
Verification and validation of domain specific
languages using Alloy

Ana Garis1 and Alejandro Sánchez1

Universidad Nacional de San Luis, Argentina
{ a g a r i s ,a s a n c h e z } @ u n s l . e d u .a r

Abstract. A domain specific language (DSL) focuses on a particular
problem domain, facilitating the specification of its instances. Since they
are frequently defined using imprecise languages, such as UML, they
present ambiguities and their verification and validation (V&V) becomes
complex. This paper proposes an approach to the precise definition of
DSLs using Alloy - a formal language with tool-support that enables its
V&V. The approach is illustrated with a DSL for Software Architecture.

1 Introduction

A domain specific language (DSL) [18] restricts its primitives to a problem do
main, usually aiming at facilitating the development of specifications by domain
experts. DSLs are typically defined through a metamodel that includes the lan
guage elements and the relationships among them [17]. Usually, UML class dia-
grams (CD) [11] are used for this [3], with the main disadvantage of an imprecise
semantics, and the lack of a tool-supported mechanism for checking the quality
of the resulting metamodel.

This paper proposes an approach that aims at addressing such disadvantage.
The approach uses Alloy, a formal language designed for performing automatic
analysis, and whose models resemble class diagrams [9]. Alloy includes friendly
tool-support for V&V, which is based on a bounded SAT analyser. The mech-
anism assumes a metamodel specified as a CD, that can optionally be enriched
with formulas expressed in the Object Constraint Language (OCL) [12]. It pre
scribes translating the CD and associated OCL formulas into Alloy, verifying
and validating the model in Alloy's framework, and then translating it back into
a CD and OCL formulas. Domain experts iterate improving the model’s quality
using Alloy. Therefore, it is possible to generate instances of the model, establish
if it is inconsistent, find a counterexample for some assertion, study generated
instances and modify the model accordingly, extend it with further formulas that
need to be verified, and generate instances again.

A DSL for Software Architecture called A rchery [14,15] is used to illustrate
the approach. The language is designed for modelling, animating, analysing, and
verifying software architectures in terms of architectural patterns. The language
semantics are given by an encoding into a process algebra, but its metamodel
is described using a CD, which permits specifying ill-defined models. We study
A r ch ery ’s metamodel and suggest improvements.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/76489756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The work is framed within the approach described in [7]. The translations
the approach relies on were prototyped in Haskell [8] and are available at [13].

Although, we sketched the proposed approach in [7], it omitted the required
specifications to be applied in particular domains. This work details how use it
for V&V of DSLs.

The contribution of the paper lies in a tool-supported approach based on Al-
loy to the V&V of DSL metamodels and in the development of an example in the
domain of Software Architecture.The rest of the paper is structured as follows:
sections 2 and 3 briefly describe the A rc h e r y language and Alloy’s framework,
respectively; section 4 describes how models in Alloy are obtained from CDs;
section 5 illustrates the approach by performing the V&V of A r c h e r y ’s meta
model; section 6 describes related work; and section 7 concludes the publication.

2 The Archery language

The A rc h e r y language is for modelling the structure and behaviour of soft
ware architectures. It allows defining the basic building blocks of architectures:
(architectural) patterns and (architectural) elements. A pattern consists of a set
of elements representing either component or connector types, that are specified
in terms of their interfaces and behaviours. Interfaces are sets of ports, atomic
events of interaction, and behaviours are sequential processes that describe how
the activities in element’s instances take place. The client-server pattern, and
the pipes and filters pattern, for instance, are shown in Listing 1.

Listing 1. Client-server and pipes and filters patterns

Architectures are built out of defined patterns and elements. An architecture
is regarded as a pattern instance that describes a particular configuration of
element instances through a set of attachments linking their ports, and a set
of renamings changing the externally visible names of ports. Both patterns and
elements act as types for instances, which are kept and referenced through typed

variables. A variable has an identifier and a type that must match an element
or pattern name. Allowed values are instances of a type, that do not necessarily
need to match the variable’s own type. An attachment includes a port reference
to an output port and a port reference to an input port. A port reference is a
pair of identifiers that identify a variable, and a port of the variable’s instance. In
addition, the language supports hierarchical composition by allowing the defini-
tion of configurations where attachments indifferently link ports of pattern and
element instances. For example, the architecture in Listing 2 defines a server,
which is hierarchically composed of instances of the pipes and filters pattern.

Listing 2. A hierarchically composed server

The CD specifying the A rchery’s metamodel for architectures is shown in
Figure 1. It is taken from [15] with the exception of PortType . A class specifying
the distinction the language makes among ports was omitted in the original CD,
but it is included at this stage to enable a richer analysis.

