
TeXTracT : a Web-based Tool for Building
NLP-enabled Applications

Alejandro Rago1, Facundo M. Ramos3, Juan I. Velez3, J. Andres Diaz-Pace1,
Claudia Marcos2

1 ISISTAN, UNICEN University, CONICET
Campus Universitario, Paraje Arroyo Seco, B7001BBO, Tandil, Bs. As., Argentina

2 ISISTAN, UNICEN University, CIC
3 Facultad de Ciencias Exactas, UNICEN University

{arago,cmarcos,adiaz}@exa.unicen.edu.ar -
{ramos.facundo.m,velez.juanignacio}@gmail.com

Abstract. Over the last few years, the software industry has showed
an increasing interest for applications with Natural Language Processing
(NLP) capabilities. Several cloud-based solutions have emerged with the
purpose of simplifying and streamlining the integration of NLP tech-
niques via Web services. These NLP techniques cover tasks such as
language detection, entity recognition, sentiment analysis, classification,
among others. However, the services provided are not always as exten-
sible and configurable as a developer may want, preventing their use in
industry-grade developments and limiting their adoption in specialized
domains (e.g., for analyzing technical documentation). In this context,
we have developed a tool called TeXTracT that is designed to be compos-
able, extensible, configurable and accessible. In our tool, NLP techniques
can be accessed independently and orchestrated in a pipeline via REST-
ful Web services. Moreover, the architecture supports the setup and de-
ployment of NLP techniques on demand. The NLP infrastructure is built
upon the UIMA framework, which defines communication protocols and
uniform service interfaces for text analysis modules. TeXTracT has been
evaluated in two case-studies to assess its pros and cons.

Keywords: natural language processing, web services, module compo-
sition, framework, software development, software as a service

1 Introduction

Nowadays, there is a high demand in the Software Development market for
applications featuring text processing and understanding capabilities [14]. Algo-
rithms able to make sense of textual documents written in natural language are
often referred to as Natural Language Processing (NLP) techniques [7]. In prac-
tice, software developers must spend considerable effort and time to codify this
kind of characteristics in end products, adjusting the techniques to a particular

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76496346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


domain and integrating algorithms implemented by different people. This situa-
tion creates the need of reusing existing frameworks and particular solutions to
simplify the development and ensure good-quality results [8]. Several industry
players have provided NLP techniques as a series of cloud-based micro-services
[6]. Essentially, these micro-services are offered to the developers in the form of
Software as a Service (SaaS), a business model in which clients are charged with
a subscription fee for renting a set of functionalities. This way, they can access
a discrete number of well-defined NLP services via a Web-based interface.

Unfortunately, most cloud-based NLP solutions still present limitations that
hinder the development of applications. Some disadvantages worth noting are
the following. First, there is little room for adapting and tailoring the services,
making it difficult to adjust a subset of techniques to specialized domains (e.g.,
analyzing technical documentation vs. news articles vs. scientific journals) [12].
Second, many NLP services available to developers are often the “last element”
of the chain of analysis, preventing the composition of NLP modules as an end-
to-end pipeline that incrementally analyzes the text [6]. Third, the services only
expose a few customizable parameters of the NLP techniques to developers and
the optimization of the algorithms becomes complicated. Finally, only a few of
the vendors give developers an opportunity for adding new NLP techniques or
updating existing ones, which are in a state of constant evolution. An interest-
ing alternative to address the limitations discussed above is to build a software
solution that allows developers: (i) to uniformly incorporate, configure and ex-
ecute NLP techniques implemented by third-parties, (ii) to compose different
sequences of modules capable of performing an end-to-end analysis of the text
per application, and (iii) to expose the techniques with technologies that can be
consumed from diverse programming languages and OS platforms.

