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Abstract

In the first part of the thesis, we propose and analyze an exactly-solvable
one-dimensional model for fermions with long-range 𝑝-wave pairing de-
caying with distance ℓ as a power law 1/ℓ𝛼. We studied the phase diagram
by analyzing the critical lines, the decay of correlation functions and the
scaling of the von Neumann entropy with the system size. We found two
types of gapped regimes, where correlation functions decay (i) exponen-
tially at short distance and algebraically at long distance (𝛼 > 1), or (ii)
purely algebraically (𝛼 < 1). In the latter a violation of the area law (i.e. a
logarithmic scaling) for the entanglement entropy is also observed. Most
interestingly, along the critical lines, long-range pairing is found to break
the conformal symmetry of the model for sufficiently small 𝛼. This can be
detected also via the dynamics of entanglement following a quench.

In the second part of the thesis we studied the evolution in time of the
entanglement entropy when the system is driven across a quantum phase
transition with different velocities. We analyzed the Ising model in a trans-
verse field varying linearly in time with different velocities. We computed
the time-evolution of the entanglement entropy of half chain and we found
that it displays different regimes depending on the velocity at which the
critical point is reached: an adiabatic one (small velocities) when the system
evolves according the instantaneous ground state; a sudden quench (large
velocities) when the system is essentially frozen to its initial state; and an
intermediate one, where the entropy starts growing linearly but then dis-
plays oscillations (also as a function of the velocity). Finally, we discussed
the Kibble-Zurek mechanism for the transition between the paramagnetic
and the ordered phase.
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Introduction

Recent experimental progress in trapping and manipulating cold and
ultra-cold atomic and molecular gases [1–3] has offered the possibility to
explore and simulate a wide class of phenomena occurring in many-body
systems both at and out of the equilibrium. Examples includes the obser-
vations of strongly correlated phases and quantum phase transitions [4–10]
and of out-of-equilibriumphenomena such as (quasi-)particle transport and
dynamical propagation of correlations [11–19].

Optical lattices [20] are the key example of structures inwhich the atoms
can be trapped in a well-controlled way offering the possibility to modify
geometry, lattice spacing and kinetic energy with extreme versatility while
interactions among them can be changed in strength with Feshbach reso-
nances [21], using external fields.

It has become now possible to tune for the first time also the range and
the shape of the interactions, for example, by using Rydberg atoms [22–25]
and, very recently, trapped ions [19, 26–28]. They have been successfully
employed for creating potentials decaying with distance 𝑟 as 1/𝑟𝛼 where 𝛼
can be tuned between 0 and 3.

It is, however, an open question to understand the properties analyti-
cally of systems with long-range interactions.

In the first part of this thesis we investigate an exactly solvable model
for fermions with a long range pairing, in particular we clarify the structure
of the static phase diagram and behavior of nonlocal quantities (such as the
correlation functions and the entanglement entropy).

The Hamiltonian 𝐻 we analyzed, given by

𝐻 = −𝑤
𝑗
𝑎†𝑗 𝑎𝑗+1 + h.c. − 𝜇

𝑗
𝑛𝑗 −

1
2

+
Δ
2

𝑗,ℓ

1
ℓ𝛼
𝑎𝑗𝑎𝑗+ℓ + 𝑎†𝑗+ℓ𝑎†𝑗  ,

(1)

is a generalization of the Kitaev chain [29] describing a fermionic system
with long-range 𝑝-wave pairing, decaying with distance ℓ as 1/ℓ𝛼.

The original Kitaev Hamiltonian with only on-site or nearest-neighbo-
ring terms, has been studied as a model for topologically ordered phase
in one dimension. A topological one-dimensional phase is characterized

vii



viii

by two or more degenerate low-energy lying states appearing without the
breaking of any local order parameter.

As the system is in a gapped phase, these states also remain well sepa-
rated from the rest of the spectrum and, in the case of an open chain, two
modes are found to be localized at the edges of the system. They have been
identified with twoMajorana fermions and they have attracted much inter-
est for quantum computing because they can be employed, in principle, as
qubits, being robust against decoherence.

The long-range model we analyzed remains still quadratic in terms of
the fermionic operators and, thus, it is still exactly solvable. Using the inte-
grability of themodel, wewere able to compute exactly the decay of the cor-
relation functions, a task not always achievable for a general Hamiltonian
and to demonstrate the existence of two types of gapped regimes, where
correlation functions decay exponentially at short range and algebraically
at long range (𝛼 > 1) or purely algebraically (𝛼 < 1).

In the same gapped regions where the correlators decay as a power law,
the entanglement entropy of a subsystem if found to diverge logarithmi-
cally. Both these results are unexpected in massive phases of local Hamilto-
nians where correlation functions decay purely exponentially [30] and en-
tanglement entropy saturates to a constant [31], in fact these effects are very
peculiar to systems with strong long-range interactions.

If one considers the limit 𝛼 → ∞ the model reduces, after a Jordan-
Wigner transformation, to the 𝑋𝑌-Ising model with pure nearest-neighbor
interactions [32–34]. The latter has beenwidely studied because it is exactly
solvable and, at the same time, it is able to explain non trivial phenomena.

The 𝑋𝑌 model can be considered as a paradigm for the quantum phase
transition [35] between a paramagnetic and an ordered phase separated by
a critical point and it defines an universality class for the phase transition
described by a conformal gapless field theory [36, 37].

In our work, we find that by introducing the long-range term in the
Hamiltonian, this point, for sufficiently small 𝛼, is no more described by
a conformal field theory. This can be also proven by computing the time
evolution of the entanglement entropy following a quench.

In a conformal invariant model, it was shown that the entropy grows
linearly in time [38]. This can be understood if one thinks that, following a
quench, in a given point of the system, quasiparticles excitations are created.
These excitations are carried by couples of entangled particles moving with
opposite momenta and opposite finite group velocities. If now one cuts the
system into two parts (say 𝐴 and 𝐵), the rate of arrival in 𝐵 of quasiparti-
cles created in 𝐴 is constant (because group velocities are constant) and the
growth of entanglement between the two regions is linear in time.

We find that the time evolution of the entropy in the chainwith the long-
range pairing, instead, shows a logarithmic growth when 𝛼 ≲ 1. The same
has been observed for the Isingmodel with long range interactions [39] and
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it is related to the appearance of a divergent quasi-particle velocity. For our
model, we found, indeed, the exact point in the phase diagram where the
divergence of the quasiparticle velocity appears.

More related to the problemof the dynamics in closed quantum systems,
the second part of the thesis deals with the time evolution of the entangle-
ment entropy and the entanglement spectrum when the system is driven
across a quantum phase transition with different speeds.

As key example, we focus on the transverse-field Ising model with a
time-dependent magnetic field varying linearly in time:

𝐻Ising =𝜎𝑥𝑖 𝜎𝑥𝑖+1 − ℎ(𝑡)𝜎𝑧𝑖  (2)

where 𝜎𝑥𝑖 and 𝜎𝑧𝑖 are Pauli matrices. Themagnetic field varies as ℎ(𝑡) = ℎ𝑖+
𝑡
𝜏 ,

where 𝜏 is the inverse of the velocity at which the system is driven and we
choose ℎ𝑖 > 1 to in the paramagnetic phase.

We computed the time-evolution of the entanglement entropy of half
chain and we found that it displays different regimes depending on the
speed at which the critical point is reached: an adiabatic one (small veloci-
ties, large 𝜏) when the system evolves according the instantaneous ground
state; a sudden quench (large velocities, small 𝜏) when the system is essen-
tially frozen to its initial state; and an intermediate one, where the entropy
starts growing linearly (because of the quasiparticle picture discussed be-
fore) but then displays oscillations in time (also as a function of the velocity)
because the system ends up, after passing the critical point, in a superposi-
tion of excited states of the instantaneous Hamiltonian.

We also discussed the Kibble-Zurek mechanism [40–43] for the transi-
tion between the paramagnetic and the ordered phase. Kibble-Zurekmech-
anism predicts the scaling of the number of topological defects produced
after the dynamical transition of a critical point driven by the temperature
(or also by an external field in the case of a quantum phase transition at zero
temperature).

The evolution of the system can be divided into three parts: a first one,
where the system will respond adiabatically to the change of the external
field. A second impulsive, in the vicinity of the critical point where the
correlation length 𝜉 starts to diverge and the adiabatic behavior is oblivi-
ously violated. Here we have also the formation of topological defects on
distances smaller than 𝜉 that scales, according Kibble-Zurek mechanism, as
𝜉 ∼ 𝜏𝜈/(𝜈𝑧+1) where 𝜏 is the inverse of the velocity with which the critical
point is reached and 𝜈 and 𝑧 are the critical exponent of the transition.

As the entropy 𝑆, in a gapped region, is found to be proportional to the
logarithmof the correlation length 𝜉 (𝑆 ∼ log 𝜉 [31]), we showed the entropy
to scale, because of Kibble-Zurek argument, as 𝑆 ∼ log 𝜏.

The thesis is organized as follows: inChapter 1, we introduce theHamil-
tonian of the Kitaev chain with long range pairing and then discuss its ex-
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act solution (Sec. 1.1), the critical lines (Sec. 1.2), the decay of the correlation
functions (Sec. 1.3), the scaling of the von Neumann entropy both with the
system size (Sec. 1.4) and in time after a quench (Sec. 1.5) and finally, for an
open chain, the emergence of the edge modes (Sec. 1.6).

Appendices contain some exact computations for the finite size correc-
tions to the ground state energy density of the Ising model (Appendix 1.A),
details on the technique for computing the entanglement spectrum of qua-
draticmodels (Appendix 1.B), and the definitionwith some basic properties
of polylogarithms (Appendix 1.C).

In Chapter 2, we analyze the scaling in time of the entanglement entropy
for the Ising model with a time-dependent magnetic field. We describe the
adiabatic and the sudden regimes (Sec. 2.2.1), the fast (Sec. 2.2.2) and the
slow (Sec. 2.2.3) sweeps and, finally, the Kibble-Zurek physics (Sec. 2.3).
Appendix 2.A contains the computation of the initial density matrix.

The results from the first and second part of this thesis have been col-
lected in two papers and have been published during the PhD.

The first part can be found in
D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, G. Pupillo,
Kitaev chains with long-range pairing,
Phys. Rev. Lett. 113, 156402 (2014)

while the second in
E. Canovi, E. Ercolessi, P. Naldesi, L. Taddia, D. Vodola,
Dynamics of entanglement entropy and entanglement spectrum
crossing a quantum phase transition,
Phys. Rev. B 89, 104303 (2014).

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.156402
http://link.aps.org/doi/10.1103/PhysRevB.89.104303


1

Kitaev chain with long-range pairing

One of the most important exact solvable model for spins interacting in
a one dimensional chain is the quantum Ising model. This model describes
the quantum phase transition between a disordered paramagnetic and an
ordered phase driven by an external magnetic field ℎ.

In the model Hamiltonian

𝐻Ising =
𝑖
𝜎𝑥𝑖 𝜎𝑥𝑖+1 − ℎ𝜎𝑧𝑖  (1.1)

the interaction term describes the coupling between two neighboring 1/2

spins (𝜎(𝑥,𝑧)𝑖 are Paulimatrices) and isminimized if two spins are anti-aligned
along the 𝑥 direction (ordered phase). The magnetic field, instead, tries to
align them along the 𝑧 direction, so there should be a critical value ℎ𝑐 of the
magnetic field for which the order in the 𝑥 direction is destroyed (paramag-
netic or disordered phase). In Appendix 1.A, I will review the exact solution
of this model.

Itwas found that thisHamiltonian is equivalent to a free-fermionicmodel.
By means of the Jordan-Wigner transformation [44]

𝜎+𝑖 =
1
2
𝜎𝑥𝑖 + i𝜎𝑦𝑖  = 𝑎†𝑖 e

i𝜋 ∑𝑖−1
𝑙=1 𝑎

†
𝑙 𝑎𝑙 (1.2)

𝜎−𝑖 =
1
2
𝜎𝑥𝑖 − i𝜎

𝑦
𝑖  = 𝑎𝑖e

−i𝜋 ∑𝑖−1
𝑙=1 𝑎

†
𝑙 𝑎𝑙 (1.3)

𝜎𝑧𝑖 = 2𝑎†𝑖 𝑎𝑖 − 1 (1.4)

one can write spin 1/2 operators in terms of fermionic operators and thus
cast (1.1) in this form

𝐻Ising =
𝑗
𝑎†𝑗 𝑎𝑗+1 + 𝑎†𝑗 𝑎†𝑗+1 + h.c. − ℎ

𝑗
2𝑎†𝑗 𝑎𝑗 − 1 . (1.5)

From its first appearance, this transformation has been considered only
as amathematical technique both tomap spin into fermionic degrees of free-
dom and to simplify computation of physical quantities of (1.1) and simi-
lar models. Now, as fermions can be trapped in one dimensional systems
(e.g. in quantum wires), the model (1.5) can describe the actual dynamics
of fermionic particles in a lattice.

1



2 Kitaev chain with long-range pairing

The first interpretation of the different phases of the Isingmodel in term
of fermionic language was given by Kitaev in [29]. He found that the spin
ordered phase corresponds to a topological order, meaning that the Hamil-
tonian has two degenerate (in the thermodynamic limit) ground states, sep-
arated by a finite gap from the remaing spectrum and, the order parameter,
local in terms of spin operators, is non-local if written in terms of fermionic
operators.

In this Chapter we will introduce and analyze a generalization of the
Kitaev chain for fermions with long-range pairing, which decays with dis-
tance as a power-law.

1.1 The model

We considered the followingHamiltonian for fermionic particles on a lattice
of 𝐿 sites:

𝐻 = −𝑤
𝑗
𝑎†𝑗 𝑎𝑗+1 + h.c. − 𝜇

𝑗
𝑛𝑗 −

1
2

+
Δ
2

𝑗,ℓ
𝑑−𝛼ℓ 𝑎𝑗𝑎𝑗+ℓ + 𝑎†𝑗+ℓ𝑎†𝑗  .

(1.6)

Here, 𝑎†𝑗 (𝑎𝑗) is a fermionic creation (annihilation) operator on site 𝑗, 𝑛𝑗 =
𝑎†𝑗 𝑎𝑗, and 𝑤 is the tunneling rate on a lattice with unit lattice constant. The

quantities 𝜇 andΔ are the chemical potential and the strength of the fermion
𝑝-wave pairing, respectively.

The decay of the pairing term is given by the function 𝑑ℓ specifying the
distance between two fermions. If the lattice is a closed ring, the maximum
distance will be 𝐿/2 and 𝑑ℓ = min(ℓ, 𝐿 − ℓ), while if the lattice is a closed
linear chain 𝑑ℓ = ℓ. In both the cases the pairing decays with distance ℓ as a
power law with exponent 𝛼.

Hamiltonian (1.6), even with the long-range pairing, is still exactly solv-
able. So, we were able to determine the phase diagram (Fig. 1.5) by diago-
nalizing it exactly and to analyze (i) the critical points; (ii) the decay of the
correlation functions; (iii) the scaling of the entanglement entropy with the
system size in detail.

1.1.1 Exact diagonalization

Let us consider the case of a closed translationally invariant ring (𝑑ℓ =
min(ℓ, 𝐿 − ℓ)). The choice of the boundary conditions for the fermions is
dictated by the pairing term.

The terms 𝑎𝑗𝑎𝑗+ℓ and 𝑎𝑗+ℓ𝑎𝑗+ℓ+𝐿 in the pairing connect two fermions with
the same distance ℓ because of the ring geometry.
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If we consider periodic boundary conditions (𝑎𝑖 = 𝑎𝑖+𝐿) the two terms
will sumup to zero because of the anti-commutation relations for the fermions
and the pairing term will cancel out. For this reason, we need anti-periodic
boundary conditions (𝑎𝑖 = −𝑎𝑖+𝐿).

This choice, anyway, does not affect the final results because, as we will
do, one can consider an infinite-long system.

The translationally invariance of the ring lets us to use a Fourier trans-

form for the fermionic operators 𝑎†𝑖 =
1

√𝐿
∑𝐿−1
𝑛=0 e

i𝑘𝑛𝑥𝑖 �̃�†𝑘𝑛 and, because of anti-
periodic boundary conditions, lattice momenta will be quantized as 𝑘𝑛 =
2𝜋
𝐿
𝑛 + 1

2
.

In this basis, Hamiltonian (1.6) reads:

𝐻 = −
𝑛
𝑤 cos 𝑘𝑛 +

𝜇
2
 �̃�†𝑘𝑛 �̃�𝑘𝑛 + �̃�

†
−𝑘𝑛 �̃�−𝑘𝑛

+ i
Δ
2

𝑛
𝑓𝛼(𝑘𝑛) �̃�𝑘𝑛 �̃�−𝑘𝑛 − �̃�

†
−𝑘𝑛 �̃�

†
𝑘 +

𝜇𝐿
2

(1.7)

with

𝑓𝛼(𝑘) =
𝐿−1

ℓ=1

sin(𝑘ℓ)
𝑑𝛼ℓ

(1.8)

the function containing the information on the long-range pairing (see Ap-
pendix 1.C).

This Hamiltonian is in block-diagonal form, each of the block corre-
sponding to a different momentum 𝑘𝑛:

𝐻 =
1
2

𝐿−1

𝑛=0

�̃�†𝑘𝑛 �̃�−𝑘𝑛 
−(2𝑤 cos 𝑘𝑛 + 𝜇) iΔ𝑓𝛼(𝑘𝑛)

−iΔ𝑓𝛼(𝑘𝑛) (2𝑤 cos 𝑘𝑛 + 𝜇) 
�̃�𝑘𝑛
�̃�†−𝑘𝑛

 (1.9)

We can diagonalize𝐻 in each of the blocks by a Bogolyubov transformation:


𝑎𝑘𝑛
𝑎†−𝑘𝑛

 = 𝕌†  𝑘𝑛
†
−𝑘𝑛
 (1.10)

with

𝕌 = 
cos 𝑘𝑛 i sin 𝑘𝑛
i sin 𝑘𝑛 cos 𝑘𝑛

 (1.11)

and 𝑘𝑛 given by

tan(2 𝑘𝑛) = −
Δ𝑓𝛼(𝑘𝑛)

2𝑤 cos 𝑘𝑛 + 𝜇
(1.12)

The Hamiltonian in the Bogolyubov basis becomes:

𝐻 =
𝐿−1

𝑛=0

𝜆𝛼(𝑘𝑛)  †
𝑘𝑛 𝑘𝑛 −

1
2

(1.13)



4 Kitaev chain with long-range pairing

each fermion 𝑘𝑛 carrying an energy

𝜆𝛼(𝑘𝑛) = 
2𝑤 cos 𝑘𝑛 + 𝜇

2
+ Δ𝑓𝛼(𝑘𝑛)

2
(1.14)

As the Hamiltonian does not commute with the total number of 𝑎𝑘𝑛 fer-
mions, the ground state is the vacuum of the Bogolyubov 𝑘𝑛 fermions and
it has a BCS-like structure:

|GS⟩ =
𝐿/2−1

𝑛=0

cos 𝑘𝑛 − i sin 𝑘𝑛 �̃�
†
𝑘𝑛 �̃�

†
−𝑘𝑛 |0⟩ (1.15)

where |0⟩ is the vacuum of 𝑎𝑘𝑛 and its energy density is

𝑒𝛼(𝐿) = −
1
2𝐿

𝐿−1

𝑛=0

𝜆𝛼(𝑘𝑛). (1.16)

1.2 Critical lines

To find the critical lines of theHamiltonian, we consider the thermodynamic
limit 𝐿 → ∞, so momenta will belong to the continuous interval 𝑘 ∈ [0, 2𝜋)
and the dispersion relation will be

𝜆∞𝛼 (𝑘) = 
2𝑤 cos 𝑘 + 𝜇

2
+ Δ𝑓∞𝛼 (𝑘)

2
(1.17)

with 𝑓∞𝛼 (𝑘) = −i(Li𝛼(ei𝑘) − Li𝛼(e−i𝑘)) and Li𝛼(𝑥) the polylogarithm functions
(Appendix 1.C).

