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1  Preface 
 

 
 

 

Preface 

 

 

Chemists used to create models of molecules using plastic balls and sticks. Today, 

the modelling is carried out in computers. [..] Today the computer is just as important 

a tool for chemists as the test tube [1].  

 

 

From the second half of the last century, computational chemistry has 

reached a fast growth facilitated by the extraordinary progress of computational 

technologies and software developments. Advances in computational resources, and 

the easy way to get access to powerful workstations, have produced a remarkable 

increasing in the number of scientists routinely using in silico techniques. A clear 

indicator of this phenomena is represented by the quantity of published papers and 

references to computational methods in scientific journals. Nowadays, each research 

group has at least one or more collaborators doing computational experiments.   

 

The main goal of my dissertation consists in providing a detailed description of 

several computational methods, ranging from molecular mechanics (MM) to quantum 

mechanics (QM) approaches, showing when and how they could be applied for 

getting useful information in the field of medicinal chemistry and biophysics. One has 

to keep in mind that, in switching from experimental to a theoretical approach, 

different approximations have necessarily to be assumed. The treatment of very 

large chemical systems could become computationally demanding, and 

simplifications in the model representation, as well as approximations in the 

algorithms, are strongly required. In the light of that, choosing which aspects or 

properties of a particular real system could be ignored or have to be taken into 

account is not trivial, and represents an open computational challenge.   
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My Ph.D. thesis consists in five sections. In Chapter 1, I will briefly present an 

overview of current computational methods and their applications in medicinal 

chemistry and biophysics, with a particular focus on introducing the topics studied 

during my Ph.D.: the development of an automated docking protocol for the voltage-

gated hERG potassium channel blockers, and the investigation of the catalytic 

mechanism of the human peptidyl-prolyl cis-trans isomerase Pin1. In Chapter 2, I will 

provide the theoretical background of the methodologies used in my projects. Finally, 

in Chapter 3 and Chapter 4, I will present details and results obtained working on my 

two projects introduced before. The latter two sections could be therefore considered 

totally independent from each other. Conclusions, considerations, and challenges 

will be summarized in Chapter 5.   
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Chapter 1.   

Introduction 
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1.1 Computational Methods in Medicinal Chemistry 

 

 

Computational methods have found a wide application in medicinal chemistry, 

providing valuable information in academic, as well as in pharmaceutical companies, 

drug discovery and development research. The usage of computational techniques 

for medicinal chemical purposes, is generally referred as computer-aided drug 

design (CADD).  

 

CADD plays a key role in discovering biologically active compounds, in 

structural optimizations, in predicting molecular properties, like logP, solubility, and 

ADME/T parameters [2,3]. The reduction of costs and time for doing in silico 

experiments, is one of the main advantages of CADD. Advances in computational 

methods, and the advent of high performance parallel computing, have determined 

an acceleration of all the steps in the drug discovery process, starting from the hits 

identification to the lead compounds optimization [4]. The success of CADD and 

cheminformatics in the pharmaceutical industry, is also due to the extraordinary 

amount of data to be stored and analysed, and by the necessity to design and 

manage databases and chemical libraries. For instance, CADD has led to the 

discovery of several compounds with therapeutic activity against different 

pathological conditions. The ACE inhibitor captopril (Bristol Myers-Squibb), used for 

the treatment of hypertension, or the carbonic anhydrase inhibitors dorzolamide 

(Merck), used against the ocular disease glaucoma, represent just two historical 

cases in which computational techniques have successfully played a crucial role in 

the identification of molecules that have gained approval by US Food and Drug 

Administration (FDA) for therapeutic use [4,5]. By the way, CADD should not be 

considered an alternative to the conventional high-throughput screening (HTS) 

assays. Given their similar tasks and goals, CADD and HTS methodologies should 
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be used in combination in drug discovery, improving the hit rates, maximizing the 

output, and reducing the waste of resources in synthesis and screening [6-9]. Ideally, 

CADD has to be introduced in a pre-filtering stage, for the identification of 

compounds for HTS assays, before their synthesis or purchase [10]. Because they 

result to be cheaper and faster than experimental assays, CADD techniques are 

suitable for pre-screening large virtual libraries of compounds, providing valuable 

information for subsequent in vitro tests [11]. CADD offers several approaches and 

strategies which could be successfully applied in drug discovery, for target 

prediction, lead optimization, hit identification, molecular properties and affinity 

prediction, as well as for understanding the dynamical evolution of a biological 

system. These computational techniques are conventionally divided into structure-

based (SB) and ligand-based (LB) approaches. SB drug design exploits structural 

information of the drug target which represents a pre-requisite for its application. The 

3D structure of a target is generally determined by means of experimental X-ray 

crystallography or NMR. Whenever no crystal structure is available, computational 

methods like homology modelling (or comparative modelling), could be used for 

predicting the protein 3D structure based on the sequence alignment with templates 

[12-14]. The basic idea of this approach, is that similar sequence corresponds to 

similar a structure, and the closer is the sequence identity, the higher is the quality of 

the model [15]. In case of low sequence identity, building a structure by means of 

homology modelling, represents a very challenging task. On the other hand, LB 

techniques can provide crucial insights in lead discovery and optimization, exploiting 

the information coming from established ligands of the biological target of interest. 

The most popular LB approaches, are the quantitative structure-activity relationship 

(QSAR) method and pharmacophore modelling, allowing to build predictive models 

that are suitable in drug discovery [16,17].  

Here, I will briefly present challenging tasks in drug discovery and 

development, and the widely used computational approaches in CADD. 

 

Target identification 

 

Drug target prediction represents a challenging step in the drug discovery pipeline 

[18]. The number of targets for all approved therapeutic drug has been long debated. 
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Recently, in 2006, Overington et al., finally proposed a consensus number of 324 

targets for all the classes of US FDA-approved therapeutic drugs [19]. The presence 

of drugs which display a therapeutic activity by modulating multiple targets, has 

significantly contributed to worsen this scenario. Computational methods have 

acquired a crucial role in identifying targets for small molecules during the last years. 

In this context, reverse docking has gained significant applications [20,21]. This 

method consists in an inverse-docking protocol: the term molecular docking is used 

for identify a promising computational technique which allows to dock a ligand into a 

protein binding site, predicting the binding mode. This approach could be exploit for 

identifying novel compounds with unknown therapeutic activity against a target of 

interest. Conversely, reverse docking attempts to dock a single small molecule into a 

pool of protein structures, leading to the identification of potential protein targets, or 

the prediction of possible side effects of a drug candidate [20]. Because of the 

considerable amount of protein structures in the Protein Data Bank (PDB), and the 

computational costs required for job submissions, protein cavity databases have 

been developed in order to make reverse docking search faster. In particular, these 

cavity models, derived from an overlapping of spheres which fill up that cavities 

[20,22]. The computational approach utilized for generating a spatial arrangement of 

essential features necessary for ensuring the optimal protein-ligand interactions, is 

known as pharmacophore modelling [23]. An in silico pharmacophore model consists 

in an ensemble of chemical features like hydrogen bond acceptors or donors, 

hydrophobic regions, positively or negatively charged functional groups. Screening a 

small molecule against a set of pharmacophore models, which represent the binding 

sites of several protein structures, leads to a drastically reduction of computational 

costs and resources required by reverse docking [23,24]. A pharmacophore could be 

derived by means of a LB, or a SB approach. In the first case, by superimposing 

compounds, with known therapeutic activity against a protein, and extracting the 

common chemical features, while, in the second case, by probing possible 

interaction points between ligands and target.  

 

Protein-ligand binding mode prediction 
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Due to its ability in predicting the interactions between protein-ligand complexes, 

molecular docking has acquired a crucial role for hit discovery and lead optimization. 

[25,26]. Binding mode prediction is described by a two-steps process. Starting from a 

set of compounds, molecular docking allows a configurational exploration into a 

protein binding site. This step is a very challenging task, as even small compounds 

could be characterized by many conformational degrees of freedom. Therefore, an 

accurate sampling of all the degrees of freedoms represents a computationally 

expensive process. Molecular docking should be a strategy which provides a reliable 

conformational search, leading to a correct identification of binding poses, but, in the 

same time, fast enough to allow the evaluation of thousands of compounds in a 

docking run, for virtual screening application [25]. This step is then followed by the 

usage of a scoring function in order to evaluate the binding affinity, and provide a 

correct ranking of the poses. The development of a scoring function able to 

accurately describe protein-ligand interaction, represents an important task in 

computationally driven drug discovery. In a recent review regarding the evaluation 

methods for protein-ligand interaction, Huang et al. have reported three important 

applications of energy scoring function in molecular docking [27]. The first application 

is related to the ability of a scoring function to predict protein-ligand interactions, 

ideally ranking as best poses the experimentally determined binding modes [28]. The 

second, consists in the prediction of the absolute binding affinity, a challenging task, 

which could enhance the accuracy in lead optimization [29]. The third and last 

application of a scoring function, is to support the identification of potential hits 

against a target of interest. An ideal scoring function has to successfully identify 

compounds with known, experimentally proved, activity, during a large database 

screening. In this context, it has been stated that the evaluation of the solvation 

contribution in drug binding, plays a critical role in the accuracy of the results [30]. 

Three classes of scoring functions are applied in docking: force field based, 

empirical, and knowledge based functions, whose details are reported in Chapter 2. 

Another important aspect which should be taken into account in molecular docking, 

consists in the treatment of ligand and protein flexibility [25]. Ligand flexibility could 

be explored by means of systematic search methods, like incremental construction 

algorithms [31]; stochastic methods, like Monte Carlo [32-34] or genetic algorithm 

[35]; by usage of molecular dynamics [36]. Protein flexibility is a more challenging 
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issue. Monte Carlo approach and molecular dynamics are commonly applied for 

sampling the local flexibility of the binding site in the protein structure. Another useful 

approach consists in modelling side-chain conformations of the binding site residues  

by means of libraries of pre-defined rotamers [37]. Protein flexibility could be also 

successfully solved before carrying out a docking simulation, using an ensemble of 

protein conformations of the target of interest [38].      

 

Hit identification 

 

Computational strategies which allow an automatically evaluation of large libraries of 

ligands, aimed at the identification of compounds with relevant biological activity 

against a target, are generally referred as virtual screening (VS) related methods 

[39,40]. Contrary to the previous task regarding the binding mode prediction, in 

which high computational costs are secondary to the obtainment of high accuracy in 

the results, in VS the optimization of the speed of the calculations is of primary 

importance. This issue could be overcome by means of more simple scoring 

functions in which some features, necessary for a better affinity prediction, are 

omitted [41]. VS methods are conventionally classified as ligand-based (LBVS) or 

structure-based virtual screening (SBVS), based on the direct knowledge of the 3D 

target structure [11,26]. When a target protein is provided, SBVS can be employed, 

allowing explicit molecular docking of each database compound into the target 

binding site. At the end, after a rigorous post-docking filtering criteria, a subset of 

potential active compounds are selected for experimental tests. The success of a 

SBVS strongly depends on the methods selected for defining the screening protocol, 

on the way they are combined, and on the chemical databases used [42]. SBVS is 

also widely applied in the context of fragment-based drug discovery (FBDD). The 

direct role of FBDD, is to identify low molecular weight scaffolds (molecular mass 

less than 300 Da) which are able to bind only weakly the binding site of interest. 

These fragments are then chosen and subjected to several optimization steps, in 

order to model high affinity compounds [43,44]. On the other hand, once a target 

structure is not provided, a pharmacophore model, derived extracting common 

features from known active ligands, could be used for the identification of  novel hits. 

This method, known as pharmacophore-based VS, represents a LBVS approach that 
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has been found a wide use in drug discovery. Even though several successful 

applications of the method are reported in literature, one of the most important 

problem of this technique, is represented by its strong dependence on the quality of 

the pharmacophore model used for the screening, which could dramatically 

compromise the hit identification process [23,45].  

 

Lead optimization 

 

In drug development, lead optimization covers computational strategies exploited for 

enhancing the binding affinity of the identified hit compounds. One could envisage 

using molecular docking for this purpose. Ideally, once a docking protocol is able to 

provide reliable binding modes and highly accurate ranked poses, the same 

procedure could be used for predicting the binding affinities of modified ligands 

(structurally related compounds), and providing, in this way, useful information for 

synthesis and experimental testing [27]. Lead optimization is therefore 

straightforwardly influenced by the scoring function used in the simulations. 

Unfortunately, inclusion of key contributions like entropic and solvation effects in 

docking scoring functions, is still a challenge. Higher accuracy could be achieved by 

means of more computationally expensive method like free-energy perturbation 

(FEP), or higher level of theory (quantum mechanical) approaches [41].   

 

Molecular properties prediction 

 

Quantitative structure-activity relationship (QSAR) methods [46] offer the possibility 

to predict physicochemical, pharmacokinetic and toxicological properties of 

molecules, gaining a crucial role in drug design. These methods attempt to find an 

empirical relationship between molecular structures and biological properties, aiming 

at  achieving valuable information for the development of novel drug candidates. In 

particular, QSAR models represent a useful tool for the prediction of the activities of 

untested compounds [47,48]. These methods are generally carried out following two 

different approaches. 2D QSAR attempts to find a simple correlation between a set 

of independent variables, referred as chemical descriptors, and a dependent 

variable. The latter, represents the value for which the model provides prediction, 
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and is routinely expressed as biological activity, pKa, or logP (estimation of drug 

hydrophobicity) [49]. Several methods could be exploited for the selection of 2D 

QSAR descriptors. In this context, widely used approaches are regression-analysis, 

multivariate analysis algorithms, heuristic, and genetic algorithms [11]. By the way, 

this kind of approach has a limited utility in designing new molecules. This is mainly 

due to the lack of information regarding the 3D structure of the compounds. More 

computationally complex then 2D QSAR, is the 3D QSAR methodology. In this case, 

a QSAR model is built by means of molecular descriptors which are directly derived 

by the compound conformations. For building a 3D QSAR model, a training set of 

molecules, with a wide range of activity, has to be provided. The next step, consists 

in the generation of the molecular conformations for each member of the training set. 

For this purpose, molecular mechanics and experimental data could be exploited. 

After alignment in space, a dimensionality reduction step leads to acquire the 3D 

distribution of electrostatic and steric fields [11,50]. A validation of the generated 

model, is commonly carried out with a test set of experimentally known active 

compounds. The latter represents an important step for proving the robustness of the 

3D QSAR model. QSAR methods could assist lead optimization phase, explaining 

the activities of known compounds and providing valuable information regarding 

structure-activity relationships. Combined approach 3D QSAR/VS are also reported 

in literature [51-53]. 

 

1.1.1   Application to hERG Potassium Channel 

 

In this section I will present the application of computational methods, and 

related challenges, for achieving new insights on the blockade of the hERG 

potassium channel, described in details in Chapter 3.   

 

 The voltage-gated hERG potassium channel, also known as Kv11.1, is 

expressed in several organs and tissues. In the heart, it plays a key role in 

modulating the rapid component of the potassium current IKr, which is responsible for 
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the repolarization phase of the cardiac potential action [54]. During the last years, a 

remarkable number of studies on hERG has been reported in literature.  

This channel represents an important target in drug discovery and safety: 

alterations of its functionality have been associated to the long QT syndrome-type 2 

(LQTS2), a potentially lethal pro-arrhythmic condition [55]. This alteration could be 

caused by inherited mutations, or induced by an accidental block by drugs [55]. 

Although the dysfunction caused by a block by drugs represents an extremely rare 

event, it is of primary importance in terms of drug safety and drug discovery, 

acquiring a detailed knowledge of the molecular features at the basis of the channel 

block. In this context, assessing the blockade activity at the early stages of the drug 

discovery process, is necessary for limiting waste of time and for reducing costs and 

resources in the development of compounds which potentially carrying a hERG 

toxicity [56]. The application of computational methods for overcoming this issue is a 

very challenging task, since no crystallographic structure of hERG are currently 

available. In this scenario, ligand-based approaches have represented the most 

appropriate choice for performing prediction. 2D [57-61] or 3D [62-66] QSAR models 

have been widely applied in academia and pharmaceutical companies. As 

introduced on the previous  paragraph, several are the limitations of ligand-based 

approaches. In fact, 2D descriptors lead to a difficult chemical interpretation, 

whereas 3D models remarkably depend on the conformations chosen for building 

the QSAR model and for the alignment. During the last years, a considerable effort 

has also been spent for developing structure-based models for hERG blockade 

prediction. The main difficulty encountered with these kind of approaches is the lack 

of a crystal structure, and the low percentage of sequence identity between hERG 

and available templates, making homology modelling particularly challenging. By 

means of structure-based methods, both open and closed states of the channel have 

been modelled. Österberg and Boukharta have docked a series of derivatives of the 

antipsychotic sertindole, a potent blocker of the channel, in an open state hERG 

model [67,68]. A more general set of blockers has also been exploited within a 

closed conformation of the channel by Farid and Coi [69,70]. Because of the lack of 

structural information, these structure-based models are usually validated by their 

ability to reproduce the observed trend in binding free energy over the considered 

set of blockers [67,68,71]. Despite these remarkable efforts, the lack of a consistent 
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binding mode for the most potent blockers entails an incomplete comprehension of 

the phenomenon under study. 

 

1.2 Computational Methods in Biophysics 

 

 

Computational techniques, such as molecular dynamics simulations (MD), 

have become essential theoretical tools in biophysics, providing atomic details of the 

structures and behaviours of biological systems, and allowing for computing systems 

dynamics, as well as thermodynamic properties.  

 

X-ray crystallography, electron microscopy and other techniques, are powerful 

tools for revealing the three-dimensional arrangements of the atoms of a molecule or 

biological system. The limitation of these techniques, is represented by the fact that 

they are able to determine static structures, but only limited information about protein 

dynamics, which are often crucial for biological function [72]. Proteins, for example, 

are highly dynamic, and the resulting conformational changes are directly linked to 

their functions, to their ability to recognize and bind a substrate, or to catalyse a 

reaction mechanism [73-75]. MD simulations allow to overcome this issue, modelling 

atomic-level motions computationally. In MD simulations, positions and velocities of 

the atoms of a system evolve in time according to the laws of classical mechanics. 

All the forces acting on atoms are evaluated by means of forcefields, which consist 

of a combination of parameters fitted with experimental or quantum mechanical data, 

and first-principles physics [72]. By the way, this approach requires high 

computational costs, and moreover, the simulations are in general limited in time and 

model size [76]: in fact MD are typically performed on biological systems containing 

thousands or millions of atoms, with accessible timescale ranging from nanoseconds 

to few microseconds. These timescales are clearly shorter than those required by 

biological events, such as protein folding, protein-drug binding, protein 

conformational changes, membrane transport, limiting in this way the applicability of 
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this technique. These events generally take place on the timescales of microseconds 

to milliseconds. Modelling few microseconds of dynamics could require several 

months of simulations, exploiting modern supercomputers and high-end hardware. 

Advances achieved in computer technologies and in the development of new 

parallelization algorithms have recently increased the timescale accessibility, 

allowing the first milliseconds scale of simulations which lead to investigate key 

biochemical processes [72]. In this context, the new machine Anton, developed at D. 

E. Shaw Research, is able to perform about 20 μs/day all atoms MD simulations, 

extremely increasing the simulations rates achieved by common software and 

hardware [77]. Another way to speed up the simulations, is to use software designed 

to run on graphics processing units (GPUs) on graphics cards. The bio-molecular 

dynamics software ACEMD developed by Gianni De Fabritiis’s group, has been 

optimized to reach the microsecond time scale even on cost-effective workstation 

hardware using the power of GPUs [78]. Anyway, another important aspect that has 

to be considered is that MD simulations are completely under the control of the user. 

Indeed, one can easily decide to modify a potential or to remove a particular 

contribution in the energy function for the determination and examination of a 

specific property of the analysed system [79]. Over the years, improved force fields 

have been developed, and the longer accessible timescales have allowed a rigorous 

validations against experimental data [80-82]. Comparison between MD simulations 

and experimental data is indeed crucial for testing the accuracy of the results, and 

improving force field parameters.  

Although the recent advances in classical simulation methodologies, 

alternative approaches could be used to accelerate the sampling and reducing the 

calculation time required for simulating long-timescales dynamics of biomolecular 

systems. The so called enhanced sampling techniques, are widely used for sampling 

states separated by large barriers. These techniques are particularly suitable for the 

calculation of the free energy associated to rare events. In fact, by means of a 

classical unbiased MD, the configuration space around a minimum is well sampled, 

whereas higher energy regions, are sampled rarely. In order to obtain a free energy 

profile, a probability density around high energy regions is necessary, and unbiased 

MD is unfeasible [83]. Commonly used enhanced sampling techniques could be 

distinct in two main groups: approaches based on collective variable (CV) biasing, 
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and approaches that rely on tempering [84], briefly introduced in the following 

sections. The applicability of a particular method, strongly depends on the system 

which has to be analysed [85,86].  

 

 Approaches based on CV biasing 

 

These approaches include methods like thermodynamic integration [87,88], umbrella 

sampling [89,90], and metadynamics [91,92], which are based on the idea of 

accelerating the sampling by introduction of a bias potential on a limited number of 

degrees of freedom. These degrees of freedom, or CVs, represent the reaction 

coordinates (ξ) which describe the transition between states that are difficult to 

sample, and have to be properly chosen. In thermodynamic integration, or Blue 

Moon method [87,88], the simulation over a barrier is achieved by constraining ξ at 

different values among a number of predefined windows, and sampling the 

orthogonal degrees of freedom of the system. In this way, the force on the frozen 

reaction coordinate could be estimated, and the resulting mean force represents the 

negative of the derivative of the free energy with respect to ξ. By integration of the 

mean force, it is possible to evaluate the potential of mean force, PMF, which 

corresponds to the free energy profile as function of the reaction coordinate. In 

umbrella sampling [89,90], a bias potential is applied to the system for ensuring the 

sampling along the reaction coordinate. Contrary to the Blue Moon approach, here 

the reaction coordinate is not frozen, but only harmonically restrained to target 

values by application of the bias in a series of windows. On the other hand, 

metadynamics works by adding a history-dependent potential, which is built as a 

sum of Gaussians, whose role consists in discouraging the system to explore 

regions already visited in the CV space, accelerating in this way rare events. The 

free energy surface can be easily reconstructed as the opposite of the sum of all 

Gaussians [91,92].  

 

 Approaches based on tempering 

 

These approaches are generally preferred when the choice of appropriate CVs for 

describing a transition is not straightforward. This is the case of protein 
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conformational analysis or protein folding studies. Methods belonging to this class, 

exploit the increasing of temperature of the system to overcome barriers during MD 

simulations [84]. The strong dependence of temperature with the rate of a barrier 

crossing is stated by the Arrhenius equation. In one of these approaches, the 

temperature of a system is dramatically increased during sampling to easily explore 

high energy regions. This step is followed by a cooling phase, in which the 

temperature is therefore decreased to pull down the simulation toward a local energy 

minimum. This approach, better known as simulated annealing, is successfully used 

to address many optimization problems [93]. A critical parameter of this technique, is 

represented by the speed of the cooling phase: the probability to reach a global 

minimum is directly linked to the decreasing of the speed. An alternative approach is 

the parallel tempering [94], in which, instead of changing the temperature of a single 

system, several replicas of the original system of interest, are simulated at different 

temperatures. High temperature systems are able to explore large volumes of phase 

space, whereas low temperature replicas could sample low energy regions and local 

minima. During the simulation, the replicas are allowed to swap configurations if an 

acceptance probability criteria is satisfied [95]. One of the advantages of parallel 

tempering is that, this technique could be efficiently carried out on CPU clusters, 

running simultaneously all the replicas in parallel. 

 

1.2.1   Application to the Peptidyl-Prolyl cis-trans Isomerase Pin1 

 

Here I briefly present the peptidyl-prolyl cis-trans isomerase Pin1, an enzyme 

for which the application of enhanced sampling techniques has been shown to 

successfully shed light on the catalytic mechanism. Details are reported in Chapter 

4. 

 

The peptidyl-prolyl isomerase (PPIase) Pin1 is a member of the parvulin sub-

family, which specifically recognizes phospho(p)-Ser/Thr-Pro proteins and catalyzes 

the cis-trans isomerization of the proline amide bond [96-98]. This cis-trans 

interconversion is a rather slow spontaneous process, whose rate is dramatically 
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accelerated by the presence of Pin1 by several order of magnitude in the timescale 

of seconds [99,100].  

Several studies have established that alterations of Pin1 functionality are 

coupled with pathological conditions outbreaks. Pin1 is over-expressed in human 

cancers, including breast, lung and prostate, playing a critical role in oncogenesis, 

and seems to be also implicated in neurological disorders such as Alzheimer’s 

disease, asthma and inflammation [101-103]. Despite a great interest has arisen on 

this enzyme, the catalytic mechanism has long been debated. In this context, two 

models of catalysis have been hypothesized: a covalent [97], and a non-covalent 

[104] model of reaction, each of them supported by mutagenesis data. Recently, 

theoretical studies have provided new valuable insights for unravelling the reaction 

mechanism [105,106], but unanswered questions still remain and further in-depth 

investigations are required to clarify the catalytic process.     
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2.1 System Representation 

 

 

In this section, I will give a brief overview of the basic principles of (classical) 

molecular mechanics and quantum mechanics, showing the differences of the two 

approaches in the treatments of molecular systems, and their applicability.    

 

2.1.1   Molecular Mechanics 

 

Molecular mechanics (MM) could be expressed as a mathematical model 

which considers a molecule as a simple collection of balls (atoms) held together by 

springs (bonds) [107]. Within such a representation, the energy of a molecular 

system is going to change as a result of the geometry deformation: stretching or 

bending of the springs, for example, can push away the system from “standard 

values” (the equilibrium). The MM energy expression is a simple algebraic equation, 

characterized by constants obtained either form experimental data or ab initio 

calculations. An important assumption of MM is the transferability of the parameters. 

