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Abstract 

The body is represented in the brain at multiple levels.  Some of these representational levels 

incorporate information from more than one of the senses, thus allowing information about the 

body from one sensory modality to influence the processing of body-related input to another.  

The experiments in this thesis focused on interactions between vision and cutaneous 

sensations (i.e., touch and pain), and what these interactions can tell us about mental 

representations of the body and the face.  Experiment 1 revealed that there are at least partially 

dissociable pathways for visual enhancement of touch (VET) depending upon whether one sees 

one’s own body or the body of another person.  This indicates that VET, a seeming low-level 

effect of viewing the body on spatial tactile acuity, is actually sensitive to body identity.  

Experiments 2, 3, and 4 explored the effect of viewing one’s own body on pain perception.  

They demonstrated that viewing the body can have at least two distinct effects.  First, it can bias 

pain intensity judgments irrespective of the actual stimulus intensity.  Second, and more 

importantly, it reduces the discriminative capacities of the nociceptive pathway encoding 

noxious stimulus intensity, but only if the pain-inducing event itself is not visible.  This latter 

finding suggests that viewing the body alone and viewing a stimulus event on the body may 

have distinct effects on cutaneous sensations.  The effect of viewing the body being touched 

was explored further in Experiment 5, which replicated previous findings that 1) viewing another 

person’s face being touched improves detection of near-threshold tactile stimuli, and 2) this 

visual remapping of touch (VRT) is enhanced if the other person’s face has a fearful expression.  

Experiment 5 also extended these previous findings by demonstrating that VRT does not occur 

for observed touch on non-human faces, even fearful ones.  This suggests that the facial 

expressions of non-human animals may not be simulated within the somatosensory system of 

the human observer in the same way that the facial expressions of other humans are.  Finally, 

Experiment 6 examined the enfacement illusion, in which seeing another person’s face being 
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touched in synchrony with touch on one’s own face causes the other’s face to be assimilated 

into the mental self-face representation.  Interestingly, the strength of the enfacement illusion 

was not affected if the other person showed a fearful or an angry facial expression, supporting 

the existence of an asymmetric relationship between the analyses of facial identity and facial 

expressions.  Together, these studies indicate that multisensory representations of the body in 

the brain link low-level perceptual processes with the perception of emotional cues and 

body/face identity, and interact in complex ways depending upon contextual factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Introduction 

I. Multiple representations of the body 

While many avenues of research in cognitive neuroscience focus, understandably, on 

the brain itself, the sensory and motor capacities of this special organ would be ineffective 

without its linkages to the rest of the body.  The body is the interface through which the brain 

learns about and effects change on its environment.  Consequently, sensory and motor 

representations of the body are fundamental to brain function.  What is more, the sense of the 

body as a coherent, unified entity acting upon the world necessitates the integration of body-

related information from multiple sensory modalities.  These multimodal body representations 

will be the focus of this work.   

Over the years, several models have attempted to account for how the body is 

represented in the brain.  Most of these acknowledge the need for multiple representations that 

may incorporate different sensorimotor combinations (e.g., visual, tactile, motor, proprioceptive) 

and serve distinct purposes (e.g., spatial localization, acuity, action).  For example, some earlier 

accounts identify two body representations, the ‘body image’ and the ‘body schema’ (Gallagher, 

1986; Tiemersma, 1982).  Various authors have used these terms in different ways, and 

sometimes interchangeably (Fisher, 1968; Gibson, 1966; Head & Holmes, 1911; Kolb, 1959; 

Merleau-Ponty, 1962; Myers, 1967; Schilder, 1935; Schilder, 1923; Straus, 1970; Tiemersma, 

1982).  However, the currently accepted definitions posit a clear distinction between the two 

terms.  The body image results from the body being perceived as an object of awareness.  It is 

conscious and reflective, including not only sensory information pertaining to the body, but also 

prior knowledge about the body and attitudes toward it.  The body schema, on the other hand, is 

a pre-reflective coordination of the body in space, including dynamic postural and proprioceptive 

states (Gallagher, 1986).  The functional distinction between these two body models has been 
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supported by double dissociations in deafferented patients (Gallagher & Cole, 1995; Paillard, 

1999).  The body image and the body schema may be conceived of as body models subserving 

perception and action, respectively (Dijkerman & de Haan, 2007). 

Yet others believe that a dyadic taxonomy of body models is insufficient.  Sirigu and 

colleagues, for example, propose four different levels of body representation in the brain (Sirigu, 

Grafman, Bressler, & Sunderland, 1991).  The first level consists of semantic and lexical 

knowledge about bodies, such as the names of body parts and the functional relations between 

them.  The second level comprises a structural representation of bodies in general, including a 

visuo-spatial description of the locations and positions of body parts relative to each other and 

to the body as a whole.  The third level is a dynamically updated representation of the actual 

position of one’s own body, based on information from multiple sensory modalities, including 

visual, tactile, proprioceptive, and vestibular inputs.  Finally, the fourth level consists of motor 

programs that contribute to the representation of the body in external space.  Schwoebel and 

Coslett (2005) propose a similar 3-level model consisting of a lexical/semantic representation 

called the ‘body image’, a dynamically updated sensorimotor representation called the ‘body 

schema’, and a topological map of the human body based primarily on visual experience, which 

they call the ‘body structural description.’  Both these accounts break down the traditional dyadic 

model into further separable levels of body representation. 

The dissociation between a visuo-spatial body representation and both motor and 

semantic/lexical representations is supported by cases of autotopagnosia, in which the patient is 

unable to point to body parts despite being able to use them and to identify their names and 

functions when the experimenter points to them (Buxbaum & Coslett, 2001; Denes, Cappelletti, 

Zilli, Dalla Porta, & Gallana, 2000; De Renzi & Scotti, 1970; Ogden, 1985; Sirigu et al., 1991).  

Furthermore, a dissociation between pure autotopagnosia, which is specific to localizing one’s 

own body parts, and heterotopagnosia, a specific deficit in localizing the body parts of others, 
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lends support to a dissociation between a visuo-spatial description of the human body in general 

and a multimodal representation of one’s own body, including somatosensory inputs (Auclair, 

Noulhiane, Raibaut, & Amarenco, 2009; Degos, Bachoud-Levi, Ergis, Petrissans, & Cesaro, 

1997; Felician, Ceccaldi, Didic, Thinus-Blanc, & Poncet, 2003).  Impairment at the structural, 

visuo-spatial level would be expected to disproportionately affect localization of others’ body 

parts, as information from somatosensory modalities could compensate for the deficit when 

localizing one’s own body parts.  Because the multimodal level of representation consists of 

information specific to one’s own body, impairment at this level should only affect localization of 

one’s own body parts, particularly when the patient cannot rely on visual input for the task.  

Indeed, Felician and colleagues observed that their autotopagnosic patient was able to 

compensate for her deficit in pointing to her own body parts when she relied on visual rather 

than somatosensory cues (Felician et al., 2003). 

II. Cortical regions involved in representing the body 

Extrastriate visual cortex 

In the lateral occipito-temporal visual cortex, two brain regions have been found to 

respond selectively to visual depictions of human bodies: the extrastriate body area (EBA) in the 

posterior inferior temporal sulcus (Downing, Jiang, Shuman, & Kanwisher, 2001) and the 

fusiform body area (FBA) on the posterior fusiform gyrus (Peelen & Downing, 2005).  Both 

areas show a greater blood oxygen level-dependent (BOLD) response to images of whole 

human bodies and body parts than to other categories of images, such as non-human animals, 

inanimate objects, and scenes (Downing et al., 2001; Peelen & Downing, 2005; Taylor, Wiggett, 

& Downing, 2007).  In addition, both the EBA and the FBA show an increased response to low-

level depictions of human bodies, such as stick figures and silhouettes, relative to scrambled 

versions of these stimuli (Downing et al., 2001; Peelen & Downing, 2005).  This indicates that 
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the selective response for human bodies is not due to the visual complexity of the body stimuli 

relative to the control stimuli.  Furthermore, the EBA seems to be more selective for body parts, 

whereas the FBA responds preferentially to images of whole human bodies (Taylor et al., 2007).  

This suggests a division of labor between the two regions, wherein the EBA performs a parts-

based analysis, while the FBA engages in more holistic, configural processing of human body 

forms. 

The exact nature of the information processing performed by these regions is still 

debated.  Studies showing an enhanced BOLD response in the right FBA to images of one’s 

own body relative to the bodies of others (Hodzic, Muckli, Singer, & Stirn, 2009), and to the 

bodies of familiar relative to unfamiliar others (Hodzic, Kaas, Muckli, Stirn, & Singer, 2009), 

suggest that this region might discriminate body identity.  One study found an enhanced 

response to one’s own body compared to others’ bodies in both the right EBA and the right 

FBA, though this difference was small compared to the difference between the response to 

intact and scrambled bodies, irrespective of identity (Vocks et al., 2010).  Additional studies, 

however, also indicate that the right EBA might be sensitive to body identity.  Using a functional 

magnetic resonance imaging (fMRI) adaptation approach, Myers and Sowden found separate 

sub-populations of neurons in the right EBA that were sensitive to images of either one’s own or 

another person’s body parts (Myers & Sowden, 2008).  This might offer an alternative 

explanation for why classic BOLD analyses do not often detect a difference in EBA activation 

according to body identity, namely, that they did not provide a spatial resolution high enough to 

detect neuronal sub-populations preferentially responding to images of one’s own body or the 

bodies of others.  Other studies found differential BOLD responses in the right EBA to images of 

bodies presented from egocentric and allocentric viewpoints (Chan, Peelen, & Downing, 2004; 

Saxe, Jamal, & Powell, 2006).  Together, these studies suggest that the right FBA, and possibly 
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the right EBA, might participate in a low level of body identity processing, distinguishing self 

from other and familiar from unfamiliar bodies. 

Despite the EBA being located in visual cortex, some studies have implicated it in non-

visual body processing.  For example, the EBA is activated during haptic exploration of body 

parts (Costantini, Urgesi, Galati, Romani, & Aglioti, 2011; Kitada, Johnsrude, Kochiyama, & 

Lederman, 2009).  Haptic body part recognition, despite being a somatosensory task, may 

engage a structural representation of the body that has primarily been developed through visual 

experience.  In addition, the EBA is activated during the execution of limb movements, even in 

the absence of visual feedback, and to a greater extent than during motor imagery (Astafiev, 

Stanley, Shulman, & Corbetta, 2004; Ishizu, Noguchi, Ito, Ayabe, & Kojima, 2009; Orlov, Makin, 

& Zohary, 2010).  However, the EBA’s response during motor tasks could result from functional 

connections between the EBA and other brain regions involved in action execution rather than 

from action processing in the EBA itself.  On the whole, both the EBA and the FBA appear to 

participate in a primarily visuo-spatial, structural representation of human bodies in general. 

Primary motor and somatosensory cortices 

In addition to the visual body areas in extrastriate cortex, motor and somatosensory 

representations of the body are located on the anterior and posterior banks of the central 

sulcus, respectively.  Both areas exhibit somatotopic organization, with overrepresentation of 

areas that exhibit fine motor control or high sensitivity (Penfield & Rasmussen, 1950).  The 

primary motor cortex (MI) on the pre-central gyrus contains pyramidal neurons with axons that 

descend to the spinal cord, where they synapse with spinal motor neurons that activate muscles 

to produce voluntary movement (Davidoff, 1990).  The primary somatosensory cortex (SI) on 

the post-central gyrus encompasses Brodmann’s areas 1 and 2 and Vogts’ areas 3a and 3b 

(Zilles, 1990).  It receives input from afferent nerve fibers via the thalamus.  Areas 1 and 3b 
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receive information primarily from cutaneous afferents, while areas 2 and 3a receive input from 

proprioceptive afferents from the muscles and joints (Kaas, Nelson, Sur, Lin, & Merzenich, 

1979; Mountcastle, 1984).  In addition to mapping the body for motor and somatosensory 

functions, there is some evidence that MI and SI may participate in representing the body at 

multiple levels.  For instance, passive reading of action words performed by different effectors 

(e.g., the arm, the leg, or the tongue) is associated with somatotopic activation of MI and the 

adjacent premotor cortex (Hauk, Johnsrude, & Pulvermüller, 2004). 

Posterior parietal cortex 

Lying caudal to the post-central gyrus, the posterior parietal cortex processes body-

related information from multiple sensory modalities.  Single-unit recordings in monkeys have 

shown that area 5, the superior parietal lobule (SPL), encodes limb position from a combination 

of visual and proprioceptive inputs (Colby & Duhamel, 1991; Graziano, Cooke, & Taylor, 2000; 

MacKay & Crammond, 1987; Mountcastle, Lynch, Georgopoulos, Sakata, & Acuna, 1975; 

Sakata, Takaoka, Kawarasaki, & Shibutani, 1973).  Lesions of the human SPL impair the ability 

to perform reaching movements to targets (Karnath, 1997; Levine, Kaufman, & Mohr, 1978; 

Wolpert, Goodbody, & Husain, 1998).  The SPL therefore appears to guide limb localization and 

movement in space, representing the body for the purpose of action. 

A nearby area in the anterior and ventral portion of the intraparietal sulcus (IPS) also 

appears to process multisensory body-related information.  Neurons in the monkey ventral 

intraparietal area (VIP) respond to visual, tactile, vestibular, and auditory information pertaining 

to the movement of the body or around the body (Avillac, Ben Hamed, & Duhamel, 2007; 

Bremmer, Klam, Duhamel, Ben Hamed, & Graf, 2002; Duhamel, Colby, & Goldberg, 1998; 

Schlack, Hoffmann, & Bremmer, 2002; Schlack, Sterbing-D’Angelo, Hartung, Hoffmann, & 

Bremmer, 2005).  Using fMRI, evidence for a similar multisensory body-centered representation 
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has been found in the human IPS (Bremmer et al., 2001; Gentile, Petkova, & Ehrsson, 2011; 

Makin, Holmes, & Zohary, 2007).  The human VIP, similar to the SPL, might integrate 

information from multiple sensory modalities to encode the positions of body parts in space. 

Insula 

The previous sections have focused on aspects of bodily sensation and representation 

localizable in space, either in terms of the body surface, muscle groups, or external spatial 

coordinates.  Other sensations arising from the body may be less spatially specific, instead 

providing information about the state of the body important for homeostatic regulation.  These 

sensations fall under the category of ‘interoception’, which is generally considered to include 

hunger, thirst, air hunger, sexual arousal, and visceral sensations (Craig, 2002, 2009).  Some 

also categorize cutaneous pain, itch, and thermal sensation as interoceptive, despite these 

sensations being localizable on the skin surface, as they are nonetheless part of the 

spinothalamocortical afferent pathway that conveys information about the physiological status of 

the body (Craig, 2002).  The insula appears to be a key structure for interoception, as it plays a 

role in the processing of all these sensations (Banzett et al., 2000; Brooks, Zambreanu, 

Godinez, Craig, & Tracey, 2005; Brooks, Nurmikko, Bimson, Singh, & Roberts, 2002; Craig, 

Chen, Bandy, & Reiman, 2000; Critchley, Wiens, Rotshtein, Öhman, & Dolan, 2004; Del Parigi 

et al., 2002; Egan et al., 2003; Farrell et al., 2006; Mochizuki et al., 2007; Morris & Dolan, 2001; 

Stoleru et al., 1999).  Further studies suggest that the insula might be important for bodily 

awareness, integrating across interoceptive, exteroceptive, and affective domains (Craig, 2009; 

Simmons et al., 2013). 

III. Multisensory interactions and body ownership 

Normally, one’s sense of body ownership occurs seamlessly.  You know that your body 

is your own by virtue of occupying it and exerting control over it.  Nevertheless, under certain 
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circumstances, the sense of body ownership can break down, revealing information about the 

underlying mechanisms that normally maintain it.  In somatoparaphrenia, for example, patients 

with right fronto-parietal lesions deny ownership over a contralesional limb (see Vallar & Ronchi, 

2009 for a review).  This delusion of disownership persists despite these patients being able to 

see that the affected limb is attached to their body (Nielsen, 1938).  Case studies of 

somatoparaphrenia are convergent with neuroimaging evidence that points to a right fronto-

parietal network underpinning self-recognition (Uddin, Iacoboni, Lange, & Keenan, 2007). 

In healthy participants without brain damage, manipulating body ownership is a more 

difficult task.  One of the hallmarks of body ownership is that it is ever-present, i.e., it is “the 

same old body always there” (James, 1890).  One popular approach has been to induce an 

illusion of owning an extra-corporeal object in the way that one would a body part, as in the 

rubber hand illusion (Armel & Ramachandran, 2003; Botvinick & Cohen, 1998; Capelari, Uribe, 

& Brasil-Neto, 2009; Costantini & Haggard, 2007; Ehrsson, Spence, & Passingham, 2004; 

Ehrsson, Wiech, Weiskopf, Dolan, & Passingham, 2007; Kammers et al., 2009; Kammers, de 

Vignemont, Verhagen, & Dijkerman, 2009; Mohan et al., 2012; Moseley, Olthof, et al., 2008; 

Tsakiris, Carpenter, James, & Fotopoulou, 2010; Tsakiris, Costantini, & Haggard, 2008; 

Tsakiris, Hesse, Boy, Haggard, & Fink, 2007; Tsakiris & Haggard, 2005).  In the classic rubber 

hand illusion, the participant’s hand is hidden behind a barrier with a false hand placed next to it.  

The experimenter then touches the participant’s real, hidden hand and the false hand in 

synchrony, resulting in an illusion that the false hand is the participant’s actual hand.  In a 

control condition, the participant’s real hand and the rubber hand are touched in temporal 

asynchrony.  This asynchronous condition is balanced with the synchronous condition in terms 

of the amount of visual and tactile stimulation, but it does not induce an illusion of owning the 

false hand. 
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Aside from a questionnaire assessing the subjective experience of the illusion, a 

common method for measuring the rubber hand illusion is to have the participant point to the 

location where they feel their real, hidden hand to be.  After seeing the rubber hand touched in 

synchrony with their own, the perceived position of their real hand tends to shift toward the 

location of the rubber hand, an effect called proprioceptive drift (Botvinick & Cohen, 1998; 

Tsakiris & Haggard, 2005).  In this way, the rubber hand illusion is a prime example of how 

multisensory inputs interact to produce a coherent percept of one’s own body.  Vision of touch 

on the false hand captures the synchronous tactile sensations on the participant’s own hand, 

and proprioception is recalibrated to bring information from the three senses into alignment 

(Tsakiris, 2010). 

The rubber hand illusion has also demonstrated that embodiment is not a purely bottom-

up process.  If the rubber hand is replaced with an object that does not resemble a hand, 

synchronous visuo-tactile stimulation will rarely result in an embodiment illusion (Tsakiris et al., 

2010, 2008; Tsakiris & Haggard, 2005; but see Armel & Ramachandran, 2003).  This suggests 

that a structural body model is consulted to test the plausibility that the extra-corporeal object is 

in fact a body part (Tsakiris, 2010).  Furthermore, the rubber hand illusion does not work if the 

false hand is placed in a posture incongruent with the posture of the participant’s actual hand 

(Tsakiris & Haggard, 2005), indicating that the bottom-up correlation of visuo-tactile inputs also 

interacts with a dynamic, postural representation of the body to determine whether the object 

will be incorporated. 

The rubber hand illusion paradigm has been extended to induce whole-body illusions 

using a virtual reality headset linked to a camera in a different location.  In the first-person 

perspective version of the whole-body illusion, the participant looks down towards the front of 

their own body, which is being stroked by the experimenter, but sees the body of a mannequin 

that is being stroked in synchrony (Petkova & Ehrsson, 2008).  In the third-person perspective 
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version, the camera is placed behind the participant so that they see their own body in front of 

them, inducing an out-of-body experience (Ehrsson, 2007; Lenggenhager, Tadi, Metzinger, & 

Blanke, 2007).  The whole-body illusion in the third-person perspective, like the rubber hand 

illusion, can be measured by proprioceptive drift.  When participants simultaneously observe 

touch on the back of the body in front of them and feel the touch on their own back, they 

mislocalize themselves towards the location where they saw their body being stroked 

(Lenggenhager et al., 2007).  These experiments indicate that similar multisensory processes 

underlie both the sense of whole-body ownership and embodiment of individual body parts. 

Finally, a similar illusion has been found when participants view another person’s face 

being touched in synchrony with touch on their own face (Bufalari, Lenggenhager, Porciello, 

Holmes, & Aglioti, 2014; Cardini, Tajadura-Jiménez, Serino, & Tsakiris, 2013; Fini, Cardini, 

Tajadura-Jiménez, Serino, & Tsakiris, 2013; Mazzurega, Pavani, Paladino, & Schubert, 2011; 

Paladino, Mazzurega, Pavani, & Schubert, 2010; Sforza, Bufalari, Haggard, & Aglioti, 2010; 

Tajadura-Jiménez, Grehl, & Tsakiris, 2012; Tajadura-Jiménez, Longo, Coleman, & Tsakiris, 

2012; Tajadura-Jiménez, Lorusso, & Tsakiris, 2013; Tajadura-Jiménez & Tsakiris, 2014; 

Tsakiris, 2008).  In this “enfacement” illusion, synchronous visuo-tactile inputs update the 

mental self-face representation so that features of the other person’s face are assimilated.  The 

enfacement illusion will be discussed in greater detail in Chapter 4. 

This family of illusions induced by synchronous visuo-tactile stimulation is a striking 

example of the multisensory processes behind the sense of body ownership for the body as a 

whole, for individual body parts, and for the face, which is a body part especially tied to our 

sense of self-identity (Devue & Brédart, 2011).  Other lines of embodiment research have 

investigated more subtle interactions between sensory modalities carrying information about the 

body, in particular, between vision and cutaneous sensations.  These interactions will be the 

primary focus of the present work.  Chapter 1 will overview how merely viewing the body can 



16 
 

enhance spatial tactile acuity (Cardini, Haggard, & Làdavas, 2013; Cardini, Longo, Driver, & 

Haggard, 2012; Cardini, Longo, & Haggard, 2011; Fiorio & Haggard, 2005; Haggard, 2006; 

Haggard, Christakou, & Serino, 2007; Harris, Arabzadeh, Moore, & Clifford, 2007; Kennett, 

Taylor-Clarke, & Haggard, 2001; Konen & Haggard, 2014; Press, Taylor-Clarke, Kennett, & 

Haggard, 2004; Serino, Farnè, Rinaldesi, Haggard, & Làdavas, 2007; Serino, Padiglioni, 

Haggard, & Làdavas, 2009; Taylor-Clarke, Kennett, & Haggard, 2002, 2004).  This was 

previously thought to occur outside the influence of higher-level representations of body identity, 

as spatial tactile acuity improves both when participants see their own body and when they see 

the body of another person.  However, I will provide evidence that there are two pathways for 

visual enhancement of touch, a person (own-body) pathway and an interpersonal (other-body) 

pathway, that are at least partially distinct.  Chapter 2 will then address how viewing the body 

affects pain perception.  In a series of experiments, I applied a signal detection approach to 

determine whether vision of the body affects nociceptive sensitivity or post-perceptual pain 

judgments.  I also investigated whether viewing the body alone and viewing a noxious event on 

the body modulate pain perception in distinct ways.  Chapter 3 will return to interactions 

between vision and innocuous tactile sensation, and address the higher-order constraints on 

visual remapping of touch (Cardini, Costantini, et al., 2011; Cardini, Bertini, Serino, & Làdavas, 

2012; Fini et al., 2013; Serino, Giovagnoli, & Làdavas, 2009; Serino, Pizzoferrato, & Làdavas, 

2008), i.e., the conditions under which viewing another’s face being touched does and does not 

improve detection of weak tactile stimuli on one’s own face.  Finally, in Chapter 4, I will examine 

how visuo-tactile interactions influence self-face recognition, a process that has traditionally 

been conceived of as a purely visual task (Devue & Brédart, 2011).  To accomplish this, I will 

return to the enfacement illusion, and present evidence that this effect is not influenced by the 

emotional content of the other person’s face.  In particular, I will discuss this finding in light of 

the evidence for an asymmetric relationship between the processing of facial identity and facial 
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expressions (Ellamil, Susskind, & Anderson, 2008; Fox & Barton, 2007; Fox, Oruç, & Barton, 

2008; Schweinberger & Soukup, 1998; Spangler, Schwarzer, Korell, & Maier-Karius, 2010). 
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Chapter 1: Visual enhancement of spatial tactile acuity 

1.1. Visual enhancement of touch 

A number of studies have now demonstrated that viewing the body can enhance tactile 

acuity on the seen body part, even if the tactile stimulation itself is invisible, or vision is non-

informative about the tactile stimulus (Cardini, Haggard, et al., 2013; Cardini, Longo, et al., 

2012, 2011; Fiorio & Haggard, 2005; Haggard, 2006; Haggard et al., 2007; Harris et al., 2007; 

Kennett et al., 2001; Konen & Haggard, 2014; Press et al., 2004; Serino et al., 2007; Serino, 

Padiglioni, et al., 2009; Taylor-Clarke et al., 2002, 2004).  This visual enhancement of touch 

(VET) is unlikely to be simply an effect of directing visuo-spatial attention because looking at a 

non-body object appearing in the same location as the body part does not improve tactile acuity 

relative to a control condition of complete darkness (Kennett et al., 2001; Serino, Padiglioni, et 

al., 2009).  Rather, seeing the body part may activate a multisensory representation of the body 

that is able to modulate the activity of unimodal, somatotopically organized somatosensory 

cortex (Fiorio & Haggard, 2005; Konen & Haggard, 2014; Serino, Padiglioni, et al., 2009; Taylor-

Clarke et al., 2002). 

