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Abstract. Querying large datasets by proximity, using a distance under the met-
ric space model, has a large number of applications in multimedia, pattern recog-
nition, statistics, etc. There is an ever growing number of indexes and algorithms
for proximity querying, however there is only a handful of indexes able to per-
form well without user intervention to select parameters. One of such indexes
is the Distal Spatial Approximation Tree (DiSAT) which is parameter-less and
has demonstrated to be very efficient outperforming other approaches. The main
drawback of the DiSAT is its static nature, that is, once built, it is difficult to add
or to remove new elements. This drawback prevents the use of the DiSAT for
many interesting applications.
In this paper we overcome this weakness. We use a standard technique, the Bent-
ley and Saxe algorithm, to produce a new index which is dynamic while retaining
the simplicity and appeal for practitioners of the DiSAT. In order to improve
the DiSAF performance, we do not attempt to directly apply the Bentley and
Saxe technique, but we enhance its application by taking advantage of our deep
knowledge of the DiSAT behavior.
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1 Introduction

The metric space approach has become popular in recent years to handle the various
emerging databases of complex objects, which can only be meaningfully searched for
by similarity [3, 11, 12, 5]. This approximation has applications in a vast number of
fields. Some examples are non–traditional databases, text searching, information re-
trieval, machine learning and classification, image quantization and compression, com-
putational biology, and function prediction. These problems can be mapped into a met-
ric space model [3] as a metric database. That is, there is a universe X of objects, and
a non negative real valued distance function d : X × X −→ R

+ ∪ {0} defined among
them. This distance satisfies the three axioms that make the set a metric space: strict
positiveness (d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y), symmetry (d(x, y) = d(y, x)),
and triangle inequality (d(x, z) ≤ d(x, y)+d(y, z)). We have a finite databaseU ⊆ X,
|U| = n, which is a subset of the universe.

Thereby, “proximity” or “similarity” searching is the problem of looking for objects
in a dataset, that are “close” or “similar enough” to a given query object, under a cer-
tain (expensive to compute in time and/or resources) distance. The smaller the distance
between two objects, the more “similar” they are. The database can be preprocessed to
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build a metric index, that is, a data structure to speed up similarity searches. There are
two typical similarity queries: range queries and k-nearest neighbors queries.

A large number of metric indices have flourished [3, 12, 11]. The Distal Spatial Ap-
proximation Tree (DiSAT) is an index based on dividing the search space and then ap-
proaching the query spatially. DiSAT is algorithmically interesting by itself, it has been
shown that it gives an attractive trade-off between memory usage, construction time,
and search performance. Besides, the great advantage of DiSAT compared to other in-
dices is that it does not require any parameter tuning. However, DiSAT is a static index,
that is, the index has to be rebuilt from scratch or it requires an expensive updatingwhen
the set of indexed objects undergoes insertions or deletions.

Although for some applications a static scheme may be acceptable, many relevant
ones do require dynamic capabilities. Actually, in many cases it is sufficient to support
insertions, such as in digital libraries and archival systems, versioned and historical
databases, and several other scenarios where objects are never updated or deleted. In
this paper we introduce a new dynamic version of DiSAT, by using the Bentley-Saxe
method (BS)[1]. This method allows to transform a static index into a dynamic one,
if on this index the search problem is decomposable. In [8] some static indexes are
analyzed in combination with the BS method, obtaining certains acceptable results, but
DiSAT in a static scenario has shown to outperform all these index. Now, we are focused
only on supporting insertion and range searches, and we left deletions, k-NN searches
and other improvements as future works.

The rest of this paper is organized as follows. In Section 2 we describe some basic
concepts, and the BS method. Next, in Section 3 we detail theDistal Spatial Approxima-
tion Trees (DiSAT), and some notions of its close relatives: Spatial Approximation Trees
(SAT) and the Dynamic Spatial Approximation Trees (DSAT). Section 4 introduces our
dynamic variant of DiSAT. In Section 5 we show the experimental evaluation of our
proposal. Finally, we draw some conclusions and future work directions in Section 6.

