how to 

use, modulate and rule strong and weak hydrogen bonds to govern the resulting crystal 

structure [104]. Certainly, the understanding of the forces that govern recognition between 

multifunctional molecules is still a goal in the field of supramolecular chemistry for building 

nanoscale architectures from molecular scaffolds [105].  

 

3.5.1  9-anthracene carboxylic acid dimer (9ACAD) pseudo-polymorphs 

As mentioned in the paragraph 3.4, we tried to obtain the 9ACA dimers by synthesizing 

them in solution, with the aim to have the reference crystals for the product of the solid state 

reaction. However, the process gave unexpected results, which, we thought, deserved a 

separate discussion and some consideration of the phenomenon of pseudo-polymorphism. In 

fact, the crystal phases isolated and analyzed, all turned out to be pseudo-polymorphs, or 

solvates, formed by the head-to-tail (or trans) 9ACA dimer (9ACAD) and the solvent used for 

the synthesis in a stoichiometric ratio. It was not fully unexpected that the formation of the 

trans isomer would be favored in solution (despite the fact that according to the literature 

[88,89] the formation of both isomers was predicted). It was nonetheless surprising that it was 

impossible to find the conditions in which to obtain directly from the solution crystals of the 
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pure trans-9ACAD. This happened regardless of the specific nature of the solvents used. As a 

matter of fact, the solvent molecules appear to play distinct roles in the building of the 

resulting lattice of the dimer, as they either get engaged in hydrogen bond interactions with 

the 9ACAD molecules or enter the composition of the unit cell by filling the cavities left by the 

spatial organization of the dimer units.  While it is well known that the larger the solute, the 

higher is the probability that crystallization in solution occurs via the formation of solvates 

[106,107], 9ACAD can be still classified as a relatively small molecule, and it would be 

reasonable to assume that it should be possible to obtain it in the solid state also in a 

unsolvated form. The pursuing of this goal, linked to our general interest for polymorphism, 

took our research on anthracene derivatives solid state reactivity on a side track. 

Thermodynamics and kinetics of desolvation mechanisms in crystals have been studied for the 

past 20 years [107-109] especially for pharmaceutical compounds, identifying structural and 

phenomenological parameters which allow for a classification of a wide range of phenomena. 

Also, a number of techniques are available for studying solid state transitions in solvates. 

Heating in controlled conditions, for instance, is a common technique of desolvation, yielding 

either into amorphous material or a polymorphic phase of the pure compound, often 

metastable. Unfortunately, the technique turned out to be unsuited for our samples, in which 

the 9ACAD dimer undergoes a thermal dissociation into two 9ACA monomers. Analogously, 

the thermal instability of 9ACAD, prevented the use of techniques usually applied in the study 

of solvates, such as TGA and DSC. The spectroscopic approach, however, turned out to be 

quite useful to give some insight of the processes concerning solvation in 9ACAD crystals.  

Following the procedure already described in Chapter 3.2 for 9CNA, the stirred 

solutions of 9ACA in a number of solvents were irradiated in inert atmosphere with the 

broadband  light of a 250 W Xe lamp, using as a container a pyrex flask, which effectively stops 

the light transmission at wavelengths below 300 nm and prevents the back reaction of 

photodissociation of the dimer product. The dimer was far less soluble than the monomer in 

all the solvents used, and could be recovered as a crystalline precipitate after 8 hours of 

irradiation, washed with fresh solvent and then dried.  As solvents, ethyl-acetate, methanol, 

ethanol/CHCl3, acetone, methyl-tert-butyl-ether (MTBE), anisole and methyl-anisole were 

used. The solvate crystals were treated with vacuum drying (≈ 8x10-3 bar) to promote 

evaporation of solvent.  
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3.5.1.1  9ACAD from ethyl acetate: Crystal Structure and Raman Spectra 

The X-ray diffraction analysis of crystals obtained from ethyl-acetate (EtOAc) gave the 

triclinic P1̅ structure of a solvate, with parameters a = 8.4667(9) Å, b = 9.3649(10) Å, c = 

10.2262(11) Å, α = 63.2800(10)°, β= 70.8870(10)° and γ = 69.5030(10)° and cell volume of 

664.25(12) Å3. There is one asymmetric unit per cell with a 1:1 ratio of 9ACAD and EtOAc. The 

asymmetric unit is made by half a molecule of 9ACAD and one molecule of EtOAc. Both entities 

lie on distinct inversion centers of the lattice. Whereas the dimer molecule is 

centrosymmetric, EtOAc is not. However, statistically, 50% of the EtOAc molecules can be 

generated by applying the inversion symmetry operation to the remaining 50%. The calculated 

crystal density is 1.331 g/cm3. In Figure 3.46 the packing in the crystal is shown in a projection 

along the b crystallographic axis. As can be seen, each 9ACAD molecule is engaged in two 

dimer synthons in trans position to each other, with the hydrogen bonds aligned along the c 

crystallographic axis. The way the chains of hydrogen bonds assemble, generates a channel-

type skeleton in which the solvent molecules are located. The CO group of the solvent presents 

a short contact of 2.553 Å with a hydrogen of the dimer aromatic ring. 

 

a) 

 

c) 

 
 

b) 

 
Figure 3.46  X-ray structure of the 1:1 9ACAD-EtOAc solvate: a) cell axes and extended packing viewed along the b 

crystallographic axis. Dotted blue lines show hydrogen bond interactions between the carboxyl groups. Occupancies are 
shown for disordered EtOAc molecules; b) a projection along the c crystallographic axis displays the molecular geometry 

of the dimer; c) picture of the actual crystal. 
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The Raman spectrum of the 9ACAD-EtOAc system in the lattice phonon wavenumber 

interval is reported in Figure 3.47a. Despite the fact that lattice phonon Raman spectra have 

recently become an important tool for phase recognition in a number of in pharmaceutical 

solvate solid compounds, the technique has been used exclusively with an analytical 

approach. Different polymorphs or pseudo-polymorphs have been identified by their different 

spectra, without attempting the assignment of the bands. We have adopted the same 

approach in the present analysis of the 9ACAD pseudo-polymorphs. Indeed, a rigorous 

assignments of the crystal vibrational bands can be cumbersome especially when, as in the 

cases we are dealing with, a supramolecular framework is generated via the strong 

intermolecular interaction due to the hydrogen bonds. In this situation, in fact, a clear 

distinction between inter- and intra-molecular vibrational modes is not be possible, as a result 

of the cooperative behavior of the hydrogen bond structures. In the 9ACAD-EtOAc system, a 

further complication arises from the presence of a statistically disordered solvate, for which, 

to the best of our knowledge, a specific lattice dynamics treatment does not exist.  
 

 
Figure 3.47  Raman phonon spectrum of the 9CAD-EtOAc crystal in the lattice phonon region. a) Crystal obtained by 

crystallization in EtOAc; b) the same crystal kept 24h at 8 mbar. 

 

9ACAD-EtOAc crystals were put in vacuum drying for 24h at RT. Since the structure is 

characterized by the absence of hydrogen bonds with the solvent molecules located in 

channels of the structure, promoting the solvent evaporation was expected to be easy in the 

operation conditions (the vapor pressure of EtOAc is ≈ 0.1 mbar at 22 °C). However, a 

comparison of the lattice phonon patterns recorded before and after the permanence in 

vacuum (figure 3) does not reveal changes in the phonon peak positions. A different intensity 
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distribution throughout the entire spectrum is accounted for by a partial reorientations of the 

anisotropic crystal domains after the drying process. NMR measurements confirm that EtOAc 

is still present in the sample in the initial stoichiometric amount, even after evacuation in mild 

heating conditions (40 °C). 

 

3.5.1.2  9ACAD from methanol: Crystal Structure and Raman Spectra 

The crystals obtained from methanol (MeOH) have a monoclinic C2/m structure with 

cell parameters a = 12.051(6) Å, b = 14.248(6) Å, c = 8.656(4) Å and β = 115.774(11)°. There is 

one asymmetric unit per cell with a 1:2 ratio of 9ACAD and MeOH and a calculated density of 

1.257 g/cm3. There are two 9ACAD molecules per unit cell and each one is located on a center 

of inversion which lies on a C2 axis, which corresponds to the b crystallographic direction. In 

this structure the 9ACAD molecules thus belong to the C2h punctual symmetry group. There 

are four MeOH molecules per unit cell, with the C-O bond lying on the symmetry plane 

perpendicular to the C2 axis. The methyl group is statistically disordered as its hydrogen atoms 

can rotate around the axis passing through the C-O bond. Each MeOH molecule forms 

hydrogen bonds with the carboxyl groups of two adjacent 9ACAD molecules, as shown in the 

projection of Figure 3.48.  

   

 

Figure 3.48  X-ray structure of the 1:2 9ACAD-MeOH solvate: top) cell axes and extended packing viewed along the a and 
b crystallographic axes; bottom) z-clipped projection to show the hydrogen bond motif. Dotted blue lines are for 

hydrogen bonds between the carboxyl groups and the MeOH. Note that in the measurements the position of the MeOH 
hydrogen bonds was not resolved. 
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The 9ACAD-MeOH crystals were subjected to vacuum drying for 24 hours at room T. 

Due to the presence of the hydrogen bonds with the 9ACAD molecules, MeOH in the crystal 

was assumed to be less volatile than in its pure liquid form, but considering that MeOH has a 

vapor pressure of ≈ 130 mbar at 20 °C, the conditions and the timing could be sufficient to 

remove it from the lattice. 

 

 

 

Figure 3.49  a) (top) NMR spectrum of the 9ACAD-MeOH solvate recorded as freshly prepared, b) (bottom) NMR 
spectrum of the 9ACAD-MeOH after vacuum drying the sample. 
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NMR spectra of the solvate crystals were recorded before and after the drying 

procedure (Figures 3.49a and 3.49b) and the analysis clearly showed that MeOH was removed. 

No further X-ray analysis was then performed, also because the dried crystals got cracked or 

their quality deteriorated at such an extent to prevent the measurement. The Raman spectra 

in the lattice phonon region are shown in Figure 3.50. 

 

 
Figure 6.  a) Raman Spectrum of the 9ACAD-MeOH 1:2 crystal in the lattice phonon region. b) Raman spectrum of the 

same crystal after desolvation for 24h by vacuum drying. 

 
As expected, the Raman spectrum was found to change upon solvent removal. 

Although the analysis is not trivial, the comparison of the two spectra in the figure 6 indicates 

that the bands missing after the drying process can be easily accounted for by the contribution 

of the solvent. After desolvation, a total of two rigid bodies are left in the unit cell of the C2/m 

centrosymmetric system. By considering the primitive pseudo-triclinic cell (Z=1), a total of 3 

k=0 lattice phonons of gerade symmetry would be Raman active. However, the rigid body 

approximation very unlikely applies here, and a clear boundary between internal and external 

vibrations is therefore not present. As a result, more bands in the low wavenumber region are 

observed, having an inter/intra-molecular mixed character. Certainly, the NMR datum is 

confirmed by Raman spectroscopy, as the spectra before and after desolvation differ, even 

though not dramatically so. Indeed, it has been recently reported [106,107] that when the 

solvent is removed in a smooth way, the unary phase so obtained can have a strong structural 

filiation with the mother solvated phase, so much as to display very little differences at the X-
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ray diffraction analysis. The new phase is generally a metastable polymorph of the pure 

component, obtained from the cooperative release of the solvent molecules, with little or no 

relaxation at all of the entire structure. This would be what is called topotactic or quasi-

topotactic desolvation in ref [106]. If this is what happens in our system, the Raman spectra 

identify a new metastable polymorph, the packing of which is very close to that of mother 

phase. 

 

3.5.1.3  9ACAD from ethanol/CHCl3: Crystal Structure and Raman Spectra 

The precipitate obtained from the photodimerization reaction of 9ACA in methyl-t-

butyl ether was dissolved in a 1:1 solvent mixture of ethanol (EtOH) and CHCl3  and single 

crystals were grown by slow evaporation. These crystals were found to have a triclinic P1̅ 

structure with cell parameters a = 8.456(13) Å, b = 9.607(15) Å, c = 10.861(17) Å and α = 

105.494(16)°, β= 101.120(17)° and γ = 113.570(17)°, with cell volume of 773.086(12) Å3. There 

is one asymmetric unit per cell, formed by half a molecule of 9ACAD (lying on a center of mass) 

and a molecule of ethanol (lying in a general position, and with some rotational disorder) with 

a 1:2 ratio of 9ACAD and EtOH. Similarly to the solvate with MeOH, the solvent forms hydrogen 

bonds with the carboxylic groups of 9ACAD, yielding a hydrogen bond motif very similar to 

that of the former case, as can be seen in Figure 3.51. However, due to the larger molecular 

volume of the alcohol, the entire structure is much less dense (calculated density = 1.211 

g/cm3).  

 

 
Figure 3.51  X-ray structure of the 1:2 9ACAD-ETOH solvate: Extended packing viewed to show the hydrogen bond 

motif. Dotted blue lines show hydrogen bond interactions between the carboxyl groups and the ethanol molecules. 
Multiple occupancies are shown for disordered EtOH molecules. 
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NMR spectra taken after prolonged vacuum drying at RT (a few days) showed un 

unchanged stoichiometric ratio of 9ACAD and alcohol. Clearly the solvent could not be 

released in these conditions and no further attempt was made. Raman phonon spectra in the 

low wavenumber region, accordingly, showed no change.  

 

3.5.1.4  9ACAD from other solvents: Raman Spectra 

Single crystals of solvates of 9ACAD were also grown from a number of other solvents, 

namely: acetone, anisole, methyl-anisole and methyl-t-butyl ether for which we have no X-ray 

determination since the work is still in progress. For these, we only have the NMR spectra to 

indicate that the solvent is anyway present in a stoichiometric ratio in the lattice of 9ACAD, 

and that the RT vacuum drying is not sufficient for its release, evidence which is confirmed by 

the Raman lattice phonon spectra which remain unchanged after the drying process. The only 

exception is for crystals grown from acetone, for which NMR spectra show that all the solvent 

has disappeared after drying. Indeed, for this case only, we correspondingly observe marked 

differences in the Raman spectra before and after drying, most noticeable in the 40-120 cm-1 

wavenumber range, as documented in Figure 3.52. 

 

 
Figure 3.52  a) Raman Spectrum of the 9ACAD-Acetone crystal in the lattice phonon wavenumber range. b) Raman 

spectrum of the same crystal after desolvation for 24h by vacuum drying. 
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Once the crystal structure is known from X-ray data, the energy contribution of the 

solvent to the stability of a crystal structure can be estimated in an inexpensive and fast way, 

starting from the total energy of the pseudo-polymorphs structure at the minimum of a 

chosen potential model. We have done this for the structures of 9ACAD EtOAc -and 9ACAD-

MeOH, as representative of cases in which desolvation failed or was successful, respectively. 

The method for lattice energy minimization is described elsewhere in this thesis and will not 

be given here. In the energy minimization calculations for both of the solvates the rigid body 

approximation was adopted, employing the potential model which had already reproduced 

satisfactorily the 9ACA monoclinic and triclinic structures. The molecular geometries of both 

solute and solvent used for the calculations was that obtained from the X-rays. In fact, for 

9ACAD the value of the torsional angle between the anthracene backbone and the plane of 

the carboxylic group determined for the crystal does not coincide with that determined by ab-

initio calculations for the molecule in the gas phase. This is not surprising, as the solid state 

geometry is governed by the formation of hydrogen bond network.  

As already illustrated above, the space group symmetry of 9ACAD-EtOAc is the result 

of the statistically disordered solvent. The same happens for 9ACAD-MeOH, for which the 

source of disorder is the methyl group of the solvent, that is free of rotating about the C-O 

bond.  

In both cases, symmetry cannot be used in generating the input structure for the lattice 

dynamics calculations, where the entire crystal unit cell is therefore used as an asymmetric in 

which only one of the solvent possible orientations must be selected. 

The minimum potential energy structures both for the EtOAc and MeOH solvates are 

reported in Table 3.4, along with their energy Φ0. The value of Φ0 originates from the sum of 

three distinct intermolecular contributions:  

 

Φ0= Φ9ACAD-9ACDA + Φsolv-solv + Φ9ACAD-solv 

 

Φ9ACAD-9ACDA and Φsolv-solv are the terms for the interactions involving the 9ACAD and 

the solvent molecules, respectively, while Φ9ACAD-solv.is the term describing the interaction 

between 9ACAD and the solvent.  

Once the minimum energy structure has been determined, Φ9ACAD-9ACDA and Φsolv-solv 

can be computed by removing the 9ACAD and the solvent molecules, respectively, without 



3. Solid state photoreactions 

118 
 

further minimization of the energy of the resulting system. The remaining term can thus be 

obtained as Φ9ACAD-solv = Φ0 – (Φ9ACAD-9ACDA + Φsolv-solv ). The various contributions are also listed 

in Table 3.4 both for the EtOAc and MeOH solvates. 

 

Tab 3.4 Calculated minimum potential energy Φ0  (kcal/mol) and structural parameters for the pseudo-polymorph 
structures of 9ACAD-EtOAc and 9ACAD-MeOH. The experimental structural values are given for comparison. The terms 

contributing to the total energy Φ0  are also reported. 

 

Let us analyze first the case of EtOAc. It is worth noting that the term Φsolv-solv  is in fact 

negligible. The solvent molecules, located in the structure quite far apart from each other, 

interact very little. On the contrary, Φ9ACAD-solv is very large, and accounts for about the 45% of 

the total lattice energy. The solvent actually acts like the glue holding together the entire 

scaffold of the quasi- 1D arrays generated by the hydrogen bond network. By minimizing the 

energy of the structure deprived of the solvent molecules, unexpectedly the system relaxes 

onto a new local minimum, which, however, has very little resemblance with the mother 

structure. 

Also in the 9ACAD-MeOH structure the actual interaction between solvent molecules 

is very small, as can be seen from the table. The Φ9ACAD-solv term is found instead to contribute 

to the total energy for no more than the 30%. This may be unexpected, as in the packing of 

this solvate, as we have seen, the solvent actively participates in the highly directional 

hydrogen bonds. However, if this computed datum is be trusted, it would explain why the 

desolvation for this system was made possible by applying mild experimental conditions. In 

support to the idea that here we are dealing with a topotactic desolvation, we have found that 

by removing the MeOH molecules from the structure, the system does relax onto a new 

minimum  which is  strongly affiliated with the original one.  

At this stage of our investigation we conclude that, under the mild drying conditions 

used, the release of the solvent has proven unsuccessful in all cases, with the only exceptions 

 
Φ0 Φ9ACAD9ACDA Φsolv-solv Φ9ACAD-solv a(Å) b(Å) c(Å) α β γ V(Å3) 

9ACAD-
EtOAc 
(Z=2) 

           

Exp     8.4667 9.3649 10.2262 63.280 70.887 69.503 664.246 

Cal -49.117 -25.849 -0.7895 -22.4786 8.2836 9.5326 10.7448 59.963 69.816 67.383 665.567 

9ACAD-
MeOH 
(Z=4) 

           

Exp     8.6560 14.2480 11.3770  107.470  1338.413 

Cal -33.238 -23.0575 -0.1490 -10.0316 8.4667 13.9250 11.5192  103.914  1318.252 
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of MeOH and acetone, perhaps owing to their lower boiling temperatures. In either case, what 

has been obtained is likely to be a metastable polymorph of the unary system. Interestingly, 

both solvates underwent the desolvation process without transforming into an amorphous 

phase, as can be verified by the permanence of a lattice phonon pattern in the Raman spectra. 

