
Alma Mater Studiorum Università di Bologna

DEI - Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione

“Guglielmo Marconi”

Dottorato di Ricerca in Automatica e Ricerca Operativa

Ciclo XXVI

Settore concorsuale di afferenza: 01/A6 - RICERCA OPERATIVA

Settore scientifico disciplinare: MAT/09 - RICERCA OPERATIVA

Two-Dimensional Bin Packing Problem

with Guillotine Restrictions

Enrico Pietrobuoni

Coordinatore Relatore

Prof. Daniele Vigo Prof. Andrea Lodi

Ing. Michele Monaci

Esame Finale 2015

Contents

List of Figures v

1 Outline 1

2 The Two-Dimensional Bin Packing Problem 3

2.1 Introduction . 3

2.2 Cutting and Packing . 4

2.3 Rectangle Packing Problem . 4

2.4 Applications . 6

2.5 Models . 7

2.5.1 One-dimensional bin packing problem 7

2.5.2 Two-dimensional bin packing problem 7

2.5.3 ILP models for level packing . 9

2.6 The asymptotic and the absolute worst-case performance ratios 11

2.7 Upper Bounds . 11

2.7.1 Strip packing . 12

2.7.2 Bin packing: Two-phase heuristics 15

2.7.3 Bin packing: One-phase level heuristics 17

2.7.4 Bin packing: One-phase non-level heuristics 18

2.7.5 Metaheuristics . 19

2.7.6 Approximation algorithms . 23

2.8 Lower Bounds . 24

2.9 Exact Algorithms . 28

3 Two-Dimensional Bin Packing: the 2BP|O|G case 31

3.1 Introduction . 31

3.1.1 Our goals . 32

3.1.2 Definitions . 33

3.1.3 Convexification Algorithm . 34

3.1.4 Algorithm and assumptions . 37

3.2 Smallest non-separable pattern . 38

3.2.1 Rows and Intersections . 38

3.3 Blocked Ring . 41

3.3.1 Detecting a Blocked Ring . 41

3.4 Blocked Ring characterization . 48

3.4.1 Single Blocked Ring . 48

3.4.2 Multiple Blocked Ring . 49

3.5 Worst-case analysis . 52

3.5.1 Case 1: P is a Simple Blocked Ring 53

3.5.2 Case 2: P is a Single Blocked Ring 53

4 Partial enumeration algorithms for 2BP|O|G 59

4.1 Introduction . 59

4.2 Basic Heuristic Algorithm . 61

4.2.1 Packing the current bin . 61

4.2.2 Selection rule . 62

4.2.3 Guillotine split rule . 63

4.3 Enhanced Heuristic Algorithm . 64

4.3.1 Removing duplicated nodes . 64

4.3.2 Heuristic pruning . 64

4.4 Computational experiments . 65

4.5 Conclusions . 69

List of Figures

2.1 Fekete and Schepers modeling approach. 9

2.2 Three classical strategies for the level packing. 13

2.3 Algorithm HFF. 15

2.4 Algorithm FBS. 16

2.5 Algorithm FC. 17

2.6 Algorithm FNF. 18

2.7 Algorithm FFF. 18

2.8 Algorithm FBL. 19

2.9 Algorithm NBL. 19

2.10 Algorithm AD. 20

2.11 Worst-case of the area bound. 25

2.12 (a) items in I1, I2 and I3; (b) relaxed instance with reduced items. . . . 26

3.1 Example of guillotine pattern. 33

3.2 The convexification algorithm. 34

3.3 Convexification algorithm: step 2. 34

3.4 Convexification algorithm: step 3. 35

3.5 Convexification algorithm: step 5. 35

3.6 Convexification Algorithm on a separable pattern that produces a non-
separable pattern. 36

3.7 Patterns with 3 items. 37

3.8 Patterns with 4 items. 37

3.9 The packing algorithm. 38

3.10 Separable and non-separable rows. 39

3.11 Pattern with 5 items, x = 3 and y = 1. 40

3.12 Patterns with 5 items: xh = 4, xv = 0 e y = 0, xh = 3, xv = 1 e y = 0. . 40

3.13 Simple Blocked Ring. 40

3.14 Two examples where we apply the algorithm to detect Blocked Ring. . . 42

3.15 Step 1: Items interested by the selected vertical rows (ex.1). 42

3.16 Step 1: Items interested by the selected vertical rows (ex.2). 43

3.17 Step 1: Items interested by the selected horizontal rows (ex.1). 43

3.18 Step 1: Items interested by the selected horizontal rows (ex.2). 43

3.19 Step 2: Items to keep (ex.1). 43

3.20 Step 2: Items to keep (ex.2). 44

3.21 Step 3: Items after Convexification Algorithm execution (ex.1). 44

3.22 Step 3: Items after Convexification Algorithm execution (ex.2). 44

3.23 Edge-to-edge cut on a non-separable rows pattern. 45

3.24 How to place row C. 46

v

3.25 How to place row D (case 1). 47

3.26 How to place row D (case 2). 47

3.27 Single Blocked Ring. 48

3.28 Nested Blocked Ring. 49

3.29 Concatenated Blocked Ring. 50

3.30 Complex Blocked Ring. 51

3.31 Non guillotinable pattern. 52

3.32 Worst-case for problem P1 when P is a Single Blocked Ring. 54

4.1 Example of non guillotine and guillotine patterns. 60

4.2 Algorithm to pack a single bin. 62

4.3 Example of horizontal (left) and vertical (right) guillotine cut. 63

List of Tables

4.1 Results on 2BP instances from the literature for the basic algorithm. . . 67

4.2 Results on 2BP instances from the literature for the enhanced algorithm
with N1 = 500, N2 = 500 and δ = 0.1. 68

4.3 Comparison between guillotine and non-guillotine heuristics. Time limit
= 1,800 CPU seconds. 69

vii

Keywords

• Cutting and Packing

• Bin Packing Problem

• Guillotine Restrictions

• Worst-Case Performance Ratios

• Blocked Ring

• Heuristic Algorithms

A chi mi ha incoraggiato, consigliato, supportato.

Ad Alberto.

Acknowledgements

I want to deeply thank my thesis advisors, Professor Andrea Lodi, for his thought-

ful guidance and warm encouragement and Dr. Michele Monaci who supported and

advised my research with precious contributions.

Lastly, I want to express my gratitude to Professor Alberto Caprara, a brilliant scien-

tist, for his lasting belief in me.

Chapter 1

Outline

The Two-Dimensional Bin Packing Problem (2BP) is the problem of packing, without

overlapping, a given set of small rectangles, called items, into the minimum number of

identical large rectangles, called bins, with the edges of the items parallel to those of

the bins.

The great interest of 2BP is mainly due to the large number of real-world applications

in which it arises: from industry to computer system and networking, and depending

on these applications, 2BP can be found in the literature with the addition of different

practical requirements (orientation, levels, guillotine cuts...) which originate many

interesting variants.

In particular in this thesis, according to the three-field notation proposed in Lodi,

Martello, Vigo [53], we will denote by 2BP|O|G the Two-Dimensional Bin Packing

Problem with Guillotine Restriction, i.e. where it is imposed that items are obtained

through a sequence of edge-to-edge cuts parallel to the edges of the bin and cannot

be rotated. Similarly, the problem in which guillotine constraint is not imposed and

items are oriented, no rotation allowed, will be denoted as 2BP|O|F.

In Chapter 2 we present recent advances obtained for the two-dimensional bin packing

problem. In Chapter 3 a mathematical characterization of non-guillotine patterns is

provided and the relation between the 2BP|O|G solution value and the 2BP|O|F is

being studied from a worst-case perspective.

Finally in Chapter 4 we present a new heuristic algorithm, for the 2BP|O|G, based on

partial enumeration, and computationally evaluate its performance on a large set of

instances from the literature.

1

Chapter 2

The Two-Dimensional Bin

Packing Problem

2.1. Introduction

In the two-dimensional bin packing problem (2BP) we are given a set of n rectangular

items j ∈ J = {1, . . . , n}, each having width wj and height hj , and an unlimited number

of finite identical rectangular objects called bins, having width W and height H. The

problem is to allocate all the items, without overlapping, to the minimum number of

bins. It is the two-dimensional extension of the classic one-dimensional bin packing

problem (1BP), and is one of the most studied problem in the so called Cutting &

Packing category.

In this chapter we survey recent advances obtained for the two-dimensional bin packing

problem. We start by reviewing main rectangular packing problems and their appli-

cations in Sections 2.3, 2.4, then we will present the classical mathematical models in

Section 2.5 which have relevant implications on the topic of the present chapter, and

discuss more recent results. We will proceed with the definition of the asymptotic and

the absolute worst-case performance ratios in Section 2.6 and upper bounds in Sec-

tion 2.7, including metaheuristics and approximation algorithms. Finally the last two

sections are dedicated to lower bounds in Section 2.8 and exact algorithms in Section

2.9.

The structure of this chapter is based on: Lodi, Martello and Vigo [55] and Lodi,

Martello and Monaci [50].

3

4 Chapter 2 The Two-Dimensional Bin Packing Problem

2.2. Cutting and Packing

Cutting and packing problems consist of placing a given set of (small) items into one

or more (larger) objects without overlap in order to maximize or minimize a given ob-

jective function. These are combinatorial optimization problems with many important

industrial applications, especially in cutting (e.g., wood, glass, steel, leather and paper

industries) and packing (e.g., transportation, telecommunication and warehousing).

Cutting and packing problems can be classified using different criteria:

• Dimension: most problems are defined over one, two or three dimensions. In

this chapter we mainly consider two-dimensional problems.

• Shape: it refers to items and objects shape. When the shapes of items to be

packed are polygons or arbitrary shapes the problem is called irregular pack-

ing. We instead focus on rectangle packing where both items and objects are

rectangles.

2.3. Rectangle Packing Problem

In the two-dimensional rectangle packing problem we are given a set of n rectangular

items j ∈ J = {1, . . . , n}, each having width wj and height hj , and one or many rectan-

gular objects. We are required to place the items orthogonally without any overlap (an

edge of the item is parallel to an edge of the object) so as to minimize (or maximize) a

given objective function. The rectangle packing problem can be characterized by two

important constraints:

• Orientation: each items has a given fixed orientation, i.e. rotation by 90◦ is not

allowed. This is the case of newspaper paging or when the items are decorated

or corrugated.

• Guillotine cut: items must be obtained through a sequence of edge-to-edge

cuts parallel to the edge of the large rectangular object. Guillotine cut is usu-

ally imposed by technical limitations of the automated cutting machines or the

material.

We introduce six types of rectangular packing problems that have been actively studied.

For simplicity, we define the problem assuming that each item has a fixed orientation

and the guillotine cut constraint is not imposed unless otherwise stated.

The first two problems are characterized by one large rectangular object, which may

grow in one or two dimensions, where all the items are to placed disjointly.

Chapter 2 The Two-Dimensional Bin Packing Problem 5

Strip packing problem (2SP): we are given a set of n rectangular items j ∈ J =

{1, . . . , n}, each having width wj and height hj , and one large object called strip whose

width W is fixed and height H is variable. The object is to minimize the height H of

the strip such that all the items can be packed into the strip.

Area minimization problem (2AP): we are given a set of n rectangular items

j ∈ J = {1, . . . , n}, each having width wj and height hj , and one large rectangular

object, where both its width W and height H are variables. The object is to minimize

the area WH of the object such that all the items can be packed into the object.

The next two problems have one or many fixed size objects.

Two-dimensional bin packing problem (2BP): we are given a set of n rectangular

items j ∈ J = {1, . . . , n}, each having width wj and height hj , and an unlimited number

of finite identical rectangular objects called bins, having width W and height H. The

problem is to allocate all the items to the minimum number of bins.

The special case where wj = W (j = 1, . . . , n) is the famous one-dimensional bin

packing problem (1BP): partition n elements, each having an associated size hj , into

the minimum number of subsets so that the sum of the sizes in each subset does not

exceed a given capacity H. Since 1BP is known to be strongly NP-hard, the same

holds for 2BP.

The requirements of orientation and guillotine cut, already mentioned, generate the

following class (see Lodi, Martello, Vigo [53]) of 2BP problems:

2BP|O|G: the items are oriented (O), and guillotine cut (G) is required;

2BP|R|G: the items may be rotated by 90◦ (R) and guillotine cut is required;

2BP|O|F: the items are oriented and cutting is free (F);

2BP|R|F: the items may be rotated by 90◦ and cutting is free.

Two-dimensional knapsack problem (2KP): we are given a set of n rectangular

items j ∈ J = {1, . . . , n}, each having width wj , height hj , and profit pj and a rectan-

gular knapscak with width W and height H. The objective is to find a subset J ′ ⊆ J

of items with the maximum total value
∑

j∈J ′ pj such that all the items j ∈ J ′ can be

packed into the knapsack.

The last two problems are useful for modeling situations related to industrial applica-

tions, such as mass production manufacturing, many small items of an identical shape

or relatively few classes of shapes are packed into the objects.

Two-dimensional cutting stock problem (2CP): we are given a set of n rectan-

gular items j ∈ J = {1, . . . , n}, each having width wj , height hj , and demand dj and

an unlimited number of finite identical rectangular objects called bins, having width

6 Chapter 2 The Two-Dimensional Bin Packing Problem

W and height H. The problem is to allocate all the items to the minimum number of

bins (i.e., for each j, we place dj copies of item j into the bins).

Pallet loading problem (2PLP): we are given sufficiently large number of items

with identical size (w, h), and one large rectangular object with size (W,H). The

objective is to place the maximum number of items into the object, where each item

can be rotated by 90◦.

The complexity of the PLP is open, i.e. this problem isn’t known to be in class NP,

because of the compact input description, whereas the other problems we defined are

known to be NP-hard.

Without loss of generality, we will assume that all input data are positive integers, and

that wj ≤W and hj ≤ H (j = 1, . . . , n).

2.4. Applications

Classical bin packing has a large number of applications [35], from industry (cutting

material such us cables, lumber or paper) to computer systems (memory allocation

in paged computer systems) and networking (packet routing in communication net-

works). Effectively, bin packing appears as a sub-problem in various other settings.

Most importantly, in manufacturing settings rectangular pieces need to be cut out of

some sheet of raw material, while minimizing the waste. Obviously, cutting problems

and packing problems correspond to each other. Restrictions to orthogonal packing

and packing with restricted or even without rotations make sense in this setting as

well if we cut items out of patterned fabric and have to retain the alignment of the

pattern. These cutting stock problems occur as bin packing and strip packing prob-

lems. Scheduling independent tasks on a group of processors, each requiring a certain

number of contiguous processors or memory allocation during a certain length of time,

can also be modeled as a strip packing problem [47]. In this application the width of

the strip represents the total number of processors or memory available, and the height

represents the maximal completion time. Thinking of (semi-)manually operated ma-

chines instead of processors we might have periodic breaks, as they would occur when

working in shifts, making this a two-dimensional bin packing problem. Further appli-

cations can also be found in VLSI-design (minimum rectangle placement problem [63])

and in the advertisement placement problem [29]. In this problem, we have to place

all given rectangular ads on a minimal number of pages or web-pages.

Chapter 2 The Two-Dimensional Bin Packing Problem 7

2.5. Models

2.5.1 One-dimensional bin packing problem

The 1BP can be described as follows. Given n items each having an associated size hj

and n bins, with capacity H, a possible mathematical formulation of the problem is

(1BP) min
n∑

i=1

yi (2.1)

subject to
n∑

j=1

hjxij ≤ Hyi (i = 1, . . . , n) (2.2)

n∑
i=1

xij = 1 (j = 1, . . . , n) (2.3)

yi ∈ {0, 1} (i = 1, . . . , n) (2.4)

xij ∈ {0, 1} (i = 1, . . . , n)(j = 1, . . . , n) (2.5)

where

yi =

{
1 if bin i is used

0 otherwise
(2.6)

xij =

{
1 if item j is assigned to bin i

0 otherwise
(2.7)

We will suppose, as is usual, that hj are positive integers. Hence, without loss of

generality, we will also assume that H is a positive integer and hj ≤ H, j = {1, . . . , n}.
If an item violates the last assumption, then the instance is trivially infeasible.

2.5.2 Two-dimensional bin packing problem

The first attempt to model two-dimensional packing problems was made by Gilmore

and Gomory [32], through an extension of their approach to 1BP (see [30],[31]) . They

proposed a column generation approach (see Lübbecke and Desrosiers [58] for a recent

survey) based on the enumeration of all subsets of items (patterns) that can be packed

into a single bin. Let Aj be a binary column vector of n elements aij (i = 1, . . . , n)

taking the value 1 if item i belongs to the j-th pattern, and the value 0 otherwise.

The set of all feasible patterns is then represented by the matrix A, composed by all

8 Chapter 2 The Two-Dimensional Bin Packing Problem

possible Aj columns (j = 1, . . . ,M), and the corresponding mathematical model is

(2BP−GG) min
M∑
j=1

xj (2.8)

subject to
M∑
j=1

aijxj ≥ 1 (i = 1, . . . , n) (2.9)

xj ∈ {0, 1} (j = 1, . . . ,M) (2.10)

where xj takes the value 1 if pattern j belongs to the solution, and the value 0 otherwise.

Observe that (2.8)–(2.10) is a valid model for 1BP as well, the only difference being

that the Aj ’s are all columns satisfying
∑n

i=1 aijhi ≤ H.

Due to the immense number of columns that can appear in A, the only way for handling

the model is to dynamically generate columns when needed. While for 1BP Gilmore

and Gomory [30, 31] gave a dynamic programming approach to generate columns by

solving, as a slave problem, an associated 0-1 knapsack problem (see Martello and Toth

[71]), for 2BP they observed the inherent difficulty of the two-dimensional associated

problem. Hence, they switched to the more tractable case where the items have to

be packed in rows forming levels (see Section 2.5.3), for which the slave problem was

solved through a two-stage dynamic programming algorithm.

