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Abstract. Featured Articles (FA) are considered to be the best arti-
cles that Wikipedia has to offer and in the last years, researchers have
found interesting to analyze whether and how they can be distinguished
from “ordinary” articles. Likewise, identifying what issues have to be
enhanced or fixed in ordinary articles in order to improve their quality is
a recent key research trend. Most of the approaches developed in these
research trends have been proposed for the English Wikipedia. However,
few efforts have been accomplished in Spanish Wikipedia, despite being
Spanish, one of the most spoken languages in the world by native speak-
ers. In this respect, we present a first breakdown of Spanish Wikipedia’s
quality flaw structure. Besides, we carry out a study to automatically as-
sess information quality in Spanish Wikipedia, where FA identification is
evaluated as a binary classification task. The results obtained show that
FA identification can be performed with an F1 score of 0.81, using a
document model consisting of only twenty six features and AdaBoosted
C4.5 decision trees as classification algorithm.
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1 Introduction

The online encyclopedia Wikipedia is one of the largest and most popular user-
generated knowledge sources on the Web. Considering the size and the dynamic
nature of Wikipedia, a comprehensive manual quality assurance of information
is infeasible. Information Quality (IQ) is a multi-dimensional concept and com-
bines criteria such as accuracy, reliability and relevance. A widely accepted in-
terpretation of IQ is the “fitness for use in a practical application” [1], i.e. the
assessment of IQ requires the consideration of context and use case. Particularly,
in Wikipedia the context is well-defined by the encyclopedic genre, that forms
the ground for Wikipedia’s IQ ideal, within the so-called featured article crite-
ria.4 Having a formal definition of what constitutes a high-quality article, i.e. a

4 http://en.wikipedia.org/wiki/Wikipedia:Featured_article_criteria
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featured article (FA), is a key issue; however, as indicated in [2], in 2012 less than
0.1% of the English Wikipedia articles were labeled as featured. At present, this
ratio still remains, since there are 4 785 featured articles out of 5 187 923 articles
on the English Wikipedia.5

Information quality assessment in Wikipedia has become an ever-growing
research line in the last years [3–10]. A variety of approaches to automatically
assess quality in Wikipedia has been proposed in the relevant literature. Ac-
cording to our literature review, there are three main research lines related to
IQ assessment in Wikipedia, namely: (i) featured articles identification [5, 6, 10];
(ii) quality flaws detection [7–9]; and (iii) development of quality measurement
metrics [3, 4]. In this paper we will concentrate on the first two research trends
mentioned above.

All the above-mentioned approaches have been proposed for the English
Wikipedia, which ranks among the top ten most visited Web sites in the world.6

With 1 265 961 articles, Spanish Wikipedia ranks ninth in the list after English,
Swedish, Cebuano, German, Dutch, French, Russian and Italian languages. In
spite of being one of the thirteen versions containing more than 1 000 000 arti-
cles,7 and despite being Spanish one of the most spoken languages in the world by
native speakers, few efforts have been made to assess IQ on Spanish Wikipedia.
To the best of our knowledge, [11] and [12] are the most relevant works related
to IQ in Spanish Wikipedia, and [12] can be characterized as belonging to the
third main research trend mentioned above.

In [11], Pohn et al. presented the first study to automatically assess infor-
mation quality in Spanish Wikipedia, where FA identification was evaluated as
a binary classification task. The research question which guided their experi-
ments was to verify if successful approaches for the English version, like word
count [5] and style writing [6], also work for the Spanish version, and if not, what
changes were needed to accomplish a successful identification. Results showed
that when the discrimination threshold is properly set, the word count discrim-
ination rule performs well for corpora where average lengths of FA and non-FA
are dissimilar. Moreover, it was concluded that character tri-grams vectors are
not as effective for the Spanish version as they are for FA discrimination in the
English Wikipedia; but Bag-of-Words (BOW) and character n-grams with n > 3
performed better in general. This may be because in Spanish many kind of ad-
verbs are fully encompassed in 4-grams or 5-grams. The best F1 scores achieved
were 0.8 and 0.81, when SVM is used as classification algorithm, documents
are represented with a binary codification, and 4-grams and BOW are used as
features, respectively.

The contribution of our work is twofold. On one hand, we report results on
FA identification evaluated as a binary classification task, like in [11], but where
the document model used is composed of static features rather than dynamic
features. On the other hand, this paper also targets the investigation of quality

5 https://en.wikipedia.org/wiki/Wikipedia:Featured_articles
6 Alexa Internet, Inc., http://www.alexa.com/siteinfo/wikipedia.org
7 http://meta.wikimedia.org/wiki/List_of_Wikipedias
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flaws. We have conducted an exploratory analysis similar to the original one
proposed in [13], to reveal both the quality flaws that actually exist and the
distribution of flaws in Spanish Wikipedia articles.