The energy contribution related to a particular molecular motion, for example the 

stretching between two carbon atoms defining a single bond, will be the same from 

one molecule to the next [108]. This leads to a very simple energy calculation and 

allows the application to very large molecular systems. On the contrary, ab initio 

methods can be applied just for modelling limited size systems, because of the high 

computational resources required. Obviously, the performance of MM approach, 

strongly depends on several factors: 1) the functional form of the energy equation, 2) 

the constants used in this equation, 3) the way in which they are parameterized, and 

4) the ability of the user in applying this technique for solving biological tasks [109].         
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The mathematical expression of the energy function and the parameters in it, 

take the name of forcefield. Commonly used forcefields, could differ on the number 

of terms in the energy expression, and on the constant parameters used. Since no 

electrons are explicitly taken into account, the electronic processes, like bond 

breaking, cannot be simulated. A forcefield is generally composed by bonded and 

non-bonded terms. Bonded terms allow the evaluation of energy penalties 

associated with deviations of bonds, angles, and torsions, from equilibrium values, 

whereas the non-bonded ones, describe interactions between different molecules, or 

pairs of atoms not directly connected and separated by at least three bonds. These 

terms are illustrated in Figure 1.1. A general functional form of the forcefield, which 

describes the potential energy     of a molecule, is shown in the following equation 

[108]: 
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The first term in (2.1), represents the bond stretching term, a harmonic potential term 

which describes the increasing in energy due to the deviation of the bond length, 

between two atoms, from the equilibrium value     . The second term defines the 

angle bending, modelled again by means of a harmonic potential. The third term is 

the torsional potential, which defines the rotation around a bond, and usually 

described by a cosine expansion. The latter term, represents the non-bonded 

interactions, which are modelled using the Lennard-Jones 12/6 potential for van der 

Waals interactions, and a Coulomb potential, for electrostatic interactions. The 

charges,    and   , in Coulomb’s law, are the partial atomic charges, usually 

centered on atom nuclei, designed to reproduce the electrostatic properties of the 

molecule. Furthermore, the Lennard-Jones 12/10 potential is also widely used for 

hydrogen bond interactions. Forcefields could use the same functional form, as the 

one shown before, but different constants (see   ,   ,    , in Equation (2.1), 
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parameterized in order to reproduce experimental data), or presenting a totally 

different functional form.  

 

 

Figure 1.1 Representation of the bonded (solid line) and non-bonded terms (dashed) in a classical 

forcefield.  

 

A fundamental aspect that has to be considered, is that forcefields are 

empirical and there is no a universal functional form. In particular, some forcefields 

could perform better than others, and their choice strongly depend on the system 

that has to be analysed [108,109]. A forcefield which is parameterized against a 

specific class of molecules, like nucleotides, cannot provide a reasonable description 

of proteins, and vice versa. Moreover, some simplified forcefields, the so called 

united atoms, do not include explicit representation of nonpolar hydrogen atoms. 

These approximated models are generally used for speeding up highly demanding 

conformational sampling, such as protein folding, or protein-protein binding [110]. 

Several forcefields have been developed [109]. Amber (Assisted Model Building with 

Energy Refinement) forcefield is one of the most applied for proteins and nucleic 

acids.  

 

2.1.1.1   The Amber Forcefield  

 

In the last decades, a great effort was spent in the development of forcefields 

resulting from a compromise between accuracy and the limited computational 

resources available at that time.  
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In this context, in 1984, Weiner et al. developed a united atom forcefield for 

simulation of nucleic acids and proteins, incorporated in the amber software package 

[111]. In the proposed model, bond lengths, and angles parameters, were taken from 

crystal structures and adapted to match the normal mode frequencies for a number 

of peptide fragments. Torsion parameters, were adapted to match torsional barriers 

evaluated by means of experimental measurements or quantum mechanical 

calculations. A Hartree-Fock STO-3G level of theory, was used to derive the 

charges, while van del Waals parameters were adapted from Hagler et al. 

parameters [112]. The impossibility of a suitable description of the quadrupolar 

charge distribution of benzene, and therefore of π-π and π-cation interactions, led to 

move to an all-atom approach. In 1986, an all-atom extension of the CH united atom 

forcefield was published, including parameters derived from gas phase simulations 

[113].  Advances in computational resources made possible the development of the 

ff94, a new MM forcefield for simulations of proteins, nucleic acids, and organic 

molecules [114]. In the ff94, a new set of charges, determined by means of a 

Hartree-Fock 6-31G* level of theory and RESP (restrained electrostatic potential) 

fitting, are able to accurately reproduce interaction energies, conformational 

energies, and free energy of solvation of small molecules. New van der Waals 

parameters obtained from liquid simulations, were also derived. These improved 

parameters, made the Lennard-Jones 12/10 potential no longer necessary for the 

hydrogen bonds description. The bonded parameters were also modified to 

reproduce vibrational frequency data. Improvements in the description of longer-

range effects, were then provided in the ff96 [115] and ff99 [116] forcefields. An 

important aspect of these forcefields, was an inadequate parameterization of 

backbone dihedral terms. The ff94 dihedral parameters, for example, were derived 

using few glycine and alanine dipeptide conformers in the fitting procedure. New 

improved phi/psi dihedral terms were included in the ff99SB forcefield [117], by fitting 

the energies of multiple conformations of glycine and alanine tetrapeptides, 

exploiting high level quantum mechanical simulations. In 2010, optimized side-chains 

torsions parameters for isoleucine, leucine, aspartate, and asparagine, were 

provided in an extension version of the previous forcefield, the ff99SBildn [118]. 

Recently, the ff12SB offers side-chain corrections for lysine, arginine, glutamate, 

glutamine, methionine, serine, threonine, valine, tryptophan, cysteine, phenylalanine, 
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tyrosine, and histidine, improving in this way, the reproduction of experimental 

geometries [119]. Although the high accuracy achieved in molecular modelling of 

biological macromolecules, the limitations of these forcefields consist in a poor 

treatment of the electrostatic. Traditional forcefields use fixed point charges centered 

on atoms, therefore they may not accurately describe varying in the electrostatic 

properties of the environment [120]. Improvements in the fixed point charge models 

were provided by Duan et al. [121] in the development of the ff03 forcefield. In 

particular, the authors applied a continuum solvent model to calculate the 

electrostatic potentials in organic solvent for the derivation of partial charges. 

Moreover, a great effort was also made in the development of forcefields taking into 

account polarization effects, as in the case of the Amber ff02 [122], in which an 

additional polarization term is included in the energy function. 

 

2.1.2   Quantum Mechanics 

 

The description of the electronic behaviour of atoms and molecules, and their 

reactivity, is one of the application of quantum mechanics (QM). The main goal of 

QM methods, is to determine the electronic structure, the probability distribution of 

electrons in chemical systems. However QM equations can be exactly solved just for 

two interacting particles, and several approximations have been introduced for many 

electron problems [108,123]. The electronic structure is determined by solving the 

Schrödinger equation, associated with the electronic molecular Hamiltonian. The 

time-indipendent formulation of the Schrödinger equation is given by: 

   

 ̂                                                                

 

where  ̂ is the Hamiltonian operator, which acts upon the wave function  , and 

returns  , the energy of the system. In mathematical notation, Equation (2.2) 

represents an eigen equation, where   is the eigenfunction, and   the eigenvalue. 

Importantly, the product of the wave function   with its complex conjugate (i.e., 

|   *   |) has units of probability density. Thus, the probability of finding a particle 
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within some region of multi-dimensional space is equal to the integral of |   |2 over 

that region of space. The Hamiltonian operator  ̂, can be expressed as: 

 

                                                 ̂   ∑
  

 

   

         

 

 ∑ ∑
    

   

         

   

                                              

 

where, 

 

                                                                
  

  

   
  

  

   
  

  

   
                                                               

 

  
  is the Laplacian operator acting on particles   (nuclei and electrons) with mass    

and charge   . Distances between particles are defined by    . The first term in (2.3) 

represents the kinetic energy, while the second a potential term, the Coulombic 

attraction or repulsion between particles. By the way, this formulation could be 

analytically solved just for hydrogen atom, and an application to molecules, requires 

approximations, simplification of the electronic description.  

The Born-Oppenheimer (BO) approximation [124] assumes that the motions 

of nuclei and electrons can be decoupled, because, under typical physical condition, 

nuclei move much slowly than electrons (neutrons are about 1800 times more 

massive than electrons). Therefore, only the motions of electrons are considered, 

whereas nuclei are considered fixed. By means of the BO approximation, some of 

the terms coupling electrons and nuclei are omitted in the Hamiltonian: 
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The Hamiltonian includes just the kinetic energy of electrons, the coupling term 

between nuclei and electrons (attraction), the repulsion between electrons, while the 

term which describes the repulsion between nuclei is added at the end of the 

calculation. Two QM approaches are generally used: ab initio and semi-empirical. 
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Both of them rely on the BO approximations, but different types of approximations 

are used.  

Ab initio approach, computationally more demanding, implies a non-empirical 

solution of the time-independent Schrödinger equation: it doesn’t make use of any 

experimentally derived parameter in solving the Schrödinger equation for electrons. 

During this expensive process, the molecular geometry is considered as a fixed 

parameter. Once the optimal electronic wavefunction is determined, one can 

evaluate the gradient on the nuclei, which represents the derivative of the total 

energy with respect to nuclear positions. The positions of the nuclei can therefore be 

updated, until the process reaches the convergence. The most common ab initio 

method, is the Hartree-Fock (HF), in which the Coulombic repulsion between 

electrons is taken into account in an averaged way (mean field approximation). This 

is a variational calculation: the resulting approximate energies, which are expressed 

in terms of the system’s wavefunction, are equal or greater than the exact energy, 

tending to a limiting value, known as HF limit. One can start a calculation with the HF 

method, and then correct the missing electronic calculation using post-HF methods, 

like Møller-Plesset perturbation theory or Coupled Cluster.  

Density Functional Theory (DFT), is usually classified as ab initio, even 

though functionals derived from empirical data, are used [125]. DFT is based on the 

idea that the energy of a molecule, and all the observables, can be determined by 

the electron density     , instead of a wavefunction. DFT has many advantages 

compared to other ab initio methods. It is less computationally expensive. In a 

system of   electrons and   nuclei,   results to be a function of       degrees of 

freedom:    spatial coordinates and   spin coordinates of electrons, and    spatial 

coordinates of nuclei. However, ignoring the spin and considering the BO 

approximation,   results to be function of    coordinates. On the contrary, the 

density      is just a function of   coordinates, the spatial coordinates x, y and z, 

reducing the computational costs, and providing similar accuracy than the other 

approaches.  

Other methods called semi-empirical replace costly integrals in HF 

calculations, with empirical data. To correct these approximations, additional 

empirical terms are introduced in the Hamiltonian. These methods, result to be faster 

than ab initio, but the obtained results could be not accurate if these approaches are 
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applied to a set of molecules structurally different from the one used to derive the 

parameters [123].   

 

2.2   Sampling of Microstates 

 

 

After a brief introduction on the fundamentals of statistical mechanics, I will 

provide, in this section, a description of the molecular simulation methods, Monte 

Carlo and Molecular Dynamics. These are computational approaches which allow to 

evaluate macroscopic properties of the system of interest, from microscopic 

information (as the distribution of microscopic states).   

 

2.2.1   Statistical Mechanics 

 

The ultimate goal of statistical mechanics, is to model and predict the 

thermodynamic properties of materials, from the structures of the atoms and 

molecules of which they are composed. In general, such properties depend upon the 

position  , and momenta   of the particles composing the system. Hence, the 

instantaneous value of a property  , is given by             . This value fluctuates 

over time, as a result of the interactions between the particles. Therefore, the 

experimental measure of such property, is an average of over time     , known as 

time average. If the measurement is made over a time approaching infinity,       is 

given by [108]: 
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The calculation of      requires to simulate the dynamic behaviour of the system. 

However, because of the strong dependence of time averaged property to the initial 
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configuration of a system (considering that a simulation could be performed in a finite 

time), time average calculations are virtually impossible to carry out. A way to 

overcome this task, is to replace the time average of a single system by an 

ensemble average of a large collection of systems. Therefore, at a given instance of 

time, a collection of large number of systems (having different microstates) are 

considered: for a sufficiently long simulation, the observed property of a single 

system over a period of time, is the same as the average over all microstates 

(ergodic hypothesis). The average of a property   over all replications of the 

ensemble generated by the simulation, 〈 〉, could be expressed as [108]: 

 

                                                      〈 〉  ∬                                                                         

 

Therefore, 〈 〉 could be determined by integrating over all possible configurations of 

a system. In (2.7),        represents the probability of finding a configuration with 

position  , and momenta  , which is referred to as probability density of the 

ensemble. Under conditions of constant number of particles N, volume V, and 

temperature T (canonical ensemble),        is given by [108]: 

 

                                                                          
 
 
      
   

 
                                                            

 

where,        is the total energy (the sum of the kinetic energy of the system,     , 

and the potential energy     ),   the partition function,    the Boltzmann’s constant 

                  ⁄                  ⁄  , and   the absolute temperature of 

the system. The partition function is commonly written in terms of the Hamiltionian   

[108]: 
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In (2.9),    is used to account for the indistinguishability of the particles, while the 

factor     represents the elementary volume of a microstate. 
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Computing the equilibrium properties of classical many-body systems, is the 

main purpose of molecular simulations. Monte Carlo (MC) and Molecular Dynamics  

(MD) represent the two most common simulation techniques used in molecular 

modelling. These simulation techniques consider small replications of the 

macroscopic system, allowing to predict structural and thermodynamic properties 

with a feasible amount of computation.   

 

2.2.2   Monte Carlo 

 

MC methods generate configurations of the system in a stochastic way, and 

new configurations are chosen according to a statistical distribution. In a MC 

simulation, therefore each configuration depends only upon its predecessor. In a 

classical MC approach, the following scheme is proposed [108,123]: 

 

1. Randomly choose an initial set of atomic positions   . 

2. Calculation of the potential energy    for the generated configuration. 

3. Making a random trial in the microstate. This step corresponds to a 

perturbation phase leading to a new configuration   . 

4. Compute the potential energy    of the new arrangement of the atoms. 

5. Keep    if the acceptance criteria is satisfied. In the Metropolis scheme [126], 

the acceptance of a new configuration is based on a Boltzmann-weighted 

probability. The probability for accepting    could be expressed as: 

 

                                                          [  
        

        
]                                                         

 

If the energy    related to the new configuration, is lower than   ,    is always 

accepted. On the other hand, if    results to be higher than the energy of the 

previous point   ,    is kept if            , a random number between   

and  . In the case in which the new configuration is rejected, a perturbation 
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phase is attempted again, starting from   . This strong dependence of a new 

point with the preceding one, is called Markov chain. 

6. Continue the process and collecting data for computing the desire 

thermodynamic property of the analysed system.  

 

The moves which characterize the perturbation phase (step 3), play a crucial 

role in the efficiency of a MC calculation. If the move size is too small, the sampling 

proceeds very slowly and the calculation requires high computational resources. On 

the contrary, if it tends to become too large, the number of rejected moves will grow, 

compromising the efficiency. Another important aspect is that, in contrast to MD, MC 

simulations cannot be used for calculating time-dependent quantities, such as 

transport coefficient or viscosity. By the way, MC represents a useful method for 

significantly explore different areas of the phase space (which consists of all possible 

values of position and momentum variables), allowing to sample energy states 

separated by high barriers. The ability of crossing barriers is not a feature of 

(unbiased) MD simulations, which, however, are suitable for exploring the local 

phase space.         

 

2.2.3   Molecular Dynamics 

 

MD simulations represent a powerful tool for following the temporal evolution 

of a system in the phase space, providing atomic details of the motions of a many-

body system, and allowing the evaluation of thermodynamic properties. I will 

consider, in this section, MD simulations based on classical mechanics, then making 

usage of empirical force fields (Section 2.1.1.1) for describing the potential energy of 

the system: an approach referred as classical MD. In MD, the evolution of the 

system is described by Newton’s equation of motion, which states that: 
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where    is the force acting on atom   with position   , mass   , and   represents 

the potential energy of the system of interest. Computing the classical trajectory 

exactly is a challenging task, because it requires solving a    coupled     order 

differential equations, with   representing the total number of atoms of the system. It 

is too costly for large  . Several approximated methods, based on time 

discretization, are required to overcome this difficulty. The finite difference methods, 

allow to integrate the equations of motion in different stages, separated in time by a 

fixed time   . This is known as timestep, which should be properly chosen to avoid 

discretization errors. A    too large cause atoms moving too far along a trajectory, 

leading to an inaccurate simulation of motions. On the other side, a    too small, 

increases the number of iterations required for acquiring the trajectory. The timestep 

of a MD simulation, is dictated by the highest frequency motions present in the 

system, like bond vibrations, which, moreover, are usually of less interest than the 

lower frequency modes. A common way to increase the timestep without altering the 

accuracy of the simulation, is the application of constraints to “fix” some internal 

coordinates of the system. A widely used procedure is the SHAKE algorithm [127], 

which allows the introduction of constraints on some degrees of freedom of the 

system. The main advantage achieved with SHAKE, is represented by the possibility 

of constraining intramolecular bond lengths, like C-H, reducing the complexity of the 

simulation. Bond vibrations are high frequency motions, and therefore, freezing bond 

lengths allows the usage of a larger timestep, speeding up the calculation. In 

classical simulations of molecules, typical timesteps are in the order of 

femtoseconds.  

Several algorithms for integrating the equation of motions were developed. 

They approximate position and dynamic properties, like velocities and accelerations, 

as a Taylor expansion. Among them, the Verlet integration scheme [128], exploits 

positions and accelerations from the previous step at time  , to calculate the new 

positions at time     : 
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From        and        we obtain the relation: 

 

                                                                                                                    

 

Basically, for each particle of the system, the subsequent position         is 

determined by the current position     , by the previous one        , and by the 

acceleration     , the latter computing from the forces on the particle: no explicit 

velocities are taken into account. This procedure could be advantageous just when 

one is interested in the evaluation of a property which is independent of momentum. 

Several variation of the Verlet algorithm have been developed. A commonly used 

variation, is the velocity Verlet scheme [129], which uses the Taylor expansion 

truncated beyond the quadratic term for the coordinates: 
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In the velocity method, positions, velocities and accelerations at time      are 

obtained from the same quantities at time  . 

 If the total number of atoms N, the volume V, and the total energy of the 

system E, are kept constant during the simulation, MD are said to be performed in 

the microcanonical ensemble (NVE). NVE is useful for exploring the constant energy 

surface of the conformational space, however most of the biological events occur at 

constant pressure and temperature. In particular, the canonical ensemble (NVT), is 

obtained by coupling the system to a heat-bath, while the isothermal-isobaric 

ensemble (NPT) by introducing a barostat.  
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2.2.4   Free Energy Calculation 

 

The Helmholtz free energy  , can be expressed in terms of the partition 

function  , as follows [130]: 

 

                                                                                                                                                

 

where         . (2.17) represents a connection between thermodynamics and 

statistical mechanics in the canonical ensemble NVT. The evaluation of the partition 

function      is a very difficult task. However, one is interested in the estimation of 

the free energy differences   , between a reference (0) and a target (1) system 

state, which can be expressed by the partition functions    and   : 

 

                                                                               
  

  
                                                             

 

If the masses of the particles in the two systems are the same, (2.18) can be 

equivalently written considering the configurational integrals ratio     ⁄ : 

 

                                                                               
  

  
                                                             

 

One way to determine   , consists in the estimation of the appropriate probability 

densities of the two states. Assuming that the system 0 can be transformed to 

system 1 through the modification of a parameter   (e.g. a generalized coordinate, 

as a torsion, or a distance), the probability density function for system 0 can be 

written as: 
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where   is a normalization constant. In (2.20) the Hamiltonian  ,  , or  ,   , could 

be functions of the parameter  . In particular, (2.20) represents the connection 

between probability density and partition function. The probability density function for 

system 1 could be written by replacing the subscript 0 to 1. By a combination of 

(2.18) and (2.20) it is possible to obtain: 

 

                                                                               
  

  
                                                              

 

The probability distribution function     , for the range comprised between    and   , 

could be obtained by computer simulations as a histogram. This allows the 

evaluation of the ratio     ⁄ , and hence the estimation of   .  

 

2.2.4.1   Enhanced Sampling 

 

Traditional MD simulations are suitable to perform an exhaustive sampling of 

the local phase space. However, these approaches are limited by the short 

timescales accessible with computational methods and resources currently available. 

Many biological systems are characterized by the presence of states separated by 

high energy barriers. Sampling these states by crossing large barriers, represents a 

very challenging task for standard simulation methods. In classical computer 

simulations, the volume in phase space covered during the sampling is not sufficient 

to provide a reliable estimation of the statistical averages of the property of interest. 

Therefore, a direct application of these methods might not allow a correct estimation 

of free energies. Advanced strategies are needed to guarantee a suitable exploration 

of the phase space regions, including rare events, that are important for free energy 

calculations. Several methods were developed, based on tempering, on the 

modification of the energy expression for reducing the barriers, or on the restriction 

of the sampling space by constraining degrees of freedom, with the exception of the 

reaction coordinates describing the rare event. All these approaches, referred to as 
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enhanced sampling methods, have been shown to accelerate the sampling of 

configuration space [83,84,131].  

Among them, the umbrella sampling method [89,90], based on the addiction 

of a biased potential to the potential energy function of a system in order to sample 

high energy states, has been widely used to calculate the free energies in chemical 

processes. Umbrella sampling allows the calculation of the free energy along a 

reaction coordinate, also known as potential of mean force (PMF).  

 

2.2.4.1.1   Umbrella Sampling 

 

 In umbrella sampling a biased potential    is applied to a given reaction 

coordinate  , known as collective variable CV, opportunely chosen to describe the 

transition from states that are difficult to sample. The reaction coordinate is therefore 

harmonically restrained to a target value during the simulation. Usually, to ensure a 

rigorous sampling along the whole reaction coordinate  , umbrella sampling 

simulations are carried out in a series of different windows  , which are run in 

independent simulations. The bias potential   , takes the form of a classical 

harmonic potential: 
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where   
   

 is the   reference value of window  , kept by the bias      , while    

represents the force constant, thus the strength of the bias. An optimal choice of   , 

is necessary for achieving a correct overlap between the distributions of the different 

windows. In particular, too large   , will cause narrow distributions, while a too small 

constant will not sufficiently bias the simulation over the barriers. An optimal overlap 

between neighbouring windows is necessary to guarantee that a continuous energy 

function can later be derived from these simulations. 

With the introduction of the bias, the effective energy of the system       is given by: 
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where the additional term       is added to the original unbiased potential      . 

Using the biased potential, the simulation of the system provides a biased 

distribution   
     for the window  , along the reaction coordinate. In the hypothesis 

that the biased system is ergodic: 
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where   ( 
    ) is the bias potential, and        . The unbiased distribution 

  
    , which is necessary to derive the unbiased free energy      , is obtained as: 
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The relation between (2.24) and (2.25) can be written as: 

                                      

                                                
       

       [      ] 〈    [       ]〉                                   

 

The unbiased free energy could be easily derived as: 

 

                                                           (
 

 
)      

                                                        

 

here,    is a normalizing constant, numerically estimated by means of the Weighted 

Histogram Analysis Method (WHAM) [132]. WHAM evaluates the global unbiased 

distribution      , as a weighted sum of the unbiased probability   
 , over all the 

windows  : 

 

                                                               ∑        
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In (2.28),    represent the weights, chosen so that the statistical error of       is 

minimized, under the condition ∑      : 

 

                                               
  

∑    
               [           ]                                    

 

with   equals to the number of steps for window  . Finally, the equation related to the 

computation of    is given as follows: 

 

                                                     (
 

 
)∫        [       ]                                               

 

Therefore, because       is essential for deriving   , and    is also involved in the 

evaluation of      , (2.28) and (2.30) have to be iterated until convergence. Once it 

has been achieved,    could be used for the calculation of the free energy by means 

of (2.27).  

 

2.3   Approximate Methods 

 

 

Simulation methods described before, are suitable approaches for sampling 

the conformational space, and hence, for obtaining statistical distributions of the 

system of interest. However, considering the computational resources required for 

carrying out such simulations, faster techniques, representing a crude approximation 

of the real dynamics of the system, have been developed. Among them, here, I will 

discuss the theoretical basis of molecular docking methods, based in particular on 

genetic algorithm, and MM-PBSA approaches. These “approximate methods” 

represent suitable tools in drug discovery, mainly used for modelling protein-ligand 

binding affinities.      
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2.3.1   Molecular Docking 

 

One of the most important aspect in drug design, is the ability to predict the 

interactions, and therefore, the affinity of binding between small molecules and a 

biological target [29]. Computational chemistry tools widely applied for this purpose, 

are referred to as molecular docking techniques.  

A molecular docking protocol is characterized by two steps, a search strategy, 

and a scoring phase. In the first step, a search algorithm is applied to sample the 

configurational space of the candidate pose. During this phase, all possible binding 

modes between ligand and receptor are sampled, and subsequently evaluated by a 

scoring function. Usually, only the conformational space of the ligand is considered, 

assuming the receptor as rigid body. The high number of degrees of freedom during 

the searching phase, in fact, increases the computational costs, but also affects the 

success of the optimization algorithm [133]. Although several docking algorithms 

take into account protein flexibility, it has been shown the difficulties encountered in 

obtaining an exhaustive sampling of the protein conformational states [133]. 

However, when a protein target is derived by homology modelling, because of the 

absence of a 3D crystal structure, protein flexibility has to be considered in a docking 

protocol in order to obtain reliable results. One strategy, is to dock ligands in an 

ensemble of pre-generated conformations of the target, treating them as rigid bodies 

[134,135].  

Among the plethora of search algorithms currently available, genetic 

algorithms (GA) represent the most popular in docking procedure. GA require the 

random generation of a first population of individuals, which are points in the search 

space. Individuals are simple binary strings, where all the information regarding the 

parameters that have to be optimized (usually, the degrees of freedom of the ligand) 

are encoded as genes in chromosome [35,136]. The evolution of the population is 

obtained via two genetic operators, crossover, and mutation. The crossover 

operator, exchanges set of genes from one parent individual to another, while the 

mutation operator, randomly changes the values of genes. By means of the genetic 
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operators, a new generation of individuals could be derived from the preceding. An 

optimisation step is then followed by a scoring phase. During the latter phase, a 

fitness, based on the application of a scoring function, is assigned to each individual. 

Several optimisation-scoring cycles are generally required for achieving a docking 

solution.   

 

Autodock [137], a popular open source docking software, uses a Lamarckian 

genetic algorithm (LGA), an hybrid algorithm which combines the standard GA as 

global optimiser, with energy minimisation for a local search. For the fitting 

evaluation, Autodock exploits an empirical scoring function composed by five terms. 

