
Alma Mater Studiorum

Università degli Studi di Bologna

Advanced Research Center on Electronic Systems for

Information and Communication Technologies

XXVI Ph.D Course in Information Technologies

Application Platforms for the

Internet of Things:

Theory, Architecture, Protocols,

Data Formats, and Privacy

Settore Concorsuale: ING-INF/03

Settore Scientifico disciplinare: 09/F2

Candidate: Advisors:

Matteo Collina Prof. Alessandro Vanelli-Coralli

Prof. Giovanni Emanuale Corazza

Coordinator:

Prof. Claudio Fiegna

March 2014

Contents

Introduction 5

1 Protocols and Platforms 9

1.1 Platform Architectures 10

1.1.1 Local User . 10

1.1.2 Gateway User . 12

1.1.3 Remote User through Gateway 12

1.1.4 Remote User . 13

1.1.5 Gateway-Remote Server link 13

1.2 MAC Protocols . 13

1.2.1 802.15.4 . 14

1.2.2 WiFi . 15

1.2.3 Bluetooth Low Energy 15

1.3 Network and Transport Protocols 16

1.3.1 IP . 16

1.3.2 ZigBee . 17

1.4 Application Protocols . 18

1.4.1 HTTP . 18

1.4.2 MQTT . 19

1.4.3 CoAP . 20

Contents 2

1.4.4 MQTT-SN . 20

1.5 Conclusion . 20

2 Architecture and Primitives of an IoT Platform 22

2.1 Related Work . 23

2.2 Protocols for the Internet of Things 25

2.3 Primitives for the IoT 26

2.3.1 HTTP Support 28

2.3.2 MQTT Support 28

2.3.3 CoAP Support 29

2.4 Implementation . 29

2.4.1 API . 30

2.4.2 Message Delivery and Persistance 31

2.5 Evaluation . 31

2.5.1 Many to One Scenario 32

2.5.2 One to Many Scenario 33

2.6 Conclusion . 33

3 Internet of Things Protocols Analysis over Error and De-

lay prone Links 42

3.1 Application Layer Testbed 44

3.1.1 Implementation 47

3.2 Results . 48

3.2.1 Low Throughput 48

3.2.2 High Throughput 53

3.3 CoAP Parameters Tuning 54

3.4 Conclusions and Future Work 54

Contents 3

4 Latency Analysis of Real-Time Web Protocols over a

Satellite Link 57

4.1 Real-Time Web Protocols and Techniques 60

4.2 Testbed Layout and Experiment Description 62

4.3 Results . 65

4.3.1 Enhancing Server-Sent Events 75

4.4 Conclusions and Guidelines 76

5 Privacy Preservation Algorithms and Data Structures 81

5.1 Data Interoperability . 83

5.1.1 A Plethora of Data Formats 84

5.1.2 Data semantics 85

5.1.3 A common data format 86

5.2 Access Control for RDF Stores 87

5.2.1 Privacy Preference Ontology (PPO) 88

5.2.2 Privacy Preference Manager (PPM) 89

5.3 PPM Access Control Filtering Algorithm (PPF-1) 91

5.3.1 Privacy Preferences and Triples Matching 91

5.3.2 Privacy Preferences Filtering 96

5.4 Extended Access Control Filtering Algorithm (PPF-2) . 97

5.4.1 Knowledge Extraction from the Ontology and Query 98

5.4.2 Defining an Index to derive Classes from Properties 99

5.5 Evaluation . 102

5.5.1 Evaluation Setup and Architecture 103

5.5.2 Query types and datasets 105

5.6 Related Work . 106

5.7 Conclusion and Future Work 108

Contents 4

Conclusion 111

Acknowledgements 113

References 115

Introduction

The last 20 years of research in the pervasive computing area have seen

very important steps towards the realization of Mark Weiser’s vision

of ubiquitous computing [1]: a world were technology vanishes in the

background.

The advent of the World Wide Web revolutionized the way we work, com-

municate, socialize, and how business is done: the Internet has become

one the most pervasive technology. Recently, smartphones and mobile

broadband enabled us to carry the Internet in our pocket, seamlessy in-

tegrating it in our lives. However, everyday objects remain disconnected

from the virtual world, while the Internet of Things (IoT) movement is

exploring how to interconnect them. This technology shift is supposed

to be greater than the advent of mobile phones, and in [2] a 2020 sce-

nario where non-phone interconnected devices will be 10 times the phone

devices (50 vs 5 billions) is foreseen. Other predictions value the IoT mar-

ket to $309 billion by 2020 [3]. However, this work began before all this

predictions were made.

The presented dissertation is the outcome of a three-year research pro-

gram aimed to explore and solve the issues in the Internet of Things

field. All the presented chapters adopt an application engineering point

of view, presenting the new and old problems that we face in building

Introduction 6

the Internet of Things.

Original Contributions

This dissertation explores the Internet of Things field: a junction be-

tween electronics, telecommuncation and software engineering. While

many challenges still are unsolved in the electronics, this work focuses on

how to build the Internet of Things from an architecture and network per-

spective. This dissertation analyzes and presents solutions for the major

problems of such a global system: interoperability and privacy. In order

to do so, we also analyze the communication between the things and the

users, to fully understand and improve the state-of-art communication

protocols.

Internet of Things application development happens in silos. As few best

practices have been defined, engineers usually pick the best technologies

for the problem under investigation, often using proprietary and closed

communication protocols. Moreover, even if they decide to use a standard

protocol, there are still many competing standards from different orga-

nizations. Thus, this field is extremely fragmented and some standards

are more popular than others in some specific niches, and vice versa. In

fact, there is the common belief that “only if we can solve the interop-

erability problem we can have a real the Internet of Things” [4]. In this

dissertation, we discuss our solution to this compelling issue, the Ponte

project, as presented in Chapter 2.

The major achievement presented in this work is the Ponte project [5],

which is in the process of being released as an Eclipse Foundation

project [6], and was presented at several developer-focused confer-

Introduction 7

ences across the globe, such as Eclipse Day @ Googleplex (Mountain

View), Distill by Engine Yard (San Francisco) and EclipseCon France

(Toulouse). Ponte is the outcome of a research activity that identified a

set of primitives for IoT applications. We argue that each IoT protocol

can be expressed in term of those primitives, thus solving the interop-

erability problem at the application protocol level. Moreover, the primi-

tives are network and transport independent and make no assumption in

that regard. Ponte began with an early work of a cross-protocol bridge,

QEST [7]. This work was partially funded by Mavigex Srl, and is an

outcome of the ongoing collaboration between our research unit and the

company.

As this dissertation aims to present a guideline for IoT application de-

velopers, it includes an analysis of the application protocols latency in

different circumstances. Particularly, Chapter 3 discuss the latency and

throughput of IoT protocols on a high delay/high error rate link. More-

over, Chapter 4 analyzes the latency of Real-Time web protocols over a

GEO satellite link. This last work is part of the ESA SatNex III project

and it is presented in [8].

Privacy issues follows the rise of interconnected devices count. Even if we

care, privacy violations are exposed to the public usually after years of the

fact. Thus, it is clear that the Internet of Things must ensure resilience

to attacks, data authentication, access control and client privacy [9].

We argue that it is not possible to solve the privacy issue without solv-

ing the interoperability problem: enforcing privacy rules implies the need

to limit and filter the data delivery process. In Chapter 5, after a brief

digression on the possible data formats and semantics for IoT applica-

tions, this dissertation presents a novel approach for filtering data that

Introduction 8

can increase the throughput by a factor of ten, as presented in [10]. This

work was partially funded by the FP7 Project GAMBAS and it was lead

by the Digital Enterprise Research Institute, Ireland.

Thesis Outline

This dissertation is organized as follows. Chapter 1 analyzes the possible

architecture of an IoT application and discusses the role of each com-

munication protocol in such architectures. Chapter 2 proposes a novel

model for an IoT system and identifies a set of primitives that allows

to solve the interoperability problem. Chapter 3 and Chapter 4 focus on

the latency of binary and Web protocols for Soft Real-Time applications,

such as the IoT. Chapter 5 proposes a solution for the privacy issue in

the Internet of Things.

Chapter 1

Protocols and Platforms

The Internet of Things (IoT) is envisioned as the next industrial revo-

lution. The ubiquity of sensors and actuators will allow ordinary people

to interact with their environment, allowing business and institutions to

provide on-demand real-world services through digital means. Unlike the

World Wide Web, the Internet of Things is not based on a set of inter-

operable technologies, but every application pick the best technologies

to overcome its technical challenge in the best way according to some

criteria. Thus, multiple protocols for any layer of the OSI stack [11] were

developed, leading to different application platforms that are not inter-

operable without a platform-dependent bridge.

This chapter is organized as follows: Section 1.1 categorize IoT applica-

tions into four common platform architectures that have different require-

ments in term communication protocols. Section 1.2 analyze the various

options for connecting the things at the MAC layer. As for the network

and transport layer, some applications might use the IP stack, whereas

others might use application specific protocols, and all these solutions

are investigated in Section 1.3. On top of the IP stack it is possible to

1.1 Platform Architectures 10

transfer some standards-to-be application protocols, which are discussed

in Section 1.4. Finally, Section 1.5 summarize our findings.

1.1 Platform Architectures

Any Internet of Things application is based on one of following platform

architecture, depending on how the user can access the virtual repre-

sentation of a thing, which is often called node. Every of this platform

architecture have different requirements in term of device-device com-

munication, group communication, routing, quality of service, IP com-

patibility, and remote push availability. In the following paragraphs, we

discuss what are the different requirements for each of the architectures.

1.1.1 Local User

Fig. 1.1(a) shows the first architecture, which we identify as “Local User”.

In this architecture, the User access the things directly, usually using

an off-the-shelves handheld devices, such as a smartphone or a tablet.

In order to support such on-the-go access, these devices must be com-

patible with what most handhelds supports, which limits the possible

choices. The best in class protocols that are supported by the major-

ity of handhelds are Bluetooth Low Energy (BLE) [12] and the 802.11.x

family (WiFi) [13]. Even if new standard emerge, the applications based

on this architecture will always be limited by mainstream technologies.

Finally, in this scenario the things do not communicate between each

other.

1.1 Platform Architectures 11

○ ○

○

○ ○

○

○

Local
Access

“Things”

(a) Scenario 1

�
○ ○

○

○ ○

○

○

Gateway

Local
Access

“Things”

(b) Scenario 2

Cloud
Servers

Remote Access

�
○ ○

○

○ ○

○

○

Gateway

�
○ ○

○

○ ○

○

○

Gateway

Local
Access

�
Mobile Devices

“Things”

“Things”

(c) Scenario 3

Cloud
Servers

Remote Access

○ ○

○

○ ○

○

○

○ ○

○

○ ○

○

○

�
Mobile Devices

“Things”

“Things”

(d) Scenario 4

Figure 1.1: Network topologies in the Internet of Things. (a) shows a

setup where ”Things” are able to communicate directly to users. (b)

shows a simple setup where different things communicate locally with

users through gateway. (c) shows the most common setup where different

Things communicate with users connected to a remove server through a

gateway. (d) shows a setup where ”Things” are able to communicate with

remote users without the need of gateway.

1.1 Platform Architectures 12

1.1.2 Gateway User

Fig. 1.1(b) shows the second architecture, which we identify as “Gateway

User”. In this architecture, users and things might be connected to a local

Gateway using different protocols, possibly at all level of the OSI [11]

stack. Thus, the Gateway is responsible to mediate the between the users

and the things.

In this architecture, the nodes might send messages between each other,

or provide connectivity to others in case some nodes cannot communicate

with the Gateway directly. As an example, in the 802.15.4 [14] MAC pro-

tocol the nodes can be deployed in various topologies, as we will discuss

in section 1.2.

1.1.3 Remote User through Gateway

Fig. 1.1(c) shows the third architecture, which we identify as “Remote

User Through Gateway”. In this architecture, users are not directly con-

nected to the Gateway: this its extremely frequent as most gateway do

not have a public IP and domain name for security reasons. Thus, users

need a Remote Server to proxy the connection to the Gateway, which is

trusted and can handle a higher level of security. This remote server is

often deployed in the so-called “cloud”. Finally, if the mobile application

want to support push notification [15] it cannot be contacted directly

from the Gateway, as mobile devices are not connected with a public IP

address and they must initiate the communication to the Remote Server.

The link between the Gateway and the Remote Server is discussed in

Sec. 1.1.5.

1.2 MAC Protocols 13

1.1.4 Remote User

Fig. 1.1(c) shows the fourth architecture, which we identify as “Remote

User”. In this architecture, the things are directly connected to the In-

ternet, which means that non-IP network protocol cannot be used, e.g.

Bluetooth. Moreover, there is no local access to the things, that must be

always accessed from the cloud. The major issue with this architecture is

privacy: we need to protect the communication and limit how the sensed

data can be used. Moreover, in this architecture the communication be-

tween things is more expensive than the precedent two cases with the

Gateway involved.

1.1.5 Gateway-Remote Server link

The direct link between two things is obviously not enough to create a

global Internet of Things: this new paradigm will come to the full poten-

tial when every thing is connected. In urban areas, most things will be

connected through cables, WiFi or some other low latency / low error

links. In remote or inaccessible areas, things will be connected through

cellular network, e.g. GSM, or through a GEO satellite link. The influ-

ence that these interconnections have on IoT application is studied in

Chapter 3 and 3.

1.2 MAC Protocols

Any Internet of Things application must specify how the things are in-

terconnected, starting from the bottom of the OSI stack [11]: numerous

MAC protocols are available for use depending on the application re-

quirements. In this dissertation the PHY protocol are not considered, as

1.2 MAC Protocols 14

for an application developer point of view these are usually bound to a

specific MAC protocol.

The Internet of Things pose numerous challenges in creating the ba-

sic interconnections between two things: network topology, cost, latency,

application throughput and security are the most common directions in

which MAC protocols are evaluated. The most used MAC protocols for

the IoT are 802.15.4 [14], WiFi [13], and Bluetooth Low Energy [12].

1.2.1 802.15.4

IEEE 802.15.4 [14] is the most widespread protocol for Wireless Sensor

Networks (WSN). In 802.15.4 the nodes connects to a Coordinator in

a star, tree or mesh topology. The Coordinator might be application-

specific or provide Internet connectivity to the nodes.

Estimating application latency in 802.15.4 networks is application spe-

cific, because the packets to be receive are polled by the nodes at specific

intervals. As most nodes are battery-operated, they might sleep for hours

between turning on the radio again. However, the latency for sending such

message is in the order of 2.4 ms and 6.02 ms [16], plus any retransmission

needed in case of errors. In [16], the authors measured that an 802.15.4

network can reach 163 kbit/s maximal throughput.

802.15.4 optionally supports the Advanced Encryption Standard (AES)

algorithm [17], both for authentication and authorization. The keys can

be shared with the whole network of sensors (network shared keying), or

can be shared by a pair of nodes (pairwise keying), or can be shared only

with a group of nodes (group shared keying).

1.2 MAC Protocols 15

1.2.2 WiFi

In [18], the authors have measured that low-power Wi-Fi (LP-WiFi) pro-

vides a significant improvement over typical Wi-Fi on both latency and

energy consumption counts. According to the authors, LP-Wifi consumes

approximately the same power as 802.15.4 for small packets but it per-

forms better for large packets. Thus, it is possible that a LP-Wifi ap-

proach will emerge as a solution in some sensor network applications.

1.2.3 Bluetooth Low Energy

Since its first version, Bluetooth has been used to control from cars to

wirstbands and in general most of our personal devices. Bluetooth im-

poses a star topology to networked things, placing the user-controlled

device as the center. Bluetooth has a very short range, and it is suitable

for Personal Area Network devices. As an example, Bluetooth is used for

headsets, speakers, printers, and quantified self devices.

Low Bluetooth Energy (BLE) offers a low power alternative to the stan-

dard Bluetooth, reducing latency to 6ms and application throughput to

236.7 kbit/s [19]. However, it reduces the power consumption while con-

nected to 0.024 mA, giving an expected battery life of 1 year over a coin

battery [20].

BLE chips are cheaper than 802.15.4 chip, but it requires more processing

power [21]. Moreover, BLE does not support the Internet Protocol (IP),

but it discussed within IETF [22] and in [23] a first implementation is

discussed.

1.3 Network and Transport Protocols 16

1.3 Network and Transport Protocols

The network and transport layers of any Internet of Things applications

are extremely important to achieve interoperability between different so-

lutions. On one hand, the user is always connected through the Inter-

net stack, which right now involve the Internet Protocol (IPv4) [24] as

network protocol and the Transmission Control Protocol (TCP) [25] as

transport protocol. On the other hand, the things might be connected

through different protocols, such as ZigBee: if the thing has no Internet

support, then it is responsibility of a gateway to expose on the local or

global network.

1.3.1 IP

The impressive number of real-world things that we aim to connect cre-

ates challenges for the whole Internet: at the network level, the major

issue of IPv4 is its byte address field length, which is only 32 bits. As of

today, all the possible addresses are allocated [26]. The next version of the

Internet Protocol, called IPv6, uses 128 bits for its address field, which

allows plenty of addresses for all the possible things. However, IPv6 head-

ers are much larger than IPv4, and the IPv6 over Low power Wireless

Personal Area Networks (6LoWPAN) [27] standard specifies how to com-

press them to fit in a 802.15.4 frame. A similar technique is proposed to

allow the transmission of IPv6 packets over Bluetooth Low Energy [28].

