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ABSTRACT 

 

The knowledge of the joint kinematics during swimming plays a fundamental role in sports 
conditioning and clinically. The analysis of video recordings obtained using underwater cameras is 
the most typical method used to evaluate swimming kinematics However, video-based analysis is 
often limited to a single stroke; the examined movement is limited to underwater arm stroke phases; 
and is time-consuming and requiring off-line post-processing procedures. On the other hand, 
wearable inertial and magnetic measurements units (IMMU) are an alternative tool for underwater 
motion analysis because they are swimmer-centric, they require only simple measurement set-up 
and they provide the performance results very quickly. In order to estimate 3D joint kinematics 
during motion, protocols were developed to transpose the IMMU orientation estimation to a 
biomechanical model. The aim of the thesis was to validate a protocol originally propositioned to 
estimate the joint angles of the upper limbs during one-degree-of-freedom movements in dry 
settings and herein modified to perform 3D kinematics analysis of shoulders, elbows and wrists 
during swimming. Eight high-level swimmers were assessed in the laboratory by means of an 
IMMU while simulating the front crawl and breaststroke movements. A stereo-photogrammetric 
system (SPS) was used as reference. The joint angles (in degrees) of the shoulders (flexion-
extension, abduction-adduction and internal-external rotation), the elbows (flexion-extension and 
pronation-supination), and the wrists (flexion-extension and radial-ulnar deviation) were estimated 
with the two systems and compared by means of root mean square errors (RMSE), relative RMSE, 
Pearson’s   product-moment coefficient correlation (R) and coefficient of multiple correlation 
(CMC). Subsequently, the athletes were assessed during pool swimming trials through the IMMU. 
Considering both swim styles and all joint degrees of freedom modeled, the comparison between 
the IMMU and the SPS showed median values of RMSE lower than 8°, representing 10% of overall 
joint range of motion, high median values of CMC (0.97) and R (0.96). These findings suggest that 
the protocol accurately estimated the 3D orientation of the shoulders, elbows and wrists joint during 
swimming with accuracy adequate for the purposes of research. Furthermore, an overall 
correspondence was verified among the swim phases in both simulated and real swimming, and no 
difference in the overall joint ranges of motion between the real and the simulated swims were 
observed. In conclusion, the proposed method to evaluate the 3D joint kinematics through IMMU 
was revealed to be a useful tool for both sport and clinical contexts. 
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1 Introduction 

Swimming is a physical activity practiced by millions of people in the whole world for recreation, 

sport and fitness. Regarding competitive swimming, sport scientists have proposed different 

methodologies to improve performance with minimal musculoskeletal damage. Consequently, 

swimming world records have been broken year after year much more frequently than in other 

sports like track and field. The identification of the key factors that allows the best propulsive 

efficiency is important not only to achieve high sports performance but also to acquire valuable 

information for teaching the right swimming technique. A further significant issue is that of injury 

prevention in competitive swimmers. For example, shoulder pain is frequent in swimmers, being 

caused by a set of factors like gleno-humeral laxity, biceps or rotator cuff lesions, and impingement 

syndrome (Allegrucci et al., 1994; McMaster and Troup, 1993; Pink and Tibone, 2000; Pollard and 

Croker, 1999; Sein et al., 2010). Joint range of motion, joint laxity, and anthropometric and 

epidemiologic data were evaluated to investigate the mechanisms leading to injuries. 

Therefore, from both a sports conditioning and clinical perspective, the knowledge of the 

joint kinematics during swimming plays a fundamental role. In the first case, it can give essential 

information for planning a training program specific for each athlete. Moreover, measuring 

biomechanics variables throughout a whole race or training session can be very useful to prevent 

both overtraining and decreased performance phenomena. Concerning the clinical aspects, the 

biomechanical analysis can support the design of appropriate prevention programs for the most 

common upper limb injuries that typically affect the swimmers. 

The analysis of video recordings obtained using underwater cameras is the most typical 

method used to evaluate swimming kinematics. Traditionally, tracking markers placed or drawn on 

the  swimmers’  skin  is  the  most  common way to perform underwater motion analysis (Magalhães et 

al., 2013; McCabe and Sanders, 2012; Psycharakis and McCabe, 2011; Sanders, 2007; Seifert et al., 

2008). Recently, an alternative method has been proposed by Ceseracciu et al. (2011) through the 

markerless approach. However, in both the marker-based and markerless approaches, only the 3D 

position of the anatomical landmarks and 2D joint angles were analyzed. Only the study conducted 

by Ceccon and co-workers was found that have used the video recording analysis to perform the 3D 

kinematics of the shoulder and elbow joints during front crawl swimming (Ceccon et al., 2012). 

Nevertheless, all studies based on video analysis have a number of drawbacks. This analysis is often 

limited to a single stroke due to the restricted field of view associated with the number of cameras. 

Furthermore, the examined movement is limited to underwater phases, a long elaboration time is 

required even when an automatic tracking procedure is used, and time-consuming set-up and 
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calibration procedures are required (Magalhães et al., 2013). Finally, quantitative video analysis can 

only be performed off-line and thus cannot be used by coaches during training sessions for 

detecting and immediately correcting technical mistakes. 

To overcome the limitations of methods based on the video analysis, in the last 15 years the 

wearable inertial and magnetic measurements units (IMMU) have been applied in swimming 

performance analysis. These systems are based on swimmer-centric waterproofed devices that 

allow a continuous data acquisition throughout a swim, requiring a simple measurement set-up. 

Furthermore, IMMU have the value to provide in real time useful performance variables to the 

coaches during training sessions. Duration of the swimming stroke phases, stroke frequency, time 

parameters and velocities have been measured using IMMU and validated with appropriate 

measurement systems (Dadashi et al., 2011; Daukantas et al., 2008; Le Sage et al., 2011; Ohgi, 

2002).  More   recently,   two   or  more  monitors   have   been   attached   to   the   swimmers’  wrists,   lower  

back, arms or legs, in order to better estimate the biomechanical variables (Bächlin and Tröster, 

2012; Dadashi et al., 2013; Fulton et al., 2009a; Hou, 2012; James et al., 2011).  

However in a systematic review about the use of IMMU for underwater motion analysis 

(Magalhães et al.), no study on 3D joints kinematics of the upper limbs was found in the literature. 

Additionally, it was found a protocol for the estimation of the 3D joint angles of shoulder and 

elbow in the clinical context throughout an IMMU system developed by Cutti et al. (2008), which is 

adaptable for the use of different IMMU systems, for the use of other joints and for the use of 

different situations like the sports context. 

1.1 Aim of the Study 

The aim of this study is to analyze the 3D joint kinematics of the upper limbs during swimming 

using IMMU by extending a protocol previously developed for simple and slow movements of 

shoulder and elbow, validated in ambulatory context. The present protocol was validated in 

simulated swimming performed in dry condition using the stereo-photogrammetry as reference, and 

tested in actual in-water swimming. 
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CHAPTER  2 

LITERATURE REVIEW 
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2 Literature  Review 

2.1 Introduction  

Swimming is one of the most challenging sports to analyze scientifically. Not only the human 

movement analysis is quite complex, but also the aquatic environment involves specific physical 

effects, like the thrust and drag, that must be considered. Several biomechanical methods have been 

proposed in the literature with the aim of acquiring valid data to analyze swimming performance. 

The most frequently investigated areas include kinematics, kinetics, energetics, neuromuscular 

biomechanics and anthropometrics.  

In competitive swimming, the performance can be subdivided into four phases: starting, 

swimming, turning, and finishing. During any swimming event, athletes spend most of the time in 

the swimming phase. Therefore, the swimming phase is the most determinant of swimming 

performance, and the majority of research efforts in swimming biomechanics have been dedicated 

to analyzing the four competitive strokes: Front Crawl, Backstroke, Breaststroke and Butterfly.  

This chapter summarizes the-state-of-the-art on the biomechanics of swimming. The literature 

review provided groundwork for the development of the methods described in Chapter 3, and for 

the discussion of the results in Chapter 4. In accordance with the main purpose of the thesis, only 

the kinematics of the upper limbs during front crawl and breaststroke were considered. The front 

crawl is the most frequently performed swim style among practitioners; and both front crawl and 

breaststroke are easily adapted to be simulated in laboratory. 

2.2 Swimming biomechanics 

A large part of the swimming research is dedicated to the swimming strokes kinematics. Hence, the 

main aspects related to the stroke cycle kinematics, limbs kinematics, body kinematics and kinetics 

will be summarized in this section. 

2.2.1 Stroke cycle kinematics 

Velocity is the critical variable to assess swimming performance. Stroke length (horizontal distance 

traveled by the body during a full stroke cycle) and stroke frequency (number of full stroke cycles 

completed within a unit of time) are the independent variables usually used to define swimming 

velocity. Variations in velocity are determined by increases or decreases in stroke frequency and 

stroke length (Craig et al., 1985; Kjendlie et al., 2006; Toussaint and Truijens, 2005). A swimmer 

usually has a stroke length that is as long in distance as possible, therefore, velocity is manipulated 

chiefly by changing the stroke frequency (Craig and Pendergast, 1979).  
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Another variable often used to assess the stroke cycle kinematics is the stroke index, an 

estimator of overall swimming efficiency. The stroke index was defined by Costill et al. (1985) as 

the product of average velocity and stroke length. At a given velocity, swimmers with the most 

efficient swimming technique are those presenting the higher stroke length (Barbosa et al., 2011).  

2.2.2 Upper- and Lower-Limb kinematics 

Stroke mechanics variables including stroke frequency and length are related to the overall limb 

kinematics. Many researchers have attempted to determine the exact contribution of the limbs to 

swimming performance. Deschodt et al. (1996) observed a significant high relationship between hip 

velocity and upper limb horizontal and vertical motion, i.e. an increase of upper limb velocity was 

associated  with   an   increase   in   swimmers’   horizontal   velocity.   Thus,   the   upper-limb action has a 

major influence on swimming performance (Deschodt et al., 1996; Zamparo, 2006). Furthermore, 

the contribution of the legs to overall propulsion was found to be small during front crawl, varying 

from about 10 to 15% (Deschodt et al., 1996; Hollander et al., 1988). 

Another issue is the contribution of the body roll to the upper-limb kinematics and 

consequently to the swimming performance. For the front crawl, Psycharakis et al. (2010) reported 

a   strong   influence   of   the   body   roll   on   the   upper   limb’s   kinematics:   a   more   efficient   body   rolls  

enabled a more efficient hand trajectory, leading to an effective push. For the breaststroke, the 

timing between the upper- and lower- limbs is a major concern. Chollet et al. (1999) verified a 

significant high relationship between both upper- and lower-limb coordination and swimming 

velocity. Tourny et al. (1992) suggested that higher velocities can be achieved by reducing the 

gliding phase.  

2.2.3 Body kinematics 

Normally   the  body  kinematics  are  calculated  using  markers  placed  either  on   the  body’s  center  of  

mass or on the hip joint. However, the hip seems not to be a valid estimator of the center of mass 

for kinematics because: 1) it displays more variability in velocity than the center of mass; 2) its 

temporal estimation does not always represent the stroke cycle; 3) during the stroke cycle, the limb 

movements affect the estimation of the center of mass position; and 4) it is a fixed anatomical 

landmark, so it is not dynamically adaptable during the swimming phases (Barbosa et al., 2011; 

Psycharakis and Sanders, 2009; Vilas-Boas et al., 2010). Although estimation of the center of mass 

using the hip joint presents these drawbacks, some researchers use this kind of estimation anyway. 

Intra-cyclic variation of the horizontal velocity is the most frequently measured variable 

related to the center of mass. The body’s  velocity   is   not   constant  during  a   stroke  cycle   since   the  
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body’s   velocity   increases   and   decreases   due   to   the   limb   action.   The   horizontal   velocity   can   be  

described with non-linear functions, since swimmers present different individual horizontal velocity 

curves (Barbosa et al., 2010b). So, individual curves may not coincide with the mean curves of a 

sample of subjects, thus expressing the individual interpretation of the swimming technique 

(Barbosa et al., 2011).  

Barbosa et al. (2010a) analyzed the horizontal velocity of swimmers during the front crawl 

stroke and found a multi-model profile where higher peaks were related to arm actions and lower 

peaks to leg actions. For some athletes two distinct peaks with different velocities were found that 

were related to the most propulsive phases of each arm. Moreover, it seems that for some subjects 

there is an asymmetrical application of the propulsive force from the arms. For the breaststroke, 

(Barbosa et al., 2010a) characterized the horizontal velocity as a bi-modal profile. One peak was 

related to the arm actions and the other to the leg action, and both the peaks were almost 

comparable. After that peak, the gliding phase occurs with a decrease in the velocity. Good 

swimmers know the exact moment in which to start a new stroke cycle, avoiding a major decrease 

in the instantaneous velocity (Capitão  et  al.,  2006). 

2.2.4 Strokes kinetics 

Kinetic analysis in swimming can be associated to two main topics of interest: the propulsive force 

generated by the propelling segments, and the drag forces resisting to the forward motion. The 

balance between these  two  forces  influences  a  given  swimmer’s  speed. 

2.2.5 Propulsive force 

Propulsive force is the total force produced by the swimmer to push his/her body forward. In this 

sense,  performance   is   strictly   connected   to   the   swimmer’s   ability   to  produce  effective  propulsive 

force. The direct measure of the propulsive forces acting on a swimmer is practically impossible but 

several methods have been proposed in order to give an indirect estimation of them. Hollander et al. 

(1986) developed a system for measuring active drag (MAD system) that determines the propulsive 

force applied to underwater push-off pads used by the swimmers. However, Payton and Bartlett 

(1995) suggested that this system was not suitable to be used during competitions due to its invasive 

nature.  

A non-intrusive method of estimating propulsive hand forces during free swimming was 

proposed by Berger et al. (1995) and Sanders (1999). In their method, the instantaneous propulsive 

forces are estimated according to vector analysis of forces combined action on model hands in an 

open-water channel and the recording of underwater pulling action of a swimmer (Schleihauf, 

1979). These data can be then used together with digitized kinematic data of the hand to estimate 
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the lift, drag and resultant force vectors produced during the swimming stroke cycle. Conversely, 

the calculation of the model hands in this method assumes that the water flow is steady, which is 

questionable because this kind of calculation may underestimate the outcomes (Kudo et al., 2008). 

Instead, Kudo et al. (2013) described  that  both  positive  and  negative  hand’s  acceleration  promote  an  

unsteady water flow in swimming. 

2.2.6 Drag force 

The drag force can be defined as an external force that acts parallel to the swimmer’s  body  but  in  

the opposite direction of movement. It is a resistive force that depends on the anthropometric 

characteristics of the swimmer in the water (i.e. buoyancy is a factor as well as flat-plate area of the 

swimmer’s  profile  while  swimming),  on the characteristics of the equipment used by the swimmers, 

on the swimming velocity, and on the swimming technique. 

The evaluation of the intensity of the hydrodynamic drag during swimming represents an 

important issue in swimming biomechanics. Drag can be determined passively by towing a non-

swimming subject through the water, but this approach does not consider all the real drag created by 

a swimmer during the swimming motions. Thus, one of the most important parameters in 

swimming hydrodynamics is the drag   of   the   swimmer’s   body   during   active   swimming.   In  

agreement with this concept, Kjendlie and Stallman (2008) found passive drag (i.e. non-swimming) 

values lower than active drag (i.e. during swimming) values in the same swimmer. 

The first attempts to assess active drag were based on interpolation techniques that involved 

indirect calculations, considering the changes in oxygen consumption due to the attachment of 

additional   loads   to   the   swimmers’   body   (Di Prampero et al., 1974). Another technique was 

proposed by Hollander et al. (1986), and already mentioned, called the MAD-system which relies 

on the direct measurement of the push-off forces while swimming the front crawl stroke with arms 

alone. Kolmogorov and Duplishcheva (1992) designed another method to determine the active drag 

through velocity perturbations, also known as the method of small perturbations. In this approach, 

athletes must swim two 25-meters sprints at maximal effort, one lap with free swimming and the 

other while towing a hydrodynamic body that creates a known additional drag. For both the trials, 

the average velocity is calculated. Under the assumption that in both the swims the power output to 

overcome drag is maximal and constant, the drag force can be determined by considering the 

difference in swimming velocity. In contrast to the interpolation techniques and the MAD-system 

(which requires heavy and expensive experimental procedures), the velocity perturbation method to 

assess active drag just requires the use of the hydrodynamic drag device and a stopwatch 

(Kolmogorov and Duplishcheva, 1992). Additionally, this approach can be applied to measure 



22 
 

active drag in all four competitive strokes. Using this approach, several studies have been 

conducted to evaluate active drag in swimming (Kjendlie and Stallman, 2008; Marinho et al., 

2010). Kjendlie and Stallman (2008) found that active drag in adults was significantly higher than 

in children. This difference between adults and children was mostly due to the larger size and 

higher velocity for adults during swimming. Marinho et al. (2010) reported no differences in the 

values of active drag between boys and girls. 

The contribution of form, friction and wave drag components to total drag during swimming 

is an interesting topic in sports biomechanics (Pendergast et al., 2006). Data available from several 

experimental studies showed some difficulties involved in the evaluation of the contribution of each 

drag component (Bixler et al., 2007). It is widely recognized that frictional drag is the smallest 

component of total drag, especially at high swimming velocities, although this drag component 

should not be disregarded in elite level swimmers. Bixler et al. (2007), using numerical simulation 

techniques, found that friction drag represents about 25% of total drag when the swimmer is gliding 

underwater. Zaidi et al. (2008) also found an important contribution of friction drag to the total drag 

when the swimmer is passively gliding underwater. These authors found that friction drag 

represents about 20% of total drag. Thus, issues such as sports equipment, shaving and the decrease 

of immersed body surface area should be considered, since this drag component seems to influence 

the performance especially during the underwater gliding after starts and turns. In addition, form 

and wave drag represent the major parts of total hydrodynamic drag. Therefore, for maximal 

efficiency, swimmers must assume the most hydrodynamic position during swimming (Marinho et 

al., 2009; Toussaint et al., 2006). Although waveform represents a large part of total drag during 

swimming (Kjendlie and Stallman, 2008), when gliding underwater there is a major reduction of 

this drag component (which is why swimming rules control the amount of swimming underwater). 

2.3 Biomechanical Analysis of Swimming 

2.3.1 Video-based Analysis 

Traditionally, the criterion method for motion analysis in swimming has been the analysis of 

video recordings (Seifert et al., 2005; Vezos et al., 2007). Indeed, the use of video cameras for 

recording, modeling, and examining swimming technique has become usual practice for elite 

swimmers (Bächlin et al., 2009). This kind of analysis is mostly performed by using underwater 

camcorders that record a raw video sequence (sometimes with markers attached to the swimmer) 

and by subsequently tracking the points of interest using specific software packages (Pansiot et al., 

2010). The points tracked are typically anatomical landmarks that allow the kinematic modeling of 



23 
 

the body including the wrists, elbows, and shoulders for upper limbs, and the hips, knees, and 

ankles for lower limbs (Ohgi, 2002; Pansiot et al., 2010).  

