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Abstract. In this paper we propose the application of feature hashing to
create word embeddings for natural language processing. Feature hashing
has been used successfully to create document vectors in related tasks like
document classification. In this work we show that feature hashing can
be applied to obtain word embeddings in linear time with the size of the
data. The results show that this algorithm, that does not need training,
is able to capture the semantic meaning of words. We compare the results
against GloVe showing that they are similar. As far as we know this is
the first application of feature hashing to the word embeddings problem
and the results indicate this is a scalable technique with practical results
for NLP applications.
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ding

1 Introduction

The main objective of word embeddings is to form a vector space of words
that makes “sense”. Usually, this means that semantically similar words are
together. One use for these language models is to estimate the probability of an
n-gram being correct. [1] suggested that word embeddings can also be used to
create reverse-dictionaries, in which one writes the definition of a word and the
algorithm suggests a concept that fits the definition. Even more, it is possible
to create bilingual reverse dictionaries which can be quite useful in translation
tasks. In recent works, several interesting properties of the resulting vector spaces
were found [2]. There are many other applications of word embeddings [3] which
make the topic a very active area of research in NLP.

One way to create word embeddings is by using the bag of words (BOW)
model where the word co-occurrence matrix is calculated. In this matrix, each
row represents a unique word so that the i,j-element is the amount of times
word j has co-occurred with word i. This matrix can become huge in the order
of millions by millions, making its use difficult in any application.

As a result, modern models (GloVe [3], word2vec [4]) learn to represent words
with a fixed reduced dimensionality.

ASAI, 17º Simposio Argentino de Inteligencia Artificial

45 JAIIO - ASAI - ISSN: 2451-7585 - Página 33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76496088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

A simple technique for dimensionality reduction is Feature Hashing [5], also
known as the hashing trick. The idea is to apply a hashing function to each
feature of a high dimensional vector to determine a new dimension for the feature
in a reduced space. Feature hashing has been used successfully to reduce the
dimensionality of the BOWmodel for texts [5]. [6] used feature hashing to classify
mail as spam or ham.

To mitigate the effect of hash collisions [7] propose the use of a second hash
function ξ that determines the sign of a feature.

It has been shown that Feature Hashing preserves the inner product between
vectors and the error can be bounded. This is explained using the Johnson-
Lindenstrauss lemma [8] [9] and showing that feature hashing is a particular
case of a J-L projection where the projection matrix has exactly one +1 or −1
in each row.

Therefore if we apply the hashing trick to the word co-occurrence matrix we
are able to obtain an embedding where the inner products between the embedded
vectors accurately represent the inner products between the original vectors in
the co-occurrence matrix. Our experiments confirm that the distortion between
using the full vectors and this embedding is minimal. This means that vectors
that are close in the original matrix will also be close in the embedded space.

Interestingly, embeddings can be constructed without the full-size matrix.
Memory consumption is then reduced from O(n2) to O(n × k), where n is the
size of the corpus in words and k is a fixed dimensionality that can be small (in
the order of hundreds.)

2 Algorithm

The main formula for the algorithm can be seen in (1). It is a variation of the
feature hashing equation shown in [5] with the addition of the second hashing
function proposed by [7], as well as the domain-specific part which is the weight
function for each co-occurrence.

w̄
(k)
j =

X
w(c)∈Ck;h(w(c))=j

ξ(w(c))

n(k)(w(c))X
i=1

f
(k,c)
i (1)

w(k) represents the k-th word, and w̄(k) represents the reduced vector for
such word and therefore w̄j(k) is the j-th component for the k-th word vector.
Ck represents all the contexts of the k-th word and h is a hashing function as
[5] shows. ξ is the additional hashing function such that ξ : String → {−1, 1}
proposed by [7]. n(k)(x) represents the amount of times word x has appeared with
word k, and finally, fi(k, c) is the aging (or weighting) for the word c according
to word k in the i-th time they have appeared together.

Words are processed from the text in linear fashion and for each new word
an embedding vector is created. A window of size k is defined to determine
which words co-occur in the context of another. We iterate through the context
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applying Feature Hashing to construct the embeddings. A simplified version of
the algorithm can be seen in Algorithm 1.

