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Abstract. Faces and facial expressions recognition is an interesting topic for re-
searchers in machine vision. Viola-Jones algorithm is the most spread algorithm 
for this task. Building a classification model for face recognition can take many 
years if the implementation of its training phase is not appropriately optimized. 
In this study, several settings for implementing the training phase are analyzed. 
The aim was to share our experiences when we try to accelerate the training 
phase using one computer with a graphical processing unit (GPU). For each set-
ting, the execution times were analyzed and compared with previous studies. 
Although we don't contribute to break new ground in topic or methodology, we 
decide to share our experience in order to show an antecedent working with a 
cheap GPU with the aim that this can be useful to another for to make compari-
sons. 
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1 Introduction 

Face and facial expressions recognition is an interesting topic for researchers in 
machine vision [9]. An important stage in a face recognition algorithm is the building 
of a classification model that can discriminate faces. Building a classification model 
require a training phase during which a sample of images is analyzed with the aim of 
extracting those features that best describe a face.  

Viola and Jones [11] proposed an algorithm that can detect faces in real time. This 
algorithm can be implemented on a wide range of small low power devices, including 
hand-helds devices and embedded processors. However, a drawback of this algorithm 
is that the training phase is extremely time-consuming. 

In this work, we propose and analyze five settings to implement the training phase 
of Viola-Jones algorithm. Each setting tries to reduce the execution times when work-
ing on a single computer. Two settings involve the use of sequential computing and 
the other three involve the use of parallel computing, specifically CUDA architecture. 
CUDA is a parallel computing platform and programming model invented by 
NVIDIA [12]. It enables dramatic increases in computing performance by harnessing 
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the power of the graphics-processing unit (GPU). In order to reduce execution times, 
we had focus on feature selection because this process has a notable impact on train-
ing times.  

This paper is organized as follows. In section 2, the purpose, the utility and the 
training phase of Viola-Jones algorithm are described. In section 3, five settings of 
development for training face are described. In section 4, our experimental results are 
showed. In section 5, we compare our proposal respect other alternatives we found in 
the literature.  In section 6, conclusions and the future research directions are present-
ed. 

2 Revision of the training phase in Viola-Jones Algorithm. 

The Viola-Jones algorithm describes a framework for object detection. It is widely 
used in a variety of software and hardware applications that incorporate elements of 
computer vision, like the face detection module in video conferencing, human-
computer interaction, and digital photo cameras [6].   

Viola and Jones [11] propose a variant of Adaboost algorithm [2] for the training 
phase that is related with the selection of a small number of features that best describe 
a face. These features are known as weak classification functions and are combined to 
build a stronger classifier.  

The features used by Viola and Jones are reminiscent of Haar basis functions [8]. 
Figure 1 shows five simple features usually employed. These features are defined by 
two, three or four rectangles. To compute a feature, the sum of pixels within the white 
rectangles should be subtracted from the sum of pixels within the black rectangles. 

 
Fig. 1. Haar-Like patterns frequently employed [11].   

Supposing f is a feature, 𝜃 is a threshold, 𝑝 ∈ {−1,1} is the polarity that indicates 
the direction of the inequality and x is a sub-window of an image, a weak classifier to 
detect a face in x can be defined by Equation 2.  

 

Each iteration of the boosting algorithm is designed to select the single rectangle 
feature which best separate the positive (face images) and negative examples (not face 
images). For each feature, the weak classifier determines the optimal threshold of 

ℎ(𝑥, 𝑓, 𝑝,𝜃) = �1 𝑠𝑖 𝑝𝑓(𝑥) < 𝑝𝜃
0 𝑒𝑛 𝑜𝑡𝑟𝑜 𝑐𝑎𝑠𝑜  

� (2) 
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classification function, such that the minimum number of examples is misclassified. 
Figure 2 shows the boosting algorithm proposed by Viola and Jones [11]. 

