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by ability to utilize energy for human  
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Preface 

This PhD thesis relates to the synthesis, characterization and catalytic testing of mixed-metal 

oxides for the conversion of glycerol into acrylic acid as a one-pot reaction. The project is based 

on a co-supervised collaboration between Università di Bologna, ALMA MATER STUDIORUM 

(Italy) and Instituto de Tecnología Química, Universitat Politècnica de València ITQ-UPV-CSIC 

(Spain). The thesis work was carried out from January 2012 to December 2014. 20 months were 

spent in Bologna and 16 months in Valencia. 

After the publication of a first study on Vanadium-substituted Hexagonal-Tungsten-Bronzes 

(HTBs) by the group of research [1], the investigation on glycerol oxidehydration has continued 

and the results obtained are reported in this thesis. The main objectives have been those of 

improving the catalytic performance and gaining further insights at the molecular level. Deeper 

characterizations of the titled complex mixed oxides was carried out also by means of X-ray 

Absorption Spectroscopy (XAS) using synchrotron radiation and high resolution transmission 

electron microscopy (HR-TEM). Attention was focused on the introduction of Niobium or 

Molybdenum in V-substituted HTBs. Furthermore, a systematic study on the influence of redox 

and acid properties was performed by modifying V-substituted HTBs with potassium. Other 

multifunctional oxides were also studied and compared to HTBs. 

As it will be further discussed in the following sections, HTBs have been studied and applied for 

decades in various fields of material science. However, in spite of their great potential, very 

limited attention was given to their application in catalysis. Results reported herein might 

represent a contribution for their wider application in catalysis, particularly for the conversion of 

renewable polyoxygenated compounds. 

Going more into details, the main objectives of this Ph.D. thesis, i.e. the synthesis, 

characterization and catalytic testing of mixed-metal oxides for the conversion of glycerol into 
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acrylic acid as a one-pot reaction, have been carried out following different approaches. As far as 

the synthesis is concerned, hydrothermal preparation was used as a novel and more controllable 

method to  introduce niobium or molybdenum in the W-V HTBs, so as to improve respectively the 

acid or the redox properties of the catalysts. Compared to the ceramic method (see next 

sections), the hydrothermal  synthesis allows making mixed-oxide with morphology and 

crystalline phases in a much quicker, milder and controllable way.  Moreover, the final surface 

area of the oxides obtained is consistently higher, hence favoring the catalytic phenomenon.  

Finally, vanadium-modified Al-P-Co-oxides were also prepared by hydrothermal synthesis and 

used as reference materials along with some commercial samples, both for characterization and 

catalytic testing purposes.  

Due to the complexity of the materials prepared, an in depth physicochemical characterization 

was performed using state-of-the-art techniques. Fresh and spent catalysts were analyzed by 

spectroscopic methods  such as Raman, FTIR, XPS and XAS to gain insights on the oxidation state, 

coordination and surface content of the elements, so as to correlate these features to the 

catalytic performance and in turn design new catalysts with tailor-made properties. FTIR studies 

with probe molecules (e.g. ammonia and carbon monoxide) were used to study the catalyst 

surface properties and H2-TPR tests were used to analyze the redox properties of the mixed-

oxides prepared. Surface area analyses performed by N2-adsorption were also combined with 

microscopy characterization using (HR-)SEM and (HR-)TEM to determine the morphology and the 

long-range order of the crystals.   

Finally, catalytic tests were performed in the gas-phase in lab-scale fixed-bed reactors operating 

at atmospheric pressure and temperature variable between 250°C and 410°C. The products 

obtained were qualified and quantified by on-line and off-line GC, GC-MS and MS-ESI. The 
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influence of the partial pressures of reactants on the products distribution was studied into 

details as well as the catalysts productivity.  

The combination of the physicochemical characterization and the catalytic tests allowed 

improving the knowledge and the catalytic performance on the one-pot transformation of 

glycerol into acrylic acid on single catalysts. Structure-reactivity correlations were also gained 

comparing the substituted-HTBs to other multifunctional systems containing vanadium as the 

redox element.  
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1. Introduction 

1.1 From oil to renewables 

Life is unconditionally dependent from energy. In 1944, the Nobel laureate physicist Erwin 

Schrödinger used thermodynamic as a tool to explain this relationship [2]: "[...] a living organism 

continually increases its entropy -or, as you may say, produces positive entropy- and thus tends to 

approach the dangerous state of maximum entropy, which is of death. It can only keep aloof from 

it, i.e. alive, by continually drawing from its environment negative entropy, [...] freeing itself from 

all the entropy it cannot help producing while alive".   

In the last hundred years or so, the human race has got the greatest ever available source of 

energy (i.e. negative entropy) thanks to the availability of massive amounts of petroleum. This has 

made clearly apparent the existing correlation between energy and life; indeed, such energy has 

been transformed into food, fuels, fertilizer, drugs and an enormous quantity of other goods that 

have made it possible for (part of) the human race to reach a general status of wellness that had 

never been observed before in the human history. For instance, the average life expectancy in 

Europe moved from 50 years in 1900 to 80 years in 2008 [3] and the world population moved 

from 1.6 billion in 1900 [4] to more than 7 billion today.  

However, hand in hand with the oil depletion and related environmental issues, pivotal questions 

have been raised on the sustainability of our modern lifestyle and future availability of resources. 

Although "degrowth theories" and "degrowth movements" are attracting increasing attention 

worldwide [5], it is hard to predict if the model of capitalism so far ruling our society is going to be 

replaced soon (particularly in case the current financial and economic crisis reached an endpoint). 

Indeed, in the aim of assuring the long-term existence of this economic model, since the 1970s oil 

crisis both governments and private corporations have started to look for alternative sources of 
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energy; particularly, due to both the developing mandatory environmental policies and strategic 

differentiation of the energy-source portfolio. In this context and with alternate fortune, the 

biorefinery [6], green chemistry and sustainability  concepts have been developed [7, 8] (however, 

even if not explicitly referred to as so, the same general philosophy can be located much earlier in 

the history of science).  

Before going into details of these subjects, some important but more general points on the future 

of the chemical and the fuel industry have to be underlined. In spite of the great environmental 

issues and fossil sources exhaustion, as well as the conspicuous worldwide investments in the 

renewable sector, energy outlooks for the next 20-40 years seem to firmly assert that 

conventional sources (mainly coal, gas and oil) will still represent more than the 60-70% energy 

source of the fuel sector [9-11]; in 2035 renewable resources are forecasted to represent only 

<7% of the total fuel division. Because of the strict relationship between the fuels and the 

chemical industry (only ca. 5% of the total petroleum goes to chemical products and trends are 

not expected to change in biorefineries [12]) it appears quite difficult to predict a surpass of 

renewable building blocks to the fossil ones in the chemical industry. At least in the next 20 years.  

A main player in directing such tendencies might be the availability of natural gas at a cheap price. 

With the increasing oil price and the availability of new technologies (e.g. horizontal drilling and 

hydraulic fracturing), it is now possible to extract natural gas from shale formations previously 

unexploited [13]. Generally speaking, the latter option is considered as a major negative impact to 

the development of bio-based chemicals; however, different viewpoints have been recently 

proposed [14] and a lack of conventional petrochemical feedstocks in the "shale gas scenario" is 

actually proposed as a new opportunity for bio-based chemicals.  

Overall, in the current unstable political, economical and energetic worldwide situation any 

outlooks is quite likely to be unreliable in the medium-long term. Instead, what is assuredly true is 
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the non-sustainability of fossil resources, as well as the derived environmental issues. Hence, 

maybe not in the next 20 years or so, but for sure the next generations will have to face these 

problems and the current technological and scientific development is pivotal to pave the way for 

a vaster utilization of renewable resources as feedstocks.  

 

1.2 Green and Sustainable Chemistry 

The concept of Green Chemistry was introduced in the early 1990s in the USA, and it has reached 

its today's relevance with the introduction in 1998 of the twelve principles of Green Chemistry [8].  

In the USA and UK "green chemistry" has become synonymous with chemical industrial processes 

that avoid (toxic) by-products as much as possible: the greening of industry [7]. However, the 

underlying meaning of the terms green chemistry and sustainable chemistry is different. 

Sustainable chemistry is the maintenance and continuation of an ecological-sound development, 

whereas green chemistry focuses on the design, manufacture, and use of chemicals and chemical 

processes that have little or no pollution potential or environmental risk and are both 

economically and technologically feasible. In Europe, apart from in the UK, the term sustainable 

chemistry is now preferred over green chemistry, but this practice is extending worldwide [7]. 

Overall, the concept of sustainability as "meeting the needs of the present generation without 

compromising the needs of future generations to meet their own needs" [15] is mandatory. 

Indeed, without this goal in mind, whatever the energy source is, if we exploit resources at a 

higher rate than their ability of formation, the next generations (and likely ourselves, too) will 

have to pay a high price in terms of quality of life. Energy efficiency and responsible utilization of 

(renewable) resources have to be the cornerstones of a new perspective of doing business.      
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1.3 Biorefineries 

The biorefinery concept as we know it today was defined in the 1990s [6] and it is currently 

considered as " the sustainable processing of biomass into a spectrum of marketable products 

(food, feed, materials, chemicals) and energy (fuels, power, heat)" [16]. In contrast to the oil-

refinery, the bio-refinery consists not only of chemical processes but also fermentations. The 

choice of one or the other technology is related to economic and engineering considerations. The 

term (industrial) biomass means any organic matter that is available on a renewable or recurring 

basis, including dedicated energy crops and trees, agricultural food and feed crop residues, 

aquatic plants, wood and wood residues, animal wastes, and other waste materials usable for 

industrial purposes (energy, fuels, chemicals, materials) and include wastes and co-wastes of food 

and feed processing [6]. Specifically, it is possible to classify the biomass in three different 

generations [17]:  

 1st generation, based on standard crops; 

 2nd generation, based on residues, agro-industrial residues and non-edible crops; 

 3rd generation, based on algae. 

The first generation raised important ethic issues mainly due to the competition with food 

production [18], but it has been crucial for developing the current status of biorefineries. The 

second generation, although largely limits the latter problem, it still moves concerns over 

competing land use or required land use changes. Hence, the third generation seems to be the 

most sustainable option since it avoids strain on world food markets, water shortages and 

destruction of the world’s forests [19]. Nonetheless, both for economic and technological reasons, 

to date hardly any production of algae is carried out at hundreds ton capacity, as it would be 

required for industrial scale synthesis of fuels and chemicals [20, 21]. For these reasons, a great 
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deal of attention has being paid to first and second generation biomass; with particular focus on 

(i) cellulosic biomass and (ii) vegetable oils and animal fats.  

 

1.4 Cellulosic biomass to fuels 

As far as cellulosic biomass is concerned, the main input of the biorefineries using this raw 

material would be a mixture of more or less complex polysaccharides and lignin. Indeed, by 

means of new biomass pre-treatment technologies as well as direct- and genetic-manipulations of 

the plants, it is now possible to produce lignin feedstocks "easy" to depolymerise with favourable 

properties for recovery and downstream conversion [22]. Lignocellulosic material can be 

transformed into liquid fuels by three different primary routes [23]: 

 syngas production by gasification; 

 hydrolysis of biomass to produce sugar monomer units; 

 bio-oil production by (fast)pyrolysis or liquefaction.  

 

1.4.1 Biomass gasification 

Gasification is an old technological process (already used in 1940s) in which solid or liquid 

carbonaceous materials (e.g. biomass) react with oxygen, and/or steam at temperature >700°C to 

produce syngas (CO+H2). A complex combination of reactions in the solid, liquid, and gas phases 

occurs during  biomass gasification, including pyrolysis, partial oxidation, and steam gasification 

[23]. Syngas is then used in a number of conventional processes, e.g. water gas shift, Fischer-

Tropsch, methanol synthesis etc. to produce fuels and chemicals. 
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1.4.2 Biomass hydrolysis 

This process consists in cellulose depolymerisation into sugar polymers, finally into C5 and C6 sugar 

monomers. It can be carried out by fermentations or chemical processes with strong inorganic 

acids more or less diluted (from 2% to 30%), under ambient temperature and pressure, or up to 

200°C and 30 bar [23, 24]. Another pivotal variable is the biomass pretreatment since it 

determines the accessibility of the cellulosic material to acids or microorganisms, which allowed 

obtaining sugars yield up to 90% of the theoretical one [24]. Once sugars are obtained, a number 

of intermediates can be produced with the final aim of producing bio-fuels and bio-chemicals. For 

instance, ethanol can be produced by fermentation processes and used directly as a fuel; 

moreover, Hydroxy Methyl Furfural (HMF) can be synthesized by dehydration of all types of C6 

carbohydrates [25] and it can be further converted into C9-C12 alkanes [26]. HMF can also be 

converted into levulinic acid (LA) which is converted to C9 ketons used as fuels [26]. In turn,  LA 

can be dehydrated and hydrogenated to ϒ-valerolactone (GVL) which can be upgraded to liquid 

alkenes [27]. However, in spite of the great number of papers reported, the overall production of 

bio-fuels and bulk-chemicals from biomass hydrolysis is currently generally indicated as leading to 

low yields and high production costs [25, 26].    

 

1.4.3 Bio-oil  

Bio-oils chemistry is strongly dependent on a great number of variables, as the raw-materials 

used, process technologies, etc. Generally speaking, they are characterized by more than 400 

compounds, relatively little sulphur and nitrogen and high oxygen content (ca. 40%); the 

components are monofunctional, like phenol and acetic acid, and multifunctional, like 

hydroxyacetaldehyde and guaiacol. Char and residual alkali metals (e.g., Na, K) are also present 

[23, 28].  
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1.4.3.1 Bio-oil from Fast Pyrolysis 

Fast pyrolysis is used as an independent process or as a pre-treatment for gasification. To produce 

bio-oil, the biomass feedstock is heated (at ca. 500°C) in the absence of air, forming a gaseous 

product, which then condenses [23]. The produced pyrolysis bio-oil can either be directly 

combusted in a gas turbine to generate electricity or to be fed to a high temperature (1000–

1600°C) gasifier for efficient conversion to syngas and hydrogen [29].  

  

1.4.3.2 Bio-oil from liquefaction 

Cellulosic biomass liquefaction consists in the direct conversion of complete plants into liquid 

fuels, without the gasification step [30]. After mechanical treatments to reduce the plants into 

small particles, the obtained biomass is immersed in a solvent, slurried and heated in a 

temperature range 250-450°C and pressures up to 250 bars; in doing so the biomass (cellulose, 

hemicellulose, and lignin) is depolymerised to produce smaller molecules. At the same time, by 

means of reducing gas (e.g. pure H2 or syngas) and hydrogenating catalysts, the oxygen-to-carbon 

ratio of the biomass is reduced and eliminated as water and COx; moreover, the hydrogen-to-

carbon ratio is increased. Therefore, the general stoichiometry characterizing dry wood biomass, 

i.e. CH1.4O0.7, is transformed towards the general "CH2" stoichiometry defining conventional fuels 

[30]. The overall process can be summarized with the formula: CH1.4O0.7 + H2 (+CO) → CH2 + H2O + 

COx. Another option is to perform the liquefaction process without reducing gas; the bio-oil 

obtained is therefore separated from light gas and heavy residues, and finally treated with 

reducing gas and dehydrogenation catalysts.  

The scientific and industrial interest in biomass liquefaction has been so far definitely less relevant 

compared to gasification and pyrolysis, as demonstrated by the number of citations per year 
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reported in Figure 1.4.1. Indeed, in a 2008 review [30] it was affirmed that "direct liquefaction of 

biomass [...] is far away from a technical and economical feasibility. The core problem is the 

presence of large amounts of oxygen to be removed before a useful fuel conforming to standards 

will result". However, looking at the citations' trend from 2005 and considering that more than 50 

patents have been published between 2010 and 2013, it seems likely that biomass liquefaction is 

going to gain a significant attention. For instance, Shell Oil Company has recently patented, and in 

the minority published in the open literature, numerous contributions were it is reported bio-oil 

C-yield up to 93%, e.g. [31, 32], therefore superior to the bio-oil yield from fast pyrolysis (70-80%) 

[33].  

 

Figure 1.4.1. Number of citations per year as given by Scifinder® search engine for "Biomass X", where X can be 

gassification, pyrolysis or liquefaction. Insight: zoom on biomass liquefaction trend. 

 

1.5 Vegetable oils and animal fats to fuel 

Triglycerides are the natural constituents of vegetable oils and animal fats. Vegetable oils could 

theoretically be used directly as fuels but they are well known to lead to important problems to 

cars' engines. Although various techniques have been developed to more efficiently utilize oils 
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and fats, the transesterification process and the hydrogenation one are the most widely applied 

[34]. The former leads to the commercial product known as biodiesel, whereas the latter leads to 

green diesel (also called renewable diesel). Biodiesel is a well known product which invention is 

dated back to 1938 [35] and its world market is expected to reach 37 billion gallons (ca. 140 billion 

liters) by 2016 [36]; the aim of transesterification is the removal of glycerin from natural 

triglycerides since the polyol has low calorific power and damages the engines. Hence, triglyceride 

are most commonly transesterified with methanol and a mineral homogeneous catalyst (such as 

NaOH), producing Fatty Acid Methyl Esters (FAMEs) and glycerol. However, homogeneous 

catalysis cause challenging separation problems that have been trying to overcome by new 

heterogeneous catalysts [37], even if most of the latter still show unsatisfactory catalytic 

performance compared to homogeneous bases.  

Green diesel is a much newer product;  for its production are used the same raw-materials of 

biodiesel (natural triglycerides) which are catalytically hydrogenated to paraffins and propane 

[34]. The paraffins obtained are exactly equivalent to the ones derived by oil-distillation, hence 

completely compatible with current engines.  On one hand, green diesel production is a cleaner 

process than the biodiesel one, since it requires less purification steps; on the other hand it needs 

more complex apparatus and of bigger volumes. Nonetheless, the latter are already available 

technologies currently used in conventional oil-refineries, so the capital expenditure (CAPEX) is 

minimized; for these reasons, the main players in the green diesel market are well-known oil 

companies as ENI, UOP and Neste Oil [34].  

 

1.6 Platform chemicals for biorefineries 

As previously mentioned, the manufacture of chemicals is strictly bounded to fuels production, 

since it mostly uses the (valuable) by-products of the latter as feedstocks. Looking at bio-fuels 
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production (reported in the previous sections) it is possible to predict the possible intermediates 

and by-products that could be used as platform chemicals in the medium/long-term future. A 

general overview on the topic has been recently published by R. A. Sheldon [15] and further 

information can be found in a 2007 review by A. Corma et al. [38]. Further details on routes from 

bio-oil to chemicals and fuels were published elsewhere [33, 39]. Since in this thesis it is not 

possible to develop the topic into further details, the overall discussion will be limited to the 

schematic representations reported in figure 1.6.1 and 1.6.2. Nevertheless, for the obvious 

affinity to the topic of this thesis, the chemistry of (bio-)glycerol, i.e. the so called 

glycerochemistry, will be addresses in a dedicated section with focus on glycerol dehydration and 

oxidehydration to acrolein and acrylic acid.  

 

 

Figure 1.6.1 Platform chemicals from cellulosic biomass. 
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Figure 1.6.2 Platform chemicals from triglycerides. 
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acrolein process hasn't still been commercialized. However, the industrial attention is great and 

the French chemical company Arkema seems to be on the way to industrial production [45-47]. 

Other processes such as direct glycerol oxidation have found considerable interest in literature for 

the production of fine chemicals and some of them have been commercialized [48]. 

 

1.7.1 Production of acrolein and acrylic acid from glycerol  

Amongst the various options for glycerol upgrading, the dehydration process to acrolein is one of 

the most debated in literature since this aldehyde is the intermediate molecule for the production 

of important chemicals such as DL-methionine and acrylic acid [42-44, 49]. As far as acrylic acid is 

concerned, it can be synthesized from glycerol thorough a two-step process where glycerol is first 

dehydrated into acrolein and successively oxidized into acrylic acid; this option would need the 

utilization of two reactors, the first loaded with an acid catalyst and the second loaded with a 

redox one. In order to reduce the CAPEX needed for a “multi-reactor approach”, two options have 

been proposed in literature: (i) the location of the two catalysts in a single reactor or (ii) the 

design of a multifunctional catalyst able to carry out both the dehydration and the oxidation step. 

The first approach is generally mentioned to lead to higher yields into acrylic acid [42] even if, 

being forced to use the same temperature for both catalytic beds, important drawbacks in the 

catalytic performance are implied. Otherwise, the use of more complicated technologies to 

overcome this issue (e.g. inter-stage heat exchange) could severely affect the economic feasibility 

of the process and its competitiveness to the current propylene-based one. The second option 

would significantly simplify the reactor design and theoretically allow increasing the overall 

catalytic performance, since it was demonstrated that proximity of acid and redox sites plays an 

important role in the oxidehydration process [50]. On the other hand, the multifunctional catalyst 
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approach is very demanding from the catalyst design perspective, and so far few materials have 

shown remarkable acrylic acid yields.  

In the following chapters many insights (catalysts features, reaction mechanism, optimal reaction 

conditions, etc.) concerning the acrolein and acrylic acid production from glycerol will be 

developed. However, some remarkable consideration on the process scale-up feasibility can be 

already addressed. The various reviews on glycerol dehydration to acrolein that have been 

published in the last years [36, 42-44] share some common conclusions on the main issues that 

impede its commercialization: 

 Glycerol price volatility (both crude and refined) makes it difficult to perform 

accurate economic evaluations on the process' feasibility; roughly, 300 US$/ton is 

considered the glycerol price needed for a breakthrough from propylene to glycerol [51]. 

However, current quotation of refined glycerol lies between 900−1000 US$/ton.  

  Crude glycerol can be purchased for a much cheaper price, around 150 US$/ton; 

however its impurities do not allow direct processes for its transformation. Development 

of cost-effective purification techniques is pivotal for lowering the polyol's work-up price.  

 Liquid-phase catalysis still shows unsatisfactory performance and difficult 

conditions for process scale-up. Gas-phase catalysis looks more promising, with acrolein 

yield >90% at total glycerol conversion [52].  

 The main problems related to gas-phase synthesis is the fast deactivation of the 

catalyst due to cocking and deposition of high-boiling compounds.  

Nevertheless, comparing the prices of reactants and products involved in the few commercialized 

production from glycerol (epichlorohydrin and 1,2-PG) to the acrolein and acrylic acid process, it is 

possible to draw some (partially) alternative conclusions. In order to do so, and because of the 
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different molecular weight of the chemicals involved, a convenient way of comparison is to 

calculate prices per mol of molecular species (Table 1.1).   

Table 1. Approximate prices for important bulk chemicals involved in 
glycerochemistry. 

Chemical species Primary data price Price (ct€/mol)
a 

Ref. 

Crude Glycerol 150 US$/ton 1 [42] 

Refined Glycerol 900-1000 €/ton 8-9 [42] 

Propylene 1200 US$/ton 7 [42] 

Acrylic Acid
b
 1.1-1.5 US$/lb 14-19 [53] 

Epichlorohydrin 1.0 US$/lb 16 [54] 

1,2-Propylene 
Glycol 

1200€/ton 9 [53] 

[a] Conversion units used (round off values) : 1lb=454g, 1€=0.8US$.   [b] Purity: glacial 

 

First of all, it is worth noting that propylene price is very close to the one of refined glycerol, 

although the former is still more convenient. However, what is really remarkable is the similar 

price of acrylic acid and epichlorohydrin as well as the lower price of 1,2-propylen glycol (1,2-PG), 

which is basically the one of refined glycerol. These observations open important questions on the 

reason why acrylic acid (hence, acrolein) production hasn't still been scaled-up. Indeed, the 

aforementioned issues on glycerol price volatility and uncompetitiveness to propylene price must 

affect the other two processes as well, and the products' prices are not substantially different. 

Nevertheless, the 1,2-PG and Epichlorohydrin processes have been commercialized, whereas this 

is not the case for acrolein and acrylic acid. Therefore, it seems that the real problem affecting the 

acrolein and acrylic acid industrial production from glycerol is actually ascribable to issues either 

in the acrylic acid market and/or, most likely, at a technological level. Particularly once compared 

to the propylene process. Consequently, further research is mandatory in the aim of pursuing the 

process commercialization.     
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1.7.2 Life Cycle Assessment (LCA) for the production of acrolein from glycerol 

We have recently reported in literature a LCA study for the transformation of glycerol to acrolein, 

i.e. the intermediate step for the production of acrylic acid [55]. Considering the source of 

glycerol, we have compared two real-case industrial scenarios: (i) vegetable oil (from rapeseed) 

transesterification for biodiesel synthesis and (ii) fat hydrolysis. The latter process is now 

considered to be the second major source of glycerol and, due to the synthesis of fatty acids, its 

industrial importance makes it a secure reserve process for glycerol production. Overall, some 

interesting conclusions have been drawn: 

 The major benefits in terms of environment and human health of the overall bio-

acrolein production chain come from the substitution of conventional diesel with 

biodiesel (-9.4 Kg of CO2 equivalent); 

 Transesterification of vegetable oil is less sustainable than animal fat 

hydrogenolysis, largely due to land occupation and terrestrial eco-toxicity during the crop 

cultivation phase (due to release of pesticide in soil and exploitation of arable land); 

although, animal breeding and tallow production are energy intensive stages, too; 

 Regarding the fossil fuel depletion, a contribution as high as 53% is due to the 

cultivation phase, whereas the glycerol dehydration process contributes only for 7%; 

 Compared to the conventional propylene based scenario and contrary to common 

beliefs, fossil fuel depletion and climate change are greatly affected by glycerol 

purification, finally making the impact of acrolein from partial oxidation of propylene 

lower than the two bio-based scenario.  