Beasley [4] considered a two-dimensional cutting problem in which a profit is associated

with each item, and the objective is to pack a maximum profit subset of items into

a single bin (two-dimensional knapsack problem). He gave an ILP formulation based

on the discrete representation of the geometrical space and the use of coordinates at

which items may be allocated, namely

xipq =

{
1 if item i is placed with its bottom left hand corner at (p, q)

0 otherwise
(2.11)

for i = 1, . . . , n, p = 0, . . . ,W −wi and q = 0, . . . ,H − hi. A similar model, in which p

and q coordinates are handled through distinct decision variables, has been introduced

by Hadjiconstantinou and Christofides [34]. Both models are used to provide upper

bounds through Lagrangian relaxation and subgradient optimization.

A completely different modeling approach has been proposed by Fekete and Schepers

[24], through a graph-theoretical characterization of the packing of a set of items into

a single bin. Let Gw = (V,Ew) (resp. Gh = (V,Eh)) be an interval graph having a

vertex vi associated with each item i in the packing and an edge between two vertices

(vi, vj) if and only if the projections of items i and j on the horizontal (resp. vertical)

axis overlap (see Figure 2.1). It is proved in [24] that, if the packing is feasible then

(a) for each stable set S of Gw (resp. Gh),
∑

vi∈S wi ≤W (resp.
∑

vi∈S hi ≤ H);

Chapter 2 The Two-Dimensional Bin Packing Problem 9

(b) Ew ∩ Eh = ∅.

This characterization easily extends to packings in higher dimensions.

1

2

3

4

1

2

3

4

���
1

���
2

���
3

���
4

@
@@ �

��

@
@@

1

2

3

4

���
1

���
2

���
3

���
4

�
��

Figure 2.1: Fekete and Schepers modeling approach.

2.5.3 ILP models for level packing

ILP models involving a polynomial number of variables and constraints have been

obtained by Lodi, Martello and Vigo [56] for the special case where the items have to

be packed “by levels”.

As will be seen in the next section, most of the approximation algorithms for 2BP and

2SP pack the items in rows forming levels. The first level is the bottom of the bin, and

items are packed with their base on it. The next level is determined by the horizontal

line drawn on the top of the tallest item packed on the level below, and so on. Note

that we do not require that all items in a level have the same height. Let us denote by

2LBP problem 2BP restricted to this kind of packing.

We assume in the following, without loss of generality, that only normalized packings

are considered, i.e., packings such that:

(i) in each level, the leftmost item is the tallest one;

(ii) the items are sorted and re-numbered by non-increasing hj values.

10 Chapter 2 The Two-Dimensional Bin Packing Problem

We will say that the leftmost item in a level (resp. the bottom level in a bin) initializes

the level (resp. the bin).

Problem 2LBP can be efficiently modeled by assuming that there are n potential levels

(the i-th one associated with item i initializing it), and n potential bins (the k-th one

associated with potential level k initializing it). Hence let yi, i ∈ J (resp. qk, k ∈ J) be

a binary variable taking the value 1 if item i initializes level i (resp. level k initializes

bin k), and the value 0 otherwise. The problem can thus be modeled as

(2LBP) min
n∑

k=1

qk (2.12)

subject to

j−1∑
i=1

xij + yj = 1 (j = 1, . . . , n) (2.13)

n∑
j=i+1

wjxij ≤ (W − wi)yi (i = 1, . . . , n− 1) (2.14)

i−1∑
k=1

zki + qi = yi (i = 1, . . . , n) (2.15)

n∑
i=k+1

hizki ≤ (H − hk)qk (k = 1, . . . , n− 1)(2.16)

yi, xij , qk, zki ∈ {0, 1} ∀ i, j, k (2.17)

where xij , i ∈ J \ {n} and j > i (resp. zki, k ∈ J \ {n} and i > k) takes the value 1 if

item j is packed in level i (resp. level i is allocated to bin k), and the value 0 otherwise.

Restrictions j > i and i > k easily follow from assumptions (i)–(ii) above. Equations

(2.13) and (2.15) impose, respectively, that each item is packed exactly once, and that

each used level is allocated to exactly one bin. Equations (2.14) and (2.16) impose,

respectively the width constraint to each used level and the height constraint to each

used bin.

Computational experiments have shown that the above model is quite useful in prac-

tice. Its direct use with a commercial ILP solver produces very good solutions (and, in

many cases, the optimal solution) to realistic sized instances within short CPU times.

In addition, several variants of the problem can be easily handled by modifying some

of the constraints, or by adding linear constraints to the models.

The set covering model (2.8)-(2.10) can be adapted to 2LBP, and to the level version of

2SP (see, e.g., Bettinelli, Ceselli and Righini [6]). In this case, each column corresponds

to a set of items which can be inserted into a shelf, and the associated pricing problem

turns out to be a simple variant of the knapsack problem.

Chapter 2 The Two-Dimensional Bin Packing Problem 11

2.6. The asymptotic and the absolute worst-case perfor-

mance ratios

Due to the difficult of solving packing problems to optimality, heuristic algorithms

are of interest to solve these problems. The performance of an algorithm can be

measured by the worst-case and the average-case performance as in Simchi-Levi, Chen

and Bramel [19]. Worst case analysis shows how poor a heuristic algorithm can be

when it builds the worst solution compare to the best possible one. The deviation

from the worst-case solution to the optimal solution represents the performance of

the heuristic. However, a heuristic that builds a poor worst-case solution may not

generate a poor solution in general. Consequently, the average-case analysis, which

is the probabilistic analysis, is an alternative method to determinate the performance

of the heuristic methods. For example, when the distribution of the size of items is

known, there are two ways to determinate the average-case performance. First, the

analytical method which is quite often very difficult, second the empirical tests which

run on several instances and replications.

For what concern the worst-case ratio we have two types. Several denominations and

definitions can be found in literature for the asymptotic and the absolute worst-case

ratio. They both measure the gap between the solution value found by an algorithm

and the optimum in the worst-case.

Formally, given a minimization problem Π, an instance I ∈ Π of the problem, and

an algorithm A, the value of the solution yielded by the algorithm is A(I) and the

optimum is OPT (I). The asymptotic worst-case performance ratio is the smallest

positive R∞ such that the following relation holds for any instance of the problem:

A(I) ≤ R∞ ·OPT (I) +O(1), ∀I ∈ Π (2.18)

The absolute worst-case performance ratio is the smallest positive ρ such that the

following relation holds for any instance of the problem:

A(I) ≤ ρ ·OPT (I), ∀I ∈ Π (2.19)

2.7. Upper Bounds

Heuristics algorithms for the two-dimensional bin packing are divided in off-line and

on-line algorithms. In the on-line version the items are given to the on-line algorithm

one by one from a list, and the next items is given as soon as the current items is

irrevocably placed. While in the off-line version it is assumed that the algorithm has

12 Chapter 2 The Two-Dimensional Bin Packing Problem

full knowledge of the whole input.

The most popular on-line algorithms are the next fit, first fit and best fit strategies,

which are extended from the algorithms for the one-dimensional packing problem.

Since we will present the strategies of the off-line algorithms which are based on next

fit, first fit and best fit strategies we don’t go through them. For a detailed survey on

on-line algorithms refer to Csirik and Woeginger [18].

Most of the off-line heuristic algorithms from the literature are of greedy type, and can

be classified in two families:

• one-phase algorithms directly pack the items into the finite bins;

• two-phase algorithms start by packing the items into a single strip of width W .

In the second phase, the strip solution is used to construct a packing into finite

W ×H bins.

In addition, most of the approaches are level algorithms. Before describing one and

two-phase algorithms, we need to briefly introduce algorithms for packing the items

into a strip.

2.7.1 Strip packing

In the two-dimensional strip packing problem one is required to pack all the items into

a strip of minimum height. Three classical strategies, based on level packing, have

been derived from famous algorithms for the one-dimensional case. In each case, the

items are initially sorted by non-increasing height and packed in the corresponding

sequence. Let j denote the current item, and s the last created level:

• Next-Fit Decreasing Height (NFDH) strategy: item j is packed left justified on

level s, if it fits. Otherwise, a new level (s := s + 1) is created, and j is packed

left justified into it;

• First-Fit Decreasing Height (FFDH) strategy: item j is packed left justified on

the first level where it fits, if any. If no level can accommodate j, a new level is

initialized as in NFDH;

• Best-Fit Decreasing Height (BFDH) strategy: item j is packed left justified on

that level, among those where it fits, for which the unused horizontal space is a

minimum. If no level can accommodate j, a new level is initialized as in NFDH.

As we will see, the three strategies above are also used as a first step in the two-phase

algorithms for two-dimensional bin packing.

Chapter 2 The Two-Dimensional Bin Packing Problem 13

1 2

3 4

5 6

(a) NFDH

1 2
4 6

3
5

(b) FFDH

1 2

3 4

5 6

(c) BFDH

Figure 2.2: Three classical strategies for the level packing.

Coffman, Garey, Johnson and Tarjan [17] analyzed NFDH and FFDH and determined

their asymptotic worst-case behavior. They proved that, if the heights are normalized

so that maxj{hj} = 1, then

NFDH(I) ≤ 2 ·OPT (I) + 1 (2.20)

and

FFDH(I) ≤ 17

10
·OPT (I) + 1 (2.21)

Both bounds are tight (meaning that the multiplicative constants are as small as possi-

ble) and, if the hj ’s are not normalized, only the additive term is affected. Observe the

similarity of (2.20) and (2.21) with famous results on the one-dimensional counterparts

of NFDH and FFDH (algorithms Next-Fit and First-Fit, respectively, see Johnson, De-

mers, Ullman, Garey and Graham [41]).

Any algorithm requiring item sorting is obviously Ω(n log n). Both NFDH and FFDH

can be implemented so as to require O(n log n) time, by using the appropriate data

structures adopted for the one-dimensional case (see Johnson [40]).

In addition we briefly explain other well-known algorithms for strip packing.

• Split Fit (SF) algorithm [17]: heights and widths of all items to be packed are

scaled so that the strip has unit width. The largest integer m ≥ 1 is then

determined for which all items in J have width less than or equal to 1/m. The

list is divided into two sub-lists Lwide and Lnarrow, both ordered according to non-

increasing height such that Lwide contains all items whose widths are greater than

1/(m+1) and Lnarrow contains all items whose widths are at most 1/(m+1). The

items in the list Lwide are packed using the FFDH algorithm and all the items

placed on a particular level are referred to collectively as a block. The blocks

of this packing are then rearranged such that blocks of total width greater than

14 Chapter 2 The Two-Dimensional Bin Packing Problem

(m+1)/(m+2) are at the bottom of the packing, followed by blocks of total width

at most (m+1)/(m+2). This process of shifting the blocks creates a rectangular

region R of width 1/(m+2) to the right of the latter blocks. The items in Lnarrow

are then packed, again using the FFDH algorithm, with the packing starting in

the region R. If an item does not fit into R, then the packing continues above the

packing of Lwide. It is proved that SF (I) ≤ (3/2) ·OPT (I) + 2; the asymptotic

bound of 3/2 is tight.

• Reverse-fit (RF) algorithm [67]: it normalizes the width of the strip and the items

so that the strip is of unit width. RF first stacks all items of width greater than

1/2. Remaining items are sorted in non-increasing height and are packed above

the height H0 reached by those greater than 1/2. Then RF repeats the following

process. It packs items from left to right with their bottom along the line of

height H0 until there is no more space. Then packs items from right to left and

from top to bottom (called reverse-level) until the total width is at least 1/2.

Then the reverse-level is dropped down until, at least, one of them touches some

item below. The drop down is repeated. It is proved that RF (I) ≤ 2 ·OPT (I).

• Steinberg’s algorithm [70]: it estimates an upper bound of the height H required

to pack all the items such that it is proved that the input items can be packed

into a rectangle of width W and height H. It then defines seven procedures with

seven conditions, each to divide a problem into two smaller ones and solves them

recursively. It has been showed that any tractable problem satisfies one of the

seven conditions. It is proved that Steinberg’s algorithm(I) ≤ 2 ·OPT (I)

• Sleator’s algorithm [68]: it normalizes the width of the strip and the items so that

the strip is of unit width. it consists of four steps: (1) all items of width greater

than 1/2 are packed on top of one another in the bottom of the strip. Suppose

h0 is the height of the resulting packing all subsequent packing will occur above

h0. (2) Remaining items are ordered by non-increasing height. A level of items

are packed (in non-increasing height order) from left to right along the line of

height h0. (3) A vertical line is then drawn in the middle to cut the strip into two

equal halves (note this line may cut an item that is packed partially in the right

half). Two horizontal line segments are drawn of length one half, one across the

left half (called the left baseline) and one across the right half (called the right

baseline) as low as possible such that the two lines do not cross any item. (4)

The left or right baseline which is of a lower height is choosen and a level of items

into the corresponding half of the strip is packed until the next item is too wide.

A new baseline is formed and Step (4) is repeated on the lower baseline until all

items are packed. It is proved that Sleator’s algorithm has an asymptotic tight

bound equal to 5/2.

• Bottom-Left (BL) algorithm: it sorts the items by non-increasing width, and

packs the the current item in the lowest possible position, left justified.

Chapter 2 The Two-Dimensional Bin Packing Problem 15

Baker, Coffman and Rivest [1] analyzed the worst-case performance of the BL

algorithm and proved that: (i) if no item ordering is used, BL may be arbitrarily

bad; (ii) if the items are ordered by non-increasing width then BL(I) ≤ 3 ·
OPT (I), and the bound is tight.

2.7.2 Bin packing: Two-phase heuristics

A two-phase algorithm for the finite bin packing problem, called Hybrid First-Fit

(HFF), was proposed by Chung, Garey and Johnson [16]. In the first phase, a strip

packing is obtained through the FFDH strategy. Let H1, H2, . . . be the heights of the

resulting levels, and observe that H1 ≥ H2 ≥ A finite bin packing solution is then

obtained by heuristically solving a one-dimensional bin packing problem (with item

sizes Hi and bin capacity H) through the First-Fit Decreasing algorithm: initialize bin

1 to pack level 1, and, for increasing i = 2, . . . , pack the current level i into the lowest

indexed bin where it fits, if any; if no bin can accommodate i, initialize a new bin. An

example is shown in Figure 2.3. Chung, Garey and Johnson [16] proved that, if the

heights are normalized to one, then

HFF (I) ≤ 17

8
·OPT (I) + 5 (2.22)

The bound is not proved to be tight: the worst example gives HFF (I) = 91
45 ·(OPT (I)−

1). Both phases can be implemented so as to require O(n log n) time.

1
3

2

6

4
7

5

(a) HFF: phase 1

1
3

4
7

(b) HFF: phase 2 bin no.1

2

6

5

(c) HFF: phase 2 bin no.2

Figure 2.3: Algorithm HFF.

Berkey and Wang [5] proposed and experimentally evaluated a two-phase algorithm,

called Finite Best-Strip (FBS), which is a variation of HFF. The first phase is performed

by using the BFDH strategy. In the second phase, the one-dimensional bin packing

problem is solved through the Best-Fit Decreasing algorithm: pack the current level

16 Chapter 2 The Two-Dimensional Bin Packing Problem

in that bin, among those where it fits (if any), for which the unused vertical space is

a minimum, or by initializing a new bin. An example is shown in Figure 2.4. (For

the sake of uniformity, Hybrid Best-Fit would be a more appropriate name for this

algorithm.)

1
3

2

6

4
7

5

(a) FBS: phase 1

1
3

4
7

(b) FBS: phase 2 bin no.1

2

65

(c) FBS: phase 2 bin no.2

Figure 2.4: Algorithm FBS.

Let us consider now another variation of HFF, in which the NFDH strategy is adopted

in the first phase, and the one-dimensional bin packing problem is solved through the

Next-Fit Decreasing algorithm: pack the current level in the current bin if it fits, or

initialize a new (current) bin otherwise. Due to the next-fit policy, this algorithm is

equivalent to a one-phase algorithm in which the current item is packed on the current

level of the current bin, if possible; otherwise, a new (current) level is initialized either

in the current bin (if enough vertical space is available), or in a new (current) bin.

Frenk and Galambos [28] analyzed the resulting algorithm, Hybrid Next-Fit (HNF), by

characterizing its asymptotic worst-case performance as a function of maxj{wj} and

maxj{hj}. By assuming that the heights and widths are normalized to one, the worst

performance occurs for maxj{wj} > 1
2 and maxj{hj} ≥ 1

2 , and gives:

HNF (I) ≤ 3.382 · · · ·OPT (I) + 9 (2.23)

where 3.382 . . . is an approximation for a tight but irrational bound. The three algo-

rithms above can be implemented so as to require O(n log n) time.

The next two algorithms have higher worst-case time complexities, although they are,

in practice, very fast and effective.

Lodi, Martello and Vigo [54, 53] presented an approach (Floor-Ceiling, FC) which

extends the way items are packed on the levels. Denote the horizontal line defined

by the top (resp. bottom) edge of the tallest item packed on a level as the ceiling

Chapter 2 The Two-Dimensional Bin Packing Problem 17

1 2 3
4

5
8

7

6
�

�

ceiling

floor

Figure 2.5: Algorithm FC.

(resp. floor) of the level. The previous algorithms pack the items, from left to right,

with their bottom edge on the level floor. Algorithm FC may, in addition, pack them,

from right to left, with their top edge on the level ceiling. The first item packed on a

ceiling can only be one which cannot be packed on the floor below. A possible floor-

ceiling packing is shown in Figure 2.5. In the first phase, the current item is packed, in

order of preference: (i) on a ceiling (provided that the requirement above is satisfied),

according to a best-fit strategy; (ii) on a floor, according to a best-fit strategy; (iii)

on the floor of a new level. In the second phase, the levels are packed into finite bins,

either through the Best-Fit Decreasing algorithm or by using an exact algorithm for

the one-dimensional bin packing problem, halted after a prefixed number of iterations.

