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Preface 

I 

Preface 

Rotational spectroscopy is uniquely beautiful amongst the spectroscopic techniques, and the 

amount of rich chemical information we can gather from a simple microwave spectrum is often 

incredible. 

Although rotational spectroscopy is traditionally associated with the determinations of 

molecular structures, today’s microwave spectroscopy is addressing a wide variety of basic and 

applied key problems in physical chemistry, molecular physics, and related fields. Questions on 

molecular structure, conformational and tautomeric conversion, chemical bonding, charge 

transfer, and internal dynamics are elucidated not only for isolated molecules but also for 

molecular clusters. Over the years, the scope of rotational spectroscopy has widened from 

fundamental intramolecular observations to the interrogation of intermolecular interactions. 

In this dissertation, the fundamental theories, spectroscopic techniques and non-covalent 

interactions have been briefly reviewed firstly. The pulsed jet Fourier transform microwave 

spectroscopy have been applied to several 1:1 molecular complexes involving H2O, freons, 

methane, carboxylic acids, and rare gas. The obtained results showcase the suitability of the 

technique for the study of intermolecular interactions. 

The rotational spectra of three water adducts of halogenated organic molecules, namely 

chlorotrifluoroethylene, isoflurane and ,,,-trifluoroanisole, have been investigated. It has 

been found that, the halogenation of the partner molecules definitely changes the way in which 

water will link to the partner molecule. 

Quadrupole hyperfine structures and/or the tunneling splittings have been observed in the 

rotational spectra of difluoromethane···dichloromethane, chlorotrifluorometane···fluoromethane, 

difluoromethane···formaldehyde and trifluoromethane···benzene. These features have been useful 

to describe their intermolecular interactions (weak hydrogen bonds or halogen bonds), and to 

size the potential energy surfaces of their internal motions. Further details will be given ahead in 

the section dedicated to the descriptions of each molecular system.  

The rotational spectrum of pyridine···methane pointed out that methane prefers to locate 
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above the ring and link to pyridine through a C-H···π weak hydrogen bond, rather than the 

C-H···n interaction. This behavior, typical of complexes of pyridine with rare gases, suggests 

classifying CH4, in relation to his ability to form molecular complexes with aromatic molecules, 

as a pseudo rare gas. 

With Fourier transform microwave technique, the conformational equilibria of three 

bi-molecules of carboxylic acids, acrylic acid···trifluoroacetic acid, difluoroacetic acid···formic 

acid and acrylic acid···fluoroacetic acid have been studied. The increase of the hydrogen bond 

length upon H→D isotopic substitution (Ubbelohde effect, see in the next sections) has been 

deduced from the elongation of the carboxylic carbons C···C distance. 

The van der Waals complex tetrahydrofuran···krypton, revealed by the rotational spectrum, 

shows that the systematic doubling of the rotational lines has been attributed to the residual 

pseudo-rotation of tetrahydrofuran in the complex, based on the values of the Coriolis coupling 

constants, and on the type (b) of the interstate transitions.  

All the results presented here have been published in the international scientific journals of 

general interests. The details are available in the published papers. All the measured transition 

frequencies and ab initio geometries of the observed conformers with partial r0 adjustment and 

other information can be found in the electronic supporting materials of the corresponding 

papers.  

 

 



Catalogs 

III 

Catalogs 

Preface  ................................................................................................................................. I 

Abbreviations............................................................................................................................ VI 

Chapter 1 Fundamental Theory ................................................................................................ 1 

1.1 Moments of inertia ................................................................................................................................. 1 

1.2 Rotational energy levels ......................................................................................................................... 3 

1.3 Rotational transitions .............................................................................................................................. 4 

1.4 Centrifugal distortion ............................................................................................................................. 5 

1.5 Quadrupole coupling effect .................................................................................................................... 6 

1.6 Large amplitude motions ........................................................................................................................ 7 

1.7 Theoretical calculations .......................................................................................................................... 7 

1.8 Evaluation of molecular structure........................................................................................................... 8 

1.9 Dissociation energy .............................................................................................................................. 10 

1.10 Isotopic effect ..................................................................................................................................... 10 

Chapter 2 Spectroscopic Techniques ...................................................................................... 12 

2.1 Resonator cavity ................................................................................................................................... 14 

2.2 Time domain technique ........................................................................................................................ 14 

2.3 Pulsed supersonic-jet expansion ........................................................................................................... 15 

2.4 Experimental cycle ............................................................................................................................... 16 

Chapter 3 Non-covalent Interactions ...................................................................................... 18 

3.1 Van der Waals interaction .................................................................................................................... 18 

3.2 Hydrogen bond ..................................................................................................................................... 19 

3.3 Weak hydrogen bond............................................................................................................................ 19 

3.4 Halogen bond ....................................................................................................................................... 20 

3.5 The other interactions ........................................................................................................................... 21 

Chapter 4 Water Adducts ....................................................................................................... 22 



Catalogs 

IV 

4.1 Introduction .......................................................................................................................................... 22 

4.2 Experimental ........................................................................................................................................ 23 

4.3 Chlorotrifluoroethylene···Water ........................................................................................................... 23 

4.4 Isoflurane···Water ................................................................................................................................. 28 

4.5 Trifluoroanisole···Water ....................................................................................................................... 34 

4.6 Conclusions .......................................................................................................................................... 39 

Chapter 5 Complexes of Freons ............................................................................................. 41 

5.1 Introduction .......................................................................................................................................... 41 

5.2 Experimental ........................................................................................................................................ 42 

5.3 Difluoromethane···Dichloromenthe ...................................................................................................... 42 

5.4 Chlorotrifluorometane···Fluoromethane ............................................................................................... 50 

5.5 Difluoromethane···Formaldehyde ......................................................................................................... 55 

5.6 Trifluoromethane···Benzene ................................................................................................................. 62 

5.7 Conclusions .......................................................................................................................................... 67 

Chapter 6 Pyridine-CFnHn-4 .................................................................................................... 69 

6.1 Introduction .......................................................................................................................................... 69 

6.2 Experimental ........................................................................................................................................ 70 

6.3 Theoretical Calculations ....................................................................................................................... 71 

6.4 Rotational spectra ................................................................................................................................. 71 

6.5 Molecular structure .............................................................................................................................. 73 

6.6 Dissociation energy .............................................................................................................................. 74 

6.7 Internal Dynamics ................................................................................................................................ 75 

6.8 Conclusions .......................................................................................................................................... 76 

Chapter 7 Bi-molecules of Carboxylic Acids ......................................................................... 78 

7.1 Introduction .......................................................................................................................................... 78 

7.2 Experimental ........................................................................................................................................ 79 

7.3 Acrylic acid···Trifluoroacetic acid ........................................................................................................ 80 

7.4 Difluroacetic acid···Formic acid ........................................................................................................... 83 

7.5 Acrylic acid···Fluoroacetic acid ............................................................................................................ 90 

7.6 Relative population of the conformers in the jet ................................................................................... 93 

7.7 Conclusions .......................................................................................................................................... 94 

Chapter 8 Complex of Rare Gas ............................................................................................. 95 

8.1 Introduction .......................................................................................................................................... 95 

8.2 Experimental ........................................................................................................................................ 95 



Catalogs 

V 

8.3 Theoretical Calculations ....................................................................................................................... 96 

8.4 Rotational Spectra ................................................................................................................................ 97 

8.5 Location of the Kr atom in the complex ............................................................................................... 99 

8.6 vdW vibrations ................................................................................................................................... 100 

8.7 Conclusions ........................................................................................................................................ 103 

References  ............................................................................................................................. 104 

Acknowledgement .................................................................................................................. 111 

Appendices  ............................................................................................................................. 112 

Publications .............................................................................................................................................. 112 

Academic Congresses .............................................................................................................................. 114 

Award ....................................................................................................................................................... 114 

 



Abbreviations 

VI 

 

Abbreviations 

AA: acrylic acid; 

BSSE: basis set superposition error; 

Bz: benzene; 

CFC: chlorofluorocarbon; 

COBRA: coaxially oriented beam resonator 

arrangement; 

DFA: difluoroacetic acid; 

DPM: the distributed polarizability model; 

FA: formic acid; 

FAA: fluoroacetic acid; 

FT: Fourier transform; 

HaB: Halogen bond; 

HB: Hydrogen bond; 

IR: infrared; 

ISO: isoflurane; 

lp: lone pair; 

MW: microwave; 

PES: potential energy surface; 

PJ: pulsed jet; 

PYR: pyridine; 

RG: rare gas; 

S/N: signal-to-noise; 

TFA: trifluoroacetic acid; 

TFANI: ,,-trifluoroanisole; 

THF: tetrahydrofuran; 

UV: ultraviolet; 

vdW: van der Waals; 

VIS: visible; 

WHB: weak hydrogen bond; 
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Chapter 1 Fundamental Theory 

The general strategy for discussing molecular spectra and the information they contain is to find 

expressions for the energy levels of molecules, to calculate the transition frequencies by applying 

section rules, and to predict the appearance of the spectrum by taking into account the transition 

moments and the populations of the states. 

It is such a long story about the theories of the rotational spectroscopy that one can refer to 

several monographs on such a topic for more details.
[1-3]

 For the most recent and innovative 

applications on microwave (MW) spectroscopy, some book chapters
[4]

 and reviews
[5-7]

 are 

available. In this chapter, only the basic theories, which are used to interpret the MW spectra of 

the molecular complexes studied through this dissertation, will be briefly introduced. 

1.1 Moments of inertia 

To derive the molecular structures from the rotational spectra, it requires the knowledge of 

classical mechanics of rotating bodies.  

 

Figure 1.1 Asymmetry molecule with three moments of inertia  
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Depending on the symmetry of the molecule, one or more moments of inertia need to be 

specified to describe its rotational properties. For molecules with low symmetry, three moments 

of inertia relative to three perpendicular axes in the molecule have to be defined (see Figure 1.1). 

The three perpendicular axes are the principal axes when the origin of the coordinate system is 

chosen at the center of mass of the molecular system: this choice allows the total kinetic energy 

to be written as the sum of the kinetic energy of translational motion of the center of mass plus 

the kinetic energy of the motion relative to the center of mass. The translational and rotational 

motions can hence be treated separately.  

As shown in Figure 1.2, the moment of inertia I of a system of particle (a molecule) is 

defined as: 

2


i

ii rmI  (1.1) 

It depends on the mass distribution of the molecular system. The three principal axes of a 

particular molecule have been labeled by convention as a, b, c in such way that Ia ≤ Ib ≤ Ic, 

depending on its symmetry. For a symmetric top rotor, one of the principal axes of inertia must lie 

along the molecular symmetry axis. The principal moments of inertia which have their axes 

perpendicular to this axis are equal. If a-axis lies along the symmetry axis (Ia < Ib = Ic), the 

molecule is a prolate symmetric top. If c lies along the symmetric axis (Ia = Ib < Ic), the molecule is 

an oblate top.  

 
Fig.1.2 The moment of inertia of a rotor 

We can identify the z axis with any of the three principal axes and depending on whether it 

is identified with a, b or c as I, II, III. We add a superscript r or l depending on whether a right or 

left (x, y, z) axis system is used.
[8]
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In the principal axes system, the rotational constants can be written as: 

acI

h
28

A


 , 

bcI

h
B

28
  and 

ccI

h
C

28


  (1.2) 

Therefore the rotational motion of a molecule can be accurately described when its moments of 

inertia are known. 

From the rotational constants it is easy to calculate, for each species, the values of the planar 

moments of inertia, defined as (for example) 

2

aa iii
amP   (1.3) 

through the relation  

 𝑃𝑎𝑎 =
1

2
(−𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐) =  

ℎ

16π2 (−
1

𝐴
+

1

𝐵
+

1

𝐶
) (1.4) 

The quantity gives a measure of the mass extension along the a-axis. The same, as well, applies to 

Pbb and Pcc.  

An indication of accuracy in the calculated structure is the defect of inertia  

Δc ═ Ic−Ia−Ib = -2Pcc (1.5) 

which should be zero for an absolute planar molecule.  

1.2 Rotational energy levels  

In many cases, the rotational spectra of molecular systems can be described successfully with the 

assumption that they rotate as rigid rotors. In such ways the energies can be modeled in a manner 

parallel to the classical description of the rotational kinetic energy of rigid objects.  

Energy calculations in quantum mechanics involve the solution of the Schrödinger equation 

with a properly formulated Hamiltonian to represent the energy operator. The form of the 

Hamiltonian can often be implied from the nature of the classical energy of such a physical 

system as: 

EΨ = ĤΨ (1.6) 

Supposing that molecules are rigid rotors (do not distort under the stress of rotation), the 
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potential energy may be set to zero since there is no change in bond length during the rotation. 

Taking the simplest molecules, spherical or linear top, the energy levels obtained from solving 

Schrödinger equation in terms of the rotational quantum number J are: 

𝐸𝐽 =  
ħ2

2𝐼
𝐽(𝐽 + 1)  (1.7) 

where J = 0, 1, 2, …  

So that, according to Eq. (1.2), the solutions for the energy states of a rigid rotator can be 

expressed as 

𝐸𝐽 =  𝐵ℎ𝑐𝐽(𝐽 + 1)  (1.8) 

1.3 Rotational transitions 

MW radiation can induce the rotational transitions only in molecules or molecular systems with 

permanent dipole moments. Therefore, generally only the polar molecular system can give a pure 

rotational spectrum. As a consequence, homo-nuclear diatomic molecules and molecules with 

spherical symmetry are not directly observable with rotational spectroscopy.  

In a practically symmetric top, any permanent dipole moment must lie along the symmetric 

axis. All matrix elements of this dipole moment resolved along a space-fixed axis vanish except 

those between states corresponding to J → J or J ± 1, K → K. The selection rules for the field free 

rotor are ΔJ = 0, ±1; ΔK = 0. For absorption transition, the selection rule is J → J + 1, K → K. 

Applying these rules to Eq. (1.8) gives the relation of the absorption frequencies for a rigid 

symmetric top  

υ = 2 B (J+1) (1.9) 

For a symmetric top, either a prolate or an oblate, the quantum number K determines the 

vector component of the angular momentum about the molecular symmetry axis, which is a-axis 

for a prolate top or c-axis for an oblate top. Its energies depend on K because the rotation about 

the symmetry axis and tumbling end over end are very different motions, so the relative amounts 

of the angular momentum about the different axes strongly affect the energy. The sign of K 

signifies the direction of the rotation about the z-axis. Energies are degenerated for +K and –K, 

since a simple change of direction does not change the total energy. 

When the molecular system is asymmetric, considerable complexity is encountered in its 
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pure rotational spectrum. The rotational transitions can no longer be expressed in convenient 

equations, as can be done for linear or symmetric top molecules. Only for certain low J values 

can the energy levels of the asymmetric rotor be expressed in closed form, even if centrifugal 

distortion effects are neglected. 

1.4 Centrifugal distortion 

It’s very useful to take molecules as rigid rotors when interpreting the rotational spectra. However, 

the atomic structure cannot be absolutely rigid. Due to the centrifugal distortion, the molecular 

bond lengths and covalent angles will change along their rotation as a function of the states, which 

leads to changes in their rotational spectrum. Molecules of the smaller weight normally are 

obvious that the spectra usually include a set of constant rotation and a number of centrifugal 

distortion constants. 

Taking account of this distortion, the moments of inertia cannot be considered as constant 

any longer, the values of which are dependent on the rotational states. Consequently, the rotational 

spectrum cannot be just treated as that of a rigid rotor characterized by a sequence of equilibrium 

moments of inertia. However the precision of MW measurements allows determining the 

centrifugal distortion constants even from the low-lying levels with relatively small rotational 

energies.  

Centrifugal distortion effects only represent a small part of the rotational energies which are 

accounted for mainly by the rigid rotor term. Therefore in many cases this effect can be treated as a 

perturbation to the rigid rotor Hamiltonian (HR). The total Hamiltonian can be written then as 

H = HR+HD (1.10) 

where HD is the contribution of the centrifugal distortion part. The first order perturbation 

treatment involves averaging the perturbing operator HD over the asymmetric rigid rotor wave 

functions.  

In the second order perturbation treatment of the term HD, it’s possible to transform the 

Hamiltonian HR to an effective form Heff which is diagonal in the vibrational quantum numbers 

transforming the Hamiltonian terms into the fourth degree in angular momentum P (quartic 

centrifugal distortion terms). By a second order treatment to an asymmetric top, the quartic 

centrifugal distortion coefficients ταβγδ can be reduced to five independent constants as discussed in 

details in Watson’s review.
[6]

 For the A- and S-reduction, the reduced quartic centrifugal distortion 
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Hamiltonian have the following forms: 

H4 = -∆JJ
4
 - ∆JKJ

2
Jz

2
 - ∆KJz

4
 - 2δJJxy

2
J

2
 –δK(Jz

2
Jxy

2
+ Jxy

2
Jz

2
) (1.11) 

where J
2
 = J·J, Jxy

2
 = Jx

2
-Jy

2
. 

A least square fitting of the observed frequencies is carried out to obtain the rotational and 

centrifugal distortion constants. Particularly, the differences between the observed frequencies and 

the calculated rigid rotor frequencies are taken as the distortion effect.  

1.5 Quadrupole coupling effect 

When a nucleus has a spin quantum number, I, greater than 1/2, it has a quadrupole moment. In 

that case, the coupling of the nuclear spin angular momentum with rotational angular momentum 

causes splittings of the rotational energy levels. If the quantum number J of a rotational level is 

greater than I, 2I+1 levels are produced; but if J is less than I, 2J+1 levels result. The effect is 

known as hyperfine splitting. For example, the rotational spectrum of the molecule with 
14

N (I = 

1), all levels with J > 0 are split into 3. The energies of the sub-levels are proportional to the 

nuclear quadrupole moment and as a function of F and J, where F = J + I, J + I – 1,..., 0, ... |J – I|. 

Thus, the observation of nuclear quadrupole splittings permits the magnitude of the nuclear 

quadrupole moment to be determined.
[9]

 This is an alternative method to use the nuclear 

quadrupole resonance spectroscopy. The selection rule for rotational transitions becomes ∆J = ±1, 

∆F = 0, ±1.
[10] 

There are only two independent coupling constants in the most general cases. These are 

usually expressed in terms of the coupling constants with the reference axis is chosen as the c 

axis, the two coupling constants would be χcc and  

η = (χaa – χbb) / χcc.  (1.12) 

The reference axis is usually chosen as the one for which the coupling is most nearly symmetric, 

that is, for which η is the smallest. And according to the Laplace’s equation, there’s the relation  

χaa + χbb + χcc = 0. (1.13) 

It is evident that wherever the rotational transitions have resolved the hyperfine structure, 

one must measure the coupling constants in order to obtain the unperturbed frequency ν0 and 

hence the rotational constants B0.  
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Generally speaking, with increasing J, the F → F – 1 components become weaker and 

eventually undetectable; while the F → F + 1 ones remain strong but converge in frequency and 

eventually become unresolvable as J continues to increase. 

1.6 Large amplitude motions  

The earliest MW studies of the rotational spectrum of ammonia concerned its inversion motion 

tunneling. Since then, the large amplitude internal motions of many molecular systems were 

characterized from the tunneling splittings observed in their rotational spectra. Typical motions 

are (i) internal rotation of symmetric (generally methyl) groups; (ii) inversion of amino or imino 

hydrogens; (iii) internal rotation of light asymmetric groups (OH, SH, NH2); (iv) ring puckering 

of (saturated) four- or (near saturated) five membered rings; (v) pseudorotation. Even heavy 

atoms (or structural groups) can produce large splitting if their motions are characterized by 

low-barrier potential energy surfaces (PESs) as in many molecular complexes. 

Potential barriers are presumably caused by the interactions of two groups of electrons and 

nuclei. In principle, it should be possible to determine the barrier heights from straightforward 

quantum-mechanical calculations. The mathematical complexity of such a treatment, however, is 

so great that a rigorous computation seems highly impractical at present. An alternative approach, 

which is perhaps somewhat empirical, is to try to describe the origin of the barriers in terms of 

the forces which appear in the study of intermolecular interactions, such as Van der Waals forces 

and resonance forces. 

For most of the molecular complexes with the large amplitude motions in this dissertation, 

the PESs have been dealt with Meyer’s flexible model, which provides energies and 

wave-functions for J = 0, 1, 2 in the ground and vibrational excited states.
[11]

 More details are 

given in the following sections for the particular molecular complexes studied. 

1.7 Theoretical calculations 

Modern theoretical ab initio quantum chemistry methods have been extremely successful in 

describing the electronic structure of isolated molecules to a degree of precision that in some 

cases comes very close to high-resolution spectroscopic results. The motivation for the 

application of theoretical ab initio methods to molecular clusters comes from the need to 

determine the structure of the cluster, its stabilization energy, its (intermolecular) vibrational 

frequencies and the potential energy and free energy surfaces. 
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The primary property of an isolated (rigid) system is its structure, and a main goal is to 

determine the equilibrium structure of such a system. The majorities of molecular clusters are 

non-rigid systems, and are dominated by large amplitude motions that make the concept of 

equilibrium structure meaningless. Structures of global and local minima of the surface are found 

by optimizing the stabilization energy and not the total energy. Stabilization energy thus plays a 

central role in non-covalent interactions. The geometry of a cluster is observable only by 

resolving rotational structure, which is not always possible. The key role in the world of 

non-covalent interactions is played by vibrational frequencies, which are more easily observable, 

and their detection is straightforward even for large clusters. Moreover, vibrational frequencies 

are very sensitive to the quality of the PES and can serve as a test of quality of the respective 

calculation procedure. 

Ab initio and density functional theory (DFT) are used to assist the assignment of the 

rotational spectra. Geometry optimizations are used to predict the molecular equilibrium 

structure and conformational preferences from PES. The resulting information on rotational 

constants, dipole moment components, relative stabilized energies and quadrupole coupling 

constants are helpful indications for searching for rotational spectra and conformational 

assignment.  

Since the studied molecular system is not large, high level calculations like 

MP2/6-311++G(d,p) level theory can be chosen. Frequency calculations are used to calculate the 

zero point energy and force constants. For molecular complexes, a counterpoise correction
[12]

 is 

used to remove the well-known basis set superposition error (BSSE). All theoretical calculations 

in this dissertation are performed with Gaussian 03
[13]

 or Gaussian 09
[14]

 program package. 

Some molecular systems exist as a mixture of several conformers. With the computer 

program Maestro, it is also very useful to do the conformational search at the first step.
[15] 

1.8 Evaluation of molecular structure 

MW spectroscopy is very much at the heart of molecular physics. It is a method of very high 

resolution optical spectroscopy and has a sound foundation in molecular quantum mechanics. 

Once a rotational spectrum is obtained and assigned, it yields the three rotational constants A, B 

and C (assuming we are dealing with an asymmetric top), and from these rotational constants, 

the moments of inertia and hence the most probable structure can be obtained.  

Different procedures have been introduced which correct various degrees for vibrational 

effects and which have led to different conceptions of interatomic distance. In particular, three 
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types of structures are frequently used in rotational studies. 

re, the equilibrium structure for the hypothetical vibrationless state, evaluated by correction 

for the effects of vibration including zero-point vibrations. Particularly, in many cases, the 

geometries from ab initio can be treated as the equilibrium structure.  

r0, the effective structure for the ground vibrational state could be calculated from the 

experimental rotational constants. A least squares fitting procedure has been used to evaluate the r0 

of the studied molecular systems. Several structural parameters could be chosen to fit the 

differences between experimental and theoretical values of rotational constants. The procedure of 

the fitting is based on the linearization of the following equation 

Bi = Bi
0
+∑j(dBi/dpi) Δpi (1.14) 

where Bi
 
is the ith experimental rotational constant, Bi

0 
is the ith rotational constant calculated from 

the initial assumed structure and pi is the structural parameter chose for fitting, (dBi/dpi) is the 

changing of Bi
0
 with respect to a small changing of pi while all other structural parameters were 

kept constant. This procedure is repeated until the convergence has been achieved. However, 

normally the set of experimental data are not enough to determine the molecular structure 

completely. Only several bond lengths, valence angles, or valence dihedral angles can be evaluated 

from the structure fitting and thus only partial r0 structure can be obtained. For non-covalent 

interaction bonded molecular complexes, this procedure is adoptable to determine the 

intermolecular bond length and angles while keeping the geometry of molecular moieties 

constants.  

rs, the substitution structure, is derived from the isotopic substitutions. Kraitchman
[16]

 method 

is applied to calculate the position of an atom in a molecule utilizing the changes of moments of 

inertia resulting from a single isotopic substitution of the atom. The molecule is assumed rigid so 

that the bond distances and angles are unchanged due to isotopic substitution. The Ix, Iy, Iz and I’x, 

I’y, I’z are the moments of inertia along the principal axes for the parent and isotopically substituted 

molecule. The coordinates are measured from the center of mass principal axis system of the 

parent molecule. The mass of the isotopic atom can be denoted by m+Δm, with m the original mass 

of the atom. The moment of inertia in the parent center of mass principal axis system can be 

expressed as: 

I’xx = Ix+Δm (y
2
+z

2
)-(Δmy)

2
/(M+Δm)-(Δmz)

2
/(M+Δm)  

= Ix+μ (y
2
+z

2
) (1.15) 
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Similarly, that 

I’yy = Iy+μ (z
2
+x

2
) (1.16) 

I’zz = Iz+μ (x
2
+y

2
) (1.17) 

where the μ is the reduced mass for the isotopic substitution, μ = M Δm/(M+Δm) with M is the total 

mass of the parent molecule. The Ix, Iy, Iz and I’x, I’y, I’z can be determined experimentally, thus the 

coordinates x, y, and z of the isotopic substituted atom can be obtained. 