In particular it is characterized by: a Lennard-Jones 12/6 potential accounting for 

dispersion/repulsion interactions; a Lennard-Jones 12/10 for hydrogen bond; a 

Coulomb potential for electrostatic interactions; a term for estimate the entropic 

contribution in binding: this term is proportional to the number of rotatable bonds in 

ligand, accounting for the loss of degree of freedom upon binding; a desolvation 

term, which is function of the solvent accessible surfaces of both ligand, and protein. 

Protein and ligand parameters are taken from the Amber forcefield. 

 

2.3.2   MM-GB(PB)SA 

 

Computational methods combining molecular mechanics and implicit solvation 

models, such as Molecular Mechanics/Poisson−Boltzmann Surface Area (MM-

PBSA) [138] and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) 

[139], are widely used for free energy of binding calculation. These methods are also 

referred to as endpoint methods, because for computing the binding free energy only 

the starting and final states (bound and unbound) are required. They are less 

computational expensive than more rigorous methods exploited for the same 

purpose, like free energy perturbation (FEP), hence widely applied for protein – 

ligand complex systems. Considering a ligand (L), a protein (P), and related complex 

(PL), the binding free energy is given by: 
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where the free energy contribution of each molecular system X (PL, P, or L), is 

obtained as: 

   

                                                                   
       

                                                             

 

In (2.32),    
 ,      

 , and  , are respectively the molecular mechanics energy, the 

solvation free energy, and entropy contributions of the molecular system X. Typically, 

these contributions are evaluated along a set of “snapshots”, conformations coming 

from MD simulations performed for the complex PL, the free protein P, and the free 

ligand L [140,141]. However, the application of MM-GB(PB)SA using a single 

energy-minimized structure, has been shown to be an adequate and sometimes 

better approach than the standard free energy averaging over molecular dynamics 

snapshots, allow a fast and accurate prediction of binding free energy, with 

consequent save of computing time [142,143]. 

The first term of (2.32) is composed by: 

 

                                                             
         

       
      

                                                 

 

 

These correspond to the bonded and non-bonded terms of classical forcefields (see 

section 2.1.1), obtained by energy minimizations in gas-phase or implicit solvent 

model. The second term of (2.32) is in turn decomposed in two contributions: 

 

                                                                    
          

       
                                                        

 

which correspond to the polar        
 , and non-polar      

  contributions to the 

solvation free energy      
 . The polar contribution could be calculated using either 

the generalized Born (GB) or Poisson-Boltzmann (PB) continuum-electrostatic 

models, while the non-polar term, is proportional to the solvent-accessible surface 

area (SASA). In PB or GB models the solute X (complex, protein, or ligand) is 
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treated as a low-dielectric body, which is embedded in a high dielectric medium 

(water dielectric, ε = 78.54). The solvation free energy is then expressed as : 

 

                                                                     
  

 

 
∑        

      

   

                                                  

 

where    and    represent the atomic charges, while     
      

, is a term calculated 

exploiting either the PB model, and hence the numerical solution of the Poisson-

Boltzmann equation, or the GB model, by solution of the following equation:   
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  ) [    

            
    
 

     
 ]

    

                               

 

Here,      is the distance between atoms   and  ,   is the dielectric of the solvent,      

is a parameter depending on atom positions, and finally   and  , which are 

constants set to 2 and 4 respectively. In PB model, the dielectric of the solute is 

taken into account in     
  , affecting the calculation of the solvation free energy in 

(2.35). Finally, the computation of the entropy term  , the last term of (2.32), is 

computational expensive, because requires an extensive minimization of the 

conformations for the complex, protein, and ligand, followed by application of normal 

mode analysis. For a fast evaluation of the solvation free energy in protein-ligand 

binding, as, for example, in the case of postprocessing of docking outcome, the 

calculation of the entropic contribution   is generally omitted in MM-GB(PB)SA 

routines [143]. 

Both MM-PBSA and MM-GBSA, are widely exploited in drug design for 

binding free energy prediction. Recently, the impact of different forcefields and partial 

charge models on the performance of these methods was investigated, providing 

useful guidance for their applications [144].  
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Chapter 3.   

An Automated Docking Protocol for hERG 

Channel Blockers 

  



41 An Automated Docking Protocol for hERG Channel Blockers 
 

 
 

 

3.1 Introduction 

 

 

As introduced in section 1.1.1, the hERG potassium channel is of great 

interest in drug development and drug safety. The drug-induced hERG blockade can 

lead to QT prolongation, increasing the incidence of potentially fatal arrhythmias 

referred to as Torsades de Pointes (TdP) [145,146]. Although it has been estimated 

that the frequency of occurrence of these cardiotoxic side effects is less than 

1/100’000 [147], assessing the QT liability of drug candidates in a pre-marketing 

stage represents a major safety issue, which has attracted attention from the drug 

regulatory authorities. Several restrictions have been therefore placed on the use of 

many drugs. In particular, during the last decades several torsadogenical potential 

drugs have been identified and withdrawn from the market [148]. A considerable 

effort has been spent in the development of in silico protocols in order to provide a 

rapid and cheap prediction of the potential hERG toxicity of drug candidates. Unlike 

ligand-based approaches, structure-based models can provide a richer picture of the 

chemical requirements for hERG blockade, which is necessary for understanding the 

risk factors, and hence, the incidence of these pathological conditions. In addition, 

such knowledge could be useful for the identification of potential channel blockers in 

chemical collection, and for reducing hERG toxicity during lead optimization. 

However, the lack of a hERG crystal structure, and the low percentage of sequence 

identity with available templates, make the development of reliable structure-based 

protocol, an extremely challenging task.  

To date, many structure-based models have been proposed, exploiting both 

open and closed homology modelling-based states of the channel. In 2006, Farid 

and co-workers [69], docked a series of five sertindole analogues in the hERG 

cavity, the binding site, achieving a good relationship between the predicted binding 

affinities and experimental data. In particular, their results suggested a crown shaped 

conformation, perpendicular to the channel axis, for hERG blockers. Similar binding 
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modes were also identified by Choe et al. [149] for clozapine, another hERG channel 

blocker. In 2005, Österberg et al. [67], by means of a combined molecular docking-

MD-linear interaction energy approach, identified extended parallel solutions for the 

docked outcome. An extended binding mode, but opposite to the previous one, was 

also suggested two years later by Stansfeld and co-workers [150]. In particular, 

starting from a “hybrid” state of the channel, generated by a rotation of the S6 

transmembrane helix in a closed state homology model, they obtained binding 

modes for twenty known blockers consistent with mutagenesis data [151,152] and 

previous ligand-based in silico studies [62,153]. Furthermore, a “multiple” state 

approach was adopted by Rajamani et al. [71], in order to capture the flexibility of the 

channel to correctly evaluate the binding affinity of the ligands. Recently in 2011, 

Boukharta et al. [68], used a docking protocol similar to the one adopted by 

Österberg [67], in order to rationalize the structure-activity relationships of a series of 

nine sertindole derivatives. They obtained a good reproduction of the observed 

binding free energies. In particular, their protocol led to achieve a  r2 = 0.60, 

representing an excellent result in the context of hERG structure-based approaches. 

Because of the absence of a 3D crystal structure, these structure-based models are 

usually validated by their ability to predict hERG binding affinities that are consistent 

with experimental values, over the considered set of blockers [67,68,71]. However, 

despite the remarkable efforts in developing in silico models, further investigations 

are required for achieving a consistent binding mode for the most potent blockers, 

and hence a detailed comprehension of the molecular features at the basis of hERG 

toxicity. The major difficulty in the application of structure-based approaches lies in 

the features of hERG binding site. In fact, the hERG cavity, which is involved in the 

interaction with blockers, represents an uncommon binding site [154]. The intrinsic 

symmetry of the channel, the conformations of key aromatic residues, and the 

importance of unspecific interactions in ligand binding are issues that strongly 

challenge docking simulations. Moreover, the impact of these aspects on the quality 

of the derived structure-based models has not been explicitly addressed yet. For 

instance, it is customary to perform docking on channel models generated by 

satisfying the C4 point group symmetry [69,150], whereas when using the relaxed 

complex scheme (docking studies carried out on an ensemble of protein 
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configurations sampled by means of molecular dynamics simulations) [155], the 

symmetry of the channel is naturally broken [67,68,156].  

 

3.1.1   Aim of the Project and Protocol Presentation 

 

Here, I will present a docking protocol aimed to address some of the issues 

reported above. Starting from a well-grounded homology model of the open state 

channel [157], several putative hERG-blocker models were built, employing different 

protein conformations. The quality of each model was evaluated using as a figure of 

merit the squared correlation coefficient (  ) between experimental activities and 

docking scores obtained over a selected set of compounds. The proposed protocol 

consists of the following steps (see Figure 3.1):  

(1) Extensive conformational sampling of the binding site’s amino acids was 

performed imposing the C4, C2, or C1 point group symmetries, thus leading to as 

many families of channels (C4, C2, and C1, respectively). A total number of 138 

models passed a filter criterion meant to assess the stereochemical quality of the 

protein and to prune possible conformational redundancy.  

(2) A series of congeneric sertindole derivatives (n = 16, series 1 in Table 3.1), 

for which experimental blocking activity is available and measured in controlled and 

consistent conditions [65], was docked into the channel models as obtained in step 

1.  

(3) The poses obtained in step 2 were post-processed to resolve redundancy 

due to protein symmetry (in case of C4 and C2 families of models) and rescored by 

taking into account their configurational entropy [158,159].   

(4) The docking outcome was finally evaluated via both a single-receptor and 

a multiple-receptor conformation approach (hereafter referred to as SRC and MRC, 

respectively) [160]. Specifically, each model relying upon an SRC description 

consisted of a single channel model associated to a unique binding solution for every 

ligand belonging to the set, thus leading to a total number of 138 models (SRC-001 

to SRC-138). An MRC model was instead built to account for protein flexibility and 

induced fit phenomena, and it was obtained using information provided by the whole 
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set of channels (MRC-001). Then, by exploiting the information achieved through a 

careful analysis of the SRC models, two additional MRC models were obtained 

(MRC-002 and MRC-003).  

 

 

 

Figure 3.1 Flowchart describing the entire procedure: (1) channel models generation; (2) automated 

docking of ligands against the 138 hERG channel models; (3) automated post-processing; (4) 

construction of the hERG-blocker models; (5) refinement of the fittest models. 

 

(5) The fittest hERG-blocker models (either SRC or MRC) were further refined 

to better describe solvation effects upon binding via a single-configurational MM-

PBSA rescoring scheme performed using a multiple dielectric description [138,161]. 

Steps 2-4, and their input/output flows, were automatized and generalized to be used 

with any kind of series of blockers (see section 3.6.1 Presentation of the automated 

protocol CoRK+, for more details). 

 

The main result of this work is the obtainment of a strategy to achieve a small 

set of putative hERG-blocker models to quantitatively relate docking scores with 
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blockers activity in a fully automated way. It is also shown that the use of a limited 

amount of knowledge-based information to derive a minimal subset of channel 

models is required to significantly improve the quality of the MRCs compared to a 

more simplistic SRC description. As a corollary of the effectiveness of the 

protocol,the results demonstrate that the symmetry of the channel conformations has 

a non-negligible impact on the performance of the structure-based models derived. 

Moreover, it is also shown that among the many possible channel models, there is a 

high percentage of nonvaluable conformations to derive structure–activity 

relationships. In retrospect, the application of the protocol allowed to highlight seven 

channel conformations as a subset of relevant and structurally diverse candidates to 

perform MRC-based docking studies efficiently and without relevant loss of 

information for the sertindole series of analogues. The protocol was then validated 

using a series of structurally unrelated blockers (series 2 in Table 3.2. The validation 

procedure is then described in section 3.3.6). 
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Compd Structure      Compd Structure      

Sertindole 

 

3 14 

 

204 

1 

 

88 16 

 

26,000 

2 

 

10 17 

 

1480 

3 

 

7 18 

 

4550 

4 

 

579 19 

 

1947 

6 

 

137 20 

 

15,700 

7 

 

131 21 

 

2200 

13 

 

23.5 22 

 

3500 
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Table 3.1 Set of sertindole derivatives and their experimental      (  ) used in the development of 

the docking protocol (series 1). The ligand numbering was adopted according to the work of 

Pearlstein [65]. 

 

Compd Structure      Compd Structure       

Astemizole 

 

1 Bepridil 

 

501 

Citalopram 

 

3981 Clozapine 

 

199 

Cocaethylene 

 

1259 Cocaine 

 

7943 

E-4031 

 

8 Fentanyl 

 

1995 

Fexofenadine 

 

19,953 Imipramine 

 

3162 

Ketoconazole 

 

1585 Norastemizole 

 

25 

Risperidone 

 

158 Ziprasinone 

 

158 
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Table 3.2 Set of structurally unrelated blockers, and their experimental      (  ), used in the 

validation of the docking protocol (series 2).  

 

3.2 Computational Methods 

 

 

In this section I will provide a detailed description regarding the strategies 

used for the development of the automated protocol for the study of hERG channel 

blockers. The protocol, briefly presented in section 3.1.1, was applied on the two set 

of compounds listed in Table 3.1 (series 1) and 3.2 (series 2). 

 

3.2.1   Channel Models Generation 

 

Since no crystal structures of the hERG channel are currently available, a 

rigorously validated homology model of the channel was used [157]. In order to 

characterize the channel cavity flexibility, an exhaustive sampling of the amino acids 

side chains (residues 623–624 of the selectivity filter and 651–656 of the S6 helix) 

was carried out by means of Modeller 9v8 [162]. The refinement routine consisted of 

multiple optimization and molecular dynamics cycles. Specifically, an initial conjugate 

gradient optimization was followed by a heating-cooling phase of molecular 

dynamics with simulated annealing. An additional step of conjugate gradient 

completed the cycle. A set of 296 channel models (Figure 3.2 A and B) was 

therefore generated by satisfying different point group symmetries (C4, C2, and C1). 

The stereochemical quality of the models was assessed by comparing parameters 

such as bond lengths, bond angles, torsion angles, and chirality with those derived 

by high resolution protein structures [163,164] with the Procheck software [165]. A 

total number of 215 channel models turned out to satisfy the stereochemical quality 

filter. 
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Figure 3.2 (A) Side view (only two out of four subunits are shown for clarity) and (B) top view of the 

296 channel models generated. The conformational search was performed on the side chains of 

amino acids of the inner cavity: Thr623, Ser624 shown in green; Tyr652, Phe656 shown in red; and 

Met651, Ala653, Ser654, Ile655 shown in yellow. 

 

3.2.2   Shape-based Cluster Analysis 

 

Rather than using a well-established but problematic clustering analysis in the 

RMSD space, a shape-based cluster analysis was employed. The accessibility 

profile of the channel pore for ligand binding (here simply referred to as shape 

profile) was described by measuring the maximum radius (    ) along the channel 

axis ( ) using the HOLE program (see Figure 3.3 A) [166]. The local dissimilarity 

between each channel model   and   was defined by taking the modulo difference of 

the maximum radius of the internal cavity sampled at a given position of the pore 

axis. Then, by summing these local dissimilarities along  , the pairwise distance 

used for the clustering was obtained: 

 

                                                           ∑|                   |
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The cluster analysis was performed with the R software environment [167] 

using the average linkage method [168]. The metric introduced is a description of the 

accessible space available for ligand binding, rather than a direct and detailed 

measure of the shape of the internal cavity. Moreover, the metric adopted, simply 

based on the maximum radius along the pore axis, can be employed in virtue of a 

substantially cylindrical binding site and because of the 4-fold symmetry displayed by 

the tertiary structure of potassium channels, which was not altered during the protein 

conformational analysis procedure. In other words, the assumption is that different 

channel conformations, showing similar internal accessible cavities, would also 

display similar chemical environments, which is indeed reasonable in light of the 

above-reported peculiar features of the binding site. 

Two clustering thresholds were employed in this work, depending on the 

purpose of the analysis performed. A height cutoff of 15 Å turned out to be effective 

in pruning the redundancy in the channel models, which were therefore considerably 

reduced from a number of 215 to 138. Such a cutoff was chosen in a heuristic way, 

by carefully evaluating the trade-off between the ability of the method to detect 

redundancy (either due to conformational duplication or symmetry multiplicity) and 

the inevitable loss of information. Besides such a fine-grained clustering, a coarser 

clustering analysis was actually employed to classify the channel models for the 

subsequent analysis of the SRCs. Rather than explicitly using a height cutoff, in this 

case the cluster dendogram was cut so as to obtain a convenient number of clusters 

able to describe the elementary shape of the pore cavity. A number of 10 clusters 

was arbitrarily chosen as a compromise between manageability of the outcome and 

accuracy of the description. 
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Figure 3.3 (A) Shape profile of the pore of the 138 channel models. The important areas of the pore 

are shown as grayish rectangles (the Phe656, Tyr652, and Thr623–Ser624 rings). For clarity, the 

region spanned by the selectivity filter is also shown (in beige). (B) Population of the clusters 

represented in terms of the different symmetry families of the channel models. 

 

3.2.3   Docking 

 

An automated docking protocol was applied to a set of    congeneric 

sertindole derivatives, listed in Table 3.1 (series 1), for which experimental hERG 

blocking activity is available [65]. These compounds were selected in order to 

uniformly cover a quite broad range of activity (about         units) and to span a 

significantly large chemical space (although necessarily limited by the congenericity 

relationship). 

The docking simulations were performed using the Autodock 4.2 software 

[137]. The ligands were treated using Gasteiger partial charges [169], whereas 

Kollman charges [111] were used for the protein. An all-atoms representation was 

adopted. The autogrid box was built so as to include the cavity of the channel 

models which were considered as rigid bodies during simulations. The search was 

carried out with the Lamarckian genetic algorithm (more details in section 2.3.1), 

which allowed an exhaustive sampling of the conformational space, and the docking 

runs were set to     with the initial population of     individuals and a mutation rate 

of     . Maximum number of generations and energy evaluations were set to        

and          , respectively. The same parameters were used for series 2 (Table 

3.2). 

 

3.2.4   Post-processing of the Docking Outcome 

 

 Channel Symmetry 
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To cope with the docking poses redundancy arising as a consequence of the 

C2 and C4 channel symmetries, the docking outcome was subject to rotation along 

the channel axis (z) by 90, 180, and 270°. Then, among the different solutions, only 

the orientation showing the lowest RMSD with respect to a reference structure was 

kept.  

 

Colony Energy 

 

The pose rescoring was performed using the    (Colony Energy) method 

proposed by Xiang et al. [158] in the context of protein loop modelling and later 

extended to protein-ligand docking problems [159]. The central assumption of the 

method is that each sampled conformation represents a colony of states on the 

potential energy surface and that similar configurations (binding poses) belong to the 

same basin. The size of the colonies, depending on the density of poses which are 

close in the configurational space (in the limit of an exhaustive and uniformly 

distributed sampling), represents a statistical assessment of the configurational 

entropy for a given docking solution. The    score assigned to  th configuration is 

expressed as [158,159]: 

 

                                          [∑   ( 
       

 

  
)    ( 
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]                                 

 

where    is the Boltzmann constant, and   is the temperature (     ). As it can be 

noticed from      , the    score has the form of a free energy and the argument of 

the logarithm plays the role of a partition function where the energy (score) of the  th 

docking solution is weighted by a function that takes into account the similarity of the 

given docking solution to the colony leading configuration ( th pose). In the weighting 

function, the   parameter was set to     Å [170]. To properly employ the    approach 

both the symmetry around the channel axis and the internal symmetry of the ligands 

must be taken into account. To this aim, all the symmetric atom pairs were swapped 

in coordinates, and the lowest      was used in the    calculation. The use of     

runs in the docking procedure was motivated by the need to obtain a large ensemble  
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of binding modes for each ligand, so as to meet the statistical requirements of an 

exhaustive and uniform sampling. For each ligand, the AD score corresponding to 

the lowest (top-ranked)    pose was used to describe the binding. 

 

3.2.5   Building and Evaluation of hERG-Blockers Models 

 

Two kinds of correlative structure-based models were built using the 

information provided by the docking procedure: the more naïve SRCs and the more 

physically sound MRCs. 

 

Single Receptor Conformation (SRC) Model  

 

For the generation of the SRC models, only the results obtained by the 

docking performed against each individual receptor conformation were considered, 

so that all the     channel models were treated independently. For each channel, 

the AD score obtained for the top-ranking binding modes highlighted by the    

method was stored and employed in evaluating the performance of the derived 

structure-based model. As figure of merit, the squared correlation coefficient    

between the ligands’ docking scores and experimental hERG blocking activities 

expressed as       was used. To simplify the analysis of the hERG-blocker models, 

a classification of the fitness depending on the observed    was adopted. 

Accordingly, structure-based models showing an    lower than     were classified as 

“bad” performing models, whereas those displaying a squared correlation coefficient 

greater than     were considered as “good” performing models. 

 

 Multiple Receptor Conformation (MRC) Model  

  

Three MRC models were built by differently exploiting the information 

provided by the docking procedure and the analysis of the channel models. The 

MRC-001 model was derived combining all the information obtained by the docking 

procedure against the     channel conformations. The MRC-002 was obtained upon 
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a selection of the channel models leading to the fittest SRCs (       :    channel 

conformations). Finally, the MRC-003 was built by combining the latter selection with 

the results of the cluster analysis, leading to a total number of   channel structures. 

Unlike SRCs, in the MRCs evaluation, three statistical data treatments across the 

ensemble members were used [171]: the best scores, the arithmetic mean, and the 

Boltzmann-weighted average (see Table 3.3 for the sertindole series). In the latter, 

the Boltzmann distribution function was applied to the ligands’ scores within the 

ensemble of conformations: 

 

                                                            
  

∑  
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Besides the performance of the hERG-blocker models, their predictive ability was 

also examined through two different statistical approaches: the widely used leave-

one-out    and    [172]. The    was estimated by a correlation between ligands’ 

scores and related predicted activities, derived from the leave-one-out technique: 

each molecule was in turn removed from the initial set of compounds, and then, its 

activity was predicted using the remainder of the data. While the    proved the 

robustness of a model, the    was employed to quantify the ability of a model to rank 

the compounds according to their binding affinities. The    was calculated with the 

equation: 
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where      is the experimental       and     , the score related to the reference  th 

compound. The    assumes values ranging from    to   : a value of    indicates 

perfect predictions; a value of    indicates wrong predictions; a       , suggests 

completely random predictions. 

The procedure consisting in docking, post-processing of the docking outcome, 

and building and evaluation of the correlative models was entirely automated through 

the Unix BASH-shell scripting language with multiple Tcl and Awk calls, see 3.6.1 

Presentation of the automated protocol CoRK+. 

 

3.2.6   MM-PBSA Refinement 

 

In order to better treat solvation effects, the fittest hERG-blocker models were 

refined using a single-configurational MM-PBSA [138] rescoring scheme. 

Accordingly, the        for each ligand was computed as: 

 

                                                                                                                              

 

where each term was evaluated as the sum of the force field energy (   ) and the 

polar (   ) and nonpolar (   ) contributions to solvation free energy. For sake of 

simplicity, no entropic contributions were taken into account [173,174]. The force 

field energy was calculated after      steps of minimizations (    steps of steepest 

descent followed by     steps of conjugate gradient) of the complexes by means of 

the sander module of the Amber11 package [175]. The generalized Born model of 

Hawkins, Cramer, and Truhlar was used as solvation model [176,177]. The AMBER 

ff99SB-ildn force field [118] was used for the protein, and the General Amber Force 

Field (GAFF) [178] together with RESP charges [179,180] was adopted to treat 

ligands. RESP charges were calculated with the G09 package [181] at the B3LYP/6-

31G*//B3LYP/6-31G* level of theory. The polar contributions to solvation free energy 

were estimated by solving the linearized Poisson–Boltzmann (PB) equation for the 

minimized structures using APBS [182]. In doing so, a multiple dielectric description 

of the systems was adopted: water, solute, and membrane were treated as different 
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environments using   values of   ,  , and  , respectively. A 3-level of focusing 

approach which starts by solving the PB equation on a coarse grid of large size, then 

on a medium grid, and finally on a fine grid, was used for this purpose. Two types of 

calculations were performed: the first, in a multidielectric environments using an ionic 

strength of     M of both    –   ions with a radius of     Å in the aqueous 

environment, and the second in vacuum (no membrane, homogeneous dielectric 

      for solute and solvent, and null ionic strength). The solvation energy was 

estimated by subtracting the latter term (the Coulombic contribution, in vacuum) to 

the first calculation. Finally, the nonpolar components of the solvation free energy 

were computed with APBS according to the following equation [182]: 

 

                                                                                                                                                

 

where      is the solvent-accessible surface area estimated using a probe with 

radius of     Å,   is the solvent surface tension parameter (        kcal mol–1 Å–2), 

and   is the free energy of nonpolar solvation for a point solute (     kcal mol–1) 

[142,173]. 
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Compd SRC-001 SRC-002 SRC-008 MRC-001 MRC-002 MRC-003 

best avg bz best avg bz best avg bz 

sertindole –5.07 –5.33 –5.41 –5.41 –3.56 –4.60 –5.41 –4.66 –4.93 –5.41 –4.93 –5.11 

1 –4.42 –5.23 –4.85 –5.23 –3.47 –4.48 –5.23 –4.43 –4.76 –5.23 –4.68 –4.89 

2 –4.79 –5.23 –5.31 –5.34 –3.58 –4.67 –5.31 –4.67 –4.95 –5.31 –4.91 –5.05 

3 –4.81 –4.92 –4.84 –5.05 –3.30 –4.39 –5.01 –4.46 –4.64 –4.92 –4.62 –4.72 

4 –4.02 –4.36 –4.36 –5.93 –3.91 –4.80 –5.55 –4.38 –4.75 –4.97 –4.38 –4.54 

6 –4.82 –5.43 –5.44 –5.73 –3.86 –4.88 –5.59 –4.71 –5.09 –5.44 –5.03 –5.22 

7 –4.29 –4.35 –4.50 –5.21 –3.19 –4.15 –5.21 –4.03 –4.47 –4.80 –4.24 –4.43 

13 –4.49 –4.86 –4.06 –5.38 –3.83 –4.60 –5.26 –4.47 –4.78 –4.94 –4.60 –4.73 

14 –4.50 –4.76 –4.98 –5.63 –3.78 –4.79 –5.10 –4.40 –4.63 –4.98 –4.60 –4.68 

16 –2.71 –2.83 –2.69 –3.71 –2.61 –2.99 –3.34 –2.91 –3.00 –3.28 –2.91 –2.98 

17 –2.51 –2.67 –2.65 –3.29 –2.14 –2.68 –3.10 –2.62 –2.78 –2.76 –2.64 –2.65 

18 –3.31 –2.97 –2.89 –3.63 –2.72 –3.01 –3.47 –2.99 –3.14 –3.42 –3.07 –3.16 

19 –2.99 –3.41 –2.85 –3.83 –2.74 –3.24 –3.68 –3.18 –3.28 –3.43 –3.15 –3.23 

20 –2.28 –2.62 –2.24 –3.66 –2.08 –2.81 –3.35 –2.58 –2.88 –2.81 –2.55 –2.62 

21 –3.35 –2.84 –2.39 –3.68 –2.48 –2.99 –3.57 –2.95 –3.16 –3.35 –2.95 –3.12 

22 –2.99 –2.91 –2.70 –3.58 –2.63 –2.96 –3.24 –2.92 –3.00 –3.22 –2.97 –3.02 

   0.83 0.79 0.74 0.57 0.53 0.65 0.67 0.76 0.73 0.73 0.77 0.76 

 

Table 3.3 Fittest correlative structure-based models for series 1. The docking score (kcal mol
–1

) of the 

16 compounds used to develop the protocol for the three fittest SRC (SRC-001, SRC-002, and SRC-

008) and MRC models, are reported. For the MRC models, the results obtained using the three data 

treatment methods employed are also shown (best scores, arithmetic mean, and Boltzmann-weighted 

average). The performance of each model measured in terms of    is reported at the bottom of the 

table. 
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3.3 Results 

 

 

In this section, I will report the main results achieved in the development and 

application of the docking protocol previously described. The protocol was developed 

on the series of congeneric sertindole derivatives, series 1, and validated on a series 

of structurally unrelated blockers, series 2.  