Therefore, it emerges that the development of a fully integrated bio-refinery (i.e. both for fuels 

and chemicals) is the only option to effectively reduce the overall environmental impact. Indeed, 
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not only the raw materials for the chemical industry have to derive from renewable resources, but 

also the whole compartment of utilities and energy sources. Moreover, the utilization of third 

generation biomass as well as selected cultivation growing in marginal land that do not require 

consumption of pesticides have an enormous potential to consistently reduce the impact of 

human activities on the environment.   

 

1.8 Vanadium substituted HTBs: complex mixed-oxides for glycerol 

oxidehydration to acrylic acid 

As previously mentioned, the multifunctional catalyst approach is very demanding from the 

catalyst design standpoint, since only fine tuning of acid and redox properties of the material 

allows obtaining noteworthy yields into the acid monomer. Indeed, few multifunctional materials 

have been so far demonstrated as effective catalysts for the direct transformation of glycerol into 

acrylic acid, i.e. FeVO4/Fe2O3 [50], Mo-V-O, Mo-V-Te-Nb-O, W-V-(Nb)-O [1, 56-60] and V-

impregnated zeolites [61]. At present, the complex mixed-oxides related to the hexagonal 

tungsten bronzes (HTBs) family, i.e. W-V-(Nb)-(Mo)-O, have shown the best catalytic performance 

in the glycerol oxidehydration process on single catalysts.  

HTBs are non-stoichiometric oxides which are closely related to the Perovskites family. They can 

be represented with the general formula AnBOx, where A is a cation (e.g. Li, Na, Ca, etc.), B is 

tungsten and/or another transition-metal and "x" is less than, but close to, 3. The structure of 

HTBs is made up of corner-sharing BO6 octahedra which position themselves in the three-

dimensional space to form three-sided and six-sided channels that give rise to tunnels running 

along the c direction [62]. A-cations of large size (e.g. Cs+) can be found only within hexagonal 

channels with a maximum theoretical stoichiometry n=0.33; instead, smaller cations (e.g. Na+) 
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may also be located in three-sided channels, with a maximum total occupancy when n=1 [63]. A 

general representation is provided in Figure 1.8.1.  

 

Figure 1.8.1. General representation of the HTB structure. 

Due to their electronic structure and the possibility of altering it through both the insertion of A-

cations and the partial substitution of tungsten, HTBs have found a wide range of applications in 

electrochromic devices, humidity sensors, solid fuel cells, and ion-sensitive electrodes [64, 65]. 

However, in spite of their long history in material science, the use of HTBs as catalysts is a major 

novelty.  

Their potential for such applications is related first of all to the HTBs’ acidity; when comparing a 

monoclinic WO3 (m-WO3) and a tungsten-oxide with hexagonal HTB structure (h-WOx), the gap is 

apparent: the former has a total acidity of around 20 μmolNH3/g, whereas the latter exceeds 130 

μmolNH3/g [1]; the strength of the acid sites is also different, as illustrated in figure 1.8.2. These 

features make them interesting for those catalytic processes where a medium-to-strong acidity is 

needed; indeed, so far HTBs have been mainly used as catalysts for glycerol dehydration and 
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oxidehydration. Hexagonal tungsten oxide is a good candidate for acrolein synthesis, since it 

shows acrolein yield as high as 70% at total glycerol conversion [1].   

 

 

Figure 1.8.2 Comparison of NH3-TPD for h-WOx (red, continuous line) and m-WO3 (blue, dashed line). 

However, the interest in HTBs as catalysts is actually much greater than in their use as simple acid 

oxides. It has been demonstrated that tungsten atoms belonging to the hexagonal framework can 

be (partially) replaced by other elements such as vanadium, molybdenum, and niobium [66-69]. 

Therefore, by varying the atomic ratio of the above-mentioned metals, an acid h-WOx is 

transformed, in the end, into a multifunctional catalyst: tungsten (and niobium) atoms provide 

the acid sites, whereas vanadium (and molybdenum) atoms provide the redox features (vide 

infra).  

While the potential for using HTBs as multifunctional catalysts is evident, both the preparation 

methods and the difficult physical-chemical characterization are most likely responsible for their 

tardy application in catalysis. The traditional preparation of these mixed oxides is based on the 

ceramic method, which involves mixing and grinding powders of constituent oxides, carbonate, 
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and other compounds and their consequent heating at a high temperature and for a very long 

time. However, this “hard” method generally leads to a poor control of structure, stoichiometry, 

and phasic purity; moreover, of particular importance for applications in catalysis, the surface 

area of the obtained oxides is generally very low (i.e. <5 m2/g). Only starting from the 1980s have 

these issues been partially overcome with new “soft” chemical methods (chimie douce) that have 

paved the way for the synthesis of metastable compounds with high phase purity and significant 

surface area [66, 70]; however, up to the present time, rational design (rather than serendipity) is 

still a great challenge even for soft methods such as the most common hydrothermal synthesis 

[71], making the preparation of substituted HTBs (i.e. metastable phases) not so straightforward 

in the end.   

The other big challenge for the development of HTBs as catalysts is their physical-chemical 

characterization. Indeed, some of the most common techniques used in the field of catalysis 

either provide rather poor information or leave room for ambiguous interpretation. X-ray 

diffraction is a paradigmatic example of this; HTBs (and related phases) often form crystals of little 

order and poor quality. Moreover, they involve a high absorption of the X-ray radiation, while the 

contribution of oxygen atoms to the observed intensities is weak if compared to heavy atoms (B 

atoms) [63]. Therefore the results obtained give an approximate position of oxygen atoms and are 

frequently affected by the presence of an amorphous phase (due to the poor long-range order of 

crystals), thus making it impossible to draw some univocal conclusions on the real nature of the 

oxide phase. In this respect, high-resolution electron microscopy (mainly HR-TEM) has been 

pivotal; imaging studies allow characterizing the intimate nature of even poorly crystallized 

samples, while highlighting the contemporary presence of different crystal phases and on-going 

changes [63, 72, 73].       
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As previously discussed, the great interest in hexagonal tungsten bronzes (HTBs) for catalytic 

application is mainly related to the possibility of creating multifunctional oxides. In order to do so, 

tungsten-atoms belonging to the oxide lattice can be partially substituted with different transition 

metals; given the well-known properties of vanadium in oxidation catalysis, the insertion of the 

latter element is an interesting option. In literature, the substitution of vanadium in the HTB 

structure has been reported on in recent decades, synthesized both through solid-state and 

precipitation methods [66, 67, 74]. In both cases, exhaustive characterizations were carried out so 

as to assess the physical-chemical features of the W-V oxides obtained; as far as their structure is 

concerned, XRD patterns clearly indicated that the V-containing oxides are isostructural with h-

WOx. In particular, the slight decrease in the cell parameters was attributed to the replacement of 

large W-atoms by vanadium. The preservation of the hexagonal phase was also unambiguously 

determined by HR-TEM/SAED. More recently, hexagonal oxides with tungsten and vanadium (h-

WVOx) were also synthesized by hydrothermal synthesis, with V-content in the range 

0<[V/(W+V)]<0.24 [1]. When comparing the amount of vanadium on the surface layers of these 

samples -from XPS analysis- to its quantity in the bulk -from EDX characterization- (figure 1.8.3), 

an almost constant vanadium surface concentration was reported regardless of its bulk content, 

thus strongly suggesting the substitution of lattice-W-atoms by vanadium even for the h-WVOx 

oxides prepared by hydrothermal method. 

The acid properties of h-WVOx oxides (and h-WOx) may be ascribed to (i) H+ cations located in 

hexagonal-channels and to (ii) M-OH moieties (M=W, V) present on the oxide surface. Evidence 

for the existence of extra-framework protons was clearly provided by TG-analysis [66, 74]; indeed, 

water loss between around 100°C and 500°C exceeded the amount of crystallization water which 

was stable in the hydrated form at room temperature (molar ratio H2O/(W+V)= 0.33). Therefore it 
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was assumed that some of the hydrogen ions in the channels and oxygen atoms from the oxide 

combined together to form the additional water detected. 

 

Figure 1.8.3. Bulk and surface content of vanadium in different V-substituted HTBs [1]. 

It is worth mentioning that the difference between the acid properties of h-WOx and m-WO3 

previously discussed must be mainly attributed to H+ ions in the hexagonal channels, which, 

clearly, are not present in the monoclinic phase. Indeed, W-OH groups (i.e. Brnsted acid sites) 

may be present in both cases, and actually should be stronger for the fully oxidized m-WO3, where 

only W6+ ions are present (vs. the mixed valence state +5/+6 of tungsten in h-WOx: see below). 

Lastly, when samples were treated at temperatures higher than 500°C, all the protons present in 

the structure were removed and a thermodynamically stable monoclinic-tungsten/vanadium 

oxide (m-WVOx) formed.  

Overall, the mentioned temperature ranges for phase-transformation (from h-WVOx to m-WVOx) 

are significantly different if compared to values reported in ref. [1]; in the last case h-WVOx 

phases were reported to be stable up to 600°C and for a relatively long heat treatment time (2h 

isotherm). The gap observed may be attributable to the distinct compositions obtained; indeed, 
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the atomic ratio obtained by the precipitation method was V/(W+V)= 0.27, whereas by 

hydrothermal synthesis it was not possible to exceed the atomic ratio 0.24, even for the highest 

amount of vanadium added in the parent gel (up to V/(W+V)= 0.33). However, such a difference 

for the stability of the h-WVOx phase seems to be too important to be simply attributed to the 

slight difference in composition. More likely, an important role is played by contaminants such as 

Na+ ions, which are always present when typical lab-glassware is used and also as impurities in 

starting materials (W- and V-salts). In fact, in one case, particular precautions were taken to avoid 

these contaminations [66, 74], whereas a more common synthetic procedure was used for the 

hydrothermal synthesis [1]. Sodium ions, as well as many other cations, are indeed well known to 

strongly affect the stabilization of the crystal phases in the W/(V)/O system [63]. If, on the one 

hand, the contamination of the hexagonal-phase may be a significant issue for the application of 

h-WOx (and substituted analogues) in electrochromic devices and other applications in physics, 

from the standpoint of catalysis this contamination may actually represent a great opportunity. 

Indeed, since traces of A-cations can significantly thermally stabilize the hexagonal phase without 

major effects on its peculiar acid properties, the latter features may also be preserved under in-

situ conditions of gas-phase chemical processes. This is in contrast, for example, with the 

degradation phenomena ascribed to Mo/V/P-Keggins [75], therefore offering promising 

expectations for industrial applications of these materials. However, pure h-WOx is actually much 

less stable than the substituted oxides. The sample made up of only WO6 octahedra prepared by 

hydrothermal treatment decomposed at a temperature as low as 450°C; this temperature 

corresponds to the complete loss of ammonium-ions present as A-cations. Therefore, the 

insertion of different B-atoms into the hexagonal lattice may also have a beneficial effect on 

thermal stability. As it will be explained into details in the results and discussion section, the same 

phenomenon was also observed for HTBs where both niobium and vanadium were introduced 
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into the lattice. Indeed, even after rather long time-on-stream tests (approximately 100 h) for 

glycerol oxidehydration, no significant change was reported for the crystal structure. These 

observations may be related to the oxidation state of transition elements. Indeed, pure h-WOx is 

made up by both W6+ and W5+ ions, the overall neutral charge of the oxide being preserved by 

both A-cations and oxygen vacancies. High temperature (and the presence of oxygen) can 

promote structural changes in the metastable hexagonal phase towards stable m-WO3, with all 

W-atoms as W6+. The introduction of elements of low and stable valence state (e.g. Nb5+) may 

thus preserve the HTB structure even at high temperatures and for fully-oxidized tungsten atoms 

(e.g. h-A+
nW6+

1-yNb5+
yOx). A similar phenomenon may be hypothesized for h-WVOx samples 

(without Nb), since V4+/5+ ions make the hexagonal phase stable up to 600°C. However, as it will be 

further discussed, the easily changeable oxidation state of vanadium under reaction conditions 

might play a role in the stability of the phase and in the catalytic behavior. 

The Brnsted acid sites present in HTBs, both in hexagonal channels and surface M-OH moieties, 

may be considered to be active sites for glycerol dehydration to acrolein. Extensive studies on the 

influence of Brnsted and Lewis acid sites on glycerol dehydration have been carried out in recent 

years, and to date it has been clearly demonstrated that Brnsted acid sites are selective and 

active in performing the double dehydration to acrolein [76, 77]. Lewis acid sites lead mainly to a 

partial dehydration of glycerol into 1-hydroxyacetone and 3-hydroxypropanal, the latter being the 

precursors for the formation of other by-products (i.e. formaldehyde, acetaldehyde, vinyl-alcohol, 

1,2-propanediol, acetone, etc.) and oligomers (see Results and Discussion section and [60]). The 

low selectivity into the mentioned by-products, shown by h-WOx [1] compared to other acid 

catalysts [42-44], is good evidence that Brnsted acid sites are predominant in HTBs. In the results 

and discussion section, for W-Mo-V samples with HTB-structure it will also be reported a study on 

the presence of Brnsted and Lewis acid sites.  
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All in all, limiting the discussion of the catalytic performance of substituted-HTBs to the presence 

of (Brnsted) acid sites and vanadium ions would give only a partial view of the topic. One of the 

first attempts reported in the open literature to perform the glycerol oxidehydration process on a 

single multifunctional catalyst was performed on VPO catalysts [78]. Different VPO-crystalline 

phases were used, but the only major change was related to acrolein yields (from 24% to 66%), 

basically highlighting the different acid properties of vanadium-phosphorous oxides. Indeed, in 

spite of the various oxygen partial pressures used, the acrylic acid yield always was between 0% 

and 8% (vs. acrylic acid yields > 50% for substituted HTBs, see results and discussion section). 

Considering the well known presence of acid sites (Brnsted and Lewis) and vanadium-ions in 

multiple oxidation states in VPO phases, it is of great interest to stress the low selectivities 

observed in the partial oxidation product (as well as COx). Therefore, given the important 

similarities in the general features of h-WVOx and VPO-catalysts, the significant difference 

observed deserve more attention. Hence, we carried out further studies on a commercial VPP   

(see chapter 3.4).  
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2. Experimental 

2.1 Catalysts synthesis 

2.1.1. Hydrothermal synthesis of HTBs 

Most of the catalysts reported in this thesis belong to the family of Hexagonal Tungsten Bronzes 

(HTBs) and were synthesized through the hydrothermal method. This methodology usually refers 

to any heterogeneous reaction in the presence of aqueous solvents under high pressure and 

temperature conditions (i.e. supercritical or near-supercritical conditions) to dissolve and re-

crystallize materials that are relatively insoluble under ordinary conditions. Indeed, under such 

states, reactants otherwise difficult to dissolve go into solution as complexes allowing chemical 

transport reactions [79].  

From the catalysts preparation view-point, the hydrothermal synthesis consists in preparing an 

aqueous solution (or gel) from the corresponding salts of selected transition-metals.  The solution 

(or gel) is transferred to a teflon-lined stainless steel autoclave, fitted with two valves that allow 

purging it with a flow of nitrogen, so as to create an inert atmosphere -if required- and finally a 

wanted pressure. The autoclave is heated-up to a desired temperature and for a selected period 

of time. Finally the autoclave is cooled-down, degassed and the solid obtained is filtered and 

washed to remove the mother-liquor. The cleaned solid is dried and used for further treatments. 

Both bi-component and tri-component HTB-like catalysts were prepared, that is W-V, W-Nb, W-

Mo, W-V-Nb and W-Mo-V.  The initial solutions/gels were prepared from the salts of the selected 

metals, i.e. ammonium metatungstate hydrate (≥85 wt% WO3 basis, Sigma-Aldrich), vanadium (IV) 

oxide sulfate hydrate (≥99.99%, Sigma-Aldrich), niobium oxalate (monooxalate adduct, ABCR) and 

ammonium heptamolybdate (GR for analysis, MERCK).  
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In a typical preparation, the tungsten solution is warmed-up to 80°C and stirred for 10 minutes. 

For bi-component catalysts, the solution of the second element is added dropwise to the one of 

tungsten. For tri-component catalysts the same procedure is followed but the order of addition of 

the second and the third components might be pivotal for a reproducible synthesis. Indeed, if the 

addition of an element causes the formation of a gel, the following element added might not be 

properly dispersed and/or the metal-complexes forming in solution might be of a different nature. 

Therefore, for three-component systems, vanadium is always the first element to be added to 

tungsten since it forms a stable and transparent-greenish solution. Once all the wanted elements 

are added, the obtained solution is left mixing at 80°C for 10 minutes. Hence, the solution/gel is 

loaded in a Teflon-lined stainless-steel autoclaves and heated at 175°C for 48h. The solid obtained 

is filtered off with approximately 120 ml of distilled water per gram of tungsten salt used in the 

initial solution. The filtered solid is washed and dried at 100°C for 16 h. Finally, the solids are heat-

treated at 600°C during 2 h under N2. 

 

2.1.2 Ion-exchange and Incipient wetness impregnation 

A vanadium-substituted HTB was used as reference bi-functional material (acid and redox) to 

perform a systematic analysis of the influence of acid properties on glycerol oxidehydration (see 

chapter 2.7). In order to do so, a W-V catalyst prepared according to the hydrothermal procedure 

described above (WV-3 in ref. [1]) was doped with potassium-ions. This procedure was carried out 

with two different methods, (i) ion-exchange and (ii) incipient wetness impregnation. Moreover, 

to investigate the structure-reactivity correlations in glycerol oxidehydration, a V-exchanged 

catalyst was also prepared by ion-exchange.  

The first method was already reported in literature using analogous materials; indeed, HTBs 

prepared by hydrothermal methods were proved to be effective materials to carry out ion-
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exchange reactions with various cations [80]. It was demonstrated that the cations present within 

the channels of the HTB framework can be exchanged with other cations. In order to do so, the 

not heat-treated W-V sample, in the following called "WV-precursor" (i.e. the solid obtained after 

the hydrothermal treatment, washed and dried), was left stirring for 4 hours at room temperature 

in a solution containing the cation to exchange. By doing so, the new cation substitutes the 

ammonium-ions already present in the WV precursor. Specifically, so as to exchange ammonium 

for potassium ions, the WV-precursor was stirred in a solution of KHCO3; the operation was 

carried out, respectively, with different solutions, the gap of their concentration being calculated 

considering the maximum amount of potassium which is theoretically possible to insert into the 

HTB structure, according to the approximate stoichiometry K/W=0.3 [63]. Catalysts prepared 

according to this procedure where named as "K-n", where "n" indicates the molar concentration 

of the KHCO3 solution used to perform the synthesis. 

To exchange ammonium for vanadium ions, a tungsten oxide -without vanadium- with HTB 

structure, prepared by the formerly reported hydrothermal synthesis but not heat-treated, was 

stirred in a solution of VOSO4. The amount of vanadium dissolved was calculated so as to obtain 

an oxide with theoretical composition equal to the W-V sample used as reference (V/K=0.21). The 

catalyst prepared according to this procedure is named as V/WOx. 

After the ion-exchange process, the solid was filtered and washed (ca. 120mL of water per gram 

of catalyst) to remove the excess of ions that might have been adsorbed on the surface of the 

catalyst rather than incorporated within the channels of the material.  Once dried, the solid was 

heat-treated in nitrogen at 600°C, except for V/WOx, who was heat-treated at 450°C -see 

discussion in chapter 3.4-.  

The second method used for preparing K-containing catalysts, i.e. impregnation of the WV 

precursor with potassium, was carried out through a conventional wet-impregnation procedure 
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using a solution of KHCO3. The solid was left stirring in the solution for 5 minutes and the water 

was following removed by rotavapor. The total amount of potassium impregnated was calculated 

so as to obtain an overall atomic composition (calculated by EDX analysis) similar to the selected 

catalyst prepared by ion-exchange (i.e. K-0.1), in order to make easier their comparison. Once 

dried, the solid was heat-treated in nitrogen at 600°C. The catalyst prepared according to this 

procedure is named as K-Imp. 

For a batter overview on the influence of the preparation method on K-containing catalysts, a W-

V-K HTB was prepared by the conventional hydrothermal method, adding the alkaline metal 

directly in the synthesis gel.  

2.1.3  Hydrothermal synthesis of modified AlPO-5 

VCoAlPO-5 sample was synthesized by hydrothermal method [81] using triethylamine as a 

template. Aluminum hydroxide (Catapal A, Sasol) was added to an 85% solution of phosphoric 

acid (Aldrich) in water, and the mixture was stirred until a homogeneous solution was obtained. 

Triethylamine was added to this mixture under continuous stirring. Then an aqueous solution of 

cobalt (II) acetate was incorporated to the synthesis gel. In the materials with vanadium, this was 

added as a V2O5/triethylamine solution. The final reaction mixture was stirred until achieving a 

homogeneous gel. The gel was introduced in Teflon-lined stainless steel autoclaves and heated at 

200°C for 16 hours. After crystallization, the sample was centrifuged at 10,000 rpm, washed with 

deionised water and dried overnight at 100°C. 

Vanadium oxide supported on VCoAlPO (sample name V/VCoAlPO) was prepared by wetness 

impregnation of the sample V-CoAlPO with an aqueous solution of ammonium metavanadate. 

After the impregnation, water was removed by rotavapor and the oxide was dried overnight at 

100°C. Dried materials were calcined in air for 6 hours at 550°C.  
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2.1.4 Slurry synthesis of a M5O14-like oxide 

A molybdenum-vanadium-tungsten oxide (Mo-V-(W)-O) with the Mo5O14 structure was prepared 

by slurry synthesis. This oxide is a well-known catalyst used at industrial level to make the 

oxidation of acrolein into acrylic acid [82]. A solution containing the desired amount of the metals 

salts was prepared and stirred at 80°C for 10 minutes. The salts used were ammonium 

metavanadate (Sigma Aldrich, 99.99% trace metals basis), ammonium metatungstate hydrate 

(≥85 wt% WO3 basis, Sigma-Aldrich), and ammonium heptamolybdate (GR for analysis, MERCK). 

Sodium oxalate was also added to favor the reduction of the elements so as to form the M5O14 

structure. Water was removed by evaporation in a rotavapor (at 50°C). The solid was dried at 

100°C overnight and then calcined in air at 350°C. Lastly, the solid was heat-treated in N2 at 500°C 

for 2 h. 

2.2 Catalyst characterization 

Generally speaking, the information reported below was mainly obtained from the reference [83] 

and personal laboratory experience. Moreover, in some cases additional details are reported from 

various references, respectively mentioned in the text. 

A general overview on each technique is given, providing more stress on the practical aspects 

needed to carry out the experiments and interpret the data obtained, rather than on the 

theoretical aspects. Further details can be found in the mentioned references and bibliography 

there reported.  

 

2.2.1 Surface area and textural properties 

Analyses of all samples were performed using nitrogen adsorption on a Micromeritics 

ASAP 2000 porosimeter. Samples (approx. 200 mg) were degassed under vacuum at 

120°C for 2 h prior to analysis using physisorbed N2 at 77K.  
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The surface areas of all samples were calculated using the Brunauer-Emmet-Teller (BET) 

isotherm. This is a derivation of the Langmuir isotherm, which can be used to calculate 

the surface areas of solids based on a model of adsorption that employs several 

assumptions, involving both the adsorbate and adsorbent, and which can be described by 

the BET equation [84].  

 

        
 

 

    
 
     

    
 
 

  
 

Equation 2.1. BET equation 

 

where P = equilibrium pressure, P0 = saturation pressure, c = BET constant, μ = quantity of 

absorbed gas and μm = quantity of monolayer absorbed gas.  Surface areas were 

calculated over a pressure range of P/P0 = 0.05-0.25, where a linear relationship is 

maintained; indeed, beyond relative pressures of ca. 0.25 capillary condensation of the 

adsorbate (nitrogen) can occur in mesopores, leading to a sharp rise in nitrogen 

adsorption as the pores saturate. Analyses were performed over a large P/P0 range, in 

order to probe both the mesoporous and microporous regimes -if any-.  

External surface area (i.e. mesopore + macropore) of selected samples was evaluated by 

the t-plot method, i.e. the plot of the statistic thickness "t" vs. the adsorbed volume of N2 

[85, 86]. The "t" value is taken into consideration since it is assumed that an adsorbent is 

never covered with an adsorbed film of uniform thickness, but with a characteristic 

density profile. Overall, the t-plot method assumes that in a certain isotherm region, the 

micropres are already filled-up, whereas the adsorption in larger pores occurs according 
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to some simple equation, characteristic for a large class of solids. Particularly, in our case 

the "t" value was evaluated according to Harkins-Jura equation [87], which is for nitrogen:  

  

 
 

 
      

           
 
  
  
 

   

  

Equation 2.2. Harkins-Jura equation for nitrogen adsorption. 

However, it must be stressed that these equations, although largely accepted for routine 

calculations, are affected by intrinsic approximation due to the theoretical models used; 

hence, deeper analysis of N2-adsorption data plots might be needed for more accurate 

evaluations [88]. 

 

2.2.2. Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) micrographs were collected in a JEOL 6300 microscope 

operating at 20 kV. The quantitative EDX analysis was performed using an Oxford LINK ISIS System 

with the SEMQUANT program, which introduces the ZAF correction. EDX analysis was performed 

five times per sample at 20 kV, with a sample collection time of 100 s. 

In scanning electron microscopy (SEM) a beam of electrons is generated by an electron gun 

situated at the top of the microscope. The beam passes through a series of condenser lenses and 

scanning coils, which focus and direct the beam onto the sample surface. On reaching the sample, 

the primary electrons lose energy through a variety of interactions, generating high energy 

backscattered electrons, secondary electrons through inelastic scattering and X-ray radiation. The 

generated X-rays can also be analyzed with the energy dispersive X-ray (EDX) system attached to 

the SEM instrument. 
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2.2.3 Transmission electron microscopy (TEM)  

High resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction 

(SAED) were carried out on a JEOL JEM3000F electron microscope (point resolution of 0.17 nm). 

