
BLISS: Improved Symbolic Execution by
Bounded Lazy Initialization with SAT Support?

Nicolás Rosner1, Jaco Geldenhuys2, Nazareno Aguirre3,5, Willem Visser2 and
Marcelo F. Frias4,5

1 Dept. of Computer Science, Universidad de Buenos Aires, Argentina.
2 Dept. of Mathematical Sciences, Stellenbosch University, South Africa.

3 Dept. of Computer Science, Universidad Nac. de Ŕıo Cuarto, Argentina.
4 Dept. of Computer Engineering, Instituto Tecnológico de Buenos Aires.

5 National Scientific and Technical Research Council (CONICET), Argentina.

Abstract. Traditional testing is a widely adopted approach to guaranteeing
software correctness, but its well-known limitations threaten its effectiveness as
a bug-finding technique. Therefore, more thorough program analysis techniques,
which may offer greater levels of confidence, constitute an important research
topic in software engineering. A technique that offers better guarantees of cor-
rectness is model checking. Java PathFinder (JPF) is a well-known tool based on
this technique, that targets Java source code and, through an extension called
Symbolic PathFinder (SPF), is able to automatically generate test cases, search
for violations of user-provided assertions, handle arithmetic constraints and com-
plex data structures. SPF combines symbolic execution with model checking and
constraint solving, to systematically explore program paths for verification, as
well as for automated test input generation by solving the path constraints ob-
tained during the exploration.

To effectively handle heap-allocated structures, SPF generalizes symbolic ex-
ecution (which traditionally targeted basic datatypes) by introducing Lazy Ini-
tialization (LI): it constructs the heap as the program paths are explored, and
defers concretization of symbolic heap object attributes as much as possible. LI
produces a significant reduction in spurious and redundant symbolic structures,
which is improved by Bounded Lazy Initialization (BLI), by taking advantage
of precomputed relational bounds on the interpretation of class fields in order
to reduce the number of spurious structures even further.

In this article we present BLISS, a novel technique that builds upon BLI,
extending it with field bound refinement and satisfiability checks. Field bounds
are refined while a symbolic structure is concretized, avoiding cases that, due to
the concrete part of the heap and the field bounds, can be deemed redundant.
Satisfiability checks on refined symbolic heaps allow us to prune these heaps as
soon as it can be confirmed that they cannot be extended to any valid concrete
heap. Compared to LI and BLI, BLISS reduces the time required by LI by up
to 4 orders of magnitude for the most complex data structures. Moreover, the
number of partially symbolic structures obtained by exploring program paths
is reduced by BLISS by over 50%, with reductions of over 90% in some cases
(compared to LI). BLISS uses less memory than LI and BLI, which enables the
exploration of states unreachable by previous techniques.

? in Transactions on Software Engineering, 41(7), IEEE CS, 2015.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 26

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76496396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