 

3.3.1   Development of the Protocol  

 

1. Channel Models 

 

To account for flexibility, the local conformational space of the cavity of the 

open state channel was extensively explored leading to a set of channel models 

(Figure 3.2). Under the assumption that the starting configuration represented an 

optimal geometric assembly of the protein in agreement with experimental data 

[157], only the side chains of key amino acids (see section 3.2.1 Channel Models 

Generation) were relaxed. In particular, the attention was focused on the 

conformations explored by Tyr652 and Phe656, since their importance in ligand 

binding has largely been discussed in the literature [152]. From the analysis of the 

      plot for these residues before and after applying the stereochemical quality 

filter (shown in Figure 3.4 A and B, respectively) it has been highlighted that, taking 

into account all the models, these amino acids sampled the most of their 

conformational space. Notably, the       plots are in good agreement with those 

recently obtained by Knape and co-workers and derived from    ns of molecular 

dynamics simulation [183]. In Figure 3.3 A, the shape of the cavity measured as 
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maximum pore radius plotted against channel axis ( ) is reported for all the channel 

models. It clearly emerged that most of the variability in shape was in proximity of the  

phenyl ring of Phe656. From a docking standpoint, the four Phe656 residues could 

constitute a potential pore restriction that might critically affect the generation of 

reliable hERG-blocker models. Indeed, in this region of the pore, in some cases we 

observed a maximum radius as small as about   Å, underlying protein conformations 

virtually unproductive to accommodate the majority of the larger blockers. For sake 

of clarity, we refer to these conformations as “narrow channel models” to be 

distinguished by the “wide channel models”, bearing in this region a maximum radius 

greater than   Å. Conversely, Tyr652 protruded much less toward the cavity, and the 

sampled conformational space was significantly more limited (see Figure 3.4 B).  

 

 

Figure 3.4       plot for Phe656 (top) and Tyr652 (bottom) before (A) and after (B) applying the 

stereochemical quality filter. 

 

In order to classify the channel conformations and to prune their possible 

redundancy, a cluster analysis was performed. Because of the channel overall 



60      Computational Methods in Biophysics and Medicinal Chemistry: Applications and Challenges 
 

 
 

symmetry and the internal symmetry of amino acids’ side chains such as 

phenylalanine and tyrosine, the      metric appeared to be particularly ill suited to 

address the problem. Therefore for measuring the dissimilarity among channel 

models, was used a metric describing the local difference in shape calculated over 

the pore axis (see section 3.2.2 Shaped-Based Cluster Analysis, for more details). 

The proposed metric turned out to be quite effective for our purposes and provided 

an intuitive picture of the classification of channel models into clusters. In Figure 3.3 

B, the population of the    clusters along with their internal population in terms of 

symmetry families is reported. As it can be seen, the symmetry of the channel 

models was transversally parted on the clusters. In other words, there is no a direct 

relationship between the symmetry family and a particular shape of the cavity, 

implying that a similar shape could be obtained by imposing different symmetries 

during the generation of the channel models. 

 

2. SRC Models 

 

The performance of the hERG-blocker models was evaluated by calculating 

the correlation (in terms of   ) between the docking scores and the experimental 

blocking activities. The    values for all the SRC models along with the information 

concerning the symmetry family of the corresponding channel model are reported in 

section 3.6.2 Supporting Material, Table S1. As explained in section 3.2.5 of 

Computational Methods,    values were calculated employing the Autodock [137] 

score (AD score) after applying a pose rescoring, which took into account the 

ligands’ configurational entropy. This approach was based on the assumption that a 

better description of binding would be obtained by reweighting the score associated 

to a given pose by its relative probability to be achieved during extensive docking 

simulations (i.e., the so-called Colony Energy, CE) [159]. Within the CE formalism, 

the weight assigned to a specific binding mode statistically incorporates (in an 

approximate way) the contribution of the ligand configurational entropy in a rescoring 

scheme-like fashion [159]. 

 In Figure S1 (section 3.6.2 Supporting Material), the performance of the SRC 

models is reported for each symmetry family (C1, C2, and C4 in panel A, B, and C, 
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respectively). In the same figure, the    values calculated before (i.e., AD solutions) 

and after applying the CE rescoring scheme, were also compared.  

The rescoring procedure either slightly or significantly decreased the fitness of the 

SRC model. However, for a limited number of channel conformations, an interesting 

performance increasing was recorded. By classifying the fitness of the hERG-blocker 

models as bad (        ), intermediate (              ), and good (        ), the 

performances of the SRCs were reported as histograms for each symmetry family. 

Figure 3.5 shows that C1 channel models performed on average better than those 

belonging to other families. However, the best SRC models of the entire ensemble 

belonged to the C2 family (SRC-001 and SRC-002,    of      and     , respectively, 

see Figure S3 B in section 3.6.2 Supporting Material), even though, at the same 

time, this family owned the largest amount of poorly performing models. Generally, 

the C4 family of models performed much worse. 

 

 

 

Figure 3.5 Performance evaluation of the SRC models for series 1 based on the squared correlation 

coefficient and reported in terms of the symmetry family displayed by the corresponding channel 

model. 

 

Since no clear-cut connections between symmetry and cavity shape, or 

symmetry and performance of the derived SRC models were obtained, the attention 

was focused on investigating whether any relationships between shape and fitness 

could be derived. In Figure 3.6 A, the clusters of the channel models along with the 

quality of the corresponding SRCs are presented. Apart from the trivial singleton 

clusters, a certain correspondence could be inferred. From a hERG-blocker model 
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standpoint, clusters 2, 3, and 4 clearly underlined effective channel model shapes, 

whereas cluster 6 definitely did not. The shape profiles of the channel conformations 

associated to the fittest SRC models are shown in Figure 3.6 B for the nonsingleton 

clusters. The channel model representative of cluster 6 exhibited an extremely 

narrow cavity conformation, thus explaining the poor performances of SRC models 

within this cluster. Indeed, the restriction provided by the Phe656 ring hampered the 

access of ligands to the upper portion of the binding site, thus preventing a proper 

binding and in turn an efficient channel block.  

Such results could be an indirect confirmation of the health of the protocol. In 

fact, because the AD docking box was generously extended toward the intracellular 

side of the protein, ligands were allowed to bind even in the presence of the 

restriction. Therefore, the fact that the narrowest channels systematically provided 

much worse SRC models might be interpreted as a signal of a correct quantitative 

response of the protocol. Notably, while narrow channels always provided poor SRC 

models, the opposite did not hold true. In fact, it was possible to identify moderately 

wide channel models providing a poor correlation, even though in general they rather 

returned average or good SRC models. 

 

 

 

Figure 3.6 (A) Population of the clusters represented in terms of the associated SRCs’ fitness 

calculated for series 1. (B) Shape profiles of the best SRC models for each cluster. Singleton clusters 

are not shown. 

 

3. MRC Models 
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Even though analysing the performance of SRC models is an informative 

exercise, it is clear and straightforward that a most relevant picture of binding should 

be achieved through a correlative hERG-blocker model based on an MRC 

description. The first MRC model (MRC-001), obtained using the information coming 

from all the docking simulations in a standard ensemble docking approach, turned 

out to be rather poor. In fact, either using the best scores and the average scores 

data treatment, an unsatisfactory correlation was obtained (   of 0.57 and 0.53, 

respectively; see Table 3.3). Only when using the Boltzmann weighted averages an 

acceptable correlation was reached (   = 0.65). Although disappointing, these 

results were not completely unexpected, as it is well-known that using a large 

number of conformations might have a detrimental effect on the performances of the 

ensemble docking approach [184]. The second MRC model generated (MRC-002) 

was built employing only the information coming from the docking simulations 

performed on a worthwhile subset of channel models yielding the best correlations 

between calculated and experimental data in the SRC description (   > 0.60). The 

rationale of this procedure was based on the assumption that protein conformations 

responsible for the fittest SRC models, on average, would carry more relevant 

information to describe the binding of blockers than the others. In other words, the 

identification of a minimal subset of channel models would statistically improve the 

performance of the MRC description by reducing the noise possibly related to 

scoring function inaccuracies or limitations in sampling. In this respect, this approach 

is similar in spirit (although slightly less rigorous but much simpler) to the method 

proposed by Yoon and Welsh [185]. Accordingly, the MRC-002 statistics significantly 

improved (see Table 3.3). Notably, only 24 channel models out of 138 were used in 

this description. In pursuing the definition of the minimal subset of channel 

conformations, MRC-003 was built using only the channel models belonging to the 

previous subset leading at the same time to the fittest SRCs along different clusters. 

Compared to MRC-002, MRC-003 displayed better statistics. For example, for the 

best scores data treatment, the     increased from 0.67 to 0.73 (see Table 3.3). This 

result demonstrates that a good MRC model for the hERG channel can be 

successfully obtained with an extremely limited subset of channel conformations. In 

this respect, the analysis of SRC models turned out to be instrumental in defining a 

strategy to select the MRC channel conformations.  
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Examining the methods used for the data treatment, averaging docking scores 

across the channel conformations turned out to provide better statistical 

performances rather than using exclusively the best energy scores. However, no 

substantial differences were noticed whether a simple arithmetic mean or a 

Boltzmann-weighted mean were used. 

In the best case scenario, MRCs would be the only hERG-blocker models to 

be considered, since their derivation is solely driven by the physics of the scoring 

function, while SRCs are obviously conditional models. 

 

4. Structure-Activity Relationships 

 

Here, I will present the binding modes adopted by the sertindole analogues in 

the fittest structure-based models: SRC-001 (   = 0.83, see Figure 3.7 A) and MRC-

003 (   = 0.77, adopting the arithmetic mean data treatment method, Figure 3.7 B). 

Despite the slightly better performance of SRC-001, a more consistent binding mode 

was achieved using the MRC approach. 

In MRC-003, all the compounds displayed a binding mode similar to that 

proposed by Österberg and Åqvist [67], by fitting into the cavity parallel to the 

channel axis, adopting an extended conformation, and pointing the imidazolidinone 

moiety toward the selectivity filter. The basic nitrogen was found to occupy a central 

position in the area surrounded by Phe656–Tyr652 and, in agreement with other 

studies [67,68], no cation-π interactions with Tyr652 were observed. The most potent 

blockers of the set of compounds, sertindole (     = 3 nM), 3 (     = 7 nM), and 2 

(     = 10 nM) showed similar binding modes though different channel models were 

chosen (channel model C1_43 for sertindole and 3 and C2_48 for 2; Figure 3.8 A). In 

particular, the imidazolidinone group was placed at the bottom of the filter. The 

amidic nitrogen of this group was involved in an H-bond interaction with the hydroxyl 

group of Tyr652, whereas the aliphatic cyclic moiety showed hybrophobic 

interactions with the adjacent Tyr652–Phe656 and with the backbone of Thr623–

Ser624. In addition, the indole moiety formed hydrophobic or π-stacking interactions 

with at least three neighbouring Phe656, while the fluorobenzyl group took 

electrostatic contacts with the side chain of Gln664 and hydrophobic interactions with  
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Phe656 and Ala653. In the resulting binding modes, Gln664 together with Tyr652 

seemed to play a key role in determining the blocking affinity. This was evident by 

the poses adopted by compounds 13 (     = 23.5 nM, Figure S2 A in section 3.6.2 

Supporting Material) and 1 (     = 88 nM, Figure S2 B), where the absence of the H-

bond either with Gln664 (in the case of 1, lacking the fluorine) or with Tyr652 (in the 

case of 13) reflected the reduction of affinity. The presence of a methyl 

phenylacetate instead of the fluorobenzyl group, together with the absence of polar 

contact with Tyr652 in 7 (     = 131 nM) or the total substitution of the halo-aromatic 

ring with a cyclohexyl moiety in 6 (     = 137 nM), were found to be further 

detrimental for the blocking activity (Figure 3.8 C). Although the H-bond with Gln664 

was preserved, 4 (     = 579 nM) did not interact with Tyr652 and fewer hydrophobic 

contacts between the indole group and Phe656 were observed (Figure S2 B). 

Concerning the less potent binders, which were also the smaller molecules of the set 

(14–22), the indole moiety replaced the piperazine group in the binding site, 

occupying the accessible volume delimited by the four Phe656. The fluorobenzyl 

portion of the ligands was mainly located in the lower side of the cavity in between 

Ala653 and two copies of adjacent Phe656 (Figure 3.8 D). An exception is 

represented by 18 (     = 4550 nM), which displayed the fluorobenzyl toward the 

selectivity filter and was involved in nonpolar contacts with two neighboring Thr623, 

and in a π–π T-shaped interaction with one copy of Phe656 (Figure S2 C). 

Compound 14 (     = 204 nM) was the most potent blocker among the smaller 

compounds, and the only one showing a positively charged nitrogen sequestered by 

the polar area consisting in Thr623 and Ser624 at the bottom of the filter. The alkyl 

portions were mainly located in the hydrophobic pocket formed by two adjacent 

subunits consisting in the residues Thr623, Ser624, Tyr652 and Phe656, while the 

presence of the hydroxyl functional groups, in 20 (     = 15,700 nM) and 21 (     = 

2200 nM), resulted in additional polar contacts with Ser624 (Figure S2 D). 
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Figure 3.7 Correlation plots between the experimental       and the calculated binding energies for 

series 1 before (upper panels) and after (lower panels) applying the MM-PBSA refinement. Panels A 

and C refer to SRC-001, whereas panels B and D show the results for MRC-003. 
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Figure 3.8 Most relevant binding modes displayed by MRC-003 in series 1: (A) sertindole, 2, and 3 

(mauve); (B) compound 1 (yellow); (C) compounds 6 and 7 (orange); and (D) compounds 16, 17, 19, 

and 22 (lime). The multiple conformations adopted by the protein are shown in gray. 
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As previously mentioned, the binding picture derived from the SRC-001 model 

showed less consistency when compared to MRC-003. In particular, three different 

binding modes could be observed among diverse group of molecules. In analogy 

with the MRC-003 representation, the highest affinity compounds, sertindole, 3, and 

2, retained an Österberg-like binding mode [67] with the imidazolidinone group 

pointed toward the filter, and the fluorobenzyl moiety connected to Gln664 through 

an H-bond interaction (Figure 3.9 A). Together with a progressive reduction of 

affinity, different binding modes emerged. Similarly to the binding mode observed by 

Boukharta and co-workers [68], compounds 13, 7, and 4, placed the indole moiety in 

the central area of the cavity surrounded by Phe656, which was also involved (in the 

case of 7 and 4) in π-stacking interactions with the chlorine oriented toward the 

selectivity filter (Figure 3.9 B). Furthermore, the fluorobenzyl, the phenylacetate, or 

the methyl phenylacetate groups in compounds 13, 4, and 7, respectively, were 

accommodated in the area beneath the Phe656, taking favourable polar interactions 

with Gln664. However, unlike the binding mode described by Boukharta, the 

imidazolidinone moiety of these compounds was not placed close to the bottom of 

the filter, but rather it contacted the Cα of Gly657 and the side chain of Ala661 via 

multiple hydrophobic interactions. A different scenario was provided by compounds 1 

and 6, which showed a binding mode overall in agreement with the one commented 

by Stansfeld and co-workers [150]. As shown in Figure 3.9 C, these compounds 

adopted an extended conformation, parallel to the channel axis, and pointing the 

phenyl group (1) or the cyclohexyl ring (6) toward the bottom of the filter, while the 

imidazolidinone interacted via polar contacts with the Gln664 side chain. The indole 

moiety of these compounds was sequestered in the central core of the cavity by π–π 

interactions involved with the four Phe656. In contrast with the MRC-003 description, 

the binding modes adopted by smaller compounds showed less consistency. For 

most of the molecules (compounds 16, 17, 19, 20, and 22), the alkyl portions were 

located in the hydrophobic pocket defined by two copies of adjacent Phe656 and 

Ala653, in the opposite side with respect to the one occupied by the fluorophenyl 

group (Figure S3 A in section 3.6.2 Supporting Material). The additional presence of 

a hydroxyl functional group (18 and 21, shown in Figure 3.9 D) or a protonated 

nitrogen (14, Figure S3 B) was responsible to drive the compounds toward the polar 

area at the bottom of the filter. 
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Figure 3.9 Most relevant binding modes displayed by SRC-001 in series 1: (A) sertindole, 2, and 3 

(silver); (B) compounds 13, 7, and 4 (magenta); (C) compounds 1 and 6 (yellow); and (D) compounds 

18 and 21 (orange). 
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5. Assessment of the Solvation Free Energy Contribution 

 

To further confirm the reliability of the fittest hERG-blocker models, an 

additional force-field based rescoring scheme was employed. In Table S2 (section 

3.6.2), the estimated MM-PBSA free energies of binding (kcal mol–1) for the docked 

compounds in the fittest structure-based models, SRC-001 and MRC-003, was 

reported. For each model, the molecular mechanics (    ) and both the polar 

(    ) and nonpolar (    ) contributions to the solvation free energy are also 

reported (see section 3.2.6 for details). As it can be seen, the favorable formation of 

the complexes was driven by the molecular-mechanics energy      and by the 

nonpolar component of the solvation energy     , which assumed negative values, 

while      component showed positive values. Interestingly, while      

contributions appeared always small and similar among the compounds (ranging 

from −2.79 to −4.62 kcal mol–1 for SRC-001 and from −2.71 to −5.00 kcal mol–1 for 

MRC-003), although somehow correlated with molecular size,      and       

values were clearly different through the set and were directly dependent on the net 

charge of the compounds: higher contributions were observed for the positive 

charged sertindole and compounds 1, 2, 3, 6, 7, 13, and 14. In Figure 3.7 C and D, 

the regression plots of the        versus       for SRC-001 and MRC-003 are 

respectively reported. In general, the results showed that MM-PBSA did not 

significantly influence the scenario depicted by the docking scoring function. In 

particular, the    changed from 0.83 (s = 0.51) to 0.82 (s = 0.52) in SRC-001, while it 

passed from 0.77 (s = 0.59) to 0.76 (s = 0.60) in MRC-003 before and after 

refinement. Concerning the predictive statistical parameters, while the    slightly 

decreased, the predictive index (  ) [172] retained satisfactory values (larger than 

0.80). 

 

3.3.2   Protocol Validation  

 

In order to show the general applicability of the proposed docking strategy, the 

reported protocol was applied to a series of structurally unrelated blockers (series 2). 
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The compounds were those of the test set employed by Cavalli et al. for the 

validation of a 3D-QSAR model [62]. To achieve a uniform distribution of 

experimental activities, other classical hERG blockers were also taken into account, 

leading to a validation set of 14 structurally unrelated compounds (see Table 3.2). 

Series 2 covered a range of more than four       units of activity (from 4.67 to 9.00). 

The correlation between experimental activity and predicted docking score for the 

fittest SRC model turned out to be fairly good (   = 0.60; see Figure 3.10 A). Figure 

3.10 A, clearly showed that the major outlier was astemizole, and when excluded 

from the set, very good correlations were obtained. In particular, the fittest SRC 

displayed an    of 0.83, while the corresponding MRC-003 showed an    of 0.77 (for 

the average score data treatment, see Figure 3.10 A and Table S3 in section 3.6.2 

Supporting Materials). In Figure 3.10 B, the binding mode of some selected 

compounds belonging to series 2 is reported. 

 

 

 

Figure 3.10 (A) Correlation plots between the experimental       and the calculated binding energies 

for series 2 before (n = 14, empty circles, dotted line) and after (n = 13, filled circles, solid line) the 

removal of the outlier astemizole. (B) Representative binding modes for selected blockers: astemizole 

(white) and norastemizole (green). 
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3.4 Discussion 

 

 

In this chapter, a docking protocol aimed to predict the putative binding mode 

for a series of hERG blockers, was presented. The protocol was first developed 

using a series of sertindole analogues that has become a standard reference for 

structure-based models of hERG block [67,68]. Then, the same strategy was applied 

to a more challenging set of structurally unrelated molecules. The protocol consisted 

in the automatic generation of an ensemble of binding modes for the considered set 

of compounds and in their evaluation according to the    calculated between docking 

scores and experimental blocking activities. Equivalently, the proposed procedure 

generated and compared an ensemble of possible correlative models to quantify the 

hERG blocking activity. These models were obtained using both SRC and MRC 

descriptions. In the latter, different conformations of the pore amino acid side chains 

were taken into account. Specifically, the statistical parameters of the MRC models 

were improved by using the information obtained by an in depth analysis of the 

relevant SRCs. 

 

3.4.1   Pore Shape of the hERG Channel Models  

 

As previously stated, the features and the statistical performance of the MRC 

models were strongly dependent upon both the results achieved by the SRCs and 

the analysis strategy undertaken. In particular, the employed description of the 

shape of the cavity turned out to be a simple but successful approach to address the 

problem of an uncommon binding site such as that of the hERG channel. In addition, 

the results suggested the existence of a relationship between the shape of the pore 

and the fitness of the SRC model derived from series 1. While a posteriori it was not 
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surprising that narrow channel models always led to poor SRCs, it was interesting to 

note that the fitness of the hERG-blocker models did not monotonically improve with 

the pore width at the constriction region. Despite the importance of the punctual 

arrangement of amino acids in determining a certain binding mode, and the fact that 

a given shape could be obtained with different side chain conformations, it is 

tempting to advance an explanation of the general performance of the SRC models 

in terms of the shape of the binding site. In Figure 3.6 B, it has been shown that the 

best SRCs for series 1 were generated basing on wide channel models, even though 

the widest one (C4_25, belonging to cluster 2; see Table S1 in section 3.6.2) 

displayed a slightly worse performance than the others (   = 0.52). It is possible to 

speculate that an optimal SRC model would be obtained with a moderate amount of 

restriction in the channel pore. A possible explanation could be that a right 

compromise between wide and narrow channel volume and shape had to be 

obtained to allow the present series of compounds to properly dock into hERG. 

Indeed, the Phe656 ring had to achieve an optimal ensemble of conformations to 

interact productively with the most potent ligands. Concerning this point, it is worth 

commenting on the overwhelming population of cluster 1 and the wide range of    

displayed by the related SRC models. Cluster 1 entailed a quite broad range of 

conformations of the channel, whose shape could be crudely described as 

encompassing both narrow and slightly open pore conformations, showing a 

maximum radius in the restriction region lower and greater than 2 Å, respectively. 

Notably, the maximum radius never exceeded the value of 2.2 Å in this cluster. For 

most of the channel models belonging to cluster 1, the Phe656 restriction prevented 

the achievement of effective SRC models. However, because of the rearrangement 

of these amino acids, whenever the pore radius exceeded a critical threshold (of 

about 2 Å), highly productive SRC models became within reach. These 

considerations hold for both the series of compounds, and as such, they can be 

considered of general significance. Clearly, taking into account Phe656 

conformations in binding is a necessary but not sufficient condition to explain at best 

the experimental blocking activities, as the conformations of several other residues 

comes into play at a molecular level. 

As already pointed out in the Results section, no straightforward relationships 

between the shape of the pore and the symmetry family were identified. In this 
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respect, an interesting exception was provided by cluster 2. As previously discussed, 

cluster 2 represented the ensemble of widest channel models, and it was mostly 

constituted by C4 models. Interestingly, the channel conformation leading to the 

fittest SRC within this cluster belonged to the C1 point group symmetry for both the 

series of compounds (C1_20, see Table S1), demonstrating that the shape, rather 

than the symmetry used in the channel model generation, is relevant to build 

effective structure-based models based on an SRC description. Indeed channel 

model C1_20 virtually displayed C4 symmetry, whereas no symmetry restraints were 

imposed in its derivation. In this context, the fact that C4 channels apparently 

performed slightly worse than those belonging to the C2 and C1 class (see Figure 

3.5 for series 1) should not be overestimated. Indeed, the worse performance 

displayed by C4 channel models is only apparent and is due to the fact that, because 

of the high number of restraints that must be satisfied in their derivation, there is a 

greater chance to incur either in narrower or wider pore shapes compared to other 

symmetries, which were generally associated to less fit SRCs. 