Importantly, viewing the body relative to a non-body object seems to only enhance 

performance on spatial tactile acuity tasks.  Studies demonstrating a VET effect have typically 

used either a two-point discrimination task (Kennett et al., 2001; Serino et al., 2007; Serino, 

Padiglioni, et al., 2009; Taylor-Clarke et al., 2002) or a grating orientation discrimination task 

(Cardini, Haggard, et al., 2013; Cardini, Longo, et al., 2012, 2011; Fiorio & Haggard, 2005; 

Haggard, 2006; Konen & Haggard, 2014; Taylor-Clarke et al., 2004), both of which require 

discriminating the spatial properties of the tactile stimuli.  While viewing the body improves 

performance on these spatial discrimination tasks, it actually impairs performance on non-

spatial tactile acuity tasks such as detection of near-threshold stimuli (Harris et al., 2007; Press 

et al., 2004).  Although one study found accelerated detection of tactile stimuli when viewing the 
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hand (Tipper et al., 1998), the visual control condition in that experiment was the participant’s 

other hand, separated from the stimulated hand in space, so the facilitation could have resulted 

from the orientation of spatial attention rather than from a specific effect of viewing the hand.  

On the whole, these studies indicate that the VET effect involves an enhancement of spatial 

tactile acuity in particular rather than a general facilitation of any tactile judgment.  What is more, 

they suggest that the mechanism behind VET involves a sharpening of tactile receptive fields, 

which would be expected to improve performance on spatial discrimination tasks but not on 

simple detection tasks (Harris et al., 2007; Press et al., 2004). 

Several lines of evidence suggest that viewing the body enhances spatial tactile acuity 

via modulation of primary somatosensory cortex (SI).  First, viewing the arm compared to a non-

body object during a spatial tactile acuity task increased the amplitude of the N80 event-related 

potential (ERP) component over scalp location C3, which has been attributed to late SI 

processing (Taylor-Clarke et al., 2002).  Second, disrupting SI activity with single-pulse 

transcranial magnetic stimulation (TMS) in the interval between visual and tactile stimulation 

eliminated VET, whereas similar disruption of activity in the secondary somatosensory area (SII) 

had no effect on tactile acuity in either the view-hand or the view-object condition (Fiorio & 

Haggard, 2005).  Finally, the VET effect seems to follow the somatotopic organization of SI.  

Viewing the hand enhances tactile acuity on both the hand and the face, which are represented 

in adjacent portions of the lateral aspect of SI, but it has no effect on tactile acuity on the foot, 

which is represented more medially (Serino, Padiglioni, et al., 2009). 

Further studies have provided evidence in favor of the hypothesis that viewing the body 

enhances spatial tactile acuity by sharpening tactile receptive fields in early somatosensory 

cortex.  When a two-point discrimination task is performed in the presence of vibro-tactile 

maskers at varying distances from the target tactile stimuli, viewing the body relative to a non-

body object decreases the effect of distant maskers but increases the effect of nearby maskers 

(Haggard et al., 2007).  Because a cutaneous masking stimulus will only impair perception of a 
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target stimulus if the two stimuli fall within the same tactile receptive field (Laskin & Spencer, 

1979), this finding is consistent with a sharpening of receptive fields.  In addition, viewing the 

hand increased the suppression of the somatosensory-evoked potential (SEP) produced by 

electrically stimulating the index and middle fingers simultaneously relative to stimulating each 

one individually (Cardini, Longo, et al., 2011).  In other words, viewing the hand strengthened 

lateral inhibition within early somatosensory cortex.  Lateral inhibition occurs because a cortical 

sensory neuron that fires will inhibit adjacent cortical sensory neurons via γ-aminobutyric acid 

(GABA)-ergic interneurons.  This arrangement enhances spatial acuity because the smaller the 

stimulus (i.e., the higher its spatial resolution), the less lateral inhibition it will trigger from 

neighboring receptive fields (Cardini, Longo, et al., 2011).  The finding that viewing the body 

increases somatosensory intracortical inhibition therefore offers a potential mechanism 

underlying visual modulation of early somatosensory receptive fields. 

Though the aforementioned studies suggest that VET results from modulation of 

receptive field size in SI (Cardini, Longo, et al., 2011; Fiorio & Haggard, 2005; Haggard et al., 

2007; Serino, Padiglioni, et al., 2009; Taylor-Clarke et al., 2002), the source of this modulation is 

not well understood.  According to one view, posterior parietal cortex may receive inputs from 

body-specific areas in the occipito-temporal visual cortex and then send feedback to SI that 

influences the corresponding part of the somatotopic map (Fiorio & Haggard, 2005; Kennett et 

al., 2001; Taylor-Clarke et al., 2002).  This view is consistent with primate studies that identified 

multisensory body-centered representations from single-cell recordings in the monkey ventral 

intraparietal area (VIP).  Neurons in this posterior parietal area responded to visual, tactile, 

vestibular, and auditory information pertaining to self-motion (Avillac et al., 2007; Bremmer et 

al., 2002; Duhamel et al., 1998; Schlack et al., 2002, 2005).  Functional magnetic resonance 

imaging (fMRI) studies support the existence of a similar multisensory body-centered 

representation in the human intraparietal sulcus (IPS) (Bremmer et al., 2001; Gentile et al., 

2011; Makin et al., 2007).  Importantly, Makin and colleagues (2007) found a hand-centered 
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representation in the anterior IPS where visual, tactile, and proprioceptive inputs converge.  

Disrupting this area by delivering TMS during a brief interval between viewing one's own hand 

and receiving tactile stimulation eliminated VET (Konen & Haggard, 2014).  The anatomical and 

temporal specificity of the disruptive effect suggests that the human ventral intraparietal area 

(hVIP) of the anterior IPS contributes to VET by providing a relay between visual and tactile 

cortices. 

1.2. Own-body versus other-body: Same or different mechanisms? 

The studies described above examined the effect of seeing one’s own body on tactile 

acuity.  Seeing the body of another person can also enhance spatial tactile acuity on the 

corresponding body part of the observer (Cardini, Haggard, et al., 2013; Haggard, 2006).  

Nevertheless, the mechanisms mediating VET in these two situations may be different, because 

they are differentially sensitive to spatial incongruence.  VET was abolished when one’s own 

hand was seen in a location incongruent with the hand’s true location, suggesting that 

proprioceptive signals regarding spatial location contribute to personal (own-body) VET.  

However, when the viewed hand clearly belonged to another person, VET was obtained 

irrespective of whether the hand appeared at the proprioceptively sensed location of the 

participant’s own hand or elsewhere (Cardini, Haggard, et al., 2013).  Thus, personal VET relies 

on congruent proprioceptive information, and is therefore inherently self-referential 

(O’Shaughnessy, 1995).  In contrast, the integration of congruent proprioceptive information is 

not required for interpersonal VET, when the seen hand belongs to another person.  

This behavioral dissociation raises the possibility of two dissociable routes linking visual 

and somatosensory areas to produce VET.  A self-specific route would pass through 

multisensory regions that also process proprioceptive signals, while the second, interpersonal 

route would pass through a set of intermediate relays insensitive to proprioceptive processing.  

Importantly, both routes might originate in a common visual source area; indeed, extrastriate 

occipital cortex contains visual areas that are specific for viewing bodies and body parts 
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irrespective of whether they belong to oneself or to another person (Chan et al., 2004; Downing 

et al., 2001; Hodzic, Kaas, et al., 2009; Hodzic, Muckli, et al., 2009; Pitcher, Charles, Devlin, 

Walsh, & Duchaine, 2009; Urgesi, Berlucchi, & Aglioti, 2004).  Equally, both VET routes 

presumably converge on SI, which contains the key cortical circuitry underlying tactile acuity 

(Roland, 1987).  Nevertheless, the neural mechanisms that mediate personal (own-body) and 

interpersonal (other-body) VET may be at least partially distinct, relying upon different sources 

of SI modulation. 

Experiment 1: Dissociable routes for personal and interpersonal visual 

enhancement of touch 

The hypothesis that there are dissociable routes for personal and interpersonal VET was 

tested by using transcranial magnetic stimulation to disrupt the intermediate relay for the 

personal route, the hVIP (Konen & Haggard, 2014).  Changes to personal but not interpersonal 

VET from such disruption would support the dual route hypothesis.  In another condition the 

EBA was disrupted in order to confirm that both routes have a common visual source in body-

specific areas of the occipital cortex.  Participants performed a tactile acuity task while viewing 

high-quality visual images of their own hand, another person’s hand, and a non-body object.  

Prior to the tactile acuity task, participants underwent continuous theta-burst stimulation (cTBS) 

to suppress the left hVIP, a multisensory area implicated as a source of SI modulation in 

personal VET (Konen & Haggard, 2014) but untested as of yet in interpersonal VET.  It was 

hypothesized that temporarily disrupting the hVIP would eliminate enhancement of tactile acuity 

at the sight of one’s own hand but leave enhancement at the sight of another’s hand intact.  In a 

further session, cTBS was applied over the EBA, a region in the lateral occipito-temporal cortex 

involved in the visual processing of human bodies (Downing et al., 2001; Pitcher et al., 2009; 

Urgesi et al., 2004).  The EBA appears either insensitive (Chan et al., 2004; Hodzic, Kaas, et 

al., 2009; Hodzic, Muckli, et al., 2009) or only minimally sensitive (Vocks et al., 2010) to whether 
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one’s own body or another’s body is viewed.  It was thus predicted that disrupting the EBA 

would affect both personal and interpersonal VET, indicating that it provides a common visual 

source for VET, before the personal and interpersonal routes divide. 

Method 

Participants 

Twenty-six volunteers (19 female, 21-30 years old) participated in the experiment after 

being screened for contraindications to TMS (Rossi, Hallett, Rossini, Pascual-Leone, & The 

Safety of TMS Consensus Group, 2009; Wassermann, 1998).  They gave written informed 

consent to participate in the experiment and were tested in accordance with the ethical 

standards of the 1964 Declaration of Helsinki.  The study was approved by the Ethics 

Committee for Psychological Research and the Bioethics Committee of the University of 

Bologna. 

Materials 

To produce images of participants’ hands and the other-hand stimuli (which were the 

hands of 5 female and 5 male volunteers who did not participate in the experiment), a 

photograph of the right hand with the palm facing down was taken with a digital camera and 

placed on a black background in Adobe Photoshop CS3.  A laptop computer running 

Presentation 0.60 was used to display the visual stimuli on a standard 4:3 ratio, 15-inch screen, 

to send auditory cues via earphones to the experimenter who delivered tactile stimulation, and 

to collect participants’ responses. 

TMS was delivered with a Magstim Rapid2 figure-of-eight coil.  A Biopac MP35 system 

was used to acquire electromyographic activity while each participant’s resting motor threshold 

was determined.  Neuronavigation was conducted with an NDI Polaris Vicra system and 

SofTaxic Evolution 1.2 software. 

The grating orientation task employed a set of plastic, circle-sectional square-wave 

gratings with alternating ridges and grooves of equal widths (Van Boven & Johnson, 1994).  
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Ridge and groove widths varied between gratings from 0.50 mm to 2.00 mm in intervals of 0.25 

mm.  The smaller the width of the ridges and grooves, the more difficult it is to discriminate their 

orientation. 

Procedure 

Prior to the experiment, participants came to the laboratory for a preparatory session.  

During this session, each participant’s grating orientation discrimination threshold was 

determined.  Beginning with the largest ridge width (2.00 mm), the experimenter repeatedly 

applied the grating to the tip of the right middle finger in randomly selected orientations 

(horizontal/across the finger or vertical/along the finger) for approximately 0.5 s per application.  

The participant’s hand was hidden from view under a box with an opening at the back so the 

experimenter could apply the gratings.  A computer screen placed face-up on top of the box 

showed a rectangle on a black background that the participant fixated while indicating whether 

the grating orientation was horizontal or vertical.  This procedure continued with gratings of 

decreasing ridge width until the participant answered correctly on 55-65% of 40 trials for a given 

ridge width.  This grating (Mwidth = 0.74 mm, SDwidth = ±0.18 mm across participants) was then 

used in the subsequent experimental sessions.  Next, each participant’s resting motor threshold 

(RMT) was determined using single pulses of TMS, with the coil handle pointed backwards and 

at 45 degrees relative to the midline, to locate the hand area of the left primary motor cortex and 

determine the stimulator output level required to elicit motor-evoked potentials of at least 50 μV 

from the right first dorsal interosseous hand muscle in 5 out of 10 trials (MRMT = 54.23%, SDRMT 

= ±8.86%).  Then, neuronavigation software was used to create an estimated magnetic 

resonance imaging volume for each participant for use in locating the left hVIP and EBA.  

Finally, participants had a photograph taken of their right hand with the palm facing down, and 

then rated the similarity of their own hand to the other-hand stimuli (gender-matched) on a scale 

from 1 (“looks nothing like my own hand”) to 6 (“looks very much like my own hand”).  The 

lowest-rated hand was used as the other-hand stimulus in the experimental sessions to ensure 
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that participants were able to distinguish the image of their own hand from the image of the 

other person’s hand.  The similarity rating of the other-hand stimulus was never higher than 2. 

Participants underwent three experimental sessions on separate days.  In one session, 

participants received cTBS over the left hVIP at Talaraich coordinates x = -35, y = -51, z = 42 

(Konen & Kastner, 2008) with the coil handle pointing backwards and at 45 degrees to the 

midline.  In another session, cTBS was delivered over the left EBA with the handle pointing 

directly backwards and towards the midline.  The left EBA was localized by using the average 

Talaraich coordinates (x = -47, y = -72, and z = 7) from 22 studies using functional localizers (as 

reported by de Gelder et al., 2010).  In the sham session, the coil was placed over the left hVIP 

but rotated 90 degrees in a vertical plane.  The sessions were otherwise identical, and session 

order was counterbalanced.  At the beginning of each experimental session, neuronavigation 

data were used to locate the target site.  Then the experimenter administered 20 grating 

discrimination trials using the ridge width selected in the preparatory session.  If the participant 

answered correctly on more than 65% or less than 55% of trials, the procedure used in the 

preparatory session to determine the orientation discrimination threshold was repeated.  Next, 

cTBS (3 pulses at 5 Hz, repeated at 50 Hz intervals) was delivered over the target site for 40 s 

(600 pulses total), a procedure that has been shown to suppress neural activity in the underlying 

cortical area for 60 min (Huang, Edwards, Rounis, Bhatia, & Rothwell, 2005).  Stimulator output 

level was set to 70% of the RMT found in the preparatory session.   

After a 5-minute pause, participants then underwent two blocks (60 trials each) of the 

grating orientation task (5 s per trial, 5 min per block).  The blocks were separated by a few 

minutes of rest during which the orientation discrimination threshold was re-checked.  As in the 

preparatory session, the participant’s right hand was hidden under a box with a screen on top 

where visual fixation was maintained.  Each trial began with a fixation cross on a black 

background and an auditory cue to the experimenter’s headphones indicating which orientation 

to deliver at visual stimulus onset.  After 2 s, an image of the participant’s own hand, another 
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person’s hand, or a wooden block appeared on the screen for 3 s, along with another auditory 

cue to the experimenter signaling the time to touch the grating to the participant’s middle 

fingertip.  The second auditory cue allowed the experimenter to be blind to the visual stimulus 

condition, because tactile stimulation could be synchronized with the onset of the visual stimulus 

without looking at the screen.  Each visual stimulus (own-hand, other-hand, and wooden block) 

was presented 20 times in each block in a random sequence.  The two grating orientations were 

also presented randomly and equiprobably with each visual stimulus.  Participants used a 

mouse with their left hand to indicate whether the grating orientation was horizontal (left button) 

or vertical (right button) on each trial.  A schematic drawing of the experimental setup is shown 

in Figure 1.1. 

 

 

Figure 1.1.  Diagram of the visual enhancement of touch (VET) paradigm showing delivery of 

the visual stimulus (VS) and the tactile stimulus (TS). 
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Design and Analysis 

This experiment used a 3 x 3 factorial repeated measures design with the independent 

variables visual stimulus type (own-hand, other-hand, or wooden block) and TMS condition 

(hVIP, EBA, or sham stimulation).  The dependent measure was the proportion of correct 

grating orientation judgments in each condition. 

Results 

To examine the effects of TMS on VET, a 3 (TMS target: hVIP, EBA, or sham) x 3 

(visual condition: own-hand, other-hand, or object) repeated measures analysis of variance 

(ANOVA) was conducted on tactile grating orientation discrimination accuracy.  Mauchly’s tests 

were not significant (TMS target: p = .140; visual condition: p = .677; TMS target x visual 

condition interaction: p = .555), so no sphericity corrections were applied.  There was neither a 

main effect of TMS target, F(2, 50) = 1.51, p = .232, partial η2 = .057, nor a main effect of visual 

condition, F(2, 50) = 2.38, p = .103, partial η2 = .087.  Crucially, there was a highly significant 

interaction between visual condition and TMS target, F(4, 100) = 3.63, p = .008, partial η2 = .127 

(Figure 1.2). 
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Figure 1.2.  Mean (±SEM) accuracy of tactile grating orientation discrimination in each visual 

condition (own-hand, other-hand, and object) and TMS condition (sham, hVIP, and EBA).  * = p 

< .050. 

 

To elucidate the nature of this interaction, separate ANOVAs with the factor ‘visual 

condition’ (own-hand, other-hand, or object) were conducted for each TMS session.  Significant 

ANOVAs were then followed up with paired-samples t-tests.  In the sham condition, the effect of 

visual condition was significant, F(2, 50) = 3.36, p = .043, partial η2 = .119.  Pairwise 

comparisons of means were used to explore the sources of this effect.  Such comparisons 

between three conditions do not require correction for multiple comparisons when the overall 

ANOVA is significant (Cardinal & Aitken, 2006).  Participants were better at discriminating 

grating orientations when viewing their own hand (M = 70.03%, SEM = ±2.36%) than when 

viewing the object (M = 65.09%, SEM = ±2.04%), t(25) = 2.58, p = .016.  Thus, the basic VET 

effect was replicated in the sham condition.  Tactile acuity was also marginally better when 
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viewing the other person’s hand (M = 69.07%, SEM = ±2.03%) than when viewing the neutral 

object, t(25) = 1.98, p = .059.  There was no significant difference in accuracy between the own-

hand and other-hand conditions, t(25) = .45, p = .654.  This pattern of results replicates previous 

studies that have found enhancement of spatial tactile acuity both when viewing one’s own hand 

and when viewing another person’s hand (Cardini, Haggard, et al., 2013; Haggard, 2006). 

Following TMS over the hVIP, the effect of visual condition was also significant, F(2, 50) 

= 3.60, p = .035, partial η2 =.126.  Accuracy was higher in the other-hand condition (M = 

69.07%, SEM = ±1.56%) than in both the object condition (M = 64.92%, SEM = ±1.80%), t(25) = 

2.08, p = .048, and the own-hand condition (M = 65.15%, SEM = ±1.84%), t(25) = -2.15, p = 

.041.  There was no difference in accuracy between the own-hand and object conditions, t(25) = 

0.17, p = .869.  This corroborates the hypothesis that disrupting the hVIP would eliminate 

personal VET but leave interpersonal VET intact. 

After TMS over the EBA, there was no effect of visual condition, F(2, 50) = 2.63, p = 

.082, partial η2 =.095 (Own-hand: M = 61.63%, SEM = ±1.90%; Other-hand: M = 65.15%, SEM 

= ±1.89%; Object: M = 66.14%, SEM = ±1.94%).  Thus, no follow-up comparisons were made.  

This supports the hypothesis that inhibiting the EBA would prevent both personal and 

interpersonal VET. 

Discussion 

The sham stimulation condition replicated previous findings that viewing either one’s 

own hand or another person’s hand could enhance tactile acuity (Cardini, Haggard, et al., 2013; 

Cardini, Longo, et al., 2012, 2011; Fiorio & Haggard, 2005; Haggard, 2006; Haggard et al., 

2007; Harris et al., 2007; Kennett et al., 2001; Konen & Haggard, 2014; Press et al., 2004; 

Serino et al., 2007; Serino, Padiglioni, et al., 2009; Taylor-Clarke et al., 2002, 2004).  Disrupting 

the hVIP within the anterior IPS reduced the enhancement of tactile acuity found when 

participants viewed their own hand, but not when they viewed another person’s hand.  This 

suggests that the neural pathways underlying personal and interpersonal VET are at least 
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partially separate.  Viewing one’s own hand and another’s hand might activate distinct body 

representations in the brain that enhance tactile perception by independent converging 

influences on somatosensory areas.  One important difference between the effects of viewing 

one’s own body or another person’s body could lie in the contribution of proprioceptive 

information.  A previous study showed that personal VET, but not interpersonal VET, involved 

integration of congruent visual and proprioceptive inputs (Cardini, Haggard, et al., 2013).  The 

results of Experiment 1 suggest that this integration of proprioceptive and visual information 

occurs in a cortical pathway that includes the hVIP.  This is consistent with a previous fMRI 

study that found evidence for converging visual, tactile, and proprioceptive signals in a hand-

centered representation of space in the anterior IPS (Gentile et al., 2011; Makin et al., 2007). 

A previous study (Konen & Haggard, 2014) showed that single-pulse TMS over the hVIP 

reduced personal VET.  The results in the own-hand condition replicate and extend that finding 

in some important ways.  The present study used an offline theta-burst TMS protocol, while the 

previous one used event-locked single-pulse TMS.  Whereas the single-pulse TMS study 

confirmed that neural activity in the hVIP is causally relevant to personal VET, the present study 

confirms that the hVIP is a potential site of enduring modulation in the multisensory circuit 

underlying VET.  Crucially, as discussed above, Experiment 1 also showed that the hVIP is 

involved in personal but not interpersonal VET, suggesting that the mechanism behind this 

multisensory interaction depends on the identity of the viewed hand. 

Theta-burst suppression is thought to recruit long-term potentiation and long-term 

depression-like mechanisms in the stimulated cortical area, thus inducing plastic changes in 

cortical circuits (Huang et al., 2005).  A recent study identified important individual differences in 

susceptibility to the effects of motor cortical cTBS (Hamada, Murase, Hasan, Balaratnam, & 

Rothwell, 2013), with no overall group effects.  Nevertheless, this is not a concern for the 

interpretation of the present study, which found group-level effects of both hVIP and EBA 

stimulation. 
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Suppressing the EBA eliminated both personal and interpersonal VET, consistent with 

the idea that this area processes visual input from both one’s own body and the bodies of others 

(Chan et al., 2004; Hodzic, Kaas, et al., 2009; Hodzic, Muckli, et al., 2009; Vocks et al., 2010).  