Critical lines can be determined by studying 𝑓∞𝛼 (𝑘). Aswe discuss inAp-
pendix 1.C, when 𝛼 > 1, 𝑓∞𝛼 (𝑘𝑐) = 0 for 𝑘𝑐 = 0 or 𝑘𝑐 = 𝜋, so both the lines
𝜇 = 2𝑤 and 𝜇 = −2𝑤 are critical. When 𝛼 ≤ 1 𝑓∞𝛼 (𝑘𝑐) = 0 only for 𝑘𝑐 = 𝜋
so, the line 𝜇 = 2𝑤 is still critical, while the line 𝜇 = −2𝑤 is gapped because
𝑓∞𝛼 (𝑘) → ∞ if 𝑘 → 0.

In this way it is now possible to connect the disordered phase |𝜇| > 2𝑤
in the limit 𝛼 → ∞ with the ordered one |𝜇| < 2𝑤 without closing the gap.

Let us consider the limit 𝛼 → ∞. If we use the Jordan Wigner transfor-
mation andwe express the fermionic operators in terms of spin 1/2matrices
we get the Hamiltonian of the 𝑋𝑌 model (Appendix 1.A):

𝐻(𝛼 → ∞) = −
1
2

𝑗
(𝑤 + Δ)𝜎𝑥𝑗 𝜎𝑥𝑗+1 + (𝑤 − Δ)𝜎

𝑦
𝑗 𝜎
𝑦
𝑗+1 −

𝜇
2

𝑗
𝜎𝑧𝑗 . (1.18)

At criticality, when 𝜇 = ±2𝑤, this Hamiltonian is equivalent to that of
a free massless fermionic particle and it is described by a conformal field
theory [36, 37, 45].
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The conformal symmetry of the model, corresponding to the symmetry
for translations, rotations and dilations, fixes, among the others, the finite
size scaling of the ground-state energy density in a universal way:

𝑒(𝐿) = 𝑒∞ −
𝜋𝑣𝐹𝑐
6𝐿2

(1.19)

where both 𝑒∞, the energy density in the thermodynamic limit and 𝑣𝐹 the
Fermi velocity are model-dependent. The previous expression can be used
to read the central charge 𝑐 that can be understood as the number of fermionic
massless degrees of freedom in the theory, each fermion counting for 1/2.

If we compute (1.19) for the 𝑋𝑌 model (Appendix 1.A) we get

𝑒𝑋𝑌(𝐿) = 𝑒∞𝑋𝑌 −
𝜋𝑣𝐹
12𝐿2

(1.20)

and the central charge is 𝑐 = 1/2, as expected.
For the model with long-range pairing one can also compute the finite-

size corrections (eq. (1.157)) to the ground-state energy density (1.16) in the
same way

𝑒𝛼(𝐿) = 𝑒∞(𝛼) +
𝜋
12𝐿2

𝜆∞𝛼
′(𝜋) − 𝜆∞𝛼

′ (0) (1.21)

with 𝑒∞(𝛼) = −∫
𝜋

0
𝜆∞𝛼 (𝑥)d𝑥 being the energy density in the thermodynami-

cal limit.
The two contributions from 𝑘 = 0 and 𝑘 = 𝜋 give the corrections to the

ground-state energy. We compute them in the following section.

Divergence of the quasi-particle velocity

Let us consider the line 𝜇 = 2𝑤, where we study the behavior of 𝜆∞𝛼 (𝑘) and
of the quasi-particle velocity

d𝜆∞𝛼 (𝑘)
d𝑘

=
1

𝜆∞𝛼 (𝑘)
−4𝑡2 sin 𝑘(cos 𝑘 + 1) + Δ2𝑓∞𝛼 (𝑘)

d𝑓∞𝛼 (𝑘)
d𝑘  , (1.22)

both for 𝑘 → 0 and 𝑘 → 𝜋.
We start from the expansion of the polylogarithm [46]

Li𝛼(ei𝑘) = Γ(1 − 𝛼)(−i𝑘)𝛼−1 +
∞

𝑛=0

(𝛼 − 𝑛)
𝑛!

(i𝑘)𝑛 (1.23)

giving

𝑓∞𝛼 (𝑘) = 2 cos
𝜋𝛼
2
Γ(1 − 𝛼)𝑘𝛼−1 + 2

∞

𝑛=1

sin
𝜋𝑛
2

(𝛼 − 𝑛)
𝑛!

𝑘𝑛 (1.24)
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and

𝑓∞𝛼 (𝑘)2 = 4 cos2
𝜋𝛼
2
Γ2(1 − 𝛼)𝑘2𝛼−2

+ 8 cos
𝜋𝛼
2

(𝛼)Γ(1 − 𝛼)𝑘𝛼

+ 4 2(𝛼 − 1)𝑘2 + 𝒪 (𝑘3)

(1.25)

In this way, when 𝛼 < 1 and 𝑘 → 0 the dispersion relation diverges as

𝜆∞𝛼 (𝑘) ∼ 2Δ cos
𝜋𝛼
2
|Γ(1 − 𝛼)|
|𝑘|1−𝛼

. (1.26)

This however gives a finite contribution to the ground-state energy density

𝑒∞(𝛼) as the integral of 1/|𝑘|
1−𝛼 is finite when 𝑘 → 0.

From (1.24) we have

𝑓∞𝛼 (𝑘)
d𝑓∞𝛼 (𝑘)
d𝑘

= 4 cos2
𝜋𝛼
2
Γ2(1 − 𝛼)(𝛼 − 1)𝑘2𝛼−3

+ 4 cos
𝜋𝛼
2
Γ(1 − 𝛼) (𝛼 − 1)𝑘𝛼

+ 4 cos
𝜋𝛼
2
Γ(1 − 𝛼)(𝛼 − 1) (𝛼 − 1)𝑘𝛼−1

+ 4 2(𝛼 − 1)𝑘2 + …

(1.27)

Then the 𝑘 → 0 part of the velocity has the following structure (coeffi-
cients 𝐴,𝐵,… do not depend on 𝑘):

d𝜆∞𝛼 (𝑘)
d𝑘

=
𝐴𝑘 + 𝐵𝑘2𝛼−3 + 𝐶𝑘𝛼 + 𝐷𝑘𝛼−1 + 𝐸𝑘2 + … 

√𝐴2 + 𝐹𝑘2𝛼−2 + 𝐺𝑘𝛼 + 𝐻𝑘2 + …
(1.28)

Let us now distinguish four cases:

(i) 𝛼 < 1: The smallest exponent in the numerator is 2𝛼 − 3 and in the
denominator is 2𝛼 − 2, so by collecting these terms one has:

d𝜆𝛼(𝑘)
d𝑘

=
𝑘2𝛼−3 (𝐵 + … )
𝑘𝛼−1 (𝐹 + … )1/2

∼ 𝑘𝛼−2 →∞ (1.29)

which diverges when 𝑘 → 0 as 𝛼 < 1.

(ii) 1 < 𝛼 < 3/2: The smallest exponent in the numerator is still 2𝛼 − 3
while in the denominator is 0 and

d𝜆𝛼(𝑘)
d𝑘

=
𝑘2𝛼−3 (𝐵 + … )
(𝐴 + … )1/2

∼ 𝑘2𝛼−3 →∞ (1.30)

which diverges when 𝑘 → 0 as 1 < 𝛼 < 3/2.
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(iii) 3/2 < 𝛼 < 2: The situation is the same as (ii), but

d𝜆𝛼(𝑘)
d𝑘

∼ 𝑘2𝛼−3 → 0. (1.31)

(iv) 𝛼 > 2: The smallest exponent in the numerator is 1 while in the de-
nominator is 0. So

d𝜆𝛼(𝑘)
d𝑘

∼ 𝑘 → 0. (1.32)

Thus, if 𝜇 = 2𝑤, when 𝑘 → 0, d𝜆𝛼(𝑘)d𝑘 → ∞ if 𝛼 < 3/2, while
d𝜆𝛼(𝑘)
d𝑘 → 0 if

𝛼 > 3/2.
Let us now turn to the case 𝑘 → 𝜋. 𝑓∞𝛼 (𝜋) never diverges because of the

analytic properties of the polylogarithm (see Appendix 1.C)

𝑓∞𝛼 (𝑘 → 𝜋) → −2Li𝛼−1(−1)(𝑘 − 𝜋) (1.33)

and gives for the dispersion relation

𝜆∞𝛼 (𝑘 → 𝜋) = 2Δ|Li𝛼−1(−1)|(𝑘 − 𝜋) (1.34)

a linear behavior with a slope fixing the Fermi velocity 𝑣𝐹:

𝑣𝐹(𝛼) = 2Δ|Li𝛼−1(−1)|. (1.35)

It is possible now to compute the corrections to the ground state energy
density by (1.21):

𝛼 > 3/2: we have 𝜆∞𝛼
′(0) = 0, 𝜆∞𝛼

′(𝜋) = 𝑣𝐹(𝛼) and

𝑒𝛼(𝐿) = 𝑒∞𝛼 −
𝜋𝑣𝐹(𝛼)
12𝐿2

(1.36)

so the central charge 𝑐 = 1/2 and the transition is in the same uni-
versality class as the Ising model. In this region we can say that the
long-range pairing of the Hamiltonian is weak enough not to change
the low-energy physics of the model, that can be considered still short
range.

𝛼 < 3/2: we have 𝜆∞𝛼
′(0) → ∞ and the corrections to the ground-state energy

diverges, too. This signals the breaking of the conformal symmetry of
the transition point due to the strong long-range pairing.

A similar result holds for the 𝜇 = −2𝑤 line where, if 𝛼 > 2 the correc-
tion to the ground state-energy density gives 𝑐 = 1/2 and the model can
be consider still short-range, while when 1 < 𝛼 < 2, 𝜆∞𝛼

′(0) → ∞ and the
conformal symmetry of the model is broken1.

1We recall that if 𝛼 < 1 the line 𝜇 = −2𝑤 is no more critical.
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1.3 Correlation functions

In this section, by exploiting the integrability of Hamiltonian (1.6), we will
provide amethod for computing the correlation functions. Wewill find two
regions of the phase diagram one in which the correlation functions display
a hybrid behavior, the other in which the decays is purely algebraic.

We consider the Green function 𝑔1(𝑅) = ⟨𝑎†𝑅𝑎0⟩ and the anomalous one
𝑔𝑎1(𝑅) = ⟨𝑎†𝑅𝑎†0⟩ computed on the ground state (1.15). As themodel is free, we
have also ⟨𝑎†𝑅⟩ = ⟨𝑎𝑅⟩ = 0, so from 𝑔1(𝑅) and 𝑔2(𝑅), all the others correlators
can be built by means of Wick’s theorem, e.g.

𝑔2(𝑅) = ⟨𝑛𝑅𝑛0⟩
= ⟨𝑎†𝑅𝑎𝑅𝑎†0𝑎0⟩
= ⟨𝑛𝑅⟩ ⟨𝑛0⟩ − ⟨𝑎†𝑅𝑎†0⟩ ⟨𝑎𝑅𝑎0⟩ + ⟨𝑎†𝑅𝑎0⟩ ⟨𝑎𝑅𝑎†0⟩

(1.37)

Let us consider 𝑔1(𝑅). In a finite system one has

⟨𝑎†𝑅𝑎0⟩ =
1
𝐿

𝐿−1

𝑛=0

ei𝑘𝑛𝑅 sin2 𝑘𝑛 =
𝛿𝑅,0
2

−
1
𝐿

𝐿−1

𝑛=0

ei𝑘𝑛𝑅
cos 𝑘𝑛 + 𝜇
2𝜆𝛼(𝑘𝑛)

(1.38)

while, in the limit 𝐿 → ∞ (if 𝑅 > 0)

𝑔1(𝑅) = −
1
2𝜋 

2𝜋

0
d𝑘 ei𝑘𝑅𝒢𝛼(𝑘), (1.39)

with

𝒢𝛼(𝑘) =
2𝑤 cos 𝑘 + 𝜇
2𝜆∞𝛼 (𝑘)

. (1.40)

In the following we will give an asymptotic expansion for (1.39) in the
whole phase diagram, and we will find that, for every finite 𝛼 the integral
shows an hybrid decay, e.g. exponential at short distances and algebraic at
long distances. The second behavior is unexpected because, in a gapped
phase, one expects always an exponential decay [30].

We will find that (1.39) has two main contributions:

(i) the 𝑘 → 0 part is responsible for the power-law behavior at long dis-
tance;

(ii) the 𝑘 → 𝜋 part is responsible for the exponential behavior at short
distance.

To evaluate the integral, wewill use the integration contour in Figure 1.1
and the Cauchy Theorem:

𝑔1(𝑅) = −
1
2𝜋

lim
𝑀→∞


𝒞0

+
ℒ−

+
ℒ+

+
𝒞2𝜋
 d𝑧 ei𝑧𝑅𝒢𝛼(𝑧) (1.41)
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0 2ππ

π + iξ1

C0

C2πL− L+

C⊥
iM

C ′⊥

ε

π + iξ2

Figure 1.1: Integration contour for evaluating the integral (1.39). The red dashed
line is the branch cut of the square root in the denominator of the integrand in
(1.39).

with 𝑧 = 𝑘 + i𝑦. We have neglected the contributions from 𝒞⟂ and 𝒞 ′
⟂ as

they vanish when𝑀→∞.
We choose the ℒ± contours since the denominator of (1.40), once ex-

tended to the complex plane on the line 𝜋 + i𝑦, changes its sign since it
vanishes for two values 𝜉1 < 𝜉2 given by2:

(𝜇 − 2𝑤 cosh 𝜉1,2)2 + Δ2𝑓∞𝛼 (𝜋 + i𝜉1,2)2 = 0 (1.42)

The presence of these roots leads to a brach cut for the square root on
the line 𝜋 + i𝑦. We choose the branch cut in this way:

𝜆∞𝛼 (𝑧) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2𝑤 cosh 𝑦 − 𝜇)2 + Δ2𝑓∞𝛼 (𝜋 + i𝑦)2 if 𝑧 = 𝜋 + i𝑦 𝑦 < 𝜉1 or 𝑦 > 𝜉2
i−(2𝑤 cosh 𝑦 − 𝜇)2 − Δ2𝑓∞𝛼 (𝜋 + i𝑦)2 if 𝑧 = 𝜋+ + i𝑦 𝜉1 < 𝑦 < 𝜉2
−i−(2𝑤 cosh 𝑦 − 𝜇)2 − Δ2𝑓∞𝛼 (𝜋 + i𝑦)2 if 𝑧 = 𝜋− + i𝑦 𝜉1 < 𝑦 < 𝜉2,

(1.43)

Let us now analyze the different contributions from the different paths.
We shall see that the pathsℒ± give the exponential decaying part, while𝒞0
and 𝒞2𝜋 give the power-law decaying part (at long distances).

Exponential part

Onℒ−, where 𝑧 = 𝜋− + i𝑦we have3

𝐼ℒ−
= −

1
2𝜋 ℒ−

d𝑧 ei𝑧𝑅𝒢𝛼(𝑧)

= −
iei𝜋𝑅

2𝜋 
𝜉2

∞

e−𝑦𝑅(𝜇 − cosh 𝑦)d𝑦

(𝜇 − cosh 𝑦)2 + 𝑓2𝛼(𝜋 + i𝑦)

−
iei𝜋𝑅

2𝜋 
𝜉1

𝜉2

e−𝑦𝑅(𝜇 − cosh 𝑦)d𝑦
−i−(𝜇 − cosh 𝑦)2 − 𝑓2𝛼(𝜋 + i𝑦)

(1.44)

2We notice that 𝑓2𝛼(𝜋 + i𝑦) is real.
3In this section we set 2𝑤 = Δ = 1.
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wherewe choose the right expression for the square root, according to (1.43).
In the same way, onℒ+, we have

𝐼ℒ+
=
iei𝜋𝑅

2𝜋 
∞

𝜉2
e−𝑦𝑅𝒢𝛼(𝜋+ + i𝑦)d𝑦

+
iei𝜋𝑅

2𝜋 
𝜉2

𝜉1
e−𝑦𝑅𝒢𝛼(𝜋+ + i𝑦)d𝑦

(1.45)

and, because of the two expressions for 𝜆∞𝛼 (𝜋± + i𝑦) when 𝑧 = 𝜋± + i𝑦 from
equation (1.43), 𝐼ℒ−

+ 𝐼ℒ+
shows an exponential decay with an inverse cor-

relation length given by 𝜉1:

𝐼ℒ−
+ 𝐼ℒ+

=
iei𝜋𝑅

𝜋 
𝜉2

𝜉1
d𝑦 e−𝑦𝑅𝒢𝛼(𝜋+ + i𝑦)

=
iei𝜋𝑅

𝜋
e−𝜉1𝑅

𝜉2

0
d𝑦 e−𝑦𝑅𝒢𝛼(𝜋+ + i(𝑦 + 𝜉1)).

(1.46)

The previous integral is a Laplace-type integral [47]. We can get its leading
behavior, first by replacing 𝜉2with infinity, as the integrand is exponentially
suppressed and then by integrating the 𝑦 → 0 part of𝒢𝛼(𝜋++ i(𝑦+𝜉1)). One
has

𝒢𝛼(𝜋+ + i(𝑦 + 𝜉1)) ∼
𝐴𝛼(𝜇)
i√𝑦

if 𝑦 → 0 (1.47)

with

𝐴𝛼(𝜇) =
𝜇 − cosh 𝜉1

2√2[Li𝛼−1(−e𝜉1) + Li𝛼−1(−e−𝜉1))]1/2[Li𝛼(−e𝜉1) − Li𝛼(−e−𝜉1))]1/2
(1.48)

so

𝐼ℒ−
+ 𝐼ℒ+

= 𝐴𝛼(𝜇)
ei𝜋𝑅

√𝜋
e−𝜉1𝑅

√𝑅
(1.49)

showing the exponential decay.