1.9 Dissociation energy 

When the intermolecular stretching motion appears to be almost parallel to the a-axis of a 

complex, it is plausible to estimate its force constant (ks) within the pseudo diatomic 

approximation to estimate by assuming such a motion to be separated from the other molecular 

vibrations. For an asymmetric complex, according to:
[17]

 

ks = 16 
4 
(D RCM)

2
 [4B

4
+4C

4
-(B-C)

2
(B+C)

2
]/(hDJ), (1.18) 

while for a symmetric complex, according to: 

ks = 128π
4
(μDRCM)

2
B

4
/hDJ (1.19) 

B and C are the experimental rotational constants. μD is the pseudo diatomic reduced mass, for 

the two subunits 1 and 2,  

μD = m1m2/(m1+m2) (1.20) 

and RCM is the distance between the centers of the mass of the two subunits; DJ is the centrifugal 

distortion constant. 

The dissociation energy (ED) can be then evaluated by assuming a Lennard-Jones type 

potential function and applying the approximate expression:
[18] 

ED = 1/72 ks RCM
2
 (1.21) 

1.10 Isotopic effect 

Isotopic substitution is generally considered not to perturb the structure of a molecular system. It 
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affects, however, the molecular spectroscopy of the system, especially the frequencies of 

rotational transitions, which depend on moments of inertia. Differences in moments of inertia 

among isotopomers represent, in turn, the best tool for the determination of molecular structure.
[1]

 

Furthermore, changes in chemical properties, such as kinetics
[19]

 and equilibrium constants,
[20]

 

are well known, and it has been observed that the temperature of spontaneous phase transitions 

can vary,
[21]

 sometimes by as much as 25 K.
[22]

 A smaller modification (relative to that described 

herein) of the structure of a system through the so-called geometric isotope effect was outlined 

by Ichikawa.
[23]

 However, when isotopically labeled substances are used, the usually justified 

assumption is made that they do not alter the fundamental nature of the material under study.  

Reasonable information on the geometric changes of molecular complexes, for example, 

complexes of water with ethers, has been obtained upon deuteration of the water moiety. It is 

well known that the H→D isotopic substitution of hydrogen atoms involved in relatively strong 

hydrogen bonds (e.g. O-H···O) produces an increase (Ubbelohde effect
[24]

) or a decrease (inverse 

Ubbelohde effect
[25]

) of the distance between the heavy atoms participating in the hydrogen bonds. 

However, generally both effects are called “Ubbelohde effect”. The effect is related to the fact that 

the 0 fundamental frequency of a R-H stretching (R is a generic heavy group attached to a 

hydrogen atom) is reduced by a factor  1.4  (mH/mD)
1/2

 in the R-D deuterated form. When the 

proton transfer connects two equivalent forms (such as in malonaldehyde or in the dimers of 

carboxylic acids) we have the Ubbelohde effect; when the proton transfer leads to the dissociation 

(like in dimers of alcohols), we have the reverse effect. The Ubbelohde effect is mentioned also in 

recent paper on the quantum nature of the hydrogen bond,
[26]

 but no distinction is given between 

the two cases mentioned above. 

In the 1:1 complex anisole-water, a novel isotopic effect has been described: water moiety 

acts mainly as proton donor forming a strong bifurcated HB, but the deuteration of water produces 

a conformational change. Two qualitative hypotheses are plausible: 1) a small change, upon 

deuteration, in the potential-energy surface; 2) a substantial change, upon deuteration, in some of 

the frequencies of the six low-frequency normal vibrational modes of water with respect to 

anisole, and therefore in the relative r0 energies of the two Owater···HMe and Owater···HPh 

conformations, even in the case of two nearly equivalent wells in PES.
[27]
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Chapter 2 Spectroscopic Techniques 

For decades until now, MW spectroscopy is progressing impressively: this is partially by the 

virtue of the experimental developments that combine jet-expansion sources with specific means 

of sample preparation for new chemical systems.  

 

Figure 2.1 Pulsed jet Fourier transform microwave spectrometer built in University of Bologna 

All the rotational spectra in this dissertation were measured using the pulsed-jet Fourier 

transform microwave spectrometer with a coaxially oriented beam resonator arrangement 

(COBRA) built in University of Bologna, which covers the frequency range 6.5-18 GHz.
[28]

 The 

photo of the spectrometer is shown in Figure 2.1, while the block diagram of this entire 

instrument is shown in Figure 2.2. The design of the spectrometer follows the guidelines given 

by Stahl and Grabow
[29-30]

 and most of the details are taken from the Valladolid spectrometer.
[31]

 



Spectroscopic Techniques 

13 

Basically, there are two parts, the mechanic system and the electrician part. In this chapter, the 

spectroscopic techniques will be briefly introduced. 

Figure 2.2 Block diagram of the MB-FTMW spectrometer  

MW = Micro Wave; RF = Radio Frequency; P = output power, IF = intermediate frequency, IL = insertion losses, G = gain, NF 

= noise figure, IS = isolation, IR = image rejection: 1. MW synthesizer, HP 8672 A. 2. MW switch SPDT, SMT 

SFD0526-001S. 3. Fixed attenuator MCL BW-S3W2. 4. Single side band modulator, MITEQ MN0226LC1C. 5. Variable 

attenuator, NARDA 4798. 6. MW amplifier ALC Microwave ALS0618-30-20. 7. Directional coupler NARDA 4203-16. 8. 

Power meter, HP 435 B + Power sensor 8485A. 9. Fabry-Pérot resonator, see text. 10. MW crystal detector HP8470B. 11. MW 

low noise amplifier, MITEQ JSD4-0600-1800-16-8P. 12. Image rejection mixer, MITEQ IR0226LC1C. 13. 160 MHz RF 

amplifier, MITEQ AU-1466-140. 14. BAndpass filter, TTE KC6-160M-20M. 17. RF mixer, HP 10514A. 16. RF amplifier, 

MCL MAN 1LN. 17. Lowpass Filter, TTE LC5-25M-50-7135. 18. Transient recorder, SPECTRUM PAD 82A, modified 

following the design of the Kiel University. 19. RF synthesizer, PTS 160-M7020. 20. Pulse Sequencer TTL, made at the 

University of Valladolid, based on a PCB card from the University of Kiel. 21. Reference signal, Rb oscillator 5 MHz, 

Ball-Efraton FRK-LLN. 22. RF synthesizer, MARCONI 2019A. 23. RF switch MCL 7MSW-1111. 24. Pulse controller 

General Valve IOTA ONE. 25. IEEE 488 interface, NI GP-IB-488 PCII. 26. I/O card, NI PC-DIO-96. 27. A/D and D/A 

converter for Stepper motor control made in Valladolid. 
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2.1 Resonator cavity 

The schematic diagram of the mechanic part is shown in Figure 2.3. The resonator, of the 

Balle-Flygare type, is made by two aluminum mirrors with a curvature radius of 60 cm and with 

a diameter of 35 cm and placed in a stainless steel high vacuum chamber of cylindrical shape 

(built by HVP, Parma, Italy). The diameter of the chamber is 40 cm while the length is 85 cm. 

The chamber is evacuated with an 8000 s
-1

 diffusion pump driven by a block of two Leybold 

mechanical pumps (D65B and Ruvac WAU 251, rotary and booster pumps, respectively). 

The mirrors are situated in a near-confocal arrangement with one of them fixed in one 

flange of the vacuum chamber and the other one mounted on a motorized slide rack. A computer 

program which can control the stepping motor, allows tuning the resonator to the right 

polarization frequency. 

 
Figure 2.3 Schematic diagram of the mechanic part. 

2.2 Time domain technique 

Instead of continuously passing monochromatic radiation through cell and detecting the 

transmitted signal as a function of frequency, contemporary MW spectrometers apply the 

radiation for a short period of time. In the presence of a sample, a radiative response is induced. 

To obtain the spectrum, the response signal is recorded as a function of time and subjected to 

Fourier transformation (FT). 

The time-dependent behavior of absorption and emission of two-level quantum mechanical 

systems makes it possible to measure rotational transitions in the time domain, analogous to the 

pioneering development of pulsed nuclear magnetic resonance experiments.  
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The interaction of the MW radiation and the molecular beam results in rotational coherence. 

The molecular signal power is relative to the fraction of the total energy stored by the field 

within the resonator volume. Due to the coaxially of the jet expansion and the MW radiation, the 

amplitude of the molecular signal is approximated by 

Sab(t) ∝ s’ exp(i (ωab-k ν∞) t+θab’))+s’’ exp(i (ωab+k ν∞) t+θab’’))  (2.1) 

where ωab is the angular resonance frequency and k = ω/c is the wavenumber of the radiation. 

The Doppler doublet consisting of frequency components at νab (1-ν∞/c) and νab (1+ν∞/c) is 

observed in the frequency domain. The molecular resonance frequency is then recovered as the 

arithmetic mean of the components separated by Δνab = 2νabν∞/c. The line width of the individual 

components is on the order of 1.5 kHz; at an appreciable S/N ratio, a frequency accuracy of 150 

Hz, is achieved for unblended lines. The sensitivity allows for the routine observation of 

mono-deuterated asymmetric-top molecules in natural abundance. 

2.3 Pulsed supersonic-jet expansion 

Progress of the supersonic jet systems has enabled experiments of molecular clusters much easier. 

In order to explain the jet-cooled abundances we considered how equilibrium populations evolve 

kinetically in the expansion. Conformational populations may be particularly affected by 

collisional relaxations transferring population to lower energy species so the supersonic 

expansion will preserve the preexisting equilibrium conformational distribution only in the cases 

of large inter-conversion barriers.  

It is well known that the supersonic expansion of molecular systems seeded in rare gas is 

rich in molecules of low rotational temperature. It’s stated that normally rotational temperature 

about 1 K can be reached. Thus supersonic expansion provides significantly sensitivity 

advantage for transitions originating from low energy rotational levels in the vibrational states. 

This expansion can be generated by using an electromagnetic valve and provide a sample of high 

number density. The COBRA can significantly increase the resolution and sensitivity than the 

orientation that molecular beam is perpendicular to MW pulsed excitation.  

To ensure optimal expansion conditions also at higher stagnation pressure, i.e. maintain the 

low background pressure for a given pump capacity, the nozzle diameters can become 

impractically small. Therefore, in many cases, a pulsed jet (PJ) expansion is favorable for the 

observation of molecular complexes.
[32]
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In our FTMW spectrometer, the solenoid valve (General Valve, Series 9) is used to generate 

the supersonic expansion (nozzle diameter 0.5 mm), which is located above the antenna in the 

fixed mirror in a coaxial arrangement with the MW radiation.  

Typically, ~1% sample seeded in rare gas at a total pressure in range of 0.1~0.6 MPa is 

expanded into the high evacuated resonator chamber. The process is a rapid adiabatic expansion 

rather than effusive, which cools the molecular systems to very low vibrational temperature and 

generates molecules traveling along radial path without collision. Thus the transition lines are 

very narrow and the broadening of transitions is only due to that natural line width, which 

corresponds to a very high resolution. 

2.4 Experimental cycle 

An experimental cycle (as shown in Figure 2.4) starts with a pulse of a rare gas carrying the 

sample molecules (the stagnation pressures 0.1~0.6 MPa). Later on, after a certain delay, a MW 

pulse is applied to produce a macroscopic polarization of the species in the jet. Once the 

excitation stops with a very short delay, molecular relaxation gives rise to a transient emission 

signal. Finally, the molecular signal in the time domain (coherent emission) is processed by a fast 

FT giving the frequency domain spectrum. A new experimental cycle can start once the vacuum 

cavity has been evacuated. A repetition rate of 2 Hz is normally employed. For very weak signals 

thousands of cycles must be added coherently to obtain a better signal-to-noise (S/N) ratio. 

 
Figure 2.4 Pulse sequence for a single experimental cycle. 

The duration of the pulse, computer controlled, can be optimized depending on the 
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particular molecular systems of interest. The delay between the molecular and MW pulses is 

critical and must be optimized by taking account the character of the gas expansion such that the 

main body of the gas mixture is present in the cavity during the MW pulse. The delay between 

the MW pulse and the recording of the molecular decay is necessary to allow polarizing radiation 

to dissipate. 

The frequencies were determined after FT of the 8k data points time domain signal, 

recorded with 100 ns sample interval. The pulsed nozzle valve is mounted near the center of one 

of the mirrors in such a way that the supersonic beam propagates parallel to the resonator axis. In 

this set-up, all lines appear as enhanced by Doppler effect. The line position is the arithmetic 

mean of both Doppler component lines. The estimated accuracy of the frequency measurements 

is better than 3 kHz, resolution is better than 7 kHz. 
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Chapter 3 Non-covalent Interactions 

Atoms and molecules can interact together leading to the formation of either a new molecule 

(reactive channel) or a molecular cluster (non-reactive channel). The former is clearly a covalent 

interaction; the latter one in which a covalent bond is neither formed nor broken is termed a 

non-covalent interaction. 

Non-covalent interactions are known to act at distances of several angstroms or even tens of 

angstroms and overlap is thus unnecessary (in fact overlap between occupied orbitals leads only 

to repulsion). The reason for the attraction between interacting subsystems must be sought 

elsewhere and it can lie only in the electrical properties of the subsystems. Non-covalent 

interactions originate from interaction between permanent multipoles, between a permanent 

multipole and an induced multipole, and finally, between an instantaneous time variable multipole 

and an induced multipole. 

Various types of molecular complexes, stabilized by non-covalent interactions, have been 

studied by gas phase high resolution spectroscopy, which provides a wealth of data on their 

shapes, structures, intermolecular interactions and internal dynamics. 

In this chapter, the molecular non-covalent interactions have been classified. Their 

properties, mainly for rotational spectroscopy, have been briefly reviewed. 

3.1 Van der Waals interaction 

In the last decades, high resolution rotational spectroscopic technique has revealed itself to be 

particularly efficient in studying the nature of van der Waals (vdW) interactions which dominates 

the formation of the molecular complexes of rare gas (RG) atoms with organic molecules. 

Rotational spectra can give precise information on the large-amplitude motions typical of this 

kind of adducts,
[4]

 especially in conjunction with the observation of even small vibrational 

splitting. 
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Generally, complexes with aromatic molecules have the RG atom firmly linked to one side 

of the ring and the vdW motions do not generate observable inversion splittings. This is the case, 

for example, of the complexes of pyridine with all RG atoms, that is RG = He,
[33]

 Ne,
[34-35]

 

Ar,
[36-38]

 Kr,
[36]

 Xe.
[39]

 Vice versa, when a RG atom is linked to an open chain molecule, such as, 

for example, dimethylether, all the rotational spectra of its complexes, with RG = Ne,
[40]

 Ar,
[41-44]

 

Kr
[45]

 and Xe,
[28, 46]

 display rotational transitions characterized by inversion splittings. From 

centrifugal distortion effects it has been possible to estimate the dissociation energies of the 

complexes, which are higher for the aromatic molecules complexes, and which increase with the 

atomic number of RG. The tunneling splittings have been useful to determine the barrier to 

inversion along the tunneling motion. 

3.2 Hydrogen bond 

Hydrogen bond (HB), which involves many research areas, is the most important and attractive 

non-covalent interaction, and is often invoked to explain the energetic and structural features of 

inorganic, organic and biological chemical systems. 

Complexes with HBs are stabilized by electrostatic, induction (charge transfer), and 

dispersion energy terms. The electrostatic term, with its mainly dipole-charge and dipole-dipole 

contributions, is the most important and gives HBs their typical (and very important) 

directionality. In a HB X-H···Y-Z, an electropositive H atom intercedes between two 

electronegative species X and Y and brings them closer together. The HB is strong and 

orientational enough to hold two molecules together at normal temperature but weak enough to 

resemble the hydrophobic interaction.  

The physical forces involved in the HB must include electrostatic and inductive forces in 

addition to London dispersion forces. Forming a HB, the lengths of X-H bonds and, to a lesser 

extent, of the Y-Z bonds deviate from their equilibrium values. Generally, the stronger the HB, 

the more nearly linear is the H···Y-Z arrangement and the shorter the H···Y distance. The 

interaction energy per one HB is greater that at least a few times kT, where T is the temperature 

of the observation, in order to ensure its stability.  

3.3 Weak hydrogen bond 

Weak hydrogen bonds (WHB) such as C-H···O, C-H···F, CH···S, C-H··· represent often the 

linkages which hold together small molecules constituting a molecular complex. WHB’s 
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interaction energies are quite low, a few kJmol
-1

, and similar in value to those of vdW forces. 

Although a book is available, reviewing this kind of interaction, there are still some controversies 

on the justification to classify it as a hydrogen bond. A recent IUPAC meeting promotes a 

redefinition of “hydrogen bonding”, and it has even been suggested to consider these interactions 

only as contacts, in view of the fact that hydrogen atoms are generally in the external part of a 

molecular system.
[47]

 

A vast literature based on X-rays investigations has shown that it has the same directional 

properties of “classical” HB.
[48]

 Another technique which supplied plenty of information on 

WHBs is IR spectroscopy in rare gas solutions of molecular adducts,
[49]

 which leads also to a 

probably not so appropriate nomenclatures, such as “anti-hydrogen bond”
[50]

 or “improper blue 

shifted hydrogen bond”.
[51]

 We believe, however, that the investigations of the MW spectra of 

several molecular adducts generated in supersonic jets have provided the most precise 

information on the energies, structures and dynamics of such kind of interactions, obtaining in an 

environment free from the intermolecular interaction which takes place in the condensed 

phases.
[4]

 

3.4 Halogen bond 

Several of the investigated complexes were stabilized by a halogen bond (HaB), and these 

studies result in qualitative and quantitative details of non-covalent interactions. It has been 

found that in some cases the HaB is competitive or preferred to the HB. According to IUPAC, “a 

HaB occurs when there is evidence of a net attractive interaction between an electrophilic region 

associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the 

same, molecular entity”.
[52]

 

The importance of the HaB in supramolecular chemistry and in crystal engineering has 

been outlined in several papers.
[53]

 Reviews on the HaB are available,
[54]

 as well as its parallels 

with the HB.
[55]

 Most of the investigations dedicated to the HaB are based on solid-state X-ray 

diffraction.
[56]

 However, more precise information on the HaB, neat of solvent effects or solid 

state linkages, comes from studies of an isolated complex of two subunits created by this 

interaction. Such studies have been performed by vibrational spectroscopy on HaB bonded 

complexes in cryo solutions by van der Veken and collaborators.
[57]

 

Accurate details of the nature of the HaB in the gas phase can be obtained by rotational 

spectroscopy of molecular complexes, as shown in an overview by Legon.
[58]

 There, FTMW 

spectroscopy studies of a series of B···XY complexes, where B is the electron donor and XY is 
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the dihalogen molecule, are reviewed, to reveal some properties of the HaB interaction. For 

example, information on radial and angular geometry, on the intermolecular stretching forces and 

on the extent of charge redistribution upon formation of the HaB have been reported.
[59]

 These 

studies also proved that HaB is more linear than WHB, with B···X-Y angles close to 180°. 

3.5 The other interactions 

Besides aforementioned interactions, some other interactions such as dipole-dipole interactions, 

charge transfer interactions, ion-mediated interactions have been also found to be of interest, 

which could be in competition with the prevalent interactions in the molecular systems. 
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Chapter 4 Water Adducts 

4.1 Introduction 

Water is ubiquitous in chemical, physical and biological systems, and the knowledge of the ways 

it interacts with the various kinds of molecules would be helpful to understand the solvation 

processes in aqueous environments and its effects on gas-phase reactions.
[60-63]

 When we were 

studying the water adducts, two interesting points caught our attentions: 1) How the halogenation 

of the partner molecule affects the linkages between the two subunits, the internal dynamics of 

water and even the isotopic effect upon the deuteration of the water hydrogens; 2) the 

orientations of water in its complexes. 

The typology of the complexes that water forms with organic molecules has been described 

and classified.
[7]

 Generally, water links to alcohols, ethers, amines, amides or N containing 

aromatics through relatively strong (15–25 kJ mol
-1

) O–H···O, O–H···N or N–H···O HBs. With 

ethers,
[27, 64-67]

 aliphatic amines,
[68] 

diazines,
[69-71]

alcohols,
[7, 72]

 water acts as a proton donor. 

However, when forming adducts with phenols
[73]

 or NH groups inserted in an aromatic ring,
[74]

 

water takes the role of a proton acceptor. With amides
[75]

 and amino acids,
[76]

 water forms a two 

HBs ring structure with the double roles of proton donor and proton acceptor. 

With the freons containing hydrogens, water forms O-H···X relatively weak (X = F, Cl) HBs 

(4–6 kJ mol
-1

), such as O-H···F or O-H···Cl interactions.
[77-80]

 When both Cl and F atoms are 

present in a freon molecule, sometimes the O-H···Cl linkage is favorite,
[77]

 but the O-H···F one is 

preferred in other cases.
[78]

 However, when an aliphatic freon molecule is perhalogenated, then a 

HaB (6–10 kJ mol
-1

), rather than a HB is formed.
[81-82]

One should notice that, the properties of the 

partner molecules would definitely change the ways in which water will interact with them. 

In this chapter, the rotational results concerning on how halogenation affects the way of the 

partner molecules interacting with water will be discussed in detail, including three water 

adducts, perhalogenated ethylene (chlorotrifluoroethylene),
[83]

 halogenated ethyl methyl ether 



Water Adducts 

23 

(isoflurane)
[84]

 and trifluorinated anisole (,,,-trifluoroanisole).
[85]

  

4.2 Experimental 

Molecular clusters were generated in a supersonic expansion, under conditions optimized for the 

formation of the adducts.  

The gas mixture of ca. 1% of chlorotrifluoroethylene or isoflurane (commercial sample used 

without any further purification) in Helium at a stagnation pressure of ~ 0.25 MPa was passed 

over a sample of H2O (or H2
18

O, or D2O) and expanded through into the Fabry-Pérot cavity.  

Helium at a stagnation pressure of ~0.3 MPa was passed over a 1:1 mixture of 

,,,-trifluoroanisole (commercial sample, cooled to 0 C) and H2O (or H2
18

O, or D2O) and 

expanded into the Fabry-Pérot cavity. 

4.3 Chlorotrifluoroethylene···Water 

The geometries of the water-aromatic complexes are found to be dependent on their electronic 

structure that water may form two types of molecular complexes with aromatic ring structure.
[86]

 

The one stabilized due to H···π interactions with the OH bond pointing to the aromatic molecular 

plane has been well studied both theoretically
[87]

 and experimentally
[88-89]

. However, a stabilizing 

effect of the interaction between a lone pair of electrons in oxygen atom and the face of the π 

system (lone pair···π interaction, lp···π interaction) appears counter intuition.
[90]

 Ab initio 

calculations (BSSE counterpoise-corrected, cc, MP2(full)/6-31G(d,p)) revealed the lp···π 

interaction with energy 8.8 kJ mol
-1

 in the water–hexafluorobenzene complex.
[91]

 Compared with 

the H···π interaction between water and benzene
[86, 88]

, the presence of electron-withdrawing 

fluorine atoms should be the reason of the higher stability of the lp···π interaction between water 

and hexafluorobenzene.  

As a comparison of aromatic molecules, the unsaturated aliphatic molecules are easy to be 

taken into consideration. The simplest one in this case is ethylene (C2H4). The rotational 

spectrum of C2H4···H2O complex was firstly investigated by Peterson and Klemperer using the 

molecular-beam electric resonance technique.
[92]

 Latter, Andrews and Kuczkowski restudied the 

rotational spectrum of this complex with FTMW spectroscopy.
[93]

 It indicated that the complex 

would have a structure with the water hydrogen bonded to the C═C bond center forming an H···π 

bond.  

We are interested in the effect of the electric withdrawing of the halogen atoms in the 
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ethylene derivants. Chlorotrifluoroethylene (C2ClF3, Freon-1113) is a fully halogenated freon 

with a π-electrons system. The rotational spectrum of C2ClF3 has been reported previously.
[94]

 Its 

spectrum appeared very intense and then the assignment of the rotational spectrum of 

C2ClF3-H2O seems promising. No rotational investigations of an adduct of water with a molecule 

fully halogenated and with a π-electrons system has been reported. 

4.3.1 Theoretical calculations 

Before collecting the spectra, the full geometry optimization of the complex has been done with ab 

initio calculation at the MP2/6-311++G(d,p) level.
[13]

 Six plausible conformers were found. The 

shapes, the relative energies, the rotational constants and the values of the dipole moment 

components were obtained and collected in Table 4.1. 

Table 4.1 MP2/6-311++G(d,p) shapes and spectroscopic parameters of the six more stable forms of the complex 

C2ClF3–H2O 

 I 

 

II 

 

III 

 

A/B/C (MHz) 

 aa/ bb-cc/ab(MHz) 

a/b/c (D) 

∆E/∆EBSSE(cm-1) 

2356/1352/1234 

-24.4/-49.9/54.6 

1.9/1.4/0.6 

0/0[a] 

3948/876/717 

-71.1/-4.2/19.6 

3.2/0.8/0.0 

476/18 

3327/1057/802 

9.1/-84.1/48.9 

0.3/1.2/0.0 

645/214 

 IV 

 

V 

 

VI 

 

A/B/C (MHz) 

 aa/ bb-cc/ab(MHz) 

a/b/c (D) 

∆E/∆EBSSE(cm-1) 

2705/1145/804 

-62.2/129.2/35.1 

2.8/1.4/0.0 

667/261 

3146/1027/774 

15.0/-90.7/43.2 

2.4/1.0/0.0 

773/355 

3319/889/701 

11.8/-86.0/46.4 

1.3/2.4/0.2 

903/373 

[a] Absolute energies: -910.8993341 and -910.8957242 Eh, respectively. 

In order to have a better estimate of the energy differences, all intermolecular binding energy 

values were counterpoise corrected for BSSE.
[12]

 The most stable conformer, rather than to be 

stabilized by a HB or a HaB, is characterized by a lp···π interaction. 
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4.3.2 Rotational spectra 

We searched first for the μa-type transition of species I, which were expected to be the most 

intense ones. The J 2←1 μa–band was assigned first, and then many more μa- and μb- transitions 

have been measured. Only transitions corresponding to conformer I of Table 4.1 were observed 

and assigned. Each of them appeared as a multiplet of lines (see Figure 4.1) because of the 

nuclear quadrupole moment of the 
35

Cl (or 
37

Cl) nucleus. 