This means that in the energy landscape of the solid state diagram of the unary system there 

is a local minimum accessible from the solvate system, with a closely related structure. This 

thesis appears to be confirmed by our preliminary calculations of crystal structure minimum 

energy.  

A summary of the Raman phonon spectra of the all pseudo-polymorphs is given in 

Figure 3.53. 

 

 
Figure 3.53  Lattice phonon Raman spectra of all pseudo-polymorphs of 9ACAD obtained. 

 
The total of seven dimers insofar synthesized certainly does not represent the upper 

limit for 9ACAD, because, following the Mc Crone rule [91], still a number of solvents are 

planned to be tried. We believe that 9ACAD is going to become an exemplary case of a 



3. Solid state photoreactions 

120 
 

molecular crystal showing a high number of pseudo-polymorphs, which is explained by the 

inspection of its structure, easily prone to host solvent molecules, as units or chains, in the 

interstices of its cage-like framework. Furthermore, the hydrogen bonds, originating between 

solvent molecules and the carboxylic group of the aromatic core, establish a kind of 

supramolecular structure with a variety of options of closely packed architectures. 

The second important information that can be extracted from Figure 3.52 is that lattice 

phonon spectra efficiently constitute a sort of database for a fast and easy identification of 

polymorphs or pseudo-polymorphs, a technique which can be transferred to pharmaceutical 

investigations for a faster screening of their products. 

As to the understanding of the lattice dynamics of these systems, we remark that it is 

still lacking a solid theoretical basis to fully describe the complex behavior of these disordered, 

or partly disordered, systems. The lack of periodicity should apparently wash away the phonon 

spectral features, though solvents molecules statistically contribute to the partial ordering of 

the overall solvate packed structure and might anyway have a role in the dynamics of the 

system. What would result in the actual lattice phonon spectra requires more experiments 

and more thinking. 
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4. Polymorphism and phase mixing in the organic semiconductor 
9,10-diphenylanthracene 

 

4.1 Organic Semiconductors 

Organic semiconductors are a class of functional materials with a wide range of physical 

and chemical properties [1-3]. The interest for these compounds in organic electronics raised 

with the demand of supplementing Si-based electronics with materials which could at the 

same time be more easily processable and allow exploitable functionalization by chemical 

manipulation.  

After early studies by the italian scientist Pochettino, who discovered the photoelectric 

effect in anthracene crystals at the beginning of the last century [4], the interest in the 

academic  community, started from the 1980s for intriguing phenomena such as charge 

transport, photoconductivity, electroluminescence and superconductivity in organics, has 

grown enormously in the last years [5-8].  

The common characteristic of the large class of compounds which displays the 

properties of interest is the presence of π-conjugated double bonds between carbon atoms of 

the molecular skeleton, leading to the electron delocalization in the π molecular orbitals, 

allowing for charge injection delocalization and charge transport [5]. The physical parameter 

which describes the charge carrier property of the material is the charge mobility µ (cm2s-1V-

1), expressed as the drift velocity of the charge when an electric field of 1 V/cm is applied.   

Organic semiconductors can be classified in two main groups according to their 

molecular weight: a) low molecular weight compounds, usually called small molecules or 

molecular semiconductors, and b) high molecular weight compounds, which are π-conjugated 

polymers, with many thousands of g/mol of molecular weight. 

Theoretical and experimental research on molecular semiconductors has been dealing 

in the last years with the characteristics of their solid state phases, either as single crystals or 

deposited as thin/ultra-thin films on substrates of technological interest [9] such as amorphous 

Si, Si/SO2 [10,11] wafer or polymeric dielectric layers [12,13], having as main application the 

field effect transistors [14]. Figure 4.1 shows the chemical structures of some small molecules 

organic semiconductors. 

Experimental procedures for obtaining suitable single crystals and thin films are 
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available, while the mobility has increased over the time and is now comparable to that of 

amorphous silicon [15]. Crystalline organic materials are therefore ideal candidates for low 

cost electronic devices, whenever high speed components are not required. Further 

advantages are the easy of the processability and the modulation of the properties, as via 

chemical synthesis it is possible not only to improve the charge carrier mobility but also tailor 

solubility in different solvents, spectral range of the light emission, crystal packing.  

Excellent reviews and books on these topics have been published [1-5,16] and give a 

wide overview of the field. 

 

 
Figure 4.1  Chemical structure of some small molecule organic semiconductors: a) p-type; b) n-type. 
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The electronic structure of a molecular crystal and its charge carrier properties depend 

both on the electronic molecular structure and on the packing of the molecular units in the 

crystal lattice, driven by the nature and the strength of the intermolecular interactions. 

The relationship between solid state organization and material properties is not 

clarified yet and it is very difficult to make predictions about the arrangement of the molecules 

in the crystal. In fact, not only small chemical changes may correspond to different packings, 

but the same compound may happen to have several polymorphic modifications, which differ 

only by a few kcal/mol in energy.  

Single crystals represent suitable model systems to assess the structure/dynamics-

property correlation, as in principle they are free of all the other factors, such as disorder, 

traps, defects, chemical and physical impurities, which affect the charge transport parameters. 

In this thesis we have focused our attention on the spectroscopic study of small 

molecules organic semiconductors and their properties in single crystals. In particular, we have 

addressed the issue of the occurrence of polymorphism on changing method of crystal 

preparation. 

 

4.2 Organic molecular crystal 

Organic semiconductor compounds are characterized by the presence of extended π-

conjugation of the intramolecular bonds, given by the alternation of single (σ) and double (π) 

bonds. In π-conjugated systems, the carbon atoms are sp2 hybridized, with the three sp2 

orbitals involved in σ bonds occupied by highly localized σ-electrons. The nonhybridized pz 

orbitals form instead the molecular orbitals involved in π bonds, described by wavefunctions 

orthogonal to the those of the σ skeleton of the molecule and delocalized over the entire 

molecule. The σ electrons are lower in energy than π electrons and therefore σ bonds are 

stronger. The filled molecular π-bonding orbitals form the valence band and the last one, which 

has the highest energy, is called Highest Occupied Molecular Orbital (HOMO). The empty 

molecular π*-antibonding orbitals form instead the conduction band and the lowest one is 

called Lowest Unoccupied Molecular Orbital (LUMO). In Figure 4.2 the scheme of the bonds 

for a pair of sp2 hybridized carbon atoms is given, together with the representation of valence 

and conduction bands in a conjugated system. 
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Figure 4.2  Left: sigma and pi bonds in organic 
semiconductors. Right: formation of conduction and 

valence bands in organic crystals [17]. 
 

 

In organic molecular crystal the intermolecular interactions are weak and mostly 

consist of dispersion (van der Waals) and electrostatic interactions between permanent 

multipoles. Hydrogen and halogen bonds can also be present. The van der Waals forces are 

non directional and attractive for the interplanar distances typical of organic molecular crystals 

(d > 3.4 Å [18]). The electrostatic forces [19] may be either attractive or repulsive, depending 

on the relative orientations of the molecules. In fact, van der Waals interactions favor packing 

geometries in which the molecules are oriented face-to-face, because this results in the 

optimization of the overlap of the π systems. The presence of the electrostatic interactions, 

mainly quadrupolar, favors edge-to-face or herringbone arrangements where the hydrogen of 

a molecule points towards the π-network of the adjacent one. The final crystal structure is the 

result of a balance of both interactions, which promote molecular arrangements that minimize 

the energy. Many organic molecular crystals display herringbone arrangements,  and despite 

the fact that efforts have been spent in the search  of systems with cofacial configurations, 

particularly attractive for an extended π-overlap, allowing for the largest electronic splitting in 

the HOMO and LUMO levels with theoretical improvement of charge carrier mobilities [20], 

perfect co-facial arrangements are not known, as adjacent molecules show relative 

displacements either along the short or the long molecular axes, so to decrease the large 

electrostatic repulsion between the conjugated backbones [21]. 

The electron mobility is basically quantified by two parameters: the transfer integral t 

[20,22], which expresses the electronic coupling between adjacent molecular units and 

therefore charge delocalization and the reorganization  energy λ. This latter is made of two 

contributions: λi which accounts for the geometry deformation undergone by the molecule in 

the charge transfer, and λs, which instead derives from the polarization effects in the 
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surrounding medium [23]. To achieve high mobility, the transfer integral must be large and the 

reorganization energies small.  Transport in generally described in two limiting cases or 

regimes: the band-like regime versus the hopping regime. In conditions of strong electronic 

coupling, the charge can be highly delocalized, and the system is in a band-like regime of 

charge transport, as found for inorganics, in which lattice phonons hamper conductivity. In this 

regime the mobility decreases with increasing temperature with a power law µ  T-a. 

At ambient temperature, however, many organic semiconductors display a thermally 

activated mobility, and the hopping of charge transfer applies, in which charge carriers are 

localized on molecular units and move from one molecule to its neighbor. Indeed, many 

organic systems display a band-like regime at low temperature and switch to a hopping regime 

at higher T so that the total mobility can be expressed to a good approximation as a sum of 

two contributions: 

𝜇 = 𝜇𝑏𝑎𝑛𝑑 + 𝜇ℎ𝑜𝑝 

 

The first term is due to band-like regime (or coherent electron transfer) and the second 

term is related to the hopping motion (incoherent electron transfer). Clearly, what determine 

the charge transport behavior of organics are the much weaker interactions present in the 

molecular solids, compared to the inorganic systems which are instead characterized by high 

bonding energies [5]. The difference in electronic structure yields the smaller electronic 

bandwidths, the strong electron-lattice couplings and the polaron formation characteristic of 

the organics. Charge carrier mobility is strictly connected with the electronic bandwidth and 

differs by more than one order of magnitude between organic semiconductors (10-5 – 10 

cm2/Vs) [6,7,8] and crystalline silicon (50-500 cm2/Vs) [24].  

Many factors, such as chemical impurities, crystal defects, static and dynamic disorder, 

can affect charge transport in organics. Similarly to inorganic, organic semiconductors can be 

classified by the sign of the carrier transported in n- or p-type (Figure 4.3) if it is electron or 

hole, respectively. These characters are determined by the ionization potential (IE) and the 

electronic affinity (EA) and some materials shows an ambipolar charge transport behavior 

[25,26] ,even though hole and electron mobilities are usually not perfectly balanced.  P-type 

organic semiconductors are in large majority compared to n-type and this is reflected by the 

fact that the conditions for the formation of organic molecular anions are generally less 

favorable.  
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Figure 4.3  Electronic levels configuration for p-type and n-type semiconductors [27]. 

 

4.3 9,10-diphenylanthracene and its polymorphs  

Polycyclic aromatic compounds in the solid state have been the subject of intense 

research aimed to their employment in devices like thin film transistors, photovoltaic cells, or 

light emitting diodes. Indeed, in the crystal phase these materials often display strong π-π 

interactions, and therefore can behave as semiconductors of electrons and holes and may have 

good charge transport properties combined to interesting optical characteristics.  

9,10-Diphenylanthracene (DPA), shown in Figure 4.4, is a polyciclic aromatic compound 

in which the positions 9 and 10 of the anthracene backbone carry phenyl groups. The 

compound is structurally quite similar to rubrene, and has been shown to have both high hole 

and electron mobilities in the solid state [28-30], linked to an intense photoluminescence.  

 

 
Figure 4.4  Chemical structure of 9,10-diphenylanthracene 
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Unlike many organics, DPA is characterized by a very good chemical stability and a 

melting point which is above the operating temperature of the electronic devices. Besides, 

DPA melts without decomposition, and this means that purification by melting and zone 

refining techniques can be used.  

The main limitation of DPA in organic electronics applications arises from the large 

energy barriers to the injection of charge carriers at the electrode-organic layer interface 

[28,29]. This is, however, a drawback common to many organic materials, which could be 

overcome by using conducting polymers with tunable work functions as electrodes. Therefore 

DPA, with its comparable hole and electron mobilities can be selected as a model system of 

ambipolar compounds.  

It is indisputable that high chemical purity is a key factor when reproducible intrinsic 

electronic mobilities in organics are sought. However, it has also been shown that in these 

systems charge transport also dramatically depends on the polymorphic phase of the 

compound. In fact, different polymorphs may correspond to very different molecular packings 

in the crystal unit cell and thus to altogether different intermolecular orbital overlaps of the π 

systems responsible for the charge carrier properties [31-35]. Furthermore, the possible 

coexistence of more solid phases in a sample, which is called phase mixing or structural 

inhomogeneity, is an intrinsic source of disorder and has detrimental effects on the mobility, 

as any kind of defect provides a small barrier to charge transport.  

By changing method and physical conditions, the crystal growth can be driven towards 

the formation of a specific polymorph, and the structure obtained is not necessarily the most 

thermodynamically stable, especially when dealing with thin films or single crystals in the form 

of micro- or nano-structures. 

For this reason, the definition of the experimental conditions in which a certain stable 

solid phase can be obtained is important, as it is the understanding of the link between optimal 

transport properties and solid state molecular organization. Indeed, the phenomenon of 

polymorphism in molecular crystals has attracted attention of pharmaceutical research for a 

long time [36], but only recently there has been an increasing  interest for polymorphs of small 

molecule organic semiconductors [35-40]. 
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As for DPA, until now only one solution grown crystal structure has been reported in 

detail in the literature [41-43]. However, in the first crystallographic report on this compound 

[41] the Authors also refer to a private communication concerning a different structure 

obtained from the melt, for which unfortunately only cell parameters were given. Electron and 

hole mobilities [28] were measured in highly pure crystals grown by Bridgman's method (and 

therefore from melt), which were found to have the same structure as the solution grown 

literature samples [41-43]. In his thesis work Tripathi [29] reported on another structure, which 

also displayed ambipolar behaviour, and was instead obtained by vapor growth. 

Altogether, we felt that the situation about polymorphism in DPA had not been quite 

clarified yet and that, especially in view of the possible applications of this compound, some 

advancements were needed  in the knowledge of the number of its polymorphs, the way each 

of them could be obtained and their relative thermodynamic stability. 

Therefore, in this thesis work, DPA crystals were grown in a number of ways and 

characterized by micro-Raman spectroscopy in the low-wavenumber region (10-150 cm-1), 

where lattice phonon vibrations can be observed and different crystal structures readily 

discriminated. Calculations of crystal potential energy were also performed, to assess the 

energy of the structures for which the atomic coordinates in the crystal unit cell were known 

from X-ray diffraction methods, following a joint experimental and computational approach 

which has been proved to be very efficient in aiding the characterization of polymorphs in 

functional molecular materials. The analysis of the lattice phonon Raman spectra allowed us 

to identify three different DPA polymorphs, named in this work α, β and γ. Polymorph α is the 

well known form, grown from solution in this work, also present in commercial DPA, and 

corresponding to that obtained by Bridgman's technique [28]. Polymorph β has been grown 

from the melt in this work but corresponds to that grown by sublimation in the thesis of 

Tripathy [29]. A third, new polymorph, γ, has been seen for the first time by Raman 

spectroscopy in a phase mixing with either α or β and has also been identified as the only form 

present in nanostructures obtained in solutions.  
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4.3.1 Sample Preparation 

DPA was purchased from Sigma Aldrich (purity 99%), and the pristine material was 

formed by small needles of pale yellow color. By slow re-crystallization from a toluene solution 

in a 2 ml vial at ambient conditions, needle-like crystals a few mm long of the α polymorph 

were grown. Solution crystallized DPA was melt in a sealed vial, and crystals of β-DPA with 

varying morphologies were obtained, while the vapor condensed on the vial walls formed 

colorless thin platelet-like crystals of the γ polymorph. Yellow microcrystals of γ-DPA were also 

grown by sublimation at 160 °C at low pressure (10 Pa) of N2 and at the optical microscope 

they appeared like platelets of elongated irregular hexagonal shape. In the same growth, it 

was possible to identify and select for the measurements needle crystals of α-DPA. Following 

the literature [44], γ-DPA nanostructures were grown at room temperature by injecting 100 μl 

of a 2 × 10-3 M solution of DPA in THF in 5 ml of milli-Q water under vigorous stirring. The 

sample was kept under stirring for three minutes and then left overnight to allow for the crystal 

growth. In Figure 4.5 the optical image of the nanostructures, collected with a confocal laser 

scanning microscope (CLSM), is shown.  

 

 
Figure 4.5  Optical image of γ-DPA nanostructures. Image recorded with a CLSM with λexc = 405 nm 

 

4.3.2 Experimental set-up 

The micro-Raman setup described in chapter 2 was employed for the spectroscopic 

characterization. The Raman excitation was from a krypton laser tuned at 647.1 nm, a 

wavelength chosen to avoid fluorescence, as DPA solutions in toluene were not found to 

absorb significantly above 450 nm.  
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4.3.3 Computational methods 

Quasi harmonic lattice dynamics (QHLD) calculations can be used to determine the 

equilibrium crystal structure and binding energy at non zero temperatures and pressures, 

together with lattice phonon frequencies, possibly estimating the extent of the coupling 

between lattice and internal (molecular) vibration modes.  

In the QHLD method [45] the Gibbs free energy of the crystal is computed as the free 

energy of an ensemble of phonons of frequency νi 

 

𝐺(𝑝, 𝑇) = Φ0 + 𝑝𝑉 +∑
ℎ𝜈𝑖
2
+ 𝑘𝐵𝑇∑𝑙𝑛 [1 − 𝑒𝑥𝑝 (−

ℎ𝜈𝑖
𝑘𝐵𝑇

)]

𝑖𝑖

 

 

Here ɸ0 is the total potential energy of the crystal in its average structure (the 

electronic ground state energy), pV is the pressure-volume term, ∑ ℎ𝜈𝑖/2𝑖  is the zero-point 

energy, and the last term is the entropic contribution. Given an initial crystal structure, one 

computes ɸ0 and its second derivatives with respect to the displacements of the molecular 

coordinates. The second derivatives form the dynamical matrix, which is numerically 

diagonalized to obtain the phonon frequencies νi and the corresponding eigenvectors. The 

structure as a function of p and T is then determined self-consistently by minimizing G(p,T) 

with respect to lattice parameters, molecular positions and orientations. The total potential 

ɸ0  is made of inter- and intra-molecular terms, ɸinter and ɸintra, respectively.  

In the present treatment, the molecules do vibrate but maintain their average 

geometry. The interactions are represented by ɸinter, expressed as a pairwise additive atom-

atom potential to which an electrostatic term is added. This term is expressed as a Coulomb 

interaction represented by a set of charges residing on the atoms. The Ewald's method is 

applied to accelerate the convergence of the Coulombic interactions [46]. Ab-initio methods 

are usually used to compute atomic charge distributions fitted to the molecular electrostatic 

potential, which are better suited than the Mulliken values, derived from molecular orbital 

coefficients. Ab-initio methods are often employed also for the input molecular geometry, 

although the experimental X-ray data can also be used. 