In this context, we have built a prototype tool called TeXTracT with the
objective of simplifying the integration of NLP technologies in the development
of standalone and Web-based applications in multiple platforms. The develop-
ment of TeXTracT was driven by three goals, namely: the interoperability of
the tool, the adaptation of text processing pipelines, and the flexibility for in-
corporating NLP techniques. The tool defines a facade of Web services that
allows the developers to run a dynamic discovery of services, the execution of
customized pipelines of services and the setup of individual services. Developers
can dynamically list the techniques available in TeXTracT, enabling the incorpo-
ration of new or upgraded NLP modules without having to recompile or restart
the tool. NLP services can be sequentially connected through HTTP requests
in order to define an analysis pipeline. The main contribution of our work is
two-fold. First, we build an extensible but yet easy-to-use tool for developing
NLP-enabled applications. Second, we rely on well-known technologies to or-
chestrate the configuration and execution of NLP modules. We evaluated our
tool in two case-studies with promising results. The case-studies consisted in
the development of a Web-based grammar checker application and the adapta-
tion of Requirements Engineering application with embedded NLP capabilities.
respectively.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 124



The rest of this article is organized as follows. Section 2 discusses existing
tools and frameworks for performing NLP analyses remotely. Section 3 intro-
duces the TeXTracT tool and describes its architecture. Section 4 reports on
the experiences of using our tool in two application contexts: developing a new
application, and migrating an existing one. Finally, Section 5 presents the con-
clusions and futures lines of work.

2 Related Work

A current trend in the development of NLP-based applications is the usage of the
cloud to run the underlying algorithms and their models, relying on implemen-
tations coded and maintained by third-party developers and service providers
[15]. In the cloud, the functionality is normally provided as Software as a Service
(SaaS), a business model in which software is hosted by an external vendor and
made available to clients over the Internet. From the clients’ viewpoint [15], this
model is attractive because they have hassle-free access to up-to-date and tested
functionality, provisioning can be elastically handled for scalability purposes, and
subscriptions can be cancelled without paying substantial upfront fees. Multiple
vendors have defined NLP solutions in the form of cloud-based micro-services
distributed as SaaS [6]. From a cost-benefit perspective, these NLP solutions
allow clients to rapidly develop and deploy an NLP-enabled application without
requiring much experience in machine learning/linguistics and without imple-
menting/integrating text processing algorithms in the code themselves. Table 1
summarizes the features of these solutions.

An interesting cloud-based solution is Aylien Text Analysis [1]. Aylien is com-
posed of a set of text processing tools, information retrieval and machine learning
techniques that can extract knowledge and understand concepts from textual
documents. Some services provided by Aylien are: language detection, entity
recognition, concept recognition, document classification, summarization, senti-
ment analysis, and hashtag recommendations. Some disadvantages of Aylien are
the following: services cannot be composed to accomplish more complex analyses,
developers cannot incorporate new/modified NLP techniques, and techniques
cannot be optimized through parameters. Language Tools is an open-source tool
for verifying the grammar, orthography and writing style of textual documents
[3]. Some techniques provided in Language Tools are: language identification,
sentence splitting, token splitting, POS tagging, lemmatization, disambiguation,
text segmentation, rule-based search, among others. The rule engine is really in-
teresting, because it allows developers to define patterns for identifying domain-
specific information. Unfortunately, such rules cannot be composed, preventing
to create rules built on top of the results of another. Additionally, the developers
are not allowed to incorporate custom NLP algorithms to the solution.

MeaningCloud is a solution that allows developers to enrich their applica-
tions with semantic text analyses in a simple and cost-effective way [4]. Its ser-
vices can be tailored for specific domains, e.g., by using custom dictionaries and
concept taxonomies for improving news and social media categorization. Some

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 125



Feature Aylien LanguageTools MeaningCloud DeveloperCloud
Customizable 7 3 3 3

Extensible 7 7 7 7

Composable 7 7 7 7

Scalable 7 7 3 3

Technology REST/HTTP REST/HTTP REST/HTTP REST/HTTP
Pricing Subscription Free Subscription Subscription