The IP stack allows two transport protocol, TCP and UDP.

1.3 Network and Transport Protocols 17

TCP

The Transmission Control Protocol (TCP) [25] creates a communication

channel between two remote parties, a client and a server. TCP is the

basis of the Worl Wide Web, as it creates a reliable communication chan-

nel between the parties by involving retransmissions. In [29], the authors

discuss the reasons why TCP is not sufficient as a transport protocol for

the IoT: connection setup, congestion setup, and data buffering makes

TCP expensive to send end-to-end messages on battery-powered devices

that are in a sleeping state. Thus, TCP cannot be used on sensors that

have an estimated battery lifetime of years.

UDP

The User Datagram Protocol (UDP) [30] offers the minimum set of fea-

tures for a transport protocol: application multiplexing, via port num-

bers, and integrity verification, via checksum, of the header and payload.

The main difference with TCP is that UDP is not reliable: the appli-

cation is responsible for handling the retransmissions of lost messages.

Thus, IoT applications can customize the trade-off between reliability,

congestion control, and battery consumption.

1.3.2 ZigBee

ZigBee is a network, and application protocol suite that aims to solve

the industry and home automation problem. Thus, it is not compatible

with the Internet stack, and requires a gateway. ZigBee uses 802.15.4

as its MAC layer, thus it supports start, tree, and mesh topologies. At

the network level, ZigBee supports network routing through the Ad hoc

1.4 Application Protocols 18

on-demand distance vector (AODV) routing algorithm [31]. The ZigBee

standard includes no transport layer, but it have several application pro-

files that specifies the functionalities of the things: these profiles dictates

the available data across different vendors.

1.4 Application Protocols

At the application layer, thing-driven approaches leverage binary pro-

tocols and data formats that are specifically designed for machine to

machine communications. These protocols and data format introduce lit-

tle overhead, minimize battery consumption but are usually not reused

in other fields. The benchmark against which all these protocols should

measure is HTTP, as it is extremely familiar to the developers.

The most widespread open protocols specifically designed for the IoT

are MQTT [32] and the Constrained Application Protocol (CoAP) [33],

which are based on TCP and UDP, respectively. MQTT is a classical

publish/subscribe protocol, while CoAP is a request/response protocol

based on the REST pattern. Both MQTT and CoAP support the same

primitives: MQTT focuses on sending and receiving updates, while sup-

porting basic syndication; CoAP focuses on syndication, while supporting

a basic notification mechanism [34].

1.4.1 HTTP

Hypertext Transfer Protocol (HTTP) [35] is the basis of the Web, and it

is used also to integrate different software applications using the Repre-

sentational State Transfer pattern [36], where every resource is globally

identified by an Uniform Resource Identifier (URI) [37]. As of today,

1.4 Application Protocols 19

thousands of businesses offer REST APIs for creating new applications.

It is also important to note that HTTP is a text-based protocol with

many data types being transferred in text format. HTTP is designed to

support caching and several approaches exist to syndicate data. Recent

advances, such as WebSockets [38] and Server-Sent Events [39], allow to

build soft real-time Web applications.

1.4.2 MQTT

The MQTT [32] protocol is fast, lightweight, power efficient and imple-

ments various levels of Quality of Service (QoS). MQTT is based on TCP,

so it provides standard TCP delivery reliability, in addition to its own

QoS mechanism. MQTT implements a classic publish/subscribe (pub-

/sub) pattern with a central broker. The protocol revolves around the

concept of topic, where clients might publish updates or subscribe to for

receiving the updates from other clients. The MQTT community claims

that a pub/sub protocol is what is needed to build a true IoT. MQTT

can also tunnelled over a WebSocket, thus allowing web client to com-

municate with the nodes with extremely low latency.

MQTT libraries have been provided for all major IoT development plat-

forms, and for several programming languages (C, Java, PHP, Python,

Ruby, Javascript) and for the two major mobile platforms (iOS and An-

droid). The MQTT protocol is being standardize at the Advancing open

standard for the information society (OASIS) consortium [40] [41].

1.5 Conclusion 20

1.4.3 CoAP

The Constrained Application Protocol (CoAP) [33] is an implementa-

tion of the Representational State Transfer pattern [36] (REST) and it

is similar in HTTP from a high-level point of view. However, it is im-

plemented over UDP and it is binary. Thus, it significantly reduces the

overhead for battery-powered devices while guaranteeing HTTP com-

patibility through a proxy. CoAP supports a basic notification mecha-

nism, the observe option [34], which is similar to the HTTP Server-Sent

Events [39]. Both these techniques create a unidirectional stream of no-

tifications.

1.4.4 MQTT-SN

The MQTT-SN protocol, formerly MQTT-S, is the port of the MQTT

protocol over the UDP transport [42]: it is semantically compatible, and a

MQTT-SN device can connect to a standard MQTT broker via a protocol

translator. MQTT-SN is optimized for the implementation on low-cost,

battery-operated devices with limited processing and storage resources

such as wireless sensor devices connect via 802.15.4 and 6LowPan. At

the moment of this writing the license of the MQTT-SN protocol is un-

clear [42].

1.5 Conclusion

In this chapter, we analyzed all the possible architectures and protocols

to support any Internet of Things applications. This state-of-art review

served as a basis for all the research work in the following chapters:

in Chapter 2 we present a novel approach for bridging between all the

1.5 Conclusion 21

application protocols presented in Section 1.4; in Chapter 3 we present

an analysis of the latency for those protocols in various delay and error

conditions; finally, in Chapter 4 we analyze the cost of directly controlling

a remote device over a long round trip time link using Real-Time Web

technologies.

Chapter 2

Architecture and Primitives

of an IoT Platform

The IoT builds upon three main pillars: embedded software in sensors/ac-

tuators, Internet protocols, and data management. Each of these fields

has its own set of programming approaches, development paradigms and

standards. As may be natural at the start of a new field, some groups

have tried to force IoT applications to follow only one of the possible

paradigms. We argue that the IoT does not need more development

standards or paradigms, which developers must learn before being able to

work in this field. Instead, it needs a way to make the existing approaches

work together. The IoT success requires interoperability.

As of today, there is a single global system that could act as a starting

point for the IoT, as it is highly interoperable, integrating all different

kinds of information sources, and well understood by developers world-

wide to create a multitude of powerful applications: the World Wide

Web. We use the Web to work, for entertainment and to interact socially:

tomorrow, we will use the Web to interact with the physical world. Thus,

2.1 Related Work 23

our goal with the Ponte Project is to support existing Web developers in

developing IoT applications, abstracting out binary protocols and data

formats incompatibility. We aim to make the IoT usable in real life by

lowering the barrier for existing developers. Ponte is not another layer

between the application and the device, but it is a replacement for a

component already in place: the broker.

Interoperability between protocols and devices is not a new problem, al-

beit it is a key factor for the success of an IoT system. In this chapter,

we approach this problem in a new way by defining several primitives to

supports interoperability, independently from the used technology. We

argue that the primitives allow to support the most common protocols

of today, MQTT and CoAP, and those of tomorrow. Then, we present

a novel architecture for bridging between the Web and the things, by

supporting both the Representational State Transfer (REST) [36] and

publish/subscribe [43] patterns. Moreover, we discuss the various options

regarding data format in the Internet of Things, providing a recommen-

dation. Finally, we introduce our implementation of that architecture in

the context of the Ponte project, which is also an Eclipse Foundation

project [6]. Thanks to Ponte, we evaluate both the bridging and the

protocol themselves, a novel analysis that has not been done before.

2.1 Related Work

The Internet of Things survey prepared by Atzori et al. [29] highlights

three main research areas of the Internet of Things: devices, Internet, and

Semantic Web. The devices area is mainly related to physical things. The

Internet area focuses on protocols for interconnection. The Semantic Web

2.1 Related Work 24

area addresses how to integrate and process the data coming from the

IoT.

In [44], the authors highlight how the application logic is moving from the

devices to the cloud, allowing mashups regarding both the configuration

and the sensing/actuating phases.

The Web of Things (WoT) movement [45] envisions a world where every

thing host its own web server. However, hosting a server on every device is

unfeasible if the devices are battery-powered, because the Web is based on

a 100% duty cycle. Thus, the WoT leverage the syndication capabilities

of the Web to cache the latest data. Besides, we usually interact with

public-facing Web applications, while a ’thing’ is usually not accessible

from the Internet, as – due to security and privacy reasons – it has no

public IP address. Moreover, the authors of [46] highlight the challenges

in integrating multiple WoT hub.

Several cross-protocol architectures have been proposed for the IoT, such

as [7] or [47]. In both the approaches, the authors focus on specific proto-

cols and data formats, without abstracting a general interaction model.

In addition, the latter does not cover publish/subscribe on the Web which

is possible in our architecture.

In [48], the authors evaluate the performance of a system based on an em-

bedded implementation of Constrained Application Protocol (CoAP) [33]

that uses Efficient XML interchange [49] as the data format. Even though

they consider only local networks, their results of CoAP performance are

coherent with ours.

2.2 Protocols for the Internet of Things 25

Persistence

HTTP

HTTP Clients

Pub/Sub

.O
R

G

New Protocol

NP Clients

Ponte

MQTT

MQTT Clients

CoAP

CoAP Clients

Figure 2.1: Architecture of a bridge for the Internet of Things that enables

communication between devices supporting different protocols. This ar-

chitecture can be deployed on top of various databases and brokers,

and can be extended to support more protocols. The list of supported

databases and brokers is not exhaustive.

2.2 Protocols for the Internet of Things

Hypertext Transfer Protocol (HTTP) [35] is the basis of the Web, and it

is used also to integrate different software applications using the REST

pattern, where every resource is globally identified by an Uniform Re-

source Identifier (URI) [37]. As of today, thousands of businesses offer

REST APIs for creating new applications. It is also important to note

that HTTP is a text-based protocol with many data types being trans-

ferred in text format. HTTP is designed to support caching and several

2.3 Primitives for the IoT 26

approaches exist to syndicate data. Recent advances, such as WebSock-

ets [38] and Server-Sent Events [39], allow to build near real-time Web

applications.

Thing-driven approaches leverage binary protocols and data formats

that are specifically designed for machine to machine communications.

These protocols and data format introduce little overhead, minimize bat-

tery consumption but are usually not reused in other fields. The most

widespread open protocols for the IoT are MQTT [32] and the Con-

strained Application Protocol (CoAP) [33], which are based on TCP

and UDP, respectively. MQTT is a classical publish/subscribe protocol,

while CoAP is a request/response protocol based on the REST pattern.

Both MQTT and CoAP support the same primitives: MQTT focuses

on sending and receiving updates, while supporting basic syndication;

CoAP focuses on syndication, while supporting a basic notification mech-

anism [34].

2.3 Primitives for the IoT

We argue that any Internet of Things system protocol must solve a very

delimited set of problems: data delivery, discovery and duty cycle. In

the IoT, an enormous quantity of data must be collected, delivered and

syndicated. In order to support real-time interaction, the users need to

retrieve the latest thing status, and then all updates from there. The

discovery of new thing and data is also extremely important, as users or

other things might not know directly what things to query, e.g. a building

might be composed of hundreds of things. Finally, many devices in the

IoT are battery-powered: their duty cycle is less then 50%, so Users needs

2.3 Primitives for the IoT 27

a way to send offline commands. In the following, we name the ’status of

a thing’ as a resource, as it is possible to support virtual devices.

In order to solve these problems in the most generic way, we argue that

it is possible to define a set of primitives that can be used to support any

IoT protocol:

1. storing and looking up a resource, as we need syndication to support

offline behavior and REST clients;

2. publishing a resource update, and subscribing to one or more re-

source updates, as we want real-time notification of real-world

events, with wildcard support for discovery;

3. storing and forwarding offline updates, in order to receive notifica-

tions when a device is offline.

These primitives are based on two separate components that have been

usually left separated: persistences and messaging. In particular, the first

primitive requires the persistence provided by a database, while the sec-

ond requires messaging, e.g. a publish/subscribe broker. The third needs

both.

Fig. 2.1 shows an architecture that realizes the primitives: it combines

persistence and pub/sub messaging to support HTTP, MQTT and CoAP,

but it can be extended to support more. On the implementation side,

different databases can be used for storage data, while different message

queues, or brokers, can be used to deliver real-time or offline messages.

In the following paragraphs we discuss how the various protocols map to

the defined primitives.

2.3 Primitives for the IoT 28

2.3.1 HTTP Support

HTTP is an implementation of the REST pattern, where a resource can

be manipulated using standard verbs: GET, PUT, POST and DELETE.

This allows to syndicate the things resources in a very straighforward

way over a database, by indexing their URIs. Moreover, it can support

Server-Sent Events [39], as a way of delivering resource updates in a very

efficient way. HTTP do not support offline messaging natively.

2.3.2 MQTT Support

MQTT offers three types of messaging: normal, retained and offline. Nor-

mal messages is a classical publish/subscribe implementation, where mul-

tiple listeners receives messages published on a specific topic by multiple

publishers. Retained messages are more interesting: it is possible to set

a message that can be stored inside the broker and deliver when a new

subscribe is made. Offline messages allows a subscriber to receive the

messages that where published when it was offline, thus the messages

need to be stored inside the broker.

MQTT messaging can be mapped one-to-one to our primitives: retained

messages are used to support the syndication of a resource (primitive 1),

while normal messages can be used for updates (primitive 2). Moreover,

it supports natively offline messaging (primitive 3). Even though MQTT

supports all primitives, there is no separate API for accessing retained

messages.

2.4 Implementation 29

2.3.3 CoAP Support

CoAP is very similar to HTTP, as it allows to GET, PUT, POST or

DELETE a resource. Storing the state of a resource is usually done in

memory, in the file system or in a database. As previously noted, it also

specifies an ’observe’ option [34] in which resource updates are sent to

the client, as soon as they happen. Finally, it is being discussed how to

support offline devices in CoAP [50].

2.4 Implementation

Ponte is the implementation of the architecture described in Section 2.3.

One one hand, Ponte can be used as the device-facing server in any

IoT system, replacing the pub/sub broker or REST api provider. On the

other hand, Ponte supports different backends, to better integrate with

enterprise systems.

Ponte is implemented in Javascript over the Node.js [51] framework,

which is based upon V8, the Chrome Javascript virtual machine. Node.js

implements the reactor pattern [52]: a particular evented I/O system

where every computation is executed in response to an event, and this

approach allows to build highly concurrent network applications. In or-

der to support the MQTT protocol, we used the MQTT.js implemen-

tation [53]. As for supporting CoAP, we developed a CoAP library for

Node.js [54]. How the messages are delivered and stored is described in

Sec. 2.4.2.

Ponte supports full customization and can be embedded in another

Node.js application. Thanks to a simple event-based API, developers

can customize Ponte to application specific features. As an example, it

2.4 Implementation 30

is common practice to define HTTP/CoAP URI or MQTT topic formats

to identify a ’class’ of devices. Thus, Ponte simplifies the architecture of

a IoT application.

Our primitives for IoT protocols can be implemented on top of a combi-

nation of a databases and a message broker. Thus, our architecture can be

implemented on top of several different databases and brokers. As Fig. 2.1

shows, our implementation supports LevelDB [55], MongoDB [56], Re-

dis [57] as databases, but it can be extended to support traditional SQL

databases. Moreover, our implementation supports an embedded broker

based on the Trie data structure [58], and RabbitMQ [59], MongoDB and

Redis as messages brokers, but it can be extended to support others. Our

implementation is available at [60] and it is also an Eclipse Foundation

project [6].

2.4.1 API

In Ponte, every thing is identified by an HTTP URI, a CoAP URI and

a MQTT topic. All the different protocols can be used to interact with

the given resource. Moreover, it is possible to add content-negotiation for

HTTP and CoAP.

Table 2.1 shows all the possible ways of interacting with a given resource

over all protocols. As expected, Ponte follows the REST pattern for both

HTTP and CoAP. MQTT topics are mapped to resources using retained

messages, but it also support non-retained updates.

Ponte does not support streaming of updates over the Web using Web-

Sockets [38], Server-Sent Events [39] or Ajax Long-Polling [61]. However,

it supports MQTT over WebSocket: recent browsers can use MQTT di-

rectly from Web applications.

2.5 Evaluation 31

2.4.2 Message Delivery and Persistance

Fig. 2.2 highlights the flow of messages from the clients to Ponte and vice

versa. The messages received from the clients are first passed through the

persistance layer, which it store them in the database and queue them for

delivery for offline clients. Then, the messages are passed to the pub/sub

layer, which forward them to the connected clients that are subscribed to

that topic. The multiple supported broker in the pub/sub layer are used

to build clustered systems. The default pub/sub broker is embedded and

trie-based [58].

A client can receive messages for two reasons: because the resource

changed at that point in time, or because a resource changed while the

device was offline. In MQTT, messages are also stored for offline delivery

if the client fails to acknowledge them and it is disconnected. The multi-

ple supported databases in the persistance layer are used to accomodate

different load needs and to build clustered systems. The default database

is LevelDB [55].

2.5 Evaluation

In order to verify the feasibility of our approach, we measured the latency

introduced by Ponte. Latency is a key requirement for IoT applications,

as we want our systems to react to real-world events as soon as they

happen.

