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Abstract

In distributed systems like clouds or service oriented frameworks, applications are

typically assembled by deploying and connecting a large number of heterogeneous

software components, spanning from fine-grained packages to coarse-grained com-

plex services. The complexity of such systems requires a rich set of techniques and

tools to support the automation of their deployment process. By relying on a formal

model of components, a technique is devised for computing the sequence of actions

allowing the deployment of a desired configuration. An efficient algorithm, working

in polynomial time, is described and proven to be sound and complete. Finally, a

prototype tool implementing the proposed algorithm has been developed. Experi-

mental results support the adoption of this novel approach in real life scenarios.
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Chapter 1

Introduction

Deploying software component systems is becoming a critical challenge, especially

due to the advent of cloud computing technologies that make it possible to quickly

run complex distributed software systems on-demand on a virtualized infrastructure,

at a fraction of the cost which was necessary just a few years ago. When the number

of software components, needed to run an application, grows and their interdepen-

dencies become too complex to be manually managed, it is necessary for the system

administrator to use high-level languages for specifying the system’s requirements,

and then rely on tools that automatically synthesize the low-level deployment ac-

tions necessary to actually realize a correct and complete system configuration that

satisfies such requests.

Automation is thus a key ingredient for a wide adoption of cloud facilities. It

appears at multiple levels ranging from the installation of packages to scaling com-

puting power (like increasing the number of virtual machines).

In order to deploy an application one needs to specify a sequence of actions like

creation/deletion of components, wiring of components (component functionalities),

and internal steps to be carried out by each component employed. Moreover, the

order in which these actions are to be performed is crucial as it ensures the correct-

ness of all intermediate configurations that the system undergoes. Such a sequence

of actions is called a deployment plan.

Finding suitable techniques for automatically generating a deployment plan for
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complex systems, assembled from a large number of interconnected components, is a

serious challenge. This is the goal of the thesis and constitutes the main contribution

of this dissertation. The work has been developed as part of the Aeolus research

project [1] 1. The problem is cast in the Aeolus component model [30], specifically

tailored to describe uniformly both fine grained software entities, like packages in a

Linux distribution, and coarse grained ones, like services, obtained as composition

of distributed and properly connected sub-services.

A novel approach for the automatic synthesis of deployment plans has been

developed. The technique is shown to be correct, by proving its soundness and

completeness, and efficient (of polynomial computational complexity). Moreover,

viability in practice of the proposed technique is assessed by means of a proof of

concept implementation, validated against standard planning techniques.

Thesis structure. Part II gives an overview of the context for this work. Chap-

ter 2 describes the typical usage scenario, Chapter 3 summarizes the state of the art

solutions from both academia and industry, Chapter 4 provides some basic elements

of planning theory (that will be of use in the validation part).

Part III describes the original Aeolus component model and reports formal results

proving the impossibility to find efficient solutions to the problem of interest, in the

general case. In the end, some related component models are recalled.

Part IV is the key part, dedicated to the main contribution of this dissertation,

first focusing on the theoretical aspects (Chapter 6) and then on the practical issues

(Chapter 7). Chapter 6 starts by presenting Aeolus−, a meaningful restriction of

the original model, that allows us to devise an efficient algorithm to deal with the

problem of interest. The formal statement of the deployment problem, the one we aim

to solve, is given. It then continues with the description of the technique developed

to tackle the deployment problem together with formal results for its soundness,

completeness and efficiency. Chapter 7 deals with the presentation of METIS, a

prototype tool, implementing the devised technique, and its validation.

1Project ANR-2010-SEGI-013-01.
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Part V closes the dissertation by outlining future directions of development for

the presented approach (Chapter 8) and by drawing some concluding remarks (Chap-

ter 9).
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Background

6



Chapter 2

Scenario

In the cloud era, deploying a complex application on commodity (physical or virtual)

machines is becoming more and more a common task. This is due to many different

reasons such as cost-effectiveness, scalability, etc. . . The elastic computing paradigm

enables rapidly adapting an applications’ needs to the real usage. It might be cheaper

to rely on commodity hardware instead of buying and maintaining it in-house.

In the current setting every organization that needs to perform often this task,

typically has a team of experts that establishes how the different components are

to be installed and connected together. That is, they find a sequence of actions,

a deployment plan, that when performed, permits to achieve the desired system.

This part of the work is usually performed by hands with “paper and pencil”. The

deployment process is then automated by coding it in custom scripts. This approach,

however, is effective only if the architecture of the system is decided once and for

all. Todays’ applications, however, are expected to change at a very high pace as

it is common practice to switch to a different service delivering the same required

functionality. In fact, for the same functionality different competitors show up on

the market everyday and can quickly become appealing. If the system is subject

to change the “by-hands approach” does not scale, resulting in a lot of time spent

patching the custom scripts to adapt the deployment plan to the new component.

This is rather unsatisfactory as a business process and it is natural to ask for a

better solution.
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The Aeolus project aims to develop techniques and tools, ground on solid scien-

tific bases, to enable simplifying the management of systems/applications to be put

in production in the cloud. One of the key ingredients to reach this ambitious goal

is a suitable technique to automate the deployment process.

As an example of a possible scenario, one can consider the deployment of Word-

Press, a popular blog platform. First, an installed Apache web server is needed to be

able to install WordPress. In order to activate the latter one must first ensure that

all services required are up and running and that they are all properly connected.

Bringing it in production requires also to activate the associated service. WordPress,

for instance, must connect to an active MySQL node. In fact, WordPress cannot be

started before MySQL is running. This is precisely the kind of temporal dependen-

cies taken into account by a deployment plan. Such a plan for this basic example

would specify the following steps: first, install and activate an Apache server; install

WordPress; install and activate a MySQL instance; finally, connect Wordpress to to

the MySQL node and activate WordPress.



Chapter 3

State of the art

Deployment automation is among the key ingredients of the “cloud promise”. In

fact, the last years have witnessed a constant rise in the interest towards automation

of the process for managing a system in the cloud, both in industry and academia.

This is testified by many efforts from both worlds to bridge the gap from the tradi-

tional/custom way of dealing with the problem to a rich set of techniques and tools

enabling a higher level of automation. Managing the installation of an application

in the cloud is a process crossing many related areas such as system’s deployment,

configuration and management.

Currently, developing an application for the cloud is accomplished by relying on

either of the following service models: Infrastructure as a Service (IaaS) or Platform

as a Service (PaaS). The aim of the former is to provide a set of low-level resources

forming a “bare” computing environment like CPUs, memory, network, etc . . . The

latter, instead, is meant to provide a full development environment where some mid-

dleware services are already accessible (operating system, development kit, runtime

libraries, etc . . . ).

For IaaS, at the beginning the intended usage scenario was the following: the de-

veloper would pack the whole software stack into a virtual machine, containing the

application and all its dependencies; the virtual machine would then be hosted on an

virtual/physical machine on the provider’s cloud. This paradigm however is limited

to cases in which the application is not subject to frequent change. In case this does
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not apply, the cost of rebuilding from scratch the virtual machine with the whole

software stack can become a heavy burden. Another deployment approach, based on

IaaS and gaining more and more credit, is the one put forth by the DevOps [3] com-

munity. Following this approach an application is developed by assembling available

components that serve as the basic building blocks. This emerging approach works

thus in a bottom-up direction. From individual component descriptions and recipes

for installing them, an application is built as a composition of these recipes. The

latter may be seen as deployment plans for individual components and the “global”

deployment plan becomes thus the composition of individual ones.

In the PaaS setting, instead, applications are directly written in a programming

language supported by the framework offered by the provider, and then “pushed” to

the cloud. It is then up to the provider to set up the necessary run-time environment

to execute the newly created application. Almost all details of the deployment are

handled automatically. The PaaS approach seems promising, as it lifts the level of

abstraction, but at the moment the solutions it provides are limited and thus does

not represent a valid alternative for the scenario taken into account by our work.

In fact, the high-level of automation comes at the (high) price of little flexibility

in choosing the components that the developer may use. First of all, the choice

of the programming language to employ is restricted to the ones supported by the

specific PaaS provider. Moreover, the application code must conform to specific

APIs. Google App Engine [4], one of the most successful products in this setting,

supports only applications written in Java and Python 1 and in the Java code,

threads are not allowed. Another example of the lack of flexibility in the PaaS

world is given by Windows Azure [11] that works only with applications built on

proprietary technologies. Moreover, the PaaS setting can be seen as a “middleware

as a service” solution. Application stacks are thus limited by the middleware services

supplied by the PaaS provider. This makes it unfit, at least at present time, for the

high degree of customization demanded by ordinary application stacks.

A third way to deal with deploying applications in the cloud is the one employed

1Support for Go and PHP language is experimental.
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by so called holistic frameworks, such as TOSCA [64, 19, 76] and Blueprints [67].

This is a model-driven approach where an application is defined in terms of a high

level description. A projection process is thus enabled where the deployment plan for

the full application is generated in a top-down way. 2 From the private sector, among

the others adopting this approach, we can cite IBM SmartCloud Orchestrator [48].

As we will detail in Section 6.2, the approach that we propose shares some com-

monalities with the above ones and it might actually be conceived as an intermediate

way between the full bottom-up and top-down approaches. The description of the

application is a high-level one but the deployment plan is inferred from a declarative

description of individual components, forming the basic building blocks.

In the following we review state of the art solutions by discussing first works

from academia and then tools made available in the industry.

3.1 Academia

Engage

Engage [34] is a deployment management system. Throughout the paper the term

resource is used as a synonym of component. Every resource is represented by two

parts: a declarative one, the type, and an implementation part, the driver. The

former is employed to statically verify deployment properties and to generate the

deployment plan, while the latter, implemented in a specific language, provides all

the required low-level actions to install and manage the resource’s life cycle. A notion

of hierarchy is introduced by employing three kinds of dependencies: Inside models

nesting of resources (like a program running into an application server); Env models

local dependencies, that is resources that the current one requires to find on the same

physical or virtual machine (like a program needing a Java execution environment);

Peer models dependencies to resources possibly deployed anywhere else (one has to

look inside and outside the machine of the resource under consideration).

2In order to achieve this some form of recipe for the deployment of the bottom level components

is obviously necessary.
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Figure 3.1: Example of hypergraph generated by Engage.

The workflow of the Engage framework is the following. There is a universe of

available resources populated by the community (typically the vendor of an applica-

tion writes down the resource type and the driver for its product). A user writes a

(partial) specification of the system he wants to deploy using the resources available

in the universe. This (partial) specification is then fed to Engage that first verifies

some correctness properties: it mainly amounts to verify that the union of the three

dependency relations is acyclic. This is crucial as we will soon explain. The second

step is the generation of a hypergraph where nodes and edges represent respec-

tively resource instances and dependencies (each edge is labelled with the kind of

dependency). Hyperedges are used to model disjunction of dependencies: a resource

requires a functionality provided by two or more resources.

Figure 3.1 depicts an example of the generated hypergraph. In this example

the Tomcat resource requires a Java environment to execute, this can be provided

by a JRE or by a JDK as shown by the hyperedge, tagged with env, to these two

resources.

A topological sort of the hypergraph is used to extract an installation order for

the deployment plan of the resource instances in the desired system. The acyclicity of

the dependency hypergraph ensures that a topological sort exists, thus guaranteeing

that a suitable order can always be found. From the hypergraph a set of Boolean

constraints is then generated and given as input to a SAT solver. The solution found

by the solver corresponds to a 0 − 1 assignment to every resource instance, telling

us if it needs to be installed or not. This information is then put together with the

installation order given by the topological sort of the hypergraph to obtain a full
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Figure 3.2: Typical state machine associated to a resource driver.

deployment plan.

In the last phase this plan is actually carried out using the driver of each resource.

Each resource driver can be seen as a state machine that defines the lifecyle of a

resource of that kind. Each driver is thus made of states and transitions. The set of

states must contain at least the uninstalled, inactive and active states. Transitions

between states take the form of guarded actions [↓ s] α or [↑ s] α, where s is a

boolean condition, the ↓ and ↑ arrows define its scope and α is an action that is

fired when the transition is taken. The ↑ arrow means that condition s has to be

fulfilled by all the resources upon which the given resource depends on (its upstream

dependencies) while the ↓ arrow means that condition s has to be fulfilled by all

the resources that depend on the given one (its downstream dependencies). If and

when condition s becomes true then action α is triggered and the transition is fired,

otherwise it stays pending.

In Figure 3.2 a typical state machine of a resource r is depicted. Notice that

the start action and the corresponding transition can be fired only when all the

resources that r depends on are already active.

The Engage model introduces some important simplifications in order to reach

a feasible solution. First of all, conflicts and capacity constraints are not modeled.

The acyclicity constraint, crucial to the Engage approach, banishes the possibility of

having resources that are mutually dependent, a common case in real-world appli-

cations. Moreover, dependencies are between resources, regardless of their current

state. i.e. the granularity of dependencies is coarse. The guarded actions are limited

in their scope: the only two possibilities are downstream and upstream. Finally, an
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Figure 3.3: ConfSolve workflow.

underlying assumption is that the state machine in a driver forms a strongly con-

nected graph (as each state is required to be reachable from any other in the state

machine).

Overall, Engage represents an interesting compromise between applicability and

efficiency but for the deployment problem in the cloud.

ConfSolve

The aim of ConfSolve [44, 45] is to define a suitable language for the description

of problems related to system’s configuration. The sought language should be de-

signed to ease stating such problems, on one side, and enable their translation into

constraint satisfaction problems (CSPs), on the other. This way one can rely on tech-

niques from the CSP world to tackle the problems of this domain. ConfSolve consists

basically into a definition of a domain specific language and translation mechanisms

to a popular format for the description of CSP problems, namely MiniZinc [62]. The

underlying assumption is that specific problems can be naturally modeled (and thus

expressed) as constraints over valid configurations.

Figure 3.3 shows the ConfSolve workflow. First a specification is written down

in the ConfSolve language. This specification defines both the model and the con-

straints over it that will specify what is a “valid configuration”. The specifica-

tion is translated by a compiler into the MiniZinc model. This in turn is “flat-

tened”/translated into a FlatZinc model by a third-party compiler. The obtained

problem is then fed to a third-party CSP solver, in this case the chosen one is

Gecode [36] but this is a completely modular choice (no changes are needed as long

as the solver accepts FlatZinc problem definitions). Finally the solution found by

the solver is translated back into a ConfSolve instance. This represents a valid con-
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figuration that optimizes one or more parameters chosen to define the configuration

management problem of interest. As an example one can think of the problem of

maximizing the number of (possibly many kinds of) virtual machines per physical

one.

The aim of the ConfSolve research was defining a language that would allow to

express typical configuration management problems, with direct translation mech-

anisms to popular formats for stating CSP problems. The ConfSolve language is

object oriented and declarative. The ConfSolve specification is a collection of class

declarations, enumerations, variables and constraints where the order in which they

appear does not matter. Association between objects and names is achieved through

the use of reference variables. Declaration var host as ref Machine; , for instance,

states that host is a reference to an object of type Machine. Each reference, left

unassigned by the user, represents a decision variable, that will be instantiated by

the solver according to the specified constraints. This constitutes the key idea behind

ConfSolve: the system administrator is provided a specific language for defining con-

figuration problems so that solutions can be represented as assignments over some

decision variable(s). The language allows using quantification and summation over

decision variables in constraints.

forall ws in webServers where ws.host != m0 {
ws.port = 80;

}

Above code for example, may be used to require that every element in webServers,

not running on host m0, has port set to 80. As for summation consider the following

code:

where foreach (m in machines) {
sum (r in roles where r.host == m) {

r.cpu

} <= m.cpu

}
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where the above constraint is specifying that for each physical machine if we sum

the CPU power of the virtual machines deployed, the total amount does not exceed

the capacity bound.

Finally there is also the possibility of writing optimization constraints that instan-

tiate decision variables in way to maximize (or minimize) a given expression.

The major limitation of this approach is that the ConfSolve language models

faithfully the problem of optimal provisioning (of virtual machines) rather than

focusing on the deployment process. For instance, it does not take into account the

wiring aspect, i.e. how to bind the components in use. The steps needed to reach

the final (optimal) configuration computed by the solver are also out of scope.

VAMP

VAMP (Virtual Applications Management Platform) [33, 71] is a framework that

enhances automatic configuration of a distributed application in the cloud. The

framework is made of the following elements: a language to describe the global

structure of the application and an environment to manage the runtime deployment

of components. The language extends the OVF (Open Virtualization Format) [31]

language, that is a proposed standard 3 for a uniform format for applications to

be run on virtual machines. The OVF descriptor is an XML file describing the

structure of the application. VAMP extends the descriptor with sections that specify

the architectural view of the distributed application: interfaces, dependencies and

bindings. Listing 3.1 shows a sample AppArchitectureSection section contained in

the extended OVF descriptor.

The deployment process is then implemented as a decentralized protocol in a

self-configuration manner. The approach is interesting but limited for our purposes

as it works under the assumption that the dependency graph is acyclic. 4 Another

limitation is given by the fact that the developer must specify the virtual machine

3Promoted by the Distributed Management Task Force (DMTF).
4Dependencies can be optional or mandatory (needed for component activation). It is assumed

that there is no cycle among mandatory dependencies.
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Listing 3.1: Added section to OVF descriptor

1 <!-- Applicative architecture -->

2 <AppArchitectureSection >

3 <definition name=" TokenApp">

4 <component name="C0">

5 <interface name="c" role=" client" .../>

6 <interface name="s" role=" server" .../>

7 ...

8 <virtual -node name="VM0"/>

9 </component >

10 <component name="C1">

11 ...

12 </component >

13 <component name="C2">

14 ...

15 </component >

16 <binding client ="C0.c" server ="C1.s" />

17 <binding client ="C0.c" server ="C2.s" />

18 ...

19 </definition >

20 </AppArchitectureSection >

in which a given component lives (see line 8 in the above code) : ideally, from our

perspective, this is part of low level details that one may not care when defining an

application.

A Formal Framework for Component Deployment

In [56] a framework has been developed to formally frame the problem of component

deployment. The aim of the work is to model the deployment process of component

systems and, based on this, to define a technology-agnostic technique to ensure some

correctness properties.
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To this purpose a Labeled Transition System (LTS) is defined where states and

edges represent, respectively, possible configurations of the system (called Build-

boxes) and deployment operations changing the Buildbox.

The properties proved to hold, Well-formedness and Closure, basically amount

to the fact that dependency constraints and version compatibility, declared at de-

velopment time, will be respected during deployment, including possible run-time

updates and dynamic component deployment (a.k.a. hot deployment).

There are some key differences in the approach and overall objectives of this

work w.r.t. the work presented in this dissertation. First of all, components are

seen as monolithic/atomic entities: their internal state representing their behaviour

is not part of the model. Each component is considered to be inherently deployable

as a singleton independent unit.

Moreover, dependency constraints must specify the name and version of the

component that is expected to act as a provider for the required interface. This

essential assumption, however, is not reasonable for our purposes as we do not want

the developer to constrain to whom a given component is to be bound to access a

needed functionality.