Code Distribution Closed Source Open Source Closed Source Closed Source
I/O Format Raw/XML Raw/XML Raw/JSON Raw&Markup/JSON

Table 1. Comparison of Cloud-based NLP platforms

of techniques offered are: language identification, lemmatization, parsing, POS
tagging, text classification, topic extraction, sentiment analysis. MeaningCloud
is equipped with several classification models for identifying news categories,
subject topics, word thesaurus relations, among others. The text classification
service is very useful because developers can train the algorithms and create cus-
tom prediction models for identifying domain-specific concepts. Unfortunately,
this solution does not support adding custom-built algorithms to the solution.
Another limitation is that the services have to be invoked individually, pre-
venting the assembly of end-to-end pipelines and forcing the developers to call
services one at a time. Another NLP solution built and maintained by IBM is
DeveloperCloud [2]. This solution exposes some of the technologies on which
the Watson question & answering AI system is implemented. The services of-
fered in DeveloperCloud are: concept expansion, concept perception, translation,
personality insights, among others. A nice feature of this solution is that it can
scale on demand. Moreover, classification services can be personalized with user-
provided datasets. Even though this platform is really powerful, there are still
some limitations. For example, developers cannot invoke multiple services in a
single request, because they work independently one to another. This also means
that the services cannot be composed sequentially to construct more complex
pipelines of analysis. Furthermore, DeveloperCloud does not allow developers to
incorporate their own algorithms to the infrastructure.

3 TeXTracT : a Web-based Tool for NLP

With the purpose of giving developers a more configurable and extensible cloud-
based NLP services solution, we built a prototype tool called TeXTracT. Essen-
tially, TeXTracT aims at simplifying the integration of advanced NLP techniques
for the development of NLP-enabled apps by focusing on three aspects: (i) inter-
operability, (ii) adaptation of processing pipelines, and (iii) flexibility regarding
the incorporation of new/upgraded techniques.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 126



3.1 Design of the Tool

Several architectural decisions were made to fulfill interoperability, adaptation
and flexibility aspects. Figure 1 depicts the main components of the architec-
ture. Regarding the first aspect, we defined a Restful-Facade component that
is composed of several Web services, addressing each request made by the ap-
plications and handling the communication with the NLP techniques needed
on demand. Inspired by the Broker architectural pattern, we also defined the
DynamicDiscovery and NLP-Orquestration components for dynamically
searching and composing different textual analysis pipelines on-the-fly. From a
design viewpoint, NLP techniques are packaged in containers that operate as
standalone applications and are isolated one from another. The containers share
a uniform communication protocol and thus can be arranged and executed se-
quentially for an end-to-end analysis of the text. The containers also expose a
standardized interface for customizing NLP techniques for a custom domain.
The DynamicDiscovery allows developers to search for the techniques avail-
able, so as to incorporate or interchange an NLP container in runtime. Along
this line, each NLP container is discoverable and alternative implementations of
an individual technique can be substituted at runtime.

Fig. 1. Conceptual Architecture of TexTRacT

From an application developer’s perspective, there are multiple services for
interacting with TeXTracT. Figure 2 illustrates a typical usage scenario of the
tool. Initially, the application (or the developer who is coding it) can ask for the
list of NLP services available for consumption (Step #1). This communication
is encoded as a HTTP-GET request that is received by TeXTracT server. Then,
our tool searches for NLP containers loaded in memory. Let us note that there
might be multiple variants of the techniques provided by third-parties (e.g., a
Tokenizer implemented by the OpenNLP group and another by the Stanford
NLP Group). In the example, TeXTracT returns that there are four techniques

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 127



available, namely: Tokenizer (OpenNLP), Tokenizer (Stanford), Part-Of-Speech
Tagger (Stanford) and Entity Recognizer (Stanford).