We consider two main scenarios. In the first, 10000 clients updates a

resource state simultaneously, and one client receive the update: this

scenario is called ’many-to-one’. In the second, one client send an update

that must be delivered to 10000 clients: this scenario is called ’one-to-

2.5 Evaluation 32

many’. These scenarios are edge cases of our architecture, as we expect

the normal operation to be less instensive in the number of deliveries for

a single resource.

As our goal is to measure the impact of Ponte, the resources and capabil-

ities of devices are irrelevant for our simulation: we consider the remote

devices ideally connected, e.g. with negligible network latency and packet

loss probability, and we emulate this situation by running all the clients

on the same machine. All measurements are taken on a Ubuntu 12.04 vir-

tual machine kindly provided by LiberoCloud, namely a ’Large’ instance

with 2 virtual cores and 8GB of RAM, which is a very typical setup

that is offered by every cloud computing vendor. Table 2.2 shows the

kernel parameters that were changed during the evaluation to support

more than 10000 concurrent TCP connections and UDP exchanges. For

all measurements, we deployed a Ponte configuration with the LevelDB

database and the embedded Trie-based broker.

2.5.1 Many to One Scenario

Fig. 2.3 and Fig. 2.4 show the ’many-to-one’ scenario. The first notable

behavior is that HTTP has a worse performance compared to MQTT and

CoAP. The test makes 10000 simultaneous requests to a single server.

The HTTP clients open 10000 new TCP connections which are queued

up to be served. In contrast, MQTT clients are already connected: we

choose this setup as it is the most common for both the protocols. In this

setup MQTT offers a better latency than the other protocols. However,

our implementation performs slightly worse then the Open Source broker

Mosquitto [62], which is provided as reference. Considering CoAP, we see

three main levels of latency which are due to the exponential backoff in

2.6 Conclusion 33

case of retransmission. Overall, Ponte offers a good latency through all

protocols in this conditions.

2.5.2 One to Many Scenario

Fig. 2.5 and Fig. 2.6 show the ’one-to-many’ scenario. In particular, de-

livering to MQTT is extremely performant as all 10000 clients are already

connected and waiting for our message. Moreover, Ponte configured with

the LevelDB database and Trie broker performs better than Mosquitto,

which is provided as reference implementation. Delivering to CoAP gives

very different results: sending 10000 confirmable packets at the same time

produces worse latency, as UDP and CoAP have no flow control. More-

over, some packets are lost and then the exponential backoff rentransmit

for confirmable messages is triggered.

We consider our result satisfying, as they prove our architecture is feasi-

ble. As said, normal operation is usually in the middle of the two exper-

iments, but both of them shows the approach is sound. The major issue

regards high-throughput CoAP networking, as we measured increased la-

tency when the retransmission is triggered due to the lack of congestion

control.

2.6 Conclusion

The Internet of Things promise to blend the boundary between real and

virtual worlds to improve our life through the use of digital technologies.

Software, algorithms and data will help us creating a sustainable economy

for the next century. However, we still need to lower the entrance barrier

for developing new IoT applications.

2.6 Conclusion 34

Our work defines a set of primitives for an IoT system, and then propose

an architecture and its implementation, Ponte, to allow developers to

interact with the devices easily. Ponte supports various protocols, HTTP,

MQTT and CoAP, providing a coherent interface between them that

does not require the addition of a new layer between the devices and

the application. Moreover, we analyze the interoperability problem and

we propose a solution to simplify the interaction between the things and

data that is already published on the web, such as Linked Open Data.

Finally, we show that our approach can handle 10000 concurrent clients

on a single server.

Our work can be extended in several directions. Firstly, the interoper-

ability problem needs a commmon data format. We think that adopting

Semantic Web technologies might allow to automatically transform and

adapt the data to and from the things, solving the evolvability of the

transmitted data. Secondly, enforcing privacy is a key research topic in

the IoT: by centralizing the data handling in a single place, Ponte simplify

the development of privacy preserving algorithms. These two directions

are discussed in Chapter 5. Thirdly, a peer-to-peer custom database/mes-

sage broker is needed to support Ponte without depending on external

software.

2.6 Conclusion 35

Table 2.1: Ponte API over multiple protocols

Protocol Function Type Identifier

MQTT any changes retained

publish

/{resource/path}

MQTT any updates subscribe /{resource/path}

MQTT updates to mul-

tiple resources

subscribe /{resource/path}

CoAP any changes PUT /r/{resource/path}

CoAP last published

value

GET /r/{resource/path}

CoAP any updates GET with

observe

/r/{resource/path}

CoAP deletes DELETE /r/{resource/path}

HTTP any changes PUT /resources/{resource/path}

HTTP last published

value

GET /resources/{resource/path}

HTTP deletes DELETE /resources/{resource/path}

2.6 Conclusion 36

Persistance

Connected Clients

Pub/Sub

Databases

Brokers

.O
R

G

Figure 2.2: Internals of Ponte. All incoming messages transit through

a persistence layer that saves them to disk if it is a change of state or

there is a matching offline subscription. Then, they pass to the pub/sub

layer that routes them to the relevant subscribers. The persistance layer

directly sends the offline messages to the reconnecting clients. The list of

supported databases and brokers for the persistance and pub/sub layers

is not exhaustive.

2.6 Conclusion 37

0 2000 4000 6000 8000 10000

0
50

00
10

00
0

15
00

0

messages

m
ill

is
ec

on
ds

CoAP.to.MQTT
HTTP.to.MQTT
MQTT.to.MQTT
Mosquitto

Figure 2.3: Receiving time to MQTT of sending 10000 simultaneous mes-

sages to one client. This graph plots the receiving time of each of the

10000 messages. The Mosquitto broker is added for comparison with a

pure-MQTT broker.

2.6 Conclusion 38

0 2000 4000 6000 8000 10000

0
50

00
10

00
0

15
00

0

messages

m
ill

is
ec

on
ds

CoAP.to.CoAP
HTTP.to.CoAP
MQTT.to.CoAP

Figure 2.4: Receiving time to CoAP of sending 10000 simultaneous mes-

sages to one client. This graph plots the receiving time of each of the

10000 messages. As CoAP is based on UDP, there might be lost messages

due to lack of congestion control: the protocol implements a retransmis-

sion scheme based on exponential backoff.

2.6 Conclusion 39

0 2000 4000 6000 8000 10000

0
10

00
20

00
30

00
40

00
50

00
60

00

clients

m
ill

is
ec

on
ds

CoAP.to.MQTT
HTTP.to.MQTT
MQTT.to.MQTT
Mosquitto

Figure 2.5: Receiving time of one messages to 10000 clients using the

CoAP protocol. This graph plots the receiving time of the message in

each of the 10000 clients. The Mosquitto broker is added for comparison

with a pure-MQTT broker.

2.6 Conclusion 40

0 2000 4000 6000 8000 10000

0
10

00
20

00
30

00
40

00
50

00
60

00

clients

m
ill

is
ec

on
ds

CoAP.to.CoAP
HTTP.to.CoAP
MQTT.to.CoAP

Figure 2.6: Receiving time of one messages to 10000 clients using the

CoAP protocol. This graph plots the receiving time of the message in

each of the 10000 clients. As CoAP is based on UDP, there might be lost

messages due to lack of congestion control: the protocol implements a

retransmission scheme based on exponential backoff.

2.6 Conclusion 41

Parameter Value

net.core.rmem default 536870912

net.core.wmem default 536870912

net.core.rmem max 536870912

net.core.wmem max 536870912

net.core.netdev max backlog 100000

net.ipv4.udp rmem min 52428800

net.ipv4.udp wmem min 52428800

net.ipv4.tcp rmem 4096 16384 33554432

net.ipv4.tcp wmem 4096 16384 33554432

net.ipv4.tcp mem 786432 1048576 26777216

net.ipv4.tcp max tw buckets 360000

net.ipv4.tcp max syn backlog 10000

vm.min free kbytes 65536

vm.swappiness 0

net.core.somaxconn 100000

Table 2.2: Kernel Parameters used in the Tests. The Linux kernel was

tuned to not drop UDP packets on reception and to have the best re-

sponsiveness for TCP.

Chapter 3

Internet of Things Protocols

Analysis over Error and

Delay prone Links

The Internet of Things (IoT) paradigm envisions a world where every-

thing is connected and can be remotely monitored and controlled. From

forests to factories, we can improve efficiency and reduce costs if rele-

vant data is collected and analyzed. Moreover, remotely controlling our

homes can drive a new wave of energy efficiency gains. However, in or-

der to connect everything, we need devices that can run on batteries for

years, and this requires protocol optimisation as well. Internet of Things

(IoT) application layer protocols are gaining popularity in a wide range

of scenarios where low-cost, low-power or resource constrained devices

are present. The most diffused protocols are MQTT [32] and the Con-

strained Application Protocol (CoAP) [33], and both are designed to be

low overhead and constrained device friendly.

MQTT is a publish/subscribe messaging protocol built on top of

43

the Transmission Control Protocol (TCP) [25] and designed to be

lightweight. Moreover, MQTT supports offline messaging to handle dis-

connected clients. MQTT is in standardization within the Advancing

Open Standard for the Information Society (OASIS) consortium [40] [41].

CoAP is a request/response protocol which loosely follows the Hyper

Text Transfer Protocol (HTTP) [35], but over the User Datagram Proto-

col (UDP) [30] instead of TCP. Like HTTP, CoAP is being standardized

within the Internet Engineering Task Force (IETF). In order to ensure

message delivery, CoAP features a retransmission mechanism based on

exponential back-off and a maximum of four retransmission attempts.

MQTT and CoAP address different use cases, and to make them inter-

operable we built the Ponte platform [5, 6]. Ponte is a multi-transport

Internet of Things broker supporting MQTT, CoAP and HTTP and al-

lows to publish messages from MQTT/CoAP enabled devices to HTTP

and vice versa, connecting together the world of things and the Web.

MQTT for Sensor Networks (MQTT-SN) [42] is a variant of MQTT

built on top of UDP. MQTT-SN is semantically compatible and can

be connected to any MQTT broker through a simple protocol bridge.

In [63], the authors have measured that a MQTT-SN performs slightly

better than CoAP over 802.15.4 networks. However, MQTT-SN is by far

less popular than CoAP, and almost no libraries for it exists. Thus, we

do non consider MQTT-SN in this study.

In remote areas lacking in fixed terrestrial network infrastructure, the

only available Internet access technology is often represented by satellite

links, affected by losses and significant delay. At this time there is no

information about MQTT and CoAP performance over satellite IP links

in the literature: in this chapter we compare these two IoT protocol in

3.1 Application Layer Testbed 44

Server

Sensor

Ideal (no losses) lossy

Figure 3.1: Reference architecture for our measurement campaign. We

assume that the link between the server and the satellite is error-free,

while the link between the satellite and the sensor is error-prone. Both

links are subject to delays.

terms of latency and throughput in order to be able to choose the most

suitable protocol, depending on the application requirements. MQTT and

CoAP as application protocols for smartphone applications are studied

in [64]. However, it does not consider links with high round-trip time,

especially in presence of packet losses. Our study is focused on evaluating

the latency of both application protocols at the increase of link delay and

packet loss.

3.1 Application Layer Testbed

In order to compare MQTT and CoAP we consider the network archi-

tecture as described in Fig. 3.1: one or more devices connect to a server

running MQTT or CoAP by the means of a single satellite link.

The satellite connection showed in Fig. 3.1 is emulated using Dum-

3.1 Application Layer Testbed 45

Table 3.1: Measurement Campaign Parameters

Variable Value

Pe 10−2, 10−1

dlink [0, 150]

A 2 · 10−4, 1 · 10−3, 0.01, 0.1

mynet [65]. Dummynet is a live network emulation tool, originally de-

signed for testing networking protocols: It is able to simulate packet loss,

delay and bandwidth limitations. In our simulations, links are affected

by delays, while downlink in the Forward Link (FL) and uplink in the

Reverse Link (RL) are affected by delay and losses.

The goal of our measurement campaign is to verify in what conditions

it is better to use CoAP or MQTT. Thus, the considered simulation pa-

rameters are packet loss probability Pe, link delay dlink, offered traffic

from the devices A. In order to represent different channel conditions

the loss probability Pe takes values in the interval [10−2, 10−1], as these

are common error rates for low-SNR wireless links used by IoT appli-

cations [66, 67]. Finally, delay dlink varies from 10 ms to 150 ms. The

end-to-end delay is dend−end = 2× dlink.

We evaluate four scenarios depending on the amount of offered traf-

fic through the protocols, under two packet loss probability, as shown

in Table 2.2. The first two scenarios (2 · 10−4, 1 · 10−3) emulate a case

where a single constrained node transmits/receives messages. While in

the third and fourth scenarios (0.01, 0.1), we consider a network of 50 de-

vices, transmitting their messages through a single gateway provided by

a satellite IP link: this scenario is common in remote areas, where a sin-

3.1 Application Layer Testbed 46

gle connection can be reused by multiple devices, potentially connected

through multi-hop wireless network.

In order to evaluate consistently MQTT and CoAP, we use con-

firmable messages in CoAP. The sender should receive an ACK

within a timeout, or it starts retransmitting with exponential back-

off. CoAP limits the numbers of such retransmissions to 4. In par-

ticular CoAP’s back-off mechanism is controlled by two parameters

[68]: retransmission timeout (RTO) and retransmission counter. The

initial value of RTO is set to a random number within the interval

[ACK TIMEOUT, ACK TIMEOUT*ACK RANDOM FACTOR]. The

default value is 2 seconds for ACK TIMEOUT and 1.5 seconds for

ACK RANDOM FACTOR. The retransmission counter goes from zero

to MAX RETRANSMIT (default value is 4). Retransmission timer starts

when a message is sent and is doubled when the timer expires and no ACK

is received. The time between the first transmission of a confirmable mes-

sage and the instant in which no further acknowledgments are expected

is called exchange lifetime and is given by

EXCHANGE LIFETIME =

ACK TIMEOUT ∗ (2MAX RETRANSMIT − 1)∗

∗ACK RANDOM FACTOR+

+2 ∗MAX LATENCY + PROCESSING DELAY (3.1)

and, with default parameters its value is 247 seconds. In equation 3.1,

MAX LATENCY is the maximum time that a datagram needs, in or-

der to be delivered to destination (default value 100 seconds); PRO-

CESSING DELAY is the time needed for a device to process a con-

firmable message and send the corresponding ACK (by default set to

3.2 Results 47

ACK TIMEOUT).

In the following analysis we are including in our measures only the mes-

sages that are effectively transmitted, not the ones that were never re-

ceived by the server. This might happen for CoAP which, after four

unsuccessful retransmissions, reports to the application the server un-

reachability. On the other hand, MQTT guarantees packets delivery as

it is based on TCP.

3.1.1 Implementation

In order to minimize the differences in our measurements due to different

software stacks, we base our MQTT and CoAP server upon the Ponte

Project and on the Node.js framework [51] (version 0.10.20). The clients

are emulated using MQTT.js [53] (version 0.3.7) and node-coap [54] (ver-

sion 0.5.3), which are high-level clients for MQTT and CoAP written in

node.js. We motivate the use of the node.js framework because it excels at

I/O, while providing a high-level development language and framework.

The Ponte project support the interoperability between the most com-

mon IoT protocols, HTTP, MQTT and CoAP [5, 6]. Fig. 3.2 shows the

architecture of Ponte: it combines persistence and pub/sub messaging to

support HTTP, MQTT and CoAP, but it can be extended to support

more. On the implementation side, different databases can be used for

storage data, while different message queues, or brokers, can be used to

deliver real-time or offline messages.

3.2 Results 48

HTTP Server MQTT Server

Persistence

HTTP Clients MQTT Clients

CoAP Server

CoAP Clients

Pub/Sub

.O
R

G

New Protocol

NP Clients

Ponte

Figure 3.2: The Ponte architecture. Ponte bridges various Internet of

Things application protocols. Ponte can be deployed on top of various

databases and brokers, and can be extended to support more protocols.

The list of supported databases and brokers is not exhaustive.

3.2 Results

Fig. 3.3, 3.4, 3.5, and 3.6 show the results of our measurements campaign

regarding the application protocol latency. For each combination of delay,

probability of packet loss, and offered traffic the presented values in the

figures are the average of 1000 repetitions.

All measurements were taken on a virtual machine gently provided by

LiberoCloud, namely a ’Small’ instance with 1 virtual core and 1GB

of RAM. The VM operating system is Ubuntu 12.04. All major cloud

providers offers similar setups. However, we think our results are not

influenced by the underlining stack, as our emulation occupied very little

of the allocated resources.

3.2.1 Low Throughput

Fig. 3.3 and 3.4 shows the results with the single node scenario. In that

regard, Fig. 3.3(a) and 3.4(a) shows that MQTT and CoAP performs

equally with low packet loss. However, Fig. 3.3(b) and 3.4(b) highlights

3.2 Results 49

●
● ● ●

●
● ● ●

●
● ●

● ● ● ●

●

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Link delay [ms]

E
nd

−
to

−
en

d
de

la
y

[m
s]

A=2e−04E Pe=0.01

●

MQTT latency (mean)
CoAP latency (mean)
MQTT throughput
CoAP throughput

(a)

●

●
● ● ●

● ●
● ●

●

● ●
● ●

●

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Link delay [ms]

E
nd

−
to

−
en

d
de

la
y

[m
s]

A=2e−04E Pe=0.1

●

MQTT latency (mean)
CoAP latency (mean)
MQTT throughput
CoAP throughput

(b)

Figure 3.3: Latency on the Low-Throughput scenario for MQTT and

CoAP, which is the case of a single node sending a message every interval

of time. These experiments have a lower error probability of 0.01.