Finally, circular dependencies among components are allowed in a weak form

as at installation time dependency constraints may be temporarily violated. Cor-

rectness is then ensured at run-time. 5 This form of cyclic dependency does not

correspond to the one considered in this dissertation as the model adopted in the

latter allows to represent circularity of strong dependencies, i.e. that must hold at

each point in time.

Deployment through planning

Another direction of research is the one leveraging on traditional planning tech-

niques and tools coming from the artificial intelligence area. In [16] the problem

5If components a and b are mutually dependent ,installing first a and then b is acceptable. This

actually corresponds to the notion of weak requirement in the Aeolus model, presented in Section 5.
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of components’ deployment is translated into an instance of planning problems via

an encoding into the PDDL language [35] (the de facto standard format to define

problems in the planning domain). A tool, called Planit, relying on the LPG [39]

planner, has been developed.

The model described is based on three kinds of objects: components, machines

and connectors. Machines are locations for components and connectors to be de-

ployed. Connectors represent communication channels.

In this work components are seen as atomic entities, their (internal) behaviour

not being considered. They are only subject to start, stop and connect to other

components (through connectors).

The input to the planner consists in the domain, the current (or initial) state

and the goal state. The goal state represents the final desired configuration. In the

approach taken in this dissertation, on the other hand, the final configuration is not

known in advance but is, rather, computed while trying to achieve the goal state.

The performance evaluation distinguishes between implicit and explicit configu-

ration. The former requires only that a component be connected, without specifying

to whom, while in the latter the information on the identity of the connection must

be included. The implicit case is closer to our purposes, as in the cloud world one is

typically not interested in which component provides a required functionality as long

as there is a component that can provide it. In this case the hardest instance has

been one with 40 components, 10 connectors (that may be seen as interfaces) and 10

machines (where components may be located) and it took 412 seconds to compute

a plan. Scalability experiments were conducted with up to 120 components.

We will further speculate over the viability of this approach in Section 7.2, ded-

icated to the validation of the tool developed as part of this thesis.

3.2 Industry

The problem of finding a deployment plan for an application made of many different

components shares commonalities with a lot of problems, exhibiting subtle nuances
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between them. Each of the proposed tools currently found on the market, addresses

problems falling into one (or more) between the following categories:

1. configuration management;

2. service orchestration;

3. interoperability and compatibility;

4. resource provisioning;

5. resource migration.

SmartFrog [41] is Java framework, developed at HP, for managing deployment in

a distributed setting. It shares some similarities with the Engage approach as every

component has a declarative description and a driver, here called lifecycle manager.

It lacks, however, a way to use the declarative description to extract some informa-

tion for the deployment plan or to perform some static checks. DADL (Distributed

Application Description Language) [60] is a language extension of SmartFrog that

enables to express different kinds of constraints (such as Service Level Agreements

SLAs and elasticity). The work, however, focuses on the language aspects. A de-

scription of the deployment process is missing and this makes it impossible to relate

it to our work.

The Puppet language (and more generally the framework offered by Puppet-

Labs [50, 69]) and CFEngine [23, 2] are two successful tools aimed at configuration

management in a distributed setting. Products that fall in this category are de-

signed to simplify the task to manage the deployment of the same system on large

quantities of replicas of the same system. The problem we are taking into account,

however, is somehow the opposite one: how to manage the huge amount of possible

ways to deploy a given system?
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CloudFoundry [75] is a PaaS solution by VMware that allows to select, connect

and push to a cloud well defined services (databases, message buses, . . . ), used as

building blocks for writing applications with one of the supported frameworks.

Most of the other efforts fall into the third category as their primary concern is

to tackle the problems introduced by vendor lock-in. When a company outsources

some resources (it may be hardware, platforms or services) to a cloud provider, the

access rules to them are specific to the chosen provider. The vendor lock-in problem

arises when the company wants to change provider, as there is the need to rewrite

the access part on every program using those resources. This is perceived as one of

the main difficulties for an ever-growing adoption of the cloud business model. Most

of the business offered by cloud brokers is aimed to address this problem. The efforts

in this direction are usually made by consortiums, sponsored by private and pub-

lic funds, and strive to define a standard, upon which to base interoperability and

compatibility of resources. Most notable amongst this category are OpenStack [66]

and OpenNebula [65].

Another interesting project, (in contact with Aeolus), is CompatibleOne [25], striv-

ing to define a universal interface for the description of resource needs.

Finally, there is a homonymous project [15], Aeolus, from RedHat. Its focus is on

allowing the definition of a virtual machine (VM) that is exportable to all major

cloud providers (Amazon, Rackspace, Heroku, . . . ). This enables the possibility to

migrate a VM to and from cloud providers and also private clouds.

In most of these efforts the user still has to manually put the pieces (components)

together in order to obtain the desired system. This is the gap aimed to bridge by

the Aeolus project, where the work described in this dissertation constitutes an

essential piece. One of the key elements that emerged from the quest for a solution

to the problem depicted is the necessity of splitting it in two aspects. The first one is

a way to describe declaratively the relationships between the components that form

the system, totally ignoring the problem of how to obtain a configuration satisfying

the requirements. This declarative part serves two purposes. First, it allows to
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statically check some properties of the desired system. Second, it can be used to

extract some useful information to find an effective plan for the deployment and

reconfiguration of the system. Both of these phases could exploit many different

means, ranging from static analysis (e.g. some sort of type inference) to constraint

programming techniques to generate a solution.

To the best of our knowledge, conflicts are not taken into account as they in-

troduce a level of difficulty that is hard to cope with. Capacity constraints are also

omitted from most of the works listed above.

Table 3.1 contains a summary of the available techniques and tools for manag-

ing deployment automation in the cloud. Classification is based on the following

categories:

Family whether a framework is based on a top-down (holistic) or bottom-up (De-

vOps) technique for generating the deployment plan;

Configuration description the description of an application, written in some

given language, may have to be fully specified or not;

Component description the language used to specify individual components;

Projection if the application is entirely described in all the details the framework

may support a projection operation that synthesizes a deployment plan;

Platform the platform supported;

Cyclic dependencies indicating whether or not the framework is able to deal with

circular dependencies among components.

As it addresses different aspects of the automation challenge, some entries have a

field filled by symbol “–” which means that the corresponding classification element

may not be applied to that particular tool. Consider, for instance, the second entry,

namely ConfSolve. The configuration description is the output returned by the tool

and so the entry listing the type and language employed for such a description does
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not make sense. The same holds for the configuration description entries of Juju, as

in this framework there is no way to describe the full configuration of an application.

Other entries have been left with a ? symbol when it was not possible to establish

the correctness of the value. This happens for the cyclic dependencies entries of HP

Cloud Service Automation, as being a proprietary technology we were not able to

check if it does or does not support cyclic dependencies among components.

Moreover, 3 and 7 symbols are used to denote the fact whether a certain tool,

respectively, does or does not deal with/supports the corresponding item. For ex-

ample, Engage does support projection but does not handle cyclic dependencies.

There are basically two approaches that stand at opposite sides: the holistic

and the DevOps one, employed to characterize the Family entry. In the former,

also known as model-driven approach, one defines a complete model for the entire

application and the deployment plan is then derived in a top-down manner. In the

latter approach, instead, to every component is associated some metadata (usually

of declarative nature) complemented with some code to drive the component’s in-

stallation/activation. The matadata part describes essentially the functionalities

offered by the component, as well as the functionalities (from other components)

required to work properly. Other constraints, like CPU power or amount of RAM,

may also be part of the description. The deployment plan is then built in a bottom-

up manner by assembling individual components (each component is installed by

invoking its specific code).

As of today, most of the industrial products, offered by big companies, such

as Amazon, HP and IBM, fall in the holistic approach category. In this context,

one prominent work is represented by the TOSCA (Topology and Orchestration

Specification for Cloud Applications) standard [64], promoted by the OASIS con-

sortium [63] for open standards. TOSCA proposes an XML-like rich language to

describe an application. Most of the above vendors now supports TOSCA specifi-

cations.

The most important representative for the DevOps approach is Juju [49], by

Canonical (the company developing the Ubuntu Linux distribution). It is based on



24 Chapter 3. State of the art

the concept of charm: the atomic unit containing a description of the required and

provided functionalities of a service. This description in form of metadata is coupled

with configuration data and hooks (basically a collection of binary files necessary for

the deployment of the given component). Juju is one of the few projects trying to

add an orchestration layer between services. Lately, the Juju team has overcome one

of the main limitations of the tool, namely the (heavy) assumption that each service

unit must be deployed to a separate machine. This effort, although notable, does

not seem to have solved the problem that concerns us because some unnecessary

manual intervention is still needed. Consider, for instance, the deployment of Word-

Press in a basic scenario where its only requirement is to be connected to a MySQL

database. One would first deploy WordPress by simply typing #juju deploy wordpress

and then deploy MySQL by #juju deploy mysql. Finally one would have to estab-

lish the binding between the two components by entering the following command

#juju add−relation wordpress mysql. Now, as the metadata (metadata.yaml file), part

the WordPress charm, contains a require entry on interface mysql , provided by

MySQL, it is not clear why should we manually create the actual connection among

the two components. Moreover, as of today, there is no way to statically detect

anomalies such as bringing up a WordPress instance without any prior deployment

of a (MySQL) database. This would actually result in a run-time error, to be dis-

covered only after having “successfully” deployed WordPress.

As a final remark notice that usage of Juju is limited to Ubuntu distributions.

The strategy adopted by METIS represents somehow a breed between the DevOps

and the holistic approaches. It starts with individual description for each component,

as in the DevOps methodology, but the final deployment plan is not the result of

assembling different local plans (for each component), but is rather obtained by

means of a unitary projection process, typical of the holistic world.
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Chapter 4

Elements of planning theory

The first approach that comes to mind when facing the problem of dealing with

the automatic synthesis of deployment plans is, naturally, planning. Planning is a

well-established area of the artificial intelligence field, devoted to the computation

of the actions to be performed in order to reach some final goal state of a dynamic

system. In the following we will explain why this is not a suitable approach for our

purposes. In order to argue for the need of a specialized approach, presented in this

dissertation, some basic elements of planning theory are here recalled. The concepts

introduced will also ease the understanding of the validation part (Section 7.2),

which is based on encoding the problem addressed herein into a classical planning

one.

As a “slogan definition” planning is the reasoning side of acting [40]. Starting

from a description of the world considered and the possible ways to move from a

specific situation to the subsequent one, the aim is to find a way to reach a goal

situation. A planning problem is specified by a description of the world, modeling a

domain of interest, an initial state and a goal state (or more generally a set of goal

states).

A dynamic system is defined by means of a state transition system. The problem

we are interested in lies in the classical planning area. Classical planning refers to

planning where the transition system considered meets some restricting conditions

such as being deterministic, having implicit notion of time, having no (relevant)
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internal dynamics, etc. . .

In order to provide the formal statement of the planning problem we need first

to define the concepts of state, action, plan and domain.

Planning problem

We will start by giving a first general/generic definition of the planning problem.

We will see that we need to specify other details in order to fully define this class of

problems.

Definition 4.1 (State transition system). A state transition system is a triple Σ =

(S,A, γ), where:

• S is a finite set of states;

• A is a finite set of actions;

• γ : S ×A → S

Notation. In the following, for clarity, we will sometimes use si
aj−→ si+1 in place of

γ(si, aj) = si+1.

Based on previous definition we can already define the general form of planning

problem.

Definition 4.2 (Generic planning problem). Consider a triple (Σ, s0, Sg), where:

Σ = (S,A, γ) is a state transition system, s0 is the initial state and Sg ⊆ S is a set

of goal states. The planning problem is finding a sequence of actions 〈a1, a2, . . . , ak〉
in A s.t. s0

a1−→ s1
a2−→ s2 · · · sk−1

ak−→ sk with sk ∈ Sg.

In this formulation the planning problem is equivalent to the graph reachability

problem, where nodes are states and arcs are defined by the state transition func-

tion. One should, however, consider that the above one is a conceptual model. A

characteristic ingredient of the class of planning problems is the representation of
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the input graph/set of states S. An explicit representation is not viable as the num-

ber of states is unmanageable even for simple problems. Part of the challenge in

planning is, in fact, given by finding a compact representation for the set of states

S. In planning problems the set of states is thus provided in implicit form. Just to

give the idea, this is achieved by listing the properties that hold in some state and

how they are transformed via actions.

The above definition is parametric w.r.t. the way the transition system Σ is

specified and this in turn depends on the chosen representation. There are many

possible representations available: the set-theoretic one where properties are stated

with propositional logic, the classical one which, instead, relies on first-order logic

and finally the state-variables one where property modifications by actions are de-

fined by functions mapping variables associated to states into the result value. These

representations are equivalent w.r.t. the planning problems that can be modeled.

In the following we will detail the classical representation, chosen for two reasons:

first, it is more compact than the first one; second, its language is closer to PDDL

(Planning Domain Definition Language), the language in use by the vast majority

of tools from the planning community. As a consequence we obtain an instantiation

of the generic planning problem defined in Definition 4.2.

States & actions

We begin by defining the language used by classical planning.

Definition 4.3 (Classical planning language). The language L is a classical plan-

ning language if it is a first-order language s.t. :

• the set of predicates and the set of constant symbols are finite;

• there are no function symbols.

Each state is represented by a set of ground atoms of L: an atom p holds in a
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state s if and only if p ∈ s. 1 The set of states S must be finite due to the above

restrictions on L.

In the following, sans-serif fonts are used for predicate and constant symbols.

An action a is specified by means of preconditions and effects. The former define

when an action may be applied, while the latter define how a’s application affects

the current state. Actions are defined as instantiations of operators. Operators can

be seen as rules that apply for generic objects of the world considered and each

action is the concretization of an operator. For instance, one may have an operator

move(r, l,m), where move is a predicate symbol in L, whose intended meaning is

“robot r moves from location l to an adjacent location m”. Then, a possible corre-

sponding action would be something like move(robot1, loc2, loc3), where robot1, loc2

and loc3 are constant symbols in L.

We have to specify when an action is enabled, i.e. can be applied in current state.

Given a set of literals L, let us denote with L+ the set of atoms that appear in L

and with L− the set of atoms whose negation is in L. Then for a given action a we

can divide preconditions and effects into their positive and negative part, denoted

respectively preconditions+(a), preconditions−(a) and effects+(a), effects−(a).

Definition 4.4 (Applicable action). An action a is applicable in a state s if the

following conditions holds:

• preconditions+(a) ⊆ s, and

• preconditions−(a) ∩ s = ∅.

Applying a to state s is defined by: γ(s, a)
def
= (s \ effects−(a)) ∪ effects+(a).

Domain & planning problem

Based on previous section we can define the domain of a planning problem and

provide the actual definition of planning problem, as well as its statement.

1Notice that the closed-world assumption is in use: if an atom q does not belong to s then it

does not hold in s.
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Definition 4.5 (Planning domain). Let L be a classical planning language. A clas-

sical planning domain in L is a state-transition system Σ = (S,A, γ), where:

• S ⊆ 2{all ground atoms in L};

• A is the set of all ground instances of a set O of operators;

• γ(s, a)
def
=

(s \ effects−(a)) ∪ effects+(a) if a is applicable

⊥ otherwise

• S is closed under γ, i.e. if γ is defined at (s, a) and γ(s, a) = s′, then s′ ∈ S.

We are now ready to define the planning problem and its statement. The state-

ment of a problem may be seen as the way a planning problem is specified in practice.

The set S of states, for example, is not given as is but is the one that can be inferred

from a list of operators O.

Definition 4.6 (Classical planning problem). A classical planning problem is a

triple P = (Σ, s0, g), where:

• Σ is a classical planning domain;

• s0 is the initial state, in S;

• g represents the goal, a set of ground literals;

The statement of a planning problem P = (Σ, s0, g) is P = (O, s0, g) where O is a

set of operators.

Computational complexity

The computational complexity class of planning problems ranges from constant to

NEXPTIME-complete according to the representation adopted and the restrictions

that may apply in particular cases. Examples of such restrictions are whether or not

negative preconditions and/or negative effects are allowed. Negative preconditions
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and negative effects simply amount to allow negative atoms to appear in operators’

preconditions and effects. Another typical restriction is whether the set of operators

O is fixed in advance or is part of the input. A complete classification of the

computational complexity of the planning problem w.r.t. to the restrictions adopted

is summarized in [40]. This classification is based on results that appear in [24, 32,

17]. As we will later explain, the encoding of the deployment problem demands

for both negative preconditions and effects. As a result, the complexity class of the

problem considered in this dissertation is PSPACE. These computational complexity

considerations already hint at the fact that a direct encoding of the deployment

problem into a generic planning problem might not lead to a viable solution. We

will further discuss this issue in Section 7.2, dedicated to the validation of a prototype

tool, implementing an ad-hoc planning technique.
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Chapter 5

The original Aeolus model

The component model adopted to frame the deployment problem, called Aeolus−,

is a restriction of the more complete and complex Aeolus model. Current chapter

introduces the latter, while the former is presented in Section 6.1.

The Aeolus model has been developed to allow formal reasoning upon typical issues

that arise in the process of deploying and reconfiguring a system in the cloud.

In Aeolus a component is described by a declarative specification of its behaviour

by means of states and ports. This information is captured by so-called component

types : every component belongs to a certain component type. The relevant internal

states of components are represented by means of a finite state automaton 1 (see

Figure 5.1): depending on the current state, components activate provided and

required ports, and get in conflict with ports provided by others (in Figure 5.1

active ports are black, while inactive ones are grey). Each port is identified by an

interface name. Bindings can be established between provided and required ports

with the same interface. Figure 5.1 shows the graphical representation of a typical

deployment of the WordPress platform. WordPress requires a Web server providing

httpd in order to be installed, and an active MySQL database server in order to be in

production. In the example the chosen Web server is Apache2. Notice that Apache2

1It is important to notice that automata employed in Aeolus do not represent the internal

behavior of components, but rather the effect on the component of an external deployment or

reconfiguration actions.
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Figure 5.1: Typical Wordpress/Apache/MySQL deployment, modeled in Aeolus.

is not co-installable with other Web servers, such as lighttpd. 2 This constraint is

depicted by means of a conflict arrow that is active in states inst and running of the

Apache2 component.

At present time the Aeolus model is “flat” in the sense that all components live

in a single “global” context, are mutually visible, and can connect to each other

as long as their ports are compatible. To introduce a notion of hierarchy, different

extensions to the original model, enriching it with membranes or boxes, have been

envisaged but this part is still ongoing work.

Installing software on a single machine is a process that can already be automated

using package managers : on Debian for instance, you only need to have an installed

Apache server to be able to install WordPress. But bringing it in production requires

to activate the associated service, which is more tricky and less automated: the

system administrator will need to edit configuration files so that WordPress knows

the network addresses of an accessible MySQL instance.

Services often need to be deployed on different machines to reduce the risk of

failure or due to the limitations on the load they can bear. For example, system

administrators might want to indicate that a MySQL instance can only support a

certain number of WordPress instances. Symmetrically, a WordPress hosting service

may want to expose a reverse web proxy / load balancer to the public and require

2Roughly specking, co-installable packages are packages that do not conflict. Refer to [57] for

the precise definition.
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Figure 5.2: A graphical description of the model with redundancy and capacity

constraints (internal sate machines and activation arcs omitted for simplicity).

to have a minimum number of distinct instances of WordPress available as its back-

ends.