To compute the phonon frequencies one needs all second derivatives 𝜕2𝜙0/𝜕𝑄𝑟𝑖𝜕𝑄𝑠𝑗 

of the total potential with respect to all pairs of molecular coordinates Qri and Qsj. Here r and 

s indexes label molecules in the crystal, while i and j distinguish between molecular 
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coordinates. An efficient way to evaluate the effect of the internal modes is the exciton-like 

model [47], in which  ɸintra corresponds to the harmonic potential of an isolated molecule. 

Thus the diagonal derivatives of ɸintra coincide with those of an isolated molecule, and 

correspond to the frequencies of the normal modes of the molecule, while off diagonal 

derivatives are zero. The coupling between the molecular coordinates is given solely by the 

intermolecular potential ɸinter, which is a function of the interatomic distances. Since the 

distances depend on the Cartesian coordinates Xra of the atom a, ɸinter second derivatives can 

be computed in terms of Xra, and then converted to molecular coordinates Qri using the 

derivative chain rule, 
𝜕𝑓

𝜕𝑥
=
𝜕𝑓

𝜕𝑦
 
𝜕𝑦

𝜕𝑥
: 

 

𝜕2𝜙𝑖𝑛𝑡𝑒𝑟
𝜕𝑄𝑟𝑖𝜕𝑄𝑠𝑗

= ∑
𝜕2𝜙𝑖𝑛𝑡𝑒𝑟
𝜕𝑋𝑟𝑎𝜕𝑋𝑠𝑏

𝜕𝑋𝑟𝑎
𝜕𝑄𝑟𝑖

𝜕𝑋𝑠𝑏
𝜕𝑄𝑠𝑗

𝑟𝑎,𝑠𝑏

 

 

Here a and b label the Cartesian coordinates of the atoms in molecules r and s, and the 

matrix 𝜕𝑋𝑟𝑎/𝜕𝑄𝑟𝑖 describes the Cartesian displacements which correspond to each molecular 

coordinate Qri. 

The displacements corresponding to rigid translations and rotations of the molecules 

can be derived by simple geometric considerations [47]. The displacements associated to the 

intramolecular degrees of freedom are the cartesian eigenvectors of the normal modes of the 

isolated molecule, which are usually computed with ab-initio methods. 

In the treatment of DPA crystal structures, free energy minimizations were performed 

using the WMIN program [48] for rigid molecules. The intermolecular interactions were 

represented by an atom-atom potential with Buckingham terms and Coulomb's terms with 

atomic charges fitted to the ab-initio electrostatic potential, calculated using the B3LYP/6-

31G(d) combination of density functional and basis set. The parameters of the intermolecular 

potentials were taken from the Williams's model [49].  

The experimental X-ray data were the input parameters in the energy minimization 

procedure. This allowed us to locate the local minimum for the model potential, which 

corresponds to the potential energy ɸ of the structure at its mechanical equilibrium. The 

effects of temperature were accounted for by computing the structures of minimum Gibbs 

energy G(p,T) with the QHLD method [50,51], that is by determining the structure at 

thermodynamical equilibrium. 
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The isolated molecule properties needed for the crystal energy calculations or the 

interpretation of the vibrational features, that is, optimized geometry, atomic charge 

distribution and harmonic vibrational frequencies, were computed with the GAMESS program 

[52], using the B3LYP/6-31G(d) combination. As a starting molecular geometry for the ab-initio 

calculations, the molecular conformations obtained from the X-ray atomic coordinates were 

chosen, adding the constraint of a C2h symmetry. Such a choice was made because, despite the 

fact that for all structures the molecules lie in sites with symmetry Ci, the C2h symmetry 

describes very well the experimental molecular geometry.  

The harmonic frequencies for the isolated molecule were calculated at the optimized 

ab-initio structure, to identify the internal modes which could couple, by symmetry and 

energy, with the lattice phonon modes, thus determining the vibrational features in the low 

energy range of the Raman spectrum. Also, they were calculated to test whether the C2h 

molecular conformation corresponded to an energy minimum for the molecule, by assuring 

that all the vibrational eigenvalues were positive. 

 

4.3.4 Crystal Structures 

Three X-ray structures of crystalline DPA have been published complete of atomic 

coordinates [41-43] and they all concern the same monoclinic phase, obtained from solution 

in a variety of solvents such as toluene, xylene and n-pentane. The structural parameters of 

this phase, which we name polymorph α, also correspond to those given in the work by 

Tripathi et al. [28].  

The monoclinic structure belongs to the standard space group C2/c (C2h
6), with Z=4 and 

room temperature unit cell parameters a = 10.683 Å, b = 13.552 Å, c = 12.2570 Å and β = 90.54° 

[42]. A projection of the unit cell of α-DPA is given in Figure 4.6. The conventional cell is non-

primitive (C side-centered), the molecules lie on inversion sites with centers of mass at 

(1/4,1/4,0.0), (3/4,3/4,0.0), (1/4,3/4,1/2), (3/4,1/4,1/2), and the asymmetric unit is therefore 

a half-molecule, while the C2 rotation axis is parallel to the b crystallographic axis. The 

molecular geometry is Ci, with very small deviations from C2h. The dihedral angle formed by 

the plane of the anthracene and the phenyl substituent is ≈ 67°. The short C-C contacts 

between atoms in the anthracene skeletons along the c axis are shown in figure 6 and is 3.778 

Å while the shortest intermolecular C-C distance, between an atom of the anthracene skeleton 

and an atom of the phenyl group of an adjacent molecule is 3.673 Å.  
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Figure 4.6  Unit cell of the α-DPA polymorph (C2/c symmetry): view along the a crystallographic axis. Short C-C contacts 

between atoms in the anthracene skeletons along the c axis are also shown, together with short C-C between anthracene 
skeletons and phenyl group in adjacent molecules. 

 

In the primitive cell (Z=2), used for the analysis of the Raman spectra, there are two 

equivalent molecules per cell, with parameters a′ = b′ = 8.628 Å, c′ = c, α′ = β′ = 90.33 and γ′ = 

105.503°. In a vector form, the transformation from conventional to primitive is: 

 

𝒂′ =
(𝒂 − 𝒃)

𝟐
; 𝒃′ =

(𝒂 + 𝒃)

𝟐
 

 

Room temperature cell parameters for the P21/a structure named polymorph β are 

a=9.4976 Å, b= 20.413 Å, c=10.0843 Å and β= 112.307°. In the unit cell, shown in Figure 4.7, 

two non equivalent molecules lie on inversion centres at (0,0,0) and (0,0,1/2). The dihedral 

angles between the anthracene backbone and the phenyl groups are slightly different in the 

two molecules, being ≈ 77° and 74° respectively, and differ from the value found in polymorph 

α. Also in this case, the deviations from the C2h symmetry are small.  
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Figure 4.7  Unit cell of the β-DPA polymorph (P21/a symmetry): view along the a crystallographic axis. Short C-C contacts 

between atoms in the anthracene skeletons along the c axis are also shown, together with short C-C between anthracene 
skeletons and phenyl groups in adjacent molecules. 

 

The structures α and β present very different ways of packing pairs of molecules, as 

shown in Figure 4.8. Indeed, a phase transformation from α to β (and viceversa) may be 

hindered by the high energetic cost to be paid to perform the molecular motions which would 

rearrange one structure into the other.  

 

 
Figure 4.8  Molecular arrangement in DPA polymorphs; left: α-DPA; right: β-DPA 

 

Despite the fact that DSC measurements [29] do not show a phase transition before 

melting [28], Adams and Ramdas [41] reported on a P2/m crystalline DPA phase obtained from 

the melt [41], with parameters a = 9.99 Å, b = 21.06 Å, c = 9.11 Å, β = 112.0°. As no atomic 
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coordinates are available, it is difficult to establish whether this structure does correspond to 

that of the crystals obtained from the vapor by Tripathy [29] and from the melt in this thesis.  

A third polymorphic phase has been detected by lattice phonon Raman spectroscopy 

only (vide infra) in batches where either α-DPA or β-DPA were also obtained, and, in a pure 

form, as nanocrystals.  

 

4.3.5 Raman Spectra 

The Raman spectra of a number of DPA crystals, prepared as illustrated above, were 

recorded, giving a special emphasis to the spectral region of lattice phonons.  

The crystal planes of our samples could not be directly identified by X-ray 

measurements, with the exception of a few platelets of the β polymorph. As the Raman 

technique is here mainly used as a diagnostic tool in identifying different solid phases, the 

punctual knowledge of the crystal faces from which the Raman scattering is observed is not 

strictly important. That said, in many cases it was possible to make a reasonable guess of the 

crystal face probed in the experiment on the basis of considerations on the crystal morphology 

and on symmetry selection rules, and therefore measure Raman polarized spectra. These are 

extremely helpful when the phonon spectra are very crowded and more bands overlap, so that 

it is difficult to disentangle them all, a procedure sometimes necessary to ascertain the purity 

of the phase. 

 

4.3.5.1 The Polymorph α 

Figure 4.9 shows the Raman spectra of a DPA needle grown from a toluene solution in 

the region of the lattice phonons and of the lowest energy molecular vibrations. For the sake 

of clarity, we show also the spectral deconvolution and the peak assignments. The image of 

the typical thin-needle morphology which accompanies this lattice phonon spectrum is also 

given in the figure.  
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Figure 4.9  Left: Raman spectrum of a α-DPA sample in the wavenumber region 10-150 cm−1; right: optical images of α-

DPA samples:  a) prism-like and b) needle. 

 

The same spectrum is observed in commercial DPA, prior to re-crystallization, and is 

the only one we have found in solution grown specimens. Although thin needle crystals 

characteristically display this spectrum, microcrystals of different morphology, obtained by 

slow cooling of the melt or by sublimation, such as those shown in Figure 4.9b, still yield the 

same spectral features. 

The lattice phonon spectrum of polymorph α of figure 9 can be discussed in the light 

of the crystal structure and of the vibrational dynamics of the system. In the frame of the rigid 

molecule approximation [40], that is when internal molecular degrees of freedom are 

neglected, the number and the symmetry of the Raman active lattice modes (k=0) in the C2/c 

structure can be determined by considering the corresponding reduced primitive cell with Z = 

2, obtained as described above. Out of a total of 12 lattice modes, 6 are of gerade symmetry 

(3Ag + 3Bg) and are Raman active. However, as in the case of rubrene [54], molecular 

vibrational modes of low frequency, which involve the phenyl groups attached to the 

anthracene skeleton, can strongly couple with lattice vibrations.  Indeed the ab-initio 

calculations show that five molecular vibrational modes with gerade symmetry, suitable for 

coupling, lie below 200 cm-1 and three of these lie below 100 cm-1. As the site symmetry in the 

crystal is Ci, each internal mode of gerade symmetry splits in two components of symmetry Ag 

and Bg, respectively, according to the C2h factor group [40]. This easily explains why the 

number of the bands observed in our experiments at low energy is always higher than six.  

Polarized Raman spectra were recorded for a needle-like single crystal oriented, with 
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an aid of a polarized microscope, in the extinction direction, which was found to be at 45° with 

respect to the needle axis. In the back scattering geometry of our set-up, the spectra of Figure 

4.10 were collected with a polarization parallel to that of the horizontally polarized incoming 

bean, (namely, H-H) or perpendicular (V-H), respectively. After allowing for residual 

polarization, each spectrum displays below 125 cm-1 at least five distinct not overlapping 

bands, which can be assigned to Ag (H-H) and Bg (V-H) modes. This implies that the face probed 

in the experiment is not ac where Bg transitions would not be observable. Polarized spectra 

recorded in the range of the pure internal vibrations revealed that most bands are actually 

split in two components, thus confirming that Bg modes are observable on the analyzed face.  

 

 
Figure 4.10  Polarized Raman spectrum of α-DPA single crystal (needle) in the wavenumber region 10-150 cm−1; H-H and 

H-V polarizations (see text for explanation of the symbols) are compared to the full spectrum of the crystal (unpol). 
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4.3.5.2 The Polymorph β 

The Raman spectrum of a sublimation grown P21/a DPA crystal is shown in Figure 4.11 

together with its optical image (Figure 4.11a). The deconvolution of the spectrum is also 

shown. It should be noticed that the same spectrum is also found in samples grown by fast 

cooling from the melt (Figures 4.11b,c,d). As in the case of the α phase, morphology can vary 

and the shape of the crystals is never a good diagnostics for the phase identification, unlike 

what happens in other organics [40]. We can, however, confidently assign our samples to β-

DPA, because they all present the same Raman spectrum and this coincides with the spectrum 

recorded for a sample of DPA grown from sublimation [55]. 

 

 
Figure 4.11. Left: Raman spectrum of β-DPA polymorph in the wavenumber region 10-150 cm−1; right: optical images of 

α-DPA samples in the various morphologies displayed. 
 

X-rays analysis [29] has shown that platelet-like crystals of the β polymorph show a 

preferential growth in the ac plane. This knowledge allows for a more detailed analysis of the 

vibrational features of this polymorph. The incident laser light is, in this case, parallel to the 

monoclinic b axis which also coincides with one of the crystal optical directions of the biaxial 

indicatrix. Maximum birifrangence conditions can be acquired, but the extinction conditions 

in polarized light do not correspond either to a or c crystallographic axes.  

On the basis of selection rules of the P21/a crystal space group, 12 out of the 21 optical 

lattice modes (6Ag+6Bg) are expected to be Raman active in the rigid molecule approximation. 

By symmetry, when the back-scattered radiation from the ac face is analyzed, only the six 

modes of Ag symmetry can be detected, as the aa, cc and ac components of the polarizability 

tensor all belong to the total symmetric representation of the factor group C2h. By allowing the 

coupling with molecular internal vibrations, as in the case of α-DPA, the number of bands 
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increases, due to the mixing with the total symmetric contributions of the molecular 

vibrations. Depending on the specific component of the Raman tensor which is probed in each 

experiment, different intensity patterns of the Ag bands can be observed in the oriented 

sample, as a result of the relative polarization of incident and scattered light.  

An example of this is reported in Figure 4.12 for an oriented platelet. The spectra of the 

Figure have been recorded by collecting the Raman scattering polarized either parallel (H-H) 

or perpendicular (V-H) to the excitation. While the total number of bands remains unchanged, 

the relative intensities change.  

 

 
Figure 4.12  Polarized Raman spectra of a β-DPA platelet in the low wavenumbers region. The platelet was in polarized 
light, with the ac crystal face normal to the incident (horizontally) polarized laser radiation. Next to each spectrum, the 

relative polarization of excitation and scattering (see text for explanationof the symbols). 
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4.3.5.3 The Polymorph γ 

The Raman spectrum of the DPA nanocrystals is shown in Figure 4.13 together with the 

optical image of the sample, showing structures of the same morphology and dimensions as 

those given in Zhang and coworkers [44]. As reported above, the same spectrum was obtained 

for bulk crystals found in the growth of either the α or the β polymorph. 

 

 
Figure 4.13  Left: γ-DPA Raman spectrum in the wavenumber region 10-150 cm−1; right: optical images of γ-DPA samples: 

(a) nanocrystals and (b) platelet. 

 

The bad quality of the crystals grown in batches where other polymorphs were present 

did not allow us to determine the structure of this phase by single crystal X-ray diffraction 

methods. The quantity of nanostructures so far obtained would be certainly suitable for 

powder X-ray determination. However, we are quite certain that this is a new polymorph and 

that we are not looking at a different face of either of the known ones for at least two reasons: 

the Raman spectra of ground samples of α-DPA and β-DPA were recorded, in such a way to 

have data as complete as possible of both of them for all the possible orientations, and a 

satisfactory match or overlap with the spectrum of the unknown phase was never found; on 

the other hand, as shown in Figure 4.14, it is possible to measure polarized spectra of a micro-

crystal of the unknown phase oriented along a direction of maximum extinction. Despite 

residual polarization, probably due to the fact that we are not dealing with a single crystal, the 

band pattern is quite clear, and, again, no overlaps with the spectra of the other phase are 

clearly detectable. 
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Figure 4.14  Polarized Raman spectra of a ƴ-DPA platelet in the low wavenumbers region.  

 

4.3.6 Computational Results 

In Table 4.1 the results of the crystal structure calculations for the DPA polymorphs are 

reported. The structural parameters, calculated at the minimum of the potential energy ɸ and 

at the minimum of the free energy G(T), are compared to the X-ray data [29,55]. G(T) values 

are given at the temperature of the experiments. Note that the computed cell volumes at 

minimum ɸ are systematically smaller than the experimental ones, and this is expected as no 

thermal effects are included. Once thermal effects are accounted for, the volume increases, 

and the agreement with the experiments improves. It should be pointed out that the 

agreement with the experiments has been found excellent only by employing in the 

calculations the molecular geometry as given by the X-rays measurements. The attempt to use 

the optimized Ci geometry obtained from the ab-initio calculations leads to structures with 

large deviations from the experiments (results not shown), especially for the α polymorph.  
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In fact, the main difference between calculated and experimental geometries involves 

the torsional angles between the anthracene skeleton and the phenyl groups, which is ≈ 75° 

in the former and, as given in section ≈ 67° in the latter. This is a strong indication that the 

slight conformational changes between polymorphs, driven by the different crystal packing, 

cannot be overlooked.  

The α polymorph turns out to be the most stable, corresponding both to the deepest 

potential minimum ɸ and to the structure with the lowest free energy G at ambient conditions. 

This was expected, as polymorph α has been the only one known for a long time. Note that is 

also the most dense structure, and thus again, predictably, the most stable, following the rule 

of thumbs for relative polymorph stability. Interestingly, the calculated free energy for α is the 

lowest over the 0-500 K temperature range. Therefore, from the computational point of view, 

no solid-phase transitions are expected for this polymorph before the melting point. This result 

agrees with the experimental finding for which α and β are in a monotropic phase relationships 

[29,36].  

 

Table 4.1 The experimental structures of the known DPA polymorphs [41,42,43,44] are compared to the minimum 
potential energy Φ and minimum free energy structures, Energies are in kcal/mole, unit cell axes a, b, c are in Å , angles 

α, β, γ in degrees, and cell volumes V in Å3. 

 a 
(Å) 

b 
(Å) 

c 
(Å) 

α 
(deg) 

β 
(deg) 

γ 
(deg) 

V 
(Å3) 

Energy 
(Kcal/mole) 

 Polymorph α 

Experimental 10.683 13.552 12.257 90.00 90.54 90.00 1774.441  

Minimum φ 10.521 13.576 12.238 90.00 91.05 90.00 1747.664 -64.89 

Minimum G (293K) 10.627 13.645 12.371 90.00 91.164 90.00 1793.484 -73.59 

 Polymorph β 

Experimental 9.4976 20.413 10.0843 90.00 112.307 90.00 1808.8  

Minimum φ 9.4894 20.386 9.9642 90.00 112.124 90.00 1785.6 -62.59 

Minimum G (293K) 9.5534 20.557 10.0241 90.00 112.006 90.00 1825.169 -71.80 

 

4.4 Discussion and Conclusions 

Although polymorphism is widely encountered in organic materials for electronics [56-

58], and in particular in polyaromatics hydrocarbons (PAHs) [59], there are, however, few 

instances of 9,10-anthracene derivatives which show this behavior and in this DPA represents 

an interesting case. Besides, the α and β polymorphs of DPA may constitute an example of 

polymorphs in a monotropic relationship. The energy barrier for the transformation from α-

DPA to β-DPA (or viceversa) could be too high to be overcome by heating before melting. As 

the calculations and the experiments indicate that the α phase is the one thermodinamically 



4. Polymorphism and phase mixing in the organic semiconductor 9,10-diphenylanthracene 

148 
 

stable, no precaution should be taken to preserve it in devices and applications, once it has 

been obtained. Instead, the β phase could be metastable, yielding the α phase in a range of 

p,T conditions. However, a kinetically controlled transformation β to α is made particularly 

unlikely by the large molecular reorganization that such a transformation would require. 