 

Figure 4.1 Recorded 31,2←21,1 transition of the observed conformer of C2ClF3–H2O showing the 35Cl hyperfine 

structure. Each line exhibits the Doppler doubling. 

The transition frequencies were fitted to the spectroscopic constants with Pickett’s SPFIT 

computer program,
[95]

 according to the following Hamiltonian: 

H = HR + HCD + HQ  (4.1) 

where HR represents the rigid rotational parts of the Hamiltonian. The centrifugal distortion 

contributions (analyzed using the S reduction and I
r
 representation)

[8]
 are represented by HCD. HQ 

is the operator associated with the 
35

Cl (or 
37

Cl) quadrupolar interaction. The obtained 

spectroscopic parameters are reported in the first column of Table 4.2.
 

After partial structural adjustments, the spectra of the 
37

Cl, H2
18

O, D2O and DOH 

isotopologues were searched and assigned. The rotational transition frequencies were fitted with 

the same procedures as described for the normal species, and the spectroscopic parameters are 

also shown in Table 4.2.  

The conformational assignment is straightforward: comparing the experimental values of 

the rotational and quadrupole coupling constants of Table 4.2 to the theoretical values of Table 

4.1, one can see that the match is acceptable only for conformer I. 
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Table 4.2 Spectroscopic constants of all measured isotopologues of C2ClF3–H2O 

[a] Uncertainties (in parentheses) are expressed in units of the last digit. [b] Fixed to the value obtained for normal species. [c] 

Number of transitions in the fit. [d] Standard deviation of the fit. 

It is presumable that water undergoes a nearly free rotation in the complex. Only one 

spectrum was observed, indeed, for the mono-deuterated species, but the intensities of its 

rotational transitions are the double of those of the di-hydrogenated and of the bi-deuterated 

species when the ratio H/D is about 1:1. This indicates that the spectra of the two 

mono-deuterated species are not distinguishable, in accord a nearly free internal rotation of water 

about its symmetry axis. In none of the isotopologues, splittings attributable to the torsional 

motion of water were observed. That means what transitions we measured were only belonging 

to the m = 0 torsional state. 

4.3.3 Molecular structure 

According to what mentioned above, the angular position of water cannot be determined from 

the isotopic substitution, although it is possible to estimate that the hydrogen atoms are oriented 

far away from the C2ClF3 unit. The rs substitution coordinates
[16]

 can be reliably determined, 

however, for the Cl and O atoms. The obtained values are shown in Table 4.3, and there 

compared to the values calculated with a partial r0 geometry. In such a r0 geometry, the 

parameters defining the position of the O atom have been modified from the ab initio values 

(rO···C1 = 2.8286 Å, OC1C2 = 101.8°, OC1-C2Cl = 87.8°) to the empirically corrected values 

(rO···C1 = 2.947 Å, OC1C2 = 100.5°, OC1-C2Cl = 88.4°) which best reproduce the rotational 

constants of the C2
35

ClF3-H2O, C2
37

ClF3-H2O and C2ClF3-H2
18

O isotopologues. 

 C2
35ClF3-H2O C2

37ClF3-H2O C2ClF3-H2
18O C2ClF3-D2O C2ClF3-DOH 

A/MHz 2265.0902(5)[a] 2254.829(2) 2218.789(1) 2182.9360(6) 2235.4866(6) 

B/MHz 1321.8363(4) 1298.3329(4) 1282.8122(4) 1263.5962(5) 1292.4213(4) 

C/MHz 1224.4208(2) 1201.2806(4) 1189.0918(4) 1171.0099(5) 1199.7660(4) 

DJ/kHz 3.103(6) 2.972(9) 3.146(6) 3.282(8) 3.473(7) 

DJK/kHz -6.46(3) [-6.46][b] -8.69(6) -8.41(6) -8.71(5) 

DK/kHz 17.55(4) [17.55] 21.4(1) 20.84(8) 22.58(7) 

d1/kHz -0.482(5) [-0.482] -0.546(5) -0.723(6) -0.714(6) 

d2/kHz -0.185(7) [-0.185] -0.164(8) -0.216(8) -0.248(6) 

aa/MHz -24.14(1) -20.51(3) -20.03(1) -19.40(2) -21.36(1) 

bb/MHz -13.57(1) -9.22(1) -16.24(1) -17.10(2) -15.48(1) 

cc/MHz 37.71(1) 29.73(1) 36.27(1) 36.50(2) 36.84(1) 

ab/MHz -54.8(4) -43(1) -46.6(6) -50.1(8) -49.8(4) 

N[c] 86 44 80 72 92 

σ[d]/kHz 3.1 2.5 3.4 3.9 4.1 
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Table 4.3 rs coordinates (Å) of the Cl and O atoms 

 a B c 

 Exptl. Calc. Exptl. Calc. Exptl. Calc. 

O ±2.177(1)[a] 2.135 ±1.152(1) -1.223 ±1.079(1) 1.329 

Cl ±1.870(1) -1.874 ±0.736(2) -0.735 [0][b] -0.014 

[a] Uncertainties (in parentheses) are expressed in units of the last digit. [b] Slightly imaginary value: set to zero. 

One can note that the c-coordinate of the oxygen atom is not satisfactorily reproduced, 

probably due to the large amplitude bending motions of the full molecule of water with respect to 

C2ClF3. 

 

Figure 4.2 Conformation and principal axis of the observed species (conformer I) of C2ClF3-H2O. 

The shape and atom numbering of the observed conformer are shown in Figure 4.2. The 

observed lp- interaction can be explained in terms of an electron-withdrawing from the 

-electronic system towards the halogen atoms (especially the F atoms) generating a positive 

potential above the carbon atom C1. This effect has been theoretically described, and the region 

of low electronic density is called “-hole”.
[96]

 

MP2/6-311++G(d,p) counterpoise-corrected ab initio calculations supplied for the 

dissociation energy of the complex a value of 6.6 kJ mol
-1

, which can be considered, in a first 

approximation, the energy of the lp···π interaction. 
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4.4 Isoflurane···Water 

The molecular mechanism describing the interactions of anesthetics with biological substrates 

has been the subject of several investigations. Most evidences suggest that anesthesia may affect 

the organization of fat molecules, or lipids, in a cell’s outer membrane — potentially altering the 

ability to send signals along nerve cell membranes.
[97-98]

 The full-scale experimental descriptions 

of anesthetic mechanisms are usually ascertained using large-scale molecular modeling.
[99]

 

The inhaled anesthetic isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether, 

C3H2ClF5O, ISO since now on), contains several different sites for stereospecific interaction, 

which might imply the interaction through WHB or HaB with neuronal ion channels and on the 

protein binding in the central nervous system.
[98]

 The intrinsic structural properties of bare ISO 

have been revealed in the isolation conditions of a supersonic expansion using FTMW 

spectroscopy,
[100]

 and two conformers (trans and gauche) distinguished by the orientation of the 

difluoromethyl group have been identified. These spectroscopic data allow the study on the 

intermolecular complex or hydration aggregates involving ISO. 

When forming the complex with water, ISO has several active sites which could bind with 

the solvent molecule through different interactions: (1) the ether oxygen could act as proton 

acceptor binding with water through O-H···O HB; (2) thanks to the electron withdrawing effect 

of the halogen atoms, the aliphatic hydrogen atoms could act as proton donors linking water with 

C-H···O WHBs; (3) HaBs could be formed between the halogen atoms and the negative site of 

water oxygen, resulting from the “σ-hole”.
[59, 101]

 In order to figure out what kind of interaction 

dominates the hydration aggregates of ISO, herein we conduct the investigation of 1:1 complex 

of ISO-H2O with FTMW spectroscopy. 

4.4.1 Theoretical calculations  

We preliminarily explored the conformational space of the complex by Molecular Mechanics, 

using conformational search algorithms implemented in MacroModel 9.2 within the MMFFs 

force field.
[15]

 We found 88 different geometries within an energy window of 800 cm
-1

 which, at 

the MP2/6-311++G(d,p) level
[14]

 converged to five plausible conformers. Further vibrational 

frequency calculations at the same level proved four conformers, shown in Table 4.4, to be real 

minima. 

These calculations provided, besides the relative energies, the rotational, quadrupole 

coupling and first order centrifugal distortion constants. Also the components of the electric 
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dipole moments have been estimated. Two structural families, corresponding to the trans and 

gauche (T and G, respectively) monomers, can be distinguished by the orientation of the –CHF2 

group with respect to the ether group of ISO. In each family, there are two different ways to link 

the two subunits together, labeled as “1” (C-H···O WHB, water acting as proton acceptor) and “2” 

(O-H···O hydrogen bond, water acting as proton donor). The calculations indicate that in the 

global minimum (G2) the configuration adopted by the ISO is apparently the less stable one (G) 

in the isolated monomer.
[100]

 However, when BSSE
[12]

 are taken into account, the trans form T2 

turns out to be the global minimum. Anyway, the theoretical values are very close and predicting 

three structures (T2, G2 and T1) almost iso-energetics, these differences are within the error of 

the theoretical method (Table 4.4). 

Table 4.4 MP2/6-311++G(d,p) spectroscopic parameters of the plausible conformers of ISO-H2O. 

 T1 T2 G1 G2 

ΔE/cm-1 40 235 791 0[a] 

ΔEBSSE/cm-1 99 0[b] 789 11 

A,B,C/MHz 1055,670,626 1014,625,584 1116,617,566 1058,638,553 

|μa|,|μb|, |μc|/D 3.4, 0.2, 0.8 0.4, 1.1, 0.8 0.7, 1.7, 0.7 2.0, 4.3, 1.9 

DJ/kHz 0.12 0.17 0.09 0.05 

DJK/kHz 0.14 0.06 -0.16 0.20 

DK/kHz 0.07 0.04 0.27 0.02 

d1/kHz -0.04 -0.04 0.03 -0.02 

d2/kHz -0.01 -0.04 -0.01 -0.01 

χaa/MHz 32.5 31.8 33.9 32.1 

χbb-χcc/MHz -86.05 -20.82 -75.2 -15.2 

χab,χac,χbc/MHz 18.9,7.3,29.2 16.6,12.4,52.0 0.1,0.3,38.6 11.2,7.8,51.6 

 

    

[a] E/Eh = -1224.604444. [b] E/Eh = -1224.600173. 

4.4.2 Rotational spectra 

The rotational spectra of ISO-H2O were predicted from the theoretical values of the rotational 

and quadrupole coupling constants of the four forms of the complex. After scanning wide 

frequency ranges, the spectrum of only one rotamer was detected and assigned in the supersonic 

expansion. 13 transitions (Ka from 0 to 6) of the μa-R branch with J = 7←6 were assigned in the 

first stage. Three more μa-R bands with Jupper from 6 to 9 were then measured. Finally, we could 

measure six weaker μc-R transitions. No μb- type lines were observed possibly because of the 

quite small dipole moment component. Each transition is split into several component lines due 
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to the quadrupole effect of the 
35

Cl (or 
37

Cl) nuclei, as shown, for example, in Figure 4.3 for the 

707←606 transition of the 
35

Cl isotopologue. 

 

Figure 4.3 Recorded 707←606 rotational transition of the observed conformer of ISO–H2O showing the 35Cl 

hyperfine structure. Each component line exhibits the Doppler doubling. 

The frequencies were fitted to the Watson’s “S” reduced semi-rigid rotor Hamiltonian
[8]

 

within the I
r
 representation, according to the Hamiltonian Eq. (4.1). The spectroscopic constants 

were derived by direct diagonalization using Pickett’s SPFIT program.
[95]

 

Table 4.5 Spectroscopic parameters of the three isotopologues of ISO-H2O 

 ISO(35Cl)-H2O ISO(37Cl)-H2O ISO-H2
18O 

A/MHz 1034.7187(4)[a] 1018.05(2) 1007.4568(6) 

B/MHz 668.9313(3) 667.506(1) 654.782(2) 

C/MHz 624.0039(3) 618.1093(6) 618.1754(7) 

DJ/kHz 0.785(1) 0.8320(5) 0.95(1) 

DK/kHz 0.608(6) [0.608] [0.608] 

d1/kHz -0.310(1) -0.335(4) -0.46(1) 

d2/kHz -0.0121(5) [-0.0121][b] -0.16(1) 

χaa/MHz 33.00(2) 25.60(7) 33.01(2) 

χbb-χcc/MHz -77.92(8) -66.24(8) -57.32(8) 

N[c] 139 36 43 

σ/kHz [d] 3.3 3.7 4.1 

[a] Uncertainties (in parentheses) are expressed in units of the last digit. [b] Fixed to the value obtained for normal species. [c] 

Number of transitions in the fit. [d] Standard deviation of the fit. 
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Following the same procedure, the μa-type spectrum of the 
37

Cl isotopomer has been 

measured and assigned in natural abundance. The determined parameters of both isotopologues 

are listed in Table 4.5. 

Later on, the rotational spectra of three additional heavy water isotopologues (ISO-H2
18

O, 

ISO-DOH, ISO-D2O) have been successfully assigned. The rotational assignment of ISO-H2
18

O 

was straightforward, and its spectroscopic constants obtained are reported in the third column of 

Table 4.5. 

 

Figure 4.4 The internal rotation of water is apparent in the doubling of all hyperfine components of the 606←505 

rotational transition of ISO–D2O. Each component is further split by an instrumental Doppler effect. 

The rotational spectra of the deuterated species displayed some unexpected features, which 

raised some interpretation problems. On one hand, the rotational transitions of ISO-D2O are split, 

apart from the quadrupole hyperfine structure, into doublets with component lines separated by 

about 1 MHz (see Figure 4.4), indicating a finite V2 barrier hindering the internal rotation of the 

D2O moiety in the complex. On the other hand, a single rotational spectrum of the ISO-DOH 

species could be assigned, suggesting the two water hydrogens to be equivalent to each other; an 

experimental evidence compatible with a near free or low V2 barrier. Although it appears 

difficult to estimate relative populations from intensity measurements, it seems, from intensity 

measurements of some nearby transitions, that the mono-deuterated species is almost as twice 

intense than the bi-deuterated and the normal species in appropriate H/D abundance ratio 

conditions. Probably the mass effects related to the considerable heavier top when we have D2O 

rather than H2O in the complex, makes the internal rotation effects observable in the first case, 



Water Adducts 

32 

even within a low V2 barrier. Similar effects have been observed previously in some complexes 

of water with organic molecules.
[7]

 

Table 4.6 Spectroscopic parameters of the isotopologues with deuterated water.[a] 

 
ISO(35Cl)-D2O ISO(35Cl)-HDO 

m = 0 m = 1  

A/MHz 999.55(2)[b] 999.28(2) 1022.25(2) 

B/MHz 655.740(1) 655.870(2) 665.106(1) 

C/MHz 610.4737(6) 610.3869(7) 615.3569(5) 

DJ/kHz 0.698(5) 0.705(7) 0.637(6) 

d1/kHz -0.268(4) -0.266(6) -0.242(4) 

χaa/MHz 32.1(2) 32.0(2) 

χbb-χcc/MHz -48.4(8) -65.36(8) 

N[c] 62 37 

σ/kHz [d] 6.4 5.8 

[a]The DK and d2 centrifugal distortion parameters have been fixed to the values of the parent species. [b] Uncertainties (in 

parentheses) are expressed in units of the last digit. [c] Number of transitions in the fit. [d] Standard deviation of the fit. 

The noticeable low values of the quadrupole coupling parameter χbb-χcc for the ISO-H2
18

O 

and ISO-D2O species with respect to that of the normal species are interpretable in terms of a 

considerable rotation of the principal inertial axes system upon isotopic substitution. 

The transitions frequencies of the two states of the bideuterated species have been fitted 

with a common set of centrifugal distortion constants. The spectroscopic parameters are shown 

in Table 4.6 for the two deuterated water isotopologues. 

4.4.3 Conformational assignment  

Concerning the conformational assignment, the comparison of Tables 4.5 and 4.4 shows that the 

experimental rotational and quadrupole coupling constants match the theoretical values only for 

conformer T1. In addition, b and c type spectra could not be observed, confirming the 

assignment to T1. This result is apparently in contrast with the theoretical conformational 

energies. However, the presence of T2 in the jet cannot be excluded totally due to its low a 

dipole moment component, which is about 1/10 of the a value of T1, the observed conformer. 

Since the spectrum is relatively weak, we cannot exclude the T2 conformer to be as much 

abundant as T1. Also for conformer G2 we could not observe any line, in spite of its high a 

value. In this case, we can state that its abundance should not exceed 1/10 of that of T1. 
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4.4.4 Structural information.  

In the observed conformer, T1, water is linked to ISO through a C-H···O WHB (see Figure 4.5), 

and plausibly undergoes a near free internal rotation around its C2 axis. 

 

Figure 4.5 Sketch of the observed conformer of ISO-H2O with atom numbering 

Within this hypothesis, the position of the water hydrogens is undetermined, and a tentative 

determination of the their substitution coordinates
[16]

 gave meaningless (imaginary) values. 

However, reliable values of the rs substitution coordinates of the Cl and OH2O atoms have been 

obtained, as shown in Table 4.7.  

Table 4.7 The rs coordinates of substituted atoms of ISO-H2O compared with calculated values 

 a/Å b/Å c/Å 

 Exptl. Calc.[a] Exptl. Calc. Exptl. Calc. 

Cl ±0.573(3)[b] -0.601 ±1.874(1) -1.874 ±0.739(2) -0.728 

OH20 ±1.611(1) 1.535 ±0.960(2) 1.320 ±2.419(1) -2.312 

[a] Deduced from the partial r0 structure (see text). [b] Uncertainties (in parentheses) are expressed in units of the last digit. 

The rs values are in a good accord with the values calculated with an effective partial r0 

structure, in which the WHB parameters have been fitted to the values rO13H12 = 2.153(3) Å and 

O13H12C2 = 180.0(4)°, respectively. Their ab initio values are: rO13H12 = 2.084 Å and 

O13H12C2 = 175.9°, respectively. 
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4.5 Trifluoroanisole···Water 

α,α,α-trifluoroanisole (trifluoromethoxybenzene, C6H5OCF3, TFANI from now on) is a 

halogenated ether with an electronic  system. Water could then interact with this molecule in 

several ways. It has been found that in the isolated molecule the substitution of the three methyl 

hydrogens with fluorine atoms change the position of the side chain from the in-plane 

configuration of anisole
[102]

 to a perpendicular shape.
[103]

 In the 1:1 complex anisole-water, water 

acts mainly as proton donor, but the deuteration of water produces a conformational change, as 

shown in Figure 4.6. The value of the θ angle decreases from 138° to 128°, while the secondary 

interaction O···HMe is replaced by the O···HPh one.
[27]

 

 
Figure 4.6 The deuteration of water produces a conformational change in the anisole-water complex.[7, 27] 

It is interesting to investigate how the fluorination of the CH3 group of anisole will change 

these features of the complex with water. Herein we studied the rotational spectrum of the adduct 

TFANI-water with PJ- FTMW technique. The results are presented below. 

4.5.1 Theoretical calculation 

We preliminarily explored the conformational space of the complex by Molecular Mechanics, 

using conformational search algorithms implemented in MacroModel 9.2 within the MMFFs force 

field.
[15]

 We found 100 different geometries within an energy window of 13 kJ mol
-1

 which, at the 

MP2/6-311++G(d,p) level
[14]

 converged to six plausible conformers. Further vibrational 

frequency calculations at the same level proved the four conformers, shown in Table 4.8, to be real 

minima and provide additional centrifugal distortion constants. All these conformers are 

characterized by hydrogen bonds, with water acting as a proton donor (conformer II and III) or 
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having the double role of proton donor and proton acceptor (conformer I and IV). 

Table 4.8 MP2/6-311++G(d,p) calculated energies and spectroscopic parameters of the plausible conformers of 

TFANI-water 

 

I II 

  

A,B,C/MHz 1309,662,505 1502,620,571 

μa,μb,μc/D 1.1,-0.6,-0.3 -2.1,-2.4,-0.6 

DJ/kHz 34.98 53.18 

DJK,DK/MHz 0.62,0.53 0.64, 0.10 

d1,d2/kHz -2.65,-6.17 1.87,3.90 

ΔE,Δ(E+ZPE),ΔEBSSE/kJ·mol-1 0.0,[a] 0.5,0.0[b] 0.5,0.0,[c] 3.4 

ED
[d]/kJ·mol-1 12.2 8.8 

 

III IV 

 
 

A,B,C/MHz 1224,627,531 1239,673,482 

μa,μb,μc/D 2.8,-2.9,0.0 0.6,0.3,-0.3 

DJ/kHz 48.78 53.09 

DJK,DK/MHz 1.70,-1.08 0.18,1.41 

d1,d2/kHz -2.37,10.07 -10.33,0.78 

ΔE,Δ(E+ZPE),ΔEBSSE/kJ·mol-1 2.0,0.1,3.7 2.7,2.3,2.1 

ED/kJ·mol-1 8.5 10.1 

[a] Absolute energy: -719.396479 Eh; [b] Absolute energy: -719.3754723 Eh; [c] Absolute energy: -719.267205 Eh; [d] 

Calculated dissociation energy with BSSE correction 

All intermolecular binding energy values were counterpoise corrected for BSSE.
[12]

 It 

resulted the conformer I, with O-H···O and C-H···O hydrogen bonds, to be the global minimum. 

Therefore the dissociation energies have been estimated, inclusive of BSSE corrections. All the 

theoretical parameters are reported in Table 4.8. 
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4.5.2 Rotational Spectra 

We started our search with frequency scans for μa-type R-branch transitions belonging to 

conformer I, which, according to the theoretical calculations is the most stable species. We could 

first identify the J = 8 ← 7, K-1 = 0 and K-1 = 1 transitions. Then the assignment was extended to 

many R-type transitions with Jupper from 7 to 11 and with K-1 up to 5. Later on, some much weaker 

μb and μc transitions could be measured.  

 

Figure 4.7 0+ and 0- component lines of the 818 ← 717 transition of TFANI-H2O. Each component is further split 

by an instrumental Doppler effect. 

Each transition appeared as a doublet, with a relative intensity ratio of the two component 

lines about 1:3, as in Figure 4.7 for the μa- type transition 818 ← 717. This ratio corresponds to the 

statistical weight expected for the internal rotation of water around its C2v axis, which implies the 

exchange of a pair of equivalent hydrogen atoms (fermions with I = 1/2). According to this, we 

could assign the weaker line of the two components to the ground state (0
+
). The splitting space is 

quite smaller than that of anisole-water, outlining a higher barrier to internal rotation. 

Using Pickett’s SPFIT program,
[95]

 the 96 rotational transition frequencies were fitted by the 

Hamiltonian: 

H = HR(0
+
) + HR(0

-
) + HCD (4.2) 

HR(0
+
) and HR(0

-
) represent the rigid rotational parts of the Hamiltonian for the 0

+
 and 0

-
 states, 

respectively. The centrifugal distortion contributions are represented by HCD. Watson S-reduction 

and I
r
-representation have been adopted.

[8]
  

The transition frequencies of the two tunneling components did not show any appreciable 
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interaction between the two states, so that it was not possible to determine parameters such as ∆E 

(the energy difference between the two states), or Coriolis’ coupling terms. The fitted rotational 

and centrifugal distortion constants are reported in the first two columns of Table 4.9, where the 

centrifugal distortion constants for both sub-states are fixed to be the same. The differences 

between the rotational constants of the 0
+
 and 0

-
 states would, in principle, allow estimating the 

barrier to internal rotation of water, as in the cases, for example, of phenol-water
[73]

 or 

chlorofluoromethane-water.
[77]

 A knowledge of the associate structural relaxations is required for 

this purpose, because it strongly affect the reduce mass of the motion. However, in the case 

TFANI-H2O we could not determine these structural relaxations because we did not succeed in 

finding, by ab initio calculations, the pathway of the motion. 

Table 4.9 Spectroscopic parameters of the 0+ and 0- sub-states of the parent species and its H2
18O isotopologue of 

the observed conformer of TFANI-water. 

 

TFANI-H2O  TFANI-H2
18O 

0+ 0- 0+ 0- 

A/MHz 1291.6717(6)[a] 1292.6534(6)  1233.72(1) 1233.70(1) 

B/MHz 656.3183(2) 656.3193(2)  652.709(4) 652.713(4) 

C/MHz 500.8509(2) 500.8532(2)  490.0453(2) 490.0479(2) 

DJ/kHz 0.0385(7)  [0.0385][b] 

DJK/kHz 0.901(8)  [0.901] 

DK/kHz 0.64(2)  [0.64] 

d1/Hz -5.0(3)  [-5.0] 

d2/Hz -8.2(2)  [-8.2] 

[c]/kHz 2.5  2.7 

N[d] 96  18 

[a] Error in parentheses in units of the last digit. [b] Fixed at the values of the parent species.[c] RMS error of the fit. [d] 

Number of lines in the fit. 

After the empirical adjustment to the molecular structure (applying the difference between 

the calculated and experimental values to the rotational constants), the spectra of four additional 

isotopologues, the ones with H2
18

O, HOD, DOH and DOD, have been assigned. The transitions of 

the H2
18

O, whose spectroscopic parameters are listed in the last columns of Table 4.10, display the 

same splitting features observed for the parent species. For the three deuterated species the water 

internal rotation splittings have not been observed according to a heavier reduced mass of the 
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motion.
[7]

 The obtained rotational constants are listed in Table 4.10. For the isotopically substituted 

species the centrifugal distortion constants have been fixed at the values of the parent (all 

protonated) species. 