3.2 Results 50

● ● ● ●

● ● ●
● ●

● ●
●

● ● ●
●

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Link delay [ms]

E
nd

−
to

−
en

d
de

la
y

[m
s]

A=0.002E Pe=0.01

●

MQTT latency (mean)
CoAP latency (mean)
MQTT throughput
CoAP throughput

(a)

●
● ●

●

● ● ● ●
●

●
● ● ●

● ●

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Link delay [ms]

E
nd

−
to

−
en

d
de

la
y

[m
s]

A=0.002E Pe=0.1

●

MQTT latency (mean)
CoAP latency (mean)
MQTT throughput
CoAP throughput

(b)

Figure 3.4: Latency on the Low-Throughput scenario for MQTT and

CoAP, which is the case of a single node sending a message every interval

of time. These experiments have a higher error probability of 0.1.

3.2 Results 51

● ● ● ●
● ● ● ●

● ● ●
●

● ● ● ●

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Link delay [ms]

E
nd

−
to

−
en

d
de

la
y

[m
s]

A=0.01E Pe=0.01

●

MQTT latency (mean)
CoAP latency (mean)
MQTT throughput
CoAP throughput

(a)

● ● ● ● ●
● ● ●

●

●

● ●
● ● ●

●

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Link delay [ms]

E
nd

−
to

−
en

d
de

la
y

[m
s]

A=0.01E Pe=0.1

●

MQTT latency (mean)
CoAP latency (mean)
MQTT throughput
CoAP throughput

(b)

Figure 3.5: Latency on the High-Throughput scenario for MQTT and

CoAP, which is the case of multiple nodes sending messages (50 nodes in

this graphs). These experiments have a lower error probability of 0.01.

3.2 Results 52

● ● ●
●

● ●
● ●

● ●
● ●

● ●
● ●

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Link delay [ms]

E
nd

−
to

−
en

d
de

la
y

[m
s]

A=0.1E Pe=0.01

●

MQTT latency (mean)
CoAP latency (mean)
MQTT throughput
CoAP throughput

(a)

●

●
●

● ● ●
● ● ●

● ● ● ●

● ●

●

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Link delay [ms]

E
nd

−
to

−
en

d
de

la
y

[m
s]

A=0.1E Pe=0.1

●

MQTT latency (mean)
CoAP latency (mean)
MQTT throughput
CoAP throughput

(b)

Figure 3.6: Latency on the High-Throughput scenario for MQTT and

CoAP, which is the case of multiple nodes sending messages (50 nodes in

this graphs). These experiments have a higher error probability of 0.1.

3.2 Results 53

that MQTT performs better in a low offered traffic setup with a more

consistent packet loss. We explain this behavior due to the different ren-

trasmission mechanism of TCP and CoAP: TCP has a more effective

rentrasmission scheme that evaluates the maximum Round Trip Time

(RTT), while CoAP uses a fixed value of 202 seconds, which follows from a

MAX LATENCY parameter of 100 seconds. The MAX LATENCY vari-

ables is defined by the spec arbitrarily. Moreover, CoAP first retransmis-

sion occur between 2 and 3 seconds, which is higher if compared to TCP.

Thus, MQTT performs better.

3.2.2 High Throughput

Fig. 3.5 and 3.5 shows the results with the multiple node scenario with

an higher offered traffic. In that regard, Fig. 3.5(a) and 3.6(a) shows that

CoAP performs slightly better than MQTT at the increase of delay with

low packet loss probability. However, Fig. 3.5(b) and 3.6(b) highlight that

MQTT performs better than CoAP, in terms of latency, with high offered

traffic and high packet loss probability. With both high and low packet

loss probability, MQTT offers the best performance in terms of through-

put, in the presence of high offered traffic. The worse performance of

CoAP in terms of throughput is due to its retransmission mechanism:

The parameter ACK TIMEOUT, by default set to 2 seconds, makes a

node wait at least 2 seconds for an acknowledgment before trying to re-

transmit; In case of a loss, it is necessary to wait at least 2 seconds before

a retransmission can occur. Although this phenomenon is not apprecia-

ble in the latency graph due to the high number of averaged realisations,

the delay introduced by the back-off mechanism causes a throughput

degradation.

3.3 CoAP Parameters Tuning 54

3.3 CoAP Parameters Tuning

In order to improve CoAP latency and throughput, we reduced the

ACK TIMEOUT from 2 s to 1.2 s and ACK RANDOM FACTOR from

1.5 to 1.2. By reducing these parameters, CoAP starts retransmitting

sooner and thus the mean latency and normalized throughput should

improve. Our experiments, which are highlighted in Fig. 3.7, confirm our

hypothesis. Moreover, by tuning the parameters for fast rentransmission,

CoAP offers a better latency and same throughput of MQTT over links

with delays higher than 90 ms under high traffic conditions.

3.4 Conclusions and Future Work

Internet of Things (IoT) application layer protocols, such as MQTT and

CoAP, expose different behaviour in high throughput, delay, or lossy

conditions. In this chapter, we analyzed the latency and throughput of

MQTT and CoAP, two protocols suited for low-cost, low-power and re-

source constrained devices.

The goal of this research work is to understand in what conditions it is

better to use CoAP or MQTT in respect to the increase of delay and

packet loss. As our results show, MQTT offers higher throughput and

lower latency than CoAP in high offered traffic scenario, in the presence

of high percentage of packet loss and delay. However, we showed that

by tuning the operational parameters of CoAP, it is possible to overtake

the results achieved by MQTT. Thus, tuned CoAP offers better latency

and throughput, even if some packets might be completely lost, as only

4 retransmission occur, while TCP guarantees message reception.

Based on our results, it is possible to assess a guideline in choosing the

3.4 Conclusions and Future Work 55

●

●
●

● ● ●
● ● ●

● ● ● ●

● ●

●

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

Link delay [ms]

E
nd

−
to

−
en

d
de

la
y

[m
s]

A=0.1E Pe=0.1

●

MQTT
CoAP ACK_T 2s
CoAP ACK_T 1.2s

(a)

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Link delay [ms]

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

A=0.1E Pe=0.1

●

MQTT
CoAP ACK_T 2s
CoAP ACK_T 1.2s

(b)

Figure 3.7: Latency and throughput of the CoAP protocol with

ACK TIMEOUT from 2 s to 1.2 s and ACK RANDOM FACTOR from

1.5 to 1.2. (a) shows the latency of MQTT, CoAP with the defaults, and

CoAP with the tuned parameters. (b) shows the throughput of MQTT,

CoAP with the defaults, and CoAP with the tuned parameters.

3.4 Conclusions and Future Work 56

application protocol for an IoT application depending on the network

characteristics. As MQTT performs better in the low throughput scenario

with a single device, we suggest the use of MQTT in presence of high

delay and a single device. However, if the offered traffic increases, CoAP

with the tuned parameters offers the outlined advantages. Finally, it is

better to consider that CoAP might support sleepy devices better than

MQTT, especially if their duty cycle is hourly or daily, as there is no cost

of TCP connection handshaking.

Our work can be extended in several directions. Firstly, it is possible to

study how the CoAP parameters impact the latency and throughput,

then we might identify some dynamic configuration of these parameters.

Secondly, we might study more protocols, such as MQTT-SN. Thirdly, we

might want to verify how TCP variants specifically designed for satellite

networks affects MQTT performance.

Chapter 4

Latency Analysis of

Real-Time Web Protocols

over a Satellite Link

The World Wide Web has changed the way we work, play, and live. At the

beginning, the Web was used mostly by the research and academic com-

munity and consisted of static resources. Researchers would write HTML

pages by hand and would distribute them by means of Web servers. Then,

when new Web technologies and increased server computational capac-

ity were made available, customized Web pages dynamically generated

by programs running on Web servers became popular. Today, Web pages

generated by well-crafted programs that allow people to collaborate over

the Web are the norm.

At the beginning of the Web, Web pages were delivered to the client ready

to be rendered and every user interaction required a page reload. Now,

the user resources to display Web pages have grown to such an extent

that users can run fully-fledged Web applications within the browser and

58

pages can be modified without the need of a reload. This is achieved

by running Javascript code at the browser. Thanks to the Asynchronous

JavaScript and XML (AJAX) technique [69], applications adopting the

so called ‘Web 2.0’ approach can update a Web page in response to

user commands or poll the server for changes at regular intervals. AJAX

network transfers are faster and lower-overhead compared to the legacy

techniques based on HTML. Moreover, the JavaScript Object Notation

(JSON) [70] is increasingly preferred to the more complex XML as a

transfer language.

The main limiting factor of the modern Web applications is the network-

induced latency, which is strictly related to the Round Trip Time (RTT)

beteween client and server. As the RTT increases, the responsiveness of

Web applications degrades. This is particularly critical when the Internet

access is through satellite, as the RTT might be several times the one of

terrestrial connections (RTT is about 600ms for a GEO satellite). Perfor-

mance Enhancing Proxies (PEPs) [71] have been designed to maximise

throughput and efficiency of traditional HTTP connections, but might

not cope well with the dynamic Web traffic generated by interactive ap-

plications. To guarantee usability of Web applications also to satellite

users is therefore essential to improve the responsiveness of HTTP.

This chapter aims at evaluating some of the most promising techniques

for real-time Web applications in presence of long RTTs, such as those

found on a GEO satellite link, by carrying out a series of experiments

on real platforms. The techniques considered are used in real-world ap-

plications to provide users powerful Web front-ends. Initially, front-end

developers focused primarily on page manipulation by means of advanced

application program interfaces (APIs), such as the jQuery [72] library.

59

More recently they addressed more sophisticated frameworks, such as

the Model View Controller (MVC) [73], that offer well-known design

patterns. The most popular of the new frameworks is Backbone.js [74].

The Web applications that are built with these technologies are compara-

ble, both in terms of features and capabilities, to the traditional desktop

applications, but with the additional requirement that the applications

depend on remote data, which has to be fetched via AJAX. In order to

increase responsiveness, Web applications are allowed to fetch data from

the server automatically, anticipating the user inputs. These methods are

supported by a number of techniques, protocols and libraries and have

gone through refinements along the years. However, these technologies are

never been tested with high-delay links, such as those of a GEO satellite

and the aim of this chapter is to fill this gap. In this chapter we focus on

the following three techniques, which are the most common in the field:

Ajax Long-Polling (ALP) [61], Server-Sent Events (SSE) [39] and Web-

Socket (WS) [38]. ALP is a very efficient polling technique, while SSE is

a unidirectional data streaming protocol. WS is the cutting-edge stan-

dard that provides a bidirectional data streaming protocol. Even though

WS achieves the lower latency, it is still not clear if it will be widely

supported, hence the need to assess other widespread techniques.

The chapter is organized as follows. Section 4.1 illustrates the state of

art protocols and techniques for building Real-Time Web applications.

Section 4.2 describes both the testbed setup for the evaluation of the

protocols and the experiments to assess the latency of the various pro-

tocols. Section 4.3 presents and discusses the results of the experiments.

Finally, in Section IV we draw our conclusions.

4.1 Real-Time Web Protocols and Techniques 60

Figure 4.1: High-level architecture of the testbed. Browsers run on either

desktop or mobile devices; desktops are directrly connected to the router

via Ethernet, mobile devices through a 802.11 WLAN; the delay intro-

duced by the GEO satellite link is emulated by means of Dummynet, run-

ning on the router. The tested protocols are Ajax Long-Polling, Server-

Sent Events and WebSockets

4.1 Real-Time Web Protocols and Tech-

niques

The development of technologies for pushing data from the server to the

browser has encountered several difficulties, mostly due to the lack of

support by Web servers and browsers. The core idea behind Server Push

is to maintain open a communication channel between the browser and

the Web server and to reduce as much as possible the overhead when us-

ing this channel w. Since HTTP 1.1 [35] is essentially a request/response

4.1 Real-Time Web Protocols and Techniques 61

protocol, it does not support this feature natively. In order to alleviate

the slow responsiveness of HTTP 1.1 in the presence of real-time inter-

active Web applications, in recent years a series of proposal have been

developed.

Ajax Long Polling (ALP) [61] exploits a loophole inside the HTTP 1.1

spec. After receiving a HTTP request, a Web server is not required to

respond immediately; rather it can defer few instants the reply. By chang-

ing the timing of request/responses, it is possible to simulate a continuous

client-server communication channel. ALP has been used for several years

by the most common browsers. Note that ALP keeps open the underlying

TCP connection, by using the keep-alive feature of HTTP/1.1. Unfortu-

nately, ALP has a very high overhead due to the transfer of a full HTTP

header at each request.

A second technique to implement real-time Web applications is Server-

Sent Events (SSE) [39]. Although promoted by W3C, it has seen a limited

spread so far. SSE is part of the HTML5 specifications. It defines both the

Javascript API and the HTTP payload format to channel data in a HTTP

request. Unlike ALP, the response HTTP body is not terminated after

delivering a payload, so new events can be forwarded to the client with-

out the overhead of retransmitting the HTTP headers. SSE is a backward

compatible specification and most browsers (excluding Microsoft Internet

ExplorerTM – IE) implement this. Both ALP and SSE allow the server to

deliver continuously changing data to the clients. However, servers lack

of proper ways to deal with user-generated updates. The only technique

that can be adapted to ALP and SSE is an AJAX call, which is in fact a

complete HTTP request. Since the number of connections that browsers

can open to a given domain is limited, updates cannot be sent concur-

4.2 Testbed Layout and Experiment Description 62

rently. This may cause head of line (HOL) blocks when the rendering of

resources already received is blocked by other requests.

In order to support collaborative Web applications, WebSocket has also

been included in the HTML5 specifications. Similarly to SSE, WebSocket

consists of a Javascript API and a packet data unit (PDU) to be encapsu-

lated in HTTP payloads. Unlike SSE, both the request and the response

are left open, thus leading to a full-duplex channel. In addition, the Web-

Socket specification is much more flexible allowing to transfers of both

data and control packets. Web servers are starting to support the Web-

Socket specification in 2013. In order to provide an evaluation on also

the future of the Web, we are also evaluating the SPDY v3 protocol [75],

as it is the basis of HTTP 2. SPDY is proven to outperform HTTP/1.1

over a satellite link [76] for normal Web navigation. However, Real-Time

Web applications have different traffic patterns than normal Web sites.

Thus, this work complements the work of Cardaci et al [76] with the

investigation of a different application scenario.

The next Section will describe how the three techniques described above,

i.e. ALP, SSE and WS have been evaluated on an emulated GEO satellite

link.

4.2 Testbed Layout and Experiment De-

scription

The aim of the experiments is to evaluate how the Real-Time Web pro-

tocols (i.e. ALP, SSE and WS) and their different implementations per-

form in a GEO satellite scenario without losses. In particular, we aim to

evaluate for the first time these protocols in a high delay environment,

4.2 Testbed Layout and Experiment Description 63

Browser Version

Google Chrome 27.0.1453

Firefox 21.0.0

Safari 6.0.4

iOS (Mobile Safari) 6.0.0

Android (Chrome) 18.0.1025

Table 4.1: The various Browser version used in the experiments

considering both desktop and mobile platforms. Moreover, for the sake

of generality, the satellite link has been deliberately emulated as a simple

delay.

Fig. 4.1 shows the testbed layout. The testbed consists of three parts:

• Several Web clients running different browsers on different hard-

ware platforms (e.g. a Nexus 7’ tablet, an iPad 2 tablet and a Mac

OS X laptop). The mobile devices are connected through a dedi-

cated Wi-Fi network. Table 4.1 details different client architecture

and Web browsers.

• A satellite gateway also emulating the GEO satellite link. This is

emulated by inserting the typical propagation delay of GEO satel-

lite (RTT=600ms) by means of the Dummynet [65] emulation tool.

• A Web server, which is run by node.js (version 0.10.2) [51]. There

are not intermediaries, such as Apache [77] or Nginx [78], between

the server and the client to achieve the least possible latency.

Server and clients run on virtual machines (VMs), generated by using

4.2 Testbed Layout and Experiment Description 64

VirtualBox [79]. The host is a Macbook Air 2011 equipped with 1.8

GHz Intel Core i7 and 4GB 1333Mhz DDR3. The computer has two

cores with hyperthreading capabilities sufficient to running concurrently

multiple OSes. The Web server VM file-system image is based on the

Ubuntu 12.10 GNU/Linux distribution. The maximum amount of VM

RAM is 512MB, which is largely more than what needed by the Web

server (around 70MB).

The Wi-Fi network is emulated through the Mac OS X “Network Shar-

ing” feature. Both the WiFi network and the satellite link in our ex-

periment do not introduce packet losses. Although this condition may

not always be verified in practice, we believe that this is the most com-

mon case In order to evaluate protocol performance, we focused on three

different scenarios:

• Chat Scenario, the client sends and subsequently receives one mes-

sage;

• Client Update Scenario, the client sends 100 messages and then it

receives one message;

• Server Update Scenario, the client sends one message and then

receives 100 messages.