The implementation of the first phase given in [54] requires O(n3) time, while the

complexity of the second one obviously depends on the selected algorithm.

Another level packing strategy based on the exact solution of induced subproblems is

adopted in the Knapsack Packing (KP) algorithm proposed by Lodi, Martello and Vigo

[53]. The first phase of the algorithm packs one level at a time as follows. The first

(tallest) unpacked item, say j∗, initializes the level, which is then completed by solving

an associated knapsack problem instance over all the unpacked items, where: (i) the

knapsack capacity is W − wj∗ ; (ii) the weight of an item j is wj ; (iii) the profit of an

item j is its area wj hj . Finite bins are finally obtained as in algorithm FC. Algorithm

KP (as well as algorithm FC above) may require the solution of NP-hard subproblems,

producing a non-polynomial time complexity. In practice, however, the execution of

the codes for the NP-hard problems is always halted after a prefixed (small) number

of iterations, and in almost all cases, the optimal solution is obtained before the limit

is reached (see the computational experiments in [53]).

2.7.3 Bin packing: One-phase level heuristics

Two one-phase algorithms were presented and experimentally evaluated by Berkey and

Wang [5].

18 Chapter 2 The Two-Dimensional Bin Packing Problem

Algorithm Finite Next-Fit (FNF) directly packs the items into finite bins exactly in

the way algorithm HNF of the previous section does. (Papers [5] and [28] appeared in

the same year.) An example is shown in Figure 2.6.

1

(a) FNF: bin no.1

2

43

(b) FNF: bin no.2

7

65

(c) FNF: bin no.3

Figure 2.6: Algorithm FNF.

Algorithm Finite First-Fit (FFF) adopts instead the FFDH strategy. The current item

is packed on the lowest level of the first bin where it fits; if no level can accommodate

it, a new level is created either in the first suitable bin, or by initializing a new bin (if

no bin has enough vertical space available). An example is shown in Figure 2.7.

1
3

4 6 7

(a) FFF: bin no.1

2

5

(b) FFF: bin no.2

Figure 2.7: Algorithm FFF.

Both algorithms can be implemented so as to require O(n log n) time.

2.7.4 Bin packing: One-phase non-level heuristics

We finally consider algorithms which do not pack the items by levels. All the algorithms

discussed in the following are one-phase.

The main non-level strategy is known as Bottom-Left (BL), and consists in packing

the current item in the lowest possible position, left justified.

Berkey and Wang [5] proposed the BL approach for the finite bin case. Their Finite

Bottom-Left (FBL) algorithm initially sorts the items by non-increasing width. The

current item is then packed in the lowest position of any initialized bin, left justified;

if no bin can allocate it, a new one is initialized. An example is shown in Figure 2.8.

Chapter 2 The Two-Dimensional Bin Packing Problem 19

The computer implementation of algorithm BL was studied by Chazelle [14], who gave

a method for producing a packing in O(n2) time. The same approach was adopted by

Berkey and Wang [5].

2

65

(a) FBL: bin no.1

1
3

4
7

(b) FBL: bin no.2

Figure 2.8: Algorithm FBL.

Berkey and Wang [5] also proposed the Next Bottom-left (NBL) algorithm which is

similar to FBL but, in this case, the generation of a new bin for packing mean that all

the free spaces from the previous bin are discarded. Thus only one bin is active at a

time. An example is shown in Figure 2.9.

2

5

(a) NBL: bin no.1

1
3

4 6

7

(b) NBL: bin no.2

Figure 2.9: Algorithm NBL.

Lodi, Martello and Vigo [53] proposed a different non-level approach, called Alternate

Directions (AD). The method is illustrated in Figure 2.10. The algorithm initializes L

bins (L being a lower bound on the optimal solution value, see Section 2.8) by packing

on their bottoms a subset of the items, following a best-fit decreasing policy (items 1,

2, 3, 7 and 9 in Figure 2.10, where it is assumed that L = 2). The remaining items are

packed, one bin at a time, into bands, alternatively from left to right and from right

to left. As soon as no item can be packed in either direction in the current bin, the

next initialized bin or a new empty bin (the third one in Figure 2.10, when item 11 is

considered) becomes the current one. The algorithm has O(n3) time complexity.

2.7.5 Metaheuristics

Heuristic approaches are particularly useful for problems with a high complexity, for

which deterministic methods like the branch and bound approach are often unable to

20 Chapter 2 The Two-Dimensional Bin Packing Problem

11

12

93

6 5

10

7
2

1

8

4

Figure 2.10: Algorithm AD.

find the solution within a reasonable amount of time. Although heuristics are fast in

generating a solution packing plan, the quality of the solution is highly dependent on

the input sequence of items.

Meta-heuristic approaches are frequently used for the approximate solution of hard

combinatorial optimization problems. Meta-heuristics such as evolutionary algorithms

(genetic algorithms are the most popular type), simulated annealing and tabu search

which are probabilistic in nature have also been applied to solve bin packing problems.

Before presenting specific algorithms we briefly recall the main meta-heuristic tech-

niques.

Genetic algorithm (GA)

One of the optimization and global search methods is based on Darwin’s theory of

evolution and simulated natural selection (see Goldberg [33]). GA was developed fur-

ther by Holland in the 1970s. It is applied effectively to solve various combinatorial

optimization problems and worked with probabilistic rules (see Holland [38]).

GA searches new and better solutions to a problem by improving current population.

This is obtained by extracting the most desirable characteristics from a generation and

combining them to form the next generation. The population comprises a set of chro-

mosomes. Each chromosome in the population is a possible solution and the quality

of each possible solution is measured by fitness function.

First, GA generates initial population and then calculates the fitness value with fit-

ness function for each chromosome of the population. Fitness function is specifically

generated for each problem. Then optimization criterion is checked. If optimization

criteria are met, this solution can be considered as the best solution. Otherwise, new

population is regenerated using GA operators (selection, crossover, and mutation).

• Selection: it selects a proportion of the existing population to breed a new genera-

tion. Individual chromosomes are selected through a fitness-based process, where

fitter chromosomes (as measured by the fitness function) are typically more likely

to be selected.

Chapter 2 The Two-Dimensional Bin Packing Problem 21

• Crossover: it exchanges information between chromosomes and creates new so-

lutions.

• Mutation: it is used to prevent reproduction of similar type chromosomes in

population.

The process is to continue through number of generations until convergence on optimal

or near-optimal solutions.

Simulated Annealing (SA)

SA firstly developed by Kirkpatrick (see [44]) is based on the analogy between the

process of finding a possible best solution of a combinatorial optimization problem and

the annealing process of a solid to its minimum energy state in statistical physics.

The searching process starts with one initial random solution. A neighborhood of this

solution is generated using any neighborhood move rule and then the cost between

neighborhood solution and current solution can be found with 2.24.

∆C = Ci − Ci−1 (2.24)

where ∆C represents change amount between costs of the two solutions. Ci and Ci−1

represents neighborhood solution and current solution, respectively. If the cost de-

creases, the current solution is replaced by the generated neighborhood solution. Oth-

erwise the current solution is replaced by the generated neighborhood solution by a

specific possibility calculated in 2.25 or a new neighborhood solution is regenerated and

steps are repeated until this step. After new solution is accepted, inner loop is checked.

If the inner loop criterion is met, the value of temperature is decreased using by pre-

defined a cooling schedule. Otherwise a new neighborhood solution is regenerated and

steps are repeated until this step. The searching is repeated until the termination

criteria are met or no further improvement can be found in the neighborhood of the

current solution. The termination criterion (outer loop) is predetermined.

e−∆C/T > R (2.25)

where T temperature is a positive control parameter. R is a uniform random number

between 0 and 1.

Tabu Search (TS)

Tabu search uses a local or neighborhood search procedure to iteratively move from one

potential solution x to an improved solution x′ in the neighborhood of x, until some

stopping criterion has been satisfied. Local search procedures often become stuck in

poor-scoring areas or areas where scores plateau. In order to avoid these pitfalls and

explore regions of the search space that would be left unexplored by other local search

22 Chapter 2 The Two-Dimensional Bin Packing Problem

procedures, tabu search carefully explores the neighborhood of each solution as the

search progresses. The solutions admitted to the new neighborhood, N∗(x), are de-

termined through the use of memory structures. Using these memory structures, the

search progresses by iteratively moving from the current solution x to an improved

solution x′ in N∗(x).

These memory structures form what is known as the tabu list, a set of rules and banned

solutions used to filter which solutions will be admitted to the neighborhood N∗(x) to

be explored by the search. In its simplest form, a tabu list is a short-term set of the

solutions that have been visited in the recent past.

Lodi, Martello and Vigo [54, 52, 53] developed effective tabu search (TS) algorithms

for 2BP and for variants of the problem involving the possibility of rotating the items

by 90◦ or the additional constraint that the items may be obtained from the result-

ing patterns through guillotine cuts. We briefly describe here the unified tabu search

framework given in [53], whose main characteristic is the adoption of a search scheme

and a neighborhood which are independent of the specific packing problem to be solved.

The framework can thus be used for virtually any variant of 2BP, by simply changing

the specific deterministic algorithm used for evaluating the moves within the neighbor-

hood search.

Given a current solution, the moves modify it by changing the packing of a subset S

of items, trying to empty a specified target bin selected among those that currently

pack a small area and a relatively large number of items. Subset S is defined so as to

include one item, j, from the target bin and the current contents of k other bins, and

the new packing is obtained by executing an appropriate heuristic algorithm on S. If

the move packs the items of S into k (or less) bins, i.e., item j has been removed from

the target bin, a new item is selected, a new set S is defined accordingly, and a new

move is performed. Otherwise S is changed by selecting a different set of k bins, or a

different item j from the target bin.

The above framework above was suitably combined with a genetic algorithm by Iori,

Martello and Monaci [39] so as to get a hybrid algorithm for 2SP that can be easily

adapted to other packing problems in two and more dimensions.

A different metaheuristic for 2BP has been proposed by Færø, Pisinger and Zachariasen

[22]. Their guided local search algorithm starts from a feasible solution, and randomly

removes some bins by assigning the corresponding items to the other bins. The new

solution is generally infeasible, leading to an optimization problem in which one is

required to minimize an objective function that measures the pairwise overlapping

area. The associated neighborhood is explored through object shifts, until a feasible

solution is found.

Boschetti and Mingozzi [7, 8] proposed new lower bounds and an effective randomized

multi-start heuristic for 2BP which:

Chapter 2 The Two-Dimensional Bin Packing Problem 23

(i) assigns a score to each item;

(ii) packs the items, one at a time, according to decreasing values of the corresponding

scores;

(iii) updates the scores by using a specified criterion, and

(iv) iterates on (ii) and (iii) until an optimal solution is found or a maximum number

of iterations has been performed.

The execution of the algorithm is repeated for a given set of different criteria used for

the updating of the object scores.

Monaci and Toth [62] proposed a 2-phase heuristic algorithm based on formulation

(2.8)–(2.10). In the first phase (column generation), a large set of different feasible

patterns is produced by using heuristic algorithms from the literature, while in the

second phase (column optimization) a subset of patterns is selected by heuristically

solving the associated set covering instance.

Sokea and Bingul [69] propesed hybrid genetic algorithm and simulated annealing for

two-dimensional non-guillotine rectangular packing problems. In their paper, GA and

SA were used separately to obtain permutation for placing the small pieces. Improved

BL algorithm was employed to place rectangular pieces. The solution approach in their

study can be summarized below:

• GA and SA were used to find permutations with small trim loss.

• An improved BL algorithm was used to place rectangular pieces corresponding

to a particular permutation.

These solution approaches, where GA and SA are combined with improved BL algo-

rithm, are known as hybrid GA and hybrid SA.

The current literature on the bin packing problem mostly focuses on the minimization

of wasted space. However in most bin packing problems, both minimization of wasted

space and balance of the bins needs to be achieved. Liu, Tan, Huang, Goh, Ho [48]

formulated a multiobjective two-dimensional bin packing model (MOBPP-2D), with

minimum wasted space and balancing of load as two objectives.

2.7.6 Approximation algorithms

The long standing question on the approximability of 2BP and 2SP found an answer

in recent years. A fully polynomial-time approximation scheme for 2SP was developed

by Kenyon and Rémila [43], which easily produces a 2 + ε guarantee for 2BP.

24 Chapter 2 The Two-Dimensional Bin Packing Problem

Caprara, Lodi and Monaci [10] gave an Asymptotic Fully Polynomial Time Approxi-

mation Scheme (AFPTAS) for 2BP with level restriction. Later, Caprara [9] proposed

an algorithm for the general 2BP with T∞+ ε asymptotic worst-case guarantee, where

T∞ = 1.691 . . . is the well-known guarantee of the harmonic algorithm for 1BP (see Lee

and Lee [46]). This result was further improved by Bansal, Caprara and Sviridenko [2],

who presented a general framework to improve previous approximation algorithms and

obtained asymptotic approximation guarantees arbitrarily close to 1.525. . . for packing

with or without rotations. This is currently the best known asymptotic result. Finally,

concerning inapproximability, Bansal and Sviridenko [3] proved that no APTAS may

exist for 2BP (see also Bansal, Correa, Kenyon and Sviridenko [63]).

All previous results concern asymptotic approximability, i.e., the approximation ratio

gets only close to the stated values for instances involving a very large number of

items. As to the absolute approximation ratio, we mention the paper by Zhang [74], in

which a 3-approximation algorithm for 2BP is given. A 2-approximation algorithm was

obtained by van Stee [72] for the special case where items and bins are squares, and

by Harren and van Stee [37] for the case in which rotation by 90◦ is allowed. Finally,

Harren and van Stee [36] improved their previous results by deriving an approximation

algorithm for 2BP having an absolute approximation ratio equal to 2. This is the best

possible polynomial time approximation for this problem, unless P = NP

2.8. Lower Bounds

Good lower bounds on the optimal solution value are important both in the implemen-

tation of exact enumerative approaches and in the empirical evaluation of approximate

solutions. The simplest bound for 2BP is the Area Bound

L0 =

⌈∑n
j=1wjhj

WH

⌉

computable in linear time. Martello and Vigo [61] determined the absolute worst-case

behavior of L0:

L0(I) ≥ 1

4
·OPT (I)

where L0(I) and OPT (I) denote the value produced by L0 and the optimal solution

value, respectively, for an instance I of problem P . The bound is tight, as shown by

the example in Figure 2.11. The result holds even if rotation of the items (by any

angle) is allowed.

A better lower bound can be obtained, in non-polynomial time, by solving the one

dimensional bin packing instance defined by element sizes wjhj (j = 1, . . . , n) and

capacity WH. Caprara and Monaci [11] showed that the optimal solution of such 1BP

Chapter 2 The Two-Dimensional Bin Packing Problem 25

H
2

W
2

Figure 2.11: Worst-case of the area bound.

instance yields a valid lower bound for 2BP, say L1 such that L1(I) ≥ 1
3 ·OPT (I) for

each instance I of 2BP.

In many cases, the approximation provided by both bounds can be weak, or the re-

quired computing time can be too large for an effective use within an exact algorithm.

A tighter bound was proposed by Martello and Vigo [61]. Given any integer value q,

1 ≤ q ≤ 1
2W , let

K1 = {j ∈ J : wj > W − q} (2.26)

K2 = {j ∈ J : W − q ≥ wj >
1

2
W} (2.27)

K3 = {j ∈ J :
1

2
W ≥ wj ≥ q} (2.28)

and observe that no two items of K1 ∪ K2 may be packed side by side into a bin.

Hence, a lower bound LW
1 for the sub-instance given by the items in K1 ∪K2 can be

obtained by using any lower bound for the 1BP instance defined by element sizes hj

(j ∈ K1 ∪K2) and capacity H (see Martello and Toth [71], Dell’Amico and Martello

[20]). A lower bound for the complete instance is then obtained by taking into account

the items in K3, since none of them may be packed besides an item of K1:

LW
2 (q) = LW

1 + max

{
0,

⌈∑
j∈K2∪K3

wjhj − (HLW
1 −

∑
j∈K1

hj)W

WH

⌉}
(2.29)

A symmetric bound LH
2 (q) is clearly obtained by interchanging widths and heights.

By observing that both bounds are valid for any q, we have an overall lower bound:

L2 = max

(
max

1≤q≤ 1
2
W
{LW

2 (q)} , max
1≤q≤ 1

2
H
{LH

2 (q)}

)
(2.30)

It is shown in [61] that, for any instance of 2BP, the value produced by L2 is no less

than that produced by L0, and that L2 can be computed in O(n2) time.

26 Chapter 2 The Two-Dimensional Bin Packing Problem

Martello and Vigo [61] also proposed a computationally more expensive lower bound,

which in some cases improves on L2. Given any pair of integers (p, q), with 1 ≤ p ≤ 1
2H

and 1 ≤ q ≤ 1
2W , define:

I1 = {j ∈ J : hj > H − p and wj > W − q} (2.31)

I2 = {j ∈ J \ I1 : hj >
1
2H and wj >

1
2W} (2.32)

I3 = {j ∈ J : 1
2H ≥ hj ≥ p and 1

2W ≥ wj ≥ q} (2.33)

(see Figure 2.12 (a)), and observe that: (i) I1 ∪ I2 is independent of (p, q); (ii) no

two items of I1 ∪ I2 may be packed into the same bin; (iii) no item of I3 fits into a

bin containing an item of I1. A valid lower bound can thus be computed by adding

to |I1 ∪ I2| the minimum number of bins needed for those items of I3 that cannot

be packed into the bins used for the items of I2. Such a bound can be determined

by considering a relaxed instance where each item i ∈ I3 has the minimum size, i.e.,

hi = p and wi = q. Given a bin containing an item j, the maximum number of p × q
items that can be packed into the bin is (see Figure 2.12 (b)):

m(j, p, q) =

⌊
H

p

⌋⌊
W − wj

q

⌋
+

⌊
W

q

⌋⌊
H − hj

p

⌋
−
⌊
H − hj

p

⌋⌊
W − wj

q

⌋
(2.34)

-

6
item of I1

�
�
��

�
�
���

items of I2

�
�
�
�
�
���

item of I3

�
�
�
�
�
�
�
�
�
��

p

1
2H

H − p

H

Wq 1
2W W − q

(a)

(b)

j

Figure 2.12: (a) items in I1, I2 and I3; (b) relaxed instance with reduced items.