Crystal by crystal XEDS microanalysis was performed by using the same microscope equipped with 

an X-ray microanalysis ISIS 300 (Oxford Instruments) with a detector model LINK "Pentafet" 

(resolution 135 eV). Samples for TEM were ultrasonically dispersed in n-butanol and transferred 

to carbon coated copper grids. 

TEM uses transmitted and diffracted electrons, in a sense similar to an optical microscope, if one 

replaces optical lenses for electromagnetic ones. Indeed, bright field images are formed when a 

beam of electrons, generated by an electron gun at the top of the instrument, is directed at the 

sample after passing through one or more condenser lenses. The transmitted, undeviated beam is 

focused and magnified by the objective lens and an image is formed on a phosphorescent screen. 

Digital images are generated by a charged-coupled device. The theoretical principle of XEDS 

micro-analysis is exactly the same of EDX coupled with SEM. 

SAED is a crystallographic experimental technique that can be performed inside a transmission 

electron microscope (TEM). In a TEM, a thin crystalline specimen is subjected to a parallel beam of 

high-energy electrons. As TEM specimens are typically ~100 nm thick, and the electrons typically 

have an energy of 100–400 KeV, the electrons pass through the sample easily. In this case, 

electrons are treated as wave-like, rather than particle-like. Because the wavelength of high-

energy electrons is a few thousandths of a nanometer and the spacing between atoms in a solid is 

about a hundred times larger, the atoms act as a diffraction grating to the electrons, which are 

diffracted. That is, some fraction of them will be scattered to particular angles, determined by the 

crystal structure of the sample, while others continue to pass through the sample without 

deflection. As a result, the image on the screen of the TEM will be a series of spots—the selected 
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area diffraction pattern, SADP, each spot corresponding to a satisfied diffraction condition of the 

sample's crystal structure.  

 

2.2.4 Powder X-ray Diffraction 

Powder X-ray diffraction (XRD) was used to identify the crystalline phases present in the catalysts. 

An Enraf Nonius FR590 sealed tube diffractometer, with a monochromatic CuKα1 source operated 

at 40 kV and 30 mA was used. Samples were scanned over a 2θ range of 5-90 ° with a 0.02 ° step 

size and a scan speed of 0.04 s/step.  

The X-ray source directs photons towards a homogeneous (finely ground powder) solid sample. 

Although the powdered samples are polycrystalline in nature and therefore, over the bulk of the 

material, consist of randomly-oriented crystal domains, there will nevertheless be a degree of 

short-range order within these individual domains. Constructive interference can occur between 

incident X-rays when these are diffracted from adjacent crystal Bragg planes within these 

domains, as long as the planes are aligned at the correct angle. The spacing between the crystal 

planes, d, is different for each polycrystalline solid and will therefore give rise to a specific 

diffraction pattern, according to Bragg’s Law.  

              

Equation 2.3: Bragg’s Law 

where n = order of interference (integer), λ = incident wavelength, d = lattice spacing and θ = 

diffraction angle. The generated diffraction pattern can therefore be used to identify the material 

being analyzed. 
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2.2.5 Fourier transform infrared spectroscopy (FTIR) 

Infrared spectra were recorded at room temperature in the 300–3900 cm−1 region with a Nicolet 

205xB spectrophotometer, equipped with a Data Station, at a spectral resolution of 1 cm−1 and 

accumulations of 128 scans. Pellets were prepared with catalysts and KBr. 

Infrared spectroscopy can be considered as the first important modern spectroscopic technique 

that has found general acceptance in catalysis. The most common application of infrared 

spectroscopy in catalysis is to identify adsorbed species and to study the way in which these 

species are chemisorbed on the surface of the catalyst (see below), as well as identifying phases 

that are present in the catalyst.  

The infrared region between 4000 and 200 cm-1 can be roughly divided into five regions: 

 The X-H stretch region (4000-2500 cm-1), where strong contributions from OH, NH, CH and 

SH stretch vibrations are observed, 

 The triple bond region (2500-2000 cm-1), where contributions from gas phase CO (2143 

cm-1) and linearly adsorbed CO (2000-2200 cm-1) are seen. 

 The double bond region (2000-1500 cm-1), where in catalytic studies bridgebonded CO, as 

well as carbonyl groups in adsorbed molecules (around 1700 cm-1),absorb. 

 The fingerprint region (1500-500 cm-1), where all single bonds between carbon and 

elements such as nitrogen, oxygen, sulfur and halogens absorb 

  The M-X or metal-adsorbate region (around 200-450 cm-1), where the metal-carbon, 

metal-oxygen and metal-nitrogen stretch frequencies in the spectra of adsorbed species 

are observed. 

The first three regions are clearly meaningful particularly for studying the adsorption of molecules 

on the (oxide-)catalysts' surfaces, whereas the last two are fundamental to identify both the 
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presence of a specific crystal structure and specific metal-oxygen bonds that constitute the overall 

catalyst framework.  

 

2.2.6 X-ray absorption spectroscopy (XAS) 

Vanadium K-edge X-ray absorption spectroscopy (XAS) measurements were performed at the 

Spanish beamline located at the synchrotron in Grenoble, using a Si (1 1 0) monochromator. The 

monochromator was calibrated by setting the first inflection point at the k-edge spectrum of a 

standard metallic vanadium foil at 5465 eV. The measurements were performed in transmission 

mode using ion chambers filled with Ar/N2 as detectors. Typically, 50 mg of catalyst powder were 

pressed in a stainless steel sample holder in order to obtain self-supported discs of samples with 

appropriated transmission properties. Analyses of the XANES data were performed with the 

Athena software. A factor of k3 was used for obtaining the Fourier Transforms (FT) of the EXAFS 

region of the spectra. 

 
Figure 2.1.1 Example XAS spectrum showing the three major data regions. 
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X-ray absorption spectroscopy (XAS) is a non-destructive technique which employs 

monochromatic X-rays, typically from a synchrotron radiation source, to obtain bulk structural 

information about a solid. The X-ray absorption spectrum of an hypothetical isolated atom would 

show only edges corresponding to the binding energy of all electrons in the atom core levels, but 

no further structure. If, however, the atom is bound in a lattice, the absorption is modulated due 

to its local coordination, and fine structure arises. X-ray absorption near edge spectroscopy 

(XANES) focuses on the shape of the absorption edge -see figure 2.1.1-, and is highly sensitive for 

the valence state of the atom and its bonding geometry. Extended X-ray absorption fine structure 

(EXAFS) deals with the interference effects visible in the absorption spectrum beyond the edge, 

and provides detailed information on the distance, number, and type of neighbors of the 

absorbing atom. However, the correct interpretation of the EXAFS region requires utilization of 

mathematical modeling and highly technical knowledge in the field that make this technique of 

more difficult access compared to XANES. 

 

2.2.7 Pulse chemisorption and temperature-programmed desorption of ammonia 

The experiments of chemisorption and subsequent temperature programmed desorption of 

ammonia (NH3-TPD) were carried out on a TPD/2900 apparatus from Micromeritics. The samples 

(ca. 0.3 g) were pre-treated in an Ar stream at 450ºC for 1 h. Ammonia was chemisorbed by 

pulses at 100°C until equilibrium was reached. Then, the sample was fluxed with a He stream for 

15 minutes, prior to increase the temperature up to 500°C in a helium stream of 100 ml min-1 and 

using a heating rate of 10°C min-1. The NH3 desorption was monitored with a thermal conductivity 

detector (TCD) and a mass-spectrometer.  

TPD of ammonia is a widely used method for characterization of site densities in solid acids due to 

the simplicity of the technique (however, quite time-consuming); it provides information on the 
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surface concentration of acid sites and the relative distribution of their strength. However one 

must bear in mind that ammonia often overestimates the quantity of acid sites since its small 

molecular size allows ammonia to penetrate into all pores of the solid whereas larger molecules 

(e.g. glycerol and acrolein) only have access to large micropores and mesopores. Also, ammonia is 

a very basic molecule which is capable of titrating weak acid sites which may not contribute to the 

activity of catalysts. The strongly polar adsorbed ammonia is also capable of adsorbing additional 

ammonia from the gas phase. 

 

2.2.8 FTIR of adsorbed carbon monoxide or ammonia 

IR spectra of adsorbed CO and NH3 were collected with a Nexus 8700 FTIR spectrometer using a 

DTGS detector and acquiring at 4 cm−1. An IR cell allowing in situ treatments in controlled 

atmospheres and working in the temperature range -176ºC to 500°C has been used. The samples, 

prior to CO and NH3 adsorption experiments, were treated at 200°C in vacuum (10-5mbar) for 1.5 

h. IR spectra of CO adsorption were recorded at -176°C using CO doses from 0.4-4mbar. In the 

case of NH3 adsorption experiments 20 mbar NH3 were adsorbed at 25°C and then desorbed at 

increasing temperatures (25°C, 100°C and 200°C).   

The nature of the acid sites present on the catalysts prepared can be investigated by means of 

infrared spectroscopy using NH3 as the probe molecules. Indeed, ammonia chemisorbed on 

Brnsted acid sites or Lewis acid sites presents different modes of vibration that, generally 

speaking, allow to discern the respective presence, abundance and strength of the two different 

acid sites [89]; particularly when the FTIR experiment is coupled with TPD analysis. 

FTIR of adsorbed CO has been extensively used in the literature since it is highly sensitive to the 

electron-acceptor properties of the metal ion. Indeed in transition metal oxides the electrophilic 

properties of the metal ion depends not only to their coordination but also to the nature and the 
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coordination state of the ligands.  Accordingly, IR spectroscopy of CO can be performed in order 

to analyze the surface nature of substituted-HTBs. In fact, W6+ and V5+ do not form stable 

complexes with CO even at low temperature because of their high coordination saturation [90-

92], while Wn+ (n<6) and Vn+ (n<5) form stable CO carbonyl complexes [90, 93]. The (CO) 

frequency as well as the stability of the carbonyl complex is highly depended on the electrophilic 

properties of the metal ion, i.e coordination and oxidation state.  

Overall, basically for the same reasons previously discussed for NH3-TPD, adsorption of both 

ammonia and carbon monoxide cannot give a univocal picture of the real nature of the catalyst's 

surface. Therefore, results have to be carefully analyzed and compared to other figures obtained 

through various characterization methods.   

 

2.2.9 Raman spectroscopy 

Raman spectra were obtained with an “in via” Renishaw spectrometer, equipped with an 

Olympus microscope. The exciting wavelength was 514 nm from a Renishaw HPNIR laser with a 

power of approximately 15 mW on the sample. The dehydration of catalysts (under 20 mL min-1 

argon flow at 150°C) was carried out by using a home-designed microreactor for in situ Raman 

spectroscopy measurement. 

Raman analyses are typically carried out illuminating a sample with a laser beam. Electromagnetic 

radiation from the illuminated spot is collected with a lens and sent to a monochromator. Elastic 

scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is 

filtered out, while the rest of the collected light is dispersed onto a detector.  

In infrared spectroscopy a molecule absorbs photons with the same frequency as its vibrations. In 

contrast, Raman spectroscopy is based on the inelastic scattering of photons, which lose energy 

by exciting vibrations in the sample. As in infrared spectroscopy, not all vibrations are observable. 
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A vibration is Raman active if it changes the polarizability of the molecule. This requires in general 

that the molecule changes its shape. For example, the vibration of a hypothetical spherical 

molecule between the extremes of a disk-shaped and a cigar-shaped ellipsoid would be Raman 

active. Since the selection rule for infrared spectroscopy needs that a dipole moment changes 

during the vibration, some stretch vibrations of for example H2 (4160.2 cm-1), N2 (2330.7 cm-1) and 

O2 (1554.7 cm-1) are observed in Raman spectroscopy but not in infrared. Hence, the two 

techniques complement each other, in particular for highly symmetrical molecules. 

A disadvantage of the technique is the small cross sections for Raman scattering, which makes the 

intensity of the inelastic scattered light signal very low, particularly compared to the elastic 

scattered light (Rayleigh band). This issue can be overcome coupling the use of intense radiation 

sources, e.g. lasers, with high-resolution monochromators. Finally, fluorescence of the sample, 

giving rise to spectral backgrounds, may seriously limit the detectability of weak signals. 

 

2.2.10 X-ray photoelectron spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) measurements were performed on a SPECS 

spectrometer equipped with a Phoibos 150 MCD-9 detector using a monochromatic Al K-alpha 

(1486.6 eV) X-ray source. Spectra were recorded using analyzer pass energy of 50 V, an X-ray 

power of 200W, and an operating pressure of 10-9 mbar. Spectra treatment was performed using 

the CASA software. Binding energies (BE) were referenced to C1s at 284.5 eV. 

X-ray photoelectron spectroscopy (XPS) is an analytical technique that characterizes the surface of 

a material, providing information about the surface elemental composition and chemical 

environment of the sample being probed. XPS operates firing monochromatic X-rays onto the 

sample surface. The X-ray photons excite and consequently eject core level electrons from the 

atoms in the sample. The binding energy of these electrons -Eb- is the energy required to promote 
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an electron from a given electronic level to the Fermi level and it is characteristic of the elements 

in the solid being investigated; this is what gives rise to the discrete peaks in an XP spectrum. The 

binding energy can be calculated by measuring the kinetic energy of the emitted electrons 

according to the following equation: 

             

Equation 2.4: The binding energy 

where Eb = the binding energy of the emitted electron, h ν = the incident X-ray photon energy, EK 

= the kinetic energy of the emitted electron and Φ = the spectrometer work function.  

When photoemission occurs from non-s orbitals, the peaks in the XP spectrum appear as 

doublets. These doublets arise from the coupling between an electron’s orbital angular 

momentum, with characteristic quantum number l, and its spin momentum, with characteristic 

quantum number s, which can take either of the values ± ½. These can be summed to give the 

total angular momentum, possessing the quantum number j, which can take two values when l is 

> 0, i.e. in p, d and f orbitals. The full width at half maximum (FWHM) and line-shape are the same 

for both of the peaks. Characteristic binding energies and doublet peak separations of different 

elements can be readily found on the National Institute of Standards and Technology (NIST) XPS 

database [94]. 

Atoms of the same element in a solid, in dissimilar chemical environments, can give rise to inner 

orbital peaks with significantly different binding energies. These so-called ‘chemical shifts’ can be 

due to initial and final state effects. Initial state effects relate to the charge on the atom being 

probed.  An electron in a more electron-deficient environment, in an atom with high oxidation 

state for instance, would possess a higher binding energy than one located in an electron-rich 

system, in a more reduced atom. Higher energy orbitals are more sensitive to these binding 

energy shifts, therefore better resolution of different chemical environments can be achieved by 
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analyzing the outer shells, although this is not always possible due to overlapping peaks or low 

signal intensities. Final state effects occur after photoemission and can include any combination 

of core hole screening, orbital relaxation and polarization. Absolute binding energies can 

sometimes be difficult to interpret directly due to these final state effects, as well as electrostatic 

charging effects in the material being analyzed. This charging can be particularly problematic in an 

insulating solid. Although the instrument charge neutralizer can alleviate this effect, some slight 

shifts in energy can still occur. Typically, internal charge correction to the adventitious C 1s peak is 

performed but this can be inaccurate and can vary depending on the type and amount of carbon 

present on the sample.  

 

2.3 Catalytic testing 

The glycerol (oxi)dehydration and the acrolein oxidation tests were carried out in a bench-scale 

reactor for heterogeneous gas-phase catalytic experiments; the simplified P&I-scheme is reported 

in figure 2.3.1. 

Figure 2.3.1. P&I-scheme of the bench-scale reactor. 
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The liquid feed (indicated in short as Gly) is injected by means of a programmable infusion pump. 

A nitrogen gas stream, regulated by V-1, is used as a carrier gas to help the solution reaching the 

reactor. For safety reasons (see paragraph 3.2.4) and to avoid side reactions in the gas phase, the 

final mixture is introduced directly into the reactor (R-1), through a 1/16" pipe, ca. 1 cm above the 

catalytic bed. The small diameter of the pipe, as well as the reactor temperature and the small 

quantity of reactants used, guarantee a fast and complete evaporation of the liquid phase. Two 

pressure indicators (PI) are use to monitor the relative pressure in the hole plant. 

Oxygen and a second stream of nitrogen, before entering the reactor, are pre-heated by heating 

tapes (E1); their respective flows are controlled by two mass flow controllers (FC). The reactor 

consists in a quartz tube with an internal diameter of ca. 0.5", operating at atmospheric pressure 

and heated by a vertical tube furnaces. The temperature of reaction is measured by means of an 

axial thermocouple placed inside the catalytic bed. The effluent stream is bubbled through two in-

series abatement devices (E-3), which are filled with water (but in some cases anhydrous acetone 

were used, for the identification of compounds which are less soluble in water) and maintained at 

a temperature of 0-2°C; a third refrigerated condenser is left empty. After this abatement, the 

gaseous stream, still containing nitrogen, oxygen and carbon oxides, is fed to an automatic 

sampling system for gas-chromatography (GC-TCD) analysis. The water solution containing the 

unconverted glycerol and reaction products is analyzed by gas-chromatography (GC). 

In a typical experiment, from 0.2g to 0.50g of catalyst are loaded either in the form of granules, 

with a diameter ranging from 0.25 to 0.60 mm, or in the form of powder; the overall gas inlet flow 

rate varied from 25 mL/min up to 60 mL/min (measured at room T). All the contact time values 

reported in the next sections are calculated at room temperature. In experiments made with 

variation of contact time, the amount of catalyst loaded was varied, whereas the flow was kept 

constant. If not different specified, the inlet feed composition was: 2 mol% glycerol, 4 mol% 
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oxygen, 40 mol% water, and 54 mol% helium. Overall reaction conditions are illustrated in each 

figure or table.  

Gas chromatographic analyses were carried out using a Hewlett-Packard 5890 instrument 

equipped with a FID detector. A semi-capillary wide-bore OV 351 (polyethylenglycol treated with 

terephthalic acid) column was used for the separation of condensed compounds; oven 

temperature was set from 40°C to 190°C (heating rate 10°/min, isothermal step at 190°C, 3 min), 

then from 190°C to 225°C (heating rate 30°/min, final isothermal step at 225°C, 30 min). Two 

wide-bore columns were used for the separation of incondensable products: a Molsieve 5A for 

oxygen and CO, and a Silica Plot for CO2 (oven temperature 80°C). Compounds were identified by 

means of both GC-MS and injection of pure reference standards for the comparison of retention 

times in the GC columns. Depending on catalyst and reaction condition used, unknown 

compounds were also eluted in the GC column; it was attributed to these compounds the same 

response factor of the corresponding known compound with the closest retention time. Cyclic 

ethers were also sometimes produced; however, because it was not possible to perfectly resolve 

each peak corresponding to cyclic ethers with the chromatographic setup used, both the cyclic 

ethers and heaviest compounds not eluted from the GC column (left as residues on both the 

catalyst surface and reactor walls) were quantified as the remainder of the total carbon balance 

and labeled as "heavy compounds". Minor identified products and unknown compounds (except 

for ketals) have been grouped together under the heading “Others”. For the sake of completeness 

and clarity, only few exceptions to this nomenclature have been reported in this thesis. Where 

needed, the various chemical species involved are specified both in the text and figures' caption.  

Catalytic tests for methanol conversion were carried out in a fixed bed reactor operating at 

atmospheric pressure in the 250–400°C temperature region. The overall set-up being similar to 

the one reported in figure 2.3.1. The catalyst weight was either 0.10 g or 0.20 g, and the feed 
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consisted in a methanol/oxygen/nitrogen mixture with a molar ratio of 6/13/81 (total flow of 100 

mL min−1). The analysis of reactants and products was carried out by means of on-line gas-

chromatography, using two different chromatographic columns: (i) Molecular sieve 5A (3 m 

length) and (ii) RT-U-bond (30 m, 0.53 i.d.). 
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3. Results and discussion 

3.1 Introduction of Niobium in V-substituted HTBs 

Niobium is a well known element for improving the acid properties of mixed-oxide catalysts and it 

was demonstrated to be effective in enhancing the selectivity to acrolein from glycerol [43, 44]. 

Therefore, the idea at the bases of the research was to introduce niobium in the W-V HTBs 

previously studied so as to improve the glycerol dehydration step and hence the overall selectivity 

to acrylic acid. Indeed, the possibility of substituting tungsten atoms for niobium in the HTBs 

lattice, was already proved in the '80s by means of solid state preparations [95]. Moreover, milder 

and more controllable hydrothermal methods would be more desirable from an industrial 

perspective. 

 

3.1.1 Physicochemical properties of the oxides 

Table 3.1.1 compiles the samples prepared, and summarizes their main characteristics. Different 

samples based on hexagonal-WOx were synthesized: (i) bi-component systems made of mixed 

oxides of either W-V or W-Nb, and (ii) tri-component systems of W, Nb and V. Provided the results 

obtained on W-V catalysts [1], the W/V ratio was maintained also in tri-component systems. The 

acronyms used for W-V catalysts, refer to samples studied in [1].  

Figure 3.1.1 (left) shows the XRD patterns of samples heat treated at 600°C in N2, except in the 

case of pure WOx (hexagonal) sample which was heat-treated at 450°C, which otherwise 

decomposes (see paragraph 1.8).  All samples present the hexagonal tungsten bronze (HTB) 

crystal structure (JCPDS: 85-2460), although smaller changes in the intensity of some of the 

diffraction lines might be related to changes in their morphologies [96]. Indeed, SEM images 

showed changes in morphology depending on catalysts' composition. 
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Table 3.1.1. Characteristics of W-V-Nb-O catalysts prepared hydrothermally and heat treated in 
N2 at 600ºC. 

Sample  
V/(W+V+Nb);  Nb/(W+V+Nb) 

atomic ratios 
 Surface area  TPD 

  In synthesis gel 
Heat-treated 

samples
 a)

 
 (m

2
 g

-1
)  µmolNH3 g

-1
 µmolNH3 m

-2
 

WOx (h)  0.0; 0.0 0.0; 0.0  30.6  135 4.4 

WV-2  0.17; 0.0 0.12; 0.0  19.0  72 3.8 

WV-3  0.30; 0.0 0.21; 0.0  20.6  76 3.7 

WNb  0.0; 0.20 0.0; 0.25  28.3  121 4.3 

WVNb-1  0.20; 0.15 0.13; 0.13  57.3  192 3.4 

WVNb-2  0.20; 0.34 0.11; 0.20  59.6  211 3.5 

WVNb-3  0.40; 0.15 0.18; 0.16  45.6  178 3.9 

[a] The samples were heat-treated at 600ºC except sample WO which was heat-treated at 450ºC. 

 

Figure 3.1.1 (right) shows also the IR spectra of catalysts. The IR spectrum of Nb-free catalyst 

shows a broad band centered at 802 cm-1 (spectrum a), but the maximum shifts to 828 cm-1 in Nb-

containing catalysts (spectra b-d), which are in good agreement to V- [1] and Nb-containing [97] 

tungsten oxide with HTB crystal structure. It has been reported that hexagonal-tungsten oxide 

structure is characterized by the presence of a broad band at 817 cm-1 [98], as shown in WOx 

sample (spectrum e). Moreover, the band in the 800-830 cm-1 range can be assigned to O-W-O 

stretching modes, while the band in the 700-550 cm-1 can be assigned to W-O-X (X= W, V or Nb) 

stretching modes [99].  
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Figure 3.1.1. Left) XRD patterns of catalysts: WOx (a), WV-3 (b), WVNb-1 (c), WVNb-2 (d), WVNb-3 (e), WNb (f).  

Right) FTIR spectra of catalysts: WV-3 (a), WVNb-1 (b), WVNb-2 (c), WNb (d), WOx (e). 

 

The acid characteristics of catalysts have been investigated by means of TPD of adsorbed 

ammonia as well as by infrared spectroscopy using NH3 and CO as the probe molecules. The NH3-

TPD profiles of V- and/or Nb-containing catalysts are shown in Figure 3.1.2 (left) and summarized 

in Table 3.1.1. Nb-free W-V samples show a density of acid sites (expressed as µmolNH3/g) lower 

than Nb-containing samples. This way, W-V-Nb catalysts have a higher amount of acid sites when 

considering the number of acid sites per unit weight (i.e. 178-211 µmolNH3 g
-1) with respect to WOx 

or WNb. However, they show a relatively lower number of acid sites when considering the 

catalyst surface area (ca. 3.4-3.9 molNH3 m
-2). 

IR spectra of adsorbed NH3 after desorption at 100 and 200°C show the presence of both 

Brnsted acid sites (IR band at 1410 cm-1) and Lewis acid sites (1273 and 1231cm-1) in all samples 

(Fig. 3.1.2, right) [100, 101]. Both V-containing samples, i.e. WVNb-2 and WV-3, show a higher 

amount of Brnsted acid sites compared to the V-free sample (WNb), inferring that Brnsted sites 

are related to the presence of V4+‐O‐W6+
 and/or W5+‐O‐W6+

 pairs in these samples. 
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Figure 3.1.2. Left) TPD of adsorbed ammonia of: (a) WV; (b) WNb; WVNb-3 (c); (d) WVNb-1; (e) WVNb-2. 

Right) FTIR spectra of adsorbed ammonia: (a) WNb; (b) WVNb-2; (c) WV-3.  After desorption at 100 ºC (solid line) 

or 200ºC (dashed line). 

Moreover, for both V-containing samples two different types of Lewis acid sites can be observed 

(IR bands at 1273 and 1231 cm-1) showing different strength, as observed from the different 

behavior after desorption at 100 and 200°C. On the other hand, in Nb-containing samples (WNb 

and WVNb-2), the acid strength of both Brnsted and Lewis sites is greater than in WV-3, whereas 

this is not the case for WV-3. 