Importantly, this also shows that appropriately targeted cTBS is able to modulate interpersonal 

VET.  While the EBA is considered a visual area, the possibility that it contributes to non-visual 

functions has been suggested before (Astafiev et al., 2004; Costantini et al., 2011; Ishizu et al., 

2009; Kitada et al., 2009; Orlov et al., 2010).  The results of the Experiment 1 suggest that 

visual representations of the body in the EBA make an important contribution to multisensory 

processing, in this case visual modulation of touch.  The EBA result also helps to exclude some 

alternative interpretations of the effect of TMS over hVIP on VET.  In particular, it suggests that 

the selective inhibition of personal but not interpersonal VET by theta-burst stimulation of the 

hVIP is unlikely to reflect an inability to modulate interpersonal VET because of any general 

factor associated with cTBS, such as participant expectation, or because of a general resilience 

of processing associated with the self. 

Of the four independent levels of body representation proposed by Sirigu and colleagues 

(1991), two are particularly relevant in interpreting the results of Experiment 1: the visuo-spatial 

level (a structural representation of bodies in general) and the dynamic level (an online, 

multisensory representation of one’s own body that updates with body posture and movement).  

Sirigu and colleagues argued for the independence of these two body representations based on 

a double dissociation between pure autotopagnosia—an inability to point to one’s own body 

parts without an accompanying deficit in pointing to the body parts of others—and an inverse 

pattern of impaired and intact abilities in heterotopagnosia (Degos et al., 1997; Felician et al., 

2003; Felician & Romaiguère, 2008).  The results of Experiment 1 can be accommodated within 

the same framework.  Viewing hands may activate a visuo-spatial body representation 

regardless of the body to which the hands are attributed.  Disrupting the EBA inhibited both 

personal and interpersonal VET, suggesting that this common visuo-spatial representation is 
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housed in the EBA, or in another structure receiving input from the EBA.  However, only the 

sight of one’s own hand, not that of another person, should activate a body representation 

dynamically updated with posture and movement (Cardini, Haggard, et al., 2013).  The results 

of Experiment 1 suggest that the hVIP may house this representation.  Importantly, this 

dissociation is made in the context of a somatosensory perceptual task.  These different body 

representations may therefore represent distinct but converging influences that participate in 

top-down modulation of perception (cf. Konen & Haggard, 2014).  The hVIP appears to be an 

area where somatosensory and visual inputs converge to bind visuo-spatial representations of 

bodies with dynamic proprioceptive and tactile descriptions of one’s own body. 

Experiment 1 yielded a single dissociation between the personal and interpersonal VET 

routes by demonstrating that the hVIP participates in the enhancement of tactile acuity when 

viewing one’s own hand but not when viewing another’s hand.  However, the modulatory source 

responsible for interpersonal VET remains to be determined.  One possibility could be another 

posterior parietal area that represents human bodies in terms of visuo-spatial configuration but 

without reference to exclusively self-originating sensory inputs such as proprioception.  Lesion 

studies (Degos et al., 1997; Felician et al., 2003) and fMRI studies (Felician et al., 2009) 

suggest that the left angular gyrus (AG) of the inferior parietal lobule is involved in a visuo-

spatial representation of the human body in general.  In particular, damage to this area 

produces heterotopagnosia, a deficit in pointing to the body parts of others without 

accompanying impairments in naming them or in pointing to or naming one’s own body parts 

(Degos et al., 1997; Felician et al., 2003).  This indicates preserved semantic knowledge of 

human body parts, but an inability to place them within an extrapersonal visuo-spatial context.  

A visuo-spatial body representation in the left AG might contribute to VET when viewing 

another person’s hand.  Activation of the left inferior parietal lobule has been observed in 

response to viewing body part actions (Buccino et al., 2001; Grèzes, Costes, & Decety, 1999), 

and there is also some evidence for processing of static visual body part stimuli in this region 
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(McCarthy, Puce, Belger, & Allison, 1999).  The left inferior parietal lobule has extensive 

anatomical and functional connections with the occipital and temporal lobes, through which it 

could receive visual information.  It is also connected to other regions of parietal cortex, 

including the postcentral gyrus, where SI is located (Wang et al., 2012).  Other studies, in 

contrast, suggest that the AG may be involved in representing one’s own body.  Both 

neuroimaging (Spitoni, Galati, Antonucci, Haggard, & Pizzamiglio, 2010) and brain stimulation 

studies (Spitoni et al., 2013) have suggested a role for the AG in tactile distance judgments that 

refer to a mental representation of one’s own body.  However, both studies linked this own-

body-referencing to the right AG, leaving the possibility that the left AG might be involved in 

visuo-spatial but not somatosensory body processing.  Future research is needed to examine 

whether the left AG might be the source of SI modulation in interpersonal VET. 

The point at which the pathways for personal and interpersonal VET diverge also 

remains to be determined.  Experiment 1 demonstrated that the EBA is common to both 

personal and interpersonal routes.  Whether the bifurcation point occurs within the EBA or 

further along the information processing pathway is unknown.  There is some evidence that sub-

populations of neurons in the right EBA are sensitive to either one’s own body parts or the body 

parts of others, consistent with a role for the EBA in sorting visual body stimuli according to 

identity (Myers & Sowden, 2008).  Note that this would not contradict the finding that the EBA is 

common to both personal and interpersonal VET, as the offline cTBS procedure that was used 

would be expected to suppress activity in neuronal sub-populations processing both own-body 

and other-body stimuli. 

The right EBA also responds differentially to body parts presented in egocentric and 

allocentric viewpoints (Chan et al., 2004; Saxe et al., 2006), which could be an indicator of 

ownership.  Chan and colleagues (2004) did not find a differential BOLD response to self-body 

versus other-body images.  However, this could be due to the lower sensitivity of the standard 

region-of-interest fMRI contrast they used compared to Myers and Sowden’s (2008) adaptation 
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approach, which allowed the latter to distinguish the response properties of distinct neuronal 

sub-populations within the EBA.  One study, however, found differential responses to one’s own 

body and the bodies of others in the right EBA (Vocks et al., 2010).  Thus, the EBA might 

visually discriminate the bodies of oneself and others, marking the bifurcation point of the two 

routes.  However, this speculation must be tempered by the consideration that the above 

studies found evidence for own-body and other-body selectivity in the right EBA, not the left 

EBA.  The present results suggest that the left EBA houses a common visual representation of 

the human body without regard to ownership or identity.  In that case, the personal and 

interpersonal routes would bifurcate later in the processing stream.  For example, one model 

(Hodzic, Kaas, et al., 2009; Hodzic, Muckli, et al., 2009) proposes that body identity is 

discriminated in the fusiform body area, a body-responsive region located ventrally to the EBA. 

Though viewing both one’s own body and another’s body enhances spatial tactile acuity, 

this enhancement is accomplished via distinct neural mechanisms (Figure 1.3).  This suggests 

that common behavioral effects of viewing one’s own and others’ bodies need not indicate a 

shared neural representation.  Reviewing the evidence for shared body representations, de 

Vignemont (2014) proposed that the appearance of common own-body and other-body 

activations may result from the two representations time-sharing some basic body information 

processing components (e.g., body part configuration) without entailing a complete self-other 

overlap.  The results of Experiment 1 suggest that the visual body information processed in the 

EBA may be one shared component (but see Myers & Sowden, 2008 for contrary evidence), 

whereas the hVIP is specific to a representation of one’s own body, perhaps because of its 

integration of proprioceptive input. 
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Figure 1.3.  Model of the personal and interpersonal VET routes, based on evidence from 

previous studies (Fiorio & Haggard, 2005; Konen & Haggard, 2014) and the present study.  

Areas shown in gray have yet to be confirmed. 

 

Conclusion 

The present study suggests that personal VET, but not interpersonal VET, depends 

upon modulation from the multisensory hVIP.  VET, a seemingly low-level crossmodal 

interaction, is in fact sensitive to the identity of the viewed body part.  This sensitivity may reflect 

the strong tactile and proprioceptive inputs to the key VIP node of the personal VET circuit.  This 

form of multisensory interaction does not, therefore, involve a ‘mirror system’ that maps both 

one’s own body and the bodies of others onto the same neural circuitry (cf. Decety & 

Sommerville, 2003; Gallese, 2001).  Personal and interpersonal VET effects appear to rely upon 

distinct crossmodal mechanisms rather than completely overlapping representations of the body 

in the brain. 
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While it is clear that viewing the body enhances discrimination of the spatial properties of 

tactile stimuli, less is known about how viewing the body affects discrimination of the sensory 

properties of noxious stimuli, which are processed in a sensory system largely distinct from the 

system that processes innocuous tactile input.  This issue will be the subject of the three 

experiments presented in Chapter 2. 
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Chapter 2: Visual modulation of pain perception 

2.1. Pain and body representation 

Pain is the conscious experience of nociception, a sensory system dedicated to the 

perception of stimuli that threaten the integrity of the bodily tissues (IASP Task Force on 

Taxonomy, 1994).  It is unique among the bodily senses in that it possesses a strong 

motivational component in addition to being a sensory process.  In fact, pain is often considered 

to have interacting sensory/discriminative, affective/motivational, and cognitive/evaluative 

dimensions (Melzack & Casey, 1968).  The sensory/discriminative dimension comprises low-

level perceptual features of nociceptive stimuli, such as location, intensity, timing, and sensory 

quality.  The affective/motivational dimension highlights the aversive quality of pain that 

motivates pain avoidance behaviors.  Finally, the cognitive/evaluative dimension refers to 

higher-order appraisal, learning, and control of pain. 

As discussed in the introduction, pain is sometimes classified as an interoceptive sense 

because it conveys information about the physiological status of the body (Craig, 2002).  

Nonetheless, cutaneous pain also has properties of an exteroceptive sense, as it is can be 

localized within a somatotopic reference frame.  For this reason, some have proposed that the 

sense of pain lies on the boundary between interoception and exteroception (Haggard, Iannetti, 

& Longo, 2013).  Its content is the body itself, but it has a spatial organization suitable for 

localizing external sources of noxious sensations.  In this way, pain provides information about 

both the physiological state of the body, as well as external objects that may threaten the body’s 

integrity. 

Cutaneous pain is relayed by nociceptive afferents—small-diameter, thinly myelinated 

Aδ and unmyelinated C fibers (Bessou & Perl, 1969; Burgess & Perl, 1967; Perl, 1968)—that 

project to the dorsal horn of the spinal cord (Christensen & Perl, 1970; Kumazawa & Perl, 1978; 
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Light & Perl, 1979; Sugiura, Lee, & Perl, 1986) and then to the brain via the spinothalamic 

pathway (Willis, Kenshalo, Jr., & Leonard, 1979).  From the thalamus, these afferents project to 

various parts of the cortex, but predominately to the posterior insula, the medial parietal 

operculum, and the mid-cingulate cortex (Dum, Levinthal, & Strick, 2009).  In accordance with 

structural connectivity, imaging studies have shown that cortical pain processing is not limited to 

a single structure.  Instead, a distributed network of brain regions—often called the ‘pain 

matrix’—participates in pain perception, including SI, SII/parietal operculum, the insula, the 

anterior cingulate cortex (ACC), and the prefrontal cortex (see Apkarian, Bushnell, Treede, & 

Zubieta, 2005 for a review).  Moreover, single neurons that respond to noxious stimuli but not to 

innocuous stimuli have been found in SI (Kenshalo, Jr., Chudler, Anton, & Dubner, 1988; 

Kenshalo, Jr. & Isensee, 1983), the parietal operculum (Dong et al., 1989), and the ACC 

(Hutchison, Davis, Lozano, Tasker, & Dostrovsky, 1999; Koyama, Tanaka, & Mikami, 1998; 

Sikes & Vogt, 1992; Yamamura et al., 1996). 

2.2. Cortical regions involved in pain 

Primary somatosensory cortex (SI) 

Non-human primate studies have revealed nociceptive projections from the thalamus to 

SI, providing a pathway for nociceptive inputs to reach the sensory cortex (Gingold, Greenspan, 

& Apkarian, 1991; Kenshalo, Jr., Giesler, Leonard, & Willis, 1980; Rausell & Jones, 1991).  SI 

nociceptive neurons have receptive fields appropriate for discriminating the location, intensity, 

and temporal characteristics of noxious stimuli (Kenshalo, Jr. et al., 1988; Kenshalo, Jr. & 

Isensee, 1983), suggesting a role for SI in processing the sensory dimension of pain.  

Nonetheless, relatively few nociceptive neurons have been found in SI compared to the number 

of neurons there that respond to innocuous somatosensory stimulation. 
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In humans, some forms of chronic pain are associated with disinhibition of the primary 

motor and somatosensory cortices (Eisenberg et al., 2005; Lefaucheur, Drouot, Ménard-

Lefaucheur, Keravel, & Nguyen, 2006; Lenz et al., 2011; Schwenkreis et al., 2003) and with 

disorganization of SI somatotopic maps (Flor et al., 1995; Flor, Braun, Elbert, & Birbaumer, 

1997; Maihöfner, Handwerker, Neundörfer, & Birklein, 2003; Tecchio, Padua, Aprile, & Rossini, 

2002; Wrigley et al., 2009).  Human brain imaging studies, however, have yielded inconsistent 

results regarding the role of SI in cortical pain processing, though this may be due to extraneous 

factors such as anatomical variability across participants or differences in statistical methods 

(for reviews, see Apkarian et al., 2005; Bushnell et al., 1999).  Recently, a phase-encoded fMRI 

study found fine-grained somatotopic mapping of nociceptive stimulation in the SI hand area, 

comparable to that for innocuous tactile stimulation (Mancini, Haggard, Iannetti, Longo, & 

Sereno, 2012).  Additionally, gamma-band oscillations arising from SI correlate with reported 

pain intensity independently of stimulus novelty or salience (Gross, Schnitzler, Timmermann, & 

Ploner, 2007; Zhang, Hu, Hung, Mouraux, & Iannetti, 2012), suggesting a close association 

between SI and pain perception. 

Operculo-insular cortex 

The parietal operculum (including SII) and the nearby posterior insular cortex are 

consistently activated in human imaging studies of pain perception (Apkarian et al., 2005; 

Garcia-Larrea, 2012).  Together, the posterior insula and medial operculum (PIMO) receive 70% 

of spinothalamic cortical projections in monkeys, whereas SI receives less than 5% (Dum et al., 

2009).  The insula exhibits somatotopic organization of nociceptive input (Brooks et al., 2005; 

Henderson, Gandevia, & Macefield, 2007; Mazzola, Isnard, Peyron, Guénot, & Mauguière, 

2009), though this insular somatotopy is not as finely grained as that found in SI (Mancini, 

Haggard, et al., 2012).  Importantly, the PIMO is the only part of the cortex where direct 

stimulation induces acute pain, albeit only about 10% of the time (Mazzola, Isnard, Peyron, & 
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Mauguière, 2012).  Moreover, the PIMO is the only cortical area where lesions result in selective 

loss of acute pain and temperature sensation, sometimes accompanied by chronic neuropathic 

pain (Garcia-Larrea, 2012).  These observations provide strong evidence for the involvement of 

the PIMO in pain perception, leading some to identify the PIMO as the primary sensory cortex 

for nociception (Garcia-Larrea, 2012; Garcia-Larrea & Peyron, 2013). 

Anterior cingulate cortex (ACC) 

Neurons responding to nociceptive stimuli have been identified in area 24 of the ACC in 

both animals (Koyama et al., 1998; Sikes & Vogt, 1992; Yamamura et al., 1996) and pre-

surgical human volunteers (Hutchison et al., 1999).  The receptive fields of these neurons are 

large, often responding to nociceptive stimuli presented anywhere on the body surface (Sikes & 

Vogt, 1992; Yamamura et al., 1996), though limited spatial organization was identified in a small 

number of human participants (Hutchison et al., 1999).  Interestingly, some nociceptive ACC 

neurons also respond in anticipation of a painful stimulus (Hutchison et al., 1999; Koyama et al., 

1998).  This suggests that the ACC is not a primary sensory area for pain, but may participate in 

the motivational component of pain perception. 

Further evidence for the involvement of the ACC in the affective/motivational dimension 

of pain comes from rodent behavioral studies.  Lesions of the rostral ACC in rats diminished a 

learned behavior known to reflect the affective component of pain (formalin-induced conditioned 

place avoidance) but did not affect acute nociceptive-related behaviors, such as paw lifting, 

licking, and flinching (Gao, Ren, Zhang, & Zhao, 2004; Johansen, Fields, & Manning, 2001).  

Observations of human chronic pain patients treated with cingulumotomy also support this idea.  

These patients reported that they could still feel the pain, but it no longer bothered them (Foltz & 

White, 1962).  In other words, lesioning the cingulate cortex eliminated the aversive quality of 

pain without disrupting the pain sensation itself.  In healthy human participants, hypnotic 
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suggestions that selectively reduced the unpleasantness of acute noxious stimuli without 

altering their perceived intensity revealed changes in pain-evoked activity in the ACC (Rainville, 

Duncan, Price, Carrier, & Bushnell, 1997).  These studies indicate that the dimension of pain 

encoded by the ACC is affective rather than sensory in nature. 

Both single-unit recordings (Hutchison et al., 1999) and fMRI (Morrison, Lloyd, di 

Pellegrino, & Roberts, 2004; Singer et al., 2004) have demonstrated that areas of the ACC 

activated by noxious stimuli also respond to the observation of another person receiving noxious 

stimulation.  Moreover, neurons in the ACC anticipate noxious stimuli (Hutchison et al., 1999; 

Koyama, Kato, & Mikami, 2000; Koyama, Kato, Tanaka, & Mikami, 2001; Koyama et al., 1998), 

and lesions of the ACC impair pain avoidance behaviors in animals (Gabriel, Kubota, 

Sparenborg, Straube, & Vogt, 1991; LaGraize, Labuda, Rutledge, Jackson, & Fuchs, 2004).  

Together, these results imply a role for the ACC in the detection and avoidance of aversive 

stimuli. 

2.3. Multisensory modulation of pain 

Once nociceptive input reaches the brain, it may interact with other senses that convey 

information about the body, including touch (Inui, Tsuji, & Kakigi, 2006; Mancini, Nash, Iannetti, 

& Haggard, 2014; Mouraux & Plaghki, 2007) and vestibular sensation (Ferrè, Bottini, Iannetti, & 

Haggard, 2013).  Additionally, studies showing that noxious stimuli reduce corticospinal 

excitability indicate a central inhibitory effect of pain on the motor system (Farina, Tinazzi, Le 

Pera, & Valeriani, 2003; Le Pera et al., 2001).  These interactions between pain, innocuous 

sensation, and motor function may contribute to a multimodal representation of the body that 

facilitates responses to potentially injurious events (Haggard et al., 2013). 

Pain perception can also be modulated by sensory modalities such as vision that are not 

somatic per se, but may provide a context for pain perception.  Viewing the body can reduce the 
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perceived intensity of a painful stimulus (Longo, Betti, Aglioti, & Haggard, 2009; Longo, Iannetti, 

Mancini, Driver, & Haggard, 2012; Mancini, Bolognini, Haggard, & Vallar, 2012; Mancini, Longo, 

Canzoneri, Vallar, & Haggard, 2013) and increase pain detection thresholds (Mancini, Longo, 

Kammers, & Haggard, 2011) relative to viewing a non-body object in the same location.  This 

visually induced analgesia (Longo et al., 2009) is also apparent in neurophysiological and 

functional imaging measures.  Viewing the body reduced the amplitude of laser-evoked 

potentials (LEPs) that reflect pain processing (Longo et al., 2009) and altered beta oscillations 

over sensorimotor cortex (Mancini et al., 2013).  Additionally, visually induced analgesia was 

accompanied by increased functional connectivity between posterior parietal areas that process 

visual input concerning the body and areas involved in the ‘pain matrix’, including  SI, SII, the 

anterior and posterior insula, and the ACC (Longo et al., 2012).   

While previous studies show that viewing the body can influence pain, several questions 

remain unanswered.  First, it remains unclear whether the changes relate to pain perception 

specifically, or to other, non-specific post-perceptual cognitive functions.  The pain matrix, 

despite its name, is composed of several nodes that may perform various information 

processing functions, including functions that are not specific to pain sensation, such as arousal 

or threat detection (Cauda et al., 2012; Hayes & Northoff, 2012; Iannetti & Mouraux, 2010; 

Legrain, Iannetti, Plaghki, & Mouraux, 2011; Lötsch et al., 2012; Mouraux, Diukova, Lee, Wise, 

& Iannetti, 2011).  Similarly, some have questioned the validity of LEPs as an index of pain 

sensation in particular rather than a domain-general measure of stimulus salience (Iannetti, 

Hughes, Lee, & Mouraux, 2008; Mouraux & Iannetti, 2009).  Thus, it is unclear whether viewing 

the body results in a functional loss of perceptual information in the nociceptive system, or 

simply changes responses to pain. 
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2.4. Signal detection theory applied to nociception 

Signal detection theory offers a framework for distinguishing between perceptual 

sensitivity and response bias (Green & Swets, 1966).  It is typically applied to a two-alternative 

forced-choice perceptual task in which the participant must judge on every trial whether a target 

stimulus near the threshold for detection—for example, a weak vibration against the skin—is 

present or not. 

Regardless of external input to the perceptual system, there is always some baseline 

variability in neuronal activity, resulting in internal noise.  Thus, the internal response of the 

perceptual system on ‘signal present’ trials is the sum of the stimulus-evoked signal plus internal 

noise, whereas the internal response on ‘signal absent’ trials consists of noise alone.  Figure 2.1 

shows two normal probability curves representing the distributions of internal responses on 

‘signal present’ and ‘signal absent’ trials.  Perceptual sensitivity is the distance between the 

means of the ‘signal present’ and ‘signal absent’ distributions.  In other words, sensitivity refers 

to the ability of the perceptual system to distinguish stimulus-related signal from noise.  

Response bias, on the other hand, refers to the internal response level above which the 

participant will respond that the signal was present, and below which the participant will respond 

that it was absent.  That is, it is the participant’s tendency to respond that the target stimulus 

occurred, irrespective of actual sensory input. 
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Figure 2.1.  A visual representation of the signal detection approach. The two normal probability 

curves represent the distributions of internal responses on ‘signal present’ and ‘signal absent’ 

trials.  The distance between the means of the distributions is the perceptual sensitivity (d’).  

The vertical line marks the internal response level above which the participant will report that a 

signal is present (criterion).  Note that the two measures can vary independently.  (Adapted from 

Rollman, 1977.) 

 

In the signal detection approach, rates of hits (correctly reporting that the signal was 

present) and false alarms (incorrectly reporting that the signal was present when it was absent) 

are calculated.  Measures of perceptual sensitivity (d’) and response bias (criterion) are then 

computed from the z-scores of the hit and false alarm rates, according to the following formulas: 

d’ = z(hit rate) - z(false alarm rate) 

criterion = -0.5 * [z(hit rate + z(false alarm rate)] 
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A higher d’ value indicates greater perceptual sensitivity to the target stimulus. A higher criterion 

value indicates that a participant requires a larger internal response to report that a signal was 

present, and will thus make fewer hits and false alarms than another participant with equivalent 

perceptual sensitivity but a lower criterion.  Note that this approach provides additional 

information beyond other traditional psychophysical measures such as detection rate or 

detection threshold. 

In nociceptive research, the standard signal detection approach may be modified to 

accommodate the administration of high-intensity stimuli.  One approach to this might be to 

have participants discriminate a level of stimulation just above the pain threshold from another 

level just below it (Rollman, 1977).  However, this approach is not ideal for studying nociception 

specifically, because it entails discriminating a nociceptive stimulus from an innocuous stimulus 

processed by a different somatosensory pathway.  Rather than reporting whether a stimulus 

was painful or not, participants can be instructed to discriminate between two levels of noxious 

stimulation, a higher level and a lower level (Lockwood, Iannetti, & Haggard, 2013; Mancini et 

al., 2014).  In this case, the two normal distributions in Figure 2.1 would represent the internal 

responses to “lower signal (plus noise)” and “higher signal (plus noise),” and the distance 

between their means, the d’, would measure the discriminability of the two noxious stimulus 

levels.  The criterion would measure the participant’s tendency to respond “more pain” or “less 

pain” regardless of the actual stimulation level.  This approach was taken in the following three 

experiments to determine whether viewing the body in various contexts affects the sensitivity of 

the nociceptive system or biases responses to pain. 