After analyzing the services and choosing those that best suit their objectives,
an application can request to process a textual document by using a custom
sequence of NLP techniques (Step #2). For instance, the application can ask
for processing the text with OpenNLP Tokenizer, use the results as input for
Stanford POS Tagger, and fed the output to Stanford Entity Recognizer with
the end goal of recognizing relevant people. This service is encoded as a HTTP-
POST request, in which the sequence of techniques and their setup is codified
in the URL and the text is submitted as POST data. An interesting feature
here is that the Entity Recognizer is configured to search for “people”, meaning
that only that predictive model will be loaded. If developers are searching for
another type of entities instead, such as organizations or countries, they just
have to modify the configuration of the Entity Recognizer in the request. Once
the processing request is received by TeXTracT, the tool dissects the URL in
order to configure and invoke each particular NLP technique.

Afterward, the techniques are initialized either with default (Steps #3.1 and
#3.2) or custom parameters specified in the request (Step #3.3). Finally, the
techniques are executed one by one (Steps #4.1, #4.2 and #4.3), interconnect-
ing the outputs of a technique with the input of the next. The input information
provided by the application can either be a raw text that is transformed to the
special format used for communicating the NLP techniques or the already for-
matted information to directly feed the techniques (allowing partial invocations
of the services). Additionally, a group of NLP experts (or a well-motivated app
developer) can implement and incorporate a custom classifier (e.g., trained with
Weka4 [9]) for identifying domain-specific concepts (Step #5). Consequently, the
following invocations for enumerating NLP services would automatically list this
custom classifier (Step #6).

3.2 Technology & Implementation Details

The implementation of TeXTracT comprised several technologies and design de-
cisions. In order to expose the NLP services of the tool in the Web, we chose to
use the Jersey5 library for the REST (REpresentational State Transfer) architec-
tural style. The main features of REST are: it differentiates clients and servers,
it is stateless (all the data can be held in the requests), it is cacheable (e.g., for
scalability), it can be layered (e.g., for load balancing) and it presents a uniform
interface (URIs, HTML, XML, JSON, etc.). Jersey allowed us to easily define
Web services for listing, composing, setting up and executing NLP modules by
using Java annotations on the source code.

For the text processing infrastructure, instead of writing everything from
scratch, we relied on the UIMA6 (Unstructured Information Management) frame-

4 http://www.cs.waikato.ac.nz/ml/weka
5 https://jersey.java.net
6 http://uima.apache.org

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 128

http://www.cs.waikato.ac.nz/ml/weka
https://jersey.java.net
http://uima.apache.org


Fig. 2. Typical Usage Scenario of TexTRacT

work [8]. UIMA is the industry standard for text analytics and defines compo-
nents for wrapping, integrating and deploying diverse kinds of NLP techniques.
A remarkable feature of UIMA for TeXTracT is its data representation, called
Common Annotation Schema (CAS). This representation is composed of the
actual text that can be processed and analyzed by the techniques and a set of
annotations that hold the information produced by the algorithms. An anno-
tation is basically a marker in the text, which delimits a fragment of the text
(i.e., begin and end position) and can be decorated with properties (strings,
numerical values, etc.) or references to other annotations. The CAS format is
serializable and is very useful for concatenating NLP techniques that have depen-
dencies with others (e.g., the POS tagger requires the results of the tokenizer).
We adopted the CAS as the communication protocol between the apps and the
NLP techniques, encoded as XML information that is sent through the Web.

The Adapter design pattern was also applied for abstracting the NLP algo-
rithms [5]. Basically, we defined an interface that is responsible for the conver-
sion of the input and output of a CAS to the internal representation used by
a NLP technique, as well as standardize the setup of the techniques by means
of parameters and their execution. Since we used UIMA, the conversion of in-
put and output only required to instantiate the persistent CAS to in-memory
object structure and to write it to XML format, respectively. With this design,
a developer can codify a custom file reader in order to process Word, PDFs,
and others kinds of documents easily. However, other adaptations can be im-
plemented if required. We also relied on reflection mechanisms for retrieving all
the instances of the adapter loaded in the JVM to fulfill the discovery of NLP
techniques. TeXTracT is equipped with several NLP adapters, allowing the ap-
plication developers to have access to NLP techniques such as sentence splitting,

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 129



token splitting, POS tagging, stemming and lemmatizing, lexical thesaurus, de-
pendency graphs, syntactic parsing, semantic role labeling, among others. These
techniques are UIMA annotators wrapped with an Adapter, and the underly-
ing algorithms were implemented by third-party teams and universities such as
OpenNLP, Stanford CoreNLP, Mate-Tools, etc.

