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2. INTRODUCTION 

1.1  Lung cancer  

Lung cancer is a malignant  tumor characterized by uncontrolled cell growth in lung tissues. 

Most lung cancers  are carcinomas that originate from epithelial cells.  

The majority (80–90%) of cases of lung cancer are caused by  long-term exposure to tobacco 

smoke. The remaining 10–15% of cases are often caused by a combination of genetic factors 

 and exposure to  asbestos, radon gas and second-hand smoke. Lung cancers  are classified 

according to histological type. The classification is important to decide management and 

predicting outcomes of the tumor. The lung cancer is distinguished in non-small-cell lung 

carcinoma (NSCLC) and small-cell lung carcinoma (SCLC). NSCLC is often treated with surgery  

but the patients are frequently treated with chemotherapy  both pre-operatively (neoadjuvant 

chemotherapy) and post-operatively (adjuvant chemotherapy). SCLC frequently responds better 

to chemotherapy and radiotherapy.  

The common types of NSCLC are adenocarcinoma, squamous cell carcinoma  and large cell 

carcinoma, but there are numerous other types that occur less commonly, and all types can 

occur in abnormal histologic variants and in mixed cell-type combination. Adenocarcinoma  is at 

present the most frequent type of lung cancer in never smokers. It represents  approximately 

40% of lung cancers. Historically, adenocarcinoma was more often obsserved peripherally in 

the lungs than small cell lung cancer and squamous cell lung cancer, both of which tended to be 

more often centrally located. Squamous cell carcinoma  of the lung is more frequent in men than 

in women and accounts for about 30% of lung cancers. It is strongly correlated with the tobacco 

smoking. Large cell lung carcinoma  is a heterogeneous class of tumor originating from 

transformed epithelial cells in the lung. It represents  typically 10% of all NSCLC. Large cell lung 
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carcinoma is differentiated from SCLC primarily by the larger size of the tumor cells and a 

higher cytoplasmic - nuclear size ratio.  

SCLC presents under the microscope the small cancer cells  and are mostly filled with the 

nucleus dense and neurosecretory granules. This tumor grows quickly and spreads more 

aggressively than  NSCLC during  the disease. Sixty to seventy percent have metastatic tumor 

 at presentation. This lung cancer is strongly associated with smoking. 

 

1.2  Non-coding RNAs  

Over the last years, despite advances in radiotherapy, chemotherapy and surgery the death rate 

from lung cancer has remained unchanged, which is mainly due to metastatic tumor. 

Therapeutic choices in NSCLC have been mainly based on, performance status, disease stage 

and co-morbidities, and rarely on molecular or on histological analysis. Actually this therapeutic 

approach to patients may result in survival improvement of only weeks to months. So it is 

important to discover new markers for targeted therapy.  

Cancer is a genetic disease determinated by dysregulation not only of genes that codes 

proteins but also of non-coding RNAs (ncRNAs). Among the latter group, microRNAs (miRNAs) 

are the most widely considered.  

MiRNAs are small ncRNAs of 19-24 nucleotides in length that cooperate in regulation of mRNAs 

through base pairing to complementary site, mostly in the untranslated region (UTR) of the 

target mRNAs [1]. MiRNA genes are often located at fragile sites (FRAs), in common breakpoint 

regions and in minimal regions of loss of heterozygosity , so showing that miRNAs might be a 

new group of genes implicated in human tumorigenesis [2]. Some miRNAs are upregulated in  

human tumors therefore acting as an oncogene,  others are downregulated and have a tumor 

suppressor function [3]. 
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MiRNAs are commonly dys-regulated in  cancer tissue respect to the normal tissue counterpart 

in different tumors, including lung cancer. Volinia et al [4] studied 540 samples including lung, 

breast, prostate, stomach, colon and pancreatic tumors and observed a miRNA signature 

composed of numerous overexpressed miRNAs, such as miR-17-5p, miR-20a, miR-21, miR-92, 

miR-106a, and miR-155. The targets for these miRNAs include both tumor suppressors and 

oncogenes. Yanaihara el al [5] analyzed miRNA expression in lung cancers and investigated 

miRNA's role in lung carcinogenesis. They identified a miRNA profile able to distinguish lung 

cancers from normal lung tissues as well as molecular signatures that differentiate NSCLC 

histological sub-types. MiRNA expression profiles associated with survival of  adenocarcinomas, 

also including those classified as stage I disease. Yanaihara et al. obseveded that 

overexpression of miR-155 and also downregulation of let-7a-2 associated with poor survival. 

The miRNA signature on outcome was also determined by quantitative real-time RT-PCR (qRT-

PCR) analysis of miRNAs and cross-validated with an independent group of adenocarcinomas.. 

Moreover miR-29 family (miR-29a, 29b and 29c) is downregulated in NSCLC [6]. In in vitro 

experiments, the Fabbri et al. showed that miR-29s downregulated the expression of DNA 

methyltransferase 3A and -3B (Dnmt3B, Dnmt3A), which transfer a methyl group from methyl 

donor S-adenosyl methionine onto the 5’ site on the cytosine ring, specially in CG sites that 

were unmethylated on the parental strands of DNA. They assessed the expression of Dnmt3A 

and Dnmt3B proteins in 172 paired non-neoplastic/cancerous lung tissues, and Fabbri et al. 

discovered that high expression of Dnmt3A protein was significantly correlated with lower 

overall survival, while no statistically significant association with survival was shown for Dnmt3B. 

The mRNA  DNMT3A and –3B expressions  were inversely correlated with the expressions of 

miR-29s in NSCLC tissues. Also, they analyzed the mRNA expressions of two tumor 

suppressor genes, WW domain containing oxidoreductase (WWOX) and fragile histidine triad 

(FHIT), which are often silenced by promoter methylation in lung cancer. WWOX is involved in 

the regulation of a wide variety of cellular functions for example protein degradation, RNA 
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splicing, transcription while FHIT is a factor of the histidine triad gene family, encodes a 

diadenosine 5',5'''-P1,P3-triphosphate hydrolase that participate in purine metabolism. The 

transfection of miR-29a, -29b and 29c precursors in A549 and H1299 cell lines reduced 

DNMT3A and -3B expression and caused de-methylation of silenced epigenetically genes, 

determining to increased FHIT and WWOX expression. The re-expressed FHIT and WWOX 

inhibited tumor progression both in vitro and in vivo. This study shows that miRNAs are 

essential to regulate the epigenetic expression of tumor suppressor genes and have a important 

role in human carcinogenesis.  

Other groups of ncRNAs are emerging as implicated in human carcinogenesis. The 

ultraconserved regions (UCRs) are a group of genomic sequences completely conserved 

between orthologous regions of the human, murine and rat genomes [7]. Their transcriptional 

activity is been identified and the transcribed UCRs is named T-UCR genes [8]. 53% of the 

UCRs were classified as nonexonic (‘‘N’’, 256/481 lacking evidence of encoding protein), 

whereas the other 47% were designated either exonic (‘‘E’’, 111/481, that overlap mRNA of 

known genes), or possibly exonic (‘‘P’’, 114/481,with inconclusive indication of overlap with 

genes). Also T-UCRs are commonly located at fragile sites and other cancer-associated 

genomic regions, are dysregulated in numerous types of solid and hematological malignancies 

compared to the normal tissue and most are not translated into proteins [8]. Dysregulation of T-

UCRs has been studied in pediatric tumors [8, 9] and is associated with outcome in high-risk 

neuroblastomas [9, 10]. Calin et al observed that uc.73A has oncogenic function in colorectal 

cancer (CRC) cell lines, whereas other researchers observed uc.388 and uc.338 as oncogenes 

in CRC [11] and hepatocellular carcinoma (HCC) [12], respectively. Moreover, Single Nucleotide 

Polymorphisms (SNPs) in T-UCR genes have been observed to be correlated with familial 

breast cancer risk [13]. Calin et al  previously confirmed that T-UCR genes are epigenetically 

regulated by CpG island hypermethylation [14] and miRNAs [8]. It was observed that uc.339 is 

over-expressed in HCC-derived exosomes and in HCC cells, contributing to a pro-tumoral HCC 



7 
 

microenvironment [15]. These findings support a function of T-UCRs in human carcinogenesis. 