Interestingly, the two polymorphs can form in very similar conditions, although the 

observation that β is obtained in "fast processes" is a further indication that its formation is 

kinetically controlled. In all the growth conditions tested in this work, α and β forms have never 

found to coexist in the same batch, and this allowed us to conclude they are never concomitant 

polymorphs. The γ phase, instead, is found concomitantly with either form, even though phase 

mixing, in the meaning of a sample appearing as homogeneously belonging to a single phase, 

but actually formed instead by domains of two [55], has not been observed.  The most 

interesting finding about γ-DPA is the possibility of obtaining it in nano and micro-structures, 

because these kind of one- and two-dimensional morphologies has attracted recently much 

interests for application in devices [60,61]. Note that in reporting for the first time DPA 

nanostructures [60], Zhang mentioned that they were found to have the same structure as the 

most common polymorph α. However, in Reference [44], variable surfactant concentration 

was used (unlike here) to guide the growth morphologies and indeed, the presence of 

surfactant could also selectively drive the polymorph formation. Mobility measurements could 

say whether the occurrence of γ-DPA is to be avoided in DPA samples or, instead, the packing 

of this structure could be exploited to improve its charge transport performances. 

It is worth mentioning that it is not the first time that a new polymorph is spotted by 

Raman microscopy before being identified by X-ray or other methods. Among the examples to 

remember we mention those of dibenzo-tetrathiafulvalene and of tetraphenylbutadiene 

[40,57,58,62]. 
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5. Crystal growth and spectroscopic characterization of charge 
transfer crystals of Perylene – FxTCNQ  

 

5.1 Charge transfer crystals 

The application of organic materials in the field of electronics and photonics still 

requires the use of inorganic layers, usually in the form of metal contacts. Recently, it has been 

discovered that the charge injection efficiency is greatly improved by the use of an organic 

metal-organic semiconductor interface. This has resulted in the employment of several organic 

metals such as carbon nanotubes, graphene, polymers and mixed crystals like 

tetrathiafulvalene-7,7,8,8-tetracyanoquinodimethane (TTF-TCNQ) [10-18]. TTF-TCNQ has 

been found to better the performances of an organic semiconductor with respect to devices 

with silver or gold contacts, even though the intrinsic conductivity of the organic metals is still 

much lower than that of inorganics [18]. The higher charge mobilities and low contact 

resistance at the interfaces of two the organic materials are also linked to the possibility of 

improving the matching of their Fermi levels by acting on the chemical modification of the 

compounds [19-21]. The versatility of organic materials thus suggests that manipulating 

organic-organic interfaces is a robust way to improve the electronic properties.  

Apart from the lower device performances displayed by the organic with respect to the 

inorganic materials, a further drawback of the former in applications arises from their having 

generally unipolar characteristics, with the majority of them classified as p-type [22].  

Recently, some research groups have focused again their attention on a class of 

crystalline materials which were known and had been widely studied in former times: the so-

called organic Charge-Transfer (CT) compounds or complexes [23-26]. CT complexes are 

combinations of charge donating (D) and charge accepting (A) molecules, usually assembled 

in a stoichiometric ratio in the crystal state, thus forming co-crystals. While the single 

compounds have usually unipolar semiconducting properties, the complexes may display a 

wide range of different characteristics such as ambipolarity when the binary system acts as a 

semiconductor, or metal and even superconductor behavior in a number of cases [27]. 

In the past decades, the interest for CT compounds was focused not only on their 

potential conductivity and high temperature superconductivity, but also on several interesting 

physical phenomena observed in these systems, like charge density waves or Peierls transitions 
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[28]. A renewed interest in CT complexes arose just recently, based on a study by Alves and 

coworkers, who described some surprising properties observed at the interface between 

donor and acceptor compounds and which were not present in the parent materials [29]. 

Later, a mechanism for the generation of these properties was proposed [30]. Indeed, Mathis 

and coworkers, in their studies of the interface between TTF and TCNQ single crystals, 

suggested that the increase in conduction observed in TTF-TCNQ salts occurs when such an 

interface is formed by sublimation and not by physical contact only [30]. A more recent work 

by Tsunami and coworkers describes the photoconduction of single crystals of Perylene-

F4TCNQ, showing that the diffusion length of the photocarriers is strictly correlated to the CT 

complex energy gap [31,32]. 

Of course, the properties displayed by the various CT materials strongly depend on the 

choice of the molecules used as donor and acceptor (see examples in Figure 5.1), as well as on 

their packing arrangements in the crystal or in a thin film phase. A molecule that has a stable 

anionic state, and is therefore easily reduced, is the electron acceptor (A). A molecule with a 

stable cationic state, and is therefore easily oxidized, is the electron donor (D). 

 
Figure 5.1  Examples of typical donor and acceptor molecules in CT mixed crystals. 
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Based on the definitions of the molecular orbitals theory, an electron donor is a 

compound with a relatively high energy of the highest occupied molecular orbital (HOMO). 

The ionization potential (Ip) of the molecule is defined as the energy needed to remove the 

electron from the HOMO. On the other hand, an electron acceptor is characterized by a low 

energy of the lowest unoccupied molecular orbital (LUMO). The molecular electron affinity 

(EA) is the energy needed to accept an extra electron in the LUMO. The electronic interaction 

between different molecules couples of the HOMO orbital of the donor to the LUMO orbital 

of the acceptor, with a partial degree of charge transfer, ρ, between the two systems (Figure 

5.2). The partial transfer of the charge from the donor to the acceptor results in a ground state 

of the complex characterized by a degree of ionicity, Dρ+Aρ-, related to Ip and EA of D and A, 

respectively [33]. The so called CT band energy is represented by EG,CT = Ip – EA – E(Dρ+Aρ-), 

where E(Dρ+Aρ-) is the Madelung energy term. 

 
Figure 5.2  The donor band structure (green), acceptor band structure (red) and the resulting CT band structure (orange). 

 

From this relation it is possible to classify the CT complexes as neutral or quasi neutral 

with ρ < 0.5, with a D-A combination for which Ip – EA >> E(Dρ+Aρ-), and as ionic or quasi ionic 

with ρ > 0.5, with a D-A combination for which Ip – EA << E(Dρ+Aρ-) [33]. 

Herbstein described the CT systems using two relevant parameters which are assumed 

to be responsible for their characteristic properties: the difference between the energy levels 

of D and A and the molecular conformation [34]. Further reports on these systems stated that 

the Herbstein parameters alone are not sufficient to fully describe the CT complexes and the 
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relationship between electronic properties and crystal structure is still the subject of an open 

debate. 

5.1.1 Crystal arrangements 

The crystal structure of Dn-Am CT complexes can have, in theory, all possible 

combinations of n and m. The stoichiometry 1:1 is quite commonly reported in the literature 

and many examples have been studied, whereas the information on more complex structures 

such as 1:3, 2:3, etc. is still quite scanty. For the 1:1 stoichiometry found in several CT 

complexes, two types of crystal packing have been observed, as shown in Figure 5.3. The first 

packing is defined as segregated stack, in which D and A molecules are arranged in separate 

stacks as A-A-A-A and D-D-D-D. An instance of this arrangement is the case of black TMTSF-

TCNQ [35]. The second type of packing is defined as mixed stack, and in this the D and A 

molecules are organized in a single π-stacking sequence D-A-D-A. Examples of this are the 

anthracene-PMDA [36] and perylene-TCNQ [37] systems, with the latter being also treated in 

this thesis. 

 

 
Figure 5.3  Typical packing motifs for crystalline charge transfer compounds with 1:1 stoichiometry: segregated stack (left) 

and mixed stack (right). 

 

In the case of more complex structures with higher stoichiometric ratios, 2:1, 3:1, 3:2, 

some molecules are located outside the CT stacking and as a matter of fact they do not 

participate in charge transfer processes. The same stoichiometry of the CT binary system might 

also display different packings with completely different physical properties, and this true for 
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all the ratios, the 1:1 or the more complex ones. Predictably, the molecular solid state 

arrangements of CT complexes must be strictly dependent on the experimental conditions of 

their crystal growth. 

 

5.1.2 Electronic properties and the interplay between the degree of CT and 

the electrical properties 

The electronic properties of the CT complexes can vary depending on their band gap, 

passing from insulator to superconductor. The strong temperature dependence of these 

properties constitutes a further source of interest. Basically, two important parameters can be 

used to classify the compounds: i) electrical conductivity and mobility and ii) degree of charge 

transfer. 

The electrical conductivity can be determined with a variety of methods and the high 

anisotropy of these system structures [38] requires that its measurement must be done in 

different geometries. A high conductivity is important for the characterization and evaluation 

of a good metal, but the determination of the mobility of holes and electrons is more useful 

for the semiconductors. Among the several methods to measure the conductivity and the 

mobility of charge in the CT systems, the mostly used are: space-charged-limited current 

(SCLC) [28,39], time of flight (TOF) [40] and organic field-effect transistor (OFET) [28]. The 

measure of the space-charged-limited current is used mostly for unipolar compounds, because 

the result does not discriminate between holes or electrons mobility and the value, in the case 

of ambipolar compounds, is a combination of both of them. Time of flight is another method 

which uses two contacts deposited on the material to be examined and allows for the 

evaluation of the mobility of both holes and electrons. OFET measurements  can also be used 

as a comparative method to determine mobilities, since, differently from the previous 

techniques, the data obtained are more dependent on the surface than on the bulk [41]. 

The second parameters useful to characterize CT complexes is the degree of charge 

transfer ρ from the donor to the acceptor at a given composition, Dρ+Aρ- , with 0 ≤ ρ ≤ 1. 

In the literature several methods are described for the estimation of ρ. A common one 

is based on X-ray diffraction studies, and uses the differences found between the bond lengths 

of neutral and ionic forms of donor and acceptor moieties. According to a theoretical study by 

Johanson [42] TCNQ becomes more benzenoid on passing from neutral to ionic, therefore 

undergoing an appreciable change in the bond lengths. In the last decades, four different 
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equations [43-46] have been proposed for the determination of ρ for the acceptor TCNQ, with 

small differences from one to the other. The four equations were chosen in reason of the 

precision of the bond length measurements and they are listed below: 

 

𝜌𝑇𝐶𝑁𝑄 = 7.25(𝑏 − 𝑐) − 8.07(𝑐 − 𝑑) − 1  eq.1 [43] 

𝜌𝑇𝐶𝑁𝑄 = 22.43 − 23.81[(𝑎 + 𝑐)/(𝑏 + 𝑑)]  eq.2 [44] 

𝜌𝑇𝐶𝑁𝑄 = 19.83 − 41.67𝑐/(𝑏 + 𝑑)   eq.3 [45] 

𝜌𝑇𝐶𝑁𝑄 = −1.374 + 8.13[(𝑏 + 𝑑) − (𝑎 + 𝑐)] eq.4 [46] 

 

a, b, c, and d are the bond lengths as indicated in Figure 5.4. The values of the different 

constants in the equations depend on the selected set of bond lengths. 

 

 

Figure 5.4  Definition of characteristic bonds of the TCNQ skeleton 

 

Another method for the estimation of ρ is based on spectroscopic parameters. By using 

Raman and Infrared spectroscopies, one can probe the stretching frequencies of selected 

bonds, which are sensitive to the degree of charge transfer. By assuming a linear dependence 

of the frequency mode on going from the fully neutral to the fully ionic species, ρ can be 

determined for any intermediate case. When comparing the results of the two methods 

proposed for estimating ρ, a particular attention should be paid to the CN functional group, 

whose stretching frequency is very sensitive to even slight variations of the charge transfer . 

In a recent review [27] the conductivity σ of several D:A CT complexes has been plotted 

as a function of ρ, so that distinctive trends could be identified, leading to the general 

definition of two distinct groups of systems. The first one, in the limiting cases of low and high 

value of ρ, is typical of materials with insulator or semiconductor character, whereas the 

second one is typical of materials which exhibit metallic behavior and refers to the limited 

range of ρ from 0.59 to 0.74.  
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5.2 Charge transfer crystals Perylene-FxTCNQ 

We have focused our work on the crystal growth of a new class of CTs, the Perylene-

FxTCNQ compounds, where the amount of fluorine content of the acceptor (x = 0 to 4) is varied, 

with the aim of modulating the degree of charge transfer of the resulting system. The crystals 

were grown by the physical vapour transport method, described in chapter 2, in a closed 

system with inert atmosphere, mixing perylene and functionalised 7,7,8,8-

tetracyanoquinodimethane (Figure 5.5). By changing the crystal growth conditions, it was 

possible to obtain various D:A stoichiometric ratios, with different outcomes on crystal packing 

and CT properties.  

 

 
Figure 5.5  Molecular structures of donor (perylene) and acceptor (FxTCNQ) 

 

The study is therefore based on the association of perylene with four different TCNQ 

isostructural acceptors having a different degree of fluorination. All the acceptor compounds 

(F0TCNQ, F1TCNQ, F2TCNQ and F4TCNQ) present a different electronic structure, as shown in 

Figure 5.6, with the HOMO-LUMO values modulating  and the CT electronic band.  
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Figure 5.6  Homo and LUMO levels of the donor and the different acceptor molecules used. 

 

The donor perylene (C20H12) presents two monoclinic polymorphs. The α form was 

described for the first time by Donaldson et al. [51], whereas the first report for the β form 

was by Tanaka [52]. A complete and revisited report of both crystal structures of perylene has 

been published by Botoshansky and coworkers [53]. The cell structures of the polymorphs are 

shown in Figure 5.7. In the α form the molecules are arranged in a pair-like packing. The 

structure belongs to the space group P21/c with four molecules per unit cell and cell 

parameters: a = 10.2390(7) Å, b = 10.7860(8) Å, c = 11.1320(11) Å, β = 100.924(3)°. The β form 

shows the more common herring-bone arrangement, with space group symmetry P21/c and 

two molecules per unit cell. The cell parameters are: a = 9.7630(15) Å, b = 5.8430(9) Å, c = 

10.608(2) Å, β = 96.770(6)°. Tanaka et al. [52] described the transformation of the β form into 

the α form at 140 °C. Below this temperature both structures can be found.  
 

  

Figure 5.7  Crystal structures of α-perylene (left) and β-perylene(right). 
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The acceptor 7,7,8,8-Tetracyanoquinodimethane, or TCNQ, is the compound with the 

lowest electronegativity, having is no functionalization of the aromatic core by fluorine atoms. 

We have adopted here the convention of naming it F0TCNQ, to stress the absence of fluorine 

in this member of the acceptor series. F0TCNQ crystallizes in a monoclinic structure belonging 

to space group C2/c with four molecules per unit cell [54]. The crystal parameters are: a = 

8.906(6) Å, b = 7.060(4) Å, c = 16.395(5) Å and β = 98.54(4)°. The crystal lattice and the bond 

lengths are shown in Figure 5.8. 

 

  

Figure 5.8  Crystal structure of F0TCNQ and bond lengths. 

 

The crystal structure of the 2-fluoro-7,7,8,8-tetracyanoquinodimethane, F1TCNQ, has 

been determined by X-ray diffraction by Wiygul et al [55] (Figure 5.9). It is the only acceptor 

used in this work with a molecular structure which lacks any symmetry in the fluorine 

substitution. F1TCNQ crystallizes in a monoclinic structure with two molecules per unit cell. 

The structure belongs to space group P21/n with cell parameters a: = 7.596(3) Å, b = 8.204(4) 

Å, c = 8.428(2) Å and β = 90.90(3)°.  

In the crystal structure the fluorine atom has been found to be intrinsically disordered, 

due to the rotational disorder of the molecule. This can be described saying that, by keeping 

fixed in the structure all the atoms of the molecule apart from F, this has a 50% probability to 

be located either at the position 2 or position 5 of the aromatic core of TCNQ skeleton. 
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Figure 5.9  Crystal structure of F1TCNQ and bond lengths. 

 

The crystal structure of 2,5-difluoro-7,7,8,8-tetracyano-p-quinodimethane, F2TCNQ, 

has also been published by Wiygul et al [56]. It belongs to the monoclinic space group C2/m 

with two molecules per unit cell and cell parameters a = 10.208(4) Å, b = 6.026(2) Å, c = 

8.836(3) Å and β=106.64(3)°. The structure and the bond lengths are shown in Figure 5.10. 

 

 
 

Figure 5.10  Crystal structure of F2TCNQ and bond lengths. 

 

The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinoedimethane (F4TCNQ) is the electron 

acceptor with the highest electronegativity used in this work. Its crystal structure has been 

reported by Emge and coworkers in 1981 [57], but in it has been determined again in this work 

by single crystal X-ray diffraction of a crystal grown by PVT method (see Table 5.1) and 

compared with the previous results [57]. The parameters of its orthorhombic structure were 

found in agreement with those given by Emge and coworkers [57], who used a single crystal 

grown by slow evaporation from an acetonitrile solution. The structure with the bond lengths 

is shown in Figure 5.11. 
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Figure 5.11  Crystal structure of F4TCNQ and bond lengths. 

 

Table 5.1  Crystal data and structure refinement for F4TCNQ. 

Empirical formula  C12F4N4 

Formula weight  276.16 g mol-1 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P c a b 

Unit cell dimensions a = 8.0828(2) Å               α = 90° 

 b = 9.2231(2) Å               β = 90° 

 c = 14.5974(4) Å              γ = 90° 

Volume 1088.21(5) Å3 

Z 4 

Density (calculated) 1.686 Mg/m3 

Absorption coefficient 0.155 mm-1 

F(000) 544 

Crystal size 0.500 x 0.500 x 0.250 mm3 

 

 

The binary systems Perylene-F0TCNQ in the ratios 1:1 and 3:1 and Perylene-F4TCNQ in 

the ratio 3:2, have already been described in the literature [23,24,32]. All the other structures 

of Perylene-F1TCNQ, Perylene-F2TCNQ in both ratios 1:1 and 3:2 and Perylene-F0TCNQ-F2TCNQ 

are reported in this work for the first time. In the following paragraphs, all the structures 

obtained by physical vapor transport, are described in details. 
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5.2.1 Perylene-F0TCNQ 1:1 crystals (Low T) 

An ampoule of 100 mm length and 10 mm diameter was cleansed with soap, distilled 

water, isopropanol and acetone in this sequence and then left to dry overnight at 110 °C. The 

ampoule was loaded with 28 mg of perylene (0.111 mmol), Sigma Aldrich sublimed grade, > 

99% of purity, and 28.9 mg of F0TCNQ (0.142 mmol), Sigma Aldrich, 98% of purity. The amount 

of perylene and F0TCNQ were calculated to have a molar ratio of 1:1 in the starting powder. 