Experiment 2: A signal detection approach to studying visual modulation of pain 

Experiment 2 aimed to determine whether viewing the body decreases sensitivity to 

levels of noxious stimulation (i.e., a loss of information about stimulus intensity) or induces a 
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bias in perceived pain level regardless of the actual intensity of stimulation (i.e., a non-

discriminative effect in which the probability of responding “high pain” is changed, irrespective of 

the actual stimulation level).  This distinction was difficult to make in previous studies because 

pain perception was assessed with continuous pain rating scales (Longo et al., 2009, 2012; 

Mancini, Bolognini, et al., 2012; Mancini et al., 2013) or pain detection thresholds (Mancini et al., 

2011).  The present study employed binary forced choice pain intensity judgments, making it 

possible to obtain separate measures of sensory sensitivity and response bias (Lockwood et al., 

2013; Mancini et al., 2014).  This approach differs from earlier applications of signal detection 

theory in that it requires participants to discriminate a higher and a lower level of painful 

stimulation, rather than a painful and a non-painful stimulation level (Rollman, 1977).  In this 

way, it was possible to specifically examine perceptual sensitivity within nociceptive pathways, 

as opposed to between noxious and non-noxious stimuli.  Based on previous studies that found 

an analgesic effect of viewing the body (Longo et al., 2009, 2012; Mancini, Bolognini, et al., 

2012; Mancini et al., 2013, 2011), it was predicted that viewing one’s own hand compared to 

viewing a non-body object would decrease the sensitivity of the nociceptive system to noxious 

intensities (i.e., a reduction in d’), as well as lowering perceived pain levels overall.  This would 

indicate that visually induced analgesia derives from a loss of information about noxious 

stimulus intensities from viewing the body rather than a post-perceptual bias in responses to 

painful stimuli. 

Method 

Participants 

Sixteen volunteers participated in the experiment (10 female, 19-42 years old, M = 26.63 

years, SD = 8.01 years).  All participants gave written informed consent to participate in the 

experiment and were treated in accordance with the ethical standards of the 1964 Declaration of 
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Helsinki.  The study was approved by the University College London Research Ethics 

Committee. 

Materials 

Contact heat-pain stimuli were delivered with a Peltier thermode connected to a 13-mm 

diameter pen-shaped probe (Physitemp NTE-2A, Clifton, NJ).  A personal computer running 

Labview 2010 (National Instruments, Austin, TX) and connected to the thermode via a USB-

6008 data acquisition device (National Instruments) delivered small voltage levels that 

controlled the temperature on the metal tip of the thermode probe.  The probe was attached to a 

wood bar controlled by a high-power servo motor (Hitec HS-805BB, Poway, CA) that brought 

the tip into contact with the hand dorsum.  Visual presentation was controlled by a semi-silvered 

mirror embedded in a barrier with a light-emitting diode (LED) lamp on each side.  Participants 

placed their right hand to the right of the barrier and looked toward it through the mirror in a 

dark, quiet room.  A hand-sized foam block was situated to the left of the mirror, behind another 

barrier that prevented the participant from seeing it directly.  When the lamp on the right side 

was illuminated, participants saw their right hand through the mirror.  When the lamp on the left 

side was illuminated, participants instead saw the reflection of the foam block, so that it 

appeared in the same location as their hand (Figure 2.2). 
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Figure 2.2.  Experimental setup with semi-silvered mirror and LED lamps. When the lamp on 

the right was switched on (right panel), participants saw their own hand through the mirror.  

Instead, when the lamp on the left was switched on (left panel), participants saw the reflection of 

the foam block appearing in the same location as their hand. 

 

Procedure 

First, each participant’s individual pain threshold was determined.  The thermode probe 

was brought into contact with the right hand dorsum.  Beginning at 32°C, the probe temperature 

was increased at a rate of 0.5°C/s until the participant pressed a mouse button with the left hand 

to indicate that the heat had just begun to elicit a painful, pinprick-like sensation.  This 

temperature ramp was repeated another three times, and the average temperature at which the 

participant pressed the button was taken as the pain threshold.  The right hand was moved 

slightly between ramps to stimulate a different area of skin.  This was necessary to avoid 

peripheral effects on pain perception such as receptor adaptation, vascular responses, and 

persistent changes in skin temperature. 
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Each participant’s individual pain threshold was used to set a medium level of heat-pain 

(a 5% increase in voltage input to the thermode relative to the threshold, corresponding to a 

temperature increase between 1.5°C and 2°C) and a high level of heat-pain (a 10% increase in 

voltage relative to the threshold, corresponding to a temperature increase between 3°C and 

4°C).  Participants then completed two practice blocks of 10 trials each in which they 

distinguished medium and high heat-pain stimuli.  Each thermal stimulus was 1 s long, with a 

12-s interval between the offset of one heat-pain stimulus and the onset of the next.  Again, the 

hand was moved slightly between blocks to stimulate a different area of skin.  To avoid floor and 

ceiling effects, the high-pain stimulus intensity was adjusted in increments of 2.5% if participants 

answered fewer than 65% or more than 85% of trials correctly.  Additionally, the medium-pain 

stimulus intensity was increased by 2.5% if it was not consistently perceived as painful during 

the practice blocks.  For safety reasons, thermal stimulation did not exceed 50°C. 

Once the medium-pain and high-pain levels were set, participants completed 8 

experimental blocks.  Each block contained 6 medium pain trials and 6 high pain trials, 

presented in a random order and equiprobably with the hand and object visual conditions.  On 

each trial, a lamp switched on for 2 s, revealing either the participant’s hand or the foam block.  

Immediately after the lamp switched off, the thermode probe descended (0.5 s), touched the 

back of the hand (1 s), and then retracted (0.5 s).  Note that participants did not see the 

thermode probe approach or contact their hand.  Participants pressed a button on a mouse in 

their left hand to indicate whether they felt a medium-pain or a high-pain stimulus.  To minimize 

peripheral effects on pain perception, the hand was moved slightly between blocks, and there 

was an interval of 9 s between trials. 
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Results 

The high-pain level was defined as the target stimulus.  A ‘hit’ was thus a high-pain 

stimulus correctly identified as high-pain, while a ‘false alarm’ was a medium-pain stimulus 

incorrectly identified as high-pain.  The proportions of hits and false alarms were used to 

calculate measures of sensitivity (d’) and response bias (criterion) according to the formulas 

given above (Green & Swets, 1966).  Note that if the medium-pain level had been selected as 

the target stimulus instead, the calculations would yield the same d’ values, and the criterion 

values would just reverse their sign. 

Paired-samples t-tests compared d’ and criterion scores in the hand and object visual 

conditions.  Sensitivity to noxious heat intensities (d’) was lower after participants saw their hand 

(M = 1.35, SEM = ±0.15) than after they saw the object (M = 1.66, SEM = ±0.18), t(15) = 2.24, p 

= .041.  There was no difference in criterion between hand (M = -0.01, SEM = ±0.07) and object 

(M = 0.09, SEM = ±0.10) visual conditions, t(15) = 1.22, p = .243).  This indicates that viewing 

the body reduced the discriminability of noxious stimulation levels rather than biasing pain 

responses (Figure 2.3A). 
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Figure 2.3.  Results of Experiment 2. Participants saw either their hand or the object in a 

randomized order, and then felt a noxious heat stimulus in darkness.  A) Mean (±SEM) scores 

of perceptual sensitivity (d’) and response bias (criterion) to noxious heat after viewing the hand 

and the object.  B) Mean (±SEM) rates of hits (high pain stimuli called high pain) and false 

alarms (medium pain stimuli called high pain) after viewing the hand and the object.  * = p < 

.050. 
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To see whether the reduction in sensitivity after viewing the hand produced an overall 

analgesic effect, as previous studies have found (Longo et al., 2009, 2012; Mancini, Bolognini, 

et al., 2012; Mancini et al., 2013, 2011), two additional paired-samples t-tests compared 

proportions of hits and false alarms after participants viewed the hand and the foam block.  

Because the target stimulus was the high-pain level, a lower hit rate would indicate a decrease 

in perceived pain intensity.  In fact, there was no difference in the hit rate between the hand (M 

= 73.70%, SEM = ±3.52%) and the object (M = 73.44%, SEM = ±4.63%) conditions, t(15) = -

0.08, p = .936.  Instead, participants made more false alarms after viewing their hand (M = 

26.82%, SEM = ±2.90%) than after viewing the object (M = 19.79%, SEM = ±2.86%), t(15) = -

2.30, p = .036, meaning that more medium-pain stimuli were perceived as high-pain stimuli 

following vision of the hand.  In contrast to previous studies, viewing the hand yielded an 

increase in perceived pain intensity at lower levels of noxious stimulation (Figure 2.3B). 

Discussion 

Experiment 2 demonstrated that viewing the body modulates pain perception at a 

perceptual level, rendering intensities of noxious stimulation less discriminable.  There was no 

visual modulation of bias in pain responding.  Surprisingly, this reduced sensitivity to differences 

in noxious stimulus intensity resulted in more medium-pain stimuli being perceived as high-pain 

stimuli.  Previous studies in which participants reported the intensity of painful stimuli on a 

continuous rating scale (from 0-100) instead found that viewing the body decreases overall 

perceived pain intensity (Longo et al., 2009, 2012; Mancini, Bolognini, et al., 2012; Mancini et 

al., 2013).  Similarly, Mancini and colleagues (2011) found an increase in pain detection 

thresholds when participants viewed their hand.  They used a gradually increasing contact-heat 

ramp and instructed their participants to press a button as soon as the heat began to feel painful 

(akin to the method used in Experiment 2 to find each participant’s pain threshold).  These 

methods differ from that of the present experiment in that they do not require participants to 
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discriminate different intensities of noxious stimulation.  Thus, the difference in the direction of 

the effect found in the present study might be due to the type of task used, namely noxious 

stimulus intensity discrimination rather than pain intensity magnitude estimation (Longo et al., 

2009, 2012; Mancini, Bolognini, et al., 2012; Mancini et al., 2013) or pain detection (Mancini et 

al., 2011). 

Alternatively, differences in visual stimulation between Experiment 2 and the previous 

studies might account for the discrepant findings.  The earlier studies (Longo et al., 2009, 2012; 

Mancini, Bolognini, et al., 2012; Mancini et al., 2013, 2011) presented the hand and object 

visual conditions in separate blocks (with the exception of the second experiment reported by 

Mancini et al., 2013, which yielded a still-significant but markedly smaller reduction in perceived 

pain intensity when viewing the hand).  In Experiment 2, the hand and object visual conditions 

varied randomly on a trial-by-trial basis.  Compared to prior studies, visual exposure was brief 

and its content was unpredictable, which might alter its implications for pain perception.  Indeed, 

studies on pain expectation have found that perception of noxious stimuli is affected by 

predictability, with predictable painful stimuli typically being perceived as less intense than 

physically identical but unpredictable painful stimuli (Carlsson et al., 2006; Crombez, Baeyens, 

& Eelen, 1994; Meulders, Vansteenwegen, & Vlaeyen, 2012).  These effects may generalize 

beyond the predictability of the painful stimulus of interest to the context in which it is presented 

(Rhudy & Meagher, 2000).  Experiment 3 tested this hypothesis by presenting blocks in which 

participants saw only the hand or the object, thus making the content of visual stimulation 

entirely predictable and consistent over time. 
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Experiment 3: The effect of visual stimulus predictability on visual modulation of 

pain 

Method 

Participants 

Sixteen different volunteers participated in the experiment (6 female, 18-53 years old, M 

= 27.31 years, SD = 8.92 years).  Two participants were dismissed during pain threshold 

determination and subsequently replaced because they did not perceive even the highest level 

of thermal stimulation as painful.  All participants gave written informed consent to participate in 

the experiment and were treated in accordance with the ethical standards of the 1964 

Declaration of Helsinki.  The study was approved by the University College London Research 

Ethics Committee. 

Materials and Procedure 

The materials and procedure of Experiment 3 were exactly the same as those of 

Experiment 2, except that participants saw their hand on every trial in 4 of the blocks and the 

foam block on every trial in the other 4 blocks.  Block order was counterbalanced across 

participants (HHOOHHOO for half the participants, and OOHHOOHH for the other half).  Once 

again, the thermode probe approached and touched the hand in darkness, so participants did 

not see the pain-inducing event. 

Results 

As in Experiment 2, the high pain level was defined as the target stimulus, and the 

proportions of hits and false alarms were used to calculate measures of sensitivity (d’) and 

response bias (criterion).  One participant did not have any false alarms in the hand visual 

condition, so a standard correction was applied to estimate the false alarm rate (Macmillan & 
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Kaplan, 1985).  Specifically, the false alarm rate was set to 1/(2N), where N is the maximum 

number of false alarms the participant could make (i.e., the total number of medium-pain trials in 

the hand visual condition).  This yields a false alarm rate halfway between 0 and the smallest 

false alarm rate the participant could have had, given the number of medium-pain trials. 

Mixed factor analyses of variance (ANOVAs) with the within-subjects factor ‘visual 

condition’ (hand or object) and the between-subjects factor ‘experiment’ (Exp 2: randomized 

visual presentation, or Exp 3: blocked visual presentation) were carried out on d’ and criterion 

scores.  There was a trend toward lower d’ scores after viewing the hand (M = 1.25, SEM = 

±0.12) than after viewing the object (M = 1.44, SEM = ±0.14) regardless of whether they were 

presented in the same or different blocks, F(1, 30) = 3.26, p = .081, partial η2 = .098.  There was 

also a significant main effect of visual condition on criterion scores, F(1, 30) = 5.78, p = .023 

partial η2  .161.  Criterion was lower after viewing the hand (M = -0.01, SEM = ±0.08) than after 

viewing the object (M = 0.13, SEM = ±0.07), meaning that participants were more likely to 

respond ‘high pain’ after seeing their hand irrespective of the actual intensity of the noxious 

stimulus.  

Comparisons between Experiments 2 and 3 showed no main effects of experiment (d’: p 

= .188; criterion: p = .793), nor interactions between experiment and visual condition (d’: p = 

.310; criterion: p = .552).  However, visual inspection of the data suggests that the effect of 

viewing the body on sensitivity was stronger when visual presentation was randomized, 

whereas the effect on criterion seemed to predominate when presentation was blocked (Figure 

2.4A). 
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Figure 2.4.  Combined results of Experiments 2 and 3. Participants saw their hand and the 

object in a randomized order (Exp 2) or a blocked order (Exp 3), and then felt a noxious heat 

stimulus in darkness.  A) Mean (±SEM) scores of perceptual sensitivity (d’) and response bias 

(criterion) to noxious heat after viewing the hand and the object.  B) Mean (±SEM) rates of hits 

(high pain stimuli called high pain) and false alarms (medium pain stimuli called high pain) after 

viewing the hand and the object.  * = p < .050 (main effects of visual condition). 
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Mixed factors ANOVAs on hit and false alarm rates confirmed the results of Experiment 

2 alone.  There was a main effect of visual condition on the false alarm rate, F(1, 30) = 10.91, p 

= .002, partial η2 = .267.  Participants perceived more medium-pain stimuli as high-pain stimuli 

after viewing the hand (M = 29.82%, SEM = ±3.14%) than after viewing the object (M = 22.40%, 

SEM = ±2.47%) regardless of whether visual presentation was randomized or blocked.  There 

was no main effect of experiment (randomized vs. blocked presentation), F(1, 30) = 1.17, p = 

.289, partial η2 = .037, and no interaction between experiment and visual condition, F(1, 30) = 

0.03, p = .863, partial η2 = .001.  The hit rate analysis found neither a main effect of visual 

condition, F(1, 30) = 0.43, p = 0.515, partial η2 = .014, nor of experiment, F(1, 30) = 1.08, p = 

.308, partial η2 = .035.  Moreover, there was no interaction between the two factors, F(1, 30) = 

0.30, p = .587, partial η2 = .010 (Figure 2.4B). 

Discussion 

In Experiment 2, viewing the body yielded a functional loss of information about noxious 

stimulus intensities.  The analysis of Experiments 2 and 3 together extends these findings.  In 

addition to the reduction in sensitivity, participants were biased toward reporting a higher level of 

pain after viewing their hand than after viewing the non-body object, regardless of the actual 

intensity of the heat-pain stimulus.  This indicates two potential mechanisms whereby viewing 

the body might influence pain perception.  First, viewing the body appears to have an effect at 

the sensory level of nociception, reducing the discriminability of noxious stimulation intensities.  

Second, vision of the hand also biases participants’ criterion for what is painful, in this case 

leading them to report higher pain levels, irrespective of stimulation intensity.  Finally, it can be 

concluded that the unpredictability of visual stimulation in Experiment 2 was not responsible for 

participants perceiving more medium-pain stimuli as high-pain stimuli after viewing their hand, 

because this effect was also present in Experiment 3. 
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Because there were no interactions between experiment and visual condition, the effects 

of viewing the body on sensitivity and response bias manifested to some extent both when the 

order of hand and object presentation was randomized (Experiment 2) and when the two were 

presented in separate blocks (Experiment 3).  Nevertheless, the reduction in sensitivity seemed 

to be stronger in Experiment 2.  This effect only reached the level of a trend in the combined 

analysis of Experiments 2 and 3, although a one-tailed test would be warranted given the 

prediction of a visually-induced reduction in sensitivity.  Conversely, response bias seemed to 

predominate in Experiment 3 (Figure 2.4B).  A difference in the predictability of visual 

stimulation might alter the balance between the effects of viewing the body on sensitivity and 

response bias, with the more stable visual context favoring a bias effect. 

While several studies have previously investigated the effects of viewing the body on 

pain perception, the precise visual stimulus used varies dramatically.  For example, studies 

have involved viewing one’s own hand (Longo et al., 2009, 2012; Mancini, Bolognini, et al., 

2012; Mancini et al., 2013, 2011), another’s hand (Longo et al., 2009), or another’s hand 

perceived as one’s own hand (Höfle, Hauck, Engel, & Senkowski, 2012; Höfle, Pomper, Hauck, 

Engel, & Senkowski, 2013).  In addition, some studies involved viewing the pain-inducing event 

in addition to the body (Höfle et al., 2012, 2013; Mancini et al., 2013). Viewing the body and 

viewing noxious stimulation on the body might potentially have quite different effects on pain 

perception.  Moreover, these effects might interact.   For instance, viewing an image of a needle 

pricking a hand increased ratings of the intensity and unpleasantness of a painful 

intracutaneous electrical stimulus, which elicits a pinprick-like sensation (Höfle et al., 2012, 

2013).  In another study, however, participants saw a thermode probe approach and deliver a 

painful heat stimulus to either their hand or a non-body object, and gave lower pain intensity 

ratings when viewing the probe touch their hand (Mancini et al., 2013).  Thus, there is 

contradictory evidence for whether viewing a threatening stimulus approach the body has a 
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similar effect on pain perception as viewing the body alone.  Experiment 4 aimed to 

systematically compare these two conditions and their effects on both sensitivity to noxious 

stimulus intensities and bias in perceived pain level. 

Experiment 4: The effect of viewing the pain-inducing event on pain perception 

Method 

Participants 

Sixteen additional volunteers were recruited for Experiment 4 (10 female, 19-36 years 

old, M = 23.81 years, SD = 5.08 years).  One was dismissed during pain threshold 

determination and subsequently replaced because he did not perceive even the highest level of 

thermal stimulation as painful.  All participants gave written informed consent to participate in 

the experiment and were treated in accordance with the ethical standards of the 1964 

Declaration of Helsinki.  The study was approved by the University College London Research 

Ethics Committee. 

Materials and Procedure 

The materials and procedure of Experiment 4 were the same as those of Experiment 2, 

except that the timing of visual stimulation was shifted to coincide with the delivery of heat-pain 

stimulation.  A second, inactive thermode probe was attached to another motor-controlled wood 

bar over the block and moved synchronously with the probe over the participant’s hand.  On 

each trial, either the hand or the foam block was illuminated as the thermode probe began to 

descend, so that the participant saw the probe approach and contact the hand or the block.  The 

order of hand and object presentation was randomized, as in Experiment 2, and trial and block 

durations were the same as in the previous experiments.  Thus, Experiment 4 recapitulated 

Experiment 2 with the additional factor of viewing the approaching noxious stimulation. 
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Results 

Once again, the high-pain level was defined as the target stimulus, and the proportions 

of hits and false alarms were used to calculate measures of sensitivity (d’) and response bias 

(criterion).  As in Experiment 3, one participant did not have any false alarms in the hand visual 

condition, so a standard correction was applied to estimate the false alarm rate (Macmillan & 

Kaplan, 1985).  Mixed factor ANOVAs with the within-subjects factor ‘visual condition’ (hand or 

object) and the between-subjects factor ‘experiment’ (Exp 4: thermode probe approach visible, 

or Exp 2: thermode probe approach not visible) were carried out on d’ scores, criterion scores, 

hit rates, and false alarm rates.  For sensitivity (d’), there was an interaction between the two 

factors, F(1, 30) = 6.24, p = .018, partial η2 = .172.  In Experiment 2, when noxious stimulation 

was delivered in darkness, participants were less able to discriminate the two heat-pain 

stimulation intensities when they viewed their hand (M = 1.35, SEM = ±0.15) than when they 

viewed the object (M = 1.66, SEM = ±0.18), t(15) = 2.24, p = .041.  In contrast, when 

participants saw the thermode probe approach and deliver the painful stimulus in Experiment 4, 

there was an increase in sensitivity to heat-pain intensities when viewing the hand (M = 1.26, 

SEM = ±0.16) compared to viewing the object (M = 1.09, SEM = ±0.17).  This increase, 

however, was not statistically significant, t(15) = -1.26, p = .226 (Figure 2.5A).  Pairwise 

comparisons between experiments revealed lower sensitivity when viewing the probe touch the 

object in Experiment 4 than when viewing the object alone in Experiment 2, t(30) = 2.30, p = 

.029.  There was no difference in sensitivity between viewing the probe touch the hand and 

viewing the hand alone, t(30) = 0.47, p = .644. 

There was no main effect of visual condition on d’ (p = .441), criterion (p = .106), hit 

rates (p = .206), or false alarm rates (p = .096).  There was also no main effect of experiment on 

any of these measures (d’: p = .124, criterion: p = .704; hits: p = .232; false alarms: p = .255).  

Finally, there was no interaction between visual condition and experiment for criterion (p = 
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.946), hits (p = .245), or false alarms (p = .149).  Mean scores in each condition are shown in 

Figure 2.5. 

 

 

Figure 2.5.  Combined results of Experiments 2 and 4. Participants either saw their hand or the 

object before feeling a noxious heat stimulus in darkness (Exp 2), or they saw the thermode 

probe approach and touch their hand or the block while feeling the noxious heat stimulus (Exp 
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4).  A) Mean (±SEM) scores of perceptual sensitivity (d’) and response bias (criterion) to 

noxious heat when viewing the hand and the object.  B) Mean (±SEM) rates of hits (high pain 

stimuli called high pain) and false alarms (medium pain stimuli called high pain) when viewing 

the hand and the object.  * = p < .050. 

 

Discussion 

The key difference between Experiments 2 and 4 was whether participants did or did not 

see the thermode probe while receiving the heat-pain stimulus.  A between-experiments 

analysis revealed that the reduction in sensitivity to noxious stimulation intensities after viewing 

the hand was eliminated when participants saw the probe deliver the noxious stimulus.  In fact, 

there was a non-significant trend in the opposite direction, with higher d’ scores when viewing 

the hand being touched by the probe than when viewing the block being touched. 

Importantly, seeing the thermode probe approach in Experiment 4 did not provide any 

additional information about the occurrence, timing, or strength of the thermal stimulus.  

