
Experiences accelerating features selection in Viola-Jones
algorithm

Germán Lescano1,2, Pablo Santana-Mansilla1,2, Rosanna Costaguta1

1Instituto de Investigación en Informática y Sistemas de Información (IIISI)
Facultad de Ciencias Exactas y Tecnologías (FCEyT)
Universidad Nacional de Santiago del Estero (UNSE)

2Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)
{gelescano,psantana,rosanna}@unse.edu.ar

Abstract. Faces and facial expressions recognition is an interesting topic for re-
searchers in machine vision. Viola-Jones algorithm is the most spread algorithm
for this task. Building a classification model for face recognition can take many
years if the implementation of its training phase is not appropriately optimized.
In this study, several settings for implementing the training phase are analyzed.
The aim was to share our experiences when we try to accelerate the training
phase using one computer with a graphical processing unit (GPU). For each set-
ting, the execution times were analyzed and compared with previous studies.
Although we don't contribute to break new ground in topic or methodology, we
decide to share our experience in order to show an antecedent working with a
cheap GPU with the aim that this can be useful to another for to make compari-
sons.

Keywords: Adaboost, Viola-Jones Algorithm, feature selection, CUDA

1 Introduction

Face and facial expressions recognition is an interesting topic for researchers in
machine vision [9]. An important stage in a face recognition algorithm is the building
of a classification model that can discriminate faces. Building a classification model
require a training phase during which a sample of images is analyzed with the aim of
extracting those features that best describe a face.

Viola and Jones [11] proposed an algorithm that can detect faces in real time. This
algorithm can be implemented on a wide range of small low power devices, including
hand-helds devices and embedded processors. However, a drawback of this algorithm
is that the training phase is extremely time-consuming.

In this work, we propose and analyze five settings to implement the training phase
of Viola-Jones algorithm. Each setting tries to reduce the execution times when work-
ing on a single computer. Two settings involve the use of sequential computing and
the other three involve the use of parallel computing, specifically CUDA architecture.
CUDA is a parallel computing platform and programming model invented by
NVIDIA [12]. It enables dramatic increases in computing performance by harnessing

281281281

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76494969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the power of the graphics-processing unit (GPU). In order to reduce execution times,
we had focus on feature selection because this process has a notable impact on train-
ing times.

This paper is organized as follows. In section 2, the purpose, the utility and the
training phase of Viola-Jones algorithm are described. In section 3, five settings of
development for training face are described. In section 4, our experimental results are
showed. In section 5, we compare our proposal respect other alternatives we found in
the literature. In section 6, conclusions and the future research directions are present-
ed.

2 Revision of the training phase in Viola-Jones Algorithm.

The Viola-Jones algorithm describes a framework for object detection. It is widely
used in a variety of software and hardware applications that incorporate elements of
computer vision, like the face detection module in video conferencing, human-
computer interaction, and digital photo cameras [6].

Viola and Jones [11] propose a variant of Adaboost algorithm [2] for the training
phase that is related with the selection of a small number of features that best describe
a face. These features are known as weak classification functions and are combined to
build a stronger classifier.

The features used by Viola and Jones are reminiscent of Haar basis functions [8].
Figure 1 shows five simple features usually employed. These features are defined by
two, three or four rectangles. To compute a feature, the sum of pixels within the white
rectangles should be subtracted from the sum of pixels within the black rectangles.

Fig. 1. Haar-Like patterns frequently employed [11].

Supposing f is a feature, 𝜃 is a threshold, 𝑝 ∈ {−1,1} is the polarity that indicates
the direction of the inequality and x is a sub-window of an image, a weak classifier to
detect a face in x can be defined by Equation 2.

Each iteration of the boosting algorithm is designed to select the single rectangle
feature which best separate the positive (face images) and negative examples (not face
images). For each feature, the weak classifier determines the optimal threshold of

ℎ(𝑥, 𝑓, 𝑝,𝜃) = �1 𝑠𝑖 𝑝𝑓(𝑥) < 𝑝𝜃
0 𝑒𝑛 𝑜𝑡𝑟𝑜 𝑐𝑎𝑠𝑜

� (2)

282282282

classification function, such that the minimum number of examples is misclassified.
Figure 2 shows the boosting algorithm proposed by Viola and Jones [11].