4 Preliminary Evaluation

To assess the feasibility of using TeXTracT, we conducted two case-studies in
which our tool was used to build a new application from scratch and to migrate
an existing application with already-embedded NLP capabilities. The objectives
of the evaluation are two-fold. First, we wanted to verify if our tool can actually
simplify the creation of NLP-based apps and reduce the effort/time of devel-
opment. Second, we wanted to corroborate that cloud-based NLP services can
indeed improve the performance of an existing application, reducing its CPU,
memory and heap consumption and shrinking the code footprint and the overall
size of the packaged application.

4.1 Development of a New Application

In the first case-study, our experimental hypothesis is that TeXTracT can help
developers to build and deploy applications that rely on NLP techniques, sim-
plifying their work. The system consisted of a Web-based grammar analyzer
called TextChecker capable of analyzing a textual document and identifying
well-known and common lexical, syntactic and semantic mistakes in English
(see Figure 4(a)). We initially plan the development of this application using a
traditional approach that would rely on ad-hoc integration of NLP techniques,
outlining the tasks to be done in the phases of requirements, analysis and design,
implementation, testing and deployment, as well as establishing an estimative
duration for each of them. Next, we developed the grammar checker following
this plan but taking advantage of the features provided by TeXTracT in order
to see the improvements over a traditional development lifecycle. To do so, we
computed the differences between the estimated and the actual times spent in
the phases.

Figure 4(b) illustrates the time savings obtained using TeXTracT. During
the requirements phase, we did not observed improvements because the inves-
tigation of grammar mistakes and the rules to detect them needed to be done
regardless if our tool was used or not. These grammar rules include: sentences
ending with prepositions, starting with conjunctions, double negatives, noun-
pronoun agreements or subject-verb agreements, among others. For the analysis
and design, we noticed an important reduction in days because our tool already
prescribes a text processing infrastructure, letting developers focus on the user
interface design. Furthermore, since most NLP techniques for detecting gram-
mar mistakes are available, developers can pay more attention to the definition

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 130



Fig. 3. Case-Study #1: Development of a Grammar Checker

 

Figura 5.1. TextChecker. 
 

En la Figura 5.1., se puede observar una captura de pantalla de la herramienta. En la parte superior                                   

izquierda, se encuentra un campo de texto en el cual se debe ingresar el documento que se desea corregir.                                     

En la derecha, la página contiene una lista de los tipos de error que TextChecker puede identificar con una                                     

descripción breve que explica de qué se trata. Cada uno de los errores que aparecen en la lista contiene un                                       

enlace que permite ampliar la información del error que se describe. En la Figura 5.2., se aprecia cómo                                   

TextChecker presenta los resultados de una corrección (parte inferior izquierda).  

 

 

Figura 5.2. Corrección en TextCheker. 
 

Por ejemplo, en el texto de la oración “I have not no brothers or sisters ” se encuentra resaltado por                                     

contener dos palabras con forma de negación También se resalta la palabra “friday” por estar en                               

minúsculas, ya que los días de la semana deben comenzar con mayúsculas. 