Chapter 2 The Two-Dimensional Bin Packing Problem 27

Hence, for any pair (p, q) a valid lower bound is

L3(p, q) = |I1 ∪ I2|+ max

0,

 |I3| −
∑

j∈I2 m(j, p, q)⌊
H
p

⌋ ⌊
W
q

⌋

 (2.35)

so an overall bound is

L3 = max
1≤p≤1

2H, 1≤q≤1
2W

{L3(p, q)} (2.36)

Lower bound L3 can be computed in O(n3) time. No dominance relation exists between

L2 and L3.

The bounds above were further improved by Boschetti and Mingozzi [7, 8], who also

proposed some lower bounds for the 2BP variant in which items can be rotated by 90◦.

Fekete and Schepers [23, 25] proposed a general bounding technique for bin and strip

packing problems in one or more dimensions, based on dual feasible functions. A

function u : [0, 1]→ [0, 1] is called dual feasible (see Lueker [59]) if for any finite set S

of nonnegative real numbers, we have the relation∑
x∈S

x ≤ 1⇒
∑
x∈S

u(x) ≤ 1 (2.37)

Consider any 1BP instance, and normalize it by setting hj = hj/H (j = 1, . . . , n) and

H = 1. For any dual feasible function u, any lower bound for the transformed instance

having item sizes u(h1), . . . , u(hn) is then a valid lower bound for the original instance.

In [23] Fekete and Schepers introduced a class of dual feasible functions for 1BP, while

in [25] they extended the approach to the packing in two or more dimensions. For a

d-dimensional bin packing problem, a set of d dual feasible functions {u1, . . . , ud} is

called a conservative scale. Thus, given any conservative scale C = {u1, u2}, a valid

lower bound for 2BP is given by

L(C) =

n∑
j=1

u1(wj)u2(hj) (2.38)

where the hj and wj values are assumed to be normalized as shown above. Given a

set V of conservative scales, a valid lower bound is

Lb = max
C∈V

L(C) (2.39)

The approach by Fekete and Schepers was further investigated by Caprara and Monaci

[12]. The basic idea is that any pair of dual feasible functions, associated with item

widths and heights, respectively, leads to a valid lower bound for a given 2BP instance.

The problem of determining the pair of dual feasible functions leading to the best

28 Chapter 2 The Two-Dimensional Bin Packing Problem

(highest) lower bound was formulated as a disjoint bilinear program. Computational

experiments in [12] showed that for most instances of the literature the resulting lower

bound value is equal to that obtained by the continuous relaxation of the set covering

formulation (2.8)-(2.10), while requiring computing times that are orders of magnitude

smaller.

2.9. Exact Algorithms

An enumerative approach for the exact solution of 2BP was presented by Martello

and Vigo [61]. The items are initially sorted in non-increasing order of their area. A

reduction procedure tries to determine the optimal packing of some bins, thus reducing

the size of the instance. A first incumbent solution, of value z∗, is then heuristically

obtained.

The algorithm is based on a two-level branching scheme:

• outer branch-decision tree: at each decision node, an item is assigned to a bin

without specifying its actual position;

• inner branch-decision tree: a feasible packing (if any) for the items currently

assigned to a bin is determined, possibly through enumeration of all the possible

patterns.

The outer branch-decision tree is searched in a depth-first way, making use of the lower

bounds described in the previous section. Whenever it is possible to establish that no

more unassigned items can be assigned to a given initialized bin, such a bin is closed:

an initialized and not closed bin is called active. At level k (k = 1, . . . , n), item k is

assigned, in turn, to all the active bins and, possibly, to a new one (if the total number

of active and closed bins is less than z∗ − 1).

The feasibility of the assignment of an item to a bin is first heuristically checked. A

lower bound L(I) is computed for the instance I defined by the items currently assigned

to the bin: if L(I) > 1, a backtracking follows. Otherwise, heuristic algorithms are

applied to I: if a feasible single-bin packing is found, the outer enumeration is resumed.

If not, the inner branching scheme enumerates all the possible ways to pack I into a

bin through the left-most downward strategy (see Hadjiconstantinou and Christofides

[15]): at each level, the next item is placed, in turn, into all positions where it has its

left edge adjacent either to the right edge of another item or to the left edge of the bin,

and its bottom edge adjacent either to the top edge of another item or to the bottom

edge of the bin. As soon as a feasible packing is found for all the items of I, the outer

enumeration is resumed. If no such packing exists, an outer backtracking is performed.

Chapter 2 The Two-Dimensional Bin Packing Problem 29

Whenever the current assignment is feasible, the possibility of closing the bin is checked

through lower bound computations.

Martello, Monaci and Vigo [60] presented a branch-and-bound algorithm for the two-

dimensional strip packing problem, in which lower bounds are computed through a

relaxation that replaces each wj × hj item with hj unit-height one dimensional items

of width wj , thus inducing an instance of 1BP.

Fekete, Schepers and van der Veen [26] developed an enumerative approach to the exact

solution of the problem of packing a set of items into a single bin. Such approach is

based on the model presented in [24] and discussed in Section 2.5, and could be used

for alternative exact approaches to 2BP and 2SP. Specifically,

(i) for 2BP, it could be used in place of the inner decision-tree of the two-level

approach above;

(ii) for 2SP, one could determine, through binary search, the minimum height H such

that all the items can be packed into a single bin of base W and height H.

More recently, Pisinger and Sigurd [64] implemented a branch-and-price algorithm for

the exact solution of (2.8)–(2.10). As mentioned in Section 2.5, the slave problem in

column generation requires to determine a suitable set of items to be packed into a

single bin. This is solved in [64] as a constraint-satisfaction problem, using forward

propagation to prune dominated arrangements of rectangles.

Chapter 3

Two-Dimensional Bin Packing:

the 2BP|O|G case

3.1. Introduction

In 1 the following we consider the problem of packing a set J of 2-dimensional items

into the minimum number of identical 2-dimensional bins. We will denote by wj and

hj the width and the height, respectively, of each item j ∈ J . Similarly, we will denote

by W and H the width and the height of each bin. Without loss of generality, we will

assume in the following that W = H = 1. We require that the items must be packed,

without overlapping, with their edges parallel to the edges of the bin, and cannot be

rotated. The resulting problem, as mentioned before, is denoted as 2BP|O|F.

In addition, we will consider the variant of the problem in which each item should

be obtained by a sequence of edge-to-edge cuts, i.e., each bin should correspond to a

guillotinable pattern. This variant of the problem, denoted as 2BP|O|G, is motivated by

technological constraints in many real-world applications, where automatic machines

are used to cut items, but can lead to a lower usage of the bins.

1This chapter is based on: A. Lodi, M. Monaci, E. Pietrobuoni, ”Two-Dimensional Bin Packing
Problem with Guillotine Constraints”. to be submitted for publication.

31

32 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

3.1.1 Our goals

The present chapter has three main contributions: the first one is

Problem P0: provide a (simple) mathematical characterization of non-guillotine patterns.

The solution of this problem is a classification of different patterns that correspond

to non-guillotinable solutions, and their description by means of some mathematical

tools. Given that, we consider two relevant problems concerning the relation between

the solutions of 2BP|O|G with respect to the 2BP|O|F counterparts, namely

Problem P1: Given a non-guillotine pattern P that packs a given set of items into a unique

bin, determine the minimum area MA(P) of the items that one has to remove

in order to produce a guillotinable pattern. Formally,

MA(P) = sup min{
∑
j∈S

wjhj : P \ S is guillotinable} (3.1)

Problem P2: Given an instance N of the two problems (i.e., a set of items), let opt2BP|O|F(N)

and opt2BP|O|G(N) denote, respectively, the optimal solution values of problems

2BP|O|F and 2BP|O|G for item set N . Determine the value of the asymptotic

Price of Guillotinability defined as

PoG = lim
z→∞

sup

{
opt2BP|O|G(N)

opt2BP|O|F(N)
: opt2BP|O|F(N) ≥ z

}
. (3.2)

Indeed, only a marginal deterioration of the 2BP|O|G solutions with respect to the

2BP|O|F counterparts, is experienced from an experimental point of view (see [57]).

In the present paper we provide a missing yet very important piece of information

and evaluate, from a worst-case perspective, the solution worsening when guillotine

constraints are imposed.

To be more precise, we will concentrate on a special case in which all items in pattern

P are fixed, i.e., they cannot be moved from the position they have in a given 2BP|O|F
pattern. Even in this overconstrained settings, we are able to compute a tight value

for the optimal solutions of P1 and P2 in a relevant special case, and we are able to

provide a tight value for P1 and a quite tight lower and upper bounds for P2 in another

special case.

In the next section we give some definitions that will be used throughout the paper.

During our analysis we will consider one bin at a time. In Section 3.1.3 we present

an algorithm that we assume to be applied to the set of items that are packed in the

current bin. After this operation is carried out, a removal algorithm will be applied in

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 33

order to enforce guillotinability; this is described in the Packing Algorithm of Section

3.1.4. Then we characterize the smallest non-separable pattern in Section 3.2 and the

Blocked Ring in Section 3.3. This will lead to a complete characterization of non-

guillotinable patterns, as described in Section 3.4, and to an analysis of problems P1

and P2 in Section 3.5.

3.1.2 Definitions

Recall that we consider one bin at a time. Let P denote the set of items that are

packed in the current bin. In addition, let xj and yj be the coordinates at which the

bottom-left corner of each item j is packed. With an abuse of notation, we will use P

to denote also the packing pattern for the bin.

Definition 1. (Guillotine cut) A guillotine cut for a pattern P is an edge-to-edge

cut that intersects no item in P .

A guillotine cut can be either horizontal or vertical, depending on its orientation; see,

e.g., the horizontal line AB and the vertical line CD in Figure 3.1. Each guillotine

cut that does not coincide with one side of the bin divides a given pattern into two

induced sub-patterns. We will concentrate on proper guillotine cuts only, i.e., guillotine

cuts such that both sub-patterns include at least one item. Intuitively, we disregard

guillotine cuts like line AB in Figure 3.1, that do no separate any item from other

items.

4

1

2

3

A B

C

D

Figure 3.1: Example of guillotine pattern.

Definition 2. (Separable pattern) A pattern P is said separable if there exists a

proper guillotine cut for P .

A pattern P that contains no proper guillotine cut is said non-separable. A non-

separable pattern P is said minimal if removing any item u ∈ P yields a separable

pattern.

34 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

Definition 3. (Guillotinable pattern) A pattern P is said guillotinable P if all

induced sub-patterns P ′ with |P ′| ≥ 2 are separable.

3.1.3 Convexification Algorithm

We first introduce the following Convexification Algorithm that can be applied to any

pattern P . The algorithm is illustrated in Figure 3.2 and is composed of 3 major steps:

each item is assigned a label (step 1), and items are considered according to this order,

extending the current item until it touches some other item (step 2, see Figure 3.3).

Then, pairs of items that can be joined into a larger rectangular item (if any) are

merged (steps 3 and 4, see Figure 3.4). Finally, step 5 partitions each free area in the

bin (if any) into some dummy items (see Figure 3.5).

Convexification Algorithm:

1. assign a label to each item;
2. extend each item horizontally and vertically until it touches some other item;

repeat
3. merge pair of items that touch vertically, have the same height and are

placed at the same y-coordinate;
4. merge pair of items that touch horizontally, have the same width and are

placed at the same x-coordinate;
until no more merge is possible;

5. possibly define one or more dummy items for each remaining free space in the
pattern.

Figure 3.2: The convexification algorithm.

1

2

3

4

5

1

2

3

4

5

Figure 3.3: Convexification algorithm: step 2.

After the execution of the algorithm on a given pattern P , one can define a new pattern

P such that the total area in P equals the area of the bin. Note that each item u ∈ P is

associated with an item u ∈ P , while each u ∈ P may have been originated by joining

different items from P .

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 35

1

2

3

4

5

1

2

3

4

Figure 3.4: Convexification algorithm: step 3.

1

2

3

4

1

2

3

4

5

Figure 3.5: Convexification algorithm: step 5.

The following theorem states that the Convexification Algorithm cannot produce a

separable pattern P if the original pattern P is not separable.

Theorem 4. Let P be a non-separable pattern and P be the pattern produced by the

execution of the Convexification Algorithm on P . Then, P is non-separable.

Proof. Denote by (wu, hu) and (xu, yu) the dimensions and packing coordinates for

each item u ∈ P , respectively. Similarly, let (wu, hu), and (xu, yu) represent the same

figures for each item u ∈ P .

Consider an item u ∈ P and let u be any item in P originating u. Since the Convexi-

fication Algorithm cannot reduce the sizes of the items, we have

xu ≤ xu, xu + wu ≤ xu + wu, yu ≤ yu, yu + hu ≤ yu + hu (3.3)

By contraddiction, assume pattern P is separable, i.e., there exist two items, say u and

v that can be separated by a guillotine cut. Without loss of generality assume this cut

is horizontal at a height y, and that item u is packed below item v, i.e.,

yu + hu ≤ y and y ≤ yv (3.4)

36 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

Denote by u (resp. v) any of the items in P that originated u (resp. v). By (3.3) the

horizontal cut y separates u and v also in the original pattern P ; however, as P is not

separable, this cut intersects some other item k, i.e., ∃k ∈ J such that

yk < y < yk + hk (3.5)

Denoting by k ∈ P the item associated to k, and combining (3.3) and (3.5) we have

yk < y < yk + hk

which means that horizontal cut y intersects item k. Thus, pattern P is non-separable.

Note that the application of the Convexification Algorithm on a separable pattern P

may produce a pattern P that is non-separable; see, e.g., the example depicted in

Figure 3.6.

4

1

2

3

4

1

2

3

Figure 3.6: Convexification Algorithm on a separable pattern that produces a non-
separable pattern.

Property 1. The execution of the Convexification Algorithm on pattern P doesn’t

introduce non-guillotinability if rows of P are non-separable. See Definition 10.

Theorem 5. Let P be a pattern produced by the Convexification Algorithm. Then

either |P | = 1 or |P | ≥ 5.

Proof. Observe that the Convexification Algorithm produces a pattern P that entirely

fills the bin. It is clear that if P includes two items, then these items will be merged

into a unique item (see steps 3 and 4 of the algorithm). Similarly, all patterns with 3

items can be iteratively reduced to a single item: Figures 3.7 and 3.8 show all possible

patterns with 3 and 4 items, respectievly, without taking into account possible rotations

of the patterns by 90◦.

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 37

1 2 3 1

2

3

Figure 3.7: Patterns with 3 items.

1 2 3 4 1 2

3

4 1

2 3

4

Figure 3.8: Patterns with 4 items.

Corollary 6. Let P be a non-separable pattern produced by the Convexification Algo-

rithm. Then |P | ≥ 5.

3.1.4 Algorithm and assumptions

Our algorithm takes in input a feasible solution for 2BP|O|F and defines a feasible

solution for 2BP|O|G, considering one bin at a time. For each such bin pattern, the

algorithm executes the Convexification Algorithm of Section 3.1.3, thus producing a

new pattern (say) P . Then, the inner Packing Algorithm, described in Figure 3.9, is

executed to produce a separable pattern. This is either the original pattern P (in case

it contains only one item or is separable), or is obtained by P by removing some items,

as described at Step 9.

Before describing the way we derive from P a separable pattern, we summarize some

assumptions.

1. Pattern P has been obtained using the Convexification Algorithm, as stated in

Step 1. of the algorithm.

2. The total area of the items in P is equal to the area of the bin, as the Convexifi-

cation Algorithm may add some dummy items in Step 5 (see Figure 3.2)

3. Pattern P is non-separable, otherwise no action is required.

38 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

Packing Algorithm (P):

1. if |P | = 1 then return P ;

2. if P is separable then
3. define two sub-patterns P1 and P2 using a proper guillotine cut;

4. P 1 = Packing Algorithm (P1);

5. P 2 =Packing Algorithm (P2);

6. return (P 1 ∪ P 2);
7 else

8. remove some items from P and define a separable pattern Q;

9. return Q;
10.endif

Figure 3.9: The packing algorithm.

Finally, there is a further assumption that is implicit in the algorithm:

4. Given a separable pattern Q, one can define a separable pattern for the associated

item set Q.

Indeed, Theorem 4 ensures that any set of items Q ⊂ P , that produces pattern Q

through the Convexification Algorithm, is separable. Thus, we assume that defining

this set and the associated pattern is not a major issue.

3.2. Smallest non-separable pattern

In this section we study the structure of any minimum-size pattern that is non-

separable.

3.2.1 Rows and Intersections

Definition 7. (Horizontal Row) An horizontal row is a chain of horizontal edges

(not coincident with the edges of the bin) produced by sides of items consecutively

packed side by side at the same height.

Definition 8. (Vertical Row) A vertical row is a chain of vertical edges (not coinci-

dent with the edges of the bin) produced by sides of items consecutively packed at the

same width.

Definition 9. (Intersection) An intersection is the point obtained by one vertical

row and one horizontal row crossing each other.

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 39

Definition 10. (Separable rows) Rows are separable if there exists an edge-to-edge

cut that separates these rows without intersecting none of them, unless this cut is along

an existing intersection.

(a) Non-separable rows (b) Non-separable rows (c) Non-separable rows

(d) Separable rows (e) Separable rows

Figure 3.10: Separable and non-separable rows.