Fig. 2. Boosting Algorithm [11]

Viola-Jones algorithm to select weak classifier is depicted in Figure 3. This pseu-
do-code is an interpretation proposed by Morelli and Padovani [5] and its operation
can be summarized as follow. For each feature, the images into the samples are sorted
by feature value in ascendant way. The Adaboost optimal threshold for that feature
can then be computed in a single pass over this sorted list. On each iteration over the
sorted list, four sums are evaluated for each element: the total sum of positive exam-
ples weights T+, the total sum of negative example weights T-, the sum of positive
weights below the current example S+ and the sum of negative weights below the
current example S-. Also for each feature, an error is computed using the Equation 3.
This value represents the error that we would produce if the element were considered
the threshold for the feature. Once all errors have been computed, the lowest one is
selected.

𝜀𝑡 = 𝑚𝑖𝑛𝑓,𝑝,𝜃�𝑤𝑖|ℎ(𝑥𝑖 , 𝑓, 𝑝,𝜃) − 𝑦𝑖|
𝑖

Boosting Algorithm

• Given example images (x1,y1), …, (xn,yn) where yi=0, 1 for negative and
positive examples respectively..

• Initialize weights 𝑤1,𝑖 = 1
2𝑚

, 1
2𝑙

 for yi=0,1 respectively. Where m is the
number of positives examples and l the number of negatives examples.

• For t = 1,..,T (T weak classifiers)
1. Normalize the weights, 𝑤𝑡,𝑖 = 𝑤𝑡,𝑖

∑ 𝑤𝑡,𝑗
𝑛
𝑗=1

2. Select the best weak classifier with respect to the weighted error:

Define ht(x)=h(x,ft,pt,𝜃𝑡) where ft,pt y 𝜃𝑡 are the minimizers of 𝜀𝑡.

3. Update the weights: 𝑤𝑡+1,𝑖 = 𝑤𝑡,𝑖𝛽𝑡
1−𝑒𝑖

Where ei=0 if example xi is classified correctly, ei = 1 otherwise, and
𝛽𝑡 = 𝜀𝑡

1−𝜀𝑡

• The final strong classifier is:

 𝐶(𝑥) = �
1 𝑖𝑓 ∑ 𝛼𝑡ℎ𝑡(𝑥) ≥ 1

2
∑ 𝛼𝑡𝑇
𝑡=1

𝑇
𝑡=1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
�

Where 𝛼𝑡 = 𝑙𝑜𝑔 1
𝛽

283283283

Fig. 3. Algorithm for weak classifiers selection [5].

3 Experimental Settings for Implementing the Training Phase

Five experimental settings were proposed to implement the training phase of Vio-
la-Jones algorithm. The C language was chosen to code each experimental setting
because it enables us to make decision of programming at low-level and it is compati-
ble with CUDA.

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = ∅
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑟𝑟𝑜𝑟 = ∞
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0
𝑇+ ← 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝟏)
𝑇− ← 𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (𝟐)
𝒇𝒐𝒓 𝑎𝑙𝑙 𝑓 𝜀 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝒅𝒐
 𝑋(𝑓) ← 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒𝑠 𝑠𝑜𝑟𝑡𝑒𝑑 𝑏𝑦 𝑓 𝑣𝑎𝑙𝑢𝑒 (𝟑)
 𝑒𝑓 = ∞
 𝜃𝑓 = 0
 𝒇𝒐𝒓 𝑖 = 1 𝒕𝒐 𝑁
 𝑆𝑖+ ← 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒
𝑥𝑖
𝑓 (𝟒)

 𝑆𝑖− ← 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑥𝑎𝑚𝑝𝑙𝑒
𝑥𝑖
𝑓 (𝟓)

 𝑒𝑖 = min�𝑆𝑖+ − (𝑇− + 𝑆𝑖−), 𝑆𝑖− − (𝑇+ − 𝑆𝑖+)� (𝟔)
 𝒊𝒇 �𝑒𝑖 − 𝑒𝑓� 𝒕𝒉𝒆𝒏
 𝑒𝑓 = 𝑒𝑖
 𝜃𝑓 = 𝑓�𝑥𝑖

𝑓�
 𝒆𝒏𝒅 𝒊𝒇
 𝒆𝒏𝒅 𝒇𝒐𝒓
 𝒊𝒇 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑟𝑟𝑜𝑟 > 𝑒𝑓 𝒕𝒉𝒆𝒏
 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒 = 𝑓
 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑟𝑟𝑜𝑟 = 𝑒𝑓
 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜃𝑓
 𝒆𝒏𝒅 𝒊𝒇
𝒆𝒏𝒅 𝒇𝒐𝒓

𝜀 = min (𝑆+ + (𝑇− − 𝑆−), 𝑆− + (𝑇+ − 𝑆+)) (3)

284284284

3.1 First Experimental Setting

The implementation that was done with this experimental setting was sequential.
We allocated in memory a matrix that stores the identifier of each training file, the
category of the image (face or not face), its weight and the category (face or not face)
assigned by the classifier algorithm. In addition, we use as many files as training im-
ages in order to save the features of the images. Each file has 162336 lines (this num-
ber correspond to the total quantity of features that can be generated for an image of
24 x 24 pixels) and each line registers the details of one feature.