However, many mechanism and consequences of dysregulation of T-UCR in human cancers 

remains unidentified.  
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2. AIMS 

In this study it was observed whether uc.339 is differentially expressed in NSCLC primary 

tumors compared to the normal tissue counterpart, and this expression related with overall 

survival was assessed in the TCGA database. Moreover, it was determined whether uc.339 

functions as an oncogene in lung cancer and  it was investigated a possible mechanism of 

action of uc.339. Then, it was assessed whether TP53, a tumor suppressor gene mutated or 

deleted in more than 50% of human tumors, as NSCLC [16-18], might be the cause for uc.339 

dysregulation in lung cancer. Finally, the role of uc.339 was tested in  chemotherapeutic 

treatments. 
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METHODS 

Cell lines and patient samples  

Paired frozen tumor and adjacent normal lung from 30 NSCLC patients were provided by Istituto 

Scientifico Romagnolo per la Cura e lo Studio dei Tumori IRST, s.r.l, IRCCS, in Meldola (FC), 

Italy. Written informed consent was collected from all patients before to analyze the sample. The 

clinical characteristics of the NSCLC patients studied in this work are summarized in Table 1. 

All cell lines were provided from American Type Culture Collection and were incubated as a 

monolayer at 37°C. LoVo (colorectal adenocarcinoma) and A549  (lung adenocarcinoma) cells  

were grown in F12K medium (ATCC),  with 10% FBS while H1299 (lung adenocarcinoma) and 

H460 (large cell lung cancer) cells were maintained in RPMI 1640 (ATCC) with 10% FBS. For 

the packaging of the uc.339 expressing lentivirus, 293TN cells were used (or its empty lentiviral 

counterpart) and were maintained in DMEM medium (ATCC), with 10% FBS. Each cell line was 

checked for the presence of mycoplasma every 2 months (MycoAlert™ Mycoplasma Detection 

Kit – Lonza) 

Chromatin Immunoprecipitation 

The TP53 binding sites upstream of the uc.339 were obtained by combining a published global 

map of the TP53 binding sites [44] with the OMGProm algorithm [45]. Chromatin 

immunoprecipitation (ChIP) was performed with the EZ-ChIP kit (Millipore) and 5 g of 

TP53 antibody (Santa Cruz Biotechnology) on H1299 transfected with CMV-TP53/Empty. As a 

negative control, it was immunoprecipitated 1 sample with 5 g of pre-immune serum (Santa 

Cruz Biotechnology). The samples were PCR amplified using specific primers after final elution 

and purification of DNA. As  a  positive  control  for  PCR, the input sample was diluted to 0.1 

ng/ L.  PCR  was  obtained using  the AmpliTaq Gold® PCR Master Mix (Applied Biosystems).  
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Isolation of uc.339-miRNA complexes 

The immunoprecipitation of the uc.339 transcript was obtained as follows:  RNA was extracted 

from LV-uc.339 or LV-E infected H460 and A549 cells with complete RIPA buffer (Santa Cruz 

Biotechnology) (following the manufacturer’s instructions). Next, it was incubated the RNA with 

120 pmoles of a 3’-biotinilated RNA probe (see Supplementary Table 1) that was 

complementary to the uc.339 transcript and did not overlap with the sequence of the ATP5G2 

host gene, overnight at 4°C. Co-precipitation of the bound uc.339-miRNA complexes was 

obtained by using streptavidin-conjugated magnetic beads (Miltenyi Biotec), according to the 

manufacturer’s instructions as previously described [28]. 

Animal experiments 

Nude mice (4 week-old females) were provided from Jackson Laboratories (total n=14). All mice 

were irradiated with a 200 cGy total body irradiation at 5 weeks of age at the Animal Care 

Facility of the Saban Research Institute of Children’s Hospital Los Angeles. The next day, 5 x 

106 A549 cells stably infected with LV-uc.339 were injected subcutaneously in seven mice and 5 

x 106 A549 cells stably infected with LV-E. were injected subcutaneously in seven mice.  Tumor 

diameters were quantified after 8 days from the injection and then every 3 days. Mice were 

euthanized at 29 days after the injection and necropsy performed; the tumors were excised, 

photographed and measured. Tumor volumes were obtained by using the equation V (mm3)= L 

x W2/2, where W is the perpendicular diameter and L is the largest diameter. Total RNA was 

extracted from about 1/10 of the excised tumor, and uc.339 expression was obtained by qRT-

PCR in triplicate, per each mouse and as reported above.  

All procedures used in this work complied with federal guidelines and were accepted by the 

Institutional Animal Care and Use Committee at Children’s Hospital Los Angeles. 
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TCGA dataset analysis 

The case from TCGA analysis is of 204 Lung squamous cell carcinoma (LUSC) samples with 

overall survival information for which  RPKM-normalized values of uc.339 were calculated.   125 

samples were profiled on Ilumina Genome Analyser for miRNA expression. Clinical and level 3 

miRNA information was downloaded from the Cancer Genome Atlas Project (TCGA; http://tcga-

data.nci.nih.gov/).  Deriving values for mature forms for microRNAs were used Level 3 Illumina 

miRNASeq “isoform_quantification”   files. It was downloaded RNA-seq BAM files from UCSC 

Cancer Genomics Hub (CGHub, https://cghub.ucsc.edu/). TCGA BAM files were obtained 

based on Mapsplice2 algorithm [46] for alignment on the hg19 reference genome with default 

parameters. It was quantified the uc.339 expression as RPKM (reads per kilobase per million 

mapped reads) [47].  

Statistical analysis  

Statistical data are shown as mean ± standard deviation (s.d.) of experiments in triplicate, 

unless otherwise specified. Significance was computed by Student’s t-test or by Anova test with 

Bonferroni correction. A P value <0.05 was statistically significant.  

For survival curves statistical analyses were computed in R (version 3.0.1)  (http:///www.r-

project.org/) and the statistical significance was identified as a P value <0.05.   

Patients were grouped into percentiles for the Kaplan-Meier curve according to uc.339  

expression.  The Log-rank test was used to determine the association between overall survival 

and uc.339 expression and the Kaplan-Meyer method was performed to generate survival 

curves.  It was recorded cut-off points to significantly split (log-rank test P value <0.05) the 

samples into low/high uc.339 groups. It was chosen the cut-off to optimally separate the patients 

in high/low (min P value).  It was chosen thus for uc.339 the cut-off 0.54. 
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Supplementary Table 1. List of primers designed in this study.  

Procedures Primer name Sequence 

Sequencing F2 5’-CAGCCATTCTTTTCCTGCTC-3’ 

Sequencing R11 5’-AAGTGGGCCCCTACCTAGAA-3’ 

Sequencing 5F 5’-CTCTTCCTGCAGTACTCCCCTGC-3’ 

Sequencing 5R 5’-GCCCCAGCTGCTCACCATCGCTA-3’ 

Sequencing 6F 5’-GATTGCTCTTAGGTCTGGCCCCTC-3’ 

Sequencing 6R 5’-GGCCACTGACAACCACCCTTAACC-3’ 

Sequencing 7F 5’-GTGTTGTCTCCTAGGTTGGCTCTG-3’ 

Sequencing 7R 5’-CAAGTGGCTCCTGACCTGGAGTC-3’ 

Sequencing 8F 5’-ACCTGATTTCCTTACTGCCTCTGGC-3’ 

Sequencing 8R 5’-GTCCTGCTTGCTTACCTCGCTTAGT-3’ 

uc.339 RT RT uc.339 

reverse 

5’- CTCCACAGTGCCTGGCACCAC-3’ 

RACE                                      Gene specific F  5’-CATTTTTATGGCCCTGAGCT-3’ 

RACE Gene specific R   5’-CTTCTCGCCCGCTTCTCC-3’ 

RACE Nested gene 

specific F  

5’-GGAGAAGCGGGCGAGAAG-3’ 

RACE Nested gene 

specific R  

5’-AGCTCAGGGCCATAAAAATG-3’ 

Cloning of uc.339 in  

pCDH-CMV-MCS-

EF1-copGFP vector 

uc.339 F 5’-  GCGAATTCACGCAGCACGAGAAAGACG - 3’ 

 

Cloning of uc.339 in  

pCDH-CMV-MCS-

EF1-copGFP vector 

uc.339 R 5’-  TCGCGGCCGCTTTTGGTGGGAATGGA -3’ 

 

Mutagenesis         of 

miR-339-3p   CS   in 

CCNE2  3’ UTR 

Del. miR-339-3p 

CS F  

5'-TTTGCCTTGCCATAACACATTTTTTAACTAATAACCTGTGCTCTAAACAG-3' 

Mutagenesis         of 

miR-339-3p   CS   in 

Del. miR-339-3p 

CS R  

5'-CTGTTTAGAGCACAGGTTATTAGTTAAAAAATGTGTTATGGCAAGGCAAA-3' 
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CCNE2  3’ UTR 