 

Fig. 2. Boosting Algorithm [11] 

Viola-Jones algorithm to select weak classifier is depicted in Figure 3. This pseu-
do-code is an interpretation proposed by Morelli and Padovani [5] and its operation 
can be summarized as follow. For each feature, the images into the samples are sorted 
by feature value in ascendant way. The Adaboost optimal threshold for that feature 
can then be computed in a single pass over this sorted list.  On each iteration over the 
sorted list, four sums are evaluated for each element: the total sum of positive exam-
ples weights T+, the total sum of negative example weights T-, the sum of positive 
weights below the current example S+ and the sum of negative weights below the 
current example S-. Also for each feature, an error is computed using the Equation 3. 
This value represents the error that we would produce if the element were considered 
the threshold for the feature. Once all errors have been computed, the lowest one is 
selected. 

𝜀𝑡 = 𝑚𝑖𝑛𝑓,𝑝,𝜃�𝑤𝑖|ℎ(𝑥𝑖 , 𝑓, 𝑝,𝜃) − 𝑦𝑖|
𝑖

 

Boosting Algorithm 

• Given example images (x1,y1), …, (xn,yn) where yi=0, 1 for negative and 
positive examples respectively.. 

• Initialize weights 𝑤1,𝑖 = 1
2𝑚

, 1
2𝑙

 for yi=0,1 respectively. Where m is the 
number of positives examples and l the number of negatives examples.   

• For t = 1,..,T (T weak classifiers) 
1. Normalize the weights, 𝑤𝑡,𝑖 = 𝑤𝑡,𝑖

∑ 𝑤𝑡,𝑗
𝑛
𝑗=1

  

2. Select the best weak classifier with respect to the weighted error: 

Define ht(x)=h(x,ft,pt,𝜃𝑡) where ft,pt y 𝜃𝑡 are the minimizers of 𝜀𝑡. 

3. Update the weights:  𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝛽𝑡
1−𝑒𝑖  

Where ei=0 if example xi is classified correctly, ei = 1 otherwise, and 
𝛽𝑡 = 𝜀𝑡

1−𝜀𝑡
 

• The final strong classifier is: 

 𝐶(𝑥) = �
1 𝑖𝑓 ∑ 𝛼𝑡ℎ𝑡(𝑥) ≥ 1

2
∑ 𝛼𝑡𝑇
𝑡=1

𝑇
𝑡=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                
� 

Where 𝛼𝑡 = 𝑙𝑜𝑔 1
𝛽
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Fig. 3. Algorithm for weak classifiers selection [5]. 

3 Experimental Settings for Implementing the Training Phase 

Five experimental settings were proposed to implement the training phase of Vio-
la-Jones algorithm. The C language was chosen to code each experimental setting 
because it enables us to make decision of programming at low-level and it is compati-
ble with CUDA.  

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒 =  ∅ 
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑟𝑟𝑜𝑟 =  ∞ 
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0 
𝑇+ ← 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝟏) 
𝑇− ← 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝟐) 
𝒇𝒐𝒓 𝑎𝑙𝑙 𝑓 𝜀 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝒅𝒐 
    𝑋(𝑓)  ← 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒𝑠 𝑠𝑜𝑟𝑡𝑒𝑑 𝑏𝑦 𝑓 𝑣𝑎𝑙𝑢𝑒 (𝟑) 
    𝑒𝑓 = ∞ 
    𝜃𝑓 = 0 
    𝒇𝒐𝒓 𝑖 = 1 𝒕𝒐 𝑁  
        𝑆𝑖+ ← 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒  
𝑥𝑖
𝑓  (𝟒)   

        𝑆𝑖− ← 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒  
𝑥𝑖
𝑓 (𝟓)     

        𝑒𝑖 = min�𝑆𝑖+ − (𝑇− + 𝑆𝑖−), 𝑆𝑖− − (𝑇+ − 𝑆𝑖+)�  (𝟔) 
        𝒊𝒇 �𝑒𝑖 − 𝑒𝑓� 𝒕𝒉𝒆𝒏  
            𝑒𝑓 = 𝑒𝑖   
            𝜃𝑓 = 𝑓�𝑥𝑖