In the following, we will denote by x and y the number of rows and intersections,

respectively; in addition, we will denote by xh and xv the number of horizontal and

vertical rows (with x = xh + xv).

Lemma 11. For any pattern P it is y ≤ x2/4.

Proof. Each intersection involves one horizontal and one vertical row, thus y ≤ xhxv.

To prove the statement it is enough to observe that the optimal value of the following

problem

max{y : y = xhxv;xh + xv = x, xh, xv ≥ 0 integer}

is attained for xh = xv = x/2 (assuming x even) and has value y = x2/4.

Lemma 12. For any pattern P it is |P | = (x+ 1) + y.

Proof. Every increase of x of 1 unit that does not increase y adds 1 item. Obviously

every increase of x can create k new intersections and any intersection is associated

with 4 items, 2 of them were already there, 1 is added either by the increase of x or

by the previous intersection, and the fourth has to be a new item.

Assume P be a pattern obtained through the Convexification Algorithm. Corollary

6 showed that any non-separable pattern P must have |P | ≥ 5. We now go a step

40 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

further and show that the minimum size of a non-separable pattern is 5, and provide

a characterization of such patterns.

Theorem 13. Let P be a pattern generated by the Convexification Algorithm. If

|P | = 5 then P is non-separable.

Proof. Due to Lemmata 11 and 12, |P | = 5 yields either x = 3 and y = 1 or x = 4 and

y = 0. The former is described in Figure 3.11 and corresponds to a separable pattern

that reduces to a single item. As to the latter, we may have (i) xh = 4, xv = 0, or (ii)

xh = 3, xv = 1 or (iii) xv = xh = 2, where the first two cases (depicted in Figure 3.12)

are separable patterns that reduce to a single item. Thus, the only remaining case is

the pattern with xh = xh = 2 and y = 0, depicted in Figure 3.13, that corresponds to

a non-separable pattern.

1

2

3

4

5

Figure 3.11: Pattern with 5 items, x = 3 and y = 1.

1

2

3

4

5

1

2

3

4 5

Figure 3.12: Patterns with 5 items: xh = 4, xv = 0 e y = 0, xh = 3, xv = 1 e y = 0.

1

2

3

44

5

Figure 3.13: Simple Blocked Ring.

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 41

Theorem 13 above motivates the following definition.

Definition 14. (Simple Blocked Ring) A non-separable pattern P is a Simple

Blocked Ring if |P | = 5 with xh = xv = 2 and y = 0.

From the discussion above, it is clear that a Simple Blocked Ring consists of 5 items,

where there is one item (say, item 5) that is centrally placed and touches all the

remaining items, without touching the edges of the bin. In addition, removing item 5

does not produce a separable pattern, whereas removing any of the other four items

leads to a separable pattern. Thus, Simple Blocked Ring is a minimal structure that

may originate non-separability in a given pattern P (assuming P has been generated

by using the Convexification Algorithm of Section 3.1.3). Thus removing any item

from this configuration leads to either the same pattern (if item 5 is removed and the

Convexification Algorithm is re-applied) or to a separable pattern (in case one of the

other four items is removed).

3.3. Blocked Ring

Definition 15. (Blocked Ring) A non separable pattern P is a Blocked Ring (BR)

if

• |P | ≥ 5, and

• there exists a combination of 2 horizontal and 2 vertical rows non-separable

such that removing all the items not interested by these rows and applying the

Convexification Algorithm yields a Simple Blocked Ring.

3.3.1 Detecting a Blocked Ring

A naive algorithm to detect whether a pattern is a Blocked Ring or not is an O(n4)

enumeration of all quadruplet of items, checking if (i) they determine two horizontal

and two vertical rows non-separable, and (ii) removing all the remaining items and

applying the Convexification Algorithm yields a Simple Blocked Ring.

A more efficient algorithm for checking if a pattern is a Blocked Ring is as follows:

Noting that the number of combinations to check is at most (xh!)/[(xh − 2)! · 2!] ·
(xv!)/[(xv − 2)! · 2!], i.e., O(n4), consider one combination of xh = xv = 2 rows non-

separable at a time. For each combination, apply the following steps:

42 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

1. Identify items interested by the selected rows. We define these items as follows.

Starting from the left edge of the bin we move to the right. When we meet the

first selected vertical row we select all the items placed to its left such that have an

edge completely defined by this row. If we select more than one item we keep just

the one who is intersected by the extension of one of the two selected horizontal

rows. Then we keep moving to the right until we get the second vertical row, in

this case we do the same but items must be placed to its right.

For horizontal rows we apply the same procedure, but in this case starting from

the bottom of the bin. For the first horizontal row we keep item below it while

for the second one item above it.

2. Remove from the bin all the items not interested by horizontal or vertical rows.

3. Apply the Convexification Algorithm.

4. If we obtain a Simple Blocked Ring the original pattern is a Blocked Ring.

We show the steps to detect a Blocked Ring applied to two examples in Figure 3.14.

9
2

3

8

1
7

6

4

5

(a) Ex.1: selected rows

3

2

1

4

6

7

5

(b) Ex.2: selected rows

Figure 3.14: Two examples where we apply the algorithm to detect Blocked Ring.

9
2

3

8

1
7

6

4

5

(a) Selected vertical rows

2

3

8

1
7

6

4

5

9

(b) Item 9 to keep

9
2

3

8

1
7

6

4

5

(c) Item 5 to keep

Figure 3.15: Step 1: Items interested by the selected vertical rows (ex.1).

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 43

3

2

1

4

6

7

5

(a) Selected vertical rows

2

1

4

6

7

5

3

(b) Item 3 to keep

3

2

1

4

7

5

6

(c) Item 6 to keep

Figure 3.16: Step 1: Items interested by the selected vertical rows (ex.2).

9
2

3

8

1
7

6

4

5

(a) Selected horizontal rows

9
2

3

1
7

6

4

5

8

(b) Item 8 to keep

9
2

8

1
7

6

4

5
3

(c) Item 3 to keep

Figure 3.17: Step 1: Items interested by the selected horizontal rows (ex.1).

3

2

1

4

6

7

5

(a) Selected horizontal rows

3

2

1
6

7

5

4

(b) Item 4 to keep

3

2

1

4

6

5

7

(c) Item 7 to keep

Figure 3.18: Step 1: Items interested by the selected horizontal rows (ex.2).

9
2

3

8

1
7

6

4

5

(a)

2
1

7

6

4

3

8

5

9

(b)

3

8

5

9

(c)

Figure 3.19: Step 2: Items to keep (ex.1).

44 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

3

2

1

4

6

7

5

(a)

2

1
5

4

3

6

7

(b)

4

3

6

7

(c)

Figure 3.20: Step 2: Items to keep (ex.2).

3

8

5

9

(a)

3

8

5

9

(b)

3

8

5

9
10

(c)

Figure 3.21: Step 3: Items after Convexification Algorithm execution (ex.1).

4

3

6

7

(a)

4

3

6

7

(b)

4

3

6

7

8

(c)

Figure 3.22: Step 3: Items after Convexification Algorithm execution (ex.2).

Theorem 16. A non separable pattern P always contains a Blocked Ring.

Proof. Let P be a pattern that has been obtained by using the Convexification Algo-

rithm. It is clear that if P contains a Blocked Ring, then P is non separable.

Now by contradiction assume P be non separable but with no Blocked Ring. In this

case doesn’t exist any combination of xv = xh = 2 rows non-separable. Indeed a

such combination yields always a Simple Blocked Ring using the steps to detect a

Blocked Ring. We proved with Theorem 13 that when x ≤ 4 only the combination

xv = xh = 2 yields a non-separable pattern. Therefore P is non-separable if there

exists a combination of rows S, with |S| ≥ 5 and non-separable, that doesn’t contain

any subset of non-separable rows such that xv = xh = 2.

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 45

In a non-separable four rows pattern if we execute an edge-to-edge cut on the row

that we want to separate we perpendicularly intersect another row of the pattern. See

Figure 3.23 where to separate row A we intersect row B.

A

B

C

D

(a) Non-separable rows

A

B

C

D

(b) Cut on row A

Figure 3.23: Edge-to-edge cut on a non-separable rows pattern.

Thus if we want to separate row A we intersect row B, if we want to separate row B

we intersect row C, if we want to separate row C we intersect row D and finally if we

want to separate row D we intersect row A. Let’s indicate such property as follows:

A→ B → C → D → A (3.6)

Furthermore two adjacent rows in 3.6 have always opposite orientation. Namely, re-

spect to Figure 3.23, A is vertical, B is horizontal, C is vertical and D is again hori-

zontal.

Coming back to our pattern S, with |S| ≥ 5 and non-separable, we will have the

following property:

A→ B → C →→ X − 1→ X → A (3.7)

Let’s suppose, without loss of generality, that row A is vertical so row B will be

horizontal and we can place it, always without loss of generality, above or below row

A, Figure 3.24a. We know that if we want to separate row X we intersect row A, so,

without loss of generality, we can place row X either on the left or on the right of row

A, Figure 3.24b.

Now to place row C we have three possibilities:

• Pos.1: on the left of row B, Figure 3.24c. In this case we have a subset of four

non-separable rows. This position is non feasible.

• Pos.2: on the right of row B, Figure 3.24d. In this case we are diverging, that is

the last row placed, or its extensions, don’t intersect any of the previous placed

rows.

46 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

• Pos.3: we extend row B so that it passes row X and place row C on the left of

row B, Figure 3.24e. In this case we are diverging too.

A

B

(a) Rows A and B

A

B

X

(b) Rows A, B and X

A

B

X

C

(c) Rows A, B, C and X

A

B

X

C

(d) Rows A, B, C and X

A

B

X

C

(e) Rows A, B, C and X

Figure 3.24: How to place row C.

What we have seen for the positioning of row C is repeated, with the proper adjust-

ments, for all the subsequent rows. Let’s now consider how to place row D, we have

two different initial situations to consider: Figure 3.24d and 3.24e.

Let’s start from Figure 3.24d. To place row D we have the same three positions of

row C, with above and below instead of right and left. We remind that if we want to

separate row C we intersect row D.

• Pos.1: above row C, Figure 3.25a. In this case we have a subset of four non-

separable rows. This position is non feasible.

• Pos.2: below row C, Figure 3.25b. In this case we are diverging, that is the last

row placed, or its extensions, don’t intersect any of the previous placed rows.

• Pos.3: we extend row C so that it passes row A and place row D above row C,

Figure 3.25c. In this case we are diverging too.

Let’s now consider Figure 3.24e. We still have the same three position to place row D:

• Pos.1: above row C, Figure 3.26a. In this case we have a subset of four non-

separable rows. This position is non feasible.

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 47

A

B

X

C

D

(a) Rows A, B, C, D, X

A

B

X

C
D

(b) Rows A, B, C, D, X

A

B

X

C

D

(c) Rows A, B, C, D, X

Figure 3.25: How to place row D (case 1).

• Pos.2: below row C, Figure 3.26b. In this case we are diverging, that is the last

row placed, or its extensions, don’t intersect any of the previous placed rows.

• Pos.3: we extend row C so that it passes row A and place row D above row C,

Figure 3.26c. In this case we are diverging too.

A

B

X

C

D

(a) Rows A, B, C D, X

A

B

X

C

D

(b) Rows A, B, C D, X

A

B

X

C

D

(c) Rows A, B, C D, X

Figure 3.26: How to place row D (case 2).

We can state that each row can be theoretically placed in three positions, obviously

above, below, right and left must be evaluated case by case. Our pattern S is non-

separable if property 3.7 is verified. This property has its own circularity, indeed we

have A→ B...X → A, so rows can’t be always divergent. This mean we can’t use Pos.2

or Pos.3 to place row X, because its extensions won’t intersect row A. Therefore we

have to use Pos.1, however this choice yields a combination xv = xh = 2 non-separable

contradicting our initial statement. Hence it isn’t possible to have a pattern S, with

S ≥ 5 and non-separable, that does’t contain any subset of non-separable rows such

that xv = xh = 2.

48 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

3.4. Blocked Ring characterization

In this section we give a characterization of non-separable patterns in terms of rows

and intersections.

3.4.1 Single Blocked Ring

Definition 17. (Single Blocked Ring) A Blocked Ring is a Single Blocked Ring if

all the Simple Blocked Rings, obtained with the algorithm to identify Blocked Ring,

share at least an item and the removal of this item gives a separable pattern.

Observe that the Simple Blocked Ring described in Section 3.2 is indeed a Single

Blocked Ring. However, the family of Single Blocked Rings includes more complex

patterns, as, e.g., the one depicted in Figure 3.27a.

3

2

1

4

6

7

5

(a) |P | = 7

3

2

1

4

6

7

5

(b) {(1),(2),(3),(4)}

3

2

1

4

6

7

5

(c) {(3),(4),(6),(7)}

3

2

1

4

6

7

5

(d) {(2),(3),(4),(6)}

Figure 3.27: Single Blocked Ring.

In fig.3.27 if we consider rows xh = xv = 2 non-separable we have three possible

combinations, and so group of items, that give Simple Blocked Ring after applying the

Convexification Algorithm.

• (1), (2), (3), (4)

• (3), (4), (6), (7)

• (2), (3), (4), (6)

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 49

These Simple Blocked Rings share (3) and (4), this means that the removal of item (3)

or (4) gives guillotinable pattern.

3.4.2 Multiple Blocked Ring

Definition 18. (Multiple Blocked Ring) A Blocked Ring that is not a Single

Blocked Ring is called Multiple Blocked Ring.

By definition, for Multiple Blocked Ring, there is no item that belongs to all the Simple

Blocked Rings obtained with the algorithm to identify Blocked Ring.

Multiple Blocked Ring can be:

• Nested Blocked Ring.

• Concatenated Blocked Ring.

• Complex Blocked Ring. It combines proprieties of Nested Blocked Ring and

Concatenated Blocked Ring.

Definition 19. (Nested Blocked Ring) A Multiple Blocked Ring is a Nested Blocked

Ring if all the Simple Blocked Rings, obtained with the algorithm to identify Blocked

Ring, don’t share any item.

1

2

3

4

5

6

7

8

9

10 11

12
13

(a) |P | = 13

1

2

3

4

5

6

7

8

9

10 11

12
13

(b) {(9),(10),(11),(12)}

1

2

3

4

5

6

7

8

9

10 11

12
13

(c) {(5),(6),(7),(8)}

1

2

3

4

5

6

7

8

9

10 11

12
13

(d) {(1),(2),(3),(4)}

Figure 3.28: Nested Blocked Ring.

In Figure 3.28 if we consider the rows xh = xv = 2 non-separable we have three possible

combinations, and so group of items, that give Simple Blocked Ring after applying the

Convexification Algorithm.

50 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

• (9), (10), (11), (12)

• (5), (6), (7), (8)

• (1), (2), (3), (4)

These Simple Blocked Rings don’t share any item, so we have a Nested Blocked Ring.

To have a guillotinable pattern all the Simple Blocked Rings detected must be guil-

lotinable, so we have to remove an item from each of them.

Definition 20. (Concatenated Blocked Ring) A Multiple Blocked Ring is a Con-

catenated Blocked Ring if each Simple Blocked Ring, obtained with the algorithm to

identify Blocked Ring, shares at least an item with another Simple Blocked Ring.

9
2

3

8

1
7

6

4

5

(a) |P | = 9

9
2

3

8

1
7

6

4

5

(b) {(3),(5),(8),(9)}

9
2

3

8

1
7

6

4

5

(c) {(3),(6),(8),(9)}

9
2

3

8

1
7

6

4

5

(d) {(4),(6),(8),(9)}

9
2

3

8

1
7

6

4

5

(e) {(1),(2),(4),(6)}

9
2

3

8

1
7

6

4

5

(f) {(1),(4),(6),(9)}

9
2

3

8

1
7

6

4

5

(g) {(2),(6),(7),(8)}

Figure 3.29: Concatenated Blocked Ring.

In Figure 3.29 if we consider just the rows xh = xv = 2 non-separable we have six

possible combinations, and so group of items, that give Simple Blocked Ring after

applying the Convexification Algorithm.

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 51

• (3), (5), (8), (9)

• (3), (6), (8), (9)

• (4), (6), (8), (9)

• (1), (2), (4), (6)

• (1), (4), (6), (9)

• (2), (6), (7), (8)

There isn’t any item shared by all the Simple Blocked Rings, but each Simple Blocked

Ring shares at least an item with another Simple Blocked Ring, so we have a Con-

catenated Blocked Ring. To have a guillotinable pattern all the Simple Blocked Rings

detected must be guillotinable, so, for example, we can remove item (4) and (8).

Definition 21. (Complex Blocked Ring) A Multiple Blocked Ring is a Complex

Blocked Ring if we have two or more Simple Blocked Rings, obtained with the algorithm

to identify Blocked Ring, where each of them share at least an item with another

Simple Blocked Ring and one or more Simple Blocked Rings, always obtained with the

algorithm to identify Blocked Ring, that don’t share any item.

11

10

8

7

6

9

1

4 3

2
5

(a) |P | = 11

11

10

8

7

6

9

1

4 3

2
5

(b) {(1),(2),(3),(4)}

11

10

8

7

6

9

1

4 3

2
5

(c) {(6),(7),(8),(9)}

11

10

8

7

6

9

1

4 3

2
5

(d) {(7),(8),(9),(10)}

11

10

8

7

6

9

1

4 3

2
5

(e) {(8),(9),(10),(11)}

Figure 3.30: Complex Blocked Ring.

Figure 3.30 shows a Complex Blocked Ring. Indeed in Figure 3.30b we have the Simple

Blocked Ring with no item shared with others, while in Figure 3.30c, 3.30d, 3.30e we

have the Simple Blocked Rings that share items. To have a guillotinable pattern all the

Simple Blocked Rings detected must be guillotinable, so we can remove, for example,

item (1) and (8).