With this aim, in Sect. 2, we describe the experimental design and results
obtained in the FA identification task. Then, Sect. 3 introduces the problem of
predicting quality flaws in Wikipedia based on cleanup tags. Also, our findings
are presented and discussed. Finally, Sect. 4 offers the conclusions.

2 Featured Articles Identification

Given the question: is an article featured or not? we have followed a binary
classification approach where articles are modeled using a vector composed by
twenty six features. All article features correspond to content and structure di-
mensions, as characterized by Anderka et al. [7]. We decided to implement these
features based on the experimental results provided by Dalip et al. [14], which
showed that the most important quality indicators are the easiest ones to ex-
tract, namely, textual features related to length, structure and style. The dataset
used, was the one compiled in [11], which consists of two corpora, namely: a bal-
anced corpus and an unbalanced corpus. It is worth noting that “balanced”
means that FA and non-FA articles were selected with almost similar document
lengths. In a similar manner, “unbalanced” refers to the fact that non-FA articles
were randomly selected without considering their average lengths. Both corpora
are balanced in the traditional sense, i.e. the positive (FA) and negative (non-
FA) classes contain the same number of documents. In particular, the balanced
corpus contains 714 articles in each category and the unbalanced one has 942
articles in each category as well. It is ensured that non-FA articles belonging
to the balanced corpus have more than 800 words. The articles belong to the
snapshot of the Spanish Wikipedia from 8th, July 2013.

Formally, given a set A = {a1, a2, . . . , an} of n articles, each article is repre-
sented by twenty six features F = {f1, f2, . . . , f26}. A vector representation for
each article ai in A is defined as ai = (v1, v2, . . . , v26), where vj is the value of
feature fj . A feature generally describes some quality indicator associated with
an article. A few differ slightly from one another, e.g., counts divided by the
number of characters instead of words or ratios instead of a pure count. Table 1
shows the features composing our document model; for specific implementations
details cf. [15].

Given the characteristics of these features, content-based features were imple-
mented with AWK and shell-script programming using as input the plain texts
extracted from the Wikipedia articles. By using the same programming lan-
guages, but using as input the wikitexts of Wikipedia articles, structure-based
features were calculated. It is worth mentioning that wikitexts are not provided
in the corpora of Pohn et al. and they were extracted from the corresponding
Wikipedia dump.8 To perform the experiments we have used the WEKA Data

8 The updated corpora, including the wikitexts, can be downloaded from:
https://dl.dropboxusercontent.com/u/35037977/Corpus.tar.gz
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Mining Software [16], including its SVM-wrapper for LIBSVM [17]. Notice that
all the results discussed below are average values obtained by applying tenfold
cross-validation.

2.1 Results

In the first place, we replicated the experimental setting of Pohn et al. [11], where
Naive Bayes (NB) and Support Vector Machine (SVM) classification approaches
were evaluated, for both corpora. For the unbalanced corpus, the best F1 scores
achieved by Pohn et al. were 0.91 and 0.94, for NB and SVM, respectively. In
both cases, character 4-grams were used as features (with full vocabulary size) in
a binary document model (bnn codification from the SMART nomenclature [18]).
In particular, the C parameter of SVM was set to 32, after experimentally deriv-
ing its value ranging in the set {2−5, 2−3, 2−1, . . . , 213, 215}. For a linear kernel
like the one used by Pohn et al., we achieved an F1 score of 0.92, and F1 =
0.94 was achieved by using an RBF kernel with C = 29 and γ = 2−3; a config-
uration similar to the linear kernel given that γ value is close to zero. For the
NB classifier, the F1 score obtained was 0.9. Hence, as it can be observed, the
performance of both proposals are similar.

For the balanced corpus, a more challenging setting, the F1 scores reported
by Pohn et al. for NB classifier were below 0.78 and the best F1 scores achieved
were 0.8 and 0.81, for the SVM classifier with full and reduced vocabulary, re-
spectively, using a binary document model. In our experiments, NB performed
notably worse than in [11], given that this classifier achieved an F1 = 0.62. For
SVM, the best F1 score achieved was 0.78, with an RBF kernel with parameters
set to C = 211 and γ = 2−3, respectively. As usual, these parameters were exper-
imentally derived by a grid-search in the ranges C ∈ {2−5, 2−3, 2−1, . . . , 213, 215}
and γ ∈ {2−15, 2−13, 2−11, . . . , 21, 23}. Different configurations of polynomial ker-
nels were also evaluated (with d ∈ {2, 3, 4, 5} and r ∈ {0, 1}) but no better results
were obtained than 0.78. It is well known that increasing γ and d parameters from
the RBF and polynomial kernels allow for a more flexible decision boundary, but
if they are increased too much, this might yield in principle an over-fitting of the
model and hence obtaining a poor capability of generalization of the classifier.