𝑓�  
        𝒆𝒏𝒅 𝒊𝒇  
    𝒆𝒏𝒅 𝒇𝒐𝒓  
    𝒊𝒇 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑟𝑟𝑜𝑟 >  𝑒𝑓 𝒕𝒉𝒆𝒏  
        𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑓  
        𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑟𝑟𝑜𝑟 =  𝑒𝑓  
        𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝜃𝑓   
    𝒆𝒏𝒅 𝒊𝒇  
𝒆𝒏𝒅 𝒇𝒐𝒓 
 

 
 

𝜀 = min (𝑆+ + (𝑇− − 𝑆−), 𝑆− + (𝑇+ − 𝑆+)) (3) 
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3.1 First Experimental Setting 

The implementation that was done with this experimental setting was sequential. 
We allocated in memory a matrix that stores the identifier of each training file, the 
category of the image (face or not face), its weight and the category (face or not face) 
assigned by the classifier algorithm. In addition, we use as many files as training im-
ages in order to save the features of the images. Each file has 162336 lines (this num-
ber correspond to the total quantity of features that can be generated for an image of 
24 x 24 pixels) and each line registers the details of one feature.   

In Figure 3, the instructions that can have in memory the data necessary for com-
puting them were tagged with (1), (2), (4), (5) and (6). Meanwhile, the instruction 
tagged with (3) has a lot of access to hard disk because it needs data saved in files. In 
instruction (3) the sorting task is made through the Bubble sort method, so we have a 
loop that iterates over 162336 features. In each iteration, the values of a feature are 
extracted from each training image file. These values are employed to re-sort the 
training images. The access to details of a feature in the file is sequential. 

3.2 Second Experimental Setting 

This experimental setting is similar to the first one in the sense that it operates with 
data saved on files. The difference is that with this second setting we create one file to 
save the values of all features on a unique place. Each line of this file contains all 
values of a f eature extracted from each training image. This change reduces in a 
99,99% the amount of access to files, from 2.435.040.000 (162336 features x 15000 
sample images) to 162336, during the sorting task. In this second setting, we changed 
the Bubble method for the Quick Sort method because the last one generally has best 
performance during sorting tasks. The way of accessing to the feature values was also 
changed. Sequential access was changed for random access through the fseek func-
tion. 

3.3 Third Experimental Setting 

This experimental setting continues with the use of a unique file in order to store for 
each feature the values that are observed in each one of the sample files. However, we 
employ the Thrust library. Thrust is a parallel algorithms library that enhances pro-
grammer productivity while enabling performance portability between GPUs and 
multicore CPUs [13]. This library was used for sorting, operation tagged with (5) in 
Figure 3, and in (4) and (6) operations of this figure for accomplish them through a 
reduction operation. 

3.4 Fourth Experimental Setting 

In this experimentation, we changed the way of applying the sum operations in-
volved in the process of weak classifiers selection.  The operations to sum the weight 
of positive samples (4) and negative samples (5) of Figure 3 were implemented in the 
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same procedure so as to take advantage of the processing cycle, and the procedure 
was parallelized based on the algorithm proposed by Harris [3]. Small changes were 
applied to the algorithm in order to make two sum operations at the same time. 

This experimental setting does not sort the values of the samples with respect to a 
particular feature. For each value in the samples with respect to a particular feature, 
the calculation of  𝜀 = min (𝑆+ + (𝑇− − 𝑆−), 𝑆− + (𝑇+ − 𝑆+))  was made in fully 
parallel way. This way 15000 processing threads were launched, one for each sample.  

3.5 Fifth Experimental Setting 

On previous experimentations, the data matrix was stored in a disk file, but on this 
experimental setting, all data are stored in the memory of the computer. To be sure 
data are not paged for the operative system we use cudaHostAlloc instruction that 
allocates a buffer of page-locked host memory [7].  

The concept of stream it is also used. A CUDA stream represents a queue of GPU 
operations that are executed in a specific order [7]. On each execution, a stream is 
responsible for processing a row of the matrix, asynchronously loading the data into 
memory. Two kernels are launched at the same time when data are loaded, one kernel 
sorts the files of the samples considering the value of the analyzed feature. Since the 
order of sample files can vary according to the feature and that kernels execution is 
asynchronous, it is necessary to use other matrix to keep a reference to the order with 
regard to the feature that the stream analyzes. In this second matrix, each row repre-
sents a feature and it stores indexes of the files corresponding to the samples. This 
matrix is also stored in pinned memory and it is copied in asynchronous way into the 
streams. 