IR of CO adsorption as probe molecule has been extensively used in the literature since it is highly 

sensitive to the electron-acceptor properties of the metal ion. Figure 3.1.3, shows the IR spectra 

of adsorbed CO on the most representative catalysts. Only one IR band at 2195 cm-1 is observed 

on the WOx sample, which can be unambiguously associated to W5+ ions.  This band is less intense 

for WV-3 and WVNb-1; it is possible to conclude that the quantity of W5+ species in the last two 

samples is lower than in WOx, highlighting the stabilizing role for HTBs of transition metals with 
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oxidation state lower than 6+ (see chapter 1.8). However, other IR bands at 2180, 2168 and 2131 

cm-1 are observed in WV-3 and WVNb-1. 

 

Figure 3.1.3. FTIR spectra of adsorbed CO on: WV-3 (a); WVNb-1 (b); WNb (c); and WOx (d). The band with (*) 

corresponds to physisorbed CO. 

 

According to the XPS results of W-V mixed oxides [1], in which a low contribution of surface W5+ 

versus V4+ species is observed, the new bands observed in WVNb-1 catalyst can tentatively be 

associated to the interaction of CO with V4+ and/or W5+ ions in different environments (framework 

positions, ion exchange positions or extra framework oxidic species) [102]. However, further 

experiments are required in order to better evaluate the local environment of the transition 

metals involved and to evaluate the mechanism in the incorporation of V- and Nb species in the 

framework of this type of materials. More insights will be indeed provided in the next chapter as 

well as in chapters 3.3 and 3.5 by means of TEM and XAS analysis. 

On the other hand, for WNb no IR bands are observed, meaning that W5+ species are not present 

in this catalyst; however, this sample shows a higher thermal stability than pure WOx since the 

2300 2200 2100

A
b

s
ro

b
a
n

c
e

(a
.u

.)

Wavenumber (cm-1)

2195

2
1
8
0

2
1
6
8

2
1
3
1

0.05

a

b

c

d

*



58 
 

bronze structure of WNb catalysts is stable during the heat-treatment up to 600°C, hence making 

it possible to conclude that Nb5+ ions are incorporated in the hexagonal framework.  

The main conclusions inferred from the characterization of samples are: 

 W-V-Nb mixed oxides with the HTB structure can be prepared hydrothermally. 

The incorporation of Nb5+ leads to a lower concentration of surface W5+ sites, thus 

making possible to form an HTB with fully oxidized (or almost) tungsten atom. 

 The presence of Nb in tri-component systems (W-V-Nb-O) leads to a remarkable 

increase of surface area compared to both W-Nb-O and W-V-O samples. 

However, surface area values close to W-V-Nb-O were also obtained for W-Nb-

oxides prepared by hydrothermal methods [103], suggesting that the post-

synthesis treatments (e.g. grinding) and/or synthetic procedure (e.g. pH, directing 

agents etc.) are pivotal in governing the final surface area value. 

 The amount of surface acid sites in W-V-Nb samples is relatively higher than that 

in W-V, W-Nb or W- bronzes, but the surface density of acid sites is similar for W-

V and W-V-Nb, and lower than that of W-Nb and W- bronzes. On the other hand, 

the fraction of stronger sites is greater in Nb-containing samples. 

 

3.1.2 Lab-scale reactor tests  

In figure 3.1.4 are summarized some representative results obtained on the best performing acid 

catalysts, i.e. WOx and WNb, as well as bi-functional acid-redox catalysts, i.e. WV-2, WV-3 and 

WVNb-1. Data concerning catalysts WV-2 and WOx are reported from [1]. 
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Figure 3.1.4. Catalytic behavior of WOx (◆), WNb (■), WV-2 (▲), WV-3 (X) and WVNb-1 (ӿ) in glycerol oxidehydration 

tests as a function of temperature. Feed composition: 2 mol% glycerol, 4 mol% oxygen, 40 mol% water, and 54 mol% 

helium. Contact time 0.38 s (Calculated at room temperature).  

 

For all the catalysts, the conversion of glycerol was always complete over the range of 

temperature examined, with the only exception of WV-2 which showed a glycerol conversion 

between 95% and 98% in the temperature range 290°C to 320°C. This is typically observed with 

most catalysts used for glycerol dehydration or oxidehydration reported in the literature; further 

comments are reported below. 
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 The catalytic performance of WV-3 was similar to that of WV-2, (see Table 3.1.2), but the 

maximum selectivity to acrylic acid was higher, 26% for WV-3 vs 18% for WV-2. The selectivity to 

acrolein was close to 10% in the T range 270-320°C, but then decreased when the temperature 

was further increased. Major by-products were CO, CO2, acetaldehyde and acetic acid. Other by-

products formed were: allylic alcohol, acetone, propionaldehyde, propionic acid, and 

hydroxyacetone; these are the generally observed by-products forming in low amounts (i.e. <7%) 

and for this reason not shown in the plot. Finally, the selectivity to “heavy compounds” (i.e., 

compounds that were not eluted in the GC column, and were indirectly determined by means of 

the C balance) became nil for temperatures higher than 310°C. The selectivity to acrylic acid 

declined when the temperature was raised, with a concomitant increase of selectivity to CO.  

Table 3.1.2. Summary of reactivity tests on W-V-Nb catalysts. 

Sample Selmax acrolein, % Selmax acrylic acid, % Sel COx at T < 300ºC, % Selmax heavy compounds, % 

WO 67 (290)
a 

1 (310, 330) 12 (290) 37 (330) 

WV-3 11 (315) 26 (295) 47 (295) 7 (277, 295) 

WV-2 29 (295C) 18 (320) 39 (295C) 8 (320-370) 

WNb 73 (290) 2.5 (330) 1.5 (290) 37 (390) 

WVNb-1 21 (298) 26.5 (298) 41 (298) 10 (320) 

WVNb-2 19 (298) 24 (298) 38 (298) 20 (340) 

WVNb-3 2 (296) 11 (296) 76 (296) 9 (320) 

[a] In parenthesis is reported the temperature (°C) at which the selectivity data ware obtained.  
Reaction conditions as in figure 3.1.4.  

 

 WNb catalyst showed some important differences with respect to the WOx. In fact, the 

trend of the selectivity to acrolein in function of temperature was similar for the two catalysts, 

but the selectivity to acrolein at low temperature was greater with WNb (73% at 290°C and 64% 

at 310°C) than with WOx (65% at 290°C and 49% at 310°C). Another difference between the two 
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samples is the selectivity to heavy compounds; indeed, with WOx, they first increased (in 

concomitance with the decrease of selectivity to acrolein), reached a maximum value at 330°C, 

and finally decreased when the temperature was further raised, with a strong increase of 

selectivity to COx. With WNb, instead, the raise of CO selectivity at temperatures higher than 

330°C was less relevant than with WOx, and the selectivity to heavy compounds in this 

temperature range was ca 30-35%. Differences of catalytic behavior between WOx and WNb can 

be attributed to both the presence of Nb5+ sites, probably responsible for the greater fraction of 

stronger acid sites (Figure 3.1.2), and to the lower surface concentration of W5+ sites, as inferred 

from CO-adsorption experiments (Figure 3.1.3). 

It is of interest to compare WVNb-1 to WV-3. At low temperature, the overall selectivity to 

acrolein + acrylic acid was greater with WVNb-1 than with WV-3 (47.5% at 298°C for WVNb-1, 

33% with WV-3); this difference was mainly due to the greater selectivity to acrolein obtained 

with the former catalyst. Moreover, when the temperature was raised with the WVNb-1 catalyst, 

the selectivity to both acrolein and acrylic acid declined; at the same time, the selectivity to COx 

increased, and that to heavy compounds first increased (selectivity 10% at 320°C), and then 

decreased. With WV-3, instead, the selectivity to acrylic acid also declined (with a corresponding 

higher selectivity to COx), but that to acrolein changed only at a minor extent, and there was no 

formation of heavy compounds at all.  

Table 3.1.2 compares the catalytic behavior of WVNb-1, WVNb-2 and WVNb-3; the table compiles 

the values of maximum selectivity to acrolein and acrylic acid (both obtained at temperatures 

lower than 320°C), the selectivity to CO+CO2 at low temperature, and the maximum selectivity to 

heavy compounds. It is shown that the increase of Nb content (sample WVNb-2) led to a worse 

catalytic behavior at low temperature, with a slightly lower selectivity to acrolein and acrylic acid 

and a higher selectivity to heavy compounds. This indicates that a low amount of Nb favors the 
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formation of acrolein (and of acrylic acid) at low temperature, but when the amount of Nb 

exceeds a defined value, it definitely enhances the formation of heavy compounds even at low 

temperatures. Finally, in the case of sample WVNb-3, containing a greater amount of V than in 

WVNb-1 and WVNb-2, yields to both acrolein and acrylic acid were remarkably lower compared to 

the other tri-component catalysts. In this case, this difference was mainly due to the greater 

formation of COx. 

Accordingly, the presence of Nb had a positive effect on the selectivity to acrolein at low 

temperature, with both the WNb and W-V-Nb catalysts; however, at temperatures higher than 

310°C it promoted the formation of heavy compounds. The best composition for the tri-

component system falls in a very narrow range of atomic ratios between elements. Additional 

experiments were also carried out in function of contact time (Figure 3.1.5), with WVNb-1 at 

290°C, so as to pursuing both a clearer picture of the reaction scheme and eventually find the 

optimum reaction conditions for improving the selectivity to the desired monomers.  

 

Figure 3.1.5. WVNb-1. Catalytic performance as a function of contact time. Temperature: 290°C. Feed composition: 2 

mol% glycerol, 4 mol% oxygen, 40 mol% water, and 54 mol% helium. Symbols:  Acrylic Acid (■), Acrolein (▲), COx 

(X),Heavy compounds (ӿ), Glycerol Conversion (◆).                     
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As far as the reaction mechanism is concerned, it is possible to notice that when no catalyst was 

present (contact time zero), the glycerol conversion was close to 9% and there was formation of 

acrolein. Hence a minor contribution by homogeneous reactivity in the gas phase has to be taken 

into account. Moreover, there is a very high formation of heavy compounds, consisting of both 

glycerol oligomers and ketals obtained by reaction between glycerol and acrolein (the nature of 

heavy compounds was determined by means of ESI-MS). However, it must be stressed that 

selectivity values at such low glycerol conversion are affected by a significantly higher 

experimental error compared to data obtained at higher conversions.  

The presence of the catalyst (contact time < 0.1s and higher) led to total glycerol conversion, and 

to a remarkable decrease of the selectivity to heavy compounds. However, the overall yield to the 

latter compounds was greater than that obtained with no catalyst at all, meaning that the catalyst 

also contributed to their formation. The products formed in the greater amount were acrolein 

(selectivity 22%) and COx; acrylic acid selectivity was 8%.  

In the 0.08-to-0.20 sec contact time range, the selectivity to heavy compounds decreased 

considerably, whereas a rapid decline of selectivity to acrolein led to a corresponding increase of 

the selectivity to acrylic acid, a proof for the consecutive oxidation of the aldehyde into the acid. 

The maximum yield to acrylic acid, obtained at 0.15s contact time, was 33%.  

Contact times higher than 0.20s led to a progressive decline of selectivity to acrylic acid, 

acetaldehyde, and acrolein. Conversely, selectivity to COx and acetic acid increased, a clear 

indication of the presence of consecutive reactions of oxidative degradation or decomposition. An 

unexpected phenomenon was the increase of selectivity to heavy compounds (mainly of 

oligomers of acrolein). This might indicate that (total) oxidation and oligomerization are 

competitive parallel reactions whose contribution depends on the acid and redox sites relative 

distribution and contact time. 
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Finally a time-on-stream test was carried out under the optimal conditions for WVNb-1, that is 

290°C and 0.15s contact time (Figure 3.1.6). It must be stressed that, generally speaking, catalyst's 

life tests have to be performed at conversion <100%. Indeed, incomplete conversion guarantees 

that the whole catalytic bed participates to the reaction under the conditions used. Total 

conversion might mask a partial use of the catalyst and forge the time-on-stream tests, leading to 

stable long lasting overall catalytic performance, even if the catalytic bed is actually undergoing 

deactivation.  

In the case of the catalytic test reported in figure 3.1.6, the glycerol conversion was always 

complete, therefore potentially leading to the problems just mentioned. However, if different 

reaction conditions were used to lower the glycerol conversion, the catalytic performance would 

have been significantly affected, particularly due to the formation of heavy compounds. Indeed, it 

has been demonstrated above that their selectivity strongly increases when glycerol is present, 

(unconverted)  in the gas phase, due to the formation of ketals through condensation of 

aldehydes with glycerol, as well as glycerol oligomerization (see chapter 3.2). Therefore, reaction 

conditions different from the optimal ones, would have led to a faster deactivation of the catalyst, 

not representative of the real time-on-stream performance under the optimized conditions.  

Overall, taking into consideration the very low amount of catalyst used (ca. 0.3g) and the 

relatively long time-on-stream test (ca. 100h), the partial utilization of the catalytic bed is 

definitely unlikely, as also proved by the contact time tests in figure 3.1.5. 
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Figure 3.1.6. Catalyst WVNb-1. Time on stream test. Contact time 0.15s, 290°C. Feed composition: 2 mol% glycerol, 4 

mol% oxygen, 40 mol% water, and 54 mol% helium.  

 

Along ca. 100 hours reaction time, only a slight decline of selectivity to acrylic acid was observed, 

from 34% to 30.5%; at the same time, acrolein selectivity increased from 17% to 21%; therefore, 

the overall selectivity to acrolein and acrylic acid remained stable around 51%. A similar behavior 

was also observed in the case of sample WV-3 [1]; however, in that case the fall of selectivity was 

much more important than with the WVNb-1 catalyst. The decline of selectivity to acrylic acid for 

WV-3 was attributed to a progressive oxidation of V4+ in the bronze; therefore, the more stable 

behavior here observed can be tentatively attributed to a stabilization of the reduced state of V in 

the bronze, favored by the incorporation of Nb. Further comments on this matter is reported in 

the next chapter. 

 

3.1.3 Conclusions 

Tri-component W-V-Nb mixed oxides with the hexagonal tungsten bronze structure can be 

prepared hydrothermally and thermal treatment at 600°C in nitrogen atmosphere. These mixed-

oxides possess both acid and redox features, which are needed for the one-pot oxidehydration of 
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glycerol into acrylic acid, via intermediate formation of acrolein. The incorporation of Nb5+ leads 

to a lower surface density of acid sites compared to both WOx and the bi-component W-V 

systems, but to a greater fraction of stronger sites. The catalyst WVNb-1 gave 34% yield to acrylic 

acid (with overall selectivity to acrylic acid and acrolein of 51%), at 290°C. The selectivity to 

acrolein and acrylic acid was greatly affected by the reaction conditions used.  
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3.2 Nb and V-substituted HTBs: the influence of reaction conditions on 

catalytic performance in glycerol oxidehydration 

In order to fully investigate the catalyst activity of the best-performing tri-component sample 

(WVNb-1) further studies were performed on the catalyst's behavior under different reaction 

conditions. This study allowed reaching unprecedented values of acrylic acid yield and 

productivity. Moreover, methanol oxidation was used as a probe reaction to assess the surface 

acid-redox properties [104, 105] and to compare WVNb-1 with a bi-component W-V catalyst with 

analogous composition, i.e. WV-2. The results obtained make it possible to draw important 

general conclusions on the relation between the reaction conditions and catalyst features. 

Finally, so as to support the conclusions depicted on substituted-HTB structures, the same 

reactions were carried out on a MoV(W) oxide with Mo5O14-type bronze structure, a typical 

catalyst for acrolein oxidation into acrylic acid. In order to obtain a complete picture of the 

catalysts' behavior, the acrolein oxidation reaction was also studied on both HTBs and Mo5O14-

type bronzes. 

3.2.1 Physicochemical properties of the oxides  

The surface area of the solids synthesized decreased as follows: WVNb-1 > WV-2 > MoV(W) (Table 

3.2.1); the difference in surface area can be attributed to both the different structures and the 

amount of niobium introduced in the material as already noticed in part one and as reported in 

literature [106, 107].  On the other hand, the chemical composition of these materials 

(determined by EDX analysis), revealed a homogeneous distribution of the elements in all cases.  
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Table 3.2.1. Main physical-chemical features of the selected catalysts 

Sample 
Surface 

area 
(m

2
g

-1
) 

TPD-NH3 

µmolNH3g
-1       

µmolNH3m
-2 

H2-TPR
a 

Peak 1     Peak 2 
Crystalline 

phase 
Catalyst 

composition
c 

WV-2 19.0 72 3.8 0.59 2.09 HTB WV0.12 

WVNb-1 57.3 192 3.4 n.c. 
b
 3.99 HTB WV0.13Nb0.13 

MoV(W) 6.3 21 3.5 0.08 2.91 Mo5O14 Mo0.68V0.23W0.09 

[a] H2-TPR results: H2-uptake (in mmolH2 g-1) in the 450-550ºC (peak 1) and 550-750°C (peak 2) temperature 
region. [b] The H2-uptake have been not calculated since only a shoulder  is observed at 590ºC for the first 
reduction peak. [c] Data calculated by means of SEM-EDX analysis. 

 

Powder XRD analysis of heat-treated materials is presented in Figure 3.2.1. Diffraction maxima 

match with those of a basic hexagonal tungsten bronze, HTB structure (JCPDS: 85-2460) for WV-2 

and WVNb-1 catalysts, even if, for the latter catalyst, a consistent amount of amorphous phase is 

present (ca. 60%, calculated by means of the Rietveld method).  

MoV(W) presents diffraction maxima and intensities very similar to those oxides presenting a 

Mo5O14-type structure, i.e. Mo5O14 oxide (JCPDS: 12-0517) or Nb0.09Mo0.91O2.8 (JCPDS: 27-1310), 

having a tetragonal lattice cell. However, the presence of MoO3 (JCPDS: 5-508), as minority, 

cannot be completely excluded. 

Figure 3.2.2 (A) shows the IR spectra of catalysts. The IR spectrum of WV-2 and WVNb-1 are very 

similar presenting a broad band at ca. 802 cm−1 (spectrum a) or 828 cm−1 (spectrum b), 

respectively, which can be assigned to O–W–O stretching modes in tungsten oxide with HTB 

crystal structure [1]. Moreover, the broad band in the 700–550 cm−1 range can be assigned to W–

O–X (X = W, V or Nb)  moieties [108]. 
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Figure 3.2.1. XRD of the fresh catalysts: (a) WV-2, (b) WVNb-1, (c) MoV(W). 

 

A different IR spectrum is observed in the case of Mo-V-(W) (Fig. 3.2.2 (A), spectrum c). Thus, 

three intense bands are observed at 905, 859 and 792 cm-1, which have also been reported in a 

Fe-doped Mo/V/W [109] and Ta-containing Mo5O14 [110], both presenting M5O14-type bronze 

structure. However, this spectrum is different from that previously reported for Mo and W-based 

bronze with a tetragonal tungsten bronze, TTB, structure [107]. On the other hand, the presence 

of a shoulder at 995 cm-1 (as well as low intense bands at 870 and 583 cm−1) suggests the minor 

presence of MoO3 [111].  

Raman spectra of fresh catalysts are presented in Figure 3.2.2 (B). The Raman spectra of WV-2 

and WVNb-1 show three broad bands at 970, 800 and 692 cm-1, similar to those previously 

reported for W-based HTB materials. However, in the case of sample MoV(W) (spectra c1 and c2), 

heterogeneous material is observed as concluded from the different spectra achieved for this 

sample. The band at ca. 845 cm-1 is related to Mo-O bond in Mo5O14 [112]. Moreover, and in 

addition to Mo5O14-type crystals, the Raman bands at 673, 822, and 999 cm-1 are typical of MoO3 

crystallites (Fig. 3.2.2 (B), spectrum c2) [113].  
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Figure 3.2.2. FTIR spectra (A) and  Raman spectra (B) of fresh catalysts: a) WV-2, b) W-V-Nb, c) Mo-V-(W). 

 

The acid characteristics of catalysts have been investigated by means of TPD of adsorbed 

ammonia. The NH3-TPD profiles of catalysts are shown in Fig. 3.2.3,B and summarized in Table 

3.2.1. All samples show desorption peaks at approximately 200–220°C and ca. 350°C, indicating 

the presence of both medium and strong acid sites.  

On the other hand, from the NH3-desorption profile, in MoV(W) catalyst it is clear the almost 

complete lack of strong acid sites (with desorption temperature >250°C) in comparison to both 

WV-2 and WVNb-1 samples. Moreover, when considering the number of acid sites per unit 

weight, WVNb-1 catalyst shows an amount of sites (i.e., 192 µmolNH3g
−1) higher than in WV-2 or 

MoV(W) catalysts. However, when considering the surface area of catalysts, the three samples 

show a similar density of acid sites, although it decreases as follows: WV-2 > MoV(W) > WVNb-1. 

Figure 3.2.3 (A) shows the H2-TPR profiles of catalysts. A small peak is observed for all samples in 

the 500-600°C temperature range, which should correspond to the reduction of V-atoms, as 

previously discussed. In addition to this, a peak at high temperature, which shifts depending on 
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the catalyst composition, is also observed. This second peak can be related to the reduction of the 

rest of elements.  

 

Figure 3.2.3. H2-TPR patterns (A) and TPD-NH3 patterns (B) of catalysts: a) WV-2, b) WVNb-1, c) MoV(W). 

 

The valence state of constituent elements was studied by XPS. The effect of V loading on the V 

valence state in W-V based catalysts was discussed previously [1] and in the previous section. The 

XPS results are summarized in Table 3.2.2, while Fig. 3.2.4 shows the V2p and W4f bands. The 

V/W ratio on the surface of WV-2 and WVNb-1 (ca. 0.1 and 0.06) is lower than that observed in 

bulk catalysts (ca. 0.12 in both samples, Table 3.2.1). On the other hand, the W/Mo ratio on the 

surface of MoV(W) (ca. 0.15) is similar to that observed in the bulk of catalyst (ca. 0.13, Table 

3.2.1). However, differences in the oxidation state of each element are observed depending on 

the catalyst composition. Thus, V4+ (BE = 516.3 eV) and V5+ (BE = 517.2 eV) are mainly observed in 

the catalysts, both in fresh and spent ones, except for WV-2 fresh sample in which the presence of 

V4+ is mainly shown. Moreover, the V4+/V5+ ratio on the catalyst surface is higher in Mo-V-(W) 

catalyst. Overall, it is remarkable the consistent change of the V-oxidation state in W-V compared 
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to W-V-Nb (fresh vs. spent samples, respectively). It is clear that niobium plays a pivotal role in 

stabilizing the oxidation state of vanadium and it might be one of the main reasons that make W-

V-Nb a more stable catalysts than W-V -vide infra-.  

Table 3.2.2. XPS results of fresh and used catalysts 

Sample W4f7/2 
a
 V2p3/2 

b
 Nb3d5/2 

b
 Mo3d5/2 

b
 W:V:O:Nb:Mo 

 W
6+

 V
3+

 V
4+

 V
5+

 Nb
5+

 Mo
5+

 Mo
6+

 Surface atomic ratio 

W-V 
(fresh) 

35.5 (1.6) 
 

515.5         
(7%) 

516.7 
( 93%) 

-- 
-- 

-- --  28.4: 2.7: 68.9: 0: 0 

W-V 
(spent) 

35.6 (1.4)  
516.2 
(20 %) 

517.3 
(80%) 

-- --  29.8: 2.9: 67.2: 0: 0 

W-V-Nb 
(fresh) 

36.1 (1.6)  
516.4 
(21%) 

517.4 
(79%) 

207.5 
(100%) 

--  27.3: 1.7: 66.3: 4.5: 0 

W-V-Nb 
(spent) 

36.0 (1.6)  
516.5 

(24.3%) 
517.5 

(75.7%) 
207.5 

(100%) 
--  25.4: 2.1: 67.7: 4.8: 0 

Mo-V-
(W) 

(fresh) 
35.2 (1.6)  

516.6 
(43.4%) 

517.6 
(56.6%) 

 
 
 

233.1 
(100%) 

3.9: 4.4: 65.8: 0: 25.8 

[a] In parenthesis the FWHM. [b] In parenthesis the atomic content for each ion. 

 

In the case of tungsten, W6+ atoms (in the 35.6-36.2 eV range) are observed in the three catalysts; 

although, different binding energies were registered, probably as a consequence of different W 

atoms environment. Nb5+ (BE= 206.6 eV, in W-V-Nb) and Mo6+ (BE= 232.5eV, in MoV(W) sample) 

are the only species observed for these elements. The presence of Nb5+ in WVNb-1 seems to 

stabilize V5+ ions in the fresh sample, which instead is the minor species in the Nb-free catalyst 

(i.e., in W-V).  Moreover, no change in the V4+/V5+ ratio of WVNb-1 was observed in the spent 

catalyst. On the other hand, the presence of V species stabilizes both Mo6+ and W6+ in MoV(W).  
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Figure 3.2.4. X-ray photoelectron spectra of A) V2P and B) W4f transitions in fresh (continue line) and spent (dashed 

lines) catalysts: (a) W–V, (b) W–V–Nb, (c) Mo–V–(W) 

 

 

3.2.2 Lab-scale reactor tests 

In order to examine the catalytic activity of WVNb-1, the inlet feed composition was changed; for 

each oxygen-to-glycerol ratio value, the catalytic performance was analyzed in the temperature 

range 260-410°C. Specifically, Figure 3.2.5 (Left) shows the catalytic results obtained at 265°C, 

where the maximum acrylic acid yield was registered (however, analogous trends were obtained 

for the other temperatures examined). In this experiment both the glycerol molar content in feed 

(6%) and the water content (40%) were kept constant; oxygen and inert gas (He) molar contents 

were changed so as to satisfy both the desired feed composition and the pursued residence time. 