The metamodel is underspecified and presents several issues. We illustrate
the approach by making evident and addressing some of them.

3 Alloy

In Alloy, a signature declaration denotes a set of atoms. An atom is a unity with
three basic properties: it is indivisible (it cannot be divided into smaller parts),
it is immutable (its properties remain over time), and it is uninterpreted (it does
not have inherent properties). Signature declarations can introduce fields, which
represent a relation among signatures. Listing 3 shows the signature declarations
that constitute A rchery’s metamodel in Alloy.

Fig. 1. Class diagram for Á R O H E R Y ’s architectural specifications

The cardinality in relationship between a signature and another can be con-
strained using the keywords as follows: lone for zero or one, one for exactly
one, some for one or more, and set for any number.

Facts, predicates and functions describe invariants, named constraints, and
named expressions, respectively. The difference between a fact and a predicate
is that the former always holds, while the latter is only verified when invoked.
Invariants can also be defined in the context of each signature. Assertions allows
to express properties that are expected to hold as consequence of specified facts.

The analyser is instructed through commands run and check. Command
run checks model consistency by requesting a valid instance, and command

Listing 3. Metamodel of Archery’s architectures in Alloy

check verifies an assertion by searching for a counterexample. Both commands
optionally define a scope, overriding the default bound of the number of instances
allowed for each signature.

Since in Alloy everything is a relation, it defines the typical set's relational
operations: + (union), - (difference), & (intersection), . (join), -> (cartesian
product). It also provides two important operators over binary relations, that
make its logic more expressive than first-order logic: ~ (transitive closure) and
* (transitive-reflexive closure).

4 Modelling domain specific languages in Alloy

The translations into Alloy and back are organised in four modules [5]. Proto-
type tools CD2Alloy and OCL2Alloy accept a CD and an OCL specification,
respectively, and yield the corresponding Alloy model. The dual prototype tools
are Alloy2CD and Alloy2OCL, which accept an Alloy model, and produce a
CD and a OCL specification, correspondingly. CD and OCL specifications are
handled using the OMG standard XML Metadata Interchange (XMI) format.
Listing 3 depicts the model generated from the CD corresponding to the meta
model of A r ch ery ’s architectures.

A signature is defined for each class in the CD as follows: ElementInstance
, PatternInstance, Instance, Attachment, PortReference, Renaming
, Variable, Port, Act, Name and the class enumeration TypePort. Note the
inheritance relation is represented in Alloy using keyword extends and abstract
classes are marked with keyword abstract.

Associations corresponds to fields. Signature Instance, for example, de
clares a field prt and signature ElementInstance a field act. The multiplic-
ity in association ends, also has an equivalence in Alloy: 0..* is set; 1..* is
some; 0..1 is lone, 1 is one; and if it is absent, the default is set. Therefore,
keyword some in the declaration of field prt, for instance, indicates that each
Instance has one or more ports.

5 Verifying and validating domain specific languages

The V&V of the DSL’s metamodel takes place once its Alloy model is obtained.
It is performed as iterations in which domain experts generate instances, modify
the model, and generate instances again to confirm consequences of changes.
Modifications can be to correct relations, or to add formulas that forbid incorrect
instances. Instances are generated either to show examples of the model, or to
show counterexamples that disproof a given formula.

It is suggested to start with the generation of examples, allowing domain
experts to gain a better understanding of the model. This is done with the
run command, which in its most simple variant (run { }) , is usually enough
to simulate and find problems or underspecifications in the model, namely, the
model allowing instances that are forbidden in the domain.

Subsequently, the model is extended with formulas removing incorrect in-
stances. Such formulas are checked with check commands, which generate coun-
terexamples when they are not verified, and allow domain experts to learn where
a given formula is weak.

These steps are illustrated with the Alloy model of A rch ery ’s metamodel.
Figure 2 shows an instance generated with the analiser that is enough to find
several problems. The instance shows:

Fig. 2. An instance found with Alloy analyzer.

(i) An instance of class Instance that is a superclass of ElementInstance
and PatternInstance. This class is an abstraction of element and pattern
instance, which represent components and architectures, respectively. Direct
occurrences of this abstraction are incorrect.

(ii) Actions (A c t 0 and A c t l) unrelated to an element instance. All actions must
be contained in an element instance, since they represent an observable tran-
sition in the state of the component.

(iii) A name (Name) is shared between ports (R enam in g and P o r t) that belong
to the same element instance. However, names cannot be shared between
ports (including renamings) or actions of the same instance.