Table 4.10. Spectroscopic parameters of the three deuterated isotopologues of TFANI-water[a] 

 TFANI-HOD TFANI-DOH TFANI-DOD 

A/MHz 1252.33(1)[b] 1274.47(1) 1236.158(1) 

B/MHz 652.523(3) 653.994(3) 650.161(4) 

C/MHz 493.0183(2) 498.1981(2) 490.4597(2) 

[c]/kHz 3.7 2.6 4.0 

N[d] 9 9 9 

[a] The quartic centrifugal distortion parameters have been fixed at the values of the parent species. [b] Error in parentheses in 

units of the last digit. [c] RMS error of the fit. [d] Number of lines in the fit. 

The obtained rotational constants match only the calculated values of species I, making the 

conformational assignment straightforward. No lines belonging to the other conformer could be 

identified. This could be due to the conformational relaxation to the most stable conformer upon 

supersonic expansion. It has, indeed, been shown that this kind of relaxation takes place easily 

when the inter-conversion barrier is smaller than 2kT.
[104]

 

4.5.3 Molecular Structure 

An Ow-H···Oeth hydrogen bond and a weaker C-H···Ow interaction hold the two units together in the 

observed conformer of the complex, as shown in Figure 4.8. 

 

Figure 4.8 Sketch of the observed conformer of TFANI-water with atom numbering 
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Due to the internal rotation of water and, plausibly, to the Ubbelohde effect
[24]

 upon the 

H→D substitution, the position of the water hydrogens is undetermined. Therefore, a tentative 

determination of the substitution coordinates
[16]

 of the water hydrogens gave meaningless 

(imaginary) values. However, reliable values of the rs substitution coordinates of the OH2O atom 

have been obtained, as shown in Table 4.11, where the values from the partial r0 structure are also 

given as comparison. 

Table 4.11 rs coordinates of the water oxygen atom in TFANI-water. 

 a/Å b/Å c/Å 

Exptl. ±1.397(1)[b] ±3.0439(5) ±0.325(5) 

Calc.[a] 1.371 3.058 -0.500 

[a] Calculated with the r0 structure in Table 4.12; [b] Error in parentheses in units of the last digit. 

The partial r0 structure, was obtained by adjusting three structural parameters (RH12O17, 

C2H12···O17 and O17···C2H12C1), whilst keeping the remaining parameters fixed to their ab 

initio values, in order to reproduce the experimental rotational constants of TFANI-H2O and 

TFANI-H2
18

O. The fitted and derived hydrogen bond parameters are reported in Table 4.12, and 

there compared to the ab initio values.  

Table 4.12 r0 and re hydrogen bond parameters of TFANI-water. 

Fitted parameters 

 RH12O17/Å C2H12···O17/° O17···C2-H12C1/° 

r0
 2.574(5)[a] 130.8(5) -36.6(3) 

re
 2.447 132.0 -36.4 

Derived parameters 

 RO7H18/Å O7···H18O17/°  

r0 2.294(5) 140.5(5)  

re 2.170 143.1  

[a] Uncertainties (in parentheses) are expressed in units of the last digit. 

4.6 Conclusions 

The rotational spectra of the water adducts of the three halogenated molecules have indeed 

shown how halogenations affect the way of the partner molecules to interact with water. When 
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the ethylene is full halogenated, as C2ClF3, a lp···π interaction is favorite rather than WHB or 

HaB. This is, to our knowledge, the first time that this interaction is observed and described 

through a rotational study in a molecular complex.  

Although water still links with the halogenated ether, like ISO and TFANI here, through 

WHB or HB, the role of water to act as proton donor or acceptor could be different with respect 

to that of water to act with the non-halogenated ether. For ISO-H2O, the water is thus linked to 

ISO, as a proton acceptor, through a linear C-H···O WHB. Besides the normal species, four more 

isotopologues of the complex were also observed and assigned, consistent with this interpretation. 

The observed splittings in the bideuterated species and the indistinguishability of the two 

monodeuterated species, though apparently puzzling, could indicate an almost free internal 

rotation of water. Thus only the position of the water oxygen is determinable. Instead, the 

observed conformer of TFANI-H2O is stabilized an Ow-H···Oeth interaction while the secondary 

C-H···Ow HB is also contributable to the stability of the complex, where water has the double 

role as the proton donor and proton acceptor which is different with that in the complex 

anisole-water, water acts as proton donor forms a strong hydrogen bride – bifurcated – with the 

ether oxygen atom. 

For the water adducts, there’s another effect also deserving attentions. As outlined in many 

cases, the large amplitude motions of water and the possible Ubbelohde effect associated to the 

deuterations in the HBs do not allow a reliable determination of the position of the water 

hydrogens.
[7, 67-69, 71, 79]

 This is mostly because that the orientation of the water molecule in the 

complex is not precisely determined. It brings to mind the fact that in the complexes of organic 

molecules with ammonia, the effective orientation of NH3 with respect to the partner molecule has 

been often obtained from the values of the 
14

N quadrupole coupling constants.
[105-106]

 This kind of 

information is not available, however, in complexes of organic molecules with water involving the 

two most common oxygen isotopes, 
16

O and 
18

O, which have nuclear spin quantum number I = 0. 

The nucleus 
17

O has I = 5/2, so that the rotational transitions of molecular complexes containing 

H2
17

O are split in several quadrupole component lines. From such a hyperfine structure it is 

possible to determine the 
17

O quadrupole coupling constants, whose values are related to the 

average orientation of the water subunit in a complex, like the 1:1 complexes of water with 

ethylene
[93]

 and p-difluorobenzene.
[107]

  

The average orientations of water in its complexes with difluoromethane,
[108]

 

tetrafluoromethane
[109]

 and 1,4-dioxane have been obtained from the rotational studies of the 
17

O 

isotopologues, and the details are available in the corresponding published papers. 
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Chapter 5 Complexes of Freons 

5.1 Introduction 

Freon is the family of a number of halocarbon products which are stable, nonflammable, and 

moderately toxic gases or liquids which have typically been used as refrigerants and as aerosol 

propellants. In chemistry, some of them are also frequently used as the solvent.  

Considerable attention has been dedicated during the last years to chlorofluorocarbons 

(CFCs) and to their impact on the atmospheric processes, in relation to both the role in ozone 

reduction and in the greenhouse effect. The complexation of CFCs with atmospheric water and 

pollutants of the atmosphere affects their reactivity and it seems to accelerate, for example, the 

decomposition rate of freons in the atmosphere.
[110]

 

In the rotational spectroscopic studies, CFCs are usually used as the prototype molecules 

involving in the complexes of WHB or HaB. Generally speaking, in the hydrogenated CFCs, the 

C-H group can be act as the proton donor, enhanced by the electron withdrawing of the halogen 

atoms, to form the WHBs with the negative sites of the partner molecules.
[78, 111]

 However HaBs 

are favorable for the cases of fully halogenated CFCs. 
[82, 112-113]

 due to the so called “σ-hole”.
[59, 

101]
 If a perhalogenated CFC has a π-electron system as well, the electron withdrawing of 

halogens will generate a positive region above the π system (π-hole) which is ready to interact 

with the negative sites, that is the case what has been discussed in Chapter 4 for the complex 

C2F3Cl-water.
[83]

  

A lot of our rotational studies were dedicated to the 1:1 complex between different CFCs or 

between CFCs with other organic molecules. An amount of information on the interactions 

between the two subunits and on the internal dynamics from the rotational spectra with or 

without the nuclear hyperfine structures has been gathered and is available in the corresponding 

published papers.  

Here in this chapter, I will present the most interesting results we have obtained from the 
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FTMW studies of 1:1 complexes involving CFCs to showcase the abilities to extract the rich 

informations of the molecular systems: 1) difluoromethane···dichloromethane concerning the 

hyperfine structure in the rotational spectrum; 2) chlorotrifluoromethane···fluoromethane 

concerning the contribution of the free internal rotation of the –CF3 group to the rotational 

constants. 3) difluoromethane···formaldehyde concerning the internal rotation of formaldehyde 

around its symmetric axis;
[111]

 and 4) trifluoromethane···benzene concerning the Ubblelohde 

effect in WHB.
[114]

  

5.2 Experimental  

Molecular clusters were generated in a supersonic expansion, under conditions optimized for the 

dimer formation 

A mixture of 2% difluoromethane and dichloromethane in helium at a stagnation pressure 

of ~ 0.5 MPa was allowed to expand into the Fabry-Pérot cavity.  

A mixture of 2% chlorotrifluoromethane and fluoromethane in helium at a stagnation 

pressure of ~ 0.5 MPa was allowed to expand into the Fabry-Pérot cavity.  

A mixture of 2% difluoromethane in helium a stagnation pressure of ~ 0.3 MPa was 

allowed to flow over formaldehyde (heated up to 60 °C) and expanded into the Fabry-Pérot 

cavity.  

A mixture of 2% trifluoromethane-(d) (CDN Isotopes) in Helium a stagnation pressure of ~ 

0.3 MPa was allowed to flow over benzene (cooled to 0° C) and expanded into the Fabry-Pérot 

cavity.  

5.3 Difluoromethane···Dichloromenthe 

Hydrogenated CFCs have sites which can act as weak proton donors or weak proton acceptors, 

leading to an easy formation of their oligomers or hetero adducts, with the subunits held together 

by a net of WHBs. The aliphatic hydrogen atoms have, indeed, been found to act as proton 

donors, enhanced by the electron withdrawing effect of the halogen atoms. Difluoromethane 

(CH2F2) can be regarded as the prototype for this kind of ambivalent molecules. Its oligomers, 

(CH2F2)n, with n = 2-4, have been recently characterized by rotational spectroscopy, which 

pointed out that the dimer,
[115]

 trimer
[116]

 and tetramer
[117]

 of CH2F2 are stabilized by a network of 

3, 9, and 16 C-H···F-C WHBs, respectively. In the hetero adduct CH3F-CHF3, the two subunits 

are linked together by three weak C-H···F-C WHBs, while the two subunits rotate through low V3 
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barriers around their symmetry axes.
[118]

 

Only one adduct between freon molecules containing halogen atoms other than fluorine has 

been investigated by rotational spectroscopy, i. e. CH2ClF with FHC=CH2, which presents a 

combination of C-H···F-C and C-H···Cl-C WHBs.
[119]

 No complexes between freons with two 

heavy halogen (Cl, Br, I) have been investigated. This because unlike the F atom, whose nuclear 

spin quantum number is I = 1/2, the other halogens have I = 3/2 or 5/2 resulting in complicated 

quadrupolar hyperfine structures in the rotational spectra of the multi-halogenated molecular 

systems. From a spectroscopic point of view, especially for a system with multiple quadrupolar 

nuclei, the interpretation of the rotational spectra can be a challenging task. For example, the 

rotational spectra of even very simple molecules with two heavy halogen atoms have been 

reported only in a few cases. Accurate information of the methylene di-halide series, CH2Cl2,
[15]

 

CH2Br2,
[16]

 and CH2I2,
[120-121]

 became available only in recent two decades. But, as far as we 

know, no information on their complexes is available.  

Herein, we decide to investigate the rotational spectrum of the 1:1 complex between CH2Cl2 

and CH2F2, (Freon 30 and Freon 32) with the aim of determining the orientation of the subunits 

in the complex and ascertaining which WHB, C-H···Cl-C or C-H···F-C is more favorable. 

5.3.1 Theoretical calculations 

Two conformers, both stabilized by three WHBs are, by chemical intuition, expected to be the 

most stable forms of the title complex. They are shown in Table 5.1. MP2/6-311++G(d,p) 

calculations, performed by using the Gaussian03 Program
[13]

 confirmed this hypothesis. Table 

5.1 also reports their relative energies (∆E) and the spectroscopic parameters useful for the 

investigation of the microwave spectrum. In order to obtain a better estimate of the energy 

differences, the intermolecular binding energy values were counterpoise corrected for BSSE.
[12]

 

It turned out that conformer I, with two C-H···Cl-C and one C-H···F-C WHBs is slightly more 

stable than conformer II, with two C-H···F-C and one C-H···Cl-C WHBs. We also evaluated the 

dissociation energies, inclusive of the BSSE corrections, ED(BSSE). We did not calculate the 

zero-point-energy corrections. 

Conformer I was calculated to be slightly distorted with respect to a Cs configuration with 

the two F atoms in the plane of symmetry. However, it is well known that in similar cases the 

vibrational ground state wave-function is symmetric with respect to the “near”-symmetry plane. 

Herein we fixed the complex to be symmetric, and as consequence, the quadrupole coupling 

constants of the two Cl atoms to be the same. This is consistent, as shown below, with the 

experimental evidence. 
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Table 5.1 Shapes and spectroscopic parameters of the two most stable forms of CH2F2-CH2Cl2. 

 I II 

  

∆E,∆EBSSE
[a]/cm-1 0,0[b] 72,12 

ED(BSSE)
[c]/kJ·mol-1 7.0 6.9 

A,B,C/MHz 2706,976,792 3313,870,794 

χaa,χbb-χcc(1)/MHz 36.25,-45.14 -61.90,-8.14 

χab,χac,χbc(1)/MHz -10.34,7.84,47.22[d] -27.11,-17.04,-3.53 

χaa,χbb-χcc
 (2)/MHz  29.69,-96.32 

χab,χac,χbc(2)/MHz  -20.42,3.43,20.42 

μa,μb,μc/D -1.5,-0.0,0.0 2.9,0.3,0.4 

[a] E and EBSSE are the energy difference with respect to the most stable isomer, without and with BSSE corrections. [b] 

Absolute values are -1197.020145 Eh and -1197.016320 Eh, respectively. [c] Dissociation energy. [d] For this isomer the 

quadrupole coupling constants of Cl2 are the same as for Cl1, except for the sign of χbc. 

5.3.2 Rotational spectra 

The spectrum was expected to be quite complicated for two reasons: (i) the presence of several 

abundant isotopologues (
35

Cl/
35

Cl, 
35

Cl/
37

Cl,
 37

Cl/
37

Cl, in the ratio 10/6/1, according to the 75 and 

25% natural abundance of 
35

Cl and 
37

Cl, respectively); (ii) the presence of two quadrupolar 

nuclei (
35

Cl or 
37

Cl) with a nuclear spin I = 3/2 and with a relatively large nuclear electric 

quadrupole moment (Q). 

Following the prediction from the computations, which show the μa dipole moment 

component to be the largest one, we searched first for the J = 5 ← 4 μa-R band. We could 

identify the intense K = 0, 1 transitions of the parent species of conformer I. Each of them was 

split into several quadrupole component lines, as illustrated in Figure 5.1 for the 515←414 

transition. 

Later on, many additional μa-type transitions, with Jupper and Ka up to 8 and 3, respectively, 

have been measured. Then, about 100 MHz below each transition of the observed J = 5-4 band, a 

weaker set of transitions was observed, belonging to the 
35

Cl/
37

Cl isotopologue. The intensities of 

these transitions were about 2/3 of those of the parent species, in consistency with the natural 
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relative abundance of the two isotopes and the existence of two equivalent 
35

Cl/
37

Cl 

isotopologues. This confirmed the equivalence of the two Cl atoms, and consequently the Cs 

symmetry of the complex. 

 

Figure 5.1 The recorded 515←414 rotational transition of the parent species of the observed conformer of 

CH2F2–CH2Cl2, showing hyperfine structure originated by the two 35Cl nuclei. Each component line exhibits 

Doppler doubling. 

The frequencies were fitted with Pickett’s SPFIT program.
[95]

 by direct diagonalization of 

the Hamiltonian consisting of Watson’s “S” reduced semi-rigid rotor Hamiltonian
[8] 

in the I
r
 

representation, augmented by the hyperfine Hamiltonian which has been described in Chapter 4 

(Eq. (4.1)). The obtained spectroscopic constants are summarized in Table 5.2. 

No μb-type transitions have been observed in accordance with the Cs symmetry of the 

conformer. The Cs symmetry makes the two 
35

Cl atoms of the parent species equivalent to each 

other, and correspondingly, their quadrupole coupling constants have the same values. As 

mentioned above, also for the 
35

Cl/
37

Cl isotopologue the μa-type spectrum has been assigned and 

measured in natural abundance. Its spectroscopic parameters are listed in the second column of 

Table 5.2. Here, the 
35

Cl and 
37

Cl nuclei are different from each other, and, in addition, the 

geometrical symmetry of the complex is destroyed, so that two different sets of quadrupole 

coupling constants are required. Since a smaller number of lines have been measured for this 

isotopologue, the d1 and d2 centrifugal distortion parameters are fixed at the values for the parent 

species, while the off-diagonal quadrupolar coupling constants χab and χac have been fixed at the 

theoretical values. We did not succeed in measuring at least four transitions of the 
37

Cl/
37

Cl 



Complexes of Freons 

46 

isotopologue since its abundance is only 10% of that of the parent species. 

Table 5.2 Spectroscopic parameters of the two isotopologues of CH2F2-CH2Cl2. 

 35Cl/35Cl 35Cl/37Cl 

A/MHz 2663.073(3)[a] 2604.320(3) 

B/MHz 958.4016(2) 951.1963(1) 

C/MHz 785.1948(1) 775.4507(1) 

DJ/kHz 0.7171(7) 0.710(1) 

DJK/kHz 10.813(6) 9.88(7) 

d1/kHz -0.1604(7) [-0.1604][b] 

d2/kHz -0.0613(4) [-0.0613][b] 

χaa(
35Cl)/MHz 37.399(5) 37.17(3) 

χbb-χcc
 (35Cl)/MHz -43.68(2) -42.34(3) 

χab(
35Cl)/MHz 9.00(7) 11.16[c] 

χac(
35Cl)/MHz 7.0(1) 8.43[c] 

χbc(
35Cl)/MHz ∓49.71(6) -50.03(2) 

χaa(
37Cl)/MHz  29.62(2) 

χbb-χcc
 (37Cl)/MHz  -35.44(2) 

χab(
37Cl)/MHz  -7.52[c] 

χac(
37Cl)/MHz  6.19[c] 

χbc(
37Cl)/MHz  39.23(1) 

N[d] 349 160 

σ[e]/kHz 2.9 3.1 

[a] Uncertainties (in parentheses) are standard deviations expressed in units of the last digit. [b] Numbers in the brackets are 

fixed to the values obtained for the parent species. [c] Fixed to the values obtained from the theoretical calculation. [d] Number 

of lines in the fit. [e] Standard deviation of the fit. 

The comparison of the experimental spectroscopic parameters with the theoretical values 

for the two conformations of Table 1, leads to a straightforward assignment of the observed 

spectrum to conformer I, the one stabilized by two C-H···Cl-C and one C-H···F-C WHBs.  

We could not observe any lines belonging to conformer II, despite the very small 

complexation energy difference. This could be due to the conformational relaxation to the most 

stable conformer upon supersonic expansion. It has, indeed, been shown that this kind of 

relaxation takes place easily when the inter-conversion barrier is smaller than 2kT.
[104]
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5.3.3 Structural information 

The Cs configuration of the observed conformer of CH2F2-CH2Cl2 is shown in Figure 5.2. 

 

Figure 5.2 The observed conformer of CH2F2-CH2Cl2, with indicated atom numbering and the positions of the 

principal axes. α is the angle between the bisector of the ClCCl valence angle and the bc-plane. 

Table 5.3 The experimental coordinates of the chlorine atoms in CH2F2-CH2Cl2. 

 a/Å b/Å c/Å 

rs ±1.399(1)[b] ±1.466(1) 0.223(7) 

r0
[a] -1.404 ±1.473 -0.239 

[a]Calculated with the r0 structure in Table 5.4, the signs of the b coordinates depend on the specific Cl atom due to the 

symmetry. 

Table 5.4 Partial r0 and re structures of CH2F2-CH2Cl2. 

Fitted parameters  

 RC1C4/Å H7C4···C1/° F2C1···C4/° 

r0
 3.755(1)[a] 62.5(1) 55.7(1) 

re
 3.751 63.5 50.4 

Derived parameters  

 RF2H7/Å RCl5H9/Å (α/°)[b] 

r0
 2.489(2) 3.147(2) 11.8(1) 

re
 2.421 3.139 13.8 

[a] Uncertainties (in parentheses) are expressed in units of the last digit. [b] The angle between the ClCCl plane and the bc 

inertial plane. 
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From the rotational constants of the two isotopologues, it is possible to calculate the 

substitution, rs, coordinates
[16]

 of the Cl in the principal axes of the parent species. The obtained 

values are shown in Table 5.3, and are compared there with the values of a partial r0 structure 

according to the adjustments in Table 5.4. 

The partial r0 structure, was obtained by adjusting three structural parameters (RC1C4, 

H7C4···C1 and F2C1···C4), while keeping the remaining parameters fixed to their ab initio 

values (while preserving the Cs symmetry), in order to reproduce the six experimental rotational 

constants. The obtained parameters are reported in Table 5.4, and there compared to the ab initio 

values. From this partial r0 structure, the lengths of the three WHBs have been derived, and 

reported in Table 5.4.  

5.3.4 Quadrupole coupling constants 

The nuclear quadrupole hyperfine structure considerably complicates the rotational spectrum but 

its analysis can provide useful information on the structure and internal dynamics in the complex. 

This becomes possible if the principal nuclear quadrupole tensor can be determined since for 

hyperfine nuclei terminal to a bond this tensor is known to be usually oriented to within 1 degree 

of the direction the relevant bond axis.
[122] 

The only three non-zero components of the principal 

hyperfine tensor, χg = eQqg, with g = x, y, z, can be obtained from the quadrupole tensor 

determined experimentally in the principal inertial axes. The latter consists of the diagonal χaa, 

χbb and χcc quadrupole coupling constants, and the off-diagonal χab, χbc and χac constants. 

Diagonalization of the corresponding 3x3 matrix results in three principal hyperfine tensor 

components χzz, χxx and χyy, conventionally labeled in such a way that χzz describes the molecular 

field gradient around the axis close to the bond axis, which is in this case the CCl axis. 

We made the transformation by using the program QDIAG available on the PROSPE 

website,
[123-124]

 which also provides the rotation angles between the two axis systems. One of the 

more useful of these angles is θzb, which allows an estimate of the ClCCl valence angle from 

the relation ClCCl = (180 - 2·θzb)/°. The quadrupole asymmetry parameter η = (χxx - χyy)/χzz is 

also evaluated. These parameters are compared in Table 5.5 with those for the CH2Cl2 monomer. 

The differences do not appear to be significant, suggesting that vibrational averaging in the 

cluster has little effect on the chlorine nuclear quadrupole hyperfine splitting.  

We can therefore use the quadrupole orientation to work out how much the ClCCl plane in 

the complex is tilted away from the bc-plane. This is quantified by means of the tilt angle α as 

defined in Figure 5.2. The hyperfine estimate of this angle obtained from QDIAG of α = 10.6(1)°, 

is close to the values from the ab initio geometry and from the partial r0 structure providing 
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additional independent confirmation for the determined structure. 

Table 5.5 The principal quadrupole tensors, η, θ and ClCCl of CH2Cl2 and CH2F2-CH2Cl2. 

 CH2Cl2
[a] CH2F2-CH2Cl2 

χzz/MHz -75.4(2) -74.16(6) 

χxx/MHz 33.4(2) 35.31(8) 

χyy/MHz 39.9414(2) 38.85(7) 

η[b] 0.060(3) 0.048(1) 

θ[c]/° 33.43(5) 33.6(1) 

(ClCCl/°)[d] 113.1 112.7 

[a] see Ref.[15]. [b] η = (χxx - χyy)/ χzz. [c] This angle corresponds to θza for CH2Cl2 and θzb for CH2F2-CH2Cl2. [d] Estimate 

obtained from 180-2θ, comparing with ClCCl=111.8° from the structural analysis for the monomer [15]. 

5.3.5 Dissociation energy 

The intermolecular stretching motion which leads to the dissociation appears to be almost 

parallel to the a-axis of the complex. By assuming that such a motion is separated from the other 

molecular vibrations, it is possible in this case, within the pseudo diatomic approximation, to 

estimate the stretching force constant through Eq. (1.18) 
[17]

 Then the intermolecular dissociation 

(Eq. (1.19)) has been evaluated to be ED = 7.6 kJ mol
-1

.
[18]

 

Table 5.6 Binding energies of the investigated dimers of freons. 

 WHBs ED/kJ mol-1 Ref. 

CH3F···CHF3 three C-H···F-C 5.3 13 

CH2F2···CH2F2
 three C-H···F-C 8.7 10 

CH2ClF···FHC=CH2 
one C-H···Cl-C 

one C-H2···F-C 
8.7 14 

CH2F2···CH2Cl2 
two C-H···Cl-C  

one C-H···F-C 
7.6 this work 

In Table 5.6, we compare the dissociation energy of CH2F2- CH2Cl2 to those of some related 

adducts among freon molecules. It appears, on the average, that the C-H···Cl interaction is 

stronger than the C-H···F one. 
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5.4 Chlorotrifluorometane···Fluoromethane 

It has been found, for example, that CF4 forms a trifurcated HaB with water (CF3···O)
[81]

 and 

with pyridine (CF3···N),
[113]

 while strong dynamic effects considerably alter the values of the 

“rigid rotor limit” rotational constants. In addition, CF4-H2O, which is expected to be a classical 

asymmetric top, is found to be a quantum-mechanical symmetric top, instead. A good, somehow 

prototype molecule, to investigate HaB has been found to be CF3Cl, which Cl atom forms very 

easily HaBs. CF3Cl forms, indeed, a C-Cl···O HaB with H2O
[82]

 and dimethyl ether
[125]

 and the 

C-Cl···N HaB with NH3.
[112]

 Also in the cases of CF3Cl-H2O and CF3Cl-NH3, strong dynamic 

effects have been observed: water and ammonia undergo effective free rotations with respect to 

the CF3Cl, making the complex CF3Cl-H2O an effective symmetric top. In the case of 

CF3Cl-dimethylether, the free internal rotation of the CF3 group causes an unexpectedly large 

value of the rotational constant A. 