Power-law part

On 𝒞0, 𝑧 = 𝜖 + i𝑦 (𝜖 is an infinitesimal parameter we let it go to zero) we
have

𝐼𝒞0 = −
1
2𝜋 𝒞0

ei𝑧𝑅𝒢𝛼(𝑧)d𝑧

= −
i

2𝜋 
∞

0
e−𝑦𝑅𝒢𝛼(𝜖 + i𝑦)d𝑦

(1.50)
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while on 𝒞2𝜋, 𝑧 = 2𝜋 − 𝜖 + i𝑦

𝐼𝒞2𝜋 = −
1
2𝜋 𝒞2𝜋

ei𝑧𝑅𝒢𝛼(𝑧)d𝑧

=
i

2𝜋 
∞

0
e−𝑦𝑅𝒢𝛼(2𝜋 − 𝜖 + i𝑦)d𝑦

(1.51)

Now, as 𝒢𝛼(2𝜋 − 𝜖 + i𝑦) = 𝒢 ∗
𝛼(𝜖 + i𝑦)

𝐼𝒞0 + 𝐼𝒞2𝜋 =
1
𝜋 

∞

0
d𝑦 e−𝑦𝑅 Im(𝒢𝛼(𝜖 + i𝑦))

=
1
𝜋 

∞

0
d𝑦 e−𝑦𝑅 Im(𝒢𝛼(i𝑦))

(1.52)

where in the last equation we let 𝜖 → 0.
The integral in (1.52) is the Laplace transform of 𝒢𝛼(i𝑦)), so we can eval-

uate its asymptotic behavior, as we did before, by computing the 𝑦 → 0 part
of 𝒢𝛼(i𝑦)) and then integrating [47]. In the following we will consider the
case of 𝛼 ≠ 1, 2, … where we can use the series expansion of the polyloga-
rithm

Li𝛼(e±𝑦) = −Γ(1 − 𝛼)(∓𝑦)𝛼−1 +
∞

𝑗=0

(𝛼 − 𝑗)
𝑗!

(±𝑦)𝑗. (1.53)

Now

Li𝛼(e𝑦) − Li𝛼(e−𝑦) = −Γ(1 − 𝛼) ei𝜋𝛼 + 1 𝑦𝛼−1

+ 2
∞

𝑗=0

(𝛼 − (2𝑗 + 1))
(2𝑗 + 1)!

𝑦2𝑗+1
(1.54)

and the main contribution to the imaginary part of 𝒢𝛼(i𝑦), due to Li𝛼(e𝑦), is
given by

𝒢𝛼(i𝑦) ∼
𝜇 + 1

2(𝜇 + 1)2 − Γ2(1 − 𝛼)(ei𝜋𝛼 + 1)2𝑦2𝛼−2 + 4Γ(1 − 𝛼)(ei𝜋𝛼 + 1) (𝛼 − 1)𝑦𝛼

(1.55)

We have now to distinguish three cases 𝛼 > 2, 1 < 𝛼 < 2 and 𝛼 < 1.

𝛼 > 2 ∶ The Taylor expansion of (1.55), as the leading power in the denomi-
nator is 𝑦𝛼, is:

𝒢𝛼(i𝑦) ∼
sgn (𝜇 + 1)

2 1 − 2
Γ(1 − 𝛼)(ei𝜋𝛼 + 1) (𝛼 − 1)𝑦𝛼

(𝜇 + 1)2  (1.56)
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and its imaginary part

Im𝒢𝛼(i𝑦) ∼ −
Γ(1 − 𝛼) sin(𝜋𝛼) (𝛼 − 1)𝑦𝛼

sgn (𝜇 + 1)(𝜇 + 1)2
. (1.57)

entering eq.(1.52) gives

𝐼0 + 𝐼2𝜋 = −
(𝛼 − 1)Γ(1 − 𝛼) sin(𝜋𝛼)
𝜋 sgn (𝜇 + 1)(1 + 𝜇)2 

∞

0
d𝑦 e−𝑦𝑅𝑦𝛼

= −
(𝛼 − 1)Γ(1 − 𝛼)Γ(𝛼 + 1) sin(𝜋𝛼)

𝜋 sgn (𝜇 + 1)(1 + 𝜇)2
1

𝑅𝛼+1

= −
𝛼 (𝛼 − 1)

sgn (𝜇 + 1)(1 + 𝜇)2
1

𝑅𝛼+1

(1.58)

where we used Euler’s reflection formula Γ(𝛼)Γ(1 − 𝛼) = 𝜋/ sin(𝜋𝛼) to
extend the previous equation to integer 𝛼 also.

1 < 𝛼 < 2: The leading contribution to the denominator of 𝒢𝛼(𝑦) is 𝑦2𝛼−2 and one
has:

𝒢𝛼(i𝑦) ∼
sgn (𝜇 + 1)

2 1 +
Γ(1 − 𝛼)2(ei𝜋𝛼 + 1)2𝑦2𝛼−2

2(𝜇 + 1)2  (1.59)

having imaginary part

Im𝒢𝛼(i𝑦) ∼
Γ(1 − 𝛼)2 sin(𝜋𝛼) cos2 𝜋𝛼2  𝑦

2𝛼−2

sgn (𝜇 + 1)(𝜇 + 1)2
. (1.60)

So,

𝐼0 + 𝐼2𝜋 =
Γ(1 − 𝛼)2 sin(𝜋𝛼) cos2 𝜋𝛼2 
𝜋 sgn (𝜇 + 1)(𝜇 + 1)2 

∞

0
d𝑦 e−𝑦𝑅𝑦2𝛼−2

=
Γ(1 − 𝛼)2 sin(𝜋𝛼) cos2 𝜋𝛼2  Γ(2𝛼 − 1)

𝜋 sgn (𝜇 + 1)(𝜇 + 1)2
1

𝑅2𝛼−1
.

(1.61)

𝛼 < 1: By multiplying both the denominator and the numerator of 𝒢𝛼(i𝑦) in
(1.55) by 𝑦1−𝛼 and then by Taylor expanding we have

Im𝒢𝛼(i𝑦) ∼
(𝜇 + 1)
4Γ(1 − 𝛼)

𝑦1−𝛼 (1.62)

and

𝐼𝒞0 + 𝐼𝒞2𝜋 =
(𝜇 + 1)

2𝜋Γ(1 − 𝛼) 
∞

0
d𝑦 𝑦1−𝛼 e−𝑦𝑅

=
(𝜇 + 1)(1 − 𝛼)

4𝜋
1

𝑅2−𝛼

(1.63)
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By collecting all the contributions, we found that

⟨𝑎†𝑅𝑎0⟩ =
𝐴𝛼(𝜇)ei𝜋𝑅

√𝜋
e−𝜉1𝑅

√𝑅

−
𝛼 (𝛼 − 1)

sgn (𝜇 + 1)(1 + 𝜇)2
1

𝑅𝛼+1
for 𝛼 > 2,

(1.64)

⟨𝑎†𝑅𝑎0⟩ =
𝐴𝛼(𝜇)ei𝜋𝑅

√𝜋
e−𝜉1𝑅

√𝑅

+
Γ(1 − 𝛼)2 sin(𝜋𝛼) cos2 𝜋𝛼2 
𝜋 sgn (𝜇 + 1)(𝜇 + 1)2

Γ(2𝛼 − 1)
𝑅2𝛼−1

for 1 < 𝛼 < 2
(1.65)

and

⟨𝑎†𝑅𝑎0⟩ =
𝐴𝛼(𝜇)ei𝜋𝑅

√𝜋
e−𝜉1𝑅

√𝑅

+
(𝜇 + 1)(1 − 𝛼)

4𝜋
1

𝑅2−𝛼
for 𝛼 < 1

(1.66)

where 𝐴𝛼(𝜇) is given by (1.48) and 𝜉1 is the smallest solution of

(𝜇 − cosh 𝜉1,2)2 − Li𝛼(−e−𝜉1,2) − Li𝛼(−e𝜉1,2)
2
= 0. (1.67)

In Fig. 1.2 the comparison between the exact integral (1.39) and equa-
tion (1.64) is reported. One can see that the power-law tail occurs when the
two contributions in (1.64) and (1.65) become of the same order of magni-
tude. This usually happens when 𝛼 > 1.

When 𝛼 < 1 one can show, numerically, that even if equation (1.42) has
one or two solutions, the exponential part in (1.66) is negligible with respect
to the power-law tail. This gives a pure power-law correlation function.

Fig. 1.3(a) shows the decaying exponent computednumerically from (1.39)
and compared with eqs. (1.64), (1.65), (1.66).

1.3.1 Anomalous correlator

The correlators 𝑔𝑎1(𝑅) = ⟨𝑎†𝑅𝑎†0⟩ is given by

⟨𝑎†𝑅𝑎†0⟩ =
1
𝐿

𝐿−1

𝑛=0

ei𝑘𝑛𝑅 i sin 𝑘𝑛 cos 𝑘𝑛

=
i

𝐿

𝐿−1

𝑛=0

ei𝑘𝑛𝑅
Δ𝑓𝛼(𝑘𝑛)
2𝜆𝛼(𝑘𝑛)

(1.68)
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Figure 1.2: Panel (a) integral (1.39) (points) and eq. (1.64) (solid line) for 𝛼 = 3 and
𝜇 = 0.75. Panel (b) integral (1.39) (points) and eq. (1.66) (solid line) for 𝛼 = 0.4 and
𝜇 = 0.75 showing the exact matching between analytics and numerics.

in a finite system, while, in the thermodynamic limit

⟨𝑎†𝑅𝑎†0⟩ =
1
2𝜋 

2𝜋

0
ei𝑘𝑅ℱ𝛼(𝑘) (1.69)

with

ℱ𝛼(𝑘) = i
Δ𝑓∞𝛼 (𝑘)
2𝜆∞𝛼 (𝑘)

. (1.70)

Using the same integration contour as before we get for 𝑔𝑎1(𝑅)

⟨𝑎†𝑅𝑎†0⟩ =
ei𝜋𝑅e−𝜉1𝑅

𝜋 
∞

0
d𝑦 e−𝑦𝑅ℱ𝛼(𝜋+ + i(𝑦 + 𝜉1))

−
1
𝜋 

∞

0
d𝑦 e−𝑦𝑅 Imℱ𝛼(i𝑦)

(1.71)

showing both the exponential and the power law contributions. 𝜉1 is always
the smallest solution of4

(𝜇 − cosh 𝜉1,2)2 − Li𝛼(−e−𝜉1,2) − Li𝛼(−e𝜉1,2)
2
= 0. (1.72)

If 𝛼 > 1, as

Imℱ𝛼(i𝑦) ∼
Γ(1 − 𝛼) sin𝜋𝛼

2|𝜇 + 1|
𝑦𝛼−1 (1.73)

we have

⟨𝑎†𝑅𝑎†0⟩ =
𝐵𝛼(𝜇)ei𝜋𝑅

√𝜋
e−𝜉1𝑅

√𝑅
−

1
2|𝜇 + 1|

1
𝑅𝛼

(1.74)

4From now and to the end of this section we use Δ = 2𝑤 = 1
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Figure 1.3: (a) Decay exponent of (1.39) compared with eqs. (1.64), (1.65), (1.66).
The equations of the three straight lines are 2 − 𝛼, 2𝛼 − 1 and 𝛼+ 1. The point 𝛼 = 1
is discussed in Appendix 1.C. (b) Decay exponent of (1.69). The equation of the
straight line is 𝛼. The discrepancy between the fitted values and the analytical line
is due to numerical errors.

with

𝐵𝛼(𝜇) =
[Li𝛼(−e𝜉1) − Li𝛼(−e−𝜉1)]1/2

2√2[Li𝛼−1(−e𝜉1) + Li𝛼−1(−e−𝜉1))]1/2
(1.75)

while, if 𝛼 < 1
Imℱ𝛼(i𝑦) ∼

1
2

(1.76)

and

⟨𝑎†𝑅𝑎†0⟩ =
𝐵𝛼(𝜇)ei𝜋𝑅

√𝜋
e−𝜉1𝑅

√𝑅
−
1
2𝜋

1
𝑅
. (1.77)

Fig. 1.3(b) shows the comparison between the fitted exponent from (1.69)
and the analytical results in (1.74) and (1.77).

From 𝑔1(𝑅) and 𝑔𝑎1(𝑅) one can compute the connected two-point correla-
tion function 𝑔𝑐2(𝑅) = ⟨𝑛𝑅𝑛0⟩ − ⟨𝑛𝑅⟩ ⟨𝑛0⟩ that behaves as 𝑔𝑐2(𝑅) ∼ 1/𝑅2𝛼 when
𝛼 > 1. The the decaying exponent we found is the same as the one of the
Ising model numerically computed in [48].

1.4 Entanglement scaling

In recent years, entanglement measures have been used to characterize the
properties of a quantum many-body system [49–57].

At zero temperature, the system occupies the ground state |𝐺𝑆⟩ of a
Hamiltonian 𝐻 and |𝐺𝑆⟩ contains all the information on the static proper-
ties that can be readily collected by an entanglement measure on it. Entan-
glement can provide also a practical way to detect the boundaries [58] be-
tween different phases, since it is sensitive to the presence of critical points
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of quantum phase transitions. Mreover the final efficiency of numerical
techniques, based e.g. on density matrix renormalization group and simi-
lar methods, for approximating a quantum state, is related to the amount of
entanglement of such a state [59]. A good control on it can give very good
quasi-exact approximations.

A measure of the rate of entanglement present in |𝐺𝑆⟩ can be given by
the von-Neumann entropy 𝑆vN we will introduce in the following.

Let us consider a one-dimensional chain of length 𝐿, and a partition into
two disjoint subsystems 𝐴 and 𝐵 containing ℓ and 𝐿 − ℓ sites, respectively.

We can build the density matrix of the total system through |𝐺𝑆⟩

𝜌 = |𝐺𝑆⟩ ⟨𝐺𝑆| (1.78)

and we can define the reduced density matrix for subsystem 𝐴 tracing out
the degrees of freedom of 𝐵 from the total 𝜌:

𝜌𝐴(ℓ) = Tr𝐵 𝜌 (1.79)

so we can look at the subsystem 𝐴 to be in a mixed state defined by the
previous 𝜌𝐴.

The von Neumann entanglement entropy 𝑆vN is defined as the entropy
of the reduced density matrix 𝜌𝐴

𝑆vN(ℓ) = −Tr 𝜌𝐴 log2 𝜌𝐴 (1.80)

We are interested in the the scaling of the entanglement 𝑆vN(ℓ)with the
sub-system size ℓ.

By recalling the thermodynamic concept of entropy5, being an extensive
quantity, it obeys a volume law, and one could think that even 𝑆vN has an
extensive behavior.

This is, however, not true for ground states of gapped local Hamiltoni-
ans and one generally finds they obey an area law [60], meaning that, for
one-dimensional systems, the entropy saturates to a constant.

Moreover, it has been shown that, the scaling changes at criticality and
reflects the universal behavior of the system, making the measure of en-
tanglement a powerful method for getting information on the universality
properties of critical points [31, 61].

For one-dimensional systems with local Hamiltonian defined on a ring
of length 𝐿, these two different behaviors can be summarized as follows:

(i) At criticality 𝑆vN(ℓ) diverges logarithmically with the block size ℓ

𝑆vN(ℓ) =
𝑐
3
log2 

𝐿
𝜋
sin 

𝜋ℓ
𝐿 

+ 𝑎 (1.81)

5Thermal entropy has the same functional form as (1.80) with 𝜌𝐴 the canonical or gran-
canonical density matrix.
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where 𝑐 is the central charge of the underlying conformal field theory
and 𝑎 is a nonuniversal constant.
This scaling can be used to compute the central charge 𝑐 of the theory
also for non-integrable model, by employing, e.g. DMRG techniques
[62–64] that can directly access to the reduced density matrix 𝜌𝐴(ℓ)
and, then, to 𝑆vN(ℓ).

(ii) Away from criticality, where the system has a gap and because of this
a finite correlation length 𝜉 [65] the entropy saturates to a constant

𝑆vN(ℓ) =
𝑐
3
log2 𝜉 (1.82)

and obeys an area law.

In this sectionwewill compute the vonNeumann entropy 𝑆vN(ℓ) for the
Hamiltonian (1.6) by exploiting the method of Appendix 1.B as𝐻 in (1.6) is
quadratic.

For different system sizes 𝐿 and for different values of 𝜇 (fixing in this
section Δ = 2𝑤 = 1) and 𝛼, we computed the entropy 𝑆vN(𝐿/2) for half of
the chain. Then, to study where a violation of the area law occurs (i.e. when
the entropy does not saturate to a constant), we used eq. (1.81), in principle
valid only where the system is critical, to define an effective central charge
𝑐eff throughout the all phase diagram

𝑆vN(ℓ) =
𝑐eff
3
log2 

𝐿
𝜋
sin 

𝜋ℓ
𝐿 

+ 𝑎 (1.83)

in analogy of what has been done for the Ising model with long-range in-
teractions in [48].

Figure 1.4 shows the plots of 𝑆vN(𝐿/2) opportunely rescaled both for a
gapped and a critical point, while the resulting 𝑐eff is reported in Figure 1.5.

What we found is that

(i) for 𝛼 > 1, 𝑐eff = 0 almost everywhere in the gapped region |𝜇| ≠ 2𝑤.
This is equivalent to say that the area law is not violated and the scal-
ing of the entropy does not depend on the system size;

(ii) for 𝛼 < 1, 𝑐eff ≠ 0 within the gapped region. This corresponds to the
violation of the area law and it is unexpected if the phase is gapped,
because of (1.82). The behavior of 𝑐eff, as well as of the correlation
functions discussed before, can be ascribed to the very strong long-
range pairing, showingup in non-local quantities such as 𝑆vN(𝐿/2) and
correlation functions.

A cut of the phase diagram of Figure 1.5, for 𝜇 = 0.5 e 𝜇 = 1 is shown
in Figure 1.6, where one can see the increasing of the central charge on the
critical line, and the violation of the area law in the gapped phase.
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Figure 1.4: The plots show the values of 𝑆vN(𝐿/2) (rescaled in order to easily read
from the 𝑦-axis the value of 𝑐eff) for (a) the gapped point 𝜇 = 0.5 and (b) the critical
point 𝜇 = 1 as function of 1/ log2(𝐿). The intercept on the 𝑦-axis gives 𝑐eff in the

thermodynamic limit. One can see that by decreasing 𝛼, for a gapped point (a),
𝑐eff goes from 0 (short-range regime) to 1/2 (area law violation), while for a critical
point (b), 𝑐eff goes from 1/2 (as expected for the 𝑋𝑌-Ising model) to 1.
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Figure 1.5: Phase diagram obtained through the effective central charge 𝑐eff by
fitting the vonNeumann entropy 𝑆(𝐿/2). Two gapless conformal field theories with
𝑐 = 1/2 are visible for 𝜇 = 1 (𝛼 > 3/2) and 𝜇 = −1 (𝛼 > 2). Red vertical dotted lines:
gapless lines with broken conformal symmetry. Horizontal dashed line separates
two regions: correlation functions display a hybrid exponential-algebraic (𝛼 > 1)
and purely algebraic decay (𝛼 < 1).
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Figure 1.6: The plot shows both the violation of the area law in the gapped phase
(𝜇 = 0.5) when 𝛼 < 1 and the increasing of the central charge (from 1/2 to 1) when
𝛼 decreases to 0 on the critical line 𝜇 = 1.