(iv) An attachment references the same port twice. The fields s t r t and en d
connect A t t a c h m e n t to the same P o r t R e f e r e n c e . This makes no sense,
since a component cannot interact with itself at the same port. Moreover,
communication flows from outward ports to inward ports.

(v) A renaming references to itself. A renaming changes the name of a port, and
no cycle can be created by the reference it creates.

Other similar detected problems, such as A t t a c h m e n t not having an associated
pattern instance, are omitted in this description.

We correct problems (i) to (v) by modifying the model and adding con-
straints to it. Line 1 addresses problem (i) by declaring signature I n s t a n c e
as abstract: only instances of E l e m e n t I n s t a c e or P a t t e r n I n s t a n c e are
permitted. Problems (ii) to (v) are addressed including facts in lines (2) to (5),
one fact in each respective line, making the model stronger.

1 abstract sig In s ta n c e { p r t : some P o r t }
2 fact { all a : A ct | a in E le m e n t I n s t a n c e .a c t }
3 fact { all e : E lem en tIn sta n ce | no e .a c t .n a m e & e .p r t .n a m e }
4 fact { all a : A ttachm ent | no a .e n d & a . s t r t }
5 fact { all r : Renaming | not r . ^ (r e n d .p r e f) in Renaming }

Problem (iv) unveils a more involved issue requiring further treatment. At-
tachments have a direction that must be respected. We verify if the model ensures
such principle by executing a check command with the assertion as follows,

1 assert a tta ch In O u t { all a :A ttachm ent |
2 a . s t r t . p r e f . t y p e = O u t and a . e n d . p r e f . t y p e = I n }
3 check a ttachIn O ut

which requires attachments to connect O ut ports to In ports. The analyser finds
the counterexample shown in Figure 3. Attachments connect P o r t R e f e r e n c e l
to P o r t R e f e r e n c e O through fields s t r t and e n d . However, they are referenc-
ing to the same out port, thus violating the assertion. Moreover, the counterex-
ample also shows that the essence of problem (iv) was not addressed by the fact
in line (4): attachments may include port references that are different, but that
refer to the same port. Adding the assertion as a fact addresses both issues.

Iterations continue, as further issues can be observed, until a satisfactory
point is reached. Then, the model can be translated back into a CD enriched
with OCL. For example, the facts previously presented, are translated (with
A l lo y 2 O C L) into the OCL specification as follows.

Fig. 3. Counterexample found with Alloy analyzer.

context P o r t inv :
I n s t a n c e .allInstances() - > exists(v1 | v 1 . p r t - > includes(self))

context Ac t inv :
E l e m e n t I n s t a n c e .allInstances() - > exists(v3 | v 3 . a c t - > includes(

self))
context E le m entI nst ance inv :

(Name.allInstances() - > select(v4 | (A c t .allInstances() - > exists(
v5 | (self. a c t - > includes(v5) and (v 5 .oclIsKindOf(Port) and
v 5 .oclAsType(P o r t) . n a m e - >includes(v 4)))) and P o r t .
allInstances() - >exists(v7 | (self. p r t - > includes(v7) and v7 .
name->includes(v 4))))) - > size () = 0)

context Attachment inv :
(P o r t R e f e r e n c e .allInstances() - > select(v9 | (self. e n d - >includes(

v9) and self . s t r t - > includes(v 9))) - > size () = 0)

6 Related work

Several works, including [1, 2,10], use formal frameworks to address issues that
emerge in the definition of DSLs. Amrani presents a formal specification of Ker-
meta [1], a metamodelling framework for modeling of DSLs. Its formal specifica
tion allows making DSL definitions more precise. Bodeveix et al. combine Bossa
(a DSL for process schedulers) and formal method B for ensuring correctness
[2]. In particular, B is used to define the correctness of a Bossa specification
and to produce certified schedulers. James et al. [10] introduce a methodology
for including formal methods in DSLs. The methodology is based on a formal
algebraic specification language named CASL. The DSL is first modeled with a
CD, then it is automatically translated into a formal specification in CASL.