2.3.1.1 Marker Approach 

 Through the markers-tracking procedure, swimming motion has been analyzed by 

considering variables related to performance like the stroke rate, stroke length, body roll, and range 

of motion. The marker coordinates can be obtained using the direct linear transformation (DLT) 

method, an established algorithm that allows multiple images captured by at least two underwater 

cameras to be extracted on a frame-by-frame basis (Ohgi, 2002; Pourcelot et al., 2000), i.e. for each 

frame at least 2 images are used to estimate the 3D coordinates in a previously calibrated space. 

Thus, displacement versus time data can plotted with minimum error (Callaway et al., 2009) and the 

body segments paths during an entire stroke can be constructed (Ohgi, 2002).  

The displacements of anthropometric data are usually measured using the DLT. Afterwards, 

other variables related to the swimming performance can be calculated. By using a marker fixed on 

the  swimmer’s  center  of  mass,  (Psycharakis and Sanders, 2008) measured the shoulder and hip roll 

changes during the crawl swimming. In a subsequent study, (Psycharakis et al., 2010) used the same 

method  to  calculate  the  variation  of  the  swimmer’s  velocity  during  a  stroke  cycle,  as  this  velocity  is  

proposed to be linked to performance. These investigations are just two examples of how the DLT 

can be used in swimming motion analysis; however, in DLT all the points of interest must be 

manually digitized, well-known to be a time-consuming process.  

Recently, efforts have been made toward the development of automated procedures in 

markers tracking in order to provide coaches, athletes and sports scientists with quick kinematic 

information. An automatic motion capture system similar to stereo-photogrammetry systems is 

available on the market (http://www.qualisys.com/products/hardware/oqus-underwater/, retrieved at 

20/12/2013). It was specifically designed for the 3D analysis of swimming and it is composed of 

retro-reflective spherical markers and waterproofed cameras. Kjendlie and Olstad (2012) have 

tested this system with 6 cameras and reported an increase of 7% to 10% in the passive drag due to 

the resistance exerted by the 24 markers attached to the swimmer. Although further data are needed 

to support their findings, these findings may lead to the conclusion that the use of markers of non-

negligible volume in the water is questionable. Indeed, an increased passive drag would negatively 

affect the performance of the swimmer. 

A possible approach to avoid increasing passive drag consists in replacing the spherical markers 

with bi-adhesives  placed  on  the  swimsuit,  or  with  markers  drawn  on  the  swimmer’s  skin  (Ceccon et 

al., 2013; McCabe et al., 2011; McCabe and Sanders, 2012). When this setup is used, movements 
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are filmed through conventional underwater cameras, and the resulting video recordings are 

analyzed using specific software for the tracking of features. Manual tracking represents the least 

precise solution to analyze movements performed in the water. However, this tracking method 

requires an extensive amount of time. For example, the work of Psycharakis and Sanders (2008)  

used manual digitation to analyze 19 anatomical landmarks for 4 stroke cycles in 10 swimmers 

performing a 200-m front crawl trial. The mean stroke frequency was 0.74 Hz, involving a total 

duration of approximately 5.4 s for the examined fraction (4 cycles) of each swim. Six cameras at 

50 frames per second were used, therefore, about 1620 frames were digitized for each swimmer. 

Although not all the markers had to be digitized in each frame (some were not visible by one or 

more cameras), a well-trained operator would have reasonably used no less than one minute per 

frame, involving a total digitation time of 27 hours for each swimmer. 

With the aim of providing a quick feedback on the kinematic characteristics of swimming to 

swimmers and coaches from passive markers, Magalhães et al. (2013) assessed the degree of 

automation of software for automatic tracking calculated as the percentage of required manual 

interventions throughout the tracking process in 21 video recordings of different aquatic exercises 

(n=2940 marker positions). Cross, full black circle, full white circle and partial black circle were the 

types  of  marker  used.  The  description  of  the  software’s  algorithm  was  presented  by  Magalhães  et  al.  

(2012). The percentage of manual interventions in this software for the examined video recordings 

was up to 17%, while it reached higher values (up to 46%) for the commercial software (SIMI 

Reality Motion Systems GmbH, Germany) considered as reference, with significant difference 

between both systems (odds ratio lower than 1, P < 0.05). Hence, the authors stated that this tool 

can be used in research involving underwater motion analysis due to its good degree of automation 

and overall effectiveness in tracking different types of passive non-reflective markers when 

analyzing underwater exercises. 

The software above assessed by Magalhães et al. (2013) has been already used by Ceccon et al. 

(2013) to automatically track passive markers in order to estimate the 3D joint kinematics of upper 

limbs during swimming by means of the calibration of anatomical system technique (CAST) 

proposed by Cappozzo et al. (1995). Fifteen front crawl trials were performed by an Italian national 

level swimmer and recorded using 6 conventional underwater color cameras. Comparing the 

automatic tracking mode of the referred software with the manual digitalization of commercial 

software (SIMI Reality Motion Systems GmbH), the authors found a good agreement between these 

two systems with a root mean difference lower than 20 mm in reconstructing the marker 

trajectories. Finally, the authors concluded that the automatic feature tracking technique is precise 

and accurate to estimate the anatomical landmark positions with a shorter processing time in 
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comparison with the manual tracking. Furthermore, the methodological contribution of this work 

was that it presented accurately the estimation of the three degrees of freedom of the shoulder and 

elbow joints through the method CAST during front crawl swimming.  

Ceccon et al. (2013) and Magalhães et al. (2013) demonstrated that it is possible to achieve good 

precision and accuracy in marker tracking using an automated procedure with considerably less 

post-processing time than in the standard manual digitalization. Several commercial software 

packages are already available on the market, but none of them was specifically designed for 

swimming. Due to the characteristics of the aquatic environment where numerous hindrances can 

make accurate detection of the markers difficult, technologies able to provide accurate kinematic 

data of underwater motion are highly desirable, particularly if fully automated.  

The underwater photogrammetry system tried by Kjendlie and Olstad (2012) seems to be a good 

option, due to its very high precision and rapid tracking, but the great expense, reduces its use to a 

few laboratories around the world. In addition, this system demonstrated an increase in passive drag 

due to use of spherical markers, which is definitely undesirable when performance enhancement is 

the goal.  

The software presented by Ceccon et al. (2013) and Magalhães et al. (2013) is user-friendly, is 

easily accessible (free), is not extensively time-consuming, does not influence the performance, 

provides accurate kinematic data, and overcomes most of the difficulties in markers detection 

during underwater motion analysis. However, there is no fully automated system available in 

swimming, because these systems require constant human supervision and sometime some manual 

interventions are necessary to correct the cursor pointer position. In this sense, all these systems 

should be viewed as semi-automatic systems. 

2.3.1.2 Markerless Approach 

Marker tracking is not the only approach available in swimming motion video-based 

analysis. The markerless system has been suggested as an alternative method in the last years 

(Corazza et al., 2010; Corazza et al., 2006; Moeslund and Granum, 2001; Moeslund et al., 2006; 

Poppe, 2007). Using the markerless technology, it is possible to automatically estimate the position 

of body segments from conventional cameras, and no marker drawn nor attached to the subject skin 

is  required.  The  background  subtraction  step  is  the  most  common  approach,  where  the  room’s  wall  

and floor are covered with blue or green panels (Jackman, 2007) and then the background is 

digitally removed to isolate only the exercising subject. In less controlled settings such as sports 

competitions, a background image is used as reference and this imagine is compared in all the 

subsequent video frames, in this way individualizing the subject in motion. 
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An underwater markerless motion capture technique was adapted by Ceseracciu (2011) and 

its accuracy was evaluated with respect to a commercial motion analysis system using manual 

markers tracking (SIMI Reality Motion Systems GmbH). To perform the 3D kinematics of front 

crawl swimming, 6 underwater cameras were positioned in order to maximize the view of the right 

upper limb. This markerless motion capture technique is based on 5 steps: videos uncompressing 

and de-interlacing, silhouette extraction, visual hull creation, model creation and model matching. 

For each front crawl trial, typically 2 to 3 hours were spent to process the data with the markerless 

method, which is much less than the 7 hours required by the traditional procedure of digitizing by 

an operator. The authors found good accuracy for the wrist joint in all directions but a relevant 

systematic error for the elbow and shoulder joints along the longitudinal direction, and their method 

was not able to reconstruct the joint trajectories during the in-sweep and up-sweep phases of the 

front crawl arm strokes. In the end, they concluded that the accuracy of the wrist joint measures 

seemed to be sufficient, a relevant aspect of the technical analysis of swimming strokes in which the 

hand trajectory is commonly used to identify and characterize stroke phases. 

The underwater stroke video-based motion analysis has been carried out using both the 

marker-based and the markerless approaches. However, this method seems to have a number of 

drawbacks for swimming coaches because it depends on the work of highly qualified operators who 

need a long time and much effort for the digitizing process (Davey et al., 2008; Ohgi, 2002). In 

addition, air bubbles and the swimmer's own motion sometimes prevent observation of the full 

motion of the swimmers (Ohgi, 2002). Because of this, coaches cannot be provided with a real-time 

feedback about the swimming kinematics of their athletes (Ohgi, 2002).  

2.3.2 Inertial and Magnetic Measurements Units 

Recently, combinations of accelerometers, gyroscopes and magnetometers, also known as 

inertial and magnetic measurement units (IMMU) or sensor fusion, have been developed and 

miniaturized by micro-machining technology. They are becoming popular biomechanical methods 

applied to health and sporting activities. There is sufficient research in the field to show the validity 

of applications of IMMU for monitoring human movement in sport. Several authors have examined 

the discrimination of movement patterns and the evaluation of motion using data from 

accelerometers, gyroscopes and magnetometers, covering a large range of settings, including: 

ambulatory measurements, physical activity, gait analysis, orientation and movement, and 

improving athletic performance (Callaway et al., 2009; Davey et al., 2008). Hence, the use of 

IMMU is presented as a useful tool for monitoring human movement patterns.  

Inertial and magnetic measurement units worn by the swimmers have been used as an 
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alternative in performance analyses to overcome the limitations of video-based methods. Wearable 

sensors do not require a complex setup and they can be considered swimmer-centric since the each 

swimmer wears his/her own sensors and is independent from the other swimmers (Pansiot et al., 

2010). IMMU is an automated system that increases the reliability in data acquisition by reducing 

the sources of error (Davey, 2004). 

Developing and testing specific protocols to perform a 3D kinematic analysis of swimming 

using IMMU has been the aim of several authors. Ohgi et al. (2000) presented the relationships 

between the wrist acceleration data and hand movement under the Maglischo's stroke pattern 

definition. Examining the tri-axial wrist acceleration of both front crawl stroke and breaststroke of 

11 subjects, they showed the unique acceleration pattern characterizing each of the styles. In 

addition, Ohgi et al. (2003), using the same method of Ohgi et al. (2000), discriminated the stroke 

phase of the front crawl stroke (entry, down sweep, out sweep and in sweep), and also the three 

stroke phases of the breaststroke (recovery, in sweep and out sweep). By using the pattern 

recognition techniques, Slawson et al. (2008) stated that the four competitive swimming styles 

could be analyzed from  signals of accelerometers worn on the wrist. Therefore, the recent practice 

of using IMMU in swimming training allows coaches and swimmers to assess how the swimming 

technique can be improved by assessing the characteristics of the swimmer's stroke motion during 

an entire swim (Ohgi and Ichikawa, 2002; Ohgi et al., 2002). 

Although several authors have attempted to utilize IMMU in swimming, little data as well as 

few processing methods, have been presented to date. Classically, analyses of swimming data have 

been performed with a personal computer using off-line algorithms after the swimming exercise. 

Whilst this is a very useful procedure, an issue of post processing analyses is that coaches cannot 

provide immediate feedback to swimmers. This aspect is particularly relevant when a swimmer 

aims to correct specific movements related to performance. Furthermore, real-time feedback would 

provide coaches with individual indicators of swimming performance such as velocity, attitude, and 

position of the swimmer (Le Sage et al., 2010a).  

Therefore, recent studies aimed to develop a real-time feedback method. Bächlin and co-

workers  have  developed  a  method  named  “SwimMaster”  wherein  a  real  time  feedback  is  obtained 

through online algorithm implementation (Bächlin et al., 2009; Bächlin and Tröster, 2009, 2012). 

Another real time feedback method is that proposed by Le Sage et al. (2010b), who developed a 

Kalman filter for using IMMU in swimming. The main advantage of both methods is the low 

computational power required, allowing a decrease in the gap between laboratory and training 

settings as the performance of a swimmer can be analyzed almost instantaneously after a swimming 

trial.  
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Magalhães et al. (In review) have performed a review on the applications of IMMU for 

swimming motion analysis. The research was based on a systematic search for publications in the 

following scientific databases: PubMed, ISI Web of Knowledge (Science Citation Index Expanded), 

IEEE Xplore, Google Scholar, Scopus and Scirus. The search included a time interval of 15 years 

from the period in which the search was carried out (late March 2013) and only articles published in 

that time window were included. The initial total number of articles identified from all databases 

was 62 (Medline 27, ISI 9, IEEExplore 16, Google Scholar 10, Scopus 4, Scirus 12), including 

journal articles, conference proceedings and book chapters. Considering the inclusion and exclusion 

criteria, out of the 62 full articles identified, only 23 articles were ultimately included in that review 

(Table 2.1). The following five main issues became the main topics of the review: 1) applications of 

inertial and magnetic sensing in swimming, 2) sensor specification and sealing, 3) sensor 

attachment location, 4) experimental designs, and 5) swimming performance assessment and 

monitoring applications.  

2.3.2.1 Applications of inertial and magnetic sensing in swimming  

The first attempts to use IMMU in swimming referred to the underwater phases discrimination 

(Ohgi et al., 2000), a fundamental prerequisite for any biomechanical analysis of swimming, as well 

as to discriminate the different swimming styles (Hou, 2012; Slawson et al., 2008; Vannozzi et al., 

2010) and the characteristics of the swimmer's stroke motion (Ohgi and Ichikawa, 2002; Ohgi et al., 

2002). Furthermore, various authors have focused their attention to the goal of providing coaches 

and swimmers with real-time feedback (Bächlin et al., 2009; Bächlin and Tröster, 2009, 2012; Le 

Sage et al., 2010b) about the swimmer's velocity, attitude and position with respect to the length of 

the swimming pool (Le Sage et al., 2010a). 

2.3.2.2 Sensor specification and sealing  

The most used sealing techniques for waterproofing found were hermetic sealing (Callaway et al., 

2009), rubber latex skin (Pansiot et al., 2010) or aluminum alloy cylinder (Ohgi, 2002). Commercial 

systems often use IMMU inserted into a waterproof case (Dadashi et al., 2012; Fulton et al., 2011; 

Fulton et al., 2009a). Regarding data logging, storage and transmission, the majority of authors used 

flash memory and SD cards with a storage capacity ranging from128Mb to 1Gb (Ohgi, 2002; 

Stamm et al., 2011), reporting also acquisition duration up to 200 h, depending on the sampling 

frequency (James et al., 2011).  
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2.3.2.3 Sensor Attachment Location  

The most popular sensor placements for swimming motion monitoring include the lower and upper 

back, head, wrist, and ankle. Pansiot et al. (2010) described the features that can be calculated from 

the sensor output depending on its placement for the four main swimming strokes (front crawl, 

backstroke, breaststroke, and butterfly) as synthetized in Table 2. 

2.3.2.4 Experimental Designs  

Most of the reviewed studies focused on experimental trials on trained or elite level swimmers, 

while Fulton and co-workers included in their experiments a group of paralympic athletes (Fulton et 

al., 2011; Fulton et al., 2009a, b). In several studies, the feasibility of using IMMUs for 

performance monitoring was tested using only one subject (Hagem et al., 2013; James et al., 2011; 

Le Sage et al., 2010a; Le Sage et al., 2011). Several authors aimed at describing the development of 

a swimmer-worn, wireless device capable of capturing real time acceleration data during the 

different phases of a swimming trial, i.e. the start, stroke phase, and turns (Slawson et al., 2011; 

Slawson et al., 2008). Only a few studies (Dadashi et al., 2012; Stamm et al., 2013; Stamm et al., 

2011) utilized suitable experimental protocols; they evaluated a set of parameters that support the 

in-field application of the IMMU. 
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Table 2.1: List of the selected articles 

Source 
Type and Specification of sensors Body 

Area 

Stroke 

Type 
Variables 

Units Acc Gyro Mag Sizes Weight 
Sample 

Frequency 
Sealing 

Bächlin, M. and 
Tröster, G. (2012) 

4 
3-axial accelerometer 
1GB of storage (flash memory) 

36x42x12mm 34g 256Hz  

Water-tightness: plastic foil. 
Wrist: inside a transparent 
plastic tube fixed using velcro 
fasteners.  

Upper back 
Lower back 
Right wrist 

Front 
crawl 

Start (wall-push-
off) 
Strokes 
End (wall-strike) 
Average 
velocity 
Time per stroke 
(TPS) 
Distance per 
stroke (DPS) 

Chakravorti, N., et 
al. (2013) 

1 3-axial accelerometer Not described Lower back 
All four 
stroke 
types 

Stroke counts 
Stroke rates 
Lap counts 

Dadashi, F., 
Aminian, K. and 

Millet, G.P. (2013) 
1 

3D accelerometer ± 11G 
3D gyroscope ± 900°/s  

Physilog®, BioAGM, CH 500Hz Physilog®, BioAGM, CH 
Lower back 
(sacrum) 

Front 
crawl 

Swimming 
velocity 

Dadashi, F., et al. 
(2012) 

1 
3D accelerometer ± 11G 
3D gyroscope ± 900°/s 

Physilog®, BioAGM, CH 500Hz Physilog®, BioAGM, CH 
Lower back 
(sacrum) 

Front 
crawl 

Instantaneous 
velocity  

 

Dadashi, F., et al. 
(2013) 

3 
3D accelerometer (± 10G) 
3D gyroscope (± 1200°/s)  

Physilog®, BioAGM, CH 500Hz 
Hermetical sealing with 
plastic bags 

Both 
forearms 
Lower back 
(sacrum) 

Front 
crawl 

Stroke phases  
Inter-arm 
coordination 

Davey, N.P., 
Anderson, M. and 
James, D.A. (2008) 

1 3D accelerometer Cited: James DA, Davey N and Rice T. (2004). 
Lower back 
(sacrum) 

All four 
stroke 
types 

Push-off 
Stroke type 
Stroke count 
metrics 

Fulton, S.K., Pyne, 
D. and Burkett, B. 