In all our experiments the content of the message is not significant and

the payload size is always 39 bytes. Each experiment consists of 50 con-

secutive transactions over the same TCP connection. Each experiment is

in turn repeated five times.

The browser on the client always initiates the exchange and computes

the application latency, the transaction’s duration. At the end of each

4.3 Results 65

experiment, the browser sends the 50 transaction times to the server,

which in turn saves them to disk. The three application-layer protocols

(ALP, SSE, and WS) are evaluated on top of HTTP/1.1. ALP and SSE

are also evaluated on the SPDY v3. In order to have a benchmark, all

experiments are repeated also without the satellite delay.

4.3 Results

The following bar charts show the results of our measurement campaign,

averaged over all the transactions. For each test results without GEO

satellite delay (Fig. 4.2, 4.4, 4.6, and 4.8), which are our benchmark

reference, are displayed first, followed by results with GEO satellite delay

(Fig. 4.3, 4.5, 4.7, and 4.9).

Fig. 4.2 and Fig. 4.3 show the latency of ALP respectively without and

with a GEO satellite delay. The figures show that Safari is, on the average,

less robust than the other desktop browsers to the satellite delay increase.

Overall, since the RTT is about 600ms, our measurements show that

the ALP protocol requires between two and four RTTs to complete a

transaction.

In our experiments on the iOS and Android platforms we observed the

delay-jitter increasing when using the Wi-Fi connection without cross-

traffic. This indicates that WiFi specific stack characteristic, such as the

power saving features of mobile device, may affect significantly packet

transmission timings. Future investigations could back this hypothesis.

Fig. 4.4 and Fig. 4.5 show the latency of SSE protocol respectively with-

out and with a GEO satellite delay. SSE performs better than ALP: SSE

uses only one or two RTTs in the case of desktop platforms. Two RTTs

4.3 Results 66

Chrome Firefox Safari iOS Android

Chat
Client.Updates
Server.Updates

Latency of Ajax Long−Polling without Delay

Browsers

T
im

e
(m

s)

0
10

30
50

70
90

11
0

13
0

15
0

Figure 4.2: Application latency of the Ajax Long-Polling protocol with-

out any emulated delays across all tested browsers. Chrome, Firefox and

Safari accessed the server directly, while the iOS and Android browsers

through Wi-Fi.

4.3 Results 67

Chrome Firefox Safari iOS Android

Chat
Client.Updates
Server.Updates

Latency of Ajax Long−Polling with Delay

Browsers

T
im

e
(m

s)

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00

Figure 4.3: Application latency of the Ajax Long-Polling protocol with

the GEO satellite delay (RTT=600ms) emulated delays across all tested

browsers. Chrome, Firefox and Safari accessed the server directly, while

the iOS and Android browsers through Wi-Fi.

4.3 Results 68

Chrome Firefox Safari iOS Android

Chat
Client.Updates
Server.Updates

Latency of Server−Sent Events without Delay

Browsers

T
im

e
(m

s)

0
10

30
50

70
90

11
0

13
0

15
0

Figure 4.4: Application latency of the Server-Sent Events protocol with-

out any emulated delays across all tested browsers. Chrome, Firefox and

Safari accessed the server directly, while the iOS and Android browsers

through Wi-Fi.

4.3 Results 69

Chrome Firefox Safari iOS Android

Chat
Client.Updates
Server.Updates

Latency of Server−Sent Events with Delay

Browsers

T
im

e
(m

s)

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00

Figure 4.5: Application latency of the Server-Sent Events protocol with

the GEO satellite delay (RTT=600ms) emulated delays across all tested

browsers. Chrome, Firefox and Safari accessed the server directly, while

the iOS and Android browsers through Wi-Fi.

4.3 Results 70

Chrome Firefox Safari iOS Android

Chat
Client.Updates
Server.Updates

Latency of WebSocket without Delay

Browsers

T
im

e
(m

s)

0
10

20
30

40
50

60
70

80

Figure 4.6: Application latency of the WebSocket protocol without any

emulated delays across all tested browsers. Chrome, Firefox and Safari

accessed the server directly, while the iOS and Android browsers through

Wi-Fi.

4.3 Results 71

Chrome Firefox Safari iOS Android

Chat
Client.Updates
Server.Updates

Latency of WebSocket with Delay

Browsers

T
im

e
(m

s)

0
20

0
60

0
10

00
14

00
18

00
22

00

Figure 4.7: Application latency of the WebSocket protocol with the GEO

satellite delay (RTT=600ms) emulated delays across all tested browsers.

Chrome, Firefox and Safari accessed the server directly, while the iOS

and Android browsers through Wi-Fi.

4.3 Results 72

ALP SSE

Chat
Client.Updates
Server.Updates

Latency on Chrome through SPDY without Delay

Experiments

T
im

e
(m

s)

0
5

10
15

20
25

30
35

40
45

50
55

60

Figure 4.8: Application latency of Ajax Long-Polling and Server-Sent

Events protocol without the GEO satellite delay on Google Chrome

through SPDY. The WebSocket protocol is not compatible with SPDY,

so it was not included.

4.3 Results 73

ALP SSE

Chat
Client.Updates
Server.Updates

Latency on Chrome through SPDY with Delay

Experiments

T
im

e
(m

s)

0
20

0
50

0
80

0
11

00
14

00
17

00
20

00
23

00

Figure 4.9: Application latency of Ajax Long-Polling and Server-Sent

Events protocol with the GEO satellite delay (RTT=600ms) on Google

Chrome through SPDY. The WebSocket protocol is not compatible with

SPDY, so it was not included.

4.3 Results 74

are observed only in the Server Update scenario, i.e. when 100 messages

are transmitted from the server to the client. A similar qualitative be-

havior, although with a larger bias, is observed in the case of mobile

platforms. The poor performance of SSE in Server Update scenario is in-

vestigated later in chapter, see 4.3.1. More specifically, in our case SSEs

messages are a single line of text, prefixed by ’data: ’. This causes an es-

caping procedure to be performed at every message. Unfortunately, this

procedure slows down the production of messages at the server, whose

transmission can be completed only one RTT later, in a second TCP

segment.

A different situation is illustrated in Fig. 4.6 and Fig. 4.7, which show

the latency of WebSocket respectively without and with a GEO satellite

delay. WS outperforms all the other protocols completing the transaction

in one RTT in almost all experiments on desktop platforms. Moreover,

WS offers a communication channel with a more predictable latency, as

the variance is negligible in desktop platforms and significantly reduced

in mobile platforms.

Finally Fig. 4.8 and Fig. 4.9 show the latency achieved with Google

Chrome desktop browser when ALP and SSE use SPDY/3 for transport,

respectively without and with satellite delay . We can see that both

application-layer protocols achieve worse performance with SPDY than

when WS works in conjunction with HTTP/1.1. A possible explanation,

which however needs further investigation to be confirmed, may be that

SPDY was optimized for typical Internet Web browsing and is not yet

able to efficiently cross-interact with real-time protocols.

The results of our experiments show that WebSocket (WS) introduces

the least latency for Real-Time Web applications. However, WS support

4.3 Results 75

is still not widespread amongst Web servers and Web proxies so the use of

the other techniques may be required. Real-Time Web applications need

to be aware of the latency of the protocol they are using for communica-

tions. We suggest that Real-Time Web applications estimate application

latency by adding a ”heartbeat transaction” that measure the time taken

to send and receive a message to the server. After estimating the applica-

tion latency, the application can then decide if it can provide a sufficient

quality of service. Otherwise, the application can either switch to an of-

fline operation mode by using a store-and-forward technique, or in the

worst-case halt the application.

4.3.1 Enhancing Server-Sent Events

We argue Server-Sent Events can deliver a much increased performance,

as it leverages two HTTP connections to implement a full duplex chan-

nel. In particular, the client sends updates through a standard AJAX

call. The client initiates receiving data by issuing a HTTP GET request,

and then the server appends the ‘events’ to the response body, using the

SSE data format. As the updates can be sent using the HTTP keep-

alive header that allows a client to reuse the same HTTP connection for

multiple requests, the clients uses only two HTTP connections. Those

connections have usually fairly wide TCP transmission windows com-

pared to the data being transmitted. In order to understand why SSE

underperforms, it is important to study the behaviour at the TCP level.

In the server updates scenario, the 100-messages are divided across two

TCP exchanges, one of 132 bytes and one with the remaining, thus re-

quiring at least two RTT. In the chat and client updates scenario, only

the 132-bytes long one is present, thus requiring only one RTT. This is

4.4 Conclusions and Guidelines 76

caused by Nagle’s Algorithm, which combines a number of small outgo-

ing messages to send them all at once. Specifically, as long as there is

a sent packet for which the sender has received no acknowledgment, the

sender should keep buffering its output until it has a full packet’s worth

of output, so that output can be sent all at once. Thus, disabling Nagle’s

algorithm improves SSE latency. However, this is normally not disabled

for HTTP connections.

Fig 4.10, Fig 4.11, and Fig 4.12 show our results without Nagle’s Algo-

rithm. Both ALP and SSE showed better latency, and SSE has slightly

worse latency compared to WebSocket in all scenarios. However, disabling

Nagle’s Algorithm on the server increased the variance for ALP and SSE

techniques, especially in Firefox and Safari.

4.4 Conclusions and Guidelines

The Real-Time Web protocols offer a new way of communicating and co-

operating across the globe. Thus, the satellite community should support

these technologies in GEO satellite networks. In this chapter we evalu-

ated the performance, in terms of latency, of most promising protocols

for real-time Web applications using a range of scenarios. Our previous

experiments show that mobile Web applications suffer longer latencies

over a GEO satellite link. However, we showed that these longer laten-

cies are not due to a software issue with the mobile browsers, but they are

related to radio interferences or WiFi congestion. A possible mitigation

to this problem can be the use of TCP splitting techniques. Finally, we

proved that WebSocket offers the best latency over a GEO satellite link,

as it avoids protocol-specific delays in the data flow. When WebSocket

4.4 Conclusions and Guidelines 77

Chrome Firefox Safari

Chat
Client.Updates
Server.Updates

Latency of Ajax Long−Polling with Delay

Browsers

Ti
m

e
(m

s)
0

60
0

12
00

18
00

24
00

30
00

36
00

42
00

48
00

54
00

60
00

Figure 4.10: Application latency of the Ajax Long-Polling protocol

with the Nagle’s algorithm disabled. with the GEO satellite delay

(RTT=600ms) emulated delays across all tested browsers.

4.4 Conclusions and Guidelines 78

Chrome Firefox Safari

Chat
Client.Updates
Server.Updates

Latency of Server−Sent Events with Delay

Browsers

Ti
m

e
(m

s)
0

60
0

12
00

18
00

24
00

30
00

36
00

42
00

48
00

54
00

60
00

Figure 4.11: Application latency of the Server-Sent Events protocol

with the Nagle’s algorithm disabled. with the GEO satellite delay

(RTT=600ms) emulated delays across all tested browsers.

4.4 Conclusions and Guidelines 79

Chrome Firefox Safari

Chat
Client.Updates
Server.Updates

Latency of WebSocket with Delay

Browsers

Ti
m

e
(m

s)
0

40
0

10
00

16
00

22
00

28
00

34
00

40
00

46
00

52
00

58
00

Figure 4.12: Application latency of the WebSocket protocol with the

Nagle’s algorithm disabled. with the GEO satellite delay (RTT=600ms)

emulated delays across all tested browsers.

4.4 Conclusions and Guidelines 80

is not available, Server-Sent Events is a workable replacement if Nagle’s

Algorithm is disabled. Both protocols achieve much better performance

than the legacy methods based on polling, e.g. Ajax Long Polling, espe-

cially when most of the data comes from the server. If only Ajax Long

Polling is supported, then the best recommendation is to switch to an

offline mode and synchronize the data later.

Chapter 5

Privacy Preservation

Algorithms and Data

Structures

The Internet of Things is forecasted to reach 50 billions of interconnected

devices by 2020 [2]: in this network, the need to secure communication

between things and humans, with a billion devices IoT, is one of the

biggest challenges we will have to cope with, to avoid a massive privacy

issue. In this regard, the European Union is investigating how to regulate

the future Internet of Things [80].

The state-of-art in IoT protocols does not address the privacy needs of

our society [81]: protocols can only provide security for the communica-

tion between two parties by leveraging strong cryptographic algorithms.

However, the main privacy concern is not related to link attacks, but

to normal operations of cloud and mobile systems. These systems must

continuosly answer one specific question about every piece of data they

receive: who can access it? In order to answer that question, IoT applica-

82

tions must agree on what data format to use and its meaning. However,

that answer need to given in a timely manner to support both the high

number of incoming data points and the increasingly-complex user inter-

face patterns. In order to be simple, technology must be fast.

After discussing the possible data formats solutions for the Internet of

Things, in this chapter we propose a new approach for fine-grained data

access control. Our approach allows users to specify privacy preferences

and enforces them when data is accessed. This approach can even be

is co-located with the data and executed entirely on the user’s mobile

device. No external server support is needed, giving the user full control

over his/her data at any time without trusting an external party. Our

approach is based on RDF and SPARQL, modelling privacy preferences

with RDF and checking them with SPARQL queries. This allows us to

reuse the full power of RDF/SPARQL support in the existing RDF store

on the mobile device without the need to add an additional reasoner or

specific parser to process language specific rules. At the same time we

retain the expressiveness of access control policies.

Our approach does not assume any special support from the RDF store

and can be used on top of any RDF store that offers support for SPARQL.

To filter RDF triples we introduce a novel two stage approach that com-

bines (1) an initial efficient query analysis stage that extracts the nec-

essary metadata about the query and the (2) filtering phase that filters

the result set without having to access the store for additional metadata

(about the query). Our evaluation shows that this improved filtering al-

gorithm results in a 10 times increase in system performance compared

to our previous approach.

This chapter is structured as follows: in Section 5.1 we analyze the pos-

5.1 Data Interoperability 83

sible choices for an IoT application at the data level, completing the

interoperability work started on Chapter 2. Then, Section 5.2 gives a

short overview on our target scenario and our assumptions. Based on

this, Section 5.3 presents the basic filtering algorithm based on previous

work. Then, we introduce our new improved filtering algorithm in Sec-

tion 5.4. Section 5.5 presents evaluation results. Finally, Section 5.6 gives

an overview of related work before we wrap up the chapter with future

work and a conclusion in Section 5.7.

5.1 Data Interoperability

Data Interoperability is the other problem we have to solve when devel-

oping an IoT application with multiple devices. Moreover, the data we

want to send evolves over time and we need a solution that allows to

interconnect today’s things with tomorrow’s. Supporting data interop-

erability in a communication between two or more parties requires two

steps. First, all the parties needs to agree on a specific data format to use.

Secondly, all parties needs to agree on the semantics of the data stored

in that data format.

The semantics problem is very important, but it is often neglected in IoT

applications. The most common example is avoiding to transmit the unit

of measure with a sensed sample or a command, e.g. ’advance by 1’ is a

command that has no meaning and can be understood as ’advance by 1

meter’ or ’advance by 1 parsec’.

This section is organized as follows: firstly, we discuss the various option

for data formats available in IoT products; then, we discuss the semantics

of the data, and how to ensure our application will be interoperable in

5.1 Data Interoperability 84

Data Format Encoding Tipology

XML textual Tree-Based, values as strings

EXI binary Tree-Based, different data types

N3/Turtle textual Graph-Based, values as strings

JSON textual Object-Oriented, values as strings

Message Pack binary Object-Oriented, different data types

Protocol Buffers binary Object-Oriented, different data types

Bysant binary Object-Oriented, different data types

BSON binary Object-Oriented, different data types

Table 5.1: Data Formats for IoT Applications

the future; thirdly, we propose a recommendation that allows automatic

conversion between the different data formats.

5.1.1 A Plethora of Data Formats

A data format dictates how data is represented on the network or disk.

A data format can be either textual or binary: textual is usually human-

friendly, while binary is harder to debug if an error happens. However,

data encoded in a binary format is usually much smaller and requires

less battery to be sent.

A data format forces a particular data representation and support some

data types. The most common data representations are:

• Graph-based, in which the data is modeled as nodes that can have

different relations between each other.

5.1 Data Interoperability 85

• Tree-based, in which the data is modeled as nodes that might have

one or more children.

• Object-Oriented, in which the data is modeled with the common

datatypes found in programming languages.

Table 5.1 shows the most common data formats. XML is extremely com-

mon, albeit very verbose, and it is usually used in big enterprises; XML

usually encodes all data types as strings. EXI [49] is a binary representa-

tion of XML that can encode values depending on their type, e.g. Strings,

Integer, Float.

Turtle [82] is a W3C recommendation for representing graph data based

on the RDF model [83]. RDF is also used as the basis of the Linked Data

initiative [84], allowing to reuse different data sets from different parties.

The benefit of using RDF inside IoT applications is that we can identify

objects globally, e.g. unit of measures.

JSON is the data format language of the web, and it is being applied in

lieu of XML everywhere, because it is more developer-friendly as Maps,

Lists, and all other basic datatypes can be serialized directly to JSON.