Participants were aware that they would feel a heat-pain stimulus on every trial, regardless of 

whether they saw their hand or the foam block.  Moreover, the heat-pain stimulus was delivered 

at the same time on every trial in both experiments, and was completely predictable from the 

offset of the LED lamp in Experiment 2.  Therefore, the difference between Experiment 4 and 

Experiment 2 is not in the predictability of the noxious stimulus, but in actually seeing the 

thermode probe come into contact with the body or the non-body object. 
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General Discussion: Experiments 2-4 

I. Viewing the body modulates both pain sensations and pain responses 

Experiment 2 clearly showed that viewing the body reduced sensitivity to differences in 

noxious heat intensity.  Participants were less able to discriminate the medium and high heat-

pain stimuli after viewing their hand than after viewing the foam block appearing in the same 

location as their hand.  This indicates a functional loss of information about stimulus intensity 

from the nociceptive system as a result of viewing the body, independent of any effect of spatial 

attention.  Building on prior research (Longo et al., 2009, 2012; Mancini, Bolognini, et al., 2012; 

Mancini et al., 2013, 2011), this experiment demonstrates that viewing the body does not merely 

reduce reported pain level, but inhibits the sensory processing responsible for encoding 

nociceptive stimulus intensity, rendering variations in the level of noxious stimulation less 

discriminable. 

The comparison between Experiments 2 and 3 revealed that viewing the body can also 

bias perceived pain level irrespective of actual stimulus intensity.  Interestingly, the direction of 

this bias was opposite to the effect found in previous studies that found visually induced 

analgesia (Longo et al., 2009, 2012; Mancini, Bolognini, et al., 2012; Mancini et al., 2013, 2011). 

Participants in Experiments 2 and 3 tended to report higher levels of pain after viewing the 

hand.  In particular, they perceived more medium-pain stimuli as high-pain stimuli following 

vision of the hand compared to vision of the non-body object.  As discussed earlier, the 

difference in the direction of the effect on perceived pain level might be due to the kind of task 

used.  Experiments 2, 3, and 4 used a binary forced choice discrimination task, whereas 

previous studies used pain detection thresholds (Mancini et al., 2011) or continuous pain rating 

scales (Longo et al., 2009, 2012; Mancini, Bolognini, et al., 2012; Mancini et al., 2013).  

Differences between the kinds of pain judgments made in these tasks could account for the 
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apparent discrepancy in the direction of the modulation.  A loss of noxious intensity information 

from the nociceptive system could lead to lower intensity ratings in a magnitude estimation task.  

Instead, in a forced choice discrimination task, it might lead participants to identify more noxious 

stimuli as ‘high pain’ because the stimuli feel less intense overall, so participants may adjust 

their concept of ‘high pain’ to include lower perceived intensity levels. 

Additionally, the duration of visual stimulation might be an important difference between 

the present studies and previous studies on visual modulation of pain perception.  In 

Experiments 2 and 3, participants had brief, 2 s glimpses of their hand or the foam block that 

preceded contact heat pain stimulation.  In the previous studies, vision of the hand/object lasted 

at least 5 s, and it both preceded and overlapped with the timing of the noxious stimulus.  Either 

the absolute duration of visual stimulation or the relative onset of the visual stimulus relative to 

the noxious stimulus might affect visual modulation of pain perception.  A systematic 

investigation of these factors should be done in future studies. 

One might argue that the experimental procedures used to investigate visual modulation 

of pain find an effect of viewing the body because they cause a multisensory conflict, that is, the 

sensation of a noxious stimulus on the hand without a visible pain-inducing stimulus.  Previous 

authors have refuted this claim by demonstrating that visual modulation of pain perception can 

occur even when participants view their hand directly and see the pain-inducing stimulus on 

their hand (Longo et al., 2009; Mancini et al., 2013) or when a ‘dummy stimulus’ gives the 

impression that the pain-inducing stimulus is visible (Mancini et al., 2011).  For the present 

study, it is important to note that none of the experiments caused a visuo-somatosensory 

conflict.  In Experiments 2 and 3, the noxious stimulus was administered in total darkness, 

following vision of the hand or the block.  In Experiment 4, participants saw the thermode probe 

approach and contact their hand (or the foam block, which appeared in the same location).  

Therefore, multisensory conflict cannot explain the results. 
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II. A neural mechanism for visual modulation of nociception 

Previous studies suggest that visual modulation of pain perception occurs via functional 

connections from visual body processing areas in the extrastriate and posterior parietal cortices 

to areas of the pain matrix, including SI, SII, the insula, and the ACC (Longo et al., 2012; 

Mancini, Bolognini, et al., 2012).  The results of the present study, particularly Experiment 2, 

indicate that vision of the body modulates activity in a region responsible for encoding 

sensory/discriminative aspects of nociception.  Though several nodes of the pain matrix have 

been implicated in processing sensory/discriminative aspects of pain (Bornhövd et al., 2002; 

Büchel et al., 2002; Frot, Magnin, Mauguière, & Garcia-Larrea, 2007; Hofbauer, Rainville, 

Duncan, & Bushnell, 2001; Iannetti, Zambreanu, Cruccu, & Tracey, 2005; Kong et al., 2006; 

Ohara, Crone, Weiss, Treede, & Lenz, 2004; Peyron, Laurent, & García-Larrea, 2000; 

Timmermann et al., 2001), some have proposed that the operculo-insular cortex has a primary 

role in encoding noxious stimulus intensity (Garcia-Larrea, 2012; Garcia-Larrea, 2012; Mazzola, 

Faillenot, Barral, Mauguière, & Peyron, 2012).  In support of this claim, single pulses of 

transcranial magnetic stimulation (TMS) over SII, but not SI, reduced discrimination accuracy 

and d’ scores in a binary forced choice pain intensity discrimination task like the one used in 

Experiments 2, 3, and 4 (Lockwood et al., 2013).  Another study found that the N1 component of 

the laser-evoked potential—localized to the operculo-insular cortex by a source analysis—

showed the shortest peak latency and the largest enhancement during a similar heat-pain 

intensity discrimination task (Schlereth, Baumgärtner, Magerl, Stoeter, & Treede, 2003).  These 

studies suggest that viewing the body may reduce sensitivity to noxious heat intensities through 

a modulatory effect of the visual body network on nociceptive circuits in the operculo-insular 

region. 

Alternatively, the reduction in nociceptive sensitivity produced by viewing the body may 

result from modulation of SI.  At least one study found the pattern of neurophysiological activity 
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in SI to be more consistent with pain intensity processing than the activity in SII (Timmermann et 

al., 2001).  Moreover, responses of nociceptive neurons in monkey SI correlate with the 

monkey’s response time to small changes in noxious heat intensity (Kenshalo, Jr. et al., 1988).  

Some forms of chronic pain are associated with disinhibition of the primary motor and 

somatosensory cortices (Eisenberg et al., 2005; Lefaucheur et al., 2006; Lenz et al., 2011; 

Schwenkreis et al., 2003) and with disorganization of SI somatotopic maps (Flor et al., 1995; 

Flor et al., 1997; Maihöfner et al., 2003; Tecchio et al., 2002; Wrigley et al., 2009).  Modulation 

of SI somatotopy is therefore another possible mechanism by which viewing the body might 

affect the processing of pain intensity. 

III. Viewing the body under threat 

Experiment 4 showed that sensitivity to noxious heat intensities is not reduced by vision 

of the body when the pain-inducing event is also visible.  Vision of the body being touched 

actually yielded higher d’ scores than vision of the foam block being touched, though this 

difference was not statistically significant.  Outside the laboratory, acute pain is generally 

associated with a visible external event or object, making this the most naturalistic of the three 

pain experiments.  Thus, while viewing the body might reduce nociceptive sensitivity under 

certain experimental conditions, this reduction may not occur very often under normal, everyday 

circumstances.  The comparison between Experiment 2 and Experiment 4 suggests a clear 

dissociation between effects of seeing the body and effects of seeing noxious stimulation.  

Some previous studies have amalgamated these two distinct yet interacting effects under the 

single general concept of ‘seeing touch’.  The results of these experiments highlight the need to 

distinguish between them. 

One possible reason that nociceptive sensitivity was not reduced when viewing the hand 

in Experiment 4 could be that seeing the approach of a potentially harmful object in peripersonal 
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space actually enhances sensitivity to pain intensity, and this counteracts the effect of seeing 

the body itself.  Indeed, this enhancement could serve an adaptive value in helping the observer 

identify and avoid threats to body integrity.  Previous studies have found that viewing an image 

of a needle pricking a hand over one’s own hand increases intensity and unpleasantness ratings 

of concurrently administered painful stimuli (Höfle et al., 2012, 2013).  The results of Experiment 

4 hint that viewing a threatening stimulus approach the body might also boost 

sensory/discriminative aspects of nociception.  However, this explanation is weakened by the 

observation that sensitivity was lower when viewing the foam block being touched in Experiment 

4 relative to viewing the block alone in Experiment 2. 

An alternative explanation could be that viewing the foam block being touched by the 

probe while being touched on one’s own hand caused the block to be ‘embodied’, as in the 

rubber hand illusion (Botvinick & Cohen, 1998).  This might have resulted in vision of the foam 

block having an effect similar to vision of the hand.  Objects that do not resemble body parts are 

not usually embodied (Tsakiris et al., 2010, 2008; Tsakiris & Haggard, 2005; but see Armel & 

Ramachandran, 2003).  Nevertheless, the salience of painful stimulation might yield a lower 

criterion for embodiment of a foreign object than the typical embodiment paradigm, which 

combines visual information and innocuous touch.  In Experiment 4, the appearance of touch on 

the foam block consistently co-occurred with a painful stimulus on the participant’s own hand, in 

a way that only the appearance of touch on one’s own hand normally would.  The adaptive 

value of learning this correspondence may have outweighed the visual evidence against the 

foam block being a body part.  It is not possible to form a conclusion about this from Experiment 

4, as embodiment was not measured.   However, another study found an enhancement of the 

rubber hand illusion when painful tactile stimulation was used rather than innocuous tactile 

stimulation (Capelari et al., 2009), suggesting that noxious stimulation might in fact strengthen 

the propensity to embody an external object. 
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IV. Viewing the body: An attentional effect? 

One might contend that the effect of viewing the body on pain perception is simply an 

effect of attention.  However, a purely attentional account cannot explain all of the results.  First, 

it is not clear whether viewing the hand or the object would attract more attentional resources.  

The hand might be a more interesting visual stimulus than the foam block.  Alternatively, seeing 

the block in the location of one’s hand might increase attention because of the visuo-

proprioceptive incongruency.  Because heightened attention tends to both increase pain ratings 

(Arntz, Dreessen, & Merckelbach, 1991; Hodes, Rowland, Lightfoot, & Cleeland, 1990; Levine, 

Gordon, Smith, & Fields, 1982; Miron, Duncan, & Bushnell, 1989) and improve detection of 

changes in noxious stimulus intensity (Bushnell, Duncan, Dubner, Jones, & Maixner, 1985; 

Miron et al., 1989), the data do not provide clear evidence for one visual condition being more 

attention-grabbing than the other.  After viewing the hand, participants tended to report higher 

levels of pain, but they were also less sensitive to differences in heat-pain intensity. 

Second, in Experiments 2 and 3, visual stimulation occurred prior to heat-pain 

stimulation.  It is unlikely that any difference in attention to the visual stimulus would have an 

effect on perception of the noxious stimulus, as they were presented at separate, non-

overlapping time periods.  Furthermore, in Experiments 2 and 3, the noxious stimulus was 

delivered in a dark and quiet environment.  Though the possibility of distraction cannot be 

completely ruled out, these conditions should have promoted the full direction of attention 

toward the task-relevant noxious stimulus, regardless of the visual condition that preceded it.  

V. Conclusion 

Together, the results of Experiments 2, 3, and 4 indicate that viewing the body can have 

two distinct effects on pain perception.  First, viewing the body reduces the sensitivity of the 

nociceptive system to differences in the level of noxious stimulation.  Second, viewing the body 
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can bias perceived pain level regardless of actual stimulus intensity.  Though these two effects 

may co-occur, the former seems more pronounced when vision of the body is brief and 

unpredictable, whereas the latter tends to predominate when the visual body context is 

predictable and consistent over time.  Lastly, viewing the pain-inducing event seems to 

counteract the reduction in nociceptive sensitivity.  However, it is not clear whether this is due to 

a generalizable effect of seeing a threatening object approach in peripersonal space, or to 

embodiment of the non-body object as a result of the correlated visual and tactile/nociceptive 

inputs in the experiment. 

For the most part, the first two chapters have dealt with the somatosensory 

consequences of viewing the body when vision is non-informative about any noxious or 

innocuous tactile stimulation.  The results of Experiment 4 make it clear that viewing a 

somatosensory event on the body may have effects distinct from those of viewing the body 

alone.  The next chapter will discuss the effect of viewing the body being touched on tactile 

perception.  In particular, it will examine the consequences of viewing touch on the face, a body 

part that is especially important for both identity and emotion recognition. 
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Chapter 3: Visual remapping of touch on the face 

3.1. Face perception 

The face holds a special place in the representation of the human body.  It is one of our 

most salient cues for identifying others.  Face perception provides us with information about the 

other person’s age, gender, familial relationships, and ethnic background.  If the person is 

familiar to us, we can recall stored knowledge and previous experiences that may facilitate 

social interactions with the person.  Likewise, our own face is an important part of our self-

identity.  Faces also serve as powerful communicative tools.  As well as being the conduit for 

verbal communication, faces send many non-verbal cues through eye gaze and, in particular, 

facial expressions.  Facial expressions are the primary way through which we express 

emotions.  They can alert others to the presence of a threat, invite further positive interaction, 

and signal a wide variety of other cues to those around us. 

Models of face perception tend to subdivide it into two general domains: facial identity 

perception and facial expression perception (Bruce & Young, 1986; Haxby, Hoffman, & Gobbini, 

2000).  The former would require representations of invariant, structural properties of individual 

faces, as well as links to higher-order, person-specific semantic information and episodic 

memories.  The latter comprises the perception of dynamic facial cues such as gaze direction 

and muscle configurations, with connections to emotion recognition and communicative 

functions.  There is evidence to suggest that the mechanisms for perceiving facial identity and 

facial expressions are at least partially distinct.  Patients with prosopagnosia are impaired at 

recognized identity from faces, but often exhibit spared facial expression recognition (Duchaine, 

Parker, & Nakayama, 2003; Humphreys, Avidan, & Behrmann, 2007; Sergent & Villemure, 

1989; Tranel, Damasio, & Damasio, 1988).  Neurophysiological (Bobes, Mart  n, Olivares, & 

Valdés-Sosa, 2000; Eimer & Holmes, 2002) and imaging studies (Sergent, Ohta, Macdonald, & 
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Zuck, 1994; Winston, Henson, Fine-Goulden, & Dolan, 2004) have also provided evidence for 

segregated processing of facial identity and expressions in healthy participants.  However, other 

studies suggest that facial identity and facial expression mechanisms interact, with a particular 

influence of facial identity on facial expression recognition (Calder & Young, 2005; Ellamil et al., 

2008; Fox & Barton, 2007; Fox et al., 2008; Schweinberger & Soukup, 1998; Spangler et al., 

2010). 

Studies on the neural basis of face perception have found two areas in the extrastriate 

occipito-temporal cortex that respond selectively to the sight of human faces: the fusiform face 

area (FFA) (Kanwisher, McDermott, & Chun, 1997) and the occipital face area (OFA) (Gauthier 

et al., 2000).  The OFA appears to be more selective for individual parts of the face, whereas 

the FFA shows a greater response to viewing the face as a whole (Liu, Harris, & Kanwisher, 

2010; Nichols, Betts, & Wilson, 2010; Pitcher, Walsh, Yovel, & Duchaine, 2007; Tong, 

Nakayama, Moscovitch, Weinrib, & Kanwisher, 2000).  Interestingly, this parallels the functions 

of the nearby EBA and FBA in visual body perception, with the EBA showing greater selectivity 

for body parts and the FBA responding preferentially to whole-body stimuli (Taylor et al., 2007).  

Various models of face perception have proposed that the OFA performs a low-level structural 

encoding of face stimuli, whereas the FFA is involved in higher-level, configural aspects of face 

processing (Calder & Young, 2005; Haxby et al., 2000; Ishai, 2008; Pitcher, Walsh, & Duchaine, 

2011). 

Of the two extrastriate face-selective regions, the FFA has been studied more 

extensively.  It shows a greater BOLD response to human faces than to inanimate objects, 

animals, and other human body parts (Grill-Spector, Knouf, & Kanwisher, 2004; Kanwisher et 

al., 1997; Kanwisher, Stanley, & Harris, 1999).  Furthermore, lesions of this region in the right 

fusiform gyrus impair discrimination of the spatial configuration of facial features in acquired 

prosopagnosics (Barton, Press, Keenan, & O’Connor, 2002).  Several studies have found that 
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the FFA plays a role not only in face detection, but also in the discrimination of face identity 

(Andrews & Ewbank, 2004; Gauthier et al., 2000; Grill-Spector et al., 2004; Rotshtein, Henson, 

Treves, Driver, & Dolan, 2005; Winston et al., 2004).  There is mixed evidence for whether the 

FFA may also be sensitive to facial expressions (Ganel, Valyear, Goshen-Gottstein, & Goodale, 

2005; Winston et al., 2004).  A more recent study suggests that the crucial factor determining 

the involvement of the FFA is whether the task relies more upon configural than feature-based 

processing of faces (Cohen Kadosh, Henson, Cohen Kadosh, Johnson, & Dick, 2010).  

Discrimination of facial identity relies predominantly on configural processing, whereas facial 

expression recognition may be accomplished through either a configural or a feature-based 

analysis (Calder, Young, Keane, & Dean, 2000; Mondloch, Geldart, Maurer, & Grand, 2003). 

A substantial amount of research has focused on the way that emotions are recognized 

from facial expressions (Adolphs, 2002).  One area that appears to be involved in processing 

facial expressions and other dynamic aspects of faces is the superior temporal sulcus (STS).  

Single-unit recordings from monkeys have found neurons in the STS selective for both facial 

expressions (Hasselmo, Rolls, & Baylis, 1989) and gaze direction (Perrett, Hietanen, Oram, 

Benson, & Rolls, 1992).  A role for the human STS in the analysis of both facial expressions and 

gaze is also supported by neuroimaging studies (Engell & Haxby, 2007; Hoffman & Haxby, 

2000; Narumoto, Okada, Sadato, Fukui, & Yonekura, 2001; Phillips et al., 1998).   

Other brain regions are involved in perceiving specific emotions from facial expressions.  

Damage to the amygdala can result in an impaired ability to recognize negative emotional 

expressions, especially fear (Adolphs et al., 1999; Adolphs, Tranel, Damasio, & Damasio, 1994, 

1995; Broks et al., 1998; Calder et al., 1996; Young et al., 1995; Young, Hellawell, Van de Wal, 

& Johnson, 1996).  In healthy participants, the amygdala is activated in response to fearful facial 

expressions (Morris et al., 1996, 1998; Phillips et al., 1997, 1998; Whalen et al., 2001), even 

when they are presented subliminally (Whalen et al., 1998; Williams, Morris, McGlone, Abbott, & 
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Mattingley, 2004).  Amygdala lesions are also associated with impaired fear conditioning 

(Bechara et al., 1995; LaBar, LeDoux, Spencer, & Phelps, 1995) and a reduced capacity for 

experiencing fear (Feinstein, Adolphs, Damasio, & Tranel, 2011; Sprengelmeyer et al., 1999), 

indicating that the amygdala is involved in both the subjective experience of fear and the 

recognition of fear in others. 

Similarly, lesions of the insula have yielded deficits in both experiencing and recognizing 

disgust (Adolphs, Tranel, & Damasio, 2003; Calder, Keane, Manes, Antoun, & Young, 2000), 

and the insula responds preferentially to disgusted facial expressions in healthy human 

participants (Phillips et al., 1997, 1998; Sprengelmeyer, Rausch, Eysel, & Przuntek, 1998).  

Additionally, the orbitofrontal cortex has been implicated in facial expression processing, 

particularly when explicit emotion recognition is required (Hornak, Rolls, & Wade, 1996; 

Nakamura et al., 1999; Narumoto et al., 2001).  Some studies suggest that the orbitofrontal 

cortex is especially involved in processing angry facial expressions (Blair, Morris, Frith, Perrett, 

& Dolan, 1999; Harmer, Thilo, Rothwell, & Goodwin, 2001), consistent with the idea that 

understanding angry expressions may require contextual information and knowledge of social 

contingencies (Pichon, de Gelder, & Grèzes, 2009). 

One way in which facial expressions may be recognized is through somatosensory 

resonance, a process in which the facial expressions of others are simulated at a sub-

phenomenal level within the observer’s own somatosensory and motor systems (Adolphs, 2002; 

Damasio, 1994).  An embodied facial expression simulation mechanism would aid emotion 

recognition by allowing a direct experience of the other’s emotional state.  The idea that 

simulation facilitates emotion recognition is supported by the aforementioned lesion studies 

showing that damage to the amygdala and the insula impacts both the experience and the 

recognition of fear and disgust, respectively (Adolphs et al., 1999; Adolphs et al., 2003; Adolphs 

et al., 1994, 1995; Broks et al., 1998; Calder et al., 1996; Calder, Keane, et al., 2000; Feinstein 
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et al., 2011; Sprengelmeyer et al., 1999; Young et al., 1995, 1996).  Patients with lesions in the 

somatosensory cortices of the right anterior parietal lobe also exhibit impaired recognition of 

emotion from facial expressions, especially fear (Adolphs, Damasio, Tranel, Cooper, & 

Damasio, 2000; Adolphs, Damasio, Tranel, & Damasio, 1996).  Furthermore, disrupting the right 

primary somatosensory cortex with TMS specifically impairs recognition of fearful facial 

expressions (Pourtois et al., 2004).  These findings indicate that simulating the sensorimotor 

components of expressing an emotion can also aid recognition of other’s emotional 

expressions, particularly fearful expressions.  What is more, seeing fearful human faces 

enhances detection of near-threshold tactile stimuli on the observer’s own face, supporting the 

idea that activity in early somatosensory cortices is modulated by the sight of fearful facial 

expressions (Cardini, Bertini, et al., 2012).  

From an evolutionary perspective, the emotional expressions of non-human animals also 

carry important information for the human observer.  They may indicate whether the animal has 

aggressive or cooperative intentions, or signal the presence of potential rewards or threats, 

such as common food sources or predators.  Despite being a source of valuable information for 

adaptive behavior, few studies have investigated heterospecific facial expression recognition 

(Bloom & Friedman, 2013; Kanazawa, 1996; Racca, Guo, Meints, & Mills, 2012) and none have 

examined whether non-human facial expressions are recognized via somatosensory simulation.  

As with human facial expressions, somatosensory simulation could benefit the observer by 

providing a direct understanding of the animal’s emotional state.  One way to investigate this 

question would be to test whether the sight of touch on emotional, non-human faces modulates 

tactile perception, which would suggest that non-human facial expressions are likewise 

processed in the somatosensory system of the human observer. 
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3.2. Visual remapping of touch 

The interaction between visual face processing and tactile perception can be explored 

with the visual remapping of touch (VRT) paradigm, wherein viewing touch on a face improves 

detection of near-threshold tactile stimuli on the observer’s own face (Serino et al., 2008).  

Electro-tactile stimulation is calibrated to be stronger on one cheek than the other so that 

extinction of the weaker stimulus occurs approximately half the time that bilateral touch is 

administered.  This pattern that mimics the perceptual deficits of patients with damage to the 

right brain hemisphere who extinguish contralesional stimuli when an ipsilesional stimulus of 

comparable strength is presented at the same time (Bender, 1952).  In healthy participants, the 

detection rate of bilateral tactile stimulation increases when seeing a face being touched on both 

cheeks compared to both a non-face object being touched bilaterally and to a face being merely 

approached by two fingers.  Because participants are told that the visual stimuli are non-

informative about the task and that they should base their responses solely on what they feel on 

their own cheeks, this demonstrates an involuntary effect of visual input on a purely tactile task.  

Note that the VRT effect differs from the VET effect examined in Chapter 1 in that the observer 

views the body part being touched rather than the just body part by itself.  As demonstrated by 

Experiment 4, viewing a tactile event on the body may have different consequences for 

somatosensory perception than viewing the body alone. 