Mutagenesis         of 

miR-663b-3p  CS  in 

CCNE2  3’ UTR 

Del. miR-663b-3p 

CS F  

5'-TAAATGCTGTGGCTCCTTCCTATTTTGTATATCACAATTTGGGTG-3' 

 

Mutagenesis         of 

miR-663b-3p   CS  in 

CCNE2  3’ UTR 

Del. miR-663b-3p 

CS R  

5'-CACCCAAATTGTGATATACAAAATAGGAAGGAGCCACAGCATTTA-3' 

 

Mutagenesis         of 

miR-95-5p    CS    in 

CCNE2  3’ UTR 

 Del. miR-95-5p 

CS F  

5’-CTAGATTGCTAGTTTATTTTCTCTTCTCCCTTTGAAGAAAC- 3’ 

Mutagenesis         of 

miR-95-5p    CS    in 

CCNE2  3’ UTR 

Del. miR-95-5p 

CS R  

5’-GTTTCTTCAAAGGGAGAAGAGAAAATAAACTAGCAATCTAG 3’ 

Cloning of TP53 CS 1 

in pGL4.23(luc2/minP) 

CS1 F  5’- CAGGCATGCGCCACCATGCCCG-3’ 

Cloning of TP53 CS 1 

in pGL4.23(luc2/minP) 

CS1 R  5’-CTAGCGGGCATGGTGGCGCATGCCTGGTAC-3’   

Cloning of TP53 CS 2 

in pGL4.23(luc2/minP) 

CS2 F  5’-CCTCCTTGTCTCCCAGACAGGACCTGCCCG-3’ 

Cloning of TP53 CS 2 

in pGL4.23(luc2/minP) 

CS2 R  5’-CTAGCGGGCAGGTCCTGTCTGGGAGACAAGGAGGGTAC-3’  

Cloning of TP53 CS 3 

in pGL4.23(luc2/minP) 

CS3 F  5’-CGGACTTGCGTCCCCTTTCCGAGCATGCGCG-3’ 

Cloning of TP53 CS 3 

in pGL4.23(luc2/minP) 

CS3 R  5’-CTAGCGCGCATGCTCGGAAAGGGGACGCAAGTCCGGTAC-3’ 

Cloning of TP53 CS 4 

in pGL4.23(luc2/minP) 

CS4 F  5’-CGGTCAAGATCTCTGGGGGAGCTAGGTTG-3’  

Cloning of TP53 CS 4 

in pGL4.23(luc2/minP) 

CS4 R  5’-CTAGCAACCTAGCTCCCCCAGAGATCTTGACCGGTAC-3’ 

uc.339 precipitation 3’ biotinilated 

RNA  

5’-UACCUGUUGAUUGAUUCCCAA-3’. 
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Analysis of the TP53 gene mutation status in NSCLC samples 

Sequencing of TP53 gene was obtained on exons 5, 6, 7 and 8 of the TP53 gene for all NSCLC 

patients of this study. 

Tumor DNA from each patient was obtained with the QIAamp DNA Mini Kit (Qiagen) and the 

QIAamp DNA Micro Kit (Qiagen). The fragment between exon 11 and exon 2 of the TP53 gene 

was amplified with the primers R11 and F2 (listed in Supplementary Table 1), with an 

annealing temperature of 68°C using the LA Taq® DNA Polymerase (Takara). The  PCR 

fragment was obtained with MinElute PCR Purification kit (Qiagen), as described to the 

manufacturer’s instructions. Exons 8 to 5 were sequenced using the BigDye® Terminator  v3.1 

Cycle Sequencing kit (Life Technologies) with 56°C annealing temperature, with primers 5F, 5R, 

6F, 6R, 7F, 7R, 8F and 8R as listed in Supplementary Table 1.    

The sequences were obtained with the DyeEx 2.0 Spin kit (Qiagen) and analyzed in a 3130 

Genetic analyzer (Applied Biosystem) with Montage Injection Solution (Millipore). 

Quantitative Real-Time PCR  
 
TRIzol® reagent (Invitrogen) was used to extract RNA, as described in manufacturer’s 

instructions. RNA concentration and quality were tested with a NanoDrop® ND-1000 

Spectrophotometer (Thermo Scientific). Moreover RNA was purified with the TURBO DNA-

free™ kit (Life Technologies). 

Retrotranscription of uc.339 was obtained using the RT uc.339 reverse primer (Supplementary 

Table 1) that not to overlap with the sequence of the ATP5G2 host gene (Figure 1c) and 

through the TaqMan® MicroRNA Reverse Transcription kit (Life Technologies), as described in  

manufacturer’s instructions. uc.339 cDNA was pre-amplificated through TaqMan® PreAmp 

Master Mix (Life Technologies) and quantitative Real-Time PCR (qRT-PCR) was tried in 

triplicate through TaqMan® Universal PCR Master Mix (Life Technologies) as described in 

manufacturer’s instructions. As a normalizer for qRT-PCR RNU44 was used. 
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Retrotranscription of miR-339-3p, -95-5p and -663-3p was carried out through the TaqMan® 

MicroRNA Reverse Transcription kit (Life Technologies), as described in the manufacturer’s 

instructions and qRT-PCRs were performed in triplicate with the TaqMan® Universal PCR 

Master Mix, no AmpErase® UNG reagents (Life Technologies), as described in the 

manufacturer’s instructions. As a normalizer for qRT-PCR RNU44 was used. 

TP53 mRNA was retrotranscribed through using the TaqMan® MicroRNA Reverse Transcription 

kit (Life Technologies), as described in the manufacturer’s instructions, and the cDNA was 

amplified through TaqMan® Universal PCR Master Mix (Life Technologies). The qRT-PCR 

reactions were done in triplicate and as a housekeeping gene the HPRT gene was used. 

All quantitative retrotranscriptions and qRT-PCR reactions were performed in an Applied 

Biosystems® 7500 Real-Time PCR System (Life Technologies), as described in the operator’s 

manual. 

Rapid Amplification of cDNA Ends (RACE) 

To discover the 5’- and 3’-end of the transcript of uc.339, H1299 and LoVo cell total RNAs were 

purified with DNase I (RNase-free) (Life Technologies) and the SMARTer RACE cDNA 

Amplification Kit (Clontech) was performed, as described in the manufacturer’s instructions. The 

cDNA ends were obtained with the Platinum Taq DNA Polymerase High Fidelity (Life 

Technologies) and gene-specific primers, as listed in Supplementary Table 1, were used. The 

primer for the 5’-end didn’t overlap with the transcript of the ATP5G2 host gene, so it is sure that 

only the uc.339 was amplified. Furthermore, it was performed a nested PCR through the nested 

universal primer included in the kit and the nested gene-specific primers as indicated in 

Supplementary Table 1. As reaction controls were used Placental RNA and Transferrin 

receptor–specific primers included in the kit. The PCR fragments were then checked in a 1.5% 

agarose gel, and DNA was extracted through the QIAquick Gel Extraction Kit (Qiagen), as 

described in the manufacturer’s instructions. Next, the RACE fragments were cloned into a 

TOPO® TA pCR®2.1 cloning plasmid (Invitrogen), as described in the manufacturer’s 
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instructions, and the fragments were sequenced through using the T7 and T3 primers, and 

blasted using the UCSC Genome Broswer website (http://genome.ucsc.edu/cgi-

bin/hgBlat?command=start). 

Plasmids, Reagents and Transfection Conditions 

The TP53-expressing plasmid TrueClone pCMV6-XL5 (pCMV-TP53) and its empty control 

plasmid were purchased from OriGene. The identified uc.339 RACE sequence was cloned into 

the pCDH-CMV-MCS-EF1-copGFP expression plasmid (pCDH-uc.339) (System Biosciences), 

through the EcoRI and NotI restriction sites and the primers listed in Supplementary Table 1. 

This vector was also used to obtain empty lentiviral vector controls (LV-E) or uc.339 expressing 

lentiviral particles (LV-uc.339), following  the Lentiviral Expression Technology (System 

Biosciences) and as described in the manufacturer’s instruction. The uc.339 vector and empty 

vector  were transfected through the pPACK™ Lentivector Packaging System (System 

Biosciences) in the 293TN cell line. The resulted viruses were concentrated through the PEG-

it™ Virus Precipitation Solution (System Biosciences), and lentiviral particle titration was maden 

by using the Global UltraRapid Lentiviral Titer Kit™ (System Biosciences). A549, LoVo and 

H460 cells were infected at an multiplicity of infection (MOI) of 10 and were selected for green 

florescence signal through cytofluorimetry using a BD FACSCalibur platform (BD Biosciences). 