After having characterized the C-Cl···O and the C-Cl···N HaBs using CF3Cl as “halogen 

donor”, we decided to describe the C-Cl···F halogen-halogen bond by studying the rotational 

spectrum of CF3Cl-FCH3, that is the molecular adduct formed by Freon-13 and Freon-41. This 

1:1 complex has been recently investigated using FTIR and Raman spectroscopy in the liquid 

krypton.
[126]

 The authors discussed the existence of the C-Cl···F HaB, mainly based on their ab 

initio calculations. We believe that precise experimental information on the structure and internal 

dynamics can be supplied by the rotational spectrum. Below we report the obtained results. 

5.4.1 Theoretical calculations 

MP2/aug-cc-pVDZ(-PP) ab initio calculations of CF3Cl-FCH3, is reported in ref.
[126]

. The 

authors present only one conformation, and do not report any spectroscopic constant useful for 

the MW investigation. For this reason, we performed our own calculations. We preliminarily 

explored the conformational space of the complex by Molecular Mechanics, using 

conformational search algorithms implemented in MacroModel 9.2 within the MMFFs force 

field.
[15]

 We found about 100 different geometries within an energy window of about 15 kJ mol
-1

 

which, at the MP2/6-311++G(d,p) level
[14]

 converged to 4 most stable conformers (relative 

energies E < 2 kJ mol
-1

). All these four conformers are characterized by the C-X···F (X = F or 

Cl) HaBs.  

Also C-H···F WHBs contribute to the stabilities of conformer I and II. Vibrational 

frequency calculations at the same level of theory proved conformer I, II and III to be real 
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minima while a negative frequency was found for conformer IV. However, when taking account 

BSSE corrections,
[12] 

conformer IV becomes – surprisingly – the one with the lowest energy. 

Shapes, relative energies, BSSE dissociation energies (ED), calculated rotational constants, 

dipole moment components and 
35

Cl quadrupole coupling constants of the four conformers are 

summarized in Table 5.7. 

Table 5.7 MP2/6-311++G(d,p) shapes and spectroscopic parameters of the four most stable conformers of 

CF3Cl-CH3F 

 I II III IV 

 

   
 

∆E/kJ mol-1 0.0[a] 0.9 1.0 1.3 

∆E0/kJ mol-1 0.0[b] 1.2 0.7 0.5 

∆EBSSE/kJ mol-1 2.7 3.6 0.3 0.0[c] 

ED/kJ mol-1 1.8 0.8 4.2 4.5 

A/MHz 3028 4708 4788 5512 

B/MHz 1256 976 691 611 

C/MHz 1058 948 678 611 

μa/D -0.9 0.2 -1.6 -3.2 

μb/D -0.1 -1.2 -1.8 0.0 

μc/D 1.2 1.4 1.0 0.0 

χaa/MHz 37.4 -69.9 -70.2 -74.3 

(χbb-χcc)/MHz -109.9 -0.7 -4.2 0.0 

χab/MHz -10.2 -18.2 20.3 0.0 

χac/MHz 0.1 -0.5 -0.4 0.0 

χbc/MHz 1.7 -0.1 0.0 0.0 

[a] Absolute energy: -936.076714 Eh. [b] Absolute energy: -936.113783 Eh. [c] Absolute energy: -936.130914 Eh.  

5.4.2 Rotational spectra 

Following extensive spectral searches for the various conformers, we could identify, based on 

their 
35

Cl quadrupole pattern, the 606505, 707606, and 808707 transitions of conformer III. 

After that, we had some difficulties with the assignment of the corresponding K-1 = 1 transitions. 

We could finally identify these six transitions, still again from the 
35

Cl quadrupole pattern, which 

is shown in Figure 5.3 for the 615514 transition. However, their insertion in the fitting produced 
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an unexpectedly high value of the rotational constant A. We will see in a following section that 

this effect is due to the almost free internal rotations of the CF3 and CH3 tops. 

 

Figure 5.3 35Cl quadrupole hyperfine structure of the 615514 transition of CF3
35Cl-CH3F. Each line appears as a 

doublet(┌┐) due to the Doppler effect. 

It was then possible to assign the K-1 = 0, 1 transitions for all the J values from 5 to 12. The 

observed transition lines were fitted using Pickett’s SPFIT program
[95]

 (with the S reduction and 

I
r
 representation

[8]
) according to the Hamiltonian Eq. (4.1). The obtained spectroscopic 

parameters are summarized in the first column of Table 5.8.  

As one can see, the rotational constants B and C as well as the quadrupole coupling 

constants match best the corresponding theoretical values of conformer III. Vice versa, as 

previously outlined, the rotational constant A is 4-5 times larger than the theoretical value. 

We could then assign the rotational spectrum of the 
37

Cl isotopologue in natural abundance. 

Its transitions are just a few MHz lower in frequency than those of the parent species. This is in 

agreement with the fact that the Cl lies very close to the adduct’s centre of mass. The assignment 

of the spectrum was facilitated by two factors: (i) the quadrupolar splittings, which are about 

80% of those of the 
35

Cl isotopologue (according to the ratio of the electric nuclear quadrupole 

moments Q); (ii) the intensity of the lines, which is about one third of that of the parent species. 

The obtained spectroscopic constants are listed in the second column of Table 5.8. 

Finally, we measured the rotational spectra of the two isotopologues (
35

Cl and 
37

Cl) in 

which CH3F is replaced by CD3F. The results of the fittings are reported in the two right columns 
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of Table 5.8. The rotational constants A for both deuterated isotopologues are much smaller than 

those of the CH3F species. 

Table 5.8 Experimental spectroscopic constants of CF3Cl-CH3F 

 CF3
35Cl-CH3F CF3

37Cl-CH3F CF3
35Cl-CD3F CF3

37Cl-CD3F 

A/MHz 21826(28)[a] 21573(64) 17264(35) 17079(39) 

B/MHz 728.2164(3) 728.1154(2) 685.7804(4) 685.7554(4) 

C/MHz 702.9987(3) 702.7130(3) 658.9718(4) 658.7455(4) 

DJ/kHz 0.9363(8) 0.929(3) 0.961(1) 0.956(2) 

DJK/MHz -0.2376(2) -0.2360(3) -0.1483(3) -0.1469(4) 

d1/kHz -0.1052(6) [-0.1052][b] -0.1279(9) [-0.1279][b] 

χaa/MHz -73.3(1) -58.1(2) -72.3(2) -57.1(2) 

χbb-χcc/MHz -5.2(3) -4.3(4) -6.4(4) -5.2(4) 

χab/MHz 29.0(7) 22(1) 26(1) 18.7(9) 

N[c] 80 52 64 56 

σ[d]/kHz 2.9 1.7 1.9 2.4 

[a] Error in parenthesis is expressed in units of the last digit. [b] Fixed at the value of the 35Cl isotopologue. [c] Number of 

transitions in the fit. [d] Standard deviation of the fit. 

5.4.3. Molecular structure 

In the observed conformer (see Figure 5.4, where the inertial principle axes system and the atom 

numbering are also shown), the angles C1Cl2F6 and Cl2F6C7 have the ab initio values, 

173.8° and 118.7°, respectively. By adjusting the value of Cl2F6C7 to 105.7°, we could 

satisfactorily reproduce the rotational constants B and C of all isotopologues. 

 

Figure 5.4 Shape, atomic numbering, and principal axes of the observed configuration of CF3Cl-CH3F. 
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5.4.4 Internal dynamics 

Back to the aforementioned disagreement of the rotational constant A between the fitted values 

and the calculated values, the enormously large discrepancies can be, as in CF3Cl-dimethyl 

ether,
[125]

 accounted by the effects of a free (or almost free) internal rotation of the CF3 and CH3 

groups about their symmetry axes. We could explain it qualitatively if we take into account the 

effective rotational constants of the ground state (v = 0,  = 0) and assuming no perturbation 

between the two free internal motions, according to:
[127] 

A00 = Ar + [W00
(2)

 Fa
2
]CF3 + [W00

(2)
 Fa

2
]CH3 

B00 = Br+ [W00
(2)

 Fb
2
]CF3 + [W00

(2)
 Fb

2
]CH3 (5.1) 

C00 = Cr+ [W00
(2)

 Fc
2
]CF3 + [W00

(2)
 Fc

2
]CH3

 

where Ar, Br and Cr are the “rigid” rotational constants in the limit of both infinite barriers. The 

W00
(2)

 are the Hersbach's barrier-dependent perturbation sums relative to the sublevels of the 

A-symmetry ( = 0) species of the torsional ground state (v = 0) with g = gI/Ig depending on 

the moments of inertia along the symmetry axis  of the internal rotor and the principal axis g 

and their directional cosine g. F = ħ/[2·(1-ggI/Ig)I] is the reduced constant of the motion. 

Tables of the W00
(n)

 as a function of the reduced barrier s are available.
 [127]

 The parameter s is, in 

turn, related to the V3 barrier according to: V3= 0.215·s F. 

Table 5.9 Values of the Fg
2 parameters for the CF3 and –CH3 (or CD3) tops of the four isotopologues of 

CF3Cl-CH3F 

  CF3
35Cl-CH3F CF3

37Cl-CH3F CF3
35Cl-CD3F CF3

37Cl-CD3F 

CF3 
Fa

2/MHz 17074.0 16932.5 13082.5 12973.4 

Fb
2/MHz 16.7 16.6 14.7 14.6 

CH3 
Fa

2/MHz 17.6 17.6 35.7 35.5 

Fb
2/MHz 3.0 3.0 5.2 5.2 

In Table 5.9 we report the values of the Fg
2
 parameters (g = a, b) of the two tops for the 

four isotopologues. By inspection of Figure 5.4, the c-axis of the complex is perpendicular to the 

internal rotation axis of both the CH3 and CF3 tops. Then c, c and Fc
2
 are zero, and the 

rotational constant C is not affected by the internal rotations of the two tops. On the other hand, 

one can see that the Fa
2
 values for the CF3 groups, which alter the rotational constants A with 

respect to their “rigid” values, are three orders of magnitude larger than any other term. In 
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addition, their magnitudes, decreasing from CF3
35

Cl-CH3F to CF3
37

Cl-CD3F follow the 

magnitudes of the A rotational constants. 

Since –CF3 has a much larger reduced mass than –CH3, with much larger value of the term 

Fg
2
, the contribution to the rotational constants from the internal rotation of –CH3 becomes 

negligible. Similar situation applies to the rotational constant B, where the angle between the 

internal rotation axis of CF3 and the principal axis b are almost 90º according to the ab initio 

geometry. The rotational constants A are much more strongly affected by the free internal 

rotation of CF3 due to the near linearity of a-axis with the internal rotation axis of CF3.  

By applying the differences between the model calculated (after the above mentioned 

structural adjustment, Ar = 4647, 4639, 4444 and 4436 MHz, for the four isotopologues, 

respectively) and the experimental values of A (see Table 5.8) to Eq (2), one could calculate the 

barrier to the internal rotation of CF3. All four isotopologues give W00
(2)

 a value of 1.0 which 

corresponding a very small internal rotational barrier, V3  7 cal mol
-1

. 

This value of W00
(2)

 can also interpret the near zero values of the inertial defects, which 

should be, in the rigid approximation c = -91.7 or -95.0 uÅ
2
, for the CH3 and CD3 forms, 

respectively. 

5.5 Difluoromethane···Formaldehyde 

As mentioned in Section 5.3, CH2F2 has two sites which can act as weak proton acceptor and two 

sites which are weak proton donors. 3, 9 and 16 C-H···F-C WHBs have been found to stabilize 

the dimer
[115]

, the trimer
[116]

 and the tetramer
[117]

 of CH2F2, respectively. The complex 

CH2F2···H2O has been investigated by free jet millimeter wave spectroscopy
[79]

 and FTMW 

spectroscopy.
[80]

 Besides a main O-H···F H-bond, it is stabilized by a bifurcated O···H2C WHB. 

In the case of CH2F2···oxirane, the rotational spectrum of the complex corresponds to a 

configuration with one O···H2C and one F···H2C2 WHBs.
[128]

 A single C-H···O WHB 

characterizes the shape of CH2F2···OCS, while the S atom embraces the two F atoms, reminding 

the HaB interactions.
[129]

 

Apart from the examples mentioned above, concerning CH2F2, this kind of WHB appears 

every time we consider adducts involving partially halogenated hydrocarbons. Three C-H···F-C 

WHBs characterize CHF3···CH3F,
[118]

 while two C-H···F-C and one C-H···O WHBs constitute 

small cages in CHF3···oxirane,
[130]

 CHF3···cyclobutanone
[131]

 and CHF3···dioxane.
[132]

 A CHF3··· 

WHB stabilizes CHF3···benzene.
[133]

 However, when perhalogenated hydrocarbons are involved, 

only HaB linkages have been observed.
[7]

 This is the case, for example, of CF4···H2O,
[81]
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CClF3···H2O
[82]

 and CClF3···NH3.
[78]

 

Coming back to the adducts of CH2F2 with small molecules, in the case of CH2F2···H2O, a 

doubling of the rotational transitions was observed, due to the internal rotation of water around 

its symmetry axis, which allowed for the determination of the corresponding potential energy 

function. The replacement in such a complex of water with formaldehyde (H2CO) rises two 

interesting points: (i) will H2CO form the same network of WHBs as water? (ii) if yes, will the 

internal rotation of H2CO (heavier than H2O) still generate measurable splittings? Here we 

present the results of the rotational investigation of the complex of CH2F2 with formaldehyde, 

CH2F2···H2CO. 

5.5.1 Theoretical calculations 

Some theoretical calculations were performed to have a clue on the configurations of the 

complex. According to the conformational search with the program MacroModel 9.2,
[15]

 four 

plausible stationary points have been found for CH2F2···H2CO.  

Table 5.10 MP2/6-311++G(d,p) spectroscopic parameters of the plausible conformers of CH2F2···H2CO. 

 I II 

contacts C-H···F-C & CH2···O 2 CH2···O 

ΔE/cm-1 0[a] 293 

ΔEBSSE/cm-1 0[b] 128 

A, B, C /MHz 13898, 1766, 1584 10168, 1307, 1176 

|μa|, |μb|, |μc|/D 2.5, 0.4, 0.0 4.9, 0.0, 0.0 

DJ/kHz 1.86 1.97 

DJK/MHz 0.013 1.44 

DK/MHz -0.39 1.35 

d1/kHz -0.20[c] 0.21[d] 

d2/kHz -0.02[c] 709[d] 

Pcc/uǺ2 1.74 3.31 

 

  

[a] Absolute energy: -352.782020 Eh. [b] Counterpoise corrected energy: the absolute value is -352.780316 Eh. [c] 

S-reduction. [d] A-reduction. 
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Full geometry optimizations of these configurations were carried out at the 

MP2/6-311++G(d,p) level.
[13]

 Frequency calculations proved only two conformers to be real 

minima, and provided the spectroscopic constants given in Table 5.10. Counterpoise 

corrections
[12]

 were calculated in order to remove the well-known BSSE. The global minimum 

(configuration I) formed through three WHBs is about 128 cm
-1

 lower in energy than 

configuration II, with two WHBs. The calculated values of the dipole moment components 

suggest that μa-type lines should be very intense. The values of the planar moment of inertia Pcc 

which give an indication on the degree of the planarity of the conformations are also reported in 

Table 5.10. 

5.5.2 Rotational spectra 

Following the ab initio indications, we started our spectral scans searching for the μa-type R 

branch transitions of conformer I, which were rapidly identified. After a first refinement of the 

spectroscopic constants, we were able to measure some μb-type lines. Each transition appeared as 

a doublet, with relative intensity of the two component lines of about 1:3. This ratio corresponds 

to the statistical weight expected for the internal rotation around the C2v axis of a top like H2CO, 

with the exchange of a pair of equivalent fermions with spin I = 1/2. 

 

Figure 5.5 0+ and 0- component lines of the 404–303 transition of CH2F2···H2CO. 

Using Pickett’s SPFIT computer program,
[95]

 the rotational transition frequencies were fitted 

by the Hamiltonian (Eq. (4.2)). Watson S-reduction and I
r
-representation have been adopted.

[8]
 

The transition frequencies of the two tunneling components did not show any appreciable 

interaction between the two states, so that it was not possible to determine parameters such as ∆E 

(the energy difference between the two states), or Coriolis’ coupling terms. 
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The fitted rotational constants, centrifugal distortional constants, and planar moment of 

inertia Pcc, listed in Table 5.11, match the theoretical values only for configuration I. In addition, 

the observation of μb-type lines discards the assignment to conformer II, by symmetry reasons. 

So the conformation assignment is straightforward. The two component lines, due to the internal 

rotation of H2CO, are shown in Figure 5.5 for the 404←303 transition. 

After a first structural adjustment, it has been possible to assign the spectra of the two 
13

C 

isotopologues in natural abundance. However, only the most intense lines belonging to the 0
-
 

state could be measured for both isotopologues. The determined parameters of the 
13

C species are 

listed in the right columns of Table 5.11. In spite of a careful search, no transitions corresponding 

to conformer II were detected. 

Table 5.11 Spectroscopic constants of three isotopologues of CH2F2···H2CO (S-reduction, Ir representation). 

 
CH2F2-H2CO 

(0+) 

CH2F2-H2CO 

(0-) 

13CH2F2-H2CO 

(0-) 

CH2F2-H2
13CO 

(0-) 

A/MHz 13725.398(3)[a] 13719.351(3) 13675(2) 13671(2) 

B/MHz 1737.258(1) 1736.720(1) 1731.0654(8) 1698.7766(8) 

C/MHz 1559.247(1) 1559.218(1) 1554.1606(8) 1528.0736(8) 

DJ/kHz 2.33(1) 2.33(1) 2.29(2) 2.22(2) 

DJK/kHz 21.25(5) 20.78(5) [20.78][b] [20.78] 

d1/kHz -0.24(1) -0.23(1) [-0.23] [-0.23] 

d2kHz 0.029(6) 0.022(6) [0.022] [0.022] 

Pcc/uǺ2 1.69 1.93 1.86 1.87 

[c]/kHz 2.6 2.1 4.9 3.0 

N[d] 23 23 9 9 

[a] Errors in parenthesis are expressed in units of the last digit. [b] Values in brackets have been fixed to the values of the 0- 

state of the “normal” (i.e. most abundant) species. [c] Standard deviation of the fit. [d] Number of fitted lines. 

5.5.3. Molecular structure 

The observed configuration is schematically shown in Figure 5.6, together with the parameters 

defining the WHB interaction. The Pcc values of the three isotopic species, reported in Table 5.11, 

are quite close to that of isolated CH2F2 corresponding to the two out-of-plane methylenic 

hydrogens of CH2F2 (Pcc= 1.652 uǺ
2
).

[134]
 The H2CO moiety lies in the FCF plane of CH2F2, 

similarly to water in CH2F2···H2O.
[80]

 The two subunits are linked through a C-H···F-C bond and 

a bifurcated CH2···O bond. 
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Figure 5.6 Sketch of the observed conformer of CH2F2···H2CO with atom numbering, some structural parameters 

used through the text, and principal axes of inertia. 

From the rotational constants of the parent and of the two 
13

C- species, we obtained the rs 

substitution coordinates
[16]

 of the carbon atoms, which are shown in Table 5.12. The 

c-coordinates have been fixed to zero by symmetry. 

Table 5.12 rs coordinates of the carbon atoms of CH2F2···H2CO. 

  a/Å b/Åa 

CCH2F2 

exptl. ±0.965(3)[a] ±0.370(8) 

calc.[b] -0.982 -0.324 

CH2CO 

exptl. 2.551(1) 0.389(8) 

calc. 2.572 0.320 

[a] Uncertainties (in parentheses) are expressed in units of the last digit. [b] Calculated with the r0 structure of Table 5.13. 

Table 5.13 Partial r0 geometry of CH2F2···H2CO. 

Fitted parameters 

 rH8···F2/Å C7H8···F2/° H8···F2C1/° 

r0
 2.658(1) 113.6(1) 113.4(1) 

re
 2.583 114.3 114.6 

Derived parameters (see Figure 1) 

 r/Å α/° β/° 

r0
 3.132(1) 73.6(1) 85.0(1) 

re
 3.096 74.1 83.6 

They are in good accord with the calculated values of conformer I. In order to have a 

structure able to satisfactorily reproduce the experimental rotational constants, we modified some 
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structural parameters involving the WHBs. The optimized parameters can be considered as 

constituting a partial r0 structure, and are reported in Table 5.13.  

5.5.4 Dissociation energy 

The intermolecular stretching motion appears to be almost parallel to the a-axis of the complex 

(see Fig. 5.6). In this case, assuming such a motion to be separated from the other molecular 

vibrations, its force constant (ks) can be estimated with Eq. (1.18).
[17]

 The RCM is determined to 

be 3.65 Ǻ from the r0 structure. The value ks = 9.3 Nm
-1

 corresponding to a harmonic stretching 

frequency of 88 cm
-1 

has been obtained. The dissociation energy (ED) has been, according to Eq. 

(1.21), evaluated to be 10.4 kJ mol
-1

.
[18]

 

The dissociation energies of the above mentioned complexes of CH2F2, calculated with the 

same approximation, are given in Table 5.14. 

Table 5.14 Pseudo-diatomic binding energies of some complexes of CH2F2  

Molecular complex ED/kJ mol-1 Ref. 

CH2F2···OCS 

 

2.1 8 

(CH2F2)2 

 

6.6 3 

CH2F2···H2O 

 

7.5 5 

CH2F2···C2H4O 

 

9.6 7 

CH2F2···H2CO 

 

10.4 This work 

The dissociation energy appears to be roughly proportional to the number of WHB 

interactions present in the complex: CH2F2···OCS, with a single WHB, is considerably more 

labile than the remaining adducts. 

5.5.5 Internal rotation of H2CO in the complex 

The vibrational energy spacing between the two tunneling states (∆E) is a key parameter to 

picture the potential pathway for a tunneling motion. But, as mentioned above, it is not possible 
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to determine ∆E from the fitting to the measured rotational transitions. However, the shifts of the 

planar moments of inertia Paa, Pbb and Pcc between the 0
+
 and 0

-
 states can be utilized for 

this purpose, as shown, for example, in the case of CH2F2···H2O.
[80]

 

Meyer’s one dimensional flexible model
[11]

 provides energies and wave-functions for J = 0, 

1, 2 in the ground and vibrational excited states. From these data the rotational and centrifugal 

distortion constants can be calculated. The following potential energy function, which is suitable 

for two equivalent periodic minima, has been adopted, 

V() = 1/2·V2 [1 – cos (2 )]  (5.2) 

Here V2 and τ are the potential barrier and the dihedral angle, τ = H8C7-O6F2. τ = 0º corresponds 

to the equilibrium value with H2CO lying in the FCF plane. 

Table 5.15 Flexible model results and potential energy parameters for the internal rotation of formaldehyde in 

CH2F2···H2CO. 

1) Experimental and calculated data 

 Exptl. Calc. 

∆Paa/uǺ2 0.040 0.039 

∆Pbb/uǺ2 -0.034 -0.030 

∆Pcc/uǺ2 0.050 0.050 

∆E/MHz - 3411 

2) Model parameters 

 V2 = 180(10)[a] cm-1 ∆ = 2.6(5)° 

 ∆r(O6···F2) = 0.027Å[b] ∆ = -1.4° b 

[a] Uncertainties in parentheses are given in units of the last digit. [b] Fixed to the ab initio values. 

The structural relaxations of the rO6···F2 distance and of the C7O6···F2 and O6···F2C1 

angles (abbreviated below as  and ) as functions of  were also required for the model, 

according to the following relations: 

 () = 85.0 +·/2 [1 – cos (2 )] (5.3) 

 r()/Å = 3.132 + r/2 [1 – cos (2 )] (5.3′) 

 () = 73.6+1/2· [1 – cos (2 )] (5.3″) 

However, due to the lack of experimental data, r and  have been fixed at the theoretical 
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values (0.027 Å and -1.4°, respectively). Eight vibrational states were calculated from the model 

potential optimization on a grid of 67 mesh points in the range 0 ≤ τ ≤ 2π with the results for the 

fitted shifts in the planar moments reported in Table 5.15. 

The experimental value of the barrier (V2 =180 cm
-1

) is very close to the ab initio predicted 

value (192 cm
-1

). And the energy splitting between the two vibrational states has been calculated 

as 3411 MHz. 

5.6 Trifluoromethane···Benzene 

Rotational spectroscopy is especially suitable to quantitatively describe these fine structural 

effects. Already in 1961 Constain and Srivastava, from the low resolution microwave spectrum of 

formic acid-trifluoroacetic acid,
[135]

 observed an increase of the O···O distances upon H→D 

isotopic substitution of the hydrogen atoms involved in the HB. Precise quantitative values of this 

effect effects have been supplied this year in a PJFTMW investigation of the conformers of the 

bimolecule formic acid-acrylic acid.
[136]

 

As to the reverse Ubbelohde effect, several MW investigations are available. In 1976 Penn 

and Olsen showed, with the investigation of many isotopologues of 2-aminoethanol, that the O···N 

distance between the two heavy atoms involved in the O-H···N intramolecular hydrogen bond 

decreases of 0.0057 Å upon H→D substitution of the hydroxyl group.
[137]

 Analogous shrinkages 

have been evaluated from the rotational spectra of molecular complexes with the two subunits held 

together by a O-H···O hydrogen bond, such as the dimer of tert-butyl alcohol,
[138]

 the dimer of 

isopropanol,
[139]

 and the adducts of some alcohols with some ethers.
[140-143]

  

No data are available on the effects of the H→D isotopic substitution of the hydrogen atom 

involved in a WHB. A C−H···π interaction links the trifluoromethane (HCF3) and benzene (Bz) 

units in the Bz-CHF3 complex, as proved by its rotational spectrum.
[133]

 To verify the appearance 

of the Ubbelohde effect within WHB linkages, we decided to investigate the rotational spectrum of 

its Bz-DCF3 isotopologue, and of the 
13

C species of both Bz-HCF3 and Bz-DCF3 forms. The 

obtained data are reported below, and we will see that they prove the existence of the Ubbelohde 

effect also in the case of WHB’s. 