VRT is stronger when one views one’s own face being touched than when one views 

another person’s face being touched (Serino et al., 2008).  When another person’s face is seen, 

VRT is enhanced if that person is perceived as similar to the observer in terms of both physical 

characteristics and social group membership (Cardini, Tajadura-Jiménez, et al., 2013; Fini et al., 

2013; Serino, Giovagnoli, et al., 2009).  Furthermore, the degree to which VRT is affected by the 

other person’s ethnicity is mediated by the observer’s own implicit racial bias, and can be 

ameliorated by synchronous, interpersonal visuo-tactile stimulation designed to increase the 
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perceived physical similarity between one’s own face and the other person’s face (Fini et al., 

2013).  These findings indicate that VRT is not a purely automatic, bottom-up process.  Instead, 

it is influenced by social factors and by higher-order representations of oneself and others. 

VRT is thought to depend upon a crossmodal effect wherein the sight of touch 

modulates activity in the observer’s somatosensory cortex, even in the absence of any actual 

tactile stimulation (Blakemore, Bristow, Bird, Frith, & Ward, 2005; Ebisch et al., 2008; Keysers et 

al., 2004; Schaefer, Heinze, & Rotte, 2005; Schaefer, Xu, Flor, & Cohen, 2009).  Similar to VET, 

the remapping of seen touch onto the neural system for tactile processing is thought to occur via 

feedback from multisensory (i.e., visuo-tactile) brain regions to SI and/or SII, which enhances 

tactile sensitivity on the corresponding region of the body surface (Keysers et al., 2004; Ro, 

Wallace, Hagedorn, Farné, & Pienkos, 2004; Schaefer et al., 2005).  Supporting this idea, a 

functional magnetic resonance imaging study identified a network of fronto-parietal areas 

involved in VRT that includes the polymodal ventral premotor cortex and the face area of SI/SII 

(Cardini, Costantini, et al., 2011). 

Experiment 5: Remapping of observed touch on human and non-human faces 

with emotional expressions 

To date, VRT studies have only compared human faces to non-face objects, so it is not 

known whether the effect would extend to non-human faces.  Several studies have shown that 

the human brain processes heterospecific faces differently than conspecific faces after infancy 

(Dahl, Wallraven, Bülthoff, & Logothetis, 2009; de Haan, Pascalis, & Johnson, 2002; Neiworth, 

Hassett, & Sylvester, 2007; Pascalis & Bachevalier, 1998; Pascalis, de Haan, & Nelson, 2002; 

Scott, Shannon, & Nelson, 2005, 2006).  Specifically, human faces are analyzed more 

holistically (Dahl et al., 2009; Neiworth et al., 2007) and more efficiently at an early stage of face 

processing (de Haan et al., 2002; Scott et al., 2005).  Because of these processing differences, 
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and because VRT strength is mediated by perceived similarity to the other (Cardini, Tajadura-

Jiménez, et al., 2013; Fini et al., 2013; Serino, Giovagnoli, et al., 2009), one might predict that 

any VRT for non-human faces would be weaker than for human faces.  Nevertheless, VRT 

might be enhanced if the non-human face expressed fear, a critical emotion for adaptive 

behavior.  Fear recognition is a particularly important function because the fearful expressions 

of others often signal the presence of an immediate threat in the environment.  Efficient 

recognition of these expressions would allow the observer to quickly enact defensive behaviors 

to avoid potential harm.  Moreover, the recognition of fearful faces seems especially dependent 

upon simulation within somatosensory cortex relative to the recognition of other emotions from 

faces (Adolphs et al., 2000, 1996; Pourtois et al., 2004).  In keeping with this finding, VRT is 

enhanced by fearful human faces but not by happy or angry faces (Cardini, Bertini, et al., 2012).  

Because fear recognition is important for adaptive behavior and especially dependent upon an 

embodied somatosensory simulation mechanism, seeing a fearful monkey face being touched 

might heighten an otherwise weak interspecies VRT effect. 

Experiment 5 examined whether VRT would occur for touch observed on monkey faces, 

and whether its strength would be similarly modulated by the monkeys’ emotional facial 

expressions as it is by human facial expressions.  Participants reported unilateral or bilateral 

touch on their own cheeks while they watched fearful, happy, and neutral human or monkey 

faces being touched or merely approached by fingers.  Based on the study by Cardini and 

colleagues (2012), a stronger VRT effect was expected for fearful human faces than for neutral 

or happy human faces. Furthermore, it was predicted that VRT would be weak at best for 

neutral and happy monkey faces, but stronger for fearful monkey faces because of the value of 

fear recognition for survival and the stronger representation of fearful expressions in 

somatosensory cortex (Adolphs et al., 2000, 1996; Pourtois et al., 2004). 
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Method 

Participants 

Two separate groups of healthy adult females were recruited.  One group (n = 12), 

ranging from 23 to 28 years old (M = 25.17 years, SD = 1.64), performed a version of the 

emotional VRT task with monkey faces.  The other group (n = 14), ranging from 22 to 25 years 

old (M = 23.05 years, SD = 0.60), performed the standard emotional VRT task with human 

faces.  All participants had normal or corrected-to-normal vision and reported a normal sense of 

touch.  Participants gave written informed consent to participate and were treated in accordance 

with the ethical standards of the 1964 Declaration of Helsinki.  The study was approved by of 

the Ethics Committee for Psychological Research at the Department of Psychology of the 

University of Bologna.  

Materials 

Four female human faces and four monkey faces showing fearful, happy, and neutral 

facial expressions were chosen.  Human faces were taken from the Pictures of Facial Affect 

dataset (Ekman & Friesen, 1976).  Monkey faces were gathered from the internet and selected 

based on emotion categorization and intensity ratings from a separate group of volunteers.  

(See the Pilot Data section under Results.)  Short (3000 ms) videos were created in Microsoft 

PowerPoint that showed each face on a black background being either touched or approached 

by one or two human fingers.  Care was taken with the monkey videos to ensure that the faces 

were touched in the less hairy region of skin below the eyes, in case remapping of the seen 

touch would be hindered by a difficulty in simulating the quality of touch to hairy monkey skin.  A 

computer running C.I.R.O software (http://www.cnc.unibo.psice.unibo/ciro) displayed the visual 

stimuli and collected responses.  Electro-tactile stimulation was delivered via two constant 
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current electrical stimulators (DS7A, Digitimer) connected to two pairs of electrodes (Neuroline, 

AMBU), one on each side of the participant’s face over the zygomatic arch. 

Procedure 

Following the staircase procedure used by Cardini and colleagues (2012), the detection 

rate of electro-tactile stimulation was set to nearly 100% on one cheek and to approximately 

60% on the other.  The cheek that received stronger electro-tactile stimulation (left or right) was 

counterbalanced between participants.  Confirming correct calibration, the mean detection rate 

of bilateral tactile stimulation across all experimental conditions was 51.74% (SD = ±5.78%), 

and, when bilateral stimulation was not correctly identified, errors mostly consisted of reporting 

unilateral stimulation on the stronger side (M = 95.40% of errors, SD = ±7.89%). 

The experiment consisted of three blocks of VRT trials, one with neutral faces, one with 

fearful faces, and one with happy faces.  Block order was counterbalanced between 

participants, and electro-tactile detection thresholds were re-calibrated between blocks.  Each 

trial began with a face in the center of the screen and two fingers at the bottom of the screen on 

either side of the chin.  One or both of the fingers then moved upward and either touched the 

cheek on the same side of the screen or touched a location about 5 cm lateral to the face before 

returning to the bottom of the screen.  When the fingers reached the top of their trajectory 

(approximately 1000 ms into the trial), electro-tactile stimulation was delivered to one or both of 

the participant’s cheeks (Figure 3.1).  Participants used a keyboard to indicate whether they felt 

touch on the left cheek (the “D” key), on the right cheek (the “K” key), or on both cheeks (the 

space bar).  They were instructed to respond as quickly and accurately as possible, and 

informed that the location of apparent touch on the cheeks of the other face was non-informative 

about the touch on their own face.  Each trial combined one of two types of tactile stimulation 

(unilateral or bilateral), one of two types of visual stimulation (unilateral or bilateral), and one of 
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two types of finger trajectories (touch or no-touch), resulting in 8 trial types that were repeated 

12 times in each block for a total of 96 trials per block, presented in a random order.  Only trials 

with both bilateral tactile stimulation and bilateral finger movement (touch or no-touch) were 

analyzed. 

 

 

Figure 3.1.  Sample trials from the group that saw monkey faces (A) and the group that saw 

human faces (B).  Each trial combined one of two types of tactile stimulation (unilateral or 

bilateral), one of two types of visual stimulation (unilateral or bilateral), and one of two types of 

finger trajectory (touch or no-touch).  Note that each block contained only one type of facial 

expression.  Fearful, neutral, and happy expressions are shown together in this figure for 

illustrative purposes only. 

 Results 

Pilot Data 

A group of 32 volunteers categorized 26 monkey facial expressions as either happy, 

sad, angry, fearful, or neutral, and rated the intensity of each emotional expression on a scale 
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from 1 (“not at all intense”) to 6 (“very intense”).  Emotion categorization and intensity data for 

the 12 monkey expressions selected for the main experiment are shown in Table 3.1.  To 

analyze the emotion categorization data, scores of 1 and 0 were assigned to instances of 

correct and incorrect categorization, respectively, and the mean score for each participant in 

each expression category (fearful, happy, and neutral) was calculated.  These mean scores 

were then entered into a Friedman’s ANOVA for non-parametric data, which showed a 

significant difference between accuracy of emotion categorization in the three categories, X2(2) 

= 34.81, p < .001.  Post-hoc Wilcoxon signed-rank tests showed that neutral facial expressions 

were correctly categorized less often than fearful (p < .001) or happy (p < .001) expressions, 

which did not differ from each other in emotion categorization accuracy (p = .750).  Because 

participants were engaged in an emotion categorization task, they may have looked for subtle 

emotional signals in neutral faces that they would not otherwise have attended to.  Importantly, 

neutral faces were still identified as neutral 71.88% of the time, and they were not consistently 

miscategorized as a certain emotion.  Among the instances of neutral face miscategorizations, 

52.78% were sadness misidentifications, 33.33% were happiness misidentifications, and 

13.89% were anger misidentifications. 
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Table 3.1.  Emotion categorization and intensity ratings for monkey facial expressions. 

Facial Expression Face Identity Categorization Accuracy Mean Intensity Rating 

Fear Face 1 100.00% 5.03 

 Face 2 100.00% 4.44 

 Face 3 96.88% 4.91 

 Face 4 96.88% 5.25 

 Mean 98.44% 4.91 

Happiness Face 1 100.00% 4.84 

 Face 2 93.75% 4.66 

 Face 3 96.88% 4.34 

 Face 4 96.88% 4.38 

 Mean 96.88% 4.55 

Neutral Face 1 75.00% 3.21 

 Face 2 75.00% 3.73 

 Face 3 65.63% 3.17 

 Face 4 71.88% 4.14 

 Mean 71.88% 3.56 

Note.  Participants in the pilot study categorized each facial expression as happy, sad, angry, 

fearful, or neutral, and then rated the intensity of each expression on a scale from 1 (“not at all 

intense”) to 6 (“very intense”). 

 

Shapiro-Wilk tests indicated that intensity ratings were not normally distributed, so they 

were also analyzed with a Friedman’s ANOVA.  Intensity ratings differed significantly among the 

facial expression categories, X2(2) = 38.58, p < .001.  Wilcoxon signed-rank tests revealed that 

neutral expressions were perceived to be less intense than fearful (p < .001) and happy (p < 

.001) expressions, and happy expressions were also perceived to be less intense than fearful 

expressions (p = .010).  It is appropriate that the neutral faces should be perceived to be less 

intense than either type of emotional expression.  Though the fearful and happy faces were not 

equivalent in terms of emotion intensity, this would only impede interpretation of the results if a 

stronger VRT effect were to be found for touch observed on fearful monkey faces than on happy 

monkey faces.  On the contrary, although both fearful and happy monkey faces were perceived 
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to be quite intense, neither resulted in VRT.  (See the next section for detailed results of the 

main experiment.) 

Main Experiment 

An analysis of variance (ANOVA) with the between-subjects factor of species (human or 

monkey) and within-subjects factors of facial expression (fearful, happy, or neutral) and finger 

trajectory (touch or no-touch) was conducted on the proportions of correct bilateral responses in 

each condition.  None of the main effects were significant, but there was a two-way interaction 

between finger trajectory and species, F(1, 24) = 9.01, p = .006, partial η2 = .273, and a three-

way interaction between facial expression, finger trajectory, and species, F(2, 48) = 3.21, p = 

.049, partial η2 = .118.  To elucidate these interactions, two separate 3 (facial expression) x 2 

(finger trajectory) within-subjects ANOVAs were conducted, one on the data from the group that 

saw monkey faces and another on the data from the group that saw human faces.  There were 

no main effects from the monkey face group, nor was the interaction significant (p ≥ .277 in all 

cases), indicating that VRT did not occur in any of the monkey expression conditions (Figure 

3.2).  In the human face group, there was a main effect of finger trajectory, F(1, 13) = 30.72, p < 

.001, partial η2 = .703, with higher accuracy in bilateral touch trials (M = 70.20%, SEM = 

±2.71%) than in bilateral no-touch trials (M = 58.28%, SEM = ±3.05%).  There was also an 

interaction between facial expression and finger trajectory, F(2, 26) = 9.94, p = .001, partial η2 = 

.433.  T-tests comparing the VRT effect (the bilateral detection rate in the touch condition minus 

the bilateral detection rate in the no-touch condition) in the three human expression conditions 

(Fear Touch – No-Touch: M = 20.48%, SEM = ±3.68%; Happy Touch – No-Touch: M = 4.33%, 

SEM = ±2.34%; Neutral Touch – No-Touch: M = 10.96%, SEM = ±2.85%) showed that VRT was 

greater for fearful faces than for happy faces, t(13) = 4.13, p = .001, and neutral faces, t(13) = 

2.57, p = .023 (Figure 3.2).  The VRT effect for neutral faces also seemed to be greater than for 

happy faces, though this difference did not reach significance, t(13) = -2.02, p = .064. 
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Figure 3.2.  Mean (±SEM) detection rates of bilateral tactile stimulation in each condition. 

Asterisks indicate significant (p < .050) differences in the magnitude of VRT (bilateral detection 

rate in the touch condition minus bilateral detection rate in the no-touch condition) between 

facial expression conditions in the group that saw human faces.  No such comparisons were 

made in the group that saw monkey faces because the 3 (facial expression) x 2 (finger 

trajectory) ANOVA was not significant. 
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Discussion 

Corroborating previous studies, seeing a human face being touched improved detection 

of near-threshold tactile stimuli simultaneously delivered to the observer’s own face (Cardini, 

Costantini, et al., 2011; Cardini, Tajadura-Jiménez, et al., 2013; Fini et al., 2013; Serino, 

Giovagnoli, et al., 2009; Serino et al., 2008), and this effect was enhanced by fearful facial 

expressions compared to neutral or happy ones (Cardini, Bertini, et al., 2012).  This is 

consistent with fear recognition being particularly dependent upon embodied simulation in 

somatosensory cortex (Adolphs et al., 2000, 1996; Pourtois et al., 2004).  A simulation 

mechanism of emotion recognition might be especially valuable for recognizing emotions such 

as fear that indicate an immediate threat to survival, as the direct experience of the emotion 

might allow an observer to quickly identify and react to the threat. 

Because the human brain processes human and non-human faces differently (Dahl et 

al., 2009; de Haan et al., 2002; Neiworth et al., 2007; Pascalis & Bachevalier, 1998; Pascalis et 

al., 2002; Scott et al., 2005, 2006) and the VRT effect is mediated by perceived similarity to the 

other (Cardini, Tajadura-Jiménez, et al., 2013; Fini et al., 2013; Serino, Giovagnoli, et al., 2009), 

it was expected that any VRT effect for monkey faces overall would be minimal.  This 

hypothesis was borne out.  While the standard increase in bilateral tactile perception for touch 

trials was observed with human faces, the group that saw monkey faces did not exhibit this 

enhancement, suggesting that only observed touch on the faces of conspecifics is remapped 

onto the observer’s own somatosensory cortex at a level capable of enhancing tactile 

perception on the face.  Though some previous studies have found that even the sight of touch 

on inanimate objects triggers SII activity (Ebisch et al., 2008; Keysers et al., 2004), seeing touch 

on human body parts also modulates SI activity (Blakemore et al., 2005; Schaefer et al., 2005, 

2009) and enhances SII activation beyond that found when viewing non-body objects being 

touched (Blakemore et al., 2005).  Either or both of these differences might account for VRT 
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being specific to viewing touch on a body part (Serino et al., 2008).  Experiment 5 further 

suggests that the remapping of seen touch onto somatosensory cortex in a manner that 

enhances tactile perception is not only specific to seeing touch on a body, but to seeing touch 

on a human body.  

Contrary to expectations, showing monkey faces with fearful expressions did not 

increase tactile perception on touch trials compared to no-touch trials.  Perhaps fearful monkey 

faces do not enhance VRT because there is no initial VRT effect for monkey faces to modulate, 

and the presence of a fearful expression in itself is not enough to influence tactile perception on 

the face.  It is also possible that the fearful expressions of monkeys, unlike those of humans, are 

not processed via simulation in the observer’s somatosensory system.  To the authors’ 

knowledge, no studies have directly investigated whether viewing monkey facial expressions 

modulates activity in human somatosensory cortex.  Viewing non-emotional monkey face 

actions (biting and lip smacking) activates human mirror neuron systems in the inferior parietal 

lobule and the inferior frontal gyrus, which respond to both the execution and observation of 

actions (Buccino et al., 2004).  Nevertheless, viewing fearful monkey faces, unlike fearful human 

faces, does not enhance amygdala activity compared to neutral (chewing) faces (Zhu et al., 

2013).  As the amygdala is involved in both expressing fear (Feinstein et al., 2011; 

Sprengelmeyer et al., 1999) and recognizing fear in others (Adolphs et al., 1999; Adolphs et al., 

1994, 1995; Broks et al., 1998; Calder et al., 1996; Morris et al., 1996, 1998; Phillips et al., 

1997, 1998; Whalen et al., 1998, 2001; Williams et al., 2004; Young et al., 1995, 1996), this 

could be taken as evidence that monkey facial expressions are not simulated in the same way 

as human facial expressions.  Future studies should investigate whether recognizing the 

emotional facial expressions of non-human primates involves processing in somatosensory 

cortex, as does recognition of human facial expressions (Adolphs et al., 2000, 1996; Pourtois et 

al., 2004). 
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Note that, for the present study, the important factor was not the significance of the 

monkey’s emotional expression to other monkeys but to the human participants.  The monkey 

faces in the fearful and happy conditions were selected because they were consistently 

identified as fearful expressions or happy expressions in the pilot study (Table 3.1), which, like 

the main experiment, used volunteers who were novices in reading the emotional expressions 

of non-human primates.  An interesting follow-up to this study would be to test people who work 

with monkeys and would therefore have more experience with identifying their emotional 

expressions.  There is evidence that expertise with a species can improve recognition of their 

emotional expressions (Wan, Bolger, & Champagne, 2012) and change the way that their social 

body signals are processed in the brain (Kujala, Kujala, Carlson, & Hari, 2012).  Future studies 

could examine whether such expertise could result in embodied simulation of the emotional 

expressions of non-human animals.  Specifically, one could investigate whether experts in the 

social signals of a non-human species (e.g., animal trainers) remap observed touch on those 

animals onto their own somatosensory systems, and whether this potential VRT effect is 

modulated by the animal’s emotional expression.  In the case that experts do show a VRT effect 

for touch on the non-human animals they are familiar with, this would indicate that VRT is not 

restricted to conspecifics per se but to members of species with which one has interacted 

extensively, learning their non-verbal social cues.  Furthermore, if this potential VRT effect were 

mediated by the emotional content of the facial or bodily expression, this would suggest that the 

embodied simulation mechanism of emotion recognition is also experience-dependent rather 

than strictly limited to conspecifics. 

Conclusion 

Seeing a human face being touched enhances detection of concurrent near-threshold 

tactile stimulation on the observer’s own face (Cardini, Costantini, et al., 2011; Cardini, 

Tajadura-Jiménez, et al., 2013; Fini et al., 2013; Serino, Giovagnoli, et al., 2009; Serino et al., 
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2008), and this visual remapping of touch (VRT) is heightened if the observed face expresses 

fear (Cardini, Bertini, et al., 2012).  The present study demonstrated that VRT only occurs when 

seeing touch on human faces.  Seeing a monkey’s face being touched did not improve tactile 

perception compared to seeing the same face being merely approached by fingers, indicating 

that observed touch on non-human faces is not simulated within the human observer’s 

somatosensory system.  Furthermore, seeing a monkey face with a fearful expression being 

touched did not induce VRT, suggesting either that human observers do not simulate the 

emotional expressions of non-human animals in their own somatosensory systems or that the 

simulation of a fearful expression in itself is not enough to modulate tactile perception on the 

face. 

The next chapter will investigate whether human facial expressions are equally important 

for another paradigm involving interpersonal visuo-tactile stimulation, the enfacement illusion 

(Bufalari et al., 2014; Cardini, Tajadura-Jiménez, et al., 2013; Fini et al., 2013; Mazzurega et al., 

2011; Paladino et al., 2010; Sforza et al., 2010; Tajadura-Jiménez, Grehl, et al., 2012; Tajadura-

Jiménez, Longo, et al., 2012; Tajadura-Jiménez et al., 2013; Tajadura-Jiménez & Tsakiris, 

2014; Tsakiris, 2008).  Rather than measuring the effect of viewing a face being touched on 

tactile perception, enfacement measures the effect of an interpersonal multisensory experience 

on visual self-recognition and the perceived boundary between self and other. 
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Chapter 4: The enfacement illusion and the mental representation of 

one’s own face 

4.1. Visual self-recognition 

Visual self-recognition has been studied across animal species using the mirror mark 

test (Gallup, Jr., 1970, 1977; Inoue-Nakamura, 1997; Marino, Reiss, & Gallup, Jr., 1994; Plotnik, 

de Waal, & Reiss, 2006; Prior, Schwarz, & Güntürkün, 2008; Reiss & Marino, 2001; Suarez & 

Gallup, Jr., 1981).  In this test, a colored mark is covertly applied to the face of the animal, and 

then the animal’s behavior in front of a mirror is observed.  If the animal sees the mark in the 

mirror and investigates the corresponding spot on their own face, they are considered to exhibit 

visual self-recognition.  The great apes demonstrate mirror self-recognition (Gallup, Jr., 1970, 

1977; Inoue-Nakamura, 1997; Suarez & Gallup, Jr., 1981), and some studies have also found 

evidence for it in non-primate species such as bottlenose dolphins (Marino et al., 1994; Reiss & 

Marino, 2001), Asian elephants (Plotnik et al., 2006), and magpies (Prior et al., 2008).  Human 

toddlers begin to pass the mirror mark test between 15 and 24 months of age (Amsterdam, 

1972; Anderson, 1984; Nielsen & Dissanayake, 2004; Nielsen, Suddendorf, & Slaughter, 2006).  

This coincides with the development of other behaviors such as synchronic imitation and 

pretend play that require meta-representational capacities and mental representations of the 

self and others (Nielsen & Dissanayake, 2004).  The mirror mark test is often taken as a 

hallmark of self-awareness in general (Gallup, Jr., 1970; Keenan, Gallup, Jr., & Falk, 2003), 

although more conservative accounts consider it to measure awareness of one’s physical 

appearance only (Suddendorf & Butler, 2013). 

In human adults, visual self-recognition tasks have found that one’s own face is more 

salient and processed more efficiently than the faces of both familiar and unfamiliar others 

(Keenan et al., 1999; Keyes & Brady, 2010; Sui & Han, 2007; Tong & Nakayama, 1999).  In 
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addition, viewing one’s own face relative to the faces of familiar or unfamiliar others modulates 

the amplitude of the face-specific, posterior N170 component, as well as later ERP components 

over fronto-central sites (Keyes, Brady, Reilly, & Foxe, 2010; Sui, Zhu, & Han, 2006), regardless 

of whether the self-face stimuli are relevant to the task being performed (Sui et al., 2006).  

These findings indicate that one’s own face holds a unique status among visual face stimuli, and 

that enhanced visual processing of the self-face occurs automatically, even when it is 

unattended. 

Visual self-recognition may also be assessed by having participants make judgments 

about the amount of their own face in morphs with another person’s face.  Studies using this 

method have found that people see more of their own face in morphs with the faces of others 

perceived as attractive (Epley & Whitchurch, 2008) and trustworthy (Verosky & Todorov, 2010).  