(a) TextChecker UI

Grammar Checker

Number Description Traditional 
Development

Using TeXTracT Development 
Phase

T1 Analizar el dominio 
de la aplicación de 
corrección de 
textos

4 4 Requirements

T2 Relevamiento 
bibliográfico acerca 
de de reglas 
gramaticales en 
inglés

4 4 Requirements

T3 Relevamiento 
bibliográfico de 
técnicas de NLP

4 4 Requirements

T4 Investigación de 
mecanismos para 
identificar patrones 
en el texto

8 8 Requirements

T5 Definición de una 
infraestructura para 
procesar texto en 
lenguaje natural

4 1 Analysis & Design

T6 Selección y 
adaptación de 
algoritmos 
concretos de NLP

4 1 Analysis & Design

T7 Integración entre 
los diferentes 
módulos de NLP

4 1 Analysis & Design

T8 Selección e 
integración de 
tecnología para 
buscar problemas 
gramaticales

4 4 Analysis & Design

T9 Comunicación entre 
aplicación cliente y 
backend

4 2 Analysis & Design

T10 Desarrollo del 
procesamiento NLP 
e infraestructura de 
proceso adhoc

8 1 Implementation

T11 Desarrollo reglas 
gramaticales

8 6 Implementation

T12 Desarrollo de 
interfaz de usuario

4 4 Implementation

T13 Implementación de 
invocación remota 
para el análisis del 
texto

6 2 Implementation

T14 Desplegar módulos 
de reglas 
gramaticales

4 2 Deployment

T15 Desplegar 
aplicación en el 
servidor

2 2 Deployment

T16 Pruebas sobre 
módulos de reglas 
gramaticales en 
pipeline de proceso

4 2 Testing

T17 Pruebas sobre 
aplicación cliente

2 2 Testing

Traditional 
Development

Using TeXTracT

Requirements 20 20

Analysis & Design 20 9

Implementation 26 13

Deployment 6 4

Testing 6 4

Ti
m

e 
(in

 d
ay

s)

0
4
8

12
16
20
24
28

Development phase

Requirements Analysis &
Design

Implementation Deployment Testing

Traditional Development Using TeXTracT

�1

(b) Time Savings Using TeXTracT

of text rules. At this design stage, we decided to use RUTA7 (Rule-based Text
Annotation), a powerful language that allows developers to codify pattern-based
rules in terms of UIMA annotations [10]. In this way, we can take advantage of
the information produced by other NLP services to reveal grammar mistakes.
For the implementation, we also observed important cuts in the development
times because the composition of the NLP techniques and their invocation via
a Web page is straightforward using AJAX calls. We took advantage of our tool
extensibility to incorporate RUTA as a new NLP service that can be personalized
with rules through parameters. Finally, the last two phases were also shortened
with TeXTracT because most techniques were already tested and deployed in
the Web accordingly.

4.2 Migration of an Existing Application

In the second case-study, our experimental hypothesis is that by migrating an
existing application with built-in NLP capabilities to TeXTracT developers can
improve its performance, reducing its code footprint, consuming less memory and
running faster. To this end, we made modifications to a Requirements Engineer-
ing application called REAssistant8. The purpose of this application is to process
use case specifications for identifying crosscutting concerns (e.g., persistence, se-
curity or performance features that cannot be isolated to a single document) by
using domain-specific search rules codified in terms of NLP elements [13,11].

REAssistant is implemented as a set of Eclipse plugins, in which one of them
is responsible for containing NLP libraries and another one is responsible for
the instantiation of the UIMA framework for performing NLP analyses. For this
reason, the migration to our cloud-based services was really simple. Basically,
the majority of the text analysis techniques could be replaced by those provided

7 http://uima.apache.org/ruta.html
8 https://github.com/alejandrorago/reassistant

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 131

http://uima.apache.org/ruta.html
https://github.com/alejandrorago/reassistant


in our tool, with the exception of a classifier of “Domain Actions” which was
a special addition for processing use cases. This classifier, including its code,
the libraries and the prediction model, was therefore moved to TeXTracT and
wrapped as a new NLP service. Then, we interchanged the execution of the
(internal) UIMA pipeline for a remote HTTP request to TeXTracT. Finally, we
deleted the NLP algorithms and the models from REAssistant.