A second ampoule, of the same dimensions and cleansed with the same procedure, 

was filled with 9.9 mg of perylene (0.039 mmol) and 28.1 mg of F0TCNQ (0.138 mmol) to have 

a starting powder molar ratio of 3:1 for perylene and F0TCNQ, respectively. 

Before sealing with an oxygen-natural gas burner, the ampoules were evacuated in N2 

at a final pressure of 10-4 mbar. Both ampoules were placed in a two-zone furnace for the 

crystal growth by PVT method. The temperature was set at 140°C and 100 °C at the hot and 

cold end, respectively (see Figure 5.12). 

 

 

Figure 5.12  Schematic representation of the temperature gradient applied along the ampoule. 

 

After 15 days the ampoules were cooled down by turning off the furnace and left inside 

it to avoid a too fast condensation of the material in the vapor phase. Both ampoules, 

regardless of the perylene-F0TCNQ starting ratio, still showed a large amount of the starting 

material at the hot ends. In the growth region, orange platelet-like crystals were found, mixed 

to black prismatic crystals which could also be seen at the hot end together with the starting 

material (see Figure 5.13).  
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Figure 5.13  Morphologies of the crystals obtained after experiment and distribution along the ampoule.  

 

The black and orange crystals were characterized by X-ray single crystal diffraction. The 

black ones resulted to be mixed crystals of perylene-F0TCNQ with ratio 1:1 and their lattice 

phonon spectra proved that all of them had the same crystal structure.  

The binary system Perylene-F0TCNQ 1:1, already described in the literature, was found 

to crystallize in a monoclinic structure, space group P21/c, with 2 molecules per unit cell and 

unit cell parameters at 150 K: a = 7.2013 Å, b = 10.8390 Å, c = 14.4747 Å and β = 90.324°. 

Further details of the structure are reported in Table 5.2, while the packing is sketched in Figure 

5.14. The cell parameters of this work compare very well with those previously published by 

Tikle et al. [58] and Vermeulen et al. [59], as the small differences in the length of the cell axes 

can be accounted for by the different temperatures used in the various experiments. In the 

structure of Figure 5.14 each perylene molecule is paired to a F0TCNQ molecule, forming a 

mixed stack structure with stacking direction along the a crystallographic axis.  
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Table 5.2  Crystal data and structure refinement for Perylene-F0TCNQ 1:1. 

Empirical formula  C32H16N4 

Formula weight  456.49 g mol-1 

Temperature  150(2) K 

Wavelength  1.54184 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 7.2013(5) Å                α = 90° 

 b = 10.8390(8) Å               β = 90.324(4)° 

 c = 14.4747(11) Å              γ = 90° 

Volume 1129.80(14) Å3 

Z 2 

Density (calculated) 1.342 Mg/m3 

Absorption coefficient 0.634 mm-1 

F(000) 472 

Crystal size 0.290 x 0.080 x 0.050 mm3 

 

 

 
 

Figure 5.14  Crystal packing of binary system Perylene-F0TCNQ 1:1. 
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The X-ray data of the orange crystals corresponded instead to those of a single crystal 

of pure F0TCNQ, which clearly also grows in the furnace conditions. The cell parameters at 150 

K are reported in Table 5.3, and compare well with the data previously published at a different 

temperature [54]. 

 

Table 5.3  Crystal data and structure refinement for F0TCNQ. 

Empirical formula  C12H4N4 

Formula weight  204.19 g mol-1 

Temperature  150(2) K 

Wavelength  1.54184 Å 

Crystal system  Monoclinic 

Space group  C2/c 

Unit cell dimensions a = 8.8746(4) Å            α = 90° 

 b = 6.9335(3) Å            β = 98.315(4)° 

 c = 16.4071(6) Å           γ = 90° 

Volume 998.95(7) Å3 

Z 4 

Density (calculated) 1.358 Mg/m3 

Absorption coefficient 0.710 mm-1 

F(000) 416 

Crystal size 0.290 x 0.080 x 0.050 mm3 

 

 

Figure 5.15  Crystal packing of pure F0TCNQ obtained by PVT. 

 

5.2.2 Perylene-F0TCNQ 3:1 crystals (High T) 

20.4 mg of perylene (0.081 mmol) and 18.4 mg of F0TCNQ (0.090 mmol) were placed 

in the furnace into an evacuated quartz glass ampoule. The sample was prepared following 

the same protocol as described above. This time the furnace was set at 170 °C at the hot end 
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and at 110 °C at the cold end. Both ends were covered with glass wool caps to avoid heat 

dispersion. The temperature profiles of the system with and without the end caps are drawn 

in Figure 5.16, where the position of the ampoule in the furnace is also shown. 

 

 

Figure 5.16  Comparison of temperature distributions in the two zones furnace.  

 

After 7 days the furnace was turned off, the end caps removed and the ampoule left to 

cool down slowly inside the ceramic holder tube. Before opening it, the ampoule was placed 

under the microscope to observe the spatial distribution of the various crystals grown during 

its stay in the furnace. By looking at the pictures of Figure 5.17, three different zones of the 

ampoule can be identified, starting from the left hand side: in the first one a small amount of 

the starting powder is still present; in the middle, black needle-like and platelet crystals are 

observed and, finally, a few orange crystals are located in the right hand side.  
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Figure 5.17  Morphologies of the crystals obtained after experiment and distribution along the ampoule. 

 

The orange crystals were characterized by Raman spectroscopy and were readily 

identified as the more volatile compound F0TCNQ. The black crystals with two distinct 

morphologies of the central zone were characterized both by X-ray diffraction and Raman 

spectroscopy. The needle-like crystals, which grow prevalently in the zone with a lower 

temperature of the middle section, resulted to be the mixed system perylene-F0TCNQ 1:1, 

already described in paragraph 5.2.1. 
 

Table 5.4  Crystal data and structure refinement for Perylene-F0TCNQ 3:1. 

Empirical formula  C72H40N4 

Formula weight  961.08 g mol-1 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  𝑃1̅ 

Unit cell dimensions a = 10.3446(2) Å              α= 112.4861(13)° 

 b = 10.8429(3) Å              β= 114.2810(14)° 

 c = 12.5107(3) Å              γ = 91.3733(13)° 

Volume 1154.20(5) Å3 

Z 1 

Density (calculated) 1.383 Mg/m3 

Absorption coefficient 0.081 mm-1 

F(000) 500 

Crystal size 0.400 x 0.350 x 0.200 mm3 
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The platelet-like crystals, isolated at the higher temperature side of the section, were 

found to be the mixed system perylene-F0TCNQ 3:1. The cell parameters and the crystal 

structure of this system are reported in Table 5.4 and Figure 5.18, respectively. 

 

 

 
 

Figure 5.18  Crystal packing of binary system Perylene-F0TCNQ 3:1. 
 

As can be seen from the table, the binary Perylene-F0TCNQ 3:1 system crystallizes in a 

triclinic structure, space group 𝑃1̅, with one molecule per unit cell and unit cell parameters (at 

150K): a = 10.3446 Å, b = 10.8429 Å, c = 12.5107 Å, α = 112.4861°, β = 114.2810° and γ = 

91.3733°. The parameters are agreement with those previously published by Hanson et al. 

[60] and Vermeulen et al. [59] Again, small differences are due to the lower temperature used 

for the collection of our diffraction data. In the structure reported in Figure 5.18, one F0TCNQ 

molecule is sandwiched between two perylene molecules to form a mixed stack along the a 

crystallographic direction, with a resulting sequence DDADDADDA. The third perylene of the 

crystal stoichiometry is instead found in the interstitial sites located between the 
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DDADDADDA stacks, thus forming a row of molecules with the molecular planes perpendicular 

to the crystallographic direction c. 

5.3 Charge transfer crystals Perylene-F1TCNQ 

The protocol already adopted for the growth of crystals by the PVT method was used 

for a mixture of 22.8 mg of perylene (0.090 mmol) and 18.0 mg of F1TCNQ (0.081 mmol), TCI 

chemicals 98% of purity. The two ends of the two-zone furnace were kept at the temperatures 

of 170 °C and 110 °C, respectively, and the ampoule was placed in the furnace in the suitable 

position displayed in Figure 5.19, together with the temperature profile of the crystal growth 

apparatus. 
 

 
Figure 5.19  Temperatures distribution in the furnace for perylene-F1TCNQ crystal growth. 

 

The crystal growth process was prolonged to 9 days and, after the cooling of the 

furnace to room temperature, different kinds of crystals were found to be present, as shown 

in Figure 5.20. As already observed, roughly three different zones and crystals could be 

identified along the direction of the ampoule temperature gradient. The widest one lay in the 

middle, with needle-like black crystals which needed identification by XRD. At a short distance 

from the starting powder (hot end of the ampoule), there were yellow crystals which were 

identified as perylene, that is the component with the lower volatility. At the opposite side, 

right at the cold end, the growth of F1TCNQ, which is the component with higher volatility, 

could be found. The presence of the crystals of both the parent molecules was quickly detected 

by Raman and Infrared spectroscopies. 
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Figure 5.20  Morphologies of the crystals obtained after experiment and distribution along the ampoule. 

 
 

By X-ray single crystal diffraction analysis, the black needle crystals grown in the middle 

section resulted to be the mixed perylene-F1TCNQ system with the stoichiometric ratio 3:2. 

Cell parameters and crystal packing are reported in Table 5.5 and Figure 5.21, respectively. 
 

Table 5.5  Crystal data and structure refinement for Perylene-F1TCNQ 3:2. 

Empirical formula  C84H38F2N8 

Formula weight  1197.22 g mol-1 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.2254(2) Å              α= 112.2658(14)° 

 b = 19.1275(4) Å             β= 90.2346(10)° 

 c = 22.3203(6) Å             γ= 94.0322(15)° 

Volume 2846.09(13) Å3 

Z 2 

Density (calculated) 1.397 Mg/m3 

Absorption coefficient 0.088 mm-1 

F(000) 1232 

Crystal size 0.430 x 0.200 x 0.100 mm3 
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Figure 5.21  Crystal packing of binary system Perylene-F1TCNQ 3:2. 

 

The binary system Perylene-F1TCNQ 3:2 crystallizes in a triclinic structure, space group 

𝑃1̅, with two molecules per unit cell and unit cell parameters (at 150 K): a = 7.2254 Å, b = 

19.1275 Å, c = 22.3203 Å, α = 112.2658°, β = 90.2346° and γ = 94.0322°. The structure has not 

been reported in the literature as yet. As can be seen in Figure 5.21, F1TCNQ and perylene 

form two distinct mixed stacks, along the c and a crystallographic axes, respectively. The mixed 

stack along a is characterized by a sequence DADADA with the F1TCNQ molecules presenting 

rotational disorder, so that the F atom is found to have an average occupation of the 50% in 

positions 2 and 5 of the aromatic ring. The second mixed stack aligned along c is characterized 

by the sequence DDADDADDA with a Perylene:F1TCNQ ratio 2:1. In the latter stack the average 

occupation of the F atoms for all the four aromatic positions is 25%. Therefore, in this structure 

the positions of the F atoms in F1TCNQ result all partially occupied, with the best fit yielding a 

global occupation average of 37 %, in agreement with the values of 50 % and 25% given for 

the two sequences. 
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5.4 Charge transfer crystals Perylene-F2TCNQ 

5.4.1 Perylene-F2TCNQ 1:1 crystals (Low T) 

10.1 mg of perylene (0.040 mmol), and 11.9 mg of F2TCNQ (0.045 mmol), TCI chemicals 

98% of purity, were placed in the ampoule prepared following the protocol described above. 

The ampoule was located in the furnace, setting the temperatures of the hot and cold end at 

180 °C and 110 °C, respectively. An accurate measurement of the temperature at the cold end 

showed that this was actually slightly higher (114 °C) (Figure 5.22). 
 

 
Figure 5.22  Ampoule before crystal growth with temperature of hot and cold ends set. 

 

After 7 days, the furnace was turned off and the ampoule left inside to cool down to 

room T. Very little amount of material was deposited at the cold end, but it was anyway 

possible to identify three kind of crystals in the growth: yellow needles, black platelets and 

orange prism-like crystals (see Figure 5.23). 
 

 
Figure 5.23  Morphologies of the crystals obtained after experiment and distribution along the ampoule. 

 

The parents materials Perylene and F2TCNQ, crystallized as pure compounds, could be 

recognized by infrared and Raman spectroscopies, and no further analysis was needed for 

those. The black crystals were characterized instead by XRD, and resulted to be the binary 

system Perylene-F2TCNQ in a 1:1 ratio. This system crystallizes in a monoclinic structure, with 

space group P21/n, two molecules per unit cell and cell parameters (at 150 K): a = 7.0425 Å, b 

= 8.4114 Å, c = 19.117 Å and β = 96.086°. No structural data for this crystal have been reported 

as yet. Cell parameters and more details of the structure are reported in Table 5.6 and Figure 

5.24, respectively.  
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Table 5.6  Crystal data and structure refinement for Perylene-F2TCNQ 1:1. 

Empirical formula  C32H12F2N4 

Formula weight  490.46 g mol-1 

Temperature  150(2) K 

Wavelength  0.7107 Å 

Crystal system  Monoclinic 

Space group  P21/n 

Unit cell dimensions a = 7.0425(10) Å              α = 90° 

 b = 8.4114(9) Å               β = 96.086(6)° 

 c = 19.117(3) Å               γ = 90° 

Volume 1126.1(3) Å3 

Z 2 

Density (calculated) 1.447 Mg/m3 

Absorption coefficient 0.099 mm-1 

F(000) 500 

Crystal size 0.500 x 0.250 x 0.100 mm3 

 

 

  
Figure 5.24  Crystal packing of binary system Perylene-F2TCNQ 1:1. 

 

The figure shows that perylene and F2TCNQ make a perfect mixed stack along a axis. 

The F atoms are disordered as a result of the rotational disorder of F2TCNQ and the average 

occupation of the position pairs (2,5) and (3,6) is 70:30. 
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5.4.2 Perylene-F2TCNQ 3:2 crystals (High T) 

19.60 mg of perylene (0.078 mmol) and 18.66 mg of F2TCNQ (0.078 mmol), TCI 

chemicals 98% of purity, were transferred into a the quartz glass ampoule and treated as 

previously described. In the experimental conditions given in the previous paragraph the 

perylene-F2TCNQ 1:1 structure can be obtained. If the same rationale found for the binary 

system perylene-F0TCNQ described in the paragraphs 5.2.1 and 5.2.2 applies, a higher T setting 

should produce a different structure, with a different stoichiometric ratio. With this goal in 

mind, the ampoule was placed in the furnace setting the high temperature at 200 °C and the 

low temperature at 140 °C. After just seven days, binary crystals of perylene-F2TCNQ in the 

expected stoichiometric ratio 3:2 were isolated. This result is especially remarkable because it 

is the first clear indication that it is possible to drive the system towards a desired structure 

while working in the gas phase.  

This system crystallizes in a triclinic structure, with space group P1̅, two molecule per 

unit cell and cell parameters (at 150 K): a = 7.23070 Å, b = 19.1407 Å, c = 22.2723 Å, α = 

112.2834°, β = 96.086°and γ = 93.7559°. No structural data for this crystal have been reported 

as yet. Cell parameters and details of the crystal structure of perylene-F2TCNQ 3:2 are reported 

in Table 5.7 and Figure 5.25, respectively.  
 

Table 5.7  Crystal data and structure refinement for Perylene-F2TCNQ 3:2. 

Empirical formula  C84H36F4N8 

Formula weight  1233.21 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.23070(10) Å             α = 112.2834(8)° 

 b = 19.1407(3) Å               β = 90.1900(8)° 

 c = 22.2723(5) Å               γ = 93.7559(12)° 

Volume 2844.85(9) Å3 

Z 2 

Density (calculated) 1.440 Mg/m3 

Absorption coefficient 0.095 mm-1 

F(000) 1264 

Crystal size 0.500 x 0.400 x 0.150 mm3 

 



5. Crystal growth and spectroscopic characterization of charge transfer crystals of Perylene – FxTCNQ 

176 
 

 

  
Figure 5.25  Crystal packing of binary system Perylene-F2TCNQ 3:2 

 

The crystal packing of this binary system is characterized by two separated different 

stacks. One mixed stack has a configuration ADDADDA along the c crystallographic axis, the 

other and has a configuration ADADA along the a axis and can be easily identified in the crystal 

structure shown in Figure 5.25. The F atoms present an intrinsic disorder with different 

occupation factors.  

 

5.5 Charge transfer crystals Perylene-F4TCNQ 

5.5.1 Perylene-F4TCNQ 3:2 crystals (by PVT) 

10.7 mg of F4TCNQ (0.0387 mmol) and 11.2 mg of perylene (0.0444 mmol), were used 

for the growth of the binary system. As shown in Figure 5.26, the sealed ampoule was placed 

in the two-zones furnace setting the left hand side at 200 °C and the right hand side at 130 °C. 

 

 
Figure 5.26  Ampoule before crystal growth with temperature of hot and cold ends set. 
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The crystals obtained after 7 days were examined under the optical microscope (Figure 

5.27). At the right hand side of the ampoule the crystallization of black needles was observed, 

together with a small amount of the starting material.  

 

 
Figure 5.27  Morphologies of the crystals obtained after experiment and distribution along the ampoule. 

 

The black crystals were first probed by Raman and Infrared spectroscopies. When it 

was determined that they belonged to a structure not yet obtained, they were analyzed by 

XRD diffraction.  

Perylene-F4TCNQ 3:2 binary system crystallizes in a triclinic structure, with space group 

P1̅, two molecules per unit cell and cell parameters (at 150 K): a = 7.2066 Å, b = 19.0974 Å, c 

= 22.4050 Å, α = 111.8014°, β = 90.0472°and γ = 94.1283°. The structural parameters reported 

in Table 5.8 and Figure 5.28 are in agreement with those of the previous work by Tsunami et 

al. [32]. 
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Table 5.8  Crystal data and structure refinement for Perylene-F4TCNQ 3:2. 

Empirical formula  C84H36F8N8 

Formula weight  1309.21 g mol-1 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.2066(2) Å                α = 111.8014(14)° 

 b = 19.0974(6) Å               β = 90.0472(17)° 

 c = 22.4050(7) Å               γ = 94.1283(17)° 

Volume 2854.30(15) Å3 

Z 2 

Density (calculated) 1.523 Mg/m3 

Absorption coefficient 0.109 mm-1 

F(000) 1336 

Crystal size 0.500 x 0.250 x 0.050 mm3 

 

 

 
 

Figure 5.28  Crystal packing of binary system Perylene-F4TCNQ 3:2. 
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The crystal structure of the binary system Perylene-F4TCNQ is similar in cell parameters 

and crystal packing to that of the Perylen-F2TCNQ 3:2 system. The molecular arrangements in 

the two structures are basically identical and the same two stacks can be identified in the 

crystal packing of Figure 5.28: a mixed stack in configuration ADDADDA along the c 

crystallographic axis and a mixed stack ADADA along the a axis. 