To model this kind of situations, Aeolus allows capacity information to be added

on provided and required ports of each component: a number n on a provided port

indicates that it can fulfill no more than n requirements, while a number n on a

required port means that it needs to be connected to at least n provided ports from

n different components. This information may then be employed by a planner to

find an optimal replication of the components to satisfy a user requirement.

As an example, Figure 5.2 shows the modeling of a WordPress hosting scenario

where one wants to offer high availability hosting by putting the Varnish reverse

proxy / load balancer in front of several WordPress instances, all connected to a

shared replicated MySQL database 3. For a configuration to be correct, the model

requires that Varnish is connected to at least 3 (active and distinct) WordPress

back-ends, and that each MySQL instance does not serve more than 2 clients.

As a particular case, a 0 constraint on a required port means that no provided

port with the same name can be active at the same time; this can be effectively used

to model conflicts between components.

3All WordPress instances run within separate Apache-s, which have been omitted for simplicity.
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Notation. We consider the following disjoint sets: I for interfaces and Z for components.

We use N to denote strictly positive natural numbers, N∞ for N plus infinity, and N0 for

N plus 0.

Terminology. There is a distinction between the concept of interface and that of port :

the latter being an “implementation” of the former. Throughout this work the two terms

are sometimes used as synonyms, whenever there is no ambiguity in the given context.

In Aeolus components are modeled as finite state automata indicating the current

state and the possible transitions. When a component changes its state, it can

also change the ports that it requires from and provides to other components, thus

adjusting its behaviour.

Definition 5.1 (Component type). The set Tflat of component types of the Aeolus

model, ranged over by T1, T2, . . . contains 5-ple 〈Q, q0, T, P,D〉 where:

• Q is a finite set of states;

• q0 ∈ Q is the initial state and T ⊆ Q×Q is the set of transitions;

• P = 〈P,R〉, with P,R ⊆ I, is a pair composed of the set of provided and the

set of required interfaces, respectively;

• D is a function from Q to 3-ple in (P 7→ N∞)× (R 7→ N0)× (R 7→ N0).

Given a state q ∈ Q, the three partial functions in D(q) indicate respectively the

provided, weakly required, and strongly required ports that q activates. The functions

associate to the active ports a numerical constraint indicating:

• for provided ports, the maximum number of bindings the port can satisfy,

• for required ports, the minimum number of required bindings to distinct com-

ponents,

– if the number is 0, that indicates a conflict, meaning that there should be

no other active port with the same name.
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We assume as default constraints ∞ for provided ports (i.e. they can satisfy an

unlimited amount of requires) and 1 for required (i.e. one provide is enough to satisfy

the requirement). We also assume that the initial state q0 has no strong demands

(i.e. the third function of D(q0) is empty).

We now define configurations that describe systems composed by components

and their bindings. A configuration, ranged over by C1, C2, . . ., is given by a set of

component types, a set of deployed components in some state, and a set of bindings.

Formally:

Definition 5.2 (Configuration). A configuration C is a 4-ple 〈U,Z, S,B〉 where:

• U ⊆ Tflat is the universe of the available component types;

• Z ⊆ Z is the set of the currently deployed components;

• S is the component state description, i.e. a function that associates to com-

ponents in Z a pair 〈T , q〉 where T ∈ U is a component type 〈Q, q0, T, P,D〉,
and q ∈ Q is the current component state;

• B ⊆ I ×Z ×Z is the set of bindings, namely 3-ple composed by an interface,

the resource that requires that interface, and the resource that provides it; we

assume that the two components are distinct.

Notation. We write C[z] as a lookup operation that retrieves the pair 〈T , q〉 = S(z),

where C = 〈U,Z, S,B〉. On such a pair we then use the postfix projection operators

.type and .state to retrieve T and q, respectively. Similarly, given a component type

〈Q, q0, T, 〈P,R〉, D〉, we use projections to (recursively) decompose it: .states, .init, and

.trans return the first three elements; .prov, .req return P and R; .Pmap(q), .Rwmap(q),

and .Rsmap(q) return the three elements of the D(q) tuple. When there is no ambiguity

we take the liberty to apply the component type projections to 〈T , q〉 pairs. Example:

C[z].Rsmap(q) stands for the strongly required ports (and their arities) of component z in

configuration C when it is in state q.

We are now ready to formalize the notion of configuration correctness. We con-

sider two distinct notions of correctness: weak and strong. According to the former,
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only weak requirements are considered, while the latter also considers strong ones.

Intuitively, weak correctness can be temporarily violated during the deployment of a

new component configuration, but needs to be fulfilled at the end; strong correctness,

on the other hand, shall never be violated.

Definition 5.3 (Correctness). Let us consider the configuration C = 〈U,Z, S,B〉.
We write C |=req (z, r, n) to indicate that the required port of component z, with

interface r, and associated number n is satisfied. Formally, if n = 0 all components

other than z cannot have an active provided port with interface r, namely for each

z′ ∈ Z \ {z} such that C[z′] = 〈T ′, q′〉 we have that r is not in the domain of

T ′.Pmap(q′). If n > 0 then the port is bound to at least n active ports, i.e. there exist

n distinct components z1, . . . , zn ∈ Z \ {z} such that for every 1 ≤ i ≤ n we have

that 〈r, z, zi〉 ∈ B, C[zi] = 〈T i, qi〉 and r is in the domain of T i.Pmap(qi).

Similarly for provides, we write C |=prov (z, p, n) to indicate that the provided

port of resource z, with interface p, and associated number n is not bound to more

than n active ports. Formally, there exist no m distinct components z1, . . . , zm ∈
Z \ {z}, with m > n, such that for every 1 ≤ i ≤ m we have that 〈p, zi, z〉 ∈ B,

S(zi) = 〈T i, qi〉 and p is in the domain of T i.Rwmap(q
i) or T i.Rsmap(q

i).

The configuration C is correct if for each component z in Z, given S(z) = 〈T , q〉
with T = 〈Q, q0, T, P,D〉 and D(q) = 〈P ,Rw,Rs〉, we have that (p 7→ np) ∈ P
implies C |=prov (z, p, np), and (r 7→ nr) ∈ Rw implies C |=req (z, r, nr), and (r 7→
n′r) ∈ Rs implies C |=req (z, r, n′r).

Analogously we say that it is strong correct if only the strong requirements are

considered: namely, we require (p 7→ np) ∈ P implies C |=prov (z, p, np) and (r 7→
nr) ∈ Rs implies C |=req (z, r, nr).

As our main interest is planning, we now formalize how configurations evolve from

one state to another, by means of atomic actions.

Definition 5.4 (Actions). The set A contains the following actions:

• stateChange(z, q1, q2) where z ∈ Z;
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• bind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I;

• unbind(r, z1, z2) where z1, z2 ∈ Z and r ∈ I;

• new(z : T ) where z ∈ Z and T ∈ Tflat;

• del(z) where z ∈ Z.

The execution of actions can now be formalized using a labeled transition systems

on configurations, which uses actions as labels.

Definition 5.5 (Reconfigurations). Reconfigurations are denoted by transitions C α−→
C ′ meaning that the execution of α ∈ A on the configuration C produces a new

configuration C ′. The transitions from a configuration C = 〈U,Z, S,B〉 are defined

as follows:

C stateChange(z,q1,q2)−−−−−−−−−−−−−→ 〈U,Z, S′, B〉
if C[z].state = q1

and (q1, q2) ∈ C[z].trans

and S′(z′) =

 〈C[z].type, q2〉 if z′ = z

C[z′] otherwise

C bind(r,z1,z2)−−−−−−−−→ 〈U,Z, S,B ∪ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 6∈ B
and r ∈ C[z1].req ∩ C[z2].prov

C unbind(r,z1,z2)−−−−−−−−−−→ 〈U,Z, S,B \ 〈r, z1, z2〉〉 if 〈r, z1, z2〉 ∈ B

C new(z:T )−−−−−−→ 〈U,Z ∪ {z}, S′, B〉
if z 6∈ Z, T ∈ U

and S′(z′) =

 〈T , T .init〉 if z′ = z

C[z′] otherwise

C del(z)−−−−→ 〈U,Z \ {z}, S′, B′〉

if S′(z′) =

 ⊥ if z′ = z

C[z′] otherwise

and B′ = {〈r, z1, z2〉 ∈ B | z 6∈ {z1, z2}}

Notice that in the definition of the transitions there is no requirement on the reached

configuration: the correctness of these configurations will be considered at the level

of deployment run (Definition 5.7).

Also, we observe that there are configurations that cannot be reached through

sequences of the actions we have introduced so far. In Figure 5.3, for instance,

there is no way for package a and b to reach the installed state, as each pack-

age require the other to be installed first. In practice, when confronted with such

situations—that can be found for example in FOSS distributions in the presence of
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Figure 5.3: On the need of a multiple state change action: how to install a and b?

Pre-Depend loops—current tools either perform all the state changes atomically, or

abort deployment.

If one wants a planner to be able to propose reconfigurations containing such

atomic transitions, one has to introduce the notion of multiple state change. 4

Definition 5.6 (Multiple state change). A multiple state change

M = {stateChange(z1, q1
1, q

1
2), · · · , stateChange(zl, ql1, q

l
2)} is a set of state change

actions on different component (i.e. zi 6= zj for every 1 ≤ i < j ≤ l). We use

〈U,Z, S,B〉 M−→ 〈U,Z, S ′, B〉 to denote the effect of the simultaneous execution of the

state changes in M: formally, 〈U,Z, S,B〉
stateChange(z1,q11 ,q

1
2)

−−−−−−−−−−−−→ . . .
stateChange(zl,ql1,q

l
2)

−−−−−−−−−−−−→
〈U,Z, S ′, B〉.

Notice that the order of execution of the state change actions does not matter

as all the actions are executed on different components.

We can now define a deployment run, which is a sequence of actions that trans-

form an initial configuration into a final correct one without violating strong cor-

rectness along the way. A deployment run is the output we expect from a planner,

when it is asked how to reach a desired target configuration.

4This kind of actions are part of the original model because one of its objectives was modeling

uniformly both fine-grained components (such as packages) and coarse-grained ones (as services).

If one focuses on modeling the latter, however, this kind of action can be ignored in favour of

simplicity. This is the approach followed in this thesis, as we will explain in next chapter.
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Definition 5.7 (Deployment run). A deployment run is a sequence α1 . . . αm of

actions and multiple state changes such that there exist Ci such that C = C0, Cj−1
αj−→

Cj for every j ∈ {1, . . . ,m}, and the following conditions hold:

configuration correctness C0 and Cm are correct while, for every i ∈ {1, . . . ,m−
1}, Ci is strong correct;

multi state change minimality if αj is a multiple state change then there ex-

ists no proper subset M ⊂ αj, or state change action α ∈ αj, and correct

configuration C ′ such that Cj−1
M−→ C ′, or Cj−1

α−→ C ′.

We now have all the ingredients to define the notion of achievability : given an

universe of component types, we want to know whether it is possible to deploy at

least one component of a given component type T in a given state q.

Definition 5.8 (Achievability problem). The achievability problem has as input an

universe U of component types, a component type T , and a target state q. It returns

as output true if there exists a deployment run α1 . . . αm such that 〈U, ∅, ∅, ∅〉 α1−→
C1

α2−→ · · · αm−−→ Cm and Cm[z] = 〈T , q〉, for some component z in Cm. Otherwise, it

returns false.

Remark 5.1. Notice that the restriction in this decision problem to one component

in a given state is not limiting: one can easily encode any given final configuration by

adding a dummy provided port enabled only by the desired final states and a dummy

component with weak requirements on all such provided ports.

5.1 Decidability and complexity

In this section we briefly summarize the formal results established for the achievabil-

ity problem (Definition 5.8) cast in different variants of the original Aeolus model.

Table 5.1 gives an overview of the results proven in [30] and in [28]. The model

considered is specified by listing in the second and third column if it allows to

employ, respectively, conflicts and capacity constraints. The fourth column reports
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Model Conflicts Capacity constraints Problem Complexity

Aeolus− 7 7 achievability P

Aeolus core 3 7 reconfigurability EXPSPACE

Aeolus flat 3 3 achievability undecidable

Table 5.1: Results for the achievability problem.

the problem addressed: reconfigurability is a variant of the achievability problem

where the deployment run potentially starts from a non-empty initial configuration.

Notice that the problems considered are decisional in that the question they answer

is if there exists a deployment (respectively a reconfiguration) run reaching a desired

target component. The problem complexity varies a lot as it ranges from polynomial

to undecidable! Notice that at the moment we are missing formal results for the

case with capacity constraints and no conflicts.

(a) Aeolus flat

transition(t)

∀ i . reset' counteri

∀ i . reset counteri

counter1(¬h1)

up counter1

up' counter1

cp dp ∀ i . counteri(hi)

...

...

counterk(¬hk)

...

counteri(¬hi)

...

(b) Aeolus core

Figure 5.4: Components employed in the encodings.

Observation. It is worth mentioning that the proofs for establishing EXPSPACE

complexity and undecidability are based on encoding the given problem into Petri

nets [68] and 2 Counter Machines [59], respectively. The Aeolus component types
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employed in these encodings exhibit a highly complex behavior. This complexity

is mirrored by means of automata with huge number of states and ports, as the

ones depicted in Figure 5.4. It can be argued that real life scenarios are unlikely to

demand such complex models. A possible approach built on this insight might try to

fix the complexity of the automata allowed in the specification of a component type.

One could, for instance, limit the number of states in the automaton definition. We

will come back to this observation in Chapter 8 where we discuss future directions

of research.

5.2 Other component models

Although Aeolus is not the first model employed to frame the problem of component

deployment in a distributed setting, the combination of features it combines, repre-

sents an elegant formalization. Automata-representations enable to model complex

life cycles of components. This coupled with the possibility to express capacity con-

straints for redundancy/load balancing requirements and, finally, a way to define

conflicts among components result in a flexible and concise model, fit to represent

the task of deploying complex configurations in a distributed setting. The simplicity

of the model enabled to establish formal complexity results that shed light over the

computational hardness of the deployment problem.

In the following several component models in the literature are recalled for com-

parison.

Automaton-based models have been adopted long ago in the context of component-

oriented development frameworks. One of the most influential model is that of inter-

face automata [26], where automata are used to represent the component behavior

in terms of input, output, and internal actions. Interface automata support auto-

matic compatibility check and refinement verification: a component refines another

if its interface has weaker input assumptions and stronger output guarantees.

Differently from that approach, we are not interested in component compatibility

or refinement, and we do not require complementary behavior of components: we
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simply check in the current configuration whether all required functionalities are

provided by currently deployed components. Moreover, the automata in Aeolus do

not represent the internal behavior of components, but the effect on the component

of an external deployment or reconfiguration actions.

Aeolus reconfiguration actions show interesting similarities with transitions in

Petri nets [68], a very popular model born from the attempt to extend automata

with concurrency. At first sight, one might encode our model in Petri net, repre-

senting our component states as places, each deployed component as a token in the

corresponding place, and reconfiguration actions as transitions that cancel and pro-

duce tokens. Achievability in Aeolus would then correspond to coverability in Petri

nets. But there are several important differences. Multiple state change actions can

atomically change the state of an unbounded number of components, while in Petri

net each transition consumes a predefined number of tokens. More importantly, we

have proved that achievability can be solved in polynomial time for the Aeolus−

fragment and that it is undecidable for the Aeolus flat model, while in Petri nets

coverability is an ExpSpace problem [70].

Several process calculi extend/modify the π-calculus [72] in order to deal with

software components. The Piccola calculus [14] extends the asynchronous π-calculus

[72] with forms, first-class extensible namespaces, useful to model component in-

terfaces and bindings. Calculi like KELL [73] and HOMER [22] extends a core

π-calculus with hierarchical locations, local actions, higher-order communication,

programmable membranes, and dynamic binding. More recently, MECo [61] has

extended this approach by proposing also explicit component interfaces and chan-

nels to realize tunneling effects traversing the hierarchical location boundaries. All

these proposals differ from Aeolus model because they focus on modeling component

interactions and communication, while we focus on their interdependencies during

system deployment and reconfiguration.

Another related model is the Fractal component model [21]. It focuses on expres-

sivity and flexibility: it provides a general notion of component assembly that can

be used to describe concisely, and independently of the programming language, a
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complex software system. Building on Fractal, FraSCAti [74] provides a middleware

that can be used to deploy applications in the cloud.

In this and the other models the goal is to allow the user to assemble a working

system out of components that have been specifically designed or adapted to work

together. Component selection and interconnection are the responsibility of the user,

and if some reconfiguration needs to happen, it is either obtained by reassembling

the system manually, or by writing specific code that is still the responsibility of the

user.

While expressivity is certainly important, solving the cloud challenge also re-

quires automation: when the number of components grows, or the need to recon-

figure appears more frequently, it is essential to be able to specify at a certain level

of abstraction a particular configuration of the distributed software system, and to

develop tools that provide a set of possible evolution paths leading from the current

system configuration to one that corresponds to a user request.
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Overview

In this part is presented the actual contribution of the work developed during my

PhD activity. The presentation is split in two chapters.

Chapter 6, is dedicated to present the ideas behind an ad-hoc planning tech-

nique, tailored to address the deployment problem. First, the specific variant of

the Aeolus model adopted is described and the formal statement of the problem

is provided. Then, a novel technique is presented in detail, together with formal

results that guarantee the proposed algorithm to be sound, complete and efficient

(its computational complexity being polynomial). The central results of this section

are contained in [55].

The other, Chapter 7, surveys the development of a proof of concept planner,

putting into practice the technique presented in previous chapter. Experimental

results, used to validate the tool, are part of this chapter. This section relies on

material partially presented in [53] (see also [54] for an extended version of previous

paper).
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Chapter 6

Theory

This chapter provides the formal account of the proposed approach.

Section 6.1 is dedicated to formally framing the problem, with the definition

the Aeolus− fragment and of the deployment problem. Section 6.2 describes the

technique developed to solve the latter. In order to ease the understanding of its

technicalities we rely on a running example, showing the technique at work in a step

by step way. Finally, Section 6.3 presents formal results that prove the correctness

of the technique and its efficiency from a computational complexity point of view.

6.1 Aeolus− model & problem statement

In this section we introduce the fragment of the Aeolus model that we employ to

frame the problem addressed.

The problem is the following: find an algorithm that, given a universe of com-

ponents, computes a deployment plan, i.e. a correct sequence of actions leading to

a configuration where a target component is in a given state.

In order to enable algorithms to efficiently compute a deployment plan, restric-

tions to the original model must be considered. Indeed, in the Aeolus model, a prob-

lem very similar to the deployment problem has been proven to be undecidable [30]!

For a variant of the original model, called Aeolus core, where the possibility to spec-

ify conflicts is dropped, another version of the deployment problem has been proven
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to be in the EXPSPACE complexity class, hence unfeasible in practice [28] (see [29]

for an extended version).