The latter was always set constant to 0.15 s. 
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Figure 3.2.5. Glycerol oxidehydration on W-V-Nb catalyst. A): Variable oxygen-to-glycerol ratio; B) Constant Oxygen-to-

Glycerol molar ratio (equal to 2). Symbols:  Acrylic Acid (■), Acrolein (▲), COx (X),Heavy compounds (ӿ), Others (●) 

Glycerol Conversion (◆). Others: mainly acetaldehyde and acetic acid (in minor amounts, < 4%: allylic alcohol, acetone, 

propionaldehyde, propionic acid and hydroxyacetone). Reaction conditions: temperature 265°C, 0.3 g of catalyst, 

contact time 0.15 s, time factor 0.0039 gcat min mL
-1

. Feed composition (molar %): Oxygen and glycerol as reported in 

the plots, water 40%, helium up to 100%. Reaction time: 90 min.                    

 

 

When a stoichiometric amount of oxygen and glycerol was fed (molar ratio 3:6), the glycerol 

conversion was close to 50% and very low selectivity to both acrolein and acrylic acid were 

registered. On the other hand, selectivity into heavy compounds was very high. When increasing 

the amount of oxygen, the heavy compound selectivity dropped in favor of selectivity to other 

products; the acrylic acid selectivity trend showed a peak (39%) with the oxygen-to-glycerol molar 

ratio 12:6, finally decreasing in favor of carbon oxides with the molar ratio 18:6. Figure 3.2.5 

(right) shows the catalytic test when the oxygen-to-glycerol molar ratio was kept constantly equal 

to 2 (which proved to be the best ratio in the variable oxygen-to-glycerol test), but the inlet molar 

fraction of reactants was proportionally decreased compared to the 12:6 oxygen-to-glycerol ratio. 

In spite of the constant optimal ratio between the reactants, heavy compound selectivity 

increased mainly with lower selectivity to acrylic acid, when the molar fraction of reactants was 

decreased. This result was the opposite of what might be expected based on the fact that higher 
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reactant loading should facilitate the condensation reaction leading to heavy compounds. This 

indicates that the most important parameter affecting catalytic behavior is the oxygen partial 

pressure; higher oxygen contents enhance the oxidation of the intermediately formed acrolein 

into acrylic acid, thus limiting the undesired formation of acrolein condensation into by-products. 

When, instead, lower oxygen molar fractions are used, irrespectively of glycerol partial pressure 

(i.e., at both low and high glycerol partial pressure), the kinetically preferred reaction involves the 

transformation of acrolein into by-products (Scheme 3.2.1). This strongly suggests that (i) the 

rate-determining step in the redox mechanism of acrolein transformation into acrylic acid is the 

oxidation of the reduced V sites into V5+, the latter being the species involved in the aldehyde 

oxidation; and (ii) the surface concentration of the oxidizing species is thus affected by oxygen 

partial pressure. 

OH

OH

OH

O

H

O

OH

-2 H2O 1/2 O2

Oligomers  

Scheme 3.2.1. Competitive reactions in the transformation of the intermediately formed acrolein. 

 

On the other hand, if the partial pressure of oxygen is too high, the selectivity to acrylic acid 

decreases, with a concomitant increase in carbon oxides. These findings make it possible to draw 

an important conclusion: i.e., in order to minimize the undesired competitive reaction of heavier 

compounds formation – likely catalyzed by the same acid sites which are also required for the 

glycerol dehydration step – the crucial factor is the development of a steady-state showing a 

controlled amount of oxidizing sites on the catalyst surface.  
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 Generally speaking, it is important to underline that the reported variations of both 

acrolein and acrylic acid selectivities might be affected by other unrevealed phenomena masked 

by the total glycerol conversion; on the other hand, even though conversion is complete, 

consecutive reactions still are affected by contact time and therefore selectivity is also affected. 

Figure 3.2.6 compares the productivity into acrolein + acrylic acid for the W-V catalyst [1] and for 

the W-V-Nb catalyst under non-optimized reaction conditions (see Chapter 2.4), with the 

productivity achieved under the conditions shown in this chapter, and with results reported in the 

literature as well.  

 

Figure 3.2.6. Comparison of acrylic acid () and acrolein () productivities reported in the literature for glycerol 

oxidehydration reaction (references in brackets), with the best performance obtained with W-V-Nb catalyst in the time-

on-stream test (W-V-Nb T.S.) reported in this study (acrylic acid yield 50.5%, acrolein yield 3.3%, total glycerol 

conversion, Figure 3.2.7). Explanation A) J.L. Dubois et al, Eur. Patent 1874720, 2006, assigned to Arkema France; B) J.L. 

Dubois, WO Patent, 2007/090991; WO Patent, 2008/007002, assigned to Arkema France; C) F. Wang et al., J. Catal. 268 

(2009) 260–267; D) F. Wang et al., J.-F. Devaux, W. Ueda, Catal. Today 157(2010) 351–358; E) J. Xu et al, ChemSusChem 

3 (2010) 1383–1389; F) M.D. Soriano et al., Green Chem. 13 (2011) 2954–2962; G) A. Witsuthammakul et al, Appl. Catal. 

A 413–414 (2012) 109–116; H) Figure ; I) C.F.M. Pestana et al, J. Braz. Chem.Soc. 24 (2013) 100–105. 

 

The productivity achieved over WVNb-1 catalyst appeared to be much higher than that previously 

reported, and also much better than that reported for other catalytic systems and for the two-
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catalyst in-series reactor configuration, which is the alternative approach proposed in literature. 

Indeed, the best value achieved, of approximately 1.6 h-1, is quite significant for industrial 

processes aimed at the synthesis of bulk chemicals or intermediates. Overall, some of the 

catalysts reported in literature, such as the M1-phase catalyst in reference "D" (Fig. 3.2.6), might 

also have similar productivities to W-V-Nb, if tested under optimized reaction conditions; 

however, no further results have so far been published. 

Figure 3.2.7 shows the catalytic behavior of WVNb-1 as a function of the time-on-stream (ToS), 

when using experimental conditions that made it possible to obtain the best acrylic acid yield 

(feed molar ratio O2/Gly/H20/He=12/6/40/40, temperature 265°C, residence time 0.15 s). The 

yields shown in figure 3.2.5 obtained after around 90 min ToS, and fit the trends shown here well; 

on the other hand, after ca 5 h ToS an inverse trend for acrolein and acrylic acid selectivities was 

registered.  

 

Figure 3.2.7. Glycerol oxidehydration on WVNb-1. Time-on-stream test. Glycerol conversion always complete. Symbols:  

Acrylic Acid (■), Acrolein (▲), COx (X), Others (●), A+AA (◆). Others: mainly acetaldehyde and acetic acid (in minor 

amounts, < 4%: allylic alcohol, acetone, propionaldehyde, propionic acid and hydroxyacetone). Negligible formation of 

heavy compounds was registered. Reaction conditions: 0.3 g of catalyst, contact time 0.15 s, time factor 0.0039 gcat min 

mL
-1

. Feed composition (molar %): glycerol 6%, oxygen 12%, water 40%, helium 42%. 
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Indeed, until around 20 h ToS, the consecutive selective oxidation of acrolein to acrylic acid was 

clearly facilitated, since the acrolein selectivity decreased in favor of acrylic acid. At around 37 h 

ToS, the highest 50.5% acrylic acid yield was registered. It should be stressed that a clear kinetic 

relationship between acrolein and acrylic acid exists; indeed, the sum of yields to both 

compounds was always close to 54-55%, even if the relative quantity of the two was consistently 

different during the time of the experiment.  

The XRD and FTIR analysis on the spent WVNb-1 sample indicates that at the end of the lifetime 

experiment the catalyst structure was not changed (Figure 3.2.8).  

 

Figure 3.2.8. XRD patterns (Left) and FTIR spectra (Right) of fresh and used WVNb-1 catalyst. 

 

In order to elucidate the phenomenon registered, the acid and redox properties of the spent 

catalyst were analyzed by means of methanol transformation in oxidative conditions, and 

compared to those of the fresh catalyst. Under the same reaction conditions used in fig. 3.2.9, at 

low methanol conversion (28% ca.) the ratio between dimethylether (DME) and formaldehyde 

(HCHO) yields halved from 2.4 (for the fresh catalyst)  to 1.2 (for the catalyst after 37 h of reaction 

time). This finding is an important evidence that stronger acid sites were neutralized during the 
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lifetime test, most likely due to coking and/or strong adsorption of intermediates or heavy 

compounds, as highlighted by FTIR spectra of spent catalyst reported in fig. 3.2.8. However, small 

modifications (due to the presence of different crystalline or amorphous surface structures) 

during  

 

Figure 3.2.9. Oxidative transformation of methanol on catalysts WVNb1 (◆), WV-2 (■) and MoV(W) (▲). Reaction 

conditions for WVNb-1 and WV-2: 0.1 g of catalyst, contact time 0.06 s, time factor 1*10
-3

 gcat min mL
-1

. Feed 

composition (molar %): methanol 6%, oxygen 13%, nitrogen 81%. Reaction conditions for MoV(W): 0.2 g of catalyst, 

contact time 0.12 s, time factor 2*10
-3

 gcat min mL
-1

. Feed composition (molar %): methanol 6%, oxygen 13%, nitrogen 

81%.  
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the 5-to-20 h tos cannot be completely ruled out. The formation of more active amorphous 

structures is well known to occur on our Mo-V-(W) catalysts – which are similar to those typically 

used to selectively oxidize acrolein into acrylic acid [114-116] – and it is not possible to rule out 

the possibility that a similar phenomenon may occur on WVNb-1. Figure 3.2.9 show the results 

obtained when methanol was made to react in the presence of oxygen on W-V-Nb and W-V 

catalysts. As a general trend, at low temperatures the formation of DME was faster than its 

oxidation into HCHO (higher DME/HCHO ratio); when the temperature was increased, the 

DME/HCHO ratio decreased.  

High temperatures led to both decomposition and total oxidation, thus increasing the overall 

carbon oxide selectivity, mainly carbon monoxide, through HCHO decomposition. Minor amounts 

of dimethoxymethane and methylformiate also formed. 

When comparing the catalytic behavior of WV-2 and WVNb-1, it is possible to see that with the 

latter sample there was a much higher selectivity to DME, in accordance with its higher acid 

strength. With the increase in temperature, the reaction of methanol oxidehydrogenation to 

HCHO kinetically prevailed over the etherification reaction; lastly, at high methanol conversion 

(90%), HCHO selectivity was almost identical for the two catalysts. Moreover, it is interesting to 

note that different temperatures were needed to achieve similar conversions: for the WVNb-1 

catalyst, 90% methanol conversion appeared at 330-335°C, whereas for the WV-2 catalyst the 

same conversion was achieved at 380°C. This difference is attributable to a higher specific surface 

area of the Nb-containing sample, which is one of the main features of this catalyst compared to 

the WV-2; moreover, the faster reaction of methanol etherification may also contribute to the 

higher activity registered. CO selectivity also was slightly different for the two catalysts, 

respectively 10% for WVNb-1 and 16% for WV-2 (at the same methanol conversion of 90%). 

Whereas, the lack of strong acid sites in Mo5O14-type bronze, MoV(W), is also evident from the 
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catalytic behavior shown in methanol oxidation (Fig. 3.2.9); indeed, the acid-catalyzed route to 

DME was very low. On the other hand, this system proved to be very selective in the oxidation of 

methanol to HCHO: a maximum aldehyde selectivity equal to 93% was registered at 87% 

methanol conversion (at 350°C). At low temperatures, we also observed the formation of 

dimethoxymethane (not reported in figure 3.2.9), which may derive from the acetalization of 

HCHO with the unconverted methanol. On the other hand, because of the low specific surface 

area of this catalyst, in order to obtain methanol conversions close to those obtained by both WV-

2 and WVNb-1 catalysts, higher contact time (0.12 s) was needed, as compared to that used with 

the latter systems (0.06 s).   

The differences observed between the catalysts, particularly between the HTBs and MoV(W), well 

explain the catalytic behavior obtained for glycerol oxidehydration (Figure 3.2.10).  

 
Figure 3.2.10. Glycerol oxidehydration on Mo-V-(W) catalyst. Symbols: Acrylic Acid (■), Acrolein (▲), COx (X),Heavy 

compounds (ӿ), Others (●), Glycerol Conversion (◆). Others (decreasing order of selectivity): acetaldehyde, acetic acid, 

allylic alcohol, propionaldehyde, acetone, hydroxyacetone, unknown compounds. Reaction conditions: 0.3 g of catalyst, 

contact time 0.15 s, time factor 0.0039 gcat min mL
-1

. Feed composition (molar %): 2% glycerol, 4% oxygen, 40% water, 

54% helium. 
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Indeed, when glycerol was made react on this catalyst, very high selectivity to heavier compounds 

was registered, since the catalyst does not have the acid properties needed to quickly and 

selectively dehydrate glycerol into acrolein. The intermediately formed acrolein may react in a 

similar way with glycerol to form other cyclic ethers, as shown in Scheme 3.2.2; indeed, the 

formation of these ethers was confirmed by means of ESI-MS analysis of the reaction mixture. 

When the temperature was raised, the ketal selectivity decreased mainly in favor of COx and 

acrolein formation; on the other hand, the acrylic acid selectivity remained low, even if the 

catalyst is specifically designed for acrolein oxidation into acrylic acid. When acrolein was fed in 

analogous conditions (residence time 0.15 s, temperature 360°C), selectivity to acrylic acid was 

close to 70% at 20% acrolein conversion. This was apparently due to both the low selectivity to 

acrolein and the specific residence time used (optimal for glycerol dehydration on WVNb-1), 

which is too low to convert acrolein into acrylic acid on MoV(W) with Mo5O14-type structure [112].  
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Scheme 3.2.2. Ketals formation pathways as by-products of the glycerol oxidehydration reaction. 

Finally, acrolein was made react on the WVNb-1 and WV-2 (Figure 3.2.11) so as to better 

understand the redox ability to selectively oxidize the aldehyde produced as intermediate along 

the glycerol oxidehydration process. Under the same working conditions (the optimal ones for 

WVNb-1), the two catalysts showed important differences: the WV-2 sample exhibited both a 

lower acrolein conversion than WVNb-1 (which may be explained by taking into account both the 

higher specific surface area of this latter sample) and a lower selectivity into acrylic acid, with 

higher selectivity to heavy compounds. Therefore, it may be suggested that the improved acid 

features of this latter sample may help the desorption of acrylic acid, thus limiting its combustion. 

On the other hand, the low selectivity to acrolein oligomers suggests that the aldehyde oxidation 

into acrylic acid is much faster than the side acid-catalyzed reactions, which may also be related to 

the high concentration of V sites. The latter, in turn, is greatly affected by oxygen partial pressure 

(see above), but a role of Nb ions in facilitating the re-oxidation of reduced V sites may not be 

ruled out. Finally, it is of interest to underline that the productivity of acrylic acid from acrolein is 

much higher for WVNb-1 than for MoV(W), making this mixed-oxide catalyst quite interesting for 

the latter reaction, as well.  

Overall, it seems evident that the better catalytic performance for glycerol oxidehydration of 

WVNb-1 has to be assigned to its optimal equilibrium between acid and redox properties which 

allows reaching a steady state were glycerol is fast dehydrated into acrolein and the latter 

intermediate is efficiently transformed into the acid monomer.  
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Figure 3.2.11. Acrolein conversion and selectivity to products on W-V-Nb () and W-V () catalysts. Reaction 

conditions: 0.3 g of catalyst, contact time 0.15 s, time factor 0.0039 gcat min mL
-1

. Feed composition (molar %): 2% 

acrolein, 4% oxygen, 40% water, 54% helium. 

3.2.3 Conclusions 

The studies carried out on both HTBs and Mo5O14-type oxides allow drawing important 

conclusions on the relation between reaction conditions and catalyst features needed by 

multifunctional oxides for one-pot oxidehydration starting from glycerol. The consecutive 

oxidation step must be fast, compared to the dehydration step, in order to avoid the formation of 

heavy compounds generated by both ketal formation and oligomerization reactions that take 

place from the intermediately formed unsaturated aldehyde. For this reason, the latter being 

achieved by using oxygen partial pressures well above that needed for the stoichiometric 

oxidehydration of glycerol into acrylic acid, strongly oxidizing conditions are necessary with the 

best-performing WVNb-1 catalyst. The latter is characterized by high surface area and high 

concentration of stronger acid sites, properties which on the one hand are important for an 

efficient dehydration of glycerol into acrolein, but on the other hand might lead to the formation 

of undesired by-products. Under selected reaction conditions, an outstanding productivity to 

acrolein + acrylic acid close to 1.6 h-1 with a yield to acrylic acid as high as 50.5% were achieved. 
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3.2.4 Notes on reaction conditions and process safety 

Before concluding this chapter, a final note must be added about the reaction conditions used to 

reach the improved catalytic performance of the HTBs, that is high partial pressure of oxygen. 

Generally speaking, in oxidation processes particular attention has to be paid to the flammability 

of the gas mixtures present all along the process, i.e. not only in the reactor but also up-stream 

and down-stream. So as to avoid explosions, oxidants (e.g. oxygen, chlorine etc.) and combustive 

agents (e.g. organic compounds, ammonia etc.) in the gas phase must be present in relative molar 

ratios that guarantee their non-flammability. In order to avoid this problem, it is mandatory to 

work outside the explosion limits. The latter vary according to the nature of the chemical species 

involved as well as the presence of diluting inert gases (e.g. nitrogen, water etc.). A very 

important safety parameter is the Minimum Oxygen Concentration (MOC) since it represents the 

limiting concentration of oxygen below which combustion is not possible, independently of the 

concentration of fuel [117]. Although, because of the limited availability of data concerning the 

specific gaseous mixture of interest, it is good practice to consider the MOC close to 7-8%; indeed, 

with few exceptions -e.g. acetylene, which MOC is 6.2%- a great number of organic compounds 

have a MOC varying between 10% (e.g. ethylene) and 12% (e.g. propylene). For instance, 

ethanol's MOC is 10.5% and the one of gasoline ca. 11% [118].  

In the experiments for glycerol oxydehydration reported above and in the following chapters, the 

best catalytic performance was actually registered for oxygen-to-glycerol molar ratio 12:6. 

Therefore, it might be that under such reaction conditions, the gaseous mixture fed to the reactor 

is within the explosion limits or very close to it. So as to avoid safety problems, the lab-scale plant 

was designed to limit as much as possible the presence of gaseous stream potentially flammable. 

Particularly, glycerol was mixed with oxygen only in close proximity of the catalytic bed, ca. 1 cm 

above it: this allows a good mixing of reagents but it limits the risk of potentially explosive 
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gaseous mixtures to a very restricted area of the reactor. Indeed, after the catalytic bed, taking 

into consideration an oxygen conversion between 50% and 90% (i.e. typical values obtained in the 

catalytic tests performed) the oxygen concentration is well above the MOC, guaranteeing the 

process safety. Another precaution is the usage of a glass reactor, which greatly limits the possible 

formation of sparks that might act as ignition sources (glycerol flash point 193°C, autoignition 

temperature 400°C). Moreover, in case of explosion, the fast increment of the gas' volume -finally 

translated into a sudden increment of pressure- would be limited by over pressure valves present 

in the lab-scale plant and connected to a vent. Finally, in case of failure of these safety systems, 

the small amount of organic fed (between 1 and 2 ml/h of glycerol solution with composition 

varying between 20 and 40 wt%) intrinsically guarantees the lab safety.  

Nevertheless, more complicated would be the scale-up of these reaction conditions at an 

industrial scale. First of all, a complete study on flammability ranges specific for the gaseous 

mixtures fed and potentially formed all along the plant should be carried out. In case that the 

gaseous mixtures didn't respect the flammability limits, it would be important to study alternative 

reaction conditions, maybe close to the optimum but not within the flammability ranges. In case 

the catalytic performance varied significantly under "safe working conditions" and if required by 

an economic study, some industrial technologies allow to work within the explosion limits. For 

instance, with fluidized bed reactor it is possible to work in the latter conditions although keeping 

the process safety [117]. Indeed, the solid particles of the catalyst interrupt the propagation of 

radical species in the gas phase which would lead to explosions.        
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3.3 Introduction of Molybdenum in V-substituted HTBs 

 This section deals with a new class of catalysts related to the HTB phase. The aim of this research 

is to insert molybdenum in the HTB W-V catalyst framework. Indeed, molybdenum is well known 

in oxidation catalysis (e.g. it is the main component of industrial catalysts for acrolein oxidation) 

and its redox properties were thought to potentially lead to an improvement in the oxidation-step 

of acrolein into acrylic acid; hence, to the overall selectivity of acrylic acid from glycerol.  

The best performing catalyst made it possible to reach yields into the acid monomer up to 51%, as 

well as stable oxidizing properties on a wide range of temperature. Also, interesting changes were 

observed in the oxides' structures; the W-Mo-V catalysts here presented are revealed to be 

complex oxides constituted by a hexagonal-WOx type phase or a pseudo-crystalline phase. It is 

also demonstrated that the combination of the three elements is essential in order to optimize 

the oxidation step from acrolein to acrylic acid.  

 

3.3.1 Physicochemical properties of the oxides  

In order to study the influence of tungsten, molybdenum and vanadium on both the catalytic 

performance and the materials structure, bi-component and tri-component catalysts were 

synthesized, respectively as W-Mo-V and W-Mo oxides. Figure 3.3.1 shows the XRD patterns of 

catalysts heat-treated at 600°C and 800°C in nitrogen; for the tri-component systems with low 

molybdenum contents (samples WMoV-1 and WMoV-2, patterns a and b) X-ray diffraction 

maxima can be assigned to a hexagonal tungsten bronze (HTB) type phase.  
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Figure 3.3.1. XRD-patterns of heat-treated oxides at  600°C. Two samples were also heat-treated in nitrogen at 800°C. 

Explanation: Catalyst precursors heat-treated at 600°C: a.WMoV-1, b.WMoV-2, c.WMoV-3, d.WMoV-4, e.WMo-1, 

f.WMo-2; g.WMoV-3[800], h.WMo-2[800]. 

 

Interestingly, crystallinity is considerably improved for the sample containing higher vanadium 

amount (WMoV-2), giving emphasis to the conclusion formerly drawn that highlights how 

vanadium has a stabilizing effect on the HTB structure [1]. By keeping the W/V ratio and 

increasing the molybdenum amount (i.e. WMoV-3 and WMoV-4), diffraction patterns are 

dominated by two diffraction maxima at around 22° and 46° 2θ. In addition, broad diffraction 

maxima appear at 2θ  27°, 32°, 50° and 55° (Figure 3.3.1, patterns c and d). These two peaks at 

2θ equals to 22° and 46° can be attributed to the (0 0 1) and (0 0 2) planes of a bronze type frame, 

suggesting that these materials have a layer-type crystal structure. Indeed, these diffraction 

maxima can correspond to the (1 0 0) and (2 0 0) d-spacing of any structure based on the corner 

sharing octahedral ReO3-like framework with a basic cell parameter of about 3.8 Å.  

Provided the ill-defined identity of the present crystal phases, the samples were further 

investigated by electron diffraction and high resolution electron microscopy. In agreement with 

XRD data, the tri-component samples WMoV-1 and WMoV-2 are constituted by crystals of the 
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hexagonal phase, although bigger crystallites are observed in sample WMoV-2 (average size > 100 

nm vs. 50-100 nm for WMoV-1)). For high Mo content, the HTB phase is not stabilized (WMoV-3 

and WMoV-4) and samples are formed by smaller crystallites, i.e. 10-50 nm. Figure 3.3.2,a shows 

a typical electron diffraction ring pattern for the WMoV-3 sample. Figure 3.3.2,b shows the high 

resolution image of a group of crystals in which lattice fringes are observed at d-spacing of about 

3.8 Å. Image contrasts illustrates very well the ill-defined periodicity along the perpendicular 

direction and disordered packing of structural planes is observed.  

 

Figure 3.3.2. (a) Electron diffraction ring pattern for the WMoV-3 sample. Rings are diffuse and ill defined except for 

(100) ( 3.8 Å). (b) High resolution image showing a bunch of crystals of the WMoV-3 sample. Lattice fringes at 3.8 Å can 

be observed. The red arrows indicate the direction along which disordered stacking is observed. (c) High resolution 

image of a rod-like crystal of WMo-2. Lattice planes spaced at  3.8 Å can be observed as well as disordered contrast 

along the perpendicular direction. The corresponding Fourier Transform has been included as inset.  
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This low resolved structural arrangement is consistent with the previous interpretation of the 

corresponding XRD pattern. In the absence of vanadium, XRD patterns show strong similarity with 

those of samples containing vanadium, the W/Mo ratio playing a pivotal role in stabilizing the 

HTB-type phase. Figure 3.3.2 (c) shows a rod-like crystal of the WMo-2 sample. Lattice planes 

equally spaced at  3.8 Å can be observed as well as disordered contrast along the perpendicular 

direction and the image contrast is very similar to that on figure 3.3.2 (b) although the average 

crystal size is above 100 nm. In order to facilitate the formation of well crystallized phases and as 

a help in the elucidation of the nature of these materials, the same catalysts precursors were heat 

treated in nitrogen at 800°C -see paragraph 2.3.1-.  

XRD patterns of samples heat-treated at 800°C, i.e. WMoV-3[800] and WMo-2[800], are also 

shown in Figure 3.3.1 (patterns g and h, respectively). Both patterns reveal the formation of a 

monoclinic WO3-type phase. In addition, a certain amount of Mo5O14-type phase is also visible in 

the sample containing vanadium (pattern h). The WMoV-3[800] sample is formed by a m-WO3 

type phase as major component. The electron microscopy study, see figure figure 3.3.3 (a) shows 

that the well grown crystals of m-WO3 type phase do not contain vanadium, the average atomic 

composition being W0.7Mo0.3O3. Interestingly, vanadium is segregated into the Mo5O14-type phase 

crystals which constitute the minor component of the sample and their atomic average 

composition is (W0.64Mo0.3V0.03)5O14 (figure 3.3.3 (b).  