2 Previous Concepts

The metric space model can be formalized as follows. Let X be a universe of objects,
with a nonnegative distance function d : X × X −→ R

+ defined among them. This
distance satisfies the three axioms that make (U, d) a metric space: strict positiveness
(d(x, y) = 0 ⇔ x = y), symmetry (d(x, y) = d(y, x)) and triangle inequality
(d(x, z) ≤ d(x, y) + d(y, z)). We handle a finite dataset U ⊆ X, which can be prepro-
cessed (to build an index). Later, given a new object from X (a query q ∈ X), we must
retrieve all similar elements found in U. There are two typical queries of this kind:

Range query: Retrieve all elements in U within distance r to q.
k-nearest neighbors query (k-NN): Retrieve the k closest elements to q in U.

In this paper we are devoted to range queries. Nearest neighbor queries can be rewrit-
ten as range queries in an optimal way [6, 7], so we can restrict our attention to range
queries. The distance is assumed to be expensive to compute. Hence, it is customary to
define the complexity of the search as the number of distance evaluations performed,
disregarding other components such as CPU time for side computations, and even I/O
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time. Given a dataset of |U| = n objects, queries can be trivially answered by perform-
ing n distance evaluations.

There exist a number of methods to preprocess the database in order to reduce the
number of distance evaluations. (See [11, 12, 3] for more complete surveys.) Most of
those structures work on the basis of discarding elements using the triangle inequal-
ity, and most use the classical divide-and-conquer approach. Algorithms to search in
general metric spaces can be divided into two large areas: pivot-based and clustering
algorithms. However, there are also algorithms that combine ideas from both areas.

Bentley and Saxe Method

The Bentley-Saxe method allows to transform a static index into a dynamic one, if on
this index the search problem is decomposable, based on the binary representation of
the integers [1]. A search problem with a query operation Q is decomposable if there
exists an efficiently computable binary operator ✷ satisfying the condition:

Q(q, X1 ∪ X2) = ✷[Q(q, X1),Q(q, X2)]

where the ✷ operation has to be associative and conmutative [1, 8]. That is, the answer
to a query on a dataset X1 ∪ X2 has to be computed efficiently from the answer to a
queries for eachX1 andX2. In the particular case of range queries onX, the✷ operation
is the union of the sets obtained with the query operationQ.

The main idea of BS method is to partition the indexed set X in certain subsets
X0, X1, X2, . . . , Xm (if |X| = n, m = blog nc) to reduce the size of the index of each
subset that need to be rebuilt when an object is inserted or deleted [8]. This partition
satisfies that

S

0≤i≤m Xi = X and Xi ∩ Xj = ∅ for i 6= j, and |Xi| = 2i. Then,
the main data structure of BS is composed by a set of data strutures T0, T1, . . . , Tm,
where Ti is an empty data structure if Xi = ∅, otherwise Ti is a static data structure
that contains 2i objects. Observe that for any value of n, there is a unique collection
of subsets that must be non-empty. When a new object is inserted into the index, the
algorithm proceeds with the same principle used for incrementing a binary counter. At
query time, the search is solved independently by searching on each non-empty Ti and
then the results of all individual searches are combined.