In Figure 3, the instructions that can have in memory the data necessary for com-
puting them were tagged with (1), (2), (4), (5) and (6). Meanwhile, the instruction
tagged with (3) has a lot of access to hard disk because it needs data saved in files. In
instruction (3) the sorting task is made through the Bubble sort method, so we have a
loop that iterates over 162336 features. In each iteration, the values of a feature are
extracted from each training image file. These values are employed to re-sort the
training images. The access to details of a feature in the file is sequential.

3.2 Second Experimental Setting

This experimental setting is similar to the first one in the sense that it operates with
data saved on files. The difference is that with this second setting we create one file to
save the values of all features on a unique place. Each line of this file contains all
values of a f eature extracted from each training image. This change reduces in a
99,99% the amount of access to files, from 2.435.040.000 (162336 features x 15000
sample images) to 162336, during the sorting task. In this second setting, we changed
the Bubble method for the Quick Sort method because the last one generally has best
performance during sorting tasks. The way of accessing to the feature values was also
changed. Sequential access was changed for random access through the fseek func-
tion.

3.3 Third Experimental Setting

This experimental setting continues with the use of a unique file in order to store for
each feature the values that are observed in each one of the sample files. However, we
employ the Thrust library. Thrust is a parallel algorithms library that enhances pro-
grammer productivity while enabling performance portability between GPUs and
multicore CPUs [13]. This library was used for sorting, operation tagged with (5) in
Figure 3, and in (4) and (6) operations of this figure for accomplish them through a
reduction operation.

3.4 Fourth Experimental Setting

In this experimentation, we changed the way of applying the sum operations in-
volved in the process of weak classifiers selection. The operations to sum the weight
of positive samples (4) and negative samples (5) of Figure 3 were implemented in the

285285285

same procedure so as to take advantage of the processing cycle, and the procedure
was parallelized based on the algorithm proposed by Harris [3]. Small changes were
applied to the algorithm in order to make two sum operations at the same time.

This experimental setting does not sort the values of the samples with respect to a
particular feature. For each value in the samples with respect to a particular feature,
the calculation of 𝜀 = min (𝑆+ + (𝑇− − 𝑆−), 𝑆− + (𝑇+ − 𝑆+)) was made in fully
parallel way. This way 15000 processing threads were launched, one for each sample.

3.5 Fifth Experimental Setting

On previous experimentations, the data matrix was stored in a disk file, but on this
experimental setting, all data are stored in the memory of the computer. To be sure
data are not paged for the operative system we use cudaHostAlloc instruction that
allocates a buffer of page-locked host memory [7].

The concept of stream it is also used. A CUDA stream represents a queue of GPU
operations that are executed in a specific order [7]. On each execution, a stream is
responsible for processing a row of the matrix, asynchronously loading the data into
memory. Two kernels are launched at the same time when data are loaded, one kernel
sorts the files of the samples considering the value of the analyzed feature. Since the
order of sample files can vary according to the feature and that kernels execution is
asynchronous, it is necessary to use other matrix to keep a reference to the order with
regard to the feature that the stream analyzes. In this second matrix, each row repre-
sents a feature and it stores indexes of the files corresponding to the samples. This
matrix is also stored in pinned memory and it is copied in asynchronous way into the
streams.

Once the sorting kernel is launched, the following step consists on launching a ker-
nel for performing operations (4), (5) and (6) of Figure 3 for each value of sample
files for a p articular feature. The results of these calculations are copied asynchro-
nously to an array that stores, for each feature, the mistake that would commit if the
value in the sample for this feature was chosen as threshold value. This array is stored
in pinned memory.

At the end of the execution of all the streams, the min_element function of Thrust
library is used to find the smallest mistake in the above mentioned array. This final
step allow one to get the selected feature, the threshold value and its corresponding
mistake.

4 Results

Table 1 shows the results of executing the experimental settings designed in a
computer with the following hardware configuration: i7 processor of 3.4 Ghz and
GPU GeForce GT 730 with 2 GB of global memory. The numbers into the first col-
umn of Table 1 are operations tagged in Figure 3.