 

5.5.1 Perylene-F4TCNQ 1:1 crystals (from solution) 

1.04 mg of F4TCNQ (0.0387 mmol) and 0.96 mg of perylene (0.0444 mmol), were 

dissolved in a solution of toluene/acetonitrile 5:1 and placed in a ultrasound bath for 10 min 

at room temperature. After complete dissolution of two compounds, the solution was heated 

to 80 °C for 30 minutes and then left cooling down to ambient conditions overnight. The black 

needle like crystals so obtained are shown in Figure 5.29. 

 

  
Figure 5.29  Crystal shape of the binary system by solution method Perylene-F4TCNQ 1:1 * 1 toluene 

 

The Perylene-F4TCNQ 1:1 binary system was found to crystallize in a triclinic structure, 

with space group P1̅, one molecule per unit cell and cell parameters (at 150 K): a = 7.0293 Å, 

b = 8.4804 Å, c = 11.8703 Å, α = 89.557°, β = 81.968°and γ = 86.069°. In the crystal refined 

structure the molecule of the solvent toluene is also present, with an intrinsic disorder.  

Structural details and the packing of this structure, not yet reported in the literature, 

are given in Table 5.9 and Figure 5.30, respectively. 
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Table 5.9  Crystal data and structure refinement for Perylene-F4TCNQ 1:1 * 1 toluene. 

Empirical formula  C39H20F4N4 

Formula weight  620.59 g mol-1 

Temperature  150(2) K 

Wavelength  1.54184 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.0293(4) Å            α = 89.557(8)° 

 b = 8.4804(8) Å            β = 81.968(7)° 

 c = 11.8703(12) Å          γ = 86.069(6)° 

Volume 699.01(11) Å3 

Z 1 

Density (calculated) 1.474 Mg/m3 

Absorption coefficient 0.887 mm-1 

F(000) 318 

Crystal size 0.200 x 0.020 x 0.020 mm3 

 

 

 

  
Figure 5.30  Crystal packing of binary system Perylene-F4TCNQ 1:1 
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Apart from the presence of the solvent molecules, the crystal structure of the binary 

system Perylene-F4TCNQ is similar both in cell parameters and crystal packing to the other 

Perylene-FxTCNQ systems of ratio 1:1 already reported in the previous paragraphs. The 

molecules are packed in the same way in all systems, with each donor paired to an acceptor in 

a mixed stack ADADA parallel to a crystallographic axis (Figure 5.30). The disordered solvent 

molecules are located in interstitial sites between the CT stacks.  

 

5.6 Charge transfer crystals Perylene-F0TCNQ-F2TCNQ 

A mixture of 16.2 mg of perylene (0.064 mmol), 12.5 mg of F0TCNQ (0.061 mmol) and 

15.3 mg of F2TCNQ (0.064 mmol) was used in the attempt of growing a ternary system. In this 

case, the temperatures selected for the hot and cold end were 170 °C at 110 °C, respectively. 

The temperature profile along the furnace axis is drawn in Figure 5.31, where the 

temperatures actually measured for the two ends (178 °C and 128 °C) are indicated. 
 

 
Figure 5.31  Temperatures distribution in the furnace for perylene-F0TCNQ-F2TCNQ crystal growth. 

 

Crystals were left to grow for 12 days. Images of the variety of crystals that were 

recovered from the ampoule are shown in Figure 5.32. The black crystals were present in a 

large portion of the middle section of the ampoule and were found mixed with the yellow 

crystals of pure perylene. The orange crystals of the pure compounds F0TCNQ and F2TCNQ 

were instead recovered at the right end of the ampoule. 
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Figure 5.32  Morphologies of the crystals obtained after experiment and distribution along the ampoule. 

 

Spectroscopic measurements showed that the black crystals were a mixed system and 

XRD confirmed that ternary system perylene-F0TCNQ-F2TCNQ had been obtained.  

Perylene-F0TCNQ-F2TCNQ crystallizes in a triclinic structure, with space group P1̅, one 

molecule per unit cell and cell parameters (at 150 K): a = 7.2289 Å, b = 19.1347 Å, c = 22.2851 

Å, α = 112.2496°, β = 90.1547°and γ = 93.8456°. The cell parameters and the crystal structure 

are reported in Table 5.10 and Figure 5.33, respectively.  
 

Table 5.10  Crystal data and structure refinement for Perylene-F0-2TCNQ 3:2. 

Empirical formula C168H76F7N16 

Formula weight 2451.44 g mol-1 

Temperature 150(2) K 

Wavelength 0.71073 Å 

Crystal system Triclinic 

Space group P-1 

Unit cell dimensions a = 7.2289(2) Å              α = 112.2496(15)° 

 b = 19.1347(6) Å             β = 90.1547(15)° 

 c = 22.2851(8) Å             γ = 93.8456(16)° 

Volume 2845.28(16) A3 

Z 1 

Density (calculated) 1.431 Mg/m3 

Absorption coefficient 0.093 mm-1 

F(000) 1259 

Crystal size 0.500 x 0.250 x 0.100 mm3 
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Figure 5.33  Crystal packing of ternary system Perylene-F0TCNQ-F2TCNQ. 

 

The unit cell contains six perylene and four FxTCNQ molecules with different 

occupations of the F atoms as follows: F1 and F2 = 75%, F3 and F4 = 50%, F5 = 40% and F6 = 

60%. The positions of the different F atoms in the crystal packing are shown in Figure 5.34. 

Note that the unit cell parameters are similar to those of both crystal systems perylene-F2TCNQ 

3:2 and perylene-F4TCNQ 3:2. Indeed, this system crystallizes in the same ratio 3:2 with the CT 

stacks ADDADDA along the c axis and ADADA along the a axis.  
 

 
Figure 5.34  Numbering of the F atoms with different occupation factors in the crystal packing.  
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5.7 Vibrational and charge transfer properties of binary systems Perylene-FxTCNQ 

As already described at the beginning of this chapter, the magnitude of the charge 

transfer from the HOMO of the donor to the LUMO of the acceptor is related to the ionization 

potential of the former (Perylene), to the electron affinity of the latter (FxTCNQ), and to the 

energetic gain upon the formation of an ionic structure [61]. A partial charge transfer may take 

place in systems where the difference between the ionization potential of the donor and the 

electron affinity of the acceptor is moderately negative. In classes of compounds such as salts 

of donor and acceptor molecules, the degree of charge transfer is closely related to the 

stoichiometry of the solid.  

A comparison between the bond lengths of the neutral species and of the salt shows, 

as expected, that the geometry varies with the electron population of the molecular orbitals. 

In the case of TCNQ and its derivatives, a larger electron population implies a less quinoid 

character of the molecule, with C-C bonds more equal in value. Thus, the experimental 

geometry can provide information on the degree of charge transfer through the bond length 

variation between neutral and charged TCNQs.  

Systematic studies to this effect have been carried out by several authors for F0TCNQ 

[23,24,43-46,62], to seek relationships based on a the interpolation of the data for the neutral 

compound (ρ=0) and the fully charge salt (ρ=1). The four different expressions already 

reported in paragraph 5.1.2 are commonly used for the estimation of the unknown  ρ values 

of binary systems with F0TCNQ. To apply them to our F0TCNQ complexes, we must make the 

approximation (very reasonable in terms of available precision of crystallographic data) that 

the bond lengths are not dependent on temperature. This has allowed us to calculate the 

ρF0TCNQ values for the systems perylene-F0TCNQ 1:1 and perylene-F0TCNQ 3:1 given in Table 

5.11, in which the data obtained for each equation are reported.  

Table 5.11 Molecular parameters of the F0TCNQ molecule in the binary systems of perylene-F0TCNQ and values of ρ 
determined by using equations 1-4 of this chapter. 

compound T [K] a [Å] b [Å] c [Å] d [Å] ρF0TCNQ 

Perylene-F0TCNQ 
1:1 

150 1.348 1.445 1.378 1.430 

0.095 (eq.1) 

0.146 (eq.2) 

0.143 (eq.3) 

0.163(eq.4) 

Perylene-F0TCNQ 

3:1 
150 1.353 1.440 1.386 1.434 

0.217 (eq.1) 

0.258 (eq.2) 

0.262 (eq.3) 

0.272 (eq.4) 
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In a recent work, Lieffrig and coworkers [63] report on the charge transfer degree in 

binary systems where iodinated tetrathiafulvalene derivatives (EDT-TTFI2) are associated with 

F1TCNQ and F2TCNQ. Based on X-ray data for neutral F1TCNQ and F2TCNQ [55,56] and radical 

anion states [64,65], the authors derive for these compounds the parameters A and B of the 

equation 3 given by Kistenmacher [46] and already reported in paragraph 5.1.2: 𝜌 =

𝐴[𝑐/(𝑏 + 𝑑)] + 𝐵. The A values of that work are -57.87 and -56.78, for F1TCNQ and F2TCNQ,  

respectively; the B values are 27.79 and 27.15, respectively. 

The calculated values ρF1TCNQ and ρF2TCNQ, together with the bond lengths used for their 

estimation, are given in Table 5.12. 

 

Table 5.12 Calculated values of ρ for the binary systems perylene-F1TCNQ and perylene-F2TCNQ. 

compound 

 

T [K] a [Å] b [Å] c [Å] d [Å] ρFxTCNQ (x = 1,2) 

Perylene-F1TCNQ 
3:2 

Mixed stack 
ADADAD 

(along x axis) 

150 1.348 1.440 1.384 1.435 0.068 

Mixed stack 
ADDADDADD 
(along x axis) 

150 1.344 1.445 1.378 1.431 0.052 

Perylene-F2TCNQ 
1:1 

Mixed stack 
ADADAD 

150 1.341 1.444 1.386 1.435 0.060 

Perylene-F2TCNQ 
3:2 

Mixed stack 
ADADAD 

(along x axis) 

150 1.341 1.444 1.382 1.437 0.032 

Mixed stack 
ADDADDADD 
(along x axis) 

150 1.382 1.445 1.377 1.432 0.082 

 

Note that for the binary systems with ratio 3:2, in which two different kinds of mixed 

stacks are present, ρ must be estimated for each of them, as the FxTCNQ molecules in the two 

arrangements are not symmetry equivalent and display differences in bond lengths. The values 

of ρ based on the geometries of the acceptor molecules in the crystal structures of  these 

binary systems lie all in the range 0.03-0.08, an indicator that these complexes are essentially 

neutral, despite the presence of the fluorine atoms. 

For the binary systems perylene-F4TCNQ, ρ cannot be estimated with this method, 

because of the lack of literature crystallographic data and the experimental difficulty of 

obtaining single crystals suitable for the X-ray analysis of the F4TCNQ salts. For the ternary 
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system, the employment of the equations is instead complicated by the occupational disorder 

of F0TCNQ and F2TCNQ, which does not permit to disentangle the bond lengths.    

As reported above, the frequency of several vibrational modes of TCNQ and its 

derivatives is sensitive to the charge transfer [66]. Girlando et al. [67] and Bozio et al. [68] 

reported that the C=C stretching mode exhibits a considerable shift towards lower frequencies 

with increasing negative charge and it is therefore a very sensitive probe of the ionization 

degree. 

In Figure 5.35 the polarized IR spectra the perylene-F0TCNQ 1:1 crystal are reported.  

The polarization directions indicated are those parallel and perpendicular to the extinction 

direction.  

 

 
Figure 5.35  IR spectra of Binary system Perylene-F0TCNQ 1:1 in different polarizations: parallel (black line) and 

perpendicular (red line) to the extinction direction. 
 

The interpretation of these spectra has been based on the infrared spectrum of 

perylene reported by Ambrosino and Califano [69] and the vibrational spectrum of TCNQ and 

its alkali salts reported by Girlando et al. [70]. The potassium salt of F0TCNQ was prepared in 

this work following Melby et al. [71], using the reaction of the iodide with TCNQ. When the 

hot solutions of KI and TCNQ in acetonitrile were mixed, the potassium salt precipitated as a 

purple crystalline solid. TCNQ and potassium iodide were mixed in ratio 2:3 using the excess 

of metal iodide to scavenge the iodine by-product as I3
-. The infrared spectra of neutral F0TCNQ 

and the potassium salt K+F0TCNQ- are reported in Figure 5.36, with the picture of the diagnostic 
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mode used for the estimation of ρ. The mode at 1543 cm-1 is the C=C stretching vibration of 

neutral F0TCNQ and is shifted by 34 cm-1 in the potassium salt (1509 cm-1). 
 

 
Figure 36  IR spectra of the salt K+F0TCNQ in different polarizations and IR spectrum of the neutral compound. 

 

When the spectra of neutral F0TCNQ and of system perylene-F0TNQ 1:1, this latter in 

both polarizations, are compared (Figure 5.37), it is clear that no shift of the diagnostic mode 

is detected. For this reason, the binary system can be considered as neutral (ρ=0). 

 
Figure 5.37  IR spectra of the pure single compounds F0TCNQ (blue line) and perylene (green line) and polarized spectra of 

the Perylene- F0TCNQ 1:1 binary system. 
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The same procedure was followed for the analysis of the system perylene-

F0TCNQ with ratio 3:1 and the complete IR spectra in the parallel and perpendicular 

polarizations are reported in Figure 5.38. 
 

 
Figure 5.38  IR spectra of Binary system Perylene-F0TCNQ 3:1 in different polarizations: parallel (black line) and 

perpendicular (red line) to the extinction direction. 
 

The diagnostic band, detected at 1543 cm-1 in the neutral compound, is present in both 

polarizations at the two slightly different frequencies of 1538 and 1536 cm-1 (Figure 5.39). The 

perylene-F0TCNQ 3:1, as described in the previous paragraph, crystallizes in a triclinic structure 

with one molecule per unit cell, and for this reason no splitting is expected. Nonetheless, the 

splitting of this band has been reported for the first time by Truong and Bandrauk [72], who 

described this effect as a consequence of the strong interaction of F0TCNQ with perylene, thus 

confirming that in the complex 3:1 there is a partial ionicity. In fact, the ρ value calculated from 

the mean value the shift of the diagnostic infrared band is ≈ 0.2. 

The electronic absorption spectra of both 1:1 and 3:1 perylene-F0TNQ have been 

reported by Bandrauk and coworkers [73]. The absorption spectra of these complexes are 

characterized by the presence of the so called charge transfer bands, which are transitions 

from electronic states localized (mostly) on the donor moiety of the complex to states localized 

(mostly) on the acceptor moiety. These transitions, usually weak and broad, can be found in 

the near IR or in the visible portion of the electromagnetic spectrum. 

The absorption spectra of the 1:1 system displays a band at 950 nm, which does not 
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occur in the spectra of the isolated molecules [74] and is therefore assigned to the CT 

transition. In the case of the system 3:1 the maximum of the CT band is shifted to 1000 nm, as 

a consequence of the stronger perylenes -TCNQ interaction. 

 

 
Figure 5.39  Comparison of the IR spectra of the pure single compounds F0TCNQ (black line) and the different 
polarizations of the corresponding binary system 3:1. In the onset a magnification of the range examinated. 

 

The Perylene-F2TCNQ 1:1 complex, described previously, is a typical 1D system with a 

regular mixed stack along the a crystallographic axis, with considerable side-by-side 

interactions between the stacks, driven by C-H----F bonds. Unlike the perylene-F0TCNQ 

systems previously described, the IR spectra of the complex Perylene-F2TCNQ 1:1 (Figure 5.40) 

show a strong absorption starting from 7000 cm-1 in both polarization conditions. This 

absorption can be assigned to the CT band, although the reason why we can detected in both 

polarizations must be investigated. 
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Figure 5.40  IR spectra of Binary system Perylene-F2TCNQ 1:1 in different polarizations: parallel (blue line) and 

perpendicular (red line) to the extinction direction. 
 

The estimation of ρ with the spectroscopic method was based on the analysis of the 

diagnostic C=C stretching modes of F2TCNQ, falling at 1383, 1543 and 1567 cm-1. The infrared 

spectra of the binary system 1:1 in both polarizations, together with those of neutral F2TCNQ 

and of the corresponding potassium salt, are given in Figure 5.41. The salt was obtained with 

the same procedure described for K+F0TCNQ-. The frequency shifts of the complex correspond 

to an estimated charge transfer ρ in the range 0.1-0.15. 

 
Figure 5.41  Comparison of the IR spectra of the pure single compounds F2TCNQ (black line), the potassium salt (dotted 
red line) and different polarizations of the corresponding binary system 1:1. In the onset the shift of the C-N stretching. 
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Perylene-F2TCNQ 3:2 crystal displays a more complicate packing, with a herringbone 

arrangement of the DAD trimer in the ac plane and a slightly dimerized mixed stack along the 

a crystal direction. By analysing the crystal arrangement, one can deduce that intra-trimer 

interactions must be the most important. From the spectra in the infrared region shown in 

Figure 5.42, a CT band around 7000 cm-1 can be detected. The band was found to be strongly 

polarized along the direction of the longer axis of the crystal sample. By looking at the cell 

parameters, it can be noticed that most probably the polarization direction of the CT band 

coincides with the direction of a crystallographic axis, which is by far the shortest and should 

correspond to the direction of fastest growth. 

 

 
Figure 5.42  IR spectra of Binary system Perylene-F2TCNQ 3:2 in different polarizations: parallel (blue line) and 

perpendicular (red line) to the extinction direction. 
 

The selected diagnostic vibrational modes are those used the analogous 1:1 complex. 

The analysis of the infrared spectra (shown in figure 43) confirms the presence of differently 

interacting F2TCNQ molecules, with a different degree of ionicity. A first set of vibrational 

modes can be found at 1.383, 1541 and 1569 cm-1, and therefore with no frequency shifts. 

This behavior suggests the presence of F2TCNQ molecules with ρ = 0. A second set of modes 

displays bands at 1396, 1551 and 1577 cm-1, which correspond to F2TCNQ molecules with a 

degree of charge transfer ρ = 0.  
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Figure 5.43  Comparison of the IR spectra of the pure single compounds F2TCNQ (black line), the potassium salt (dotted 
red line) and different polarizations of the corresponding binary system 3:2. In the onset the shift of the C-N stretching. 

 

Finally, the binary system with the strongest electron acceptor F4TCNQ was analyzed 

by IR spectroscopy. The structure of perylene-F4TCNQ 3:2 is similar to perylene-F2TCNQ with 

the same stoichiometry, with a herringbone arrangement of the DAD trimer in the ac plane 

and a dimerized mixed stack along the a axis direction. The CT band can be detected in the 

polarized infrared spectra of Figure 5.44 at 6000 cm-1. 

 

 
Figure 5.44  IR spectra of Binary system Perylene-F4TCNQ 3:2 in different polarizations: parallel (green line) and 

perpendicular (blue line) to the extinction direction. 
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The three diagnostic bands used for the estimation of the degree of charge transfer are 

found in neutral F4TCNQ at 1396, 1550 and 1599 cm-1. They are marked as ν3, ν2 and ν1, 

respectively, in figure 45. The same bands in the potassium salt are shifted at lower energies 

and found 1353, 1501 and 1540 cm-1. The normal modes corresponding to ν3, ν2 and ν1 are 

also shown in Figure 5.45, together with the shifts between neutral compound and potassium 

salt. 