(2011) 
1 

3D accelerometer (±2G) 
1-D gyroscope (>600°/s) 
Storage: 256MB 

MiniTraquaTM, Version 5 
 

Dominant 
kicking leg 

Flutter 
kick 

Kick rate (kicks 
per minute) 

 

Fulton, S.K., Pyne, 
D.B. and Burkett, B. 

(2009a) 
4 

3D accelerometer (±2G, 
Kionix; Model KMXM52, 
New York, USA); 
1-D gyroscope (>600°/s) 
Storage: 256MB 

52x33x11mm 
20.7g  

(18.9cm3) 
100Hz Plastic casing 

Both thighs 
and shanks  

Flutter 
kick 

Kick patterns 
Kick detection 
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Fulton, S.K., Pyne, 
D.B. and Burkett, B. 

(2009b) 
1 

3D accelerometer (±2G) 
1-D gyroscope (>600°/s) 
Storage: 256MB 

Cited: Fulton, S.K., Pyne, D.B. and Burkett, B. (2009a) 
Dominant 
kicking leg 

Flutter kick 
Kick count  
Kick rate  
Kick patterns 

Hagem, R.M., et al. 
(2013) 

2 
3D Accelerometer (nCore 
2.0) 

27×19mm Not described Both wrists Front crawl 

Total number of strokes 
Time (s) 
Stroke length (m/cycle) 
Stroke rate (s/stroke cycle) 
Velocity (m/s) 
Stroke duration 
Cycle/min 

Hou, P. (2012) 2 

3D accelerometer (MSR 
Electronics GmbH) 
Temperature sensor 
Humidity sensor 
Pressure sensor 

Not 
described 

18g 
From 5Hz 
to 50Hz 

Not described Both wrists 
Front crawl 
Backstroke 
Breaststroke 

Swimming style recognition 
Intensity of swimming 
Number of turns 
Number of strokes 
Swimming speed 
Swim distance 
Energy expenditure 
estimation 

James, D.A., et al. 
(2011) 

3 

3D accelerometer 
(LIS331DLH, +- 8G) 
3D gyroscope (LPR5150AL 
and LY5150AL, +- 1500°/s) 
1GB micro SD card for data 
storage (up to 200h) 

52x33x11mm  
Not 
described 

100Hz 
In-house custom-built 
waterproof package  

Forearm 
distal 
Lower back  
Lower leg 

Front crawl 
Arm stroke identification 
Effect of the kick on arm 
stroke timing. 

Le Sage, T., et al. 
(2010) 

1 
3D accelerometer  
2D gyroscope 

Not described 50Hz 
Waterproofed package 
(AquaPac) 

Lower back All four styles 
Real time: stroke rate, stroke 
duration and lap count 

Le Sage, T., et al. 
(2011) 

1 
3Daccelerometer 
(ADXL330) 
2D gyroscope (IDG300) 

15x9cm 110g 25Hz 
Waterproofed package 
(AquaPac) 

Lower back All four styles 
Real time: stroke rate, stroke 
duration and lap count 

Le Sage, T., et al. 
(2012a) 

1 3D accelerometer Not described Front crawl 
Real time: stroke rate, stroke 
duration, lap count, starts 
and turns 

Le Sage, T., et al. 
(2012b) 

1 3D accelerometer Not described Lower back 
Swimming 
start 

Time to key occurrences  
Kick count  
Kick rate  
Stroke count  
Stroke rate 
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Lee, J., et al. 
(2012) 

1 Cited: Davey et al., 2008 
Lower back 
(sacrum) 

Front crawl 
tumble turn 

Different phases of 
the swimming turn 

Lee, J.B., et al. 
(2011) 

1 
3D accelerometer  
3D gyroscope  

 
Not described 200Hz Not described Distal forearm 

Front crawl 
swimming 
simulation on dry 
land 

Arm-stroke phases  

Nakashima, M., 
et al. (2010) 

1 
3 accelerometers (H48D) 
3 gyroscopes (XV-3500CB) 

Not described 190Hz 
Waterproofed 
housing 

Left wrist 
Breaststroke 
Front crawl 

Acceleration 
Angular velocity 
Wrist’s  motion  
reconstruction 

Ohgi, Y., et al. 
(2003) 

1 
2D acceleration sensor ICs 
(ADXL250 Analog Devices, Inc.) 
up to 50G 

Not described 62g Not described Wrist Breaststroke 
Stroke phase 
discrimination 

Ohgi, Y., 
Ichikawa, H. and 
Miyaji, C. (2002) 

1 

Prototype I: 3D acceleration 
(ADXL210, +-10G), 32Mb 
internal memory 
Prototype II: 3D acceleration 
(ADXL210, +-10G); 3D gyroscope 
(ENC-03J, +- 1500°/s), 128Mb 
internal memory 

Prototype I: 
88x21mm 
Prototype II: 
142x23mm 

Prototype 
I: 50g 
Prototype 
II: 78g 

128Hz 
Capsulated by 
aluminum alloy 
cylinder  

Wrist 
Breaststroke 
Front crawl 

Discrimination of 
stroke phases 
Fatigue estimation 

Slawson, S.E., et 
al. (2008) 

1 
3D accelerometer (Freescale 
Semiconductors) 

Not described 100Hz Not described Lower back All four styles 
Stroke count 
Stroke duration 

Slawson, S.E., et 
al. (2010) 

1 3D accelerometer Not described 50Hz Not described Lower back Front crawl 

Turn phases: 
approach, rotation 
and glide 

 

Slawson, S.E., et 
al. (2012) 

1 

3D accelerometer (Analog 
Devices, ADXL 330) 
2D gyroscope (InvenSense, 
IDG300) 

90x40mm 
Not 
described 

Not described Lower back Front crawl 

Turn phases: 
approach, rotation 
and glide 

 
Stamm, A., et al. 

(2011) 
1 

3D accelerometer (Cited: Davey et 
al., 2008) 

Cited: Davey et al., 2008 100Hz Not described 
Lower back 
(sacrum) 

Front crawl 
Acceleration  
Absolute velocity 

Stamm, A., 
James, D. and 

Thiel, D. (2013) 
1 

3D accelerometer (±8G, 
LIS331DLH 
3D gyroscope (1.500°/s, LY5150 
ALHTR & LPR5150ALTR) 
1 GB micro SD Card 

53x33x10mm 20g 100Hz Waterproof casing 
Lower back 
(sacrum) 

Front crawl 

Mean velocity 
Intra-stroke 
velocity variations 
Acceleration 
 

Tella, V., et al. 
(2008) 

1 
Resistive sensor with a coiled 
cable (ISOcontrol, ATE Micro, 
Madrid, Spain) 

Not described 1 kHz Not described  
Lower back (2nd 
and 3rd lumbar 
vertebrae) 

Front crawl 

Mean velocity 
Stroke frequency 
Stroke length 
Index of 
coordination 
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2.3.2.5 Swimming performance assessment and monitoring applications  

The use of this technology in real-world performance assessment is still in its initial stages. Studies 

have shown the suitability of acceleration signals in providing useful timing information in the pool 

during training sessions (Daukantas et al., 2008; Ichikawa et al., 2003; Slawson et al., 2008). As 

additional biomechanical measures are introduced and validated using criterion measurement 

systems (e.g. video analysis and force sensors) and user-friendly interfaces are designed (Khoo et 

al., 2009), the acceptability of IMMU-based monitoring systems (Le Sage et al., 2012; Mullane et 

al., 2011) is expected to rapidly increase, meeting the expectations of both coaches and athletes.  

 The sensor fusion approach aims to combine the newer IMMU technology with the traditional 

video capture to exploit the advantages of both the systems (Lee et al., 2012; Stamm et al., 2011). 

Similar conceptual approaches of sensor fusion are progressively being used in different application 

of IMMU in several sports disciplines wherein the accurate orientation of the whole body or of 

single body segments can give important information for performance enhancement.  

 The body segments orientation represents one of the main critical point that calls for further 

studies in many IMMU applications in sports and specifically in swimming research. IMMU-based 

algorithms (e.g. Kalman or complementary filters) for estimating 3D body orientation are rarely 

used, while standardized approaches or commercial built-in   algorithms   don’t   fit   well   in   all   the  

practical situations. This issue will be further explored in the next chapters of this thesis. 

 
Table 2.2: List of features from each sensor placement 

Table reports the variables measured in each swim style according to the sensor placement. FC: front 
crawl, BrS: breaststroke, BaS: backstroke and Bf: butterfly. 

 

 
TABLE II 
 
 

Stroke Feature Head Trunk Arms Leg 

All Lap count & timing ++ ++ ++ ++ 

All Overall momentum ++ ++ - - 

FC Stroke count + + ++ - 

BaS Stroke count - - ++ - 

BrS, Bf Stroke count ++ ++ ++ ++ 

FC, BaS Body roll + ++ - - 

FC Breathing patterns ++ + - - 

FC, BaS Arm anti-symmetry - - ++ - 

BrS, Bf Arm symmetry - - ++ - 

FC, BaS Leg anti-symmetry - - - ++ 

BrS, Bf Leg symmetry - - - ++ 
 

Table II - List of features that can be derived for each sensor placement (adapted from Pansiot et al, 2010). Acronyms for the different styles are the following: front crawl (FC), breaststroke (BrS), backstroke (BaS) and butterfly (Bf). 
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2.4 Conclusion 

With the advance of technology, assessing and monitoring swimmers not only in a laboratory 

setting but also training in the pool has become feasible. Valid kinematic data can be used to 

analyze movements in order to improve performance and prevent injuries.  

The criterion standard in swimming has been the video-based methods using marker or 

markerless approaches. Both of these methods are accurate in providing kinematic data 

representative of the underwater motion, but they rely on a complex set-up and long post-processing 

time, making rapid field applications impossible. While efforts have been made to simplify and 

speed the set-up, the possibility of immediate feedback to coaches, athletes and biomechanists 

through video analysis has not been achieved. On the other hand, inertial and magnetic 

measurements units have gained great interest because they are light, user friendly, swimmer-

centric, relatively cheap, and easily waterproofed. With the recent innovations of microelectronics, 

these IMMUs had presented good accuracy in measuring a wide array of biomechanical parameters 

and providing outputs very quickly. Due to the advantages of IMMU, the next chapters will focus in 

describing and evaluating a protocol to measure the 3D joint kinematic of upper limbs during 

swimming with IMMU. 
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CHAPTER  3 

METHODS
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3 Methods 

This chapter describes the procedures developed during the thesis. It was divided into five main 

parts that describe: 1) the instruments and their accuracy; 2) the algorithm used for estimating the 

body segments orientation, 3) the protocol implemented to estimate the 3D joint kinematics of the 

upper limbs; 4) the data collected in laboratory and swimming pool; and 5) the statistical analyses.  

3.1 Instruments 

3.1.1 Inertial and Magnetic Measurement Units 

Inertial and Magnetic Measurement Units (IMMU) are micro-electronic devices comprised of an 

accelerometer, a gyroscope and a magnetometer, developed to measure the tri-axial linear 

acceleration, the tri-axial angular velocity and the tri-axial  components  of  the  earth’s  magnetic  field, 

respectively (Begg, 2006; Callaway et al., 2009). Further information on working and accuracy of 

the IMMU were described in the appendix I of this thesis.  

There are many commercially available IMMU designed to perform 3D human kinematics 

measurements (Xsens, The Netherlands; APDM, U.S.A.; Intersense, U.S.A.; Trivisio, Germany; 

STT, Spain) and many others, but few commercial systems were built specifically to support 

measurement in the aquatic environment, e.g. MiniTraquaTM used by Fulton et al. (2011) and 

Physilog used by Dadashi et al. (2012). Therefore, some researchers have focused their efforts on 

designing IMMU devices suitable to swimming. In this section will be presented the IMMU chosen 

to acquire the linear acceleration and the angular velocity of the upper body segments and the local 

magnetic field during movements. 

3.1.2 Device One 

The first attempt was to develop two prototypes particularly adapted to perform underwater 

measurements (Figure 3.1) in partnership with the Micrel Lab of the University of Bologna. The 

prototypes were mini-sensors (44mm long x 24mm high x 10mm wide) composed of tri-axial 

accelerometers (±8g, 300Hz), tri-axial gyroscopes (±2000°/sec, 300Hz) and tri-axial magnetometers 

(±1000PT, 80Hz). In order to assess the viability of the prototypes for use in swimming, several 

tests were performed.  

For the accelerometer, a static calibration method was implemented in MATLAB (version 

2009b) according to the guidelines of the manufacturer. The prototypes were placed on a table 

aligned with the horizontal plane using a bubble inclinometer and held in a static position. For each 

of the six positions described in the calibration data sheet (i.e. axes Z, Y, X aligned with + or - g), 
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two 40-seconds static trials were performed. For each trial, the first 3s and the last 3s were 

discarded to eliminate incorrect values due to pressing the start/stop button. For the gyroscope, the 

offset for the axes X, Y, Z was calculated as the mean value of the twelve trials.  

 

A B 

 

Figure 3.1: Prototypes uncovered (A) and covered (B). 
 

After the calibration, the values were very close to zero indicating that the gyroscope offset was 

removed with reasonable accuracy. For the accelerometers, the calibration matrix described in the 

calibration data sheet was used to obtain the calibrated data from twelve trials. In absence of any 

error and noise, the values should be 0 m/s2 for both the horizontal axis, and + or - 9.81 m/s2 for the 

vertical axis aligned with gravity. The prototype estimated acceleration due to gravity to be 9.79 ± 

0.22 m/s2, ranging from 9.40 m/s2 to 10.11 m/s2. The average standard deviation of the three axes 

was 0.21 m/s2. For the horizontal axis, the accelerometer values demonstrated an uncompensated 

cross talk. Probably this problem was related to the unstable fixation of the prototype to the external 

case during data acquisition. 

This test demonstrated that the sensors of the prototypes seem to provide suitable measurements 

of linear accelerations in the static condition. However, during almost a year of testing, the 

prototypes continued to present numerous technical limitations, like: 1) no wireless synchronization 

between prototypes, and between the prototypes and the workstation; 2) low overall reliability; 3) 

short battery life limited to about two hours of acquisition; 4) low internal storage, limited to a 1 

Gb; 5) no waterproofed housing provided; 6) no real-time monitoring; and 7) no dedicated software 

for data management. Subsequent prototypes could be developed to overcome these limitations, but 

the time necessary for developing and testing was too much for this research. Consequently, this 

system was considered unsuitable and thus was abandoned for the purposes of this study. 
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3.1.3 Device Two 

In order to overcome the limitations of system one mentioned, 7 commercial IMMU devices were 

acquired (ADPM Movement Monitoring Solutions, model Opal, U.S.A.). The advantages of this 

system are: 1) wireless synchronization among the monitors (up to 24 monitors), and between each 

monitor and the access point; 2) good overall reliability; 3) battery life of over 16 hours with 

continuous monitoring and more than 8 hours while real-time streaming; 4) large internal storage (8 

Gb); 5) easy to waterproof, 6) continuously stream data for real-time processing, then working as an 

instantaneous biofeedback; and 7) the software development kit supports the software used for the 

analysis (MATLAB, U.S.A.). 

These IMMU were miniature (48.4mm long x 36.5mm high x 13.4mm wide), low power, 

and wireless (Figure 3.2). These monitors are composed of sensors for measuring the linear 

acceleration, the angular velocity, the magnetic field and the internal temperature, as presented in 

Table 3.1. Values lower than 6g and 2000deg/s of acceleration and angular velocity respectively, 

were expected in swimming. The frequency of 100Hz is the one of the most frequently used in 

studies with IMMU in swimming as reported by Magalhães et al. (In review), so an output rate of 

up to 128Hz is consistent with the literature. A major feature of this system is the possibility to keep 

the same output rate (i.e. 128Hz) up to 24 monitors during tests, unlike other commercially 

available systems. Generally, in those commercial systems the sample frequency is inversely 

proportional to the number of monitors, i.e. the output rate decreased while the number of monitor 

increased. 

 

 

Figure 3.2: Monitor with body strap 

 

Regarding to the hardware characteristics of the monitors, they had small dimensions, low 

weight (< 22g), high internal storage and long battery life. Together with the monitor, the company 

provided body straps to fix the monitors onto body segments (Figure 3.2). Therefore, with this 
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configuration it is possible to monitor the human movements naturally. The wireless radio is ultra-

low power, with a frequency band of 2.40 – 2.48GHz ISM band, 2 Mbps on-air data-rate, latency of 

30ms and 300ms with and without data buffer respectively, 30m line of sight and 10m indoors 

transmission range, about 720h of data buffer, and synchronization with a difference less than 1ms 

for up to 24 monitors. (Further information can be found at http://apdm.com/Wearable-

Sensors/Opal, retrieved at 12/20/2013).  

With the aim of verifying the precision of the sensors in measuring the linear acceleration, 

the angular velocity and the magnetic field, several trials were run together with another 

commercial IMMU (Xsens Motion Technologies, model MTx, The Netherlands), the most used for 

performing human motion analysis (Cutti et al., 2008; Ferrari et al., 2010b; Saber-Sheikh et al., 

2010; Zhou and Hu, 2005). Three axes-aligned monitors of each type were fixed on each side of a 

wooden plate (width 8cm x length 15cm x depth 1cm), as shown in Figure 3.3. 

 

Table 3.1: APDM Opal characteristics 

 

 

Twelve trials of rotations around the axes X, Y and Z, and free random movements were 

performed. A tester manually executed three trials for each axis, with each trial lasting about 1 min. 

The raw signals of both systems were compared by means of root mean square error (RMSE) and 

the agreement between systems tested with Pearson product-moment correlation coefficients (R). 

The output values of all sensors were averaged and presented in Table 3.2. There were low values 

of differences (< 1.2°) and high agreement (r > 0.95) between both systems. These results indicate 

that there was no significant difference between the systems in measuring raw signals. Figure 3.4 

shows an example of plots across time of one trial during rotations around x-axis. Hence, it can be 

concluded that the two systems were similar in measuring linear acceleration, angular velocity and 

magnetic field in this test. 
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Figure 3.3: Monitors fixed on a wooden plate. 

 

The reference system (Xsens) has been widely used for industrial applications, 

entertainment and movement science. Several studies have used this system to track human motion 

due its good performance (Berthouze and Mayston, 2011; Cutti et al., 2008; Ferrari et al., 2010b; 

Saber-Sheikh et al., 2010; Schepers et al., 2010). The model used in the present study (MTx) was 

similar to the system employed by Cutti et al. (2008) and Ferrari et al. (2010b). The monitors of 

which are attached to a portable device (named Xbus) through cables, and the Xbus transmit then 

the data wirelessly to the workstation. Due to the many cables fixed to the body together with the 

Xbus, this system may limit the natural movement assessment. Conversely, the Xsens also offers a 

model with similar features of the Opal (i.e. model MTw; further information at 

http://www.xsens.com/en/general/mtw, retrieved at 12/20/2013). However, the MTw system had 2 

major limitations: 1) It did not have any internal memory (except a little buffer of a few seconds), 

thus data storage is through wireless connection, and 2) the wireless update rate decrease when 

monitors were added to the system. For example, 1 monitor works at 120Hz, 12 monitors at 50Hz 

and 32 monitors at 20Hz only. Considering that the wireless transmission does not work underwater 

and that the sampling frequency for the system could be set to a higher value, the Opal were used in 

this study. 