Algorithm 1 Hash2Vec

Parameters: n the embedding size, k the context size, h hash function, ξ hash sign-
function and f aging function.

1: words ← Dictionary()
2: for every word w in text do
3: if w /∈ keys(words) then words[w] ← Array(n)

4: for every context word cw with distance d do
5: weight ← f(d)
6: sign ← ξ(cw)
7: words[w][h(cw)] ← words[w][h(cw)] + sign× weight

In practice we only need to keep track of the k past words and update both
the embedding of the current one and the previous ones. This scheme allows the
embeddings to be computed in a streamlined way with O(n) complexity. For
simplicity we assume that for each word the embedding is updated based on the
words within the k-sized window.

The weight function f is a parameter and a deciding factor on the per-
formance of the algorithm. For example, if f(d) = 1 ∀d, then we are simply
calculating a reduced version of the co-occurrence matrix. We obtained better

results using f similar to a Gaussian distribution, i.e., f(d) = e−(
d
σ )

2

.
One interesting property of Hash2Vec is that it always constructs the same

embeddings for the same starting corpus, while word2vec and GloVe do not, as
they either depend on the starting seed or use stochastic optimization.

2.1 Variations on the algorithm

In order to improve the quality of embeddings, we decided to try some varia-
tions on the basic idea and performed various preprocessing tasks before running
Hash2Vec.

We preprocessed the corpus to remove stopwords. We used two criteria to
select the words to filter: calculating a certain percentile, avoiding the words
above it or using a stoplist of words to be removed. Both methods resulted in
an improvement on the similarity tests.

We applied the algorithm proposed on [4] to adjoin phrases. This is very
important because otherwise “New York”, “San Francisco”, etc. would not exist
as a single token.

We also obtained modestly better results using homogeneous sentence selec-
tion, in which each sentence in an original text moves to a final text according
to a uniform probability distribution, instead of simply truncating the text. Our
hypothesis is that with better sampling, the context words are less biased to
local articles (if using a source like Wikipedia), making the final vector better in
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the sense that it was trained with many different articles and usages of the word.
Moreover, our experiments revealed that this algorithm is sensible to polysemy.
[10] explore this idea to construct different representations for the same word.

2.2 Applications to speed up other embedding algorithms

The algorithm that we propose constructs a lower-dimensional approximation
of the word co-occurrence matrix, which can then be used directly or as the
starting point for another algorithm, like GloVe. In the case of word2vec, [11]
have shown that the SGNS model learns an explicit matrix factorization (EMF)
and that very similar results can be obtained by using applying the EMF on the
original matrix. The reduced-form matrix that Hash2Vec creates can be used
instead of the original to obtain again very similar results without the memory
footprint of an O(n2) matrix.

2.3 Streaming applications and parallelization

Since the embeddings are refined as text is processed, the algorithm is practical
for streaming applications. The model can also adapt to changes in language, e.g.
new words being used. Thus the embeddings can constantly be updated while
being always usable, which is something GloVe cannot do.

By nature Hash2Vec is easily parallelizable since the embeddings can be
updated from different portions of text in parallel and then just added up to
construct the final vectors. This associative property makes it trivial for the al-
gorithm to be ported to a model like MapReduce. Even more, if no regularization
function is applied on the final vectors, embeddings trained in different contexts
can be combined by adding the individual vectors of each word in both corpora.

3 Results

For benchmarking we compared our results with two commonly used datasets.
The first is wordsim353 [12] and the second is from Amazon’s Mechanical Turk,
as used in [13]. Both datasets hold word pairs with similarity scores, representing
human assigned similarity judgements. We then calculate the Spearman corre-
lation between our results and the dataset’s to obtain a metric on the quality
of the embeddings. The similarity measure we used is cosine similarity, like the
one used in [3].

Both graphs in Figure 1 show that Hash2Vec approximates the full vectors
when the vector dimension increases. A very good approximation can be obtained
with dimensions in the order of the hundreds, orders of magnitude smaller than
full vectors. As expected, the co-ocurrence matrix appears to be a theoretical
limit on the performance of Hash2Vec.
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Fig. 1. Algorithm’s base performance (by correlating it to the Wordsim353 and Ama-
zon Mechanical Turk datasets) as the vector size increases.