These findings indicate that, in addition to physical features, the social and emotional 

dimensions of faces can influence visual self-recognition.  Furthermore, they are consistent with 

prior literature pointing to a self-enhancement bias, meaning that one tends to overestimate the 

positive characteristics of stimuli associated with oneself, including one’s own face (Greenwald 

& Banaji, 1995). 

Self-recognition studies showing facilitated visual processing of (Keenan et al., 1999; 

Keyes & Brady, 2010; Keyes et al., 2010; Sui & Han, 2007; Sui et al., 2006; Tong & Nakayama, 

1999), and an implicit enhancement bias for (Epley & Whitchurch, 2008; Verosky & Todorov, 

2010), one’s own face suggest that there may be a specialized process for self-face perception 

above and beyond the mechanism by which the faces of others are perceived.  Imaging studies 

seeking the neural basis of visual self-recognition have identified a fronto-parietal network, 

particularly in the right hemisphere, that extends beyond the regions typically implicated in face 

perception generally (see Devue & Brédart, 2011 for a review).  This network for visual self-

recognition includes a spatial representation of the self in the inferior parietal lobule and higher-
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order evaluations of the self versus others in anterior areas such as the inferior frontal gyrus, the 

anterior cingulate cortex, and the anterior insula. 

4.2. The enfacement illusion 

While the studies described above focused on self-recognition through vision, more 

recent accounts of self-recognition have attempted to explain how the mental self-

representation, including the self-face, is constructed and updated over time via the 

convergence of multimodal inputs (Apps & Tsakiris, 2014).  This line of research has revealed 

that multisensory information can update the self-face representation, and, under certain 

circumstances, may blur the distinction between self and other.  Seeing another person’s face 

touched in synchrony with touch on one’s own face—a procedure called interpersonal 

multisensory stimulation (IMS)—results in an “enfacement” illusion (Bufalari et al., 2014; Cardini, 

Tajadura-Jiménez, et al., 2013; Fini et al., 2013; Mazzurega et al., 2011; Paladino et al., 2010; 

Sforza et al., 2010; Tajadura-Jiménez, Grehl, et al., 2012; Tajadura-Jiménez, Longo, et al., 

2012; Tajadura-Jiménez et al., 2013; Tajadura-Jiménez & Tsakiris, 2014; Tsakiris, 2008).  

Concurrent visual and tactile inputs update the mental representation of the self-face, causing 

the subjects to accept more of the other person’s facial features as their own (Bufalari et al., 

2014; Sforza et al., 2010; Tajadura-Jiménez, Grehl, et al., 2012; Tajadura-Jiménez et al., 2013; 

Tajadura-Jiménez & Tsakiris, 2014; Tsakiris, 2008).  The enfacement illusion has also been 

replicated using other measures of self/other merging, including the distance the participant 

chooses between two circles representing “self” and “other” (a variant of the Inclusion of the 

Other in the Self scale; Schubert & Otten, 2002) and a questionnaire assessing the subjective 

experience of the enfacement illusion adapted from the rubber hand illusion questionnaire 

(Bufalari et al., 2014; Cardini, Tajadura-Jiménez, et al., 2013; Fini et al., 2013; Mazzurega et al., 

2011; Paladino et al., 2010; Sforza et al., 2010; Tajadura-Jiménez, Grehl, et al., 2012; Tajadura-
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Jiménez, Longo, et al., 2012; Tajadura-Jiménez et al., 2013; Tajadura-Jiménez & Tsakiris, 

2014).   

Being interpersonal by definition, enfacement might be influenced by social and 

emotional dimensions of the IMS experience.  Supporting this idea, the strength of the 

enfacement illusion is positively correlated with the participant’s empathic traits, specifically the 

tendencies to adopt another person’s point of view and to share the emotions and feelings of 

others (Sforza et al., 2010).  The enfacement illusion is also stronger if the person observed 

during IMS was kind to the participant in a previous interaction (Bufalari et al., 2014).  Moreover, 

the enfacement illusion can influence feelings of affinity with another person.  Synchronous IMS 

increases participants’ ratings of the other person’s attractiveness, biases participants’ 

inferences about the other’s personality towards their own personality traits, and makes 

participants more influenced by the other person’s estimate in a quantity estimation task 

(Paladino et al., 2010).   A recent study also demonstrated that viewing a person from a different 

ethnic background being touched in synchrony with touch on one’s own face can improve 

somatosensory resonance with the outgroup member (Fini et al., 2013). 

Investigations into social and emotional influences on visual self-face recognition and the 

enfacement illusion have largely focused on positive interpersonal dimensions (e.g., empathy, 

attractiveness, and trustworthiness).  The effect of negative valence on the enfacement illusion 

has not been explored as thoroughly.  Moreover, no published study to date has examined how 

varying the emotion expressed by another person during an interpersonal visuo-tactile 

experience might impact the degree of self/other merging.  Emotional facial expressions convey 

an intention to communicate, and may thus motivate greater effort on the part of the observer to 

understand the affective state of the other person.  Fear is particularly important as a 

communicative signal because it usually indicates the presence of an immediate threat.  

Efficient and accurate recognition of a fearful facial expression confers both a private advantage 

to the observer by warning her of a potential threat to herself and a social benefit by facilitating 
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an appropriate reaction to the distress of her companion.  One might predict that enfacement 

would be especially susceptible to fearful facial expressions because they carry such valuable 

information for the adaptive behavior of the observer. 

Perhaps because they are important for both personal safety and social interaction, 

seeing fearful faces yields greater resonance in somatosensory cortex compared to seeing 

other emotional expressions.  As discussed in the previous chapter, lesions of the right 

somatosensory cortices impair recognition of emotional facial expressions, especially fearful 

expressions (Adolphs et al., 2000, 1996).  Similarly, inducing temporary, virtual lesions of the 

right somatosensory cortex with TMS impedes recognition of fearful but not happy facial 

expressions (Pourtois et al., 2004).  Moreover, Experiment 5 replicated the previous finding 

(Cardini, Bertini, et al., 2012) that seeing a fearful human face being touched improves detection 

of near-threshold tactile stimulation on the observer’s own face compared to seeing faces with 

neutral expressions or with other emotional expressions being touched.  This suggests that 

fearful faces enhance somatosensory activity more than other facial expressions, including 

similarly negative expressions like anger.  Lastly, a recent study found that enfacement of 

another person’s face facilitated subsequent recognition of fear expressed by the assimilated 

face, but had no effect on recognition of happy or disgusted faces (Maister, Tsiakkas, & 

Tsakiris, 2013).  This finding alludes to a potential interaction between the enfacement illusion 

and fearful facial expressions, perhaps because of the somatosensory cortical representation of 

fearful expressions. 

To summarize, an observer who sees a fearful face might be more motivated to 

understand the other’s affective state because of the value of the information that person is 

communicating.  Achieving this understanding would entail simulating the other’s emotional 

state, thereby activating the somatosensory cortex.  During synchronous IMS, the 

somatosensory activation evoked by a fearful face, in combination with the somatosensory 

resonance induced by seeing another’s face touched in synchrony with one’s own (Cardini, 
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Costantini, et al., 2011; Cardini, Bertini, et al., 2012; Cardini, Tajadura-Jiménez, et al., 2013; Fini 

et al., 2013; Serino, Giovagnoli, et al., 2009; Serino et al., 2008), might increase enfacement 

beyond that obtained with neutral or emotional expressions of other kinds, including anger.  

Though angry expressions are similarly social and negative in valence, additional contextual 

information and knowledge of social contingencies are required to determine an appropriate 

reaction (Pichon et al., 2009).  Moreover, the representation of anger in somatosensory cortex 

does not seem to be as strong as that of fear; whereas fearful facial expressions enhance 

remapping of seen touch onto the observer’s own somatosensory system, the same is not true 

for angry expressions (Cardini, Bertini, et al., 2012).  Therefore, one might predict stronger 

enfacement of a fearful face than an angry or a neutral face. 

Experiment 6: The enfacement illusion is not affected by negative facial 

expressions 

Experiment 6 examined whether varying the emotional content of human faces would 

affect the strength of the enfacement effect in the same way in which it affects the strength of 

VRT.  In each experimental session, participants saw a fearful, an angry, or a neutral face being 

touched with a cotton swab either synchronously or asynchronously with a cotton swab touching 

their own face.  Before and after this period of IMS, the participants watched a video of the 

same person’s face (with a neutral expression) gradually morphing into their own face, and 

stopped the morph video as soon as it began to look more like their own face than the other 

person’s face.  The emotional expression of the other person in the morph video was not varied 

because the hypothesis was based on a fear-specific enhancement of somatosensory 

resonance.  Thus, the crucial time for presentation of the emotional expression was the period 

in which participants saw the other person being touched while feeling touch on their own face.  

The difference in the amount of the other person’s face in the frame where the participant 

stopped the morph video before and after synchronous IMS was taken as a measure of 
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enfacement.  The asynchronous IMS session controlled for any effects of exposure to 

uncorrelated visual and tactile stimulation, as well as any effect of mere familiarity with the other 

person’s face.  A questionnaire was also used to assess the subjective strength of the 

enfacement illusion.  It was predicted that enfacement would be comparable for neutral and 

angry faces, whereas seeing a fearful face would strengthen the enfacement effect due to 

enhanced somatosensory resonance and greater motivation to understand the other’s affective 

state. 

Method 

Participants 

Fifty-four female volunteers between 19 and 32 years old were recruited from the 

University of Bologna and randomly assigned to one of three experimental groups, resulting in 

three groups of 18 participants each (Fear group: 22-29 years old, M = 25.06 years, SD = ±1.83 

years; Anger group: 23-32 years old, M = 25.06 years, SD = ±2.21 years; Neutral group: 19-28 

years old, M = 23.50 years, SD = ±2.43 years).  Participants in the Neutral group were only 

slightly younger on average than participants in the Fear group, t(34) = 2.17, p = .037, and the 

Anger group, t(34) = 2.01, p = .053.  Each group saw a different emotional expression (fearful, 

angry, or neutral) during IMS.  All participants had normal or corrected-to normal vision, 

reported normal tactile perception, and were naïve to the purpose of the experiment.  They gave 

written informed consent to participate in the study, which was approved by of the Ethics 

Committee for Psychological Research at the University of Bologna Department of Psychology.  

They were treated in accordance with the ethical standards of the 1964 Declaration of Helsinki.  

Materials 

Prior to the testing session, a photograph of each participant's face with a neutral 

expression was taken with a digital camera.  The photographs were converted to black-and-

white, mirror-transposed, and overlaid with an oval template on a black background to remove 

hair and ears.  Photographs of six adult female volunteers who did not participate in the 
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experiment were obtained and processed in the same manner (except for the mirror-

transposition) for use as the other-faces.  Participant and other-face photographs were matched 

in luminance.  These photographs were then blended in Abrosoft Fantamorph 4 to create 

dynamic morph videos that progressed from 100% other-face to 100% self-face.  The morph 

videos were 100 s long and progressed at a rate of 1% change in face per second, resulting in a 

prolonged and subtle morph.  Each participant’s face was morphed with two of the other-faces.  

Note that both the faces of the participants and the other-faces had neutral expressions in the 

morph videos. 

Additionally, a camcorder was used to record videos of the other-faces being stroked on 

the left cheek with a cotton swab.  Each video was in full color and 120 s long with strokes 

occuring approximately every 2 s.  While being touched, each volunteer maintained a facial 

expression (fearful, angry, or neutral) for approximately 10 s, and this segment was then looped 

to produce the full 120 s video (Figure 4.1).  To make the neutral videos appear more natural, 

and to ensure that all three video types showed some kind of facial movement, the neutral 

videos were created from looped segments that included eye blinks, mild head movements, and 

mild facial muscle contractions. 
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Figure 4.1.  Frames from the angry, fearful, and neutral videos shown during IMS. Each 

participant saw videos from only one of the three facial expression categories.  The assignment 

of each video to either the synchronous or the asynchronous IMS session was counterbalanced 

between participants. 

 

The videos used for IMS were rated in a pilot study by a separate group of 25 female 

volunteers recruited from the same university as the participants in the main experiment (M = 

24.64 years old, SD = ±9.59 years).  These volunteers did not differ in age from the participants 

in the main experiment, t(77) = -0.08, p = .940.  Volunteers in the pilot study categorized the 

emotional expressions in the videos (from the options of fear, happiness, surprise, disgust, 

anger, sadness, or neutral) and rated emotion intensity (from 1, “not at all,” to 7, “very much”).  

They also rated the attractiveness of the faces in the neutral photographs (from 1, “not at all,” to 

7, “very much”) and how much the person in each video resembled their corresponding 

photograph (from 1, “not at all,” to 7, “it’s the same face”). 
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Presentation 15.0 was used to display the morph videos and the IMS videos, and to 

collect participants’ responses.  Additionally, after each stimulation session, participants 

completed a 14-item questionnaire to assess the strength of the subjective enfacement illusion 

experience.  Table 4.1 contains the full text of this questionnaire, translated from Italian into 

English.  Participants rated each statement on a scale of -3 (strongly disagree) to +3 (strongly 

agree), with 0 representing “neither agree nor disagree.” 

 

Table 4.1.  Text of questionnaire items used to assess participants’ subjective experience of the 

enfacement illusion. 

Item Item Text (translated from Italian) 

01 While the other person's face was touched I seemed to feel the touch on my own face. 

02 It seemed that the touch I felt on my face was caused by the cotton swab touching the other person's face. 

03 It seemed that the other person's face was mine. 

04 It seemed that the other person's face was part of my body. 

05 It seemed that the other person's face belonged to me. 

06 I seemed to see my face reflected in a mirror rather than the other person's face. 

07 It seemed that the shape of the other person's face began to resemble mine. 

08 It seemed that the skin color of the other face began to resemble mine. 

09 It seemed that the features of the other person's face began to resemble mine. 

10 It seemed that the other person's face would move if I moved. 

11 I felt like I could control the other person's face. 

12 I felt like I could not control my face. 

13 I felt like I could not remember what my face looked like. 

14 It seemed that sensation on my face was less vivid than normal. 

 

 

Procedure 

Participants completed one synchronous and one asynchronous IMS session, separated 

by at least 1 hour.  Each participant saw only one type of facial expression in the IMS videos, 

either neutral, fearful, or angry.  The order in which participants completed the IMS conditions 

was counterbalanced between participants within each group, as was the assignment of each 

other-face to either the synchronous or asynchronous IMS condition.  A diagram of an 

experimental session is shown in Figure 4.2.  In each session, participants first saw a morph 
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video that changed from 100% other-face to 100% self-face.  They were instructed to stop the 

video as soon as it began to look more like their own face than the other person’s face by 

pressing the “M” key.  After this response, they watched a 120-s video of the other person 

continuously expressing either fear, anger, or a neutral expression while being stroked on the 

left cheek with a cotton swab.  Concurrently, the participant was stroked on the right cheek (for 

specular correspondence) with a cotton swab either in synchrony or 1-s asynchrony with the 

touch in the video.  Participants were instructed to sit still, to watch the face for the duration of 

the IMS video, and to attend to both the seen and the felt touch.  Immediately after the IMS 

period, participants saw the same morph video as before and responded to it according to the 

same instructions.  Finally, participants completed the illusion questionnaire at the end of each 

session.  Questionnaire items were presented in a random order. 

 



100 
 

 

Figure 4.2.  Diagram of an experimental session. Participants first watched an other-to-self 

morph video and pressed a button to stop it as soon as it began to look more like their face than 

the other person’s face.  This was followed by a period of synchronous or asynchronous IMS, 

and then a repetition of the morph video post-IMS.  Morph videos were black-and-white, but IMS 

videos were shown in full color. 
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Design and Analysis 

This experiment employed a 2 x 2 x 3 mixed factors design, with time (pre- or post-IMS) 

and IMS mode (synchronous or asynchronous) as within-subjects variables and facial 

expression (fearful, angry, or neutral) as a between-subjects variable.  The key dependent 

variable was the amount of the other’s face contained in the frame where participants stopped 

the morph video.  Responses to the questionnaire items also served as a subjective measures 

of the enfacement illusion.  

Results 

Pilot Data 

The pilot ratings of the IMS videos and the corresponding neutral face photographs of 

the same individuals used for the morph videos are shown in Table 4.2.  Non-parametric tests 

were used for all analyses because the data were not normally distributed.  A Cochran’s Q test 

showed that recognition rates of the emotion expressed in each IMS video did not differ 

between the videos, Χ2(5) = 10.46, p = .067. 

 

Table 4.2.  Pilot ratings of the IMS videos showing fearful, angry, and neutral expressions, and 

the corresponding photographs showing all the actors with neutral expressions. 

Other-
Face

a 
Emotion 

Recognition
b 

Emotion  
Intensity

c 
Photo 

Attractiveness
c 

Likeness  
to Photo

c 

Fear 1 92% 5.8 2.8 4.2 

Fear 2 80% 5.5 3.7 3.8 

Anger 1 76% 5.0 4.2 3.9 

Anger 2 96% 5.6 2.8 6.0 

Neutral 1 88% 5.7 4.2 4.3 

Neutral 2 100% 5.9 3.1 5.0 
aEach row refers to the IMS video showing an emotional expression, as well as the 

corresponding neutral photograph of the same person used for the morph videos. 

bVolunteers chose between 7 emotion categories (fear, happiness, surprise, disgust, anger, 

sadness, or neutral). 
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cIMS video emotion intensity, photo attractiveness, and similarity of the face in the video to the 

face in the photo were rated on a scale of 1 (“not at all”) to 7 (“very much”). 

 

Emotion intensity, attractiveness, and likeness-to-photograph ratings were analyzed with 

Friedman’s ANOVAs.  Note that emotion intensity was rated from the IMS videos, whereas 

attractiveness ratings were based on the neutral photographs of the actors used in the morph 

videos.  Likeness-to-photograph ratings were made by comparing the IMS video of each actor 

to her neutral photograph.  The facial expressions in the six IMS videos were perceived as 

equally intense, Χ2(5) = 10.52, p = .062.  However, the photographs of the neutral faces differed 

in attractiveness, Χ2(5) = 37.91, p < .001.  Post-hoc Wilcoxon signed-rank tests with a 

Bonferroni correction for multiple comparisons showed that the neutral photographs 

corresponding to Neutral Video 1 and Anger Video 1 were perceived as more attractive than the 

neutral photographs corresponding to Neutral Video 2, Anger Video 2, and Fear Video 1 (p < 

.003, uncorrected, in all cases).  To determine whether this might complicate interpretation of 

the data from the main experiment, another Friedman’s ANOVA was conducted on the average 

attractiveness ratings of the neutral photographs associated with each IMS video category.  This 

test was not significant, Χ2(2) = 3.43, p = .184, indicating that average attractiveness was well 

balanced across IMS emotion categories.  It was not problematic that the neutral and anger 

conditions each contained one face that was perceived as more attractive than the other 

because the assignment of each other-face to the synchronous or the asynchronous IMS 

session was counterbalanced across participants. 

The IMS videos also differed in likeness to their corresponding neutral photograph, Χ2(5) 

= 23.76, p < .001.  Wilcoxon signed-rank tests with a Bonferroni correction showed that Anger 

Video 2 was perceived as more similar to its corresponding neutral photograph than Fear Video 

1, Fear Video 2, Neutral Video 1, and Anger Video 1 (p < .003 in all cases).  The concern here 

would be that enfacement might be more easily detected when participants experience 
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synchronous IMS with Angry Video 2 because it is more obvious that the other-face in the 

morph video is the same as the face in the IMS video.  To determine whether this was the case, 

a post-hoc independent samples t-test was performed on the change in when participants 

stopped the morph video before and after synchronous IMS for Anger Videos 1 and 2, because 

any difference in enfacement between these two conditions would not be due to a difference in 

the emotional expression.  The amount of enfacement did not differ depending on which angry 

face participants saw being touched in synchrony with their own, t(16) = 0.016, p = .987.  Thus, 

the higher likeness-to-photo rating given to Anger Video 1 did not bias the design by enhancing 

the ability of the morph video task to detect an enfacement effect when that stimulus was used. 

Morph video analysis 

A 2 x 2 x 3 mixed factors ANOVA with time (pre- or post-IMS) and IMS mode 

(synchronous or asynchronous) as within-subjects factors and the other’s facial expression 

during IMS (fearful, angry, or neutral) as a between-subjects factor was conducted on the 

amount of the other person’s face in the frame where participants stopped the morph video.  

This yielded a main effect of time, F(1, 51) = 10.96, p = .002, partial η2 = .177, showing that, 

overall, participants stopped the morph videos sooner (at a frame containing less of their own 

face and more of the other person’s face) after IMS than before.  

More importantly, there was an interaction between time and IMS mode, F(1, 51) = 8.96, 

p = .004, partial η2 = .149.  Participants stopped the morph video at a frame containing more of 

the other person’s face after synchronous IMS (M = 52.57%, SEM = ±1.75%) than they did 

before synchronous IMS (M = 47.42%, SEM = ±1.51%), t(53) = -4.92, p < .001, indicating that 

the experience of concurrent visual and tactile stimulation led them to accept more features of 

the other’s face as their own.  Importantly, in sessions with asynchronous IMS, there was no 

difference in the amount of the other person’s face in the frame where participants stopped the 

morph video before (M = 49.11%, SEM = ±1.71%) and after (M = 49.87%, SEM = ±1.65%) IMS, 

t(53) = -0.61, p = .542, ruling out the possibility that mere exposure to the other’s face with 
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temporally incongruent visual and tactile inputs could produce the same effect.  These results 

are consistent with previous enfacement studies (Bufalari et al., 2014; Sforza et al., 2010; 

Tajadura-Jiménez, Grehl, et al., 2012; Tajadura-Jiménez et al., 2013; Tajadura-Jiménez & 

Tsakiris, 2014; Tsakiris, 2008).  Pre-IMS morph video stopping points did not differ between 

synchronous and asynchronous IMS sessions, t(53) = -0.91, p = .368.  The difference between 

post-IMS morph video stopping points in the synchronous and asynchronous IMS sessions was 

also non-significant, t(53) = 1.55, p = .128.  Though one might expect enfacement to be 

reflected in a difference between the frame that participants chose after synchronous and 

asynchronous IMS, the crucial comparisons are between the post-IMS morph video judgment 

and the corresponding pre-IMS baseline judgment made in a single experimental session.   

Surprisingly, the other person’s facial expression during IMS had no impact on 

enfacement.  There was no main effect of facial expression, F(2, 51) = 2.84, p = .068, partial η2 

= .100, no interaction between facial expression and time, F(2, 51) =  0.38, p = .685, partial η2 = 

.015, or IMS mode, F(2, 51) = 0.84, p = .439, partial η2 = .032, and, critically, no three-way 

interaction between emotion, time, and IMS, F(2, 51) = 1.09, p = .344, partial η2 = .041.  

Contrary to the hypothesis, fearful faces did not increase enfacement relative to angry or neutral 

faces.  In fact, the size of the enfacement effect was the same regardless of the emotion 

expressed by the other person during synchronous IMS (Figure 4.3). 
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Figure 4.3.  Mean percentage of other-face (±SEM) in the frame where participants stopped the 

morph video. Participants were instructed to stop the video as soon as the face began to look 

more like their own than the other person’s.  Enfacement is evident when participants stop the 

video at a frame containing more of the other person’s face after synchronous IMS than before.  

* = p < .050. 

 

To check whether differences in baseline, pre-IMS morph video judgments between 

groups might have obscured differences in the magnitude of enfacement between facial 

expression conditions, a 2 (IMS mode) x 3 (facial expression) mixed factors ANOVA was 

performed on the difference between the amount of the other person’s face in the frame 

participants chose before and after IMS.  This approach mitigates the baseline differences 

between groups.  The analysis revealed a significant main effect of IMS mode, F(1, 51) = 8.96, 

p = .004, partial η2 = .149, with a larger pre/post-IMS difference in the synchronous IMS session 

(M = 5.15%, SEM = ±1.05%) than in the asynchronous IMS session (M = 0.76%, SEM = 

±1.24%).  There was neither a main effect of facial expression, F(2, 51) = 0.38, p = .685, partial 

η2 = .015, nor an interaction between IMS mode and facial expression, F(2, 51) = 1.09, p = .344, 
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partial η2 = .041.  These findings parallel the original analysis, indicating that any differences in 

baseline morph video judgments between groups did not obscure an effect of facial expression 

on the size of the enfacement illusion. 