 

Table 3.2: Comparing the two IMMU systems 

 Accelerometer Gyroscope Magnetometer 

RMSD (m/s2) R RMSD (°/s) R RMSD (G) R 

Mean 

(min – max) 

1.20 

(0.49 – 3.39) 

0.95 

(0.75 - 1) 

0.17 

(0.05 - 0.83) 

0.99 

(0.85 - 1) 

0.09 

(0.01 - 0.13) 

0.99 

(0.96 - 1) 
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Table reports the mean of 12 trials. RMSD: Root Mean Square Difference. R: Pearson product-
moment correlation coefficient. 

 

A) Linear acceleration 

 

B) Angular velocity 

 

C) Magnetic field 

 

Figure 3.4: Comparison between the two IMMU Systems. 
 Linear acceleration (m/s2), angular velocity (deg/s) and magnetic field (G) of one rotation trial. Values 

plotted along time (in frames). Black lines for the Opal and red lines for the MTx. 

 

3.1.4 Stereo-Photogrammetric System 

Human motion analysis has been performed chiefly through video analysis, as discussed in Chapter 

2. Among all video systems available on the market, stereo-photogrammetry was chosen to be the 

criterion standard system during the simulated swimming in the laboratory. Several investigations 

have performed human kinematic analysis through a stereo-photogrammetric system (SPS) due to 

its high accuracy to measure the markers position in the calibrated space (Cutti et al., 2008; Ferrari 

et al., 2010b). 
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The system used in this study (Smart-DX 7000, BTS Bioengineering, Italy) is a high 

definition system (up to 4 Megapixels) supported up to 16 video cameras (Figure 3.5) with high 

frequency of acquisition (up to 2000Hz). The accompanying workstation came with managing 

software (BTS SMART-suite, Italy) including one for capture, one for tracking, and one for 

analysis, and also a MATLAB toolbox. After constructing a model in the software (SMART-

Tracker, Italy), the retro-reflective passive markers can be automatically identified during the motor 

tasks. Further information can be found at 

http://www.btsbioengineering.com/products/kinematics/bts-smart-dx, retrieved at 12/20/2013. 

The calibration set was composed of one stick (named wand) made of carbon fiber with 3 

markers, and 2 other axes also made of carbon fiber with either 2 or 4 markers. To accomplish the 

3D motion analysis, static and functional calibrations were done before the data acquisition. For the 

static calibration, a 5-second trial was acquired with the three sticks placed on the ground as shown 

in Figure 3.6. This procedure was to define the axes of the global system of reference (SOR). For 

the functional calibration, a 90-second trial was done by moving the wand randomly within the 

volume of calibration. At the end of both calibrations, the software (SMART-Capture, Italy) 

reported the mean errors for the reconstruction of the wand (3D in millimeters and 2D in pixels). 

For the set-up used in   the   laboratory,   the  overall   accuracy   for   the  wand’s  markers   reconstruction  

was of 0.2 (r0.2) mm on a volume calibrated of about 5m (length) x 4.50m (height) x 2.50m 

(width). 

 

 

Figure 3.5: SMART DX video cameras. 
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Figure 3.6: Calibration set. 

 

3.2 Orientation Estimation Algorithm  

Estimates of the 3D orientation of a rigid body by IMMU can be computed by integrating the 

signals from a tri-axial gyroscope over time. Unfortunately, due to the low-frequency gyro bias 

drifts, errors of measurement may grow unlimitedly over time, thus strongly limiting the direct 

application of the signal integration for this purpose. Nevertheless, gyros help achieving accurate 

orientation estimates for highly dynamic motions (Sabatini, 2011). 

A tri-axial accelerometer is capable of providing drift-free inclination estimates by sensing 

the gravity vector, in static conditions. However, in dynamic conditions, it is not able to give 

accurate inclination estimates because the overall measured acceleration sensed is a combination of 

both the dynamic acceleration and the gravity acceleration. Therefore, sensor fusion between tri-

axial   gyro’s,   accelerometer’s   and   magnetometer’s   signals should aid in a more accurately 

estimation of the 3D orientation through the IMMU (Daukantas et al., 2008). 

Serious limitations affect sensor fusion. First, while moving, it is difficult to interpret the 

acceleration signals of an object in motion due to the gravity field (vertical reference). Hence, the 

vertical reference is reliable only for static or slowly moving objects (Veltink et al., 1996). Second, 

nearby ferromagnetic materials are disturbing to the magnetometers, and this problem becomes 

especially critical within indoor environments (Bachmann et al., 2004; De Vries et al., 2009), 

making  difficult  the  correct  use  of  the  magnetometers’  signals  as  a  horizontal  reference  (heading)  in  

laboratory/ambulatory settings. Regardless, sensor fusion is still the best technique when the aim is 

minimizing the gyro bias drift errors.  

Ideally, an orientation filter should be capable of dealing with the gyro biases by overcoming 

the limitations regarding both acceleration and magnetic sensors. The task of an orientation filter is 
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to compute a single estimate of orientation through the optimal fusion of gyroscope, accelerometer, 

and magnetometer measurements. The filter proposed by Rudolph E. Kalman (1960) has become 

the accepted basis for the majority of orientation filter algorithms (Cooper et al., 2009; El-Gohary 

and McNames, 2011; Favre et al., 2007; Ferrari et al., 2010b; Ji-Hwan et al., 2009; Le Sage et al., 

2010) that have been used in most of the commercial inertial sensors, as the one presented in the 

section 3.1.1.2. The widespread use of Kalman-based filters is an evidence of their accuracy and 

effectiveness.  

The IMMU used in the present study came with software for data acquisition and managing 

(Motion Studio, U.S.A.) that outputs orientation data in the form of quaternions, which are easily 

converted   in   Euler   angles.   The   IMMU’s   algorithm   has   been   designed   to   estimate   the   3D   human  

motion orientation in general. Seeking for a solution adaptable to the sport context, the open source 

Kalman-based algorithm developed by Madgwick et al. (2011) was found in the literature. The 

innovative aspects of the this filter include: a low computational load; a single adjustable parameter 

defined by observable systems characteristics (named β); an analytically derived and optimized 

gradient descent algorithm enabling performance at low sampling rates; an on-line magnetic 

distortion compensation algorithm; and gyroscope bias drift compensation. The implications of the 

low computational load and ability to operate at low sampling rates as well significantly reduces the 

hardware and power necessary for wearable inertial movement tracking, enabling the creation of 

systems lightweight and inexpensive capable of functioning for extended periods of time. The 

diagram   block   representation   of   how   it   works   is   presented   in   Figure   3.7.   The   accelerometer’s  

signals   and   the  magnetometer’s   signals   are   combined   to   generate   the   settable   value   gain   (β)   that  

determines how much of this combination is desirable to compensate the gyro biases.  

3.2.1 Beta Optimization Algorithm 

With the intention of better dealing with the values  of  β,  two  procedures  were  executed.  The  β  

was tuned to find the best correspondence of the kinematic data estimated using the IMMU with 

respect to the criterion standard, which are the values estimated using the stereo-photogrammetric 

system. The relative kinematic orientation of the actual frame with respect to the first frame was 

computed and compared between the IMMU system and the criterion standard using the RMSE. 

The relative orientation was computed using the eta value of the quaternion representation. 
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Figure 3.7: Block diagram representation of the orientation estimation algorithm. 
m: normalized magnetometer measurement , a: normalized accelerometer measurement, ω:  angular  

rate (rad.s-1), q: quaternion derivative describing rate of change of the earth frame relative to the 
sensor frame, ƒ:  objective function, J: Jacobean, d: measured field in the sensor frame, t: time. 

Source: Madgwick et al. (2011). 

 

The first procedure  was  to  achieve  an  optimal  value  of  β  considering  all  trials  together  (labeled  

KMA) by maximizing the correlation between the orientations estimated using the two instruments. 

In sequence, a second procedure was performed differentiating the optimization value patterns. 

Different criteria were for the dynamic (front crawl and breaststroke) and for the calibration trials. 

In both cases, the RMSE was averaged among the trials for all the monitors/clusters. The first 8s 

were always discarded in order to eliminate the initial transient of the Kalman filter.  

A  first  exploration  of  β  was  performed  from  a  minimum  of  0.5  to  a  maximum  of  10  with  a  step  

of 0.5 to find the better correspondence with the criterion standard (minimum average RMSE for all 

sensors). Then, iteratively, the exploration was refined with a halved step around the optimal value 

found in the previous phase. The iteration ended when the RMSE reached a mean value less than 

2.5° or when the maximum number of iterations fixed by the user (7) was reached.  

3.3 Protocol 

A motion analysis protocol is a procedure that accurately describes how to measure the 

kinematics/kinetics parameters required to test the hypotheses underlying one or more research 

questions. According to Kontaxis et al. (2009), a protocol must address this aim by describing: 1) 

which joints and segments are of interest; 2) which mechanical model is assumed to represent these 
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joints or segments; 3) the definition of the embedded coordinate systems and of the joint angles; 4) 

the markers and or IMMUs placement on the human body; 5) the number of tasks to be measured, 

and 6) possible kinematic refinements.  

Two different approaches are commonly used: A) anatomical axes are defined using 

information on anatomical landmarks; or B) anatomical axes are defined estimating the functional 

axes of rotation of the joints. Unfortunately, at the current state of the art, IMMU cannot allow an 

estimation of the position of anatomical landmarks accurately enough for the purposes of human 

motion analysis. However, Picerno et al. (2008) described an IMMU-based protocol wherein the 

position of anatomical landmarks that defined an axis of rotation was used in the calibration phase 

by means of a specifically designed device. Since this approach is time consuming, it was 

considered not very suitable for application in the sport context. 

Therefore, the protocol described by Cutti et al. (2008) that benefits of the approach B was 

chosen for the main following reasons: 

1) It was specifically designed for implementation with IMMU; 

2) It was suitable and as accurate as a SPS for the estimation of the 3D joint angles kinematics of 

the upper limb (shoulder, scapula, elbow) in a clinical context; 

3) It could be adapted for the use of different IMMU systems (that are) able to compute the 

orientation of the IMMUs with respect to a fixed global system of reference; 

4) It could be adapted for the use in sports context. 

However, Cutti et al.’s   protocol   did   not   model   the   wrist   joint,   one   of   major   interest   for  

swimming kinematic analysis. Thus, the mechanical model and definition of the wrist joint and of 

the hand segment are hereinafter introduced. In contrast, the scapular-thoracic joint, included in the 

Cutti et al.’s  protocol,  was  not  considered  because  the  IMMU  were  not  easily  fixed  on  the  scapula,  

thus giving measurement artifacts. When a specific waterproofed swimsuit with dedicated pockets 

for the IMMUs is developed, the scapular-thoracic joint also will be analyzed. 

3.3.1 Protocol Description 

3.3.2 Joints and Segments 

The joints considered in the protocol were the shoulder, elbow and wrist. Since each joint is 

supposed to be constituted by adjacent segments, thorax, left and right upper-arms, left and right 

forearm, and left and right hands were considered the rigid segments for the model. 

From a biomechanical point of view, each side was modeled as an open kinematic chain 

constituted by thorax, upper-arm, forearm and hand. Similarly to the representation described by 

Cutti et al. (2008), the shoulder was considered as the ball-and-socket joint between thorax and arm, 



48 
 

whereas the elbow was considered as the double-hinge joint (with non-intersecting axes) between 

arm and forearm. Similarly to the elbow, the newly introduced wrist joint was modeled as the 

double-hinge joint formed by forearm and hand. Specifically, the shoulder joint kinematics were 

described by 3 degrees of freedom (flexion-extension, abduction-adduction, and internal-external 

rotation), while the elbow joint kinematics were described by 2 degrees of freedom (flexion-

extension and pronation-supination), and a constant, subject-specific parameter: the carrying angle. 

The wrist joint kinematics, as well as that of the elbow, were described by 2 degrees of freedom 

(flexion-extension and radial-ulnar deviation) and a further parameter (not considered in the further 

analyses) that would correspond to the internal-external rotation; however, this is physiologically 

constrained. 

3.3.3 Anatomical System of Reference Definition 

According to Kontaxis et al. (2009), for each segment that formed 2 joints, both a proximal and a 

distal embedded anatomical systems of reference (ASOR) were defined. Thus, only the thorax and 

the hand were represented by only one ASOR. Wherever possible, ASOR definitions adopted in 

this study were introduced by Cutti et al. (2008). 

The ASOR of the thorax (THX) requires a static calibration trial of 10 seconds for 

computation. Since the IMMU’s  orientation  estimation  was  more  reliable  when  the  subject  is  lying  

still (IMMU z axis pointing up1), the definition of the thorax ASOR given by Cutti et al. (2008), 

who assumed the subject being standing, needed to be changed. However, the International Society 

of Biomechanics and the International Shoulder Group recommendations were followed (Wu et al., 

2005). The Z axis was defined as opposed to gravity, the X axis was orthogonal to the Z axis, and 

the X axis of the IMMU was pointing toward the right side of the subject, and the Y axis orthogonal 

to the X and Z axes, pointing cranially.  

The ASORs of proximal and distal humerus were assumed as the same as those of Cutti et 

al. (2008). Thus, both the proximal humerus ASOR (H1) and the distal humerus ASOR (HF12) of 

Cutti et al. (2008) were replicated. The H1 ASOR was assumed aligned with the thorax ASOR 

during the static calibration trial, whereas the HF1 ASOR was computed estimating the flexion-

extension axis of rotation of the elbow, that required the subject to perform a pure elbow flexion-

extension trial. For HF1, the X axis was defined in the direction of that estimated axis of rotation, 

                                                 
1 For the definition of the ASORs, data relative to the orientation of the technical system of reference of the IMMU 
have to be used. For that reason, the IMMU must be fixed on the body in a standardized way, which will be described in 
details in the section 3.3.1.3. 
2 The HF1 is referred by  Cutti’s  protocol  as HD. However, the convention HF1 was adopted to underline the fact that is 
computed using a functional approach. 
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pointing laterally, the Z axis orthogonal to that X axis and the Y axis of H1, pointing posteriorly, 

the Y axis orthogonal to the X and the Z axis, pointing cranially. 

The forearm (F) ASOR defined by Cutti et al. (2008) was used with a little modification for 

the   proximal   forearm   (PF),   and   “as   it   was”   for   the   distal   forearm   (DF).  More   in   detail,   the  DF  

ASOR was computed by estimating the elbow pronation-supination axis of rotation, which required 

the subject to perform a pure elbow pronation-supination. In agreement with Cutti et al. (2008), for 

DF the Y axis was defined in the direction of this estimated axis of rotation, pointing to the elbow, 

the X axis orthogonal to that Y axis and the Z axis of the IMMU, pointing laterally, the Z axis 

orthogonal to the X and the Y axis, pointing away from the wrist. This definition of the forearm 

ASOR considers the elbow joint completely supinated when the subject assumes the anatomical 

position. Unfortunately, since in swimming the elbow is almost completely pronated in many 

phases of arm stroke, that definition led to possible gimbal locks or numeric singularity problems 

when computing the elbow joint angles. In order to avoid these problems and to have a better 

representation of the kinematics of the swimming, the PF ASOR was computed as the DF ASOR 

but rotated -90° along the Y axis. With that definition, 90° of pronation using the DF equals 0° 

when using the new PF ASOR. 

The hand (HND) ASOR definition was introduced to allow the estimation of the wrist joint 

angles. Following the approach used to compute the humerus H1 ASOR from the thorax ASOR, the 

hand ASOR was assumed to align with the distal forearm ASOR, during the static calibration trial. 

From a theoretical and mechanical point of view, the estimation of the wrist flexion-extension axis 

of rotation should give a more correct and accurate representation of this double hinge joint. As a 

consequence of that, it would have been more appropriate to use a definition of both the distal 

forearm and the hand ASORs that included the estimated axis of rotation. Unfortunately, the limited 

joint range of motion and the difficulties of a subject to perform a pure wrist flexion-extension 

keeping a constant radial-ulnar deviation, might lead to increased errors and an overall low 

accuracy. For that reason and for the definition of the distal forearm and hand ASOR, the approach 

used by Cutti et al. (2008) for the elbow joint was followed. 

All the definitions given in this section were intended for the right side only. However, a 

technical summary of the definition of all the ASORs of the protocol is reported both for the right 

and the left side in Table 3.3. Further details on positioning the IMMU on the body segments and 

the calibration trials required for computing the ASORs will be described in the following sections. 
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3.3.4 Inertial and Magnetic Measurement Units Positioning on Body Segments 

The definition of the ASORs illustrated in Table 3.3, requires a specific positioning of the IMMU 

on human body segments. IMMU can be fixed using hypoallergenic double-sided tape directly on 

the skin. With reference to Figure 3.8, the IMMU on the thorax has to be fixed by aligning the X-

axis to the longitudinal axis of the flat portion of the sternum, since the X-axis orientation of the 

IMMU is directly used for the computation of the thorax ASOR. This positioning is recommended 

when the static calibration is performed with the subject lying down. On the contrary, if the static 

calibration is performed with the subject standing, it is advisable to follow the indications described 

by Cutti et al. (2008), and to define the thorax ASOR accordingly. The IMMU on the humerus can 

be  fixed   laterally   to  allow  the  swimmer  both  a  natural  “swim  style”  and   to  maximally   reduce the 

soft   tissue   artifacts.   The   suggested   position   is   “over   the   central   third   of   the   humerus,   slightly  

posterior”  (Cutti et al., 2008). 

As described by Cutti et al. (2008),  the  IMMU  on  the  forearm  has  to  be  fixed  over  the  “distal  

flat  surface  of  radius  and  ulna,  with  the  IMMU  Z  axis  pointing  away  from  the  wrist.”  The  IMMU  

on the hand was fixed over its dorsum, with the IMMU Z axis pointing away from the hand. Since 

the IMMU is not much smaller than the dorsum of a hand, it is advisable to ask the subject for a 

positioning that should not be annoying or limit the wrist range of motion. 