MsgPack [85], Bison [86], and Bysant [87] are binarization of JSON, as

they have a one-to-one conversion which maps to the same datatypes

and they are all schemaless. Protocol Buffers [88] is a schema-driven data

format that can be easily used in modern Object-Oriented languages, but

it requires a schema compilation step.

5.1.2 Data semantics

To better define the semantics of IoT data, a number of ontologies have

been developed on multiple layers of abstraction [89]: (1) sensor-centric

5.1 Data Interoperability 86

ontologies like the Ontonym sensor ontology [90], the Sensor Data On-

tology [91], and OntoSensor [92]; (2) observation-centric ontologies like

the Semantic Sensor Network Ontology [93], the Sensei Observation and

Measurement Ontology [94], and stimuli-centered ontologies [95], as well

as (3) context-centric ontologies like COMANTO [96] and SOUPA [97].

Clearly it is impossible to specify a single ontology that defines the se-

mantics of all possible data items as they are in many cases application

(domain) specific. This has lead to the development of rather abstract

and complex ontologies that try to fit all possible cases by providing a

conceptual framework only, omitting concrete instances like specific sen-

sor models, etc. Such ontologies try to impose an overarching structure

onto IoT systems and their data, e.g. specifying abstract metadata classes

for stimuli, observations, measurements, sensors and features of interest.

In practice however it is not clear how such complex ontologies will actu-

ally help developers. It is often very difficult to model even simple things

like a temperature reading with an existing ontology since this requires

to understand its abstract concepts (will this be a measurement or an ob-

servation) and to define concrete aspects like the unit of the reading. To

do so, other ontologies must be used, which are in turn very complicated,

trying to model all possible units in a structured way. Instead, multiple

simple ontologies are needed that restrict themselves to very small areas,

specifying them in full detail such that developers can quickly understand

and use them.

5.1.3 A common data format

The Object-Oriented typology of data formats is the most widespread

across developers, and there are several proposals to specify a binary ver-

5.2 Access Control for RDF Stores 87

sion of it. Moreover, it is possible to represent any tree-like data structures

like XML in a Object-Oriented typology. The JSON-LD [98] specification

allows to store RDF data on top of JSON. JSON-LD provides also a way

of transforming the data from one representation to another [99]. Thus,

selecting an Object-Oriented typology allows to convert into the others,

without losing data or the semantics associated with the data.

5.2 Access Control for RDF Stores

In this work, we are focusing on how access to personal user data. To

clarify our target scenario, consider two friends Alice and Bob who want

to exchange personal data with their smartphone devices. Each device by

default, denies access unless otherwise instructed by its user. Alice uses

her smartphone, contacts Bob’s smartphone and asks for his location.

Bob receives a notification on his smartphone that Alice has requested

to access his location1. Bob grants Alice access and this privacy prefer-

ence is stored in his smartphone. Alice can now retrieve and view Bob’s

location on her smartphone. Other data is still not accessible. Next time

Alice requests to view Bob’s location, if the request matches Bob’s stored

privacy preference, then she is automatically granted (or denied) access.

Otherwise, Bob is notified about Alice’s new request and decides whether

to grant her access or not.

To realise this example we propose an access control system for RDF

stores on mobile devices. By storing the data directly on the users’ mobile

devices, users can have full control over their data without trusting any

1We consider location, but modern personal IoT application can track blood pres-

sure, activity, and other extremely sensitive personal data

5.2 Access Control for RDF Stores 88

external server or provider. However, the access control algorithms must

be executed on the mobile device, too and thus they must be very efficient

to respond in a timely fashion and not waste battery life.

Our approach is not limited to mobile devices, but it can also serve as

a basis for a massive privacy system that is powered by cloud comput-

ing service providers. We primarily consider mobile devices as they are

easier to measure than cloud-sized systems with hundred of thousand of

user. However, the algorithms presented in this work are totally mobile-

independent.

Our approach models access control policies for RDF data using the

Privacy Preference Ontology (PPO). PPO is non-domain specific and

can model privacy preferences for any RDF scenario. In this section, we

provide an overview of PPO and we explain how we model privacy pref-

erences using it. Subsequently, we describe how the Privacy Preference

Manager (PPM) enforces such privacy preferences by filtering out RDF

data based on them. The PPM is datastore independent and therefore

can be easily customisable to provide fine-grained access control to any

datastore.

5.2.1 Privacy Preference Ontology (PPO)

PPO2 [100,101] is a light-weight Attribute-based Access Control (ABAC)

vocabulary that allows users to describe fine-grained privacy preferences

for restricting or granting access to non-domain specific Linked Data ele-

ments, such as Social Semantic Data. Considering that PPO is described

in RDF(S), it does not require a specific parser or reasoner but it retains

the expressivity of fine-grained access control policies similar to rule-

2PPO – http://vocab.deri.ie/ppo#

5.2 Access Control for RDF Stores 89

based approaches. Among other use-cases, PPO can be used to restrict

part of FOAF3 profile records to users that have specific attributes. It

provides a machine-readable way to define settings such as “Provide my

location only to my family” or “Grant read access to my activity only to

Alice”.

As PPO deals with RDF(S)/OWL data, a privacy preference defines:

(1) the resource, statement, named graph, dataset or context it must

grant or restrict access to; (2) the conditions refining what to grant or

restrict (for example defining which instance of a class as subject or

object to grant); (3) the access control privileges (including Create, Read,

Write, Update, Delete and Append); and (4) an AccessSpace, defined

by either an agent or a SPARQL query that specifies a graph pattern

that must be satisfied by the requesting user.

Example

Figure 5.1 illustrates Bob’s privacy preference that restricts his loca-

tion only to Alice. The location is modelled as an instance of type

SpatialThing4 which includes longitude and latitude. Hence the pri-

vacy preference is applied to any resource of this type – in our case,

Bob’s location. In this example Alice is granted the read access to Bob’s

location.

5.2.2 Privacy Preference Manager (PPM)

The PPM [102, 103] is an access control manager that allows users to

create privacy preferences for RDF data. The manager also filters the

3Friend-of-a-Friend (FOAF) – http://www.foaf-project.org
4WGS84 – http://www.w3.org/2003/01/geo/wgs84_pos#

5.2 Access Control for RDF Stores 90

PREFIX ppo : <http :// vocab . d e r i . i e /ppo#> .

PREFIX wgs84 : <http ://www. w3 . org /2003/01/ geo/ wgs84 pos#>

<http :// bob . com/ Pr ivacyPre f#1> a ppo : Pr ivacyPre f e r ence ;

ppo : hasCondit ion [

ppo : c l a s sAsSub j e c t wgs84 : Spat ia lThing] ;

ppo : a s s i gnAcce s s a c l : Read ;

ppo : hasAccessSpace [

ppo : hasAccessAgent <http :// a l i c e . com/me>] .

[. . .]

Figure 5.1: Bob’s privacy preference to grant Alice his location

requested data by returning only a subset of the requested data contain-

ing only those triples that are granted access as specified by the privacy

preferences. The PPM was developed as a Web application – either as

a centralised Web application or in a federated Web environment. The

privacy preferences are stored separately from the data and can only be

accessed by the PPM.

Although the PPM is suited for Web environments, it is not originally

designed for operating on mobile devices due to their limited resources –

such as processing power, memory resources and battery life. To port the

PPM to mobile devices we modified the enforcing algorithm substantially

to reduce the number of querying operations needed for filtering. In addi-

tion we designed a new filtering algorithm that extends our previous one

to further reduce the number of queries. In the subsequent sections we

first explain the original filtering algorithm and outline the parts which

are resource expensive. We then provide our extended algorithm and

5.3 PPM Access Control Filtering Algorithm (PPF-1) 91

evaluate both of them.

5.3 PPM Access Control Filtering Algo-

rithm (PPF-1)

The PPM access control filtering algorithm (called PPF-1 in this chapter)

consists of (1) a matching part which maps the triples in the requested

result set to the specific privacy preferences that apply to the triple; and

(2) a filtering part that filters the result set by checking which triples a

requester is granted access. This algorithm was not published in our pre-

vious work and therefore in this section we provide a detailed overview.

Initially, PPF-1 expects a list of requested triples together with the

named graph they reside in. Moreover, the set of privacy preferences re-

lated to the data in the store is also passed to the algorithm. With these,

PPF-1 first matches the triples to their corresponding privacy prefer-

ences; then, it checks what the requester can access and grants the re-

quester a filtered result set. The following sections describe the different

parts of PPF-1 in more detail: Section 5.3.1 describes the matching part

and Section 5.3.2 describes the filtering part.

5.3.1 Privacy Preferences and Triples Matching

Algorithm 1 illustrates the matching between triples and privacy pref-

erences. This part iterates through every triple in the result set and for

every triple it checks all the privacy preferences to match which ones

apply to the triple. The algorithm checks whether each privacy prefer-

ence applies to: (1) the named graph in which the triple resides; (2) a

5.3 PPM Access Control Filtering Algorithm (PPF-1) 92

Data: resultSet and privacyPreferencesList

Result: (1) protectedTriplesList ; (2) unprotectedTriplesList ;

(3) accessAgentsList ; and (4) accessPrivilegesList.

List<PrivacyPreference> pList ← privacyPreferencesList;

List<Triple> rs ← resultSet;

Triple t ← new Triple();

PrivacyPreference p ← new PrivacyPreference();

forall the t ∈ rs do

forall the p ∈ pList do

if p.Match(t) then

pURI ← p.getPrivacyPreferenceURI();

aURI ← p.getAgentURI();

privilege ← getAccessPrivilege();

protectedTriplesList.add(t, pURI);

accessAgentsList.add(aURI, pURI);

accessPrivilegesList.add(privilege, pURI);

else

unprotectedTriplesList.add(t);

end

end

end

Algorithm 1: Privacy Preferences and Triples Matching

5.3 PPM Access Control Filtering Algorithm (PPF-1) 93

Data: subject URI or object URI of the triple and restricted class

Result: boolean isInstance – i.e. whether the subject or object is

an instance of the class

query ← "SELECT ?o WHERE <subject URI ∨ object URI of

restricted triple> rdf:type ?o";

result ← executeQuery(query);

if (result 6= restrictedClass) then

remote ← getEndpoint(subject ∨ object);

remoteResult ← remote.executeQuery(query);

if remoteResult 6= restrictedClass then

isInstance ← false;

else

isInstance ← true;

end

else

isInstance ← true;

end

Algorithm 2: Class Matching

5.3 PPM Access Control Filtering Algorithm (PPF-1) 94

resource in the triple; and (3) a rectified statement – i.e. the triple’s

subject, predicate and object.

The algorithm checks whether each privacy preference has a condition

that specifies: (1) the resource must be the subject of the triple; (2) the

resource must be the object of the triple; (3) the subject of the triple

must be an instance of a certain class; (4) the object of the triple must

be an instance of a certain class; (5) contains a particular predicate; and

(6) contains a particular literal.

For most of these checks, the values in both the requested triples and

in the privacy preferences are tested to check whether they are both the

same. However, for testing whether a subject or object of the triple are

instances of a particular class, the algorithm queries the store each time

a privacy preference (for each triple) is tested. This part is explained in

Algorithm 2.

Algorithm 2 checks whether the subject or object of a requested triple

are instances of a class specified in a privacy preference. This algorithm is

called by algorithm 1 that passes the subject or object of the triple and

the restricted class specified in the privacy preferences as parameters.

The algorithm constructs a query that gets the class type of the subject

or object. If the class type matches with the restricted class then the

algorithm returns true to Algorithm 1. Otherwise it returns false. If the

result of the query does not contain any result (i.e. result = null),

then the algorithm fetches the endpoint URI of the datastore in which

the class types for the subject or object are specified. The endpoint URIs

are mapped to the subjects and objects. Once the class type is retrieved,

the algorithm returns to Algorithm 1 whether they match (true) or not

(false).

5.3 PPM Access Control Filtering Algorithm (PPF-1) 95

Data: protectedTriplesList

Result: (1) accessTriplesList(triple, privilege)

(2) noAccessTriplesList(triple)

Iterator<ProtectedTriple> pIterator =

protectedTriplesList.Iterator();

while pIterator.hasNext() do

pt ← pIterator.next();

forall the agent ∈ accessAgentsList do
if pt.privacyPreferenceURI = agent.privacyPreferenceURI

then

if ¬(pt.Triple ∈ accessTriplesList) then

privilege ← accessPrivilegesList.Privilege;

accessTriplesList.add(pt.Triple, privilege);

end

else

noAccessTriplesList.add(pt.Triple);

end

end

end

Algorithm 3: Privacy Preferences Filtering

5.3 PPM Access Control Filtering Algorithm (PPF-1) 96

If any of the p.Match(t) conditions in Algorithm 1 are true,

then the triple and the privacy preference’s URI are added to the

protectedTriplesList. Moreover the access privileges of each matched

privacy preferences are added to the accessPrivilegesList together

with the privacy preference URI – in order to map the triples to the

access privileges by using the privacy preference URI as the lookup iden-

tifier. Similarly, the access agent in each matched privacy preference are

added to the accessAgentsList together with the privacy preference

URI. Once all the triples are iterated, the filtering part filters the pro-

tected triples as explained below.

5.3.2 Privacy Preferences Filtering

Algorithm 3 filters the triples to send back only the triples which the

agent has access to. The algorithm checks that for each triple in the

protectedTriplesList, the agent has been granted access by matching

the privacy preference URI bound to the triple with the URI bound to the

agent. If these match, then the triple is added to the accessTriplesList.

If the privacy preference URI does not match to any of the URIs bound to

the agent, then the triple is added to the noAccessTriplesList. Once

completed, the filtering algorithm sends back the accessTriplesList

that represents the filtered result set.

5.4 Extended Access Control Filtering Algorithm (PPF-2) 97

5.4 Extended Access Control Filtering Al-

gorithm (PPF-2)

PPF-1 has a major performance bottleneck in the privacy preference

matching phase: for each restricted triple and for every privacy preference

PPF-1 executes a query on the RDF store to test whether the subject or

object is of a particular class type. For instance if there are 100 requested

triples and 100 privacy preferences that test different types of classes,

then PPF-1 will initiate 10,000 queries – assuming that each privacy

preference tests only one class type. This may result in a large overhead

since executing a query can be expensive – specifically on mobile devices

with restricted resources. To increase efficiency, the number of necessary

store accesses for identifying the class of a resource must be reduced

without losing PPF-1’s fine-grained control over data access.

In this section we introduce an extended filtering algorithm (called PPF-

2) that fulfils these requirements. The main idea of PPF-2 is to identify

the class of a resource by analysing both the requested query and the

ontologies used by the data. To reduce the effort of analysing the used

ontologies, we perform an ahead-of-time indexing phase for the ontologies

at the system start time. This index is later used to identify the given

classes. With this ahead-of-time indexing in place, the actual filtering

process becomes a two stage algorithm, as follows:

1. analysis of the query to derive the resources’ classes (Stage 1);

2. filtering of the triples (Stage 2), using the knowledge derived in

Stage 1.

In the following we describe how we realise Step 1. Stage 2 is similar to

5.4 Extended Access Control Filtering Algorithm (PPF-2) 98

the filtering done in PPF-1 and thus not explained again.

5.4.1 Knowledge Extraction from the Ontology and

Query

Our solution is based on a query analysis step that allows to identify the

classes of each resource based on the attributes that are used in the query.

The query analyser parses the SPARQL query and for each resource it

extracts inbound and outbound properties. Inbound properties are ex-

tracted from the triples in which the resource is the object. Outbound

properties are extracted from the triples in which the resource is the sub-

ject. Based on these properties it is possible to identify the classes of a

resource by looking at the ontologies data. Our approach uses a closed-

world assumption, i.e. we assume that the filtering algorithm knows every

ontology on which a privacy preference can be defined. This assumption

is valid because: if an ontology is unknown when the privacy preference

is defined, then the PPM can retrieve it before any actual query is run.

The RDF Schema 5 standard defines two type of relationship for prop-

erties: rdfs:domain and rdfs:range. The first is used to state that any

resource that has a given property is an instance of a class, while the

second is used to state that the values of a property are instances of a

class. Thus, both of them can be used to derive the actual class(es) of a

resource.

5RDF Schema – http://www.w3.org/TR/rdf-schema/

5.4 Extended Access Control Filtering Algorithm (PPF-2) 99

PREFIX rd f : http ://www. w3 . org /2000/01/ rdf−schema

SELECT ? c l a s s ? property

WHERE {

{

? property <rd f :#domain> ? c l a s s

}

UNION

{

? property <rd f :#domain> ? parent .

? c l a s s <rd f :#subClassOf>+ ? parent

}

} ;

Figure 5.2: The SPARQL 1.1 query to build the index on the domain

relationship.

5.4.2 Defining an Index to derive Classes from

Properties

As mentioned before, it is possible to identify the class of a resource by

looking at the query and leveraging the ontology. Similarly to accessing

the store, querying the ontologies is a slow process. This can be improved

by indexing the ontologies (once) before any actual query is run. Thus, it

is possible to make the identification of a resource’s class a memory-only

operation.

Figure 5.2 shows a query that – when executed on a RDF store containing

all the ontologies – extracts all the given properties of a specific class.