3.1 Comparison with GloVe

We trained GloVe using the same corpus with k = 15 and n = 600 in both cases.
Table 1 shows the 5 most similar words returned by GloVe and Hash2Vec for
some queries.

Table 1. Most similar words comparison with GloVe

computer king physics italy wounded anglican

GloVe computers son chemistry germany killed churches
software i mechanics france mortally church
systems emperor quantum italian soldiers catholic
hardware ii mathematics greece injured communion
game kings particle spain dead orthodox

Hash2Vec program england mathematics france killed lutheran
computers iii study germany injured episcopal
hardware henry chemistry spain captured orthodox
programs charles theory switzerland after presbyterian
game james astronomy russia defeated communion

We observe the results of GloVe and Hash2Vec to be very similar in Table 1.
Both models capture the semantic meaning of words and in some cases Hash2Vec
seems to outperform Glove.

In Figure 2 we can compare both models by correlating the embeddings to the
MTurk dataset. We can see that Hash2Vec performs worse than GloVe across all
dimensions. This is expected as the original co-ocurrence matrix also performs
worse than GloVe.
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Fig. 2. Comparison of Hash2Vec and GloVe by correlating the resulting embeddings

with MTurk data through increasing vector sizes. k = 15 and f(d) = e−2( d
k
)2 .

3.2 Embeddings visualization

To understand how the algorithm behaves and to further observe the resulting
vector space, we applied t-SNE [14], a widely used dimensionality reduction
algorithm.

After training Hash2Vec on a 110-million-word corpus (k = 5 and n = 600),
we applied t-SNE. Given that the algorithm groups together similar words, we
should be able to see it in the graph. Since t-SNE is about O(n2) in memory, we
only used the 15, 000 most common words. Zipf’s law gives some guarantees to
only keeping the most common words.

In Figure 3 we show an interesting sector extracted from the reduced matrix
cartesian plot.

3.3 The myth behind word analogies and Hash2Vec for word
analogies

Word analogies have been used to show the expressiveness power of a word
embedding model [2]. GloVe and word2vec produce embeddings where a linear
relationship exists between analog words. The most popular example is the anal-
ogy “prince is to princess like king is to . . . ” where the model should show that
prince-princess ≡ king-queen. In [3] the authors claim that models that capture
this linearity have a superior understanding to others. In contrast, [16] show
that the word analogy task is just a derivation of similarity. When asking the
model “x is to y like z is to w” we are actually maximizing the dot product of
w(x+y−z) which is the same as maximizing wx+wy−wz so the word analogy
task is actually asking the model about words that are similar to x and y but
different to z.

Word embeddings like GloVe or word2vec are not capable of capturing words
that are different to a given word so they usually fail to find antonyms, this
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Fig. 3. The algorithm has grouped people, suggesting that the algorithm is able to rec-
ognize syntactical similarities by looking at the context words. We can also differentiate
groups of philosophers, movie directors and famous Roman and Greek people.

means that the word analogy task is strongly dependent on the words that are
similar to the positive words in the query.

Table 2. Word “linearity”

x is to y like z is to ...

Paris France Moscow Russia
Cow Milk Pig Meat
Glass Glasses Horse Horses
Nice Ugly Small Large

Table 2 shows how Hash2Vec is able to solve some word analogy tasks. The
vectors are not trained to preserve linearity in the word analogy task, but the
original matrix (and therefore Hash2Vec) captures some of these properties.

4 Conclusions

In this work we detailed a very simple algorithm that is able to construct word
embeddings in linear time. The algorithm does not require training and has min-
imal memory footprint. We showed the results of the algorithm to be comparable
to GloVe [3] in the similar word and analogy tasks, which is one of the state of
the art algorithms for word embeddings. While base Hash2Vec performs consid-
erably worse than GloVe on the benchmarking datasets, the algorithm could be
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used to approximate the word co-occurrence matrix to train models like GloVe
or EMF with minimal memory consumption. It can also be used in streams or
dynamic corpora.

The results show that feature hashing is a very powerful technique that can
reduce the dimensionality of the full word vectors while capturing the semantic
of each token in the vocabulary.
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