It should be noticed that the Opals are not waterproofed. As a consequence, if the data 

acquisition is to be performed in the swimming pool, they necessarily must be waterproofed before 

positioning them on the body segments. 
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Figure 3.8: Inertial and magnetic measurement units positioning. 
THX: thorax. H1: proximal humerus. HF1: distal humerus. PF: proximal forearm. DF: distal forearm. HND: hand.  
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Table 3.3: Definition of the anatomical system of reference 

AXB indicates the unit vector X orientation of the system of reference B represented in the system of reference A, whereas A-IUXB indicates the unit vector 
X orientation of the system of reference B represented in the system of reference of the IMMU fixed in A. ARB indicates the rotational matrix that 
describes the orientation of the system of reference B  with  respect  to  the  system  of  reference  A.  Where  “G”  is  in  place  of  A  or  B,  “G”  indicates  the  

global fixed system of reference. H-IUMHAFLEX indicates the estimated flexion-extension axis of rotation of the elbow (unitary), pointing laterally both for 
the right and the left side. H-IFMHAPS indicates the estimated pronation-supination axis of rotation of the elbow (unitary), pointing towards the elbow 

both for the right and the left side. Directions of the axes are to be intended when facing a subject standing still. 

Body segment / Rot. matrix Right side - Axes definition Direction Left side - Axes definition Direction 

Thorax - THX-IURTHX 

THX-IUZTHX  =  - THX-IUZG Posterior THX-IUZTHX  =  THX-IUZG Anterior 

THX-IUXTHX  = THX-IUZTHX   [1 0 0] Right THX-IUXTHX  = [1 0 0]    THX-IUZTHX Right 

THX-IUYTHX  =  THX-IUZTHX   THX-IUXTHX Cranial THX-IUYTHX  =  THX-IUZTHX   THX-IUXTHX Caudal 

Proximal Humerus - H-IURH1 H-IURH1 =  H-IURTHX  H-IURH1 =  H-IURTHX  

Distal Humerus - H-IURHF1 

H-IUXHF1 =  H-IUMHAFLEX Right H-IUXHF1 =  - H-IUMHAFLEX Right 

H-IUZHF1 =  H-IUXHF1  H-IUYH1 Posterior H-IUZHF1 =  H-IUXHF1  H-IUYH1 Anterior 

H-IUYHF1 =   H-IUZHF1    H-IUXHF1 Cranial H-IUYHF1 =   H-IUZHF1    H-IUXHF1 Caudal 

Proximal Forearm - F-IURPF F-IUXPF  =   F-IUZDF  ,    F-IUYPF =  F-IUYDF  ,   F-IUZPF = - F-IUXDF  F-IUXPF  =   F-IUZDF  ,    F-IUYPF =  F-IUYDF  ,   F-IUZPF = - F-IUXDF  

Distal Forearm - F-IURDF 

F-IUYDF  =   F-IUMHAPS Cranial F-IUYDF  =  - F-IUMHAPS Caudal 

F-IUXDF  =   F-IUYDF  [0 0 1] Right F-IUXDF  =  [0 0 1]    F-IUYDF Right 

F-IUZDF  =   F-IUXDF    F-IUYDF Posterior F-IUZDF  =   F-IUXDF    F-IUYDF Anterior 

Hand - HND-IURHND HND-IURHND  =  HND-IURDF  HND-IURHND  =  HND-IURDF  

� �
� �

� �
� �

� �
� �
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3.3.5 Inertial and Magnetic Measurement Units Output Data 

The target of the overall computation is an accurate measure of the joint angles of the shoulders, 

elbows, and wrists. The output provided by the IMMUs is also the starting input that can be used 

for this purpose. Usually an IMMU outputs the orientation of the technical system of reference for 

each monitor used, with respect to a fixed global system of reference. In addition, raw signals of the 

accelerometers, gyroscopes and magnetometers can be available. The orientation of each IMMU is 

commonly provided applying an embedded Kalman Filter, using one of the following mathematical 

representations: quaternions, matrices of rotations, roll, pitch and yaw angles. The output of the 

ADPM system was in the form of quaternions that were the starting input of the computation of this 

protocol. Quaternions were converted in matrices of rotational representations, first. Thus, a matrix 

of rotation in the form GRIU was computed for each IMMU. These matrices were used for the 

computation as described in the following 2 sections. 

3.3.6 Calibration Tasks and Computation of the Anatomical Systems of Reference 

The ASORs previously defined are required to perform 3 calibration tasks: 1) static, 2) 

elbow flexion-extension and 3) elbow prono-supination. Each calibration is needed to compute 

specific calibration data that is represented in the flow chart below, and will be hereinafter 

explained. In the static trial, the subject had to lie on a table keeping his arms alongside the body, 

and at the same time holding the dorsum of the hands aligned to the upper side of the forearms. The 

subject was asked to hold breath during this 10-second test, as breathing may add measurement 

noise.  

As described in the Table 3.3, the position assumed by the subject during this task allows 

investigators to: 

x Compute the ASOR of the thorax and its relative orientation with respect to the IMMU  

(THX-IURTHX); 

x Compute the ASOR of the proximal humerus (H1) and its relative orientation with 

respect to the IMMU (H-IURH1). The ASOR of the proximal humerus is intended to be 

aligned to the ASOR of the thorax; 

x Assume that the ASORs of the hands are aligned to those of the distal forearms. As the 

ASOR of the distal forearm can be defined only after the second and third calibrations, 
GRF-IU, GRHND-IU are just outputs given as input to the third calibration. As a 

consequence, the correct execution of this task is essential for an accurate estimation of 

the ASOR of the thorax, the humerus, and the hands.   
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 Figure 3.9: Flow chart of the protocol computation.  
ARB: rotational matrix of B with respect to A (see also Table 3.3). IU: inertial unit. THX: thorax. H: humerus. H1: proximal humerus. HF1: distal 

humerus. F: forearm. PF: proximal forearm. DF: distal forearm. HND: hand. G: global. SH_FL-EX: shoulder flexion-extension. SH_AB-AD: shoulder 
abduction-adduction. SH_IN-EX: shoulder internal-external rotation. EL_FL-EX: elbow flexion-extension. EL_PR-SU: elbow pronation-supination. 

WR_FL-EX: wrist flexion-extension. WR_DEV: wrist radial-ulnar deviation. 
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The second calibration task is a functional trial in which the subject is standing, and has to 

perform a flexion-extension of the elbow, from about 10° to 130° of flexion, keeping a constant 

pronation-supination angle. The number of cycles of the movement to collect for each task was 5, 

and the suggested number of tasks to acquire was 3. The subject could perform the trial at a self-

selected speed. However, very fast or very slow movements are not advisable for an accurate 

estimation of the elbow flexion-extension axis of rotation (Woltring et al., 1994). With reference to 

Table 3.3, this trial allows computation of the elbow flex-extension axis of rotation, used as an 

anatomical axis to compute the ASOR of the distal humerus with respect to the IMMU (H-IURHF1). 

The third calibration task was a functional trial in which the subject was standing, and 

performed a full-range pronation-supination of the elbow, keeping a constant flexion-extension. 

Similarly to the second calibration, the number of cycles of the movement to collect for each task 

was 5 and 3 of them were taken, and very fast or very slow movement are not advisable for an 

accurate estimation of the elbow pronation-supination axis. According to Table 3.3, this trial 

allowed computation of the prono-supination axis of rotation of the elbow, used as an anatomical 

axis to compute the ASOR of the proximal and distal forearm with respect to the IMMU (F-IURPF, F-

IURDF). Since this calibration allowed the computation of the distal forearm ASOR, and that the 

assumption of the static trial was that the hand ASOR was aligned with the distal forearm ASOR, 

the hand ASOR was here computed with respect to the IMMU (HND-IURHND). Calibrations 2 and 3 

must be performed for both sides, if considered. 

3.3.7 Joint angles computation 

At the end of the calibration procedure, every ASOR is known with respect to the corresponding 

IMMU technical system of reference. The outputs of each functional trial are the orientation 

matrices of each IMMU with the respect to the global fixed SOR. As a consequence, the orientation 

of each ASOR with respect to the global SOR was computed using the equation: 
GRXXX = 

GRXXX-IU
   *   XXX-IURXXX 

where G is the global SoR, and XXX is the acronym of the segment. Joint angles were then 

calculated through the decomposition of the relative orientation of adjacent segments. The shoulder 

flexion-extension, intra-extra rotation and abduction-adduction  were   calculated   using   the  XY’Z’’  

Euler sequence; the elbow flexion-extension and pronation-supination were calculated using the 

XZ’Y’’  Euler  sequence;;  the  wrist flexion-extension and radial-ulnar deviation were calculated using 

the  XY’Z’’  Euler  sequence. 

The Euler sequence used for the shoulders was different from the one proposed by Cutti et 

al. (2008).   The   XY’Z’’   sequence   was   chosen   because   it   better   represents   the   kinematics   of   the  
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shoulder when it performs wide range movements, and when these movements are not performed 

mainly around just one axis of rotation (i.e. pure flexion-extension), as usually happens in clinical 

context. On the other hand, the Euler sequence used for the elbow is consistent with that proposed 

by Cutti et al. (2008). 

The definition of the ASORs described in the Table 3.3 would represent an anatomical 0° of 

pronation as -90°. This offset was balanced by adding +90° to the pronation-supination angle of the 

elbow, once computed, in order to be consistent with the representation of the joint angles of the 

elbow currently used by the scientific community and in clinical settings. The carrying angle of the 

elbow   (rotation   around   Z’   axis)   and   the   hypothetic   internal-external rotation angle of the wrist 

(rotation   around   Y’   axis)   were   not   considered,   according   to   the   joint   model   adopted. For the 

definition of the ASORs illustrated in Table 3.3, the specified Euler sequences can be used without 

changing any sign of the joint angles both for the right and the left side. 

3.3.8 Swim Strokes Segmentation 

An algorithm was developed to semi-automatically performed the swim strokes segmentation. For 

both front crawl and breaststroke swims, the identification of the beginning of the stroke cycles 

were carried out in the recovery phase (also known as aerial phase), as proposed by Takagi et al. 

(2004). Thus, the maxima of the elbow flexion/extension angles were used for the segmentation of 

the breaststroke, whereas the minima of the shoulder flexion/extension angles were used for 

segmentation of front crawl (Figure 3.9). The same expert operator supervised the automatic 

extraction of the features. The algorithm was performed first on the right side and then on the left 

side. 

With the purpose of avoid small peaks detection, the data were first filtered using a moving 

average filter with a 3 frames window. Then, the algorithm identified the local maxima/minima of 

the flexion/extension angles and allowed the operator to set a threshold to discard all the values 

below/above the threshold. Furthermore, the operator could select a time-window for manual 

identification of values not previously detected by the algorithm. Finally, the arm stroke cycles 

were automatically timely rescaled to have the first frame at the beginning of the cycle. Average 

and standard deviation of the frame at which the maximum/minimum occurred were calculated. 

Cycles with a maximum/minimum position higher or lower than the average plus and minus one 

standard deviation were automatically discarded. As last supervision check, the operator could 

manually identify additional cycles not properly segmented to exclude those cycles. 
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Figure 3.10: Swim strokes segmentation.  
Examples of one simulated breaststroke trial (top) and one simulated front crawl trial (bottom). Red 
circles are the indices used for segmentation, i.e. two successive indices defined the beginning and the 

end of a swim stroke cycle.  
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3.3.9 Data Collection 

The 3D joint kinematics analysis was accomplished in 2 situations. In a first phase, simulated 

swimming trials were carried out in laboratory in dry conditions and, afterwards, real swimming 

trials were performed in the swimming pool. 

Eight male current or former sports sciences students agreed to participate and freely signed 

the informed consent. The characteristics of the participants are presented in Table 3.4. To be 

considered eligible, participants should have had: 1) swimming experience in at least regional swim 

competitions; 2) no recent musculoskeletal pathologies; and 3) no pain before or during the tests. 

They were informed that they could abandon the tests at any moment with no justifications 

required. Regarding the swimming style, 57% of the participants were specialized in the front 

crawl, 29% in the breaststroke and 14% in the butterfly. Concerning the swimming level, 71% of 

the participants were either current or former professionals, whilst 29% were amateurs.  

 

Table 3.4: Characteristics of the participants 

Age (years) Height (cm) Weight (kg) Years of Training 

27.1 ± 0.6 180.4 ± 5.2 76.4 ± 6.21 10.7 ± 3.6 

Table reports the values in mean ± standard deviation. 

 

3.3.10 Swimming Test in Laboratory 

This test aimed to validate the 3D joint kinematic estimation using an IMMU during swimming 

simulations. For that, a SPS was used as the criterion standard reference system. Validating new 

instruments in the laboratory is a common practice, wherein an accurate criterion standard 

procedure is available and the data collection can be controlled thus minimizing sources of errors. 

Specifically for swimming, some authors have already used arm stroke simulations in dry land to 

measure biomechanical variables (Kimura et al., 1990; Spigelman, 2009; Spigelman et al., 2008). 

Furthermore, in laboratory not only the underwater phases but the entire stroke cycles can be easily 

validated including the aerial phase.  

The test in dry conditions was carried out in the Biomechanics Laboratory of the Sport 

Sciences School of the University of Bologna (UNIBO). Seven SMART-DX 7000 cameras were 

positioned in a semi-circular set-up around a bench with the aim of maximizing the view of the 

markers placed on both upper limbs and thorax (figure 3.10).  
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Figure 3.11: Cameras set-up. 

 

In order to be able to compare kinematic data estimated from both IMMU and SPS, seven 

reflective  clusters  were  built   and   firmly   fixed  onto   swimmers’  body.  Each  cluster  was  made  of   a  

rigid light-weighted wooden plate containing one monitor and 4 retro-reflective passive markers 

(Figure 3.11A). The monitors axes were manually aligned with the axes formed by the markers in a 

way to correspond both systems of reference, i.e. the X-axis was pointing down, the Y-axis was 

pointing left and the Z-axis was pointing out (Figure 3.11A). The clusters were visually aligned 

with the mean line of the segments and firmly taped onto it. The athletes were asked to report pain 

or   whether   the   strappings   were   blocking   their   movements.   All   adjustments   on   the   clusters’  

placement were made immediately before the data acquisition.  

The clusters were placed on the chest, arms, forearms and hands (Figure 3.11B). As the 

movements of a cluster represented the movements of the segment to which the cluster was 

attached, it can be said that both systems recorded the same upper-limb motion during the simulated 

swimming. Once a subject was outfitted with the clusters, the simulated swimming test was ready to 

start.  
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Figure 3.12: Clusters mounting (A) and placement (B). 

 

The first step was the 5-second static calibration. Two different positions were acquired: 1) 

orthostatic   position  with   the   upper   limbs   resting   along   the   torso   and   the   hand’s   palm   toward   the  

thigh; and 2) lying position with the upper limbs extended along the torso and the palm of hand 

toward the thigh. This second position was added to the original protocol developed by Cutti et al. 

(2008) because, in pilot tests, it was observed a better performance of the sensors in correcting the 

gyroscope drift was observed, so this was the elected position for the static calibration. 

In sequence, the functional calibrations were performed with the aim of calculating the mean 

helical axis (MHA) that defines the joint axes (Woltring et al., 1994). To calculate the medio-lateral 

MHA, the subject performed 10 cycles of elbow flexion-extension (ranging from about 10° to 100°) 

with the thumb pointing up (Figure 3.12). Both right and left sides were measured independently. 

Similarly, to calculate the longitudinal axis of the forearms, the elbow was flexed at 90° and 10 

cycles of pronation-supination ranging from 90° of pronation to 90° of supination (considering the 

0° the neutral position of the distal radio-ulnar joint) were performed (Figure 3.13). The protocol 

required two trials for each upper limb, one of flexion-extension and one of pronation-supination, 

totalizing 4 trials for this type of calibration. 

 

A B 



61 
 

A 

 

B 

 

Figure 3.13: Elbow extension (A) and flexion (B). 

 

Subsequently, the athlete executed the dynamic trials, i.e. the swim simulation in dry 

condition. He was requested to lie on a bench in prone position. Along the simulated swim trials, an 

assistant person pressed both lower limbs down against the bench at the ankle level to support his 

inferior half of the body. In this way, the torso, head, and upper limbs were free to move. Twelve 

swimming simulations were performed, 6 simulating the front-crawl (Figure 3.14) and 6 simulating 

the breaststroke (Figure 3.15). 

 

A 

 

B 

 

Figure 3.14: Elbow supination (A) and pronation (B). 
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The swimmers were asked to swim in the same way they would have done in a swimming 

pool. For each trial, 10 arm-strokes cycles were requested but they could stop the test if there felt 

pain or tiredness. The average number of arm-strokes cycles in each trial was 7, so totaling about 50 

complete arm-strokes cycles for each swim style and for each athlete. 

 

 
Figure 3.15: Simulated front crawl. 

 

 

Figure 3.16: Simulated breaststroke. 

 

3.3.11 Swimming Test in the Pool 

This test aimed to verify whether the IMMU system evaluated previously in laboratory dry tests 

was able to estimate adequately the angles of the shoulders, elbows and hands during real 
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swimming in the pool. The test was carried out in the 25-meter swimming pool of the Record 

Center of the UNIBO and was quite similar to that in the laboratory but with two main differences. 

First, as there was no reference system, clusters were unnecessary and the monitors were fixed 

directly on the body (Figure 3.16). Second, as the IMMU was not a waterproofed system, its 

waterproofing was achieved by sealing each monitor within 2 plastic bags through a vacuum 

machine (Magic VacTM, Genius V402PK2, Italy).  

Before the swimming tests, a sequence of tests was performed to verify whether the raw 

signals  of  the  sensors  remained  stable  during  static  trials  underwater  and  in  the  pool’s  border.  In  this  

environment, the vacuum machine used to seal the monitors and swimming pool water pumps 

create a magnetic field that can interfere with the magnetic sensors. In addition, the underwater 

buoyant force might impact the acceleration sensing, so it was examined in different depths. By 

using the laboratory data as baseline, the results showed no alterations in the raw signals of the 

magnetometers and accelerometers during the static tests. Thus, the IMMU were eligible to be used 

for the swimming tests.  

 

 

Figure 3.17: Monitors fixation for pool swimming. 

 

Afterwards, the joint angles of 6 swimmers during pool swimming were measured using the 

IMMU. Among the 8 total participants, 2 could not be tested in water due to personal problems or 

injuries. The calibration trials were performed at the poolside following the same procedures of the 

dry land collection session. Since there was no wireless transmission underwater, the acquisition 

was started in dry land just few seconds before the swim start and data were stored in the IMMU. 
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Each swimmer performed 4 different types of swimming trials: free front-crawl, tethered front-

crawl, free breaststroke and tethered breaststroke. Tethered swimming was examined because the 

movements executed are closer to those simulated in laboratory. Three trials were performed for 

each type of swimming. For free-swimming trials, the athletes were asked to swim 150 m (3 trials 

of 50 m) and for the tethered-swimming trials, they were asked to perform 3 trials of 10 complete 

arm-stroke cycles. At the end of each trial, the subject went out of the swimming pool to download 

wirelessly the data to the workstation. 