3 Distal Spatial Approximation Trees

The Distal Spatial Approximation Tree (DiSAT) [2] is a variant of the Spatial Approxi-
mation Tree (SAT) [9], both are data structures aiming at approaching the query spatially
by starting at the root and getting iteratively closer to the query navigating the tree. In
both cases the trees are built as follows. An element a is selected as the root, and it is
connected to a set of neighborsN(a), defined as a subset of elements x ∈ U such that x
is closer to a than to any other element inN(a). The other elements (not inN(a)∪{a})
are assigned to their closest element in N(a). Each element in N(a) is recursively the
root of a new subtree containing the elements assigned to it. For each node a the cov-
ering radius is stored, that is, the maximum distance R(a) between a and any element
in the subtree rooted at a. The starting set for neighbors of the root a, N(a) is empty.
Therefore we can select any database element as the first neighbor. Once this element
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is fixed the database is split in two halves by the hyperplane defined by proximity to
a and the recently selected neighbor. Any element in the a side can be selected as the
second neighbor. While the zone of the root (those database elements closer to the root
than the previous neighbors) is not empty, it is possible to continue with the subsequent
neighbor selection. The SAT considers the elements of U − {a} in increasing order of
distance tho a, but DiSAT considers exactly the opposite order.

The main difference between them is that DiSAT tries to increase the separation
between hyperplanes, which in turn decreases the size of the covering radius; the two
parameters governing the performance of these trees. The performance improvement
consists in selecting distal nodes instead of the proximal nodes selected in the original
algorithm. Considering an example of a metric database illustrated in Fig. 1, the Fig. 2
shows the SAT (Fig. 2(a)) and the DiSAT (Fig. 2(b)) obtained by selecting p6 as the tree
root. In both cases we also depict the covering radii for the neighbors of the tree root. It
is possible to obtain completely different trees (SATs or DiSATs) if we select different
roots, and each tree probably may have different search costs.
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p5
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p11
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p

Fig. 1. Example of a metric database in R
2.

Algorithm 1 gives a formal description of the construction of DiSAT. Range search-
ing is done with the procedure described in Algorithm 2. This process is invoked as
RangeSearch(a,q,r,d(a, q)), where a is the tree root, r is the radius of the search,
and q is the query object. One key aspect of DiSAT (SAT too) is that a greedy search
will find all the objects previously inserted. For a range query of q with radius r, and
being c the closest element between {a} ∪ N(a) ∪ A(a) and A(a) the set of the an-
cestors of a, the same greedy search is used entering all the nodes b ∈ N(a) such that
d(q, b) ≤ d(q, c) + 2r because any element x ∈ (q, r)d, can differ from q by at most
r at any distance evaluation, so it could have been inserted inside any of those b nodes
[12, 9]. In the process, all the nodes x founded close enough to q are reported.

Dynamic Spatial Approximation Tree

The Dynamic Spatial Approximation Tree (DSAT) [10] is an online version of the SAT.
It is designed to allow dynamic insertions and deletions without increasing the construc-
tion cost with respect to the SAT. A very surprising and unintended feature of the DSAT
is the boosting in the searching performance. The DSAT is faster in searching even if at
construction it has less information than the static version of the index. For the DSAT
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(a) SAT.
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(b) DiSAT.

Fig. 2. Example of the SAT and DiSAT obtained if p6 were the root.

the database is unknown beforehand and the objects arrive to the index at random as
well as the queries. A dynamic data structure cannot make strong assumptions about
the database and will not have statistics about all the database.

4 Our Proposal: Distal Dynamic Spatial Approximation Forest

As we mention previously, the BS method can be applied on any static data structure
to transform it into a dynamic one. We select the DiSAT because it has shown that is
a very competitive index and it do not need to set any parameter. Most of the more
efficient indexes that need the setting of the value of at least one parameter can become
inefficient at a bad choice of it.

In this particular case each Ti that considers the BS method is a tree, particularly
a DiSAT, so our new dynamic data structure is named Distal Dynamic Spatial Approx-
imation Forest (DiSAF), because we have a forest of DiSATs. The i-th DiSAT in the
forest will have 2i elements.