After cytofluorimetric cell selection, the infection efficiency was  >90% through fluorescent 

microscopy and the uc.339 expression was further validated through qRT-PCR. 

The pCMV-TP53 and uc.339 vectors were transfected in cell lines through Lipofectamine® LTX 

(Invitrogen), at a final concentration of 1 g/mL as described in  manufacturer’s instructions. The 

precursors of miR-95-5p, -663b-3p and -339-3p (as well as the scrambled miRNA negative 

control #1) were provided from Ambion, and were transfected at a final concentration of 100 nM, 

using Lipofectamine® 2000 (Invitrogen), as described in  the manufacturer’s instructions. 

Two siRNAs against two diverse regions of the uc.339 transcript were designed: si-uc.339 5’-

GGGAAUCAAUCAACAGGUATT-3’ and si-uc.339(2) 5’-CUCCAGUUUUAGUUGUUGATT -3’. 

http://genome.ucsc.edu/cgi-bin/hgBlat?command=start
http://genome.ucsc.edu/cgi-bin/hgBlat?command=start
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These two siRNAs do not overlap with ATP5G2 host gene, to avoid the silencing of the host 

gene which might interfere the data interpretation. Anti-uc.339 siRNAs [si-uc.339 and si-

uc.339(2)] and a scrambled siRNA (si-SCR) were provided by Ambion. The transfections of 

siRNAs were performed at a final concentration of 100 nM, through Lipofectamine® RNAi Max 

(Invitrogen) and as described in  the manufacturer’s instructions. 

Luciferase Reporter Assays 

To observe the direct targeting of miR-339-3p, -95-5p and -663-3p on the CCNE2 mRNA, the 

LightSwitch 3’UTR plasmid containing the CCNE2 3’-UTR was provided from the LightSwitch 

3’UTR Reporter GoClone Collection of SwitchGear Genomics.   

As a control plasmid, it was performed a mutation (deletion) of the miRNA binding sites in 

CCNE2 3’-UTR plasmid with the mutagenesis primers described in Supplementary Table 1 

and using the QuikChange II XL Site-Directed Mutagenesis kit (Stratagene), as described in the 

manufacturer’s instructions and as previously reported in literature [8]. 

The TP53 CS #1-4 containing sequences were cloned in the pGL4.23 [luc2/minP] plasmid 

(Promega), upstream of the promoter for firefly luciferase. Cloning was successfully performed 

through the KpnI and NheI restriction sites and the primers described in Supplementary Table 

1.  

To normalize the luciferase reporter assay experiments, it was co-transfected cells with the 

plasmids including the firefly luciferase gene, and with the pGL4.74 (hRluc/TK) plasmid with 

Lipofectamine® 2000 (Invitrogen) as described by the supplier. The luciferase signal was 

quantified with the Dual-Luciferase®Reporter Assay System (Promega) and was examined in a 

luciferase reporter assay system kit and Glomax®96 Microplate Luminometer (Promega), 

according to the manufacturer’s instructions and as previously described [8].  
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Western blotting 

For immunoblotting assay, cells were lysed using complete RIPA buffer (Santa Cruz 

Biotechnologies) and proteins were denaturated at 100 °C for 10 minutes. 50 g of extracted 

proteins were loaded  on Criterion™ XT 4-20% Precast Gels (Bio-Rad), and successively  

transferred on Trans-Blot®Turbo™ Midi Nitrocellulose Transfer Pack membrane (Bio-Rad)  

using a Trans Blot®Turbo™ Transfer System (Bio-Rad), as described in the manufacturer’s 

instructions. For making sure that equal amounts of proteins were loaded in each lane the 

membrane was stained with Ponceau S (Sigma Aldrich). Membranes were maintained for 2 

hours at room temperature with T-PBS 5% non fat dry milk. The membrane was incubated 

overnight at 4°C with the primary antibody, then it was added horseradish peroxidase-

conjugated secondary antibody (Dako Corporation) at a dilution of 1:5000.  These primary 

antibodies were used: anti-CCNE2, rabbit monoclonal antibody (Abcam) diluted 1:500,  anti-

TP53 Ab-2, mouse monoclonal antibody (Thermo scientific) diluted 1:400, anti-PARP rabbit, 

polyclonal antibody (Cell Signaling) diluted 1:1000, anti-VINCULIN, mouse monoclonal antibody 

(Biohit) diluted 1:1000. The bound antibodies were observed by enhanced chemiluminescence 

and by using the SuperSignal West Femto Chemiluminescent Substrate (Thermo Scientific), as 

described in the manufacturer’s instructions. The quantification of the chemiluminescent bands 

were obtained by using the Quantity One software (Bio-Rad). 

Cell viability and cell cycle assays 

For cell viability assay, A549, H460, LoVo and H1299 cells were detached through trypsin after 

72h from plating (LoVo  and A549 stably infected with LV-E or LV-uc.339) or from the treatment 

(si-SCR or si-uc.339), washed and suspended in PBS. An aliquot of the suspension was 

combined with an identical volume of 0.4% Trypan Blue and maintained for 8-10 min at room 

temperature. Total cell numbers and proportions of viable and non viable cells were counted in 

a KOVA®Glasstic® Slide counting chamber (Hycor Biomedical). 
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For cell cycle assay, cells were collected 72h after treatment with si-SCR or si-uc.339, fixed with 

70% ethanol and stained with a solution containing 10 g/ml of propidium iodide (Sigma 

Aldrich), 0.01% of NP40 (Sigma Aldrich) and 10,000 units/mL of RNase (Sigma Aldrich). After 

30-60 min, samples were read by flow cytometry using a BD FACSVantage™ cytofluorimeter 

(BD Biosciences). The obtained data (10,000 events were collected for each sample) was 

performed by using the BD CellQuest™ Pro software (BD Biosciences), as described in the 

manufacturer’s instructions. Data were analyzed using the ModFit LT™ software (Verity 

Software House), as described in  the manufacturer’s instructions and indicated as fractions of 

cells in the different cycle cycle phases.  

Cell migration assay  

Wound healing analysis were performed with ibidi) cell culture inserts with a distinct cell free 

gap(Martinsried, Germany. 3 x 10 5 A549 cells infected with LV-uc.339 or LV-E were suspended 

in 70 l full media for well of the insert which had been before placed in a 12 well cell culture 

dish. The cells were maintained to adhere in a 37°C, 5% CO2 incubator for 4 hours. The insert 

was removed with sterile forceps. The cells were washed with prewarmed media several times 

to remove the non adherent cells. Phase contrast images (4x) were taken and designated as 

Time 0. The position of the field was way signed. Eight and 24 hours later, images were 

obtained at the same location as time 0. 

The images were uploaded to the ibidi company web site and analyzed through their Wim-

Scratch Analysis program.  The gap is 500 +/- 50 m and the distance is quantified comparing 

to Time 0 (500 m) over time that the number gets smaller. Data is reported as proportion of 

area of initial cell-less gap. The experiment was performed in triplicate. 
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Drug 

Cisplatin (Mayne Pharma Pty Ltd, Mulgrave, Australia) was suspended in 0.9% saline solution. 

Cisplatin was stored at 25°C and it was freshly diluted in culture medium before each 

experiment. 

Drug exposure 

Cells were treated with cisplatin for 6 h to reproduce the clinical conditions of lung cancer 

treatment.  Considering that the peak plasma level is 3 g/ml for cisplatin, it was tested 3- g/ml 

concentrations for cisplatin. Analysis of the cytotoxic effect was performed 48 h after the end of 

drug exposure. 
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RESULTS 

In NSCLC with poor prognosis, uc.339 is up-regulated.  