 
Figure 5.45  IR spectra of the salt K+F4TCNQ- in different polarizations compared with the IR spectrum of the neutral 

compound. 
 

In the Figure 5.46 the infrared spectra of the binary crystal is compared to that of the 

neutral acceptor, to quickly identify the shift due to the charge transfer effect. The three bands 

are marked. The ρ values calculated separately for each band are slightly different from each 

other: ρν1 = 0.29, ρν2 = 0.22 and ρν3 = 0.28. 
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Figure 5.46  Comparison of the IR spectra of the pure single compounds F4TCNQ (dotted black) and of the different 

polarizations of the corresponding binary system 3:2. 

 

In conclusion, reliable and reproducible procedures for the growth of single crystals of 

several charge transfer perylene-FxTCNQ have been defined. All the pure charge transfer 

crystals were grown by physical vapor transport method, with the only exception of the binary 

system perylene-F4TCNQ, which was obtained only from solution and contains some toluene 

inclusions as an impurity. Altogether, five new complexes perylene-FxTCNQ based were 

synthesized: perylene-F1TCNQ, perylene-F2TCNQ both in 1:1 and 3:2 ratios, perylene-F4TCNQ 

1:1 and the ternary system perylene-F0TCNQ-F2TCNQ. We obtained the crystals of the already 

known systems perylene-F4TCNQ 3:2 and perylene-F0TCNQ in both stoichiometric ratios 1:1 

and 3:1. The structures of the systems perylene-F0TCNQ 1:1 and 3:1 have been recently re-

determined after growing a mix of both stoichiometries by physical vapor [23] and the pure 

phases by slow evaporation method [24]. In our procedure, the stoichiometry of the crystals 

could be controlled by setting the temperature conditions. In fact, low (1:1) and high (3:1, 3:2) 

stoichiometry ratios can be achieved at low and high temperature conditions of the crystal 

growth, respectively. By comparing the growth conditions and the resulting crystal packings, 

we suggest that the actual packing, and the stoichiometry with it, is driven by the perylene 

polymorphism. As already mentioned in paragraph 5.2, perylene exists in two different 

polymorphic modifications. In the β form, the perylene molecules are arranged in a 

herringbone fashion, while in the α form display a pair-like structure. It looks as if the β-form 
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drives the formation of the 1:1 complex, whereas the α-form induces the formation of the 3:1 

or 3:2 complexes, with perylene molecules replaced by FxTCNQ molecules in the unit cell. 

Considerations on the growth temperature conditions support this hypothesis. Indeed, the 1:1 

systems were obtained with a temperature of crystal growth below 140 °C, i.e., in the 

temperature range where the perylene β-form is stable, while all the systems with higher 

stoichiometry grow in the temperature range where only  the α-form is stable. 

Crystal structures, interactions and structural motifs in our complexes have been 

determined and identified. All the system are characterized by the presence of a face-to-face 

arrangement of at least of donor molecule with one acceptor, which leads to an extended π 

overlap. This overlap is driven by the charge transfer interaction of the HOMO of perylene and 

the LUMO of FxTCNQ. In Figure 5.47, the contours of the calculated perylene HOMO and 

F0TCNQ LUMO orbitals are compared with the molecular overlaps as found in the X-ray analysis 

of the 1:1 and 3:1 stoichiometries. Molecules are oriented in the crystal in such a way, both in 

the 1:1 and 3:1 structures, as to maximize the overlap of the HOMO and LUMO orbitals of 

donor and acceptor. 

 
Figure 5.47  HOMO and LUMO orbitals of donor perylene and acceptor F0TCNQ and molecular overlap observed for both 

1:1 and 3:1 stoichiometries. 

Importantly, we have assessed the degree of charge transfer in the complexes, 

estimating its values both from molecular geometries data and by infrared spectroscopy, when 

possible. A reliable comparison between the two methods cannot really be made, as for 

F4TCNQ no molecular geometry is available for the anion. However, The results of the two 

approaches do not seem to agree to full extent. As an example, the data for the F0TCNQ system 
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should be considered: whereas the spectroscopy data clearly indicate that a charge transfer 

does not take place, the values calculated by all the equations reported and using molecular 

geometries parameters of the TCNQ system are, albeit small, different from zero. We have the 

feeling, that should be confirmed by more numerical tests, that the method based on the X-

ray determination of the molecular geometries is over-sensitive to slight variations of the input 

values for the bond lengths. This leads to a large scattering of the calculated values of ρ, 

depending on the set of atomic coordinates selected.   

In general, the addition of F atoms in the structure of the TCNQ derivative should 

increase significantly the degree of charge transfer. However, ours is a work in progress and 

we are still performing experiments to complete the description of our systems.  
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APPENDIX 

6. Synthesis and characterization of platinum complexes with a 

perylene derivative ligand bi-functionalized for OLEDs applications 

 

6.1 Introduction 

In the past few decades, the search for highly emitting materials based on metal 

complexes not employing the relatively scarce iridium has attracted a great deal of attention, 

because of their potential applications in energy-saving organic light-emitting diodes (OLEDs) 

for full-color displays and solid state lighting [1].  

Emitters based on transition metals such as rhenium, [2,3] osmium, [4,5] platinum [6,7] 

or gold [8,9] and on cheaper and less toxic ones such as copper [10-12] and zinc are suitable 

for this purpose due to the strong spin-orbit coupling exerted by the heavy metal. This effect 

produces both singlet and triplet electrogenerated excitons in devices with these compounds, 

leading to a potentially achievable 100% internal quantum efficiency. In the last years Pt(II) 

complexes have been considered as triplet emitters.  The platinum complexes, having a d8 

electronic configuration exhibit a square planar coordination geometry, which  induces the 

formation of aggregates in the ground state or excimers in the excited state, due to the Pt-Pt 

and π-π stacking interactions, with various effects on the photoluminescence[13-15].  

This characteristic can be an advantage for the realization of white organic light-

emitting diodes (WOLEDs) but it is also represents a drawback for applications where color 

purity is needed [16,17].  Terpyridine ligands [18,19] and their N∧C∧N and N∧N∧C analogues 

have been coordinated to Pt(II), [20-23] yielding neutral or singly or doubly charged 

complexes, some of them showing bright luminescence. These derivatives can form 

supramolecular structures like nanowires, nanosheets and polymeric mesophases, all with 

different interesting optical properties. 

To control the processes of aggregation, which leads to undesired broadening of 

spectra, and to increase the solubility of these complexes, we have designed and synthesized 

a new class of neutral Pt(II) complexes bearing tridentate dianionic 2,6-bis(1H-1,2,4-triazol-5-

yl)pyridine chelates [24-26].  Tuning of color, aggregation, and processability are key 

parameters for applications in electroluminescent devices.  
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Indeed, 1,2,4-triazoles have been easily functionalized at the C3 position. The 

substitution pattern of the triazole rings was varied by the alternative introduction of aliphatic 

adamantyl and PEG (Poly ethylen glycol) groups.  The triazole rings bind the Pt(II) ion as anionic 

ligands by double N-deprotonation and in order to obtain neutral complexes, bifunctionalised 

pyridine perylene diimide was used as ancillar legant.  

 

6.2 Synthesis and characterization of ancillary ligand:  

N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide).  
 

 

Figure 6.1  Synthetic procedure for ligand N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) 

 

The ligand N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) 

was prepared by the reaction of perylene tetracarboxylic dianhydride (500 mg, 1.27 mmol) 

with aminoethylpyridine (388 mg, 3.17 mmol) in water (5 ml) at 130 °C for 6 h. The product 

was filtered and the red cake was then refluxed for 20 min in N,N’-dimethylformamide (figure 

6.1). After cooling the product was filtered and dried in vacuum overnight. 518,8 mg (yield 70 

%) of a red solid were obtained. 

The NMR spectrum of the red solid (Figure 6.2) was recorded and compared with the 

NMR spectrum of the 4-(2-aminoethyl)pyridine (Figure 6.3) to check nature of the product 

obtained and its purity. The chemical shift of both reagent and product are reported below.  

1H NMR (400 MHz, TFA-d, ): 8.90, 8.88 (d, 4H, H py), 8.84, 8.82 (d, 4H, H py), 8.70, 

8.68 (d, 4H, H peril.), 8.17, 8.15 (d, 4H, H peryl.), 4.75 (m, 4H, alif.), 3.55 (m, 4H, alif.). 
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Figure 6.2  N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) NMR spectrum in trifluoro aceti acid 
(TFA) 

 

1H NMR (400 MHz, CDCl3, ): 8.28, 8.27 (m, 2H, H py), 6.91 (d, 2H, H py), 2.76 (m, 2H, H alif.), 

2.51 (m, 2H, H alif.), 1.06 (s, 2H, alif.). 

 

 

Figure 6.3  4-(2-aminoethyl) pyridine NMR spectrum of pure reagent in CDCl3 
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The IR spectra of reagent perylene tetracarboxylic dianhydride and product N,N’-bis[4-

(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) were recorded (Figure 6.4) in 

the solid state by an ATR instrument. The characteristic vibration frequencies are reported in 

Table 6.1. 

In the perylene tetracarboxylic dianhydride spectrum, the typical bands the for 

symmetric and antisymmetric stretchings of C=O at 1772 and 1730 cm-1 , respectively, can be 

detected, together with the bands of the single C-O bond stretching  at 1301, 1122 and 1016 

cm-1 for the dianhydride group. In the IR spectrum of the product, the symmetric and 

antisymmetric stretching bands of the carbonyl group are still present, but shifted at low 

frequencies due to the presence of the nitrogen instead of the carbon atom, thus the 

formation of the diimide bond is confirmed. To confirm that the reaction has taken place, 

there are also the bands of the vibrations of the aromatic C-N at 1357 cm-1 and of the aliphatic 

C-N at 1172 cm-1. No reactant impurity is present, as bands of the C-O single bond vibration 

cannot be detected. 

 

Table 6.1  Functional group vibration frequencies for perylene tetracarboxylic dianhydride and N,N’-bis[4-(2-
aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) 

perylene tetracarboxylic dianhydride 
N,N’-bis[4-(2-aminoethyl)pyridine]perylene 

3,4:9,10-bis(dicarboximide) 

C=O stretching 
1772 cm-1 

C=O stretching 
1693 cm-1 

1730 cm-1 1652 cm-1 

C-C stretching 1301 cm-1 C-C stretching 1595 cm-1 

C-O stretching 

1301 cm-1 C-N aromatic 1357 cm-1 

1122 cm-1 C-N aliphatic 1172 cm-1 

1016 cm-1   
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Figure 6.4  Comparison of the FT-IR spectra of perylene tetracarboxylic dianhydride(bottom) and N,N’-bis[4-(2-
aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) (top). 

 

The results of the mass spectrum (Figure 6.5), and the mass value so obtained are in 

agreement with what expected for the desired product. HRMS (ESI+, CH3Cl, m/z): [M+H]+ 

calcd for C38H24N4O4, 601.18; found, 601.19. 
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Figure 6.5  ESI-MS spectrum of N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide). 

 

6.3 Synthesis of the Platinum Complex Pt(trzpyttz)N,N’-bis[4-(2-

aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) 

 

6.3.1 Synthesis of the tridentate ligand 2-(3-[Adamantan-1-yl]-1H-1,2,4-triazol-5-yl)-6-(1H-

tetrazol-5-yl)pyridine (H2trzpyttz) 

Figure 6.6  Synthetic procedure for ligand H2trzpyttz 

 

6-Cyanopicolinohydrazonamide (S2): To a solution of 2,6-pyridinedicarbonitrile (S1) (10 g, 77 

mmol) in ethanol (500 mL), hydrazine monohydrate (76 mL, 1.55 mmol) was added. The 

reaction mixture was stirred at room temperature for 15–20 minutes, yielding a pale yellow 
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precipitate in a yellow solution. The precipitate was quickly filtered off, washed with cold 

ethanol and then dried, obtaining 6.95 g (yield 56%) of the desired compound. 

(Adamantane-1-carbonyl)-6-cyanopicolinohydrazonamide (S3): Under inert atmosphere, a 

mixture of 6-cyanopicolinohydrazonamide (S2) (5 g, 31 mmol) and sodium carbonate (4.99 g, 

47 mmol) in dry DMF (150 mL) was placed in a two-neck round-bottom flask, and the 

suspension so obtained was cooled down to 0 °C. A solution of 1-adamantanecarbonyl 

chloride (6.16 mg, 31 mmol) in dry DMF (50 mL) was slowly added to the cooled suspension 

under strong stirring. The pale yellow suspension cleared for some time to a darker yellow 

solution, (except for the presence of sodium carbonate). The reaction mixture was allowed to 

warm up to room temperature, and the precipitation of a yellow solid occurred overnight. 

Subsequently, the reaction volume was doubled by the addition of water, yielding more 

precipitate. The suspension was stirred strongly for another 1.5 h and then filtered and 

washed with water thoroughly. After drying under vacuum, 9.52 g (yield 95%) of a pale yellow 

solid were obtained, which was used without further purification for the following step.  

2-(3-[Adamantan-1-yl]-1H-1,2,4-triazol-5-yl)-6-(1H-tetrazol-5-yl)pyridine (H2trzpyttz): A 

mixture of (adamantane-1-carbonyl)-6-cyanopicolinohydrazonamide (S3) (1 g, 3.09 mmol), 

sodium azide (333 mg, 5.12 mmol) and NH4Cl (265 mg, 4.99 mmol) in dry DMF (80 mL) was 

placed in a two-neck round-bottom flask. The mixture was then heated to 130 °C for 22 hours. 

After cooling down to room temperature, the solvent was removed under vacuum and the 

solid residue was purified by refluxing with ethanol. The mixture was cooled to room 

temperature and, after filtration, dried under vacuum. 502 mg of the product were obtained 

(yield 46.48 %) as a white solid. The global reaction scheme is shown in Figure 6.6.  

The NMR spectrum of the white solid (Figure 6.7) was recorded to identify the product 

obtained and check its purity. The chemical shift of both reagent and product are reported 

below.  

1H NMR (400 MHz, DMSO-d6, δ): 8.25.8.11 (m, 3H, H-3, H py), 2.12.1.99 (m, 9H, Ad), 

1.77 (s, 6H, Ad). 
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figure 6.7  1H NMR spectrum of (H2trzpyttz) in DMSO-d6 

 

The IR spectrum of the tridentate ligand H2trzpyttz (Figure 6.8) shows the strong 

characteristic bands of the adamantane C-H in the range 2800-3000 cm-1, and the less intense 

but  typical bands of the azide group at 2300 cm-1. The presence of pyridine rings can be 

detected by the C-H and the C=C aromatic stretching bands at 3300 cm-1  and around 1500 

cm-1, respectively. 

 

 
Figure 6.8  FT-IR spectrum of H2trzpyttz 
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The mass spectrum (Figure 6.9) were recorded and the result and the calculated value 

are in agreement with the experimental one in the limit of the bar error. HRMS (ESI+, CH3OH, 

m/z): [M+H]+ calcd for C18H20N8, 349.1889; found, 348.93. 

 

 
Figure 6.9  ESI-MS of H2trzpyttz in CH3OH 

 

6.3.2 Synthesis complex Pt(trzpyttz)N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-

bis(dicarboximide) 

 

Figure 6.10 1 Synthetic procedure for complex Pt(trzpyttz)N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-
bis(dicarboximide) 
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To a solution of PtCl2(DMSO)2 (2 equiv., 55.5 mg , 0.131 mmol) in CH3CN (20 mL) the 

tridentate ligand H2trzpyttz (2 equiv., 51.2 mg, 0.133 mmol) and the base N,N-

Diisopropylethylamine (2 equiv., 50 μl, 287 mmol) were added. The reaction mixture was 

stirred for 10 minutes to obtain a yellow solution to which the ancillary ligand L was added (1 

equiv., 38.5 mg, 0.064 mmol). The precipitation of the product started just after the addition 

of the ancillary ligant. The mixture was then heated to 85°C under nitrogen for 24 hours, 

cooled to room temperature and stirred with 10 ml of water for 30 minutes. The mixture was 

finally filtered and washed first with 20 ml of methanol and then with diethyl ether. 80.1 mg 

of red solid (yield 73.48 %) were obtained. The reaction scheme is shown in Figure 6.10. 

In Figure 6.11, the IR spectra of both reagents N,N’-bis[4-(2-

aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) and H2trzpyttz are compared with 

the IR spectrum of the platinum complex Pt(trzpyttz)N,N’-bis[4-(2-

aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide)  

In the IR spectrum of the platinum complex, the symmetric and antisymmetric 

stretching bands of the carbonyl group of the ancillary legant are present at 1693 and 1652 

cm-1, respectively. The presence of the tridentate ligand H2trzpyttz is confirmed by the 

characteristic bands of the adamantane C-H in the range 2800-3000 cm-1 and by the typical 

bands of the azide group at 2300 cm-1.  
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Figure 6.11  Comparison of the FT-IR spectra of (bottom) tridentate H2trzpyttz (MD113), (centre) complex 
Pt(trzpyttz)N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) (MD222) and (top) ligand N,N’-bis[4-

(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) (MD220). 
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The NMR spectrum of the red solid Pt(trzpyttz)N,N’-bis[4-(2-

aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) is reported in Figure 6.12. The 

chemical shift and the integrals are reported below.  

1H NMR (400 MHz, TFA, ): 8.90, 8.88 (d, 4H, H py), 8.84, 8.82 (d, 4H, H py), 8.55 (m, 

1H, H lig.), 8.46 (m, 1H, H lig.), 8.39 (m, 1H, H lig.), 8.69 (m, 4H, H peril.), 8.17, 8.16 (d, 4H, H 

peryl.), 4.75 (m, 4H, alif.), 3.55 (m, 4H, alif.), 2.22 (m, 7H, Ad), 1.90 (s, 9H, Ad). 

 

 

Figure 6.12  NMR spectrum of complex Pt(trzpyttz)N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-
bis(dicarboximide) in TFA 

 

Elemental analysys CHN:  

  % N % C % H 

Experimental 13.84 55.15 4.13 

Theoretical 16.64 52.79 3.59 
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6.4 Complex Pt(2,6-Bis(3-((3R,5R,7R)-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-

pyridine)N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-

bis(dicarboximide) 

 

6.4.1Synthesis tridentate 2,6-Bis(3-((3R,5R,7R)-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-

pyridine 

Figure 6.13  Synthetic procedure for ligand 2,6-Bis(3-((3R,5R,7R)-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-pyridine. 
 

Pyridine-2,6-bis(carboximidhydrazide) (S2). 

To a solution of 2,6-pyridinedicarbonitrile (20 g, 0.155 mol) in ethanol (1 L), hydrazine 

monohydrate was added (151 mL, 3.1 mol). The reaction mixture was stirred at room 

temperature (rt) overnight, yielding a pale yellow precipitate in a yellow solution. The 

precipitate was filtered off, washed with cold ethanol, and dried (12 g, 40%).  

N’,N’’’-(Pyridine-2,6-diylbis(iminomethylene))bis(adamantane-1-carbohydrazide) (S3). 