5.5.1 Rotational spectrum 

After we applied empirical corrections to the rotational constants calculated with the geometry 

reported in the previous study on the most abundant species,
12

 five evenly spaced bands with the 

features of a symmetric top were observed. 



Complexes of Freons 

63 

 

Figure 5.7 The J = 7←6 band of Bz−DCF3 (upper trace). The high-resolution details (lower trace) show the 

complex patterns due to free internal rotation. Each rotational transition, split by the Doppler effect (┌┐), is 

labeled with the quantum numbers K and m. 

In Figure 5.7 we report the J = 7←6 band, which, similarly to the case of parent species, 

shows the complex pattern that arises from the free internal rotation of DCF3 with respect to Bz 

Each rotational transition resulted to lie at a frequency higher than that of the corresponding 

transition of the parent species (see Figure 5.8), so immediately showing the presence of the 

Ubbelohde effect. 

The measured transition frequencies could easily be fitted with Eq. (5.4), which is valid for a 

symmetric top with a free internal rotation.
[133, 144-145] 

ν = 2(J+1)[B-DJKK
2
-DJmm

2
+HmJm

4
-DJKmKm] 

-4(J+1)
3
[DJ-HJKK

2
-HJmm

2
-HJKmKm] (5.4) 

where DJ, DJK, DJm and DJKm are the quartic centrifugal distortion constants. Higher order 
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centrifugal distortion parameters, such as HmJ, HJK, HJm and HJKm were required to fit the data, in 

agreement with the high flexibility of the adduct. The parameters obtained from the least-squares 

fit of the 97 measured lines are provided in the second column of Table 5.16. In the first column, 

we report, for comparison, the molecular parameters of the parent species. 

 

Figure 5.8 The J = 7←6 band of Bz−DCF3 (black) lies at higher frequency than the corresponding band of 

Bz−HCF3 (red), contrarily to what expected for a heavier isotopologues within a rigid rotor approximation. 

After the assignment of the most abundant species, it was possible to assign some weak 

transitions (m = 0 state) belonging to the 
13

C isotopologues in natural abundance (ca. 1%) with 

further signal accumulation. The spectrum of the Bz(
13

C)-DCF3 species in natural abundance is 

expected to be intense about 6% of that of Bz-DCF3, because the benzene ring contains six 

equivalent carbon atoms. In addition, its spectral features are completely different with respect to 

those of the parent species, because the asymmetric isotopic substitution breaks down the C3v 

symmetry of complex, leading to a slightly near prolate asymmetric top. The measured transitions 

of this 
13

C species have been fitted with Watson’s semi-rigid Hamiltonian (S-reduction; 

I
r
-representation).

[17]
 The obtained parameters are reported in the fourth column of Table 1, and 

there compared to the values of the Bz(
13

C)-HCF3 species.
12

 One should note that the A rotational 

constant is much larger than the value expected for a rigid molecule, because for m = 0 the top does 

not rotate. The value of (B+C) of the F3CD species is quite larger than that of the F3CH species, 

thus confirming the Ubbelohde effect. 

Later on, a few very weak transition lines of the Bz-D
13

CF3 isotopologue (only K = 0, 1) have 
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been identified. After the assignment of this weak spectrum, we searched for the spectrum of the 

Bz-H
13

CF3 isotopologue, which was not observed in the previous investigation,
[133]

 and fulfilled 

its assignment. Due to the very few measured transitions, we needed to fix the centrifugal 

distortion constant DJ to the values of the respective parent species. The parameters obtained for 

these two last isotopologues, with a reduced form of Eq. (5.4), are shown in the two last columns of 

Table 5.16. 

Table 5.16 Spectroscopic parameters of all measured isotopologues of benzene-trifluoromethane 

[a] From Ref. 12. [b] Standard errors in parentheses are given in units of the last digit. [c] The sign given for these constants is 

arbitrary. The sign given here corresponding to the choice of the sign of m. [d] Root-mean-square deviation of the fit. [e] 

Number of fitted transitions. [f] Fixed to the values of parent species. 

5.5.2 Structural information and quantitative estimate of the Ubbelohde effect 

As a consequence of the Ubbelohde effect, the Kraitchman’s equations
[16]

 are not suitable to 

evaluate the position of the HHCF3 hydrogen, because the H→D mass change is overwhelmed by 

the shortening of the CMBz (the center of mass of Bz)···CHCF3 distance (one would obtain 

meaningless large imaginary values). Vice versa, the rs located position of the CCHF3 carbon can be 

reliably obtained in the principle axis systems of Bz-HCF3 and Bz-DCF3, separately. The 

a-coordinate of the CHCF3 carbon atom is easily obtained from the equation for the substitution of 

an atom along the symmetry axes of a symmetric top. The a and b-coordinate of a CBz carbon atom 

 Bz-HCF3
[a] Bz-DCF3 Bz(13C)-HCF3

[a] Bz(13C)-DCF3 Bz-D13CF3 Bz-H13CF3 

A/MHz - - 2837(6) 2700(76) - - 

B/MHz 744.84012(6) 745.8548(9)[b] 741.33150(6) 742.3282(6) 742.9132(2) 741.8858(2) 

C/MHz   739.19544(6) 740.1868(6)   

DJ/kHz 0.4700(5) 0.475(3) 0.4640(4) 0.458(6) [0.475]f [0.4700]f 

DJK/kHz 42.392(7) 41.90(1) 41.792(8) 41.27(6) 40.7(3) 41.73(3) 

DJm/kHz 166.82(2) 165.70(4) - - - - 

DJKm/kHz -164.70(2) -162.89(3)[c] - - - - 

HJK/Hz 1.78(6) 2.3(1) 1.49(6) - - - 

HKJ/Hz -1.0(2) - -    

HJm/Hz  7.3(1) 8.3(3) - - - - 

HmJ/Hz -37.2(8) -39(3) - - - - 

HJKm/Hz 7.5(1) -6.6(3)c - - - - 

LJK
3
m

3/Hz 2.0(4) - - - - - 

σ[d]/kHz 1.9 3.4 0.9 3.5 4.1 2.2 

N[e] 125 97 34 17 6 7 
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can be calculated by Kraitchman’s equations for a symmetric/asymmetric top combination. We 

used for this purpose KRA Kisiel’s program.
[123]

 The obtained results, which uncertainties include 

the Constain errors, are shown In Table 5.17 and there compared to the values calculated with a 

rigid rotor model. 

Table 5.17 Substitution coordinates of the carbon atoms in the complex  

  Exp. Calc. 

a) In the principle axis of Bz-HCF3 

CHCF3 a/Å ±1.6466(8) 1.648 

CBz a/Å ±1.7915(7) -1.803 

b/Å ±1.4104(11) 1.370 

b) In the principle axis of Bz-DCF3 

CHCF3 a/Å ±1.6407(8) 1.645 

CBz a/Å ±1.7936(7) -1.807 

b/Å ±1.4103(11) 1.370 

Since the a-coordinate of CMBz is the same as its six equivalent carbon atoms, the distance 

between the carbon atom of HCF3 (CHCF3 or CDCF3) and CMBz can be easily estimated from the 

substitution coordinates, leading to a shrinkage of 0.0038(30) Å of the CHCF3···CMBz distance upon 

the H→D substitution. Unfortunately, the errors on the substitution coordinates are too high to 

calculate a net Ubbelohde effect. However, the r0 shortening, calculated - according to Eq. (5.5) - 

in order to reproduce the reduction of the B+C value which take place upon H→D substitution, is 

very precise, as one can see from Table 5.18. 

(B+C)obs-(B+C)calc  

=[(B+C)/rCM(Bz)···C(CHF3)]pi=costrCM(Bz)···C(CHF3) (5.5) 

Table 5.18 Shortening of the r(CHCF3···CMBz) distance upon H→D substitution. CM=center of mass. 

 rs r0 

r(CHCF3···CMBz)/Å 3.4381(15) 3.4683(1) 

r(CDCF3···CMBz)/Å 3.4343(15) 3.4639(1) 

Δr/Å 0.0038(30) 0.0044(2) 
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5.7 Conclusions 

The MW spectrum of CH2F2-CH2Cl2 represents an investigation by rotational spectroscopy of an 

unprecedented type of an intermolecular complex. This cluster consists of the combination of 

two asymmetric molecules, containing two heavy quadrupolar nuclei (
35

Cl or 
37

Cl) with high 

nuclear spin quantum numbers and large electric nuclear quadrupolar moments. The consequent 

complex hyperfine structure of each transition has been successfully analyzed and interpreted in 

terms of five or ten quadrupole coupling parameters, depending on the equivalence (
35

Cl/
35

Cl) or 

not (
35

Cl/
37

Cl) of the two Cl atoms. The complex has a plane of symmetry with two equivalent Cl 

atoms, as proved by the key available experimental data: (i) the existence of only one 
35

Cl/
37

Cl 

isotopologue with intensity 2/3 of that of the parent species; (ii) values of the Cl substitution 

coordinates; (iii) the number and the values of the quadrupole coupling constants. The detection 

of conformer I, where the two subunits are linked to each other by two C-H···Cl-C and one 

C-H···F-C WHBs, rather than conformer II, with two C-H···F-C and one C-H···Cl-C interactions, 

suggests that C-H···Cl-C is a linkage stronger than C-H···F-C. 

The FTMW investigation of the rotational spectra of CF3Cl-CH3F and of its isotopologues 

allowed to point out irrefutably that its more stable configuration is established by a Cl···F HaB. 

This is, to our knowledge, the first time that this interaction is observed and described through a 

rotational study in an adduct made of two freon molecules. CF3Cl can be considered as a 

prototype halogen donor, and we could structurally, conformationally and energetically analyze 

the Cl···O,
10

 Cl···N
12

 and Cl···F (this work) HaBs that it forms with H2O, NH3 and CH3F. In 

addition, we could discover and interpret the effects of the two free or near-free internal rotations 

of the two constituent subunits, and show how dramatically they change the values of the A 

rotational constant. 

The configuration and structures of the most stable conformer of the 1:1 complex of 

CH2F2···H2CO have been determined. All atoms, except the two methylenic hydrogens of CH2F2, 

are coplanar. The two subunits are hold together through a C-H···F-C and a bifurcated CH2···O 

WHB. The tunneling splitting of each rotational transition into two component lines, with an 

intensity ratio of ca. 1:3, allowed determining the barrier to the internal rotation of the H2CO 

subunit, V2 = 180(10) cm
-1

. 

With the present study on the tri-deuterated isotopologues of the benzene-trifluoromethane 

adduct, we shown that the Ubbelohde effect takes place also within WHB, such as this C−H···π one. 

In addition, we supply a precise value of the shortening of the C···CMBz distance upon H→D 
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substitution. The determined shrinkage, 0.0044(2) Å is slightly smaller than that observed in 

dimers of alcohols, or in adducts of alcohols with ethers (r = 5-7 mÅ). When replacing Bz with a 

rather heavy and rigid cage amine quinuclidine, the complex turns out to be a symmetric top, 

however no observable change in the distance C···N upon the H→D isotopic substitution is 

evidenced. It seems that the Ubbelohde effect vanishes within the C-H···N WHB, nevertheless it 

appears difficult to extract a general law since these are only two subunits held together through 

a WHB, in which the Ubbelohde effect could be observable. 
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Chapter 6 Pyridine-CFnHn-4 

6.1 Introduction 

Pyridine (PYR from now on), is the best-known heterocyclic aromatic molecule extensively used 

as a ligand in coordination
[146-147]

 and surface chemistry.
[148]

 Some tens of its molecular adducts 

have been investigated by high resolution spectroscopy. Depending on the nature of the chemical 

species linked to PYR,  or  type complexes have been observed, in relation to the PYR 

interaction sites, that is the  system of the aromatic ring, or the n orbital of the nitrogen atom. 

PYR-Metal (metal=Li, Ca, and Sc) complexes, produced with laser-vaporization, have been 

studied by ZEKE spectroscopy.
[149]

 It has been found that Li and Ca complexes prefer a  

bonding mode, whereas the Sc complex favors a  mode, with bond energies of 27.0, 49.1 and 

110.6 kJ mol
−1

, respectively. 

Plenty of information on the typology and strengths of the non-bonding interactions of PYR 

with its partners have been obtained also by rotational spectroscopy. PYR is the only aromatic 

molecule for which, thanks to its permanent dipole moment, the rotational spectra of all 

complexes with RG (except radon) have been reported. In all cases, -type complexes have been 

observed,
[33-39]

 even for complexes with two RG atoms, which have a “double”  arrangement, 

with one atom above and the other below the ring.
[38, 150-151]

 The interaction energies of this kind 

of complexes are in the range 0.5-5 kJ mol
−1

. 

MW studies of molecular complexes of PYR with other molecules, apart from RGs, 

revealed always, to our knowledge, a -type arrangement. Four investigations are available, 

indeed, describing this kind of interaction, on the complexes of PYR with simple molecules, 

such as CO, CO2, SO2 and SO3. All of them are linked to the n orbital of PYR, through formal 

C···N or S···N contacts.
[152-154]

 In the complex with SO3, PYR acts as a Lewis base, donating its 

pair of electron to the sulfur trioxide Lewis acid. The S-N bond becomes in this case a covalent 

bond, with unusually high bond energy, of about 120 kJ mol
-1

.
[154]

 



Pyridine-CFnHn-4 

70 

PYR with CF4 also has a -type arrangement, where the two subunits are held together by a 

CF3···N HaB, with the top undergoing a free rotation with respect to PYR.
[113]

 In PYR-CHF3, two 

kind of WHB, C-H···N and C-H···F, have been found to connect the two constituent units.
[155]

 

The barrier to internal rotation of the CHF3 group has been determined from the A-E splittings of 

the rotational transitions. To complete the family PYR-CFnHn-4, we continued the rotational 

studies of the complex of PYR with CH3F, CH2F2 and CH4, respectively. 

The PJ-FT rotational spectra of 4 isotopologues have been measured for the most stable 

conformation of the molecular cluster PYR-CH3F. Two weak C-H···N and C-H···F hydrogen 

bonds link the two subunits of the complex. Structural information on the hydrogen bridges has 

been obtained. The internal rotation of the CH3F subunit around its symmetry axis splits all 

rotational transitions into two (A and E) well resolved component lines, leading to a V3 barrier 

height of 1.55(1) kJ·mol
-1

.
[156]

 

The observed conformer of PYR-CH2F2 is stabilized by a small net of WHBs, that is a 

bifurcated CH2···N and a CH···F links.
[157]

 Similar interactions have been found in PYR-CHF3, 

and PYR-CH3F, but the symmetric top conformation of CHF3 and CH3F weak allowed the 

determination, in the two latter cases, of their V3 barriers to internal rotation, which represented 

extra data to size the strengths of the WHBs. It is possible, however, to set a strength order of the 

CH···N and a CH···F weak interactions within this small family of complexes of PYR with 

freons.  

Which one will be the absolute minimum conformation of the complex between PYR and 

CH4? The methane hydrogen atoms are much less acidic than the freon’s hydrogen. Will they 

interact with the n or with the  electronic system? Will the high symmetry of methane still 

generate splittings of the rotational transitions also in a complex such heavy as PYR-CH4? 

In this chapter, these questions will be answered with the rotational characterization of a 

molecular complex made by an alkane (although the simplest one) and an aromatic ring, namely, 

the 1:1 complex PYR-CH4. 

6.2 Experimental 

Molecular clusters were generated in a supersonic expansion, under conditions optimized for the 

complex formation.  

A gas mixture of ca. 5% of CH4 in Helium at a stagnation pressure of ~ 0.6 MPa was passed 

over a sample of pyridine (commercial sample, cooled to 0 C) and expanded into the 

Fabry-Pérot cavity.  
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6.3 Theoretical Calculations 

One can assume, by chemical intuition, a stable conformer of PYR-CH4 to be based on a C-H···π 

or on a C-H···n link. Full ab initio geometry optimization (MP2/6-311++G(d,p) calculations), 

performed by using the Gaussian03 program package
[13]

 confirmed this hypothesis. The obtained 

relative energies and spectroscopic parameters are collected in Table 6.1. In order to have a better 

estimate of the relative energy of the two conformers, all intermolecular binding energy values 

were counterpoise corrected for BSSE.
[12]

 It appears, at the very end, that the C-H···π interaction 

is stronger than the C-H···n one. 

Table 6.1 MP2/6-311++G(d,p) shapes and spectroscopic parameters of the two forms predicted to be the most 

stable of PYR-CH4. These structures are stabilized by a C-H···π (form I) or a C-H···N (form II) WHB. 

 I 

 

II 

 

 

 

A/B/C/MHz 

aa/ bb-cc/MHz 

a/b/c/D 

∆E/∆EBSSE/cm-1 

2901/1895/1873 

3.29/-6.28 

0.4/2.3/0.0 

0/0[a] 

5793/1128/950 

-4.86/-1.95 

2.7/0.2/0.0 

346/19 

[a] Absolute energies: -287.992494 and -287.990053 Eh, respectively. 

6.4 Rotational spectra 

Following the theoretical indications, which suggest the -complex to be the most stable one and 

its μb–spectrum the strongest one, we searched for the most intense μb–type transitions. We could 

assign three transitions of the family (J+1)1,J+1←J0,J, with J = 1 to 3. Then, several more 

μb–transitions and some very weak μa- transitions have been also measured. Each transition (see, 

for example, the 212←101 one in Figure 6.1) appeared as a multiplet of lines due to the 
14

N 

quadrupolar effects. 
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Figure 6.1 Recorded 212←101 transition of the observed conformer of PYR–CH4 showing the 14N hyperfine 

structure. Each component line exhibits the instrumental Doppler doubling. 

The transition frequencies were fitted with Pickett’s SPFIT computer program,
[95]

 according 

to the Hamiltonian described in Chapter 4 (Eq. (4.1)). The centrifugal distortion contributions 

were analyzed using the S reduction and I
r
 representation.

[8]
 The obtained spectroscopic 

parameters are summarized in the first column of Table 6.2. 

Table 6.2 Spectroscopic constants of the two measured isotopologues of PYR–CH4
 

 [14N]PYR-CH4 [15N]PYR-CH4 

A/MHz 2995.7148(9)[a] 2961.1510(6) 

B/MHz 1873.3363(6) 1872.2691(6) 

C/MHz 1853.4941(6) 1838.9538(5) 

DJ/kHz 5.46(1) 5.33(2) 

DJK/kHz 53.70(6) [53.70][b] 

DK/kHz -56.59(8) [-56.59] 

d1/kHz -0.23(2) [-0.23] 

aa/MHz 3.251(5) - 

χbb-χcc/MHz -6.137(7) - 

N[c] 55 18 

σ/kHz[d] 2.6 2.2 

[a] Uncertainties (in parentheses) are expressed in units of the last digit. [b] Fixed to the values of the normal species. [c] 

Number of transitions in the fit. [d] Standard deviation of the fit. 
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After the empirical correction of the rotational constants, the spectrum, without quadrupole 

hyperfine structure, of the 
15

N (I = 1/2) isotopologue was searched and assigned. The measured 

transition frequencies were fitted as described above, and the spectroscopic parameters are also 

shown in Table 6.2.  

Comparing the experimental values of the rotational and quadrupole coupling constants of 

Table 6.2 to the theoretical values of Table 6.1, one can see that the match is acceptable only for 

conformer I. The high values of DJK and DK indicate a rather flat potential energy function of the 

bending motions of methane with respect to the ring rotation, a feature often encountered in 

rotational analysis of the spectra of aromatic ring with RGs.
[158]

 

In the previous investigations of adducts of CH4 with very small molecules (H2O, HCl, HF, 

HCN), many of the rotational transitions appeared as triplets, according to its three nuclear-spin 

modifications, denoted as A, F, and E.
[159-163]

 In the complexes with slightly heavier molecules, 

such as OCS and ozone, only doublets were observed, and the splittings among the observed A 

and F component lines were quite smaller.
[164-165]

 For PYR-CH4, we observed only a single spin 

line for each transition. We think that for such a heavy complex, all nuclear spin components are 

overlapped to each other. 

Further spectral searching has been dedicated to the second conformer of Table 6.1, but 

without success. Probably this form is relaxing to the most stable conformer upon supersonic 

expansion.
[104]

 

6.5 Molecular structure 

By combining the rotational constants of the two isotopologues, we could calculate the 

substitution coordinates
[16]

 of the N atom.  

Table 6.3 rs coordinates (Å) of the N atom in the principal axes system of the parent species. c has been fixed to 

zero by symmetry. 

 a b 

Exptl. ±0.411(4)[a] ±1.424(1) 

Calc. -0.441 1.427 

[a] Uncertainties (in parentheses) are expressed in units of the last digit. 

The obtained values are shown in Table 6.3 in the principal axes system of the parent 
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species. The c coordinate would have had a slightly imaginary value, but we fixed it to zero to 

obtain the a and b coordinates of Table 6.3. 

6.6 Dissociation energy 

Upon the formation of the complex, the three translational motions of the isolated spherical CH4 

are replaced by three low energy vibrational modes. The low energy and large amplitude of these 

motions bring Coriolis coupling contributes to the moments of inertia, leading the usual methods 

for structure determination supply poor results. Here we will apply a method taking into account 

these effects which has been successfully used in the van der Waals complexes such as PYR with 

Ne, Ar and Xe.
[152-154]

 One of the motions can be considered the stretching between the two 

centers of mass of the two constituent molecules, while the remaining ones can be thought as two 

internal rotation of CH4 around PYR. 

The stretching can be, in a first approximation, isolated from the other motions. For such a 

kind of asymmetric top complex in which the stretching motion between the two subunits is 

almost parallel to the a-axis of the complex, the stretching force constant (ks) can be roughly 

estimated to be 2.73 N/m, corresponding to the harmonic stretching fundamental νs = 59.0 cm
-1

, 

with pseudo-diatomic approximation through the equation (Eq. (1.8)).
[17]

 RCM is 3.664 Å from ab 

initio calculation.
 

 

Figure 6.2 Lennard-Jones potential energy diagrams for the dissociation of PYR-CH4. 

A one-dimensional flexible model
[166]

 has been used to calculate the rotational and 

vibrational energy levels to adjust the values of dissociation energy ED and equilibrium distance 

between the two CMs of the two moieties Re within a Lennard-Jones type potential, in such a 

way to reproduce νs and (B+C)0. Figure 6.2 shows the Lennard-Jones potential energy curves for 

PYR-CH4. The values of ED and R, resolving the range (-2.0 Å, +2.0 Å) into 41 mesh points
[166]
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has been adjusted to 3.9(1) kJ mol
-1

 and 3.642(1) Å, respectively.  

6.7 Internal Dynamics 

As described in Chapter 1, the planar moments of inertia represent the mass extension along each 

principal axis (Eq. (1.3) and (1.4)). In going from isolated PYR to PYR-CH4, the principal axes 

are switched as shown in Figure 6.3, but we consider the x, y, z directions to be almost the same 

for the monomer and the complex. The corresponding changes of the planar moments of inertia 

are listed in Table 6.4. The negative values of ∆Pxx and ∆Pyy are surprising at the first sight. 

Similar changes in going from pyrimidine to pyrimidine-Ar, has been interpreted as a 

combination of mass dispersion and vibrational Coriolis coupling associated with the two 

bendings.
[158]

 

 

Figure 6.3 Geometry and principal axis system in PYR-CH4 and PYR. CM is the center of mass of PYR. 

In PYR-CH4 the problem is slightly different, because CH4 is not an atom and also the four 

hydrogen atoms contribute to the Ig (g = a, b, c) values. However, assuming CH4 to freely rotate 

with respect to PYR in the m = 0 torsional ground state, it will not contribute to the Ia value, 

while its contributions to Ib and Ic are about the same. As a consequence, the Pbb and Pcc values 

do not include the contributions of the four hydrogen atoms. We can apply then the same method 

used for pyrimidine-Ar to evaluate the force constants of the bending motions of CH4 with 

respect to PYR. The two motions are considered local harmonic oscillations, on one side of the 

aromatic plane, by a model that describes—notation according to the Cs symmetry of the 

complex—the A' type mode in the xz plane by the displacement X and the A'' type displacement 

in the y direction by Y, 
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 V(X, Y) = (1/2)[kxY
2
+ky(X-Xe)

2
]   (6.1) 

where Xe is the displacement, within the symmetry plane, of the CM of CH4 from the z-axis of 

PYR at equilibrium. The calculation has been done within two-dimensional flexible model, 

resolving the range (-2.0 Å, +2.0 Å) into 21 mesh points for each of the X and Y 

displacements.
[166]

  

Since only two data, ∆Pxx and ∆Pyy, two of the three parameters Xe, kx and ky can be 

allowed to estimate. Thus we assumed kx = ky, a condition nearly fulfilled for the van der Waals 

complex with the same shape as PYR-CH4. At the meantime, ∆Pzz was used to estimate the 

z-coordinate of CM of CH4, Z0. The best agreement with the experimental data was obtained and 

listed in Table 3. It indicates that, at equilibrium position, the CM of CH4 is 3.544 Å above the 

ring, and about 6.0 from the CM of PYR towards the nitrogen atom.  

Table 6.4 The values of Pgg of PYR and PYR-CH4 and ∆Pgg upon complexion, and the flexible model results 

corresponding to the parameters determined. 