In the first setting, the amount of access has a notable influence in execution times
because if we have 162336 features and 15000 training image, then we will require

286286286

2435040000 accesses to files. In the second setting, the amount of accesses to files
reduces in 99.99% and this enables the reduction of the execution times. However, in
the third setting, the execution times go to the bad. In the third setting, the times for
making the sorting task are reduced but we lose performance when computing the
error for obtaining the threshold for a f eature. In the fourth setting, the execution
times are improved again and they are better than second setting. This was achieved
because in the fourth setting we did not make the sorting task and the execution times
for calculating the threshold was reduced. Overall, we got the best performance in the
fifth setting. If we compare fifth setting with setting number 4, the fifth setting repre-
sents an increasing of about 11x in speed. It seems reasonable to assume that this
improvement in performance was obtained thanks to the use of streams and pinned
memory.

Table 1. Comparison of time needed to execute the different operations of the method for
selecting the weak classifier

Operations
Time (milliseconds)

Exp.
Setting 1

Exp.
Setting 2

Exp.
Setting 3

Exp.
Setting 4

Exp.
Setting 5

(3) 938993.904 3.437 0.540 --
44.381
 (8192

streams)

(4), (5) y (6) 0.046 0.046 0.601 0.019
Approximate time

to evaluate a
feature

939682.127 696.716 9090.446 519.515

 Approximate
time to find a

weak classifier
4.84 years 31.42 hs

17.08
days

23.43 hs 2 hs

5 Discussion

A bibliographical exploration regarding to time reduction when building images
classifiers with boosting algorithm allowed us to identify research works such as
Huang and Shi [4], Abualkibash et al. [1] and Tsai et al. [10]. Huang and Shi [4] re-
port the results that are showed in Table 2 when working with 65230 features and
18676 samples. In their experiments Huang and Shi used computers with a 1 .8 Ghz
processor.

 Abualkibash et al. [1] describe the same experiment that was made by Huang and
Shi [4]. Abualkibash et al. [1] utilized computers equipped with quad-core processors
but they did not give details about processing capacity of CPUs. Table 3 shows the
results reached by Abualkibash et al. [1].

Tsai et al. [10] experimented with a GPU Nvidia Tesla K20c. This GPU, accord-
ing to technical documentation, has 2496 cores, 706 Mhz of memory frequency, and 5
GB of global memory. Tsai et al. [10] made three experiments: the first one with 1119
features and 19575 s amples; the second experiment with 6090 features and 19161

287287287

features; and the last experiment with 10640 features and 19140 samples. The results
of these three experiments can be seen in Table 4.

Table 2. Comparison between execution time of alternative 5 and execution time during
experiments conducted by Huang and Shi [4]

Time to select a feature

(Huang et al. 2010) Alternative 5 implemented in
Geforce GT 730 of 2GB memory

3.31 minutes
(when working with 2 computers) 38.52 minutes

(when working with 8192 streams) 1.97 minutes
(when working with 4 computers)

Table 3. Comparison between execution time of alternative 5 and execution time during
experiments conducted by Abualkibash et al. [1]

Time to select a feature
(Abualkibash et al. 2013) Alternative 5 implemented in

Geforce GT 730 of 2GB memory
24.6 seconds

(when working with 6 computers)

38.52 min
(when working with 8192 streams)

6.4 seconds
(when working with 21computers)

5.2 seconds
(when working with 26 computers)

4.8 seconds
(when working with 31 computers)

Table 4. Comparison between execution time of alternative 5 and execution time during
experiments conducted by Tsai et al. [10]

Experiments Time to select a feature
Tsai et al. [10] Alternative 5 implemented in

Geforce GT 730 of 2GB memory
1119 features

19575 samples 0.788 seg 1.413 min
with 1119 streams

6090 features
19161 samples 1.157 seg 7.313 min

4096 streams
10640 features
19140 samples 1.217 seg 6.2497 min

Con 8192 streams

Considering results that are showed in Tables 2, 3 and 4 one could conclude that
the fifth experimental setting proposed in this paper is not a good option to reduce the
time of classifiers building. Nevertheless, one should consider that the fifth alternative

288288288

of solution was tested in a computer with a GPU of limited processing capacity. For
this reason, it would be interesting to run the fifth solution in a computer with better
hardware capacities and then compare it with the results achieved by Huang and Shi
[4], Abualkibash et al. [1] and Tsai et al. [10]. For example, a GPU like the one used
by Tsai et al. [10] not only has more computing capacity but also it is possible to exe-
cute more streams.