Increased expression of uc.339 has been observed in CRC and HCC, compared to the 

corresponding normal tissue [8, 15]. In this work,  uc.339 expression level was quantified in 30 

paired  tumor and adjacent normal lung, by quantitative real-time PCR (qRT-PCR). Statistically 

significant uc.339 up-regulation was shown in tumor compared to adjacent non-tumor lung 

(P<0.0001 Fig. 1a). To analyze whether uc.339 up-regulation harbored prognostic implications 

the TCGA database was interrogated and observed in 204 NSCLC patients that high levels of 

uc.339 significantly associate a lower overall survival (P=0.0186 Fig. 1b). Together these data 

show that in NSCLC primary tumors with poor prognosis uc.339 is up-regulated. 

uc.339 induces NSCLC growth and migration 

The functional effects of uc.339 dysregulation was investigated in lung carcer. As described by 

Bejerano et al., uc.339 is a T-UCR with inconclusive evidence of overlap with a protein coding 

gene (possibly exonic T-UCR) [7], partly overlapped in the ATP5G2 host gene (Fig. 1c). The 

length of the uc.339 transcript was analyzed and also determined the endogenous expression 

level of uc.339 in one CRC cell line (LoVo) and in three NSCLC cell lines (A549, H1299 and 

H460) by qRT-PCR, carefully testing the primers to amplify within the ultraconserved area as 

described by Bejerano et al. [7], but not to amplify with the ATP5G2 host gene (Fig. 1c and 

Supplementary Table 1). The tested cell lines had a variable expression of uc.339, with the 

highest expression level in H1299 and LoVo (Supplementary Fig. 1a). Moreover, uc.339 

transcript length was determined through Rapid Amplification of cDNA Ends (RACE) in LoVo 

and H1299 cells and a prevalent uc.339 transcript sequence of 849 nucleotides (nt) was 

observed, beginning 273 nt upstream and ending 324 nt downstream the sequence described 

by Bejerano et al. [7] (Supplementary Fig. 1b).  
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Subsequently, A549 and LoVo cells was infected with a lentiviral vector that over-expresses 

uc.339 (LV-uc.339) or its empty vector counterpart (LV-E). LV-uc.339-infected cells 

(Supplementary Fig. 2a) show an increased viability (Fig. 2a) and increased migration in the 

scratch analysis (Fig. 2b and c) compared to LV-E infected cells. On the other hand, when 

uc.339 endogenous expression  was silenced through two different siRNAs against different 

regions of the uc.339 transcript [si-uc.339 and si-uc.339(2)] in A549, H460, H1299 and LoVo 

cells (Supplementary Fig. 2b and c), a reduction of cell viability was observed at 72h in H460, 

LoVo and H1299, but not in A549 (Fig. 2d and Supplementary Fig. 2d).  In A549 cells, the 

effect of anti-uc.339 siRNAs lacks because the A549 cells express very low endogenous levels 

of uc.339 (Supplementary Fig. 1a). Finally,  the effects of uc.339 silencing were determined in 

A549, H460, LoVo, and H1299 cells by cytofluorimetry. A decreased expression level of uc.339 

was observed, also reducing of the fraction of cells in S-phase, and a increase of the fraction of 

cells in G0/G1 phase that caused protein PARP-cleavage (Fig. 2e, f and  Supplementary Fig. 

2e, f). These effects were not obtained (or, for the PARP-cleavage, obtained to a lesser extent) 

in A549 cells, confirming the uc.339-mediated effect on cell viability and cell cycle. Next, the 

effects of uc.339 over-expression were assessed in vivo in an xenograft murine model. A549 

LV-uc.339 or LV-E infected cells were injected subcutaneously in five-week old nude female 

mice (n=7/group). A549 cells were selected for this experiment because they express the lowest 

expression levels of endogenous uc.339 (Supplementary Fig. 1a). Tumor volume was 

measured every 3 days and until day 29 in both groups. Mice injected with uc.339 over-

expressing A549 cells had a faster tumor growth than mice with empty A549 cells, and the 

difference between the two groups was statistically significant from day 23 (Fig. 3a). After 

euthanizing the mice, analysis of uc.339 expression level in the xenografts observed still a 

significantly higher expression of uc.339 in the LV-uc.339 group (Fig. 3b) and bigger tumor 

growth in the LV-uc.339 group (Fig. 3c). Moreover, it was tested if the uc.339 over-expression 

caused the chemoresistance to Cisplatin (a drug used most in clinical to care the lung cancer 
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patents). The citotoxic assay with Cisplatin treatment at peak plasma level shows that LV-

ucr.339 infected cells were more viable than LV-E infected cells (Figure 3D). These 

experiments confirm a role for uc.339 in causing lung cancer migration and growth both in vitro 

and in vivo. 

 

uc.339 sequesters miR-339-3p, -663-3p and -95-5p and induces Cyclin E2 expression 

To discover the mechanism of action of uc.339, it was hypothesized that the T-UCR might 

function as a “decoy” for mature miRNAs. A structural analysis on uc.339 transcript shown the 

presence of complementary sequences to three miRNAs (namely, miR-339-3p, -663-3p and -

95-5p) in the uc.339 transcript (Fig. 4a). Calin et al. previously observed that T-UCRs can be 

directly regulated by miRNAs [8]. So, to discover whether the indicated in silico uc.339-miRNA 

interaction determines a uc.339 targeting by the three miRNAs,  A549, H460, H1299 and LoVo 

cells were transfected with each of the three miRNAs (or a control as scrambled 

oligonucleotide), and observed uc.339 expression after 48h. It wasn’t  observed any down-

regulation of uc.339 when the three miRNAs was transfected in any the tested cell lines (Fig. 

4b), confirming that the uc.339-miRNA interaction indicated in Fig. 4a does not determine in 

miRNA targeting of uc.339. To test whether the interaction causes in uc.339 trapping of the 

three miRNAs,  the expression of miR-339-3p, -95-5p and -663-3p was determined in A549 and 

H460 cells (both cell lines with low levels of uc.339 endogenous expression) stably expressing 

uc.339 and  a down-regulation of all three miRNAs was observed (Fig. 4c). Contrarily, the 

silencing of uc.339 in H1299 cells (with high endogenous expression levels of uc.339) caused to 

increased expression of the three miRNAs (Fig. 4d and  Supplementary Fig. 3). Moreover, the 

uc.339 transcript was immunoprecipitated in A549 LV-uc.339 and H460 LV-uc.339 cells and 

obtained an enrichment of miR-339-3p, -663-3p and -95-5p in the immuno-precipitate (Fig. 4e). 

To observe the possible implications of such a “decoy” mechanism,  an in silico analysis of all 

the target genes for miR-339-3p, -663-3p and -95-5p was performed [19-21] and  CCNE2 
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(Cyclin E2) was identified to be a predicted target for indicated miRNAs. It was validated 

CCNE2 as a direct target of these miRNAs through a luciferase reporter assay. Co-transfection 

of H1299 and LoVo cells was performed  with a plasmid carrying the CCNE2 3’-UTR region 

downstream of the luciferase reporter gene, and miR-339-3p, -95-5p, -663-3p, or a scrambled 

miRNA as a control. Reduced luciferase activity was obtained with all three miRNAs compared 

to scrambled transfected cells, and this effect lacked when the three miRNA binding sites on 

CCNE2 mRNA were deleted (Fig. 5a). It was also shown that CCNE2 protein levels were 

decreased in LoVo and H1299 cells transfected with miR-339-3p, -95-5p or -663-3p compared 

to a scrambled miRNA (Fig. 5b). Next, it was investigated whether uc.339 indirectly regulated 

CCNE2 expression levels through inducing down-regulation of miR-339-3p, -95-5p - and 663-

3p. First, the CCNE2 expression level was analyzed in A549, H460, and LoVo cells over-

expressing uc.339 through lentiviral infection and  up-regulation of CCNE2 protein was 

observed in all three cell line models (Fig. 5c). Then, uc.339 expression was  silenced in H460 

and H1299 cells and  a down-regulation of CCNE2 protein expression was shown compared to 

the si-SCR control (Fig. 5d and Supplementary Fig. 4).  Finally, H460 cells stably expressing 

uc.339 were transfected them with miR-339-3p, -95-5p, -663-3p, or a scrambled miRNA. It was 

observed that even in presence of uc.339, the re-expression of the three miRNAs of interest 

(not of the scrambled control) reverted the protein up-regulation of CCNE2 levels caused by 

uc.339 overexpression (Fig. 5e). Overall, these experiments confirm that uc.339 induces the 

expression of CCNE2 by regulating the expression of miR-339-3p, -95-5p and -663-3p. 