3.4 Effect of the Drag Force 

A multi-part test was designed to estimate the influence of the drag force of a viscous fluid like the 

water on the measures of the inertial sensors. After having waterproofed 6 monitors, they were 

firmly attached to a wooden bar in 3 different positions: at the extremes and at the centre of the bar. 

In each position, 2 units were fixed one on the other with the same axes alignment. Successively, 

the bar was submerged in the swimming pool until have 4 monitor underwater at 2 different depths 

and 2 monitors out of the water. Then, the bar was manually moved trying to have only translations 

along the 3 axes with movements at different velocities. Only translation along one axis was 

executed for each trial. Three trials were conducted for each axis. Finally, the same operator out of 

the water performed the same test with all 6 units in dry-land condition. The figure 3.17 illustrates 

an operator manoeuvring the wooden bar in both in-water and dry-land conditions. 

After having verified through the gyroscope measurements, that negligible rotations were 

performed, only the measures of the accelerometer axes in the direction of movement were taken 

into account. All the possible combinations among the 6 units were analysed and compared, 

differentiating among monitors at the same, close or distant position. RMSE and R were estimated 

in dry land and water condition and statistically compared. 

The monitors at the same position showed the same values (R > 0.99), thus repetitive results 

were not reported here in detail. The monitors attached at close positions reported higher R and 

lower RMSE with respect to the units attached at distant positions that was at the extremes of the 

bar (see Figure 3.18). This result was the same in water and in dry-land condition, and can be 

attributed mostly to the non-perfect translation performed by the operator. No difference was found 

between the water and the dry-land condition regarding the value of R. A slightly better result, 

statistically significant, was found in the water regarding the RMSE. But from the point of view of 

the measurement, they can be considered negligible.  
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Figure 3.18: Drag test in dry land (A) and in water (B). 
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Figure 3.19: Comparative box-plots of the drag test.  
Close and distant terms refer to the position between the monitors. R: Pearson product-moment 

correlation coefficient (top). RMSE: root mean square error (bottom).  
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3.5 Statistical Analyses 

Descriptive statistics were used to summarize the characteristics of the participants. The 

performance of the IMMU and the SPS during simulated swimming in laboratory were compared 

by means of root mean square error (RMSE), Pearson product-moment correlation coefficient (R), 

coefficient of multiple correlation (CMC), regression coefficient (m) and absolute value of the error 

term of a linear regression (abs(q)). Since joint angles were segmented in stroke cycles and time-

normalized, the statistical analysis was conducted on the cycles for each subject and for each joint 

angles. 

The CMC adopted in the analyses was the one proposed by Ferrari et al. (2010a), which 

measures the overall similarity of cyclical waveforms taking into account the concurrent effects of 

differences in offset, correlation, and gain. The CMC was computed using as cyclical waveforms 

the stroke cycles. The RMSE is a measure of the differences between values predicted by 2 

instruments and it represents the sample standard deviation of the differences between predicted 

values and observed values. The RMSE is considered as a good measure of accuracy (Hyndman 

and Koehler, 2006). R is a measure of the degree of linear dependence between two variables. The 

m and abs(q) are those indices normally computed in linear regression, where m is the an estimate 

of the regression coefficient, and abs(q) is a parameter that captures all factors which affects the 

dependent variable. 

For the computation of the overall RMSE, r, m and abs(q), all the stroke cycles for each 

swim style, for each subject and each joint angles were merged together. Likewise,   the   “relative  

RMSE”  was  calculated  by  normalizing  and  expressing  the  RMSE  as  percentage of the joint range of 

motion performed by the subject, differentiating for each joint angle. The analyses were performed 

using 2 statistical software: the MATLAB (version 2009b) and the R statistical software (version 

2.15.3). 

  

http://en.wikipedia.org/wiki/Accuracy_and_precision
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CHAPTER  4 

RESULTS AND DISCUSSION 
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4 Results  and  Discussion 

The aim of the thesis was to experiment a protocol originally designed to estimate the joint angles 

of the upper limbs during one-degree-of-freedom movements in ambulatory settings and here 

modified to perform 3D kinematics analysis of shoulders, elbows and wrists during swimming. 

Eight high-level swimmers were first assessed in a laboratory by means of an inertial and magnetic 

measurement units system (IMMU) while simulating the swimming movements. A stereo-

photogrammetric system (SPS) was used as reference. The joint angles estimated with the two 

systems were compared using the RMSE, relative RMSE, R, CMC, m and abs(q) indices. 

Subsequently, the athletes were assessed in the swimming pool during real swimming through the 

IMMU. The results of both laboratory and swimming pool assessments are presented and discussed 

in this Chapter.  

4.1 Swimming Test in Laboratory 

4.1.1 Comparing the Orientation Algorithms 

The performance of three orientation algorithms was compared using the coefficient of multiple 

correlation (CMC). The first examined algorithm was the one provided by APDM (Motion Studio, 

U.S.A., updated in 10/22/2013) and labeled KBE. The second was the algorithm presented by 

Madgwick et al. (2011) with   a  value  of  β   fixed  at   0.844  considering  all   dynamic   and  calibration  

trials (KMA). And the third and last algorithm was the one presented by Madgwick et al. (2011) 

with  different  values  of  β  optimized  for  three  different  category  of  trials  (KMB):  calibration  (β    =  

0.625),  front  crawl  (β  =  0.875)  and  breaststroke  (β  =  0.8125).  The  CMC  values  were  expressed  as  

the median and interquartile range (IQR) and presented in Figure 4.1. For the front crawl, the CMC 

was 0.94 (0.07) for KMA, 0.965 (0.0675) for KMB and 0.94 (0.23) for KBE; for the breaststroke, 

the CMC was 0.98 (0.04), 0.99 (0.03) and 0.96 (0.145) for KMA, KMB and KBE, respectively. In 

both front crawl and breaststroke, as expected, the KMB showed slightly higher CMC values than 

the KMA, and definitely higher CMC values than the KBE. Therefore, this optimized algorithm 

(KMB) was used for further analyses. 
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Comparing the Orientation Algorithms 

Front crawl

 

Breaststroke 

 

Figure 4.1: Comparing the Orientation Algorithms. 
 Comparative box-plots among the orientation algorithms. KBE: algorithm from APDM, KMA: 

algorithm from Madgwick et al. (2011) with  fixed  value  of  β  and  KMB: algorithm from Madgwick et 
al. (2011) with  varying  value  of  β.  CMC:  coefficient  of  multiple  correlation.   

 

4.1.2 Comparing the body sides 

Considering possible bilateral asymmetries of the swimmers and possible protocol measurement 

errors, the IMMU performance referred to the left versus right upper limbs was compared through 

CMC, RMSE and relative RMSE (Table 4.1). Figure 4.2 displays the comparative box-plots for the 

front crawl and breaststroke. Overall, there were no significant differences between the left and 

right sides in both front crawl and breaststroke for any examined indices.  

In addition, the Wilcoxon test revealed the following values: W = 1361 (p = 0.7664) for 

CMC, W = 1132.5 (p = 0.2256) for RMSE and W = 1246 (p = 0.6436) considering the front crawl, 

and W = 1383 (p = 0.7648) for CMC, W = 1423 (p = 0.9677) for RMSE and W = 1489 (p = 0.7127) 

considering the breaststroke. These values show no statistical difference between the left and right 

sides. Consequently, the data of both sides were grouped together for the further analyses. 
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 Comparing the Body Sides 
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Figure 4.2: Comparing the Body Sides.  
Comparative box-plots between the left (L) and the right (R) body sides. CMC: coefficient of multiple 
correlation, RMSE: root mean square error in degrees, and relative RMSE: ratio between RMSE and 

range of motion. 
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Table 4.1: Comparing the body sides 

 
CMC RMSE Relative RMSE 

Left Right Left Right Left Right 

Front crawl 0.97 (0.06) 0.96 (0.06)  5.42 (5.52) 7.34 (5.58) 0.08 (0.05) 0.09 (0.05) 

Breaststroke 0.99 (0.02) 0.99 (0.03) 5.01 (3.44) 5.46 (3.94) 0.05 (0.05) 0.06 (0.04) 

Table reports the comparison between the body sides (median and IQR). CMC: coefficient of multiple 
correlation, RMSE: root mean square error, and Relative RMSE: ratio between RMSE and range of 

motion. 

 

4.1.3 Calibration trials 

The protocol follows the dynamic approach of determining the anatomical system of reference 

(SoR) of distal humerus and forearm during elbow flexion-extension and pronation-supination 

motor tasks. In those trials, the agreement between IMMU and the reference system were analyzed 

by means of RMSE, R, m and abs(q) and the results presented in the Table 4.2 and Figure 4.3. 

 

Table 4.2: Comparing the calibration trials 

 RMSE R m abs(q) 

Elbow flexion-extension 3.77 (1.44) 1.00 (0.01) 1.01 (0.04) 1.45 (2.67) 

Elbow prono-supination 3.75 (2.06) 1.00 (0.00) 0.97 (0.02) 3.43 (2.69) 

Table reports the comparison between the calibration trials (median and IQR). RMSE: root mean 
square error, R: Pearson product-moment correlation coefficient, m: regression coefficient, and 

abs(q): absolute intercept value. 
 

4.1.4 Dynamic trials  

The performance of the IMMU in estimating the joint angles was compared with the data from the 

SPS by means of the CMC, RMSE, relative RMSE, r, m and abs(q) indices. Movements with 3 

degrees of freedom (DOF) for shoulders (flexion-extension, abduction-adduction and internal-

external rotation), 2 DOF for elbows (flexion-extension and pronation-supination) and 2 DOF for 

wrists (flexion-extension and radial-ulnar deviation) were considered. Yet, as shown in the section 

4.2.2, it is important to remember that no substantial difference existed between left and right body 

sides. Table 4.3 shows the median (IQR) values of the examined indices for all joint angles, which 

are also illustrated in box-plots (Figures 4.4 to 4.5).  
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Comparing the Calibration Trials 

 
 

  

Figure 4.3: Comparing the calibration trials.  
Comparative box-plots between the calibration trials. RMSE: root mean square error, R: Pearson 
product-moment correlation coefficient, m: regression coefficient, and abs(q): absolute intercept 

value. El_flex: elbow flexion-extension and El_pr: elbow pronation-supination. 
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The analysis of the front crawl showed the following results: 1) the median value of RMSE 

was equal to 7.3 degrees, ranging from 3.2 degrees for the wrist radial-ulnar deviation to 14.8 

degrees for the elbow flexion-extension; 2) the median value of relative RMSE was equal to 0,10 

(i.e. the median value of RMSE represents 10% of total range of motion), ranging from 0.05 for the 

shoulder flexion-extension to 0.11 for the elbow flexion-extension; 3) the median value of CMC 

was equal to 0.95, ranging from 0.90 for the wrist radial-ulnar deviation to 0.99 for the shoulder 

flexion-extension, and for the internal and external rotation; 4) the median value of R was equal to 

0.96, ranging from 0.91 for the wrist radial-ulnar deviation to 0.99 for the shoulder flexion-

extension; 5) the median value of m was equal to 0.905, ranging from 0.75 for the wrist radial-ulnar 

deviation to 1.03 for the shoulder internal-external rotation; 6) the median value of abs(q) was equal 

to 3.46, ranging from 1.47 for the wrist radial-ulnar deviation to 17.43 for the elbow pronation-

supination.  

Concerning the breaststroke style, the following results were found: 1) the median value of 

RMSE was equal to 5.3 degrees, ranging from 3.4 degrees for the shoulder internal-external rotation 

to 7.5 degrees for the elbow flexion-extension; 2) the median value of relative RMSE was equal to 

0.06 (i.e. the median value of RMSE represents 6% of total range of motion), ranging from 0.045 

for the shoulder flexion-extension to 0.1 for the wrist radial-ulnar deviation; 3) the median value of 

CMC was equal to 0.99, ranging from 0.93 for the wrist radial-ulnar deviation to 0.995 for the 

shoulder internal-external rotation; 4) the median value of R was equal to 0.99, ranging from 0.93 

for the wrist radial-ulnar deviation to 1.00 for the shoulder flexion-extension; 5) the median value 

of m was equal to 0.985, ranging from 0.87 for the wrist radial-ulnar deviation to 0.995 for the 

shoulder flexion-extension; 6) the median value of abs(q) was equal to 3.31, ranging from 1.52 for 

the shoulder internal-external rotation to 6.28 for the elbow pronation-supination. 
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Table 4.3: Comparing the joint angles 

 
Front Crawl Breaststroke 

CMC RMSE Rel. RMSE R m abs(q) CMC RMSE Rel. RMSE R m abs(q) 

Sh_Fl-Ex 0.99 (0.01) 5.06 (3.90) 0.05 (0.02) 0.99 (0.002) 0.99 (0.03) 2.44 (2.24) 0.99 (0.01) 5.72 (2.84) 0.045 (0.01) 1.00 (0.01) 0.995 (0.03) 4.59 (2.41) 

Sh_Ab-Ad 0.97 (0.02) 9.60 (3.64) 0.10 (0.04) 0.95 (0.03) 0.90 (0.07) 5.63 (7.80) 0.99 (0.002) 4.9 (3.25) 0.05 (0.02) 0.995 (0.01) 0.985 (0.04) 2.88 (5.53) 

Sh_In-Ex 0.99 (0.01) 7.31 (2.98) 0.06 (0.01) 0.98 (0.02) 1.03 (0.04) 2.13 (1.68) 0.995 (0.01) 3.37 (1.08) 0.04 (0.002) 0.99 (0.002) 0.98 (0.06) 1.52 (1.61) 

El_Fl-Ex 0.95 (0.04) 14.76 (5.12) 0.11 (0.04) 0.96 (0.03) 0.77 (0.10) 12.27 (10.18) 0.99 (0.02) 7.54 (5.15) 0.06 (0.05) 0.99 (0.01) 0.99 (0.03) 5.24 (7.01) 

El_Pr-Su 0.93 (0.03) 9.70 (3.67) 0.10 (0.04) 0.92 (0.02) 0.83 (0.13) 17.43 (17.59) 0.98 (0.02) 5.91 (4.43) 0.06 (0.04) 0.99 (0.02) 0.92 (0.07) 6.28 (6.08) 

Wr_Fl-Ex 0.94 (0.1) 4.60 (1.09) 0.08 (0.05) 0.96 (0.04) 0.97 (0.10) 3.46 (1.71) 0.975 (0.03) 5.26 (3.22) 0.75 (0.05) 0.975 (0.01) 0.99 (0.09) 3.31 (3.17) 

Wr_Dev 0.90 (0.08) 3.22 (1.32) 0.10 (0.04) 0.91 (0.07) 0.75 (0.18) 1.47 (1.14) 0.93 (0.05) 4.42 (1.98) 0.1 (0.02) 0.93 (0.05) 0.87 (0.22) 1.98 (1.92) 

Table reports the comparison between the joint angles (median and IQR) estimated by the IMMU and by the SPS. Sh_Fl-Ex: shoulder flexion-
extension, Sh_Ab-Ad: shoulder abduction-adduction, Sh_In-Ex: shoulder internal-external rotation, El_Fl-Ex: elbow flexion-extension, El_Pr-Su: elbow 
pronation-supination, Wr_Fl-Ex: wrist flexion-extension, and Wr_Rad: wrist radial-ulnar deviation. CMC: coefficient of multiple correlation, RMSE: 

root mean square error, Rel. RMSE: ratio between RMSE and range of motion, R: Pearson product-moment correlation coefficient, m: regression 
coefficient, and abs(q): absolute intercept value. 
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 Comparing the Joint Angles 
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Figure 4.4: Comparing the joint angles.  
Comparative box-plots among all joint degrees of freedom. Sh_Fl-Ex: shoulder flexion-extension, 

Sh_Ab-Ad: shoulder abduction-adduction, Sh_In-Ex: shoulder internal-external rotation, El_Fl_Ex: 
elbow flexion-extension, El_Pr-Su: elbow pronation-supination, Wr_Fl-Ex: wrist flexion-extension, 

and Wr_Rot: wrist radial-ulnar deviation. CMC: coefficient of multiple correlation, and RMSE: root 
mean square error. 

 

 

 



78 
 

 Comparing the Joint Angles 
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Figure 4.5: Comparing the joint angles.  
Comparative box-plots among all joint degrees of freedom. Sh_Fl-Ex: shoulder flexion-extension, 

Sh_Ab-Ad: shoulder abduction-adduction, Sh_In-Ex: shoulder internal-external rotation, El_Fl_Ex: 
elbow flexion-extension, El_Pr-Su: elbow pronation-supination, Wr_Fl-Ex: wrist flexion-extension, 
and Wr_Rot: wrist radial-ulnar deviation. R: Pearson product-moment correlation coefficient, and 

Relative RMSE: ratio between RMSE and range of motion. 
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4.1.5 Individual results 

The comparison between the joint angles values of each participant estimated by the IMMU and by 

the SPS is presented in Table 4.4. The median results of all swimmers for the front crawl style are: 

1) CMC of 0.97 (ranging from 0.95 to 0.99), 2) RMSE of 7.7 degrees (ranging from 4.5 to 8.9 

degrees), 3) Relative RMSE of 10% (ranging from 6% to 11%), and 4) R of 0.96 (ranging from 

0.93 to 0.99). For breaststroke, the following median values were calculated: 1) CMC of 0.99 

(ranging from 0.98 to 0.99), 2) RMSE of 5.6 degrees (ranging from 4.0 to 7.9 degrees), 3) Relative 

RMSE of 6% (ranging from 4% to 8%), and 4) R of 0.99 (ranging from 0.98 to 1.00). 

For each simulated swimming trial, the athletes performed about seven arm stroke cycles 

totaling about 50 arm stroke cycles after the 12 trials proposed. Afterwards, all cycles of the same 

athlete were averaged according to the swim style and to the joint. In this way, with the intention of 

show different patterns of motion during the same motor task, the 3D joint kinematics of two 

swimmers were grouped in six conditions. For the simulated front crawl, the joint ranges of motion 

in the sagittal, frontal and transverse planes are shown in the Figures 4.7, 4.8 and 4.9, respectively. 

While for the simulated breaststroke, the joint ranges of motion in the sagittal, frontal and 

transverse planes are shown in the Figures 4.10, 4.11 and 4.12, respectively. 