The achievability problem, defined in Section 5.8, can be seen as the decisional

variant of the deployment problem. In [30] a polynomial algorithm solving this prob-

lem has been devised, abstracting from the total number of instances of the same

component and from individual bindings that form a configuration. Starting from

this, developing an algorithm to solve the problem of actually computing a deploy-

ment plan has proven to be a non-trivial challenge. This is mainly due to the fact

that one has to take into account the actual configurations with the bindings that are

activated (and deactivated). For an interface required by a given component, there

are possibly many different components that provide it. This means that different

bindings are enabled. As different binding possibilities translate into disjunctions of

logical conditions to be satisfied, it is hard to deal with the exponential explosion

characterizing satisfiability problems.

We proceed with the formal definition of the restriction of the Aeolus component

model, presented in Chapter 5.

Definition 6.1 (Component type). The set Tflat of component types ranged over

by T , T1, T2, . . . contains 4-ples 〈Q, q0, T,D〉 where:

• Q is a finite set of states containing the initial state q0;

• T ⊆ Q×Q is the set of transitions;

• D is a function from Q to a pair 〈P,R〉 of port names (i.e. P,R ⊆ I)

indicating the provided and required ports that each state activates. We assume

that the initial state q0 has no requirements (i.e. D(q0) = 〈P, ∅〉).

Notice that function D has been modified: it only associates to every state a

pair of required and provided interfaces. By changing its range we rule out at the

same time the possibility to specify capacity constraints and conflicts (as the former

are encoded as a capacity constraint with 0 value).
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We now define configurations that describe systems composed by components

and their bindings. Each component has a unique identifier, taken from the set Z.

A configuration, ranged over by C1, C2, . . ., is given by a set of component types, a

set of components in some state, and a set of bindings.

Definition 6.2 (Configuration). A configuration C is a 4-ple 〈U,Z, S,B〉 where:

• U ⊆ Tflat is the finite universe of the available component types;

• Z ⊆ Z is the set of the currently deployed components;

• S is the component state description, i.e. a function that associates to compo-

nents in Z a pair 〈T , q〉 where T ∈ U is a component type 〈Q, q0, T,D〉, and

q ∈ Q is the current component state;

• B ⊆ I × Z × Z is the set of bindings, namely 3-ple composed by a port,

the component that provides that port, and the component that requires it; we

assume that the two components are distinct.

Notation. We write C[z] as a lookup operation that retrieves the pair 〈T , q〉 = S(z),

where C = 〈U,Z, S,B〉. On such a pair we then use the postfix projection operators

.type and .state to retrieve T and q, respectively. Similarly, given a component type

〈Q, q0, T,D〉, we use projections to decompose it: .states, .init, and .trans return the

first three elements; .P(q) and .R(q) return the two elements of the D(q) tuple. Moreover,

we use .prov (resp. .req) to denote the union of all the provided ports (resp. required

ports) of the states in Q. When there is no ambiguity we take the liberty to apply the

component type projections to 〈T , q〉 pairs. Example: C[z].R(q) stands for the required

ports of component z in configuration C when it is in state q.

A configuration is correct if all the active required ports are bound to provided

ports that are active.

Definition 6.3 (Correctness). Let us consider a configuration C = 〈U,Z, S,B〉.
We write C |=req (z, r) to indicate that the required port of component z, with

interface r, is bound to an active port providing r, i.e. there exists a component

z′ ∈ Z \ {z} such that 〈r, z′, z〉 ∈ B, C[z′] = 〈T ′, q′〉 and r is in T ′.P(q′).
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The configuration C is correct if for every component z ∈ Z with S(z) = 〈T , q〉
we have that C |=req (z, r) for every r ∈ T .R(q).

We now formalize how configurations evolve by means of actions.

Definition 6.4 (Actions). The set A contains the following actions:

• stateChange(z, q, q′) changes the state of the component z ∈ Z from q to q′

• bind(r, z1, z2) creates a binding between the provided port r ∈ I of the compo-

nent z1 and the required port r of z2 (z1, z2 ∈ Z);

• unbind(r, z1, z2) deletes the binding between the provided port r ∈ I of the

component z1 and the required port r of z2 (z1, z2 ∈ Z);

• new(z : T ) creates a new component of type T in its initial state. The new

component is identified by a unique and fresh identifier z ∈ Z;

• del(z) deletes the component z ∈ Z.

The execution of actions is formalized by means of a labeled transition system

on configurations, which uses actions as labels.

Definition 6.5 (Reconfigurations). Reconfigurations are denoted by transitions C α−→
C ′ meaning that the execution of α ∈ A on the configuration C produces a new

configuration C ′. The transitions from a configuration C = 〈U,Z, S,B〉 are defined

as follows:

C stateChange(z,q,q′)−−−−−−−−−−−−→ 〈U,Z, S′, B〉
if C[z].state = q and

(q, q′) ∈ C[z].trans and

S′(z′) =

 〈C[z].type, q′〉 if z′ = z

C[z′] otherwise

C bind(r,z1,z2)−−−−−−−−→ 〈U,Z, S,B ∪ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 6∈ B
and r ∈ C[z1].prov ∩ C[z2].req

C unbind(r,z1,z2)−−−−−−−−−−→ 〈U,Z, S,B \ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 ∈ B

C new(z:T )−−−−−−→ 〈U,Z ∪ {z}, S′, B〉
if z 6∈ Z, T ∈ U and

S′(z′) =

 〈T , T .init〉 if z′ = z

C[z′] otherwise

C del(z)−−−−→ 〈U,Z \ {z}, S′, B′〉

if S′(z′) =

 ⊥ if z′ = z

C[z′] otherwise
and

B′ = {〈r, z1, z2〉 ∈ B | z 6∈ {z1, z2}}
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We can now define a deployment plan as a sequence of actions that transform

a correct configuration (not necessarily initial) without violating correctness along

the way.

Definition 6.6 (Deployment plan). A deployment plan P is a sequence of reconfig-

urations C0
α1−→ C1

α2−→ · · · αm−−→ Cm such that Ci is correct, for 0 ≤ i ≤ m.

We can now formulate the problem addressed, i.e. the deployment problem.

Given an universe of component types, we want to know whether it is possible

to deploy at least one component of a given component type T in a given state q.

Moreover, we want to effectively synthesize a deployment plan, specifying a sequence

of steps that enable one to deploy the target component.

Definition 6.7 (Deployment problem). The deployment problem has as input an

universe U of component types, a target component type Tt, and a target state qt. The

output is a deployment plan P = C0
α1−→ C1

α2−→ · · · αm−−→ Cm such that C0 = 〈U, ∅, ∅, ∅〉
and Cm[z] = 〈Tt, qt〉, for some component z in Cm, if there exists one. Otherwise, it

returns a negative answer, stating that no such a plan exists.

Remark 6.1. As already mentioned in Remark 5.1, the limiting assumption to seek

for a single component does not hinder the generality of the problem. Encoding a

full configuration C by adding a dummy target 〈T , q〉 whose state q requires (dummy)

ports provided by the final states of components in C. The modifications that need

to be performed on the original desired configuration C in order to deal with the

encoding are limited:

• every final state sfi of each component Ti in C must enable an additional (fic-

titious) provided port pfi ;

• add a new component with 2 states: stop and start s.t. the latter has one

required port pfi per additional provided one.

After applying this change one performs the usual deployment plan synthesis, as

explained below. The output will be a plan P′ to reach the modified final configu-

ration C+. A post-processing phase could then remove all the steps involving the
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Figure 6.1: Chain of three phases.

additional dummy component T , thus obtaining the plan P for the originally desired

configuration C.

Next chapter presents the proposed solution to the above problem, representing

the original contribution of this work.

6.2 Technique

The technique developed to tackle the deployment problem consists in an algorithm

that is a chain of three phases: reachability analysis, abstract planning and plan

synthesis.

As depicted by Figure 6.1 each phase works on an intermediate representation

output by the previous one. The input to the algorithm, according to Definition 6.7,

is a universe U of component types and a target 〈Tt, qt〉, that represents the target

state qt of the (target) component type Tt. By performing the first step, reachability

analysis, a data structure called reachability graph is built. This representation bears

information on the component types that the deployment plan will employ. If the

target is not reachable, the algorithm raises an exception stating that no solution

exists for the problem, otherwise the algorithm proceeds with the subsequent phase,

called abstract planning. This phase basically corresponds to a bottom-up visit of

the reachability graph. Its aim is to select the component type-state pairs to be used

and establish the necessary bindings between the activated provided and required

ports. At the end of this phase, an intermediate representation is generated, named

abstract plan. This representation is a graph where nodes represent deployment

actions and arcs denote temporal/logical dependencies among them. It is abstract
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in that for each component type there is only one representative instance. Finally,

the plan synthesis phase uses information from the abstract plan to produce the

actual deployment plan where concrete instances appear.

The pseudocode of the technique can be simply summarized as a sequence of

steps described by the following algorithm:

Algorithm 1 DeploymentPlanner pseudocode

1: perform reachability analysis

2: if target is not generated then

3: raise exception TargetNotReachable and abort

4: else

5: perform component selection

6: generate abstract plan

7: synthesize plan

Running example Consider the task of setting up a MySQL master-slave replica-

tion, involving two databases. This typical MySQL configuration is used in solutions

that facilitate data backup, analyzing data without using the main database or as

a means to scale-out. Essentially the process consists in copying the data from the

primary database, called the master, to the secondary one, called the slave and

authorizing the latter to read the log of the master. As read operations can be

performed on any of the slave nodes and master can be fully dedicated to write

operations, a general performance improvement of the system is achieved.

In order to set up this configuration several steps need to be carried out. Initially,

the master node must be installed, configured and put in running mode to start

serving external requests. Then, the slave has to be activated. This involves a kind

of two-steps protocol in which: first, the slave authenticates itself to the master

and then the latter can send to the slave a dump, i.e. a snapshot of its data. This

means that there is a circular dependency between master and slave, since the latter

requires the dump of the former that, on its turn, requires the IP address of the
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Figure 6.2: MySQL master-slave components according to the Aeolus model

slave in order to grant it replication privileges 1.

By relying on the Aeolus− model, it is possible to describe the master and slave

by means of the component types depicted in Figure 6.2. The master component

has six states, an initial uninst state followed by inst and serving. In serving state, it

activates port mysql . When the master-slave replication configuration is needed, in

order to enter the final master serving state, it first traverses state auth that requires

the IP address of the slave, and state dump to provide the dump to the slave. State

master serving provides port m mysql which describes the fact that an additional

database, acting as slave, has been set up. The slave component is instead described

by an automaton with four states. The initial uninst state is followed by state inst

which provides the IP address by means of the provided slave ip port. Subsequent

state dump requires the dump from the master by means of homonymous port dump.

1Notice that it is possible to grant permission to all slaves at once, thus breaking the

circular dependency. However, for security reasons, usually authorization is granted in-

dependently to each slave individually via command GRANT REPLICATION SLAVE ON *.* TO

’slave-user’@’slave-address’ IDENTIFIED BY ’password’;.
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Finally, slave can reach state serving, that provides interface s mysql , required by

the target component.

The desired final configuration can be easily specified by using an additional

component that requires both ports m mysql and s mysql , provided respectively by

state master serving of component master and by state serving of component slave.

Figure 6.3 depicts this additional target component, called application, that in its

inst state requires the presence of both a master in state master serving and a slave

in state serving.

Figure 6.3: MySQL master-slave replication final configuration

As an example of a deployment plan let us consider the configuration depicted

in Figure 6.2. If we want to activate the slave, a possible deployment plan that

allows to achieve this, requires to perform two consecutive stateChange actions in

the master to reach the dump state. At this point, the slave component can reach

the serving state performing first the state change into the dump state and then into

the serving state. Figure 6.4 and Figure 6.5 depict graphically the steps involved in

the deployment plan sketched above. Note that every action in the deployment plan
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will correspond to one or more concrete instructions. For instance, the state change

from the serving to the auth state in the master corresponds to issue the command

GRANT REPLICATION SLAVE ON *.* TO ’slave-user’@’slave-ip’;.

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

Figure 6.4: Sample deployment plan for the running example (part 1).
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(a) Step 7 (b) Step 8 (c) Step 9

Figure 6.5: Sample deployment plan for the running example (part 2).

6.2.1 Reachability analysis

The aim of the first phase is to check if the target can be obtained starting from

an initial empty configuration. This is achieved through a forward symbolic reach-

ability analysis that relies on an abstract representation of components. For each

component its individual identity as well as the number of its instances are ab-

stracted away, keeping only its component type and its state 〈T , q〉. Also, we ignore

individual bindings and avoid considering del actions. The abstraction from the

bindings is allowed since one can safely assume that, given a set of components, all

complementary ports on two distinct components are bound. 2 Delete actions are

superfluous since the presence of one component does not hinder the reachability of

a state in another component.

The algorithm works by saturation, producing iteratively new generations of

component type-state pairs that become available as soon as they are reachable from

nodes in current generation and all their requirements can be fulfilled by already

existing pairs. This process is repeated until a fix-point is reached, i.e. no new pairs

are added. The soundness of this “forward approach” comes from the fact that in

the Aeolus− model the set of available nodes is monotonically increasing, i.e. a valid

2Remember that we are not taking into account capacity constraints. This means that a pro-

vided port may be connected to an unbounded number of components requiring it.
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configuration will stay valid if we add new nodes 3.

Algorithm 2 Reachability graph construction

1: Nodes0 = {〈T , T .init〉 | T ∈ U}; provPort =
⋃
〈T ,q〉∈Nodes0

{T .P(q)}; i = 0;

2: repeat

3: i = i+ 1;

4: Arcsi, Nodesi = ∅;
5: for all 〈T , q〉 ∈ Nodes i−1 do

6: for all (q, q′) ∈ T .trans do

7: if T .R(q′) ⊆ provPort then

8: Nodesi .add(〈T , q′〉);

9: for all 〈T , q〉 ∈ Nodesi do

10: provPort .add(T .P(q));

11: Nodes i = Nodes i−1 ∪ Nodesi

12: for all 〈T , q〉 ∈ Nodes i−1, 〈T , q′〉 ∈ Nodes i do

13: if (q, q′) ∈ T .trans then

14: Arcsi.add(〈T , q′〉 −→ 〈T , q〉);

15: if q == q′ then

16: Arcsi.add(〈T , q′〉 〈T , q〉);

17: until Nodesi−1 == Nodesi

The first phase outputs a data structure, called reachability graph, that looks like

a pyramid where the top level contains all the component types in their initial state

and, at every step, a new level is produced by adding new component type-state

pairs, reachable from the ones at current level by means of stateChange actions.

Figure 6.6 depicts the final reachability graph for the MySQL master-slave repli-

cation case study. The target pair is highlighted in red. The first level of Figure 6.6

contains components M, S and A in their initial state. At the second level, two

3Notice that this is true as long as one banishes the possibility to specify conflicts. In presence

of conflicts the introduction of a component in a given state may invalidate correctness of the

current configuration.
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pairs are added: component M in I and component S in I, derived respectively from

M in U and S in U. At level 3, pair 〈M, S〉 is added. At next step, pair 〈M, A〉
can also be added since it derives from 〈M, S〉 and its requirement on the interface

slave ip is fulfilled by 〈S, I〉, appearing at previous level. Now, 〈M, D〉 becomes

reachable as it can be derived from 〈M, A〉. Two new pairs appear at next level,

namely 〈M, RS〉 and 〈S, D〉. The latter is derived from 〈S, I〉 and his dump require

is fulfilled by 〈M, D〉 at previous level, whereas the former has no requirements. At

level 7, 〈S, S〉 is added as it is derivable from 〈S, D〉. Finally, the target node, pair

〈A, I〉 is added when both its requirements, m mysql and s mysql are provided by

pairs in previous level, namely 〈M, RS〉 and 〈S, S〉. This is the last level as no new

type-state pairs can be generated.

Figure 6.6: Reachability graph for the running example.

Algorithm 2 performs the reachability graph construction. Variable Nodesi is

used to denote the set of the type-state pairs at level i, while Arcsi represents all

the possible ways a type-state pair can be obtained. There are two kinds of arcs:

x −→ y means that component type-state pair y, at level i + 1, can be obtained

from x at level i by means of a stateChange action; x y means y is a copy of

an already existing pair x. Finally, ProvPort is used to store the ports provided
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by the pairs currently provided. 4 Initially, it contains the ports provided by all

components in their initial state (line 1) and then it is incrementally augmented with

the ports provided by the newly added components (lines 9-10). The new type-state

pairs to be added are computed by checking if all their requirements are satisfied

by at least one component state at the previous level (lines 5-8). Finally, variable

Arcsi is updated (lines 13-16), listing all the possible ways a type-state pair can be

obtained. The generation of levels proceeds until a fix-point is reached (line 17).

Termination is guaranteed by the fact that the number of possible type-state pairs

is finite and at every iteration at least a new pair is added to the Nodei set. Once

the fix-point has been reached, if the bottom-level generation does not contain the

target component type-state pair, a plan to achieve the goal does not exist and we

can interrupt execution of the subsequent phases of the algorithm.

Lazy & complete strategy Let us denote with k the total number of different

type-state pairs. In the worst case Algorithm 2 adds at every iteration only one

pair and so the upper bound on the number of iterations is k. There are a few

possible strategies to decide the level at which to stop the iteration for building up

the reachability graph. One could employ, for instance, a lazy strategy, stopping

as soon as the target node is produced, if ever. Another possibility is a complete

strategy that enforces to go on anyway, until the fix-point is reached. The lazy

strategy minimizes the work to be done in this phase but has the drawback that not

all paths to reach a certain pair may have been discovered yet. Figure 6.7 shows a

simple example highlighting the difference between the reachability graph obtained

applying a lazy and the complete strategy. Consider as target component C in state

S3. The reachability graph, built using the complete strategy, has one layer more

where a new path S4 −→ S3 to the target is discovered by an additional iteration of

the algorithm. In the general case an alternative path may present advantages over

the others and so the lazy strategy may result in a poorer deployment plan as there

4For simplicity we employ a single set for this purpose as the set of provided ports is monoton-

ically increasing.
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may be less choices available.

(a) Component (b) Lazy strategy (c) Complete strategy

Figure 6.7: Difference between lazy and complete strategies.

6.2.2 Abstract planning

If the target state is reachable, the abstract planning phase generates a different

graph-like representation that indicates the necessary state change actions and the

causal dependencies among them. Causal dependencies reflect, for instance, the

fact that a component should enter a state enacting a provide port before another

component enters a state requiring that port. This information is captured by the

so-called abstract plan, output by this phase. The abstract plan specifies the life-

cycle of the component types that will be employed in the deployment of the target

state.

The first step in generating the abstract plan is to identify the components to

be used in the deployment plan. A state may have multiple predecessors in the

automaton description of a component type’s behaviour. Hence, in the reachability

graph, a pair p may have multiple origin pairs: it simply means p is reached by

means of a stateChange action performed on any of its predecessors. Moreover,

a pair becomes reachable if the required ports of its state can be bound to ports

provided by pairs in previous generation. In general there may be more than one
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node providing the needed port. Defining a deployment plan involves specifying

for each component employed how it is reached: which node gives origin to it and

which nodes are the providers for its requirements. The alternative possibilities in

both cases, imply a choice must be made for each node. The first step in this phase

deals precisely with these aspect. Starting from the target pair at the bottom of the

reachability graph, a selection procedure is carried out in order to pick the pairs to

be employed.