52 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

3.5. Worst-case analysis

In this section we consider problems P1 and P2 introduced in Section 3.1 and provide

answers to these problems in some special cases. Since our analysis considers one

pattern at a time, we distinguish cases depending on the structure of the current

pattern. Recall that, in all cases, we assume the current pattern P be produced by the

execution of the Convexification Algorithm described in section 3.1.3. In addition, we

assume P be non-separable, since otherwise no action is required.

In Section 3.5.1 we solve problems P1 and P2 for the simplest case in which P is a

Simple Blocked Ring. In Section 3.5.2 we consider the case in which P is a Single

Blocked Ring. Finally, we leave as open problem the solution of P1 and P2 in case P

is a Multiple Blocked Ring.

As to problem P2 we can consider one bin at a time since asymptotic and easily

compute a lower bound on PoG as follows

Theorem 22.

PoG ≥ 4/3

Proof. Consider the following instance, composed of

• 2k items of type a: wj = 3/5 and hj = 2/3,

• 2k items of type b: wj = 2/5 and hj = 3/5, and

• k items of type c: wj = hj = 1/5,

for some integer k. All items have to be packed into 1× 1 bins. An optimal 2BP|O|F
solution is composed of k bins that identical to that depicted in Figure 3.31.

a
b

b
a

c

Figure 3.31: Non guillotinable pattern.

It is easy to see that any guillotinable pattern may include at most 2 items of type a

and one item of the type b (or viceversa), and one item of type c. This means that an

optimal 2BP|O|G solution requires 4k bins to pack 6k items of types a and b and 3k

items of type c, whereas an optimal 2BP|O|F solution would pack these items into 3k

bins. This proves the theorem.

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 53

3.5.1 Case 1: P is a Simple Blocked Ring

In this section we consider the case in which P is a Simple Blocked Ring.

Theorem 23. If P is a Simple Blocked Ring

MA(P) = 1/4

Proof. Since P is a Simple Blocked Ring, it has the structure described in Section 3.2.1,

i.e., |P | = 5 and there is a central item (say 5) that touches all the other 4 items. By

an obvious average argument, there exists one item among the first four whose area is

at most 1/4 the area of the bin. Removing this item yields a separable pattern Q. By

Theorem 4 any set of items that yield Q by means of the Convexification Algorithm is

separable.

To prove that the result is tight, consider an instance in which items 1, 2, 3, 4 have

the same area and item 5 is arbitrarily small. Then, the area one has to remove to

produce a separable pattern is arbitrarily close to 1/4 the area of the bin.

Theorem 24. If P consists of one or more Simple Blocked Rings patterns, then

PoG = 4/3

Proof. From each triplet of bins in the solution that share the same pattern P , define

four bins as follows: for i = 1, 2, 3 bin i packs all items but item i, and there is a fourth

bin that packs items 1, 2, 3, at the same coordinates as in P . Thus, the ratio between

the optimal 2BP|O|G solution and the given 2BP|O|F solution cannot be larger than

4/3. Combining this with Theorem 22 settles the exact value of PoG = 4/3 in this

special case.

3.5.2 Case 2: P is a Single Blocked Ring

The mathematical characterization of Section 3.4.1 yields that, if P is a Single Blocked

Ring there exists a set of (say) Q quadruplet of items that correspond to Simple Blocked

Rings and that share at least one item.

This produces the following result

Theorem 25. If P is a Single Blocked Ring

MA(P) = 1/3

Proof. Denote by (wu, hu) and (xu, yu) the dimensions and packing coordinates for

each item u ∈ P . We assign at most one color among Yellow, Red and Blue to each

54 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

item u. These three colors represent a partition of items in three subsets. We want to

prove that removing any colored subset we have a separable pattern.

We know there exists an item j that is common to all the quadruplets. In the particular

case where there are two items (j, k) that are common to all the quadruplets, the

coloring is easy: j is Yellow, k is Red and all the other items are Blue. So let’s consider

the worst case where we have exactly one item j in common to all the quadruplets.

The first coloring, Yellow, is easy, it consists only of item j. We know that removing

item j we have a separable pattern. Red items are those who don’t allow item j to be

separated with vertical cuts. So we consider the vertical cuts x = xj and x = xj + wj

and we color of Red all the items intercepted by these cuts. The pattern we have

removing only Red items is separable. Indeed, if we remove Red items, by definition,

we can cut item j with two vertical cuts. Once removed item j the rest is obviously

separable.

Similarly we color of Blue all the items that are intercepted by horizontal cuts y = yj

and y = yj + hj ; the pattern without Blue items is separable too. By an obvious

average argument, there exists one subset among Yellow, Red and Blue whose area is

at most 1/3 the area of the bin. Removing this subset yields a separable pattern Q.

To prove that the results is tight, consider the instance depicted in Figure 3.32 that

corresponds to a pattern that has 8 items. In this case one can partition the items into

3 subsets, namely {2}, {1, 8} and {4, 7} such that

• each subset of items is separable

• removing any subset of items produces a separable pattern.

In the worst-case, all the three subsets have the same area, while the remaining items

have a negligible area. Thus, the minimum area MA that one has to remove to produce

a separable pattern is arbitrarily close to 1/3.

1

4

5

2

7

3

8

6

Figure 3.32: Worst-case for problem P1 when P is a Single Blocked Ring.

More in general, the problem of computing MA(P) for a given pattern P can be stated

as follows.

Removal Problem: Given a set P of items and a set of q quadruplets Qi (i =

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 55

1, . . . , q), determine a partition of the items into (say) t subsets S1, . . . St such that each

subset Sk includes (i) at least one item and (ii) at most 3 items from each quadruplet

Qi.

Condition (i) ensures that removing all items from any subset Sk provides a guillotin-

able pattern, whereas (ii) ensures that the set of items that have been removed produces

itself a guillotinable pattern. Thus, using a reasoning similar to that used in the proof

of Theorem 23, if a t-partitioning of item set P is found, removing at most 1/t of the

area of the bin one can get a separable pattern P , i.e., MA(P) ≤ 1/t. In order to

minimize the area that one has to remove to define P , it is natural to maximize the

number of subsets of the partition.

Noting that t ≤ |P | and using the following binary variables

yk =

{
1 if subset k is generated;

0 otherwise
(k = 1, . . . , |P |) (3.8)

xjk =

{
1 if item j is included in subset k;

0 otherwise
(j ∈ P ; k = 1, . . . , |P |) (3.9)

one can derive the following mathematical model for the problem at hand.

max t =
∑
k

yk (3.10)∑
j∈Qi

xjk ≥ yk ∀k,∀i (3.11)

∑
j∈Qi

xjk ≤ 3yk ∀k, ∀i (3.12)

∑
k

xjk ≤ 1 ∀j (3.13)

yk, xjk ∈ {0, 1} ∀j,∀k (3.14)

Objective function (3.10) maximizes the number of subsets that are generated. Con-

straints (3.11)–(3.12) impose that each selected subset has at least one and at most

three items from each quadruplet. Finally, inequalities (3.13) ensure that each item

belongs to at most one subset in the partition, whereas (3.14) impose all variables be

binary.

If we apply Model (3.10)–(3.14) to the pattern depicted in Figure 3.32 we obtain three

subsets, namely {2}, {1, 8} and {4, 7}. This model and those described in the following

can be also applied to Multiple Blocked Ring.

56 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

In a similar way, let us consider the problem of computing the value of the Price of

Guillotinability for a given item set P ; this value will be denoted as PoG(P) and we

have PoG =
∑

P PoG(P).

Observe that any feasible solution of value (say) t to model (3.10)–(3.14) provides a

guillotinable solution for the given item set P ; the value of this 2BP|O|G solution

implicitly gives an upper bound for PoG(P). Indeed, as in the proof of Theorem

24, one can define a set of t guillotine patterns that pack all the items packed in

t − 1 bins in an 2BP|O|F solution: each bin i (i = 1, . . . , t) contains all the items

in the original pattern but those belonging to the i-th partition of the item set. As

the optimal 2BP|O|G solution cannot be worse than this solution, we conclude that

PoG(P) ≤ t
t−1 .

As PoG(P) concerns an asymptotic ratio, one can exploit the availability of multiple

copies of the items. In this view one can partition the content of (say) t − D bins

of a 2BP|O|F solution into t subsets of items, each producing a guillotinable pattern;

this means that one has to consider that each item j can be inserted in (at most) D

subsets, i.e., it can be removed by at most D bins from the initial solution. Thus, the

model for computing PoG(P) is as follows

min
t

t−D
(3.15)

t =
∑
k

yk (3.16)∑
j∈Qi

xjk ≥ yk ∀k, ∀i (3.17)

∑
j∈Qi

xjk ≤ 3yk ∀k, ∀i (3.18)

∑
k

xjkyk ≤ D ∀j (3.19)

xjk ∈ {0, 1} ∀j,∀k (3.20)

yk ≥ 0 integer ∀k (3.21)

D ≥ 0 integer (3.22)

where variables yk represent the number of times each pattern k is selected, and D

is a new variable that indicates the maximum number of copies of each item that are

used, i.e., the maximum number of copies of each item that one is allowed to leave

unpacked. The new objective function (3.15) minimizes PoG(P), which is given by

the ratio between the number of guillotine patterns that are produced and the number

of bins that are considered in the 2BP|O|F solution.

Model (3.15)–(3.22) is highly nonlinear in that

Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case 57

• the objective function is nonlinear with respect to variables t and D; and

• constraints (3.19) include the product between x and y variables.

To resume to a linear objective function, one can solve the model several times, for

different (and fixed) values of D – that becomes a parameter in these settings. Thus,

one has to minimize a decreasing convex function in t, which is equivalent to maximize

variable t. As to the remaining nonlinearities, a straightforward way to linearize prod-

ucts that include a binary variable is to introduce additional variables αjk that denote

the number of copies of item j that are actually inserted in subset k.

For a given value of D the model reads as follows

max t (3.23)∑
k

yk = t (3.24)∑
j∈Qi

xjk ≥ yk ∀k, ∀i (3.25)

∑
j∈Qi

xjk ≤ 3yk ∀k, ∀i (3.26)

∑
k

αjk ≤ D ∀j (3.27)

xjk ∈ {0, 1} ∀j,∀k (3.28)

yk ≥ 0 integer ∀k (3.29)

αjk ≥ yk −M(1− xjk) ∀j,∀k (3.30)

αjk ≥ 0 integer ∀j,∀k (3.31)

where constraints (3.30)–(3.31) are used to link α variables to x and y variables, and

M is a large coefficient.

Back to problem P2, recall that we are interested in computing PoG =
∑

P PoG(P),

i.e., our aim is to determine the value of the Price of Guillotinability for the worst-case

P . We can prove the following result

Theorem 26. If P consists of one or more Single Blocked Rings patterns, then

7

5
≤ PoG ≤ 3

2

Proof. As to the upper bound, note that Theorem 25 implicitly provides a solution to

model (3.15)–(3.22) with t = 3 and D = 1. This yields a 2BP|O|G solution which uses

a number of bins equal to 3/2 of the number of bins required by any 2BP|O|F solution.

58 Chapter 3 Two-Dimensional Bin Packing: the 2BP|O|G case

Now consider the instance depicted in Figure 3.32. The optimal solution of model

(3.15)–(3.22) provides t = 7 and D = 2, and is given by the following item sets: {2},
{4, 8} and {1, 7}, {3, 8}, {1, 3, 5} and {4, 7} where the first item set is taken twice. This

implies that given 5 bins of the 2BP|O|F solution one can construct a 7-bins solution

to 2BP|O|G i.e., PoG(P) ≥ 7/5, which provides a valid lower bound on PoG.

Chapter 4

Partial enumeration algorithms

for 2BP|O|G

4.1. Introduction

In 1 the Two-Dimensional Bin Packing Problem (2BP) one is requested to pack a given

set of small rectangular items into a minimum number of larger rectangular bins. Items

must be packed without overlapping and orthogonally, with their edges parallel to the

edges of the bin. As packing items into bins also models the problem of cutting items

from larger sheets, this problem finds several applications in different contexts, e.g., in

cutting wood or glass, loading boxes into vehicles, warehousing of goods, newspapers

pagination, and telecommunications among others (see, e.g., [45], [73], [51]).

According to the specific application at hand and to the type of patterns that may be

produced, many 2BP variants have been studied so far in the literature. A relevant case

arises when one is allowed to rotate items by 90 degrees, to possibly achieve a better

usage of the bin area. Note that rotation can be allowed for a subset of items only,

whereas it should be avoided in case the bin has special features (e.g., it is a decorated

piece of glass). Another relevant special case is to produce k-staged patterns, i.e.,

solutions in which each item can be obtained with a sequence of (at most) k edge to

edge cuts parallel to the edges of the bin. This kind of problems, introduced in [32],

is motivated in applications in which automatic machines are used to cut the items,

and some cost is incurred for each cut that is executed. Many papers in the literature

addressed the case in which k = 2, i.e., where items have to be packed into levels.

Integer Linear Programming (ILP) models for level packing with a polynomial number

of variables and constraints were given in [49, 56], and were extended to the case k = 3

in [66]. The problem in which no explicit bound is imposed on the number of cuts

1This chapter is based on: A. Lodi, M. Monaci, E. Pietrobuoni, ”Partial enumeration algorithms
for Two-Dimensional Bin Packing Problem with Guillotine Constraints”. submitted for publication.

59

60 Chapter 4 Partial enumeration algorithms for 2BP|O|G

that are allowed is known as the Two-Dimensional Guilloting Bin Packing. Figure 4.1

shows an example of a non guillotine pattern for a given set of items (left), as well as

a packing of the same items that satisfies the guillotine requirement (right).

1

2

3

4 5

1

2

3

5

4

Figure 4.1: Example of non guillotine and guillotine patterns.

In this chapter we consider the Two-Dimensional Guillotine Bin Packing, which we will

denote by 2BP|O|G according to the three-field notation proposed in Lodi, Martello,

Vigo [53]; similarly, the problem in which guillotine constraint is not imposed will be

denoted as 2BP|O|F. In addition, we will denote by N = {1, . . . , n} the set of items to

cut, the j-th having width wj and height hj , and by W and H the sizes of the bins.

Finally, we assume without loss of generality that all input data are integer numbers.

An exact algorithm based on integrating column generation and constraint program-

ming for solving both 2BP|O|F and 2BP|O|G was given in [64], whereas in [21] a

dynamic programming algorithm was used to solve a related two-dimensional packing

problem. As far as heuristic solutions are concerned, we observe that many algorithms

for 2BP discussed in Section 2.7.2 and 2.7.3 (e.g., finite-best-strip and finite-first-fit [5],

floor-ceiling and knapsack-heuristics [53]) pack items according to a 2-staged policy,

hence producing patterns that are guillotinable. As to heuristic specifically devoted

to 2BP|O|G we mention the agent-based algorithm proposed in [65], a constructive

heuristic given in [13] and the three insertion heuristics introduced in [27]. A number

of alternative methods for solving Two-Dimensional Bin Packing problems is given in

[42].

In this chapter we propose a new heuristic algorithm, for the 2BP|O|G, based on partial

enumeration, and computationally evaluate its performance on a large set of instances

from the literature. Computational experiments show that the algorithm is able to

produce proven optimal solutions for a large number of problems, and gives a tight

approximation of the optimum in the remaining cases.

The chapter is organized as follows. In Section 4.2 we give the general idea of our

approach, while improvements over the basic version of the algorithm are discussed

Chapter 4 Partial enumeration algorithms for 2BP|O|G 61

in Section 4.3. Section 4.4 reports our computational experiments on a large set of

instances from the literature, while Section 4.5 draws some conclusions.

4.2. Basic Heuristic Algorithm

Our algorithm is based on an enumeration tree that defines, at each level p, the current

content for the p-th bin in the solution. The algorithm is heuristic in nature, in that

not all possible feasible ways of packing the bins are taken into account. Leaf nodes

correspond to complete solutions, in which all items have been packed. Intermediate

nodes have a number of descendant nodes, associated with different ways to pack the

next bin in a guillotine way. In particular, we use a set S of selection rules to determine

the next item to pack (and its position in the bin) and a set G of guillotine split rules

to satisfy the guillotine requirement, and generate a descendant node for each pair

(s, g) with s ∈ S and g ∈ G. The search tree is explored according to a depth-first

strategy, by considering descendant nodes according to the selection rule and then by

the guillotine split rule. Obviously, if a feasible solution is found with value, say z, no

descendant nodes are generated from nodes at level z − 1.

Given a selection rule s ∈ S and a guillotine split rule g ∈ G, the corresponding

descendant node is obtained by applying the packing strategy described in Section

4.2.1. The sets of selection rules and guillotine split rules used in the algorithm are

described in Sections 4.2.2 and 4.2.3, respectively.

4.2.1 Packing the current bin

In this section we describe the packing strategy that is used, at each node, to pack the

current bin. We will denote by J ⊆ N the set of items that have not been allocated

in the previous bins (i.e., in the previous levels of the tree). Recall that each node

implements a fixed selection rule and a fixed guillotine split rule.

Our packing strategy packs one item at a time in the free space of the bin, so as to

guarantee that a guillotinable pattern is obtained. In particular, we maintain a list

F = {F1, . . . , Fm} of pairwise disjoint free rectangles where the items in J can be

allocated. Initially, F = {F1}, i.e., there is only one rectangle that corresponds to the

entire bin.