Different patterns of movement could be found when comparing the left versus right body 

sides of a same athlete, as visualized in the Figure 4.13. In Figures 4.7 to 4.13, the joint angles (in 

degrees) estimated by the IMMU and by the SPS were plotted over the percentage of swim cycles 

duration (ranging from 0 to 100%); the lines represent the mean data of the eight swimmers tested.  
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Table 4.4: Comparing the swimmers 

Swimmer 1 2 3 4 5 6 7 8 ALL 

Front crawl 

CMC 0.96 (0.03) 0.96 (0.07) 0.99 (0.07) 0.99 (0.02) 0.97 (0.06) 0.95 (0.04) 0.97 (0.07) 0.96 (0.06) 0.97 (0.02) 

RMSE 8.09 (5.37) 7.36 (5.51) 4.52 (1.07) 4.91 (1.24) 8.26 (2.96) 8.76 (7.00) 8.86 (5.41) 7.34 (6.90) 7.73 (1.65) 

Rel. RMSE 0.10 (0.03) 0.08 (0.05) 0.06 (0.05) 0.06 (0.01) 0.09 (0.04) 0.11 (0.02) 0.10 (0.06) 0.10 (0.04) 0.10 (0.03) 

R 0.96 (0.03) 0.97 (0.05) 0.99 (0.05) 0.99 (0.02) 0.96 (0.04) 0.93 (0.07) 0.95 (0.05) 0.95 (0.05) 0.96 (0.03) 

Breaststroke 

CMC 0.98 (0.02) 0.98 (0.04) 0.98 (0.02) 0.99 (0.01) 0.99 (0.02) 0.99 (0.03) 0.99 (0.03) 0.99 (0.01) 0.99 (0.02) 

RMSE 6.03 (4.04) 7.88 (5.80) 5.91 (2.96) 5.17 (2.35) 3.95 (1.19) 5.33 (2.30) 6.25 (4.17) 4.18 (2.47) 5.62 (1.16) 

Rel. RMSE 0.07 (0.04) 0.08 (0.05) 0.07 (0.03) 0.04 (0.01) 0.05 (0.03) 0.06 (0.05) 0.06 (0.07) 0.04 (0.03) 0.06 (0.02) 

R 0.98 (0.02) 0.99 (0.03) 0.98 (0.01) 0.99 (0.01) 1.00 (0.01) 0.99 (0.01) 0.99 (0.01) 1.00 (0.01) 0.99 (0.01) 

Table reports the comparison between the IMMU and the SPS considering the performance of each swimmer. Columns 1 to 9 refer to  the  swimmers’  
individual data and the column ALL reports the median values of all swimmers. CMC: coefficient of multiple correlation, RMSE: root mean square 

error, Relative RMSE: ratio between RMSE and range of motion, and R: Pearson product-moment correlation coefficient. 
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Simulated Front Crawl 
Swimmer I 

 

Swimmer II 

 

Figure 4.6: Shoulder, elbow and wrist patterns of motion during simulated front crawl.  
Angles measured by the IMMU (blue lines) and by the SPS (red lines). Columns show the joint 

kinematics of two swimmers in the sagittal plane, where different motor patterns can be seen. Solid 
and dashed lines: mean r standard deviation of all trials, respectively.  
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Simulated Front Crawl 
Swimmer I 

 

Swimmer II 

 

Figure 4.7: Shoulder and wrist patterns of motion during simulated front crawl.  
Angles measured by the IMMU (blue lines) and by the SPS (red lines). Columns show the joint 

kinematics of two swimmers in the frontal plane, where different motor patterns can be seen. Solid 
and dashed lines: mean r standard deviation of all trials, respectively.  

 

Simulated Front Crawl 
Swimmer I 

 

Swimmer II 

 

Figure 4.8: Shoulder and elbow patterns of motion during simulated front crawl.  
Angles measured by the IMMU (blue lines) and by the SPS (red lines). Columns show the joint 

kinematics of two swimmers in the transverse plane, where different motor patterns can be seen. Solid 
and dashed lines: mean r standard deviation of all trials, respectively.  
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Simulated Breaststroke 
Swimmer I 

 

Swimmer II 

 

Figure 4.9: Shoulder, elbow and wrist patterns of motion during simulated breaststroke.  
Angles measured by the IMMU (blue lines) and by the SPS (red lines). Columns show the joint 

kinematics of two swimmers in the sagittal plane, where different motor patterns can be seen. Solid 
and dashed lines: mean r standard deviation of all trials, respectively.  
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Simulated Breaststroke 

Swimmer I 

 

Swimmer II 

 

Figure 4.10: Shoulder and patterns of motion during simulated breaststroke.  
Angles measured by the IMMU (blue lines) and by the SPS (red lines). Columns show the joint 

kinematics of two swimmers in the sagittal plane, where different motor patterns can be seen. Solid 
and dashed lines: mean r standard deviation of all trials, respectively.  

Simulated Breaststroke 
Swimmer I 

 

Swimmer II 

 

Figure 4.11: Shoulder and elbow patterns of motion during simulated breaststroke.  
Angles measured by the IMMU (blue lines) and by the SPS (red lines). Columns show the joint 

kinematics of two swimmers in the sagittal plane, where different motor patterns can be seen. Solid 
and dashed lines: mean r standard deviation of all trials, respectively.  
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Figure 4.12: Shoulder patterns of motion during simulated front crawl in the three planes.  
Angles measured by the IMMU (blue lines) and by the SPS (red lines). Rows show the joint kinematics of both body sides of one swimmer, where 
different motor patterns can be seen revealing a bilateral asymmetry. Solid and dashed lines: mean r standard deviation of all trials, respectively.  
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As would be expected, each athlete had his own style of swimming. Although there is a 

tendency to follow given shapes, it can be seen in the figures above that individual curves are 

different not only among the swimmers, but also when for the left versus the right side of the same 

swimmer. The kinematic analysis is an important tool to compare the swimming technique of 

different swimmers, eventually taking as a reference the style of top-level swimmers. The sample of 

this study was composed of high-level swimmers, some of which were finalists in national 

competitions; however, remarkable differences between them were observed in their swimming 

styles. 

Another issue concerns bilateral asymmetries. By comparing the two sides of the same 

swimmer, it was possible to observe different patterns of movements between the left and right 

limbs. Evaluating inter-limb coordination or asymmetries was not within the aim of the present 

study; however, the figures generated through the protocol may prove to be a useful tool to identify 

poor coordination between the upper limbs and to recognize functional bilateral asymmetries. 

Evaluating swimming in the laboratory using simulated arm strokes is a common practice in 

the scientific literature (Armstrong and Davies, 1981; Kimura et al., 1990; Lee et al., 2011) because 

procedures can be more controlled and measurements more easily made. In the case of the present 

study, the novel method proposed was compared with a SPS. The SPS was used as reference 

because it is more accurate than the conventional underwater video-camera systems. Each retro-

reflective passive marker could be automatically tracked with high accuracy (see section 3.1.2) by 

the dedicated software (SMART-Tracker, BTS Bioengineering, Italy), enabling precisely the 

reconstruction of the body segment motions. Whilst this marker-based approach has been widely 

utilized to analyze the 3D joint kinematics, it cannot be adapted to perform the underwater motion 

analysis. There is already a SPS available on the market that is able to capture the underwater 

human motion as reported in the section 2.3.1.1. Nevertheless, besides being even more expensive 

than the traditional systems, the retro-reflective passive markers used by this system increase the 

passive drag during underwater motion (Kjendlie and Olstad, 2012). This drawback can negatively 

affect the swimming performance. 

Another advantage of analyzing the simulated arm strokes in laboratory is that the complete 

arm stroke cycle can be recorded, including the aerial (or recovery) phase. Typically, swimming 

biomechanics does not consider the aerial phase because it is assumed that the underwater phases 

are the most important swim phases because they generate propulsion. Moreover, only the 

underwater phases are acquirable by underwater cameras. Nevertheless, it is important to consider 

also the aerial phase in order to analyze the entire arm stroke cycles as the aerial phase provides 

information about the entry and recovery of the stroke. An effective motion capture of the trunk and 
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upper limbs during the aerial phase is essential to positioning correctly the hand, which acts as a 

rudder during the propulsive phases. Therefore, when using the marker-based video analysis, only 

in laboratory is it possible to collect the aerial phase of swimming. To overcome this drawback, 

IMMU have showed as a solution to this issue even when pool swimming is intended because they 

are swimmer-centric and have a wide field of view. 

4.2 Swimming Test in the Pool 

In the swimming test performed in the laboratory, the protocol was highly accurate in estimating the 

3D joint kinematics, with a high level of agreement between the measurements of the IMMU and 

the SPS and low error values (Tables 4.3 and 4.4). The water stage of the test consisted of 

performing the same analyses during real swimming. Four types of swimming styles were 

considered: free front crawl, tethered front crawl, free breaststroke and tethered breaststroke. The 

joint ranges of motion of the free swim, of the tethered swim and of the simulated swim are present 

in the Figures 4.14 to 4.19. Both free and tethered swim were executed in the pool and the 

simulated swim was executed in the laboratory, as described in the sections 4.1.4 and 4.1.5. 

Tethered swimming was overlapped with the simulated swim in those figures because the displayed 

motor patterns were similar, so it was possible verify the similarities and differences between a 

simulated and a real swim. The joint ranges of motion values of six swimmers during these three 

experimental conditions are present in the Table 4.5. Just to clarify, as explained in the section 

3.3.1.8, six of the eight swimmers tested in laboratory were tested in the swimming pool. Even if 

small differences can be found in one or other angle, as found in the shoulder internal-external 

rotation for the free and tethered breaststroke or in the wrist flexion-extension for the free and 

simulated front crawl, no remarkable difference in the aggregate values of joint angles was noted 

when comparing these 3 kinds of swimming. 

The differences in the pattern of movement between dry simulated and water swimming 

increased from the proximal to the distal joints. This might be due to the shortcomings of simulated 

swimming. During dry land simulations, the swimmers were required to imitate the proper 

technique of swimming without the usual resistance of the water during the arm strokes. In addition, 

during the simulations, the swimmers had to support actively their trunk in suspension, a condition 

that may have limited the body roll and, consequently, reduced the joint ranges of motion. Finally, 

in water swimming, the upper limbs generate propulsion forces to overcome the water resistance 

(drag forces) and then push the body forward, which is not true in dry simulations. 

Similarly to the dry simulated swim, different patterns of movement in the kinematics of the 

athletes were noticed during the real swim. Figures 4.20 to 4.22 show a side-by-side comparison 



88 
 

between two swimmers during the free front crawl in the pool, and Figures 4.23 to 4.25 complete 

this comparison during the free breaststroke in the pool. Those different patterns of movement 

suggest once again that each swimmer has his own style of swimming, and the same discussion 

conducted in the section 4.1.5 may be considered here. On the other hand, the majority of the six 

athletes performed both free front crawl and breaststroke in the pool with very similar motor 

patterns, indicating that establishing values of references for each swim style based on top 

swimmers might be a reasonable strategy for coaches to better train swimmers.  

The method proposed in this thesis modified a pre-existent protocol in order to analyze the 

3D joint kinematics of both upper limbs through an inertial and magnetic measurement units system 

during swimming. This novel method revealed to be a potent tool to assist coaches, clinicians and 

researches to evaluate and monitor precisely the underwater motion. 

 

Table 4.5: Joint ranges of motion  

 
Front Crawl Breaststroke 

Free  Tethered Lab Free Tethered Lab 

Sh_Fl-Ex 124 (16) 116 (11) 105 (7) 124 (11) 123 (9) 113 (8) 

Sh_In-Ex 47 (7) 56 (8) 90 (5) 40 (8) 74 (6) 70 (6) 

Sh_Ab-Ad 94 (14) 96 (9) 82 (6) 109 (10) 108 (8) 83 (8) 

El_Fl-Ex 94 (11) 93 (11) 105 (10) 91 (7) 96 (6) 105 (7) 

El_Pr-Su 106 (10) 95 (10) 71 (10) 88 (7) 91 (11) 89 (10) 

Wr_Fl-Ex 94 (8) 90 (7) 30 (9) 63 (6) 46 (11) 50 (8) 

Wr_Dev 25 (6) 30 (5) 20 (7) 20 (4) 24 (6) 26 (5) 

Total 94 (10) 93 (9) 82 (7) 88 (7) 91 (8) 83 (8) 

Table reports the joint ranges of motion (in degrees) in the three experimental conditions were 
measured by the IMMU system. Values expressed in median (IQR). Free: free swim in the pool, 

Tethered: tethered swim in the pool, and Lab: simulated swim in the laboratory. Sh_Fl-Ex: shoulder 
flexion-extension, Sh_Ab-Ad: shoulder abduction-adduction, Sh_In-Ex: shoulder internal-external 

rotation, El_Fl-Ex: elbow flexion-extension, El_Pr-Su: elbow pronation-supination, Wr_Fl-Ex: wrist 
flexion-extension, and Wr_Dev: wrist radial-ulnar deviation. 
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  Front Crawl  

 

Figure 4.13: Shoulder angles during free, tethered and simulated front crawl.  
Free and tethered swim were performed in the pool (IMMU, blue lines) and simulated swim was performed in laboratory (SPS, red lines). Solid and 

dashed lines: mean r standard deviation of all trials, respectively. 
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  Front Crawl  

 

Figure 4.14: Elbow angles during free, tethered and simulated front crawl.  
Free and tethered swim were performed in the pool (IMMU, blue lines) and simulated swim was performed in laboratory (SPS, red lines). Solid and 

dashed lines: mean r standard deviation of all trials, respectively. 
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  Front Crawl  

 

Figure 4.15: Wrist angles during free, tethered and simulated front crawl.  
Free and tethered swim were performed in the pool (IMMU, blue lines) and simulated swim was performed in laboratory (SPS, red lines). Solid and 

dashed lines: mean r standard deviation of all trials, respectively. 
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  Breaststroke  

 

Figure 4.16: Shoulder angles during free, tethered and simulated breaststroke.  
Free and tethered swim were performed in the pool (IMMU, blue lines) and simulated swim was performed in laboratory (SPS, red lines). Solid and 

dashed lines: mean r standard deviation of all trials, respectively. 
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  Breaststroke  

 

Figure 4.17: Elbow angles during free, tethered and simulated breaststroke.  
Free and tethered swim were performed in the pool (IMMU, blue lines) and simulated swim was performed in laboratory (SPS, red lines). Solid and 

dashed lines: mean r standard deviation of all trials, respectively. 
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  Breaststroke 

 

Figure 4.18: Wrist angles during free, tethered and simulated breaststroke.  
Free and tethered swim were performed in the pool (IMMU, blue lines) and simulated swim was performed in laboratory (SPS, red lines). Solid and 

dashed lines: mean r standard deviation of all trials, respectively. 
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Front Crawl 
Swimmer I 

 

Swimmer II 

 

Figure 4.19: Joint angles during free front crawl in the sagittal plane.  
Angles measured by the IMMU. Columns show the joint kinematics of two swimmers, where different 

motor patterns can be seen. Solid and dashed lines: mean r standard deviation of all trials, 
respectively. 
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Front Crawl 
Swimmer I 

 

Swimmer II 

 

Figure 4.20: Joint angles during free front crawl in the frontal plane.  
Angles measured by the IMMU. Columns show the joint kinematics of two swimmers, where different 

motor patterns can be seen. Solid and dashed lines: mean r standard deviation of all trials, 
respectively.  

 

Front Crawl 
Swimmer I 

 

Swimmer II 

 

Figure 4.21: Joint angles during free front crawl in the transverse plane.  
Angles measured by the IMMU. Columns show the joint kinematics of two swimmers, where different 

motor patterns can be seen. Solid and dashed lines: mean r standard deviation of all trials, 
respectively.  
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Breaststroke 
Swimmer I 

 

Swimmer II 

 

Figure 4.22: Joint angles during free breaststroke in the sagittal plane.  
Angles measured by the IMMU. Columns show the joint kinematics of two swimmers, where different 

motor patterns can be seen. Solid and dashed lines: mean r standard deviation of all trials, 
respectively.  
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Breaststroke 
Swimmer I 

 

Swimmer II 

 

Figure 4.23: Joint angles during free breaststroke in the frontal plane.  
Angles measured by the IMMU. Columns show the joint kinematics of two swimmers, where different 

motor patterns can be seen. Solid and dashed lines: mean r standard deviation of all trials, 
respectively.  

 

Breaststroke 
Swimmer I 

 

Swimmer II 

 

Figure 4.24: Joint angles during free breaststroke in the transverse plane.  
Angles measured by the IMMU. Columns show the joint kinematics of two swimmers, where different 

motor patterns can be seen. Solid and dashed lines: mean r standard deviation of all trials, 
respectively.  
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CHAPTER  5 

CONCLUSIONS 
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5 Conclusions 

In this thesis, a protocol initially designed to perform 3D kinematic analysis of upper limbs during 

simple motor tasks was modified to be used in swimming, and was evaluated both in the laboratory and 

in the field (swimming pool). In laboratory, simulated swimming trials were carried out in dry-land 

conditions and recorded by means of inertial and magnetic measurement units (IMMU) and 

simultaneously by means of a stereo-photogrammetry system (SPS) considered as the reference. For 

both the front crawl and breaststroke swimming styles and all joint degrees of freedom modeled, the 

comparison between the SPS and the IMMU showed median values of RMSE lower than 8°, 

representing 10% of overall joint range of motion, high median values of CMC (0.97) and R (0.96).  

Swimming evaluation through accelerometers is an old practice that has been improved over the 

last two decades due mainly to the micro-electronic evolution. Also other sensors have been 

aggregated, such as gyroscopes and magnetometers, forming the inertial and magnetic system. 

Contemporaneously, research on swimming kinematics through IMMU have profited of that evolution 

by proponing different methods to measure each time more variables useful for performance 

assessment. The present study  contributed with this evolution by offering a novel method so far not 

encountered in the literature. Consequently, it was not possible to compare these findings with others. 

Moreover, the literature has only one study that evaluated the 3D kinematics of swimming by means of 

video recording analysis (Ceccon et al.). Unfortunately, due to different angular conventions in these 

studies, comparisons between the present outcomes against previous research was once again not 

possible. 

The present study was the first research that aimed to measure 3D joint kinematics of swimming 

through IMMU and that has been validated by means of a gold standard procedure. This novel method 

is an useful tool that was easy to set up, did not bother the athletes, and required much less time than 
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the standard video method during the data collection (about 45min against about 10min for the IMMU), 

and during the post-processing (2h per each person for video compared with about 3min for the 

IMMU).  

Currently, commercial waterproofed IMMU are not available in the market, and it was not 

possible to get waterproofed prototypes. The solution applied was similar to most of previous studies 

that protected the nodes by capsuling them within plastic bags with hermetic sealing (Magalhães, In 

review). Indeed, this procedure worked well without adding substantial extra weight and volume to the 

system. Nevertheless, in order to reduce the operational time and to make the proposed method even 

more convenient, three waterproofing will be explored in next future. The first solution is 

manufacturing specific size cases to the IMMU for their proper housing and waterproofing; this 

solution is going to be realized in the near future and tests will be performed as soon as possible. The 

second solution is contacting a company specialized in waterproofing small electronic devices like 

music players for swimming (Waterfi, U.S.A., further information can be found at http://waterfi.com, 

retrieved at 03/07/2013) to render the nodes waterproof; this solution is still running since one node has 

been be sent to the company for waterproofing. The third and last solution is contacting with a 

multinational company specialized in sport costumes (Arena, Italy) to create a full body swimsuit with 

waterproofed IMMU-sized pockets, which is under development.  