Besides, we also evaluated other classification approach — Ada-boosted C4.5
decision trees. This approach has been used before in the context of Wikipedia
IQ, but for quality flaws prediction task [19]. Using unpruned trees and one
hundred boosting rounds achieved an F1 score of 0.81. This meta-algorithm, was
also run with Pohn et al. document models and the performance achieved was
F1 = 0.8. As it can be observed, both approaches have quite alike performances,
with both classification methods. We believe that the advantage of our feature-
engineering approach relies on the fact of having a fixed-size document model,
that with only 26 features has a performance comparable to dynamic document
models with thousand of features. This is not a minor issue, since having a
classifier in a productive environment (like a Wikipedia bot9), also implies being
able of computing document models efficiently, as in our case.

9 https://en.wikipedia.org/wiki/Wikipedia:Bots
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Table 1. Features which comprise the document model.

Feature Description

Content-based

Character count Number of characters in the plain text, without spaces
Word count Number of words in the plain text
Sentence count Number of sentences in the plain text
Word length Average word length in characters
Sentence length Average sentence length in words
Paragraph count Number of paragraphs
Paragraph length Average paragraph length in sentences
Longest word length Length in characters of the longest word
Longest sentence length Number of words in the longest sentence
Shortest sentence length Number of words in the shortest sentence
Long sentence rate Percentage of long sentences∗

Short sentence rate Percentage of short sentences?

Structure-based

Section count Number of sections
Subsection count Number of subsections
Heading count Number of sections, subsections and subsubsections
Section nesting Average number of subsections per section
Subsection nesting Average number of subsubsections per subsection

Lead length Number of words in the lead section†

Lead rate Percentage of words in the lead section
Image count Number of images
Image rate Ratio of image count to section count

Link rate Percentage of links‡

Table count Number of tables
Reference count Number of all references using the <ref>...</ref> syntax

(including citations and footnotes)
Reference section rate Ratio of reference count to the accumulated section sub-

section and subsubsection count
Reference word rate Ratio of reference count to word count

∗ A long sentence is defined as containing at least 30 words.
? A short sentence is defined as containing at most 15 words.
† A lead section is defined as the text before the first heading. Without a heading
there is no lead section.
‡ Every occurrence of a link (introduced with two open square brackets) in the
unfiltered article text is considered when computing the ratio of link count to
word count in the plain text.
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3 A Preliminary Breakdown of Quality Flaws

Despite the fact that FA identification is a useful task, assessing what kind of
shortcomings of an article must be enhanced, would help writers to improve
the article’s quality. In this respect, cleanup tags are a means to tag flaws in
Wikipedia. As shown in Fig. 1, they are used to inform readers and editors
of specific problems with articles, sections, or certain text fragments. However,
there is no single strategy to spot the entire set of all cleanup tags. Cleanup tags
are realized based on templates, which are special Wikipedia pages that can be
included into other pages.

Quality flaws prediction in Wikipedia was a research line started in 2011
by Anderka et al. [13] and evolved in seminal works like [2, 20, 21]. Particularly,
in [2] an extensive exploratory analysis on Wikipedia’s quality flaw structure is
presented for the English version, whose approach consisted in creating a local
copy of the Wikipedia database. Their results revealed that tagging work in
Wikipedia mostly targets the encyclopedic content rather than pages used for
content organization and user discussions. Based on this, we decided to use an
alternative method, viz. a query retrieving approach on indexed documents with
Elasticsearch, a search engine which provides scalable and real-time search.10

We hence introduced an extraction approach that consists of automatically
querying the search engine with patterns representing maintenance templates.11

These templates are organized into categories depending on the maintenance

Fig. 1. The Wikipedia article “Salto Base” (Base Jumping) with a cleanup tag indi-
cating that certified references need to be included.

10 https://www.elastic.co/
11 https://es.wikipedia.org/wiki/Wikipedia:Plantillas_de_mantenimiento
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task required, but not all maintenance templates necessarily imply a quality flaw.
For example, notification templates are used to informWikipedians to proceed in
agreement with the policies and conventions of Wikipedia. Similarly, protection
templates warn Wikipedians that a particular working space has been blocked
for its proper restoration by a librarian due to violations on the policies and
conventions of Wikipedia. Likewise, according to our analysis, the remaining
categories, namely: critic maintenance, content, style, fusion and development,
do contain templates which can be associated with quality flaws, as shown in
Table 2. It is worth noting that, as stated in this table, this preliminary break-
down of quality flaws has been carried out on a recent Wikipedia snapshot, the
dump corresponding to April 2016.12

The first column of Table 2 specifies the category where templates (second
column) associated with a particular flaw type (third column) are organized. The
fourth column presents the number of articles that were found containing these
particular templates. The flaw type scheme used corresponds to the one proposed
by Anderka et al. [2, 13]. Figure 2 shows, from among the tagged articles, how
flaw types are distributed. As it can be observed, verifiability is by far the most
extended flaw type, corresponding to approximately 70% of the tagged content.
This finding agrees with the results reported in [2, 13].