Let us discuss the behavior of the central charge on the critical line 𝜇 =
1. We have seen that the finite size corrections to the ground state energy
diverge for 𝛼 < 3/2, while here we found 𝑐 > 1/2 for 𝛼 < 3/2 (Figure 1.6)
to arrive to 𝑐 = 1 for 𝛼 = 0 . This value is the same as a Luttinger liquid
and it would correspond to a conformal bosonic theory. These two theories
(Ising with 𝑐 = 1/2 and Luttinger 𝑐 = 1), are described by two completely
different conformal field theories, the principal difference being the number
of primary fields they admit. For a complete review one can see [37, 66–68].

In particular, the degeneracy patterns of the excited states have two dif-
ferent behaviors.

If we take into account the Ising model, the excitations can be made up
by constructing amulti-particle state and adding the required combinations
of single-particle energy given by

𝜆(𝑘𝑛) = (cos 𝑘𝑛 − 1)
2 + 𝛾2 sin2 𝑘𝑛 (1.84)

at criticality, with 𝑘𝑛 = 2𝜋(𝑛+1/2)/𝐿. We note that, as the dispersion relation
is symmetric with respect to 𝑘 = 0 there are two fermions with opposite
momenta carrying the same energy.

Consider now, the single particle low-lying excitations. The are created
near 𝑘 = 0 and their energy, in the limit of a long, but finite chain is

𝜆(𝑘𝑛) = 𝑣𝐹
2𝜋
𝐿
𝑛 +

1
2
 with 𝑘𝑛 ∼ 0 (1.85)

with 𝑣𝐹 = 𝛾 the Fermi velocity (see eq. (1.159)).
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𝑛 0 1 2 3 4 5
ℰeven
𝑛 0 1 2 3 4 5

degeneracy 1 1 4 5 9 13

𝑛 1 2 3 4 5
ℰodd
𝑛 1/2 3/2 5/2 7/2 9/2

degeneracy 2 2 4 6 12

Table 1.1: Degeneracies of the even (upper table) and odd-particle (lower table)
sectors of the Ising model. The same degeneracies are found for the long-range
Hamiltonian both for 𝛼 > 1 and for 𝛼 < 1 (see Figure 1.7).

If we rescale energy and momentum, by defining

𝜖𝑛 =
𝐿

2𝜋𝑣𝐹
𝜆(𝑘𝑛) = 𝑛 +

1
2
 (1.86)

𝑝𝑛 = 𝑛 +
1
2

(1.87)

the low-lying excitations are given by choosing 𝑛 between 0, ±1, ±2… and
recalling that, as the theory is fermionic, we cannot have two fermions with
the same quantum number.

Nowwe can divide the excitations into two groups as they can be given
by an odd or an even number of fermions and then we count their degen-
eracies.

Let us consider the odd-particle number excitations. The first excitation
will be given by 𝑛 = 0 with momentum 𝑝0 = 1/2 and ℰodd

1 = 𝜖0 = 1/2.
The second one, if we consider 𝑛 = −1will have always an energy 𝜖−1 =

1/2, but an opposite momentum 𝑝−1 = −1/2, so it will be degenerate with
the first.

The next energy level ℰodd
2 = 3/2 will be always two-fold degenerate,

because it can be given by 𝑛 = 1, or 𝑛 = −2. The case ℰodd
3 = 5/2 is different,

as this can be built directly with a particle in 𝑛 = 2 (𝑝2 = 3/2) or 𝑛 = −3
(𝑝−3 = −3/2) or with three particles in {𝑛1 = 0, 𝑛2 = −1, 𝑛3 = 2} (with total
momentum 𝑝0+𝑝−1+𝑝2 = 5/2) or {𝑛1 = 0, 𝑛2 = −1, 𝑛3 = −3} (withmomentum
−5/2) and it will be four-fold degenerate.

In the same way, one can compute all the degeneracy pattern also in the
even sector. Table 1.1 shows the degeneracies of the first levels both for the
odd and for the even particle sectors of the Ising model [37].

If we now compute the degeneracy of the long-range Hamiltonian (1.6)
wewill always find the previous patterns, nomatterwhich𝛼we consider, as
the theory has always fermionic excitations. They are shown in Figure 1.7.

We can thus conclude, that the entanglement entropy cannot be used to
probe the fermionic character of (1.6) as the conformal field theory is broken
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Figure 1.7: Degeneracy patterns for the long-range Hamiltonian for different 𝛼 at
criticality. (a), (b) panels for the excitations with an even particle number, (c), (d)
for the excitations with an odd number of particles. The two plots show the same
degeneracies as a 𝑐 = 1/2 theory reported in Table 1.1.
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Figure 1.8: The plot shows the density-density correlation function 𝑔2(𝑅) at 𝜇 =
1, 𝛼 = 0 with a dimerized behavior, responsible for the doubling of the central
charge on the critical line.

and the entanglement scaling of (1.81), which was derived in a conformal
field theory context, does not hold.

We can however explain the apparent doubling of the central charge
by looking at the correlation functions used to compute the von Neumann
entropy. Using the technique of the previous section we can compute the
density-density correlation function, for 𝛼 = 0, that comes out to be (Fig-
ure 1.8)

𝑔2(𝑅) =
1 − cos𝜋𝑅
2𝜋2𝑅2

(1.88)

which is identical to the one of a Luttinger liquid yielding for the central
charge the value 𝑐 = 1 [69].

1.5 Entropy scaling after a quench

The breaking of the conformal field theory on the critical line 𝜇 = 2𝑤 for
sufficiently small 𝛼 < 1, discussed in the previous section, can be tested by
looking at the scaling of the entanglement entropy after a global quench.

In recent years, the time evolution in of entanglementmeasures has been
investigated both analytically [38, 70–75] and numerically [39, 76–79], even
because the growth in time of the entanglement between two halves of a
many-body system takes into account the quantum correlations between
them and, from a numerical point of view, it can give information on the
complexity of the numerical approximation of this system, when using, for
example, matrix product state representation [80–83]

A global quench is a changing of one or more parameters in the system,
previously prepared in a given state |𝜓⟩ (that can be taken as the ground
state of a pre-quench Hamiltonian 𝐻0) that, for 𝑡 > 0 is allowed to evolve
with a different post-quench Hamiltonian 𝐻1.
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Let us briefly review what is the entanglement dynamics for a system
with short range interactions, for which we will employ the so-called semi-
classical approximation [70] for the quench dynamics, valid when the post-
quench Hamiltonian can be written in terms of free-moving particles.

We will get an estimation of the rate of the growth of the entanglement
𝑆(𝑡) between two parts 𝐴 (of length ℓ) and 𝐵 of the system.

As soon as the evolution, ruled by the post-quench Hamiltonian 𝐻1,
starts, we have the instantaneous production of pairs of quasi-particleswith
opposite momenta 𝑘 and −𝑘, created somewhere in the system. These are
entangled pairs and they move freely in the system with a finite group ve-
locity 𝑣𝑔.

The maximum for the group velocity was theoretically studied in [84]
and, for a system with short range interactions always exists. It is given by
the Lieb-Robinson bound which also defines an effective light cone outside
of which correlations are exponentially suppressed.

Now, quasiparticles created in 𝐴 arriving in 𝐵 entangle the two parts
and, as the rate of arrival in 𝐵 is constant (𝑣𝑔 being constant) the entropy
between 𝐴 and 𝐵 grows linear in time. This was also proven for a quench
in a conformal field theory in [38] where a universal behavior for 𝑆(𝑡) was
found

𝑆(𝑡) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝜋𝑐𝑡
6

𝑡 < ℓ/2
𝜋𝑐ℓ
12

𝑡 > ℓ/2
(1.89)

In the case of long-range interactions with power 𝛼, where the Lieb-
Robison bound has to be modified to take them into account [85], more
regimes were found for the spreading of correlations and entanglment en-
tropy [39, 75, 77, 86, 87].

In particular for the Ising model with long range interactions three dif-
ferent regimes for the entanglement were identified [39]

(i) for relatively short-range interactions (𝛼 > 1), entropy grows linearly
in time as explained before with the semiclassical picture;

(ii) for long-range interactions 𝛼 ∼ 0.8, 0.9, 1 the half-chain entanglement
entropy grows logarithmically;

(iii) for strong long-range interactions 𝛼 ≲ 0.2, rapid oscillations of the
half-chain entanglement entropy were observed around small values.

We studied, in this work, the entanglement growth after a quench ruled
by the Hamiltonian (1.6) for different 𝛼 (with Δ = 2𝑤 = 1), by using the
following quench protocol.

We prepared the system in |𝜓(0)⟩ that is the ground state of (1.6) when

𝜇0 ≫ 1. This state is characterized by a Bogolyubov angle
(0)
𝑞𝑛 given by
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(1.12). Then we let |𝜓(0)⟩ evolve by means of 𝐻 (1) eq. (1.6) with 𝜇1 = 1:

|𝜓(𝑡)⟩ = e−i𝐻
(1)𝑡 |𝜓(0)⟩ . (1.90)

We will measure time 𝑡 in unit of ℏ/𝐽 where 𝐽 is the energy scale used for the
Hamiltonian 𝐻 (1).

𝐻 (1) can be written in a new Bogolyubov basis corresponding to a Bo-

golyubov angle
(1)
𝑞𝑛 and it takes the form

𝐻 (1) =
𝐿−1

𝑛=0

𝜆(1)𝛼 (𝑞𝑛) 
(1)
𝑘𝑛

† (1)
𝑞𝑛 −

1
2

(1.91)

with

𝜆(1)𝛼 (𝑞𝑛) = 
cos 𝑞𝑛 + 1

2
+ 𝑓2𝛼(𝑞𝑛) (1.92)

After cutting the whole system into two equal parts (𝐴 and 𝐵 of length
𝐿/2) we compute the half-chain von Neumann entropy

𝑆𝐿/2(𝑡) = −Tr 𝜌𝐴(𝑡) log2 𝜌𝐴(𝑡) (1.93)

where 𝐴 is the reduced density matrix of 𝐴, computed by tracing out the 𝐵
degrees of freedom

𝜌𝐴(𝑡) = Tr 𝐵 |𝜓(𝑡)⟩ ⟨𝜓(𝑡)| (1.94)

In order to get 𝑆𝐿/2(𝑡) we need the equal-time correlation matrices ℂ𝑖𝑗(𝑡) =
⟨𝑐†𝑖 (𝑡)𝑐𝑗(𝑡)⟩ and 𝔽𝑖𝑗 = ⟨𝑐†𝑖 (𝑡)𝑐†𝑗 (𝑡)⟩, where in the Heisenberg representation op-

erators 𝑐𝑗(𝑡) evolve by 𝐻 (1)

𝑐𝑗(𝑡) = ei𝐻
(1)𝑡𝑐𝑗e−i𝐻

(1)𝑡 (1.95)

and expectation values are computed over |𝜓(0)⟩.
Correlation functions are

⟨𝑐†𝑖 (𝑡)𝑐†𝑗 (𝑡)⟩ =
1
𝐿

𝐿/2−1

𝑛
sin 𝑞𝑛(𝑖 − 𝑗)  sin 2

(1)
𝑞𝑛 cos 2

(0)
𝑞𝑛 − 2

(1)
𝑞𝑛 

+ sin 2 (0)
𝑞𝑛 − 2

(1)
𝑞𝑛  cos2

(1)
𝑞𝑛 e

2i𝑡𝜆(1)𝛼 (𝑞𝑛)

− sin2 (1)
𝑞𝑛 e

−2i𝑡𝜆(1)𝛼 (𝑞𝑛) 

(1.96)

and

⟨𝑐†𝑖 (𝑡)𝑐𝑗(𝑡)⟩ =
2
𝐿

𝐿/2−1

𝑛
cos 𝑞𝑛(𝑖 − 𝑗) sin2 2

(1)
𝑞𝑛 −

(0)
𝑞𝑛  sin

2(𝜆(1)𝛼 (𝑞𝑛)𝑡)

+ sin2 (0)
𝑞𝑛 cos2(𝜆

(1)
𝛼 (𝑞𝑛)𝑡).

(1.97)
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Figure 1.9: The plots show the evolution of the entanglement entropy in a system
of 𝐿 = 400 sites after a quench from a product state with 𝜇0 ≫ 1 to 𝜇1 = 1. For
𝛼 > 1, 𝑆𝐿/2(𝑡) grows linearly. For 𝛼 < 1, 𝑆𝐿/2(𝑡) grows logarithmically. Panel (a)
linear-linear plot. For 𝛼 < 1 𝑆𝐿/2(𝑡) deviates from a straight line. Panel (b) linear-log
plot of 𝑆𝐿/2(𝑡). The logarithmic behaviors is visible for intermediate time 10 < 𝑡 <
100

and the technique to compute 𝑆𝐿/2(𝑡) from them is explained in section 1.B.1.

Plots in Figure 1.9 show the different behavior of the entropy in time for
different values of 𝛼 after a quench from 𝜇0 = 1000.

If 𝛼 > 1 we have a linear growth, as predicted for a conformal field
theory by eq. (1.89). If 𝛼 ≲ 1 the entropy scales logarithmically in time.

In panel (b) of Figure 1.9we plot 𝑆𝐿/2(𝑡)/𝑆maxwhere 𝑆max is themaximum
of the entropy before it starts to oscillate. The oscillations (most visible for
𝛼 > 1) are peculiar to a finite length system for which we used summations
for evaluated the correlation functions in (1.96) and (1.97).

If instead we let 𝐿 → ∞ and replace summation with integrals in (1.96)
and (1.97), the oscillations disappear as one can see in Figure 1.10 showing
the plots for various 𝛼 of the scaling of the entanglement entropy for a block
of ℓ = 100 sites.

As for a conformal field theorywe expect a linear behavior in time of the
entanglment entropy, its logarithmic scaling can be considered as a proof of
the breaking of the conformal invariance of the model when 𝛼 ≲ 1.

1.6 Majorana edge states

The existence of Majorana fermions, (particles that are their own antiparti-
cles) was predicted by Majorana [88] in 1937.

Apart from the theoretical interestMajorana fermions display, they have
been proposed as model to engineering one-dimensional quantum states
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Figure 1.10: The plot shows the scaling of the entanglement entropy in time for a
block of ℓ = 100 sites embedded in a infinite long system. For 𝛼 ≲ 1 the entropy
scales as a logarithm, while for 𝛼 > 1 the entropy grows linearly.

strongly protected against decoherence and suitable to build e.g. quantum
memories.

Robustness against decoherence is guaranteed if these states are well
separated from the rest of the spectrum of excitations. A first proposal to
construct them in a condensed matter system was given by Kitaev in [29].

In this section we discuss how Majorana edge states, already found in
the short range limit 𝛼 → ∞ of Hamiltonian (1.6), appear also in the long-
range model.

In limit 𝛼 → ∞ (and with open boundary conditions), the resulting
Hamiltonian is:

𝐻(𝛼 → ∞) = −𝑤
𝐿−1

𝑗=1
𝑐†𝑗 𝑐𝑗+1 + 𝑐†𝑗+1𝑐𝑗 − 𝜇

𝐿

𝑗=1
𝑐†𝑗 𝑐𝑗 −

1
2

+ Δ
𝐿−1

𝑗=1

𝑐𝑗𝑐𝑗+1 + 𝑐†𝑗+1𝑐†𝑗 
(1.98)

We candecompose each of the 𝑐𝑗Dirac fermions into twoMajorana fermions

𝑐†𝑗 = 𝑎𝑗 + i𝑏𝑗 𝑐𝑗 = 𝑎𝑗 − i𝑏𝑗 (1.99)

that are hermitian and satisfy

{𝑎𝑖, 𝑎𝑗} = {𝑏𝑖, 𝑏𝑗} = 2𝛿𝑖,𝑗 {𝑎𝑖, 𝑏𝑗} = 0 (1.100)

𝑎2𝑖 = 𝑏2𝑖 = 𝟙 (1.101)

and we can rewrite 𝐻(𝛼 → ∞) as (we will set Δ = 𝑤)

𝐻(𝛼 → ∞) = 2i𝑤
𝐿−1

𝑗=1
𝑎𝑗𝑏𝑗+1 − i𝜇

𝐿

𝑗=1
𝑏𝑗𝑎𝑗 (1.102)
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Such Hamiltonian, as well as Hamiltonian (1.6), does not conserve the
fermion number generated by 𝐹 = ∑𝐿

𝑗=1 𝑐
†
𝑗 𝑐𝑗 but only parity𝒫 of the fermion

number, given by

𝒫 = (−1)𝐹 =
𝐿

𝑖=1
(−i𝑎𝑖𝑏𝑖) (1.103)

and generating a𝒵2 symmetry.
In this way, Hamiltonian is decomposed into two sectors with even or

odd fermionic number.
Following [89], we can now define a fermionic zero-energy mode as an

operatorΨ that

(i) commutes with the Hamiltonian: [𝐻,Ψ] = 0;

(ii) anticommutes with𝒫 : {𝒫 ,Ψ} = 0;

(iii) can be normalized even in the 𝐿 → ∞ limit: Ψ†Ψ = 1.

We can now show that Hamiltonian (1.102) supports zero edge modes
by constructingΨ explicitly.

Commuting 𝐻(𝛼 → ∞) with 𝑏1 gives 2i𝜇𝑎1. Now, we can rewrite 2𝑎1 =
[𝑎1𝑏2, 𝑏2] and the following combination of 𝑎1 and 𝑎2 commutes with the two
terms of 𝐻(𝛼 → ∞):

i𝜇𝑎1𝑏1 + 2𝑤i𝑎1𝑏2, 𝑏1 −
𝜇
2𝑤
𝑏2 = 0 (1.104)

In thiswaywe candefine two operators localized at the edge of the chain
Ψleft andΨright

Ψleft = 𝑏1 −
𝜇
2𝑤
𝑏2 + 

𝜇
2𝑤

2
𝑏3 + … (1.105)

and

Ψright = 𝑎𝐿 −
𝜇
2𝑤
𝑎𝐿−1 + 

𝜇
2𝑤

2
𝑎𝐿−2 + … (1.106)

Then, the commutators ofΨleft andΨright with the Hamiltonian

[𝐻(𝛼 → ∞),Ψleft] = 𝜇 
𝜇
2𝑤

𝐿−1

𝑎𝐿 (1.107)

𝐻(𝛼 → ∞),Ψright = 𝜇 
𝜇
2𝑤

𝐿−1

𝑏1 (1.108)

are exponentially suppressed in the limit 𝐿 → ∞ if |𝜇| < 2𝑤 and in this
region we have the appearance of two Majorana states Ψleft and Ψright lo-
calized at the edges of the chain.

If we now consider the long-range Hamiltonian (1.6) in a closed chain
(with 𝑑ℓ = ℓ) and with Δ = 2𝑤 = 1 we can numerically diagonalize it using
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Figure 1.11: The plot shows the minimum among the 𝜆𝑛 of the excitation spectrum
of (1.110) for a system of 𝐿 = 200 sites. The white vertical lines are gapless lines. In
the black region |𝜇| < 1, 𝛼 ≳ 1 there exists a 𝜆𝑛0 = 0, that represents a zero mode
edge state degenerate with the ground state.

the method reported in [32, 90–92] for finding whether zero energy modes
exist.