 

3.4.2   Binding Modes of the Sertindole Analogues  

 

From the perspective of the development of the protocol, the MRC-003 model 

represents the main achievement of this work, as it provided at the same time a 

consistent binding mode for structurally similar blockers and satisfying structure-

activity relationships. Even though the strategy employed to reach this description of 

binding was not free from a certain degree of knowledge-based subjectivity [185], it 

must be stressed that the resulting model was obtained in a completely unbiased 

way. The fact that the performance of some SRC models turned out to be 

comparable (and in few cases better) to MRC-003 could be interpreted as an 

evidence of the existence of alternate or multiple binding modes for hERG channel 

blockers. Although such a perspective is undoubtedly attractive, it is reasonable to 

think that it is too speculative to be embraced without skepticisms. Indeed, further 

studies relying on free energy calculations should be carried out to properly address 

such a hypothesis. 
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In line with the survey carried out by Zachariae and co-workers [186], it is 

interesting to compare the binding modes obtained in the fittest structure-based 

model with those previously presented in the literature and attempt to relate them 

with the available pharmacophores for the hERG blocking activity. Updating the 

scenario depicted by previous work of Recanatini et al. [154], several binding 

modalities for potent hERG blockers have been proposed so far. Therefore, 

considering sertindole as a reference compound, it is possible to mention:  

(1) the perpendicular (with respect to the channel axis) curled solution (Farid-

like binding mode) [69], where sertindole adopts a crown shaped conformation 

delimited by the underneath Phe656 ring; 

(2) the parallel extended solution where the fluorophenyl group interacts with 

Ser624 (Stansfeld-like binding mode) [150];  

(3) the parallel extended solution opposite to the previous one, where the 

imidazolidine group interacts with Ser624 (Österberg-like binding mode) [67]; 

(4) the perpendicular extended solution where the imidazolidine group 

interacts with Ser624 (Boukharta-like binding mode) [68].  

Accordingly, the binding mode displayed by MRC-003 agrees with the 

Österberg-like binding solution, which can be at some extent consistent with the 

pharmacophore model proposed by Cavalli et al. [62,187]. Furthermore, along the 

many possibilities found in the SRC models, several Stansfeld-like and Boukharta-

like binding modes could be identified, whereas no Farid-like solutions were 

obtained. 

 

3.4.3   Performance of the Structure-Based Models  

 

The automated docking protocol was purposely developed using a series of 

congeneric derivatives, in an attempt of capturing the relevant features of the 

channel-blocker interactions that might lead to meaningful structure-activity 

relationship models. A series of analogue compounds should reduce the scoring 

function uncertainty related to an approximate estimation of entropic and/or solvation 

contributions. Because of the large amount of unspecific interactions between hERG 
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channel and blockers, a pose re-ranking based on a statistical (approximated) 

evaluation of the ligands’ configurational entropy was here utilized. The good 

correlations achieved by the fittest SRCs and MRC-003 (   more than 0.7), together 

with the consistency of the binding modes found in the latter model, it is a proof of 

the feasibility of the approach. The fact that SRC-001 and MRC-003 retained good 

performances after the MM-PBSA rescoring was a further confirmation about the 

performance of our protocol. One could also envision a protocol where each binding 

mode is rescored with the MM-PBSA method. However, it should be underlined that 

such strategy can be highly CPU demanding. 

The protocol was then validated using a series of structurally unrelated 

blockers, covering several different classes of drugs. Indeed, obtaining a good 

correlation with a general set of blockers is a much more challenging than using a 

series of analogous compounds. As expected, the docking protocol returned less 

satisfying results, even though an acceptable SRC model could be obtained (   = 

0.60). Figure 3.10 A clearly showed that astemizole was a major outlier, and its 

removal led to a significantly improved correlation with an    more than 0.8 (channel 

C1_53, belonging to cluster 3). The relatively high energies attributed to astemizole 

by the AD score, which in turn led to poor correlations, was likely due to the fact that 

the docking algorithm was unable to properly pose a relatively large drug into a 

crowded binding site. In spite of this, the encouraging correlations pointed to an 

acceptable general applicability of the present protocol to series of compounds in 

order to achieve predictive qualitative and quantitative insights about their hERG 

blocking ability. 
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3.5 Conclusions 

 

 

Achieving a reliable description of the molecular interactions responsible for 

the hERG channel blockade by drugs represents one of the hottest topics in drug 

discovery. In recent years, a number of docking studies attempting to unravel the 

most likely binding modes for several series of hERG blockers have appeared in the 

literature. In most of these studies, the reliability of the docking solutions has been 

assessed by the ability to explain the experimental activity either directly, by using 

docking scoring functions, or indirectly, by relying on more sophisticated rescoring 

schemes. Eventually, these procedures implicitly provide different structure-based 

models that might be useful in prospect to predict the blockade potency of newly 

designed compounds, thus accelerating the identification of LQTS liabilities. 

Notwithstanding the importance of these docking studies, it is nonetheless surprising 

to notice the low agreement between binding modes proposed by different authors, 

especially considering the fact that the overall features of the starting channel 

models appear to be quite similar. The latter observation, together with the 

consideration that no systematic docking studies on multiple conformations of the 

hERG channel has been undertaken yet, has encouraged the development of a 

specific protocol aimed to overcome several modeling difficulties associated to the 

problem under investigation [154]. On the one hand, the main achievement of the 

present work is the unbiased obtainment of a consistent binding modality for a 

congeneric series of sertindole derivatives which supports one of the most 

accredited pictures of binding (Österberg-like binding mode). On the other hand, the 

protocol itself proved to be successful and has allowed to elucidate some 

methodological aspects of docking so far not explicitly addressed. Concerning this 

point, it has been found that the conformational symmetry imposed to the amino 

acids of the binding site can have an impact on the reliability of the structure-based 

models derived. However, since similar shapes of the channel cavity can be 
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achieved with different symmetries, the shape of the pore turned out to be a simpler 

and better descriptor to analyse the relevant structural features of the channel. Since 

the results show that channel models belonging to the C1 class on average provided 

the fittest SRCs, it is reasonable to suggest that there is no real need to impose 

symmetry restraints in the channel models generation. This finding could be 

considered as a general validity result for symmetrical binding sites, not only in the 

context of hERG docking. In the attempt to overcome the tendency to achieve 

geometrically sparse binding modes for structurally similar compounds, a rescoring 

method suited to reweight the docking score by the probability to achieve a given 

binding mode, was used and implemented in the protocol. In the present case, the 

approach turned out to successfully increase the consistency of the docking 

outcomes and the possibility to rationalize structure-activity relationships for the SRC 

description. Finally, the results achieved by means of this protocol, have shown the 

possibility to obtain a minimal subset of channels spanning the relevant 

conformations of the cavity that are suitable for predicting hERG liability on a series 

of analogues compounds. These channel conformations would be in turn 

instrumental to reduce the computational cost in view of the lead optimization phase 

of drug discovery. 
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3.6   Appendix 

 

 

3.6.1   Presentation of the Automated Protocol CoRK+ 

 

Here, I will present some features regarding the execution of the automated 

protocol, named as CoRK+ (Correlative Re-ranking hERG K+ channel), for studying 

hERG blockers. 

 

The protocol must be executed in the same folder containing the set of 

compounds (in the PDB file type). The core of the protocol is a BASH user-friendly 

interface which manages and calls other BASH, Awk, and Tcl scripts.  

A complete description of options 1-6 is reported in the followings (Figure 

3.11):  

 

(1) PDB to PDBQT file type conversion required for Autodock [137]. 

(2) Generation of the input files for autogrid/autodock and subsequent docking 

calculations by using the external stored set of hERG channels.  

(3) The checking phase verifies that all data regarding experimental activities 

and internal symmetry for each compound are provided in an external file. 

(4) Post-processing of docking outcome. The internal/external symmetry of 

the docking outcome is resolved by means of Tcl scripts exploiting the text-only 

displaying device of the VMD environment [188]. The Colony Energy method 

[158,159] is also applied in this step.  

(5) Evaluation of the SRC models performance: the resulting output file 

contains the linear regression parameters required for the following step. 
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(6) Generation of the MRC models by means of a data treatment of docking 

scores according to the SRCs performance and clustering information, opportunely 

stored in an external input file.  

 

The protocol is interactive (see Figure 3.11 A) and implemented in such a way 

that steps 1-6 can be either executed sequentially or modularly in order to optimally 

take advantage of distributed computational resources. In the latter case, typically, 

steps 1-2 are executed in separate machines, whereas steps 3-6 are performed after 

output recollection. In both cases, the total number of processors to be used in step 

2 (parallel docking) can be specified via an input flag.  

 

 

 

Figure 3.11 The interactive dialog box (A) Input/output flows (B) of the automated procedure.  
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3.6.2   Supporting Materials  

 

Contents: 

 

Table S1. Complete list of the SRC models (series 1).  

 

Table S2. MM-PBSA free energy contributions for the fittest structure-based models 

(series 1).  

 

Table S3. Fittest correlative models (series 2).  

 

Figure S1. Performance of the SRC models before and after applying the CE 

method (series 1). 

 

Figure S2. Binding modes for the MRC-003 model (series 1).  

 

Figure S3. Binding modes for the SRC-001 model (series1).  
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model 

 

Symmetry 
Channel 
model 

Cluster 
index 

 

   
SRC-
model 

 

Symmetry 
Channel 
model 

Cluster 
index 

 

   

1 C2 17 3 0.83 70 C4 3 1 0.58 

2 C2 48 9 0.79 71 C2 31 6 0.47 

3 C2 32 3 0.63 72 C2 26 6 0.37 

4 C1 28 1 0.62 73 C2 40 6 0.34 

5 C1 4 1 0.72 74 C2 43 6 0.36 

6 C1 11 3 0.70 75 C4 5 1 0.54 

7 C1 45 3 0.69 76 C2 11 1 0.24 

8 C1 43 4 0.74 77 C4 31 6 0.51 

9 C4 24 2 0.68 78 C1 7 1 0.26 

10 C1 35 3 0.64 79 C1 58 4 0.54 

11 C1 44 3 0.47 80 C2 33 3 0.48 

12 C1 14 3 0.65 81 C4 7 1 0.43 

13 C1 48 7 0.70 82 C1 32 3 0.33 

14 C1 54 3 0.59 83 C2 2 1 0.31 

15 C1 51 8 0.62 84 C2 47 1 0.41 

16 C1 8 1 0.50 85 C4 12 1 0.42 

17 C1 53 3 0.56 86 C2 20 1 0.26 

18 C4 14 2 0.56 87 C4 18 1 0.49 

19 C1 21 3 0.54 88 C2 46 6 0.19 

20 C1 17 1 0.61 89 C1 42 6 0.35 

21 C4 23 2 0.61 90 C4 21 1 0.43 

22 C1 24 3 0.50 91 C4 27 1 0.31 

23 C2 10 1 0.56 92 C2 37 1 0.23 

24 C1 56 3 0.72 93 C4 16 9 0.31 

25 C2 41 1 0.63 94 C2 34 1 0.35 

26 C1 1 3 0.40 95 C2 12 1 0.14 

27 C4 19 2 0.59 96 C2 4 6 0.13 

28 C2 29 1 0.53 97 C4 29 9 0.26 

29 C1 26 1 0.52 98 C2 18 1 0.27 

30 C2 21 9 0.61 99 C4 30 1 0.33 

31 C1 55 3 0.52 100 C1 6 1 0.29 
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32 C4 9 1 0.53 101 C4 32 1 0.41 

33 C4 10 3 0.59 102 C2 45 6 0.30 

34 C2 44 1 0.74 103 C2 42 1 0.13 

35 C2 28 3 0.52 104 C1 3 1 0.25 

36 C2 15 3 0.72 105 C2 13 1 0.21 

37 C1 20 2 0.69 106 C1 39 1 0.13 

38 C2 9 1 0.56 107 C2 6 1 0.23 

39 C1 19 3 0.51 108 C4 6 10 0.27 

40 C4 25 2 0.52 109 C1 34 1 0.30 

41 C2 27 3 0.57 110 C2 38 6 0.19 

42 C2 8 3 0.58 111 C4 13 9 0.30 

43 C4 1 1 0.44 112 C2 24 1 0.17 

44 C2 23 1 0.58 113 C4 4 1 0.22 

45 C2 22 2 0.49 114 C1 49 6 0.24 

46 C1 41 6 0.57 115 C4 15 1 0.29 

47 C1 36 1 0.41 116 C2 35 6 0.37 

48 C1 9 3 0.44 117 C1 52 1 0.42 

49 C4 11 1 0.40 118 C4 22 1 0.19 

50 C1 23 4 0.45 119 C2 7 1 0.21 

51 C2 14 1 0.53 120 C2 16 6 0.22 

52 C2 3 3 0.46 121 C1 16 6 0.11 

53 C1 22 3 0.28 122 C1 31 1 0.14 

54 C1 12 3 0.50 123 C4 26 1 0.19 

55 C1 2 3 0.45 124 C1 18 1 0.20 

56 C2 30 3 0.46 125 C1 13 6 0.08 

57 C1 15 1 0.48 126 C2 39 1 0.16 

58 C4 17 1 0.41 127 C2 36 6 0.17 

59 C4 8 9 0.50 128 C4 28 1 0.12 

60 C4 20 2 0.50 129 C1 27 1 0.20 

61 C2 5 1 0.66 130 C1 50 1 0.17 

62 C1 29 3 0.50 131 C1 40 6 0.13 

63 C1 30 4 0.72 132 C1 47 6 0.13 

64 C1 38 1 0.52 133 C1 5 1 0.02 
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65 C1 46 6 0.44 134 C1 37 1 0.01 

66 C2 1 1 0.60 135 C1 10 5 0.04 

67 C1 33 1 0.38 136 C2 25 1 0.14 

68 C4 2 6 0.31 137 C1 57 1 0.05 

69 C2 19 1 0.47 138 C1 25 1 0.00 

 

Table S1. Complete list of the SRC models. The table summarizes the    calculated for all the 138 

SRC models together with information regarding the symmetry class of the corresponding channel 

models and cluster index. The SRC models are arbitrarily numbered according to their performance 

before applying the re-ranking procedure. 

 

 

 

 SRC-001 MRC-003 

Compd C2_17     

                                             
sertindole -237.92 173.93 -4.33 -68.31 -245.84 177.18 -4.47 -73.12 

1 -195.60 135.76 -4.36 -64.20 -232.75 168.67 -4.04 -68.13 

2 -234.11 168.47 -4.21 -69.85 -241.05 174.10 -4.45 -71.40 

3 -235.76 172.82 -4.15 -67.09 -230.18 164.52 -4.19 -69.85 

4 -43.88 17.02 -4.01 -30.88 -100.47 58.42 -4.24 -46.29 

6 -199.57 139.20 -4.36 -64.73 -232.99 164.93 -4.26 -72.32 

7 -172.38 111.85 -4.62 -65.16 -233.78 158.34 -5.00 -80.43 

13 -167.60 111.10 -3.67 -60.17 -219.14 150.85 -3.94 -72.23 

14 -234.43 182.00 -3.40 -55.83 -251.21 193.23 -3.24 -61.21 

16 -25.92 5.41 -3.00 -23.51 -37.97 6.36 -2.84 -34.45 

17 -30.78 6.46 -3.26 -27.58 -27.66 3.69 -3.00 -26.97 

18 -31.88 11.02 -2.80 -23.66 -49.44 23.24 -2.80 -29.00 

19 -25.35 4.56 -3.10 -23.89 -37.74 8.72 -2.88 -31.90 

20 -32.31 7.67 -3.29 -27.94 -43.48 20.31 -3.44 -26.61 

21 -42.24 14.96 -2.93 -30.21 -42.21 14.49 -2.92 -30.64 

22 -26.39 5.81 -2.79 -23.38 -34.47 7.35 -2.71 -29.83 

 

Table S2. MM-PBSA free energy contributions for the fittest structure-based models. The table 

summarizes the various energetic contributions (kcal mol
-1

) to the free energy of binding. For 

simplicity, no entropic contributions were considered. 
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Compd Fittest SRC MRC-001 MRC-002 MRC-003 

     

Bepridil -2.73 -1.81 -2.41 -2.57 

Citalopram -2.95 -2.23 -2.58 -2.70 

Clozapine -4.03 -3.21 -3.69 -3.80 

Cocaethylene -3.17 -2.88 -2.76 -3.03 

Cocaine -2.83 -2.98 -2.81 -2.83 

E-4031 -4.62 -3.20 -4.13 -4.23 

Fentanyl -2.53 -2.02 -2.59 -2.55 

Fexofenadine -1.48 -1.04 -1.27 -1.50 

Imipramine -2.58 -2.24 -2.45 -2.50 

Ketoconazole -3.08 -2.11 -2.40 -2.42 

Norastemizole -4.43 -3.60 -4.37 -4.41 

Risperidone -4.45 -3.99 -4.58 -4.60 

Ziprasidone -3.88 -3.42 -3.78 -3.92 

   
 

0.83 
 

0.50 
 

0.75 
 

0.77 
 

 

Table S3. Fittest correlative structure-based models for series 2. The table summarizes the docking 

score (kcal mol
-1

) referred to the set of structurally unrelated compounds for the fittest SRC and MRC 

models. For the data treatment of the MRC models, the arithmetic mean was employed. The 

performance of each model measured in terms of    is reported at the bottom of the table. 
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Figure S1. Performance (  ) of the SRC models before (red points) and after (green points) applying 

the CE re-ranking method. The channel models belong to symmetry classes C1, C2 and C4 are 

reported in panels (A), (B) and (C) respectively. 
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Figure S2. Binding modes displayed by MRC-003 for 13 (A, magenta), 4, (B, light blue), 18 (C, white), 

and 14, 20, 21 (D, pink). 
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Figure S3. Binding modes displayed by SRC-001 for 16, 17, 19, 20, 22 (A, violet), and for 14 (B, 

green). 
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Chapter 4.   

Insights on the Pin1 Peptidyl-Prolyl Cis-

Trans Isomerization 
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4.1   Introduction 

 

 

The modulation of protein activity plays a key role for the proper functioning of 

cellular processes. Over the years, several modulation mechanisms have been 

established, including autoinhibition, post-translactional modifications, allosteric 

regulations, prolyl cis-trans isomerization. Here I will briefly present these protein 

regulating strategies, focusing on the prolyl cis-trans isomerization. 

 

It has been stated that intramolecular interactions between separable 

elements within a single polypeptide could provide a regulatory strategy for protein 

function. Within this modulating strategy, known as autoinhibition control, the protein 

activity is negatively regulated by intramolecular interactions between two different 

regions of the same protein [189,190]. This strategy is a widespread mechanism, 

adopted by proteins involved in different biological processes, like signaling, 

transcription, and transport phenomena. Among these proteins, receptor tyrosine 

kinases (RTKs) exploit autoinhibition for enabling their inactive configurations and 

preventing them from high-affinity binding of ligands [190]. On the other hand, 

another strategy for protein regulation, is represented by allosteric modulation, as in 

the case of G protein-coupled receptors (GPCRs). It has been demonstrated that the 

allosteric modulators could promote a certain signalling pathway, stabilizing a certain 

receptor conformation [191]. Moreover, protein modulation could be also achieved by 

means of post-translational modifications (PTMs), which reversibly or irreversibly 

alter the structure, stability and function of proteins, through biochemical reactions, 

including glycosylation, phosphorylation, acetylation and methylation [192]. In 

particular, PTMs induce covalently modifications of protein side chains, by addition 

or modification of chemical groups. The list of protein modifications reported in 

literature consists of more than 200 entries [193,194]. PTMs have also an important 

role for the maturation and folding of newly synthetized proteins: this is the case of 
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reaction mechanisms as glycosylation, lipidation and disulfide bridge formation [195]. 

Recently it has also been established the role of PTMs in regulating pluripotent stem 

cells [192].  

Contrary to the covalent modifications of PTMs, proline isomerization 

represents a conformational change process able to control protein function without 

an alteration of the covalent structure of the protein. Proline residues can exist in two 

distinct forms, cis and trans, and their conformational switch is controlled by the 

prolyl cis-trans isomerization process [96]: this phenomena could produce dramatic 

effects on protein structure and function. Prolyl cis-trans isomerization is a rather 

slow process in normal condition, and can be catalysed by specific enzymes, known 

as peptidyl-prolyl cis-trans isomerases (PPIases). This family of proteins comprises 

three structurally unrelated subfamilies: cyclophilins (Cyps), FK506-binding proteins 

(FKBPs), parvulins, and Ser/Thr phosphatase 2A (PP2A) activator PTPA [96,103]. In 

particular a remarkable number of studies have been focused on Cyps and FKBPs, 

as they represent the cellular targets of the immunosuppressant drugs cyclosporin A 

and FK506, respectively [196,197]. Contrary to the other members of the PPIase 

family, the parvulin Pin1 specifically recognises and binds phosphorylated Ser/Thr-

Pro (pSer/Thr-Pro) motifs in the protein substrate. After binding, Pin1 catalyses the 

cis-trans isomerization of proline amide bonds (Figure 4.1), regulating in this way the 

conformation of its substrate [198,199]. The isomerization is associated with the 

switching of the   dihedral bond from 0° (cis) to 180° (trans), passing to a transition 

state (TS,   = 90°), and vice versa. Several studies have established the role of Pin1 

in diverse cellular processes. In particular, Pin1 has referred to as a “molecular 

timer” which profoundly affects several biological processes, including cell signalling, 

gene expression, ion channel gating, neuronal differentiation [96,101,200]. Pin1 has 

been also implicated in the outbreaks of pathological conditions, including cancer, 

Alzheimer’s disease, asthma, infection [103,201]. Pin1 is a 18 kDa protein, 

composed by a single chain of 163 residues, comprising two functional domains 

separated by a flexible linker (Figure 4.2): a C-terminal  PPIase domain, responsible 

for the catalytic activity, and an N-terminal WW domain, the recognition module 

involved in protein-protein interactions. It has been determined that the absence of 

the WW domain, does not affect the catalytic activation and binding of the catalytic 
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domain [202,203]. However, among the parvulins, the presence of the WW domain 

is unique to Pin1 [104].  

Regarding the structural features of the catalytic domain, it is possible to 

identify three essential regions (Figure 4.3).  

(1) A basic patch, composed by Lys63, Arg68, and Arg69 (net charge 3+), 

which interacts with the phosphate moiety of the substrate. Interestingly, FKBPs and 

Cyps show hydrophobic residues at the positions of the basic cluster [97]. Moreover, 

mutagenesis studies have suggested that Arg68 is not critical for substrate 

recognition [104].  

(2) A hydrophobic pocket, composed by Phe134, Met130, and Leu122, 

representing the binding site for the cyclic side chain of the proline residue of the 

substrate. 

(3) The proper catalytic pocket, consisting in Cys113, His59, His157, and 

Ser154. In order to investigate the role played by each residue in catalysis, several 

mutagenesis studies have been performed [97,104,204]. In particular, the direct 

substitution of Cys113 with Ala, and Ser, revealed a dramatic loss of catalytic activity 

[97], suggesting a nucleophilic role for Cys113, and leading to hypothesize a 

covalent mechanism for Pin1 cis-trans isomerization. On the other hand, the 

mutations of Cys113 and H59 with Asp, and Leu, respectively, are found to be 

functional, allowing to propose a non-covalent mechanism for the catalysed 

isomerization [104,204]. Details about Pin1 reaction mechanism, and related 

theoretical studies, are reported in section 4.1.2.3 Parvulins. 

In the next section I will discuss the prolyl cis-trans isomerization and non-

enzymatic contributions which could accelerate the process, before switching to the 

PPIase catalysed reaction mechanism.  
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Fig 4.1 Pin1-catalyzed cis (ω = 0°) to trans (ω = 180°) isomerization of pSer/Thr-Pro substrates. The 

  dihedral bond is reported in green. The picture highlights the changing in conformation, due to the 

interconversion, in a pSer-Pro peptide.     

 

 

 

Fig 4.2 X-Ray crystal structure of peptidyl-prolyl cis-trans isomerase Pin1 (Protein Data Bank (PDB): 

2Q5A). The C-terminal catalytic domain is reported in white, while the N-terminal WW, in blue.   

ω = 0° ω = 180° 
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Fig 4.3 Active site of human Pin1 bound to non-natural peptide inhibitor (PDB: 2Q5A). The substrate 

(in cyan) is partially shown to allow a clear view of the catalytic site: CPK atoms represent the cut-

points.   
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4.1.1   Prolyl Cis-Trans Isomerization  

 

As introduced before, prolyl cis-trans isomerization is a slow process under 

normal conditions (non-enzymatic isomerization). The high energy barriers 

associated to the interconversion between cis-trans isomers, are mainly due to the 

partial double bond character of the prolyl amide bond [205]. X-Ray and NMR 

experiments have revealed that the peptide bond is principally in trans state in folded 

protein [206]. However, it has been shown that 5% of prolyl amide bonds in proteins 

are in the cis states [207]. The cis-trans isomerization of the prolyl bond plays a 

critical role in protein folding, and, as discussed in section 4.1, it is crucial for several 

biological processes, and for the function of enzymes [208,209].  

Over the years, several experimental and theoretical studies have been 

performed with the aim to elucidate this mechanism of interconversion, as well as the 

chemical properties of prolyl bond. In particular, the N-acetylproline methylamide 

(Ace-Pro-NMe) was commonly used in these studies, as it represents the simplest 

model for a proline containing peptide fragment (see Figure 4.4 A). NMR 

investigations, performed on a population of cis and trans isomers, have led to 

determine a free energy barrier (   ) associated to the isomerization in Ace-Pro-

Nme, of 20.4 kcal/mol, and a free energy difference between the two isomers 

(           ) of 0.57 kcal/mol, with a predominant population of trans isomer [210]. 

The two conformations are therefore close in energy. On the contrary, in non-proline 

peptide bonds, the trans configuration has a higher frequency of occurrence, and the 

free energy difference between the isomers is approximately 0.5-4 kcal/mol, mainly 

due to higher steric clashes involving substituents on the Cα in cis configuration 

[211,212]. In addition, in 1981, Grathwohl and Wuthrich [213], performed H-NMR 

studies to measure the rate of cis-to-trans interconversion (kcis


trans) of proline amide 

bond in linear and cyclic oligopeptides. They found a rate kcis


trans = 0.0025 s-1 at 

25°C, for the zwitterionic form of H-Ala-Pro-OH. Similar kinetics was reported, in 

1996, by Eberhardt et al. [214]. Using the N-acetylproline methyl ester (Ace-Pro-

OMe) as model for NMR studies, the authors found a rate for the cis-to-trans 
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isomerization in water at 37 °C, equal to 0.0024   0.017 s-1, while a value of 0.0010 

  0.008 s-1, was determined for the trans-to-cis conversion.  