Fig. 2. Flaw types found and their distribution in the Spanish Wikipedia snapshot
from April 2016. The percentages relate to the set of 111 072 tagged articles.

Besides, from Table 2, we can notice that the template Referencias13 rep-
resents 90% of the articles tagged with the flaw concerning verifiability. That
means that most of the articles suffer from this flaw because they contain nei-
ther references nor footnotes. From the remainder 10%, template Referencias

12 https://dumps.wikimedia.org/eswiki/20160407/
13 https://es.wikipedia.org/wiki/Plantilla:Referencias
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Table 2. Flaw types breakdown for the Wikipedia snapshot corresponding to April 2016.

Category Template Flaw type # articles

Content

Actualizar Time sensitive 275
CDI Neutrality 4
Complejo Style of writing 107
Desactualizado Time sensitive 1515
Discutido Verifiability 610
Documentación deficiente Expand 18
Ficticio Cleanup of specific subject 464
Fuentes no fiables Verifiability 23
Globalizar Neutrality 92
No neutralidad Neutrality 341
Problemas art́ıculo General cleanup 3218
PVfan Neutrality 60
Referencias Verifiability 66616

Critic maintenance

Art́ıculo indirecto/esbozo Wiki tech 7
Bulo Verifiability 701
Contextualizar Style of writing 162
Fuente primaria Verifiability 54
Infraesbozo Wiki tech 93
Plagio Unwanted content 27
Posible copyvio Verifiability 11
Promocional Unwanted content 141
Sin relevancia Verifiability 320

Development Traducción Miscellaneous 2612

Fusion

Fusión historiales Unwanted content 19
Fusionar Unwanted content 2002
Fusionar desde Unwanted content 470
Fusionar en Unwanted content 740
Posible fusionar Unwanted content 73

Style

Categorizar Wiki tech 99
Copyedit Style of writing 3641
Excesivamente detallado General cleanup 18
Formato de cita Wiki tech 546
Huérfano Wiki tech 223
Identificador Verifiability 1344
Largo Structure 3701
Mal traducido Style of writing 3082
Mejorar redacción Style of writing 113
Publicidad Unwanted content 1528
Recentismo Neutrality 5
Referencias adicionales Verifiability 3850
Revisar traducción Style of writing 342
Traducción incompleta Miscellaneous 8
Wikificar Wiki tech 11731

Total over all types 111072

709709709



adicionales comprise almost 5% and template Identificador represents almost
2%. This means that existing references are not enough or are difficult to be
found since particular key features are missing in the references, like the ISBN
in a book. From Fig. 2, we can also see that Wiki tech flaw type, ranks sec-
ond with 11.4%. In [2, 13], this flaw type also ranked second with approximately
19% and 16%, respectively. In a similar manner as occur with verifiability flaw
and the Referencias template, in this case, 92% of the articles tagged with the
Wiki tech flaw type, correspond to template Wikificar; indicating that these arti-
cles notoriously do not comply to Wikipedia’s style manual. The remaining flaw
types and their orderings, differ in [2, 13], as well as in our case; nonetheless, flaw
types Unwanted content, Style of writing and General cleanup, are those having
in general higher percentages after Verifiability and Wiki tech.

4 Conclusions

In this work, we have presented a first breakdown of Wikipedia’s quality flaw
structure for the Spanish language, following the pioneering approach of Anderka
et al. [2, 13]. As reported in these works, verifiability related flaws comprise ap-
proximately 70% of tagged articles, like found in our study. Without doubts, this
preliminary report paves the way for the development and evaluation of existing
approaches to predict quality flaws by means of machine learning techniques,
like in [8, 9, 19].

Besides, we carried out a study to automatically assess information qual-
ity, where FA identification was evaluated as a binary classification task. The
results obtained showed that FA identification can be performed with an F1
score of 0.81, using a document model consisting of only twenty six features and
AdaBoosted C4.5 decision trees as classification algorithm. These results were
compared to previous results reported by Pohn et al. [11], who used dynamic
document models with thousand of features, and both approaches have quite
alike performances. In our view, the advantage of our feature-engineering ap-
proach relies on the fact of having a fixed-size document model which can be
efficiently computed in a productive environment, like a Wikipedia bot.
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Rosso, P.: On the use of PU learning for quality flaw prediction in wikipedia. In:
CLEF (Online Working Notes/Labs/Workshop). (2012)

9. Ferretti, E., Errecalde, M., Anderka, M., Stein, B.: On the use of reliable-negatives
selection strategies in the pu learning approach for quality flaws prediction in
wikipedia. In: 11th Intl. Workshop on Text-based Information Retrieval. (2014)
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