Another issue, particularly critical due to the environment, is the absence of IMMU capable of 

synchronization in underwater conditions. Wireless signals propagate over the air within the operating 

range, but not underwater. Indeed, during the test reported in section 3.4, signal loss was experienced 

when the IMMU were submerged in depths over 20cm or over 10m from the workstation. Therefore 

uploading data in real-time during underwater motor tasks still challenges researchers.  

Not few solutions can be found in the literature with the aim of providing real-time swimmers 

feedback (Slawson et al., 2011; Chakravorti et al., 2013; Le Sage et al., 2010; Hagem et al., 2012; 
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Bächlin et al., 2012). The common point of these studies is the presence of one wireless transmitter 

device placed either on the back or over the head of the swimmer. These attempts are valuable because 

offer important performance information useful for coaches and athletes, like stroke counts, rates, 

length, duration for example. Meanwhile, none study that proposed to perform real-time measurement 

in swimming have measured 3D joint angles. Whilst new technologies to overcome  the  IMMU’s  signal  

loss underwater are not currently available, the method proposed provide a useful tool that enables 3D 

kinematics measurement just few minutes after swimming. 

Regarding to the validation of the protocol, it was conducted in dry condition because the SPS 

is more accurate than underwater cameras, thus it can be considered the best gold standard for protocol 

validation. Furthermore, a large number of arm stroke cycles can be acquired and compared, instead of 

a maximum of two strokes cycles available with six underwater cameras. In addition, complete arm 

stroke cycles can be registered in dry condition allowing the analysis of all swim phases including the 

recovery.  

On the other hand, evaluating swimming in dry land lack ecological validity. Even if the 

instructions given to participants were to swim naturally, these motor tasks were not performed 

underwater.   In   the   pool,   the   water’s   physical   proprieties   such   as   drag   and   thrust   demand   different  

patterns of movement from the swimmers when compared to air. Conversely, the comparative analysis 

between the swimming in the pool and the simulated swimming in the laboratory showed no difference 

in the joint ranges of motion (Table 4.5). Furthermore, the patterns of movement of the swimmers were 

found to be comparable with each other in both conditions; and the difference in the patterns of 

movement between real swimming and simulated swimming diminished from distal toward proximal 

joints, i.e. from wrists to shoulders joints. Hence, this study validated an IMMU a protocol during 

movements very similar to real swimming. 
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The speed of the protocol in delivering kinematic information on swimmers soon after the swim 

allows coaches to provide the athletes with feedback about their swim-specific technical movements. 

This is possible due to the low computational load required by the protocol, allowing it to run quickly. 

Additionally, this protocol is not hardware-dependent. So any systems having technical specifications 

similar to those presented in section 3.1.1.2 could be used, as long as there is an internal data storage 

feature, which is the most important requirement. A wireless system is recommended since the use of 

wires could disturb the natural movements of swimmers. 

Besides the use of diverse IMMU, the protocol permits the evaluation of several orientation 

algorithms. In the present study, three different orientation algorithms were tested. The gyroscopes 

present in IMMU have a major limitation of drifting during a long trial or during cyclical movements, 

and a well-adjusted orientation algorithm may be able to compensate for the gyroscope drift by using 

the accelerometer and/or the magnetometer signals. The analyses of the present study were done 

utilizing the orientation algorithm based on an extended Kalman filter that presented the best 

performance in compensating for the gyroscope drift and, in this way, output valid 3D kinematic data. 

If desirable, other orientation algorithms could be used in this protocol, either with old kinematic data 

or with a new  data   collection.  The  algorithm  can  be   an  updated   from   the   IMMU’s  manufacturer,   an  

open-source or one task specific designed by a developer. In this way, the protocol is easily adjustable 

to be applied to in numerous experimental conditions. 

Underwater motion analysis is of extreme interest for the clinicians because the buoyant force 

partially cancels the gravitational force so reducing the compression in the joints, which is useful for 

high body weights or joint injuries. In addition, the water resists limb movement proportional to speed. 

Thus, obese or overweight people, the elderly, pregnant women and patients with mobility problems 

and those with neurological impairments or joint pathologies, may benefit from a wide range of aquatic 

exercises.  
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Last but not less important, coaches and athletes also frequently utilize resources to perform the 

underwater motion analysis to improve performance and prevent injuries, as detailed previously. In this 

way, both coaches/clinicians and athletes/patient may profit by using the IMMU for 3D joint kinematic 

analyses. 

The participants of this thesis showed a tendency of having general patterns of movement for 

the front crawl and for the breaststroke. Notwithstanding, it was possible to identify individual 

difference in the patterns of movement of a single swimmer. The main differences noticed among the 

participants were the higher or lower joint range of motion, and the diverse beginning, ending and 

duration of each of the stroke phases. Understanding individual variations of the sport movement may 

help coaches and athletes to plain particular strategies of movement correction and therefore improving 

performance.  

Analysis of the joint angles during sports motion provides professionals and practitioners with 

important information not only about motor patterns, but also several variables can reliably be 

estimated. IMMU evaluation in sports could identify lateral asymmetries between the limbs. 

Investigating the arm symmetry of athletes can help identifying symmetry problems and help 

improving the swimming technique (Stamm et al., 2012). It may be possible to use IMMU to identify 

excess fatigue in athletes which the literature suggests is related to both incidence of injuries and 

declines in sports performance . 

In a sport context, the knowledge of the 3D kinematics of the upper limbs in swimming will 

provide new scenarios for the analysis of the technique used by high-level swimmers, which may be 

used to improve the performance of beginners, as well as lead to new teaching approaches (i.e., using 

testing, real-time analysis and feedback, correction, etc.). One of the main advantages of the protocol is 

that the swimming kinematics can be analyzed throughout the entire training session, whereas 

waterproofed cameras can only capture a small volume of data.  
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Consequently, the IMMU is a unique system that allows observing the effects of fatigue on the 3D 

joint kinematics of swimmers, especially throughout long training sessions or competitions. Moreover, 

coaches could evaluate not only joint angles but also other biomechanical variables related to the 

performance, as bilateral symmetries and propulsive forces.  

Since only a quick uncomplicated setup is required, daily training use can be supported and 

encouraged. In the clinical context, an excessive shoulder flexion and/or internal rotation during the 

stretching phase of the front crawl may lead to undesirable injuries, therefore the protocol can support 

the identification of possible injury risk factors. 

The findings of this thesis support that the protocol accurately estimated the 3D orientation of the 

shoulders, elbows and wrists joint during simulated swimming. The swimmers were tested during 

simulated arm strokes in dry land and in the pool during real swimming. Furthermore, an overall 

correspondence was verified among the swim phases in both simulated and real swimming, and no 

difference in the overall joint ranges of motion between the real and the simulated swims were 

observed.  

In conclusion, the proposed method to evaluate the 3D joint kinematics through IMMU was 

revealed to be a useful tool for both sport and clinical contexts. Future research should include 

extending the protocol to hip, knee and ankle joints in order to perform a complete 3D kinematic 

analysis of athletes by accomplishing a full-body assessment.  
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6 Appendix  I:  Working  and  Accuracy  of  the  Inertial  and  Magnetic  

Measurement  Units. 

6.1 Introduction 

The working principle of an inertial-based sensor can be illustrated through the human vestibular 

system, located in the inner ear, a biological system of 3D inertial sensors. This system is able to 

feel the rotations and linear accelerations of the head and this allows maintenance of the position of 

the eyes in the environment. Artificial sensors can replicate the above system through micro-

electro-mechanical systems technology that allows miniaturization of sensors (accelerometers 

gyroscopes and magnetometers) and their integration into small portable units or inertial platforms 

to track the body segments movement of interest on which they are positioned. 

6.2 Accelerometers 

A  single  axis  accelerometer  consists  of  a  mass,  suspended  by  a  spring   in  a  housing.  Hooke’s   law  

governs the linear region of the spring, in which the restoring forces are proportional to the amount 

of expansion or compression. Specifically,  

𝐹 = 𝑘𝑥 

where k is the constant of proportionality between displacement x and force F. The other important 

physical  principle  is  the  Newton’s  second  law  of  motion  that  states  that  a  force  operating  on  a  mass  

that is accelerated will exhibit a force with a magnitude:  

𝐹 = 𝑚𝑎 

This force causes the mass to either compress or expand the spring under the constraint that:  

𝐹 = 𝑚𝑎 = 𝑘𝑥 

Hence an acceleration will cause the mass to be displaced by: 

𝑥 = 𝑚𝑎
𝑘  

or, if we observe a displacement of x, we know the mass has undergone k an acceleration of  

𝑎 = 𝑘𝑥
𝑚  

In this way, the problem of measuring acceleration m has been turned into one of measuring the 

displacement of a mass connected to a spring. In order to measure multiple axes of acceleration, this 

system needs to be duplicated along each of the required axes (Roetenberg, 2006). The 

accelerometers then are able to provide linear acceleration measurements, including the 

gravitational component. When the angle between the sensor and the vertical direction is known, 
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the gravitational component can be subtracted and then by numerical integration the linear velocity 

and position over time theoretically can be obtained (Garofalo, 2010). 

6.3 Gyroscopes 

Gyroscopes are instruments that are used to measure angular motion of the underlying body. There 

are two broad categories: (1) mechanical gyroscopes and (2) optical gyroscopes, within both of 

these categories, there are many different types available (Roetenberg, 2006). Mechanical 

gyroscopes operate based on conservation of angular momentum by sensing the change in direction 

of  an   angular  momentum.  According   to  Newton’s   second   law,   the  angular  momentum  of   a  body  

will remain unchanged unless a torque acts upon it. Gimbaled and laser gyroscopes are not suitable 

for human motion analysis due to their large size and high costs. Over the last few years, micro-

machined inertial sensors have become more available. Vibrating mass gyroscopes are small, 

inexpensive and have low power requirements, making them ideal for human movement analysis. A 

vibrating element (vibrating resonator), when rotated, is subjected to the Coriolis Effect that causes 

secondary vibration orthogonal to the original vibrating direction. By sensing the secondary 

vibration, the rate of turn can be measured. The Coriolis Force is given by: 

𝑭𝑐 = −2𝑚  (ω x v)  

where m is the mass, v is the momentary speed of the mass relative to the moving object to which it 

is  attached  and  ω  is  the  angular  velocity  of  that object. Various micro-electromechanical machined 

geometries are available, of which many use the piezo-electric effect for vibration exert and 

detection. 

6.4 Magnetometers 

The magnetometers are sensors that measure the magnetic field, thus functioning as compasses. The 

magnetic signals are described as the sum of the earth magnetic field vector, a disturbance vector 

and a white noise term, forming the local magnetic field (Roetenberg, 2006). Near ferromagnetic 

materials or external magnetic fields, the magnetic flux is most likely to be higher or lower. In real 

3D space, the field distribution is more complicated, and therefore, the magnetic inclination should 

also be taken into account in order to identify a disturbance. The magnetic inclination is the angle 

the earth magnetic field makes with the surface of the earth. This angle varies depends the position 

on   the   earth’s   surface,   being   0◦   at   the   magnetic   equator   and   90◦   at   each   of   the   magnetic   poles  

(Roetenberg, 2006). 
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6.5 Sensor Fusion 

By combining accelerometers, gyroscopes and magnetometers in a single small unit, the sensor 

fusion (also known as inertial and magnetic measurement units, IMMU) has been widely used in 

diverse situations. The traditional application area of IMMU is navigation as well as guidance and 

stabilization of military systems. Position, velocity and attitude are obtained using accurate, but 

large gyroscopes and accelerometers, in combination with other measurement devices such as GPS, 

radar or a baro-altimeter. Generally, signals from these devices are fused using a Kalman filter to 

obtain quantities of interest. The Kalman filter is useful for combining data from several different 

indirect and noisy measurements (Kalman, 1960). It weights the sources of information 

appropriately with knowledge about the signal characteristics based on their models to make the 

best use of all the data from each of the sensors.  

There is no such thing as a perfect measurement device; each type of sensor has its strong and weak 

points. The idea behind IMMU is that characteristics of one type of sensor are used to overcome the 

limitations of another sensor. For example, magnetic sensors are used as a reference to prevent the 

gyroscope integration drift about the vertical axis in the orientation estimates of the attitude and 

heading reference system. However, iron and other magnetic materials will disturb the local 

magnetic field and consequently, the orientation estimate. Errors related to magnetic disturbances 

will have different spatial and temporal properties than gyroscope drift errors (Roetenberg et al., 

2005). Using this a priori knowledge, the effects of drift and disturbances can both be minimized. 

The IMMU can be mounted on vehicles in such a way they stay leveled and pointed in a fixed 

direction. This system relies on a set of gimbals and sensors attached on three axes to monitor the 

angles at all times. Another type of IMMU is the strapdown system that eliminates the use of 

gimbals, and which is suitable for human motion analysis (Garofalo et al., 2009). In this case, the 

gyros and accelerometers are mounted directly to the structure of the vehicle or strapped on the 

body segment. The measurements are made in reference to the local axes of roll, pitch, and heading 

(or yaw). The clinical reference system provides anatomically meaningful definitions of main 

segmental movements (e.g. flexion-extension, abduction-adduction or supination-pronation). From 

this combination or fusion of sensor signals, information is obtained regarding the offsets of the 

gyroscopes, accelerometers and magnetometers, which can be used to recalibrate the sensors in use.  

6.6 Static and Dynamic Accuracy 

The large number of scientific papers has demonstrated the applications of the IMMU in the human 

motion tracking. IMMU use has intensified in the last decade with the technological achievement of 

miniaturizing the sensors aggregated with new resources such as long battery life, high internal 
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storage, and wireless transmission. These new features in addition to development of effective 

algorithms enable the use of the IMMU to perform the 3D joint kinematic analysis in both clinical 

and sports contexts.  

The efficacy of the protocol implemented in this thesis is highly dependent on the static orientation 

estimation to define the anatomical systems of reference as described in section 3.3. In complement, 

the orientation algorithm performance based on Kalman filters relies on the accuracy of each sensor 

in static and dynamic conditions. In this way, the wearable motion capture systems based on IMMU 

are valid alternatives to optical motion capture for sport applications. Subsequently, several authors 

have investigated both static and dynamic accuracy of the IMMU.  

Usually, manufacturers report in their user guidelines the static and dynamic accuracies. However, 

due to the different laboratory settings of each research team, and the number and type of 

instruments presented, substation noise can be aggregated to the raw signals increasing 

measurement errors. Moreover, the global location of the laboratory where the tests take place also 

is an important issue to take into consideration. Since the magnetometers performance depends on 

the  earth’s  magnetic  inclination,  as  stated  before, trials performed near to the magnetic equator may 

present different outcomes than those performed near to the magnetic poles.  

In order to check the veracity of the values claimed by the manufacturers, Brodie et al. (2008b) 

proposed to investigate the static accuracy of 5 different commercial IMMU in measuring 3D 

orientation in static situations as well as to investigate the calibration of the accelerometers and 

magnetometers within the IMMU. By using the original factory calibration, these authors found 

maximum absolute static orientation error of 5.2°, much higher than the value stated by the vendors. 

Nonetheless, when the IMMU were re-calibrated at the time of measurement, the error was of less 

than 1°, in agreement with the vendor's specifications. Therefore, they concluded that, for 

biomechanical research, small relative movements of a body segment from a calibrated position are 

likely to be more accurate than large-scale global motion that may have an error of up to 9.8°.  

Aware of the importance of verifying IMMU accuracy for movement reconstruction, Picerno et al. 

(2011) proposed a spot check for assessing the IMMU performance in 2 static situations: 9 

commercial IMMU aligned to each other on a rigid plank or each one assessed separately by 

verifying differences between measured and imposed known rotations. They found that, in the first 

situation, the IMMU defined their orientation differently. This difference was not constant but 

varied  according  to  the  plank’s  orientation,   reaching  up to 5.7° for the least consistent IMMU. In 

the second situation, the same IMMU presenting the highest inaccuracy in the previous test 

presented once again the worse performance (8.4°). Therefore, these tests demonstrated that IMMU 

showed different levels of accuracy. The important contribution of this study was that the IMMU 
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offered a suitable solution for body segments orientation tracking and joint angular kinematics 

estimation, although the users should be aware of the errors associated with the measurements. At 

the end, the authors advised others always to check on the accuracy of IMMU, which information 

may suggest either to recalibrate or to exclude the less reliable IMMU from the data collection.  

In another study, Brodie et al. (2008a) investigated the IMMU dynamic accuracy in estimating 3D 

orientation during simple pendulum motion. The motion of a pendulum swing was measured using 

both IMMU and video motion capture as a reference. The IMMU raw data were processed by two 

different orientation algorithms, i.e. by the one supplied by the vendor (Xsens Technology, The 

Netherlands) and by the one developed by the authors. When comparing the IMMU measurement 

of pendulum motion using the vendor's orientation against the video motion capture, the results 

showed RMS errors of between 8.5° and 11.7° depending on the length and type of pendulum 

swing; sometimes the error exceeded 30° along the trials. On the other hand, comparing the 

performance of the custom orientation algorithm against the video motion capture, the RMS error 

was between 0.8° and 1.3°.  

In attempt to negate the problems of ferromagnetic materials or other magnetic fields near the 

IMMU that can disturb the local earth magnetic field and, therefore, the orientation estimation, 

Roetenberg et al. (2005) proposed a complementary Kalman filter designed to estimate orientation 

of human body segments through IMMU signals. In this filter, the gyroscope bias error, orientation 

error, and magnetic disturbance error are estimated. The filter was tested under quasi-static and 

dynamic conditions with ferromagnetic materials close to the IMMU. The orientation estimated by 

the filter was compared with the orientation obtained with a video motion capture. Results show 

accurate and drift-free orientation estimates. The compensation resulted in a significant difference 

(p < 0.01) between the orientation estimates with compensation of magnetic disturbances in 

comparison to no compensation or only gyroscopes. The average static error was 1.4° in the 

magnetically disturbed experiments. The dynamic error presented was 2.6°. 

Hence, it has be demonstrated that the highest IMMU performance in estimating the 3D human 

kinematics is strictly dependent of these 2 following issues: 1) proper calibration of each sensor in 

the  epoch   and  place  of  measurement,   according   to   the  manufacturer’s   instructions;;   and  2)   robust  

orientation algorithm, either specifically developed to that motor task or flexible enough to be 

adjusted to vary with the experimental situation. 
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