Theoretical methods were also widely applied in studying the cis-trans 

isomerization of prolyl amide bond. From a computational point of view, the main 

challenging task is represented by a proper choice of the degrees of freedom 

describing the cis-trans isomerization process. In 1994, Fischer and co-workers [205] 

presented a detailed study regarding the isomerization of Ace-Pro-Nme in vacuo, 

using empirical energy functions and ab initio calculations. They showed that an 

essential element characterizing the transition state is the presence of a dipole 

moment on the proline nitrogen, which is due to a pyramidalization effect resulting 

from the shift of the nitrogen lone pair from a pz to an sp3 orbital (nitrogen out-of-

plane). Moreover, they found favourable hydrogen bond interactions between this 

dipole and the C-terminal amide of proline dipeptide, during the isomerization 

(distance d1 in Figure 4.4 B). The effect of such interactions is to provide an 

autocatalytic contribution to the amide bond rotation, lowering the activation free 

energy of the process. In particular Fischer and co-workers, evaluated a reduction of 

barrier, due to this effect, of about 1.4 kcal/mol. However, the autocatalysis 

phenomena was already known by scientific community, as it was first observed 

during the refolding process of denatured dihydrofolate reductase [215]. Because of 

the   bond results to be coupled with the out-of-plane of the nitrogen, the improper 

dihedral ζ (Cα-Cδ-O1-C1, see Figure 4.4 A) was found to better describe the 

isomerization, in association with the dihedral ΨPRO (N5-C4-Cα-N3), which, otherwise, 

allowed to describe the formation of the autocatalytic intramolecular hydrogen bond. 

The authors also proposed four theoretically possible transition states for the cis-

trans prolyl bond isomerization: syn/exo, syn/endo, anti/exo, anti/endo. Depending 

on whether C1 is on the same or opposite side of C4 with respect to the averaged 

plane of the proline, it is possible to obtain the two conformations syn and anti, 

respectively. Moreover, the out-of-plane of the prolyl nitrogen N3 is associated to a 

change of the orientation of two carbonyl carbons preceding (C2) and following (C4) 

the Pro residue. The same or opposite orientation of C2 and C4, leads to define the 

endo or exo conformations, respectively (Figure 4.4 B). To better understand the 

isomerization process and the location of the different conformations assumed by a 

proline containing substrate model on the CVs space, I will present, in Figure 4.5, the 



97  Insights on the Pin1 Peptidyl-Prolyl Cis-Trans Isomerization 
 

 
 

free energy profile (PMF) of Ace-Pro-NMe as a function of the dihedrals ζ and ΨPRO, 

derived by means of the umbrella sampling technique [89,90] (see section 4.2 for 

computational details). The PMF presented four ground states: two cis states (CIS1 

at ζ = 0° / ΨPRO = -30°, CIS2 at ζ = 0° / ΨPRO = 150°), and two trans states (TRANS1 

at ζ = 180° / ΨPRO = -30°, TRANS2 at ζ = 180° / ΨPRO = 150°). CIS1 and TRANS1, 

have shown the intramolecular hydrogen bond H1 – N3 compatible with the 

autocatalytic process. In addition, four saddle points were identified. The transition 

states TS1 and TS3, both of them with a syn/exo configuration, were located at ζ = 

90°, representing the syn area of the PMF. On the other side, TS2 and TS4, located 

at ζ = -90°, have shown an anti/exo configuration (see the different conformations of 

ACE-Pro-NMe in Figure 4.5). The preference of the transition states for syn/exo and 

anty/exo configurations, was in line with previous ab initio and DFT studies on the 

proline dipeptide [216]. Among the four saddle points, TS1 and TS2, represented the 

stabilized transition states. In particular, TS1 was stabilized by the autocatalytic 

interaction H1 – N3, while TS2 by the intramolecular hydrogen bond between H1 – 

O1, which, on the other hand, was responsible to weaken the interaction H1 – N3. 

The computed free energy barriers were almost iso-energetic and approximately 

equal to 18 kcal/mol. Therefore the isomerization could proceed from cis to trans 

passing either through the syn ridge at ζ = 90° (referred to as counter-clockwise 

direction), or through the anti ridge, centered at ζ = -90° (clockwise direction).   

Advances in computing technology and resources, allowed to perform 

extensive ab initio calculations, including also solvent effects, with the aim to achieve 

new insights on the isomerization process. In this regard, Kang published several 

works, presenting the results obtained on Ace-Pro-NMe and analogous models, 

using ab initio HF and density functional level of theory, with the conductor-like 

polarizable continuum model (CPCM) of self-consistent reaction field methods [217-

219]. He found that the activation barriers to the cis-trans isomerization, strongly 

depends on the polarity of the solvent: in particular, it has been shown that the 

rotational barriers increase with the increasing of polarity of the solvent, due to the 

reduction of the intramolecular hydrogen bond formation between prolyl nitrogen and 

the C-terminal amide group, suggested as an important factor to stabilize the 

transition state. In 2008, a hybrid QM/MM molecular dynamics simulation study on 
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Ace-Pro-NMe, in explicit water, was presented by Yonezawa and co-workers [220]. 

The free energy profile obtained with the umbrella sampling method, showed that the 

trans configuration is more stable of about 4 kcal/mol than the cis, and an activation 

barrier of 20 kcal/mol. Furthermore they analysed the pyramidalization of the prolyl 

nitrogen during the amide bond rotation. They found that the proline peptide can 

assume two typical conformations during the isomerization, stabilized by 

intramolecular hydrogen bonds and hydration effects: a “positive” pyramidal 

conformation, in which the prolyl nitrogen moves upward to the plane of the ring, 

stabilized by the intramolecular hydrogen bond with the C-terminal amide group 

(distance d1 in Figure 4.4 B), and a “negative” one, which is the inverse conformation 

with the distance d1 compromised. They found that positive pyramidalization typically 

occurs at     -90° and 90°, while the negative at     -60° and 60° [220]. In 2009, 

Melis and co-workers [221] evaluated the free energy landscapes of a series of 

proline analogues. In particular, they performed metadynamics simulations using the 

dihedrals ζ and ΨPRO as reaction coordinates, within a classical description with ESP 

atomic partial charges [222] calculated at a DFT level. In the case of the proline 

dipeptide Ace-Pro-NMe, the free energy difference between cis and trans isomers in 

water, was found equal to 1.0   0.3 kcal/mol, lower than the value observed in 

vacuum (2.4   0.2 kcal/mol). In addition, they reported that the two isomers are 

separated by a barrier of 15.6 kcal/mol in aqueus solution, lower than the barrier 

calculated in vacuum (13.8 kcal/mol). A higher activation energy in water is the result 

of a competition between the formation of the intramolecular hydrogen bond, which 

promotes the proline nitrogen out-of-plane and the catalysis, and the intermolecular 

interactions with water molecules [221].     

The high barrier to rotation in peptide amide bonds is due to a resonance 

stabilization, resulting from a delocalization of the lone electron pair of the nitrogen 

over the peptide bond. An interesting article, published in 2004 by Fanghänel and 

Fischer [223], reported a series of non-enzimatic effects which could accelerate the 

prolyl cis-trans isomerization, most of them discussed before. In particular, they 

presented several environmental factors which contribute to enhance the rate of the 

peptide bond rotation. First of all, the isomerization rate is found to be faster in low 

polar solvents. A similar effect was observed for the isomerization of N,N-

dimethylacetamide (DMA), by shifting the solvent from water to cyclohexane [224]. In 
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this context, it has been shown, that reducing the possibility of hydrogen bond 

interactions with the peptide bond oxygen, could significantly decrease the activation 

free  

energy. The isomerization rate is also affected by the nature of the neighbouring 

aminoacids of the prolyl amide bond. In this case, electron donating substituents 

close to the peptide carbonyl have the effect to enhance the rate of isomerization, 

while a deceleration is observed if they are located near the prolyl nitrogen. 

Moreover, Fanghänel and Fischer also discussed the role of the autocatalysis 

phenomena, favoured by intra- or intermolecular protonation of the prolyl nitrogen, in 

the energy barrier of cis-trans interconversion: an event fully characterized by the 

previously reported theoretical studies [205,220,221].   

 

 

 

Fig 4.4 (A) N-acetylproline methylamide (Ace-Pro-NMe), the simplest model for a proline containing 

peptide, used for cis-trans isomerization studies. The dihedrals ζ and ΨPRO, are shown in red. (B) The 

intramolecular bond d1 which stabilizes and enhances the proline nitrogen pyramidalization, reducing 

the barrier to rotation. The carbon atoms C1, C2, and C4, defining the syn/anti – exo/endo 

configurations, are also shown.  
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Fig 4.5 Free energy profile of Ace-Pro-NMe as a function of ζ / ΨPRO. The conformations assumed by 

the peptide model in the cis and trans basins, as well as in the transition states, are also reported.  
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4.1.2   PPIase Catalyzed Prolyl Cis-Trans Isomerization  

 

As discussed before, prolyl cis-trans isomerization is a slow process. 

However, several spontaneously occurring non-enzymatic factors can contribute to 

increase the rate of the isomerization, hence to promote the catalysis. In the next 

sections, I will briefly introduce the role played by enzymes belonging to the PPIase 

family, in prolyl cis-trans isomerization. In particular, I will consider the most studied 

PPIases: Cyps, FKBPs, and parvulins. Regarding the latter subfamily, the attention 

will be focused on the peptidyl-prolyl cis-trans isomerase Pin1, which represents the 

topic of my project.  

 

4.1.2.1   Cyclophilins  

 

A great interest has arisen on Cyps subfamily. This is mainly due to the fact that they 

represent the cellular target for the immunosuppressive drug cyclosporin A (CsA) 

[225]. However the action of CsA does not directly involve the inhibition of PPIase 

activity [225]. In particular, human CypA (also known as Cyp18), is also considered 

as a potential drug target in the treatment of HIV infection, because of its specific 

interaction with a Gly-Pro motif on the HIV capsid [226]. However the exact 

mechanism of CypA is not fully clear, and more investigations are required. In the 

last years, a considerable number of Cyps from different organisms were purified 

and characterized. Kinetics investigations for almost all Cyps, highlighted a second 

order rate constant (       ) between 105 and 107 M-1s-1, for the cis-trans 

isomerization, estimated using the oligopeptide substrate Succinyl(Succ)-Ala-Ala-

Pro-Phe-p(NA)Nitroanilide [227]. In particular, in the case of human CypA, kinetics 

analysis performed by using dynamic NMR spectroscopy, have reported a   
    = 80 

μM and     
    = 620 s-1 for cis to trans isomerization, and   

      = 220 μM and     
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= 680 s-1, for trans to cis isomerization [228]. These parameters highlight a higher 

affinity of CypA for the cis isomer than for the trans.  

From a structural point of view, the cavity that accommodates the proline 

pyrrolidine ring consists in four hydrophobic residues: F60, M61, F113, and L122 

(Figure 4.6). It has been shown that replacing the proline with a four- or six- 

membered ring resulted in a dramatic reduction of the efficiency of CypA, 

highlighting that a correct orientation of the prolyl ring in the TS plays a key role in 

catalysis [227,229]. Furthermore, mutagenesis studies have shown the importance 

of R55, F60, H126, in the reaction mechanism [230]. The reduction of activity 

evaluated for the H126Q mutant, has pointed out that hydrophobic contributions of 

H126, more than its ability to participate in hydrogen bonds, are essential for 

substrate binding. Over the years, several reaction mechanisms for CypA cis-trans 

isomerization were proposed on the basis of structural and mutagenesis evidences.  

In 1989, a nucleophilic catalysis, involving a covalent bond formation between a 

deprotonated cysteine of the active site and the prolyl bond carbonyl carbon, was 

proposed [231]. In the resulting tetrahedral intermediate, the double bond character 

of the prolyl amide bond is compromised, and the effect is a dramatic reduction of 

the barrier to rotation. This mechanism was supported by experimental studies 

involving the usage of sulfhydryl group modifying agents [231], and by kinetic 

experiments [232]. However, mutagenesis data showed that all four cysteine 

residues of CypA are not essential for the PPIase activity [233]. Furthermore, the 

closest cysteine is 8 Å far from the substrate, making a nucleophilic attack to the 

prolyl carbonyl carbon unlikely [234]. In 1990, a “catalysis by distortion” was 

proposed. This mechanism is based on the idea that the binding energy provided by 

the formation of the complex CypA/substrate, is exploited by the enzyme to induce a 

distortion in the substrate (strain), allowing the formation of a twisted prolyl bond 

[235]. This was supported by the observation of a low enthalpy of activation and a 

notably large negative entropy of activation. Furthermore the authors pointed out on 

the important role of the hydrophobic binding pocket to stabilize the twisted 

conformation. In 1993, Ke and co-workers, proposed a “solvent-assisted” 

mechanism of cis-trans isomerization [236]. This new mechanism was based on the 

observation of a water molecule hydrogen bonded to the Q63 and the carbonyl 

oxygen of the prolyl bond, in the CypA/Ala-Pro crystal structure (PDB: 1CYH). The 
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authors suggested that this hydrogen bond plays a key role to stabilize a twisted 

transition state, and hence to promote the catalysis. Moreover, the authors  observed 

an hydrogen bond between R55 and the prolyl nitrogen, which reduces the 

delocalization of the electron cloud along the pseudo-double peptide bond, and 

therefore contributes to the lowering of the rotational barrier (prolyl nitrogen 

pyramidalization). This is supported by the reduction of CypA PPIase activity caused 

by the mutation of R55 with the hydrophobic alanine [230].     

 The CypA catalyzed cis-trans isomerization has been extensively studied 

theoretically, in order to shed light on this complex scenario. Recently, using the 

accelerated molecular dynamics method, Hamelberg and McCammon [237] showed 

that the catalytic mechanism of CypA is mainly due to the stabilization and 

preferential binding of the transition state, achieved by means of favourable 

hydrogen bond interactions between the carbonyl oxygen of proline and R55. In 

addition, the observed proximity of the guanidinium moiety of this residue to the 

prolyl nitrogen, during the simulation, was proposed as a further enzymatic 

contribution to the catalytic process, which strengthens the crucial role played by 

R55. The computed free energy barrier in enzyme was about 10.2 kcal/mol, with a 

reduction of 6.3 kcal/mol compared to the barrier evaluated for the free substrate 

(Ace-His-Ala-Gly-Pro-Ile-Ala-NMe) in water (16.5 kcal/mol). However, as commented 

by the authors, their classical method was not able to capture electronic or 

desolvation effect on the barrier height [237]. In 2009, Leone and co-workers [238], 

proposed a novel hypothesis of reaction mechanism for CypA, based on the results 

achieved by metadynamics simulations. The isomerization in both water and 

enzyme, was explored using the dihedrals ΨPRO/ζ of the substrate, as reaction 

coordinates. They found that in the enzyme, the more stabilized configuration is the 

cis located at values ζ   0° and ΨPRO   180°, referred by the authors to as cis180, 

which corresponds to the most unfavourable state in water (where the trans0 is 

identified to be the global minimum). Moreover, they found that the only possible 

interconversion accelerated by the enzyme, is the isomerization from trans180 to 

cis180 with an activation barrier of about 12 kcal/mol, 4 kcal/mol lower than the barrier 

evaluated for the free substrate in aqueous solution. The global minimum in water 

(trans0) is therefore sequestered by CypA and interconverted  into the trans180, which 

is more populated in enzyme. Then, CypA catalyzes the isomerization from trans180 
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to cis180, which could be immediately released or after the interconversion into cis0 

[238]. In 2012, Ladani and Hamelberg [239] explored the conformational space of a 

CypA substrate analogue (Ace-Ala-Ala-Pro-Phe-NMe), in free solution and in the 

active site of the enzyme, using accelerated molecular dynamics [240]. In particular, 

they investigated the role assumed by entropy and intramolecular polarizability of the 

substrate in the catalytic mechanism of CypA. They showed that the conformational 

space of the substrate in the enzyme, is more restricted than in aqueous solution. 

Comparing the backbone Φ/Ψ conformational phase space of Ala and Pro in the free 

substrate and in the complex, they found that whereas in water the energetic barrier 

between α- and β-regions is low enough to allow an easy interconversion, in the 

enzyme the β-region results to be predominantly populated by the substrate. 

Moreover, their results suggested that the relative change in conformational entropy 

at the transition state, contributes favourably to the free energy of binding. They also 

found that the intramolecular polarization of the substrate during the reaction 

mechanism (described as a redistribution of the partial charges at the transition 

state), contributes only about -1.0 kcal/mol to the stabilization of the transition state. 

They finally demonstrated that the usage of a classical fixed charge forcefield 

provides a reliable description of this type of biological systems in which the 

substrate binding pocket is mainly hydrophobic [239].        
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Fig 4.6 Active site of human CypA complexed with His-Ala-Gly-Pro-Ile-Ala (PDB: 1AWR). The 

substrate (in cyan) is partially shown to allow a clear view of the catalytic site.    

 

4.1.2.2   FKBPs  

 

FKBPs represent another known class of enzymes that catalyze the cis-trans 

isomerization of prolyl peptide bonds. Almost all FKBPs investigated so far show a 

second order rate constant (       ) between 104 and 107 M-1s-1 [223]. It has been 

shown that the observed rate enhancement is achieved by lowering the energy 

barrier to rotation of about 6.6 kcal/mol [241,242], highlighting a close analogy with 

Cyps. FKBPs are believed to employ a “catalysis by distortion” reaction mechanism, 

proposed by Harrison and Stein for Cyps-catalyzed cis-trans isomerization [223,235].  
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According to this mechanism, the binding into the enzyme active site induces a strain 

in the substrate. In addition to this destabilization effect, computational studies led to 

identify a large number of nonbonded interactions which act together to stabilize 

preferentially the twisted transition state [243,244]. In particular, Trp59 and Asp37 

have been suggested to be directly involved in the substrate binding and  catalysis 

[244]. However, FKBPs catalysis has also several features that are different from 

Cyps. In the FKBPs-catalyzed reaction, the activation barrier is characterized by a 

large enthalpic and a small entropic contribution [229]. Furthermore, Cyp-catalyzed 

reactions, do not depend on the nature of the residue preceding proline. It has been 

shown, that hydrophobic residue preceding proline, like leucine or phenylalanine, 

could increase the FKBPs rate constant of about 100 to 1000 fold, compared to 

substrate presenting a charged residue in the same position [242,245]. From a 

structural point of view, the FKBPs active site is made of mainly hydrophobic 

residues, that are highly conserved throughout the family (Figure 4.7). In particular, 

Tyr26 and Phe99 form a hydrophobic pocket which accommodates the substrate 

proline residue [223]. Molecular dynamics and free energy perturbation methods 

highlighted that the substrate adopt a VIa β-turn conformation within the active site, 

allowing the formation of an intramolecular hydrogen bond interaction with the prolyl 

nitrogen [244]. As discussed in section 4.1.2.1, this interaction is thought to lower the 

energy barrier to rotation (autocatalysis mechanism). Furthermore, these studies 

suggested the crucial role played by Asp37 to stabilize the transition state, by means 

of charge-dipole interaction with the carbonyl of the prolyl amide bond. This finding is 

in total agreement with the reduction of activity achieved by mutating Asp37 with a 

leucine [246]. However, the main difficult encountered by computational approaches, 

is related to the absence of a resolved crystal structure of FKBP-substrate complex, 

and therefore the substrate binding has been modelled by analogy with inhibitors 

[247]. Recently, Alag and co-workers [248] provided a crystallographic structure of 

the human malarial parasite Plasmodium vivax FK506 binding protein 35 

(PvFKBP35) in complex with the tetrapeptide substrate succinyl-Ala-Leu-Pro-Phe-p-

nitroanilide (sALPFp) determined at 1.65 Å resolutions. This provides new insightful 

information regarding the enzyme-substrate binding, which could be exploited for 

further investigations into the FKBPs cis-trans isomerization mechanism. 
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Fig 4.7 Active site of the human FKBP-12 complexed with the immunosuppressant drug rapamycin 

(PDB: 1FKB). The substrate (in cyan) is partially shown to allow a clear view of the catalytic site.    

 

4.1.2.3   Parvulins  

 

Parvulins represent a third class of peptidyl-prolyl cis-trans isomerases, 

conserved from bacteria to man [249]. The first member of this family was identified 

in 1994, in Escherichia Coli Par10 [250], which is a very low molecular mass enzyme 

(10.1 kDa) compared to other PPIases: the name parvulin was derived from Latin 

word parvulus, meaning “very small”. In fact, E. Coli Par10 consists of the minimal 

number of amino acid residues (92 residues) facilitating the cis-trans isomerization of 

prolyl amide bonds. Regarding substrate specificity, E. Coli Par10 has shown a great 

analogy with FKBP PPIase family, revealing a preference for bulky, hydrophobic side 

chains preceding the proline residue [249]. Human Pin1 (also known as Par18) was 
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identified in 1996 [251]. The differences in substrate specificity for Pin1 and Par10 

suggested the existence of two parvulin subfamilies [223,252]. Pin1-type enzymes 

show a striking preference for protein substrates containing phosphorylated side 

chains of serine or threonine residues preceding the proline position (pSer/Thr-Pro) 

[97,98,199,253]. In particular, enzymes that are responsible for Ser/Thr-Pro motifs 

phosphorylation, an event which plays a key role during cell division and signal 

transduction, belong to the Pro-directed protein kinases family, including cyclin-

dependent protein kinases (CDKs), mitogen-activated protein kinases (MAPKs), Jun 

N-terminal protein kinases (JNKs) and glycogen synthase kinase-3 (GSK-3) [201]. It 

has been shown that Pin1 preferentially isomerizes proline residues preceded by 

pSer/Thr with up to 1300-fold selectivity, compared with non-phosphorylated 

substrates [98]. Moreover, it has been determined that Pin1 accelerates the cis-trans 

isomerization of pSer/Thr-Pro bonds with a catalytic efficiency (       ) of 107 M-1s-

1, measured using a Ala-Ala-pSer-Pro-Arg-pNa substrate [98,223]. Furthermore, 

NMR measurements on pThr-Pro peptide have demonstrated, besides an 

acceleration of the isomerization by over 1000-fold over the typical uncatalyzed rate 

(to the timescale of seconds), that the catalyzed cis to trans rate is 10-fold faster 

than the inverse, trans to cis [254]. As discussed in section 4.1, human Pin1 has 

been subjected of intense biochemical and clinical research as it seems also to be 

involved in the outbreaks of different pathological conditions, like cancer and 

Alzheimer’s disease [102,103,198,201]. Despite the great interest on this enzyme, 

the reaction mechanism has been long debated. In particular, two models for the 

isomerization process have been hypothesized (Scheme 4.1). Based on the 

decrease in         as result of mutating the Cys113 to Ala and Ser, in 1997 

Ranganathan and co-workers suggested a covalent (C) mechanism of reaction for 

Pin1 isomerization [97]. According to this mechanism (Scheme 4.1 A), the 

deprotonation of Cys113 by the nitrogen of His59 leads to the formation of a thiolate 

side chain, which acts as the nucleophile of the reaction. This step is followed by a 

nucleophilic attack on the carbonyl carbon of the amide bond of the substrate, 

involving the formation of a tetrahedral intermediate. Interestingly, the authors 

proposed the presence of a charged His157 within Pin1 active site, which stabilizes 

the tetrahedral intermediate. The typical Pin1 active site setup for the suggested C 

mechanism (as shown in Scheme 4.1 A), is hereafter referred to as “model A”. This 
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C mechanism for the catalysed isomerization was called into question by Behrsin 

and co-workers [104]. In particular, they showed that Pin1 catalytic activity is 

retained after the mutation of the Cys113 in Asp, relieving Cys113 of its role as 

nucleophile. A non-covalent (NC) mechanism was therefore suggested (Scheme 4.1 

B). According to this hypothetical model, the transition from cis to trans state is 

promoted by a negatively charged environment in the active site, which disfavours 

the double bond character of the proline amide bond of the substrate, speeding up 

the isomerization. The structural features of Pin1 active site which are compatible 

with the NC mechanism, are referred to belong to the “model B” setup (see 

representation in Scheme 4.1 B). Recent theoretical studies on the catalyzed and 

uncatalyzed reaction mechanisms, have been reported by Vöhringer-Martinez et al. 

[105] and Velazquez et al. [106]. By means of a QM/MM – Mean Reaction Force 

protocol [255], Vöhringer-Martinez and co-workers, were able to identify structural 

and electronic contributions to the free energy barrier during isomerization. 

Nevertheless, as reported by the authors, the method provided similar activation 

barriers of the cis isomer for the catalyzed and uncatalyzed reactions, in contrast 

with NMR measurements: it has been experimentally determined that Pin1 reduces 

the activation barrier of about 7 kcal/mol [99]. On the other hand, by application of 

accelerated molecular dynamics [240], Velazquez and Hamelberg showed a lower 

barrier for the enzymatic isomerization, due to the fact that Pin1 preferentially binds 

the transition state configuration of the substrate. In this context, they obtained a free 

energy barrier for the catalyzed reaction of about 13 kcal/mol, compared to 

approximately 20 kcal/mol for the uncatalyzed isomerization. Moreover, the authors 

highlighted the crucial roles of the phosphate binding pocket aminoacids, Lys63 and 

Arg69, in stabilizing the transition state. 
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Step Covalent (C) mechanism Non-covalent (NC) mechanism 

1 Substrate binding in cis configuration 

(  = 0°). 

Substrate binding in cis configuration 

(  = 0°). 

2 Proton transfer from C113 to H59, 

coupled with the nucleophilic attack of 

the thiolate on the carbonyl carbon of 

the substrate prolyl bond (  = 90°). 

The negative charged environment in 

the active site reduces the double bond 

character of the prolyl peptide bond, 

promoting the rotation toward the 

transition state (  = 90°). 

3 Formation of a tetrahedral intermediate 

which is stabilized by a protonated 

H157. 

The isomerization proceeds through 

interactions between the carbonyl and 

histidine residues.  

4 Relaxation of the high energy 

intermediate to the trans configuration 

(  = 180°). S154 could play a key role 

in stabilizing the substrate.  

Relaxation to the trans configuration (  

= 180°). S154 could play a key role in 

stabilizing the substrate. 