All the above results are consistent with the idea that catalysts heat-treated at 600°C are 

constituted by a matrix built up by corner sharing MO6 octahedra and distributed in orderly 

stacked crystal planes (d  3.8 Å). Inside the planes, further structural reconstruction is needed to 

achieve a particular structural type, as demonstrated by the ill-defined diffraction maxima as well 

as the disordered contrast observed in the high resolution images.  
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Figure 3.3.3. (a) High Resolution Image of a m-WO3 type crystal contained in the WMoV-3[800] sample. (b) High 

resolution image of a M5O14-type crystal contained in the WMoV-3[800] sample. The corresponding Fourier Transforms 

have included as insets.  

 

FTIR spectra were recorded for both W-Mo and W-Mo-V catalysts; for comparison, the FTIR 

spectrum of WV-2 has also been reported in Figure 3.3.4, spectrum g. All the bands observed can 

be assigned to vibrational modes of HTB-like structures (see discussion reported in previous 

chapters). Therefore, strong similarity between spectra is consistent with the above structural 

description, whether in the HTB- or pseudo-crystalline structure. The specific surface area for all 

the catalysts is shown in Table 3.3.1; comparison between samples with the HTB-type structure 

(WMoV-1 and WMoV-2) reveal that catalyst with the higher vanadium content presents the lower 

BET surface area as a consequence of its higher crystallinity and bigger average crystal size.  

When comparing with samples containing the pseudocrystalline phase, the higher molybdenum 

content allows obtaining a significant increment of specific surface area (WMoV-1 vs. WMoV-3 or 

WMoV-2 vs. WMoV-4) the effect being more relevant when vanadium content is higher. 

When comparing with samples containing the pseudocrystalline phase, the higher molybdenum 

content allows obtaining a significant increment of specific surface area (WMoV-1 vs. WMoV-3 or 

WMoV-2 vs. WMoV-4) the effect being more relevant when vanadium content is higher. 
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Figure 3.3.4. FTIR spectra of: a.WMoV-1, b.WMoV-2, c.WMoV-3, d.WMoV-4, e.WMo-1, f.WMo-2; g.WV-2; 

 

A similar comparison can be done when characterizing the acid sites (Table 3.3.1); the addition of 

molybdenum leads to a remarkable decrease in acidity (see WMo-1 and WMo-2), both on mass 

and surface area basis; however, an important increase in Brnsted acidity is observed. Similar 

trend is displayed for HTB-like samples (WMo-1, WMoV-1 and WVMo-2); indeed, introduction of 

vanadium leads to a general decrease of the total acidity (more pronounced on mass-bases) but it 

increases the Brnsted-to-Lewis acid sites ratio. 

Table 3.3.1. Main physical-chemical features of the selected catalysts 

Sample Catalysts composition W/Mo/V
a 

SBET TPD B/L
c
 

 (in gel) (in catalysts)
b
 (m

2
g

-1
) µmolNH3g

-1
 µmolNH3m

-2
  

WMo-1 1/0.2 1/0.19/0 26 150.9 5.8 13 

WMo-2 1/0.6 1/0.52/0 13 47.9 3.7 18 

WMoV-1 1/0.3/0.1 1/0.22/0.06 30 91.1 3.0 22 

WMoV-2 1/0.2/0.2 1/0.28/0.17 12 34.8 2.9 28 

WMoV-3 1/0.5/0.1 1/0.45/0.04 38 129.0 3.4 18 

WMoV-4 1/0.5/0.2 1/0.86/0.14 22 114.3 5.2 20 

[a] Atomic ratios; referred to W equal to unity; [b] Experimental data obtain by SEM-EDS analysis. [c] Ratio between the 
areas of ammonia peaks relative to its adsorption (at 25°C) on Brönsted (B) or Lewis (L) acid sites. 
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On the other hand, the introduction of molybdenum in higher amounts, leading to pseudo-

crystalline structures (WMo-2, WMoV-3 and WMoV-4), brings about an increase in total acidity, 

but it depresses the presence of Brnsted-type acid sites. These trends make it evident that the 

introduction of redox elements (i.e. vanadium and molybdenum) in the WOx framework plays also 

a role on the nature of acid sites. Overall, it is important to point out that all the mixed-oxides 

studied have a predominant Brnsted acid character, therefore emphasizing the role played by 

these acid sites in the glycerol dehydration step [76, 77]. 

 

3.3.2 Lab-scale reactor tests 

The catalytic behavior of each sample was studied in the temperature range 270-410°C and at 

different residence times. It should be mentioned that for all the catalysts and all the reaction 

conditions explored, glycerol conversion was always complete, as already pointed out for both W-

V and W-V-Nb catalysts. Moreover, as far as the nature of these compounds is concerned, the 

same kind of compounds were detected for the catalysts here studied both at low contact time 

and/or low reaction temperature. 

In figure 3.3.5 and 3.3.6 are reported the most representative catalytic results obtained in the 

oxidehydration of glycerol performed on bi-component W-Mo and tri-component W-Mo-V 

catalysts, when it was used a feed with molar ratio Oxygen/Glycerol/Water/Nitrogen=4/2/40/54. 

Generally speaking, both bi-component catalysts showed always complete glycerol conversion 

and remarkable acrolein yield; however, only low yields in partial oxidation products (mainly 

acrylic and acetic acid) were obtained along with high yields in both heavy compounds and COx. 
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Figure 3.3.5. Glycerol oxidehydration on W-Mo-(V) catalysts. Contact time 0.4s. A) WMo-2, B) WMoV-1, C) WMoV-4, D) 

WMoV-3. Symbols: Acrylic Acid (■), Acrolein(▲), COx(X), Heavy compounds (ӿ), Others (●). Glycerol conversion always 

complete. Feed molar ratio Oxygen/Glycerol/Water/Nitrogen=4/2/40/54.  

 

At contact time 0.4s and 330°C, WMo-2 (which showed a better catalytic performance than WMo-

1) allowed obtaining 12% acrylic acid selectivity plus 28% acrolein (Figure 3.3.5); the highest heavy 

compounds selectivity (35%) was reached at 270°C, thus decreasing in favor of carbon oxides at 

higher temperature. Taking into consideration the high formation of heavy compounds on WMo-1 

and WMo-2, molybdenum alone is clearly unable to fast oxidize acrolein (as underlined by the 

high ratio between acrolein and acrylic acid), even for high molybdenum loadings in the catalyst, 
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the parallel reactions taking place from the aldehyde and leading to heavy compounds are 

favored. 

 

Figure 3.3.6. Glycerol oxidehydration on W-Mo-(V) catalysts. Contact time 0.15s. A) WMoV-3, B) WMoV-4. Symbols: 

Acrylic Acid (■), Acrolein(▲), COx(X), Heavy compounds (ӿ), Others (●). Glycerol conversion always complete. Feed 

molar ratio Oxygen/Glycerol/Water/Nitrogen=4/2/40/54. 

 

A remarkable improvement in the oxidation of acrolein to acrylic acid is observed for the tri-

component samples W-Mo-V-O. The incorporation of vanadium in the catalysts, even at low 

concentration (e.g. WMoV-1), leads to a remarkable difference in the catalytic performance (Fig. 

3.3.5).  

Indeed, at low temperature, acrylic acid yield increased almost three times (from 7% to 18%) and 

its maximum shifted from 330°C to 270°C, pointing out the superior redox properties of vanadium 

in comparison to molybdenum; on the other hand, increasing the temperature, total combustion 

was favored.  

WMoV-3 is the catalyst that gave the highest acrylic acid yield at the lowest temperature (31% at 

290°C, tau 0.4 s). The heavy compounds yield set between 7% and 12% and the COx varied 

between 40% and 50% yield; at temperature higher than 330°C, acrylic acid yield decreased, 

partially in favor of carbon oxides but to some extent also in favor of acrolein and heavy 
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compounds, suggesting that at higher temperature the oxygen introduced in the feed is not 

enough to oxidize acrolein. All in all, a remarkable note for the catalytic performance of WMoV-3 

is that acrylic acid yield is almost identical on a wide range of temperature (from 270°C to 330°C); 

comparing this catalyst with the ones already reported in literature for the same reaction (vide-

supra) and with W-V oxides, it is evident that this behavior represents an important leap forward 

for the design of catalysts more suitable for industrial scale-up, since in oxidation catalysis the 

precise control of temperature all along the catalytic bed represents a very challenging task at 

industrial scale. Thus, combination of molybdenum and vanadium leads to a better control of the 

oxidative properties of the catalysts, smoothing the oxidizing strength of vanadium. In regard to 

acrylic acid selectivity as a function of temperature, a similar trend to WMoV-3 was registered for 

WMoV-4, but at a lower contact time (0.15 s) (Figure 3.3.6); indeed, from 270°C to 410°C acrylic 

acid yield varied of only few percentage points, from 22% to 28%. Comparing WMoV-3 (contact 

time 0.4 s) and WMoV-4 (contact time 0.15 s), at low temperature carbon oxides yield was much 

lower in the latter case but there was no gain in acrylic acid yield since the difference is basically 

accounted in higher formation of heavy compounds; however, comparing WMoV-3 and WMoV-4 

tested at contact time 0.15 s, it can be seen that the latter sample leads to higher yields into 

acrylic acid and lower yields to COx. Nevertheless, comparing WMoV-3 and WMoV-4 tested at 

contact time 0.4 s, higher acrylic acid yields were obtained in the former case as long as lower 

yields into acrolein, and much lower yields into heavy compounds, finally corresponding to higher 

yield into COx.  

Therefore, higher loadings of vanadium improve the oxidation process but lead to total oxidation 

products at higher temperature and residence time; on the other hand, high amounts of 

molybdenum depress the acrolein oxidation, favoring the parallel reactions leading to heavy 
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compounds. Overall, dehydrating properties of W-oxide and redox properties of Mo/V-oxide must 

be carefully balanced in order to maximize the yields into acrylic acid.  

Because of the wide range of physical-chemical properties of the complex oxide catalysts here 

reported, we calculated both productivity for acrylic acid (AA) and acrolein (A) (Table 3.3.2); 

indeed, productivity calculations can point out the main differences regarding the active phases, 

therefore making it possible to relate the catalytic performance and the catalysts’ nature. 

Comparing samples WMoV-1 and WMoV-2, both having an HTB structure, it is possible to figure 

out the role of vanadium in the catalysts; indeed, on a similar base of molybdenum, the sample 

richer in vanadium (WMoV-2) improves productivity not only for the partial oxidation product, 

but also for acrolein. This evidence points out once again the role of vanadium in the acrolein 

oxidation, but it also reflects that a fast oxidation step is mandatory so as to limit the parallel 

reaction leading to heavy compounds. 

Table 3.3.2. Structure-reactivity correlations for W-Mo-(V) catalysts.  

Sample  Structure
a 

 
Max. AA sel. 
(T≤330°C) 

b  
Productivity 

(gproduct h
-1

 gCT
-1

) 
c 

 Productivity 
(gproduct h

-1
 mCT

-2
)*10

2
 
d
 

    τ = 0.15s τ = 0.4s  AA A  AA A 

WMo-1  HTB  n.d. 5 (330)  0.008 0.021  0.032 0.080 

WMo-2  Ps-C  5 (330) 12 (330)  0.040 0.11  0.31 0.86 

WMoV-1  HTB  14 (310) 16 (290)  0.055 0.048  0.18 0.16 

WMoV-2  HTB  14 (330) 21 (330)  0.059 0.070  0.49 0.58 

WMoV-3  Ps-C  17 (290) 31 (290)  0.12 0.023  0.31 0.060 

WMoV-4  Ps-C  28 (330) 20 (330)  0.066 0.053  0.30 0.24 

All the values reported were obtained with feed molar ratio oxygen/glycerol/water/nitrogen = 4/2/40/54.  Glycerol 
conversion was always complete. Explanation: AA, acrylic acid; A, acrolein. [a] Overall crystalline structure of the 
sample. HTB: hexagonal tungsten bronze; Ps-C: pseudo-crystalline. [b] Maximum acrylic acid selectivity obtained at 
temperature lower than 330°C, respectively at contact time 0.15s and 0.4s. In parenthesis is reported the temperature 
at which the maximum yield was observed. [c] Productivity calculated as gAA or A h-1 gCT-1 (i.e. h-1). Reaction 
conditions: feed 290°C, contact time 0.4 s. [d] Productivity calculated as gAA or A h-1 mCT-2. For graphical reasons 
these values are multiplied by 102. Reaction conditions: feed 290°C, contact time 0.4 s. 
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Molybdenum is also crucial in the oxidation process; indeed, moving from WMoV-1 to WMoV-3 

(having similar amount of vanadium but higher content of molybdenum) the acrylic acid 

productivity is improved. However, when the amount of molybdenum is higher (WMoV-4 vs. 

WMoV-2) the Brnsted to Lewis acid sites ratio decreases and leads also to a variation in the 

elements distribution which depress the overall oxidehydration process, as highlighted by the 

abrupt overall productivity drop (AA+A) per meter square of catalysts; on the other hand, acrylic 

acid productivity on molar bases increases from 0.059 to 0.066 h-1 due to the increased surface 

area (from 12 to 22 m2/g). From productivity trends calculated on mass and surface area basis, 

the role of the crystal structure can also be outlined. First of all, for tri-component catalysts, it can 

be pointed out that AA productivity (on mass- and surface area-bases) has its maximum located in 

different position, i.e. WMoV-3 and WMoV-2, respectively. This means that the best catalyst, in 

terms of activity per specific surface area, is WMoV-2; however, because of its low area, the 

productivity remains scarce. Therefore, it can be deduced that the pseudo-crystalline structure 

plays an important role in determining the catalysts productivity per gram of catalyst; indeed, it 

has been demonstrated that the highest surface area is obtained for low vanadium- and high 

molybdenum-content, which is the condition where the pseudo-crystalline structure forms. On 

the other hand, it seems that it is the relative distribution of the elements what has the major 

impact in the catalytic performance: productivity trends are clearly a function of the oxide 

composition, whether in the HTB or in the pseudo-crystalline phase.   

For bi-component (W-Mo) catalysts, it must be mentioned that acrylic acid productivity is 

relatively high due to the low surface area; however, acrylic acid productivity per gram of catalyst 

is low. Moreover, the high overall acrolein productivity underlines the insufficient redox 

properties of V-free catalysts, since acrolein remains mainly unconverted.  



99 
 

Finally, so as to gain a wider picture on the role of tungsten, it is of interest to compare our results 

with the ones recently published by L. Shen et al. [56]. The authors performed the glycerol 

oxidehydration reaction on Mo/V oxides (without tungsten), prepared by slurry synthesis; the 

catalysts being composed of Mo6V9O40- and MoO3-phases and presenting relatively low surface 

area (10-12 m2 g-1). When glycerol was made react on these oxides, low carbon balances were 

obtained due to poor acid properties of the catalysts (both as total acidity and most likely as 

Brnsted-to-Lewis acid sites ratio), as long as a wide range of C3 and C2 products.  

Therefore, the above mentioned evidences on W-Mo- and W-Mo-V-catalysts make clear that: (i) 

to perform selectively the glycerol dehydration step into acrolein a high amount of Brnsted acid 

sites are needed, highlighting the fundamental role of tungsten, (ii) the specific productivity of the 

catalysts is governed by the relative amount of the elements and their spatial distribution, 

whether the oxide framework is composed of an HTB- or pseudo-crystalline-structure, (iii) the 

pseudo-crystalline structure has a role only in determining the catalyst productivity, due to its 

influence on surface area.  

 

Figure 3.3.7. WMoV-3. Study on the influence of contact time. Feed molar ratio 

Oxygen/Glycerol/Water/Nitrogen=4/2/40/54. Temperature 290°C. 
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Since WMoV-3 allowed obtaining the highest acrylic acid yields at the lowest temperature (the 

latter parameter being desirable at industrial scale), its catalytic performance was studied as a 

function of inlet feed composition. These catalytic tests were carried out at contact time close to 

0.4 s since at this value is located the best balance between the partial oxidation of acrolein into 

acrylic acid and its total combustion into carbon oxides (therefore, as a consequence, the acrylic 

acid yield maximum)  (Figure 3.3.7). Moreover, 290°C was chosen as temperature for the catalytic 

test since it represents an intermediate value in the range of temperature where WMoV-3 

showed the acrylic acid yield plateau (Fig. 3.3.5).  

 
Figure 3.3.8. Glycerol oxidehydration on WMoV-1. A): Variable oxygen-to-glycerol ratio; B) Constant Oxygen-to-Glycerol 

molar ratio (equal to 2). Symbols: Acrylic Acid (■), Acrolein(▲), COx(X), Heavy compounds (ӿ), Acetic acid (+), Others (●). 

Glycerol conversion always complete. Others: mainly acetaldehyde (in minor amounts, < 4%: allylic alcohol, acetone, 

propionaldehyde, propionic acid and hydroxyacetone). Reaction conditions: temperature 290°C, 0.3 g of catalyst, 

contact time 0.4s. Feed composition (molar %): Oxygen and glycerol as reported in the plots, water 40%, nitrogen up to 

100%. Reaction time: 90 min. 

 

In figure 3.3.8 are presented the catalytic results obtained for WMoV-3 as a function of feed 

molar ratio. For experiment with oxygen-to-glycerol ratio 6:6, heavy compounds yield reached 

values as high as 24% and acrolein yield was close to 23%; on the other hand acrylic acid only 
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reached yield close to 14% together with 28% COx yield. Increasing the partial pressure of oxygen, 

the acrylic acid yield augmented at a higher rate than COx, since heavy compounds loss was 

accounted more into acrylic acid than carbon oxides; acrylic acid yield reached a maximum equal 

to 51% at oxygen to glycerol ratio of 12:6, finally decreasing in favor of carbon oxides when the 

oxygen to glycerol ratio reached the value 18:6. A similar trend to the one reported for acrolein 

and acrylic acid was shown by acetaldehyde and acetic acid, the latter achieving 8% yield at 

oxygen-to-glycerol ratio 12:6; the acrylic acid maximum obtained is similar to the one obtained 

with WVNb-1 mixed oxide in the same reaction conditions, but the latter being achieved after ca. 

37 hours of time on stream (see figure 3.2.5). Very similar catalytic behavior was also observed 

when the oxygen to glycerol molar ratio was set constant (equal to 2) (Figure 3.3.8 (B)), since 

heavy compounds yield decreased mainly in favor of acrylic acid than COx. Therefore, it is 

confirmed that high partial pressures of oxygen play the fundamental role of accelerating the 

catalyst re-oxidation process, the latter being depressed by the high reducing power of glycerol 

and/or its strong adsorption on the catalyst's surface. Indeed, when acrolein was made react on 

WMoV-3 in the same reaction conditions (Fig. 3.1.5) a different behavior was registered since 

increasing the partial pressure of both oxygen and glycerol -but keeping constant their ratio- the 

acrylic acid selectivity decreased constantly in favor of carbon oxides.  
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Figure 3.3.9. Acrolein oxidation on WMoV-1 at different oxygen-to-glycerol molar ratios. Others: mainly acetaldehyde 

and acetic acid. Reaction conditions: temperature 290°C, 0.3 g of catalyst, contact time 0.4s. Feed composition (molar 

%): Oxygen and glycerol as reported in the plots, water 40%, nitrogen up to 100%. Reaction time: 90 min. 

 

Finally, increasing the oxygen partial pressure (oxygen-to-glycerol molar ratio of 18:6) , it is 

evident that total oxidation of acrolein to COx is favored. All in all, comparing the latter trends 

with the ones obtained for glycerol and the different COx selectivities got in the two experiments, 

it seems that glycerol reduces the catalyst’s surface because of its direct transformation into 

carbon oxides (scheme 3.3.1). 
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Scheme 3.3.1. The scheme highlights the direct combustion of glycerol and total oxidation of 

acrolein. 
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Finally, the catalytic behavior of WMoV-3 was studied as a function of the time on stream -ToS- 

(figure 3.3.10), using the same reaction conditions where the maximum acrylic acid yield was 

registered. Along 70 hours ToS glycerol conversion was always complete, the sum of acrolein and 

acrylic acid being constant with an average value around 53% and an initial 51% acrylic acid yield; 

on the other hand, after 90 minutes ToS (that is the time we normally used to study the catalysts 

behavior -see experimental section-), acrylic acid yield slowly started to decrease in favor of the 

aldehyde.  

Overall, after ca. 28h ToS both products yield reached a stable average value of 42% (acrylic acid) 

and 12% (acrolein); the latter values being stable for at least the following 40 hours. Comparing 

the XRD spectra of fresh and spent sample -after 69h ToS- (figure 3.3.11) it is possible to see that 

a new diffraction peak appears at ca. 26 2Θ degrees, the latter being most likely related to partial 

transformation of the pseudo-crystalline structure into monoclinic-WO3. Moreover, when 

comparing Raman spectra of fresh and spent catalysts (Fig. 3.3.11) it is revealed the presence of 

carbonaceous deposits on the catalyst surface. Both phenomena could thus be ascribed as 

responsible for the changes in product distribution during ToS test. So as to assess the relative 

importance of the two phenomena, an attempt of regeneration was carried out feeding a mixture 

of oxygen and nitrogen (molar ratio 5:95) at 350°C for 2 hours, contact time 0.4s. As 

demonstrated by Raman spectra of regenerated catalyst (figure 3.3.11) the carbon deposits were 

effectively removed by the oxidation treatment; on the other hand, once the regenerated catalyst 

was used to continue the ToS test, acrylic acid selectivity improvement was minimum (plus 2-3%).  

Therefore the change of the crystalline phase is clearly the key-factor governing the catalyst 

deactivation. Comparing the variation observed for the crystal structure of the W-Mo-V catalyst to 

W-V-Nb oxide previously studied, it is evident the stabilizing role played by niobium; indeed, Nb-

containing catalyst preserved the structure after an analogous ToS test.  
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Figure 3.3.10. Glycerol oxidehydration on WMoV-3. Time-on-stream test. Glycerol conversion always complete. Others: 

mainly acetaldehyde and acetic acid (in minor amounts, < 4%: allylic alcohol, acetone, propionaldehyde, propionic acid 

and hydroxyacetone). Negligible formation of heavy compounds was registered. Reaction conditions: contact time 0.4s, 

290°C. Feed composition (molar %): glycerol 6%, oxygen 12%, water 40%, helium 42%. 

 

 

 

 

 

 
Figure 3.3.11. Comparison between XRD pattern (left) and Raman spectra (right) of Fresh and Spent WMoV-3. 
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3.3.3 Conclusions 

The physical-chemical properties and the catalytic performance of W-Mo-(V) oxides make it clear 

the main role of each element in the oxide frame: tungsten dehydrates glycerol to acrolein, 

vanadium oxidizes acrolein into acrylic acid and molybdenum moderates the strong oxidizing 

properties of vanadium. The atomic ratio of the elements is pivotal for tuning redox and acid 

properties, but it also plays a role both in the size of the crystals and their long-range distribution, 

finally influencing the catalysts' productivity. High oxygen feed molar ratios help the catalyst re-

oxidation step and allowed obtaining acrylic acid yield as high as 51% on the WMoV-3 catalyst. 

Acrolein oxidation tests evidence that direct oxidation of glycerol and acrolein also take place. 

Time on stream test (ca. 70h) on WMoV-3 reveals a stable overall yield for acrolein and acrylic 

acid. Under reaction conditions, evolution of the crystal phase leads to a slight inversion in the 

yields of the two consecutive products along the first 5h ToS. However, a stable catalytic behavior 

was observed for more than 40 hours ToS. 
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3.4 The importance of acid-redox properties and structure-reactivity 

correlations in one-pot glycerol oxidehydration 

 

Revising the results reported in the previous chapters as well as the ones present in the literature, 

there is some important lack of information about various insights concerning glycerol 

oxidehydration at the molecular level. Considerable attention has been focused in finding the best 

performing catalysts for glycerol oxidehydration to acrylic acid, but the more intimate aspects of 

the reaction have not been studied into details.  

First of all, the studies carried out on the various mixed-oxides discussed previously, have clearly 

highlighted that both acid and redox properties have to be carefully tuned in order to keep an 

optimal control on the glycerol oxidehydration reaction. Moreover, it was demonstrated that the 

same acid sites needed to dehydrate glycerol into acrolein can also catalyze undesired secondary 

reactions which lead to numerous by-products such as ketals and oligomers. However, so far it 

has not been reported any systematic study which aims to understand if it is possible to both 

efficiently dehydrate glycerol into acrolein and also hamper the by-products formation. For 

instance, a selective poisoning of the strongest acid sites could depress the formation of by-

products while the medium-to-strong acid sites could be preserved to dehydrate glycerol into 

acrolein. With this idea in mind, a systematic study was carried out by poisoning the acid sites of a 

vanadium-substituted HTB (WV-3) with potassium. The different preparation methods used as 

well as reactivity tests and physicochemical characterizations not only shed light on the influence 

of acid and redox properties on by-products formation but also provide some interesting insights 

on the structural nature of the substituted-HTBs.  

Additionally, revising the literature it can be evinced that some peculiar phenomenon must be 

behind the different results obtained for the glycerol one-pot oxidehydration on multifunctional 

catalysts. Mixed-oxides with selective acid properties for the dehydration of the polyol to 
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acrolein, showed substantially different selectivity to acrylic acid despite the same redox element, 

i.e. vanadium, was present. This was the case of vanadium-substituted HTBs, vanadium-

containing zeolites [61] and Vanadium-Phosphorus-Oxides (VPOs) [78]. Indeed, looking at these 

results, catalysts related to the Perovskites family seems to be the only mixed-oxides capable of 

efficiently carrying out the whole glycerol oxidehydration to acrylic acid, with selectivities greater 

than 50% at total glycerol conversion. The other systems showed significantly lower selectivities: 

(i) maximum AA selectivity for V-BEA, 25% at 75% glycerol conversion and (ii) maximum AA 

selectivity for VPO, 8% at total glycerol conversion. So as to better examine these peculiar results, 

selected mixed oxides where used as reference materials: (i) W-V-oxides with HTB structure, (ii) V-

containing Al-P-(Co)-oxides, (iii) commercial Vanadyl Pyrophosphate -VPP- (DuPont, calcined 

[119]) and (iv) a V-exchanged hexagonal-tungsten oxide. The results obtained clearly highlight 

that an important structure-reactivity correlation exists and governs the redox features of 

vanadium along the oxidation step.    