Once the sorting kernel is launched, the following step consists on launching a ker-
nel for performing operations (4), (5) and (6) of Figure 3 for each value of sample 
files for a p articular feature. The results of these calculations are copied asynchro-
nously to an array that stores, for each feature, the mistake that would commit if the 
value in the sample for this feature was chosen as threshold value. This array is stored 
in pinned memory. 

At the end of the execution of all the streams, the min_element function of Thrust 
library is used to find the smallest mistake in the above mentioned array. This final 
step allow one to get the selected feature, the threshold value and its corresponding 
mistake. 

4 Results  

Table 1 shows the results of executing the experimental settings designed in a 
computer with the following hardware configuration: i7 processor of 3.4 Ghz and 
GPU GeForce GT 730 with 2 GB of global memory. The numbers into the first col-
umn of Table 1 are operations tagged in Figure 3.  

In the first setting, the amount of access has a notable influence in execution times 
because if we have 162336 features and 15000 training image, then we will require 
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2435040000 accesses to files. In the second setting, the amount of accesses to files 
reduces in 99.99% and this enables the reduction of the execution times. However, in 
the third setting, the execution times go to the bad. In the third setting, the times for 
making the sorting task are reduced but we lose performance when computing the 
error for obtaining the threshold for a f eature. In the fourth setting, the execution 
times are improved again and they are better than second setting. This was achieved 
because in the fourth setting we did not make the sorting task and the execution times 
for calculating the threshold was reduced. Overall, we got the best performance in the 
fifth setting. If we compare fifth setting with setting number 4, the fifth setting repre-
sents an increasing of about 11x in speed. It seems reasonable to assume that this 
improvement in performance was obtained thanks to the use of streams and pinned 
memory.  

Table 1. Comparison of time needed to execute the different operations of the method for 
selecting the weak classifier 

Operations 
Time (milliseconds) 

Exp.  
Setting 1 

Exp.  
Setting 2 

Exp.  
Setting 3 

Exp.  
Setting 4 

Exp.  
Setting 5 

(3) 938993.904 3.437 0.540 -- 
44.381 
 (8192 

streams) 

(4), (5) y (6) 0.046 0.046 0.601 0.019 
Approximate time 

to evaluate a 
feature 

939682.127 696.716 9090.446 519.515 

 Approximate 
time to find a 

weak classifier  
4.84 years 31.42 hs 

17.08 
days 

23.43 hs 2 hs 

5 Discussion 

A bibliographical exploration regarding to time reduction when building images 
classifiers with boosting algorithm allowed us to identify research works such as 
Huang and Shi [4], Abualkibash et al. [1] and Tsai et al. [10]. Huang and Shi [4] re-
port the results that are showed in Table 2 when working with 65230 features and 
18676 samples. In their experiments Huang and Shi used computers with a 1 .8 Ghz 
processor. 

 Abualkibash et al. [1] describe the same experiment that was made by Huang and 
Shi [4]. Abualkibash et al. [1] utilized computers equipped with quad-core processors 
but they did not give details about processing capacity of CPUs. Table 3 shows the 
results reached by Abualkibash et al. [1]. 

Tsai et al. [10] experimented with a GPU Nvidia Tesla K20c. This GPU, accord-
ing to technical documentation, has 2496 cores, 706 Mhz of memory frequency, and 5 
GB of global memory. Tsai et al. [10] made three experiments: the first one with 1119 
features and 19575 s amples; the second experiment with 6090 features and 19161 
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features; and the last experiment with 10640 features and 19140 samples. The results 
of these three experiments can be seen in Table 4. 