(a) Experimental and calculated data 

 Pgg(uÅ)  ∆Pgg(uÅ) 

PYR PYR-CH4 Exptl. Calc. 

x 87.738(Paa) 85.794(Pbb)  -1.944 -1.944 

y 83.974(Pbb) 82.906(Pcc)  -1.068 -1.069 

z 0(Pcc) 186.888(Paa)  186.888 186.842 

(b) Determined parameters 

kx = ky = 0.36(1) N m-1 Xe = 0.375(1) Å Z0 = 3.544(1) Å 

6.8 Conclusions 

The rotational spectrum of PYR-CH4 represents an unprecedented investigation of a complex of 

an alkane with an aromatic molecule. The obtained results point out that CH4 prefers to locate 

above the ring and link to PYR through a C-H···π WHB, rather than C-H···n interaction. This 

behavior, typical of complexes of PYR with RGs, would suggest classifying CH4, in relation to 

his ability to form molecular complexes with aromatic molecules, as a pseudo rare gas. In this 

sense, and taking into account the dissociation energy of PYR-CH4, the “rare gas” methane is very 

similar to Kr, as shown in Figure 6.4.  

In Figure 6.4, also the dissociation energies of the complexes of PYR with two families of 
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partners, CFnH4-n (n = 0 to 4) and Rare Gases (He to Xe) are reported. The intermediate members 

of the CFnH4-n group (n = 1-3) are linked to PYR through C-H···N and C-H···F WHBs and have 

higher interaction energies than the members at the extremes. CF4 (n = 4) is linked through a HaB 

to the N atom, and CH4 (n = 0) similarly to a rare gas, and displays the lowest interaction energy 

of the group. It is also interesting to note a sort of linearity of the dissociation energy of the 

complexes of RG with the increase of the atomic number: actually such a linearity was found for 

a plot of the dissociation (ED) against the RG polarization, as described in the rotational study of 

PYR-Xe.
[39]

 

 

Figure 6.4 The dissociation energies and the typology of the complexes that the CFnH4-n family (n = 0 to 4) and 

the full set of rare gases form with PYR are graphically shown. The member CH4 behaves similarly to Kr. 

CH4 seems to be one-leg connected to the  system of PYR, and to freely rotate around it, 

as suggested by the rotational constants A, which is larger than the rotational constant C of 

isolated PYR (2995.715 against 2959.21 MHz).  

It seems, in addition, that in such a large complex, a coalescing of the CH4 spin states takes 

place. 

The internal dynamics in PYR-CH4 is comparable to that of the van der Waals complexes 

involving aromatic molecules with rare gases. The effects of the CH4’s large amplitude motions 

on the rotational spectrum have been used to obtain the equilibrium location of the CH4 moiety 

and the PESs describing its dynamics. 
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Chapter 7 Bi-molecules of Carboxylic Acids 

7.1 Introduction 

The dimers of carboxylic acids are characterized by an eight-membered ring motif, which 

includes two relatively strong OH···O HBs. The corresponding dimerization energy is higher 

than 60 kJ mol
-1

, and for this reason a considerable portion of dimers is found in the gas phase, 

even at room temperature. It was possible, indeed, to observe the low resolution MW spectra in a 

standing cell of some carboxylic acid bimolecules already by Costain in 1961
[135]

 and Bellot and 

Wilson in 1975.
[167]

 

This kind of adducts is interesting because a double proton transfers takes easily place, 

connecting either two equivalent, or two non-equivalent molecular conformations. In the first case 

tunneling effects are expected, which can lead to the determination of the PES for the tunneling 

motion. In the second case, we expect a conformational equilibrium to characterize the molecular 

system. 

Various spectroscopic techniques, such as femtosecond degenerate four-wave mixing and 

Raman spectroscopy, have been applied to determine the tunneling splittings in dimers of 

carboxylic acids. Most of them have been focused on the proton transfer rate in homodimers, and 

mainly on the simplest carboxylic acid dimer of the series, the formic acid dimer.
[168-174]

 Interesting 

results have been obtaining on the ground and first electronic excited states of the benzoic acid 

dimer
[175]

 by rotationally resolved laser induced fluorescence. 

MW spectroscopy is particularly suitable to structurally and energically characterize the 

molecular interaction, and to reveal the internal dynamics. However, limited by the requirement of 

permanent dipole moment, the microwave investigations of acids dimers are mostly focusing on 

heterodimers. PJ-FTMW spectroscopy should allow obtaining precise details on the chemical and 

spectroscopic properties of this kind of molecular system. Bauder and co-workers reported 

PJ-FTMW analyses for the adducts of trifluoroacetic acid with formic and with acetic acids
[176]

 and 
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Antolinez et al. reported the MW spectrum of the trifluoroacetic acid-cyclopropanecarboxylic acid 

bi-molecule.
[177]

 In none of these cases, splitting attributed to a double proton transfer tunneling 

was observed. The failure to observe the tunneling splittings is due to the high values of the 

reduced mass of CF3 which, in order to connect equivalent minima, has to rotate by 60°. And as a 

consequence, splittings are too small to be detected. A few years ago, the tunneling caused by the 

double proton transfer has also been observed by FTMW spectroscopy on formic acid-propriolic 

acid
[178]

 and formic acid-acetic acid.
[179]

 Very recently, the double proton transfer dynamics in the 

homodimer of acrylic acid
[180]

 and the heterodimer benzoic acid-formic acid
[181]

 has been 

successfully described by the tunneling splittings of several isotopologues obtained from the 

PJ-FTMW spectra. 

As to the different case, where the double proton transfer connects to different conformers, it 

was only available in literature since the rotational study concerning the heterodimer acrylic 

acid-formic acid
[136]

 which adopts two different conformational shapes, according to the cis or 

trans forms of the acrylic acid moiety. 

Another interesting experimental evidence related to the investigation of carboxylic acids 

dimers is the Ubbelohde effect,
[24]

 an increase of the O···O distances upon H→D substitution of the 

hydrogen atoms involved in the HB. This effect was already outlined in the first MW study of this 

kind of bi-molecule.
[135]

 It is interesting to note that, in contrast to the rO···O increase observed in 

carboxylic dimers, a shrinking of the O···O distance is observed (reverse Ubbelohde effect) for 

complexes with the two subunits held together by a single OH···O HB.
[138-140] 

We focused our attention of the bi-molecules of carboxylic acids mainly on the 

conformational equilibria. In this chapter, three rotational studies of carboxylic acid heterodimers 

constituted among fluoroacetic acid (FAA), difluoroacetic acid (DFA), trifluoroacetic acid (TFA), 

formic acid (FA) and acrylic acid (AA) will be discussed: i.e. AA-TFA,
[182]

 DFA-FA
[183]

 and 

FAA-AA.
[184]

  

7.2 Experimental 

Molecular clusters were generated in a supersonic expansion, under conditions optimized for the 

dimer formation.  

Helium at a stagnation pressure of ~0.25 MPa was passed over a mixture sample of the 

carboxylic acids under studied with almost 1:1 ratio (commercial sample bought from Apollo or 

Aldrich, and used without further purification) and expanded into the Fabry-Pérot cavity. 

The deuterated species in the HBs have been derived from the proton exchange by directly 



Bi-molecules of Carboxylic Acids 

80 

mixing with deuterated water. 

7.3 Acrylic acid···Trifluoroacetic acid 

7.3.1 Theoretical calculation 

The configurations of the complex were obtained from ab initio calculations at the 

MP2/6-311++G(d,p) level.
[13]

 There are two plausible conformers distinguished by the 

orientation of the allyl group of acrylic acid. Here the configuration with zusammmen (Z) 

oriented allyl group with respect to carbonylic C=O bond is counted as cis-form, while the other 

entgegen(E) as trans- form. Draws of these two conformers as well as the calculated rotational 

constants, electric dipole moment and relative energies were listed in Table 7.1. 

Table 7.1 MP2/6-311++G(d, p) calculated energies and spectroscopic parameters of the plausible conformers of 

AA-TFA 

 cis trans 

ΔE, ΔEBSSE/cm-1 0[a], 0[b] 98, 80 

A, B, C/MHz 2604, 334, 312 2728, 329, 310 

μa, μb/D 3.7, 0.2 3.8, 0.2 

 

 
 

[a] Absolute energy: -792.3754723 Eh. [b] Absolute energy is -792.3700013 Eh. 

In order to have a better estimate of the energy differences, all intermolecular binding energy 

values were counterpoise corrected for BSSE.
[12]

 It indicated the trans- form has a little higher 

energy than the global minimum, cis-form. So both conformers were expected to be observed in 

microwave spectroscopy with much stronger a-type and weaker b-type transitions.  

7.3.2 Rotational spectra 

According to the small calculated rotational constants B and C, the a-type R-branch transitions 

were expected to appear in narrow frequency regions separated by B+C. The individual 
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transitions were readily observed as the initial search for rotational transitions was restricted to 

those regions. Several μa-R-type lines, with J ranging from 11 to 15, were initially assigned for 

cis- conformer. Then some μb-R-type lines were also measured. All measured transitions have 

been fitted with Watson’s semi-rigid Hamiltonian, within the S-reduction and the 

I
r
-representation.

[8]
  

Table 7.2 Spectroscopic parameters of the measured isotopologues of cis-AA-TFA[a] 

 AA-TFA AA-TFA(OD) AA(OD)-TFA AA(OD)-TFA(OD) 

A/MHz 2630.921(1)[b] 2616.5(3) 2605.5(3) 2591.4(3) 

B/MHz 337.3895(2) 336.5472(2) 336.7495(2) 335.9544(2) 

C/MHz 315.9790(2) 315.0353(2) 315.0486(2) 314.1463(2) 

[c]/kHz 3.28 1.93 1.18 0.98 

N[d] 50 9 9 9 

[a] The quartic centrifugal distortion parameter DJ = 0.009(1) kHz and DJK = 0.098(3) kHz have been determined for the 

normal species. These two parameters have been fixed to these values for the other 3 isotopologues. [b] Error in parentheses in 

units of the last digit. [c] RMS error of the fit. [d] Number of lines in the fit. 

Three rotational constants and two centrifugal distortion constants were fitted to the 

measured transition frequencies. Later, the spectra of three more isotopologues with deuterium 

atoms involved in the HBs were assigned. Due to the smaller number of lines measured for the 

deuterated species, their centrifugal distortion constants couldn’t be determined and were fixed to 

the values of the normal species. The obtained spectroscopic parameters are shown in Table 7.2. 

Table7.3 Spectroscopic parameters of the measured isotopologues of trans-AA-TFA[a] 

 AA-TFA AA-TFA(OD) AA(OD)-TFA AA(OD)-TFA(OD) 

A/MHz 2734.620(1)[b] 2713.30(1) 2719.3(3) 2697.98(1) 

B/MHz 333.3434(2) 332.4836(2) 332.5805(2) 331.7763(2) 

C/MHz 313.8593(2) 312.8162(2) 312.9820(2) 311.9862(2) 

[c]/kHz 3.6 0.8 1.4 0.7 

N[d] 45 10 9 10 

[a] The quartic centrifugal distortion parameter DJ = 0.008(1) kHz and DJK = 0.126(5) kHz have been determined for the 

normal species. These two parameters have been fixed to these values for the other 3 isotopologues. [b] Error in parentheses in 

units of the last digit. [c] RMS error of the fit. [d] Number of lines in the fit. 
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After that the assignment of the cis- conformer was completed, relatively strong lines were 

still available in the spectrum. They were easily assigned to the trans-conformer. The analysis of 

the experimental transition frequencies was performed as described for the most abundant 

conformer, and extended to three OD deuterated species. The determined spectroscopic 

parameters of are shown in Table 7.3. 

7.3.3 Sizing the Ubbelohde effect 

From the rotational constants it is easy to calculate, for each species, the values of the Paa planar 

moments of inertia (see Eq. (1.3) and (1.4)). These quantities give a measure of the mass 

extension along the a-axis. In Table 7.4 the Paa values, along with the model calculated and 

experimental values of their shifts upon OD deuteration are summarized. 

Table 7.4 Paa values (uÅ2) for the various isotopologues of the cis and trans conformers of AA-FAA, and 

calculated and experimental values of their shifts upon OD deuteration. The largest error on the Paa values is 

0.01 uÅ2. 

 cis trans 

 

Paa 

∆Paa 

Paa 

∆Paa 

 exptl. calc. exptl. calc. 

AA-TFA 1452.61   1470.75   

AA(OD)-TFA  1455.46 2.85 1.47 1474.22 3.47 1.94 

AA-TFA(OD) 1456.35 3.74 0.28 1474.66 3.91 0.16 

AA(OD)-TFA(OD) 1459.01 6.40 1.74 1477.91 7.16 2.09 

One can note that the experimental ∆Paa values are considerably larger than the calculated 

one, according to the Ubbelohde effect previously described.
2
 Correspondingly, the substitution 

coordinates of the carboxylic hydrogens loses the structural meaning for fully “rigid” molecules. 

Table 7.5 Increases of the carboxylic groups C···C distances (∆rC···C) upon H→D substitution 

 Cis trans 

AA(OD)-TFA 0.0074(3) 0.0033(3) 

AA-TFA(OD) 0.0029(3) 0.0082(3) 

AA(OD)-TFA(OD) 0.0099(3) 0.0110(3) 

To reproduce the experimental ∆Paa values originated by the H → D substitutions, it has been 
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necessary to slight elongate the rC···C distances between the two carboxylic carbon atoms, 

according to the values shown in Table 7.5. 

7.3.4 Information on the dissociation energy 

The intermolecular stretching motion which leads to the dissociation is almost parallel to the 

a-axis for all conformers of the complex. In this case, the pseudo diatomic approximation can be 

used to roughly estimate the force constant of the stretching mode leading to the dissociation and 

the zero point dissociation energy of the complex.
[17-18]

 The results are listed in Table 7.6. The 

dissociation energies of the two conformers have similar values, in accord with ab initio 

calculations results.
 

Table 7.6 Dissociation energy for both conformers of AA-TFA 

 Cis trans 

RCM/Å 5.24 5.27 

kS/Nm-1 35 34 

ED/kJ mol-1 81 80 

7.4 Difluroacetic acid···Formic acid 

7.4.1 Theoretical calculations 

Two rotamers have been identified in the rotational spectrum of DFA, with the difluoromethyl 

hydrogen atom trans or gauche with respect to the C–O bond.
[185]

 When forming the complex 

with FA, these two conformations are expected to be preserved, as shown in Figure 7.1. 

 

Figure 7.1 Trans and gauche conformers of DFA-FA, with their principal axes systems. 
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Full geometry optimization of the monomers and dimers were carried out at the 

MP2/6-311++G(d,p) level using the Gaussian03 program package.
[13]

 In order to have a better 

estimate of the energy differences, all intermolecular binding energy values were counterpoise 

corrected for BSSE.
[12]

 The calculation results suggest that the two conformers have more or less 

the same energy level. So the spectra for both conformers were expected to be observed. The 

estimated values of the spectroscopic constants as well as the dipole moment were listed in Table 

7.7, and used as a guide in the assignment of the rotational spectra for both conformers.  

Table 7.7 MP2/6-311++G(d,p) calculated spectroscopic parameters, Relative energies and dissociation energies 

of trans and gauche DFA-FA 

 Trans gauche 

A/MHz 3751 3578 

B/MHz 674 695 

C/MHz 638 634 

μa/D 1.7 1.6 

μb/D 1.3 1.0 

μc/D 0.0 1.0 

ΔE/cm-1 0[a] 8 

ΔEBSSE/cm-1 0[b] 15 

ED
[c]/kJmol-1 61.7 63.3 

ED-BSSE
[d]/kJmol-1 49.0 50.5 

[a] Absolute energy is -616.101758 Eh. [b] Absolute energy is -616.096927 Eh. [c] Dissociation energy. [d] BSSE corrected 

dissociation energy. 

7.4.2 Rotational spectra 

Following the predictions from the model calculations, the trial assignment started with the trans 

conformer, which was expected to be the more stable one. Two frequency scans of a few 

hundred MHz each were carried out in the region of the J = 7←6 and J = 8←7 μa-type R bands. 

The corresponding K-1 = 0, 1 transitions were easily identified, and after some preliminary 

fittings, the assignment of the spectrum was extended to transitions with higher J and with K-1 up 

to 4. Some μb-type R and Q branch transitions have been measured later. No μc-type transitions 

have been detected, in agreement with the plane of symmetry of this form of the adduct.  

Since trans DFA-FA is a near prolate asymmetric top, the S-reduction and the 

I
r
-representation have been chosen.

[8]
 The transitions were fitted with Pickett’s SPFIT computer 
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program.
[95]

 Three rotational constants and four centrifugal distortion constants were determined 

from the 45 measured transition frequencies, as shown in the first column of Table 7.8. Later on, 

the spectra of three more isotopologues with the deuterium in the HB network have been 

assigned. Due to the smaller number of lines measured for the deuterated species, their 

centrifugal distortion constants were fixed to the values of the parent species. The determined 

spectroscopic parameters were also reported in Table 7.8.  

Table 7.8 Spectroscopic parameters for the trans form of DFA-FA 

 DFA-FA DFA-FA(OD) DFA(OD)-FA DFA(OD)-FA(OD) 

A/MHz 3756.8120(2)[a] 3723.217(2) 3724.703(2) 3690.960(2) 

B/MHz 684.7062(1) 680.4802(1) 682.7161(1) 678.6128(1) 

C/MHz 647.2307(1) 642.4528(1) 644.4905(1) 639.8197(1) 

DJ/kHz 0.1042(7) [0.1042][b] [0.1042] [0.1042] 

DJK/kHz 0.924(5) [0.924] [0.924] [0.924] 

d1/kHz -0.0034(5) [-0.0034] [-0.0034] [-0.0034] 

d2/kHz 0.0302(4) [0.0302] [0.0302] [0.0302] 

[c]/kHz 1.15 1.92 1.18 2.87 

N[d] 45 11 11 11 

[a] Error in parentheses in units of the last digit. [b] Values in bracket fixed to the value of the parent species. [c] 

Root-mean-square deviation of the fit. [d] Number of lines in the fit. 

Several transitions remained unassigned in the spectrum, most of them showing two 

component lines. They were easily assigned to the gauche conformer. In this case also several 

interstate μc-type transitions, full split by about the double of the vibrational splitting between the 

v = 0 and v = 1 sublevels were measured and assigned. The energy difference between the two 

sublevels is so small that the μa-type transitions display very small splittings (of the order of a 

few tens of kHz) as shown in Figure 7.2, where the recorded 80,870,7 transition is given. 

Such a doubling could be attributable either the tunneling of –CHF2 between its two 

equivalent gauche minima, or the proton transfer with a simultaneous internal rotation of the 

–CHF2 group to reach an equivalent potential energy minimum. A crystal clear indication is 

given from the assignment of the deuterated species. Monodeuteration makes the two HBs no 

longer equivalent, and it quenching the tunneling, when due to the proton transfer. Since the 

splittings were observed, more or less unchanged, in all three deuterated isotopologues, we can 

attribute the transition doubling to the internal rotation of –CHF2.  
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Figure 7.2 Recorded 80,870,7 transition, split into two tunneling component lines. Each line appears as a 

doublet(┌┐) due to the Doppler effect. 

For the gauche conformer, the transitions frequencies of all four isotopologues have been 

fitted according to the simple coupled Hamiltonian: 

H = HR + HCD + ΔE01 (7.1) 

where HR and HCD are the rotational and centrifugal distortion contributions, common to both v = 

0 and v = 1 state and ΔE01 is the energy splitting between the two states. All determined 

spectroscopic constants are reported in Table 7.9. The centrifugal distortion constants of 

deuterated species were also fixed to the values of the parent species. 

Table 7.9 Spectroscopic parameters for the gauche form of DFA-FA 

 DFA-FA  DFA-FA(OD)  DFA(OD)-FA  DFA(OD)-FA(OD) 

 0 1  0 1  0 1  0 1 

A/MHz 3638.830(3)[a] 3637.294(3)  3604.112(5) 3602.785(4)  3599.368(4) 3597.898(4)  3564.696(4) 3563.416(4) 

B/MHz 711.7877(2) 711.7879(2)  707.9592(3) 707.9601(3)  709.4035(3) 709.4040(3)  705.7043(3) 705.7047(3) 

C/MHz 631.1527(2) 631.1536(2)  627.0917(2) 627.0923(2)  628.2371(2) 628.2379(2)  624.2782(2) 624.2790(2) 

DJ/kHz 0.069(1)  [0.069][b]  [0.069]  [0.069] 

DJK/kHz 0.39(1)  [0.39]  [0.39]  [0.39] 

d1/kHz -0.002(1)  [-0.002]  [-0.002]  [-0.002] 

d2/kHz -0.008(1)  [-0.008]  [-0.008]  [-0.008] 

E01/MHz 3.148(4)  2.762(7)  3.081(7)  2.714(7) 

[c]/kHz 4.98  3.13  2.87  1.94 

N[d] 84  25  26  26 

[a] Error in parentheses in units of the last digit. [b] Values in bracket fixed to the value of the parent species. [c] 

Root-mean-square deviation of the fit. [d] Number of lines in the fit.  
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7.4.3 Structural analysis 

By comparing the experimental and calculated values of the rotational constants (Tables 7.7-7.9) 

there is a general good agreement, with the exception of the rotational constant A of the gauche 

conformer, which experimental value is larger by ~80 MHz. This discrepancy could be partially 

adjusted by a considerable rotation of the –CHF2 group with respect to the plane containing the 

two carboxylic groups. It is easier, however, to see the effects of the variation of this dihedral 

angle on the inertial properties considering the values of the Pcc planar moments of inertia and 

easily obtained from the rotational constants through the relation Pcc. For the gauche conformer, 

the experimental value of Pcc (24.087 uÅ
2
) is much smaller than the theoretical one (35.588 uÅ

2
). 

The discrepancy is reduced to zero by rotating the –CHF2 group by about 18º, that is changing 

the dihedral angle HC-COOH from 27.0 (ab initio value) to 45.1° (as shown in Figure 7.3). 

 

Figure 7.3 The –CHF2 group of gauche conformer rotated 18.5° from ab initio to experimental result according 

to the inertia defect changes. –CHF2 is the calculated structure while –CH′F′2 is the experimental structure. 

7.4.4 Dissociation energy 

One can see, in Figure 7.1, the intermolecular stretching motion leading to dissociation is almost 

parallel to the a-axis of the complex. Through the equations (Eq. (1.18) to (1.21)),
[17]

 the zero 

point dissociation energy of the complex can be derived to be ED = 25.6 and 39.3 kJ·mol
-1

 for 

trans and gauche, respectively.
[18]

 Both values are quite lower (up to 50% of discrepancy) than 

those from the calculations, probably because the pseudo diatomic approximation is too crude for 

this complex. 

7.4.5 Ubbelohde effect 

The deuteration at the HBs, produces a decrease of the B and C rotational constants larger than 

expected. The experimental ∆Paa values (the shifts of Paa upon OD deuteration) are considerably 
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larger than the calculated ones, according to the Ubbelohde effect previously described. To 

reproduce the experimental ∆Paa values originated by the H→D substitutions, it has been 

necessary to slightly elongate the rC···C distances between the carboxylic carbon atoms of the two 

units by the rC···C quantities. The ∆Paa and rC···C values are shown in Table 7.10 for all OD 

isotopologues of the two conformers. 

Table 7.10 Experimental and calculated ∆Paa values (uÅ2) for the various isotopologues of the trans and gauche 

conformers of DFA-FA, and shifts (DrC···C) of the distances between the two carboxylic carbon atoms upon OD 

deuteration. 

 trans gauche 

 ∆Paa
[a]/uÅ2 

∆rC···C/Å 

∆Paa
[a]/uÅ2 

∆rC···C/Å 

 exptl. calc. exptl. calc. 

DFA(OD)-FA 2.156 0.612 0.0060(3)[b] 2.290 0.971 0.0049(3) 

DFA-FA(OD) 4.589 3.822 0.0030(3) 3.845 3.006 0.0031(3) 

DFA(OD)-FA(OD) 6.636 4.407 0.0087(3) 6.050 3.945 0.0077(3) 

[a] The Paa values of the parent species are 692.203 and 685.926 uÅ2 for trans and gauche, respectively. [b] Error in 

parentheses in units of the last digit. 

7.4.7 One-dimensional flexible model calculation 

After showing that the small vibrational splitting between the 0 and 1 sub-states is due to the 

–CHF2 internal rotation connecting the two equivalent gauche form, we proceed in this section to 

the determination of the B2 barrier along this pathway. First of all, we calculated the potential 

energy function along the CHF2 internal rotation at the MP2/6-311++G(d,p) level using 

Gaussian03 program package, obtaining the results shown graphically in Figure 7.4. Since the 

barrier between the gauche and trans conformers is considerably higher than that connecting the 

two gauche forms, we assumed the splitting as due to the tunneling through the smaller (G-G’) 

barrier. We used then the ∆E01 splitting to determine the local B2 barrier by using Meyer’s 

one-dimensional flexible model.
[166]

 We described the potential energy pathway with this 

following equation: 

 V(τ) = B2[(1 - (τ/τe)
2
]

2
 (7.2) 
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where B2 is the torsional barrier, and τ ( HC-COOH dihedral angle) is the torsional angle of the 

–CHF2 group, assumed to be zero when “cis–orientated”, that is the transition state between the 

two equilibrium minima (e).  

 

Figure 7.4 Ab initio potential energy function for the internal rotation of the -CHF2 group in DFA-FA. 

The structural relaxations of the bond lengths and valence angles of the two fluorine atoms 

as a function of  were also taken into account by the expression: 

 S(τ) =S0+∆S (τ/τe) (7.3) 

For a given parameter S, S0 is the value at τ = 0 while ∆S is its variation in going from τ = 0 

to τ = τe. All these values have been obtained comparing the ab initio geometries of the minimum 

to those of the transition state.  

Table 7.11 Flexible model results for the B2 barrier connecting the two gauche forms of DFA-FA 

1) Experimental and calculated data 

 exptl. calc. 