Given a fermionic quadratic Hamiltonian

𝐻 =
𝐿

𝑖,𝑗=1

𝑐†𝑖𝑨𝑖𝑗𝑐𝑗 + 𝑐†𝑖 𝑩𝑖𝑗𝑐†𝑗 + h.c. (1.109)

where the matrix 𝑨 is symmetric and 𝑩 is antisymmetric, we can cast the
Hamiltonian 𝐻 in diagonal form

𝐻 =
𝐿

𝑛=1

𝜆𝑛 †
𝑛 𝑛 (1.110)

with 𝜆𝑛 ≥ 0 by means of a Bogolyubov transformation


𝜼
𝜼† = 

𝒈 𝒉
𝒉 𝒈 

𝒄
𝒄† (1.111)

where 𝒄 = (𝑐1, … , 𝑐𝐿)𝑇 the same for 𝜼 and 𝒈 and 𝒉 are 𝐿 × 𝐿matrices.
For getting the single particle energies 𝝀 = (𝜆1, … , 𝜆𝐿)𝑇 and the matrices

𝒈 and 𝒉we can employ a singular-value decomposition of the sum of 𝑨+𝑩

𝝀 = 𝝍(𝑨 + 𝑩)𝝓𝑇 (1.112)

where 𝝍 = 𝒈 − 𝒉 and 𝝓 = 𝒈 + 𝒉.
If a zero energymode exists wewill find theminimum among the single

particle energies (wewill call it𝜆𝑛0) vanishing in a gapped region in the limit
𝐿 → ∞.

To distinguish it from a zero mode due to a critical point we can look at
the exact dispersion relation (1.17) (valid also for open boundary conditions
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Figure 1.12: Panel (a) shows the value of 𝜆𝑛0 in the limit 𝐿 → ∞. When 𝛼 < 1, 𝜆𝑛0
becomes finite in the thermodynamic limit and the zero energy mode disappears.
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Figure 1.13: The plot shows the wavefunction of the edge mode for a chain of
𝐿 = 500 sites for (a) 𝜇 = 0.5 and (b) 𝜇 = −0.5 in log-log scale for the different 𝛼. It is
possible to see the hybrid exponential and power-law behavior (with a tail 1/𝑅2𝛼)
also found for the correlation functions.
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as, when 𝐿 → ∞, the bulk properties are the same both for a ring and for
a closed chain). We know that the critical lines are only 𝜇 = 1, 𝛼 > 0 and
𝜇 = −1, 𝛼 > 1 and, thus a 𝜆𝑛0 = 0 for 𝜇 ≠ ±1 will correspond to a true zero
energy mode.

The plot in Figure 1.11 represents the position of these zero energypoints
where two degenerate ground states appear.

We find that the gapped region |𝜇| < 1 for 𝛼 ≳ 1 supports zero energy
modes andwe fitted the value of 𝜆𝑛0(𝐿) as function of 𝐿 for different 𝛼 and 𝜇.
Plot in Figure 1.12 shows the thermodynamical values for 𝜆𝑛0 as function
of 𝛼 for several 𝜇 and when 𝛼 < 1 one can see that these modes become
massive.

Moreover, we can access to the wavefunction of these zero modes, by
plotting the normalized square of the 𝑛0-th row of𝝍 or𝝓 (corresponding to
the eigenvalue𝜆𝑛0) as function of the lattice site𝑅 (Figure 1.13). Remarkably,
its wavefunction mirrors the hybrid exponential and power-law decay we
discussed for the correlation functions.

By fitting the power-law tail of |𝝍𝑛0(𝑅)|
2 we found |𝝍𝑛0(𝑅)|2 ∼ 𝑅−2𝛼 for

𝛼 ≳ 1, implying that |𝝍𝑛0(𝑅)|2 is normalizable, as required for an edgemode.
We also note that this algebraic decay is in qualitative agreement with

recent calculations for helical Shiba chains [93].

1.7 Conclusions

In this Chapter, motivated by recent experimental setups for the realization
of systems supporting long-range interactions, we have presented and an-
alyzed an integrable model for fermions with long-range pairing, finding
several novel features.

These include gapped phaseswhere correlation functions exhibit purely
algebraic or hybrid exponential-algebraic decay.

Moreover, we demonstrate a breaking of the conformal symmetry along
gapless lines accompanied by a violation of the area law in gapped phases
for sufficiently long-range interactions.

It is an exciting prospect to investigate whether some of the results of
the present work are in fact common to other models with long-range in-
teractions, such as, e.g., Ising-typemodels with tunable interactions, as cur-
rently realized in several labs [19, 28]. As we have shown that the breaking
of conformal symmetrymay be directly detected in the dynamics of the von
Neumann entropy following a quench, as recently demonstrated numeri-
cally for ion chains [39], it would be worth to find an exact expression (like
the ones in (1.81) and (1.89)) both for the scaling of the static entropy and
its time evolution after a quench in order to integrate the already known
results on finite-range interactions [94].



Appendices

1.A XY-Ising model

In this Appendix, I will review some results on the exact diagonalization of
the XY model [32].

We consider the following spin hamiltonian with periodic boundary
condition on a chain of 𝑁 (even) sites:

𝐻(𝛾, ℎ) = −𝐽
𝑁

𝑗=1
(1 + 𝛾)𝑆𝑥𝑗 𝑆𝑥𝑗+1 + (1 − 𝛾)𝑆

𝑦
𝑗 𝑆
𝑦
𝑗+1 + 𝐽ℎ

𝑁

𝑗=1
𝑆𝑧𝑗 (1.113)

The spin operator are defined in terms of the Pauli matrices:

𝑆𝑥 =
1
2 
0 1
1 0 𝑆𝑦 =

1
2 
0 −i
i 0  𝑆𝑧 =

1
2 
1 0
0 −1

and, by employing ladder operators:

𝑆+𝑖 = 𝑆𝑥𝑖 + i𝑆𝑦𝑖 (1.114)

𝑆−𝑖 = 𝑆𝑥𝑖 − i𝑆
𝑦
𝑖 (1.115)

one can rewrite the spin Hamiltonian as

𝐻(𝛾, ℎ) = −𝐽
𝑁

𝑗=1

1
2
𝑆+𝑗 𝑆−𝑗+1 + 𝑆−𝑗 𝑆+𝑗+1 +

𝛾
2
𝑆+𝑗 𝑆+𝑗+1 + 𝑆−𝑗 𝑆−𝑗+1 + 𝐽ℎ𝑆𝑧𝑗  (1.116)

and, after a Jordan-Wigner (JW) transformation

𝑆+𝑖 = 𝑐†𝑖 exp i𝜋
𝑖−1

𝑙=1
𝑐†𝑙 𝑐𝑙 (1.117)

𝑆−𝑖 = exp −i𝜋
𝑖−1

𝑙=1
𝑐†𝑙 𝑐𝑙 𝑐𝑖 (1.118)

𝑆𝑧𝑖 = 𝑐†𝑖 𝑐𝑖 −
1
2

(1.119)

31
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the Hamiltonian becomes:

𝐻(𝛾, ℎ) = −
𝐽
2

𝑁−1

𝑗=1

𝑐†𝑗 𝑐𝑗+1 − 𝑐𝑗𝑐†𝑗+1 + 𝛾 𝑐†𝑗 𝑐†𝑗+1 − 𝑐𝑗𝑐𝑗+1

+ 𝐽ℎ
𝑁

𝑗=1
𝑐†𝑖 𝑐𝑖 −

1
2

+
𝐽
2
ei𝜋

∑𝑁
𝑙=1 𝑐

†
𝑙 𝑐𝑙 𝑐†𝑁𝑐𝑁+1 − 𝑐𝑁𝑐†𝑁+1 + 𝛾 𝑐†𝑁𝑐†𝑁+1 − 𝑐𝑁𝑐𝑁+1

(1.120)

The parity 𝒫 = exp(i𝜋∑𝑁
𝑙=1 𝑐

†
𝑙 𝑐𝑙) of the number of fermions commutes

with the Hamiltonian, so there exist two sectors of the Hilbert space in
which the Hamiltonian and the operator 𝒫 can be diagonalized simulta-
neously.

Since𝒫 is unitary, its eingenvalues can be only +1 or −1, so its spectral
decomposition is𝒫 = 𝑃+ − 𝑃− and 𝐻(𝛾, ℎ) decomposes as

𝐻(𝛾, ℎ) = 𝐻+(𝛾, ℎ) + 𝐻−(𝛾, ℎ) (1.121)

with 𝐻±(𝛾, ℎ) = 𝑃±𝐻(𝛾, ℎ)𝑃±

Even fermion number𝒫 = 1

We choose the sector with parity𝒫 = 1 (with an even number of fermions).
In this case we have to choose anti-periodic boundary conditions for the
Jordan-Wigner fermions (𝑐𝑁+1 = −𝑐1), so, if we perform a Fourier transform,
momenta will be:

𝑘𝑛 =
2𝜋
𝑁 𝑛 +

1
2

(1.122)

and the fermionic operators

𝑐†𝑖 =
1

√𝑁

𝑁−1

𝑛=0

ei𝑘𝑛𝑥𝑖𝑐†𝑛. (1.123)

The Hamiltonian in the parity +1 sector is:

𝐻+(𝛾, ℎ) = −
𝐽
2

𝑁−1

𝑛=0

(cos 𝑘𝑛 − ℎ)(𝑐†𝑛𝑐𝑛 + 𝑐†−𝑛−1𝑐−𝑛−1)

+i𝛾 sin 𝑘𝑛(𝑐†−𝑛−1𝑐†𝑛 + 𝑐−𝑛−1𝑐𝑛) −
𝐽ℎ𝑁
2

(1.124)

Note that the term sin 𝑘𝑛 is always different from zero, due to the antiperi-
odic boundary conditions for the JW fermions and the evennumber of site𝑁 .

We can introduce a spinor 𝑐†𝑛 𝑐−𝑛−1 and the Hamiltonian takes the
form

𝐻+(𝛾, ℎ) =
𝐽
2

𝑛
𝑐†𝑛 𝑐−𝑛−1 

−(cos 𝑘𝑛 − ℎ) i𝛾 sin 𝑘𝑛
−i𝛾 sin 𝑘𝑛 (cos 𝑘𝑛 − ℎ) 

𝑐𝑛
𝑐†−𝑛−1

 (1.125)
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and, after a Bogolyubov transformation


𝑐𝑛
𝑐†−𝑛−1

 = 𝑈†  𝑛
†
−𝑛−1

 (1.126)

with

𝑈 = 
𝛼𝑛 −𝛽∗𝑛
𝛽𝑛 𝛼∗𝑛 

= 
cos 𝑛 i sin 𝑛
i sin 𝑛 cos 𝑛

 (1.127)

and

tan 2 𝑛 =
𝛾 sin 𝑘𝑛
ℎ − cos 𝑘𝑛

(1.128)

the Hamiltonian becomes:

𝐻+(𝛾, ℎ) =
𝑁−1

𝑛=0

𝜆(𝑘𝑛)  †
𝑛 𝑛 −

1
2

(1.129)

with

𝜆(𝑘𝑛) = 𝐽(cos 𝑘𝑛 − ℎ)
2 + 𝛾2 sin2 𝑘𝑛 (1.130)

The ground state of 𝐻+(𝛾, ℎ) is the vacuum of 𝑛: 𝑛 |𝐺𝑆𝛾,ℎ⟩ = 0. A pos-
sible choice for this state is

|𝐺𝑆𝛾,ℎ⟩
+ =

𝑁−1

𝑛=0

𝑛 −𝑛−1 |0⟩ =

𝑁
2 −1


𝑛=0

(𝛼𝑛 + 𝛽∗𝑛𝑐†𝑛𝑐†−𝑛−1) |0⟩ (1.131)

and its energy density is

𝐸+0 (𝛾, ℎ) = −
1
2

𝑁−1

𝑛=0

𝜆(𝑘𝑛) (1.132)

To compute the actual ground state of the 𝑋𝑌 model we need to look also
at the spectrum of the 𝐻−(𝛾, ℎ) Hamiltonian.

Odd fermion number𝒫 = −1

In this case JW fermions are periodic so, momenta will be

𝑘𝑛 =
2𝜋𝑛
𝑁

(1.133)

and the Hamiltonian is

𝐻−(𝛾, ℎ) =
𝐽
2

𝑁−1

𝑛=0

𝑐†𝑛 𝑐−𝑛 
−(cos 𝑘𝑛 − ℎ) i𝛾 sin 𝑘𝑛
−i𝛾 sin 𝑘𝑛 (cos 𝑘𝑛 − ℎ) 

𝑐𝑛
𝑐†−𝑛

(1.134)



34 Kitaev chain with long-range pairing

The term with sin 𝑘𝑛 = 0 needs to be kept apart from the others

𝐻−(𝛾, ℎ) = −𝐽(1 − ℎ) 𝑐†0𝑐0 −
1
2

+
𝐽
2

𝑁−1

𝑛=1

𝑐†𝑛 𝑐−𝑛 
−(cos 𝑘𝑛 − ℎ) i𝛾 sin 𝑘𝑛
−i𝛾 sin 𝑘𝑛 (cos 𝑘𝑛 − ℎ) 

𝑐𝑛
𝑐†−𝑛

(1.135)

Now we have to deal with the two cases ℎ > 1 and ℎ < 1 separately.

𝒉 < 𝟏

If ℎ < 1 the Hamiltonian is

𝐻−(𝛾, ℎ) = −𝐽|1 − ℎ| 𝑐†0𝑐0 −
1
2

+
𝐽
2

𝑁−1

𝑛=1

𝑐†𝑛 𝑐−𝑛 
−(cos 𝑘𝑛 − ℎ) i𝛾 sin 𝑘𝑛
−i𝛾 sin 𝑘𝑛 (cos 𝑘𝑛 − ℎ) 

𝑐𝑛
𝑐†−𝑛

(1.136)

Since the first term decreases the energy of the ground state, we employ

a particle-hole transformation for the 𝑐†0, 𝑐0 and a Bogolyubov transforma-

tion for the 𝑐†𝑛, 𝑐𝑛with 𝑛 > 0:

𝜉0 = 𝑐†0 (1.137)

𝜉†0 = 𝑐0 (1.138)

𝜉𝑛 = 𝛼𝑛𝑐𝑛 − 𝛽∗𝑛𝑐†−𝑛 (1.139)

𝜉†−𝑛 = 𝛽𝑛𝑐𝑛 + 𝛼∗𝑛𝑐†−𝑛 (1.140)

which yield to

𝐻−(𝛾, ℎ < 1) = 𝐽|ℎ − 1| 𝜉†0𝜉0 −
1
2
+
𝑁−1

𝑛=1

𝜆(𝑘𝑛) 𝜉†𝑛𝜉𝑛 −
1
2

(1.141)

The ground state in this case is

|𝐺𝑆𝛾,ℎ<1⟩
− = 𝜉0

𝑁−1

𝑛=1

𝜉𝑛𝜉−𝑛 |0⟩ = 𝑐†0

𝑁
2


𝑛=1

(𝛼𝑛 + 𝛽∗𝑛𝑐†𝑛𝑐†−𝑛) |0⟩ (1.142)

and its energy

𝐸−0 (𝛾, ℎ < 1) = −
𝐽
2
|ℎ − 1| −

𝑁−1

𝑛=1

𝜆(𝑘𝑛) (1.143)

The operator 𝜉0 is needed because |𝐺𝑆𝛾,ℎ<1⟩
− must belong to the sector

with an odd number of fermions.
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𝒉 > 𝟏

If ℎ > 1 the Hamiltonian is

𝐻−(𝛾, ℎ) = 𝐽|ℎ − 1| 𝑐†0𝑐0 −
1
2

+
𝐽
2

𝑁−1

𝑛=1

𝑐†𝑛 𝑐−𝑛 
−(cos 𝑘𝑛 − ℎ) i𝛾 sin 𝑘𝑛
−i𝛾 sin 𝑘𝑛 (cos 𝑘𝑛 − ℎ) 

𝑐𝑛
𝑐†−𝑛

(1.144)

In this case 𝜆(𝑘𝑛) = 𝐽(cos 𝑘𝑛 − ℎ)
2 + 𝛾2 sin2 𝑘𝑛 implies that 𝜆(𝑘0) = 𝐽|ℎ−1|

so by means of the following unitary transformation

𝜓0 = 𝑐0 (1.145)

𝜓†0 = 𝑐†0 (1.146)

𝜓𝑛 = 𝛼𝑛𝑐𝑛 − 𝛽∗𝑛𝑐†−𝑛 (1.147)

𝜓†−𝑛 = 𝛽𝑛𝑐𝑛 + 𝛼∗𝑛𝑐†−𝑛 (1.148)

the Hamiltonian takes the form:

𝐻−(𝛾, ℎ > 1) =
𝑁−1

𝑛=0

𝜆(𝑘𝑛) 𝜓†𝑛𝜓𝑛 −
1
2

(1.149)

The ground state in this case is

|𝐺𝑆𝛾,ℎ>1⟩
− = 𝑐†0

𝑁
2


𝑛=1

(𝛼𝑛 + 𝛽∗𝑛𝑐†𝑛𝑐†−𝑛) |0⟩ (1.150)

and its energy

𝐸−0 (𝛾, ℎ > 1) = 𝜆(𝑘0) −
𝑁−1

𝑛=0

𝜆(𝑘𝑛) = 𝐽|ℎ − 1| −
1
2

𝑁−1

𝑛=0

𝜆(𝑘𝑛) (1.151)

Ground state of the 𝑋𝑌 model

We can now construct the ground state of the model at finite number of
sites.

We consider first the section ℎ > 1. In this case, 𝐸−0 (𝛾, ℎ > 1) is always
larger than 𝐸+0 (𝛾, ℎ) so the ground state, for all 𝛾 and ℎ belongs to the sector
with an even number of fermions and it is |𝐺𝑆𝛾,ℎ⟩

+.

In the range ℎ < 1 the ground state is either |𝐺𝑆𝛾,ℎ⟩
+ or |𝐺𝑆𝛾,ℎ<1⟩

− de-
pending on whether 𝐸+0 (𝛾, ℎ) is smaller or larger than 𝐸−0 (𝛾, ℎ < 1), however
if one considers the Ising model, given by 𝛾 = 1, one can show that the
ground state, in the region ℎ < 1 is still given by |𝐺𝑆1,ℎ⟩

+.
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Finite size scaling of the ground-state energy

Finite size scaling of the ground state energy density can give insights on
the conformal field theory underlying a critical point.

In particular, it is known that the ground state energy density 𝑒(𝐿) of a
critical conformal model in a system of dimension 𝐿 scales as

𝑒(𝐿) = 𝑒∞ −
𝜋𝑐𝑣𝐹
6𝐿2

(1.152)

where 𝑒∞ is the bulk energy and 𝑣𝐹 is the Fermi velocity at the critical mo-
mentum, that is the slope of the dispersion relation when it vanishes.

In the following sectionwewill compute the exact scaling for the ground
state energy density of the 𝑋𝑌-Ising model, given by (we will consider the
antiperiodic sector where 𝑘𝑛 = 2𝜋(𝑛 + 1/2)/𝐿)

𝑒(𝐿) = −
1
𝐿

𝐿/2−1

𝑛=0

𝜆(𝑘𝑛). (1.153)

For evaluating the sum we will use the Euler-MacLaurin summation
formula [95].