Considering the example illustrated in Fig. 1, the Fig. 3 and Fig. 4 illustrate the
two dynamic data structures, based on spatial approximation, obtained by inserting the
objects p1, · · · , p15 one by one: DSAT with maximum arity of 6 (Fig. 3) and DiSAF
(Fig. 4). In the DSAT the root will be p1, because it is the first element arrived. On the
other hand, as we have 15 elements, DiSAF will build four DiSATs: T0, T1, T2, and T3.
As it is aforementioned, each Ti will have 2i elements. As the insertion order is from
p1 to p15, the final situation will have: T0 with the dataset {p15}, T1 with {p13, p14},
T2 with {p9, . . . , p12}, and T3 with {p1, . . . p8}. We also depict the covering radii for
the neighbors of the tree roots, some covering radii are equal to zero. On one hand, it is
possible to obtain different DSATs if we consider different maximum arities or different
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Algorithm 1 Process to build a DiSAT for U ∪ {a} with root a.
BuildTree(Node a, Set of nodes U)
1. N(a)← ∅ /* neighbors of a */
2. R(a)← 0 /* covering radius */
3. For v ∈ U in increasing distance to a Do
4. R(a)← max(R(a), d(v, a))
5. If ∀b ∈ N(a), d(v, a) < d(v, b) Then
6. N(a)← N(a) ∪ {v}
7. For b ∈ N(a) Do S(b)← ∅
8. For v ∈ U −N(a) Do
9. c← argminb∈N(a)d(v, b)

10. S(c)← S(c) ∪ {v}
11. For b ∈ N(a) Do BuildTree(b,S(b))

Algorithm 2 Searching of q with radius r in a DiSAT with root a.
RangeSearch(Node a, Query q, Radius r, Distance dmin)
1. If d(a, q) ≤ R(a) + r Then
2. If d(a, q) ≤ r Then Report a
3. dmin ← min {d(c, q), c ∈ N(a)} ∪ {dmin}
4. For b ∈ N(a) Do
5. If d(b, q) ≤ dmin + 2r Then
6. RangeSearch(b,q,r,dmin)

insertion orders, and they will likely have different search costs. On the other hand, as
DiSAF has not any parameter, the only way to obtain different forests is by considering
different insertion orders.

The insertion process of a new element x in a DiSAF is described in the Algo-
rithm 3. Initially, the DiSAF has an only DiSAT T0 = null. Then, the index can be
built via succesive insertions. Retrieve(Tree T) return all the elements that com-
pose the tree T . The range search process is detailed in the Algorithm 4.

5 Experimental Results
For the empirical evaluation of the indices we consider three widely different metric
spaces from the SISAP Metric Library (www.sisap.org) [4].

Dictionary: a dictionary of 69,069 English words. The distance is the edit distance,
that is, the minimum number of character insertions, deletions and substitutions
needed to make two strings equal. This distance is useful in text retrieval to cope
with spelling, typing and optical character recognition (OCR) errors.

Color Histograms: a set of 112,682 8-D color histograms (112-dimensional vectors)
from an image database3. Any quadratic form can be used as a distance; we chose
Euclidean as the simplest meaningful distance.

NASA images: a set of 40,700 20-dimensional feature vectors, generated from images
downloaded from NASA4. The Euclidean distance is used.

3 At http://www.dbs.informatik.uni-muenchen.de/˜seidl/DATA/histo112.112682.gz
4 At http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
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Fig. 3. Example of the DSAT with maximum arity of 6, inserting from p1 to p15.

Algorithm 3 Insertion of a new element x in a DiSAF with at mostm trees.
Insert(Element x)
1. S ← ∅, k ← min0≤i≤m i, such that Ti = null
2. For i from 0 to k − 1 Do
3. S ← S ∪ Retrieve (Ti) /* retrieve all the elements of Ti */
4. Ti ← null /* Ti is a new empty tree */
5. Tk ← BuildTree(x, S)
6. If k = m Then
7. Tk+1 ← null, m← k + 1

Whenwe evaluate construction costs, we build the indexwith the complete database.
If the index is dynamic, the construction is made by inserting one by one the objects,
otherwise the index knows all the elements beforehand. In order to evaluate the search
performance of the indexes, we build the index with the 90% of the database elements
and we use the remaining 10%, randomly selected, as queries. So, the elements used as
query objetcs are not in the index. We average the search costs of all these queries. All
results are averaged over 10 index constructions with different datasets permutations.