A flame-dried, nitrogen-purged Schlenk tube was loaded with 1 (5 g, 26 mmol) and 

sodium carbonate (6.1 g, 58 mmol), evacuated, gently heated, and refilled with nitrogen after 

being cooled to rt. Next, dry N,N-dimethylformamide (N,N-DMF; 160 mL) was added, and the 

suspension was cooled to 0 °C. In a separately prepared Schlenk tube, a 1-

adamantanecarbonyl chloride (10.3 g, 52 mmol) solution in dry N,N-DMF (60 mL) was 

prepared using the same procedure described above. This solution was then slowly added to 

the cooled suspension under strong stirring. The pale yellow suspension cleared for some time 

to a darker yellow solution, except for the presence of the sodium carbonate, followed by the 

precipitation of a yellow solid overnight, while the reaction mixture was allowed to warm to 

rt. Finally the reaction volume was doubled by water addition, yielding more precipitate. This 
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suspension was stirred strongly for another 1.5 h and then filtered and washed with water 

thoroughly. The yellow solid was dried under vacuum and used as such for the next step (11 

g, 84%). 

2,6-Bis(3-((3R,5R,7R)-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-pyridine (S4).  

Product 2 was suspended in ethylene glycol in a 1 mL/100 mg ratio in an open round-

bottom flask. The suspension was heated to 180 °C, eliminating water. Once the solution was 

clear, the reaction mixture was heated under reflux for another hour. After the reaction 

mixture was cooled to rt, the product was precipitated with water and stirred vigorously for 1 

h longer. The white solid was filtered, washed with water, and dried under vacuum (8.5 g, 

85%). The reaction scheme for the synthesis of the tridentate ligand is shown in detail in Figure 

6.13. 

 

6.4.2Synthesis complex Pt(2,6-Bis(3-((3R,5R,7R)-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-

pyridine)N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) 

Figure 6.14  Synthetic procedure for complex Pt(2,6-Bis(3-((3R,5R,7R)-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-
pyridine)N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) 

 

The tridentate ligant 2,6-Bis(3-((3R,5R,7R)-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-

pyridine (2 equiv., 50.7 mg, 0.105 mmol) and the base N,N-Diisopropylethylamine (2 equiv., 

50 μl, 287 mmol) were added to a solution of PtCl2(DMSO)2 (2 equiv., 47.1 mg , 0.111 mmol) 
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in CH3CN (20 mL). After stirring for about 10 minutes, a yellow solution was obtained and the 

ancillary ligand L was added (1 equiv., 31.1 mg, 0.052 mmol). The precipitation of the product 

started after the addition of the ancillary ligand. The mixture was then heated to 90°C under 

nitrogen flux for 24 hours. Afterwards, the solution was cooled to room temperature and 

stirred with 10 ml of water for 30 minutes. The mixture was filtered and washed first with 20 

ml of methanol and then with diethyl ether. 48.5 mg of a red solid (yield 48.03 %) were 

obtained. The reaction scheme is reported in Figure 6.14 and the 1H NMR spectrum (Figure 

6.15) is recorded dissolving the complex in trifluoroacetic acid (TFA). 

1H NMR (400 MHz, TFA, ): 8.69 (m, 2H, H lig.), 8.68 (m, 4H, H py), 8.38 (m, 4H, H py), 

8.09 (m, 8H, H peril.), 7.52 (m, 4H, H lig.), 2.68 (m, 4H, alif.), 2.34 (m, 4H, alif.), 2.26 (m, 28H, 

Ad), 1.81 (s, 36H, Ad). 

 

 

Figure 6.15  1H NMR spectrum of complex Pt(2,6-Bis(3-((3R,5R,7R)-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-pyridine)N,N’-
bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) in TFA. 
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Figure 6.16  Comparison of the FT-IR spectra of (bottom) ligand 2,6-Bis(3-((3R,5R,7R)-adamantan-1-yl)-1H-1,2,4-triazol-5-
yl)-pyridine (MD086), (centre) complex Pt(2,6-Bis(3-((3R,5R,7R)-adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-pyridine)N,N’-

bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) (MD223)  and (top) N,N’-bis[4-(2-
aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) (MD220). 
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Elemental analysys CHN:  

  % N % C % H 

Experimental 11.73 67.75 5.26 

Theoretical 12.93 59.13 4.65 

 

 

6.5 Complex Pt N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-

bis(dicarboximide) 2,6-bis(3-((2-(2-methoxyethoxy)ethoxy)methyl)-1H-1,2,4-

triazol-5-yl)pyridine 

 

6.5.1 Synthesis tridentate 2,6-bis(3-((2-(2-methoxyethoxy)ethoxy)methyl)-1H-1,2,4-triazol-

5-yl)pyridine 

 

Figure 6.17 Synthetic procedure for ligand 2,6-bis(3-((2-(2-methoxyethoxy)ethoxy)methyl)-1H-1,2,4-triazol-5-yl)pyridine 

 

The first step of the reaction is the formation of Pyridine-2,6 bis(carboximidhydrazide), 

which can be obtained with the procedure described in the following. 

Pyridine-2,6-bis(carboximidhydrazide). 

To a solution of 2,6-pyridinedicarbonitrile (20 g, 0.155 mol) in ethanol (1 L), hydrazine 

monohydrate  was added (151 mL, 3.1 mol). The reaction mixture was stirred at room 

temperature (rt) overnight, yielding a pale yellow precipitate in a yellow solution. The 

precipitate was filtered off, washed with cold ethanol, and dried (12 g, 40%).  
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The second and third step is the addition of PEG chain at 150°C and subsequently the 

dehydration at the same temperature to obtain the final tridentate ligand. The scheme of the 

reaction for the tridentate ligand is reported in Figure 6.17. The ligand was characterized by 

1H NMR in deuterated DMSO (Figure 6.18). 

 

 

Figure 6.18 1H NMR spectrum of ligand 2,6-bis(3-((2-(2-methoxyethoxy)ethoxy)methyl)-1H-1,2,4-triazol-5-yl)pyridine in 
DMSO 
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6.5.2 Synthesis of the complex Pt N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-

bis(dicarboximide) 2,6-bis(3-((2-(2-methoxyethoxy)ethoxy)methyl)-1H-1,2,4-triazol-5-

yl)pyridine 

 

Figure 6.19  Synthetic procedure for complex Pt N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) 
2,6-bis(3-((2-(2-methoxyethoxy)ethoxy)methyl)-1H-1,2,4-triazol-5-yl)pyridine 

 

To a solution of PtCl2(DMSO)2 (2 equiv., 16.3 mg , 0.038 mmol) in 

methoxyethanol/water 3/1 (4 mL), the tridentate ligant AA022 (2 equiv., 18.0 mg, 0.037 

mmol) and the base N,N-Diisopropylethylamine (2 equiv., 13 μl, 0.075 mmol) were added and 

the reaction mixture was stirred then for 20 minutes. A yellow solution was obtained and the 

ancillary ligand L was added (1 equiv., 12.0 mg, 0.020 mmol). The precipitation of the product 

started after the addition of the ancillary ligant. The mixture was then heated to 85°C under 

nitrogen flux for 24 hours (Figure 6.19). The mixture was cooled down and dried under vacuum 

overnight. 42.7 mg of a red solid were obtained. 
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Figure 6.20  NMR spectrum of complex Pt N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) 2,6-

bis(3-((2-(2-methoxyethoxy)ethoxy)methyl)-1H-1,2,4-triazol-5-yl)pyridine in DMSO at 60 °C 
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6.6 Discussion and Conclusions 

To gain further insight into the structural organization of the platinum complexes, WAXS 

(Wide Angle X-ray Scattering) has been employed. The WAXS spectra allow for the recognition 

of the intermolecular distances characterizing the π-π stacking spacings, usually found in 16-

20 nm-1 range, i.e. corresponding to ≈ 0.34 nm [27-29]. 

Braggs spacings (d) are calculated calculated from the relation [30]: 
 

𝑑 = 2𝜋/𝑞 
 

Where q is the scattering wave vector defined as [31]: 
 

𝑞 = (
4𝜋

𝜆
) 𝑠𝑖𝑛 (

2𝜃

2
) 

 

Where 2θ is the scattering angle. 

In Figure 6.21 the WAXS spectra of the perylene derivative used as ancillary ligand and of the  

platinum complexes functionalized with adamantly groups are compared. In the region of the 

π-π stacking no changes have been observed,  so we can deduce that there is no influences 

on the packing of the perylene cores after the introduction of more steric hindered groups on 

the tridentate ligands. 

 

 

figure 6.21  WAXS spectra for ligant N,N’-bis[4-(2-aminoethyl)pyridine]perylene-3,4:9,10-bis(dicarboximide), 
Pt(trzpyttz)N,N’-bis[4-(2-aminoethyl)pyridine]perylene 3,4:9,10-bis(dicarboximide) and Pt(2,6-Bis(3-((3R,5R,7R)-

adamantan-1-yl)-1H-1,2,4-triazol-5-yl)-pyridin 
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In conclusion, in this work we have demonstrated a simple and efficient way to synthesize 

new class of neutral platinum(II) complexes based on N^N^N dianionic tridentate and perylene 

bifunctionalized ancillary. Synthesis of asymmetric systems and the use of different functional 

groups on the dianionic tridentate ligands has given us the possibility to check for improved 

solubility and therefore for a decreased of the tendency to aggregation due the π-π and Pt-Pt 

interactions. In fact, only one of the obtained complexes, has displayed a good solubility and 

a potential for further applications. 

  



APPENDIX 

223 
 

References 
[1] W. Brütting , J. Frischeisen , B. J. Scholz , T. D. Schmidt , Europhysics News 2011 , 42 , 20 . 

[2] Duati, M.; Fanni, S.; Vos, J. G. Inorg. Chem. Commun. 2000, 3, 68. 

[3] Mauro, M.; Quartapelle Procopio, E.; Sun, Y.; Chien, C.-H.; Donghi, D.; Panigati, M.; 

Mercandelli, P.; Mussini, P.; D’Alfonso, G.; De Cola, L. Adv. Funct. Mater. 2009, 19, 2607. 

[4] Angulo, G.; Kapturkiewicz, A.; Chang, S.-Y.; Chi, Y. Inorg. Chem. Commun. 2009, 12, 378. 

[5] Carlson, B.; Eichinger, B. E.; Kaminsky, W.; Bullock, J. P.; Phelan, G. D. Inorg. Chim. Acta 2009, 

362, 1611. 

[6] Vezzu, D. A. K.; Deaton, J. C.; Jones, J. S.; Bartolotti, L.; Harris, C. F.; Marchetti, A. P.; 

Kondakova, M.; Pike, R. D.; Huo, S. Inorg. Chem. 2010, 49, 5107. 

[7] Wang, Z.; Turner, E.; Mahoney, V.; Madakuni, S.; Groy, T.; Li, J. Inorg. Chem. 2010, 49, 11276. 

[8] Elbjeirami,O.; Rashdan,M.D.;Nesterov,V.; Rawashdeh-Omary, M. A. Dalton Trans. 2010, 39, 

9465. 

[9] Garg, J. A.; Blacque, O.; Fox, T.; Venkatesan, K. Inorg. Chem. 2010, 49, 11463. 

[10] Armaroli, N.; Accorsi, G.; Cardinali, F.; Listorti, A. Top. Curr. Chem. 2007, 280, 69. 

[11] Chowdhury, S.; Patra, G. K.; Drew, M. G. B.; Chattopadhyay, N.; Datta, D. Dalton Trans. 

2000, 235. 

[12] Miller, A. J. M.; Dempsey, J. L.; Peters, J. C. Inorg. Chem. 2007, 46, 7244. 

[13] Williams, J. A. G. Top. Curr. Chem. 2007, 281, 205. 

[14] Ma, B.; Djurovich, P. I.; Thompson, M. E. Coord. Chem. Rev. 2005, 249, 1501. 

[15] Develay, S.; Williams, J. A. G. Dalton Trans. 2008, 4562. 

[16] Yang, X.; Wang, Z.; Madakuni, S.; Li, J.; Jabbour, G. E. Adv. Mater. 2008, 20, 2405. 

[17] Ma, B.; Djurovich, P. I.; Garon, S.; Alleyne, B.; Thompson, M. E. Adv. Funct. Mater. 2006, 16, 

2438. 

[18] Tang, R. P.-L.; Wong, K. M.-C.; Zhu, N.; Yam, V. W.-W. Dalton Trans. 2009, 2009, 3911. 

[19] Jarosz, P.; Lotito, K.; Schneider, J.; Kumaresan, D.; Schmehl, R.; Eisenberg, R. Inorg. Chem. 

2009, 48, 2420. 

[20] Rochester, D.; Develay, S.; Zalis, S.; Williams, J. A. G. Dalton Trans. 2009, 2009, 1728. 

[21] Schneider, J.; Du, P.; Wang, X.; Brennessel, W. W.; Eisenberg, R. Inorg. Chem. 2009, 48, 

1498. 

[22] Develay, S.; Blackburn, O.; Thompson, A. L.; Williams, J. A. G. Inorg. Chem. 2008, 47, 11129. 

[23] Williams, J. A. G. Chem. Soc. Rev. 2009, 38, 1783. 



APPENDIX 

224 
 

[24] C.A. Strassert, C. H. Chien, M. D. Galvez Lopez, D. Kourkoulos, D. Hertel, K. Meerholz, L. De 

Cola. Angew. Chem. Int. Ed. 2011, 50, 946-950 

[25] C. Cebrian, M. Mauro, D. Kourkoulos, P. Mercandelli, D. Hertel, K. Meerholz, C.A. Strassert, 

L. De Cola. Adv. Mater. 2012, 25, 437-442. 

[26] M. Mydlak, M. Mauro, F. Polo, M. Felicetti, J. Leonhardt, G. Diener, L. De Cola, C.A. 

Strassert. Chem. Mater. 2011, 23, 3659-3667. 

[27] Y. Liang, H. Wang, D. Wang, H. Liu, S. Feng. Dyes and Pigments 95 (2012) 260. 

[28] Laschat S, Baro A, Steinke N, Giesselmann F, Hägele C, Scalia G, et al. Angew Chem Int Ed 

2007;46(26), 4832. 

[29] Van der Boom T, Hayes RT, Zhao Y, Bushard PJ, Weiss EA, Wasielewski MR. J Am Chem Soc 

2002;124(32), 9582. 

[30] C. R. Abreu, C. A. Torres, C. Solans, A. L. Quintela, G. J. T. Tiddy. ACS Appl. Mater. Interfaces 

2011, 3, 4133. 

[31] T. Ye, R. Singh, H. J. Butt, G. Floudas , P. E. Keivanidis. ACS Appl. Mater. Interfaces 2013, 5, 

11844. 

 
  



7. CONCLUSIONS 

225 
 

7. CONCLUSIONS 
 

 

The work presented in this thesis tackles some important points on collective 

properties of two typical categories of molecular crystals, i.e., anthracene derivatives and 

charge transfer crystals. These compounds have been strategically selected as model systems 

for a phenomenological approach to some key properties of the solid state. 

After the historical landmark of cynnamic acid, back in the sixties, anthracene 

derivatives have constituted the class of materials from which systematical investigations of 

crystal-to-crystal photodimerizations reactions started, developed and arose a renewed 

awakening in recent years. The present results show that, based on the structural nature of 

each compound, distinctive behaviors of their photo-reaction dynamics and kinetics can be 

identified, allowing us to define the processes as topochemical, non topochemical, reversible 

or topophysical. However, we showed that this classification should not be limited to the 

reactant structure. An elucidating example is 9MA, where, irrespective of a perfect structural 

fit for its photodimerization, reactions yields ranging from 20 to almost 100% were reported 

by the various Authors, on samples of different nature and measured with a range of 

techniques. We specifically mean that the variable yields found in separate experiments must 

be associated to different aspects of dynamical reaction mechanisms, irrespective of the 

paradigm that a perfect fit in the starting lattice must lead to a full conversion of the reactant. 

We believe that reaction rate and reaction yield are two non separable factors in solid state 

reactions, which both determine the outcome of the reaction. The role played by defects 

certainly needs to be revisited and taken into account, together with the nature and size and 

history of the sample. 

No less important is the relationship found between incoming photons and mechanical 

response, that, to some extent, seems now to be a common occurrence in the solid state 

reactions driven by light. Probably, the most striking example we have encountered here is 

the reaction of DNO2A to AQ. Although less spectacular, mechanical response was sizable also 

for the other systems illustrated in chapter 3. Other than this study, a vast literature is now 

flourishing on photomechanical effects in a variety of systems, polymers and crystals, leading 

to potential perspectives in the field of photomechanical actuators. The role of mechanical 

energy in a crystal-to-crystal reaction has not been yet fully exploited, though we believe that 

the considerable strain generated at the reactant/product interface requires a suitable route 
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to be released. The example of 9ACA, as anticipated in the literature a few years ago, is 

illuminating. However, in this work we cannot fully prove the previous claims concerning the 

formation of a stable photoproduct of this compound, for all samples and polymorphs 

investigated. At the moment, anyway, the possibility of employing the mechanical energy 

released in a reversible solid state reaction in an actual device still remains a challenge. 

Finally, we would like to remark that the micro-Raman technique proved to be capable 

to discriminate between the molecular and the lattice transformation in the very same spot 

of a crystal. It was found that two distinct kinetic processes occur and in one case (9CNA) a 

careful kinetic analysis has been performed. Regardless of the kind of crystal-to-crystal 

transformation, we systematically identified the time delay between the molecular change, 

which obviously comes first, and the change of the original lattice into that of the product.  

The problems related to polymorphism are an evergreen. Here is quite obvious that 

engineering the best structure of a material, likewise the morphology, is a promising route to 

improve its semiconductive properties. DPA and its new polymorphic forms are an example 

on how to try improving charge migration by changing both structure and morphology.  

Related to polymorphism, the topic on pseudo-polymorphism of 9ACAD was raised 

with a fair amount of serendipity, giving us the chance to encounter an impressive variety of 

solvate structures. Once more solvents will be tried, we are confident that a record number 

of solvates is going to be exploited.  

The final part of the thesis was focused on CT crystals formed by perylene (D) and 

tetracyano-quinodimethane (A), also in its fluorinated forms. This choice of materials was 

motivated by the semiconducting properties of the co-crystal, which are partially due to a 

ground state charge transfer between donor and acceptor. A number of single crystals of the 

binary system was prepared, and structural and spectroscopic characterizations have been 

performed to determine the degree of charge transfer between donor and acceptor in the co-

crystals. It was found that the crystals grow in 1:1 or 3:1 ratio, for non fluorinated TCNQ, or in 

3:2 ratio, for fluorinated TCNQ derivatives. The molecular ratios 1:1 adopt a monoclinic 

structure, but in the case of perylene-F4TCNQ a solvate structure with toluene inclusion was 

obtained. One of the achievements of this work is the definition of the experimental 

conditions which drive the crystal growth of the binary systems either towards the low (1:1) 

or the high ratio (3:1 or 3:2) stoichiometries by PVT technique. We believe that the criteria 
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adopted for selecting the kind of end product could be applied to other co-crystals, in such a 

way to control the characteristics of the final material. 
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