5 Substrate unbinding. Substrate unbinding. 

 

Scheme 4.1 Schematic presentation of the two mechanism proposed for the Pin1 cis-trans 

isomerization:  (A) C mechanism suggested by Ranganathan and co-workers [97]; and (B) the NC 

proposed by Behrsin et al. [104]. The tautomeric states of the active site residues, models A and B, 

are also shown. This scheme considers the cis to trans isomerization path. 

 

 

 

 

A B 

H59 H59 
H157 H157 

C113 C113 
S154 S154 



111  Insights on the Pin1 Peptidyl-Prolyl Cis-Trans Isomerization 
 

 
 

 

4.1.3   Aim of the Work and Project Presentation 

 

Is the Pin1 catalytic mechanism closely related with the catalytic pathways 

used by the other PPIase enzymes? Do PPIase family of enzymes share a common 

reaction mechanism? Despite the remarkable efforts spent in understanding the 

Pin1-catalyzed cis-trans isomerization of the prolyl amide bond, by experimental and 

theoretical studies, these questions are still not fully answered, and more 

investigations are therefore required. The aim of this project consists in comparing, 

and hence testing, the two models proposed for the isomerization process catalyzed 

by Pin1 (Scheme 4.1). For this purpose, extensive unbiased molecular dynamics 

simulations were carried out on two Pin1/substrate complexes, in which the 

tautomeric states of the active site residues were opportunely modelled according to 

models A and B clearly shown in Scheme 4.1. An accurate analysis of resulting 

trajectories, in terms of distances between substrate and binding site aminoacids, 

suggested that model B is the only model suitable for describing the isomerization. 

These findings straightforwardly allowed to achieve a reliable starting structure of 

Pin1/substrate complex to study the catalyzed isomerization, which therefore follows 

a NC reaction mechanism. To this aim, the umbrella sampling method [89,90] was 

exploited to investigate both the catalyzed (NC) and uncatalyzed (bulk) reactions.  

 

 

 

 

 

 

 

 

 



112      Computational Methods in Biophysics and Medicinal Chemistry: Applications and Challenges 
 

 
 

 

4.2   Computational Details 

 

 

In this section I will report the details regarding the setup of the two models, A 

and B, and the computational strategies used for studying the Pin1 cis-trans 

isomerization.   

 

4.2.1   Substrate and Models Setup 

 

The 1.5 Å resolution X-ray crystal structure of Pin1 bound to a non-natural 

peptide inhibitor (PDB: 2Q5A) [256] was used as starting structure in this study. The 

side chains of the inhibitor were modified in order to match with the substrate model 

sequence Ace-Ala-Ala-pSer-Pro-Phe-NMe, preserving the initial coordinates and 

position inside the catalytic site. The choice of this substrate was dictated by the high 

binding specificity and the isomerase activity exhibited by Pin1 against this pSer-Pro 

containing peptide [98]. In the crystal structure, the prolyl amide bond of the peptide 

was in the cis state with   = 0°. The substrate was then built using TLEAP package 

from AmberTools13 [119], and Homeyer et al. parameters [257] were assigned to 

the phosphorylated serine pSer. The substrate was solvated in a 36 Å x 41 Å x 40 Å 

TIP3P [258] water model box, and neutralized with two Na+ ions. This led to the 

preparation of the substrate-water model, the bulk system, for studying the 

uncatalyzed reaction mechanism. For the catalytic models setup (models A and B in 

Scheme 4.1), the WW domain was removed from the crystal structure, and the 

tautomeric states of His157 and His59 opportunely modified. In particular, model A 

(Scheme 4.1 A) was prepared according to the tautomeric states of the active site 

residues before step 2, representing the step of the proton transfer between Cys113 

and His59 [97]. Specifically, Cys113 was considered in its neutral state, His157 
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charged (HIP), and His59 mono-protonated with the nitrogen in ε-position (HID), as 

in Scheme 4.1 A. On the other hand, for model B, representing the setup for the NC 

mechanism, both the histidine residues were modelled as mono-protonated, with the 

nitrogen in ε-position (HID) for His157, and in δ-position (HIE) for His59 (Scheme 4.1 

B). In particular, this setup was chosen according to the hydrogen-bonding network 

showed by the 0.8 Å high resolution X-ray crystal structure of Par14, a non-

phosphospecific PPIase member of the parvulin family [259]. From a structural point 

of view, the catalytic sites of the two isomerases present a different residue in 

position 113. In fact, Pin1 Cys113 is replaced by an aspartate in Par14. Because the 

mutation Cys113 in aspartate [104] has been shown not to compromise Pin1 

isomerase activity, the same tautomeric states for the histidine motif, as observed in 

the crystal structure of Par14, were used in model B. The resulted Pin1/substrate 

complexes were subsequently solvated in a 74 Å x 74 Å x 74 Å TIP3P [258] water 

model cubic box. For all the systems, the Amber ff99SB-ildn forcefield [118], and 

reoptimized dihedral parameters for the peptide  -bond angle [260] were used.  

 

4.2.2   Testing the C and NC Reaction Mechanisms 

 

For testing the C and NC reaction mechanisms, classical unbiased MD 

simulations were performed on the two complexes (model A and B, bound to the 

peptide substrate), using Amber12 package [119] (Table 4.1). The systems were first 

minimized and subsequently equilibrated for 1 ns in the isothermal-isobaric NPT 

ensemble. In particular, the pressure was kept to 1 bar, and the Langevin thermostat 

[261] with a collision frequency of 2.0 ps-1 was used to maintain the temperature at 

300 K. The SHAKE algorithm [127] kept constrained bonds involving hydrogen 

atoms. The Particle Mesh Ewald scheme [262] was used to treat long-range 

electrostatics, while short-range interactions were calculated with a nonbonded cutoff 

of 10.0 Å. The Langevin equation of motion was integrated every 2 fs using the 

Verlet integrator. For each system, the equilibration was followed by a production 

phase of 100 ns within the canonical ensemble NVT (Table 4.1).  
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Mechanism System Unbiased MD 

C Model A + substrate 100 ns, NVT, 300 K 

NC Model B + substrate 100 ns, NVT, 300 K 

 

Table 4.1 System setup for the hypothesized reaction mechanisms and related unbiased MD 

simulation details. 

 

4.2.3   Investigation of the Bulk and NC Cis-Trans Isomerization  

 

The bulk and NC reaction mechanisms for the prolyl bond isomerization was 

investigated using umbrella sampling [89,90]. The dihedral angle ΨPRO (N1-C1-Cα-N2) 

and the improper angle ζ (Cα-Cδ-O2-C3) of the substrate, were chosen as collective 

variables (Figure 4.8). These angles have been shown to properly describe the cis-

trans isomerization [205]. Despite the cis-trans isomerization involves the rotation 

around the prolyl amide bond, the   dihedral is not properly efficient in describing the 

reaction mechanism, as it results to be coupled to the out-of-plane of the proline 

nitrogen (pyramidalization). A properly use of   requires the specification of a 

second reaction coordinate   (C3-Cα-N2-Cδ), an improper dihedral angle which 

describes the pyramidalization. Furthermore, the selection of the torsion ΨPRO as 

collective variable is justified to the fact that this degree of freedom controls the 

interaction between carbonyl group and nitrogen lone pair of the proline, leading to 

the nitrogen pyramidalization which reduces the free energy barrier to rotation 

(autocatalysis [205]). The umbrella sampling was performed, for the bulk and NC 

isomerizations, with Amber 12 [119], harmonically restraining the reaction 

coordinates by steps of 15° for a total number of 576 windows, and a simulation time 

of 230 ns. A force constant of 0.043 kcal/mol/deg2 was used to allow a satisfactorily 

sampling of all the configurational space defined by the selected collective variables. 

The free energy profile along the reaction coordinates, or potential of mean force 

(PMF), was extracted by means of the Weighted Histogram Analysis Method 

(WHAM) [132]. 
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Figure 4.8 The substrate model Ace-Ala-Ala-pSer-Pro-Phe-NMe, and the dihedral angles essential 

for describing the prolyl isomerization, in red. The improper dihedral angle ζ is shown in green dotted 

line. 

 

4.2.4   Prolyl Nitrogen Pyramidal Conformations  

 

To analyse the degree of pyramidalization of the prolyl nitrogen during the cis-

trans isomerization process, the method proposed by Yonezawa et al. [220] was 

exploited. The authors defined the degree of pyramidalization, referred to as 

pyramidality, as: 

 

                                                                         |        |                                                  

 

where a1, a2, and a3, are unit vectors, whose directions are from N2 to Cα, Cδ, and 

C2, respectively (Figure 4.9). In other words, the pyramidality is defined as the 

volume of the tetrahedron having a triangular base delimited by the atoms Cα, Cδ, 
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and C2, and the prolyl N2 as the apex. The sign of the determinant allowed to gain 

information regarding the directionality of the nitrogen out-of-plane, and hence to 

discriminate between positive and negative pyramidal conformations. As shown in 

Figure 4.9, for ΨPRO   0°, the positive pyramidality results to be stabilized by the 

intramolecular hydrogen bond between H1 – N2. The implementation of equation 

(4.1) was carried out by means of Tcl scripting language, allowing a fully automated 

evaluation of the pyramidality among the MD trajectories.  

 

 

 

Figure 4.9 Typical positive pyramidal conformation of the prolyl nitrogen. The atoms Cα, Cδ, and C2, 

define the base of the tetrahedron, while the prolyl N2 the apex. The directionality of the 

pyramidalization is given by the sign of the determinant in (4.1), which results to be positive in this 

case.  
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4.2.5   Free Energy Difference between Bulk and NC Cis States 

 

For the evaluation of the free energy difference between the conformations 

assumed by the substrate, in Bulk and NC systems, in the starting cis configuration, 

an umbrella sampling in the space of the RMSD [263] was performed by means of 

Plumed 1.3 patch [264] for Amber 11 [265]. Using the NC conformation as reference 

structure, the RMSDs of the peptide in bulk and within Pin1 active site, were 

harmonically restrained by steps of 0.05 Å, starting from 0.00 to 5.00 Å (100 

windows), using a force constant of 150 kcal/mol/Å2. In particular, for the RMSD 

calculation, the structures were first aligned on the prolyl heavy atoms (non-

hydrogen atoms), while the measure was performed on all the peptide heavy atoms. 

The total simulation time consisted of more than 20 ns for each simulation, the bulk 

and the NC. Flat-bottom dihedral restraints were also applied on the equivalent units 

of the substrate, for a more rigorous estimation of the RMSD [263]. The PMFs in the 

space of the RMSD were then extracted by means of WHAM [132]. 

 

4.2.6   Energy Barrier to Disrupt the Intramolecular Hydrogen Bond  

 

Contrary to the NC isomerization, an intramolecular hydrogen bond between 

H1-O3 (see Figure 4.8 for atom numbering)  was found during the reaction in bulk 

solvent. To estimate the energy necessary to disrupt this interaction, an umbrella 

sampling on the space of the dihedral ΦpSER, found to be responsible of such 

interaction, was performed. Starting from the conformation of the peptide in the bulk 

cis state, the umbrella sampling was carried out with Amber 12 [119], harmonically 

restraining ΦpSER by steps of 10°, until the value the dihedral assumed in Pin1 active 

site was reached (from 80° to -150°). The same parameters reported in section 4.2.3 

were used, and the mono-dimensional PMF was extracted by means of WHAM 

[132].  



118      Computational Methods in Biophysics and Medicinal Chemistry: Applications and Challenges 
 

 
 

 

4.3   Results 

 

 

To understand Pin1 catalysis, an investigation of the two hypothesized (C and 

NC) reaction mechanisms is required. Once a preferential reaction mechanism is 

identified, it is possible to proceed in comparing the cis-trans isomerization results 

obtained in bulk water and in Pin1 active site.    

 

4.3.1   Testing the C and NC Reaction Mechanisms 

 

To test the proposed C and NC mechanisms of cis-trans isomerization 

[97,104], unbiased MD simulations were performed for both model A, and B, 

complexed with the peptide substrate (see Scheme 4.1 and Table 4.1). Each system 

was simulated for 100 ns in the canonical ensemble at the temperature of 300 K. 

The starting configuration of the substrate was cis, with the prolyl amide bond   = 0°, 

and the tautomeric states of the aminoacids of the binding sites were modelled 

according to the evidences outlined in section 4.2.1 of Computational Details. The 

intermolecular distances between substrate and key catalytic residues, as well as the 

distances crucial for the active site folding, are reported in Figure 4.10 A and B, while 

their distributions are shown in Figure 4.10 C and D. Regarding the NC model B 

complex (Figure 4.10 B and D), the hydrogen bond network between Pin1 residues, 

as well as the position of the substrate within the binding site, were satisfactorily 

preserved during the simulation. In Figure 4.10 B the distances between the carbonyl 

oxygen O2 of the substrate and the sulphur atom of Cys113 (black line), the 

hydroxylic oxygen of Ser154 (red line), as well as the distance between the prolyl 

ring Cβ and the center of mass of Phe103 (gray line) as function of the simulation 

time, highlighted that the peptide maintained its relative position within the active site 
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along the simulation. In particular, the distance O2 - Cys113 (black line in Figure 4.10 

B) underwent to reversible fluctuations between 3.5 – 6 Å, revealing that Cys113 

could populate two interchangeable conformational states. However this behaviour 

didn’t affect the substrate binding, as it could be observed from the analysis of the 

other distances in Figure 4.10 B, and from the tall and narrow distributions in Figure 

4.10 D. On the other hand, a different scenario was observed for the covalent model 

A complex (Figure 4.10 A and C). Switching from model B to model A, only the 

distances between Cβ and Phe103 (gray line) centered at 4 Å, was retained. Despite 

this evidence proved that no unbinding occurred during the simulation, the wider 

distributions, and the increasing of the distances between active site residues 

(Figure 4.10 A and C), revealed an alteration of the active site shape, and therefore 

of the suitable folding for catalysis. In particular, the mean distance between the 

carbonyl group of the substrate and Cys113 was found to be centered at 6.8 Å, 

resulting incompatible with the suggested nucleophilic attack (step 2 in Scheme 4.1). 

These results strongly ruled out the possibility of a C reaction mechanism for 

peptidyl-prolyl cis-trans isomerization. 
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Figure 4.10 Intermolecular distances between the peptide, in cis configuration, and Cys113 (black 

line), Ser154 (red line), Phe103 (gray line), for the C (A) and NC (B) model after 100 ns of unbiased 

MD (NVT, 300K). The distances between the aminoacids of the catalytic site, critical for binding site 

folding (Thr152 – His157, His157 – His59), are also shown. At the bottom, the probability distributions 

of such distances are reported for the C (C) and NC (D) mechanism.  
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4.3.2   Bulk Cis-Trans Isomerization 

 

For the uncatalyzed (bulk) reaction mechanism, the PMF as function of the 

dihedral angles ΨPRO and ζ, is reported in Figure 4.11. The free energy profile 

showed four minima: CIS1 (ζ   0° / ΨPRO   -30°), CIS2 (ζ   0° / ΨPRO   150°),  

TRANS1 (ζ   180° / ΨPRO   -30°),  TRANS2 (ζ   180° / ΨPRO   150°). TRANS1 was 

found to be the global minimum, and approximately 3 kcal/mol more stable than 

TRANS2. The estimated free energies of the two cis configurations, CIS1 and CIS2, 

are about 5 and 3 kcal/mol higher than TRANS1, respectively. These results showed 

that CIS2 and TRANS2 are energetically equivalent. Similar results were also 

obtained by previous theoretical studies. In this regard, Velazquez and Hamelberg 

[74,106] obtained similar free energy plots by means of accelerated molecular 

dynamics. In particular, they showed that the phosphorylation of a Ser-Pro 

containing peptide affected the population of CIS1 [74]. A comparable free energy 

map was also shown by Melis et al. [221], in the context of a cis-trans investigation 

for a proline dipeptide. From the PMF, four saddle points could be identified: TS1 (ζ 

  90° / ΨPRO   -15°), TS2 (ζ   -90° / ΨPRO   0°), TS3 (ζ   90° / ΨPRO   150°), and 

TS4 (ζ   -90° / ΨPRO   150°). Similarly to Ace-Pro-NMe (Figure 4.5), using the 

notation proposed by Fischer et al. [205], all the transition states have shown an exo 

configuration. In particular, TS1 and TS3 could be classified as syn/exo transition 

states, while TS2 and TS3, as anti/exo. These transition states were almost 

isoenergetic, and the computed free energy barriers were approximately 22 kcal/mol, 

for the isomerization in bulk water. Therefore, the reaction mechanism could proceed 

following the counter-clockwise direction, as well as through the clockwise pathway, 

in a symmetric-like isomerization model.  

The conformations adopted by the peptide in the four minima, and transition 

states, are also reported in Figure 4.11. All the configurations belonging to the ΨPRO 

space ranging from -60° to 60° (CIS1, TRANS1, TS1, and TS2, see Figure 4.11) 

were found to be compatible with the autocatalytic process [205,215,220], showing 

the amino group hydrogen of the residue following the proline H1 in proximity of the 
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prolyl nitrogen N2. However, this interaction, which is responsible to promote the 

nitrogen pyramidalization, could be weakened by the presence of an intramolecular 

hydrogen bond between the carbonyl oxygen of pSer, O2, and the hydrogen H1. In 

this regard, in Figure 4.12 A, the distance O2 – H1 along the space of the collective 

variables, is reported. This plot highlighted that O2 – H1 bond occurred with an high 

frequency along the path connecting the TRANS1 configuration with TS2, in 

clockwise direction (see also TS2 conformation in Figure 4.11). Hence, during the 

isomerization TRANS1  TS2  CIS1, this intramolecular bond had to be disrupted.  

Moreover along the path CIS1  TS1, another hydrogen bond interaction between 

the amino group hydrogen H1 and the carbonyl oxygen O3 of the residue following 

pSer, was found to be involved in the isomerization. As shown in Figure 4.12 B, 

starting from CIS1, the intramolecular bond O3 – H1 was preserved during the 

counter-clockwise rotation of the proline amide bond, until the TS1 was reached. 

Therefore, to complete the isomerization toward the TRANS1 basin, this interaction 

had to be broken.   

In trans states, the peptide adopted more extended conformations than in cis, 

with an increasing of the shell of solvation (see Figure 4.11 for a qualitatively 

evaluation). A similar increasing in hydration was also observed passing toward 

conformations belonging to the space characterized by higher ΨPRO values (60°   

ΨPRO   180°). This evidence suggested that the water molecules could play an 

important roles in the isomerization in this space of the CVs, where no autocatalytic 

bond formation was observed.  

The conformations adopted by the proline residue during the isomerization 

were also investigated (Figure 4.12 C). It has been established that the proline ring 

could adopt two distinct up- and down-puckered conformations, based on the 

position of Cγ above or below the plane of the ring defined by Cα, Cβ, Cδ, and N2 

[266-268]. As proposed by Ho and co-workers [268], the dihedral Χ2 (Figure 4.12 C) 

was used as figure of merit in order to determine the puckers: Χ2   10° for up-

puckers, Χ2   -10° for down-puckers, while -10°   Χ2   10° for the definition of 

planar conformations. In Figure 4.10 C, Χ2 was mapped in the space of the reaction 

coordinates ΨPRO / ζ, showing that cis conformations mainly populated the down-

pucker state, while trans ones were found to be compatible with the up- and down-
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pucker geometries without preferences. This observed trend was found in line with 

previous investigations reported in literature [268,269]. 

 In Figure 4.13 A, the degree of the prolyl nitrogen pyramidalization, for the 

peptide substrate, was mapped on the space of the reaction coordinates (see 

section 4.2.4 for computational details). The absence of nitrogen pyramidalization in 

the space areas centered at ζ values of 0° and 180°, is in agreement with the 

planarity of the amide bond in cis and trans ground states. On the other side, the 

highest degree of pyramidalization was evaluated on the syn and anti ridges (at ζ = 

90°, and ζ = -90°, respectively), corresponding to the twisted amide bond 

conformations. A positive pyramidality was evaluated for all the four transition states. 

Interestingly, the syn/exo transition state TS1 have shown a higher pyramidality than 

the anti/exo TS2. This finding was in line with the stabilization effect of the pyramidal 

conformation due to the autocatalytic hydrogen bond H1 – N2, in the case of TS1. On 

the contrary, in TS2, this stabilization effect was altered by the hydrogen bond O2 – 

H1 (Figure 4.12 A), leading to a lower degree of the nitrogen pyramidalization (Figure 

4.12 A). The negative pyramidality resulted to be not directly involved in the 

isomerization process, as it was confined on the anti ridge corresponding to the free 

energy maxima. In this regard, a slightly decrease of the negative area was 

observed at ζ   -90° / ΨPRO   90°, whereas a sharp increase was evaluated at ζ   -

90° / ΨPRO   -150°, compared with the pyramidality map of Ace-Pro-NMe (Figure 

4.12 B). This phenomena was strictly connected to the presence of residues 

preceding and following the proline. In particular, the intramolecular hydrogen bond 

H1 – O3, was found to stabilize a positive pyramidal conformation for the prolyl 

nitrogen at ΨPRO   90°, and the inverse pyramidalization at ΨPRO   -150°. 
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Figure 4.11 PMF for the uncatalyzed cis-trans isomerization of the prolyl amide bond using ΨPRO and 

ζ as reaction coordinates. The conformations assumed by the peptide in the different states of the 

dihedrals space, are also reported.  
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Figure 4.12 (A) The distance d[O2 – H1] (Å) as a function of the reaction coordinates ΨPRO / ζ. This 

interaction has to be broken during the isomerization TRANS1  TS2  CIS1. (B) The distance d[O3 

– H1] (Å) as a function of ΨPRO / ζ. This interaction has to be disrupted during the isomerization CIS1 

 TS1  TRANS1. (C) The dihedral Χ
2
 as a function of ΨPRO / ζ. The typical down (red), and up 

(green), conformations for proline ring are also shown.  
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Figure 4.13 Map of the prolyl nitrogen pyramidalization as a function of ΨPRO / ζ, for the peptide 

substrate (A), and for Ace-Pro-NMe model (B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 



127  Insights on the Pin1 Peptidyl-Prolyl Cis-Trans Isomerization 
 

 
 

 

4.3.3   NC Cis-Trans Isomerization 

 

The derived free energy profile for the enzymatic isomerization of the prolyl 

amide bond within the NC reaction mechanism, is reported in Figure 4.14. From a 

comparison with the PMF of the reaction in bulk water (Figure 4.11), it was possible 

to observe a dramatic alteration of the ground state basins. In fact, Figure 4.14 

showed just two minima: the CIS1 configuration, placed at value ζ   -15° / ΨPRO   

30°, and, as for the reaction in water, TRANS1, was located in the space of the 

collective variables centered at ζ   180° / ΨPRO   -30°. Moreover, similarly to the 

non-enzymatic isomerization, TRANS1 represented the global minimum, and hence 

the predominant isomer. No ground states basins were found at higher values of 

ΨPRO dihedral space. Moreover, only two transition states were observed, the TS1 at 

ζ   90° / ΨPRO   0° (syn ridge), and the TS2, at ζ   -90° / ΨPRO   -15° (anti ridge). 

Contrary to the reaction mechanism in bulk, the results highlighted a syn/exo 

configuration for TS1, whereas an anti/endo was found for TS2. In this regard, the 

degree of pyramidalization was mapped on the CVs space in Figure 4.15. As shown, 

an enhancement of positive pyramidality was reported on the syn ridge, compared to 

the non-enzymatic isomerization (4.13 A), resulting from the stabilization effect of the 

autocatalytic hydrogen bond between H1 – N2. Moreover, contrary to Figure 4.3 A, a 

negative pyramidality was found to occur on TS2 (anti ridge). This is due to the 

stabilization effect of a different hydrogen bond, between the amino group H1 and the 

prolyl bond carbonyl oxygen O2, favoured by the conformation assumed by the 

peptide within the restricted Pin1 active site space. 

The estimated energy barrier from CIS1 to TRANS1 was found to be 

approximately 15 kcal/mol, highlighting a reduction of the activation free energy to 

rotation of about 7 kcal/mol, compared to the non-enzymatic isomerization. This 

finding was in good agreement with previous experimental [99] and theoretical 

studies [106]. In opposition to the scenario depicted in Figure 4.11, the free energy 

profile for Pin1-catalyzed reaction suggested that the isomerization had to proceed 

from CIS1 (reference state) to TRANS1 following the counter-clockwise direction, 
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through the more stabilized saddle point TS1. On the other side, the CIS1  TS2  

TRANS1 path (in clockwise direction) was strongly prohibited by the high energy 

associated to the transition state TS2 (see Figure 4.14). In particular, this latter state, 

was found to be more than 10 kcal/mol higher in energy than TS1, and 

approximately 5 kcal/mol higher than the corresponding TS2 in bulk solution.        

 

 

 

Figure 4.14 PMF for Pin1-catalyzed cis-trans isomerization of the prolyl amide bond using ΨPRO and ζ 

as reaction coordinates. 
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Figure 4.15 Map of the prolyl nitrogen pyramidalization as a function of ΨPRO / ζ, for the peptide 

substrate within Pin1 active site. 

 

4.3.3.1   Entropic Effect 

 

Upon binding, the protein environment significantly reduced the torsional 

degrees of freedom of the peptide substrate. As shown in Figure 4.14, Pin1 active 

site allowed the substrate to sample a restricted area of the configurational space, 

corresponding to the ΨPRO region ranging from -60° to 60°. This evidence was found 

to dramatically influence the prolyl nitrogen configuration on the syn/anti ridges, 

compared to the non-enzymatic reaction (Figure 4.15). On the other side, the 

sampling of the remaining space was strongly avoided by steric clashes occurring 

between the C-terminal portion of the substrate and Pin1 active site residue side 

chains. From the trajectories analysis, it was determined that these bad contacts 

directly involved the substrate phenylalanine side chain, whose orientation was 

found to be critically influenced by the values assumed by ΨPRO dihedral. In Figure 

4.16, the conformations adopted by the peptide in the configurational states CIS1, 

TS1, and TRANS1 are reported. Because of the high energy associated to TS2, the 

conformations relative to this state were not considered, and the attention was 
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focused on the more populated states during Pin1 isomerization. Interestingly, in 

contrast with the non-enzymatic reaction, no extended conformations could be 

observed for the trans state (Figure 4.16 B), as a consequence of the restricted 

space within the binding site. In a certain way, Pin1 environment seemed to generate 

a sort of “entropic trap” by capturing the substrate, reducing its degrees of freedom, 

and driving the isomerization along the path connecting CIS1 to TRANS1 passing 

through the TS1, in both the counter-clockwise or clockwise directions. In Figure 

4.17, the dihedral Χ2 was mapped on the space of the reaction coordinates ζ / ΨPRO. 