We consider range queries retrieving on average 0.01%, 0.1% and 1% of the dataset.
This corresponds to radii 0.051768, 0.082514 and 0.131163 for the Color Histograms;
and 0.605740, 0.780000 and 1.009000 for the NASA images. The Dictionary have
a discrete distance, so we used radii 1 to 4, which retrieved on average 0.00003%,
0.00037%, 0.00326%and 0.01757%of the dataset, respectively. The same queries were
used for all the experiments on the same datasets. As we mention previously, given the
existence of range-optimal algorithms for k-nearest neighbor searching [6, 7], we have
not considered these search experiments separately.

We show the comparison between our dynamic DiSAF, the DSAT, and the static
alternatives SAT and DiSAT. The source code of the different SAT versions (SAT and
DSAT) is available atwww.sisap.org. A final note in the experimental part is the
arity parameter of the DSATwhich is tunable and is the maximum number of neighbors
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Fig. 4. Example of the DiSAF, inserting from p1 to p15.

Algorithm 4 Searching of q with radius r in a DiSAF with at mostm trees.
RangeSearchNew(Query q, Radius r)
1. A← ∅
2. For i from 0 to m− 1
3. If Ti 6= null Then
4. Let x be the root of Ti

5. A← A ∪ RangeSearch(x,q,r,d(x, q))
6. Report A

of each node of the tree. In our experiments we used the arity suggested by authors in
[10]. The Figure 5 illustrates the construction costs of the all indices, on the three metric
spaces. As it can be seen, DiSAF is surpassed for the other three indexes, because it
has to rebuild the trees too many times. On the other hand, DSAT do not make any
reconstruction while it builds the tree via insertions. It has to be considered that SAT
and DiSAT are built with all the elements known at the same time, not dynamically.

We analyze search costs in Figure 6. As it can be noticed, DiSAF surpasses DSAT in
most of spaces. The only index that is always better than DiSAF is the DiSAT, but as we
already mention it is static. Therefore, we can affirm that the heuristic of construction
of DiSAT allows to surpasse in searches the other strategies used in SAT and DSAT.
Besides, we have obtained a dynamic index that overcomes DSAT at searches and it do
not have any parameter to tune.

6 Conclusions
We have presented a dynamic version of the DiSAT, which at this time is able of han-
dling insertions without affecting significantly its search quality. Very few data struc-
tures for searching metric spaces are dynamic. Furthermore, we have shown that the
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Fig. 5. Construction costs for the three metric spaces considered.

heuristic used in DiSAT and DiSAF to partition the metric space is better than that used
in SAT and DSAT: distal nodes produce more compact subtrees, which in turn give
more locality to the underlying partitions implicitly defined by the subtrees.

The DiSAT was a promising data structure for metric space searching, with several
drawbacks that prevented it from being practical: high construction cost and inability
to accommodate insertions and deletions. We have addressed one of these weaknesses.
Despite of we have obtained worse construction costs, it is still possible to improve it,
for example by providing a bulk-loading algorithm to create initially the DiSAF if we
know aforehand a subset of elements, avoiding unnecessary rebuildings when we insert
elements one by one, or with lazy insertion that do not always rebuild trees.

We are currently pursuing in the direction of making the DiSAF fully dynamic; that
is, that it also supports deletions, and designing an efficient bulk-loading algorithm,
which amortizes the insertion costs between several elements. Other topic of future
work is to design a more efficient alternative of k-NN search that do not apply the basic
solution of decomposable search, but that it applies a smart solution by taking advantage
of all distances calculated in order to shrink, as soon as possible, the radius from q that
encloses k elements.
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