 

3.4.1 Physicochemical properties of the oxides 

WV-3 and WV-2 catalysts were described in the previous chapters and in [1], but they are also 

reported in this chapter as reference materials; for an easier comparison, the main features of 

these catalyst are also discussed in table 3.4.1 and in the following figures. Generally speaking, all 

the K-containing catalysts present a lower BET area than WV-3, which indicates that K-ions block 

the channels running along the c-direction of HTBs and/or form additional species on the catalyst 

surface that have low specific surface area. The VPP catalyst used is an industrial sample 

commercialized by DuPont, whose properties were extensively studied and reported in literature 

[119, 120]; particularly, we used the calcined oxide. This sample is made by micrometric spheres 

with a core of VPP-phase (ca. 150μm) and surrounded by a layer of porous silica (ca. 2μm) to 
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improve its attrition resistance in fluidized bed reactors, where this material was meant to be 

used for the production of maleic anhydride. 

Table 3.4.1. Main physicochemical properties of the oxides 

Sample Atomic ratios
a
 

BET 
area 

External 
area

b
 

TPD-NH3
 

 W V K 
Al or 
(Si) 

P Co m
2 

g
-1

 m
2 

g
-1

 μmol g
-1

 μmol m
-2

 

WV-2 1 0.12 - - - - 19 17 72 3.8 

WV-3 1 0.21 - - - - 21 18 76 3.7 

K-0.5 1 0.21 0.21 - - - 12 9.4 25 2.2 

K-0.1 1 0.21 0.11 - - - 16 14 36 2.3 

K-Imp 1 0.21 0.09 - - - 17 14 42 2.5 

K-Syn 1 0.16 0.10 - - - 11 8.4 21 1.9 

VPP - 0.37 - (0.19) 0.44 - 41 40 90 2.2 

V/WOx 1 0.15 - - - - 25 20 113 4.5 

Co-AlPO - - - 0.46 0.52 0.022 263 26 241 0.91 

V-CoAlPO - 0.0046 - 0.46 0.53 0.031 298 32 331 1.1 

V/V-Co-AlPO - 0.0079 - 0.49 0.51 0.019 192 27 249 1.3 

[a] Data obtained by EDX analysis. [b] Calculated by t-plot analysis.  

 

This catalyst presents a relatively high surface area (41 m2/g) and it is largely mesoporous, with an 

average pore diameter of 198 Å. V/WOx has a lower area than pure h-WOx (25 vs 31 m2/g) which 

indicates that the vanadium exchanged acts as potassium and blocks the channels in HTBs. 

Modified-AlPO catalysts present a relevant surface area, although their external area is 

significantly smaller, since most of the contribution to the total surface area comes from 

micropores (e.g. V-CoAlPO has a t-plot micropore volume of ca. 0.13 cm3/g and average BJH pore 

diameter of ca. 50 Å). A comprehensive discussion on modified-AlPO materials can be found 

elsewhere [121].  

In figure 3.4.1 are presented the XRD patterns of the catalysts prepared. Modified-AlPO catalysts 

(trace g-i) present the characteristic diffraction peaks of zeolite-like materials with AFI structure, 
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which confirm the correct preparation of AlPO-5 catalysts. Both for CoAlPO and V-CoAlPO no 

changes are observed in the diffraction peaks, confirming the insertion of cobalt and vanadium in 

the oxide framework as tetrahedral units [81]. However, when an additional amount of vanadium 

was added to the V-CoAlPO catalyst by wet impregnation (sample V/V-CoAlPO, trace i), extra-

framework vanadium species formed as V2O5, which are responsible for the additional diffraction 

peaks observed in the latter sample. The XRD pattern of the VPP catalyst (trace l) shows the 

presence of the characteristic phase (VO)2P2O7; the lack of additional peaks confirm that no other 

V-P-O phases constitute this catalyst [119]. 

 

Figure 3.4.1. XRD patterns of catalysts. a) WV-3; b) K-0.5; c) K-0.1; d) K-Imp; e) K-Syn; f) V/WOx; g) Co-APO; h) V- Co-

APO; i) V/V-Co-APO (* indicates V2O5 diffraction peaks), l) VPP. 

 

All the HTB-like materials (traces a-f) present the diffraction peaks of a hexagonal tungsten oxide 

(JCPDS: 33-1387), with only minor changes in crystallinity. Hence, both the ion-exchange and 

impregnation processes do not affect the HTB-structure. However, a slight decrease in crystallinity 

is observed for the sample where potassium was introduced in the synthesis gel (K-Syn, trace e). 

Sample V/WOx has the poorer crystallinity among all the HTB-like catalysts (trace f); however, this 
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oxide was heat-treated at 450°C, whereas the other ones up to 600°C. When V/WOx was treated 

at temperatures above 450°C, the HTB structure decomposed into a monoclinic-W-V-O. The same 

behavior was observed for pure hexagonal tungsten oxide (indicated as WV-0 in [1]) since above 

450°C it decomposed into m-WO3. Hence, this is a remarkable evidence that V-ions introduced by 

ion-exchange do not enter the hexagonal framework, but rather stay either in the channels or on 

the surface of the material; the latter option should play a minor role since the catalyst was 

washed with abundant distilled water after the ion-exchange procedure. 

As far as catalysts prepared by ion-exchange with potassium are concerned, the V/W ratio is 

preserved if compared to WV-3, which allows discarding leaching phenomena during the 

preparation, as it was also visible from the color of filtered mother liquors, i.e. colorless. The 

increased concentration of KHCO3 in the solution used to carry out the exchange process -see 

chapter 2.1.2-, increased the quantity of potassium in the catalyst (see K-0.1 vs. K-0.5). However,  

the theoretical atomic ratio K/W=0.3 [63] was never obtained, most likely due to ion-diffusion 

problems in the needle-like crystals that characterize ammonium-HTBs, as illustrated in figure 

3.4.2 for WV-3.  

In figure 3.4.3 and table 3.4.1 are reported the results obtained by ammonia-TPD experiments. 

TPD-MS analysis are currently in preparation for the VPP catalyst; however the total acidity value 

reported in table 3.4.1 highlights that VPP has relevant acid properties as also reported in the 

literature by other authors [78]. Potassium-containing catalysts (traces a-d in figure 3.4.3) 

compared to WV-3 sample (trace e) present lower acidity. From desorption profiles it is also 

possible to visualize that the strongest acid sites (ammonia desorption range 250-450°C) are the 

most affected by the introduction of potassium. Therefore, it is confirmed that the addition of 

potassium can selectively poison the strongest acid sites. Instead, V/WOx maintains a significant 
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amount of the overall acid sites (both strong and weak) that characterize the parent h-WOx (113 

vs. 135 μmolNH3/gcat) -see WV-0 in [1]-. 

 

Figure 3.4.2. A) SEM image of WV-3. It highlights the needle-like morphology of (NH4
+
)-W-V catalysts prepared by 

hydrothermal method. B) TEM image of a needle that compose WV-3. The presence of cavities on the crystals' surface 

of heat-treated samples (the geometrically defined brighter areas on the crystal in B) was discussed in a recent 

publication [122]. 

 

 

Figure 3.4.3. NH3-TPD profiles of reported catalysts. a) K-syn, b) K-0.5, c) K-0.1, d) K-imp, e) WV-3, f) V/WOx, g) CoAlPO, 

h) V-CoAlPO, i) V/V-CoAlPO. 
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Modified-AlPO catalysts have a much higher total acidity than all the other materials; it is also 

clear the presence of acid sites with different strength as highlighted by the two desorption 

maxima at approximately 190°C and 270°C, which can be assigned respectively to the presence of 

Lewis and Brɸnsted acid sites [123].   

In order to evaluate the influence of the catalyst composition and preparation method on the 

redox properties of the catalysts examined, experiments of temperature-programmed-reduction 

with hydrogen (H2-TPR) were carried out (figure 3.4.4). The presence of potassium in the HTB-like 

catalysts (trace b-e) seems to have a relevant influence not only on acid properties, as previously 

discussed, but also on the redox ones. The first reduction peak shifted towards higher 

temperatures as a function of the K-content, from ca. 485°C for WV-3 to 570°C for K-0.5. Samples 

with similar amount of potassium (K-0.1, K-imp and K-syn) have an almost identical maximum at 

around 520°C, despite the different preparation method used. Analogous behavior was observed 

for the second reduction maxima but the peaks also broaden considerably. Therefore, the 

addition of potassium seems to hamper the redox process of vanadium in V-substituted-HTBs 

since the overall reduction profile is shifted towards higher temperatures. 

 

Figure 3.4.4. TPR of selected catalysts.  a) WV-3, b) K-0.1, c) K-imp, d) K-syn, e) K-0.5, f) CoAlPO, g) V-CoAlPO, h) V/V-

CoAlPO, i) WV-2, l) V/WOx, m) VPP.  
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The V-free AlPO (sample CoAlPO, trace f) did not show any reduction up to 650°C. V-CoAlPO (trace 

g) presents multiple reduction peaks that can be assigned to various species of in-framework V-

atoms. The impregnation of vanadium on V-CoAlPO (i.e. sample V/V-CoAlPO, trace h) augments 

the consumption of hydrogen and shifts the reduction peak towards higher temperatures. A new 

maxima also appeared at ca. 590°C, suggesting that extra-framework vanadium-species are more 

difficult to reduce than the in-framework ones.  Compared to WV-2, V/WOx presents the first 

peak of reduction at an almost identical temperature, whereas the second one shifted to higher 

values and seems to be the sum of two reduction peaks. VPP presents a minor reduction peak at 

around 446°C, but a broad peak with a maximum at 708°C is present.  

 

3.4.2 Lab-scale reactor tests 

 In figure 3.4.5 are reported the catalytic results obtained on K-V-substituted HTBs and they are 

compared to WV-3. All the catalysts were tested under the optimal reaction conditions for W-V 

catalysts (see [1] and previous chapters), i.e. 290°C and contact time ca. 0.4s. Moreover, provided 

the results obtained on the importance of the redox cycle in both W-V-Nb and W-Mo-V catalysts, 

each mixed-oxide was analyzed both with a feed molar ratio (glycerol/oxygen/water/nitrogen) 

2/4/40/54 and 6/12/40/42.   

As far as catalytic results obtained with feed molar ratio 2/4/40/54 are concerned, compared to 

WV-3, the catalysts prepared by exchange method (K-0.5 and K-0.1) formed a significant amount 

of heavy compounds and the acrylic acid selectivities decreased consistently as well as COx. 

However, the sample containing less potassium, K-0.1, doubled the acrylic acid selectivity 

compared to K-0.5, whereas the selectivity to COx decreased. K-imp, in spite of its very similar K-

content, showed a significantly different behavior compared to the exchanged-catalysts; the 

heavy compounds selectivity was almost null, as for WV-3, however the acrylic acid selectivity was 
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only 14% vs. 26% for WV-3 and the acrolein selectivity increased up to 22%. Nonetheless, 

significant formation of other compounds was registered in this case, with selectivity up to 33%; 

provided their retention time, these compounds are most likely composed by oligomers and 

ketals of the same nature discussed in the previous chapters. K-syn presented the higher acrolein 

selectivity, however very low acrylic acid as well as high heavy compounds formation.   

 

Figure 3.4.5. Glycerol oxidehydration on K-containing catalysts and WV-3. Temperature 290°C, contact time 0.4s. Feed 

molar ratio (glycerol/oxygen/water/nitrogen) 2/4/40/54 (■) and 6/12/40/42 (■). Glycerol conversion always complete. 

In all cases, acetaldehyde and acetic acid formed with selectivity values between 10 and 15%. Unknown compounds 

formed in minor amounts (selectivity 1-2%), with the only exception for the test with feed molar ratio 2/4/40/54 using 

K-imp; in this case selectivity to unknown compounds (most likely ketals and oligomers) was close to 33%.  

 

The differences observed show that the preparation method used has remarkable consequences 

on reactivity, despite the similar amount of alkaline metal. For instance, the exchange method as 

well as the addition of potassium in the synthesis gel seem to have the greatest influence on 

acidity and therefore on the dehydration properties. Indeed, with feed molar ratio 2/4/40/54, the 

formation of heavy compounds is very high compared to the catalyst prepared by K-impregnation, 
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even if in the last case remarkable amounts of oligomers and ketals formed. This might be due to 

the different influence on Brɸnsted and Lewis acid sites of the preparation method used. Indeed, 

as it was demonstrated and commented in the previous chapters, Brɸnsted acid sites are 

selective for glycerol oxidehydration to acrolein whereas Lewis acid sites lead to mono-

dehydration products and finally to heavy compounds, as reported in scheme 3.4.1.   

 

Scheme 3.4.1. Main products obtained from glycerol oxidehydration. It is stressed the role of active sites in each step. 

 

As discussed in chapter 1.8, in HTBs the Brɸnsted acid sites important for the glycerol selective 

dehydration are mainly located within the channels. The exchange method substitutes 

ammonium ions (which, after heat-treatment, transform into H+) for K-ions in the parent 

materials of the oxides, therefore affecting consistently the number of Brɸnsted acid sites in the 

final catalysts. Moreover, as evidenced by NH3-TPD analysis, the stronger acid sites are the ones 

mainly affected by the presence of potassium. In a similar way, the addition of potassium along 

the synthesis of the catalyst introduces K-ions in the channels, instead of ammonium-ions. 

Considering the bulk nature of catalyst K-syn, the overall quantity of K-ions present on the surface 
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(hence accessible to organic molecules) should be less than the total amount found by EDX 

analysis, therefore explaining the lower formation of heavy compounds and the higher acrolein 

formation for K-syn than K-0.1. Instead, with the impregnation method potassium is dispersed 

randomly on the surface and it affects statistically both Lewis and Brɸnsted sites, explaining the 

much higher acrolein selectivity and the low formation of heavy compounds. So as to further 

support the results just presented, XP-spectroscopy and FTIR analysis with adsorbed ammonia are 

currently being carried out for all the catalysts presented in this chapter. These investigations can 

provide important insights on the relative distribution of potassium in the catalysts as well as 

semi-quantitative figures on the ratio between Brɸnsted and Lewis acid sites. Additionally, from 

figure 3.4.4 it is evident that the presence of potassium not only affects the acid properties but 

also the redox ones. Acrylic acid and COx selectivities are lower for all the K-containing catalysts 

compared to WV-3. The impregnation method also affects less the redox properties compared to 

the exchange preparation. Finally, the low selectivity to acrylic acid of K-syn, can be partially 

attributed to the lower content of vanadium (0.16 vs. 0.21); however, it cannot be the only 

explanation since WV-2 that has V/W ratio equal to 0.12, showed acrylic acid yield up to 18% (vs. 

4% for K-syn) [1]. Overall, comparing these results to H2-TPR analysis, some important differences 

can be pointed out; catalysts containing significantly different amounts of potassium (i.e. K/W=0, 

0.1 or 0.21) presented different reduction profiles. However, when the amount of potassium was 

similar (catalysts K-0.1, K-Imp and K-Syn), the H2-TPR profiles where quite similar, particularly for 

the first reduction peak. The differences between TPR and catalytic tests suggest that H2-TPR 

analysis might not be completely representative of the redox property of vanadium in this 

systems; the catalytic phenomenon involves only the oxides surface accessible to the organic 

molecules involved, whereas H2-reduction can affect the whole bulk of the catalyst and/or also 

the active sites not accessible to larger molecules. However, a univocal rationalization of the 
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reasons why the redox properties are so remarkably affected by potassium is not so 

straightforward. The heavy compounds formation (due to the lower acid properties) in such high 

amounts is a possible explanation since the deposition of carbonaceous material on the catalysts 

surface also lowers the availability of the redox sites. Similarly, the decreased surface area due to 

the presence of potassium (see table 3.4.1) leads to the same phenomenon. Potassium might also 

directly interact with V-ions because of acid-base affinity, finally poisoning the redox sites.  

Remarkable changes in the catalytic performance were observed when the feed molar ratio was 

varied from 2/4/40/54 to 6/12/40/42 (glycerol/oxygen/water/nitrogen) -see figure 3.4.5-. Indeed, 

as observed for the other substituted-HTBs previously studied, WV-3 improved its catalytic 

performance and acrylic acid selectivity up to 35% where reached (further tests and comments on 

this mixed-oxide are reported below); however, none of the potassium-containing catalysts 

showed this behavior, actually displaying a reverse trend for acrylic acid selectivity. Carbon oxides 

also decreased and heavy compounds augmented, particularly for K-imp. In this case, the 

oligomers and ketals that formed at lower partial pressures of reactants, might be seen as the 

"precursors" of the heavy compounds (not eluted in the GC system, but left as residues on both 

reactor walls and catalyst surface) that form in the latter case. These evidences clearly show that 

redox sites are poisoned by potassium, making slower their redox cycle and the consecutive 

oxidation processes, finally enhancing the by-products formation and polymerizations. The 

remarkable change observed for K-imp also indicates that, although the impregnation process 

affects less the catalyst, at higher partial pressures of reactants the decreased availability of active 

sites becomes more evident.  

In order to extend the various conclusions drawn in this thesis on HTB-like systems to other 

multifunctional catalysts, modified-AlPO catalysts and commercial VPP were used as reference 
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mixed-oxides. These materials are well known catalysts used in selective oxidation processes, 

such as cyclohexane oxidation, ethane-ODH and maleic anhydride synthesis [81, 124, 125].  

In figure 3.4.6 are reported the catalytic results obtained on the multifunctional catalysts 

analyzed. As an explorative test, the contact time optimal for WV-3 (ca. 0.4s) was used also for 

the other oxides. Preliminary studies were also carried out -not reported in figure- using the 

CoAlPO catalyst (without vanadium); in spite of the acid properties of this material, glycerol 

conversion was complete only at temperature   360°C and no acrylic acid was formed. Moreover, 

significant amounts of heavy compounds were formed (selectivity between 50% and 40%). 

However, the addition of vanadium consistently improves the activity of the catalyst since in all 

cases and for all temperatures, glycerol conversion was always complete both for V-CoAlPO and 

V/V-CoAlPO. VPP showed always a complete conversion of glycerol, too. WV-3, as most of the 

previously reported substituted-HTBs, displayed the highest acrylic acid yield at low temperature, 

which decreased steeply rising the temperature, in favor of carbon oxides. Differently, V-CoAlPO 

showed an acrylic acid maximum at 330°C; at higher temperatures, heavy compounds selectivity 

decreased not only in favor of COx, but also to acrolein in minor extent.  

In an attempt to improve the acrylic acid selectivity of V-CoAlPO, catalyst V/V-CoAlPO was 

prepared by impregnation of the latter with additional vanadium -1wt%-. Contrary to the 

vanadium present in V-CoAlPO, which is part of the Al-P-(Co)-O lattice, the vanadium impregnated 

forms extra-framework species as V2O5 (see discussion for XRD analysis). Taking into consideration 

the products distribution obtained on V/V-CoAlPO, the extra-framework vanadium species seem 

to (i) block the active in-framework-V-sites, (ii) enhance total oxidation to carbon oxides and (iii) 

be completely inactive towards the selective oxidation of acrolein to acrylic acid. It is of interest to 

compare our results to the ones obtained by Pestana et al. using vanadium-impregnated zeolite-

beta [61]. Indeed, although extra-framework vanadium species were also present in the latter 
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materials, acrylic acid selectivity up to 25% were obtained, although at glycerol conversion lower 

than 80%. However, these authors used 10wt% vanadium loadings and the surface area of the 

catalyst was quite higher (268 m2/g) than the one of V/V-CoAlPO discussed in this chapter (192 

m2/g). Unfortunately, the glycerol oxidehydration reaction was performed at only two temperatu- 

 

Figure 3.4.6. Catalytic behavior of WV-3 (◆), V-CoAlPO (■), V/V-CoAlPO (▲), VPP (X) in glycerol oxidehydration tests as 

a function of temperature. Feed composition: 2 mol% glycerol, 4 mol% oxygen, 40 mol% water, and 54 mol% helium. 

Contact time 0.4s (Calculated at room temperature). Glycerol conversion always complete. Acetaldehyde, acetic acid 

and other compounds formed with the following selectivities on each catalyst: V-CoAlPO 15-25%, VPP and V/V-CoAlPO 

11-18%, WV-3 8-12%. Among the "other compounds", hydroxyacetone was also present. However, numerous unknown 

species also formed. 
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-res therefore it is not possible to further discuss the catalytic behavior of those materials and 

compare them with the ones reported herein. 

The industrial VPP catalyst displayed a very peculiar catalytic behavior, for some aspects similar to 

V-CoAlPO but completely opposite to WV-3. The COx selectivities, at all the temperatures 

investigated, are the lowest among all catalysts; however, what is mainly remarkable is the 

increase in acrylic acid selectivity at high temperatures (maximum 16% at 390°C), that is where all 

the HTB-like catalysts showed their minimum. As a consequence, the acrolein yield decreased 

since it is partially and totally oxidized to acrylic acid and COx.   

So as to deepen the knowledge on the catalytic behavior of WV-3, V-CoAlPO and VPP, the same 

catalytic tests as a function of feed molar ratios previously performed for W-V-Nb and W-Mo-V 

catalysts, where also carried out for these systems.  However, in order to better evaluate the 

catalytic performance of each oxide, preliminary studies on the influence of contact time were 

carried out (not shown) using the feed molar ratio gly/oxygen/water/nitrogen 2/4/40/44, which 

proved that V-CoAlPO has its optimal contact time at ca. 0.4 s as WV-3, whereas the one of VPP is 

located at higher values, ca. 1s. In figure 3.4.7 is reported the product distribution for each mixed-

oxide as a function of feed composition, using for each catalyst the respective optimal 

temperature and contact time (see details in figure's caption). 

WV-3 showed its maximum acrylic acid selectivity (35%) at oxygen-to-glycerol molar ratio 12:6, as 

all the other HTB-like catalysts. Comparing these results to what observed previously with WMoV-

3 (see chapter 2.6), it is evident the important role played by molybdenum in the latter system 

since, under the same reaction conditions, it reached selectivity into the acid monomer as high as 

51%, thanks to the more selective oxidation of acrolein (less COx). V-CoAlPO did not improve its 

performance varying the feed molar ratio, since the acrylic acid maximum (12%) was found to be 

in the previously explored conditions, i.e. oxygen-to-glycerol molar ratio 4:2.  
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Figure 3.4.7. Glycerol oxidehydration as a function of feed molar ratio on A) WV-3, B) V-CoAlPO, C) VPP. Symbols: 

Acrylic Acid (■), Acrolein (▲), COx (X), Heavy compounds (ӿ). Glycerol conversion always complete. Further compounds 

detected but not reported in the plot: (i) WV-3: acetic acid and acetaldehyde 2-3%, unknown compounds 2-3%.  (ii) V-

CoAlPO: acetaldehyde + acrylic acid 8-17%, unknown compounds 3-7%. (iii) VPP: acetic acid ca. 10%, unknown 

compounds 2%. Feed molar ratio Oxygen/Glycerol/Water/Nitrogen=4/2/40/54. Reaction conditions: WV-3: T 

(temperature) 290°C, Tau (contact time) 0.4s; V-CoAlPO: T 330°C, Tau 0.4s; VPP: T 390°C, Tau 1s. 

 

Also in this case, VPP showed the opposite behavior than HTB-like catalysts, presenting the 

maximum acrylic acid selectivity (28%) at oxygen-to-glycerol molar ratio 2:1. At higher pressures 

of reactants both partial and total oxidation were hampered, provoking the increment of the 

intermediate product (acrolein) and finally the formation of heavy compounds. 

Oxygen : Glycerol (mol/mol)

0

20

40

60

80

100

0

10

20

30

40

50

60

4/2 8/4 12/6

G
ly

c
e

ro
l C

o
n

v
e

rs
io

n
 (
%

)

S
e

le
c

ti
v
it

y
 (
%

)

A

Oxygen : Glycerol (mol/mol)

0

20

40

60

80

100

0

10

20

30

40

50

60

2/1 4/2 8/4

G
ly

c
e

ro
l C

o
n

v
e

rs
io

n
 (
%

)

S
e

le
c

ti
v
it

y
 (
%

)

B

Oxygen : Glycerol (mol/mol)

0

20

40

60

80

100

0

10

20

30

40

50

60

2/1 4/2 8/4

G
ly

c
e

ro
l C

o
n

v
e

rs
io

n
 (
%

)

S
e

le
c

ti
v
it

y
 (
%

)

C



122 
 

At this stage, it is worth mentioning that V-P-oxides have already the been subject of publication 

by Ueda and co-workers as catalysts for glycerol dehydration and oxidehydration [78]. Among the 

V-P-O materials prepared, these authors found that VOHPO4·0.5H2O was the best performing 

phase, with acrolein yield up to 66%. Their vanadyl pyrophosphate showed acrolein selectivity up 

to 41% but only traces of acrylic acid. However, whatever the V-P-O phase used, acrylic acid was 

always a minor product (maximum selectivity 8% at 350°C). The different results obtained in this 

work on the commercial VPP catalyst can be explained as follows: (i) the pyrophosphate catalyst 

used in [78] has a significantly lower surface area 8 m2/g (vs. 41m2/g of the commercial VPP); (ii) 

the reaction conditions used in [78] are not the optimal ones for VPP, since oxygen-to-glycerol 

molar ratio of about 9:1 was used, that is the feed molar ratio we have demonstrated, for this 

catalyst, to depress the selective oxidation of acrolein and favor its total combustion (selectivity 

up to 22% in COx were obtained associated to the maximum acrylic acid selectivity observed in 

[78]); (iii) most likely due to the scarce formation of acrylic acid observed on pyrophosphate 

during the preliminary screening tests [78], its catalytic performance was analyzed at a single 

temperature, i.e. 300°C (differently to what done for the hydrated V-P-O phase), which is too low 

compared to the optimal value, i.e. 390°C; (iv) the presence of silica in the commercial-VPP 

catalyst used might play a role in the catalytic result, although considering the absence of redox 

properties and the scarce acid features of SiO2, it seems quite unlikely.   