 

uc.339 is transcriptionally regulated by TP53 

It was investigated how the expression level of uc.339 is regulated. Through analysis of 

endogenous expression level of uc.339 in three NSCLC cell lines and one CRC line 

(Supplementary Fig. 1a) it was noticed that while uc.339 had the lowest levels in wild type  



28 
 

TP53-expressing cell lines (A549), the expression level was the highest in TP53-null H1299 

cells (Supplementary Fig. 1a and Supplementary Fig. 5). This correlation between TP53 and 

uc.339 expression levels was not obtained in LoVo cells (Supplementary Fig. 1a and 

Supplementary Fig. 5). A possible TP53 regulation of uc.339 expression specific for NSCLC 

can exist. To investigate this hypothesis, A549 cells were transfected with a siRNA anti-TP53 

(or si-SCR control) and H1299 cells with a TP53 expressing vector (or empty vector control) 

(Supplementary Figure 6) and a significantly induced expression of uc.339 was obtained in 

A549 transfected with siRNA anti-TP53 and a decreased expression of uc.339 in H1299 

transfected with the TP53 expressing vector (Fig. 6a). Moreover in primary NSCLC patients  

included only if carrying a wt TP53 status (n=22), the TP53 protein and uc.339 expression levels 

were determined both in cancerous tissues and in adjacent normal lung tissue. It was shown 

that normal lung tissues had higher expression level of TP53 and lower expression level of 

uc.339 compared to the matched cancerous tissues, whereas lower expression of TP53 and 

higher levels of uc.339 were observed in cancerous tissues (Fig. 6b). These data confirm a 

regulatory role of TP53 on uc.339 expression. Next, it was searched for TP53 consensus 

sequences (CS) in the uc.339 locus. At least three TP53 CS situated upstream of the uc.339 

sequence were identified on chromosome 12q13.13 and one TP53 CS situated downstream of 

the uc.339 sequence (Fig. 6c). Chromatin immunoprecipitation was performed in H1299 cells 

transfected with a plasmid expressing TP53 (or its empty counterpart as a control) to discover 

whether TP53 binds to the predicted CS, and an enrichment of CS #4 (situated 2,963 bp 

upstream of the start of uc.339 transcription) was observed in the TP53 immunoprecipitate, 

confirming that TP53 binds to this site (Fig. 6d). To discover whether TP53 binding to CS #4 

determinates to transactivation or silencing, CS #4 was cloned in a reporter vector upstream of 

the luciferase gene.  A decreased luciferase activity was shown when a vector over-expressing 

TP53 (compared to the empty vector counterpart) was co-transfected with the vector containing 

CS #4  luciferase in A549, H460 and LoVo cells. This decrease was completely abolished when 
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CS #4 was mutated, even in presence of co-transfection with the TP53 over-expressing vector 

(Fig. 6e). These data confirm that TP53 binds to a CS situated upstream of the uc.339 gene 

and directly decreases the expression of uc.339. 

TP53 regulates CCNE2 expression through uc.339 

This study shows that TP53 silenced directly uc.339 in NSCLC (Fig. 6) and that uc.339 

sequesters miR-339-3p, -95-5p and -663-3p  (Fig. 4) determining to up-regulation of CCNE2 

(Fig. 5) and increased migration and tumor growth both in vitro and in vivo (Fig. 2 and 3). The 

TP53 is mutated in about 50% of NSCLC [17-18] and in several  human cancers [16], therefore 

it was investigated whether the functional TP53 expression could regulate the oncogenic effects 

of uc.339.  

First, TP53-null H1299 cells were transfected with a vector expressing wt TP53 or with 

its empty vector counterpart, and analyzed the effects on miR-339-3p, -95-5p and-663-3p  and 

CCNE2 expression, through qRT-PCR and immunoblotting, respectively. Re-expression of 

TP53 caused up-regulation of the indicated miRNAs and down-regulation of their common 

target gene CCNE2 (Fig. 7a and 7b, lanes 1 and 2). Also, when H1299 cells were co-

transfected with the TP53 over-expressing vector and with a vector over-expressing uc.339, the 

expression of CCNE2 was rescued (Fig. 7b, lane 3), confirming that TP53 down-regulation of 

CCNE2 is, at least in part, regulated by TP53 silencing of uc.339. These data also confirm that 

re-expression of wild type TP53 can revert the effects of uc.339, determined by its miRNA 

sequestering effect and CCNE2 over-expression in NSCLC. Finally, it was validated the TP53-

uc.339-miR-339-3p/-663-3p/-95-5p-CCNE2 pathway in 22 primary NSCLC samples, where it 

was obtained that when TP53 was down-expressed and uc.339 over-expressed (Fig. 6b), miR-

339-3p, -95-5p and -663-3p  were down-expressed (Fig. 7c) and CCNE2 protein expression 

was increased (Fig. 7d). These data indicate that uc.339 has its oncogenic function, at least in 

part, through sequestering complementary mature miR-339-3p, -95-5p and -663-3p and 
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releasing oncogenic CCNE2 from its miRNA-controlled regulation in NSCLC (Supplementary 

Fig. 7). 
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5. DISCUSSION 
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DISCUSSION 

This study identifies uc.339 as up-regulated in primary NSCLC tissues compared to the 

adjacent non-tumor lung tissues. Also it was demonstrated  that uc.339 increases lung cancer 

cell growth in vitro and in in vivo xenograft murine models, and increases cell migration and 

chemoresistance in vitro, therefore acting as an oncogene. Calin et al. previously observed up-

regulation of uc.339 also in CRC primary samples [8], whereas a  report showed an oncogenic 

function for uc.339 in HCC [15], although limited to in vitro experiments. Interestingly, uc.339 

has been observed also in microvesicles secreted by cancer cells [15], then it could be 

implicated in paracrine intercellular cross-talk mechanisms, within the cancer microenvironment 

as  described for miRNAs [22]. The mechanism of regulation and action of uc.339 and of T-

UCRs are currently unknown. Specifically, it is unclear how T-UCR regulation occurs in cancer, 

and how they contribute to cancer invasiveness and cell increased growth. Many T-UCRs act as 

long-range enhancers during mouse development [23], this role has not been observed for all T-

UCRs and it has been demonstrated that similar proportions of enhancers can be observed in 

less conserved sequences [24]. In this study, it was shown that uc.339 contains three 

sequences complementary to the sequence of miR-95-5p, -339-3p and -663b-3p, and that 

uc.339 acts as a “decoy” sequestering these miRNAs. As a result, the CCNE2 mRNA, which it 

was demonstrated being a direct target of miR-339-3p, -663-3p and -95-5p, is free from the 

post-transcriptional regulation of the three miRNAs, and the CCNE2 expression  is increased, 

determining to increased cell proliferation and motility. Cyclin E2 appertains to the highly 

conserved cyclin family, acts as a regulatory subunit of CDK2, and has a role in cell cycle G1/S 

transition [25-27]. CCNE2 is often up-regulated in human pulmonary malignancy and dysplasia 

and is associated with poor prognosis in lung cancer patients [28-30]. In numerous cancer types 

(as NSCLC and breast cancer) CCNE2 up-regulation happens as an early event [28, 31], and 

over-expression of this cyclin acts as an inducer of genomic instability and polyploidy, in a 

different way from cyclin E1, D or A over-expression [32-33]. Even if the influence of uc.339-
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induced up-regulation of cyclin CCNE2 was not determined on the genomic instability of the 

tested cell lines, this study warrants further investigation. It has also been observed that the 

CCNE2-CDK2 axis blocks SIRT2 through a Ser-331 phosphorylation, determining to increased 

cell migration [34]. In this study, over-expression of CCNE2 was observed and improved motility 

in cancer cells over-expressing uc.339. Whether this phenotype is caused by the regulation on 

SIRT2 phosphorylation remains to be clarified.  

This study demonstrates that CCNE2 is directly regulated by miR-339-3p, -663-3p and -95-5p. 

MiR-95 is over-expressed in prostate, pancreatic, breast and colorectal cancer, where it 

increases cell proliferation by targeting Nexin-1 [35]. Moreover, it has been obseved that miR-95 

increases the resistance to radiotherapy in prostate and breast cancer cells by regulating 

Sphingolipid Phosphatase SGPP1 [36]. In breast cancer cell lines MiR-339-5p is down-

regulated and it inhibits cell migration and invasiveness, and is a marker of bad prognosis when 

down-regulated [37]. Also, it has been demonstrated that miR-339-5p increases resistance of 

glioma cells to cytotoxic T-lymphocytes, by regulating ICAM-1 [38]. In the more aggressive 

NSCLC, the expression of miR-339-3p is dysregulated [39], suggesting a role for this miRNA in 

lung carcinogenesis.  

A double nature both as an oncogene and as a tumor suppressor gene is shown also for miR-

663. While miR-663 can be over-expressed by the anti-inflammatory drug resveratrol, and 

functions as a tumor-suppressor in human THP1 monocytic cells as well as in human blood 

monocytes by regulating AP-1 and inhibiting LPS-mediated up-regulation of the oncogenic miR-

155 [40], in nasopharyngeal carcinoma miR-663 increases cancer proliferation by regulating 

p21 (WAF1/CIP1) [41], and in prostate cancer over-expression of miR-663 is correlated with 

increased castration-resistance [42]. 