Fig. 4. Case-Study #2: Migration of REAssistant

(a) CPU Utilization (percentage over time) (b) Memory Consumption (GBs
over time)

REAssistant(original) REAssistant(migrated)
TNOC (Total Number of Classes) 2287 511

TLOC (Total Lines of Code) 308511 40027
TNOP (Total Number of Packages) 221 97

SIZE (Size of the Release) 1134029 KB 2353 KB
(c) Structural Improvements

We collected several metrics for determining the advantages of using TeX-
TracT. To analyze runtime improvements, we instrumented the code with Oracle
VisualVM for Java and retrieved execution measurements during a typical usage
of REAssistant, such as CPU usage and memory consumption. The usage sce-
nario consisted of opening the Eclipse distribution and loading the plugins (Stage
#1), running the NLP analysis on a set of use cases (Stage #2), creating a file
for discovering crosscutting concerns (Stage #3) and executing the search rules
(Stage #4). Figures 5(a) and 5(b) show the CPU percentage and the memory
consumption of the two REAssistant variants (original and migrated) over time,
respectively. During stage #1, we observed a similar CPU usage (50 to 80%)
and memory consumption (2.0 to 2.2 GB). However, in stage #2 we obtained
significant improvements with TeXTracT. The original variant exhibited a high
demand of processor power for running the NLP techniques and a exceptional
increase in memory consumption (from 2GB to 3.25GB), whereas the processor
remained idle in the migrated variant (no surprises here) and maintained the
same memory demands. Unfortunately, we did not observe large improvements
in execution times, meaning that the original and migrated variants took the
same in processing the use cases. We speculate that this behavior is related to
the overhead introduced by the communication of results of considerable size
over the network. In stages #3 and #4, there was not a substantial difference

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 132



in CPU usage between the variants. Surprisingly, the gap in RAM consumption
remain similar to the previous stage until the IDE is closed, meaning that the
original variant of REAssistant did not release the memory after executing the
NLP analyses.

Additionally, we analyzed the structural changes made to the project after
migrating the application to TeXTracT. Table 5(c) summarizes the differences
between the two variants. We observed that 56% of the classes in all the plugins
were directly related to NLP algorithms and consequently ~87% of the lines of
code were removed as a consequence of the migration. Furthermore, migrating
REAssistant reduced its disk footprint by a 99.8% (from 1.08GB to 2.3MB),
making the distribution of the application easier and allowing to launch the
Eclipse IDE much faster than the original variant.

5 Conclusion

In this article, we presented a Web-based tool called TeXTracT for consuming
NLP services from diverse kinds of applications. Our motivation for building this
tool was that existing solutions have limited personalization options and cannot
support the composition of the techniques in a customized pipeline. We designed
TeXTracT for being extensible, configurable, composable and accessible. For
the implementation, we relied on well-known technologies such as RESTful Web
services and an industry standard architecture for text processing. The tool
assembled these technologies by adding discovery and orquestration mechanisms
of the NLP services loaded into the tool. From a developers’ viewpoint, they can
invoke a particular sequence of NLP techniques in a single HTTP request.

We evaluated our tool by carrying out two cases-studies. The first case-study,
devoted to the development of an online grammar checker, revealed that several
activities of the software development process can be shortened by depending
on the NLP services provided by TeXTracT. Moreover, we believe that by us-
ing our tool developers can potentially reduce the time-to-market, as well as
supporting the evolution of the system over time. The second case-study, which
comprised the migration of an existing Eclipse application with embedded NLP
processing, showed some interesting findings after some minor adaptations to
the source code. Basically, the runtime behavior was improved in terms of mem-
ory consumption and CPU utilization, though we did not observe advantages
regarding the execution time. Another advantage of the migrated application is
that its footprint was heavily reduced, cutting the number of classes in half and
the drastically shrinking the size of the application of the original variant.