5.4 Extended Access Control Filtering Algorithm (PPF-2) 100

<gambas#userLocation>

Predicates Map

Classes Set

(1)

(2)

Figure 5.3: The index data structure used by the class derivation algo-

rithm. The map is accessed with the predicate (1) and then the set is

processed (2).

5.4 Extended Access Control Filtering Algorithm (PPF-2) 101

PREFIX gambas : http ://www. gambas−i c t . eu/ont/

PREFIX wgs84 : http ://www. w3 . org /2003/01/ geo/ wgs84 pos#

SELECT ? l a t ? long ? no i s e

WHERE {? user <gambas : userLocat ion> ? l o c a t i o n .

? l o c a t i o n <wgs84 : l a t> ? l a t .

? l o c a t i o n <wgs84 : long> ? long .

? l o c a t i o n <gambas : no i s eLeve l> ? no i s e }

Figure 5.4: A SPARQL query example where the resources’ class can be

uniquely determined by the query analysis step.

Moreover, it uses the “new” path syntax introduced in SPARQL 1.1 to

gather all the properties of its super classes. A similar query is then used

to extrapolate the classes from the rdfs:range relationship. With this

information two indexes are built, one for using the rdfs:domain and one

for using the rdfs:range relationships. To guarantee O(logN) time cost

(with N the number of different predicates) to access fast access to the

information in an index, we use a combination of Red-Black tree-based

map and set implementations.

Figure 5.3 shows an example of how the rdfs:domain index is used.

Given a resource linked through a predicate userLocation; we use the

predicate as a key into the predicates map. The accompanying value in

the map points to a set of classes, which we add to a result set. This

procedure is then repeated for all predicates of the given resource. Then,

all the resulting sets are intersected The resulting intersected set contains

all the classes that the resource can be an instance of. This process is

repeated for each index and the results are intersected.

5.5 Evaluation 102

Example

Figure 5.4 shows a SPARQL query usable to extract the location (given as

latitude and longitude) of a given user and the noise level at this location.

The ?user is modelled as a gambas:User, a subclass of foaf:Agent. The

?location is a gambas:Place, a subclass of dol:Location 6, which has

an attached wgs84:lat (latitude) and wgs84:long (longitude). In order

to derive the classes of the variables in the query of Figure 5.4, the

algorithm proceeds as follows for the ?user resource:

1. extract the <gambas:userLocation> property;

2. access the index on rdfs:domain using the property as key;

3. access the linked classes set, which contains only the gambas:User

class.

A similar approach can be applied to the ?location resource. In the

following section we will show a comparison of the performances of this

modification versus the base case.

5.5 Evaluation

In order to evaluate the performance gain achieved by our extended fil-

tering algorithm, we conducted a number of experiments on a Google

Nexus 7 device running Android 4.2.2. Our system is implemented in

Java. We compared two configurations with a PPM running on top of

an RDF On the Go data store [104]. In the first configuration the PPM

6DOLCE – http://ontologydesignpatterns.org/wiki/Ontology:

DOLCE\%2BDnS_Ultralite

5.5 Evaluation 103

1,1	
 19,4	

678,9	

143,6	

1369,3	

7916,4	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10	
 100	
 1000	

Av
er
ag
e	

Ti
m
e	

(m

s)
	

No.	
 of	
 Triples	
 in	
 Requested	
 Result	
 Set	

PPF-­‐2	
 PPF-­‐1	

Figure 5.5: Performance with varying size of result set.

is using our previous filtering algorithm PPF-1. In the second one, the

PPM is using our new filtering algorithm PPF-2.

5.5.1 Evaluation Setup and Architecture

The evaluation dataset was composed of 15000 triples, containing data

about seven real-world user profiles. Using this dataset we executed a

sample query on a user’s topic interests and filtered the intermediate

results with both algorithms (PPF-1 and PPF-2). Since we are mainly

interested in the overhead induced by access control instead of query

execution, we measured the execution time for filtering, omitting the

time needed to execute the sample query on the dataset. The latter time

depends only on the underlying RDF store and thus is the same for

5.5 Evaluation 104

669,7	
 1025,6	

4647,4	

7486,8	

8734,6	

11628	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

1	
 100	
 1000	

Av
er
ag
e	

Ti
m
e	

(m

s)
	

No.	
 of	
 Applied	
 Privacy	
 Preferences	

PPF-­‐2	
 PPF-­‐1	

Figure 5.6: Performance with varying number of privacy preferences

5.5 Evaluation 105

both filtering algorithms. To characterise the filtering performance in

scenarios with different complexity, we varied both the number of triples

in the intermediate result and the number of checked privacy preferences.

Each experiment was repeated ten times. We started measuring after an

initial preheating phase consisting of ten filtering runs. This reduced the

variance introduced by the Android Just-in-Time optimiser. Moreover,

each experiment was executed independently in a separate Android App,

with no other running App and with all synchronisation services disabled

– further reducing variances.

5.5.2 Query types and datasets

Figure 5.5 shows the execution time for filtering an intermediate result

set of varying size (10, 100, and 1000 triples) using a single privacy pref-

erence. As can be seen, PPF-2 clearly outperforms PPF-1 by at least a

factor of 10, confirming the effectiveness of the predefined index technique

(see Section 5.4). Even for an intermediate result set of 1000 triples (rep-

resenting the result of a query matching a comparatively large number of

the 15000 triples in the RDF store), PPF-2 requires only approximately

0.7s to check access and filter the result set. In comparison, PPF-1 re-

quires nearly 8s, making it unsuitable for many scenarios, e.g. interactive

systems. The time required for filtering a mid size intermediate result set

of 100 triples is around 0.02s for PPF-2 (compared to approximately 1.4s

for PPF-1). Filtering a small intermediate result set of only 10 triples is

nearly not measurable with both algorithms.

Figure 5.6 shows the execution time for filtering an intermediate result set

of fixed size (1000 triples) using a varying number of privacy preferences

(1, 100, and 1000 preferences). Again, PPF-2 clearly outperforms PPF-1

5.6 Related Work 106

for all measurement points, reducing the absolute time for filtering triples

with 100 privacy preferences to around 1s, down from 8.7s. Interestingly,

the results for filtering with one privacy preference are quite similar (0.7s

for PPF-2, down from 7.5s) due to fixed (i.e. size-independent) execution

efforts. For 1000 privacy preferences, PPF-2 can still outperform PPF-1

by a factor of approximately 2.5 but both algorithms may still be too

slow to be used in time critical scenarios (with PPF-1 requiring around

11.6s and PPF-2 around 4.6s).

Note that the presented results are only valid for situations in which the

original query contains knowledge that can be used for filtering optimi-

sation. This may not always be the case. Therefore we also conducted

experiments with an unbound query that requested all triples in the RDF

store. This query contains no knowledge for PPF-2. In this case PPF-2

is reduced to PPF-1. It must access the store for each triple check and

thus cannot perform better than PPF-1. This is confirmed by our mea-

surements, since the results for PPF-1 and PPF-2 are the same in this

case.

5.6 Related Work

Access control and privacy for RDF data is not a new topic. In this

section we discuss related approaches and explain how our work differs

from earlier work.

Access control privileges for RDF data can be modelled using the Web

Access Control (WAC) vocabulary7. However, this vocabulary is designed

to specify access control to entire RDF documents rather than to spe-

7WAC — http://www.w3.org/ns/auth/acl

5.6 Related Work 107

cific data contained within the RDF document. Privacy policies can be

modelled using the Platform for Privacy Preferences (P3P)8. It specifies

a protocol that enables Web sites to share their privacy policies with

Web users expressed in XML. P3P does not ensure that Web sites act

according to their publicised policies and it does not enable end users to

define their own privacy preferences. The authors in [105] propose a pri-

vacy preference formal model consisting of relationships between subjects

and objects in Social Semantic Web applications. However, the proposed

formal model does not provide fine-grain access control for RDF data.

Similarly, the authors in [106] also propose an access control model for

semantic networks. However, they do not cater for RDF data in mobile

devices. RelBac [107] is a relational access control model that provides a

formal model based on relationships amongst communities and resources.

It is also not intended for RDF data stored in mobile devices.

The authors in [108] propose an access control framework for Social Net-

works by specifying privacy rules using the Semantic Web Rule Language

(SWRL)9. However, this work does not support processing SWRL rules

on mobile devices and requires a specific parser to process the SWRL

syntax.

The authors in [109] compare 12 rule-based languages for enforcing ac-

cess control. Most of them require defining a large amount of rules for

defining access control policies. Moreover, these require specific reasoners

and parsers; apart from a system to enforce them. Our system however

is based on an RDF(S) vocabulary thus processable by RDF parsers

without installing a specific parser. It is also light-weight and requires

8P3P — http://www.w3.org/TR/P3P/
9SWRL — http://www.w3.org/Submission/SWRL/

5.7 Conclusion and Future Work 108

minimum amount of defining access control policies but keeping similar

expressivity as rule-based approaches.

In [110] the authors propose a system whereby users can set access con-

trol to RDF documents. Our approach provides more fine-grained access

control to the data rather than to the whole RDF document.

The authors in [111] present a role-based access control model for RDF

stores called RAP that binds role permissions to RDF store actions, such

as inserting a triple. This model does not support fine-grained access con-

trol for data stored in mobile devices. The authors in [112] also present

an access control framework for RDF stores that consists of a pre-policy

evaluation and query rewriting. The authors use Protune [113] for ex-

pressing the policies which requires a specific framework to process these

policies.

Finally, the authors in [114] propose an access control vocabulary that is

similar to our PPO and a manager similar to our PPM. However, their

model applies only to named graphs, unlike our model which we apply

to statements, resources and classes. Although they provide support for

mobile devices, the access control policies are sent to a central server and

processed on this server. Our approach supports access control filtering

directly on mobile devices.

5.7 Conclusion and Future Work

Access to personal data must be controlled tightly and efficiently. In

this chapter we presented our approach for fine-grained access control

for RDF data on mobile devices. It allows users to fully control access

to their data directly on their mobile devices, increasing their trust in

5.7 Conclusion and Future Work 109

the system. This will increase their willingness to share such data with

others in a privacy preserving manner and independently of any external

provider. However, this system can be extended to work with a trusted

external provider, as all algorithms and data structure presented do not

make any mobile assumptions.

As we have shown, Linked Data technology like RDF and SPARQL can

be used – even on mobile devices – to realise access control for RDF

data. By using RDF to model our privacy preferences (with the same

expressivity as rule-based approaches) and a SPARQL engine to check

them, no special rule language and reasoner components are necessary.

Instead, the store managing the user data can be used to realise the access

control on this data. Our experiments show that to be efficient such

a system should combine multiple techniques, e.g. pre-indexing, query

analysis as well as result filtering. This way we could improve performance

by a factor of ten in many cases.

We presented two filtering algorithms that can be used to enforce pri-

vacy preferences: PPF-1 and PPF-2. We analysed PPF-1 and showed

that it is ill-suited for mobile applications, due to the serious overhead

introduced by the filtering process. The same overhead can cause similar

problems with high-throughput cloud applications. In order to reduce the

overhead, we proposed PPF-2, which uses a novel approach for extracting

knowledge from the requestor’s query. We evaluated both algorithms and

showed that our optimisation improves the filtering process by a factor

of ten.

Our work can be extended in several directions. Firstly, an evaluation

of the impact of the proposed index on a combination of different types

of privacy preferences is needed. Secondly, access space queries remain

5.7 Conclusion and Future Work 110

problematic, as they need to be tested on the store. It should be possible

to address this in a similar manner as PPF-2 by analysing and building

indexes for access space queries prior to executing the filtering algorithm.

Conclusion

At the beginning of this 3-years program on the Internet of Things, this

new field appeared extremely fragmented and not coherent: different ap-

proaches were presented and they seemed in complete contradiction, as

they were solving very different needs. In fact, most of the development

in the IoT field happens in non-compatible silos, but we believed that

a common interaction model should exists. We thought that, if we had

found that model, we could have been able to solve the interoperability

problem between silos, thus building the Internet of Things.

The Ponte project, as presented in Chapter 2, implements such a model.

We identified a set of primitives for IoT application interactions: thus we

can solve the interoperability problem, and bridge between the various

solution in the IoT field.

Ponte enables companies and engineers to design IoT applications by

cherry picking the best technologies, without sticking a single vendor

and solution family. Thus, we evaluated various protocols and solutions

in various condition of delay and error on the link, and we assessed the

overall application latency in Chapters 3 and 4.

Ponte enables the creation of a distributed hub for the Internet of Things:

who can access that data? The right and availability of privacy is in state

of great flux. In fact, we might assume that everything we do online is

Conclusion 112

public, as it can be logged and wiretapped easily. Moreover, the Internet

of Things might allow unprecedented availability of data about ourselves

and our environment. Thanks to the Big Data movement, unprecedented

correlation and prevision will be possible. While technology progresses in

that direction, we believe that every person must be in control on how

his data is processed, stored, and accessed.

The algorithms and data structures presented in Chapter 5 allows every-

one to specify who and how the data about themselves can be accessed.

However, these approaches have been tried before and failed due to the

cost of data filtering at high scale. In order to make it viable, we devised

new algorithms to allow faster processing, up to 10 times the state of art.

Thus, privacy data filtering is now possible with a low overhead.

This work can be extended in several directions. Firstly, Ponte should

be extended to support more IoT protocols, e.g. ZigBee. Secondly, Ponte

needs to be extended to have native privacy support to allow people

to specify how their data can be processed and accessed. Thirdly, the

amount of data that the IoT will produce need to be stored: a new data

storage system needs to be evaluated and customized to support the

variety of data and applications of the bright and connected future that

the IoT will give us.

Acknowledgements

In 1988, when my father put me in front of that clunky keyboard, nobody

thought that I would have spent a great part of my life staring at a screen,

pushing random keys on now-stilish keyboards. Even in difficult times,

my parents always encouraged and supported me to develop my passion.

Thanks.

Ten years ago, when I fell in love with Anna, I did not know that she

would become the most important person of my life. Anna is my secret

sauce. In the last ten years, she made me a better person and she still

fixes all my mess. I love you, Anna.

Raffaella and Enzo have always helped me and offered their invaluable

advices. Thanks for considering me family.

I would like to thank the monster gang, Francesco, Jonathan and Nicolò,

to the endless hours put into not studying when we were undergrads.

Thanks monsters.

Conclusion 114

I would like to thank my tutors, Giovanni and Alessandro, to introduce

me to this amazing field and to offer me the possibility to develop my

carrer among their team. Thanks Francesco and Giulio for the mutual

support in this almost-ending process!

I owe much of what I have achieved to my friends at Mavigex: Isabella,

Daniele, Claudio, Alessio, Rosalba, and Max. Thanks, there is much of

all of you in this work. Unfortunately in the writing of this dissertation

no balls where thrown, and no designer went mad. I miss you.

Thanks, Bologna Vista Radio Club. We should be on air again.

Living a semester abroad change your perspective of life. I would like to

thank Gregor Schiele and his wife, Sabrina, for making my time in Ireland

special. Gregor, I still miss our discussions about life and technology.

Finally, I had the greatest possible company when writing and revising

this thesis: my little puppy dog, Puffetta (Smurfette).

Grazie.

Bibliography

[1] M. Weiser, “The computer for the 21st century,” Scientific

American, Feb. 1991. [Online]. Available: http://www.ubiq.com/

hypertext/weiser/SciAmDraft3.html

[2] “More than 50 billion connected devices,” Ericsson, February

2011. [Online]. Available: http://www.ericsson.com/res/docs/

whitepapers/wp-50-billions.pdf

[3] “It’s the Beginning of a New Era: The Digital Industrial

Economy,” October 2013. [Online]. Available: https://www.

gartner.com/newsroom/id/2602817

[4] L. Tan and N. Wang, “Future internet: The internet of things,” in

Advanced Computer Theory and Engineering (ICACTE), 2010 3rd

International Conference on, vol. 5. IEEE, 2010, pp. V5–376.

[5] M. Collina, G. Schiele, A. Vanelli Coralli, and G. E. Corazza, “The

ponte project: Platform architecture, primitives, and data formats

for interoperability in the internet of things,” Submitted to IEEE

Internet of Things Journal, 2014.

[6] “Ponte Eclipse Project,” December 2013. [Online]. Available:

http://eclipse.org/ponte

Bibliography 116

[7] M. Collina, G. E. Corazza, and A. Vanelli-Coralli, “Introducing the

qest broker: Scaling the iot by bridging mqtt and rest,” in Personal

Indoor and Mobile Radio Communications (PIMRC), 2012 IEEE

23rd International Symposium on. IEEE, 2012, pp. 36–41.

[8] M. Collina, A. Vanelli-Coralli, C. Caini, G. Corazza, and R. Secchi,

“Latency analysis of real-time web protocols over a satellite link.”

[9] R. H. Weber, “Internet of things–new security and privacy chal-

lenges,” Computer Law & Security Review, vol. 26, no. 1, pp. 23–30,

2010.

[10] O. Sacco, M. Collina, G. Schiele, G. E. Corazza, J. G. Breslin, and

M. Hauswirth, “Fine-grained access control for rdf data on mobile

devices,” in Web Information Systems Engineering–WISE 2013.

Springer, 2013, pp. 478–487.

[11] H. Zimmermann, “Osi reference model–the iso model of architec-

ture for open systems interconnection,” Communications, IEEE

Transactions on, vol. 28, no. 4, pp. 425–432, 1980.