Figure 6.8 depicts a possible component selection for the MySQL master-slave

example. Selected nodes are highlighted in red. For space reasons, master, slave and

application are denoted by their initials M, S and A respectively, and each state is

referred by its initial upper-case letter: U for uninst, I for inst, S for serving, A for

auth, D for dump, S for serving and MS for master serving.

Figure 6.8: Component selection for the running example.

The selection procedure basically amounts to find a path to the root level for

every pair that is selected. The target node, 〈A, I〉 in the last level is the starting

point. There is only one possible derivation for 〈A, I〉 and so 〈A, U〉 is selected as

its origin. Since 〈A, I〉 requires two interfaces, m mysql and s mysql , provided by

〈M,MS〉 and 〈S, S〉, these nodes, that will be acting as providers are also selected.
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The selection process continues until the root level is reached.

Component selection is performed by means of a bottom-up visit of the reach-

ability graph, described by Algorithm 3. From the bottom level, denoted by n, it

proceeds upward selecting the pairs used to deploy each selected pair appearing at

the current level.

Algorithm 3 Component Selection

1: SNodesn = {〈Ttarget, qtarget〉};
2: for i = n downto 1 do

3: SNodesi−1 = SArcsi−1 = ∅;
4: for all 〈T , q〉 ∈ SNodesi do

5: 〈T ′, q′〉 = heuristic parent(〈T , q〉, i);
6: SNodesi−1.add(〈T ′, q′〉);
7: SArcsi−1.add(〈T , q〉 → 〈T ′, q′〉);
8: for all r ∈ T .R(q) do

9: 〈T ′, q′〉 = heuristic prov(〈T , q〉, r, i);
10: SNodesi−1.add(〈T ′, q′〉);
11: SReq.add(〈T ′, q′〉

r
(〈T , q〉);

Variables SNodesi and SArcsi are used to keep track of the selected component-

state pairs at level i and how these pairs are obtained. From the last level only the

target pair is selected (line 1). For every selected component 〈T , q〉 at level i + 1,

we select at level i one of its predecessors: 〈T ′, q′〉 becomes the origin of the given

component. Consequently 〈T ′, q′〉 is added to SNodesi−1 and an 〈T , q〉 → 〈T ′, q′〉
arc is added to SArcsi−1 (lines 5-7). As already mentioned, there may be more

valid choices as a state may have more than one predecessor. For the choice of the

origin node we rely on heuristics, here abstracted by function heuristic parent.

Discussions on the employed heuristics is deferred to Section 6.2.4.

For every required port needed by the selected pairs of level i + 1 that are

not copies, we select a pair at level i that is able to activate a complementary

provided port. This choice is recorded in SNodesi−1 and SReq (lines 10-11). In
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particular, variable SReq is used to keep track of the bindings, between provided

and required ports of components, that will be built during the deployment. This

kind of dependency is represented by an 〈T ′, q′〉
r
(〈T , q〉 arc where 〈T ′, q′〉 is the

component type-state pair that activates the provided port r, while 〈T , q〉 activates

the complementary required port. As for the choice of the origin node, we rely on

heuristics, dubbed heuristic prov, to decide which pair is used as a provider for

the required ports.

Heuristics Both of these choices, the origin choice and the providers’ choice, af-

fect the length of the deployment plan. The main goal that we seek is to generate a

deployment plan involving the least amount of components. As for both origin and

provider there are potentially multiple allowed choices the goal corresponds roughly

to find a global minimum in a setting with disjunctions of conditions. This is a

typical NPO problem 5 and finding an exact solution to it is unfeasible in practice.

In order to deal with this issue we have to rely on heuristics. We expand this topic

in Section 6.2.4.

Once the component selection procedure is completed, the second phase proceeds

to build the abstract plan. This representation can be seen as a directed graph where

nodes represent either a new, del, or stateChange action, and arcs represent temporal

precedence constraints. Each row represents the life-cycle of an instance of a given

component type. Every node is tagged by a triple denoting an action in the following

way:

• 〈z, q, q′〉 for a stateChange from state q to q′ of instance z;

• 〈z, ε, q0〉 for a new action of instance z;

• 〈z, q, ε〉 for del action on instance z.

Precedence arcs are of three kinds, summarized in Table 6.1.

5A NP-Optimization (NPO) problem is a kind of Optimization problem whose corresponding

decision problem is in NP. For a detailed characterization of NPO problems refer to [47].
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Arc type Meaning

−→ precedence of stateChange actions on the same instance

line. Formally 〈z, x, x′〉 −→ 〈z, x′, x′′〉 where x′ is a state

and x, x′′ are either states or the special symbol ε de-

noting deletion of instance z.
r
� Precedence of instances that provide a port r w.r.t in-

stances requiring it. Formally, 〈z, x, y〉
r
�〈z′, x′, y′〉 if

component z′ in state y′ requires r which is provided

by z in state y (then state y must be entered before

entering state y′).
r
99K Precedence of an instance requiring a port r w.r.t. ac-

tions that deactivate it. Formally, 〈z, x, y〉 r
99K〈z′, x′, y′〉

if component z′ in state y′ stops providing interface r

which is required by z in state x (then state x must be

left before z′ enters state y′).

Table 6.1: Kind of temporal precedence arcs.

Figure 7.1 displays the abstract plan for the running example. The rows represent

the life-cycles of master, slave and application, respectively. The
slave ip
� from 〈s, U, I〉

to 〈m,S,A〉 expresses the fact that the stateChange of slave from uninstalled to

installed must precede the stateChange of master from serving to auth because state

auth of server requires interface slave ip, provided by slave in state installed. The twin
slave ip
99K arc states that master must switch from auth to dump before slave switches

from installed to dump, as this state ceases providing interface slave ip, otherwise

its requirement would become unfulfilled. Following the same principle we can

interpret the pair of arcs 〈m,A,D〉
dump
� 〈s, I,D〉 and 〈s,D, S〉

dump
99K 〈m,D,MS〉

for interface dump. Finally, the target is represented by node 〈a, U, I〉, namely

application entering state installed. This state requires two interfaces, m mysql and

s mysql provided respectively by master in state master serving and slave in state
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Figure 6.9: Abstract plan for the running example.

serving. Two � arcs (together with their 99K counterparts) are thus added with

destination 〈a, U, I〉, one from 〈s,D, S〉 and the other one from 〈m,D,MS〉.

The procedure for the abstract plan generation is described by Algorithm 4.

To generate an abstract plan we consider an instance for every maximal path in

the previous representation, that starts from a type-state pair in the top level and

reaches a type-state that is not a copy. Figure 6.8 shows, for instance, that there are

three maximal paths, for the running example: one for the master (starting from

〈M, U〉 and ending in 〈M,MS〉), one for the application component and one for the

slave (starting from 〈S, U〉 and ending in 〈S, S〉). The computation of the maximal

paths is performed by invoking function getMaxPaths (line 1). 6 Every vertex in

the abstract plan corresponds to an action. Variables Act and Prec are used to

store, respectively, the visited nodes/actions and the precedence constraints among

them. The first loop (lines 3-12) is used to generate the nodes of the abstract plan

and the precedence constraints −→ among them. First of all, a new fresh name

for each instance is generated (line 4) and is associated to the component type of

the instance using map InstMap (line 5). After that, nodes corresponding to the

creation and deletion of the instance are added (line 6), as well as nodes representing

intermediate state changes (line 8). The last part of the loop (lines 9-12) is used

to generate the precedence arcs −→. The second loop, starting at line 13, adds for

6We consider function getMaxPaths as given as it is easy to code and it does not give any

particular insight.
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Algorithm 4 Abstract Plan Generation

1: Paths = getMaxPaths(Nodes0, . . . , Nodesn);

2: Act = ∅; InstMap = { };
3: for all

(
〈T , q0〉, . . . , 〈T , qh〉

)
∈ Paths do

4: inst = getFreshName();

5: InstMap[inst] = T ;

6: Act.add(〈inst, ε, q0〉); Act.add(〈inst, qh, ε〉);
7: for all i ∈ [0..h− 1] do

8: Act.add(〈inst, qi, qi+1〉)

9: Prec.add(〈〈inst, ε, q0〉 −→ 〈inst, q0, q1〉〉);
10: Prec.add(〈〈inst, qh−1qh〉 −→ 〈inst, qh, ε〉〉);
11: for all i ∈ [0..h− 2] do

12: Prec.add(〈〈inst, qi, qi+1〉 −→ 〈inst, qi+1, qi+2〉〉);

13: for all 〈〈T , q′〉
r
(〈T ′, s′〉〉 ∈ SReq do

14: for all n1 == 〈i1, s, s′〉 ∈ Act . InstMap[i1] == T ′ do

15: let n2 = 〈i2, q, q′〉 ∈ Act where InstMap[i2] == T in

16: Prec.add(n2

r
�n1)

17: let n′1 where n1 −→ n′1 in

18: repeat

19: let n′2 = 〈i2, q′, q′′〉 where n2 −→ n′2 in

20: if q′ 6= ε ∧ r ∈ T .P(q′) then

21: n2 = n′2

22: until q′′ == ε ∨ r 6∈ T .P(q′)

23: Prec.add(n′1
r
99Kn2)

every dependency arc
r
(, built during component selection, a pair of

r
� and

r
99K

arcs. In particular, lines 17-23 apply a “relaxation” of the
r
99K arc. If port r is

provided also by successor states, then we can relax the constraint imposed by the
r
99K arc by setting its destination to the last successor node that still provides r.
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Maximally parallel plan The abstract plan is arguably the most important rep-

resentation in our approach because it serves two purposes. First, it represents an

intermediate, essential, step towards synthesis of the actual deployment plan. Sec-

ond, it is per se significant, as it bears all the relevant information on the dependency

order among actions of the instances involved in the deployment process.

The insight is that this representation of a plan may be seen as a distributed

concurrent plan. Distributed, because each line in the abstract plan, specifying for

each instance its life cycle, might be interpreted as a local plan: each instance might

receive a local piece of the global plan. Concurrent, because instances may act

concurrently as prescribed only by the local information. Moreover, this local plan

is enriched with synchronization points that enforce an instance to stop because it

must wait for a port not yet provided. Instances, thus, coordinate their actions

according to the precedence constraints. One can conceive a messaging service

enabling communication between instances to deal with information on reaching a

given state. An instance i, for example, may have to stop waiting for someone else,

j, to reach a given state s. Instance j, upon performing an 〈i, r, s〉 action, will send a

message to i informing it that it has reached s. Instance j may then proceed forward

(if it does not need to wait for other messages from different instances).

As the number of synchronization points is minimal 7, the abstract plan allows

for the highest degree of parallelism since each instance can act in parallel, according

to its own local plan and synchronizing with the others only when strictly required.

This new concept of plan shares some commonalities with the formalism of Message

Sequence Charts [43], used to specify the behaviour of a system by visually describing

the interaction among the entities that compose it.

6.2.3 Plan synthesis

The actual deployment plan that we seek is a sequence of actions on concrete in-

stances. The main idea for the synthesis of a concrete deployment plan is to perform

7Minimal up-to to the choices performed in the component selection phase, which are based on

heuristics.
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an adaptive topological sort of the abstract plan until the target component is vis-

ited. The topological order ensures that actions are added to the plan in such a way

that every requirement (of each component employed) activated during deployment

is satisfied (i.e. configuration correctness is preserved along the way). By adaptive,

we mean that the abstract plan could be rearranged during the topological sort, if

component duplication is needed. Component duplication is a technique used to

deal with those cases in which the abstract plan contains cycles and hence a plain

topological sort is not defined. The presence of cycles means that more instances of

the same component type must be deployed at the same time, in different states, in

order to enact different ports.

Visiting a node is translated into several actions to be performed: a stateChange

action and some bind and unbind actions. For each node n1 = 〈z1, q1, q
′
1〉 we apply

the following “translation”:

unbind for each outgoing 99K arc s.t. n1
r
99K n2 = 〈z2, q2, q

′
2〉, an unbind(r, z1, z2)

action is added to the plan;

bind for each outgoing � arc s.t. n1

p
� n3 = 〈z3, q3, q

′
3〉, a bind(p, z1, z3) action is

added to the plan;

stateChange action stateChange(z1, q1, q
′
1) is added to the plan.

As an example, starting from the abstract plan of Figure 7.1, a possible deploy-

ment plan for the running example is the following one:

First the three components are created. Then, master can reach state serving by

means of two stateChange actions. The subsequent state, auth, requires interface

slave ip. In order to ensure this, the corresponding binding is built and slave switches

to inst, providing slave ip. Now master can safely move to state auth. The plan

proceeds with master changing state to dump, that provides interface dump. The

binding on port slave ip is deleted and a new binding on port dump is built in order

to enable slave to switch to state dump. Now both slave and master can reach states

serving and master serving, respectively. Before this step a binding is built between
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Plan[1] = [Create instance slave:Slave]

Plan[2] = [Create instance master:Master]

Plan[3] = [Create instance application:Application]

Plan[4] = [master : change state from uninst to inst]

Plan[5] = [master : change state from inst to serving]

Plan[6] = [slave : change state from uninst to inst]

Plan[7] = [slave : bind port slave_ip to master]

Plan[8] = [master : change state from serving to auth]

Plan[9] = [master : change state from auth to dump]

Plan[10] = [master : unbind port slave_ip from slave]

Plan[11] = [master : bind port dump to slave]

Plan[12] = [slave : change state from inst to dump]

Plan[13] = [slave : change state from dump to serving]

Plan[14] = [slave : unbind port dump from master]

Plan[15] = [slave : bind port s_mysql to application]

Plan[16] = [master : change state from dump to master serv.]

Plan[17] = [master : bind port mysql to application]

Plan[18] = [application : change state from uninst to inst]

each of them and application: one on s mysql and the other on m mysql . Finally,

application can change state to inst, which is the target state.

Algorithm 5 builds the final deployment plan adding actions to the plan repre-

sented as a list, represented by variable Plan. Following the topological order, spec-

ified by the precedence arcs of the abstract plan, nodes become available when they

do not have precedence constraints, i.e. incoming arcs. Variable ToV isit represents

a stack onto which nodes are pushed as soon as they have no more incoming arcs.

Function no incoming edges is used to check this condition and if it’s true nodes

are added to the stack ToV isit. The algorithm relies on three auxiliary procedures,

processInstanceEdge, processBlueEdges and processRedEdges, aimed

at dealing respectively with −→, � and 99K edges, the three kinds of edges present

in the abstract plan. Given a node of the abstract plan, procedures processRed-

Edges and processBlueEdges deal with its outgoing 99K and� arcs. They add

unbind and bind actions to the Plan list and remove the corresponding arcs from
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Algorithm 5 Plan synthesis
1: Plan = [ ]; ToV isit = [ ]; finished = false;

2: for all n = 〈i, x, y〉 ∈ Act do . add initial nodes

3: if no incoming edges(n) then

4: Plan.append(new(i : InstMap[i]));

5: ToV isit.push(n);

6: repeat

7: repeat

8: 〈i, x, y〉 = ToV isit.pop(); . extract node

9: if x == ε then . initial node

10: processInstanceEdge(〈i, x, y〉)
11: else if y == ε then . final node

12: Plan.append(del(i));

13: else . internal node

14: Plan.append(stateChange(〈i, x, y〉));
15: processRedEdges(〈i, x, y〉)
16: processBlueEdges(〈i, x, y〉)
17: processInstanceEdge(〈i, x, y〉)

18: if InstMap[i] == Ttarget ∧ y == qtarget then finished = true; . target is found

19: Act.remove(〈i, x, y〉);
20: until ToV isit == [ ] ∨ finished

21: if ¬finished then

22: n = Duplicate();

23: ToV isit.push(n);

24: until finished

25: procedure processInstanceEdge(〈i, x, y〉)
26: let n ∈ Act where 〈i, x, y〉 −→ n ∈ Prec in

27: Prec.remove(〈i, x, y〉 −→ n);

28: if no incoming edges(n) then ToV isit.push(n);

29: procedure processBlueEdges(〈i, x, y〉)
30: for all 〈i, x, y〉

r
�〈i′, x′, y′〉 ∈ Prec do

31: Plan.append(bind(r, i, i′)); Prec.remove(〈i, x, y〉
r
�〈i′, x′, y′〉);

32: if no incoming edges(〈i′, x′, y′〉) then ToV isit.push(〈i′, x′, y′〉);

33: procedure processRedEdges(〈i, x, y〉)
34: for all 〈i, x, y〉 r

99K〈i′, x′, y′〉 ∈ Prec do

35: Plan.append(unbind(r, i′, i)); Prec.remove(〈i, x, y〉 r
99K〈i′, x′, y′〉);

36: if no incoming edges(〈i′, x′, y′〉) then ToV isit.push(〈i′, x′, y′〉);

the abstract plan. Moreover, if the removal of an arc makes a node visitable, they

add it to the ToV isit stack. Similarly, procedure processInstanceEdge removes

the precedence arc −→, adding its target node to the ToV isit stack if it has no

incoming arcs.
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At the beginning, all initial nodes are pushed on ToV isit (lines 2-5) and a new

action is added to the plan for every initial node (line 4). The algorithm then

proceeds considering one action a = 〈i, x, y〉 in ToV isit at a time, until the target

node is encountered or ToV isit becomes empty.

If a is an initial node, its outgoing precedence arcs are removed by calling pro-

cedure processInstanceEdge (line 9). In case a is, instead, a final node, a

corresponding del action is added to the plan (line 12).

Finally, if a is an intermediate node, a stateChange action is added to the plan

(line 14). The a outgoing red, blue and precedence arcs are then removed from the

abstract plan by calling in sequence the auxiliary procedures processRedEdges,

processBlueEdges, and processInstanceEdge (lines 15-17). At the end of

the inner loop, variable finished is set to true if the target node is encountered

(line 18) and node a is removed from the abstract plan (line 19).

The above translation exploits the fact that in the model bind and unbind ac-

tions are allowed, disregarding the active state: a binding may be built even between

inactive ports. 8 In fact, Algorithm 5 specifies that the bind action is performed

before the requirer instance reaches the state that activates the requirement.

The final part, lines 21-23, by calling function Duplicate in Algorithm 6, deals

with the duplication process, explained below.

Duplication

This technique is employed when the abstract plan is a cyclic graph. Let us consider,

for instance, a slight modification of the running example in which the application’s

architecture demands a secondary component of type Master in state serving. This

new scenario may be modeled by modifying the Application component in a way that

the target installed state has an additional required port, mysql (provided by state

8Configuration correctness is not hard-coded in the actions but it is required at the level of

deployment plan. In such a plan all intermediate configurations must be correct.
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Figure 6.10: Initial configuration for the new scenario.

serving of component type Master). The Aeolus− model for the new architecture

description is depicted by Figure 6.10.