In this study it was observed that uc.339 can bind to all  three miRNAs in complementary sites  

along the uc.339 sequence, suggesting the possibility that this T-UCR acts as a “reservoir” for 

the three miRNAs, regulating their disposability to target CCNE2. Further studies will define 
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whether different expression levels of uc.339 affect the three miRNAs in different way and how 

this might affect the expression level of their common target CCNE2, determining different 

phenotypes. Liz et al. showed that uc.283A inhibits maturation of pri-miR-195 through binding to 

the lower stem region of the pri-miRNA and blocking its cleavage by Drosha [43]. This study 

confirms a T-UCR/miRNA reciprocal interaction and regulation. 

Finally, it was observed that uc.339 is directly silenced by TP53. In this study it was identified a 

TP53 CS upstream of uc.339 gene and it was shown that when transfected, TP53 binds to this 

sequence and silences uc.339 expression. Also an inverse correlation between TP53 and 

uc.339 expression was observed in primary NSCLC tissues, showing a negative regulation by 

TP53. Since mutations of the TP53 gene are in about 50% of NSCLC and are very common in 

several types of cancer, the identified mechanism might be a significant event in lung 

carcinogenesis, with implications for other types of cancer. This statement is confirmed by the 

observation of uc.339 in CRC cancer cells. 

In conclusion, this study observes that TP53-silenced uc.339 functions as an oncogene in 

NSCLC, by sequestering miR-339-3p, -663-3p and -95-5p and inhibiting their targeting of 

oncogenic CCNE2, determining to increased tumor growth, migration and chemoresistance. 

This study identifies uc.339 as an important molecular target for NSCLC and different types of 

cancer with TP53 impaired expression. 
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FIGURE LEGENDS 

Figure 1. In NSCLC uc.339 is up-regulated and associates with prognosis 

(a) qRT-PCR for uc.339 in 30 primary NSCLC cancerous tissues (C) and the adjacent normal 

lung (N). The expression of uc.339 was normalized to RNU44 and is shown as normalized to N. 

(b) Kaplan-Meier survival analysis of 204 patients with lung squamocellular carcinoma (LUSC) 

obtained from the TCGA database. High expression (blue) or low expression (red)  of uc.339; 

OS, overall survival; mo, months; TCGA, The Cancer Genome Atlas. 

(c) Location of uc.339 on chromosome 12q13.13 and its relation with its host gene ATP5G2. 

Arrows specify the position of the primers used in this work for the detection of uc.339 through 

qRT-PCR. 

 

Figure 2. uc.339 induces cancer cell growth and migration. 

(a) Cell viability assay  in LoVo and A549 cells infected with a lentiviral vector over-expressing 

uc.339 (LV-uc.339) or its empty vector (LV-E) and detected after 72h. Data are shown as mean 

± s.d. of experiments tested in triplicate and normalized to LV-E. *P<0.05. 

(b) Image of a scratch migration assay in A549 LV-E and A549 LV-uc.339 cells at 0h, 8h and 

24h.  

(c) Quantification of the proportion of wound area of the scratch migration assay observed in (b) 

and shown as mean ± s.d. of experiments tested in triplicate. **P<0.01. 

(d) Cell viability assay in A549, H460, LoVo and H1299 cells transfected with si-uc.339 or si-

SCR for 72h. Data are shown as mean ± s.d. of experiments tested in triplicate and normalized 

to si-SCR. *P<0.05. 

(e) Cell cycle analysis (shown as proportion of cells in G0/G1 or G2/M or S phase of the cell 

cycle) tested by cytofluorimetry with propidium iodide staining in A549, H460, LoVo and H1299 

cells transfected with si-uc.339 or si-SCR for 72h. Data are shown as mean ± s.d. of 

experiments tested in triplicate. **P<0.01. ***P<0.001. 
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(f) Immunoblotting for cleaved PARP and Vinculin proteins in A549, H460, LoVo and H1299 

cells transfected with si-uc.339 or si-SCR for 72h.  

 

Figure 3. In vivo xenograft murine model uc.339 induces NSCLC growth. 

(a) Curve of tumor volume growth in nude mice injected subcutaneously with A549 LV-E (n=7) 

or A549 LV-uc.339 (n=7) and observed every 3 days from day 8 from the injection until day 29. 

Data are shown as the mean volumes + s.d. for each animal set. *P<0.05. **P<0.01. 

(b) qRT-PCR for analyzing uc.339 expression in ex vivo xenografts from the same mice of the 

experiment (a). The expression of uc.339 was normalized to RNU44 and data are shown as 

mean ± s.d. of experiments conducted in triplicate per each mouse and normalized to A549 LV-

EV. *P<0.05. 

(c) Images of the 14 tumors excised from the mice of experiments (a) and (b).  

(D) Cell viability assay  of A549 cells infected with a lentiviral plasmid over-expressing ucr.339 

(LV-ucr.339) or its empty plasmid counterpart (LV-E) after the Cisplatin treatment at peak 

plasma level. Data are shown as mean ± s.d. of experiments conducted in triplicate and 

normalized to LV-E. *P<0.05. 

  

 

Figure 4. uc.339 is a decoy for miR-339-3p, 95-5p and -663b-3p. 

(a) In  silico  analysis of  the  interaction  between   miR-339-3p, -95-5p  and -663b-3p (green) 

and uc.339  (in red).   

(b) qRT-PCR for uc.339 in A549, H1299, H460 and LoVo cells transfected with miR-339-3p, -

95-5p and -663b-3p or a scrambled miRNA (SCR) (after 48h from transfection). The expression 

of uc.339 was normalized to RNU44 RNA and shown as normalized to SCR. Data are shown as 

mean ± s.d. of experiments in triplicate. 
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(c) qRT-PCR for miR-339-3p, -95-5p and -663b-3p in H460 and A549 cells infected with a 

lentiviral plasmid over-expressing uc.339 (LV-uc.339) or its empty plasmid counterpart (LV-E) 

and analyzed after 72h. The expression of miRNAs was normalized to RNU44 RNA and the 

results are shown as normalized to LV-E. Data are presented as mean ± s.d. of experiments 

conducted in triplicate. *P<0.05. 

(d) qRT-PCR for miR-339-3p, -95-5p and -663b-3p in H1299 cells transfected with si-SCR or si-

uc.339 for 72h. The expression of miRNAs was normalized to RNU44 RNA and the results are 

shown as normalized to si-SCR. Data are presented as mean ± s.d. of experiments in triplicate. 

*P<0.05. 

(e) qRT-PCR for miR-339-3p, -95-5p and -663b-3p in H460 and A549 cells infected with LV-

uc.339 or LV-E, in which uc.339 was immunoprecipitated. The expression of miRNAs is shown 

as normalized to the LV-E group. Data are presented as mean ± s.d. of experiments in triplicate. 

*P<0.05. 

 

Figure 5. uc.339 induces the expression of CCNE2 through sequestering of targeting 

miRNAs miR-339-3p, -663b-3p and -95-5p. 

(a) Luciferase reporter assay in LoVo and H1299 cells co-transfected with miR-339-3p, -95-5p 

and -663b-3p or a scrambled miRNA (SCR) and a reporter vector containing the 3’-UTR binding 

site (BS) for the miRNAs on the CCNE2 mRNA (wt BS) or a mutant in which the binding site 

was deleted (del BS). Luciferase activity was normalized to Renilla (RLU) and the results are 

shown as normalized to SCR. Data are presented as mean ± s.d. of experiments in sixtuplicate. 

*P<0.05. 

(b) Immunoblotting for CCNE2 and Vinculin proteins in LoVo and H1299 cells transfected with 

miR-339-3p, -95-5p and -663b-3p or a scrambled miRNA (SCR) (after 48h from transfection).  

(c) Immunoblotting for CCNE2 and Vinculin proteins in A549, LoVo and H460 cells infected with 

LV-uc.339 or LV-E. 
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(d) Immunoblotting for CCNE2 and Vinculin proteins in H1299 and H460 cells transfected with 

si-uc.339 or si-SCR for 72h.  

(e) Immunoblotting for CCNE2 and Vinculin proteins in H460 cells infected with LV-uc.339 and 

transfected with miR-339-3p, -95-5p  and -663b-3p or a scrambled miRNA (SCR) (after 48h 

from transfection). 