Considering it was wanted to execute the fifth experimental setting in a computer
with more computing capacity and that the laboratory at the university had not have
more powerful computers than the described in point 4 (i7 processor of 3.4 Ghz and
GPU Geforce GT 730), it was decided to hired the computer instance g2.2xlarge from
amazon.com. The instance g2.2xlarge has: 8 virtual CPU Intel Xeon E5-2670; 15 GB
of RAM; and a GPU Nvidia Grid K520 with 4 GB of RAM, 797 Mhz of frequency
and 1536 cores. Table 5 shows a comparison of time needed for executing the exper-
iments of Table 4 (the same amount of features and sample files) in the hired instance
and the GPU GeForce GT 730. It was expected that execution in the GPU available in
g2.2xlarge instance would be faster than the execution in GeForce GT 730. Nonethe-
less, the results do not confirm the previous assumption. A reason might be the virtu-
alization effect although this needs further research.

Table 5. Comparison of execution time when implementing solution 5 in GeForce GT 730 and
in instance g2.2xlarge.

Experiments Time to select a feature
(Alternative 5 imple-

mented in GeForce Gt 730)

Time to select a feature
 (Alternative 5 imple-
mented in GPU of

g2.2xlarge)
1119 features

19575 samples 1.413 min 4.1789 min

6090 features
19161 samples 7.313 min 22.039 min

10640 features
19140 samples 6.2497 min 38.472 min

6 Conclusions

This work analyzed the implementation of a training process for generating a clas-
sifier with the capacity of face recognition. The aim was to reduce the time needed to
train the classifier using a single computer. The focus was the process for selection of
weak classifiers because this stage is the most invoked during classifiers building and
it is the most demanding in terms of execution time. With the several alternatives
implemented, sequential and parallel through CUDA architecture, it was possible to
achieve substantial improvements.

The use of GPUs for developing and accelerating applications is a feasible alterna-
tive because any programmer can acquire one and there are cheap GPU. In addition,
there is an effort made by manufacturer of GPU for development software that helps

289289289

programmers to use them, for example NVIDIA with her CUDA platform. With the
use a GPU, applications can compute many data without wasting too much time.

Further research may involve the measurement of the performance of fifth experi-
mental setting in a computer with bigger computing capacity in its GPU and exploring
a multi-GPU approach. Collaterally, we believe that further research is needed for
evaluate if virtualization affect in the performance GPU.

7 References

1. Abualkibash, M.; ElSayed, A.; Mahmood, A.: Highly scalable, parallel and distributed
Adaboost algorithm using light weight threads and web services on a network of multi-
core machines. International Journal of Distributed and Parallel Systems (IJDPS), 4(3): 29-
40, May 2013.

2. Freund, Y.; Schapire, R.E.: A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1): 23-37. August
1997.

3. Harris, M.: Optimizing parallel reduction in CUDA. Reporte técnico. 2007. Disponible en:
http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf

4. Huang, Z.; Shi, X.: A distributed parallel AdaBoost algorithm for face detection. 2010
IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS).
Vol 1: 147-150, Oct 2010.

5. Morelli A., Padovani S.: Detección y Reconocimiento de Cara. Tesis de Licenciatura en
Ciencias de la Computación. Universidad de Buenos Aires. 2011.

6. Obukhov, A.: Haar Classifiers for Object Detection with CUDA. In: Wen-Mei W. Hwu
(Ed.), GPU Computing Gems. 517-544. Burlington, MA 01803, USA, 2011.

7. Sanders, J.; Kandrot, E.: CUDA C on multiple GPUs. In: CUDA by Example. An Intro-
duction to General-Purpose GPU Programming. 213-236. Boston, MA 02116, USA, 2011.

8. Papageorgiou, C.; Oren, M.; Poggio, T.: A general framework for object detection. Inter-
national Conference on Computer Vision. 555-562, 04 January - 07 January, 1998.

9. Taheri, S.; Patel, V.; Chellappa, R.: Component-Based Recognition of Faces and Facial
Expressions. IEEE Transactions on A ffective Computing, 4(4): pp. 360-371, October-
December 2013.

10. Tsai, P.; Hsu, Y.; Chiu, C; Chu, T.: Accelerating AdaBoost algorithm using GPU for mul-
ti-object recognition. 2015 IEEE International Symposium on C ircuits and Systems
(ISCAS), 738-741, May 2015.

11. Viola P., Jones M.: Robust Real-Time Face Detection. International Journal of Computer
Vision, 57(2): 137–154, May 2004.

12. NVidia CUDA technology, http://www.nvidia.com/object/cuda_home_new.html
13. Thrust, http://thrust.github.io/

290290290

http://www.nvidia.com/object/cuda_home_new.html
http://docs.nvidia.com/cuda/samples/6_Advanced/reduction/doc/reduction.pdf

	Experiences accelerating