The resulting abstract plan is shown in Figure 6.11 where nodes forming a cycle

are highlighted in red and tagged by identifiers. In this new plan there are two

nested cycles, one containing the other: one formed by nodes {1, 2, 3, 4, 5, 6, 7} and

a smaller one formed by nodes {1, 2, 3, 4, 7}. A new pair of arcs, highlighted in bold,

is added as an effect of the new required mysql port:
mysql
� and

mysql
99K . Notice that

the arc “responsible” for introducing the cycle is 〈a, I, ε〉
mysql
99K 〈m,S,A〉. We will see

that it is precisely the arrival node 〈m,S,A〉 the one to be used in the duplication

procedure.

In this case the topological visit is unable to reach the target as the abstract plan

is a cyclic graph. This happens when an instance z is required to be in two states q

and q′ at the same time as they enact different functionalities (ports) simultaneously

demanded. It is then necessary to duplicate that instance: a new instance z′ that

will stay in state q is created, thus keeping the provided port active, and in this

way the original instance is allowed to perform the stateChange(z, q, q′) action. For
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Figure 6.11: Cyclic abstract plan for the modified running example.

this reason the technique used to deal with this issue takes the name of duplication.

A cycle is “solved” by creating an additional instance line and moving some arcs.

Figure 6.12 depicts the effect of applying the duplication procedure on the previous

cyclic abstract plan: a duplicate instance m′, of type Master, is created and its life

cycle stops in state serving, keeping providing port mysql . The
mysql
� and

mysql
99K arcs

have been moved towards the duplicate instance.

Figure 6.12: Abstract plan after duplication.

To find the instance to be duplicated we rely on finding, among the nodes forming

the cycle, the one with only incoming 99K arcs. The soundness of this principle is

guaranteed by a formal result, Lemma 6.2, stating that every cycle contains at least
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such a node. An r
k
99Kp arc points towards the provider p of port k . By duplicating

the instance corresponding to node p we make sure that the pair of
k
�,

k
99K arcs is

redirected towards the duplicate instance and the cycle is broken.

The advantage of this approach is twofold. First of all, it enables to deal uni-

formly with complex cycles: nesting of cycles is allowed (as is the case in our ex-

ample). Second, there is no need to perform any cycle detection as a pre-processing

phase, which would be computationally costly. The abstract plan’s rearrangement,

namely the introduction of new duplicate instances, can be carried out on-the-fly.

The abstract plan is topologically sorted and if at the end stack ToV isit is empty

but target was not visited (see lines 20-21 in Algorithm 5), then we know that there

must be a cycle and duplication is needed.

Algorithm 6 Duplication

1: function Duplicate

2: let n = 〈i, x, y〉 ∈ Act where y 6= ε ∧ 6 ∃n′ ∈ Act . (n′ −→ n ∈ Prec ∨
n′

r
�n ∈ Prec) in

3: i′ = getFreshName(); InstMap[i′] = InstMap[i];

4: Act.add(〈i′, x, ε〉);
5: for all n′

r
99K〈i, x, y〉 ∈ Prec do

6: Prec.remove(n′
r
99K〈i, x, y〉); Prec.add(n′

r
99K〈i′, x, ε〉);

7: for (j = Plan.size()− 1; j ≥ 0; j = j − 1) do

8: if Plan[j] == bind(r, i, z) then Plan[j] = bind(r, i′, z);

9: else if Plan[j] == bind(r, z, i) then Plan.insert(bind(r, z, i′), j);

10: else if Plan[j] == unbind(r, i, z) then Plan[j] = unbind(r, i′, z);

11: else if Plan[j] == unbind(r, z, i) then

12: Plan.insert(unbind(r, z, i′), j);

13: else if Plan[j] == new(i : T ) then Plan.insert(new(i : T ), j);

14: else if Plan[j] == stateChange(〈i, x, y〉) then

15: Plan.insert(stateChange(〈i′, x, y〉, j);

16: return 〈i, x, y〉;
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The Duplicate procedure is detailed by Algorithm 6. It starts by identifying

a state change node 〈i, x, y〉 with only incoming 99K arcs (line 2). i is the instance

to duplicate until the node preceding 〈i, x, y〉. A fresh name i′ is forged to identify

the new instance (line 3). A final node 〈i′, x, ε〉 for i′ is added to the set of actions

(line 4). Node 〈i′, x, ε〉 must be final because the new instance is intended to stop

into state x. All 99K arcs incoming into 〈i, x, y〉 are redirected towards the new

〈i′, x, ε〉 node (lines 5-6). Then, the actions already performed on i are duplicated

in order to perform them also on the new instance i′ (lines 7-15). Actions new and

stateChange of i′ are added to the plan immediately after the new and stateChange

actions of i (lines 13, 15). Actions bind and unbind where i requires an interface

provided by another instance, are replicated (lines 9, 12). The bind and unbind

actions where i, instead, is acting as a provider for other instances, are replaced

with bind and unbind actions involving i′ instead of i (lines 8, 10). Finally, node

〈i, x, y〉 is the return value; notice that this node may be immediately added to

the ToV isit stack (line 23) since all its incoming precedence constraints have been

removed by the duplication procedure.

Termination of Algorithm 5 is guaranteed by the fact that the number of dupli-

cations needed to reach the target component is bound by the number of nodes in

the original abstract plan.

6.2.4 Heuristics

In order to efficiently compute a deployment plan, our approach relies on the use

of heuristics in the component selection part (see Algorithm 3) during the abstract

planning phase.

The aim of the proposed technique is to find a deployment plan. The intended

goal, however, is to try to synthesize a plan that is minimal w.r.t. the number of

components deployed. Heuristics are employed in order to overcome the computa-

tional complexity incurred in, when trying to find the optimal solution, that is a

deployment plan which uses exactly the minimum number of components.
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Component selection involves two kinds of choice: one for the origin node and

one for the node provider of a given required port. The metrics employed by the

heuristics in use, rely on three parameters:

cardinality the total number of required ports enabled along the path from the

root to a certain node in the reachability graph construction;

distance the number of stateChange actions needed to reach a node from the root

of the reachability graph;

fan-in the number of incoming 99K arcs to the node considered from nodes that

have already been selected.

The first and second parameter estimate the “cost” of reaching a given node: the

former in terms of how many requirements must be fulfilled along the way to reach

it, the latter in terms of number of actions. The third parameter estimates, instead,

the fitness of a node selection in terms of the number of nodes for which the given

node can potentially act as a provider. The insight is that preference should be

given to the node that can satisfy the requirements of the highest number of nodes,

in the hope that, as an effect, less nodes (hence less components) will be needed.

From the algorithmic point of view, the first two values may be computed (top-

down) during reachability graph construction, while the second can be computed

(bottom-up) while performing component selection.

Table 6.2 summarizes the heuristics defined as a starting point. The order in the

table reflects the order of precedence using a lexicographic ordering. For the origin’s

choice, for instance, the node with the highest fan-in value is chosen, in case of tie

we search for the node with minimum cardinality value, in case of ties we choose

a node that is already present and last we choose based on the minimum distance

value. The procedure for the choice of the provider follows the same principle.

The evaluation of the impact of variations on the precedence order of parame-

ters employed, by alternative heuristics, deserves further investigation and is left to

future work, as explained in Chapter 8.
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Origin’s choice Provider’s choice

1. max fan-in

2. min cardinality

3. copy

4. min distance

1. max fan-in

2. min cardinality

3. min distance

Table 6.2: Parameters’ precedence order for the heuristics employed.

6.3 Formal analysis

This section is dedicated to the formal analysis of the proposed technique. First, it

is proven to be sound and complete. This result guarantees that algorithm Deploy-

mentPlanner always answers and when it does the answer is correct. Afterwards, the

algorithm’s efficiency is supported by proving that it has polynomial computational

complexity.

6.3.1 Soundness & completeness

In this section we prove that algorithm DeploymentPlanner produces a deployment

plan if and only if the target state of the given component is reachable. The proof

is split in the two directions of implication in the following two theorems. We start

by presenting the soundness part: the algorithm always generates deployment plans

that are correct.

Theorem 6.1 (Soundness). Given a universe of components U , a component type

Tt, and a target state qt, if the DeploymentPlanner algorithm computes a sequence

of actions A = α1, . . . , αm, then 〈U, ∅, ∅, ∅〉 α1−→ C1
α2−→ . . .

αm−−→ Cm is a deployment

plan for Tt in state qt.
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Proof. Suppose that the output of DeploymentPlanner is C0
α1−→ C1

α2−→ . . .
αm−−→ Cm

where C0 = 〈U, ∅, ∅, ∅〉. In order to prove the thesis we have show that the following

conditions hold:

1. C0 is correct;

2. Cm contains an instance z with S(z) = 〈Tt, qt〉;

3. each reconfiguration preserves configuration correctness.

Condition 1. is satisfied since the initial configuration C0 is trivially correct as it

contains only instances in their initial state (hence no required port is activated).

As for condition 2., if DeploymentPlanner outputs a plan, it means it has termi-

nated without raising an exception. Thus, target 〈Tt, qt〉 is generated while building

the reachability graph and the final configuration Cm contains an instance z of com-

ponent type Tt in state qt. This holds because Algorithm 5 terminates when node

〈z, q, qt〉 is visited. As an effect stateChange(z, q, qt) action is added to the plan and

the final state of component z is thus qt.

It remains to show that condition 3. above holds. This amounts to prove that

for every 1 ≤ j ≤ m if Cj−1 is correct and Cj−1
αj−→ Cj, then Cj is correct. We work by

cases on the kind of αj action. If αj is a bind or new action, correctness is trivially

preserved since these actions do not violate any requirement.

If αj = stateChange(i, x, y), correctness may be invalidated in two ways: either

state y of i requires a port r, not provided in Cj or i in state y stops providing a

port p, needed by someone else. We will show that neither of these situations can

occur.

In the first case, if m is the name of the instance providing r, the situation can

be depicted as follows:

Action stateChange(i, x, y) must have been added to the plan by visiting a node

〈i, x, y〉 in the abstract plan (line 14 in Algorithm 5). In the former case, it suffices

to show that there is an incoming arc into 〈i, x, y〉 from a node nr = 〈m, q, q′〉
where q′ provides interface r, required by i in state y. In fact, its existence would
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guarantee that node nr is visited before, adding actions stateChange(m, q, q′) and

bind(r,m, i) to the plan, and so the requirement on r would be already fulfilled when

i enters state y. Let’s show that such an arc actually exists. In the reachability graph

construction, node 〈T , y〉, corresponding to stateChange(i, x, y), is added only after

making sure its requirements are fulfilled (line 7 in Algorithm 2). Consequently an

−→ arc is added (line 14 in Algorithm 2) for each node 〈T , w〉 predecessor of 〈T , y〉
(i.e. (w, y) ∈ T .trans). Among 〈T , y〉’s predecessors there must be also 〈T , x〉.
During component selection phase, for every −→ arc, a provider node is chosen

for all requirements (line 9 in Algorithm 3) and hence also for r. Let’s call this

provider z. An z
r
( 〈T , y〉 arc is thus added to keep track of this choice (line 11

in Algorithm 3). Finally, in Algorithm 4, for every arc in SReq, among which also

z
r
( 〈T , y〉, an

r
� arc going from nr = 〈m, q, q′〉 to 〈i, x, y〉 is added (lines 13-16).

We have shown that there is a an incoming
r
� arc into node 〈i, x, y〉.

Configuration’s correctness could also be violated by stateChange(i, x, y) ceasing

to provide a needed interface r. In this case, if m is the name of the component

requiring port p, the situation is the following:

Similarly as above, if there is an incoming
p
99K arc from a node np = 〈m, s, s′〉

where s is the state requiring p, provided by i in state x, then correctness is not

violated as the state transition from s to s′ will take place before i leaves state x.

By hypothesis we know that instance i has been chosen as a provider of interface
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p for some other component m. If T ′′ is the component type of m, some state s

of his requires interface p and by reasoning in the same way as above we are sure

that a
p
� arc is added from a vertex of instance i to one of instance m. Now,

because of the way pairs of � and 99K arcs are added, the destination node of arc
p
� must necessarily be the predecessor of 〈m, s, s′〉, let it be 〈m, s′′, s〉 for some state

s′′. As for the source vertex it must be the first vertex in the transitive closure of

predecessors of 〈i, x, y〉, that keep providing interface p. We cannot just say it’s the

predecessor of 〈i, x, y〉 because relaxations are applied (lines 17-23 in Algorithm 4) .

Let us denote it by 〈i, x′′, x′〉. If an arc 〈i, x′′, x′〉
p
�〈m, s′′, s〉 was added, then a twin

one 〈m, s′′, s〉
p
99K〈i, x, y〉 must also have been added (line 23 in Algorithm 4). Vertex

〈i, x, y〉 is the successor of 〈i, x′′, x′〉 if relaxation did not affect this arc, otherwise

〈i, x, y〉 is in the transitive closure of −→ arcs of vertex 〈i, x′′, x′〉, where x is the

last state providing p. By proving the existence of an incoming
p
99K into 〈i, x, y〉 we

have shown that correctness is not violated by a stateChange action occurring in

the produced plan.

Let us consider the case αj = unbind(r, prov, req), where instance prov provides

r to instance req. Correctness violation occurs if in Cm req is in the same state x, re-

quiring r, and the requirement ceases to be fulfilled. Action unbind(r, prov, req) must

have been added during plan synthesis because there was an 〈req, x, y〉 r
99K 〈prov, v, w〉

arc in the abstract plan (lines 34-36 in Algorithm 5). In case of an intermedi-

ate node, like 〈req, x, y〉, plan synthesis, before processing the outgoing red edges

(by invoking processRedEdges), adds action stateChange(req, x, y) to the plan,

guaranteeing that instance req has already left state x before performing action

unbind(r, prov, req) (lines 14-15 in Algorithm 5). This ensures that instance req,

that required r, has already stopped requiring it.

Similarly, if αj = del(i), it may violate correctness by deleting a component

that provides a port that is still needed. This, however, is never the case because

final nodes of provider instances have an incoming
r
99K arc for every provided port

r . This is easily seen by repeating the argument of case αj = stateChange(i, x, y)

above. Therefore, by Algorithm 5, this action is performed only after all instances
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requiring r have ceased requiring it (this may happen by means of a stateChange or

a del action). This concludes the proof of this case and of the whole theorem.

The second result shows that the algorithm is complete, i.e. if a deployment

plan exists, then the algorithm will eventually find one. To prove completeness we

rely on few lemmas. The first one shows that all circularities in the abstract plan

contain at least an 99K arc. The second lemma, based on the previous one, states,

in presence of circularities, the existence of a node whose incoming arcs are all of

the 99K kind. This is the node chosen by Algorithm 6 for duplication, to break the

cycle and proceed with the topological visit of the abstract plan. Finally, Lemma 6.3

proves termination of Algorithm 5.

Lemma 6.1. Every cycle in the abstract plan contains at least an 99K arc.

Proof. (By contradiction). Assume that there is a cycle which contains only� and

−→ arcs. The situation can be exemplified in a basic case with only three arcs as

in Figure 6.13.

Figure 6.13: Basic scenario (only 3 arcs).

According to the reachability graph construction an 〈i, x, y〉 −→ 〈i, y, z〉 means

pair 〈I, y〉 is at a lower generation level (higher up in the pyramid) than 〈I, z〉,
where I is the component type of instance i. We can denote this fact by writing

L(〈I, y〉) < L(〈I, z〉), where L(p) is the level of pair p.

Arcs of the � kind also bear informations on the generation level. n1

p
�n2 means
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that pair n1, the provider, lies at a lower generation level w.r.t. the requirer n2 (a

node always satisfies its requirements by means of nodes from one generation before).

So, we have that n1

p
�n2 implies L(n1) < L(n2). Looking at the diagram above we

can see that L(〈M, v〉) < L(〈I, y〉) (because 〈m,u, v〉
p
�〈i, x, y〉) and L(〈I, z〉) <

L(〈M, v〉) (because 〈i, y, z〉
p
�〈m,u, v〉). This leads to a contradiction as we end up

concluding that L(〈M, v〉) < L(〈I, z〉) and L(〈I, z〉) < L(〈M, v〉). The argument

can be easily seen to hold in the general case. Hence the cycle must contain only�

arcs. If this is the case the type-state pairs corresponding to the involved nodes are

mutually dependent, i.e. component z1 to reach a state q1 needs something provided

by z2 in state q2 and, vice versa, the component z2 to reach q2 needs something

provided by z1 in q1. This is a contradiction because by Algorithm 2 mutually

dependent type-state pairs cannot be produced. This concludes the proof.

Lemma 6.2. For each cycle in the abstract plan there exists a node whose incoming

arcs are all of the 99K kind.

Proof. (By contradiction). Without loss of generality, assume that there is a cycle

such as the one depicted in Figure (a) below:

(a) Cycle (b) Contradiction

Suppose that there is an incoming arc into node n2 that is not a 99K arc. If

it is a � then we end up in a situation such as the one depicted in Figure (b)

above. No matter how we place the � arc, there is a cycle made of only � arcs

which contradicts previous lemma. The same argument holds if we introduce a −→
arc.
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Lemma 6.3. Algorithm 5 for adaptive topological-sort terminates.

Proof. Algorithm 5 visits all the nodes of the abstract plan. The total number

of nodes in the abstract plan is finite. If there are no cycles the result is trivial.

If circularities exists in the abstract plan, duplication is needed. This procedure

introduces every time a new node to the abstract plan and redirects some arcs. We

have to show that the number of duplications applied is bound. When duplication

is invoked, a node n with only incoming 99K arcs is found, a duplicate node n′ is

built and all the arcs incoming into n are redirected towards n′. Hence n cannot be

chosen for duplication a second time since it has no more incoming arcs. This mens

that every node is duplicated at most once. Moreover, duplication removes all the

cycles involving node n, without creating new ones as the duplicate node has only

incoming edges and no outgoing ones. The number of duplications applied is thus

bound by the total number of nodes in the starting abstract plan.

Theorem 6.2 (Completeness). Given an universe of components U , a component

type Tt, and a target state qt, if a solution exists to the deployment problem on input

I = (U, Tt, qt), then algorithm DeploymentPlanner returns a deployment plan for I.

Proof. Since by hypothesis there is a sequence actions that allows the deployment of

component Tt in state qt, during reachability analysis the type-state pair 〈Tt, qt〉 is

obtained. A correct plan is produced (Theorem 6.1) if the abstract plan generation

(Algorithm 4) and plan synthesis (Algorithm 5) phases terminate. The former ter-

minates because, given the reachability graph, the total number of maximal paths

is finite. Termination of the latter, instead, is given by Lemma 6.3.

6.3.2 Computational complexity

If the synthesized deployment plan should limit to the minimum the number of the

employed components we end up dealing with a problem whose decisional version is

in NP. Algorithm DeploymentPlanner, which forms the basis of a prototype plan-

ner, tackles the complexity of the problem by relying on heuristics, as detailed in
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Section 6.2.4. In order to assess its effectiveness we first prove its efficiency from the

computational complexity point of view. The following formal result shows that the

complexity of algorithm DeploymentPlanner is polynomial.

Theorem 6.3 (Complexity). The DeploymentPlanner algorithm runs in polynomial

time.