[12] S. Bluetooth, “Bluetooth core specification v4.0,” 2010.

[13] B. P. Crow, I. Widjaja, L. Kim, and P. T. Sakai, “Ieee 802.11

wireless local area networks,” Communications Magazine, IEEE,

vol. 35, no. 9, pp. 116–126, 1997.

[14] “IEEE Standard for Information Technology- Telecommunica-

tions and Information Exchange Between Systems- Local and

Metropolitan Area Networks- Specific Requirements Part 15.4:

Wireless Medium Access Control (MAC) and Physical Layer

Bibliography 117

(PHY) Specifications for Low-Rate Wireless Personal Area

Networks (WPANs),” IEEE Std 802.15.4-2006 (Revision of

IEEE Std 802.15.4-2003), pp. 0 1–305, 2006. [Online]. Available:

http://dx.doi.org/10.1109/ieeestd.2006.232110

[15] I. Podnar, M. Hauswirth, and M. Jazayeri, “Mobile push: Deliv-

ering content to mobile users,” in Distributed Computing Systems

Workshops, 2002. Proceedings. 22nd International Conference on.

IEEE, 2002, pp. 563–568.

[16] B. Latré, P. De Mil, I. Moerman, N. Van Dierdonck, B. Dhoedt,

and P. Demeester, “Maximum throughput and minimum delay in

ieee 802.15.4,” in Mobile Ad-hoc and Sensor Networks. Springer,

2005, pp. 866–876.

[17] N. Sastry and D. Wagner, “Security considerations for ieee 802.15.4

networks,” in Proceedings of the 3rd ACM workshop on Wireless

security. ACM, 2004, pp. 32–42.

[18] S. Tozlu, “Feasibility of wi-fi enabled sensors for internet of things,”

in Wireless Communications and Mobile Computing Conference

(IWCMC), 2011 7th International. IEEE, 2011, pp. 291–296.

[19] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of

bluetooth low energy: An emerging low-power wireless technology,”

Sensors, vol. 12, no. 9, pp. 11 734–11 753, 2012.

[20] S. Kamath, “Measuring bluetooth low energy power consumption,”

Texas instruments application note AN092, Dallas, 2010.

Bibliography 118

[21] K. Mikhaylov, N. Plevritakis, and J. Tervonen, “Performance anal-

ysis and comparison of bluetooth low energy with ieee 802.15. 4 and

simpliciti,” Journal of Sensor and Actuator Networks, vol. 2, no. 3,

pp. 589–613, 2013.

[22] J. Nieminen, B. Patil, T. Savolainen, M. Isomaki, Z. Shelby, and

C. Gomez, “Transmission of ipv6 packets over bluetooth low energy

draft-ietf-6lo-btle-00.”

[23] H. Wang, M. Xi, J. Liu, and C. Chen, “Transmitting ipv6 packets

over bluetooth low energy based on bluez,” in Advanced Commu-

nication Technology (ICACT), 2013 15th International Conference

on. IEEE, 2013, pp. 72–77.

[24] J. Postel, “Rfc 791: Internet protocol,” 1981.

[25] ——, “Rfc 793: Transmission control protocol,” 1981.

[26] “Free Pool of IPv4 Address Space Depleted.” February 2011. [On-

line]. Available: http://www.nro.net/news/ipv4-free-pool-depleted

[27] J. Hui and P. Thubert, “Compression format for ipv6 datagrams

over ieee 802.15.4-based networks,” 2011.

[28] J. Nieminen, “Transmission of ipv6 packets over bluetooth low

energy,” 2013. [Online]. Available: https://datatracker.ietf.org/

doc/draft-ietf-6lo-btle/

[29] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A

survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[30] J. Postel, “Rfc 768: User datagram protocol,” 1980.

Bibliography 119

[31] S. R. Das, E. M. Belding-Royer, and C. E. Perkins, “Ad hoc on-

demand distance vector (aodv) routing,” 2003.

[32] “MQTT,” April 2012. [Online]. Available: http://mqtt.org

[33] Z. Shelby, K. Hartke, and C. Bormann, “Constrained application

protocol (coap),” 2013.

[34] K. Hartke, “Observing resources in coap,” 2013.

[35] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,

and T. Berners-Lee, “Hypertext transfer protocol–http/1.1,” 1999.

[36] R. T. Fielding and R. N. Taylor, “Principled design of the modern

web architecture,” ACM Trans. Internet Technol., pp. 115–150,

May 2002.

[37] L. Masinter, T. Berners-Lee, and R. T. Fielding, “Uniform resource

identifier (uri): Generic syntax,” 2005.

[38] “The WebSocket API,” World Wide Web Consortium

(W3C), April 2012. [Online]. Available: http://dev.w3.org/

html5/websockets/

[39] I. Hickson, “Server-sent events,” World Wide Web Consortium

(W3C), 2012.

[40] “OASIS -Advancing open standard for the information society

consortium.” January 2014. [Online]. Available: https://www.

oasis-open.org/

Bibliography 120

[41] “OASIS MQTT Technical Committee,” January 2014. [Online].

Available: https://www.oasis-open.org/committees/tc home.php?

wg abbrev=mqtt

[42] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “Mqtt-s—a

publish/subscribe protocol for wireless sensor networks,” in Com-

munication Systems Software and Middleware and Workshops,

2008. COMSWARE 2008. 3rd International Conference on. IEEE,

2008, pp. 791–798.

[43] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,

“The many faces of publish/subscribe,” ACM Computing Surveys

(CSUR), vol. 35, no. 2, pp. 114–131, 2003.

[44] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving application

logic from the firmware to the cloud: Towards the thin server ar-

chitecture for the internet of things,” in Innovative Mobile and

Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth In-

ternational Conference on. IEEE, 2012, pp. 751–756.

[45] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented archi-

tecture for the web of things,” in Proc. Internet of Things (IOT),

Tokyo, Japan, December 2010, pp. 1–8.

[46] M. Blackstock and R. Lea, “Toward interoperability in a web of

things,” in Proceedings of the 2013 ACM conference on Pervasive

and ubiquitous computing adjunct publication. ACM, 2013, pp.

1565–1574.

[47] M. Jung, J. Weidinger, W. Kastner, and A. Olivieri, “Building au-

tomation and smart cities: An integration approach based on a

Bibliography 121

service-oriented architecture,” in Advanced Information Network-

ing and Applications Workshops (WAINA), 2013 27th Interna-

tional Conference on. IEEE, 2013, pp. 1361–1367.

[48] A. P. Castellani, M. Gheda, N. Bui, M. Rossi, and M. Zorzi, “Web

services for the internet of things through coap and exi,” in Commu-

nications Workshops (ICC), 2011 IEEE International Conference

on. IEEE, 2011, pp. 1–6.

[49] J. Schneider and T. Kamiya, “Efficient xml interchange (exi) for-

mat 1.0,” W3C Working Draft, vol. 19, 2008.

[50] E. Dijk, “Sleepy devices using coap,” 2013.

[51] “Node.js,” Joyent, Inc, January 2014. [Online]. Available:

http://nodejs.org

[52] G. Erich, H. Richard, J. Ralph, and V. John, “Design patterns:

elements of reusable object-oriented software,” Reading: Addison

Wesley Publishing Company, 1995.

[53] A. Rudd and M. Collina, “MQTT.js,” October 2013. [Online].

Available: http://github.com/adamvr/MQTT.js

[54] M. Collina, “node-coap,” October 2013. [Online]. Available:

http://github.com/mcollina/node-coap

[55] S. Ghemawat and J. Dean, “LevelDB,” October 2013. [Online].

Available: https://code.google.com/p/leveldb/

[56] “MongoDB,” October 2013. [Online]. Available: http://mongodb.

org

Bibliography 122

[57] S. Sanfilippo, “Redis,” April 2012. [Online]. Available: http:

//redis.io

[58] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3,

no. 9, pp. 490–499, 1960.

[59] “RabbitMQ,” October 2013. [Online]. Available: http://www.

rabbitmq.com/

[60] “Ponte Source Code,” October 2013. [Online]. Available: http:

//github.com/mcollina/ponte

[61] N. Sharma, “Push technology–long polling.” [Online]. Available:

http://www.ijcsmr.org/vol2issue5/paper398.pdf

[62] “Mosquitto,” October 2013. [Online]. Available: http://mosquitto.

org

[63] E. G. Davis, A. Calveras, and I. Demirkol, “Improving packet de-

livery performance of publish/subscribe protocols in wireless sensor

networks,” Sensors, vol. 13, no. 1, pp. 648–680, 2013.

[64] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Re-

ali, “Comparison of two lightweight protocols for smartphone-

based sensing,” in Communications and Vehicular Technology in

the Benelux (SCVT), 2013 IEEE 20th Symposium on. IEEE,

2013, pp. 1–6.

[65] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIG-

COMM Computer Communication Review, vol. 40, no. 2, pp. 12–

20, 2010.

Bibliography 123

[66] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, “A first look

at cellular machine-to-machine traffic: large scale measurement and

characterization,” in ACM SIGMETRICS Performance Evaluation

Review, vol. 40, no. 1. ACM, 2012, pp. 65–76.

[67] J. Hant, D. Lanzinger, and D. Sklar, “Assessing the performance

of packet retransmission schemes over satellite links,” in Aerospace

Conference, 2006 IEEE. IEEE, 2006, pp. 13–pp.

[68] E. Balandina, Y. Koucheryavy, and A. Gurtov, “Computing the re-

transmission timeout in coap,” in Internet of Things, Smart Spaces,

and Next Generation Networking. Springer, 2013, pp. 352–362.

[69] J. J. Garrett et al., “Ajax: A new approach to web applications,”

2005.

[70] D. Crockford, “The application/json media type for javascript ob-

ject notation (json),” 2006.

[71] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Per-

formance enhancing proxies intended to mitigate link-related degra-

dations,” RFC 3135, June, Tech. Rep., 2001.

[72] J. Resig et al., “jquery: The write less, do more, javascript library,”

2014.

[73] G. E. Krasner, S. T. Pope et al., “A description of the model-

view-controller user interface paradigm in the smalltalk-80 system,”

Journal of object oriented programming, vol. 1, no. 3, pp. 26–49,

1988.

[74] J. Ashkenas et al., “Backbone.js,” 2014.

Bibliography 124

[75] M. Belshe and R. Peon, “Spdy protocol,” 2012.

[76] A. Cardaci, L. Caviglione, A. Gotta, and N. Tonellotto, “Perfor-

mance evaluation of spdy over high latency satellite channels,” in

Personal Satellite Services. Springer, 2013, pp. 123–134.

[77] “Apache http server project,” Apache Software Foundation,

January 2014. [Online]. Available: http://httpd.apache.org

[78] “Nginx,” Nginx Inc., January 2014. [Online]. Available: http:

//nginx.org

[79] “Oracle vm virtualbox,” Oracle, January 2014. [Online]. Available:

https://www.virtualbox.org

[80] “EU investigating IoT regulations,” April 2012. [Online]. Available:

http://bit.ly/HyYSb2

[81] D. Giusto, A. Iera, G. Morabito, L. Atzori, C. M. Medaglia, and

A. Serbanati, “An overview of privacy and security issues in the

internet of things,” in The Internet of Things. Springer New York,

2010, pp. 389–395.

[82] D. Beckett and T. Berners-Lee, “Turtle - terse rdf triple language,”

W3C Candidate Recommendation, 2013.

[83] F. Manola, E. Miller, and B. McBride, “Rdf primer,” W3C recom-

mendation, vol. 10, pp. 1–107, 2004.

[84] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story

so far,” International Journal on Semantic Web and Information

Systems (IJSWIS), vol. 5, no. 3, pp. 1–22, 2009.

Bibliography 125

[85] “MsgPack,” October 2013. [Online]. Available: http://msgpack.org

[86] “BSON,” October 2013. [Online]. Available: http://bsonspec.org

[87] “Bysant,” October 2013. [Online]. Available: http://wiki.eclipse.

org/images/6/6a/M3DABysantSerializer.pdf

[88] “Protocol Buffers,” October 2013. [Online]. Available: https:

//developers.google.com/protocol-buffers

[89] “W3c ssn incubator group review of sen-

sor and observation ontologies.” [Online]. Avail-

able: http://www.w3.org/2005/Incubator/ssn/wiki/Incubator

Report#Review of Sensor and Observation ontologies

[90] G. Stevenson, S. Knox, S. Dobson, and P. Nixon, “Ontonym: a

collection of upper ontologies for developing pervasive systems,”

in Context, Information and Ontologies (CIAO’09), 1st Workshop

on, 2009, pp. 1–8.

[91] M. Eid, R. Liscano, and A. E. Saddik, “A universal ontology for

sensor networks data,” in Computational Intelligence for Measure-

ment Systems and Applications (CIMSA 2007), IEEE Interna-

tional Conference on, 2007, pp. 59–62.

[92] C. Goodwin and D. J. Russomanno, “An ontology-based sensor net-

work prototype environment,” in Information Processing in Sensor

Networks, Fifth International Conference on, 2006.

[93] M. Compton, P. Barnaghi, L. Bermudez, R. Garćıa-Castro, O. Cor-

cho, S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog

Bibliography 126

et al., “The ssn ontology of the w3c semantic sensor network incu-

bator group,” Web Semantics: Science, Services and Agents on the

World Wide Web, vol. 17, pp. 25–32, 2012.

[94] W. Wei and P. Barnaghi, “Semantic annotation and reasoning for

sensor data,” in Smart sensing and context (EuroSSC’09), 4th Eu-

ropean conference on, 2009, pp. 66–76.

[95] C. Stasch, K. Janowicz, A. Bröring, I. Reis, and W. Kuhn, “A

stimulus-centric algebraic approach to sensors and observations,”

in GeoSensor Networks (GSN’09), 3rd International Conference

on, 2009, pp. 169–179.

[96] M. Strimpakou, I. Roussaki, and M. E. Anagnostou, “A context

ontology for pervasive service provision,” in Advanced Informa-

tion Networking and Applications (AINA 2006), 20th International

Conference on, 2006.

[97] H. Chen, F. Perich, T. Finin, and A. Joshi, “Soupa: Standard on-

tology for ubiquitous and pervasive applications,” in Mobile and

Ubiquitous Systems: Networking and Services, International Con-

ference on, 2004.

[98] M. Sporny, G. Kellogg, and M. Lanthaler, “JSON-LD 1.0-A JSON-

based Serialization for Linked Data,” W3C Working Draft, 2013.

[99] M. Lanthaler and C. Gütl, “On using json-ld to create evolvable

restful services,” in Proceedings of the Third International Work-

shop on RESTful Design. ACM, 2012, pp. 25–32.

Bibliography 127

[100] O. Sacco and J. G. Breslin, “PPO & PPM 2.0: Extending

the privacy preference framework to provide finer-grained access

control for the web of data,” in I-SEMANTICS ’12, 2012. [Online].

Available: http://doi.acm.org/10.1145/2362499.2362511

[101] O. Sacco and A. Passant, “A Privacy Preference Ontology (PPO)

for Linked Data,” in Linked Data on the Web Workshop, ser.

LDOW’11, 2011.

[102] ——, “A Privacy Preference Manager for the Social Semantic

Web,” in SPIM Workshop, 2011.

[103] O. Sacco, A. Passant, and S. Decker, “An Access Control Frame-

work for the Web of Data,” in IEEE TrustCom-11, 2011.

[104] D. Le-Phuoc, J. X. Parreira, V. Reynolds, and M. Hauswirth, “RDF

On the Go: An RDF Storage and Query Processor for Mobile De-

vices,” in Posters and Demos of the ISWC 2010, 2010.

[105] P. Kärger and W. Siberski, “Guarding a Walled Garden Seman-

tic Privacy Preferences for the Social Web,” The Semantic Web:

Research and Applications, 2010.

[106] T. Ryutov, T. Kichkaylo, and R. Neches, “Access control policies

for semantic networks,” in POLICY, 2009.

[107] F. Giunchiglia, R. Zhang, and B. Crispo, “Ontology Driven Com-

munity Access Control,” Trust and Privacy on the Social and Se-

mantic Web, SPOT’09, 2009.

Bibliography 128

[108] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and

B. Thuraisingham, “A Semantic Web Based Framework for Social

Network Access Control,” ser. SACMAT’09, 2009.

[109] O. D. De Coi J.L., “A review of trust management, security and

privacy policy languages.” in International Conference on Security

and Cryptography, ser. SECRYPT’08, 2008.

[110] J. Hollenbach and J. Presbrey, “Using RDF Metadata to Enable

Access Control on the Social Semantic Web,” in CK’09, 2009.

[111] P. Reddivari, “Policy based access control for a rdf store,” in In

Proceedings of the Policy Management for the Web Workshop, A

WWW 2005 Workshop, 2005.

[112] F. Abel, J. L. De Coi, N. Henze, A. W. Koesling, D. Krause, and

D. Olmedilla, “Enabling advanced and context-dependent access

control in rdf stores,” in ISWC’07/ASWC’07, 2007.

[113] P. Bonatti and D. Olmedilla, “Driving and monitoring provisional

trust negotiation with metapolicies,” in POLICY, 2005.

[114] L. Costabello, S. Villata, F. Gandon et al., “Context-aware access

control for rdf graph stores,” in ECAI, 2012.