All in all, the remarkable difference displayed by HTB-like catalysts and VPP opens important 

questions on the reasons why their catalytic behavior for glycerol oxidehydration is opposite. Both 

systems are acid catalysts that can efficiently dehydrate glycerol into acrolein; however, the same 

active element (vanadium) behaves in an opposite manner in the consecutive oxidation step. 

Hence, so as to efficiently carry out the glycerol oxidehydration it is not enough to couple acid and 

redox properties in the same catalyst, but it seems to exist a complex structure-reactivity 



123 
 

correlation that governs the more or less selective oxidation process. These results could be 

explained by (i) a faster re-oxidation ability of vanadium in VPP and/or (ii) by a different 

adsorption of glycerol and acrolein on the surface of the catalyst, which in turn doesn't lead to the 

fast saturation of the active sites as previously observed in HTB-like catalysts. So as to shed light 

on these phenomenon, FTIR studies of adsorbed acrolein are currently being carried out on the 

catalysts involved in this chapter.  

In an attempt to further explore the structure-reactivity correlations of multifunctional catalysts 

for glycerol oxidehydration, the catalytic behavior of HTBs can be compared to an hexagonal 

tungsten oxide exchanged with V-ions (catalyst V/WOx). This way, it is possible to compare the 

catalytic behavior of vanadium when it either belongs to the HTB framework or it is present as 

extra-framework species -see discussion for XRD (vide supra)-. Due to the lower amount of 

vanadium that constitute V/WOx compared to WV-3 (V/W 0.15 vs. 0.21), it is more convenient to 

compare its performance to WV-2, whose composition is W1V0.12 -see table 3.4.1-. In figure 3.4.8 

are reported the results obtained on the two catalysts under the optimal reaction conditions for 

WV-2, that is time factor 0.0085 g min ml-1 and 318°C. For both catalysts, glycerol conversion was 

always complete. 
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Figure 3.4.8. Glycerol oxidehydration on WV-2 [1] and V/WOx. Temperature 290°C, time factor 0.0085 g min ml
-1

. 

Glycerol conversion always complete.  

 

In spite of the formation of acrolein on V/WOx, acrylic acid formed just in minor amounts (3%); 

however, COx formed in remarkable amounts. Most likely due to the slower oxidation, secondary 

reactions were favored, finally leading to heavy compounds. This tests make evident that the 

presence of vanadium either inside or outside the oxide framework has a pivotal influence on the 

oxidation properties of the transition element. 

Finally, some general considerations on the activity of vanadium in the various multifunctional 

catalysts have to be taken into account. Comparing WV-3 to V-CoAlPO it is clear the superior 

catalytic performance in glycerol oxidehydration of the former. However, the total amount of 

vanadium in V-CoAlPO is almost 10 times less than the one in WV-3, respectively ca. 0.4 wt% and 

4 wt%; if all the vanadium atom were available to the organic molecules, the Turnover Frequency 

(TOF) of acrylic acid per atom of vanadium would be approximately 1 h-1 for WV-3 and 6 h-1 for V-

CoAlPO (compared using the same contact time -0.4s-, the same feed oxygen-to-glycerol molar 

ratio, 4/2, but respectively at 290°C and 330°C). Hence, the overall picture on the catalytic 

performance at the atomic level would be opposite. Nonetheless, the real accessibility of 
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vanadium in the two catalysts is considerably different than the total amount present, particularly 

for HTBs. Indeed, it has been demonstrated that glycerol and acrolein (as well as the other by-

products) can enter the micropores of zeolites [126] and therefore also the ones of AlPO-5 

materials; whereas, only the external surface area of HTBs is available for catalysis since these 

mixed-oxides have neither micropores nor any other kind of porosity (see the difference between 

BET and external surface area for the various catalysts reported in table 3.4.1). Concluding, 

although the quantification of the number of vanadium atoms really accessible by glycerol and 

acrolein might be impossible, these observations have to be taken into consideration to make a 

right comparison of the catalytic performances. Analogous reflections are appropriate once 

considering the mesoporosity of the industrial VPP catalyst used or the availability of vanadium in 

V/WOx.    

 

3.4.3 Conclusions 

In order to perform the one-pot glycerol oxidehydration on single multifunctional catalysts, the 

acid and properties of the mixed-oxide used have to be carefully tuned. In spite that strong acid 

sites have been demonstrated to catalyze not only glycerol dehydration to acrolein but also heavy 

compounds formation, its presence is mandatory to allow the fast double dehydration of the 

polyol. If the strong acid sites are poisoned with potassium, the acrolein formation is hampered 

and glycerol is only partially dehydrated; moreover, potassium also affects the redox properties of 

vanadium. In the end, both phenomena lead to heavy compounds formation. Therefore, it doesn't 

seem possible to avoid the by-products formation by lowering the strength of the acid sites, since 

the same acid sites needed for the efficient glycerol oxidehydration are also responsible for 

catalyzing polycondensation reactions to ketals and heavy compounds. 
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 Glycerol oxidehydration was also perform on various multifunctional catalysts with both acid 

properties and vanadium as the redox element. Specifically were used: (i) V-substituted-HTBs, (ii) 

V-containing Al-P-(Co)-oxides, (iii) commercial Vanadyl Pyrophosphate -VPP- and (iv) a V-

exchanged hexagonal-tungsten oxide. The results obtained on these materials highlight that 

vanadium doesn't behave in the same way in the consecutive oxidation step. For instance, VPP 

behaves in an opposite manner than V-substituted-HTBs; the former displays the highest acrylic 

acid yield (28%) at high temperature and low feed molar ratios of the reactant, whereas the  latter 

works better (35% acrylic acid selectivity) at low temperatures and high feed molar ratios. 

Moreover, the vanadium redox sites located either inside or outside the oxide framework of HTBs 

and modified-AlPOs show very different catalytic behavior. In-framework V-sites seem to be much 

more selective toward the partial oxidation of acrolein than extra-framework V-species. Further 

analysis are currently in preparation to better define the phenomena observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 
 

3.5 X-ray Absorption Spectroscopy (XAS) with synchrotron radiation as a 

tool to better comprehend the complex structure of substituted-HTBs 
 

In the previous chapters, substituted-HTBs have been demonstrated to be complex mixed-oxide 

whose structure is strongly influenced by preparation method, elemental composition and post-

synthesis heat-treatments. Their complexity becomes particularly evident in tri-component 

oxides, i.e. W-V-Nb and W-Mo-V, respectively discussed in chapter 2.4-2.5 and 3.3. Indeed, the 

introduction of vanadium in the HTB structure did not lead to any particular changes in terms of 

crystallinity, which made it possible to well-characterize the nature of W-V catalysts by 

conventional powder-XRD. However, when either Nb or Mo were introduced, the crystallinity of 

these materials significantly decreased, hampering an easy characterization by conventional 

analysis. For instance, the best performing W-V-Nb catalyst for glycerol oxidehydration (WVNb-1) 

had almost 60% of amorphous phase (see chapter 2.5). W-Mo-V catalysts were even more 

complex to characterize since at high contents of molybdenum the only result given by X-ray 

diffraction was the presence of a stacked material with cell parameters of ca. 3.8Å.     

Even though microscopy (particularly TEM) can give important information to characterize these 

oxides in the so-called long range order, it cannot help in clarifying the very intimate nature of the 

local-environment around each element in the oxide frame, particularly if the material is poorly 

crystallized. For instance, this was the case for the TEM investigation carried out on WMoV-3. A 

more appropriate characterization technique for pursuing this piece of information is X-ray 

Absorption Spectroscopy (XAS), which however requires highly technological equipments only 

available at synchrotron facilities -see chapter 2.2 for more details-. Thanks to the co-supervised 

PhD project that characterizes this thesis, it was possible to access the beamline BM25A "Spanish 

Line" at the European Synchrotron Radiation Facility (ESFR) in Grenoble (France) (ESFR 

experiment n° 25-01-901).   
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Part of the results obtained are presented and discussed below in the aim of shedding light on the 

local geometric structure of the substituted-HTBs presented in this thesis and used as catalysts for 

the one-pot glycerol oxidehydration.     

 

3.5.1 From the reagents to HTBs 

Before presenting the results obtained on the heat-treated materials, i.e. the catalysts used for 

glycerol oxidehydration, some interesting insights have been obtained analyzing vanadium in the 

catalysts precursors, that is the parent material obtained after the hydrothermal synthesis and 

that transforms into the final catalysts after heat-treatment at high temperature -see chapter 2.1-

. In figure 3.5.1 is reported an example of the results obtained for V-substituted hexagonal 

tungsten bronzes, specifically WV-3. The analysis of both the parent material and the catalyst 

itself were carried out and  VOSO4 and V2O5 were used as reference materials.  The pre-peak 

position is characteristic of the oxidation state of the investigated element; indeed, generally 

speaking, the higher the oxidation state, the higher the pre-peak energy. In fact, V2O5 presents the 

pre-peak at higher energy than VOSO4 since in the first case vanadium is in oxidation state (V) 

whereas in the latter (IV). The pre-peak position of WV-3-precursor indicates that the majority of 

vanadium is present in oxidation state (V), although the presence of vanadium (IV) cannot be 

discharged. However, once heat-treated in nitrogen at 600°C, vanadium is reduced to V (IV) and 

(III) as it was also evidenced by XPS analysis in chapter 3.2.  
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Figure 3.5.1. XAS analysis of WV-3 and related precursor. Vanadium K-edge. A) XANES region; B) Detail of the vanadium 

pre-peak; C) Fourier-transform of the EXAFS spectra. V2O5 (red line), VOSO4 (blue line), WV-3-precursor (green line), 

WV-3 (black line). 

The variations observed well explain some aspects of the catalysts synthesis that were not 

completely understood. Indeed, we noticed that it isn't possible to synthesize the W-V oxide with 

HTB phase using a vanadium salt with the transition element in oxidation state (V). Moreover, 

pure h-WOx (without vanadium) cannot be synthesized in the absence of a reductor (e.g. 

ammonium oxalate), which instead was not needed for the synthesis of W-V-O catalysts using 

VOSO4 as a source of vanadium. Results obtained by XAS permit to summarize all these 

observations according to scheme 3.5.1.  

 

Scheme 3.5.1. Oxidation state of transition metals during the preparation of V-substituted HTBs. 
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In short, as a tungsten source is used ammonium meta-tungstate which has tungsten as W (VI); 

instead, vanadium sulfate, i.e. V (IV), is the source of vanadium. The two reactants are mixed 

together to form a solution which is used for the hydrothermal synthesis. During the 

hydrothermal synthesis carried out in inert atmosphere, vanadium partially reduces tungsten to 

W (V) therefore it is oxidized to V (V). This process is fundamental for obtaining the hexagonal 

phase which is indeed composed by tungsten in a mixed oxidation state (V/VI) -see chapter 1.8-. 

As it can be observed by powder-XRD (figure 3.5.2), the solid obtained after the synthesis, washed 

and dried (WV-precursor), is already a W-V-mixed-oxide with hexagonal phase. However, with a 

slightly lower crystallinity compared to the final catalyst; some minor shifts of diffraction maxima 

also indicate a minimal rearrangement of atoms and/or of the cell-parameters of the oxide 

framework during the heat-treatment. This is also confirmed by EXAFS spectra of WV-precursor 

and WV-3 (figure 3.5.1, c), since the spectra are almost identical, with only minor changes in 

intensities that can be assigned to the variation in the increment of crystallinity and atom 

distribution observed by XRD. Comments on the EXAFS spectra of reference oxides are reported 

below. 

 

Figure 3.5.2. Powder-XRD of WV-precursor (black pattern below), and WV-3 (red pattern above). 

2Ɵ
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Finally, when WV-precursor is heat-treated in nitrogen up to 600°C, ammonium ions decompose 

in H+ and NH3. The protons remains in the channels that characterize the oxide lattice and 

generate its characteristic acidity; whereas ammonia leaves the solid favoring the reduction of 

vanadium (V) into vanadium (IV). Therefore, XAS results perfectly explain the reason why the 

vanadium source must have vanadium in a reduced state (e.g. (IV)) and/or an external source of 

reductant (e.g. oxalic acid) must be present to form the hexagonal framework. It also explains the 

mixed-oxidation state of tungsten and vanadium observed on the surface of fresh catalysts by XPS 

analysis -see chapter 2.5-. Of course, the same conclusions drawn using WV-3 can also be 

extended to the tri-component catalysts prepared, W-V-Nb and W-Mo-V, taking also into 

consideration the constant oxidation state of Nb (V) and the easily interchangeable oxidation 

state of molybdenum (V/VI).  

 

 

3.5.2 Vanadium coordination in HTBs 

The studies carried out by studying the K-edge of vanadium in W-V, W-V-Nb and W-Mo-V, has 

also allowed us to gain additional knowledge on the local geometry of the transition element in 

the three series of substituted-HTBs. In figure 3.5.3 are reported the EXAFS spectra of 

representative samples of each series and compared to reference materials. EXAFS spectra of 

catalysts prove that vanadium has a very similar oxygen coordination shell in all three samples, 

despite XRD analysis showed either the presence of a well-crystallized hexagonal phase (WV-3), or 

consistent presence of amorphous phase (WVNb-1), or simply a structure with orderly stacked 

crystal planes (WMoV-3) -see previous chapters-.  Provided the similarities among them, 

comparing these catalysts to reference materials (V2O5 and VOSO4) it can be deduced that the 

local geometry of vanadium in the catalysts is much more similar to V2O5 than VOSO4. 
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Figure 3.5.3. Left: Fourier-transform of the EXAFS spectra for representative samples of substituted-HTBs and reference 

materials. a) WV-3, b) WVNb-1, c) WMoV-3, d) V2O5, e) VOSO4. Right: Exemplification of the V-coordination in HTBs and 

reference catalysts. Bond length values for references were obtained from the literature (see text).  

      

EXAFS spectra of vanadium pentoxide has a very low intensity due to destructive interference of 

the various contribution from the multiple VO lengths that characterize its distorted octahedral 

coordination [127] (see figure 3.5.3). Instead, vanadyl sulfate has a more regular distribution of V-

O lengths [128] (see figure 3.5.3) that explains the higher intensity of the EXAFS spectra. Hence, 

vanadium local geometry in substituted-HTBs is always very similar and it seems to be 

characterized by octahedral coordination with quite a regular (but not equal) distribution of V-O 

lengths. These conclusions are supported by XANES (as an example, see spectra of WV-3 and 

references in figure 3.5.1, a and b) where the pre-peak of vanadyl sulfate is the most similar to the 

one of the catalysts, and less intense than the one of vanadium pentoxide as an indication of a 

more centrosymmetric coordination environment for VOSO4. However, the existence of the pre-

peak also for the catalysts is an unquestionable evidence that, although quite regular, vanadium is 

in an octahedral environment without inversion center, i.e. not-perfectly regular.  
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Concluding, the various catalysts prepared consist of mixed-oxide with hexagonal tungsten bronze 

structure, which is well or poorly crystallized depending on elemental composition, preparation 

method and post-synthesis heat treatments. These features characterize the long-range order of 

crystals, which can be observed by transmission electron microscopy. However, the transition 

elements that constitute these materials (W, V, Nb, Mo) are organized in corner-sharing 

octahedra more or less distorted which form orderly stacked crystal planes with d-spacing of ca. 

3.8 Å, typical of any ReO3-like crystal structures, to whom hexagonal tungsten bronzes belong. 

Computational studies aimed at simulate the EXAFS spectra obtained at the synchrotron are 

currently in preparation; this way, a quantitative evaluation of the various metal-oxygen distances 

can be achieved.  
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4. Overall Conclusions 

Hexagonal Tungsten Bronzes (HTBs) and related oxides are a very interesting family of materials 

with a great potential for innovative application in catalysis. The acid properties related to their 

peculiar structure make them valuable catalysts for applications where medium-to-strong acidity 

is needed, particularly if Brɸnsted acid sites are required. Moreover, a great number of elements 

can be incorporated inside or outside the hexagonal framework, giving to these oxides an amazing 

potential as multifunctional catalysts. However, probably due to the complexity of these materials 

as well as their difficult characterization, their use in catalysis has been significantly hampered.  

Along the PhD promgram, three years of research were dedicated to the synthesis, 

characterization and utilization as catalysts of multifunctional HTB-like materials, thanks to an 

international collaboration between ITQ-UPV (Spain) and University of Bologna (Italy). "Soft"-

chemical methods were used to revise and improve the synthesis of HTBs and a number of 

physicochemical techniques (among which HR-TEM and XAS) were utilized to fully comprehend 

their nature. Introduction of niobium in W-V HTBs was proved to be possible also through 

hydrothermal synthesis; moreover, for the first time in literature, new W-Mo-V oxides with HTB-

like structure were obtained. These materials were applied as catalysts for the one-pot glycerol 

oxidehydration, a reaction potentially able to find a viable solution for the glycerol surplus from 

the biodiesel synthesis. The catalytic results obtained position these multifunctional HTBs as the 

most effective catalysts so far reported in literature for this reaction. Finally, a comparison of V-

containing HTBs to other multifunctional (acid and redox) catalysts containing vanadium was 

performed. The results clearly indicate that a peculiar structure-reactivity correlation exists and 

the local environment of vanadium seems to govern its redox properties. 
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The overall results reported herein might represent a significant contribution for future 

applications of HTBs in catalysis as well as a general guideline for a multifaceted approach for 

their physicochemical characterization.  
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5. Publications 

Along the three year of the PhD program various papers were published, both directly related to 

the topic of this PhD thesis and about other projects not discussed herein. 

5.1. Publications related to the research project presented in this PhD thesis 

 A. Chieregato, F. Basile, P. Concepción, S. Guidetti, G. Liosi, M. Dolores Soriano, C. 

Trevisanut, F. Cavani, José M. López Nieto, Glycerol oxidehydration into acrolein and 

acrylic acid over W–V–Nb–O bronzes with hexagonal structure, Catalysis Today, Volume 

197, Issue 1, 2012, Pages 58-65. 

 A. Chieregato, M. Dolores Soriano, F. Basile, G. Liosi, S. Zamora, P. Concepción, F. Cavani, 

José M. López Nieto, One-pot glycerol oxidehydration to acrylic acid on multifunctional 

catalysts: Focus on the influence of the reaction parameters in respect to the catalytic 

performance, Applied Catalysis B: Environmental, Volumes 150–151, 2014, Pages 37-46. 

 A. Chieregato, M. Dolores Soriano, E. García-González, G. Puglia, F. Basile, P. Concepción, 

C. Bandinelli, José M. López Nieto, Fabrizio Cavani, Multielement Crystalline and 

Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol 

into Acrylic Acid, ChemSusChem, DOI: 10.1002/cssc.201402721. 

 

5.2. Publications related to other projects 

 J. J. Creasey, A. Chieregato, J. C. Manayil, C. M. A. Parlett, K. Wilson, Adam F. Lee, Alkali- 

and nitrate-free synthesis of highly active Mg–Al hydrotalcite-coated alumina for FAME 

production, Catalysis Science & Technology, Volume 4, 2014, Pages 861-870. 
 

 D. Cespi, F. Passarini, G. Mastragostino, I. Vassura, S. Larocca, A. Iaconi, A. Chieregato,  J.-

L. Dubois, F. Cavani, Glycerol as feedstock in the synthesis of chemicals: a life cycle analysis 

for acrolein production, Green Chemistry, DOI: 10.1039/c4gc01497a. 

 A. Chieregato, J. Velasquez Ochoa, C. Bandinelli, G. Fornasari, F. Cavani, M. Mella, On the 

Chemistry of Ethanol on Basic Oxides: Revising Mechanisms and Intermediates in the 

Lebedev and Guerbet reactions, ChemSusChem, DOI: 10.1002/cssc.201402632. 

 A. Chieregato, José M. López Nieto, F. Cavani, Mixed-oxide catalysts with Vanadium as the 

key element for gas-phase reactions, Coordination Chemistry Reviews, 
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Appendix 

(i) Summary in English  

The project of this Ph.D. thesis is based on a co-supervised collaboration between Università di 

Bologna, ALMA MATER STUDIORUM (Italy) and Instituto de Tecnología Química, Universitat 

Politècnica de València ITQ-UPV (Spain).  

This Ph.D. thesis is about the synthesis, characterization and catalytic testing of complex mixed-

oxide catalysts mainly related to the family of Hexagonal Tungsten Bronzes (HTBs). The latter have 

been little explored as catalysts, although they have a great potential as multifunctional materials. 

Their peculiar acid properties can be coupled to other functionalities (e.g. redox sites) by 

isomorphous substitution of tungsten atoms with other transition metals such as vanadium, 

niobium and molybdenum.  

In this PhD thesis, it was demonstrated how it is possible to prepare substituted-HTBs by 

hydrothermal synthesis; these mixed-oxide were fully characterize by a number of 

physicochemical techniques such as XPS, HR-TEM, XAS etc. They were also used as catalysts for 

the one-pot glycerol oxidehydration to acrylic acid; this reaction might represent a viable chemical 

route to solve the important issue related to the co-production of glycerin along the biodiesel 

production chain. Acrylic acid yields as high as 51% were obtained and important structure-

reactivity correlations were proved to govern the catalytic performance; only fine tuning of acid 

and redox properties as well as the in-framework presence of vanadium are fundamental to 

achieve noteworthy yields into the acid monomer. 

The overall results reported herein might represent an important contribution for future 

applications of HTBs in catalysis as well as a general guideline for a multifaceted approach for 

their physicochemical characterization.  
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(ii) Summary in Spanish 

Esta tesis doctoral está realizada bajo un convenio de cotutela firmado por la Università di 

Bologna, ALMA MATER STUDIORUM (Italia) y el Instituto de Tecnología Química, Universitat 

Politècnica de València ITQ-UPV (España).  

La presente tesis doctoral estudia la síntesis, caracterización y ensayos catalíticos de óxidos mixtos 

relacionados con la familia de los bronces de tungsteno hexagonales. Estos materiales presentan 

un importante potencial como materiales multifuncionales, aunque han sido utilizados 

minoritariamente como catalizadores. . Sus peculiares propiedades ácidas pueden ser acopladas 

con otras características (por ejemplo, sitios redox) a través de la substitución isomórfica de 

átomos de tungsteno con otros metales de transición como vanadio, niobio y molibdeno. 

En esta tesis doctoral se ha demostrado cómo es posible preparar bronces de tungsteno 

hexagonales substituidos a través de síntesis hidrotermal; estos óxidos mixtos han sido 

caracterizados empleando numerosas técnicas de caracterización físico-químicas - como XPS, HR-

TEM, XAS etc. Por otro lado se han utilizado como catalizadores para la síntesis directa de acido 

acrílico a partir de glicerol.Esta reacción puede representar una solución viable para el problema 

relacionado con la co-producción de glicerina a lo largo de la cadena productiva del biodiesel. Se 

han obtenido rendimientos a acido acrílico del 51% . Además, se han observado  importantes 

relaciones entre las estructuras y la actividad catalítica , las cuales han sido determinantes para el 

proceso catalítico. El ajuste de las propiedades acidas y redox y la presencia en-red de vanadio son 

esenciales para conseguir rendimientos relevantes en el monómero acido.  

En general, los resultados presentados en esta tesis doctoral pueden ser una contribución 

relevante para futuras aplicaciones de los bronces de tungsteno hexagonales en catálisis y 

también como una guía general para una completa caracterización físico-química de estos óxidos.      
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(iii) Summary in Valencian 

Esta tesi doctoral està basada en un conveni de cotutela signat per la Università di Bologna, ALMA 

MATER STUDIORUM (Italia) i el Institut de Tecnologia Química , Universitat Politècnica de València 

ITQ-UPV(Espanya). 

La present tesi doctoral estudia la síntesis, caracterització i assajos catalítics de òxids mixtes 

relacionats amb la família dels bronzes de tungstèn hexagonals. Aquestos materials presenten un 

gran potencial com materials multi funcionals, encara que no han sigut molt emprats com 

catalitzadors. Les propietats àcides particulars de aquestos materials poden ser potenciades amb 

altres característiques (per exemple, llocs redox) mitjançant la substitució isomòrfica d’àtoms de 

tungstèn amb altres metalls de transició com vanadi, niobi i molibdè.  

En aquesta tesi doctoral es demostra com es possible sintetitzar bronzes de tungstèn hexagonals 

substituïts a partir de síntesis hidrotermal. Aquestos òxids mixtes han segut caracteritzats 

emprant diverses tècniques de caracterització físico-químiques com XPS, HR-TEM, XAS, etc...Per 

altra part, s’han utilitzat com catalitzadors per a la síntesis directa de àcid acrílic a partir de 

glicerol, aquesta reacció pot representar una solució viable per al problema relacionat amb la 

coproducció de glicerina al llarg de la cadena productiva de biodiesel. S’han obtingut rendiments a 

àcid acrílic del 51%. A més, s’han observat importants relacions entre les estructures i la activitat 

catalítica, les quals han sigut determinants per al procés catalític. El ajust de les propietats àcides i 

redox i la presència en red de vanadi són essencials per a obtindre rendiments rellevants en el 

monòmer àcid. 

En general, el resultats presentats en aquesta tesi doctoral poden ser una contribució rellevant 

per a futures aplicacions del bronzes de tungstèn hexagonal en catàlisis i també com una guia 

general per a una completa caracterització físico-química d’aquestos òxids.  
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