Proof. Let us denote with

• k the total number of possible component type-state pairs;

• b the maximal number of predecessors of a type-state pair;

• h the maximal number of ports required by any component’s state.

Let us reason on the complexity of each step performed in the DeploymentPlanner

algorithm.

[Reachability analysis]. Every level of the reachability graph has no more than

k type-state pairs. In the worst case, each iteration in the construction of the

reachability graph adds only one type-state pair. Hence the algorithm terminates

and in the pyramid there are at most k + 1 levels. To build a new level from given

one it is also necessary to filter the successors of the components in the previous

level by checking if their requirements are satisfied. Since a component has at most

k successors and requires at most h ports, the cost of building a level is O(hk2).

The pyramid has at most k + 1 levels, hence Algorithm 2 runs in O(hk3) time.

[Component selection]. To select the components to use and the bindings among

them, Algorithm 3 considers for every type-state pair at most h ports and b parent.

Each port could be provided by any of the nodes at the previous level and hence

at most hk choices must be taken into account. For each node the cost is bound of

O(b + hk) operations. Since each of the k + 1 levels contains at most k pairs, the

total number of pairs in the reachability graph is O(k2). As a result Algorithm 3

takes O((b+ hk)k2) time.

[Abstract plan generation]. After component selection in the reachability graph

there are at most k2 maximal paths of length k. This holds because for every
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node 〈T , q〉 there is exactly a single origin 〈T , q′〉, corresponding to the choice of

state q′ among the predecessors of state q in the component type T . 9 Hence the

computation of the maximal paths in Algorithm 4 is bound byO(k3). The generation

of the instance lines costs at most O(hk3) since the abstract plan contains O(k3)

nodes, each of them having no more than h+1 outgoing precedence arcs (h 99K arcs

+ 1 −→ arc). Algorithm 4 has thus complexity O(k3) +O(hk3) = O(hk3).

[Plan synthesis]. If the abstract plan does not contain cycles the adaptive topo-

logical sort does not involve duplication. In this case the cost is simply bound by the

total number of nodes in the abstract plan, O(k3) (topological sort is linear w.r.t.

the number of nodes). If cycles appear in the abstract plan, Algorithm 5 duplicates

a node whenever the topological visit gets stuck. In the worst case, a duplication is

needed for every node of every instance and to find which node to duplicate one may

need to visit all the nodes. Every node n has at most hk2 +h+1 incoming arcs: hk2

99K arcs coming from the fact that pair 〈T , q〉 in the abstract plan, corresponding

to n, may work as a provider for at most k2 other pairs where each of them has h

requires to be fulfilled; h � arcs come from the fact that n itself may require at

most h ports; 1 is the instance arc −→ . Finding the node to be duplicated has

thus a worst case cost of O(k3) · O(hk2 + h + 1) ∼= O(k3) · O(hk2) = O(hk5). The

duplication procedure updates the abstract plan by adding a node for every node

in the starting plan and it redirects all the arcs incoming into the original node to-

wards the duplicate. The cost of redirection for a single duplication is thus O(hk2)

(redirect at most hk2 99K arcs). The total number of duplications is bound by k2,

the number of nodes in the reachability graph. To see why this holds, consider that

if we duplicate each pair 〈T , q〉 we would end up in an abstract plan where each

instance has a duplicate for each of the states that it traverses. Each of these dupli-

cate instances stops in a given state, working as a provider for all other pairs that

require ports provided by it. Therefore, in the worst case, the cost of all duplications

is O(k2) ·O(hk5) = O(hk7).

9This means that, after component selection, each node in the reachability graph may be reached

by exactly one and only one path.
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[Total cost]. Summing up all the contributions, the DeploymentPlanner algo-

rithm has a total complexity of O(hk3) + O((b+ hk)k2) + O(hk3) + O(hk7), which

considering b bound by k, amounts to O(hk7).
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Chapter 7

Practice

This chapter deals with the development of a prototype planner putting into practice

the ideas of the technique presented in previous chapter.

7.1 METIS: a deployment planner

In order to assess the effective viability of the proposed approach, a proof of concept

implementation of a tool for synthesizing deployment plans has been developed.

METIS, which stands for Modern Engineered Tool for Installing Software systems, is

an ad-hoc planner that implements the algorithms presented/defined in Section 6.2.

Namely, starting from a pool of available component types and a configuration, it

generates a sequence of actions necessary to deploy such a system.

METIS is invoked on the command-line by issuing the following command:

./metis.native -u universe.json -c Application -s Inst

-o plan.txt -ap abstract -plan.dot

The input passed to METIS consists of:

• a universe, corresponding to a file with the available component types (option

-u);

• a component type, which identifies the target (option -c);

• a target state of the previous component type (option -s);
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• a text file, used to store the sequential plan output (option -o);

• a dot file, used to store the abstract plan output (option -ap).

Input

The universe is simply a list of component types. Each component type is specified

in JSON format [5]. As an example consider Listing 7.1 showing an excerpt from

the universe input for the running example. In the code snippet we can identify two

component types: Application and Slave. Each component type is specified by means

of a name (field cname) and by the automaton describing its behaviour. Each state

is defined by a name, a list of successors, a list of the provided ports (provides)

and a list of the required ones (requires).

Output

The output consists in two parts:

1. the sequential plan as a sequence of actions, needed to deploy the target. This

plan is in textual format;

2. the abstract plan as a directed graph in dot format [52, 42].

Listing 7.2 depicts the output for the running example in the case where no dupli-

cation is needed. Each action is prefixed with the corresponding instance name.

Figure 7.1 shows the abstract plan obtained for the running example.

Source code

METIS is developed as open source code freely available from GitHub at the follow-

ing address https://github.com/aeolus-project/metis. The implementation is

about 3.5K lines of code written in OCaml and it is distributed under GPL license.

https://github.com/aeolus-project/metis
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Listing 7.1: Sample input

[

{
"cname" : "Application",

"automaton" :

[

{
"name" : "Uninst",

"successors" : ["Inst"],

"provides" : [],

"requires" : []

},
{

"name" : "Inst",

"successors" : ["Uninst"],

"provides" : [],

"requires" : ["m_mysql", "s_mysql"]

}
]

},
{

"cname" : "Slave",

"automaton" :

[

{
"name" : "Uninst",

...

]

7.2 Validation

In Chapter 4 we introduced a general definition for the class of planning problems

and we argued that the deployment problem is naturally modeled as an instance of

this class.
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Listing 7.2: Sequential plan output for the running example.

Plan[1] = [Create instance slave:Slave]

Plan[2] = [Create instance master:Master]

Plan[3] = [Create instance application:Application]

Plan[4] = [master : change state from uninst to inst]

Plan[5] = [master : change state from inst to serving]

Plan[6] = [slave : change state from uninst to inst]

Plan[7] = [slave : bind port slave_ip to master]

Plan[8] = [master : change state from serving to auth]

Plan[9] = [master : change state from auth to dump]

Plan[10] = [master : unbind port slave_ip from slave]

Plan[11] = [master : bind port dump to slave]

Plan[12] = [slave : change state from inst to dump]

Plan[13] = [slave : change state from dump to serving]

Plan[14] = [slave : unbind port dump from master]

Plan[15] = [slave : bind port s_mysql to application]

Plan[16] = [master : change state from dump to master serv.]

Plan[17] = [master : bind port mysql to application]

Plan[18] = [application : change state from uninst to inst]

In absence of benchmarks specific for the deployment problem the validation of

the METIS tool has been conceived by means of synthetic test cases taking into

account different aspects of the problem. An encoding of the deployment problem

into the Planning Domain Definition Language (PDDL) was defined in order to

verify if it can be dealt with standard planning techniques. PDDL is the standard

language for describing planning problems.

Several experiments were run both with standard planners and METIS on a test

suite. The results obtained are encouraging as our planner is able to deal with

instances of the problem with hundreds of components in less than a minute while

the feasible instance size with standard planners is in the order of dozens.

In the following sections we first describe the encoding and then we report on

the experimental results.
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APPLICATION SLAVE MASTER

application (C,Uninst)

application (Uninst,Inst)

application (Inst,D)

slave (Serving,D)

s_mysql

master  (MasterServing,D)

m_mysql

slave (C,Uninst)

slave (Uninst,Inst)

slave (Inst,ReceiveDump)

master  (Serving,Auth)

slave_ip

slave (ReceiveDump,Serving)

s_mysql

master  (Dump,MasterServing)

d u m p

master  (C,Uninst)

master  (Uninst , Inst)

master  (Inst ,Serving)

master  (Auth,Dump)

d u m pslave_ipm_mysql

Figure 7.1: Abstract plan output for the running example.

Deployment problem as a planning problem

In the context of knowledge representation and reasoning the proposals on represent-

ing and reasoning about actions and change and, more specifically, for the problem of

planning [18], have relied on the use of concise and high-level languages, commonly

referred to as action description languages [37]. Action languages allow one to write

propositions that describe the effects of actions on states, and to create queries to

infer properties of the underlying transition system. In 1998, a declarative language

for planning has been defined, establishing a common syntax in order to allow dif-

ferent research groups to test their solvers. This language is known as PDDL and

his last release is 3.1 [35] (see [58, 38] for information on planning competitions

and PDDL). To do so we have defined an encoding of our specific planning problem

into PDDL: each component instance is translated into one PDDL object with pos-

sible actions corresponding to state changes. Such actions are enabled only when

the other objects in the configuration provide the required interfaces. The encod-
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ing abstracts from the bind and unbind actions 1 and limits the number of objects

that may be concurrently used. This limitation is necessary because all the solvers

assume a finite number of objects: without this limitation the planning problem is

undecidable. In the experiments this parameter was set to the minimum value as

the computation time increases exponentially w.r.t. it.

In PDDL, the specification of a planning problem is split in two parts:

1. the domain file for predicates and actions;

2. the problem file for objects, initial state and goal specification.

We will sketch the encoding of the deployment problem by presenting (part of) the

two files. The full encoding of the problem into the PDDL language is available

at [9].

Domain part

The domain is specified in terms of objects, predicates, operators/actions. W.r.t.

to the formal definition of planning problem given in Chapter 4:

• objects are constant symbols and represent the things that one is interested

in. In our case we have: components, ports (and nodes, explained below);

• predicates are properties of objects. For example a predicate may state whether

a component provides a given port or not;

• operators/actions are stateChange, new, del.

An object called node must be introduced. Intuitively it can be considered as a

place where one and only one component could be in a given state. Any component

in use must be deployed in one of this nodes.

1Both bind and unbind actions can be added in a post processing phase to form a valid deploy-

ment plan in polynomial time.
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Predicates The predicates employed in the encoding are given in Listing 7.3.

Listing 7.3: Predicates

1 ( : predicates

2

3 ( i n i t i a l c o m p o n e n t ? c − component )

4 ; i n t i a l s t a t e o f the component c

5

6 ( t r a n s i t i o n ? c1 − component ? c2 − component )

7

8 ( component prov ides port ? c − component ?p − port )

9 ( component requ i r e s por t ? c − component ?p − port )

10

11 ( node component ?n − node ? c − component )

12

13 ( used node ?n − node )

14

15 )

A component c represents here a type-state pair 〈T , q〉.
(initial component c) says that component c is in its initial state. (transition c1 c2)

says that there is a transition from c1 to c2.

(component provides port c p) and (component requires port c p) hold respectively

when c provides or requires port p. (used node n) is employed to check if node n is

free or not.

Actions Each action is naturally specified by a list of parameters, the precondi-

tions and the effects.

The new action can be viewed as assigning a component in a given state to an

empty node. The PDDL code to describe this can be seen in Listing 7.4.

Listing 7.4: new action

1 ( : action c r ea t e node

2 : parameters (?n − node ? c − component )

3 : precondition (and

4 (not ( used node ?n ) )

5 ( i n i t i a l c o m p o n e n t ? c )

6 )

7 : ef fect (and

8 ( node component ?n ? c )



100 Chapter 7. Practice

9 ( used node ?n)

10 )

11 )

This action requires two parameters: a component c and a node n. It can fire

if n is not used (i.e. the predicate used node is false for n) and if c is in its initial

state. When the new action fires, component c is assigned to node n changing the

value of the predicate node component and n is marked as used.

Similarly the delete action frees the component assigned to a node. This action

can be applied if component c1 is assigned to node n. The precondition also checks

that all ports p provided by c1 and required by some other component c2, is provided

also by a third component c3 (this ensure configuration correctness). As an effect it

first frees node n. The code of for this action is given in Listing 7.5.

Listing 7.5: del action

1 ( : action d e l e t e

2 : parameters (?n − node ? c1 − component )

3 : precondition (and

4 ( node component ?n ? c1 )

5 ( f o ra l l (? c2 − component ?n1 − node ?p − port )

6 ( imply

7 (and

8 ( node component ?n1 ? c2 )

9 (not (= ?n ?n1 ) )

10 ( component requ i r e s por t ? c2 ?p)

11 ( component prov ides port ? c1 ?p)

12 )

13 ( exists (? c3 − component ?n2 − node )

14 (and

15 ( node component ?n2 ? c3 )

16 ( component prov ides port ? c3 ?p)

17 (not (= ?n ?n2 ) )

18 )

19 )

20 )

21 )

22 )

23 : ef fect (and

24 (not ( node component ?n ? c1 ) )

25 (not ( used node ?n ) )

26 )
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27 )

Finally we present the code for the stateChange action in Listing 7.6. This action

is encoded as replacing component c1 with component c2 on a given node n (where

c1 is deployed). In order to enable this action some conditions must be met to

guarantee configuration correctness. lines 7-24 deal with the verification that all

ports provided by c1 and not by c2 are also provided by another component c4.

lines 25-38 are, instead, used to verify that all required ports activated by c2 are

provided by some other component c3.

Listing 7.6: stateChange action

1 ( : action change s ta t e

2 : parameters (?n − node ? c1 − component ? c2 − component )

3 : precondition (and

4 ( node component ?n ? c1 )

5 ( t r a n s i t i o n ? c1 ? c2 )

6 ; requirements must be s a t i s f i e d in the next s t a t e

7 ( f o ra l l (? c3 − component ?n1 − node ?p − port )

8 ( imply

9 (and

10 (not (= ?n ?n1 ) )

11 ( node component ?n1 ? c3 )

12 ( component requ i r e s por t ? c3 ?p)

13 ( component prov ides port ? c1 ?p)

14 (not ( component prov ides port ? c2 ?p ) )

15 )

16 ( exists (? c4 − component ?n2 − node )

17 (and

18 ( node component ?n2 ? c4 )

19 ( component prov ides port ? c4 ?p)

20 (not (= ?n ?n2 ) )

21 )

22 )

23 )

24 )

25 ( f o ra l l (?p − port )

26 ( imply

27 (and

28 ( component requ i r e s por t ? c2 ?p)

29 )

30 ( exists (? c3 − component ?n1 − node )

31 (and
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32 ( node component ?n1 ? c3 )

33 ( component prov ides port ? c3 ?p)

34 (not (= ?n ?n1 ) )

35 )

36 )

37 )

38 )

39

40 )

41 : ef fect (and

42 (not ( node component ?n ? c1 ) )

43 ( node component ?n ? c2 )

44 )

45 )

Problem part

As for the problem instance it is specified by listing the objects, the initial state (as

a set of predicates that hold) and the goal that one wants to achieve. A fragment

of a sample problem file is given in Listing 7.7. First, we say which is the domain,

aeolus. Then, is given a list of objects and a list of properties that hold (at the

beginning). Finally, a property representing the goal is provided.

Listing 7.7: Excerpt from problem file

1 ( :domain aeo lu s )

2 ( : objects

3 node0 − node

4 node1 − node

5 node2 − node

6 comp 0 0 − component

7 comp 0 1 − component

8 comp 0 2 − component

9 . . .

10 comp 1 0 − component

11 comp 1 1 − component

12 . . .

13 po r t 0 1 − port

14 po r t 0 2 − port

15 . . .

16 )

17 ( : in i t

18 ( i n i t i a l c o m p o n e n t comp 0 0 )
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19 ( i n i t i a l c o m p o n e n t comp 1 0 )

20 ( t r a n s i t i o n comp 0 0 comp 0 1 )

21 ( t r a n s i t i o n comp 0 1 comp 0 2 )

22 . . .

23 ( component prov ides port comp 0 1 po r t 0 1 )

24 ( component prov ides port comp 0 2 po r t 0 1 )

25 ( component prov ides port comp 0 2 po r t 0 2 )

26 )

27 ( : goal

28 ( node component node0 comp 1 3 )

Test suite

As a benchmark we have considered Aeolus components automatically generated

following the pattern of interdependency characterizing the running example. More-

over, for each test case we employed two classes of problem instances: first without

and then with the need to apply the duplication procedure (Algorithm 6).

The first scenario, called Test A, and depicted in Figure 7.2, is designed to

test “vertical scalability” as the number of states of the automaton increases. The

scenario is composed by two components, C0 and C1, each of which has an automaton

with n states. The goal is to reach the last state of component C1, labeled with

n. To achieve this, the plan has to create the two components and to perform an

alternating sequence of actions, namely a state change in component C0 followed by

a state change in component C1 and the other way around, until the target state

is reached. The interleaving of actions is enforced by means of patterns of required

and provided ports.

The second scenario is, instead, designed to test “horizontal scalability”, namely

as the number of components increases. Usually in real life scenarios the number of

states inside a component is rather small. We have thus considered configurations

composed by an increasing number of components having all three states 2 as de-

picted in Figure 7.3. There are n + 1 components, C0, C1, . . . , Cn and the target

is represented by state s2 of component Cn. The states of of the components’ au-

2With exception of component C0, used to trigger the plan, having only two states.
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Figure 7.2: Experimental scenario for Test A.

tomaton activate provided and required ports in such a way that a valid plan must

have the following form: first create all components, then perform from Cn to C0, in

sequence, the state change from s0 to s1, and finally perform the state change from

s1 to s2 from C1 to Cn.

Figure 7.3: Experimental scenario for Test B.
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Duplication

In these scenarios instance duplication is not needed during the generation of the

concrete plan. As duplication may introduce a potentially significant computational

overhead it must also be considered. To test this feature we modified the component

types by randomly removing some provided ports in order to force duplication. We

can accomplish this in TestA by deleting some of the provided ports from a state

sX to the port p0 (X − 1 ) where X is the label of the state. Figure 7.4 shows red

crossed arc corresponding to a possibly deleted provided port. Consider component

c0. If port p0 1 is not provided by state 2, in order to reach it two instances of c0

are needed. A duplicate instance must stay in state 1 providing port p0 1 for state

1 of component c1, which, in its turn, is necessary for c0 to change state into 2.

Figure 7.4: Modified Test A.

Similarly, for Test B we remove the activation of the provide port pX 1 from

the states s2, where X is the number of the selected component. Removing this

activation of the provided port demands duplicating the instance of component

type CX in order to simultaneously satisfy the requirements of its two neighbor

components. In Figure 7.5 is depicted the Test B scenario modified: the red crossed
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arc corresponds to a provided port that might be removed. If the provided port p1 1

is missing from state 2 of component c1, then if we want to reach it, a duplicate

instance c1’ must be created. c1’ will be left into state 1 in order to keep providing

port p1 1 needed by state 1 of c0.