At each iteration, we determine the set P of pairs (j, Fi) associated with feasible

packings of an item j ∈ J in a free rectangle Fi ∈ F and compute, for each such

pair, an insertion score according to the given selection rule. The pair, say (j∗, Fi∗)

that produces a minimum is selected, item j∗ is packed with its bottom left corner

in the bottom left corner position of rectangle Fi∗ , and it is eliminated from J . The

selected rectangle is then removed from F , and split using the given guillotine split

62 Chapter 4 Partial enumeration algorithms for 2BP|O|G

rule, to possibly produce two smaller free rectangles that are inserted in F . Finally,

free rectangles are scanned to check if pairs of rectangles exist that can be merged into

a unique larger rectangle. The current bin is closed if J = ∅, or F = ∅ or no item j ∈ J
can be inserted in any free rectangle Fi ∈ F .

A pseudocode implementation of the algorithm is given in Figure 4.2, where we assume

the algorithm receives on input

• the set J of unpacked items,

• the sizes W and H of the bin,

• a function s(j, Fi) that returns the insertion score for item j ∈ J into free rect-

angle Fi, and

• a function g(j, Fi) that returns a possibly empty set of free rectangles obtained

cutting item j from rectangle Fi.

Algorithm GuillotineBin:
define an initial W ×H rectangle F1 at position(0, 0) and set F = {F1};
repeat

let P be the set of all pairs (j, Fi) such that item j ∈ J can be inserted in free
rectangle Fi ∈ F ;

if P 6= ∅ then
let (j∗, Fi∗) = arg min{s(j, Fi) : (j, Fi) ∈ P};
pack item j∗ in rectangle Fi∗ and set J := J \ {j∗};
set F := F \ {Fi∗} ∪ g(j, Fi∗);

endif
until P = ∅;

Figure 4.2: Algorithm to pack a single bin.

4.2.2 Selection rule

Selection rules are used to simultaneously select the next item to be allocated and the

associated free rectangle–recall that an item is always placed with its bottom left corner

in the bottom left corner position of the selected rectangle. All the rules compute a

score for each pair (j, Fi) that indicates the “quality” of the packing. The smaller the

better when the scores of two distinct pairs (j, Fi) are compared. In case a pair, say

s(j, Fi), is found such that the current item j perfectly fits the current free rectangle

Fi, we set s(j, Fi) = −∞, i.e., we pack item j into rectangle Fi without computing the

remaining scores. Similarly, we assume that s(j, Fi) = ∞ in case item j does not fit

into rectangle Fi.

Let Wi and Hi denote the width and the height, respectively, of the free rectangle Fi.

The following three different rules were used to perform the choice.

Chapter 4 Partial enumeration algorithms for 2BP|O|G 63

1. Best Area: sBA(j, Fi) = WiHi − wj hj

2. Best Short Side: sBSS(j, Fi) = min(Wi − wj , Hi − hj)

3. Best Long Side: sBLS(j, Fi) = max(Wi − wj , Hi − hj)

These rules minimize the unused area in the free rectangle, the length of the shorter

leftover side and the length of the longer leftover side, respectively. Similar rules were

used in [42], together with rules that maximize these figures, to determine the best

free rectangle to pack a given item; differently, we use selection rules to simultaneously

determine the next item to pack and the associated packing position.

4.2.3 Guillotine split rule

Let j and Fi denote the item and the free rectangle, respectively, that have been

determined using some selection rule. The algorithm packs item j with its bottom left

corner in the bottom left corner of rectangle Fi, producing a L-shaped free space. This

free space can be split into two new free rectangles, either with a horizontal or with a

vertical cut, as shown in Figure 4.3. In the former case, two new free rectangles are

generated with sizes Wi, Hi − hj and Wi − wj , hj , respectively. If instead the cut is

vertical, the two new rectangles have sizes wj , Hi−hj and Wi−wj , Hi, respectively. In

both cases, if wj = Wi or hj = Hi only one rectangle is produced, whereas no rectangle

is created if both equalities hold.

Hi

Wi

1

2

3

j

Fa

Fb

Hi

Wi

1

2

3

j

Fa

Fb

Figure 4.3: Example of horizontal (left) and vertical (right) guillotine cut.

We implemented a number of different strategies proposed in [42] to determine the

type of cut to produce; preliminary computational experiments suggested to use three

of them in our algorithm, namely:

1. Longer Leftover: cut is horizontal if Wi−wj ≥ Hi−hj , and vertical otherwise;

2. Shorter Leftover: cut is horizontal if Wi−wj < Hi−hj , and vertical otherwise;

64 Chapter 4 Partial enumeration algorithms for 2BP|O|G

3. Min Area: cut is horizontal if hj(Wi−wj) < wj(Hi−hj), and vertical otherwise.

The first two split rules select the cut direction according to the longer and shorter

leftover side, respectively, whereas the third one is aimed at producing two new free

rectangles having a similar area.

4.3. Enhanced Heuristic Algorithm

The basic scheme described in Section 4.2 can lead to search trees with a very large

number of nodes, even for small instances. Indeed, combining the three selection rules

with the three guillotine split rules, provides nine potentially different children for each

node. This means that the number of nodes at the p-th level of the search tree is 9p,

which can be extremely large even for small values of p. In this section we present two

ways to improve the algorithm: the first one, described in the next section, is aimed at

avoiding the multiple generation of decision nodes producing the same pattern, whereas

the second one is a heuristic pruning of the nodes, as described in Section 4.3.2.

4.3.1 Removing duplicated nodes

Consider a certain node, say d at a given level p of the search tree. Let (s1, g1) and

(s2, g2) denote two possible descendant nodes associated with different selection rules

s1, s2 ∈ S and/or different guillotine split rules g1, g2 ∈ G. Though the rules used in

the two nodes are different, the packing strategy may produce two (possibly different)

patterns that pack the same subset of items. In this case, the subtrees descending from

these two nodes would be absolutely identical, and exploring both of them would be a

waste of time.

To avoid these situations, the basic scheme has to be modified so as to generate descen-

dant nodes only for those patterns that pack a different subsets of items. In principle,

one should compare the set of unpacked items after processing node d, say J(d), with

the same set after each node of level p has been processed, possibly fathoming the

current node. As this check could be time consuming, we only compare J(d) with the

same set produced by brother nodes, i.e., nodes at level p that have been generated by

the same node using different selection and/or guillotine split rules.

4.3.2 Heuristic pruning

Our second strategy is a heuristic pruning of some nodes of the search tree, according

to the current partial solution. Let A =
∑

j∈N wjhj and z be the total area of the items

and the value of an incumbent solution, respectively (initially, z = n). In addition,

Chapter 4 Partial enumeration algorithms for 2BP|O|G 65

remind that J(d) denotes the set of items that are still unpacked after the exploration

of a given node d at level p.

We compute the average filling of each bin in the partial solution at the current node

d, say AV , and we compare this value with a measure of the average filling of each bin

in a solution using one bin less than the current incumbent. In particular, if condition

AV :=
A−

∑
j∈J(d)wj hj

pWH
≤ α A

(z − 1)WH
(4.1)

is satisfied, we fathom the current node. The rationale is that the current solution

has an average filling of the already used bins that is unlikely to lead to improve the

incumbent. The value of the parameter α in (4.1) is updated during the execution

of the algorithm: initially, we set α = 0, i.e., at the beginning no node is pruned.

After we explored a number, say N1, of nodes without improving the incumbent, we

increase the value of α by a quantity δ, to avoid complete enumeration. The increase

of parameter α (up to 1) is possibly repeated every N2 non-improving nodes.

4.4. Computational experiments

The basic algorithm described in Section 4.2 (denoted as BSC in the following) and its

enhanced version (ENH) of Section 4.3 were coded in C language and tested on an Intel

Xeon E3-1220V2 machine running at 3.10 GHz on a large set of instances proposed

in the literature. Preliminary computational experiments suggested to set N1 = 500,

N2 = 500 and δ = 0.1 for algorithm ENH. As a benchmark, we considered the ten classes

of instances proposed in [5] and in [61] for 2BP. Each class includes 50 instances (10

instances for each value of n ∈ {20, 40, 60, 80, 100}), so a set of 500 instances has been

considered.

The first six classes proposed by Berkey and Wang [5] are so characterized:

Class I : wj and hj uniformly random in [1,10], W = H = 10;

Class II : wj and hj uniformly random in [1,10], W = H = 30;

Class III : wj and hj uniformly random in [1,35], W = H = 40;

Class VI : wj and hj uniformly random in [1,35], W = H = 100;

Class V : wj and hj uniformly random in [1,100], W = H = 100;

Class VI : wj and hj uniformly random in [1,100], W = H = 300;

In the last four classes, proposed by Martello and Vigo [61], the items are classified in

four types:

66 Chapter 4 Partial enumeration algorithms for 2BP|O|G

Type 1 : wj uniformly random in [2
3W,W], hj uniformly random in [1, 1

2H];

Type 2 : wj uniformly random in [1, 1
2W], hj uniformly random in [2

3H,H];

Type 3 : wj uniformly random in [1
2W,W], hj uniformly random in [1

2H,H];

Type 4 : wj uniformly random in [1, 1
2W], hj uniformly random in [1, 1

2H];

The bin sizes are W = H = 100 for all classes, while the items are as follows:

Class VII : type 1 with probability 70%, type 2,3,4 with probability 10% each;

Class VIII : type 2 with probability 70%, type 1,3,4 with probability 10% each;

Class IX : type 3 with probability 70%, type 1,2,4 with probability 10% each;

Class X : type 4 with probability 70%, type 1,2,3 with probability 10% each;

Tables 4.1 and 4.2 report the outcome of our experiments for algorithms BSC and ENH,

respectively. Each algorithm was tested using different time limits, namely 60, 600 and

1,800 CPU seconds. Each line of the tables refers to a given class and value of n, i.e.,

it summarizes ten instances. For each considered time limit, the tables report

• the sum of the best solution found by our heuristic algorithm,

• the number of instances for which the solution found is provably optimal,

• the average percentage error – for each instance the percentage error is given by

(U − L)/L, where U is the value of the solution found by the algorithm and L

denotes the best known lower bound value.

In addition, we report, for each class and value of n, the sum of the best known lower

bounds for the ten 2BP|O|F instances, i.e., when guillotine constraint is not imposed.2

Noting that 2BP|O|F is a relaxation of 2BP|O|G, this figure provides a lower bound

on the optimal solution value. Finally, the last line of each table gives the same figures

with respect to the whole benchmark.

Our computational experiments show that, even with the smallest time limit of 60

seconds, the basic algorithm is able to find the optimal solution value in 361 out of

the 500 instances, and has an average error below 3.6%. The improvements that can

be obtained with a larger time limit are limited but regular: with 1,800 seconds, the

algorithm saves overall 24 bins, and proves optimality for 20 more instances, with an

average gap below 3.4%. Noting that the produced solutions are compared with lower

2The best 2BP|O|F lower and upper bounds are taken from [62] and are available at www.or.deis.
unibo.it/research_pages/ORinstances/ORinstances.htm

www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm
www.or.deis.unibo.it/research_pages/ORinstances/ORinstances.htm

Chapter 4 Partial enumeration algorithms for 2BP|O|G 67

TL=60 TL=600 TL=1,800

class n LB UB #opt %gap UB #opt %gap UB #opt %gap

20 71 71 10 0.000 71 10 0.000 71 10 0.000
40 134 134 10 0.000 134 10 0.000 134 10 0.000

1 60 197 200 7 0.017 200 7 0.017 200 7 0.017
80 274 275 9 0.004 275 9 0.004 275 9 0.004

100 317 318 9 0.003 317 10 0.000 317 10 0.000

20 10 10 10 0.000 10 10 0.000 10 10 0.000
40 19 20 9 0.100 20 9 0.100 20 9 0.100

2 60 25 25 10 0.000 25 10 0.000 25 10 0.000
80 31 32 9 0.033 32 9 0.033 32 9 0.033

100 39 39 10 0.000 39 10 0.000 39 10 0.000

20 51 54 7 0.078 54 7 0.078 54 7 0.078
40 92 96 6 0.058 96 6 0.058 96 6 0.058

3 60 136 141 5 0.038 140 6 0.032 140 6 0.032
80 187 195 2 0.044 194 3 0.039 194 3 0.039

100 221 230 2 0.045 228 4 0.035 228 4 0.035

20 10 10 10 0.000 10 10 0.000 10 10 0.000
40 19 19 10 0.000 19 10 0.000 19 10 0.000

4 60 23 25 8 0.100 25 8 0.100 25 8 0.100
80 30 33 7 0.100 33 7 0.100 33 7 0.100

100 37 39 8 0.067 39 8 0.067 39 8 0.067

20 65 66 9 0.020 66 9 0.020 66 9 0.020
40 119 119 10 0.000 119 10 0.000 119 10 0.000

5 60 179 182 7 0.020 182 7 0.020 181 8 0.013
80 241 247 4 0.026 247 4 0.026 247 4 0.026

100 279 288 2 0.035 288 2 0.035 288 2 0.035

20 10 10 10 0.000 10 10 0.000 10 10 0.000
40 15 19 6 0.400 19 6 0.400 19 6 0.400

6 60 21 22 9 0.050 22 9 0.050 22 9 0.050
80 30 30 10 0.000 30 10 0.000 30 10 0.000

100 32 35 7 0.100 35 7 0.100 35 7 0.100

20 55 55 10 0.000 55 10 0.000 55 10 0.000
40 109 113 6 0.038 113 6 0.038 113 6 0.038

7 60 156 162 5 0.037 161 5 0.032 159 7 0.019
80 224 235 1 0.051 233 1 0.041 232 2 0.037

100 269 279 1 0.037 277 3 0.030 277 3 0.030

20 58 58 10 0.000 58 10 0.000 58 10 0.000
40 112 114 8 0.017 113 9 0.009 113 9 0.009

8 60 159 163 6 0.025 162 7 0.018 162 7 0.018
80 223 230 3 0.031 228 5 0.022 227 6 0.018

100 274 282 3 0.029 281 3 0.025 280 4 0.022

20 143 143 10 0.000 143 10 0.000 143 10 0.000
40 278 278 10 0.000 278 10 0.000 278 10 0.000

9 60 437 437 10 0.000 437 10 0.000 437 10 0.000
80 577 577 10 0.000 577 10 0.000 577 10 0.000

100 695 695 10 0.000 695 10 0.000 695 10 0.000

20 42 44 8 0.045 44 8 0.045 44 8 0.045
40 74 74 10 0.000 74 10 0.000 74 10 0.000

10 60 98 103 5 0.053 102 6 0.045 102 6 0.045
80 123 130 3 0.056 130 3 0.056 130 3 0.056

100 153 163 0 0.066 162 1 0.059 161 2 0.052

Global 7173 7319 361 0.036 7302 374 0.035 7295 381 0.034

Table 4.1: Results on 2BP instances from the literature for the basic algorithm.

68 Chapter 4 Partial enumeration algorithms for 2BP|O|G

TL=60 TL=600 TL=1,800

class n LB UB #opt %gap UB #opt %gap UB #opt %gap

20 71 71 10 0.000 71 10 0.000 71 10 0.000
40 134 134 10 0.000 134 10 0.000 134 10 0.000

1 60 197 200 7 0.017 200 7 0.017 200 7 0.017
80 274 275 9 0.004 275 9 0.004 275 9 0.004

100 317 317 10 0.000 317 10 0.000 317 10 0.000

20 10 10 10 0.000 10 10 0.000 10 10 0.000
40 19 20 9 0.100 20 9 0.100 20 9 0.100

2 60 25 25 10 0.000 25 10 0.000 25 10 0.000
80 31 32 9 0.033 32 9 0.033 32 9 0.033

100 39 39 10 0.000 39 10 0.000 39 10 0.000

20 51 54 7 0.078 54 7 0.078 54 7 0.078
40 92 96 6 0.058 96 6 0.058 96 6 0.058

3 60 136 140 6 0.032 140 6 0.032 140 6 0.032
80 187 190 7 0.017 190 7 0.017 190 7 0.017

100 221 226 5 0.024 226 5 0.024 225 6 0.019

20 10 10 10 0.000 10 10 0.000 10 10 0.000
40 19 19 10 0.000 19 10 0.000 19 10 0.000

4 60 23 25 8 0.100 25 8 0.100 25 8 0.100
80 30 33 7 0.100 33 7 0.100 33 7 0.100

100 37 39 8 0.067 39 8 0.067 39 8 0.067

20 65 66 9 0.020 66 9 0.020 66 9 0.020
40 119 119 10 0.000 119 10 0.000 119 10 0.000

5 60 179 181 8 0.013 181 8 0.013 181 8 0.013
80 241 247 4 0.026 247 4 0.026 247 4 0.026

100 279 288 2 0.035 288 2 0.035 286 4 0.027

20 10 10 10 0.000 10 10 0.000 10 10 0.000
40 15 19 6 0.400 19 6 0.400 19 6 0.400

6 60 21 22 9 0.050 22 9 0.050 22 9 0.050
80 30 30 10 0.000 30 10 0.000 30 10 0.000

100 32 35 7 0.100 35 7 0.100 35 7 0.100

20 55 55 10 0.000 55 10 0.000 55 10 0.000
40 109 113 6 0.038 113 6 0.038 113 6 0.038

7 60 156 159 7 0.019 159 7 0.019 159 7 0.019
80 224 232 2 0.037 232 2 0.037 232 2 0.037

100 269 277 3 0.030 276 4 0.026 275 4 0.022

20 58 58 10 0.000 58 10 0.000 58 10 0.000
40 112 113 9 0.009 113 9 0.009 113 9 0.009

8 60 159 162 7 0.018 162 7 0.018 162 7 0.018
80 223 227 6 0.018 227 6 0.018 226 7 0.014

100 274 281 3 0.025 280 4 0.022 280 4 0.022

20 143 143 10 0.000 143 10 0.000 143 10 0.000
40 278 278 10 0.000 278 10 0.000 278 10 0.000

9 60 437 437 10 0.000 437 10 0.000 437 10 0.000
80 577 577 10 0.000 577 10 0.000 577 10 0.000

100 695 695 10 0.000 695 10 0.000 695 10 0.000

20 42 44 8 0.045 44 8 0.045 44 8 0.045
40 74 74 10 0.000 74 10 0.000 74 10 0.000

10 60 98 102 6 0.045 102 6 0.045 102 6 0.045
80 123 130 3 0.056 130 3 0.056 130 3 0.056

100 153 160 3 0.046 159 4 0.040 159 4 0.040

Global 7173 7289 386 0.033 7286 389 0.033 7281 393 0.033

Table 4.2: Results on 2BP instances from the literature for the enhanced algorithm
with N1 = 500, N2 = 500 and δ = 0.1.