Let 𝑓(𝑥) have its first two derivatives continuous on an interval (𝑎, 𝑏). If
we divide the interval in 𝑛 parts and let 𝛿 = (𝑏 − 𝑎)/𝑛, then

𝑛

𝑗=0
𝑓(𝑎 + 𝑗𝛿) =

1
𝛿 

𝑏

𝑎
𝑓(𝑥)d𝑥 +

1
2
𝑓(𝑏) + 𝑓(𝑎)

+
𝛿
12
𝑓′(𝑏) − 𝑓′(𝑎)

(1.154)

In our case 𝑎 = 𝜋/𝐿, 𝛿 = 2𝜋/𝐿, 𝑛 = 𝐿/2 − 1 and the expansion of the
previous equation up to 𝒪 (1/𝐿2) gives

𝑛

𝑗=0
𝑓 (𝑘𝑛) =

𝐿
2𝜋 

𝜋

0
𝑓(𝑥) d𝑥 +

𝜋
12𝐿

𝑓′(0) − 𝑓′(𝜋) (1.155)

If the ground state energy density is given by

𝑒(𝐿) = −
1
𝐿

𝐿/2−1

𝑛=0

𝜆(𝑘𝑛) (1.156)

we have

𝑒(𝐿) = −
1
2𝜋 

𝜋

0
𝜆(𝑥) d𝑥 −

𝜋
12𝐿2

(𝜆′(0) − 𝜆′(𝜋)) . (1.157)

Let us apply the previous equation to the XY-Ising model for which

𝜆(𝑘) = (cos 𝑘 − ℎ)
2 + 𝛾2 sin2 𝑘. (1.158)
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We have seen that it shows a phase transition for a critical field ℎ𝑐 = 1,
corresponding to a critical momentum 𝑘𝑐 = 0. The Fermi velocity is thus
given by

𝑣𝐹 =
d
d𝑘
𝜆(𝑘)

𝑘=0
= 𝛾 (1.159)

and the finite-size correction is

𝑒(𝐿) = −
1
2𝜋 

𝜋

0
𝜆(𝑥) d𝑥 −

𝜋𝛾
12𝐿2

(1.160)

giving 𝑐 = 1/2 as expected.

1.B Density matrix from correlation functions

In this Appendixwewill review of themethod to compute the ground-state
density matrix for a free fermionic Hamiltonian. If the Hamiltonian of the
system is quadratic, it is always possible to cast it in the following form

𝐻 =𝑐†𝑖 𝑡𝑖𝑗𝑐𝑗 + 𝑐†𝑖𝑈𝑖𝑗𝑐†𝑗 + h.c. . (1.161)

Let the ground state of (1.161) be |𝐺𝑆⟩with its density matrix |𝐺𝑆⟩ ⟨𝐺𝑆|.
Let us divide the systems into two intervals (𝐴 and 𝐵) with the first ℓ

sites belonging to 𝐴, the others to 𝐵.
We want to compute the reduced density matrix 𝜌𝐴 = Tr𝐵 |𝐺𝑆⟩ ⟨𝐺𝑆| of

the ground state related to the subsystem 𝐴, by tracing out the degrees of
freedom of 𝐵.

To this end,wenote that to reproduce the expectation value in the ground
state of a string of fermionic operators all belonging to𝐴, the densitymatrix
has to be [49, 96–100]

𝜌𝐴 =
e−ℋ

𝑍
(1.162)

with

ℋ =
ℓ

𝑖,𝑗=1

𝑐†𝑖𝐴𝑖𝑗𝑐𝑗 + 𝑐†𝑖 𝐵𝑖𝑗𝑐†𝑗 + h.c. . (1.163)

having the same functional form as (1.161).
This means that all the information on 𝜌𝐴 is encoded in the correlator

matrices
ℂ𝑖𝑗 = ⟨𝑐†𝑖 𝑐𝑗⟩ 𝔽𝑖𝑗 = ⟨𝑐†𝑖 𝑐†𝑗 ⟩ (1.164)

with 1 ≤ 𝑖, 𝑗 ≤ ℓ.
ℂ and 𝔽 are easily computed from the ground state of the Hamiltonian

(1.161), as the latter is readily diagonalized with a Bogolyubov transforma-
tion or following [32, 92].
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Then, one can relate the correlation matrices with the eigenvalues of the
entanglement Hamiltonianℋ (1.163) and so with the density matrix 𝜌.

To compute thosematrices, we first diagonalize (1.163)with a Bogolyubov
transformation:

 † = 
𝑔 ℎ
ℎ 𝑔 

𝑐
𝑐† (1.165)

where 𝑔 and ℎ are ℓ × ℓ real matrices, satisfying, because of the anticommu-
tation relations:

𝑔𝑔𝑇 + ℎℎ𝑇 = 𝟙 (1.166)

𝑔ℎ𝑇 + ℎ𝑔𝑇 = 𝟘 (1.167)

where 𝑔𝑇 is the transpose of the matrix 𝑔.
In this basis,ℋ takes the form

ℋ =
ℓ

𝑘=1

𝑘
†
𝑘 𝑘 (1.168)

and the density matrix 𝜌 = ⊗𝜌𝑘, with :

𝜌𝑘 =
e−𝜀𝑘𝜂

†
𝑘𝜂𝑘

1 + e−𝜀𝑘
= 

(1 + e𝜀𝑘)−1 0
0 (1 + e−𝜀𝑘)−1 (1.169)

as each of the ℓmodes is independent.
Now to compute the correlation matrices, we have to find the inverse of

the Bogolyubov transformation:


𝑐
𝑐† = 

𝑔𝑇 ℎ𝑇
ℎ𝑇 𝑔𝑇  † (1.170)

and we have to note that

⟨ †
𝑘 𝑘′⟩ = Tr [𝜌 †

𝑘 𝑘′] =
e−𝜀𝑘

1 + e𝜀𝑘
𝛿𝑘𝑘′ (1.171)

Letℂ be thematrix of the correlators ⟨𝑐†𝑖 𝑐𝑗⟩ and𝔽 thematrix ⟨𝑐†𝑖 𝑐†𝑗 ⟩ related
to the block 1 < 𝑖, 𝑗 < ℓ. We have

ℂ = 𝑔𝑇Λ𝑔 + ℎ𝑇Λ̄ℎ (1.172)

𝔽 = 𝑔𝑇Λℎ + ℎ𝑇Λ̄ℎ (1.173)

where Λ, Λ̄ are diagonal matrices with elements

Λ𝑖𝑗 =
𝛿𝑖𝑗

1 + e𝜀𝑖
Λ̄𝑖𝑗 =

𝛿𝑖𝑗
1 + e−𝜀𝑖

(1.174)
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Note that Λ + Λ̄ = 𝟙. Let us define Δ = Λ − Λ̄, so, by using (1.166) we can
write the correlators as

ℂ =
𝟙
2
+
1
2
𝑔𝑇Δ𝑔 − ℎ𝑇Δℎ (1.175)

𝔽 =
1
2
𝑔𝑇Δℎ − ℎ𝑇Δ𝑔 (1.176)

Now, from the anticommutation relations (1.166), one has (note that
Δ𝑖𝑗 = − tanh ( 𝑖/2) 𝛿𝑖𝑗)

𝑊 ≡ 𝐶 −
𝟙
2
+ 𝐹 𝐶 −

𝟙
2
− 𝐹 =

1
4
𝑔 − ℎ

𝑇
Δ2 𝑔 − ℎ (1.177)

By defining a matrix 𝜓 = 𝑔 − ℎ one has 𝜓𝑇𝜓 = 𝟙 so 𝜓 is orthogonal and,
from the previous equation one has

𝑊 =
1
4
𝜓𝑇Δ2𝜓 (1.178)

that is the eigenvalues of 𝑊 are 𝑖 =
1
4 tanh

2( 𝜀𝑖2 ). From these one gets the
eigenvalues ofℋ:

𝑖 = 2 arctanh 2 𝑖 . (1.179)

Once obtained the entanglement spectrum 𝑖, the von Neumann en-
tropy, defined as

𝑆vN = −Tr 𝜌 log2 𝜌 = −
ℓ

𝑚=1

Tr 𝜌𝑚 log2 𝜌𝑚 (1.180)

with

𝜌𝑚 log2 𝜌𝑚 =
⎛
⎜⎜⎜⎜⎝

1
1+e𝜀𝑚 log2

1
1+e𝜀𝑚 0

0 1
1+e−𝜀𝑚 log2

1
1+e−𝜀𝑚

⎞
⎟⎟⎟⎟⎠ . (1.181)

takes the form

𝑆vN = −
ℓ

𝑚=1


log2(1 + e𝜀𝑚)
1 + e𝜀𝑚

+
log2(1 + e−𝜀𝑚)
1 + e−𝜀𝑚

 (1.182)

while the Rényi entropy of order 𝑛

𝑆Re𝑛 =
1

1 − 𝑛
log2 Tr 𝜌

𝑛 (1.183)

is

𝑆Re𝑛 =
1

1 − 𝑛

ℓ

𝑚=1

log2 [(1 + e𝜀𝑚)−𝑛 + (1 + e−𝜀𝑚)−𝑛] (1.184)



40 Kitaev chain with long-range pairing

1.B.1 Reduced density matrix after a quench

In the previous section we have considered only a time-independent situ-
ation. Let us consider the dynamical evolution of a state |𝜓⟩ by means of a
given Hamiltonian 𝐻1, with the assumption that |𝜓⟩ is not eigenstate of 𝐻 .

We will have that the state |𝜓⟩ evolves in time as |𝜓(𝑡)⟩ = e−i𝐻1𝑡 |𝜓⟩ as
well as the total |𝜓(𝑡)⟩ ⟨𝜓(𝑡)| and the reduced density matrices.

If 𝐻1 is still quadratic, the arguments of the previous section can be still
used to compute the reduced density matrix and the entropy, because, if
the initial state is a Slater determinant a string of correlators factor again,
because Wick’s theorem still holds.

Therefore the reduced density matrix has the exponential form (1.162)
with a time-dependent operatorℋ(𝑡) and the eigenvalues of the entangle-
ment spectrum follow from the equal-time correlation matrices

ℂ𝑖𝑗(𝑡) = ⟨𝑐†𝑖 (𝑡)𝑐𝑗(𝑡)⟩ 𝔽𝑖𝑗(𝑡) = ⟨𝑐†𝑖 (𝑡)𝑐†𝑗 (𝑡)⟩ . (1.185)

In this case, as𝔽matrix is, in general, complex, usingMajorana fermions
defined by

𝑎2𝑗−1 = 𝑐𝑗 + 𝑐†𝑗 𝑎2𝑗 = i(𝑐𝑗 − 𝑐†𝑗 ) (1.186)

turns out to be more convenient. Then, in the same way as for the static

case, one has to diagonalize the unique 2ℓ × 2ℓ correlation matrix ℂ𝑖𝑗(𝑡) =
⟨𝑎𝑖(𝑡)𝑎𝑗(𝑡)⟩whose eigenvalues𝑚𝑗(𝑡) are related to the entanglement spectrum

𝑗(𝑡) via

𝑚𝑗(𝑡) = 1 ± i tanh 𝑗(𝑡)
2
. (1.187)

1.C Polylogarithm

The series defining 𝑓𝛼(𝑘) is

𝑓𝛼(𝑘) =
𝐿−1

ℓ=1

sin(𝑘ℓ)
𝑑𝛼ℓ

(1.188)

with 𝑑ℓ = min[ℓ, 𝐿 − ℓ] and, in the thermodynamic limit 𝐿 → ∞

𝑓∞𝛼 (𝑘) =
1
i

∞

ℓ=1

eiℓ𝑘 + e−iℓ𝑘

ℓ𝛼
= −i(Li𝛼(ei𝑘) − Li𝛼(e−i𝑘)) (1.189)

where

Li𝛼(𝑧) =
∞

ℓ=1

𝑧ℓ

ℓ𝛼
(1.190)

is the polylogarithm of complex 𝑧 of order 𝛼 [46, 95]. If |𝑧| < 1, the previous
series defines an analytic function of 𝑧. In our case 𝑧 = ei𝑘 so |𝑧| = 1 and the
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Figure 1.C.1: The plot shows 𝑓∞𝛼 (𝑘) for 𝛼 > 1, 𝛼 = 1, 𝛼 < 1. If 𝛼 < 1, 𝑓∞𝛼 (𝑘) diverges
if 𝑘 → 0 as 1/𝑘1−𝛼.

series converges when 𝛼 > 1. When 𝛼 < 1 the series converges to a finite
value for 𝑧 ≠ 1 (i.e. 𝑘 ≠ 0) and diverges as

Li𝛼(ei𝑘) ∼ Γ(1 − 𝛼)
i𝛼

𝑘1−𝛼
when 𝑘 → 0. (1.191)

In the particular cases of 𝛼 = 1 and 𝛼 = 0 one can get a closed expression
for Li𝛼(𝑧):

Li1(𝑧) = − ln(1 − 𝑧) Li0(𝑧) =
𝑧

1 − 𝑧
(1.192)

and for 𝑓∞𝛼 (𝑘)

𝑓∞1 (𝑘) = 𝜋 − 𝑘 𝑓∞0 (𝑘) = cot 
𝑘
2
. (1.193)

Zeroes

By substituting 𝑘 = 𝜋 in the last equation of (1.189) one has 𝑓∞𝛼 (𝜋) = 0
as Li𝛼(−1) (the Dirichlet eta function) is finite for all 𝛼 > 0. The situation
is different when 𝑘 = 0. As we said the series converges when 𝛼 > 1, it
is finite when 𝛼 = 1, diverges if 𝛼 < 1, so 𝑓∞𝛼 (0) = 0 only when 𝛼 > 1
(see Figure 1.C.1).

Series expansion

The following series expansionswere useful for computing the long-distance
behavior of correlation functions:

Li𝛼(e𝑦) = −Γ(1 − 𝛼)ei𝜋𝛼𝑦𝛼−1 +
∞

𝑗=0

(𝛼 − 𝑗)
𝑗!

𝑦𝑗, (1.194)

Li𝛼(e−𝑦) = Γ(1 − 𝛼)𝑦𝛼−1 +
∞

𝑗=0

(𝛼 − 𝑗)
𝑗!

(−𝑦)𝑗 (1.195)
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for 𝑦 → 0 and when 𝛼 ≠ 1, 2, … .

Decay exponent of correlators for integer 𝛼

In the following section, we will show how to compute the decay exponent
for the Green function (1.39) when 𝛼 is integer.

If 𝛼 ∈ the following series expansions hold (𝑦 → 0):

Li𝛼(e𝑦) =
𝑦𝛼−1

(𝛼 − 1)!
(𝐻𝛼−1 − ln 𝑦 − 𝜋i) +

∞

𝑘=0
𝑘≠𝛼−1

(𝛼 − 𝑘)
𝑘!

𝑦𝑘 (1.196)

Li𝛼(e−𝑦) =
(−1)𝛼−1𝑦𝛼−1

(𝛼 − 1)!
(𝐻𝛼−1 − ln 𝑦) +

∞

𝑘=0
𝑘≠𝛼−1

(𝛼 − 𝑘)
𝑘!

𝑦𝑘. (1.197)

where 𝐻𝑛 is the 𝑛-th harmonic number. So,

Li𝛼(e𝑦) − Li𝛼(e−𝑦) =
𝑦𝛼−1

(𝛼 − 1)!
(1 + (−1)𝛼)𝐻𝛼−1 − (1 + (−1)𝛼) ln 𝑦 − 𝜋i

+ 2 
𝑘 odd
𝑘≠𝛼−1

(𝛼 − 𝑘)
𝑘!

𝑦𝑘

If 𝛼 is an odd integer, the previous equation reduces to

Li𝛼(e𝑦) − Li𝛼(e−𝑦) = −
𝜋i𝑦𝛼−1

(𝛼 − 1)!
+ 2 

𝑘 odd

(𝛼 − 𝑘)
𝑘!

𝑦𝑘 (1.198)

and, recalling eq. (1.55), the leading term of the imaginary part of 𝒢𝛼(i𝑦) is

Im𝒢𝛼(𝑦 → 0) ∼ −
𝜋 (𝛼 − 1)

(𝛼 − 1)! sgn(1 + 𝜇)(1 + 𝜇)2
𝑦𝛼. (1.199)

From eq. (1.52) we can compute the long-range contribution to the cor-
relation function:

𝐼𝒞0 + 𝐼𝒞2𝜋 = −
𝛼 (𝛼 − 1)

sgn (𝜇 + 1)(1 + 𝜇)2
1

𝑅𝛼+1
. (1.200)

If 𝛼 = 1we have that the decay exponent is 𝛾 = 2 as shown in Figure 1.3.
If 𝛼 is an even integer > 2 the same expansions lead to

Li𝛼(e𝑦) − Li𝛼(e−𝑦)
2
=
4(𝐻𝛼−1 − ln 𝑦)2

(𝛼 − 1)!2
𝑦2𝛼−2

−
𝜋2

(𝛼 − 1)!2
𝑦2𝛼−2

−
4𝜋i𝑦2𝛼−2

(𝛼 − 1)!2
(𝐻𝛼−1 − ln 𝑦)

−
4𝜋i (𝛼 − 1)
(𝛼 − 1)!

𝑦𝛼 + …

(1.201)
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thus, the long-range behavior is driven by the same term (∼ 𝑦𝛼) as for 𝛼 odd,
while if 𝛼 = 2 we have

[Li2(e𝑦) − Li2(e−𝑦)]
2 =𝑦2(4 − 4 ln 𝑦 − 𝜋2)2 − 4𝜋i𝑦2 1 − ln 𝑦 + … (1.202)

so

𝐼𝒞0 + 𝐼𝒞2𝜋 = −
1

sgn (1 + 𝜇)(1 + 𝜇)2 
∞

0
d𝑦 𝑦2 1 − ln 𝑦 e−𝑦𝑅

=
1 − 2𝛾 − 2 ln𝑅

sgn (1 + 𝜇)(1 + 𝜇)2
1
𝑅3

(1.203)

(𝛾 = 0.57721566 is the Euler-Mascheroni constant). This shows a logarith-
mic correction to the expected scaling 𝑅−3.
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Dynamics of entanglement entropy crossing a

quantum phase transition

The understanding of a one-dimensional equilibrium system often re-
lies on a combination of analytical techniques (field theory, integrability,
renormalization group approach) giving, for instance, either the exact or
the very-well approximated low-energy (ground-state) properties in terms
of effective models described by a few relevant quantities.

Away from equilibrium, when in the system is injected a huge amount
of energy (for example after a quench), all the excited states take part in the
dynamics and fewer analytical methods are available for analyzing them
(for a complete review of both the experimental and the theoretical aspects,
see Ref. [101]).

As entanglement measures revealed themselves as a powerful tool to
characterize the universality class of quantumphase transitions, in thisChap-
ter we will analyze the dynamical behavior of a closed quantum system,
when crossing a phase transition, by looking at the dynamics of the entan-
glement entropy [38, 102–104], by investigating its evolution for the Ising
chain in a time-dependent transverse field ℎ(𝑡) as function of the speedwith
which we change ℎ(𝑡).

We will examine the adiabatic regime (low speeds), the sudden-quench
situation (high speed) and the cases with intermediate speeds. Then we
will see how these results are related to the Kibble-Zurek mechanism [40–
43, 105], by looking both at the scaling of entanglement entropy and the
Schmidt gap [106] in the entanglement spectrum.