Figure 7.5: Modified Test B.

States and components affected by these deletions are chosen randomly. The

number of deletions applied in both cases amounts to nearly one fifth of the total

number of states, for Test A, and components, for Test B.

Experimental results

The tests were performed using a dual core machine with a 2.50 GHz Intel i5 pro-

cessor, 6GB of RAM, and Ubuntu 12.10 operating system with 64 bit support.

We used a time cup of 130 seconds and two planners that support the ADL

fragment of PDDL (other popular solvers support only fragments of PDDL): Metric-

FF [10, 46] and Madagascar-p [6]. The first solver is based on GraphPlan [20], a

standard planning algorithm to prune the search space, while the second, of the

Satplan [51] family, encodes the planning problem into a SAT formula and then

uses state of the art SAT solvers to find a solution. For reducing the search space of

these solvers we set to the minimum the number of components that could be used

concurrently.

We proceed in the following way: first, performance of the two regular planners is

taken into account, then, we compare performance of METIS w.r.t. the planners and
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finally, we evaluate performance of METIS in the basic and in the complex scenario

(involving duplication).

Performance of the two planners are summarized in Table 7.1 and Table 7.2,

dealing, respectively, with the A and B test case. Each table reports the time

performances for both kinds of test in the basic and the complex scenario, denoted

Test A+ and Test B+, where duplication is necessary.

We notice that the performances of the general purpose solvers are quite limited.

Entry error indicates that the solver exited with an error state without computing

the plan. Entry timeout means that the solver took more than 130s and was thus

interrupted. The poor performances are due to the fact that the size of the encoding

of the planning problem increases exponentially w.r.t. the number of components

that need to be deployed concurrently. Metric-FF times out because it spends all

the time trying to ground all the possible actions. Both Madagascar-p and Metric-

FF terminate returning error because they exceed memory bound: the encoding

into SAT for the former or the model containing all the ground atoms for the latter

becomes too big to be handled.

Size
Test A Test A+

Madagascar-p Metric-FF Madagascar-p Metric-FF

5 0.10 s 0.01 s 0.17 s 0.20 s

10 0.97 s 0.13 s 6.92 s timeout

15 5.10 s 0.49 s error error

25 error 2.53 s – –

35 – 7.98 s – –

45 – 20.27 s – –

55 – 47.97 s – –

65 – error – –

Table 7.1: Performances of standard planners for Test A with and without dupli-

cation.



108 Chapter 7. Practice

Let us analyze Table 7.1. For Test A case, Metric-FF has the best performance.

It is able to deal with problem instances where the number of states does not go

beyond 65. After that limit it fails eating up all the memory. For Test A+ case,

both solvers get stuck quite early: Madagascar-p, performing slightly better, does

not go beyond 15, while Metric-FF already at 10 times out and at 15 starts also to

exceed memory capacity.

Size
Test B Test B+

Madagascar-p Metric-FF Madagascar-p Metric-FF

3 0.07 s 0.07 s – –

4 0.47 s timeout – –

5 2.21 s error 3.71 s error

6 error – error –

Table 7.2: Performances of standard planners for Test B with and without dupli-

cation.

Let us now turn attention to Table 7.2. In this test case the limitations are

even more severe. The best planner among the two is Madagascar-p, but it is able

to solve instances with only 5 components for both the basic Test B and Test B+

scenario. After that it starts to terminate with error. Metric-FF, already in the

Test B case, times out even when considering a scenario with 4 components.

In the next graphs in Figure 7.6 and Figure 7.7 performance of METIS is com-

pared w.r.t. the performance of both Metric-FF and Madagascar-p planners. Fig-

ure 7.6 takes into account the Test A scenario, while Figure 7.7 reports results for

the Test B scenario. METIS outperforms the general purpose planners. In this

phase it suffices to consider the basic scenario, without duplication, as performance

of regular planners is so limited that, by lack of points, graphs would not show any

particular trend in the complex scenario.

Let us look at Figure 7.6 first. As reported by Table 7.1 above, with regular

planners the best results are obtained by Metric-FF, able to deal with instances
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Figure 7.6: Performance comparison: METIS vs. regular planners on Test A.

with up to 65 states in nearly 48 s (in the same time METIS is able to deal with

instances bigger than 335 states). METIS is able to synthesize a deployment plan

for two components of up to 485 states in 129 s. After that it terminates having

consumed all the available memory.

As for the Test B scenario, Figure 7.7 reports the following results. Madagascar-

p and Metric-FF get stuck almost immediately: the former deals at most with

5 components while the latter terminates with error already at instances with 4

components. METIS succeeds in generating a deployment plan for instances of the

problem with 225 components (of 3 states each) in nearly 65 s. After that eats up

all the memory, returning error.

Notice that in this scenario, performance of METIS is apparently worse w.r.t.

the Test A case. This, however, is no surprise if we consider the fact that Test B

requires a growing number of concurrently active components while in Test A there

are two components and, in principle, each of them is in only one of its states at

every moment.
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Figure 7.7: Performance comparison: METIS vs. regular planners on Test B.

Let us now examine the performance difference of METIS between the basic and

the complex scenario. Results are depicted in Figure 7.8 and Figure 7.9, for the A

and B test case, respectively. As expected, duplication affects the performance of

the tool. From the graphs we can see that duplication does indeed add an overhead

that one should take into account.

For the A test case the difference is quite significant. For the Test A+ scenario

METIS is able to deal with instances of up to 155 states and afterwards it gets stuck

because of memory limitations. This is mainly due to the fact that in this case,

at the beginning, there are only two instances: one for each component, C0 and

C1. Every time a duplication is performed all actions that the original instance

performed must be copied and/or replaced by the duplicate instance. As the length

of the instance lines grows with the size of the problem, so does the number of

actions the need to be inserted and/or replaced (see lines 7-15 in Algorithm 6). This

may translate into a heavy computational overhead as the deployment plan length

increases asymptotically. Consider, for instance, the case of a problem instance of

100: for Test A+ the generated plan may involve around 3500 actions while for Test
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B+ the plan obtained is about 800 actions long!
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Figure 7.9: Performance of METIS on Test B and Test B+.

As for the other test case, scenario B, the performance degradation is rather
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limited as testified by the closeness of the red graph, for Test B+ scenario, to the

blue one, depicting the performance curve for the basic scenario Test B. In this

case, the number of actions to be copied/replaced by duplication is much smaller

as explained above. When duplication is required, METIS is nevertheless able to

synthesize a deployment plan for more than 200 components in less than a minute.

It is important to stress the fact that, for the goal of this work, the B test case is

somehow “more significant” than the A one, as the latter studies the situation for a

growing number of states. In real life examples, however, the number of states is not

expected to grow to an unbounded value (an automaton with 10-15 states is already

a complex one). The number of components, on the other hand, rises naturally to

high values in complex applications, involving many different components.
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Chapter 8

Future directions

This chapter gives an overview of the planned extensions of the work presented so

far. They are:

1. integration in the Aeolus toolchain;

2. introduction of a notion of conflict;

3. introduction of capacity constraints;

4. evaluation of alternative heuristics and their impact on the deployment plan;

5. dealing with full reconfiguration;

6. applying some form of restriction on the automata of the original Aeolus model.

Some of them have already been subject to discussion and preliminary work,

others deserve further investigation. For the former we are able to provide few

details, while for the latter we just give the intuition behind.

8.1 Integration in the Aeolus toolchain

One important step in the development of METIS is its integration in the Aeolus

Deployment Engine, the toolchain built by the Aeolus team. In the end, this so-

lution will leverage the scientific results produced in the Aeolus project to build
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a full toolchain to be employed in the industrial setting of the industrial partner,

Mandriva [7]. Mandriva Business Server (MBS) [8] is a full-fledged server solution

supporting the deployment of enterprise applications. This is the setting chosen for

industrial exploitation of the set of techniques and tools developed in the Aeolus

project.

At the moment is already present a companion tool, called Zephyrus [12, 27], that

enables one to compute an optimal final configuration starting from an initial one.

The solution computed by Zephyrus is guaranteed to be optimal w.r.t. the number

of (virtual) machines that need to be allocated to host all the running components.

Zephyrus is able to start from an initial partial configuration to reach a final complete

one, where all required components are listed, each one on its host machine, as well

as the active bindings. Moreover, Zephyrus takes into account all the elements of the

Aeolus flat model: capacity constraints as well as conflicts are dealt with. The final

configuration fulfills all the capacity constraints and it does not contain any conflict,

if such a solution exists. This achievement does not entail any contradiction with

the work of presented in this dissertation as Zephyrus computes a final configuration

that is the goal of the deployment process. The problem of finding a way, a plan,

to actually achieve the computed configuration is out of its scope. This is due to

the computability/decidability limitations inherent to the Aeolus model, outlined in

Section 5.1.

The final toolchain envisioned by Aeolus should work in the following way: first

an optimal final configuration C is computed by means of Zephyrus, then a de-

ployment plan P is obtained by means of METIS and finally a tool, developed by

Mandriva, translates the actions specified by P into the installation/activation/pro-

visioning steps, specific to the MBS environment.

Two issues arise naturally: conflicts and capacity constraints. As mentioned

above the solution computed by Zephyrus takes them into account while METIS does

not: hence there is a gap that needs to be taken care of. For conflicts, the idea is that

if violations occur during deployment, in a transient configuration, this may still be

manageable, as long as the final configuration is conflict-free and possible violations
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are detected/signaled in advance. In this situation the system administrator might

take care of the problem by hands. METIS might be extended to signal a potential

conflict whenever two conflicting states might be concurrently active. This can be

established by analyzing the abstract plan: if the topological order does not ensure

that the conflicting states are reached and left one before the other, then a potential

violation is signaled.

For capacity constraints, one might say that the final configuration C computed by

Zephyrus is a maximal one, that is to say: the deployment plan will never need

more instances of a given component than the number present in C, nor will it

require a larger set of components. This is a reasonable assumption as may be

ensured by adopting a monotonicity principle: if a state s requires a given port r and

provides some set of ports P , then a successor state s’, providing more functionalities

(P ⊆ P ′), must also activate such a requirement.

Notice that these ideas apply to the current version of METIS. Some possible

enhancements enabling it to deal with conflicts and capacity constraints at a more

natural level, are outlined in Section 8.2 and Section 8.3 below.

Finally, we would like to underline that the above ideas abstract away from

the target industrial application in mind and as such may be applied in a general

platform independent approach. Such a development may, for instance, exploit

existing tools for configuration management, mapping the kind of actions used in

our deployment plans into platform independent languages, such as Puppet.

8.2 Conflicts

The Aeolus− model, considered in this thesis, abstracts from the notion of conflict

among components. Conflicting components arise naturally at the level of packages

in Linux-like distributions, where the presence of two packages at the same time on

the same machine may be not admissible. At the level of services, in a distributed

setting, there are some (few) examples of conflicts, the most common of which being

that of two DNS servers on the same network. As such, conflicts are part of the
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original Aeolus model. The kind of conflicts considered is a “global” one: a conflict

has global scope, ranging on all components of a given configuration. Dealing with

conflicts is a hard problem as testified by the fact that, to our knowledge, no existing

approach/tool takes them into account. In fact, the problem has been formally

proven to be in EXPSPACE [28]. 1

One of the development directions that we are currently exploring is trying to

integrate conflicts into our approach. In this “enhanced version” METIS tries to

avoid conflicts whenever possible and if it does not succeed it raises a warning,

signaling a potential conflict violation during deployment. To understand the ideas

underlying this integration one needs to take a slightly different point of view on

the concept of plan. The plan P generated by METIS is a sequence of actions.

Moreover, this sequence is a linearly ordered one that is the result of performing

the adaptive topological sort described in Section 6.2.3. In Algorithm 5 duplication

is carried out while visiting the nodes of the abstract plan P#. One could also, on

the other hand, perform first duplication and visit the nodes only afterwards, on a

“modified” abstract plan P#
+. Namely, P#

+ is obtained by performing duplication

on the original abstract plan P#. 2 Figure 6.12 represents an example of such a

P#
+ and can be compared to the original abstract plan P# depicted in Figure 7.1.

To deal with conflicts one may work at the P#
+ plan level. The idea is to

introduce a new type of arrow that represents precedence constraints related to

conflicts, much in the same way as 99K and � are used to model action precedence

relative to provided and required interfaces. An example is shown in Figure 8.1

below.

This picture shows a sample of the P#
+ plan in a scenario involving two con-

flicting instances: i of component type I and m of component type M. State y of

I is in conflict w.r.t. state q of M. The pair of arcs 1 and 2 express the fact that

1Effective technique and tools to deal with conflicts at the level of packages on a single machine,

have been devised in [13, 57]. The Aeolus context corresponds, however, to an “upgraded” one, in

a distributed setting.
2Notice that performing duplication as a first step implies the explicit use of cycle detection

techniques in order to find the instances that need to be duplicated.
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Figure 8.1: Conflict detection information on abstract plan.

in a deployment plan the conflict is avoided if either:

• instance i leaves state y before m enters state q

(arc 1: node 〈i, y, z〉 is visited before 〈m, p, q〉), or

• instance m leaves state q before i enters state y

(arc 2: node 〈m, q, r〉 is visited before 〈i, x, y〉).

It is important to stress two aspects concerning conflict arcs. First, they are mu-

tually exclusive: if precedence specified by 1 is respected, then precedence specified

by 2 does not hold. Visually, when taking into account arc 1, the other twin arc,

2, is canceled. Second, the kind of constraints specified by conflict arcs differs from

the one specified by the other arcs in the abstract plan. The order imposed by the

latter must be respected in order to find a plan that is correct; the order imposed

by the former, instead, may be interpreted as a “preference”: if possible i should

leave state y before m enters state q (or the other clause). If this is not possible, a

conflict may arise during deployment.

Notice that, by construction, the P#
+ graph is free of circularities involving only

−→, 99K and � arcs (as duplication has already broken any existing such cycle).

Circularities in P#
+ may show up if we consider the new kind of conflict-arc.

The idea is to exploit techniques similar to the ones used in the basic setting

(without conflicts). If cycles appear in the P#
+ augmented with conflict-arcs, in the

enhanced version, METIS would try to break it by removing one among two twin
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conflict-arcs. A sound technique would involve, in the worst case scenario, analyzing

all possible combinations of pairs of conflict-arcs to obtain a cycle-free plan. This,

however, would lead to an exponential explosion in the complexity of the algorithm.

An alternative possibility that seems viable is, instead, trying to break cycles by

choosing and removing some conflict-arcs. This choice might be performed relying

on some heuristics, as done in the original technique. If the combination of choices

achieves cycle-freedom, the deployment plan is ensured to be conflict-free, otherwise

for every arc removal that is not able to break a cycle, a warning is issued saying

which components’ states can potentially be in conflict during deployment.

8.3 Capacity constraints

The idea to extend our approach to deal with capacity constraints is that one may

take them into account during component selection, while performing the bottom-

up visit (Section 6.2.2). For every selected node of a given level, one must choose

an origin and a provider for every required interface p. Now imagine that for a

node 〈T , q〉 to required port p is associated a capacity value of n: this means that

for p to be fulfilled, it needs a port with multiplicity at least equal to n. If a

provider 〈T ′, q′〉 has capacity equal to m, associated to port p, it means it can serve

up-to m required ports simultaneously. Then, we know for sure that in order to

fulfill node 〈T , q〉’s requirements for port p, we need at least k = d n
m
e instances of

type T ′. So now we would need to take also this new information into account: a

numeric value must be assigned to every arc; we must keep track of the number of

instances of a given type and the “amount of usage” of each provided port 3. It is

not obvious if it is better to store this information at the reachability graph level

during selection (like in Figure 6.8) or at the abstract plan level (for example on the

� arcs). Abstract planning starts with a single instance per component type and

additional instances, if needed, are created as effect of the duplication process. One

3Of course if there there are some ports not fully used in bindings one could try to reuse them

before asking for more instances.
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should change accordingly the abstract planning procedure. Moreover, the interplay

between duplication and capacity constraints must be studied. Imagine an instance

x, working as a provider of port p with capacity of 4, is duplicated, then the total

amount of p provided should be subdivided among the two instances x and x’. One

could say that x participates with 2 and so does x’.

Overall it looks like a feasible extension of the current work, even though not

trivial 4, as it is a matter of adapting the already existing technique.

8.4 Heuristics

The heuristics currently employed by METIS and defined in Section 6.2.4 represent

a tentative version to accomplish a deployment plan exploiting a minimal number

of components. As already mentioned, attaining the least number of components

corresponds to finding a global minimum value in the presence of disjunction of

possibilities (namely different predecessors and different providers for the same node

and requirement). Several variations of the adopted strategy must be examined.

One could, for example, give preference to a copy node rather than to the node with

minimum cardinality value (currently it is the other way around). In order to assess

the advantages/drawbacks exposed by the possible variations we need to devise a

suite of tests based on different scenarios.

8.5 Reconfigurations

Up until now the work is based on the underlying assumption that the starting/ini-

tial configuration is empty. This means that the deployment problem is dealing with

a deployment “from scratch”. In the real world, however, most of the times the sys-

tem is already up and running and one needs to apply a reconfiguration rather than

a full deployment. Dealing with reconfigurations is not a trivial task as they usually

4The (component selection) heuristics too have to be adapted.
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involve also the deletion of components in use. The possibility of deleting compo-

nents introduces the possibility of producing configurations that are not correct: a

requirement may be fulfilled by a component that suddenly disappears.

As explained in Section 6.2.1 the reachability analysis part works forward, by

saturation. This approach is heavily based on the monotonicity property of the set

of the components that become deployable at every step. There is no possibility

to invalidate a configuration generated at a given level of the reachability graph

because we are always adding newly available/reachable components. If we abandon

this assumption a major change in our framework is needed, left to future research.

8.6 Restrictions

As already noticed, the negative results summarized in Section 5.1 hold in the general

case where automata are allowed to have arbitrary complexity: any number and

configuration of states, required/provided ports. In real life scenarios, however, it is

unlikely for components to exhibit such complex behaviour. A still open question

is thus whether it is possible to devise an efficient solution by imposing some form

of limitation on the automaton structure of the original Aeolus model. Tentative

restrictions that have been proposed are the following:

1. fix the maximum (possibly small) number of states;

2. monotonicity of states w.r.t. the provided/required ports. If a state has some

required and some provided ports, then its successor(s) should activate at least

the same ports and possibly more.

The effects of these (or possibly other) restrictions on the feasibility/complexity

of the deployment problem deserve further investigation.



Chapter 9

Concluding remarks

This dissertation describes the design and implementation of a technique for the

automatic synthesis of deployment plans. A direct translation of the deployment

problem into PDDL, a format suitable for standard planning tools, has been showed

to lead to an unfeasible solution. Thus, a novel approach, based on meaningful

component abstractions, has been carefully devised in order to efficiently cope with

problem instances involving a high number of components. The validity of the

proposed technique is supported by formal results that prove its soundness and

completeness. Moreover, the central algorithm is shown to have computational

complexity that is polynomial w.r.t. the number of available components. Finally,

viability of the technique in practice is witnessed by means of experimental results

that exhibit encouraging performances.
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