Pcc/uǺ2 24.090 24.094 

∆A/MHz -1.54 -1.45 

∆E/MHz 3.15 3.14 

2) Determined parameters 

B2/cm-1  101.8(3) 

τe/  45.2(3) 

In the flexible model calculations, the range –85 to +85 has been resolved into 41 mesh 

points.
[136]

 The obtained results are listed in Table 7.11. A barrier B2 = 101.8(3) cm
-1

 has been 
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determined, about five times larger than the ab initio value (22 cm
-1

), but similar to the barrier 

obtained for the complex acrylic acid - difluoroacetic acid.
[186]

 

7.5 Acrylic acid···Fluoroacetic acid 

7.3.1 Theoretical calculations 

Full geometry optimization of the four more stable configurations of the dimer were carried out 

at the MP2/6-311++G(d,p) level.
[13]

 The corresponding draws, as well as the calculated rotational 

constants, electric dipole moment and relative energies are listed in Table 7.12. 

Table 7.12. MP2/6-311++G(d,p) calculated parameters of the plausible conformers of FAA-AA bimolecule. 

 Tc Tt Cc Ct 

ΔE/cm-1 0[a] 85 169 266 

ΔEbsse/cm-1 0[b] 70 178 261 

A/MHz 4285 4025 3977 4704 

B/MHz 464 468 471 456 

C/MHz 420 421 422 416 

|μa|, |μb|/D 1.9, 1.8 1.7,1.2 1.7, 1.0 2.0, 1.6 

 

    

[a] Absolute energy is -594.201813 Eh. [b] Absolute energy is -594.196566 Eh.  

We label the four species with acronyms of the type Xx, where X indicates the configurations 

of FAA (T for trans, C for cis), while x indicates the configurations of AA (t for trans, c for cis). In 

order to have a better estimate of the energy differences, all intermolecular binding energy values 

were counterpoise corrected for BSSE.
[12]

 These calculations suggest configurations with trans 

FAA to lie at lower energies. According to the calculated rotational constants, the μa-type R branch 

bands, which is more intense, were expected to appear in narrow frequency regions, separated by a 

B+C spacing. 

7.3.2. Rotational spectra 

We searched first for the μa-type transitions of the global minimum Tc, which are expected to be the 

most intense lines. Transitions with J = 9 to 12 and with K-1 0 to 4 could be measured. Then some 
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μb-type R and Q branch lines were also identified. 

Once conformer Tc was excluded from the spectrum, a number of less intense transitions 

could be easily assigned to conformer Tt. With further signal accumulation, some much weaker 

lines were found which were assigned to the Cc transitions. 

It is interesting to note that cis-FAA, which appears in the Cc form of the dimer, was not 

observed in the MW spectrum of the monomer (a second conformer was observed, but with a cis 

configuration of the COOH group),
[187]

 probably because of the very small values of its dipole 

moment components. So, acrylic acid acts as an electrophore for cis-FAA, leading to its indirect 

observation. 

It was not possible to assign the spectrum of the fourth conformer (Ct). 

Table 7.13 Experimental spectroscopic parameters of the observed conformers of FAA-AA bimolecule 

(S-reduction, Ir representation) 

 Tc Tt Cc 

A/MHz 4350.3931(7)[a] 4046.0566(8) 3997.401(1) 

B/MHz 470.1161(2) 475.4679(2) 477.7362(2) 

C/MHz 425.7949(2) 426.9990(2) 428.2972(2) 

DJ/kHz 0.017(1) 0.018(1) 0.017(1) 

DJK/kHz -0.014(2) -0.091(2) -0.064(2) 

[b]/kHz 2.1 2.4 2.0 

N[c] 48 48 35 

[a] Error in parentheses in units of the last digit. [b] RMS error of the fit. [c] Number of lines in the fit. 

All measured transitions could be fit, independently for each conformer, with Watson’s 

semi-rigid Hamiltonian (S-reduction; I
r
-representation),

[8]
 obtaining the rotational and two first 

order centrifugal distortion constants reported in Table 7.13. The comparison between the 

experimental and predicted rotational constants (see Tables 7.12 and 7.13) gives unequivocal 

conformational assignments of conformers Tc, Tt, and Cc. The spectroscopic rotational constants 

of the three detected conformers agree almost perfectly with the calculated values. The deviations 

are all less than 2%. Therefore, no further structural fitting has been done for the geometric 

structures. 

Then, we analyzed the rotational spectra of the OD deuterated species, obtained by mixing 

the acids with D2O. The spectra of these species resulted quite weak, probably due to the presence 

of adducts of the carboxylic acids with water. For this reason, only five OD isotopologues have 
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been observed (3 for the Tc and 2 for the Tt species, respectively). A few transitions have been 

measured for each deuterated species, and for this reason the centrifugal distortion constants have 

been fixed, in the fits, to the values of the corresponding parent species. The determined 

spectroscopic parameters of all deuterated isotopologues are listed in Table 7.14. 

Table 7.14 Experimental spectroscopic parameters for the deuterated species of FAA-AA. (S-reduction, Ir 

representation). The DJ and DJK centrifugal distortion parameters have been fixed to the values of the 

corresponding parent species. 

 Tc  Tt 

 FAA(OD)-AA FAA-AA(OD) FAA(OD)-AA(OD)  FAA(OD)-AA FAA-AA(OD) 

A/MHz 4295.258(5)[a] 4292.946(5) 4238.737(5)  3983.443(5) 4019.761(5) 

B/MHz 469.4828(2) 469.3397(2) 468.7634(2)  474.5850(2) 474.6199(2) 

C/MHz 424.7434(2) 424.6039(2) 423.5976(2)  425.5827(2) 426.0249(2) 

[b]/kHz 1.3 1.7 3.3  3.1 2.6 

N[c] 11 11 11  11 11 

[a] Error in parentheses in units of the last digit. [b] RMS error of the fit. [c] Number of lines in the fit.  

7.4.3 Sizing the Ubbelohde effect 

From the rotational constants it is easy to calculate, for each species, the values of the Paa. We 

report in Table 7.15 the Paa values, along with the calculated and experimental values of their 

shifts upon OD deuteration. 

Table 7.15 Paa values (uÅ2) for the various isotopologues of the Tc and Tt conformers of FAA-AA, and 

calculated and experimental values of their shifts upon OD deuteration. 

 Tc Tt 

 
Paa 

∆Paa 
Paa 

∆Paa 

 exptl. calc. exptl. calc. 

FAA-AA 1072.874   1060.781   

FAA(OD)-AA 1074.323 1.449 0.009 1062.757 1.976 0.073 

FAA-AA(OD) 1074.650 1.777 0.173 1062.675 1.894 0.318 

FAA(OD)-AA(OD) 1075.964 3.091 0.183 - - - 

The experimental ∆Paa values are considerably larger than the calculated one, according to 

the Ubbelohde effect previously described.
[135-136]

 To reproduce the experimental ∆Paa values 
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expected originated by the H→D substitutions, it has been necessary to slight elongate the rC···C 

distances of the carboxylic carbon atoms, according to the values shown in Table 7.16. 

Table 7.16 Increases of the C···C distances (rC···C) upon H→D substitution 

 rC···C/Å 

 Tc Tt 

FAA(OD)-AA 0.0040(3) 0.0053(3) 

FAA-AA(OD) 0.0045(3) 0.0044(3) 

FAA(OD)-AA(OD) 0.0082(3) - 

7.5.4 Information on the dissociation energy 

The intermolecular stretching motion which leads to the dissociation is almost parallel to the 

a-axis for all conformers of the complex. In this case, a pseudo diatomic approximation can be 

used to roughly estimate the force constant of the stretching mode leading to the dissociation 

through Eq. (1.18),
[17]

 and then the zero point dissociation energy of the complex can be derived 

applying the approximate expression (Eq. (1.21)).
[18]

 

The results are listed in Table 7.17. The dissociation energies of the three conformers have 

similar values, in accord with ab initio calculations results. 

Table 7.17 Dissociation energy data (see text) 

 Tc Tt Cc 

kS/Nm-1 40 39 42 

v/cm-1 134 132 137 

RCM/Å 4.81 4.81 4.80 

ED
[a]/kJ mol-1 77 75 80 

ED0
[b]/kJmol-1 67 67 67 

EDBSSE
[c]/kJmol-1 53 54 53 

[a] Pseudo diatomic approximation. [b] MP2/6-311++G(d,p) values. [c] Counterpoise corrected MP2/6-311++G(d,p) values. 

7.6 Relative population of the conformers in the jet 

Relative intensity measurements of some pairs of nearby μa-type lines, allowed the estimation of 

the relative population of the conformers in the jet for the three above carboxylic acid 
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bimolecules. We obtained for AA-TFA Ncis/Ntrans ≈ 6/1, for DFA-FA Ntrans/Ngauche ≈ 1/1, and for 

AA-FAA NTc/NTt/NCc ≈ 7/4/1. As outlined in other papers,
[188]

 in the jet plume there is not an 

equilibrium situation, and the relative concentration of the dimer conformers depend also on the 

concentrations of the conformers of the monomers, so that is difficult to give the relative 

energies. The relative populations are, however, qualitatively in agreement with the order of the 

calculated ab initio relative energies. 

7.7 Conclusions 

In summary, with FTMW technique, we assigned the rotational spectra of TFA-AA, DFA-FA 

and FAA–AA carboxylic acid dimers including their deuterated species. Two or three 

conformers were identified. The concerted double proton transfer in these three complexes 

connects different conformers, differently with respect to the cases of AA-AA or benzoic 

acid-formic acid, where this motion connects equivalent minima, generating tunneling splitting. 

The increase of the HB length upon H→D isotopic substitution (Ubbelohde effect) has been 

deduced from the elongation of the carboxylic carbons C···C distance. 

What deserves to be mentioned is the successful assignment of the conformer Cc involving 

cis-FAA evinced the existence of cis-FAA in the supersonic jet, in spite of the failure of 

observing it in isolation.  

For DFA-FA, experimental values of the ∆E01 splitting allowed determining the barrier to 

the inversion of the two gauche forms. The value of the planar moment of inertia Pcc shows that 

for this form its experimental geometry requires a rotation of –CHF2 about 18º with respect to 

the theoretical value. 

 

 

 



Complex of Rare Gas 

95 

Chapter 8 Complex of Rare Gas 

8.1 Introduction 

As mentioned in Chapter 3, complexes with aromatic molecules have the RG atom firmly linked 

to one side of the ring and the vdW motions do not generate any observable inversion splittings. 

Vice versa, when a RG atom is linked to an open chain molecule, all the complexes display 

rotational transitions characterized by inversion splittings. Aliphatic ring organic molecules are 

intermediate between aromatic molecules and open chain molecules as far as tunneling splittings 

are concerned. 

Tetrahydrofuran (THF) is a fully aliphatic cyclic non-planar molecule, which undergoes a 

pseudo-rotation motion, with a consequent splitting in four pseudo-rotation sub-states of the 

ground vibrational state.
[11, 189]

 Its complex with Ar (THF-Ar) displayed a systematic doubling of 

the rotational lines.
[190]

 According to the observed Coriolis coupling constants, the observed 

tunneling splitting was mainly attributed to the residual pseudo-rotation effects of the THF subunit 

in the complex.  

In this chapter, in order to check if the interpretation of the doubling in THF-Ar was correct, 

to investigate the influence of the RG atomic weight and polarizability on the tunneling effects, 

and to model the potential energy function of the tunneling motion, the rotational study of the 

THF- Kr complex with PJ-FTMW technique has been discussed in detail.
[191]

 

8.2 Experimental 

Molecular clusters were generated in a supersonic expansion, under conditions optimized for the 

dimer formation.  

A gas mixture of ca. 11% of Kr in Helium at a stagnation pressure of ~ 0.25 MPa was 

passed over a sample of THF (commercial sample bought from Aldrich, and used without further 
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purification) and expanded into the Fabry-Pérot cavity.  

8.3 Theoretical Calculations 

THF-Kr is schematically shown in Figure 8.1, together with the parameters defining the position 

of the Kr atom, which will be used through the text. In going from the molecule to the complex, 

an inversion of the principal axis of inertia takes place with respect to the ring skeleton. The 

position of Kr in the complex can be described with spherical coordinates Rcm, θ and . Rcm is the 

distance of the Kr atom from the center of mass of the monomer, θ is the angle that Rcm makes 

with the c principle axis of THF, and Ф is the angle between the projection of Rcm in the ab plane 

and the a principle axis of THF. 

 

Figure 8.1 Sketch of THF-Kr. the spherical coordinates locating the position of Kr, used in the DPM calculation 

are defined. The principal axis of the complex are, in a first approximation, linked to the x, y, z coordinates 

according to xb, yc, za. 

First we applied the distributed polarizability model (DPM),
[192-193]

 using the computer 

program RGDMIN with full minimization of the structural vdW parameters,
[123]

 which is very 

simple and fast, while very efficient to find the possible minima on the vdW PES.
[194]

 Later on 

we better characterized the global minimum found with RGDMIN by ab initio calculations 

(MP2/6-311++G(d,p)).
[13]

 The calculated rotational constants and electric dipole moments are 

listed in Table 8.1, whilst the three spherical coordinates are given in a subsequent section. 

According to the calculated electric dipole moment components, we expected to observe an 

asymmetric rotor spectrum with weak a-type, b-type and stronger c-type transitions. 
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Table 8.1. MP2/6-311++G(d,p) and DPM calculated rotational constants and components of the electric dipole 

moment of THF-Kr 

 MP2/6-311++G(d, p) DPM 

A, B, C/MHz 4371, 784, 773 4240, 755, 747 

|a|, |b|, |c|/D 0.9, 0.8, 1.5 - 

8.4 Rotational Spectra 

The spectrum of the most abundant isotopic species (
84

Kr, ca. 57% of natural abundance) has 

been investigated first. Since THF-Kr is an almost prolate symmetric top, the S-reduction and the 

I
r 

–representation have been chosen.
[8]

 The frequencies were fitted with a Pickett SPFIT 

computer program,
[95, 195]

 according to the reduced axis Hamiltonian, 

H = ΣiHi + H0+0- (i = 0
+
, 0

-
)   (8.1) 

where 
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Several μa-R-type lines, with J ranging from 5 to 11, were initially assigned. Then some 

μc-R-type lines were measured. Both μa- and μc-type are split into two nearby component lines, 

as shown in Figure 8.2 for the 61,551,5 transition. Below we will show that they are intrastate 

transitions due to a tunneling motion in THF-Kr. 

Later, the vibration-rotation transitions 51,5(0
-
)←41,3(0

+
) and 51,4(0

+
)←41,4(0

-
), in principle 

forbidden, were observed at 7743.889 MHz (νobs –νcalc = 0.67 kHz) and 7786.077 MHz (νobs –νcalc 

= 0.03 kHz), respectively. These transitions have μa-type character due to the strong mixing 

between the pairs of states 51,5(0
-
)─51,4(0

+
) and 41,4(0

-
)─41,3(0

+
) produced by Coriolis 
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interactions. 

 

Figure 8.2 Recorded 61,651,5 transitions, split into two tunneling component lines, for the 84Kr (top) and 86Kr 

(bottom) isotopologues. Each line appears as a doublet(┌┐) due to the Doppler effect. 

Finally, several interstate μb-type transitions, fully split by about the double of the 

vibrational splitting between the 0
+
 and 0

-
 sublevels, were assigned and measured. 

The determined 14 spectroscopic parameters are listed in Table 8.2. They are three 

rotational constants for each of the coupled states, four quartic centrifugal distortion constants 

(set to a common value for the two states), their energy difference (ΔE0+0-), the interaction 

constants Fab and Fbc, and J-dependence F′bc, as defined in the interaction Hamiltonian (H0+0-). 

The spectrum of the second most intense isotopologue (
86

Kr, ca. 17% of natural abundance) 

has also been measured in the same way. The vibration-rotation transitions 51,5(0
-
)←41,3(0

+
) and 

51,4(0
+
)←41,4(0

-
) at 7671.3488 MHz (νobs –νcalc = -1.50 kHz) and 7712.2631 MHz (νobs –νcalc = 

0.39 kHz) were observed likewise, respectively. 

The Fab coefficient is larger than Fbc although the latter is better determined due to the small 

energy separation (ΔE0+0-) which is of the same order of magnitude of the rotational spacing 

between many of the observed Ka asymmetry doublets. These data help to understand which kind 

of motion is responsible for the tunneling splitting which evidently indicates a double minimum 

potential owning to a large amplitude motion of the complex. This motion could be: (i) the 

residual pseudo-rotation of the ring in the complex, or (ii) the transfer of Kr from above to below 
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the THF ring (see Figure 8.1). In the first case, the angular momentum vector oriented along the 

a-principle axis of isolated THF should have components mainly along a- and c-axes of THF-Kr. 

Orienting along the a-axis of THF, a larger projection along the c-axis than a-axis of THF-Kr is 

expected. As in the principle inertial axes system, the Coriolis coupling could be interpreted in 

terms of the angular momentum operator
[195]

. It’s in good agreement with the facts that the a- and 

c-type coupling terms, Fbc and Fab, are observed between the tunneling states of THF-Kr, being 

larger the c-type coupling. In addition, the b dipole moment component should invert when 

going from one minimum to the equivalent one, and correspondingly b type transitions should 

be interstate transitions. Contrastively, in the second case, c type transitions should be the 

interstate ones. Therefore, the kinds of the observed Coriolis coupling terms and the kind of 

interstate transitions, allow us to conclude that the observed tunneling splitting should be in 

connection with a residual pseudo-rotation of the THF subunit. Similar behaviors have also been 

observed for some HB complexes involving THF like THF-HCl
[196]

 and THF-HF
[197]

 whose 

rotational spectrum present doublets owing to the pseudo-rotation tunneling of THF. 

Table 8.2 Experimental spectroscopic constants of THF-Kr (S reduction, Ir representation) 

 

 

THF-84Kr 
 

THF-86Kr 

0+ 0- 0+ 0- 

A/MHz 4369.442(6)[a] 4369.569(6)  4369.261(1) 4369.385(1) 

B/MHz 784.394(6) 784.387(6)  776.829(1) 776.821(1) 

C/MHz 773.3362(3) 773.3173(2)  766.0845(2) 766.0604(2) 

DJ/kHz 1.4044(4)  1.3799(9) 

DJK /kHz 4.46(1)  4.24(6) 

d1/kHz 0.120(2)  [0.120][b] 

d2/Hz 0.4(1)  [0.4] 

ΔE0+0-/MHz 87.462(2)  87.070(2) 

Fab/MHz 127.01(9)  124.57(9) 

Fbc /MHz -4.3642(2)  -4.2789(1) 

F′bc/kHz 0.172(4)  [0.172] 

N[c] 60  36 

σ[d]/kHz 1.10  1.60 

[a] Error in parenthesis is expressed in units of the last digit; [b] Values in square brackets fixed to the values of the THF-84Kr; 

[c] Number of transitions in the fit; [d] Standard deviation of the fit. 

8.5 Location of the Kr atom in the complex 

Four different sets (r0, rs, rDPM and re) of the vdW structural parameters of the complex are shown 

in Table 8.3. 
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The partial r0 structure was obtained by fitting the distance Rcm and the angles  and  

indicated in Figure 8.1 to the available rotational constants, and starting from the ab initio structure. 

The rs coordinates
[16]

 of the krypton atom can be obtained in the principal axes system of THF by a 

hypothetical substitution of an atom of zero mass with a Kr in going from THF to THF···Kr, or in 

the principal axes system of THF···
84

Kr when substituting 
84

Kr with 
86

Kr. However, these values 

are quite approximate because of vdW vibrations, which take place only in the complex. The re and 

rdpm geometries are from ab initio and DPM calculations, respectively. 

The r0 values are very similar to the re ones, so that just a slight adjustment of the vdW 

parameters has been required. 

Table 8.3 Experimental (rs and r0) and theoretical (re and rDPM) vdW structural parameters of THF···Kr. 

 r0 rs re rDPM 

1) Kr coordinates in the principal axes system of THF···Kr. 

  a/Å 1.774 1.766(1)[a] 1.775 1.812 

  b/Å 0.004 0.13(1) 0.004 0.003 

  c/Å 0.067 0.0[b] 0.067 0.060 

2) Kr coordinates in the principal axes system of THF 

  a/Å 1.377 1.62(1) 1.430 1.245 

  b/Å 0.750 0.2(1) 0.652 0.668 

  c/Å 3.508 3.488(1) 3.508 3.661 

3) Kr vdW parameters 

  Rcm/Å 3.843(1) 3.841 3.845 3.924 

  /º 24.1(1) 24.8 24.1 21.1 

  /º 29(4) 5.7 24.5 28.2 

[a] Error in parenthesis is expressed in units of the last digit; [b] Imaginary value: set to zero  

8.6 VdW vibrations 

8.6.1 VdW Stretching 

Upon complexation with THF, the three translational degrees of freedom of the isolated krypton 

atom are replaced by three vdW vibrational modes: the THF-Kr stretching, and two bendings. 

First we assumed the Kr stretching motion to be isolated from the other motions. So the 

stretching force constant (ks) can be estimated with pseudo diatomic approximation (Eq. 
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(1.18)).
[17]

 We obtained ks = 3.0 N m
-1

, and corresponding to a harmonic stretching fundamental 

36 cm
-1

. The dissociation energy, according to Eq. (1.21), has been estimated to be 3.7 kJ 

mol
-1

.
[18]

 

The dissociation energy of THF-Kr is higher than that of THF-Ar (ED = 2.6 kJ mol
-1

),
 [190]

 in 

agreement with the higher polarizability of Kr with respect to Ar. The same parameters of the 

complexes involving THF, 2,5-dihydrofuran, pyridine and oxirane with Kr are listed in Table 

8.4. 

Table 8.4 Force constant and dissociation energy of the vdW stretching in some complexes of Kr with ring 

molecules. 

 ks/N m-1 ED/kJ mol-1 Ref. 

THF-Kr 3.02 3.7 present work 

2,5-dihydrofuran-Kr 3.26 3.5 [24] 

pyridine-Kr 3.51 3.8 [4a] 

oxirane-Kr 2.69 3.1 [25] 

8.6.2 Tunneling Motion Described by One-Dimensional Flexible Model 

Calculation 

Meyer’s one-dimensional flexible model
[166]

 has been used to determine the potential energy 

barrier between the two equivalent minima due to the bending motions of C5 and C6 up and 

down to the plane C3D2C4 in Figure 8.3 where the notation D is for “dummy” atoms referencing 

points in the molecule not corresponding to real atoms.  

 

Figure 8.3 Ring-puckering in THF-Kr. α denotes the inversion angle of C5 or C6. Di (i = 1, 2, 7, 8) denotes 

dummy points. 
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This model allows the numerical calculation of the rotational and vibrational wave functions 

and eigenvalues (and then the vibrational spacings), but needs a description of the pathway and a 

potential energy function. For this purpose, the geometry of the transient states of THF-Ar were 

obtained from ab initio calculations at the MP2/6-311++G(d,p) level. The experimental value for 

the barrier has been obtained from the ΔE0+0- splitting (see in table 8.2). The following potential 

energy function has been adopted: 

 2 2

2 e( ) [1 ( / ) ]V B    , (8.4) 

where the inversion coordinate  is the twisting angle (with respect to the planarity of the four 

carbon atoms) of the C5 and C6 atoms (see Figure 8.3). B2 is the barrier to inversion and e is the 

equilibrium value of the inversion angle. The main relaxations of other structural parameters 

have been accounted for according to:  

2

0 e( ) ( / )S S S    , (8.5) 

for symmetric variations with respect to  (most parameters), or according to:  

0 e( ) ( / )A A A    , (8.6) 

for asymmetric changes. For a given parameter S (or A), S0 (or A0) is the value at α = 0 while ΔS 

(or ΔA) is its variation in going from α = 0 to α = αe. All these values have been obtained from 

the ab initio geometries of the minimum and of the transition state. 

Table 8.5 Results of the flexible model calculations 

1) Tunneling Splittings 

 Obs Calc 

ΔE0+0-(84Kr)/ MHz 87.462(2)[a] 87.51 

ΔE0+0-(86Kr)/ MHz 87.070(2) 87.12 

2) Determined parameters 

B2 = 67(1) cm-1  0 = 25.3 [b]  

3) Structural relaxation parameters 

S(rC5-C6) = 0.090Å S(rD1-D2) = -0.085Å S(rO9-D2) = -0.084Å 

S(rKr-D2) = -0.192Å S(O9D2D7) = 40.8° S(KrD2D1) = 27.1° 

A(O9D2-D7D8) = 0.1° A(KrD2-D1C5) = 3.4° A(H11C3-C5D2) = 27.5° [c] 
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[a] Error in parenthesis is expressed in units of the last digit; [b] Fixed at the ab initio values; [c] The structural relaxation for 

the dihedral angle H11C3-C5D2 holds also for the corresponding dihedral angles of H12, H13, H14. 

The results of the flexible model calculations are showed in Table 8.5. α0 was fixed at the 

ab initio value, 25.3, because there were not enough data to fit also this parameter. The 

determined potential energy function is shown in Figure 8.4. The B2 value, 67 cm
-1

, is about the 

double of that suggested by the ab initio calculations (34 cm
-1

). The excellent reproduction of the 

shift of ΔE0+0- in going from THF-
84

Kr to THF-
86

Kr, justify the reliability of flexible model. 

 

Figure 8.4 Pseudo-rotation potential energy pathway in THF-Kr according to the flexible model analysis. 

In the flexible model calculations the  coordinate has been considered in the ±50º range 

and solved into 61 mesh points.
[166]

 

8.7 Conclusions 

In this chapter, the rotational spectrum of the van der Waals complex THF-Kr investigated by 

PJ-FTMW spectroscopic techniques shows that the systematic doubling of the rotational lines 

has been attributed to the residual pseudo-rotation of THF in the complex, based on the values of 

the Coriolis coupling constants, and on the type (b) of the interstate transitions. Meyer’s 

one-dimensional flexible model analysis proved the potential energy function for the 

pseudo-rotation motion.  

The strength of the THF-Kr “chemical” bond (~3.7 kJ mol
-1

) is higher than that of the 

related THF-Ar, in accord with the higher polarizability of krypton.  
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