The numbers above each lane indicate a quantification of the band intensity, normalized to the 

Vinculin band. 

 

Figure 6. TP53 silences directly uc.339. 

(a) qRT-PCR for uc.339 in H1299 and A549 cells transfected through an anti-TP53 siRNA (si-

TP53) [or its anti-scrambled control (si-SCR)] or with a vector expressing TP53 (or its empty 

vector counterpart) for 72h, respectively. The expression of uc.339 was normalized to RNU44 

RNA and the results are shown as normalized to si-SCR or Empty, respectively. Data are 

shown as mean ± s.d.. *P<0.05. 

(b) Expressions of TP53 protein (left panel) and of uc.339 (right panel) in 22 paired primary 

NSCLC tumor tissues (C) and the adjacent normal lung (N). TP53 expression was quantified 

with chemiluminescence (Femto) Kit and normalized to Vinculin, while uc.339 expression was 

determined by qRT-PCR and normalized to RNU44. Data are presented as mean ± s.d. 

normalized to N. *P<0.0001. 

 (c) Map showing the position of four identified consensus sequences (CS #1-4) of TP53 relative 

to the uc.339 transcription starting nucleotide on chromosome 12. 

(d) Chromatin Immunoprecipitation presenting the binding of TP53 to the four indicated TP53 

CS. 

(e) Luciferase reporter assay in A549, LoVo and H460 cells transfected with a TP53 expressing 

vector (or its empty vector counterpart) and a reporter vector containing the sequence of CS #4, 

or a vector in which CS #4 was deleted (del CS #4). Luciferase activity was normalized to 
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Renilla (RLU) and the results are shown as normalized to Empty. Data are presented as mean ± 

s.d. of experiments in sixtuplicate. *P<0.05. 

 

Figure 7. TP53 regulates CCNE2 expression through uc.339. 

 (a) qRT-PCR for miR-339-3p, -95-5p and -663b-3p in H1299 cells transfected with a vector 

expressing TP53 or its empty vector counterpart (after 72h from the transfection). The 

expression of miRNAs was normalized to RNU44 RNA and the results was presented as 

normalized to Empty. Data are presented as mean ± s.d. of experiments in triplicate. *P<0.05. 

(b) Immunoblotting for CCNE2 and Vinculin proteins in H1299 transfected with an empty vector 

(lane 1), the same vector expressing TP53 (lane 2) or co-transfected with a vector expressing 

TP53 and a vector expressing uc.339 (lane 3) (after 72h from the transfection). The numbers 

above each lane indicate a quantification of the band intensity, normalized to the corresponding 

Vinculin protein band. 

(c) qRT-PCR for miR-339-3p, -95-5p and -663b-3p in the same 22 primary NSCLC samples 

shown in Fig. 6b. The expression of miRNAs was normalized to RNU44 RNA and the results 

are shown as normalized to N. Data are presented as mean ± s.d. of experiments in triplicate 

per each patient. *P<0.05. 

(d) Expression of CCNE2 protein in the same 22 primary NSCLC samples shown in Fig. 6b. 

CCNE2 expression was quantified with by chemiluminescence (Femto) kit, normalized to 

Vinculin protein, and shown as normalized to N. Data are presented as mean ± s.d.. *P<0.05. 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1. Endogenous expression in cell lines and Cloning of uc.339. 

(a) uc.339 endogenous expression in A549, H460, LoVo and H1299 cells, as shown by qRT-

PCR. The expression of uc.339 was normalized to RNU44 and the results are shown as mean ± 

s.d. of experiments in triplicate. 

(b) Sequence of the uc.339 transcript, as resulted by RACE. Highlighted in grey is the sequence 

described by Bejerano et al. [7]. 

 

Supplementary Figure 2. uc.339 increases NSCLC growth in cell lines. 

(a) qRT-PCR for uc.339 in LoVo and A549 infected with a lentiviral plasmid over-expressing 

uc.339 (LV-uc.339) or its empty plasmid counterpart (LV-E) and analyzed after 72h.  

(b-c) uc.339 expression of qRT-PCR for in A549, H1299, H460, and LoVo cells transfected with 

two diverse anti-uc.339 siRNA [si-uc.339 and si-uc.339 (2)],  or an anti-scrambled siRNA (si-

SCR) (for 72h).  

The expression of uc.339 was normalized to RNU44 and the results are shown as mean ± s.d. 

of experiments in triplicate and normalized to si-SCR. *P<0.05. 

(d) Cell viability assay in A549, H460, LoVo and H1299 cells transfected with si-uc.339 (2) or si-

SCR (for 72h). Data are shown as mean ± s.d. of experiments in triplicate and normalized to si-

SCR. *P<0.05. 

(e) Cell cycle analysis (indicated as proportion of cells in G0/G1 or G2/M or S phase of the cell 

cycle) performed by cytofluorimetry with propidium iodide staining in A549, H460, H1299 and 

LoVo cells transfected with si-uc.339 (2) or si-SCR (for 72h). Data are shown as mean ± s.d. of 

experiments in triplicate. **P<0.01. ***P<0.001. 

(f) Immunoblotting for cleaved PARP and Vinculin proteins in A549, H460, LoVo and H1299 

cells transfected with si-uc.339 (2) or si-SCR (for 72h). 
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Supplementary Figure 3. Expression of miR-339-3p, -95-5p and -663-3p in H1299 cell line 

silenced with an siRNA anti-uc.339.  

qRT-PCR for miR-339-3p, -95-5p  and -663b-3p in H1299 cells transfected with si-uc.339 (2) or 

si-SCR (for 72h). The expression of miRNAs was normalized to RNU44 RNA and the results are 

shown as normalized to si-SCR. Data are presented as mean ± s.d. of experiments in triplicate. 

*P<0.05. 

 

Supplementary Figure 4. Expression of protein CCNE2 in H1299 and H460 silenced with 

an siRNA anti-uc.339. 

Immunoblotting for CCNE2 and Vinculin proteins in H460 and H1299 cells transfected with si-

uc.339 (2) or si-SCR (for 72h).  

 

Supplementary Figure 5. mRNA and protein endogenous expression of TP53 in cell lines. 

(a) qRT-PCR for TP53 in A549, H460, LoVo and H1299 cells. The expression of TP53 was 

normalized to HPRT1 and the results are shown as mean ± s.d. of experiments in triplicate 

relative to A549 cells. 

(b) Immunoblotting for TP53 and Vinculin in A549, H460, LoVo and H1299 cells. The numbers 

above each lane indicate a quantification of the band intensity, normalized to the corresponding 

Vinculin protein band. 

 

Supplementary Figure 6. TP53 mRNA expression in transfected cell lines. 

qRT-PCR for TP53 in H1299 and A549 cells transfected with anti-scrambled siRNA (si-SCR) or 

an anti-TP53 siRNA (si-TP53) (A549, left panel) or with a vector expressing TP53 or its empty 

vector counterpart (Empty) (H1299, right panel) (after 72h from the transfection). The 

expression of TP53 was normalized to HPRT1 and the results are shown as mean ± s.d. of 

experiments in triplicate and normalized to si-SCR or Empty, respectively. *P<0.05. 
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Supplementary Figure 7. Summary of the newly determined TP53-uc.339-miRNA-CCNE2 

network. 

TP53 directly down-regulates the expression of uc.339 . uc.339 acts as a decoy for CCNE2 

targeting miR-339-3p, 95-5p and -663b-3p determining to up-regulation of CCNE2 and 

increased migration and tumor growth. 
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Table 1. Clinical characteristics of the 30 NSCLC patients analyzed in this work (TP53 

status for all patients: wild-type). 

 
  

Patient 
# 

 Sex M 25 
   F 5 
 

    Average Age at 
Diagnosis 68.69 yo [54-82] 

        
 Histology Squamous 2 
   Adenocarcinoma 28 
 TNM T1a 2 
 

 
T1b 7 

 

 
T2a 10 

 

 
T2b 6 

 

 
T3 4 

 

 
T4 1 

 

    

 
N0 13 

 

 
N1 13 

 

 
N2 4 

 

 
N3 0 

 

    

 
M0 29 

   M1 1 
 Stage IA 5 
 

 
IB 3 

 

 
IIA 11 

 

 
IIB 4 

 

 
IIIA 6 

 

 
IIIB 0 

   IV 1 
 

    Treatment Neo-Adjuvant 0 
 

 
Adjuvant 3 

CDDP+Gemcitabine (1); 
CDDP+Vinorelbine (2) 
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