2.1 The model

In this work, we are interested in the time evolution of entanglement mea-
sures for the Ising model in a time dependent transverse field ℎ(𝑡) [32]:

𝐻 = −
1
2

𝐿

𝑗=1
𝜎𝑥𝑗 𝜎𝑥𝑗+1 + ℎ(𝑡)𝜎𝑧𝑗  (2.1)

where 𝜎𝑥 and 𝜎𝑧 are Pauli matrices.

45
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We let ℎ(𝑡) change linearly in time, from ℎ𝑖 to ℎ𝑓

ℎ(𝑡) = ℎ𝑖 + 𝑠𝑔𝑛(ℎ𝑓 − ℎ𝑖)
𝑡
𝜏

(2.2)

where 𝜏 is the time scale (the inverse of the velocity) of the ramping and
0 < 𝑡 < 𝑡𝑓, with 𝑡𝑓 = |ℎ𝑓 − ℎ𝑖|𝜏. The dynamics of the model is also exactly
accessible [34, 107], as we will recall below.

We will be interested in the evolution of the entanglement entropy and
the entanglement spectrum that can be computed according to the method
in Appendix 1.B.

Let us consider a chain containig 𝐿 sites, divided into two equally-spaced
subsystems 𝐴 and 𝐵 containing ℓ = 𝐿/2 adjacent sites.

The reduced density matrix of 𝐴, 𝜌𝐴 is obtained from the pure density
matrix of the ground state |𝐺𝑆(𝑡)⟩ evolved in time by (2.1), by tracing out
the degrees of freedom of 𝐵:

𝜌𝐴(𝑡) = Tr 𝐵 |𝐺𝑆(𝑡)⟩ ⟨𝐺𝑆(𝑡)| (2.3)

We can define the entanglement Hamiltonian [108] ℋ of 𝜌𝐴(𝑡) as 𝜌𝐴(𝑡) =
e−ℋ(𝑡) and its energy spectrum as the entanglement spectrum (ES). We will
be also interested in the set { 𝑛(𝑡) } of the eigenvalues of 𝜌𝐴(𝑡) from which it
is possible to compute the von Neumann entropy

𝑆𝐿/2(𝑡) = −Tr 𝜌𝐴(𝑡) log2 𝜌𝐴(𝑡) = −𝑛
𝑛(𝑡) log2 𝑛(𝑡). (2.4)

In the following sections, we will study the evolution of 𝑆𝐿/2(𝑡) during
the ramping of ℎ(𝑡) from the paramagnetic sector of the phase diagram (ℎ𝑖 >
1) to the ferromagnetic one (ℎ𝑓 < 1). This turns out to be also the setting for
the Kibble-Zurek mechanism in the 1D quantum Ising model.

We choose a system of 𝐿 = 50 (postponing the discussion of size-effects
to Sec. 2.3), and and ℎ𝑖 = 1.4 to ℎ𝑓 = 0.4 for the ramping.

We showhow todescribe the dynamics of a state according to theHamil-
tonian in Eq. 2.1. We follow the procedure of Ref. [109].

A Jordan-Wigner transformation (Appendix 1.A) can castHamiltonian (2.1)
in a free fermionic model

𝐻 = −
1
2

𝐿

𝑗=1
𝑐†𝑗+1𝑐𝑗 + 𝑐𝑗+1𝑐𝑗 + ℎ.𝑐. − 2ℎ(𝑡)𝑐†𝑗 𝑐𝑗 −

𝐿ℎ(𝑡)
2

(2.5)

The time evolution of the system in eq. (2.5) is described by the Heisen-
berg equation for the 𝑐 operators:

i
d
d𝑡
𝑐𝑗(𝑡) = 𝑐𝑗(𝑡), 𝐻𝑗(𝑡) (2.6)
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which can be rewritten as:

i
d
d𝑡
𝑐𝑗(𝑡) =

𝐿

𝑘=1

𝐴𝑗𝑘(𝑡)𝑐𝑘(𝑡) + 𝐵𝑗𝑘(𝑡)𝑐†𝑘(𝑡) (2.7)

with

𝐴𝑗𝑘(𝑡) = ℎ(𝑡)𝛿𝑗𝑘 −
1
2
𝛿𝑗,𝑘+1 + 𝛿𝑗+1,𝑘 − 𝛿𝑗1𝛿𝑘𝐿 − 𝛿𝑗𝐿𝛿𝑘1 (2.8)

𝐵𝑗𝑘(𝑡) = −
1
2
𝛿𝑗+1,𝑘 − 𝛿𝑗,𝑘+1 + 𝛿𝑗1𝛿𝑘𝐿 − 𝛿𝑗𝐿𝛿𝑘1 . (2.9)

In order to solve such an equation, wemake the following ansatz, known
as time-dependent Bogolyubov transformation:

𝑐𝑗(𝑡) ≡
𝐿−1

𝑚=0

𝑢𝑗𝑚(𝑡)𝑏𝑚 + 𝑣∗𝑗𝑚(𝑡)𝑏†𝑚 (2.10)

with the initial conditions 𝑢𝑗𝑚(0) = 𝑢𝑗𝑚 and 𝑣𝑗𝑚(0) = 𝑣𝑗𝑚 given by the initial
Bogolyubov angles (1.127)

𝑢𝑗𝑚 =
ei𝑘𝑚𝑗

√𝐿
cos 𝑛 =

ei𝑘𝑚𝑗

√𝐿
1
2
+
ℎ(0) + cos 𝑘𝑚
2𝜆(𝑘𝑚)

(2.11)

𝑣𝑗𝑚 =
ei𝑘𝑚𝑗

√𝐿
sin 𝑛 =

ei𝑘𝑚𝑗

√𝐿
1
2
−
ℎ(0) + cos 𝑘𝑚
2𝜆(𝑘𝑚)

(2.12)

where𝜆(𝑘𝑚) is the dispersion relation (1.130)𝜆(𝑘𝑚) = (ℎ(0) + cos 𝑘𝑚)
2 + sin2 𝑘𝑚.

By putting the ansatz of eq. (2.10) in the Heisenberg equation, we come
to the set of linear coupled differential equations

i
d
d𝑡
𝑢𝑗𝑚(𝑡) =

𝐿

𝑘=1

𝐴𝑗𝑘(𝑡)𝑢𝑘𝑚(𝑡) + 𝐵𝑗𝑘(𝑡)𝑣𝑘𝑚(𝑡)

−i
d
d𝑡
𝑣𝑗𝑚(𝑡) =

𝐿

𝑘=1

𝐵𝑗𝑘(𝑡)𝑢𝑘𝑚(𝑡) + 𝐴𝑗𝑘(𝑡)𝑣𝑘𝑚(𝑡)
(2.13)

that can be solved by standard techniques.
Once computed 𝑐𝑗(𝑡) one can construct the correlation matrices ℂ𝑖𝑗 =

⟨𝑐†𝑗 (𝑡)𝑐𝑖(𝑡)⟩ and 𝔽𝑖𝑗 = ⟨𝑐†𝑗 (𝑡)𝑐†𝑖 (𝑡)⟩ and compute the entanglement spectrum
by following section 1.B.1.

Unless explicitly stated, we choose 𝐿 = 50 (postponing the discussion
of size-effects to Sec. 2.3), and show our results for a ramping from ℎ𝑖 =
1.4 to ℎ𝑓 = 0.4. We choose these values of the initial and final magnetic
field in order to restrict the range of integration of the differential equations
eq. (2.13).
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(f) 𝜏 = 0.1

Figure 2.1: Dynamics of the first four eigenvalues of 𝜌𝐴(𝑡) for 𝐿 = 50, ℎ𝑖 = 1.4 and
ℎ𝑓 = 0.4. Different panels refer to different 𝜏. In panels (d) , (e) and (f) the red and
green lines overlay.

2.2 Dynamics of the entanglement

In this section we will study the dynamics of the entanglement spectrum
and of the entanglement entropy in detail (Figs. 2.1 and 2.2).

Their evolution in time displays different behaviors depending on the
values of 𝜏. We can identify four regimes:

(i) adiabatic regime, 𝜏 ∼ 500;

(ii) slow regime 𝜏 ≳ 20;

(iii) fast regime 1 ≲ 𝜏 ≲ 20;

(iv) sudden regime 𝜏 ≲ 1;

we will discuss in the following sections.

2.2.1 Adiabatic and sudden regimes

Webegin by considering very large values of 𝜏, i.e., a quasi-adiabatic quench,
see for example the curve panel (a) of Fig. 2.1 and at 𝜏 = 500 of Fig. 2.2.

We observe that during the evolution the entanglement entropy and the
entanglement spectrum closely follow the static values, i.e. those obtained
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Figure 2.2: Dynamics of the entanglement entropy 𝑆𝐿/2(𝑡) for 𝐿 = 50, ℎ𝑖 = 1.4,
ℎ𝑓 = 0.4 for different values of 𝜏.

from the ground state of the system at each value of ℎ(𝑡), the only differ-
ence being represented by some small oscillations, that will be discussed in
section 2.2.3.

This behavior is expected as the gap, because of the finite size of the sys-
tem, remains non-zero for any finite 𝐿 and the adiabatic theorem holds [110]
provided 𝜏 is large enough.

We then consider the opposite regime, with very small values of 𝜏, i.e.,
very fast quenches (curve with 𝜏 = 0.1 in Fig. 2.2) and panel (f) of Fig. 2.1.
The entanglement entropy and the entanglement spectrum do not evolve
at all, as expected from the adiabatic theorem, independently on the size of
the system.

2.2.2 Fast sweeps

We consider now rampings that are slower than sudden ones, but much
faster than adiabatic ones; we call them fast sweeps, and, for our system
sizes, they correspond to 1 ≲ 𝜏 ≲ 20. We consider the faster regime 𝜏 ∼ 1
and then the slower rampings 10 ≲ 𝜏 ≲ 20.

Starting from faster rampings (see curveswith 𝜏 = 1 and 5 in Figure 2.2),
the entanglement entropy increases linearly in the region close to the phase
transition: this behavior can be related to the results of Calabrese andCardy [38]
relative to a sudden quench to a conformal critical point where the entan-
glement entropy is predicted to grow linearly (see eq. (1.89)).

In our case, even if the ramping is not sudden, the picture of [38] can be
also applied because, close to the critical point, the correlation length and
the relaxation time are large, so the system behaves as critical for a finite
interval of ℎ.
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Figure 2.3: The plot shows the time atwhich the eigenvalues of the reduced density
matrix cross as a function of 1/𝜏, for 8 < 𝜏 < 17. This time results to be always larger
than the critical one, meaning that the oscillations start only after the system has
reached the critical point. Red crosses: numerical data. Black line: fitting formula
𝑎0 + 𝑎1/𝜏 + 𝑎2/𝜏2, giving 𝑎0 = 0.557 (critical point: 0.4).

The behavior of the entanglement spectrum is of course related to the
one of the entanglement entropy and it is shown in panel (e) of Figure 2.1.

In this regime of 𝜏, the growth of the entanglement entropy can be as-
cribed to the decreasing of the first eigenvalue and to the increasing of the
other three [111].

Remarkably, 2(𝑡) and 3(𝑡) are still degenerate. They indeed correspond,
at 𝑡 = 0, to the degenerate eigenstates |1⟩ and |𝐿/2⟩ (see Appendix 2.A), and
the time evolution does not break the degeneracy, at least for these values
of 𝜏.

The second regime is encountered by further increasing 𝜏 (see for exam-
ple curves with 𝜏 = 8, 10 and 30 in the main panel of Figure 2.2). In such
cases, the entanglement entropy still presents a linear-growth region end-
ing in an oscillatory region, in which the entanglement entropy alternates
between maxima and minima, with variable frequency.

This behavior has already been observed in a thermodynamic-limit study
of the dynamics of entanglement entropy [104], and has been ascribed to the
fact that the system ends up, after passing the critical point, in a superposi-
tion of excited states of the instantaneous Hamiltonian.

We now investigate the behavior of the entanglement spectrum in this
regime. As shown in panel (d) of Figure 2.1, the decreasing of 1(𝑡) and
the growth of the remaining eigenvalues continues until they cross, all at
the same point. The fourfold crossing, we observed, is actually a crossing
between the first and the fourth eigenvalue, while the second and the third
continue evolving parallel to each other.
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Moreover, this crossing structure recurs also for later times in an almost
periodic pattern.

The crossings correspond, as expected, to the maxima of entanglement
entropy and this oscillatory behavior starts only after the systemhas crossed
the critical point.

This fact is easily confirmed by plotting the crossing time 𝑡cross as a func-
tion of 𝜏: the result is shown in Figure 2.3: the data can be fitted by a power-
law:

𝑡cross
𝜏

= 𝑎0 +
𝑎1
𝜏
+
𝑎1
𝜏2

(2.14)

showing that, for 𝜏 ≫ 1, the crossing point is always greater than the criti-
cal one (the latter being equal to 0.4). (strictly speaking, we could not take
the limit 𝜏 → ∞, since, for larger 𝜏, the behavior of the system tends to be-
come adiabatic; however, this extrapolation shows that the oscillations, also
present for larger 𝜏, always have the same nature; see Sec. 2.2.3).

We have also verified that the crossing time 𝑡cross does not depend on the
size of the system at fixed 𝜏. This fact represents a further evidence of the
fact that the physics, for these values of 𝜏, coincideswith the thermodynamic-
limit one.

2.2.3 Slow sweeps

The last regime is observed for 𝜏 ≳ 20. As Figure 2.1(c) shows, the second
and the third eigenvalues begin to separate, making the crossing of 1(𝑡) and
4(𝑡) an avoided crossing. For larger values of 𝜏, as shown in figure 2.1(b),
this separation continues and the dynamical structure of the spectrum gets
closer to the static one, i.e., the one of figure 2.1(a).

Remarkably, the crossings, occurring between the 1(𝑡) and 2(𝑡) and be-
tween 3(𝑡) and 4(𝑡), take place at the same times for the first and the second
couple.

On the other hand, the entanglement entropy, as shown in the main
panel of Figure 2.2 (curve with 𝜏 = 100), at the beginning of the evolution
is practically coincident with the static one, and at a certain point begins to
grow and to oscillate around a value smaller than the ones of section 2.2.2
and decreasing as 𝜏 increases.

The behavior of the entanglement spectrum and the entanglement en-
tropy can be ascribed to the approaching of the adiabatic regime. However,
as already observed in section 2.2.1, the oscillation (now between the first
and the second two eigenvalues) studied in section 2.2.2 survive as a sign
of non-adiabaticity.
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Figure 2.4: Entanglement entropy at the final instant of the evolution for 1 < 𝜏 <
200 at different system sizes (10 ≤ 𝐿 ≤ 100, from top to bottom). The equation of
the black line is const. + (log2 𝜏)/12.

2.3 Kibble-Zurek physics

In this Section, we discuss the Kibble-Zurek scaling [40–43] of the entangle-
ment entropy already considered and of the Schmidt gap [106, 112], i.e., the
difference between the two largest eigenvalues in the entanglement spec-
trum. A discussion of this mechanism for the 𝑋𝑌-model may be found in
Refs. [105, 113–115].

In its original formulation, the Kibble-Zurek mechanism is able, on the
basis of extremely simple approximations, to predict the scaling of the num-
ber of topological defects produced after the dynamical transition of a crit-
ical point.

The key assumption underlying themechanism is that the evolution can
be divided, for suitable ramping velocities, into three parts: a first adia-
batic one, where the wave function of the system coincides with the ground
state of 𝐻(𝑡); a second it impulsive, where the wave function of the sys-
tem is practically frozen, due to the large relaxation time close to the critical
point; a third adiabatic one, as the system is driven away from the critical
point [105].

This division takes the name of adiabatic-impulse-adiabatic approxima-
tion [116, 117]. What plays a role in this kind ofmechanism is the correlation
length 𝜉 at the times of passage between the different regimes, that can be
seen to scale, for a linear quench of inverse velocity 𝜏, as [42, 43]

𝜉 ≈ 𝜏
𝜈

1+𝑧𝜈 (2.15)

being 𝜈 and 𝑧 the critical exponents of the crossed quantumcritical point [118].
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2.3.1 Entanglement entropy

Any quantity that is directly related to the correlation length 𝜉 is suitable
to a Kibble-Zurek analysis. In particular, close to a conformal critical point
of conformal charge 𝑐, the entanglement entropy has been shown to scale
as [31]:

𝑆 =
𝑐
6
log2 𝜉 + const. (2.16)

and therefore the entanglement entropy after the quench is easily seen to
scale as [104]

𝑆𝐿/2(𝜏) =
𝑐𝜈

6(1 + 𝑧𝜈)
log2 𝜏 + const. (2.17)

The prefactor of the logarithm would be 1/24, since in the Ising case 𝜈 =
𝑧 = 1 and 𝑐 = 1/2, but as the subsystem 𝐴 has two boundaries we need to
double the prefactor of the logarithm. So we expected the entropy to scale
as [31, 102]

𝑆𝐿/2(𝜏) =
1
12
log2 𝜏 + const. (2.18)

This clearly holds in the thermodynamic limit, where the gap is strictly
closed at the critical point.

At finite size, we expect some deviations from the Kibble-Zurek behav-
ior for large 𝜏. We plot the results we obtain in Figure 2.4: as expected,
we observe a progressive breakdown of the Kibble-Zurek prediction low-
ering 𝐿.

Moreover, it is evident that the logarithmic behavior expected from the
Kibble-Zurek mechanism is superimposed to an oscillating behavior, as al-
ready observed in Ref. [104]: it is clearly a reflex of the oscillating structure
of the entanglement entropy as a function of time, studied in Sec. 2.2.2 and
2.2.3.

Third, we observe that, for small values of 𝜏, the curves at different sizes
are practically coincident. This coincidence is lost for larger values of 𝜏,
depending on 𝐿: the velocities at which this coincidence is observed are the
ones at which the physics is practically the one of the thermodynamic limit.
For example, at 𝐿 = 50, the physics is practically the thermodynamic limit
one up to 𝜏 ≈ 15.

Finally, we note that, remarkably, the 𝜏 that correspond to the passage
from the fast to the slow regime (the 𝜏 for which the crossing between the
first and the fourth eigenvalue of the reduced densitymatrix begin to disap-
pear), correspond to the breakdown of the Kibble-Zurek, or, equivalently,
of the thermodynamic-limit physics.

This fact could be verified by a direct thermodynamic-limit investiga-
tion (as, e.g., in [104]), and it could represent, in principle, a very simple
tool to check the equivalence between finite-size and thermodynamic-limit
physics.
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Figure 2.5: Schmidt gap at the final instant of the evolution for 10 < 𝜏 < 200 at
different system sizes (80 ≤ 𝐿 ≤ 150, from top to bottom). The equation of the
black line is const. + 𝜏−1/2.

2.3.2 Schmidt gap

As alreadymentioned above, the Schmidt gapΔS is defined as the difference
between the two highest eigenvalues of the reduced density matrix. It has
been very recently shown [106] to be related to the correlation length

ΔS ≈ 𝜉−𝑧 (2.19)

and therefore its Kibble-Zurek scaling is

ΔS ≈ 𝜏
− 𝑧𝜈
1+𝑧𝜈 = 𝜏−1/2 (2.20)

Figure 2.5 shows the data for the scaling of the of the Schmidt gap at the
end of the ramping as a function of 𝜏 with the function ΔS = 𝜏−1/2 + const
that surprisingly interpolates with extreme precision the maxima of ΔS(𝜏)
numerically computed.