Alloy potential for DSL modelling has been studied in [16,4,6]. Sen et al.
expose an approach for using Alloy in order to improve DSLs definition [16].
A set of recommendations are generated to complete partial models which rep-
resent DSLs. The completion feature is centred around Alloy. Challenger et al.
establish a formal semantics of a DSL for Semantic Web enabled Multi-agent
Systems employing Alloy. Static and dynamic aspects of the interaction between
agents and semantic web services are considered. Additionally, they explain how
to perform automatic analysis for checking these models. Unlike our approach,
these works propose the representation of a specific DSL in Alloy, instead of a
general approach for modelling DSLs. Alloy is used to support the Lightning tool
which allows the representation of modelling languages [6]. The paper describes
Lightning’s capabilities for verification of a DSL related to structured business
processes. This work uses Alloy for supporting the Lightning tool instead of
applying directly Alloy’s tool-support in order to V&V a DSL metamodel.

7 Conclusion and future work

This paper presented an approach for modelling, verifying and validating domain
specific languages (DSLs) using Alloy. It detailed a concrete mechanism for auto-
matically obtaining Alloy models from UML class diagrams (CDs) enriched with
formulas specified in the Object Constraint Language (OCL), and a mechanism
for translating the models back into CDs enriched with OCL. The approach al-
lows domain experts to gain understanding of their metamodels, modify them,
possibly specifying restrictive formulas, so incorrect instances that emerge are
prevented. An illustrative example in the domain of Software Architecture was
developed.

Future work includes the extension of the approach to study instances of
DSLs, and the development of other case studies in order to adjust the approach
and validate it further.

References

1. Moussa Amrani. A formal semantics of kermeta. In Formal and Practica! Aspects
of Domain-Specific Languages: Recent Developments, 2012.

2. Jean-Paul Bodeveix, Mamoun Filali, Julia Lawall, and Gilles Muller. Formal meth-
ods meet domain specific languages. In Judi Romijn, Graeme Smith, and Jaco
van de Pol, editors, Integrated Formal Methods, volume 3771 of Lecture Notes in
Computer Science, pages 187-206. Springer Berlin Heidelberg, 2005.

3. Achim D. Brucker and Jürgen Doser. Metamodel-based UML notations for domain-
specific languages. In Jean Marie Favre, Dragan Gasevic, Ralf Lammel, and An
dreas Winter, editors, fth International Workshop on Software Language Engi-
neering (ATEM 2007). 2007.

4. Moharram Challenger, Sebla Demirkol, Sinem Getir, Marjan Mernik, Geylani Kar-
das, and Tomaz Kosar. On the use of a domain-specific modeling language in the
development of multiagent systems. Eng. Appl. o f AI, 28:111-141, 2014.

5. Alcino Cunha, Ana Garis, and Daniel Riesco. Translating between Alloy specifica-
tions and UML class diagrams annotated with OCL. Software & Systems Modeling,
pages 1-21, 2013.

6. Loic Gammaitoni, Pierre Kelsen, and Fabien Mathey. Verifying modelling lan
guages using lightning: a case study. llth Workshop on Model Driven Engineering,
Verification and Validation MoDeVVa 2014, page 19, 2014.

7. Ana Garis and Alejandro Sanchez. Especificación formal de lenguajes específicos
del dominio utilizando Alloy. In Proceedings of the X V II the Workshop de Inves
tigadores en Ciencias de la Computación, W ICC’15, 2015.

8. Haskell website http://www.haskell.org.
9. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,

revised edition, 2012.
10. Phillip James and Markus Roggenbach. Encapsulating formal methods within do-

main specific languages: A solution for verifying railway scheme plans. Mathematics
in Computer Science, 8(1):11-38, 2014.

11. OMG. UML Superstructure, version 2.4.1, 2011.
12. OMG. Object Constraint Language, version 2.4, 2014.
13. Translations MDA - Alloy http://sourceforge.net/projects/alloymda.
14. Alejandro Sanchez, Luis Barbosa, and Daniel Riesco. A language for behavioural

modelling of architectural patterns. In Proceedings of the Third Workshop on
Behavioural Modelling, pages 17-24, 2011.

15. Alejandro Sanchez, Luis S. Barbosa, and Daniel Riesco. Specifying structural
constraints of architectural patterns in the archery language. In Theodore E. Simos
and Charalambos Tsitouras, editors, Proceedings of the International Conference
on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014), volume
1648, pages 310008(1) - 310008(5). AIP Proceedings, 3 2015.

16. Sagar Sen, Benoit Baudry, and Hans Vangheluwe. Towards domain-specific model
editors with automatic model completion. Simulation, 86(2):109-126, 2010.

17. James Willans Tony Clark, Paul Sammut. Applied metamodelling: A foundation
for language driven development. Ceteva, second edition edition, 2008.

18. Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An
annotated bibliography. SIGPLAN Not., 35(6):26-36, 2000.

http://www.haskell.org
http://sourceforge.net/projects/alloymda