By making a comparison with the same plot derived from the bulk isomerization 

(Figure 4.12 C), it was possible to note an impressive alteration of the proline ring 

states, which were found to be no longer spread on the map in a symmetric-like way. 

Interestingly, Figure 4.17 showed a substantial preference for the down-pucker 

proline ring conformation along all the path connecting CIS1 to TRANS1, contrary to 

the non-enzymatic reaction where an higher frequency of occurrence for the up-

pucker was observed (in particular for the TRANS1 state). This finding had be 

considered as a direct consequence of the entropy loss within PIN1 binding site, 

leading cis and trans prolyl isomers to preferentially populate the down-pucker state.          
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Figure 4.16 Conformations assumed by the substrate in (A) CIS1, (B) TRANS1, and (C) in the saddle 

point TS1.    
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Figure 4.17 Dihedral Χ
2
 mapped on the ΨPRO / ζ configurational space. The typical down-, and up-

pucker conformations for proline ring are labelled in red and green, respectively. 

 

4.3.3.2   Cis Ground State Destabilization 

 

Another important aspect that emerged from the PMF analysis (Figure 4.14), 

was the shifting of the CIS1 configuration in the collective variables space, compared 

to the corresponding cis state for the isomerization in bulk water (Figure 4.11). In 

fact, regarding the NC isomerization, CIS1 was centered at ΨPRO   30°, with a 

displacement of about 60°, relative to the position assumed in water. The 

corresponding conformations adopted by the peptide in the two cis configurational 

states, are reported in Figure 4.18. In Pin1 active site, the peptide assumed a slightly 

more extended conformation (Figure 4.18 B) than in water (Figure 4.18 A), due to 

the absence of the intramolecular hydrogen bond between the amino group 

hydrogen H1 of the residue preceding the proline, and the carbonyl oxygen O3, of the 

residue following pSer. Therefore, Pin1 stabilized a cis conformation which has 

shown a low frequency of occurrence in water, where the intramolecular interaction 

H1 – O3 was disrupted, and replaced by an hydrogen bond with Ser154 (Figure 

4.18). In other words, the cis ground state destabilization has to be considered as 
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the result of the active site environmental effect. Following the approach described in 

section 4.2.5 of Computational Details, the difference in free energy between the 

conformations assumed by the peptide in water and within the Pin1 binding pocket, 

was quantified. The PMFs calculated in the space of the RMSD have been reported 

in Figure 4.19. The red curve represented the PMF for the peptide substrate in the 

Pin1 catalytic site. The global minimum i was found at RMSD value of 0.5 Å. The 

dotted green curve, was the free energy derived for the peptide in bulk solvent. In 

this case, the global minimum, labelled as ii, was located at higher value of the 

reaction coordinate, approximately at 3.0 Å. In particular, at RMSD = 0.5 Å, 

corresponding to the global minimum i in the enzyme environment, the peptide in 

solution resulted to be placed at higher energy value, around 6 kcal/mol. This 

quantity allowed to estimate the free energy required to convert the conformation 

assumed by the substrate in CIS1 state in bulk solution (Figure 4.18 A), to the one in 

the binding site (4.18 B). In other words, this quantity represented the strain energy, 

and therefore the energy cost paid by Pin1 for stabilizing a less probable 

conformation in water for the CIS1 state. This conformation, as reported in the next 

section, has been shown to be catalytically competent, favouring the barrier 

crossing.     

 

 

 

A B 

H1 

O3 

ΦpSER 

ΦpSER 
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Figure 4.18 Conformations adopted by the substrate in CIS1 state for the isomerization in bulk water 

(A), and for the NC Pin1-catalyzed reaction (B). 

 

 

 

Figure 4.19 PMF calculated in the space of the RMSD. The red line represents the PMF for the 

peptide in Pin1 binding site, while the green dotted line, the PMF for the peptide in bulk solution. The 

respectively minima have been labelled as i and ii.  

 

4.3.3.3   Intramolecular Hydrogen Bond Investigation and Effects 

on the Barrier 

 

The frequency of occurrence of the intramolecular hydrogen bond, which has 

been shown to characterize the CIS1 state in bulk solvent, was evaluated mapping 

the distance between H1 – O3 in the space of the collective variable ζ / ΨPRO (Figure 

4.20). The same plot for the uncatalyzed reaction mechanism (Figure 4.12 B), 

revealed that this hydrogen bond was preserved along the path connecting CIS1 to 

TS1, on the syn ridge. Therefore, this interaction had to be broken to reach the 

TRANS1 basin, completing in this way the isomerization process. A different 

scenario emerged for Pin1-catalyzed reaction mechanism (Figure 4.20). As a matter 
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of fact, no intramolecular hydrogen bond was found during the twisting of the proline 

amide bond. The dihedral ΦpSER, which allowed the rotation along the C3 – N3 bond 

(the alpha carbon and amide nitrogen of pSer), was found to be responsible for the 

formation of such interaction. In particular, the value assumed by ΦpSER in the cis 

configuration in water was about -80°, against the -150° measured for the same 

configuration state in enzyme. In Figure 4.21 A, the dihedral ΦpSER has been plotted 

as function of ζ for both the reactions, in bulk water (black line) and Pin1-catalyzed 

(red line). This analysis allowed to identify two areas in the ΦpSER space to 

discriminate between formation or absence of the intramolecular bond H1 – O3. In 

particular, such interaction occurred at -105°   ΦpSER   -45° (dihedral space 1, in 

Figure 4.21 A), gradually disappearing for ΦpSER   -105° (dihedral space 2). 

Interestingly, for the peptide in Pin1 active site, such dihedral started at value -150° 

in CIS1 state, gradually reaching the value -130° in TS1 (ζ   90°). After the transition 

state, for ζ   120°, ΦpSER sharply increased at suitable values for the hydrogen bond 

formation. These results were in line with the evidences coming from Figure 4.20. On 

the other side, an opposite behaviour was found for the peptide in water (black line in 

Figure 4.21 A). In order to estimate the energy necessary to disrupt this hydrogen 

bond, an umbrella sampling on the space of the dihedral ΦpSER, was performed (see 

section 4.2.6 of Computational Details). The derived mono-dimensional PMF has 

been shown in Figure 4.21 B, revealing an energy barrier of approximately 2.2 

kcal/mol. Therefore, due to the absence of the intramolecular interaction H1 – O3 

during the Pin1-catalyzed cis-trans isomerization, this quantity contributed to reduce 

the activation barrier to rotation. 

 

 



136      Computational Methods in Biophysics and Medicinal Chemistry: Applications and Challenges 
 

 
 

 

 

Figure 4.20 The distance d[O3 – H1] (Å) as a function of the reaction coordinates ΨPRO / ζ during the 

NC cis-trans isomerization. 

 

 

 

Figure 4.21 (A) The dihedral ΦpSER as a function of ζ, for the isomerization in bulk solvent (black line), 

and in Pin1 active site (red line). Space 1 represents the ΦpSER space which allows the formation of 

the intramolecular hydrogen bond H1 – O3 in the peptide. On the contrary, space 2, indicates no 

intramolecular bond formation. (B) Free energy profile along  the dihedral ΦpSER, describing the 

formation (ΦpSER = -80°), and breaking (ΦpSER = -150°) of H1 – O3 interaction, evaluated during the 

isomerization in bulk solvent. 
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4.3.3.4   Intermolecular Interactions during the Isomerization 

 

The contacts between the peptidyl-prolyl amide bond oxygen O2 and the 

active site side chains, are reported as a function of the dihedral ζ in the polar plot in 

Figure 4.22.  In the polar grid, the dihedral ζ was marked in 30° increments starting 

from the CIS1 configuration at ζ = 0°, and returning to the same state after a full 

rotation in the counter-clockwise direction, passing sequentially through the TS1 (ζ = 

90°)  TRANS1 (ζ = 180°)  TS2 (ζ = -90°) states. The distances of the amide 

bond carbonyl with the four residues, Cys113, His59, His157, and Ser154, have 

been considered in this analysis. In particular, as shown in Table 4.2, the contacts 

between O2 and the hydrogen and sulfur atoms of  Cys113 sulfhydryl group, the 

epsilon carbon-linked hydrogen of His59 and His157 imidazole groups, and both the 

atoms of Ser154 hydroxyl side chain, have been monitored, and labelled on the 

basis of their fixed parm94 Amber partial charges [114]. Figure 4.22 highlighted a 

competition, at ζ = 0°, of attractive and repulsive interactions between the carbonyl 

oxygen and Cys113 sulfhydryl side chain, with contact distances ranging from 2 to 3 

Å. Interestingly, at ζ   15°, corresponding to the initial alteration of the amide bond 

planarity, an increasing of more favourable electrostatic interactions with Cys113, 

have been shown. As a matter of fact, the intermolecular hydrogen bond O2 – HS 

occurred with a distance   2 Å. Moreover, these contacts have been retained until 

the value ζ   60° was reached. At 60°   ζ   120°, corresponding to the TS1 

configuration, the carbonyl oxygen O2 has shown to interact with the less positive 

charged epsilon C-H (H5, see Table 4.2), with distances ranging from 2 to 3 Å. 

However, a slightly reduction of the these interaction distances were reported at 90° 

  ζ   120°, (distances   2 Å). In particular, in this space of the reaction coordinate, it 

was observed an initial formation of the hydrogen bond with the hydroxyl group of 

Ser154 (O2 – HO). These interactions were found to be predominant at ζ   120°, 

compared with the repulsive O2 – OH contacts, revealing distances spread on a 

narrow 1.5 – 2 Å range. These results suggested a non-negligible role of Pin1 active 

site residue on cis-trans isomerization of prolyl amide bond. On the other hand, in 
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Figure 4.23, a similar polar plot for the interactions between the phosphorus atom P 

of the substrate phosphate moiety and the basic pocket aminoacids (Lys63, Arg68, 

and Arg69) was reported. In this case, because of the absence of a competition 

between attractive/repulsive interactions, the fixed point charges were not used as 

labels. Unlike Arg68, which has shown to preferentially bind the substrate in the 

TRANS1 state (distance ranging approximately from 6 to 13 Å), Arg69 and Lys63 

were found to form tighter interactions with the phosphate during all the 

isomerization process. Both the distances P – Arg69 guanidinium carbon atom, and 

P – Lys63 nitrogen, have been reported in the range between 3 – 5 Å. These 

interactions resulted not to be influenced by the different configurations of the 

substrate.         

 

 

 

Figure 4.22 Polar plot of the contacts between the amide bond carbonyl oxygen O2 and the side 

chain atoms of Pin1 active site residues, as a function of the reaction coordinate ζ. The distances (Å) 

are labelled on the basis of the fixed point charges on the atoms (parm94) [114]. 
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Residue Side chain parm94 atoms type / Residue [114]    Charges (e) [114] 

Cys113 SH / CYS -0.312 

HS / CYS 0.193 

His59 – His157 H5 / HIE 0.143 

Ser154 OH / SER -0.655 

HO / SER 0.427 

 

Table 4.2 Side chain atom types and relative charges for Cys113, His59, His157, Ser154, based on 

the Amber parm94 [114].  

 

 

 

Figure 4.23 Polar plot of the contacts between the phosphate moiety of the substrate and the side 

chains of Lys63, Arg68, and Arg69. For Lys63, the distance between the phosphorus atom P and the 

terminal nitrogen, was monitored during the isomerization process. For Arg68, and Arg69, the 

distances were evaluated with respect to the carbon atom of the guanidinium groups. 
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4.4   Discussion 

 

 

The main result of this study was the identification of a combination of factors 

which have been shown to contribute to the Pin1-catalyzed cis-trans isomerization of 

the peptidyl-prolyl amide bond. In particular, the cooperation of these enzymatic 

effects, made a significant contribution both in enhancing the rate of the catalysis, 

and in lowering the activation barrier. In the free energy landscape along the reaction 

coordinates ζ / ΨPRO for Pin1 isomerization (Figure 4.14), there were clearly two 

energy minima corresponding to the CIS1 and TRANS1 configurations. Along the 

pathway connecting CIS1 to TRANS1, passing through the TS1 (syn/exo transition 

state), the energy barrier was found equal to 15 kcal/mol, approximately 7 kcal/mol 

lower than the reaction in bulk solvent. On the contrary, the inverse path through the 

anti/endo TS2 was strongly disfavoured by the high energy associated to the 

transition state. These findings were in line with recent experimental [99] and 

theoretical [106] studies. In particular, Greenwood and co-workers [99] by means of 

NMR lineshape analysis, determined activation barriers for the isomerization in 

presence or absence of Pin1, of 13.2 and 20.2 kcal/mol, respectively.  

 

4.4.1   The Entropy Trap 

 

As clearly shown from a comparison of the PMFs in Figure 4.11 and 4.14, the 

configurational space available for the substrate in bulk solvent, has been drastically 

restricted in Pin1 active site. Pin1 allowed the substrate just to sample the reaction 

coordinate space, enclosed approximately by -30°   ζ   180° and -60°   ΨPRO   

60°, straightforwardly driving the isomerization toward the CIS1 - TS1 - TRANS1 

pathway, in both the clockwise and counter-clockwise directions.  



141  Insights on the Pin1 Peptidyl-Prolyl Cis-Trans Isomerization 
 

 
 

This entropy loss, arising upon substrate binding, is the result of the enzyme 

environment, and in particular, of the steric clashes mainly occurring between the 

substrate C-terminal portion and the active site residues. In a certain way, Pin1 

active site seemed to generate a sort of entropy trap, reducing motions and torsional 

degrees of freedom. The idea that the entropic contributions could determine an 

acceleration of the enzymatic reactions, has been well-established [270-273]. In 

particular, regarding the Pin1-catalyzed reaction, this entropic factor has shown 

several important implications. First of all, it was found to reduce the low-energy 

conformational changes of the substrate. As a matter of fact, Figure 4.17 highlighted 

a significant preference for the proline ring to adopt the down-pucker conformation 

along all the isomerization process. This finding was in contrast with the evidences 

coming from the reaction in bulk solvent, where an higher frequency of occurrence of 

the up-puckers was observed (Figure 4.12 C). Therefore, Pin1 induced a low-

frequency puckering motions, preferentially stabilizing the down-pucker state: notice 

that the free energy barrier to ring flip from the down-to-up conformations, was 

estimated to be 2.5 and 3.2 kcal/mol for trans and cis isomers, respectively [217]. 

The second important effect of the substrate entropy loss, was found in the 

stabilization of pro-catalytic conformations of the peptide. In particular, in all the 

configurational states, no extended conformations were found. Moreover, an optimal 

orientation of the amide hydrogen of the residue preceding the proline, H1, toward 

prolyl nitrogen N2, was observed. It has been established the role of this 

intramolecular interaction to speed up the reaction, by favouring the prolyl nitrogen 

pyramidalization (autocatalysis) [205,215,220]. Interestingly, in this context, an 

increasing of the positive degree of the nitrogen pyramidalization has been clearly 

shown in Figure 4.15, compared to the non-enzymatic cis-trans isomerization (Figure 

4.13 A).    

The entropic contribution seemed to play a key role in the isomerization 

process of other PPIase enzymes. Indeed, the effect of the restriction of the 

substrate conformational space within the active site, was also characterized by 

Ladani and co-workers for the reaction mechanism of CypA [239]. In particular, they 

investigated the relative change in conformational entropy between transition state 

and cis/trans states, which was found to contribute favorable to the free energy of 

stabilizing the transition state.  



142      Computational Methods in Biophysics and Medicinal Chemistry: Applications and Challenges 
 

 
 

 

4.4.2   Cis Ground State Destabilization 

 

Another important effect, strictly related to the restriction of the reaction 

coordinate space induced by Pin1 active site, was the shifting of the CIS1 basin from  

ζ   0° / ΨPRO   -30° to ζ   -15° / ΨPRO   30°, as shown in Figure 4.14. The analysis 

of the corresponding conformation assumed by the substrate in this state, pointed 

out to the stabilization of a less probable conformation occurring in bulk solvent, 

which has been estimated to be approximately 6 kcal/mol higher in energy. In other 

words, these results suggested a destabilization of the cis ground state upon 

binding. A similar enzymatic effect was also observed for the peptidyl-prolyl cis-trans 

reaction mechanisms of human CypA [229,235] and FKBP [242,243], by means of 

experimental or theoretical procedures. However, Pin1 destabilization effect seemed 

not to be implicated in favouring a distorted prolyl amide bond, as observed for the 

other enzymes. The results obtained from umbrella sampling simulations, highlighted 

the absence of the intramolecular hydrogen bond H1 – O3 in CIS1 (Figure 4.18), 

which has been shown an high frequency of occurrence during the uncatalyzed 

isomerization. In particular, within Pin1 active site, the dihedral ΦpSER of the cis 

substrate was forced to go from -80° to -150°, leading to the formation of the 

hydrogen bond between O3 and the hydroxyl group of Ser154. Moreover, the 

absence of the intramolecular H1 – O3 was also observed in TS1 state (Figure 4.20). 

This finding brought to light an important mechanistic aspect of Pin1-catalyzed 

reaction, with a significant impact on the energy barrier to rotation. In fact, no 

intramolecular hydrogen bonds have to be disrupted during the isomerization, 

leading to an estimated reduction of the activation barrier of about 2.2 kcal/mol. In 

other words, upon binding Pin1 forced the substrate to adopt a conformation which 

has shown a low frequency of occurrence in water, to disfavour the intramolecular 

hydrogen bond H1 – O3, and promoting in this way the peptidyl-prolyl cis-trans 

isomerization. 
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4.4.3   The Hydrogen Bond Shuttle-Assisted Mechanism 

 

In order to investigate the role assumed by the enzyme environment during 

the isomerization process, the distances between the prolyl amide bond oxygen O2 

and the active site aminoacids, have been reported as a function of the reaction 

coordinate ζ in the polar plot in Figure 4.22. This analysis revealed the formation of 

multiple hydrogen bond interactions between the carbonyl oxygen and the partial 

positive charges of the active site side chain atoms, during the cis-trans 

isomerization. However, these interactions have been shown to take place 

approximately at ζ   30°, and therefore when the peptide amide bond was already in 

a partially twisted conformation. Which factors are responsible to promote an initial 

deviation of the prolyl bond planarity? As shown in Figure 4.22, when the substrate 

was in CIS1 configuration, the carbonyl oxygen was in close contact with both the 

hydrogen (HS), and the sulphur atom (SH) of the sulfhydryl side chain of Cys113. 

The former has a stabilizing effect on the ground state, in contrast to the latter. In 

particular, local fluctuations of Cys113 side chain could shift this equilibrium of 

electrostatic interactions toward the repulsive components. This sudden and 

temporary break of the equilibrium toward the O2 – SH contacts, could induce a 

starting rotation of the prolyl amide bond, leading to a partially twisted conformation. 

At this point (starting from ζ   30°), the carbonyl oxygen was involved in a series of 

subsequent hydrogen bond interactions with Cys113, His59, His 157, and Ser154, 

which stabilized the distorted amide bond, drove the isomerization through the TS1, 

and assisting the barrier crossing until the TRANS1 was reached. This hydrogen 

bond shuttle-assisted mechanism, revealed a remarkable similarity with the solvent-

assisted catalysis proposed by Ke and co-workers for CypA [236]. In particular, the 

solvent-assisted mechanism arose from the observation, in CypA/Ala-Pro complex, 

of a conserved structural water molecule which was placed in a good orientation to 

stabilize the substrate transition state through hydrogen bond to the carbonyl 

oxygen.  
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The role played by the basic aminoacids of the substrate phosphate binding 

pocket in the isomerization, was also investigated. In Figure 4.23 the distances 

between phosphate moiety and Lys63, Arg68, and Arg69, were reported in a polar 

plot, using ζ as reaction coordinate. Recently, Velazquez and co-workers [106], 

pointed out to the crucial roles of such aminoacids to stabilize the transition state 

configuration of the substrate, and therefore to promote the catalysis. In particular, 

their results highlighted that Arg69 and Lys63, were involved in tighter interactions 

with the phosphate when the substrate was in the transition state. From Figure 4.23, 

it has been shown that although a slightly preference for the TRANS1 state, Arg68 

resulted not to get involved in short-ranged interactions (distances ranging from 6 to 

13 Å). This finding was in line with mutagenesis data, suggesting a negligible role of 

Arg68 for the PPIase activity [104,202]. On the other hand, tighter interactions were 

evaluated between the phosphate group and Arg69/Lys63 (distances of about 3 – 5 

Å). However these short-ranged contacts were retained during all the isomerization 

process, occurring without a preference for a particular configurational state of the 

substrate. These results supported the well-established roles of Arg69 and Lys63 in 

anchoring the substrate during the cis-trans isomerization, excluding their potential 

involvement in the transition state stabilization. In this regard, Figure 4.22 suggested 

that the stabilization of the twisted amide bond was mainly due to the active site 

hydrogen bond shuttle.              
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4.5   Conclusions 

 

 

In this chapter, the investigation of the catalytic mechanism of the peptidyl-

prolyl cis-trans isomerase Pin1 was presented. First of all, unbiased MD simulations 

were carried out in order to test the proposed C [97] and NC [104] mechanisms for 

the isomerization. Large fluctuations registered for the substrate and for binding site 

residues during dynamics, excluded the feasibility of the nucleophilic catalysis. 

Umbrella sampling was therefore carried out for both the isomerization in bulk 

solvent, and Pin1-catalyzed within the NC reaction mechanism. The free energy 

profiles, showed activation barriers consistent with experimental NMR 

measurements [99], and with previous theoretical studies [106]. The activation 

barrier for the isomerization within Pin1 active site was found to be around 7 kcal/mol 

lower than the uncatalyzed mechanism. Several enzymatic effects, directly linked to 

the acceleration of the prolyl bond isomerization, were identified and characterized. 

These contributions have been also proposed for CypA and FKBP reactions, 

suggesting a common driving force behind the catalytic power of the PPIase family 

members. The conformational entropy loss of the substrate upon binding and the cis 

ground state destabilization, were found to promote the isomerization. This was 

mainly due to the reduction of low-energy conformational changes, and the 

stabilization of a pro-catalytic conformation for the substrate. In particular, this 

conformation was characterized by 1) the autocatalytic interaction, 2) an high degree 

of positive pyramidalization of the proline nitrogen, and 3) the absence of 

intramolecular hydrogen bond H1 – O3, which has shown to reduce the barrier to 

rotation of approximately 2.2 kcal/mol. Moreover, the observation of multiple 

hydrogen bond interactions between the carbonyl oxygen of the twisted proline 

amide bond and the side chains of the active site residues, suggested an hydrogen-

bond shuttle-assisted model of catalysis. These interactions have been found to 
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stabilize the distorted amide bond, and to assist the carbonyl rotation until the ground 

state was reached.   

Therefore, considering the cis configuration as reference state, the following 

reaction mechanism for the cis to trans isomerization was proposed: 

 

(i) Binding of the substrate in cis configuration; 

(ii) reduction of the conformational entropy of the substrate, and 

stabilization of a pro-catalytic conformation for the cis state; 

(iii) hydrogen bond shuttle-assisted isomerization;  

(iv) unbinding of the substrate in trans configuration. 

 

 

 

 

 



147  Conclusions 
 

 
 

 

 

 

 

Chapter 5.   

Conclusions 

  



148      Computational Methods in Biophysics and Medicinal Chemistry: Applications and Challenges 
 

 
 

 

In this thesis I described the theory and application of several computational 

methods in solving medicinal chemistry and biophysical tasks. I pointed out to the 

valuable information which could be achieved by means of computer simulations and 

to the possibility to predict the outcome of traditional experiments. Nowadays, 

computer represents an invaluable tool for chemists. Presenting the major fields of 

application of computational methods as well as their theoretical backgrounds, 

represented the main topic of Chapter 1, and Chapter 2.  

 

The development of an automated docking protocol for hERG potassium 

channel blockers has been presented in Chapter 3. hERG is a target of great interest 

in drug development and drug safety. The drug-induced hERG blockade has been 

associated to potentially lethal proarrhythmic conditions. Providing a fast and cheap 

strategy to assess the blockade activity at the early stages of the drug discovery 

process, is a challenging task, and the aim of this project.  

In particular, a strategy that explicitly takes into account the conformations of 

the channel, their possible intrinsic symmetry, and the role played by the 

configurational entropy of ligands, was designed. The protocol was developed on a 

series of congeneric sertindole derivatives, and it has been shown to satisfactorily 

explain the structure-activity relationships for this set of blockers, and to provide 

qualitative and quantitative insights about their blocking ability. The protocol was 

then successfully applied to a series of structurally unrelated blockers.   

 

In Chapter 4, I have presented the investigation of the catalytic mechanism 

of peptidyl-prolyl cis-trans isomerase Pin1. Protein phosphorylation has been shown 

to be involved in a variety of cellular signalling pathways. In this context, human 

Pin1, has a key role in the regulation of pSer/Thr-Pro proteins, acting as a molecular 

timer of the cell cycle. After recognition of the phosphorylated motifs, Pin1 catalyzes 

the rapid cis-trans isomerization of proline amide bonds of substrates, playing a 

critical role in maintaining the equilibrium between the two isoforms. Although the 

great interest arisen on this enzyme, mainly due to the well-known impact of Pin1 

functionality on the onset of several pathological disorders, its catalytic mechanism 

has long been debated.  
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The application of umbrella sampling techniques allowed to shed lights on 

the catalytic process, highlighting several enzymatic effects which have been shown 

to accelerate the reaction, and providing new mechanistic insights on the 

isomerization. The combination of entropic effects and ground state destabilization, 

has been found to play a crucial role in Pin1-catalyzed reaction. These effects were 

also observed in the reaction mechanisms of other enzymes with isomerase activity, 

suggesting a very close catalytic pathway. Moreover, during the isomerization, the 

formation of multiple hydrogen bonds between the carbonyl oxygen of the twisted 

prolyl bond and the active site residues, have been observed. These interactions 

have been shown to stabilize the transition state and to drive the peptide bond 

rotation. This finding suggested a new hydrogen bond shuttle-assisted model of 

catalysis.     
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