Chapter 4 Partial enumeration algorithms for 2BP|O|G 69

bounds (or optimal values) for the relaxation of the problem in which guillotine con-

straint is not imposed, these results show that even the basic version of the algorithm

is quite effective. Results are even better for the enhanced algorithm, which is able

to solve to optimality 386 instances in the 60 seconds time limit, and has an average

percentage error approximatively equal to 3.3%. We note that these figures are slightly

better than the results obtained by the basic algorithm in the 30-minutes time limit;

thus, it is not surprising that only marginal improvements can be obtained over these

solutions with longer time limits. In particular, increasing the time limit to 1,800 CPU

seconds leads to saving 8 bins and to 7 additional optimal solutions.

In order to evaluate the quality of the results obtained we report in Table 4.3 the

information on the overall number of bins required in the best known solutions in the

literature (taken from [62]) for problem 2BP|O|F. We want to stress again that this

information is reported for reference only, to compare the performance of our heuristic

with those of the state-of-the-art algorithms for a less constrained problem in which

guillotine constraints are not imposed. This comparison shows that the global number

of bins used over the 500 instances by algorithm ENH is about 0.5% more than the same

figure for the problem in which guillotine constraint is not imposed (7281 vs 7241).

This confirms that a very marginal increase in the solution value has to be incurred to

impose the guillotine constraint, and makes the algorithm’s performance comparable

to those of the best heuristic algorithms proposed in the literature for 2BP|O|F.

2BP|O|F ENH

class LB UB UB #opt %gap

1 993 997 997 46 0.004
2 124 124 126 48 0.027
3 687 696 705 32 0.041
4 119 124 126 43 0.053
5 883 892 899 35 0.017
6 108 112 116 42 0.110
7 813 827 834 29 0.023
8 826 835 839 37 0.013
9 2130 2130 2130 50 0.000

10 490 504 509 31 0.037

Global 7173 7241 7281 393 0.033

Table 4.3: Comparison between guillotine and non-guillotine heuristics. Time limit
= 1,800 CPU seconds.

4.5. Conclusions

In this chapter we considered the orthogonal Two-Dimensional bin packing problem in

which items cannot be rotated and guillotine constraints are imposed. For this problem,

denoted as 2BP|O|G, we developed a heuristic algorithm based on partial enumeration,

possibly enhanced so as to reduce the search space. An extensive computational anal-

ysis on a large set of instances from the literature shows that the algorithm is able to

70 Chapter 4 Partial enumeration algorithms for 2BP|O|G

solve more than 78% of the problems, with an average gap of 3.3%, thus confirming the

viability of the approach. As these performance numbers are computed with respect

to some lower bound values for the relaxed problem in which guillotine constraints are

not imposed (i.e., 2BP|O|F), future research direction will be devoted in developing

fast lower bounding techniques for 2BP|O|G.

Bibliography

[1] B. S. Baker, E. G. Coffman, Jr, and R. L. Rivest. Orthogonal packings in two

dimensions. SIAM Journal on Computing, 9(4):846–855, 1980.

[2] N. Bansal, A. Caprara, and M. Sviridenko. Improved approximation algorithms

for multidimensional bin packing problems. In Foundations of Computer Science,

2006. FOCS’06. 47th Annual IEEE Symposium on, pages 697–708. IEEE, 2006.

[3] N. Bansal and M. Sviridenko. New approximability and inapproximability results

for 2-dimensional bin packing. In Proceedings of the fifteenth annual ACM-SIAM

symposium on Discrete algorithms, pages 196–203. Society for Industrial and Ap-

plied Mathematics, 2004.

[4] J. E. Beasley. An exact two-dimensional non-guillotine cutting tree search proce-

dure. Operations Research, 33(1):49–64, 1985.

[5] J. Berkey and P. Wang. Two-dimensional finite bin-packing algorithms. Journal

of the Operational Research Society, 38:423–429, 1987.

[6] A. Bettinelli, A. Ceselli, and G. Righini. A branch-and-price algorithm for the two-

dimensional level strip packing problem. 4OR: A Quarterly Journal of Operations

Research, 6(4):361–374, 2008.

[7] Marco A Boschetti and Aristide Mingozzi. The two-dimensional finite bin packing

problem. part i: New lower bounds for the oriented case. Quarterly Journal of the

Belgian, French and Italian Operations Research Societies, 1(1):27–42, 2003.

[8] Marco A Boschetti and Aristide Mingozzi. The two-dimensional finite bin packing

problem. part ii: New lower and upper bounds. Quarterly Journal of the Belgian,

French and Italian Operations Research Societies, 1(2):135–147, 2003.

[9] A. Caprara. Packing 2-dimensional bins in harmony. In Foundations of Computer

Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on, pages 490–499.

IEEE, 2002.

[10] A. Caprara, A. Lodi, and M. Monaci. An approximation scheme for the two-stage,

two-dimensional bin packing problem. In Integer Programming and Combinatorial

Optimization, pages 315–328. Springer Berlin Heidelberg, 2002.

71

72 BIBLIOGRAPHY

[11] A. Caprara and M. Monaci. On the two-dimensional knapsack problem. Opera-

tions Research Letters, 32(1):5–14, 2004.

[12] A. Caprara and M. Monaci. Bidimensional packing by bilinear programming.

Mathematical Programming, 118(1):75–108, 2009.

[13] C. Charalambous and K. Fleszar. A constructive bin-oriented heuristic for the two-

dimensional bin packing problem with guillotine cuts. Computers & Operations

Research, 38:1443–1451, 2011.

[14] B. Chazelle. The bottomn-left bin-packing heuristic: An efficient implementation.

Computers, IEEE Transactions on, 100(8):697–707, 1983.

[15] N. Christofides and E. Hadjiconstantinou. An exact algorithm for orthogonal 2-d

cutting problems using guillotine cuts. European Journal of Operational Research,

83(1):21–38, 1995.

[16] F.K.R. Chung, M.R. Garey, and D.S. Johnson. On packing two-dimensional bins.

SIAM Journal on Algebraic Discrete Methods, 3(1):66–76, 1982.

[17] E. G. Coffman, Jr, M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance

bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on

Computing, 9(4):808–826, 1980.

[18] J. Csirik and G. Woeginger. On-line packing and covering problems. In Amos

Fiat and GerhardJ. Woeginger, editors, Online Algorithms, volume 1442 of Lecture

Notes in Computer Science, pages 147–177. Springer Berlin Heidelberg, 1998.

[19] X. Chen D. Simchi-Levi and J. Bramel. The logic of logistics: theory, algorithms,

and applications for logistics and supply chain management. Springer, 2007.

[20] M. Dell’Amico and S. Martello. Optimal scheduling of tasks on identical parallel

processors. ORSA Journal on Computing, 7(2):191–200, 1995.

[21] M. Dolatabadi, A. Lodi, and M. Monaci. Exact algorithms for the two-dimensional

guillotine knapsack. Computers & Operations Research, 39:48–53, 2012.

[22] O. Faroe, D. Pisinger, and M. Zachariasen. Guided local search for the three-

dimensional bin packing problem. Department of Computer Science, University of

Copenhagen, 1999.

[23] S.P. Fekete and J. Schepers. New classes of lower bounds for bin packing prob-

lems. In Integer Programming and Combinatorial Optimization, pages 257–270.

Springer, 1998.

[24] S.P. Fekete and J. Schepers. A combinatorial characterization of higher-

dimensional orthogonal packing. Mathematics of Operations Research, 29(2):353–

368, 2004.

BIBLIOGRAPHY 73

[25] S.P. Fekete and J. Schepers. A general framework for bounds for higher-

dimensional orthogonal packing problems. Mathematical Methods of Operations

Research, 60(2):311–329, 2004.

[26] S.P. Fekete, J. Schepers, and J. C. Van der Veen. An exact algorithm for higher-

dimensional orthogonal packing. Operations Research, 55(3):569–587, 2007.

[27] K. Fleszar. Three insertion heuristics and a justification improvement heuristic

for two-dimensional bin packing with guillotine cuts. Computers & Operations

Research, 40:463–474, 2013.

[28] J.B. Frenk and G.G. Galambos. Hybrid next-fit algorithm for the two-dimensional

rectangle bin-packing problem. Computing, 39:201–217, 1987.

[29] A. Freund and J. S. Naor. Approximating the advertisement placement problem.

Journal of Scheduling, 7(5):365–374, 2004.

[30] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting

stock problem. Operations Research, 9:849–859, 1961.

[31] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting

stock problem - part II. Operations Research, 11:863–888, 1963.

[32] P.C. Gilmore and R.E. Gomory. Multistage cutting problems of two and more

dimensions. Operations Research, 13:94–119, 1965.

[33] D.E. Goldberg. Genetic algorithms in search, optimization, and machine learning.

Number 2. Addison-Wesley, Reading, MA, 1989.

[34] E. Hadjiconstantinou and N. Christofides. An exact algorithm for general, or-

thogonal, two-dimensional knapsack problems. European Journal of Operational

Research, 83(1):39–56, 1995.

[35] R. Harren. Two-dimensional packing problems. PhD thesis, Universität des Saar-

landes, Germany, 2010.

[36] R. Harren and R. van Stee. An absolute 2-approximation algorithm for the two-

dimensional bin packing. submitted for publication.

[37] R. Harren and R. van Stee. Absolute approximation ratios for packing rectangles

into bins. Journal of Scheduling, 15(1):63–75, 2012.

[38] J. Holland. H., 1975, adaptation in natural and artificial systems. Ann Arbor,

MI: University of Michigan Press, 1975.

[39] M. Iori, S. Martello, and M. Monaci. Metaheuristic algorithms for the strip packing

problem. Applied Optimization, 78:159–180, 2003.

74 BIBLIOGRAPHY

[40] D.S. Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts

Institute of Technology, 1973.

[41] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and R.L. Graham. Worst-

case performance bounds for simple one-dimensional packing algorithms. SIAM

Journal on Computing, 3(4):299–325, 1974.

[42] J. Jylänki. A thousand ways to pack the bin - a practical ap-

proach to two-dimensional rectangle bin packing. Technical report, 2010.

http://clb.demon.fi/files/RectangleBinPack.pdf.

[43] C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting

stock problem. Math. Oper. Res., 25(4):645–656, 2000.

[44] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, et al. Optimization by simmulated

annealing. science, 220(4598):671–680, 1983.

[45] K. Lagus, I. Karanta, and J. Ylä-Jääski. Paginating the generalized newspaper:

A comparison of simulated annealing and a heuristic method. In Parallel Problem

Solving from Nature — PPSN IV, volume 1141 of Lecture Notes in Computer

Science, pages 594–603. Springer, 1996.

[46] C.C. Lee and D.T. Lee. A simple on-line bin-packing algorithm. Journal of the

ACM (JACM), 32(3):562–572, 1985.

[47] K. Li and K. H. Cheng. Static job scheduling in partitionable mesh connected

systems. Journal of Parallel and Distributed Computing, 10(2):152–159, 1990.

[48] D.S. Liu, K.C. Tan, S.Y. Huang, C.K. Goh, and W.K. Ho. On solving multi-

objective bin packing problems using evolutionary particle swarm optimization.

European Journal of Operational Research, 190(2):357 – 382, 2008.

[49] A. Lodi. Algorithms for Two-Dimensional Bin Packing and Assignment Problems.

PhD thesis, University of Bologna, Italy, 2000.

[50] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A

survey. European Journal of Operational Research, 141(2):241–252, 2002.

[51] A. Lodi, S. Martello, M. Monaci, C. Cicconetti, L. Lenzini, E. Mingozzi, C. Ek-

lund, and J. Moilanen. Efficient two-dimensional packing algorithms for mobile

wimax. Management Science, 57:2130–2144, 2011.

[52] A. Lodi, S. Martello, and D. Vigo. Approximation algorithms for the oriented

two-dimensional bin packing problem. European Journal of Operational Research,

112:158–166, 1999.

[53] A. Lodi, S. Martello, and D. Vigo. Heuristics and metaheuristic approaches for a

class of two-dimensional bin packing problems. INFORMS Journal on Computing,

11:345–357, 1999.

BIBLIOGRAPHY 75

[54] A. Lodi, S. Martello, and D. Vigo. Neighborhood search algorithm for the guillo-

tine non-oriented two-dimensional bin packing problem. In Meta-Heuristics, pages

125–139. Springer US, 1999.

[55] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional bin

packing problems. Discrete Applied Mathematics, 123(1):379–396, 2002.

[56] A. Lodi, S. Martello, and D. Vigo. Models and bounds for two-dimensional level

packing problems. Journal of Combinatorial Optimization, 8(3):363–379, 2004.

[57] A. Lodi, M. Monaci, and E. Pietrobuoni. Partial enumeration algorithms for

two-dimensional bin packing problem with guillotine constraints. submitted for

publication. 2014.

[58] M. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations

Research, 53(6):1007–1023, 2005.

[59] G.S. Lueker. Bin packing with items uniformly distributed over intervals [a,b].

In Foundations of Computer Science, 1983., 24th Annual Symposium on, pages

289–297, Nov 1983.

[60] S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-packing

problem. INFORMS Journal on Computing, 15(3):310–319, 2003.

[61] S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing

problem. Management Science, 44:388–399, 1998.

[62] M. Monaci and P. Toth. A set-covering based heuristic approach for bin-packing

problems. INFORMS Journal on Computing, 18:71–85, 2006.

[63] C. Kenyon N. Bansal, J.R. Correa and M. Sviridenko. Bin packing in multiple

dimensions: inapproximability results and approximation schemes. Mathematics

of Operations Research, 31(1):31–49, 2006.

[64] D. Pisinger and M. Sigurd. Using decomposition techniques and constraint pro-

gramming for solving the two-dimensional bin-packing problem. INFORMS Jour-

nal on Computing, 19:36–51, 2007.

[65] S. Polyakovsky and R. M’Hallah. An agent-based approach to the two-dimensional

guillotine bin packing problem. European Journal of Operational Research,

192:767–781, 2009.

[66] J. Puchinger and G.R. Raidl. Models and algorithms for three-stage two-

dimensional bin packing. European Journal of Operational Research, 183:1304–

1327, 2007.

[67] I. Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In

Proceedings of the Second Annual European Symposium on Algorithms, ESA ’94,

pages 290–299, London, UK, UK, 1994. Springer-Verlag.

76 BIBLIOGRAPHY

[68] D.D. Sleator. A 2.5 times optimal algorithm for packing in two dimensions. In-

formation Processing Letters, 10(1):37–40, 1980.

[69] A. Soke and Z. Bingul. Hybrid genetic algorithm and simulated annealing for

two-dimensional non-guillotine rectangular packing problems. Engineering Appli-

cations of Artificial Intelligence, 19(5):557 – 567, 2006.

[70] A. Steinberg. A strip-packing algorithm with absolute performance bound 2.

SIAM J. Comput., 26(2):401–409, 1997.

[71] P. Toth and S. Martello. Knapsack problems: Algorithms and computer imple-

mentations. Discrete Mathematics and Optimization. Wiley, 1990.

[72] R. van Stee. An approximation algorithm for square packing. Operations Research

Letters, 32(6):535–539, 2004.

[73] F. Vanderbeck. A nested decomposition approach to a 3-stage 2-dimensional

cutting stock problem. Management Science, 47:864–879, 2001.

[74] G. Zhang. A 3-approximation algorithm for two-dimensional bin packing. Oper-

ations Research Letters, 33(2):121 – 126, 2005.

	List of Figures
	1 Outline
	2 The Two-Dimensional Bin Packing Problem
	2.1 Introduction
	2.2 Cutting and Packing
	2.3 Rectangle Packing Problem
	2.4 Applications
	2.5 Models
	2.5.1 One-dimensional bin packing problem
	2.5.2 Two-dimensional bin packing problem
	2.5.3 ILP models for level packing

	2.6 The asymptotic and the absolute worst-case performance ratios
	2.7 Upper Bounds
	2.7.1 Strip packing
	2.7.2 Bin packing: Two-phase heuristics
	2.7.3 Bin packing: One-phase level heuristics
	2.7.4 Bin packing: One-phase non-level heuristics
	2.7.5 Metaheuristics
	2.7.6 Approximation algorithms

	2.8 Lower Bounds
	2.9 Exact Algorithms

	3 Two-Dimensional Bin Packing: the 2BP|O|G case
	3.1 Introduction
	3.1.1 Our goals
	3.1.2 Definitions
	3.1.3 Convexification Algorithm
	3.1.4 Algorithm and assumptions

	3.2 Smallest non-separable pattern
	3.2.1 Rows and Intersections

	3.3 Blocked Ring
	3.3.1 Detecting a Blocked Ring

	3.4 Blocked Ring characterization
	3.4.1 Single Blocked Ring
	3.4.2 Multiple Blocked Ring

	3.5 Worst-case analysis
	3.5.1 Case 1: P is a Simple Blocked Ring
	3.5.2 Case 2: P is a Single Blocked Ring

	4 Partial enumeration algorithms for 2BP|O|G
	4.1 Introduction
	4.2 Basic Heuristic Algorithm
	4.2.1 Packing the current bin
	4.2.2 Selection rule
	4.2.3 Guillotine split rule

	4.3 Enhanced Heuristic Algorithm
	4.3.1 Removing duplicated nodes
	4.3.2 Heuristic pruning

	4.4 Computational experiments
	4.5 Conclusions