Questionnaire analysis 

Shapiro-Wilk tests revealed that enfacement questionnaire responses were not normally 

distributed, so non-parametric tests were used for all analyses of the questionnaire data.  Due to 

a computer error, questionnaire responses were not collected after the synchronous IMS 

session for one participant, so analyses are based on the responses of the remaining 53 

participants.  Two other participants failed to provide a valid response to one of the 

questionnaire items (Item 01 in the asynchronous session in one case, and Item 09 in the 

synchronous session in the other), so analyses of these questionnaire items are based on the 

data from the remaining 52 participants. 

First, responses to each of the 14 questionnaire items were averaged across emotion 

conditions to look for a main effect of IMS mode (synchronous vs. asychronous), with higher 

ratings of agreement predicted in the synchronous session than in the asynchronous session.  

Ratings were compared using a series of one-tailed Wilcoxon signed-rank tests with a 

Bonferroni correction to control the family-wise error rate.  Participants gave higher ratings of 

agreement to 10 of the 14 illusion questionnaire items after synchronous relative to 

asynchronous IMS (Figure 4.4), indicating that synchronous IMS successfully induced a 

subjective illusion of self/other merging. 
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Figure 4.4.  Mean (±SEM) ratings of agreement with enfacement illusion questionnaire items. 

Ratings were made on a Likert scale from -3 (strongly disagree) to 3 (strongly agree).  

Enfacement is evident in higher ratings of agreement after synchronous IMS than after 

asynchronous IMS.  A) Mean ratings averaged across facial expression conditions.  * = p < 

.050, one-tailed, after Bonferroni correction; NS = non-sig.  B) Mean ratings in each facial 

expression condition.  Note that there were no significant interactions between IMS mode and 

facial expression for any of the questionnaire items. 

 

To test for an interaction between IMS mode and emotional expression, the differences 

between participants’ ratings of each questionnaire item in the synchronous and asynchronous 

sessions were calculated (synchronous rating – asynchronous rating).  These difference scores 

reflect the amount of enfacement that each participant experienced.  Bonferroni-corrected 

Kruskal-Wallis tests were then used to look for differences in the strength of the enfacement 
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illusion between the groups that viewed fearful, angry, and neutral faces.  No differences 

between emotion conditions were significant, again showing that enfacement was not influenced 

by the other person’s facial expression. 

Discussion 

In the enfacement paradigm, synchronous interpersonal visual and tactile inputs update 

the self-face representation, causing the other person’s face to be assimilated.  It was 

hypothesized that seeing a fearful face being touched in synchrony with one’s own face would 

increase enfacement because of greater motivation to understand the affective state of the 

other person, a process that would involve enhanced somatosensory resonance.  It was also 

predicted that seeing an angry face being touched in synchrony with ones’s own face would not 

increase enfacement because anger is a more complex social emotion that requires additional 

contextual information to be properly understood (Pichon et al., 2009), and because angry 

expressions do not appear to be as strongly represented in the somatosensory system of the 

observer (Adolphs et al., 2000, 1996; Cardini, Bertini, et al., 2012).  Contrary to the hypotheses, 

the strength of enfacement was the same regardless of the emotion expressed by the other 

person.  Neither fearful nor angry facial expressions affected the amount of self/other merging 

produced by synchronous IMS. 

Previous studies have shown that visual self-face recognition from self/other morphs is 

influenced by the affective valence of the other person’s face, especially in terms of positive 

interpersonal dimensions such as attractiveness and trustworthiness (Epley & Whitchurch, 

2008; Verosky & Todorov, 2010).  In contrast, the present study did not find an effect of 

manipulating a social/emotional variable, namely the other person’s facial expression, on self-

face recognition from self/other morphs following the enfacement illusion.  It is important to 

remember, however, that the morph videos always showed both the participant’s face and the 

other person’s face with neutral expressions.  The emotion manipulation only occurred in the 

IMS video.  The aim of the experiment was not to show a direct influence of the emotional 



109 
 

content of the self/other morph on self-face recognition, but to investigate whether seeing a 

fearful face would enhance somatosensory resonance, and thereby strengthen the enfacement 

illusion induced by synchronous IMS.  Instead, varying the other person’s facial expression did 

not influence the strength of enfacement.  Moreover, these previous studies found an effect of 

positive interpersonal dimensions on self-face recognition from self/other morphs, whereas 

Experiment 6 investigated the effect of negative emotional expressions on the synchronous IMS 

procedure that induces enfacement. 

Responses to the enfacement questionnaire further confirmed that participants 

experienced an illusion of enfacement,  but this effect was not influenced by the other person’s 

facial expression.  Participants gave higher ratings of agreement to 10 of the 14 questionnaire 

items after synchronous IMS compared to asynchronous IMS, including statements assessing 

both self-identification (Items 01, 02, 04, 05, 06, 10, and 11) and physical similarity (Items 07, 

09, and 14) (Tajadura-Jiménez, Longo, et al., 2012).  Moreover, the differences between the 

ratings given to these questionnaire items in synchronous and asynchronous sessions did not 

change according to the emotion expressed during IMS.  This suggests that the subjective 

experience of enfacement with emotional faces is both quantitatively and qualitatively similar to 

enfacement with neutral faces. 

One might argue that visuo-motor congruence was not balanced across the three facial 

expression conditions in this experiment.  The discrepancy between the facial movements of the 

actors in the fearful and angry videos and the participants’ own facial muscles may have 

reduced the enfacement illusion, irrespective of any emotional component per se.  However, it 

does not seem that visuo-motor incongruence was a major factor in the results.  First, even the 

neutral videos included movements—eye blinks, mild head movements, and mild facial muscle 

contractions—that would have been incompatible with the participants’ own.  Thus, any effect of 

visuo-motor incongruence would have applied to all three facial expression conditions.  In 

addition, a previous study on full-body illusions found that visuo-motor incongruence did not 
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affect the illusion induced by synchronous visuo-tactile stimulation (Slater, Spanlang, Sanchez-

Vives, & Blanke, 2010).  Although that study investigated a different kind of illusion resulting 

from IMS, it suggests that visuo-motor congruence is relatively unimportant compared to visuo-

tactile synchrony in these types of illusions. 

Cardini and colleagues (2012) found that viewing fearful human faces being touched 

improves detection of near-threshold tactile stimuli on one’s own face.  This fear-specific 

enhancement of VRT was also replicated in Experiment 5.  Experiment 6, on the other hand, did 

not find a fear-specific enhancement of enfacement.  Although both the enfacement paradigm 

and the VRT paradigm involve presenting tactile stimuli on the participant’s face while the 

participant views touch on another person’s face, they actually measure quite different things.  

VRT measures the effect of congruent interpersonal visuo-tactile stimulation on a concurrent 

tactile detection task, which is directly related to activity in somatosensory cortex.  Instead, 

enfacement measures visual self-face recognition after inducing an illusion with synchronous 

IMS.  Modulation of somatosensory cortical activity by fearful facial expressions might not be 

expected to have as clear an effect on enfacement, which is essentially a self-recognition task, 

as it does in a tactile detection paradigm. 

Maister and colleagues (2013) demonstrated that inducing an enfacement illusion 

enhances detection of fear when it is expressed by the person whose face was assimilated.  As 

discussed earlier, somatosensory simulation seems to be particularly important for recognizing 

fearful facial expressions (Adolphs et al., 2000, 1996; Pourtois et al., 2004), so Maister and 

colleagues reasoned that synchronous IMS improved fear detection by enhancing resonance 

with somatosensory events on the other person’s face.  Nevertheless, the results of the present 

study suggest that this effect is not reciprocal.  Viewing fearful facial expressions did not 

strengthen assimilation of the other person’s face via synchronous IMS.  This suggests that 

there is an asymmetric relationship between the multisensory interactions underlying 

enfacement and the processing of facial expressions. 
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A long-standing view of face perception holds that facial identity and facial expressions 

are processed independently (Bruce & Young, 1986; Haxby et al., 2000), allowing one to 

recognize individuals from their faces regardless of changes in expression.  This view is 

supported by case studies of patients with impaired facial identity recognition but spared facial 

expression recognition (Duchaine et al., 2003; Humphreys et al., 2007; Sergent & Villemure, 

1989; Tranel et al., 1988), as well as evidence for segregated processing of facial identity and 

facial expressions in healthy participants (Bobes et al., 2000; Eimer & Holmes, 2002; Sergent et 

al., 1994; Winston et al., 2004).  Though more recent reports have challenged the idea of 

completely independent processing streams for facial identity and expressions, they still tend to 

support some degree of independence between the two functions (see Calder & Young, 2005 

for a review).  In fact, several studies have shown that facial identity influences facial expression 

processing, but not vice versa (Ellamil et al., 2008; Fox & Barton, 2007; Fox et al., 2008; 

Schweinberger & Soukup, 1998; Spangler et al., 2010).  One could see how this asymmetric 

relationship between facial identity and facial expression processing might be benefical.  The 

identity of a familiar person provides additional information relevant to interpreting emotional 

expressions, such as knowledge of the individual’s personality and prior interactions with them.  

On the other hand, it could be detrimental to identity recognition if dynamic facial attributes such 

as emotional expressions were to affect facial identity processing.  The results of Experiment 6, 

together with the results of Maister and colleagues (2013), support an asymmetric relationship 

between facial identity and facial expression processing, and extend it into the domain of 

dynamic self-face recognition  processes.  While assimilation of another person’s face into the 

self-face representation can affect perception of that person’s facial expressions (Maister et al., 

2013), the expression displayed by another person’s face does not affect how readily that face 

is assimilated. 

The asymmetric relationship between facial identity and facial expression processing 

may also shed light on why fearful expressions did not affect enfacement, in spite of their 
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significance for adaptive behavior.  Fearful expressions usually signal the presence of an 

immediate threat in the observer’s environment.  Recognizing and reacting appropriately to 

fearful faces would therefore be critical for personal survival.  Though this might make fearful 

faces especially salient, it does not necessarily follow that they should impact the process of 

visual self-face recognition, or even facial identity processing in general.  As mentioned earlier, 

facial identity recognition might be hindered if it were easily influenced by dynamic facial 

expressions. 

Though the present study did not find an effect of fearful or angry facial expressions on 

enfacement, it does not rule out the possibility that other facial expressions might modulate the 

illusion.  In contrast to the asymmetric interaction model of facial identity and facial expression 

processing, some studies have found that happy facial expressions can facilitate the 

identification of faces as familiar (Endo, Endo, Kirita, & Maruyama, 1992; Kottoor, 1989; 

Sansone & Tiberghien, 1994).  However, another study found that happy facial expressions 

increased the familiarity ratings of both familiar and unfamilliar faces (Baudouin, Gilibert, 

Sansone, & Tiberghien, 2000).  This suggests that happy facial expressions might just bias the 

perceiver towards a feeling of familiarity rather than enhancing facial identity recognition per se.  

A later study demonstrated that happy facial expressions can also facilitate explicit recognition 

(i.e., naming) of famous faces (Gallegos & Tranel, 2005).  Though the authors of that study 

argued that an internet search yielded at least as many photographs of their famous 

personalities with neutral expressions as with happy expressions, it is difficult to rule out the 

possibility that the facilitatory effect they found could be due to greater exposure to the smiling 

expressions of those celebrities.  Despite the methodological issues with these studies, a future 

study could try the enfacement paradigm with happy facial expressions to determine whether 

smiling faces might affect the dynamic processes underlying self-face identification in a way that 

fearful and angry faces do not. 
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Another potential limitation of Experiment 6 is that participants’ empathic traits were not 

measured.  A previous study found that people with higher levels of both cognitive and 

emotional components of empathy tend to be more susceptible to the enfacement illusion 

(Sforza et al., 2010).  Empathy may also influence reactions to emotional stimuli.  For instance, 

participants high in emotional empathy show more automatic mimcry of happy and angry facial 

expressions (Sonnby–Borgström, 2002).  Additionally, cognitive empathy tends to primarily 

influence reactions to positive emotional stimuli, whereas emotional empathy influences 

reactions to negative emotional stimuli (Davis, Hull, Young, & Warren, 1987).  It is thus possible 

that more empathic individuals might show differential enfacement effects depending on the 

other’s facial expression.  Future studies could explore the relationship between participant 

empathy and emotional expression in determining the strength of enfacement. 

Conclusion 

The results of Experiment 6 suggest that negative emotional facial expressions do not 

modulate the extent to which another’s face is assimilated into the self-face representation 

following synchronous interpersonal visuo-tactile stimulation.  Together with the results from a 

previous study showing that enfacement can enhance fear recognition (Maister et al., 2013), the 

results of Experiment 6 support an asymmetric interaction between facial expression processing 

and dynamic, multisensory processes of self-face identification.  Further research is needed to 

determine whether this asymmetric interaction holds for all facial expression processing or is 

specific to negative emotional expressions. 
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General Discussion 

I. Viewing the body versus viewing touch on the body 

A common thread running through Experiments 1 through 6 is the interplay between 

vision of the body and cutaneous sensations.  Nevertheless, an important distinction should be 

made between viewing a body being touched while also being touched, and viewing the body 

while being touched, but without seeing the touch itself.  Experiments 1, 2, and 3 took the latter 

approach.  Viewing the body without seeing the tactile event increases spatial tactile acuity 

Cardini, Haggard, et al., 2013; Cardini, Longo, et al., 2012, 2011; Fiorio & Haggard, 2005; 

Haggard, 2006; Haggard et al., 2007; Harris et al., 2007; Kennett et al., 2001; Konen & 

Haggard, 2014; Press et al., 2004; Serino et al., 2007; Serino, Padiglioni, et al., 2009; Taylor-

Clarke et al., 2002, 2004), and the work presented here also shows that it reduces the 

discriminability of noxious heat intensities.  Thus, non-informative vision of the body can 

specifically affect perceptual sensitivity in both tactile and nociceptive domains. 

Previous studies indicate that visual enhancement of spatial tactile acuity occurs 

because of feedback from multisensory posterior parietal areas that modulate receptive field 

sizes in SI (Cardini, Longo, et al., 2011; Fiorio & Haggard, 2005; Haggard et al., 2007; Konen & 

Haggard, 2014; Serino, Padiglioni, et al., 2009; Taylor-Clarke et al., 2002).  The results of 

Experiment 1 show that the anterior intraparietal sulcus only provides this feedback in the case 

of the personal route, when one’s own body is seen.  The intermediary for the interpersonal 

route, when another person’s body is seen, remains to be determined.  One candidate area 

could be the left angular gyrus in the inferior parietal lobule.  Lesions in this region specifically 

impair visuo-spatial knowledge about the bodies of others, while leaving knowledge of the 

spatial configuration of one’s own body intact (Degos et al., 1997; Felician et al., 2003).  Future 

studies could test whether TMS targeting the left angular gyrus specifically disrupts VET when 
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viewing another person’s body but not when viewing one’s own body, which would implicate it 

as the source of modulation in interpersonal VET. 

Importantly, the same mechanism that underlies the personal route for visual 

enhancement of spatial tactile acuity may also account for the reduced capacity to discriminate 

noxious heat intensities when viewing one’s own body (Haggard et al., 2013).  Several studies 

have demonstrated an association between disorganization of SI somatotopic maps and chronic 

pain (Flor et al., 1995; Flor et al., 1997; Maihöfner et al., 2003; Tecchio et al., 2002; Wrigley et 

al., 2009).  Furthermore, tactile discrimination training can alleviate some forms of chronic pain 

(Flor, Denke, Schaefer, & Grüsser, 2001; Moseley & Wiech, 2009; Moseley, Zalucki, & Wiech, 

2008).  These results suggest that increased spatial tactile acuity correlates with diminished 

pain sensation.  Nevertheless, the finding that viewing the body reduced sensitivity to noxious 

stimulation intensities but increased perceived pain levels overall is not entirely consistent with 

the interpretation of a common mechanism behind these two effects, nor with previous studies 

that described an analgesic effect of viewing the body (Longo et al., 2009, 2012; Mancini, 

Bolognini, et al., 2012; Mancini et al., 2013, 2011).  Another possibility is that viewing the body 

decreases nociceptive sensitivity through modulation of SII rather than SI.  Indeed, some 

consider the opercular-insular cortex to be the primary sensory area for nociception (Garcia-

Larrea, 2012; Garcia-Larrea & Peyron, 2013), and TMS targeting SII, but not SI, impedes 

discrimination of noxious stimulus intensities (Lockwood et al., 2013).  Future studies should 

explore the neural mechanism underlying visual modulation of pain perception, and whether it is 

distinct from that which underlies personal VET. 

In Experiments 4, 5, and 6, participants instead viewed both the body itself and a tactile 

event on the body.  Viewing a body (one’s own or another person’s) being touched improves 

detection of near-threshold tactile stimuli (Cardini, Costantini, et al., 2011; Cardini, Tajadura-

Jiménez, et al., 2013; Fini et al., 2013; Serino, Giovagnoli, et al., 2009; Serino et al., 2008).  
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Note that this effect could not occur via the same mechanism as visual enhancement of spatial 

tactile acuity.  Viewing the body alone actually impairs performance on non-spatial tactile 

detection tasks (Harris et al., 2007; Press et al., 2004).  Furthermore, sharpening of tactile 

receptive field sizes would not be expected to improve tactile detection in the same way that it 

would improve discrimination of the spatial properties of a tactile stimulus.  Instead, viewing the 

body being touched may enhance tactile detection by modulating the baseline level of activity in 

somatosensory cortex.  This “pre-activation” of somatosensory cortex might allow detection of 

weaker tactile stimuli.   

Although viewing a noxious event on the hand in Experiment 4 did not elicit a significant 

effect relative to viewing the same stimulus on a non-body object, there was a trend toward 

increased nociceptive sensitivity when the hand was seen being touched by the thermode probe 

compared to when the object was seen being touched.  Unlike with VRT, it is unclear whether 

this effect would result from a simple somatosensory pre-activation.  While a change in the 

baseline activity level of the somatosensory cortex might alter the perceived intensity of both low 

and high pain stimuli, it would not necessarily enhance the ability to discriminate between them.  

In any case, the effect of viewing the body on cutaneous sensations appears to be highly 

sensitive to context, depending not only on whether the tactile event is also seen, but also on 

whether the cutaneous sensation is innocuous or noxious. 

II. Self and other in visual-somatosensory interactions 

The results of Experiments 1 through 6 also reveal differences in sensitivity to the 

identity of the observed body among the visual-somatosensory interactions investigated.  On 

the surface, visual enhancement of spatial tactile acuity appeared to be insensitive to body 

identity because it occurred regardless of whether the observed body part belonged to oneself 

or to another person (Haggard, 2006).  However, the findings of Experiment 1 revealed that 
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there are at least partially dissociable mechanisms behind VET when viewing one’s own body 

and when viewing the body of another person.  Therefore, VET is in fact sensitive to body 

identity, despite both the personal and interpersonal routes having similar consequences for 

tactile acuity.  Although Experiments 2, 3, and 4 did not investigate the effect of viewing another 

person’s body on perception of noxious stimuli, a previous study did not find any visual 

modulation of pain perception when participants saw the experimenter’s hand rather than their 

own (Longo et al., 2009).  This suggests that visual modulation of pain only operates via a 

personal route—that is, a functional network representing one’s own body in particular rather 

than human bodies in general.  This network might be akin to the dynamically updated 

multimodal representation of one’s own body proposed by Sirigu and colleagues (1991) and by 

Schwoebel and Coslett (2005), including self-specific sensory inputs such as proprioception.  A 

future study could test whether the human ventral intraparietal area is the source of pain 

modulation when viewing one’s own body, as it is with visual modulation of spatial tactile acuity.  

Previous studies had already demonstrated that visual remapping of touch is strongest 

when observing one’s own face being touched (Cardini, Costantini, et al., 2011; Serino et al., 

2008).  When another person’s face is seen being touched instead, VRT is strengthened when 

the other person is perceived as similar to oneself, but is still present to some extent even for 

dissimilar others such as outgroup members (Cardini, Tajadura-Jiménez, et al., 2013; Fini et al., 

2013; Serino, Giovagnoli, et al., 2009).  Beyond this, the constraints of face identity on the 

remapping process had not been explored.  Experiment 5 revealed that seen touch is only 

remapped onto the human observer’s own face when the other face is also human.  This 

important limitation to VRT corroborates earlier evidence that non-human faces are processed 

differently than human faces (Dahl et al., 2009; de Haan et al., 2002; Neiworth et al., 2007; 

Pascalis & Bachevalier, 1998; Pascalis et al., 2002; Scott et al., 2005, 2006), and suggests that 

somatosensory resonance is strongest when viewing touch on another human. 
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III. Emotional modulations of visual-somatosensory interactions 

Experiments 5 and 6 further elucidated the conditions under which emotional 

expressions will and will not influence interactions between vision and cutaneous sensations.  

Experiment 5 replicated a fear-specific enhancement of VRT relative to viewing happy or neutral 

facial expressions (Cardini, Bertini, et al., 2012).  Moreover, this study also demonstrated that 

emotional facial expressions have no effect on the strength of VRT when non-human faces are 

observed being touched.  These findings establish a limit to the emotional modulation of VRT, 

and suggest that the facial expressions of non-human animals may not be mapped onto the 

somatosensory system of the human observer in the same way that human facial expressions 

are.  Whether this limitation is due to the degree of dissimilarity between the non-human face 

and the observer’s own face or to a relative lack of expertise with non-human facial expressions 

remains to be determined. 

In addition, Experiment 6 demonstrated that the enfacement illusion is not susceptible to 

facial expression manipulations, at least when negative expressions are used.  Neither fearful 

nor angry expressions modulated the strength of enfacement relative to neutral expressions.  

This was initially surprising, as fearful expressions do enhance somatosensory resonance in the 

VRT paradigm (Cardini, Bertini, et al., 2012).  Nevertheless, it seems that expressions of fear 

enhance remapping of observed touch on the other person’s face, but do not influence feelings 

of ownership or identification with the other person.  As discussed in Chapter 4, the findings of 

Experiment 6 also lend support to models positing an asymmetric interaction between 

processing of facial identity and facial expressions (Ellamil et al., 2008; Fox & Barton, 2007; Fox 

et al., 2008; Schweinberger & Soukup, 1998; Spangler et al., 2010).  Although enfacement can 

improve fear recognition (Maister et al., 2013), fearful expressions do not strengthen the 

enfacement illusion. 
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IV. Concluding remarks 

The experiments in this thesis have examined several interactions between vision and 

cutaneous sensations.  Studying these interactions can shed light on the multiple levels of body 

representation in the brain.  Vision and innocuous touch, for example, seem to interact within at 

least two levels of body representation: a visuo-spatial representation of human bodies in 

general, and a multimodal representation sensitive to proprioceptive cues and specific to one’s 

own body (Schwoebel & Coslett, 2005; Sirigu et al., 1991).  Moreover, even when vision of the 

body is non-informative about cutaneous sensation, it can specifically affect somatosensory 

discriminative capabilities.  For example, viewing the body improves discrimination of the 

orientations of tactile gratings, an effect that, unlike an enhancement of tactile detection, could 

not result from a simple bias toward responding that a stimulus was present.  In addition, 

viewing the body reduces the discriminability of noxious intensity levels, another effect that 

could not result from post-perceptual bias.  These findings indicate that viewing the body does 

not merely prompt greater attention to sensations on the body, but actually affects sensory 

processing within the tactile and nociceptive systems. 

Although viewing the body can have low-level sensory consequences for discrimination 

in the somatosensory domain, visuo-tactile interactions are also sensitive to higher-level 

processes such as the distinction between self and other (VET and VRT) and the perception of 

social and emotional cues (VRT).  Lastly, while both self-recognition and emotion perception 

can influence visuo-tactile interactions, the enfacement illusion demonstrates that their 

relationship with each other is asymmetric.  Together, these findings point to the existence of 

body representations in the brain that 1) link low-level perceptual analyses to processes 

underlying the perception of emotional cues and body/face identity, and 2) interact in complex 

ways depending upon contextual factors. 
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