Table 2. Comparison between execution time of alternative 5 and execution time during 
experiments conducted  by Huang and Shi [4]   

Time to select a feature 

(Huang et al. 2010) Alternative 5 implemented in 
Geforce GT 730 of 2GB memory 

3.31 minutes  
(when working with 2 computers) 38.52 minutes 

(when working with 8192 streams) 1.97 minutes  
(when working with 4 computers) 

 

Table 3. Comparison between execution time of alternative 5 and execution time during 
experiments conducted  by Abualkibash et al. [1]   

Time to select a feature 
(Abualkibash et al. 2013) Alternative 5 implemented in 

Geforce GT 730 of 2GB memory 
24.6 seconds 

(when working with 6 computers) 

38.52 min 
(when working with 8192 streams) 

6.4 seconds 
(when working with 21computers) 

5.2 seconds 
(when working with 26 computers) 

4.8 seconds 
(when working with 31 computers) 

 

Table 4. Comparison between execution time of alternative 5 and execution time during 
experiments conducted  by Tsai et al. [10] 

Experiments Time to select a feature 
Tsai et al. [10] Alternative 5 implemented in 

Geforce GT 730 of 2GB memory 
1119 features 

19575 samples 0.788 seg 1.413 min  
with 1119 streams 

6090 features 
19161 samples 1.157 seg 7.313 min  

4096 streams 
10640 features 
19140 samples 1.217 seg 6.2497 min 

Con 8192 streams 

Considering results that are showed in Tables 2, 3 and 4 one  could conclude that 
the fifth experimental setting proposed in this paper is not a good option to reduce the 
time of classifiers building. Nevertheless, one should consider that the fifth alternative 
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of solution was tested in a computer with a GPU of limited processing capacity. For 
this reason, it would be interesting to run the fifth solution in a computer with better 
hardware capacities and then compare it with the results achieved by Huang and Shi 
[4], Abualkibash et al. [1] and Tsai et al. [10]. For example, a GPU like the one used 
by Tsai et al. [10] not only has more computing capacity but also it is possible to exe-
cute more streams. 

Considering it was wanted to execute the fifth experimental setting in a computer 
with more computing capacity and that the laboratory at the university had not have 
more powerful computers than the described in point 4 (i7 processor of 3.4 Ghz and 
GPU Geforce GT 730), it was decided to hired the computer instance g2.2xlarge from 
amazon.com. The instance g2.2xlarge has: 8 virtual CPU Intel Xeon E5-2670; 15 GB 
of RAM; and a GPU Nvidia Grid K520 with 4 GB of RAM, 797 Mhz of frequency 
and 1536 cores. Table 5 shows a comparison of time needed for executing the exper-
iments of Table 4 (the same amount of features and sample files) in the hired instance 
and the GPU GeForce GT 730. It was expected that execution in the GPU available in 
g2.2xlarge instance would be faster than the execution in GeForce GT 730. Nonethe-
less, the results do not confirm the previous assumption. A reason might be the virtu-
alization effect although this needs further research. 

Table 5. Comparison of execution time when implementing solution 5 in GeForce GT 730 and 
in instance g2.2xlarge. 

Experiments Time to select a feature 
(Alternative 5 imple-

mented in GeForce Gt 730) 

Time to select a feature 
 (Alternative 5 imple-
mented in GPU of   

g2.2xlarge) 
1119 features 

19575 samples 1.413 min 4.1789 min 

6090 features 
19161 samples 7.313 min 22.039 min 

10640 features 
19140 samples 6.2497 min 38.472 min 

6 Conclusions 

This work analyzed the implementation of a training process for generating a clas-
sifier with the capacity of face recognition. The aim was to reduce the time needed to 
train the classifier using a single computer. The focus was the process for selection of 
weak classifiers because this stage is the most invoked during classifiers building and 
it is the most demanding in terms of execution time. With the several alternatives 
implemented, sequential and parallel through CUDA architecture, it was possible to 
achieve substantial improvements.   

The use of GPUs for developing and accelerating applications is a feasible alterna-
tive because any programmer can acquire one and there are cheap GPU. In addition, 
there is an effort made by manufacturer of GPU for development software that helps 

289289289



programmers to use them, for example NVIDIA with her CUDA platform. With the 
use a GPU, applications can compute many data without wasting too much time. 

Further research may involve the measurement of the performance of fifth experi-
mental setting in a computer with bigger computing capacity in its GPU and exploring 
a multi-GPU approach. Collaterally, we believe that further research is needed for 
evaluate if virtualization affect in the performance GPU.  
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