At fixed 𝐿, the shape of each curve shows also non-analyticities as a
function of 𝜏 that are a consequence of the crossing of the eigenvalues of
the reduced density matrix.

Thus, as for the entanglement entropy, we found also eq. (2.20) to be
compatible with the numerical results.

2.4 Conclusions

In this Chapter we have examined the dynamical evolution of the quan-
tum Ising chain in a time-dependent transverse magnetic field by looking
at the evolution of the entanglement entropy and the entanglement spec-
trum, that, in recent years, have been used to investigate the physics of a
closed quantum system crossing a phase transition.
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We observed qualitatively different regimes: an adiabatic one (large 𝜏)
when the system evolves according the instantaneous ground state, a sud-
den quench (small 𝜏) when the system is essentially frozen to its initial state
and an intermediate one where entropy starts growing linear in time and
thendisplays oscillations due to, among the others, some level crossing hap-
pening in the entanglement spectrum.

The entanglement spectrum can be used also to study both universal
quantities (scaling exponents) and physical phenomena, such as the Kibble-
Zurek mechanism, that may manifest during the evolution.





Appendices

2.A Initial structure of the entanglement spectrum

In this section we compute the reduces density matrix for the ground state
of the Ising model (2.1) at 𝑡 = 0 in the limit ℎ(0) = ℎ → ∞. The ground state
of the system is

|0⟩ = |↑⟩1 |↑⟩2⋯|↑⟩𝐿 (2.21)

where |↑⟩𝑗 and |↓⟩𝑗 are the eigenstates of 𝜎
𝑧
𝑗 .

This is not the exact ground state for ℎ ≫ 1, but, at first order in pertur-
bation theory, it is easy to show that the latter is given by

|𝐺𝑆⟩ = 𝒩
⎡
⎢⎢⎢⎢⎣|0⟩ +

1
4ℎ

𝐿

𝑗=1
|𝑗, 𝑗 + 1⟩

⎤
⎥⎥⎥⎥⎦ (2.22)

with
|𝑗, 𝑗 + 1⟩ = |↑⟩1 |↑⟩2⋯|↓⟩𝑗 |↓⟩𝑗+1⋯|↑⟩𝐿−1 |↑⟩𝐿 (2.23)

being the state where the spins at sites 𝑗 and 𝑗 + 1 are flipped and 𝒩 =

1 + 𝐿
16ℎ2


− 1
2
is a normalization factor.

The zero-temperature density matrix of the system is given by |𝐺𝑆⟩ ⟨𝐺𝑆|
and the reduced density matrix 𝜌𝐴 of the half chain 𝐴 = {1,⋯ , 𝐿/2} takes
the form

𝜌𝐴 =  |0⟩𝐴 , |2𝑝⟩𝐴 , |1⟩𝐴 , |𝐿/2⟩𝐴 ℝ𝐴

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴 ⟨0|
𝐴 2𝑝
𝐴 ⟨1|
𝐴 ⟨𝐿/2|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.24)

with

|0⟩𝐴 = |↑⟩1 |↑⟩2⋯|↑⟩𝐿/2 (2.25)

2𝑝
𝐴
= 

𝐿
2
− 1

− 1
2

𝐿
2−1


𝑗=1

𝑗, 𝑗 + 1 (2.26)

|1⟩𝐴 = |↓⟩1 |↑⟩2⋯|↑⟩𝐿 (2.27)
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|𝐿/2⟩𝐴 = |↑⟩1 |↑⟩2⋯|↑⟩𝐿/2−1 |↓⟩𝐿/2 (2.28)

and

ℝ𝐴 = 𝒩 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +
𝐿
2−1

16ℎ2


𝐿
2−1

4ℎ 0 0


𝐿
2−1

4ℎ

𝐿
2−1

16ℎ2 0 0
0 0 1

16ℎ2 0
0 0 0 1

16ℎ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.29)

ℝ𝐴 shows that |1⟩𝐴 and |𝐿/2⟩𝐴 are degenerate eigenstates of 𝜌𝐴 with
eigenvalues

2,3 =
1

2ℓ + 16ℎ2
(2.30)

with ℓ = 𝐿/2.
Diagonalizing the remaining block gives the others two eigenvalues

1,4 =
(ℓ − 1)/2 + 4ℎ2 ± 2ℎ

2 ℓ + 4ℎ2 − 1

ℓ + 8ℎ2
. (2.31)

For large enough ℎ, the two eigenstates related to 1,4 are superpositions
of |0⟩𝐴 and |2𝑝⟩𝐴, one in which the paramagnetic state |0⟩𝐴 dominates and

the other in which |2𝑝⟩𝐴 dominates. A numerical analysis shows also that

1 < 2 = 3 < 4, for sufficiently high ℎ.
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Résumé en Français

Les récents progrès expérimentaux dans le piégeage et dans la manipu-
lation de gaz atomiques et moléculaires ultra-froids [1–3] ont permis d’ex-
plorer et de simuler beaucoup de phénomènes qui arrivent dans des sys-
tèmes a 𝑁 corps à l’équilibre ou hors de l’équilibre (transitions de phase
quantiques [4], phases fortement corrélées [5], évolution quantique [12],
propagation des corrélations et des quasi-particules [19]).

Les réseaux optiques sont l’exemple clef de systèmes où les atomes peu-
vent être piégés et les interactions entre eux peuvent être contrôlées avec
une extrême versatilité.

Il est possible aussi de modifier le rayon de ces interactions en employ-
ant, par exemple, des ions piégés [19, 26, 27] qui ont été utilisés avec succès
pour créer des potentiels inversement proportionnels à la distance 𝑟 comme
1/𝑟𝛼 où 𝛼 peut varier approximativement de 0 à 3, en permettant la simu-
lation de beaucoup de modèles [du champ moyen (𝛼 = 0) à l’interaction
dipôle-dipôle (𝛼 = 3)].

A cause des précédents résultats expérimentaux dans la première par-
tie de la thèse, nous étudierons quel est le rôle joué par un terme à long
rayon d’action ajouté à une Hamiltonienne locale, en caractérisant le dia-
gramme de phase par des quantités non locales (comme, par exemple, l’en-
tropie d’intrication et le comportement de corrélations).

Lemodèle qui en résulte est une généralisationde la chaîne deKitaev [29]
et il décrit un système fermionique avec un pairing 𝑝-wave à long rayon qui
tombe avec la distance telle qu’une puissance avec exposant 𝛼.

L’Hamiltonienne de Kitaev a été étudiée en [29] comme modèle pour
l’ordre quantique topologique. Une phase topologique dans une dimen-
sion est caractérisée par la présence de deux ou plus d’états fondamentaux
dégénérés qui paraissent sans la brisure d’une symètrie locale de l’Hamilto-
nienne et par la localisation d’edge modes, identifiés comme des modes de
Majorana, lesquels, peuvent être théoriquement employés comme qubits.

Le modèle étudié est encore quadratique et, donc, exactement résolu-
ble. En en employant l’intégrabilité nous avons démontré l’existence de
deux régimes massifs, l’un où les fonctions de corrélation tombent expo-
nentiellement à de courtes distances et comme puissance à de longues dis-
tances, l’autre où elles tombent à puissance seulement.

Dans la seconde région, en outre, l’entropie d’intricationd’un sous-système
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diverge logarithmiquement. Les deux résultats sont inattendus pour des
phases massives d’Hamiltoniennes locales (où l’entropie d’intrication de-
vient constante [31] et les corrélations tombent exponentiellement [30]) et
ils sont caractéristiques de systèmes avec des interactions à long rayon qui
montrent leurs effets dans le comportement de quantités non locales comme
les corrélations et l’entropie d’intrication.

Si l’on considère la limite 𝛼 → ∞ le modèle devient celui d’Ising, ample-
ment étudié [32–34] car il est exactement résoluble et, au même temps, car
il est à même d’expliquer des phénomènes pas banals. On peut le consid-
érer aussi comme un paradigme pour les transitions de phase quantiques
[35] entre une phase paramagnétique et antiferromagnétique séparées par
un point critique qui appartient à la classe d’universalité dumodèle d’Ising
décrit par une théorie conforme [36, 37].

Après avoir introduit le terme à long rayon, en variant 𝛼, ce point de-
vient une ligne critique qui n’est plus décrite par une théorie conforme pour
des 𝛼 suffisamment petits. On a prouvé ça en calculant l’évolution tem-
porelle de l’entropie d’entanglement après un quench.

On a trouvé [38] que dans unmodèle invariant sous les transformations
conformes, l’entropie croît linéairement dans le temps. On peut compren-
dre ça en pensant qu’après un quench des couples de quasi-particules sont
créés dans un point du système. Ces quasi-particules sont entangled et se
déplacent avec une vitesse de groupe non nulle. Si l’on coupe le système
en deux parités (𝐴 et 𝐵) le nombre de particules créées en 𝐴 qui arrivent en
𝐵 croît linéairement avec le temps (du moment que la vitesse de groupe est
constante) et également, l’intrication entre les deux parties change linéaire-
ment dans le temps.

L’évolution temporelle de l’entropie dans la chaîne avec le pairing a long
rayon est, au contraire, logarithmique lorsque 𝛼 < 1. Le même résultat a été
trouvé dans le modèle d’Ising [39] et, dans la description à quasi-particules,
il peut être expliqué par l’existence d’une vitesse divergente. Nous avons
trouvé, en effet, le point exacte dans le diagramme de phase où la vitesse
des excitations diverge et nous avonsmontré que pour cette valeur-là l’évo-
lution de l’entropie d’intrication n’est plus linéaire.

Par rapport au problème de la dynamique dans des systèmes quan-
tiques, la seconde partie de la thèse étudie l’évolution de l’entropie d’intri-
cation et de l’intrication spectrum lorsque le système traverse une transition
de phase avec de différentes vitesses.

Comme exemple, on peut dire que nous avons arrêté notre attention sur
le modèle d’Ising avec un champ magnétique qui dépend linéairement du
temps:

𝐻Ising =
𝑖
𝜎𝑥𝑖 𝜎𝑥𝑖+1 − ℎ(𝑡)𝜎𝑧𝑖  (3.1)

où 𝜎(𝑥,𝑧)𝑖 sont matrices de Pauli.
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Le champ magnétique change comme ℎ(𝑡) = ℎ𝑖 +
𝑡
𝜏 où 𝜏 est l’inverse de

la vitesse avec laquelle le système est approché du point de transition et ℎ𝑖
peut se trouver soit dans la phase paramagnétique que dans l’antiferromag-
nétique.

Nous avons calculé l’évolution temporelle de l’entropie d’intrication et
nous avons trouvé de différents régimes qui dépendent de la vitesse de tran-
sition: un régime adiabatique (de basses vitesses, de grands 𝜏) lorsque le
système évolue selon son état fondamental instantané; un sudden quench
(de hautes vitesses, de bas 𝜏) lorsque le système est essentiellement congelé
dans son état initial; un régime intermédiaire où l’entropie croît linéaire-
ment et, ensuite, elle montre des oscillations du moment que, après avoir
passé le point critique, le système se trouve dans une superposition des états
excités de l’Hamiltonienne instantanée.

Nous avons discuté aussi du mécanisme de Kibble-Zurek [40–43] qui
donne une estimation de la densité de défauts topologiques produits après
la transition lorsque la longueur de corrélation 𝜉 diverge. Ces défauts sont
produits sur des distances plus petites que 𝜉 qui satisfait 𝜉 ∼ 𝜏𝜈/(𝜈𝑧+1) où 𝜈
et 𝑧 sont les exposants critiques de la transition.

Du moment que l’entropie 𝑆 sature à une valeur 𝑆 ∼ log 𝜉, nous avons
montré, enfin, que pour l’argument de Kibble-Zurek, l’entropie dépend de
l’inverse de la vitesse 𝜏 comme 𝑆 ∼ log 𝜏.
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Riassunto in Italiano

I recenti progressi sperimentali nell’intrappolamento e lamanipolazione
di gas atomici e molecolari ultrafreddi [1–3] hanno offerto la possibilità di
esplorare e simulare un’ampia classe di fenomeni che avvengono in sistemi
a molti corpi fuori e all’equilibrio (transizioni di fase quantistiche [4], fasi
della materia fortemente correlate [5], evoluzione quantistica [12], propa-
gazione dinamica dei correlatori e quasiparticelle [19]).

I reticoli ottici sono l’esempio chiave di sistemi in cui gli atomi posso
essere intrappolati e le interazioni tra di essi posso essere controllate con
estrema versatilità.

È diventato inoltre possibilemodificare anche il raggio di tali interazioni,
impiegando, ad esempio, ioni intrappolati [19, 26, 27] che sono stati uti-
lizzati con successo per creare potenziali che decadono con la distanza 𝑟
come 1/𝑟𝛼 dove 𝛼 può variare, approssimativamente, da 0 a 3, permettendo
la simulazione di una grande classe di modelli [dal campo medio (𝛼 = 0)
all’interazione dipolo-dipolo (𝛼 = 3)].

Motivati da questi risultati sperimentali, nella prima parte della tesi,
studieremo qual è il ruolo giocato da un termine a lungo raggio aggiunto
ad una Hamiltoniana locale, caratterizzando il diagramma di fase tramite
quantità non locali (quali ad esempio l’entropia di entanglement e il decadi-
mento dei correlatori).

Ilmodello che ne risulta è una generalizzazionedella catenadiKitaev [29]
che descrive un sistema fermionico con un pairing 𝑝-wave a lungo raggio
che decade con la distanza come una potenza con esponente 𝛼.

L’Hamiltoniana di Kitaev con solo termini on site e a primi vicini è stata
studiata come modello per l’ordine topologico. Una fase topologica in una
dimensione è caratterizzata dalla presenza di due o più stati fondamentali
degeneri che appaiono senza la rottura di una simmetria locale della Hamil-
toniana e dalla localizzazione di modi di edge, identificati come modi di
Majorana, che, in principio posso essere utilizzati, nelle applicazioni di in-
formatica quansti, come qubits.

Il modello a lungo raggio studiato, contenendo essenzialmente dei ter-
mini di pairing, è ancora quadratico e quindi esattamente risolubile.

Sfruttandone l’integrabilità, abbiamo dimostrato l’esistenza di due re-
gimi massivi, uno in cui le funzioni di correlazione decadono esponenzial-
mente a corte distanze e a potenza a lunghe, l’altro in cui decadono pura-
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mente a potenza.
Nella seconda regione, inoltre, l’entropia di entanglement di un sotto

sistema diverge logaritmicamente. Entrambi questi risultati sono inaspet-
tati per fasimassive diHamiltoniane locali (dove l’entropia di entanglement
diventa costante [31] e i correlatori decadono esponenzialmente [30]) e sono
caratteristici di sistemi con forti interazioni a lungo raggio che mostrano i
propri effetti nel comportamento di quantità non locali come le correlazioni
e l’entropia di entanglement.

Considerando il limite 𝛼 → ∞ il modello diventa quello di Ising, ampia-
mente studiato sia perché esattamente risolubile e, allo stesso tempo, perché
è in grado di spiegare fenomeni non banali. Può essere, inoltre, consider-
ato come un paradigma per le transitions de phase quantiques tra una fase
paramagnetica e ordinata separate da un punto critico appartenente alla
classe di universalità del modello d’Ising descritto da une teoria conforme.

Una volta introdotto il termine a lungo raggio, tale punto, variando 𝛼
diventa una linea critica che, per 𝛼 sufficientemente piccoli non è più de-
scritto da une théorie conforme. Questo è stato anche provato calcolando
l’evoluzione temporale dell’entropia di entanglement dopo un quench.

In unmodello invariante conforme, è stato provato che l’entropia cresce
linearmente nel tempo. Ciò può esser compreso pensando che, dopo un
quench, coppie di quasi-particelle vengono create in un dato punto del sis-
tema. Queste quasi-particelle sono entangled e si muovono con velocità di
gruppo non nulla.

Se ora si divide il sistema in due parti (𝐴 e 𝐵) il numero di particelle
create in 𝐴 che arrivano in 𝐵 cresce linearmente con il tempo (dato che la
velocità di gruppo è costante) e, allo stesso modo, l’entanglement tra le due
parti varia linearmente nel tempo.

L’evoluzione temporale dell’entropia nella catena con il pairing a lungo
raggio è, invece, logaritmica quando 𝛼 < 1. Lo stesso avviene nel mod-
ello di Ising e ciò può esser spiegato, nella descrizione a quasi particelle,
perché esiste una velocità divergente. Abbiamo, infatti, trovato il punto
esatto nel diagramma di fase per cui la velocità delle eccitazione diverge e
abbiamo mostrato che per quel valore l’evoluzione dell’entropia di entan-
glement non è più lineare.

In relazione al problema della dinamica in sistemi quantistici chiusi, la
seconda parte della tesi affronta lo studio dell’evoluzione dell’entropia di
entanglement e dell’entanglement spectrum quando il sistema attraversa
una transizione di fase con diverse velocità.

Come esempio, ci siamo soffermati sul modello di Ising con un campo
magnetico linearmente dipendente dal tempo:

𝐻Ising =
𝑖
𝜎𝑥𝑖 𝜎𝑥𝑖+1 − ℎ(𝑡)𝜎𝑧𝑖  (4.1)

dove 𝜎(𝑥,𝑧)𝑖 sono matrici di Pauli.
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Il campo magnetico varia come ℎ(𝑡) = ℎ𝑖 +
𝑡
𝜏 , dove 𝜏 è l’inverso della

velocità con cui il sistema viene avvicinato al punto di transizione e ℎ𝑖 può
essere sia nella fase paramagnetica ℎ𝑖 > 1 o in quella ordinata ℎ𝑖 < 1 .

Abbiamo calcolato l’evoluzione temporale dell’entropia di entanglement
di mezza catena e abbiamo trovato diversi regimi che dipendono dalla ve-
locità della transizione: un regime adiabatico (basse velocità, grandi 𝜏) quan-
do il sistema evolve secondo il suo stato fondamentale istantaneo; un sud-
den quench (alte velocità, bassi 𝜏) quando il sistema è essenzialmente con-
gelato nel suo stato iniziale; un regime intermedio in cui l’entropia cresce
linearmente e, in seguito, mostra delle oscillazioni dato che il sistema, dopo
aver passato il punto critico, si trova in una sovrapposizione di stati eccitati
della Hamiltoniana istantanea.

Abbiamo inoltre discusso il meccanismo di Kibble-Zurek che predice il
numero di difetti topologici prodotti dopo la transizione nella fase cosid-
detta impulsiva, quando la lunghezza di correlazione 𝜉 comincia a diverg-
ere. Tali difetti vengono prodotti su distanze minori di 𝜉 che soddisfa 𝜉 ∼
𝜏𝜈/(𝜈𝑧+1) dove 𝜈 and 𝑧 sono gli esponenti critici della transizione.

Dato che l’entropia 𝑆 satura a un valore∼ log 𝜉 [31], si èmostrato, infine,
che per l’argomento di Kibble-Zurek, l’entropia dipende dall’inverse della
velocità 𝜏 come 𝑆 ∼ log 𝜏.
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