The case-studies also exposed some limitations of our tool: (i) TeXTracT is
tightly coupled to the UIMA framework, (ii) using XML as communication for-
mat is not very efficient in terms of network bandwidth, (iii) it is not prepared
to scale under stressful usage scenarios. Some future lines of work include defin-
ing a simpler and uniform communication protocol (independent from UIMA),
exploring the use of JSON in combination with compression algorithms for trans-
mitting the results, and investigating deployment mechanisms for scaling out to

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 133



thousand of clients. Another interesting research topic is the automatic assembly
of NLP pipelines by means of the analysis of the quality-properties of the tech-
niques, such as accuracy, speed, memory and robustness, among others. Overall,
we believe that tools such as TeXTracT give developers the chance to rapidly
create powerful, rich and lightweight NLP-enabled applications that can be ex-
ecuted from any kind of device or platform.

References

1. Aylien text analysis API. http://aylien.com/text-api, accessed: 2016-05-01
2. IBM developer cloud. https://www.ibm.com/smarterplanet/us/en/ibmwatson/

developercloud, accessed: 2016-05-01
3. Language tools API. https://www.languagetool.org, accessed: 2016-05-01
4. Meaning cloud. https://www.meaningcloud.com, accessed: 2016-05-01
5. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series

in Software Engineering, Addison-Wesley Professional, 3rd edn. (October 2012)
6. Dale, R.: NLP meets the cloud. Natural Language Engineering 21, 653–659 (2015)
7. Ferilli, S., Ferilli, S.: Natural language processing. In: Automatic Digital Docu-

ment Processing and Management, pp. 199–222. Advances in Pattern Recognition,
Springer London (2011)

8. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured infor-
mation processing in the corporate research environment. Natural Language Engi-
neering 10(3-4), 327–348 (2004)

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter
11(1), 10–18 (2009)

10. Kluegl, P., Toepfer, M., Beck, P.D., Fette, G., Puppe, F.: UIMA ruta: Rapid de-
velopment of rule-based information extraction applications. Natural Language
Engineering pp. 1–40 (7 2015), 10.1017/S1351324914000114

11. Rago, A., Marcos, C., Diaz-Pace, A.: Assisting requirements analysts to find la-
tent concerns with REAssistant. Automated Software Engineering 23(2), 219–252
(2016)

12. Rago, A., Marcos, C., Diaz-Pace, A.: Opportunities for analyzing hardware specifi-
cations with NLP techniques. In: 3rd Workshop on Design Automation for Under-
standing Hardware Designs (DUHDe’16). Design, Automation and Test in Europe
Conference and Exhibition (DATE’16), Dresden, Germany (2016)

13. Rago, A., Marcos, C., Diaz-Pace, A.: Text analytics for discovering concerns in
requirements documents. In: XIII Argentine Symposium on Software Engineering
(ASSE’12). La Plata, Argentina (September 2012)

14. Sateli, B., Angius, E., Rajivelu, S.S., Witte, R.: Can text mining assistants help to
improve requirements specifications? In: Mining Unstructured Data (MUD 2012).
Canada (2012)

15. Sun, W., Zhang, K., Chen, S.K., Zhang, X., Liang, H.: Proceedings of the 5th Inter-
national Conference on Service-Oriented Computing (ICSOC’07), chap. Software
as a Service: An Integration Perspective, pp. 558–569. Springer Berlin Heidelberg,
Vienna, Austria (September 2007)

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 134

http://aylien.com/text-api
https://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud
https://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud
https://www.languagetool.org
https://www.meaningcloud.com
10.1017/S1351324914000114

	TeXTracT: a Web-based Tool for Building NLP-enabled Applications
	Introduction
	Related Work
	TeXTracT: a Web-based Tool for NLP
	Design of the Tool
	Technology & Implementation Details

	Preliminary Evaluation
	Development of a New Application
	Migration of an Existing Application

	Conclusion


